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Preface

This volume contains the papers presented at ICALP 2014: the 41st International
Colloquium on Automata, Languages and Programming, held during July 8-11,
2014, at IT University of Copenhagen. ICALP is the main conference and annual
meeting of the European Association for Theoretical Computer Science (EATCS)
and first took place in 1972. This year the ICALP program consisted of three
tracks:

— Track A: Algorithms, Complexity, and Games
— Track B: Logic, Semantics, Automata, and Theory of Programming
— Track C: Foundations of Networked Computation

In response to the call for papers, the three Program Committees received 484
submissions, a record number for ICALP. Track A received 319 submissions
(another record), track B received 106 submissions, and track C received 59
submissions. Each submission was reviewed by at least three Program Committee
members, aided by many subreviewers. The committee decided to accept 136
papers, which are collected in these proceedings. The selection was made by the
Program Committees based on originality, quality, and relevance to theoretical
computer science. The quality of the submissions was very high indeed, and
many deserving papers could not be selected.

The EATCS sponsored awards for both a best paper and a best student paper
for each of the three tracks, selected by the Program Committees.

The best paper awards were given to the following papers:

— Track A: Andreas Bjorklund and Thore Husfeldt, “Shortest Two Disjoint
Paths in Polynomial Time”

— Track B: Joel Ouaknine and James Worrell. “Ultimate Positivity Is Decidable
for Simple Linear Recurrence Sequences”

— Track C: Oliver Gobel, Martin Hoefer, Thomas Kesselheim, Thomas Schlei-
den, and Berthold Vocking, “Online Independent Set Beyond the Worst-
Case: Secretaries, Prophets, and Periods”

The best student paper awards, for papers that are solely authored by stu-
dents, were given to the following papers:

— Track A: Sune K. Jakobsen, “Information Theoretical Cryptogenography”

— Track B: Michael Wehar, “Hardness Results for Intersection Non-Emptiness”

— Track C: Mohsen Ghaffari, “Near-Optimal Distributed Approximation of
Minimum-Weight Connected Dominating Set”

Apart from the contributed talks, the conference included invited presenta-
tions by Sanjeev Arora, Maurice Herlihy, Viktor Kuncak, and Claire Mathieu.
Abstracts of their talks are included in these proceedings as well.



VI Preface

The program of ICALP 2014 also included presentation of the Presburger
Award 2014 to David Woodruff, the EATCS Award 2014 to Gordon Plotkin,
and the Godel Prize to Ronald Fagin, Amnon Lotem, and Moni Naor.

Two satellite events of ICALP were held on 7 July, 2014:

— Trends in Online Algorithms (TOLA 2014)
— Young Researcher Workshop on Automata, Languages and Programming
(YR-ICALP 2014)

We wish to thank all the authors who submitted extended abstracts for con-
sideration, the members of the three Program Committees for their scholarly
efforts, and all additional reviewers who assisted the Program Committees in
the evaluation process. We thank the sponsors Springer-Verlag, EATCS, CWI
Amsterdam, and Statens Kunstfond for their support, and the IT University of
Copenhagen for hosting ICALP 2014.

We are also grateful to all members of the Organizing Committee and to their
support staff.

The conference-management system EasyChair was used to handle the sub-
missions, to conduct the electronic Program Committee meetings, and to assist
with the assembly of the proceedings.

May 2014 Javier Esparza
Pierre Fraigniaud

Thore Husfeldt

Elias Koutsoupias
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Abstract. The quotient complexity of a regular language L is the num-
ber of left quotients of L, which is the same as the state complexity of
L. Suppose that L and L’ are binary regular languages with quotient
complexities m and n, and that the subgroups of permutations in the
transition semigroups of the minimal deterministic automata accepting
L and L' are the symmetric groups S,, and S, of degrees m and n,
respectively. Denote by o any binary boolean operation that is not a
constant and not a function of one argument only. For m,n > 2 with
(m,n) € {(2,2),(3,4), (4,3), (4,4)} we prove that the quotient complex-
ity of L o L' is mn if and only either (a) m # n or (b) m = n and
the bases (ordered pairs of generators) of Sy, and S, are not conjugate.
For (m,n) € {(2,2),(3,4), (4,3), (4,4)} we give examples to show that
this need not hold. In proving these results we generalize the notion of
uniform minimality to direct products of automata. We also establish
a non-trivial connection between complexity of boolean operations and
group theory.

Keywords: Boolean operation, quotient complexity, regular language,
state complexity, symmetric group, transition semigroup.

1 Motivation

The left quotient, or simply quotient, of a regular language L over an alphabet
Y by a word w € X* is the regular language w=!L = {z € X*: wx € L}. It
is well known that a language is regular if and only if it has a finite number
of quotients. Consequently, the number of quotients of a regular language, its
quotient complexity [1], is a natural measure of complexity of the language. Quo-
tient complexity is also known as state complexity [15], which is the number of

* For a complete version of this work see http://arxiv.org/abs/1310.1841.
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states in the complete minimal deterministic finite automaton (DFA) recognizing
the language. We prefer quotient complexity because it is a language-theoretic
concept, and we refer to it simply as complexity.

The problem of determining the complexity of an operation [1,8,15,16] on
regular languages has received much attention. It is defined as the maximal
complexity of the language resulting from the operation, taken as a function
of the complexities of the operands. When operations are performed on large
automata it is important to have some information about the size of the result
and the time it will take to compute it. The quotient complexity of an operation
gives an upper bound on its time and space complexity [15].

Languages that meet the upper bound on the complexity of an operation are
witnesses for this operation. Although witnesses for common operations on reg-
ular languages are well known, there are occasions when one has to look for new
witnesses:

1. One may be interested in a class of languages that have the same com-
plexity with respect to a given operation. For example, let ¥ = {a,b} and
let |w|g be the number of times the letter a appears in the word w € X*.
Then the intersection of the languages L = {w € X*: |w|, = m — 1 mod m}
and L' = {w € X*: |w|, = n — 1 mod n} has complexity mn. The languages
K = (b*a)™ 1 X* and K' = (a*b)" "1 X* also meet this bound; hence (L, L) and
(K, K') are in the same complexity class with respect to intersection.

2. Whenever one studies complexity within a proper subclass of regular lan-
guages, one usually needs to find new witnesses. For example, in the class of
regular right ideals — languages L C X* satisfying L = LX* — languages K and
K’ are appropriate, but L and L’ are not. The main result of the present paper
has been applied to right ideals in [4], where the proof that the witnesses used
there meet the bounds for boolean operations was greatly simplified with the
aid of our theorem.

3. When one studies combined operations — operations that involve more than
one basic operation, for example, the intersection of reversed languages — one
again need new witnesses [7].

Before stating our result, we provide some additional background information.
The syntactic congruence <>y of L is defined as follows: For all =,y € X*,
z <+ yif and only if uzv € L & uyv € L for all u,v € X*. The set X7/ <>,
of equivalence classes of the relation < is a semigroup with concatenation as
the operation; it is called the syntactic semigroup of L, which we denote by Sp.
It is well known that the syntactic semigroup is isomorphic to the semigroup
Sp of transformations performed by non-empty words on the set of states in
the minimal DFA D recognizing L; this semigroup is known as the transition
semigroup of D. If D has n states, the cardinality of the transition semigroup is
bounded from above by n", and this bound is reachable.

The atoms [5,6] of a regular language are non-empty intersections of all left
quotients of the language, some or all of which may be complemented. A regular
language has at most 2" atoms, and their quotient complexities are known [5].
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The reverse of a word is defined inductively: the reverse of the empty word
e is e® = ¢, and the reverse of wa with w € X* and a € ¥ is (wa)? = aw®.
The reverse of a language L is LT = {wf': w € L}. For L with complexity n the
maximal complexity of LT is 27, and this bound is reachable.

Whenever new witnesses are used, it is necessary to prove that these witnesses
meet the required bound. It would be very useful to have results stating that if
the languages in question have some property P, then they meet the upper bound
for a given operation. Some results of this type are now briefly discussed.

Let MSC denote the class of languages with mazimal syntactic complezity
(languages with largest syntactic semigroups), let STT denote the class of lan-
guages whose minimal DFAs have set-transitive transition semigroups (for any
two sets of states of the same cardinality there is a transformation that maps
one set to the other), let M AL denote the class of mazimally atomic languages
(languages that have all 2" atoms, all of which have maximal possible quotient
complexity), let MINA denote the class of languages with the mazimal number
(2™) of atoms, and let MCR denote the class of languages with a mazimally
complex reverse (reverse of complexity 2™). The following relations hold [3]:

MSC ¢ STT = MAL Cc MNA = MCR.

The fact that MSC C MCR is a result of A. Salomaa, Wood, and Yu [12], and
the observation that MNA = MCR was made by Brzozowski and Tamm [6].

Our main theorem relates the complexity of proper binary boolean operations
on regular languages to the nature of the syntactic semigroups of the languages.
A boolean operation is proper if it is not a constant and not a function of one
variable only.

Let S,, denote the symmetric group of degree n. A basis [9] of Sy, is an ordered
pair (s,t) of distinct transformations of @, = {0,...,n — 1} that generate .S,,.
Two bases (s,t) and (s',t") of S, are conjugate if there exists a transformation
r € S, such that rsr~! = s', and rtr—! =¢'.

Assume that a DFA D (respectively, D) has state set @, (Q.), and transition
semigroup Sy, (Sp). Let L (L') be the language accepted by D (D’). Our main
theorem is a generalization of a result of Brzozowski and Liu [2]:

Theorem 1. Let D and D’ be binary DFAs with m and n states respectively,
where myn > 2 and (m,n) € {(2,2),(3,4),(4,3),(4,4)}. If the subgroups of per-
mutations in the transition semigroups of D and D' are Sy, and S, respectively,
and o is a proper binary boolean operation, then the complexity of L o L' is
mmn, unless m = n and the bases of the transition semigroups of D and D’ are
congugate, in which case the quotient complexity of L o L' is at most m = n.

The proof that the complexity of a binary boolean operation is maximal in-
volves two steps. First, one proves that the direct product of the minimal DFAs
of the languages is connected, meaning that all of its states are reachable from
the initial state. Second, one verifies that any two states in the direct product
are distinguishable by some word, that is, that they are not equivalent. Since
both reachability and distinguishability will be proved using only permutations,
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it is convenient to ignore other transformations and assume that the transition
semigroups of the DFAs we deal with are symmetric groups.

The remainder of the paper is structured as follows: Section 2 defines our
terminology and notation. Section 3 deals with the conditions under which the
direct product of two automata is connected. Section 4 studies uniformly mini-
mal semiautomata (automata without final states), that is, semiautomata which
become minimal DFAs if one adds an arbitrary set of final states, other than the
empty set and the set of all states. Section 5 contains our main result relating
symmetric groups to the complexity of boolean operations for all except a few
cases. Section 6 concludes the paper.

2 Preliminaries

Groups. Our results rely heavily on the theory of finite groups. We refer the
reader to [11,13], for example, for basic facts about groups.

Transformations. A transformation of a set () is a mapping of ) into itself.
We deal only with finite non-empty sets and, without loss of generality, assume
that @ = @, ={0,1,...,n—1}. If ¢ is a transformation of Q,, and 7 € @,,, then
t(4) is the image of ¢ under t. An arbitrary transformation is written in the form

‘= (O 1... n—2n—1)
C \dg i1 .. Gp—g Gp—1 )’
where iy, = t(k), 0 < k <n—1,and iy € Q,. The composition of two transforma-
tions t1 and t2 of @, is a transformation ¢; o to such that (¢; o t3)(2) = t1(t2(4))
for all 7 € @,,. We usually omit the composition operator and write ¢1t5. The set
of all transformations of @,, is a monoid under composititon with the identity
transformation acting as the unit element 1.

A permutation is a mapping of @, onto itself. A permutation t is a cycle of
of length k or a k-cycle , where k > 2, if there exist pairwise different elements
i1, ..., i such that t(i1) = iq, t(iz) = i3, ..., t(ik—1) = ik, and t(ig) = i1,
and ¢ does not affect any other elements. A cycle is denoted by (i1,42,...,k).
A transposition is a 2-cycle. Every permutation is a product (composition) of
transpositions, and the parity of the number of transpositions in the factorization
is an invariant. A permutation is odd (even) if its factorization has an odd
(even) number of factors. The symmetric group Sy of degree n is the set of all
permutations of Q,,, with composition as the group operation, and the identity
as 1. The alternating group A, is the set of all even permutations of S,.

Given a subgroup H of S, we say that H acts transitively on @Q,, if for each
i,j € @y there is some t € H such that t(i) = j. We say that H acts doubly
transitively on @, if whenever i,j,k,¢ € Q,, with ¢ # j and k # £ there is some
t € H such that t(i) = k, t(j) = ¢.

Semiautomata and Automata. A deterministic finite semiautomaton (DFS)
is a quadruple A = (Q, X, 0, qo), where @ is a finite set of states, X' is a finite
non-empty alphabet, 6: Q x X — @ is the transition function, and qq is the initial
state. We extend § to Q x X* in the usual way. A state ¢ is reachable from the
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initial state if there is a word w such that ¢ = §(go,w). A DFS is connected if
every state ¢ € @) is reachable.

For a DFS A = (Q,X,6,q0) and a word w € X*, the transition function
0(-,w) is a transformation of @, the transformation induced by w. The set of all
transformations induced by non-empty words is the transition semigroup S4 of
A. For w € X7, we denote by w: t the transformation ¢ of @,, induced by w.

Given semiautomata A = (Q, X, 4, qp) and A" = (Q', X, ', q})), we define their
direct product to be the DFS A x A" = (Q x @', X, (8,0"), (g0, 4}))-

A deterministic finite automaton (DFA) is a quintuple D = (Q, X, 4, qo, F),
where (Q, X, 9, qo) is a DFS and F C @ is the set of final states. The DFA D
accepts a word w € X* if §(qo,w) € F. The set of all words accepted by D is
the language L(D) of D. The language accepted from a state q of a DFA is the
language Lq(D) accepted by the DFA (Q, X, 4, q, F). Two states of a DFA are
distinguishable if there exists a word w which is accepted from one of the states
and rejected from the other. Otherwise, the two states are equivalent. A DFA is
manimal if all of its states are reachable from the initial state and no two states
are equivalent. Note that if |Q| > 2 and D is minimal, then ) C F C Q.

3 Connectedness

From now on we are interested in semiautomata A and A’ whose transition
semigroups are symmetric groups generated by two-element bases. We assume
that permutations s and s’ are induced by a in A and A’, and permutations ¢
and ¢’ by b, that is, a: s, b: t in A and a: s', b: t' in A'.

Ezample 1. Let ¥ = {a,b}, A = (Q3,X,0,0), and A" = (Q3,X,4,0), where
a:s=(0,1,2),b: t=(0,1) in A, and a: ' = (0,1,2), b: ' = (1,2) in A". Then
(s,t) and (s',t') are conjugate, since rsr—1 =" and rtr=t = ¢’ for r = (0, 1,2).
If A” has s” = (0,1) and t"” = (0, 1, 2), then (s,¢) and (s”,t") are not conjugate.

The transition semigroups of A, A’ and A" all have 6 elements. Those of A
and A’, when viewed as semigroups generated by a and b, are identical, but
those of A and A" are not: for example, a> =1in Sqy but a>=1in Syv. N

Theorem 2. Let ¥ = {a,b}, let A = (Qm,X,6,0) and A" = (Qn,X,0',0) be
semiautomata with transition semigroups that are symmetric groups of degrees
m and n respectively, and let the corresponding bases be B and B'. Form,n > 1,
the direct product A x A’ is connected if and only if either (1) m # n or (2)
m =mn and B and B’ are not conjugate.

Proof. Without loss of generality, assume that m < n. Let H denote the tran-
sition semigroup of A x A’; then H is a subgroup of S,, x S,. Define homo-
morphisms 71: H — S,, and ma: H — S, by m1((s,t)) = s and m2((s,t)) = t.
Observe that m; and 7o are surjective, since the transition semigroups of A and
A’ are S, and S, respectively. We let Hy denote the subgroup of H consisting
of all elements that map the set {0} x @,, to itself. Then Hy has index m in H
and thus 72 (Hp) has index at most m in mo(H) = S,,. Thus the order of w2 (Hy)
is at least n!/m > (n — 1)L
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Since a subgroup of S, that does not act transitively on @,, is necessarily iso-
morphic to a subgroup of S; x S,,_; for some i € {1,...,n—1} [14, Section 2.5.1],
a subgroup of S,, whose order is strictly greater than (n— 1)! acts transitively on
Q@n- Moreover, a subgroup of order (n — 1)! that does not act transitively on @,
is isomorphic to S1 X S,,—1; that is, it is the stabilizer of a point. Thus mo(Hp)
fails to act transitively on @,, if and only if m = n and wo(Hj) is the stabilizer
of a point.

Suppose that m < n or m = n and mo(Hp) is not the stabilizer of a point,
which is equivalent to assuming that mo(Hp) acts transitively on @,,. We claim
that the direct product A x A" is connected. To see this, notice that given (i, j)
and (¢,5') in Q. X Qn, we can find t (respectively ¢') in H that sends (i, )
to (0, k) (respectively (i, j) to (0,k")) for some k (respectively k') in @, since
m(H) = Sy, acts transitively on Q,. Since we have assumed that m2(Hy) acts
transitively on @, we can find ¢ € H such that m(t"”) € mo(Hp) sends (0, k)
to (0,k"). Hence (#')~1t"t sends (i, ) to (i',;'), and so A x A’ is connected.

Suppose next that m = n and w9 (Hp) is the stabilizer of a point. By relabelling
if necessary, we may assume that mo(Hp) stabilizes 0. Then H cannot send (0, 0)
to (0,4¢) for i # 0 and so A x A’ is not connected. We claim that the bases B
and B’ are conjugate.

To prove this claim, note that H has the property that if (s,t) € H C S,, X S,
and s(0) = 0, then ¢(0) = 0. We claim there is a permutation u € S, with
u(0) = 0 such that if (s,t) € H sends (0,0) to (j, k), then k& = wu(j). First
suppose that k1, ke € @, have the property that there is some j € @,, such that
(J, k1) and (J, k2) are in the orbit of (0,0) under the action of H. Then we can
pick h in H such that 71 (h)(j) = 0. Then (0, 72(h)(k1)) and (0,m2(h)(k2)) are
both in the orbit of (0,0), which means that ma(h)(k1) = m2(h)(k2) = 0, giving
k1 = ko. It follows that there is a map u: @, — @, with u(0) = 0 such that, if
(s,t) € H sends (0,0) to (j,k), then k = u(j). Since mo(H) acts transitively on
@, the map uw must be surjective and hence is a permutation, as claimed.

Let s1, 59 € Sy, denote the elements in the transition semigroup corresponding
toa € X, and let t1,t2 € Sy, correspond to b € X. Let H' be the group generated
by (s1,u~tt1u), (s2,u~ tau). Then H’ is conjugate to H (we conjugate H by
(1,u) to obtain H'); furthermore, H' has the property that if (s,t) € H' sends
(0,0) to (¢,7), then ¢ = j. Thus H' acts transitively on the diagonal of Q,, X Qn;
if (s,t) € H' then s(i) = t(¢) for all i € Q,,, which gives that s = ¢. Hence, if
(s,t') € H, then u='t'u = s and so the bases B and B’ are conjugate. Thus if
A x A’ is not connected, then m = n and the bases B and B’ are conjugate.

Now we show the converse: If m = n and the bases B = (s,t) and B’ =
(s',t') are conjugate, then A x A’ is not connected. If rsr=! = &', and rtr=1 =
t', let . {s,t}7 — {s',t'}" be the mapping that assigns to x € {s,t} the
element rar—1 € {s',¢'}T. For any z,y € {s,t} T, if zy = 2, then ¥,.(2)¥,(y) =
(rar=Y)(ryr~!) = r(zy)r—! = 1,(2). Hence the transition semigroups of A and
A’ are isomorphic.
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The direct product A x A’ is defined by (@, X Qx, {a,b}, (4,¢),(0,0)), where
(0,0")((i,5),a) = (s(i),rsr="(j)) and (8,8")((4,5),b) = (¢(i),rtr=1(j)) for any
1,] € Qn.

If A x A is connected, then for all (i,j) € Qn X @, there must exist a
word w € X such that (,6")((0,0),w) = (i,7) or, equivalently, there exists a
permutation p such that p(0) =i and rpr=1(0) = j. There are now two cases:

1. If r=1(0) # 0, we prove that state (i,7(i)) is unreachable for all i € Q..
If (i,7(4)) is reachable, then there exists a permutation p such that p(0) = ¢
and rpr=1(0) = r(i). But then r~lrpr=1(0) = pr=1(0) = i = p(0), and so
p~tpr=1(0) = r=1(0) = 0, which is a contradiction.

2. If r=1(0) = 0, we prove that state (i,i) is unreachable for some i € Q,.
Since r cannot be the identity, there must exist an ¢ such that r(¢) # i. Suppose
(i,1) is reachable for that 7. Then there exists a permutation p such that p(0) =1
and rpr=1(0) = 4. Thus i = rpr=1(0) = rp(0) = p(0) and r(i) = i, which is a
contradiction.

Hence A x A’ cannot be connected. O

Remark 1. If A x A’ is connected, then it is strongly connected, since the tran-
sition semigroup of A x A’ is a group.

4 Uniformly Minimal Semiautomata

Semiautomata that result in minimal DFAs under any non-trivial assignment of
final states were studied by Restivo and Vaglica [10]. We modify their definitions
slightly to suit our purposes. A strongly connected DFS A = (Q, X, ¢, qo) with
|Q| > 2 is uniformly minimal if the DFA D = (Q, X, d, qo, F') is minimal for each
set F' of final states, where § C F C Q.

Given a DFS A = (Q, X,0,qo), we define the pair graph of A to be the
directed graph G 4 = (V4, E 1), where the set V4 of vertices is the set of all two-
element subsets {p, ¢} of @, and the set E 4 of edges consists of unordered pairs
({p,q},{p’,q'}) such that {6(p,a),d(q,a)} = {p’,¢'}. The following is from [10]:

Proposition 1 (Restivo and Vaglica). Let A = (Q, X,0,q0) be a strongly
connected DFS with at least two states. If the pair graph (Vp, Ep) is strongly
connected, then A is uniformly minimal.

We prove a similar result for semiautomata with symmetric groups.

Proposition 2. Suppose that A = (Qn, X, 0,q0) is a DFS and the transition
semigroup S of A is the symmetric group S,. Then A is strongly connected
and uniformly minimal.

Proof. If S4 = S, then S4 contains all permutations of @,,, in particular, the
cycle (0,...,n—1); hence A is strongly connected. For any (4, j), (k,£) € Qn X Qp
with ¢ # j, k # £, and {i,5} # {k, ¢}, any permutation that maps i to k and
j to ¢ connects {i,j} to {k, ¢} in the pair graph of A. Hence the pair graph is
strongly connected, and A4 is uniformly minimal by Proposition 1. a
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Let the truth values of propositions be 1 (true) and 0 (false). Let o: {0,1} x
{0,1} — {0,1} be a binary boolean function. Extend o to a function o: 2~ x
2% 5 2% fwe X* and L, L' C X* thenw € (Lo L') & (w € L)o (w € L).
Also, extend o to a function o: 29m x 2@n — 2@mXQn: If ¢ € Q,n, ¢ € Qn,
F C Qm,and F' C Qy, then (¢,¢") € (FoF') & (¢€ F)o (¢ € F').

Suppose that A = (Q,X,4,0) and A" = (Q',X,4,0) with |Q| = m and
|Q'| = n are uniformly minimal DFSs, and o is any proper boolean function.
The pair (A, A") is uniformly minimal for o if the direct product P = (Q x
Q',%,(8,6"),(0,0), F o F'") is minimal for all valid assignments of sets ' and F”
of final states to A and A’, that is, sets such that 0 C F C Q and § C F' C @Q’.

If n =1, then A x A’ is isomorphic to A and no boolean function o is proper.
Hence this case, and also the case with m = 1, is of no interest. Henceforth we
assume that m,n > 2.

We now consider pair graphs of DF'Ss with symmetric groups as their transi-
tion semigroups.

Ezxample 2. Suppose that m = n = 2, and A and A’ both have Sy as their
transition semigroup. There are two permutations in Sy: (0,1) and 1, and there
are three bases: By = (a: (0,1),b: (0,1)), B2 = (a: (0,1),b: 1), and B3 =
(a: 1,b: (0,1)). Note that no two of these bases are conjugate.

For each basis, there are two possible final states, 0 or 1, and hence two DFAs;
thus there are six different DFAs. There are then twelve direct products D; X Df
with non-conjugate bases, where D} (D}) uses basis B; (By) and has j (£) as
final state, for i,k =1,2,3 and j5,¢ = 1,2.

For each pair of DFAs accepting languages L and L’ respectively, we tested
the complexity of five boolean functions: LU L', LNL', L& L' , L\ L' and
L'\ L. Note that the complexity of each remaining proper boolean function is
the same as that of one of these five functions. For all twelve direct products of
DFAs with non-conjugate bases, all proper boolean functions reach the maximal
complexity 4, except for the functions L@ L’ and L & L/, which fail in all twelve
cases. Thus any two DFAs D = (Q2,X,6;,0,F) and D' = (Q2, X, k0, F’),
where Q2 = {0,1}, X' = {a, b}, §; (%) is defined by basis B; (Bx), F' = {j} and
F' = {¢}, are uniformly minimal for all proper boolean functions, except & and
its complement. So our main result applies only in some casesif m=n=2. B

Proposition 3. Let A = (Qmn, X,0,0) and A" = (Qn, X, 0d,0), with m,n > 2
and max(m,n) > 3, be DFSs with transition semigroups that are symmetric
groups, and let P be their direct product. Then the following hold:
1. The pair graph of P consists of strongly connected components — which we
will call simply components — of one of the following three types:
(a) T: CCy = {{(27])7 (k‘,f)} i 7& kv.] 7& E};
(b) T, CCy = {{(Za])v (Zae)} J# 6}7
(c) Ts C Cy = {{(i. ), (k. )} i # k).
2. Every state (i,7) of the direct product P appears in at least one pair in
each component.
3. Fach component has at least mn/2 > 3 pairs.
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Proof. The first claim follows since the transition semigroup of P is a group.
The second claim holds because the direct product is strongly connected, by
Remark 1. For the third claim, note that there are mn states in P, but they can
appear in pairs; hence the bound mn/2. Since we are assuming that mn > 6,
the last claim follows. O

Now consider DFAs D = (Qu,, X,6,0, F) and D' = (Qn, X, 46,0, F’), where
0 CF CQnmandd CF CQn A state {(4,7), (k,£)} of the pair graph of the
direct product P of D and D’ is distinguishing if and only if (i, 7) is final and
(k, £) is not, or wice versa.

Ezample 3. Suppose m = 3, n = 4, ¢ is defined by the basis (a: (0,1),b: (0,1,2))
of S3, and ¢’ by the basis (a: (0,1),b: (1,3,2)) of S4. One verifies that these bases
are not conjugate. The direct product P is connected and has twelve states.

If F={2}, F = {0,1} and intersection is the boolean function, then there
are no distinguishing pairs in the component of the pair graph T containing
{(0,0),(0,3)}. Hence any two states appearing in the same pair of T" are equiv-
alent. Indeed, the minimal version of P has only six states. |

Ezample 4. Suppose m = n = 4, § is defined by the basis (a: (0,1,2),b: (2,3)),
and ¢’ by the basis (a: (1,3,2),b: (0,2,1,3)). If F = {0,1} and F’ = {0,1}, then
the complexity of L & L’ is 4, but all the other complexities are 12. |

Lemma 1. Let D = (Q, X,4,0,F) and D' = (Q', X,0',0, F"), with |Q|,|Q’] >
2, be DFAs with transition semigroups that are groups, and let P = (Q x
Q',X,(6,0"),(0,0), F o F') be their direct product. Then P is minimal if and
only if every component of the pair graph Gp of P has a distinguishing pair.

5 Symmetric Groups and Boolean Operations

We begin with a well-known but apparently unpublished result.

Lemma 2. Let n be a positive integer, let G be either S, or Ay, and let H be
a subgroup of G of index m < n. Then the following hold:

(i) if n # 4 and m < n, then H is either A, or Sy;

(i) if m =n and n # 6, then there is some i € Q,, such that H is the set of
permutations in G that fix i.

(#1) if m = n = 6, then there is an automorphism ¢ of Sg such that ¢(H) is
the set of elements that fix 0.

The following lemma, like Theorem 2, deals with reachability. The conditions
in the lemma, however, are useful for determining reachability in the pair graph
of A x A, rather than in A x A’ itself.

Lemma 3. Let ¥ = {a,b}, let A = (Qm,X,5,0) and A" = (Qn, X, ,0) be
semiautomata with transition semigroups that are symmetric groups of degrees
m and n respectively with m < n, n # 4 and (m,n) # (6,6). Let H be the
transition semigroup of A x A’, and let m and 7o be the natural projections
from H onto Sy, and Sy, respectively. If Hy = {h € H: m1(h)(0) = 0}, then
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1. wo(Hyp) is either Sy, or A, or is the stabilizer of a point in Q..
2. wo(Hy) is the stabilizer of a point if and only if m = n, and in this case
the direct product A x A’ is not connected.

Proof. For Part 1, since m1(H) = Sy, for each i € {0,...,m — 1} there is some
h; € H such that m1(h;) takes 0 to i. For a given h € H, w1 (h) takes 0 to j for
some j € {0,1,...,m — 1}, and thus hj_lh € Hy and so h € h;Hy. However,
since 71(h) takes 0 to j, we have h;lh ¢ Hy and thus h ¢ h;Hy for i # j.
Thus the cosets hoH, ..., h;yy_1H are distinct, and Hy has index m in H. Since

ma(H) C UMy mo(hi)ma(Ho), ma(Ho) has index at most m in may(H) = S,,. If
n # 4 and m < n, then mo(Hy) is either A,, or S,, by Lemma 2. If m = n and
n # 6, then mo (HO) has index n in S,, and hence must be the stabilizer of a some
i € @ by Lemma 2.

For Part 2, suppose that m = n and w2(Hj) is the stabilizer of a point in Q,,.
By relabelling if necessary, we may assume that mo(Hp) stabilizes 0. Hence, if
h € H sends (0,0) to (0,j) then j = 0. In particular, there is no h € H that
sends (0,0) to (0,1) or that sends (0,1) to (0,0), and so A x A’ is necessarily
not connected. O

Lemma 4. Let A= (Qm, X,0,0) and A’ = (Qn, X,9',0) be semiautomata with
transition semigroups that are the symmetric groups of degrees m and n, re-
spectively with m < n, m > 2, n > 5, and (m,n) # (6,6). If A x A" is
connected, then the pair graph of A x A’ has ezactly three connected compo-
nents: Cy = {{(27])7(k’€)} i F kj# 6}7 Cy = {{(Z,j),(Z,g)}j # E}, and
Cs = {{(27])7 (k’j)} i F k}

Proof. We let H denote the transition semigroup of A x A’. We show that each
of C1,C5, Cs is strongly connected. Note that each of Cy, Cy, C3 is necessarily
a union of connected components.

We show that Cj is strongly connected. Suppose we have pairs {(i,7), (k, £)}
and {(¢/,5"), (K',¢')} with i, k distinct, ¢, k" distinct, j, ¢ distinct, and j', ¢ dis-
tinct. Since S, acts doubly transitively on @Q,, when m > 2, there is some s € H
that sends (i, §) to (i’,4") and (k, ) to (k',¢") for some j", ¢ € Qp.

Thus we may assume without loss of generality that i = ¢ and &’ = k. Let Hy
be the subgroup of Sy, x S, consisting of all x € H such that 7 (x) fixes i. By
Lemma 3, since we assume that A x A’ is connected, m2(Hp) is not a stabilizer of
a point in Q. Hence mo(Hy) is either S, or A,. Let H; denote the subgroup of
Sm X Sy, consisting of all z € H such that 71 (z) fixes ¢ and k. By the argument
used in Lemma 3 to show that {h € H: 71(h)(0) = 0} has index m in H, we see
that mo(H1) has index at most m — 1 in mo(Hy). Thus 72(H;) is a subgroup of
A, or S, of index at most n — 1, and hence must again be A, or S, by Lemma
2. Since A,, and S,, both act doubly transitively on @,,, there is some h € H
that sends (¢, j) to (¢,5') and (k, £) to (k,£') whenever ¢ and ¢’ are distinct. This
proves that C is indeed a strongly connected component.

Next, consider pairs {(4, j), (¢, k) } with j, k distinct. For given {(¢’, j'), (', k')}
with j/, k" distinct, there is some element s € H such that m1(s)(¢) = ¢’ and thus
s sends (i, 7) to (¢/,7"”) and (i,k) to (¢, k") for some j”, k" € Q,, with j” # k".
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Now note that mo({x € H: m1(x)(i’) = i'}) is either S,, or A, by Lemma 3, and
thus acts doubly transitively on @,,. It follows that there is some s’ € H such
that s’ sends (', j”) to (i’,4’) and (¢, k") to (', k"). Then s's sends {(i, j), (¢, k) }
to {(¢,4"), (#',k")} and thus C5 is strongly connected.

Finally, consider pairs {(4, j), (k,7)} and {(¢', '), (k’, j')} with 4, k distinct and
7', k' distinct. From the argument used in proving C is strongly connected, we
see that we can find s € H that sends {(¢, 7), (k, 5)} to {(¢/,5"), (¥, ")} for some
j”. As in the proof that Cj is strongly connected, we see that the image of the
set of h € H for which 7 (h) stabilizes both ¢’ and k&’ under 7, acts transitively
on Qp; hence we can find s’ € H that sends {(¢, j"), (K, ")} to {(¢, "), (K', ")}
Thus Cj is strongly connected. a

Corollary 1. Let m and n be positive integers with n > m > 2, n > 5, and
(m,n) # (6,6), and let A = (Qm,X,0,0) and A" = (Qn, X,0’,0) be semiau-
tomata with transition semigroups that are the symmetric groups of degrees m
and n. Suppose that the direct product A x A’ is connected and assume further
that sets of final states are added to A and A" and that o is a proper binary
boolean function that defines the set of final states of the direct product P. Then
P is minimal for any such o.

Proof. By Lemma 4, the pair graph of A x A’ has three strongly connected
components: C1 = {{(4,7), (k,0)}: i # k,j # £}, Co = {{(4,7), (5,0)}: j # ¢},
and C3 = {{(27])7 (k’j)} i F k}

For (i,7) € Qm X Qn, define f((i,7)) to be 1 if (i,5) is a final state, and 0,
otherwise. We first claim that C7 has a distinguishing pair, that is, there are pairs
(i,4) and (k,£) in Q. X Q,, with i # k and j # £ such that f((¢,7)) # f((k,£)).

Suppose no distinguishing pair exists in C7. Assume without loss of generality
that £((0,0)) = 0. then f((¢,7)) = 0 whenever ¢ # 0 and j # 0. Given k € Qn,
we pick £ € Q, \ {0, k}; this is always possible since n > 3. Since {(0, k), (1,¢)}
is in C7 and we have assumed that C; has no distinguishing pairs, we must have
f(0,k)) = f((1,£)). But f(1,¢) must be 0, for otherwise we would have the
distinguishing pair {(0,0), (1,¢)}. Hence f((0,k)) = f((1,£)) = 0. Thus we have
f((3,5)) = 0 for every i € Q,, and every j € @, \ {0}. Similarly, we must have
f((3,0)) = f((0,1)) = 0 for i € @y, \ {0}, and hence f is the zero function, a
contradiction.

The fact that Cy and C3 both have distinguishing pairs follows from the fact
that o is a proper boolean function. By Lemma 1, we conclude that A x A’ is
uniformly minimal. O

We have proved our main result in the case that m < n and n > 5 if
(m,n) # (6,6). By symmetry we may always assume that m < n. The case
(m,n) = (2,2) was handled in Example 2, that of (m,n) = (3,4), in Exam-
ple 3, and that of (m,n) = (4,4), in Example 4. So the only cases to consider
are those with (m,n) € {(2,3),(2,4),(3,3),(6,6)}; these cases are covered at
http://arxiv.org/abs/1310.1841.
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6 Conclusions

We have shown that if the inputs of two DFAs induce transformations that con-
stitute non-conjugate bases of symmetric groups, then the quotient complexity
of all non-trivial boolean operations on the languages accepted by the DFAs is
maximal, except for a few special cases when the sizes of the DFAs are small.
We believe that other similar results are possible and deserve further study.
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Abstract. Most decidability results concerning well-structured transi-
tion systems apply to the finitely branching variant. Yet some models
(inserting automata, w-Petri nets, ...) are naturally infinitely branching.
Here we develop tools to handle infinitely branching WSTS by exploiting
the crucial property that in the (ideal) completion of a well-quasi-ordered
set, downward-closed sets are finite unions of ideals. Then, using these
tools, we derive decidability results and we delineate the undecidability
frontier in the case of the termination, the control-state maintainability
and the coverability problems. Coverability and boundedness under new
effectivity conditions are shown decidable.

1 Introduction

Well-structured transition systems (WSTS) [12,11,2] as a general class of infinite-
state systems have spawned decidability results for important problems such as
termination, boundedness, control-state maintainability and coverability. WSTS
consist of a (usually infinite) well ordered set of states, together with a monotone
transition relation. WSTS have found multiple uses: in settling the decidability
status of reachability and coverability for graph transformation systems [4,22],
in the forward analysis of depth-bounded processes [26,27], in the verification of
parameterized protocols [10] and the verification of multi-threaded asynchronous
software [21]. WSTS remain under development and are actively being investi-
gated [13,14,18,255,24].

Most existing decidability results for WSTS apply to the finitely branching
variant. However, WSTS such as inserting FIFO automata [7], inserting au-
tomata [6] and w-Petri nets [17], that can arbitrarily increase some values, are
intrinsically infinitely branching, and any finitely branching WSTS parameter-
ized with an infinite set of initial states (such as broadcast protocols [10]) also
inherits an infinitely branching state. For instance, Geeraerts, Heuiner, Praveen
and Raskin argue in [17] that parametric concurrent systems with dynamic
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thread creation can naturally be modelled by some classes of infinitely branch-
ing systems, like w-Petri nets, i.e. Petri net with arcs that can consume/create
arbitrarily many tokens.

An outcome of our work is that the finite tree construction technique can be
recovered, even in the infinitely branching case, for the purpose of deciding the
boundedness problem for example.

The primary motivation for this paper is to explore the decidability status
of the termination, boundedness, control-state maintainability and coverability
problems for infinitely branching (general) WSTS. For the coverability problem,
known to be decidable for WSTS fulfilling the so-called prebasis computability
hypothesis [2], we wish to draw from the recent algebra-theoretic characteriza-
tions of downward-closed sets [13] and conceive of a post-oriented computability
hypothesis suitable for the design of a forward algorithm. (Indeed, forward algo-
rithms are arguably more intuitive than backward algorithms and post-oriented
computability more easily verified than prebasis computability, where prebasis
computability means computability of a finite basis of the upward closure of the
set of immediate predecessors, the testing of which is provably undecidable in
some WSTS.) Our contributions are the following;:

1. As technical tools, we simplify and extend the analysis of the completion of
a general WSTS and we relate the behavior of a WSTS to that of its com-
pletion. In particular, we provide a general presentation of the completion
that is much less daunting than the presentations currently available in the
literature. This sets the stage for exploiting the main property of the com-
pletion of a WSTS, namely, the expressibility of any downward-closed set as
a (unique, as shown here) finite union of ideals, in the design of algorithms.

2. We uncover a new termination property (called strong termination) that
is computationally equivalent to the usual termination property for finitely
branching WSTS but that subtly differs from it in the presence of infinite
branching. Indeed, we exhibit WSTS for which strong termination is decid-
able yet the usual termination is undecidable. A similar subtle issue arises
as well in our generalization of the maintainability problem to infinitely
branching.

3. We generalize most decidability results mentioned for finitely branching
WSTS earlier to the infinitely branching case. This requires carefully tracking
the effectiveness and the monotonicity conditions which support decidability.
When possible, we delineate the frontier between decidability for a problem
and the undecidabilty that results from dropping one of these conditions.
The new decidability results for (strong) termination and (strong) maintain-
ability exploit the completion. The new algorithm for coverability uses a
forward strategy coupled with a post-oriented computability hypothesis.

Our work further highlights the naturalness of the class of w?-WSTS. Indeed
our decidability results apply in one blow to known classes of infinitely branching
WSTS like inserting FIFO automata [7], inserting automata [6], w-Petri nets [17]
and broadcast protocols [10].
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Section 2 below introduces notation and preliminaries. Section 3 surveys
known decidabilities and exhibits some undecidabilities. Section 4 develops our
tools to handle infinite branching. Section 5 contains the bulk of our decidability
results for infinitely branching WSTS. Section 6 summarizes our contribution
and suggests future work.

2 WSTS

Let X be a set and < a quasi-ordering on X (< reflexive and transitive), then <
is a well-quasi-ordering (wqo) if for every infinite sequence xg, x1, ... of elements
rn € X, there exist ¢ < j such that z; < x;. It is well-known that N9 is well-
quasi-ordered under (z1,...,2q) <ya (@],...,2,) where the latter means that
Vi x; < z (Dickson’s Lemma). We extend N to N,, by adding an element w
verifying w >y, z for all z € N,,. The set NZ is also well-quasi-ordered. We
simply write < for <y and <p_, when there is no ambiguity.

Recall that a WSTS is an ordered transition system S = (X, —g, <) such that
< is a well-quasi-ordering on X, and the relation —-g C X x X is monotone (or
compatible) with < meaning that for all z,y, 2’ such that x —g y and = < 2/,
there exists a state y’ such that 2/ g ¢/ and y < y/. WSTS thus satisfy a
general monotony by definition. There exist other variations of monotony:

strong:  x—osyAr > = 2 =gy >y,
stuttering: « s y Az’ > 2 = o' =2 =5 ... 25 a2, —sy >y, Viz, >z,
transitive: z g yAa >z = 2/ gy >y,
strict: rosyh >z = 2 Sgy >y

Strong monotony implies stuttering monotony which implies transitive monotony.

We denote, as usual, Preg(z) = {y : y =g z}, Postg(z) = {y : * =5 y},
Pres(T) = J,er Pres(z) and Posts(T) = U, Posts(z).

Throughout this paper, WSTS will be assumed effective in the following sense:
(1) the set of states X is r.e. (which suffices to compute Postg(x) when |Postg(x)]
is known and finite); (2) the transition relation is decidable, i.e., the WSTS comes
equipped with an algorithm that can decide, given x,y € X, whether x —g y
or equivalently whether y € Postg(z); (3) the quasi-ordering < is decidable,
i.e., the WSTS also comes equipped with an algorithm that can decide, given
x,y € X, whether # < y. Forward analysis techniques for (finitely branching)
WSTS typically compute the finite set Postg(z), which is made possible by
assuming Postg computable. Because our new setting allows Postg(z) to be
infinite, we need to adapt this assumption. Our “post-effectivity” notion mildly
weakens the usual hypothesis of “being able to compute Postg”:

Definition 2.1. A transition system S = (X, —g) is post-effective if S is ef-
fective and f: X — NU { “infinite”} given by f(x) = |Posts(z)| is computable.

Transition systems defined by a finite set of recursive functions are typical
examples of finitely branching systems and they will be called functional. Let Fy
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denote the set of WSTS whose transitions relation is prescribed by finitely many
increasing functions f from N to N¢ (i.e. # <y == f(x) < f(y)) which are
also recursive (i.e., given by halting Turing machines); these WSTS are finitely
branching and post-effective. Inserting FIFO automata [7], inserting automata
[6] and w-Petri nets [17] are post-effective infinitely branching WSTS.

Recall that an effective ordered transition system is said essentially finite
branching [2] if the subset maxpost(z) of maximal elements of Postg(z) is non
empty, finite and computable. Some WSTS, e.g. w-Petri nets, are post-effective
but are not essentially finite branching and conversely, we can exhibit essentially
finite branching WSTS that are not post-effective.

Post-effectivity (Definition 2.1) is a weaker notion than “having a finite and
computable Postg”. The weaker notion does imply “computable Postg” for ef-
fective WSTS that are finitely branching. Hence it is natural to ask whether the
finitely branching property is decidable for post-effective WSTS. It is not:

Proposition 2.2. Testing, given a post-effective WSTS S and x¢ € X, whether
there exists an execution Ty —>g x such that Posts(z) is infinite is undecidable.

Let 1T and | T stand respectively for the set of states that are > and <
some state in T'. A set T is upward closed if T = 1T and downward closed if
T = |T. An upward basis of a set T is a set B such that T'= 1 B. An ideal I
is a downward closed set that is also directed, i.e., Va,b € I,3c € I such that
a < ¢ and b < c. We note Ideals(X) the set of ideals of an ordered set X. A
directed complete partial ordering (dcpo) is an ordered set (X, <) such that every
directed set D C X has a least upper bound (lub) in X: for instance, (N, <),
with the usual notations, is not a dcpo since the directed set N has no lub in
N; if we add the lub w to N, then (N, <) is a dcpo. There is a way to add all
lubs to any ordered set (X, <), that is called the ideal completion, since each
element x € X can be identified with | z € Ideals(X) and since it is well-known
that (Ideals(X), C) is a depo [3,13]. We will consider the following problems for
WSTS, where the input to each problem is an effective WSTS S = (X, —g, <)
and a state xg € X, together with an & € X in the case of coverability, and a
set t1,...,t, € X in the case of the maintainability problem:

— Coverability: 9 execution zg —g 1 —s ... —s T > 7

— Boundedness: Postg(zg) is infinite?

— Termination: 3 infinite execution z¢g —g 1 —g ...7

— Strong termination: 3k € N s.t. xg g 21 =5 ... =5 Ty — m < k7

— Control-state maintainability: 3 computation (i.e. an infinite execution xg —g
r1 —g ... or a finite execution g —¢g 1 —g ... —g T that cannot be
further extended) such that Vi z; € 1{t1,...,tn}?

— Strong control-state maintainability: Vk € N, 3 execution xg —s 1 —g
... =8 Xy such that m > k and Vi x; € T{t1,...,tn}?

3 Decidability for WSTS

Recall that a WSTS S = (X, —g, <) has a computable prebasis [11,2] if the
WSTS comes equipped with a computable function that maps each z € X to
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some finite basis of the upward closed set 1 Preg(1 ). We summarize the four
main decidability results known about (essentially) finite branching WSTS:

Theorem 3.1 ([12,11,2]).

— Termination is decidable for post-effective finitely branching WSTS with
transitive monotony [12], and for essentially finite branching effective WSTS
with strong monotony [2].

— Boundedness is decidable for post-effective finitely branching WSTS with
strict transitive monotony and well partial ordering [11].

— Control-state maintainability is decidable for post-effective finitely branching
WSTS with stuttering monotony [11], and for essentially finite branching
effective WSTS with strong monotony [2].

— Coverability is decidable for effective WS TS with prebasis computability [11,2].

Theorem 3.1 states results exactly as they appear in the literature, but it
would not be difficult to unify some of the hypotheses made here. For instance,
termination can be shown decidable for essentially finite branching effective
WSTS with transitive monotony. We defer a systematic treatment of this unifi-
cation to a future version of the present paper.

Our goals in this paper are to extend the decidability of termination, bound-
edness and maintainability given by Theorem 3.1 to the more general case of
infinitely branching WSTS. Our goal for the coverability problem is to investi-
gate alternative effectivity hypotheses. We first note:

Theorem 3.2. Termination is undecidable for post-effective WSTS with tran-
sitive (and even strong and strict) monotony.

In Sect. 5, we prove boundedness decidable for post-effective infinitely branch-
ing WSTS with strict monotony and well partial ordering. By contrast, as exem-
plified by Petri nets with Reset [8], boundedness is well known to be undecidable
for post-effective finitely branching WSTS with non-strict yet transitive (even
strong) monotony and with well partial ordering. Concerning maintainability,

Theorem 3.3. Control-state maintainability is undecidable for post-effective
WSTS with stuttering (and even strong and strict) monotony.

We now turn to coverability. Existing proofs that coverability is decidable
need the prebasis hypothesis: Abdulla et al. use a backward algorithm [11,1]
that computes a finite basis of TPre*(Tx) and Geeraerts et al. use a forward
algorithm [18] that requires further hypotheses (i.e. restriction to an adequate
domain of limits, a mathematical hypothesis subsequently shown superfluous
[16,13]). Note that coverability for post-effective (even finitely branching) WSTS
becomes undecidable without the prebasis hypothesis, as is the case for instance
for WSTS in F; (recall definition from Sect 2, i.e., WSTS composed of recursive
increasing functions from N? to N?) [15].

Prebasis computability is sufficient to ensure decidability of coverability. How-
ever, as we show in Prop. 3.4 below, prebasis computability is not necessary:
there is a class of WSTS, namely F7, for which coverability is decidable yet no
prebasis function is computable.
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Proposition 3.4. Coverability for Fi is decidable, but no algorithm that takes
as input S € Fy and x € N can systematically output a finite basis of T Preg(T x).

4 Handling Infinite Branching Finitely

In this section we prepare the ground for developping decision procedures ca-
pable of handling, under natural hypotheses, infinitely branching systems. First
we would like the ability to compute finite representations of each term in the
sequence |z, ] Postg (] x), | Postg (] Posts({ z)),.... This requires finitely repre-
senting downward closed sets, which is possible for wqo. This section describes
how this is done and presents effective tools for doing it.

4.1 Downward Closed Sets and Ideals

It has long been known that in a wqo, any upward closed set has a finite basis;
this is Dickson’s lemma in (N*, <) and it is Higman’s lemma in (X*, <) when <
is the subword relation. It has recently been discovered that a similar situation
occurs for downward closed sets in wqo.

Theorem 4.1. [13] Any downward closed subset in a wqo X is a finite union
of ideals.

The original proof of Theorem 4.1 needs a technical bridge between topological
completions and ordering completions of a set. A short and self-contained proof
of Theorem 4.1 was given by Goubault-Larrecq [19].

Theorem 4.3 below slightly refines Theorem 4.1. It shows that any downward
closed set uniquely decomposes as a certain finite union of ideals. This requires:

Proposition 4.2. Any ideal contained in a finite union of ideals is contained in
one of these ideals. In particular, testing the inclusion of an ideal I in a union
J1UJaU...UJy of ideals is equivalent to testing whether I C J; for some j such
that 1 < j < k.

A finite union D = [J;", I; of ideals will be said to canonically decompose D if

the I;’s are pairwise incomparable under inclusion. This terminology is justified:
Theorem 4.3. Any downward closed subset in a wqo X admits a unique decom-
position as a finite union of pairwise incomparable ideals. Therefore, a downward
closed subset decomposes canonically as the union of its maximal ideals.

Ideals in a wqo cannot necessarily be manipulated effectively. For instance,
there exist some ordered countable sets X such that Ideals(X) is not countable.
Consider X = X*, with the prefix ordering. Then Ideals(X) is isomorphic to
2" U X¥ and is not countable when X' contains at least two letters. However:

Proposition 4.4. A wqo X is countable iff Ideals(X) is countable.

Fortunately, inclusion between ideals is decidable for well-quasi-ordered sets
obtained by closing finite sets and closing naturals numbers under finite prod-
ucts, disjoint sums, multiset operator and Kleene star (respectively with their
natural associated orderings) [13]. Therefore inclusion of ideals of N¢ and inclu-
sion of ideals of X* are decidable.
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4.2 Completion of WSTS

Recall that for a functional WSTS S = (X, i, <) where F is a finite set of
increasing recursive functions f : X — X, the functional completion [14] is

defined by S = (X, 5, C) where X = Ideals(X) and F is the set of functions

f : Ideals(X) — Ideals(X) defined by f(I) d§f¢ f(I) for every f € F. We note

that f(I) is an ideal if I is an ideal. Here we extend the completion process to
any (infinitely) branching WSTS:

Definition 4.5. The completion S of a WSTS S = (X, —s,<) is the ordered
transition system S = (X,—g,C) where X = Ideals(X), and I —g J if J
appears in the canonical decomposition of | Post(I).

Let S = (X, 5, <) be a functional WSTS, then the following relation holds
between S, S and S for every ideal I € Ideals(X):

Postg(I) = |J )= JIr= |J J=1_Posts(I).

fEF fEF J€Post (1)
Another good news is that:
Proposition 4.6. The completion S of any WSTS S is finitely branching.

Moreover the completion computes exactly the downward closure of the reach-
ability set of its original system.

Proposition 4.7. Let S = (X, —g,<) be a WSTS and Postz(lx) = {/J1,...,
Jn}. We have | Posts(z) = J1 U... U J,.

A natural question that arises is whether the completion of a WSTS is also a
WSTS. It does indeed have monotony:

Proposition 4.8. Let S = (X, —g,<) then S has strong monotony.

However, (Ideals(X), C) is not always a wqo and therefore the completion is
not always a WSTS. In fact, it is known to be a wqo iff (X, <) is a so-called
w?-wqo, a notion we will not define here. In general, a wqo is not necessarily a
w?-wqo and the typical counter-example is the Rado ordering [20]. Now, a result
from Jancar [20] simplifies the characterization of w?-wqos as follows: a wqo <
is a w?-wqo iff <# is a wqo, where <# is the Hoare ordering defined by A <# B
iff + B Ct A.

Extending the terminology to WSTS, we obtain the following result general-
izing the known result for functional WSTS [14]:

Theorem 4.9. Let S be a WSTS, then S is a WSTS iff S is a w2-WSTS.

We end this section with the observations that a WSTS inherits the strict
monotony of its completion but not conversely, and that post-effectivity of a
WSTS is independent from the post-effectivity of its completion.
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Proposition 4.10. Let (X, —g,<) be a WSTS. If S has strict monotony, then
so does S. However, if S has strict monotony then S doesn’t necessarily have it.

Proposition 4.11. There exists a post-effective WSTS whose completion is not
post-effective. Conversely, there exists a non post-effective WSTS whose comple-
tion is post-effective.

4.3 Post-effectiveness of Completions in Concrete Examples

An affine net S is a WSTS in F; in which the recursive functions are affine
and a Petri net can be seen as an affine net where all matrices are the identity.
An w-Petri net [17] is an (extended) Petri net in which arcs can be labelled by
positive integers or by w. The completions of affine nets, w-Petri nets and Lossy
Channel Systems can be shown post-effective.

5 Decidability in Infinitely Branching Post-effective
WSTS

5.1 (Strong) Termination

We are able to strengthen the hypotheses of Theorem 3.2 and to obtain: ter-
mination is undecidable, even for post-effective w?-WSTS with strong and strict
monotony, and with post-effective completion by reducing from structural ter-
mination for Transfer Petri nets [9].

When a WSTS is infinitely branching, its termination problem differs in a
subtle way from its strong termination problem. We show the latter decidable
under suitable hypotheses:

Theorem 5.1. Strong termination is decidable for w?-WSTS with transitive
monotony and post-effective completion.

Proving Theorem 5.1 requires comparing executions in a system with execu-
tions in its completion:

Proposition 5.2. Let S = (X, —g,<) be a WSTS, and I,J € X. If I Ls J,
then for every vy € J there exists vy € I, y € txy and k' € N such that

Ty —>5 y. Moreover, if S has transitive monotony then k' > k; if S has strong
monotony then k' = k.

Proposition 5.3. Let S = (X, —g,<) be a WSTS and z,y € X. If x gs Y,
then for every ideal I 2 | x there exists an ideal J O |y such that I £>§ J.

Proof sketch of Theorem 5.1. Consider a w2-WSTS S = (X, —g, <) such that §
is post-effective. Finkel and Schnoebelen [11, Theorem 4.6] show that termina-
tion, and thus strong termination, is decidable for post-effective WSTS having
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transitive monotony. By hypothesis, S is a WSTS and S has strong (and tran-
sitive) monotony by Prop. 4.8. Therefore, strong termination for S is decidable.
From Prop. 5.2 and Prop. 5.3, no bound on the length of executions from z
exists in S iff no bound on the length of executions from | z¢ exists in .S. Hence
decidability of strong termination from xq in .S follows from being able to decide
strong termination from | xg in S. Note that we have implicitly assumed that a
representation of | xg can be effectively computed. a

5.2 Boundedness

Drawing from [8], we know that boundedness is undecidable, even for finitely
branching post-effective w?-WSTS with strong (but not strict) monotony and
post-effective completion. Petri net with reset arcs are such a class.

It is known that for finitely branching post-effective WSTS with strict tran-
sitive monotony and a well partial ordering (wpo), the boundedness problem is
decidable [11]. We generalize this result to (possibly) infinitely branching WSTS
and we note that the hypothesis of transitive monotony was not necessary in the
proof of [11]. The proof follows [11] by building a finite reachability tree, with
the extra step of testing whether Postg(z) is infinite for each new node.

Theorem 5.4. Boundedness is decidable for post-effective WSTS with strict
monotony and with well partial ordering.

5.3 (Strong) Control-State Maintainability

By a reduction from the termination problem, the hypotheses of Theorem 3.3
can be strengthened: control-state maintainability is undecidable, even for post-
effective w?-WSTS with strong and strict monotony, and with post-effective com-
pletion. By contrast, the strong variant of the problem introduced in this paper
is decidable, under suitable hypotheses, for infinitely branching WSTS:

Theorem 5.5. Strong control-state maintainability is decidable for w?-WSTS
with strong monotony and a post-effective completion.

Before proving Theorem 5.5, we need Prop. 5.6 and Prop. 5.7 to relate covering
executions in a WSTS to covering executions in its completion.

Proposition 5.6. Let S = (X, —g,<) be a WSTS with strong monotony and
{t1,.. ., tn} € X. Let Iy =g Iy =g ... =g Ix be an execution such that for all
0<j <k wehave I; € T¢{lt1,..., tn}. Then for every y € I, there exists
an erecution Ty —s T1 —s ... —s T such that xg € Iy, i € Ty and for all
0 <j <k wehavez; € t{t1,...,ta}.

Proof. Let Iy be an execution of length 0 in S as described in the proposition,
and let y € Iy. By hypothesis, there exists t; such that | ¢; C Iy and thus ¢; € Ij.
Since I is an ideal, there exists xq € Iy such that xg > y and x¢ > t;. Therefore
the execution xg of length 0 in S meets all requirements.
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Let Ip =g I1 —g ... =g I be an execution of length k£ > 0 in S as described
in the proposition. By induction, for every y € I there exists an execution
T1 —5 T3 =5 ... =g T such that 1 € I1, xx € Ty and for all 1 < j < k we
have x; € T{t1,...,tn}.

Since z1 € I C | Postg(lp), there exists g € Iy and y' € Tx1 such that
9 —s y'. By hypothesis, there exists ¢; such that | ¢; C Iy and thus ¢; € Io.
Since Iy is an ideal, there exists z(; € Iy such that z > 2o and z¢ > ¢;. By
strong monotony, there exists #j > 3’ such that xj, —g zf.

Moreover, applying strong monotony to 1 —g 2 —g ... =g @ with x| >
x1, we obtain an execution z} —g 5 =g ... =gz}, such that forall 1 < j <k
we have x; > xj. Therefore, zy, =g ] —s ... =5 2}, ) € Io, z), € Ty and for
allOSjSk‘wehavex;-eT{tl,...,tn}. m]

Proposition 5.7. Let S = (X, —g,<) be a WSTS and {t1,...,tn} C X. Let
To —s T1 —s ... =5 T be an execution such that for all 0 < j < k we have
x; € Mt1,...,tn}t. Then for every ideal Iy O | xo there exists an execution
Iy =g I =g ... =g Ix such that I, O |z and for all 0 < j < k we have

I] € T}? {\l/tla v a\Ltn}-

Proof of Theorem 5.5. By Prop. 5.6 and Prop. 5.7 there exists an execution
o =5 1 =g ... =g &k such that for all 0 < j < k we have z; € T {t1,...,tn}
iff there exists an execution I —gh —g... =2z Ik such that for all 0 < i < k
we have I; € 15 {lt1,...,tn}. Therefore, it suffices to solve the problem in S
with Jxo and {}t1,..., tn}.

The algorithm from [11] solving the control-state maintainability problem
for finitely branching post-effective WSTS with stuttering monotony can easily
be adapted to solve strong control-state maintainability for finitely branching
WSTS. Since S is a post-effective WSTS by hypothesis and has strong (and
stuttering) monotony by Prop. 4.8, we obtain an algorithm.

More specifically, it suffices to build the finite reachability tree of S and verify
that it contains a maximal path labelled Iy, Iy, ..., I with I; € T¢ {}t1,...,}tn}
for every 0 < j < k and I; C I for some 0 < j < k. a

5.4 Coverability

Some classes of WSTS admit both post-effective completions and prebasis com-
putability, e.g., WSTS from F; where the recursive increasing functions have
computable limits (called w-well-structured nets in [15]). Therefore, coverabil-
ity was already known to be decidable for these classes. However, the following
Theorem 5.8 yields an algorithm that relies on evaluating Postg on ideals rather
than Preg on upward closed sets. Often this is more efficient, e.g., it is easier to
evaluate affine functions in NZ than inverting them.

Theorem 5.8. Coverability is decidable for WSTS having a post-effective com-
pletion.
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Proof. Let S = (X, —g,<) be a post-effective WSTS and z( € X.

Coverability is semi-decidable by iteratively building larger portions of the
reachability tree looking for a path with some state 2’ > .

We note that z is c/c\)verable from xg in S iff there exists an ideal I D |
reachable from| zy in S. To prove that non-coverability is semi-decidable, one
enumerates all the downward closed sets D; (as finite unions of ideals) that are
inductive invariants, i.e., such that o € D; and | Postg(D;) C D;. If x is not
coverable, a downward closed set D; such that x ¢ D; will inevitably be found.

The inclusion | Postg(D;) C D; is decidable for WSTS whose completion is
post-effective since there is an algorithm, which runs Postg on D; (expressed as
the union J1U. . .UJ,, of ideals) to obtain ideals I, . .., I,, such that | Postg(D;) =
Ui<i<m UrePostg(J:) JI =L U...UI,. Now Prop. 4.2 says that this inclusion
LUlLU...Uul,CJi;UJyU...UJ,, is decidable. O

The technique of enumerating inductive invariants, used in our coverabil-
ity algorithm, was already used by Pachl in 1982 to provide a witness of non-
reachability for finite automata communicating through fifo channels, having
recognizable reachability sets (Corollary 9.6 in [23]). More recently, Raskin et
al. [18,16] also used enumeration of inductive invariants to provide forward al-
gorithms for deciding coverability of WSTS. Note that their forward algorithms
use the prebasis hypothesis while we appeal to post-effective completion.

6 Conclusion and Further Work

Here we have continued the development of tools to manipulate completions of
wqos and we have applied these tools together with new ideas to deduce the fol-
lowing decidabilities: strong termination for w?-WSTS with transitive monotony
and post-effective completion, boundedness for post-effective WSTS with strict
transitive monotony and with well partial ordering, strong control-state main-
tainability for w?-WSTS with strong monotony and a post-effective completion
and finally, coverability for WSTS having a post-effective completion.

Future work should apply these decidabilities to parameterized WSTS and
should investigate algorithmic aspects of these decidabilities, including a com-
parison of the relative efficiencies of backward and forward strategies.

Acknowledgements. We thank the referees for helpful comments and pointers.
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Transducers with Origin Information
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Abstract. Call a string-to-string function regular if it can be realised by
one of the following equivalent models: MSO transductions, two-way
deterministic automata with output, and streaming transducers with reg-
isters. This paper proposes to treat origin information as part of the seman-
tics of a regular string-to-string function. With such semantics, the model
admits a machine-independent characterisation, Angluin-style learning in
polynomial time, as well as effective characterisations of natural subclasses
such as one-way transducers or first-order definable transducers.

This paper is about string-to-string functions which can be described by deter-
ministic two-way automata with output [AU70]. As shown in [EH01], this model
is equivalent to MSO definable string transductions. Another equivalent model,
used in [AC10], is a deterministic one-way automaton with registers that store
parts of the output!. Examples of such functions include: duplication w — ww;
reversing w — w?; a function w — ww? which maps an input to a palindrome
whose first half is w; and a function which duplicates inputs of even length and
reverses inputs of odd length. As witnessed by the multiple equivalent definitions,
this class of string-to-string function is robust, and therefore, following [AC10],
we call it the class of reqular string-to-string functions. Regular string-to-string
functions have good closure properties. For instance, if f and ¢ are regular,
then the composition w — f(g(w)) is also regular, which is straightforward if
the MSO definition is used, but nontrivial if the two-way automata definition is
used [CJ77]. Also the concatenation w — f(w)-g(w) is regular, which is apparent
in any of the three definitions. Equivalence of regular string-to-string functions
is decidable, as was shown in [Gur82] using the two-way automata definition.

Origins. The motivation of this paper is the simple observation that the mod-
els discussed above, namely deterministic two-way automata with output, MSO
definable string transductions, and automata with registers, provide more than
just a function from strings to strings. In each case, one can also reconstruct
origin information, which says how positions of the output string originate from
positions in the input string. How do we reconstruct the origin of a position x in

* Supported by ERC Starting Grant “Sosna”.

! Registers are similar to attributes in attribute grammars. The equivalence of MSO
definable transductions with a form of attribute grammars, in the tree-to-tree case,
was shown in [BEOO]. In the special case of string-to-string functions, the attribute
grammars from [BE0O] correspond to left-to-right deterministic automata with reg-
isters and regular lookahead.
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an output string? In the case of a deterministic two-way automaton, this is the
position of the head when x was output. In the case of an MSO definable trans-
ducer, this is the position in which z is interpreted. In the case of an automaton
with registers, this is the position in the input when the letter x was first loaded
into a register. In other words, for a transducer we can consider two semantics:
the standard semantics, where the output is a string, and the origin semantics,
where the output is a string with origin information. The second semantics is
finer in the sense that some transducers might be equivalent under the standard
semantics, but not under the origin semantics.

Tracking origin information for transducers has been studied before, for in-
stance in the programming language community, see e.g. [vDKT93]. Origin in-
formation has also been used as a technical tool in the study of tree-to-tree
transducers. Examples include [EM03], where origin information is used to char-
acterise those macro tree transducers which are MsoO definable, and [LMN10],
where origin information is used to get a Myhill-Nerode characterisation of de-
terministic top-down tree transducers. The novelty of this paper is that origin
information is built into the semantics of a transducer.

Origin semantics. To illustrate the difference between the two semantics (stan-
dard and origin) of a string-to-string transducer, consider a transducer which
is the identity on the string ab, and which maps other strings to the empty
string. If we care about origins, then this description is incomplete, and can be
instantiated in four different ways depicted below.

output a

—

b a b a b a b

! L ~J >
input a b a b a b a b
For example, the second diagram above describes a two-way automaton that
first reads it input to determine if it is ab, and then moves its head to the first
position, where it outputs both a and b.

Another example is the identity function on strings over a one letter alphabet,
which can be realised by copying the input left-to-right or right-to-left. Actually
the function can be realised in infinitely many different ways once origins are
taken into account: consider an automaton that outputs n letters in input posi-
tions divisible by n, and then outputs the remainder under division by n in the
last input position.

This paper is a study of the more refined semantics. Almost any “natural”
construction for transducers will respect origin information. For instance, the
translation from [EHO1] which converts an MSO interpretation into a determinis-
tic two-way automaton remains correct when the origin information is taken into
account. The same holds for the other translations between the three models. In
other words, one can also talk about reqular string-to-string functions with origin
information. Various closure properties, such as composition and concatenation,
are retained when origins are taken into account. Some results become easier to
prove, e.g. decidability of equivalence of string-to-string transducers.
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A machine independent characterisation. The main contribution of this paper
is a machine independent characterisation of regular string-to-string functions
with origin information, which is given in Theorem 1. The characterisation is
similar to the Myhill-Nerode theorem, which says that a language L is regular
if and only if it has finitely many left derivatives of the form

f {v:wveL}.

w L
From the usual Myhill-Nerode theorem for regular languages one obtains a
canonical device, which is the minimal deterministic automaton. The situation is
similar here. We define a notion of left and right derivatives for string-to-string
functions with origin information, and show that a function is regular if and only
if it has finitely many left and right derivatives (finitely many left derivatives is
not enough, same for right derivatives). The proof of the theorem yields a canon-
ical device, which is obtained from the function itself and not its representation
as a two-way automaton, MSO transduction, or machine with registers. One use
for the canonical device is testing equivalence: two devices are equivalent if and
only if they yield the same canonical machine.

Another use of the canonical device is that it is easy to see when the under-
lying function actually belongs to a restricted class, e.g. if it can be defined by a
deterministic one-way automaton with output (see Theorem 4), or by functional
nondeterministic one-way automaton with output (see Theorem 3). A more ad-
vanced application is given in Theorem 5, which characterises the first-order
fragment of MSO definable transducers with origin information.

Learning. One of the advantages of origin information is that it allows functions
to be learned, using an Angluin style algorithm. We show that a regular string-to-
string function with origin information can be learned with a number of queries
that is polynomial in the size of the canonical device. The queries are of two
types: the learner can ask for the output on a given input string; or the learner
can propose a transducer with origin information, and in case this is not the
correct one, then the teacher gives a counterexample string where the proposed
transducer produces a wrong output.

In the algorithm, the learner uses the origin information. However, it seems
that the learner’s advantage from the origin information does not come at any
significant cost to the teacher. Suppose that we want to learn a transducer inside
a text editor, e.g. the user wants to teach the text editor that she is thinking
of the transducer which replaces every = by :=. If a user is trying to show
an example of this transducer on some input, then she will probably place the
cursor on occurrences of = in the input, delete them, and retype :=, thus giving
origin information to the algorithm. A user who backspaces the whole input and
retypes a new version will possibly be thinking of some different transformation.
It would be wasteful to ignore this additional information supplied by the user.

Thank you. 1 would like to thank Sebastian Maneth and the anonymous ref-
erees for their valuable feedback; Anca Muscholl, Szymon Toruriczyk and Igor
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Walukiewicz for discussions about the model; and Rajeev Alur for asking the
question about a machine-independent characterisation of transducers.

1 Regular String to String Transducers

A string-to-string function is any function from strings over some fixed input
alphabet to strings over some fixed output alphabet, such that the empty string is
mapped to the empty string. A string-to-string function with origin information
is defined in the same way, but for every input string w it provides not only
an output string f(w), but also origin information, which is a function from
positions in f(w) to positions in w. We consider total functions, although the
results can easily be adapted to partial functions. In this section we recall three
equivalent models recognising string-to-string functions.

Streaming transducer. Following [AC10], a streaming transducer is defined as
follows. It has finite input and output alphabets. There is a finite set of control
states with a distinguished initial state, and a finite set of registers, with a
distinguished output register. The transition function inputs a control state and
an input letter, and outputs a new control state and a register update, which is
a sequence of register operations of two possible types:

— Concatenate. Replace the contents of register r with rs, and replace the
contents of register s by the empty string;
— Create. Replace the contents of register » with output letter b.

Finally, there is an end of input function, which maps each state to a sequence
of register operations of the first type?.

When given an input string, the transducer works as follows. It begins in the
initial state with all registers containing the empty string. Then it processes
each input letter from left to right, updating the control state and the registers
according to the transition function. Once the whole input has been processed,
the end of input function is applied to the last state, yielding another sequence
of register operations, and finally the value of the transducer is extracted from
the output register. For the origin semantics, we observe that every letter in a
register is created once using an operation of type create, and then moved around
using operations of type concatenate. The origin of an output letter is defined
to be the input position which triggered the transition whose register update
contained the appropriate create operation.

Observe that the register operations do not allow copying registers. This is
an important restriction which guarantees, among other things, that the size of
the output is linear in the size of the input.

Example 1. By composing the atomic register operations and using additional
registers, we can recover additional register operations such as “add letter b to

2 The end of input function is prohibited to produce new output letters so that the
origin information can be assigned. Alternatively, one could assume that the positions
produced by the end of input function have a special origin, “created out of nothing”.
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the end of register r”, “add letter b to the beginning of register r”, “move register
r to register s, leaving r empty”. The examples use the additional operations.

Consider the function w — ww®, where w® is the reverse of w. The transducer
has one control state and two registers, used to store w and w®. When it reads
an input letter a, the transducer adds a to the end of the register storing w and
adds @ to the beginning of the register storing w’. The end of input update
concatenates both registers, and puts the result in the first register, which is the
output register.

A transducer for the duplication function is obtained in a similar way. Observe
that since the register operations do not allow copying, it is still necessary to
have two registers, both storing w.

Deterministic two-way automaton with output. A deterministic two-way au-
tomaton with output is like a deterministic two-way finite automaton, except
that every transition is additionally labelled by a string (possibly empty) over
the output alphabet. A run over an input w can be seen as a sequence of pairs
(61,21), ..., (0, ) where §; is a transition and z; a position in the string - w .
The transition J; reads the label of position x; and the state generated by the
previous transition, and chooses the new position x;41, a new state, and what
will be appended to the output. The output of the automaton is the concatena-
tion of the strings labelling the transitions 41, ...,d,. The origin of a position
in the output string that is generated by the transition d; is defined to be the
position x;. To make the origin well-defined, we require that every output letter
is produced for transitions that have their source in input letters, and not over
the markers - and .

MSO transduction. Following [Tho97], a string over an alphabet A can be treated
as a relational structure, whose universe is the positions of the string, and which
has a binary position order predicate x < y and label predicates a(z) for the
letters of the alphabet. To transform strings into strings, we can use MSO inter-
pretations. An MSO interpretation is a function from structures over some fixed
input vocabulary (set of relation names with their arities) to structures over
some fixed output vocabulary, which is specified by a system of MSO formulas,
as follows. There is a universe formula with one free variable over the input vo-
cabulary, which selects the elements of the universe of the input structure that
will appear in the universe of the output structure. Furthermore, for every predi-
cate of the output vocabulary there is a formula over the input vocabulary of the
same arity, which says how the predicates are defined in the output structure.
Another function from structures to structures is called k-copying; which
maps a structure to k disjoint copies of itself, together with binary relations
1(z,y),...,k(x,y) such that i(x,y) holds if y is the i-th copy of . A copying
MSO transduction consists of first a copying function, followed by an MSO inter-
pretation. A string-to-string function f is called MsoO-definable if there is some
copying MSO transduction such that for every input string w, the transduction
transforms the relational structure corresponding to w into a relational structure
corresponding to f(w). The origin information in such a transducer is defined in
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the natural way: a position in the output string is interpreted in some copy of a
position in the input string, the latter is defined to be the origin.

Equivalence of the models. Deterministic two-way automata with output define
the same translations as copying MsO transductions in [EH01]. The same proof
works if the semantics with origin information is used. Streaming transducers are
shown to be equivalent to the previous two models in [AC10]; the same proof
also works with the origin semantics. A string-to-string function with origin
information is called a regular string-to-string function with origin information
if it can be defined by any one of the three models mentioned above.

2 A Machine Independent Characterisation

In this section we present a Myhill-Nerode style characterisation of regular trans-
ducers with origin information.

Factorised output. Suppose that f is a string-to-string function with origin infor-
mation and output alphabet B. A factorised input is a tuple of strings wy, ..., wn,
over the input alphabet, which is meant to describe an input string factorised
into n blocks. Given such a factorised input, define an output block of type i
to be a maximal connected subset of positions in the output f(ws ---w,) that
originates in w;. Define the factorised output corresponding to a factorised input
w1, ..., W,, denoted by

flwr]...Jwn) € ({1,...,n} x BY)".

to be the sequence of output blocks read from left to right, with each block
described by its type and corresponding part of the output. In particular, if
we concatenate all of the strings coming from BT, we obtain the output string
flwy -+ wy). When n = 3, instead of numbers 1, 2, 3 we use “left”, “middle”
and “right” to indicate types of blocks. We use fraction-style notation for output
blocks, with the lower part indicating the type, and the upper part describing
the output. For instance, if f is the duplicating function, then

ab cd e ab cd e
f(ablcd|e) = left middle right left middle right.

Some input blocks might be empty, as in the following example:

ab e ab e
f(ablle) = left right left right.

If some of the input blocks are underlined, then in the output we just keep the
information that there is a nonempty output block, but we do not store the
actual output strings which originate in the underlined blocks. For example,

cd cd
f(ablcd|e) = left middle right left middle right.

Note that we will never have two consecutive blocks of the same type, e.g. left left,
in the factorised output, since blocks are maximal. In particular, for underlined
input blocks we lose track of how long their corresponding output blocks are.
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Derivatives. Define a two-sided derivative of string-to-string function with origin
information f to be any function of the form
def
Juw = v flulvw),
for some choice of strings u and w over the input alphabet. Left derivatives and

right derivatives are the special cases of the two-sided derivative when either u
or w is empty, i.e. they are functions of the forms:

def def

fu = 'U'_>f(u|v) fw = ’Ui—>f(’U|U))

Example 2. Let f be the function w — ww. Then

R

v v
fu w(v) = right middle left middle right

for every nonempty strings u or w. When the string w is empty, then the left
block disappears, likewise when w is empty then the right blocks disappear. In
particular, this function has four possible values for the two-sided derivative.
There are two possible values for the left derivative f, , namely the functions

vty R

v v
v — right v — right left right.

Example 3. Let f be the function which is the identity on strings of even length,
and which maps strings of odd length to the empty string. This function has
three possible left derivatives f, , depending on whether v is empty, nonempty
and even length, or odd length. Below is the derivative for the last case.

. {left right if w has odd length

€ otherwise

Example 4. Here is a function with finitely many right derivatives, but infinitely
many left derivatives. Consider first the function which scans its input from left
to right, and outputs only those letters whose position is a prime number

f(al...an):wl...wn Wherewz’:

a; if 7 is a prime number
€ otherwise.

This particular function has infinitely many right derivatives, since

[

left right if there is a prime number in {|v| +1,..., |vw|}
Fwl®) =19

left otherwise.

However finitely many right derivatives can be obtained by making the last
position to be output unconditionally, i.e. in the string-to-string function
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g(al P an) — f(al PR an_l)an.
In this case, g has only two right derivatives, namely

g(v) ()
v = left v — left right.

¢

The function has infinitely many left derivatives g, because the criterion “i is
a prime number” needs to be replaced by “i + |v| is a prime number”.

To present our machine independent characterisation, we need a notion of
regularity for functions from tuples of strings to a finite set. Define the language
encoding of a function f: (A*)™ — C, with C finite, to be

{wiHwe# - Fwn# (w1, ... wy) twi, ..., wy € A} C(AUCU{#})".

assuming # is a symbol outside AUC'. The function f is called a regular colouring
if its language encoding is regular. Among several models of automata reading
tuples of strings, regular colourings correspond to the weakest model, called
recognisable. For instance, the equality function, seen as a colouring of string
pairs by “equal” or “not equal”, is not a regular colouring.

Theorem 1 (Machine Independent Characterisation). For a string-to-
string function f with origin information, the following conditions are equivalent

1. f is reqular;
2. f has finitely many left derivatives and finitely many right derivatives;
3. for every letter a in the input alphabet, the following is a regular colouring

(v,w) —~ f(v]a]w).

The function (v,a,w) — f(v|a|w), where v, w are words and a is a letter over
the input alphabet, is called the characteristic function of f.

Proof (rough sketch). The implication from 1 to 2 is shown by using deterministic
two-way automata with output. For the implication from 2 to 3, one observes
that the functions v — f, and w — f,, are regular colorings, and that f(v|a|w)
is uniquely determined by f, , a and f . For the implication from 3 to 1, one
shows that an arbitrary string-to-string function with origin information can
be uniquely reconstructed based on its characteristic function, and when the
characteristic function happens to be a regular coloring then this reconstruction
can be done by a finite state device.

Since a string-to-string function is uniquely determined by its characteristic
function, instead of studying string-to-string functions, one can study their char-
acteristic functions. This is the case in the learning algorithm from Section 3,
and the studies of subclasses of transducers in Sections 4 and 5. The character-
istic function can be computed based on a representation as a transducer model,
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e.g. from a copying MSO transduction. In particular, Theorem 1 gives a concep-
tually simple equivalence check for origin semantics: compute the characteristic
functions and test if they are equal. The complexity of this algorithm, especially
in the case when the function is given by streaming transducers, is left open.
As shown in Example 4, it is not enough to require finitely many derivatives
of one kind, say right derivatives, since a function might have finitely many
derivatives of one kind, but infinitely many derivatives of the other kind?®.

3 Learning

This section shows that transducers with origin information can be learned. We
first recall the Angluin algorithm for regular languages, which will be used as a
black box in our learning algorithm for learning transducers. The setup for the
Angluin algorithm is as follows. A teacher knows a regular language. A learner
wants to learn this language, by asking two kinds of queries. In a membership
query, the learner gives a string and the teacher responds whether this string is
in the language. In an equivalence query, the learner proposes a candidate for the
teacher’s language, and the teacher either says that this candidate is correct, in
which case the protocol is finished by learner’s success, or otherwise the teacher
returns a counterexample, which is a string in the symmetric difference between
the candidate and teacher’s languages.

Angluin proposed an algorithm [Ang87], in which the learner learns the language
by asking a number of queries which is polynomial in the minimal deterministic
automaton for the teacher’s language, and the size of the counterexamples given
during the interaction. Theorem 2 shows that a variant of this algorithm works for
regular string-to-string transducers with origin information. In the case of trans-
ducers, the membership query becomes a value query, where the learner gives a
string and the teacher responds with the output of the transducer on that string. In
the equivalence query, the counterexample becomes a string where the transducer
proposed by the learner gives a different value than the transducer of the teacher.
In both the value query and in the counterexample, the teacher also provides the
origin information.

Theorem 2. A regular string-to-string function with origin information can be
learned using value and equivalence queries in polynomial time (both number of
queries and computation time) in terms of the number of left and right deriva-
tives, and the size of the counterexamples given by the teacher.

4 Order-Preserving Transducers

In this section, we present two characterisations of subclasses of transducers.
For semantics without origins, [FGRS13] shows how to decide if a determinis-
tic two-way transducer is equivalent to a nondeterministic one-way transducer,

3 It does follow from the theorem that a function with finitely many left and right
derivatives has finitely many two-sided derivatives. This is because every regular
string-to-string function has finitely many two-sided derivatives.
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while [WK94] shows how to decide (in polynomial time) if a nondeterministic
one-way transducer is equivalent to a deterministic one-way transducer. This sec-
tion shows analogous results for the origin semantics. Unlike [FGRS13, WK94],
the characterisations for the origin semantics are self-evident, which shows how
changing the semantics (and therefore changing the problem) makes some tech-
nical problems go away. A more difficult characterisation, about first-order de-
finable transducers, is presented in the next section.

In the following theorem, a string-to-string function with origin information is
called order preserving if for every input positions x < y, every output position
corresponding to x is before every output position corresponding to y.

Theorem 3. For a reqular string-to-string function with origin information f,
the following conditions are equivalent.

1. f is order-preserving.

2. f(v|w) is one of €, left, right or left right for all input strings v, w.

3. f is recognised by a streaming transducer with lookahead which has only one
register, and which only appends output letters to that register.

4. f is recognised by a nondeterministic one-way automaton with output, which
has exactly one run over every input string.

Proof. The implication from item 1 to item 2 follows straight from the definition.
For the implication from item 2 to 3, we observe that if condition 1 is satisfied,
then the transducer constructed in the proof of Theorem 1 will only have one
register, and it will only append letters to that register during the run. For
the implication from item 3 to item 4, we observe that a nondeterministic one-
way automaton with output can guess, for each position of the input, what the
lookahead will say. Since the lookahead is computed by a deterministic right-to-
left automaton, this leads to a unique run on every input string. The implication
from item 4 to item 1 also follows straight from the definition.

Observe that the condition in item 2 can be decided, even in polynomial time,
when the characteristic function of the transducer is known.

We can further restrict the model by requiring that the transducer in item 3
does not use any lookahead, or equivalently, by requiring that the automaton in
item 4 be deterministic. This restricted model is characterised in the following
theorem.

Theorem 4. Let f be a reqular string-to-string function which satisfies any
of the equivalent conditions in Theorem 8. Then f is defined by a left-to-right
deterministic automaton with output if and only if all input strings u, v, w satisfy

f(ulv) = f(ufw).

Proof. The left-to-right implication is immediate. For the right-to-left implica-
tion, we observe that the assumption implies that

f(ulalv)



36 M. Bojanczyk

does not depend on v, but only on f, and the letter a. Furthermore, since f
satisfies the assumptions from Theorem 3, the above value is of the form

x
left right,

where each block is possibly missing. After reading input u, the automaton stores
in its control state the derivative f, . When it reads a letter a, it updates its
control state, and outputs the string w, which depends only on the control state
and input letter a.

5 First-Order Definable Transducers

In this section we consider first-order definable transducers. Recall that when
coding a string as a relational structure, we have a predicate for the order. We
underline this because, unlike for MS0, for first-order logic order is more powerful
than successor. The notion of first-order definability makes sense for:

— languages: there is a first-order formula that is true in the strings from the
language and false in strings from outside the language.

— regular colourings: the language encoding is first-order definable.

— string-to-string functions with origin information: the same definition as for
MSO-definable ones, except that set quantification is disallowed.

Theorem 5. The following conditions are equivalent for a regular string-to-
string function f with origin information.

1. it is definable by a first-order string-to-string transduction.
2. the colourings w — f,, and w— f ., are first-order definable.
3. for every letters a,b, the following is a first-order definable colouring

(u, v, w) = f(ulalvlblw)

Before proving the theorem, we observe that condition in item 2 is effective. Us-
ing a straightforward extension of the the Schiitzenberger-McNaughton-Papert
Theorem, one can decide if a regular colouring is first-order definable. By ap-
plying the decision procedure to the functions w — f,, and w — f,, we can
decide if a regular string-to-string function with origin semantics is first-order
definable. It is unclear if this sheds any light for the analogous question for
semantics without origins.

Without origin information, a variant of first-order definable transducers was
considered in [MSTV06], namely the transducers which are first-order definable
in the sense of Theorem 5 and simultaneously order preserving in the sense
of Theorem 3. For instance, the doubling transducer w +— ww is first-order
definable in the sense of Theorem 5, but not in the sense of [MSTVO06], because
it is not order preserving. By testing for both Condition 2 from Theorem 5 and
Condition 2 of Theorem 3, we get an effective characterisation of the origin
version of the transducers from [MSTV06].



Transducers with Origin Information 37

6 Further Work

Preliminary work indicates that the ideas in this paper extend to MSsO-definable
tree-to-tree transducers; this should be followed up. Another direction for fur-
ther study is the computational complexity of equivalence with respect to origin
semantics; in particular finding models for which equivalence is polynomial time.

References

[AC10]
[Ang87]
[AUT0]

[BEOO]

[CI77]

[EHO1]

[EMO3]

[FGRS13]

[Gur82]

[LMN10]

[MSTV06]
[Tho97]
[VDKT93]

[WK94]

Alur, R., Cerny, P.: Expressiveness of streaming string transducers. In:
FSTTCS 2010, pp. 1-12 (2010)

Angluin, D.: Learning regular sets from queries and counterexamples. Inf.
Comput. 75(2), 87-106 (1987)

Aho, A.V., Ullman, J.D.: A characterization of two-way deterministic
classes of languages. J. Comput. Syst. Sci. 4(6), 523-538 (1970)

Bloem, R., Engelfriet, J.: A comparison of tree transductions defined by
monadic second order logic and by attribute grammars. J. Comput. Syst.
Sci. 61(1), 1-50 (2000)

Chytil, M., Jékl, V.: Serial composition of 2-way finite-state transducers
and simple programs on strings. In: Salomaa, A., Steinby, M. (eds.) ICALP
1977. LNCS, vol. 52, pp. 135-147. Springer, Heidelberg (1977)

Engelfriet, J., Hoogeboom, H.J.: MSO definable string transductions and
two-way finite-state transducers. ACM Trans. Comput. Log. 2(2), 216-254
(2001)

Engelfriet, J., Maneth, S.: Macro tree translations of linear size increase
are MSO definable. STAM J. Comput. 32(4), 950-1006 (2003)

Filiot, E., Gauwin, O., Reynier, P.-A., Servais, F.: From two-way to one-way
finite state transducers. In: LICS, pp. 468-477. IEEE Computer Society
(2013)

Gurari, E.M.: The equivalence problem for deterministic two-way sequen-
tial transducers is decidable. SIAM J. Comput. 11(3), 448-452 (1982)
Lemay, A., Maneth, S., Niehren, J.: A learning algorithm for top-down
XML transformations. In: Paredaens, J., Van Gucht, D. (eds.) PODS,
pp. 285-296. ACM (2010)

McKenzie, P., Schwentick, T., Thérien, D., Vollmer, H.: The many faces of
a translation. J. Comput. Syst. Sci. 72(1), 163-179 (2006)

Thomas, W.: Languages, automata, and logic. In: Handbook of Formal
Language Theory, vol. III, pp. 389-455. Springer (1997)

van Deursen, A., Klint, P., Tip, F.: Origin tracking. J. Symb. Com-
put. 15(5/6), 523-545 (1993)

Weber, A., Klemm, R.: Economy of description for single-valued trans-
ducers. In: Enjalbert, P., Mayr, E.W., Wagner, K.W. (eds.) STACS 1994.
LNCS, vol. 775, pp. 607-618. Springer, Heidelberg (1994)



Weak MSO+U with Path Quantifiers
over Infinite Trees*

Mikotaj Bojanczyk**

University of Warsaw

Abstract. This paper shows that over infinite trees, satisfiability is de-
cidable for weak monadic second-order logic extended by the unbounding
quantifier U and quantification over infinite paths. The proof is by re-
duction to emptiness for a certain automaton model, while emptiness for
the automaton model is decided using profinite trees.

This paper presents a logic over infinite trees with decidable satisfiability. The
logic is weak monadic second-order logic with U and path quantifiers (WMSO+UP).
A formula of the logic is evaluated in an infinite binary labelled tree. The logic
can quantify over: nodes, finite sets of nodes, and paths (a path is a possibly
infinite set of nodes totally ordered by the descendant relation and connected
with respect to the child relation). The predicates are as usual in MSO for trees:
a unary predicate for every letter of the input alphabet, binary left and right
child predicates, and membership of a node in a set (which is either a path or a
finite set). Finally, formulas can use the unbounding quantifier, denoted by

UX ¢(X),

which says that ¢(X) holds for arbitrarily large finite sets X. As usual with
quantifiers, the formula ¢(X) might have other free variables except for X. The
main contribution of the paper is the following theorem.

Theorem 1. Satisfiability is decidable for WMSO+4UP over infinite trees.

Background. This paper is part of a program researching the logic MSO+U,
i.e. monadic second-order logic extended with the U quantifier. The logic was
introduced in [1], where it was shown that satisfiability is decidable over infinite
trees as long as the U quantifier is used once and not under the scope of set
quantification. A significantly more powerful fragment of the logic, albeit for
infinite words, was shown decidable in [3] using automata with counters. These
automata where further developed into the theory of cost functions initiated by
Colcombet in [8]. Cost functions can be seen as a special case of MSO+U in the
sense that decision problems regarding cost functions, such as limitedness or
domination, can be easily encoded into satisfiability of MSO+U formulas. This

* Full version of this paper with proofs is at arxiv.org/abs/1404.7278.
** Supported by ERC Starting Grant “Sosna”.

J. Esparza et al. (Eds.): ICALP 2014, Part II, LNCS 8573, pp. 38-49, 2014.
(© Springer-Verlag Berlin Heidelberg 2014



Weak MSO+U with Path Quantifiers over Infinite Trees 39

encoding need not be helpful, since the unsolved problems for cost functions get
encoded into unsolved problems from MSO-+U.

The logic MSO+U can be used to solve problems that do not have a simple
solution in MsO alone. One example (discussed later in Example 1) is the finite
model problem for the two-way p-calculus [1]. A more famous problem is the star
height problem, which can be solved by a reduction to the satisfiability of MSO+U
on infinite words; the particular fragment of MSO+4U used in this reduction is
decidable by [3]. In Section 1 we give more examples of problems which can
be reduced to satisfiability for MSO+U, examples which use the fragment that is
solved in this paper. An example of an unsolved problem that reduces to MSO+U
is the decidability of the nondeterministic parity index problem, see [9].

The first strong evidence that MSO+U can be too expressive was given in [11],
where it was shown that MSO+U can define languages of infinite words that are
arbitrarily high in the projective hierarchy. In [4], the result from [11] is used to
show that there is no algorithm which decides satisfiability of MSO+U on infinite
trees and has a correctness proof using the axioms of zZFC. A challenging open
question is whether satisfiability of MSO+U is decidable on infinite words.

The principal reason for the undecidability result above is that MSO4U can
define languages of high topological complexity. Such problems go away in the
weak variant, where only quantification over finite sets is allowed, because weak
quantification can only define Borel languages. Indeed, satisfiability is decidable
for wMSO+U over infinite words [2] and infinite trees [6]. This paper continues
the research on weak fragments from [2,6]. Note that WMSO+4UP can, unlike
WMSO0+U, define non Borel-languages, e.g. “finitely many a’s on every path”,
which is complete for level I} of the projective hierarchy. The automaton char-
acterization of WMSO+UP in this paper implies that wMSO-+UP definable lan-
guages are contained in level Ad.

What is the added value of path quantifiers? One answer is given in the
following section, where we show how WMSO+UP can be used to solve games
winning conditions definable in WMSO4U; here the use of path quantifiers is
crucial. Another answer is that solving a logic with path quantifiers is a step
in the direction of tackling one of the most notorious difficulties when dealing
with the unbounding quantifier, namely the interaction between quantitative
properties (e.g. some counters have small values) with qualitative limit properties
(e.g. the parity condition). The difficulty of this interaction is one of the reasons
why the boundedness problem for cost-parity automata on infinite trees remains
open [9]. Such interaction is also a source of difficulty in the present paper,
arguably more so than in the previous paper on wMsO+U for infinite trees [6].
One of the main contributions of the paper is a set of tools that can be used to
tackle this interaction. The tools use profinite trees.

1 Notation and Some Applications

Let us begin by fixing notation for trees and parity automata. Notions of root,
leaf, sibling, descendant, ancestor, parent are used in the usual sense. A tree in
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this paper is labelled, binary, possibly infinite and not necessarily complete. In
other words, a tree is a partial function from {0, 1}* to the input alphabet, whose
domain is closed under parents and siblings. The logic WMSO-+UP, as defined in
the introduction, is used to define languages of such trees. To recognise properties
of trees, we use the following variant of parity automata. A parity automaton is
given by an input alphabet A, a set of states ), an initial state, a total order on
the states, a set of accepting states, and finite sets of transitions

5o CQxA and 8, CQx Ax Q%

A run of the automaton is a labeling of the input tree by states such that for
every node with ¢ € {0, 2} children, the set §; contains the tuple consisting of the
node’s state, label and the sequence of states in its children. A run is accepting
if it has the initial state in the root, and on every infinite path, the maximal
state appearing infinitely often is accepting. Parity automata defined this way
have the same expressive power as MSO.

Before continuing, we underline the distinction between paths, which are con-
nected sets of nodes totally ordered by the ancestor relation, and chains which
can be possibly disconnected. Having chain quantification and the U quantifier
would be sufficient to express all properties of the leftmost path definable in
MSO+U, and therefore its decidability would imply decidability of MSO+U on
infinite words, which is open.

The rest of this section is devoted to describing some consequences of Theo-
rem 1, which says that satisfiability is decidable for WMSO-+UP on infinite trees.

Stronger than MSO. When deciding satisfiability of WMSO4UP in Theorem 1, we
ask for the existence of a tree labelled by the input alphabet. Since the labelling
is quantified existentially in the satisfiability problem, the decidability result
immediately extends to formulas of existential WMSO+UP , which are obtained
from formulas of WMSO+UP by adding a prefix of existential quantifiers over
arbitrary, possibly infinite, sets. A result equivalent to Theorem 1 is that the
existential WMSO+UP theory of the unlabeled complete binary tree is decidable.

Existential WMSO+UP contains all of MSO, because it can express that a parity
tree automaton has an accepting run. The existential prefix is used to guess the
accepting run, while the path quantifiers are used to say that it is accepting. One
can prove a stronger result. Define WMSO+UP with MSO subformulas, to be the
extension of WMSO-+UP where quantification over arbitrary sets is allowed under
the following condition: if a subformula 3X ¢(X) quantifies over an arbitrary
set X, then ¢(X) does not use the unbounding quantifier.

Fact 1. WMSO+UP with MSO subformulas is contained in existential WMSO+UP.

The idea behind the fact is to use the existential prefix to label each node with
the MSO-theory of its subtree.

Ezample 1. Consider the modal p-calculus with backward modalities, as intro-
duced in [16]. As shown in [1], for every formula ¢ of the modal p-calculus with
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backward modalities, one can compute a formula ¥ (X) of MSO such that ¢ is
true in some finite Kripke structure if and only if

UX(X) (1)

is true in some infinite tree. The paper [1] gives a direct algorithm for testing
satisfiability of formulas of the form as in (1). Since this formula is in WMSO+UP
with MSO subformulas, Theorem 1 can be used instead.

By inspecting the proofs of [6], one can show that also [6] would be enough
for the above example. This is no longer the case for the following example.

Ezxample 2. Consider a two-player game over an arena with a finite set of vertices
V', where the winning condition is a subset of V* defined in WMSO-+U over infinite
words. For instance, the winning condition could say that a node v € V is visited
infinitely often, but the time between visits is unbounded. A winning strategy
for player 1 in such a game is a subset ¢ C V*, which can be visualized as a tree
of branching at most V. The properties required of a strategy can be formalised
in WMSO+UP over infinite trees, using path quantifiers to range over strategies
of the opposing player. Therefore, one can write a formula of WMSO-+UP over
infinite trees, which is true in some tree if and only if player 1 has a winning
strategy in the game. Therefore Theorem 1 implies that one can decide the
winner in games over finite arenas with WMSO-+U winning conditions.

The games described in Example 2 generalize cost-parity games from [10]
or energy consumption games from [7], so Theorem 1 implies the decidability
results from those papers (but not the optimal complexities).

Example 3. Consider a game as in the previous example, but where the winning
condition is defined by a formula ¢ of WMSO+U which can also use a binary
predicate “x and y are close”. For n € N, consider the winning condition ¢,, to
be the formula ¢ with “z and y are close” replaced by “the distance between x
and y is at most n”. Consider the following problem: is there some n € N, such
that player 1 has a winning strategy according to the winning condition ¢,,7
This problem can also be reduced to satisfiability of WMSO+UP on infinite trees.
The idea is to guess a strategy o C V*, and a set of nodes X C o, such that 1)
there is a common upper bound on the length of finite paths that do not contain
nodes from X; 2) every infinite path consistent with o satisfies the formula ¢
with “x and y are close” replaced by “between x and y there is at most one
node from X”. Using the same idea, one can solve the realizability problem for
Prompt LTL [12].

2 Automata

In this section, we define an automaton model with the same expressive power as
existential wMSO+UP, which is called a WMSO+UP automaton. The automaton
uses a labellings of trees by counter operations called counter trees, so we begin
by describing these.
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Counter trees. Let C be a finite set of counters. A counter tree over a set of
counters C' is defined to be a tree where every node is labelled by a subset of

C x {parent, self} x {increment, transfer} x C' x {parent, self}, (2)

where every tuple contains “self” at least once. The counter tree induces a graph
with edges labelled by “increment” or “transfer”, called its associated counter
configuration graph. The vertices of this graph, called counter configurations, are
pairs (x,c) where x is a node of the counter tree and ¢ is a counter. The counter
configuration graph contains an edge from (g, ¢g) to (z1, ¢1) labelled by o if and
only if there exists a node x in the counter tree whose label contains a tuple

(co,70,0,¢1,7T1) with 70,71 € {parent, self}

such that x; is x or its parent depending on whether 7; is “self” or “parent”.

A path in the counter configuration graph, using possibly both kinds of edges,
is called a counter path. Its value is defined to be the number of “increment”
edges. The value of a counter configuration is defined to be the supremum of
values of counter paths that end in it. When ¢ is a counter tree, then we write
[t] for the tree with the same nodes but with alphabet N¢, where the label of a
node x maps ¢ € C' to the value of (x,c¢) in the associated counter graph.

WMSO~+UP automata. We now present the automaton model used to decide
WMSO-+UP. The syntax of a WMSO+UP consists of:

1. A parity automaton;

2. A set of counters C, partitioned into bounded and unbounded counters;

3. For every state g of the parity automaton:
(a) a set cut(q) of bounded counters, called the counters cut by g;
(b) a set check(q) of unbounded counters, called the counters checked by g;
(c) a subset counterops(q) of the set in (2).

The automaton inputs a tree over the input alphabet of the parity automaton
in the first item. A run of the automaton is a labelling of the input tree by states,
consistent with the transition relation of the parity automaton. Using the sets
counterops(q), we get a counter tree with counters C, call it counterops(p). By
abuse of notation, we write [p] for the tree [counterops(p)], which is a tree over
NC. Using the sets cut(q) and check(q), we can talk about the nodes in a run
where a bounded counter gets cut, or an unbounded counter gets checked. A
run is accepting if it has the initial state in the root, and it satisfies all three
acceptance conditions defined below. In the conditions, we define the limsup of
a function ranging over a countable set to be

limsup f(z) T im sup f(xy) for some enumeration of X = {x1,x2,...},
zeX neN

which is well-defined because it does not depend on the enumeration.
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— Parity. On every path the maximal state seen infinitely often is accepting.
— Boundedness. If a bounded counter ¢ is never cut in a connected! set of nodes
X, then

lim sup[p](z,c) < oo
zeX
— Unboundedness. If an unbounded counter ¢ is checked infinitely often on a
path m, then
lim sup[p](z, ¢) = oo

x

with z ranging over those nodes in m where ¢ is checked.

The automaton accepts an input tree if it admits an accepting run.

Equivalence to logic and emptiness. Below are the two main technical results
about WMSO+UP automata. The two results immediately imply that satisfiabil-
ity is decidable for wMsSO+UP logic.

Theorem 2. For every formula of existential WMSO+UP one can compute a
WMSO-+UP automaton that accepts the same trees, and vice versa.

Theorem 3. Emptiness is decidable for WMSO-+UP automata.

The proof of Theorem 2 is in the appendix. The rest of this paper is devoted
to describing the proof of Theorem 3. The proof itself is described in Section 4,
while the next section is about profinite trees, which are used in the proof.

Remark 1. If in the definition of the unboundedness acceptance condition, we
replace lim sup by liminf, we get a more powerful model. The same proof as for
Theorem 3 also shows that this more powerful model has decidable emptiness.

3 Profinite Trees and Automata on them

In the emptiness algorithm for WMSO+UP automata, we use profinite trees. The
connection between boundedness problems and profiniteness was already ex-
plored in [14], in the case of words. Profinite trees are similar to profinite words,
because the recognizers are MSO formulas, the difference is that the objects are
(infinite) trees. Consider an input alphabet A. Fix an enumeration of all MSO
formulas over the alphabet A. We define the distance between two trees to be
1/n where n is the smallest number such that the n-th formula is true in one
of the trees but not the other. The distance itself depends on the enumeration,
but the notion of an open set or Cauchy sequence does not. Cauchy sequences
are considered equivalent if some (equivalently, every) shuffle of them is also a
Cauchy sequence. A profinite tree is defined to be an equivalence class of Cauchy
sequences. To avoid confusion with profinite trees, we use from now on the term
real tree instead of tree. Therefore, a profinite tree is a limit of a sequence of real
trees. Every real tree is also a profinite tree, as a limit of a constant sequence.

! Tt suffices to restrict attention to maximal connected sets of nodes where ¢ is not
cut, such sets are called c-cut factors.
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Evaluating MSO formulas on profinite trees. A Cauchy sequence is said to satisfy an
MSO formula if almost all trees in the sequence satisfy it. A Cauchy sequence sat-
isfies either an Mso formula, or its negation. Equivalent Cauchy sequences satisfy
the same MSO formulas, and therefore satisfaction of MSO formulas is meaningful
for profinite trees: a profinite tree is said to satisfy an MSO formula if this is true
for some (equivalently, every) Cauchy sequence that tends to it. Formulas of MsO
are the only ones that can be extended to profinite trees in this way; one can show
that if L is a set of real trees that is not MSo-definable (for instance, L is defined
by a formula of wMSO-+UP that is not in MSO), then there is a Cauchy sequence
which has infinitely many elements in L and infinitely many elements outside L.
Summing up, it makes sense to ask if a profinite tree satisfies a formula of MSO,
but it does not make sense to ask if it satisfies a formula of WMSO+UP.

Profinite subtrees. The topological closure of a binary relation on real trees is
defined to be the pairs of profinite trees that are limits of pairs of real trees in the
binary relation; with the metric in the product being the maximum of distances
over coordinates. Define the profinite subtree relation to be the topological clo-
sure of the subtree relation. A real tree might have profinite subtrees that are
not real. For example, consider a real tree ¢ such that for every n, some subtree
sy, of t has exactly one a, which occurs at depth n on the leftmost branch. By
compactness, the sequence s1, S2, ... has a convergent subsequence, whose limit
is not a real tree, but is a profinite subtree of .

Partially colored trees. Let A and @ be finite sets. A partially Q-colored tree
over A is a tree, possibly profinite, over the alphabet A x (Q U {L}). Suppose
that p is a real partially @-colored tree over A. If a node has second coordinate
q € @, then we say that it is colored by gq. When the second coordinate is L,
then the node is called uncolored. A color zone of p is a connected set of nodes
X in p such that:

— the unique minimal element of X is either the root of p or is colored;
— maximal elements of X are either leaves of p or are colored;
— all other elements of X are uncolored.

A real tree is called real factor of p if it is obtained from p by only keeping the
nodes in some color zone. These notions are illustrated in Figure 1. The notions
of defined color, color zone and real factor are only meaningful when p is a real
tree. When p is not a real tree, then we can still use MSO-definable properties,
such as “the root has undefined color” or “only the leaves and root have defined
color”. Define the profinite factor relation to be the topological closure of the
real factor relation.

Generalized parity automata. A transition in a parity automaton can be visualized
as a little tree, with one or three nodes, all of them colored by states. We introduce
a generalized model, where transitions can be arbitrary trees, possibly infinite, and
possibly profinite. A generalized parity automaton consists of: a totally ordered set
of states @), a subset of accepting states, an input alphabet, and a set of transitions,
which is an arbitrary set of Q-colored profinite trees over the input alphabet. An
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uncolored
node

color zones

real factor

node colored

by ©

Fig. 1. A real {O, O}-colored tree over {a, b}, together with a real factor. Uncolored
nodes are white. Note how color zones overlap on colored nodes.

input to the automaton is a profinite tree over the input alphabet. A run over
such an input is a partially Q-colored profinite tree over the input alphabet, call
it p, which projects to the input on the coordinate corresponding to the input
alphabet. By projection we mean the topological closure of the projection relation
on real trees. A run p is accepting if all of its profinite factors are transitions, and
it satisfies the MSO properties “the root is uncolored” and “on every infinite path
where colored nodes appear infinitely often, the maximal color seen infinitely often
is accepting”. (The transitions where the root is uncolored play the role of the
initial state.) There might be some infinite paths which have colors finitely often,
because some transitions might have infinite paths. Every profinite factor of a run
will necessarily satisfy the MSO property “every node that is not the root or a leaf
is uncolored”, therefore it only makes sense to have transitions that satisfy this
property. It is not difficult to show that if a run satisfies the property “the root is
uncolored”, which is the case for every accepting run, then the run has a unique
profinite factor that satisfies this property.

A run is called regular if it has finitely many profinite subtrees rooted in
colored nodes. For a generalized parity automaton A, define L(A) to be the set
of profinite trees accepted by A, and let L,cs(A) be the subset of those profinite
trees which are accepted via a regular run. The following theorem shows that
two sets have the same topological closure (denoted by a bar on top), i.e. the
smaller set is dense in the bigger one.

Theorem 4. L..z(A) = L(A) holds for every generalized parity automaton A.

3.1 Automaton Chains

Generalised parity automata are too general to be useful. For instance, every
set of profinite trees is recognised by a generalised parity automaton, which has
no states, and uses the recognised set as its transitions. Also, these automata
do not allow a finite representation, and therefore cannot be used in algorithms.
The emptiness algorithm for WMSO-+UP automata uses a special case of gener-
alised parity automata, called automaton chains, which can be represented in
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a finite way. Roughly speaking, an automaton chain is a generalised parity au-
tomaton where the set of transitions is the set of profinite trees defined by a
simpler automaton chain, with the additional requirement that one cost func-
tion is bounded and another cost function is unbounded. The definitions of cost
functions and automaton chains are given below.

Cost functions. A cost function on trees is a function a from real trees to N,
such that the inverse image of every finite number n € N is definable in MSO. As
proposed by Toruriczyk in [14], a cost function « can be applied to a profinite
tree ¢t by defining «(t) to be a finite number n € N if ¢ satisfies the MSO property
“has value n under «”, and to be oo otherwise. Cost functions on finite words
were introduced by Colcombet in [8] and then extended to finite trees, infinite
words and infinite trees. The specific variant of cost functions that we use is
the logic cost wMsO that was proposed by Vanden Boom in [15]. A sentence
of this logic is built the same way as a sentence of WMSO over infinite trees,
except that it can use an additional predicate “X is small”, which takes a set X
as a parameter, and can only be used under an even number of negations. The
predicate can be used for different sets, like in the following example, call it a:

3X Y X issmall A YVissmall A Ve a(z) =z€X) A Vybly) =yeY)

The cost function defined by a sentence of cost WMSO maps a tree to the smallest
number n such that the sentence becomes true after “X is small” is replaced
by |X| < n. If such a number does not exist, the result is co. In the case of
the example o above, the function maps a tree to the number of a’s or to the
number of b’s, whichever is bigger.

Automaton chains. We now define automaton chains, by induction on a param-
eter called depth. A automaton chain of depth 0 is any parity automaton. For
n > 0, an automaton chain of depth n is a generalised parity automaton A whose
set of transitions is

{t : t is accepted by B and «a(t) < oo and 5(t) = oo}

for some automaton chain B of smaller depth and some cost functions «, 3 that
are definable in cost WMSO. An automaton chain can be represented in a finite way
and therefore used as an input for an algorithm, such as in the following lemmas.

Lemma 1. Nonemptiness is decidable for automaton chains.

Lemma 2. Automaton chains are effectively closed under intersection with MSO.

4 Emptiness of wMSO+UP Automata

In this section, we describe the proof of Theorem 3, which says that empti-
ness is decidable for wMsSO+UP automata. We reduce emptiness for wMSO-+UP
automata to emptiness of automaton chains, which is decidable by Lemma 1.

A normal form. We begin by normalising the automaton. A counter c is called
separated in a counter tree if the counter tree does not contain edges that involve
c and and some other counter. A counter c is called root-directed if every counter
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edge involving c is directed toward the root. A WMSO-+UP automaton is said to

be in normal form if:

(a) for every runm, in the counter graph generated by the automaton, every
bounded counter is separated and root-directed.

(b) there is a total order on the states which is consistent with the order from
the parity condition, and a mapping which maps every state ¢ to sets of
counters larcut(q) and larcheck(q) with the following property. For every
run and every finite path in the run that starts and ends in state g and does
not visit bigger states in the meantime,

— the counters checked in the path are exactly larcheck(q);
— the counters cut in the path are exactly larcut(q).

Lemma 3. For every WMSO+UP automaton one can compute an equivalent one
in normal form.

In the proof, to achieve property (b), we use the latest appearance record data
structure introduced by McNaughton in [13].

Partial runs. Let Abe a WMSO-+UP automaton that we want to test for emptiness.
Thanks to Lemma 3, we assume without loss of generality that it is in normal form.
In the emptiness algorithm, we describe properties of pieces of runs of A, called
partial runs, and defined below. Recall that in a parity automaton, there are two
types of transitions dg and ds, for leaves and non-leaves, respectively. A partial
run of a parity automaton is a labelling of the input tree by states which respect
02 in nodes with two children, but need not respect &g in leaves. A partial run of
a WMSO-+UP automaton is a partial run of the underlying parity automaton. A
partial run is called accepting if it satisfies the parity, boundedness and unbound-
edness acceptance conditions. An accepting run of A is a partial accepting run
where the root has the initial state and for every leaf, its (state, label) pair is in
do. Note that every finite partial run is an accepting partial run.

Chain automata recognising accepting runs. For a state g of A, consider the
following sets of real trees over the alphabet A x ), where A is the input alphabet
of A and @ is its state space:

R, accepting partial runs where states strictly bigger than ¢ appear only in
nodes with finitely many descendants;
Ry« the subset of R, where state ¢ is allowed only finitely often on every path.

Note that if ¢ is a parity-rejecting state of the automaton A, then R, = Rg.. By
induction on ¢ in the order on states from the assumption on A being in normal
form we define automaton chains R, and Ry« such that

Ry =L(Rg)  and Ry = L(R,). (3)

The definition of R, and R« is given below. The proof of (3) is in the appendix.

The automaton Rgs. The automaton Rgs has a unique state, call it “state”,
which is rejecting, meaning that it must appear finitely often on every path. A
transition of this automaton is any profinite partially {“state”}-colored tree o
over A x () such that:
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1. the projection of o onto the A x @) coordinate belongs to R, where p is the
predecessor of ¢ in the order on states; and

2. for every root-to-leaf path in o which ends in a leaf with defined color “state”,
the maximal value of the @) coordinate is gq.

Property 1 is recognised by an automaton chain by the induction assumption.
Property 2 is MSO-definable, and therefore the conjunction of properties 1 and
2 is recognised by an automaton chain thanks to Lemma 2. It follows that 7.
is a degenerate form of an automaton chain where the cost functions o« and (8
are not used. This degenerate form is a special case of an automaton chain, by
taking a to be the constant 0 and S to be the constant oc.

The automaton R4. If ¢ is a parity-rejecting state of A, then R, is equal to R ..
Otherwise, it is defined as follows. The automaton R, has a unique state, call
it “state”, which is accepting, meaning that it can appear infinitely often on a
path. A transition of this automaton is any profinite partially { “state” }-colored
tree o over A X @ such that:

1. the projection of o onto the A x @) coordinate belongs to Ry; and

2. for every root-to-leaf path in o which ends in a leaf with defined color “state”,
the maximal value of the @) coordinate is gq.

3. afo) < 0o holds for the cost function defined by

alo) = max max lo](z,c)

with ¢ ranging over bounded counters not in larcut(q) and z ranging over
nodes which do not have an ancestor where c is cut.
4. (o) = oo holds for the cost function defined by

minminmax [o](y,c) if the root of o has defined color “state”
Bloy=q © 7

00 otherwise

with ¢ ranging over unbounded counters in larcheck(q), x ranging over leaves
with defined color “state”, and y ranging over ancestors of x where c is checked.

As for the automaton Ry, the conjunction of properties 1 and 2 is recognised
by an automaton chain, and therefore R, is an automaton chain.

Proof (of Theorem 3). If ¢ is the maximal state of A, then R, is the set of all
partial accepting runs. Therefore, the automaton .4 is nonempty if and only if R,
accepts some tree which is an accepting run of the underlying parity automaton
in A. This is decidable by Lemmas 1 and 2 O

5 Conclusions

This paper shows that satisfiability is decidable for WMSO4UP on infinite trees.
We conjecture the logic remains decidable after adding the R quantifier from [5].
We also conjecture that the methods developed here, maybe the automaton
mentioned in Remark 1, can be used to decide satisfiability of tree languages
of the form “every path is in L”, with L being wB- or wS-regular languages of
infinite words, as defined in [3].
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Abstract. This paper is about MSO+U, an extension of monadic second-
order logic, which has a quantifier that can express that a property of sets
is true for arbitrarily large sets. We conjecture that the MSO+U theory of
the complete binary tree is undecidable. We prove a weaker statement:
there is no algorithm which decides this theory and has a correctness
proof in zrc. This is because the theory is undecidable, under a set-
theoretic assumption consistent with zZFC, namely that there exists of
projective well-ordering of 2% of type wi. We use Shelah’s undecidability
proof of the MSO theory of the real numbers.

1 Introduction

This paper is about MSO+U, which is the extension of MSO by the unbounding
quantifier. The unbounding quantifier, denoted by

UX. o(X),

says that ¢(X) holds for arbitrarily large finite sets X . As usual with quantifiers,
the formula ¢(X) might have other free variables except for X. The main con-
tribution of the paper is the following theorem, which talks about the complete
binary tree 2*.

Theorem 1.1. Assuming that there exists a projective well-ordering of 2 of
type w1, it is undecidable if a given sentence of MSO+U is true in the complete
binary tree.

The assumption on the projective ordering can be seen as a set theory axiom.
The assumption follows from the axiom V=L, which is relatively consistent
with zrC. Therefore, if ZFC has a model, then it has one where the assumption of
Theorem 1.1 is true, and therefore it has a model where the MSO+U theory of the
complete binary tree is undecidable. In particular, there is no algorithm which
decides the MSO+4U theory of the complete binary tree, and has a correctness
proof in zZrC. Although the theorem stops short of full undecidability, which
we conjecture to be the case, it seems to settle the decidability question for all
practical purposes.
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Background. This paper is part of a programme researching the logic MSO+U,
i.e. monadic second-order logic extended with the U quantifier. The logic was
introduced in [Boj04], where it was shown that satisfiability is decidable for for-
mulae on infinite trees where the U quantifier is used once and not under the
scope of set quantification. A significantly more powerful fragment of the logic,
albeit for infinite words, was shown decidable in [BC06] using automata with
counters. These automata where further developed into the theory of cost func-
tions initiated by Colcombet in [Col09]. Cost functions can be seen as a special
case of MSO4U in the sense that decision problems regarding cost functions, such
as limitedness or domination, can be easily encoded into satisfiability of MSO+U
formulae. This encoding need not be helpful, since the unsolved problems for
cost functions get encoded into unsolved problems from MSO-+U.

The added expressive power of MSO+U can be used to solve problems that do
not have a simple solution in MSO alone. An example is the star height problem,
one of the most difficult problems in the theory of automata, which can be
straightforwardly reduced to the satisfiability of MSO+U on infinite words; the
particular fragment of MsO+4U used in this reduction is decidable by [BCO6].
An example of an important unsolved problem that reduces to MSO+U is the
decidability of the nondeterministic parity index problem [CLO0S].

So far, most research on MSO+U has focussed on the weak variant, call it
WMSO+U, where only quantification over finite sets is allowed. Satisfiability is
decidable for wMSsO+U over infinite words [Bojll] and infinite trees [BT12].
In a parallel submission to this conference, it is shown that WMSO-+U remains
decidable over infinite trees even after adding quantification over infinite paths.
The decidability proofs use automata with counters.

Undecidability. The first strong evidence that MSO+U can be too expressive was
given in [HS12], where it was shown that MSO+4U can define languages of infi-
nite words that are arbitrarily high in the projective hierarchy from descriptive
set theory. The present paper builds on that observation. We show that, using
the languages from [HS12], one can use MSO+U on the complete binary tree 2*
to simulate a variant of MSO on the Cantor set 2, which we call projective MSO.
Projective MSO is like MSO, except that set quantification is restricted to projec-
tive sets. As shown by Shelah in [She75], the MSO theory of 2¢ is undecidable.
From the proof of Shelah it follows that, under the assumption that there exists
a projective well-ordering of 2, already projective MSO is undecidable on 2.
Therefore, thanks to our reduction, MSO-+U is undecidable on 2*.

2 MSO-+U on 2*

We consider the following logical structures: the complete binary tree 2*, the
Cantor set 2¢, and the union of the two 25¢. In the complete binary tree 2*,
the universe consists of finite strings over {0, 1}, called nodes, and there are
predicates for the lexicographic and prefix orders. The prefix order corresponds
to the ancestor relation. In the Cantor set 2“, the universe consists of infinite
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strings over {0, 1}, called branches, and there is a predicate for the lexicographic
order. Finally, in 25¢, the universe consists of both nodes and branches, and there
are predicates for the prefix and lexicographic order. In 2%, the prefix relation
can hold between two nodes, or between a node and a branch. The lexicographic
order is a total order on both nodes and branches, e.g. 0 < 0¥ < 01.

Two fundamental theorems about MSO are that the MSO theory is decidable
for 2%, but undecidable for 2¥, and therefore also undecidable for 2<¥. The
decidability was shown by Rabin in [Rab69], while the undecidability was shown
by Shelah in [She75] conditionally on the Continuum Hypothesis, and by Shelah
and Gurevich in [GS82] without any conditions.

The projective hierarchy. Consider a topological space X. The family of Borel
sets is the least family of subsets of X that contains open sets, and is closed under
complements and countable unions. Define the family of projective sets to be the
least family of subsets of X which contains the Borel sets, and is closed under
complements and images under continuous functions. The projective sets can be
organised into a hierarchy, called the projective hierarchy, where X} = IT} is the
class of Borel sets, IT}, is the class of complements of sets from X!, and X},
is the class of images of sets from IT} under continuous functions. Additionally,
Al is the intersection of X! and II.. When the space X is not clear from the
context, we add it in parentheses, e.g. 1 (X)

We are mostly interested in the projective hierarchy for the space 2* with
the topology of the Cantor set. This topology is induced by a metric, where the
distance between two infinite bit strings is the inverse of the first position where
they differ. We write 31 (2%) for the subsets of 2¢ that are in level X} of the
projective hierarchy under this topology.

The main result. The main result of this paper is Theorem 1.1 from the intro-
duction, which says that the MSO+U theory of 2* is undecidable. The proof of
Theorem 1.1 is by a reduction from the undecidability of MsO on 2*. Our proof
uses a stronger undecidability version of MSO on 2%, where instead of full MSO we
have a logic called projective MSO , where quantification is restricted to projective
sets, as defined later in Section 2.1. We are unable to prove the projective MSO
theory of 2“ to be undecidable without any conditions, or even conditionally
on the Continuum Hypothesis, but only assuming the stronger assumption that
there exists a projective well-ordering of 2“ of type ws.

This assumption can be seen as a conjunction of two assumptions: the Con-
tinuum Hypothesis (the type w; part) and that the well-ordering is “definable”
in some sense (the projective part). As shown in [GS82] the MSO theory of 2¢
remains undecidable even without the Continuum Hypothesis. This does not
help us, because our reduction to MSO+U crucially depends on the definability.

Before proving the theorem, we observe the following corollary.

Corollary 2.1. If ZrC is consistent, then there is no algorithm which decides
the MSO+U theory of 2* and has a proof of correctness in ZFC.
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Proof. [The following proof is in zrc ] If ZFC is consistent, then Gédel’s con-
structible universe L is a model of ZFC, as shown by Godel (for a modern treat-
ment of this topic see Chapter 13 and specifically Theorem 13.6 in [Jec02]). In
Godel’s constructible universe, there exists a well-ordering of 2¢ of type wy that
is in level A} of the projective hierarchy on 2 x 2 ([Jec02, Theorem 25.26]).
Therefore, if ZFC is consistent, then by Theorem 1.1 it has a model where the
MSO+U theory of 2* is undecidable. O

2.1 Projective MSO on 2=¢, and its Reduction to MSO+U on 2*

For n < w, define the syntax of MSO,, to be the same as the syntax of MSO,
except that instead of one pair of set quantifiers 3X and VX, there is a pair of
quantifiers 3; X and V; X for every 7 < n. To evaluate a sentence of MSO,, over
a structure, we need a sequence {X;};<; of families of sets, called the monadic
domains. The semantics are then the same as for MSO, except that the quantifiers
J; and V; are interpreted to range over subsets of the universe that belong to
&;. First-order quantification is as usual, it can quantify over arbitrary elements
of the universe. We write MSO[X}, Xa, . ..] for the above logic with the monadic
domains being fixed to A7, Xs, .. .. Standard MSO for structures with a universe {2
is the same as MSO[P(£2)], i.e. there is one monadic domain for the powerset of
the universe. If {2 is equipped with a topology, we define projective MSO over {2
to be

MsO[X1(£2), 24(92),.. ]

The expressive power of projective MSO is incomparable with the expressive
power of MSO. Although projective MSO cannot quantify over arbitrary subsets,
it can express that a set is in, say, 1.

Example 2.2. In the structure 2<%, being a node is first-order definable: a node
is an element of the universe that is a proper prefix of some other element.
Since there are countably many nodes, every set of nodes is Borel, and therefore
in X1(2=%). Therefore, in projective MSO on 2<% one can quantify over arbitrary
sets of nodes. It is easy to see that a subset of 25“ is in X! (25%) if and only if it
is a union of a set of nodes and a set from X1 (2¢). It follows that projective MSO
on 2=¢ has the same expressive power as the logic

Mso[P(2%), £1(2¢), £L(2¢), .. .

Example 2.3. In projective MSO on 25%, one can say that a set of branches
is countable. This is by using notions of interval, closed set, and perfect. A
set of branches is open if and only if for every element, it contains some open
interval around that element. A perfect is a set of branches which is closed
(i.e. its complement is open) and contains no isolated points. The notions of open
interval, closed set, and perfect are first-order definable. By [Kec95, Theorem
29.1], a set of branches is countable if and only if it is in 3}(2%) and does not
contain any perfect subset, which is a property definable in projective MSO.
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The following lemma shows that the projective MSO theory of 25¢ can be
reduced to the MSO+U theory of 2*.

Lemma 2.4. For every sentence of projective MSO on 2%, one can compute an
equivalently satisfiable sentence of MSO+U on 2*.

The proof uses Theorem 5.1 from [HS12] and the following lemma.

Lemma 2.5. Suppose that L1, Lo, ... C A¥ are definable in MSO+U, and let
X = {fHLy)|f : 29 — A¥ is a continuous function}.

Then for every sentence of MSO[P(2*), X1, Xa,...] on 2% one can compute an
equivalently satisfiable sentence of MSO+U on 2*.

Proof. The proof of this lemma is based on the observation that, using quantifi-
cation over sets of nodes, one can quantify over continuous functions 2 — A¥.
Call a mapping f: 2* — A U {e} proper if on every infinite path in 2*, the
labelling f contains infinitely many letters different than e. If f is proper then
define f : 2 — A¥ to be the function that maps a branch to the concatenation
of values under f of nodes on the branch. It is not difficult to see that a function
g: 2% — A% is continuous if and only if there exists a proper f such that g = f ,
see e.g. Proposition 2.6 in [Kec95]. Since a mapping f: 2* — A U {e} can be
encoded as a family of disjoint sets { X, C 2*},¢c 4, one can use quantification over
sets of nodes to simulate quantification over continuous functions g: 2% — A¥.
The reduction in the statement of the lemma works as follows. First-order
quantification over branches is replaced by (monadic second-order) quantifica-
tion over paths, i.e. subsets of 2* that are totally ordered and maximal for that
property. For a formula 3X € AX;. ¢, we replace the quantifier by existential
quantification over a family of disjoint subsets {X,}qsca which encode a con-
tinuous function. In the formula ¢, we replace a subformula x € X, where x is
now encoded as a path, by a formula which says that the image of x, under the
function encoded by {X,}aca, belongs to the language L;. In order to verify if a
given element belongs to the language L; definable in MSO+U on infinite words,
we can use a formula of MSO+4U on infinite trees. O

Proof (of Lemma 2.4). Theorem 5.1 of [HS12] shows that there is an alphabet
A such that for every ¢ > 1, there is a language L; C A% which is definable
in MSO+U on infinite words and hard for X!(2¥). It is easy to check (see the
full version) that L; is in fact complete for X}(2%). Apply Lemma 2.5 to these

languages. By their completeness, the classes X7, X5, ... in Lemma 2.5 are exactly
the projective hierarchy on 2“, and therefore Lemma 2.4 follows thanks to the
observation at the end of Example 2.2. O

Before we move on, we present an example of a nontrivial property that can
be expressed in the projective MSO on 25¢.
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Ezxample: projective determinacy. A Gale-Stewart game with winning condition
W C 2¢ is the following two-player game. For w rounds, the players propose bits
in an alternating fashion, with the first player proposing a bit in even-numbered
rounds, and the second player proposing a bit in odd-numbered rounds. At the
end of such a play, an infinite sequence of bits is produced, and the first player
wins if this sequence belongs to W, otherwise the second player wins. Such a
game is called determined if either the first or the second player has a winning
strategy, see [Kec95, Chapter 20] or [Jec02, Chapter 33] for a broader reference.
Martin [Mar75] proved that the games are determined if W is a Borel set.
It is not difficult to see that for every i > 0, the statement

“every Gale-Stewart game with a winning condition in X} is determined” (1)

can be formalised as a sentence ¢}, of projective MSO on 25 (see the full
version). As we show below, the ability to formalise determinacy of Gale-Stewart
games with winning conditions in X1 already indicates that it is unlikely that
projective MSO on 2<% is decidable.

Indeed, suppose that there is an algorithm P deciding the projective MSO
theory of 2=% with a correctness proof in zrc. Note that by Lemma 2.4, this
would be the case if there was an algorithm deciding the MSo+U theory of 2*
with a correctness proof in zrC. Run the algorithm on ¢}, obtaining an answer,
either “yes” or “no”. The algorithm together with its proof of correctness and
the run on ¢}, form a proof in zFC resolving Statement (1) for i = 1. The
determinacy of all £} games cannot be proved in ZFC, because it does not hold
if V=L, see [Jec02, Corollary 25.37 and Section 33.9], and therefore P must
answer “no” given input ¢},.

This means that a proof of correctness for P would imply a zZFC proof that
Statement (1) is false for ¢ = 1. Such a possibility is considered very unlikely
by set theorists, see [FFMS00] for a discussion of plausible axioms extending
the standard set of ZFC axioms. A similar example regarding MSO(R) and the
Continuum Hypothesis was provided in [She75].

3 Undecidability of Projective MSO on 2%

In this section we show that projective MSO is undecidable already on 2“ with
the lexicographic order. From the discussion in Example 2.2 it follows that the
projective MSO theory of 2¢ reduces to the projective MsO theory of 2<¢. There-
fore, the undecidability result for 2% is stronger than for 2<%, in particular it
implies the undecidability result for MSO+U from Theorem 1.1.

Theorem 3.1. Assume that there is a projective well-ordering of 2% of type w1 .
Then the projective MSO theory of 2 is undecidable.

The proof of Theorem 3.1 is a minor adaptation of Shelah’s proof [She75] that,
assuming the Continuum Hypothesis, the MSO theory of 2¢ is undecidable. In
fact, Shelah already observed that such an adaptation is possible, in the following
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remark on p. 410: “Aside from countable sets, we can use only a set constructible
from any well-ordering of the reals.” To make the paper self-contained, we include
a proof of Theorem 3.1.

Proof strategy. We use the name V*3* sentence for a sentence of first-order
logic in the prenex normal form that has a V*3* quantification pattern. The
vocabulary of graphs is defined to be the vocabulary with one binary predicate
E(x,y). Finally, an equality-free formula is one that does not use equality. The
proof is by a reduction from the following satisfiability problem:

— Input. An equality-free ¥*3* sentence over the vocabulary of graphs.
— Question. Is the sentence true in some undirected simple graph?

The above problem is undecidable by Theorem 1 in Section 9 of [Gur80].
Reducing from the above problem is one of the main differences between our
proof and Shelah’s proof, which uses a reduction from the first-order theory of
arithmetic (N, 4, %). The other main difference is that we introduce two defini-
tions, which we call modal graphs and Shelah graphs, which are only implicit
in Shelah’s proof. Our intention behind these definitions is to give the reader a
better intuition of what exactly is being coded into the MSO theory of 2¢.

3.1 Modal Graphs

Instead of encoding undirected simple graphs in projective Mso, it will be more
convenient to encode a less rigid structure, which we call a modal graph'. A
modal graph consists of

— a partially ordered set of worlds with a least element;
— for every world I a set of local vertices® Vr;
— for every world I a set of local edges Ef C Vi x V;

subject to the monotonicity property that V; C V; and E; C E; holds for every
worlds I < J. Furthermore, for every I the local edges E; are a symmetric
irreflexive relation, i.e. modal graphs are simple and undirected.

We use first-order logic to describe properties of modal graphs, with the se-
mantics relation denoted by

G.1,val |= o, (2)

where ¢ is a formula of first-order logic, G is a modal graph, I is a world in the
modal graph, and val is a valuation that maps the free variables of ¢ to the local
vertices V; of the world I. The definition is by induction on the formula:

! Another take on modality is presented in [GS82] using the language of forcing.
2 We will only construct graphs where every world has the same local vertices, but we
give the more general definition to match Kripke models for intuitionistic logic.
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G,1,val = E(z,y) iff (val(z),val(y)) € Er

G, Lval E oA iff G, 1,val = ¢ and G, I,val |E 9

G, I,val = oV iff G,I,val =@ or G, I, val =4

G,I,val = —p iff G, J,val }£ ¢ for every J > T

G,I,val =3z ¢ iff G, J,val[x — v] = ¢ for some J > I and v € V;
G, I,val =V ¢ iff G, J,vallx — v] = p for every J > T and v € V

The definition above is almost the same as Kripke’s semantics for intuitionistic
logic [Kri65]. The only difference is in the 3 quantifier: Kripke requires the world
J to be equal to I. We say that a sentence (i.e. a formula without free variables)
is satisfied in a modal graph if (2) holds with I being the least world and val
being the empty valuation.

Ezxample 3.2. A modal graph with one world is the same thing as an undirected
simple graph. In this case, the standard semantics of first-order logic coincide
with the semantics on modal graphs.

Ezample 3.3. Modal graphs satisfy more sentences of first-order logic than undi-
rected simple graphs. In particular, if two existentially quantified sentences are
satisfied in (possibly different) modal graphs, then their conjunction is also satis-
fied in the modal graph obtained by joining the two modal graphs by a common
least world where the are no local edges.

The following lemma shows that for V*3*-sentences, the answers are the same
for the satisfiability problem in modal graphs and the satisfiability problem in
simple undirected graphs. The same lemma would hold for directed graphs, and
also for vocabularies with more predicates.

Lemma 3.4. For every V*3* sentence n over the vocabulary of graphs, n is
satisfied in some undirected simple graph if and only if it is satisfied in some
modal graph.

Proof. The left-to-right implication is true for all sentences, not just V*3* sen-
tences, and follows from Example 3.2.
For the right-to-left implication, consider a V*3* sentence

n=Vri,..., Tk IThy1,...,Tpn. @

where « is quantifier-free. For directed graphs G and H, we say that H is an
n-extension of G if G is an induced subgraph of H, and for every valuation of
the universally quantified variables of 77 that uses only vertices of G, there is a
valuation of the existentially quantified variables of n which makes the formula
« true, but possibly uses vertices from H.

Suppose that G is a modal graph. For a world I and a subset V' of the local
vertices V7, define G; v to be the undirected simple graph where the vertices
are V and the edges are local edges F restricted to V x V. By monotonicity
of local edges, the set of edges in G,y grows or stays equal as I grows. We say
that Gp v is stable if Gy v = G ;v holds for every J > I. The key properties of
being stable are:
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1. If G1,y is stable then for every valuation val : {x1,...,2,} =V,
G, I,val E « iff Gryv,val = a.

In the equivalence above, the left side talks about semantics in modal graphs
and the right side talks about semantics in simple undirected graphs.

2. For every world I and finite V' C V7, there exists a world J > I such that
G,y is stable;

3. If I < J are worlds and V' C W are such that Gy and Gjw are stable,
then Gy is an induced subgraph of G w .

Suppose that 7 is satisfied in G.

Claim. There exists a sequence of worlds Iy < I, < ... and a sequence V; C
Vo C ... of finite sets of vertices such that Gy, v, is stable and n-extended by
Gr,41,viy, for every i.

This claim proves the lemma, since the limit, i.e. union, of the graphs Gy, v;
is a simple undirected graph that satisfies 7.

Proof (of the claim). The sequence is constructed by induction; we only show
the induction step. Suppose that I; and V; have already been defined. Let I'; be
the finite set of valuations from the universally quantified variables 1, ...,z
to the vertices V;. Repeatedly using the assumption that G satisfies n for every
valuation in I, one shows that there exists a world J > I; such that every
valuation val € I; extends to a valuation

val' : {x1,..., 2o} = V;  such that G, Jval = «.

Define V;11 C V; to be the finite set of vertices that are used by valuations
of the form wal’ with val ranging over elements of I;. Define I;11 > I; to be
the world, which exists by property 2 of stability, such that G, , v;,, is stable.
For quantifier-free formulas, the semantics in modal graphs are preserved when
going into bigger worlds, and therefore

G, Iiy1,val Ea
holds for every val € I;. By property 1 of stability, it follows that
GI'H»I,VH»I’Ual/ ): Q.

Together with property 3 of stability, this implies that Gy, v, is n-extended by
Gli+171i+1‘ O

d
3.2 Coding a Modal Graph in 2%

In this section, we describe how a modal graph can be coded in 2¢. We use
the name interval for a subset of 2* which consists of all branches that are
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lexicographically between some two distinct branches. Intervals defined this way
are homeomorphic with 2. Intervals are denoted I, J, K.

Define a Shelah graph to be two families V,E of subsets of 2% such that
every set in V is dense. For a Shelah graph, define its associated modal graph as
follows. The worlds are the intervals in 2%, ordered by the opposite of inclusion,
in particular the least world is the whole space 2%. The local vertices do not
depend on the worlds: for every interval I, the local vertices V; are are V (in
particular a vertex is a subset of 2¥). For an interval I and V,W € V, the local
edge set Et contains (V, W) if and only if

INvVnw=0 3)
IN(VUw)=INnE for some E € €. (4)

It is easy to see that E; C Ej when interval J is included in interval I. Since
worlds are ordered by the opposite of inclusion, this means that I < J implies
E; C Ej;. Every local edge set is symmetric because it is defined in terms of union
and intersection. Every local edge is irreflexive because (3) implies V' # W (here
we use density, since the dense sets V, W must have nonempty intersections with
I). In other words the associated modal graph is a modal graph.

For a sentence ¢ of MSO2, and families V, £ of subsets in 2, we write

2V EE

if o holds, with the quantifiers 3; X and V1 X interpreted to range over sets in V,
and the quantifiers 32X and VX interpreted to range over sets in £. By using
logic to formalise the definition of a Shelah graph, its associated modal graph,
and the semantics of first-order logic on modal graphs, we get the following
lemma.

Lemma 3.5. For every sentence n of first-order logic over the vocabulary of
graphs, one can compute a sentence 1) of MSOg such that

2 V.EE0
if and only if (V,E) is a Shelah graph whose associated modal graph satisfies 1.

The general idea in the undecidability result is to use 7 from the above lemma.
The main problem is that a projective MSO sentence cannot begin saying “there
exists a Shelah graph”, because a Shelah graph is described by an infinite (even
uncountable) family of subsets of 2¢. The solution to this problem, and the tech-
nical heart of the undecidability proof, is Proposition 3.6 below, which shows how
to describe the infinite families (V, £) by using just four sets. The corresponding
part in Shelah’s paper [She75] consists of Lemmas 7.6-7.9.

Proposition 3.6. Assume that there exists a well-ordering of 2“ of type wq
which belongs to A}(2% x 2¢) for some k.
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Then there is a formula eem(V, @, S) of projective MSO on 2% with the fol-
lowing property. If G is a countable undirected simple graph, then there are sets

QV&QE,SVaSE g 2&)’ (5)
such that the families
V= {V c2v: (Pelem(‘/v QVvSV)}v &= {E c2v¥: (Pelem(EaQEst)} (6)

are a Shelah graph whose associated modal graph satisfies the same equality-free
V*3* sentences as G.

Furthermore, the formula Yelem quantifies only over X1 sets; the sets from (5)
are in E}c+4, and the families from (6) contain only countable sets.

We now use the proposition and the previous results to show the undecidabil-
ity of projective MSO from Theorem 3.1.

Corollary 3.7. Assume that there exists a projective well-ordering of 2% of
type wi. Let n be an equality-free V*3* sentence over the vocabulary of graphs.
Then the following conditions are equivalent:

1. n is true in some undirected simple graph, with standard semantics of logic.
2. There are sets as in (5) such that the families V,E from (6) satisfy

2V, E =i

where 1) is the sentence defined in Lemma 8.5.
3. n is true in some modal graph, with semantics of logic on modal graphs.

Proof. By the Lowenheim-Skolem theorem, if 7 is true in some undirected simple
graph, then it is true in some countable undirected simple graph. Therefore, the
implication 1 = 2 follows from Proposition 3.6 and Lemma 3.5.

The implication 2 = 3 follows from Lemma 3.5, which implies that 7 is true
in some modal graph, namely the modal graph associated to the Shelah graph
given by formula (6). The implication 3 = 1 is the right-to-left implication in
Lemma 3.4. a

Proof (of Theorem 3.1). Condition 2 in the above corollary can be formalised
by the formula of projective MSO on 2%

3Sv,Qv,SE,QE € B,y 7

where k is the natural number from Proposition 3.6 and 7 is the same as 7], except
that instead of quantifying over a set V' € V, it quantifies over a countable set
V satisfying @elem(V, Qv, Sy ); likewise for quantifying over E € £.

We have thus shown a reduction from the undecidable satisfiability problem
for equality-free V*3* sentences over undirected simple graphs to the theory of
projective MSO on 2“. Therefore, the latter is undecidable. a
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4 Conclusions

We have shown that the MSO+U theory of 2* is undecidable, conditional on the
existence of a projective well-ordering of 2 of type w;. Apart from the obvious
question about unconditional undecidability, a natural question is about the
decidability of MSO4U on infinite words: is the MSO+U theory of the natural
numbers with successor decidable? The methods used in this paper are strongly
reliant on trees, so an undecidability proof would need new ideas to be adapted
to the word case. Evidence for undecidability is that the topological hardness of
MSO+U on words is shown in [HS12] by encoding trees in words.

An interesting related problem [She75, Conjecture 7a] is the decidability of
MsO[Borel] on 25 i.e. the logic defined analogously to projective MSO except,
that set quantification is over Borel sets only.
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Abstract. This paper introduces a coalgebraic foundation for coinduc-
tive types, interpreted as sets of values and extended with set theoretic
union. We give a sound and complete characterization of semantic sub-
typing in terms of inclusion of maximal traces. Further, we provide a
technique for reducing subtyping to inclusion between sets of finite traces,
based on approximation. We obtain inclusion of tree languages as a sound
and complete method to show semantic subtyping of recursive types with
basic types, product and union, interpreted coinductively.

1 Introduction

Basically all programming languages today support recursion to manipulate in-
ductively defined data structures such as linked lists and trees. Whereas induc-
tion deals with finite but unbounded data, its dual, coinduction, deals with
possibly infinite data. The relevant distinction here concerns traditional alge-
braic data structures which can be fully unfolded by a recursive program, and
coalgebraic data structures which can be manipulated while they unfold, even
if this process may never terminate. The interest in theoretical foundations for
coinductive types and reasoning techniques is rapidly growing. Practical appli-
cations of coinductive types are found in the world of functional languages with
lazy evaluation. Moreover a coinductive interpretation of structural recursively
defined types with record, product and union type constructors allows one to
assign types to coinductive data, such as infinite and circular lists of objects in
object-oriented languages [3]. Union types allow a more precise analysis than
disjoint sum [6], for example to type constructs like if-then-else. Consider, for
instance, the recursive type definition below.

1 — nullV < elm: int, nxt: 21 > . (1)

Here null and int are primitive type constants for representing the empty list and
the integer values, respectively, and < elm: z, nxt: y > represents the (tagged)
product of the type variables z and y.
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Scientific Research (NWO), CoRE project, dossier number: 612.063.920.
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Intuitively, the type defined by (1) is a recursive type representing all finite
and infinite linked lists of integer values. More formally, the type definition in
(1) can be interpreted both syntactically and semantically. Syntactically, (1) can
be interpreted as the set of finite and infinite closed terms over the alphabet
consisting of the constants null and int, obtained by unfolding. Semantically, the
set theoretic interpretation of the type definition (1) is based on a given semantic
interpretation of type constructors. The usual interpretation of null and int is
the set containing the empty list and the set of all integers, respectively. The
product type constructor then corresponds to the Cartesian product, and the
union type to set theoretic union. Recursion is interpreted by fixed points. Since
the interpretations of the union and product type constructors are monotonic
functions, by the Knaster-Tarski theorem we have that (1) admits both the least
and the greatest fixed point, that is, the equation can be interpreted either in-
ductively, or coinductively. The inductive interpretation yields the set of integer
linked lists of finite length. Notably, cyclic and other infinite lists are not cap-
tured. In contrast, the coinductive interpretation consists of finite and infinite
lists.

Moreover, the inductive interpretation of a type definition

To —< elm: int, nxt: x5 > (2)

is the empty set. In a setting where cyclic lists can be built (e.g., in an object-
oriented program) it is unsound to give an inductive type as above to cyclic lists.
In fact, in the semantic subtyping approach an empty type cannot be inhabited
by any value, otherwise the system becomes unsound: any such value can have
an arbitrary type, by subsumption. In order to guarantee soundness either cyclic
values are banned, or cyclic values are allowed but have less precise types. For
instance, an acceptable inductive type for a cyclic list would be z; from (1).
This, however, is not very precise, since accessing the n-th element of the list in
a type safe way would require n non-emptiness checks which are useless in the
case of a cyclic list.

The above argument shows that we have to consider a coinductive interpreta-
tion of recursive types (yielding, for example, for x2, the set of infinite lists), and
define subtyping semantically as set inclusion of coinductive interpretations. The
main challenge is to provide an equivalent syntactic interpretation of recursive
type declarations, and a corresponding sound and complete method for proving
subtyping. Note that such a syntactic representation cannot be inductive either,
because we are dealing with infinite terms. Existing coinductive proof methods
such as [3-5] are incomplete and involve complex soundness proofs.

The theory of coalgebras has emerged as a general framework for a transparent
and uniform study of coinduction (the basics are recalled in Section 2). Our aim
therefore is to develop a coalgebraic approach to coinductive types, providing a
single framework for the formalization of both canonical syntactic interpretations
and equivalent semantic interpretations.

To achieve this goal we first focus on the basic notion of coinductive types
without union (Section 3). This allows us to derive a natural syntactic interpre-
tation of coinductive types by final coalgebras with bisimulation as a sound and
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complete proof method for equivalence of coinductive types. Further, this basic
class of coinductive types allows us to focus on the general development of a
final coalgebra of values from which we derive, in our framework, a semantic
interpretation equivalent to the syntactic one.

The main challenge for a coalgebraic formalization of union types is to capture
the distributivity of the union constructor over the product type constructor.
In the setting of coalgebras this problem is reflected in the difference between
bisimilarity and trace semantics. Our solution uses a coalgebraic approach to
trace semantics based on [10, 18, 21], to extend the case of types without union
to a precise characterization of semantic subtyping as inclusion between subsets
of the final coalgebra, thus incorporating union types (Section 4).

Finally, we show how to reduce subtyping to inclusion between sets of finite
traces, based on approzimation of maximal traces by finite ones (Section 5). Such
a reduction does not hold for arbitrary types of systems, but we devise a general
coinductive proof technique for showing that it does apply in mildly restricted
settings. This technique is instantiated to Moore automata and tree automata,
yielding sound and complete methods for proving subtyping.

The contributions of this paper are as follows. We provide a structural and
natural coalgebraic semantics for semantic subtyping of coinductive union types,
which is parametric in the type constructors and abstracts away from a specific
choice of syntax. We extend the theory of coalgebraic trace semantics with a
novel coinductive method for finitely approximating maximal traces. We apply
this technique to give the first sound and complete method for deciding semantic
subtyping of coinductively interpreted recursive types with product and union.

2 Coalgebras

For an extensive introduction to the theory of universal coalgebra see [23]. We
denote by Set the category of sets and functions and by Id the identity functor.
Given a functor F': Set — Set, an F'-coalgebra is a pair (X, c) of a set X and
a function ¢: X — FX. A homomorphism between two coalgebras (X, c) and
(Y,d) is a function h: X — Y such that do h = Fhoc. An F-bisimulation
between two F-coalgebras (X, ¢) and (Y, d) is a relation R C X x Y that can be
equipped with an F-coalgebra structure v turning both projections m;: R — X
and m,: R — Y into coalgebra homomorphisms. Two elements x € X andy € Y
are F-bisimilar, denoted by x ~p y, if there exists a bisimulation R containing
the pair (z,y). If F' is clear from the context we write ~ instead of ~p.

Example 2.1. Let A be a set. For the functor A x Id, a coalgebra consists of a
set X and a function (0,0): X — A x X. Here (0,d) denotes the pairing of the
output function o: X — A and the next state function §: X — X. Given sets
A and B, coalgebras for the functor LX = B + (A x X) are representations of
infinite lists over A and finite lists over A with termination in B.

A (single-sorted) signature X = (X,)nen can be represented by a polynomial

Set functor defined by Hx(X) = [[,cy Zn x X™. A Y-coalgebra over the set of
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variables X is given by a function assigning each z € X to a term o(z1,...,zy),
where o € X, is an operator of arity n > 0, and x; € X forall 1 <i < n.

For a given functor F, the final coalgebra (§2,£r) (if it exists) is a canonical
domain of behaviour of F-coalgebras, with the property that for any F-coalgebra
(X, ¢) there exists a unique homomorphism h: X — 2 into it [23]. Final coalge-
bras exist under mild conditions on the functor.

Example 2.2. The carrier of the final coalgebra for the functor A x Id consists
of the set of all infinite lists over A. For LX = B + (A x X), the final coalgebra
consists of all finite lists in A* B and infinite lists in A“. It is thus given by the
set A* BU A with coalgebra map ¢: AABUAY — B+ (Ax (A*BUAY)) defined
by ¢(b) = b and ((aw) = (a,w) for all a € A, b € B and w € A*BU A¥. The
final coalgebra of a signature functor Hy is given by w: T — X(T's°) where
T is the set of all finite and infinite X-trees (see, for instance, [1]).

One of the central elements of the theory of coalgebras is the (proof) principle
of coinduction, which says that bisimilar states are mapped to the same element
of the final coalgebra: if z ~ y then h(z) = h(y). Establishing bisimulations
is a concrete proof method for bisimilarity, and thus, by the above principle,
for equality in the final coalgebra. If the functor preserves weak pullbacks, a
rather mild condition satisfied by all of the above examples, the converse holds
as well [23], i.e., h(x) = h(y) implies & ~ y. In the following sections we implicitly
assume all functors to preserve weak pullbacks.

3 A Semantic Approach to Coinductive Types

In this section we propose a framework for coinductive types without union. We
use two functors F' and G as follows: F-coalgebras are interpreted as (recur-
sive) type definitions, whereas G-coalgebras are (recursive) value definitions. We
assume that the final coalgebras of F' and G exist. The carrier T of the final
F-coalgebra (T, p) consists of all coinductive types. The carrier V of the final
G-coalgebra (V,£¢) is the set of all coinductive values.

Example 3.1. A type definition such as x +—< elm: int, nxt: y > together with
y —< elm: bool, nxt: >, can be given as a coalgebra for {int, bool} x Id. The
homomorphism into the final coalgebra maps x to int, bool, int, bool, ... € T.

An infinite recursive definition p; — (i, ¢;) and ¢; — (true,p;41) for i € N can
be represented as a coalgebra for the functor (N+B) x |d, where B = {true, false}
is the set of Boolean values, and N is the set of non-negative integers. Then pg
is mapped to the infinite list 0, true, 1, true, 2, ... € V in the final coalgebra.

The functors F' and G will be connected by a natural transformation. A natural
transformation a: G = F' associates to every set X a function ax: GX — FX
such that for any function f: X — Y we have Ff oax = ay o Gf. In order
to assign types to values we assume given a natural transformation a: G = F,
which represents an assignment of types to basic values. We will exhibit an
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example below, but first we set up the general framework, which coinductively
assigns types to values. More precisely, by applying the natural transformation «
to the final G-coalgebra, we turn it into an F-coalgebra and thus obtain a unique
F-coalgebra homomorphism from coinductive values to coinductive types. This
is depicted in the middle of the diagram below.

The map 7 defined by fi-

nality gives the assignment of Vol V- T >T<-"--X (3)
types to values. The left and J

the right side of the diagram v v

are representations: GV “-agv c

— Given a value representation v ay

d:V -GV weletv: V=V y v

Fp

Fv FX

\ \
be the unique coalgebra ho- FV ~FvV - FT<
momorphism and extend d,
again using «, to a F-coalgebra. This is depicted in the two commuting squares
on the left side of the diagram.

— Given a type representation c: X — FX welet p: X — T be the unique homo-
morphism into T, as depicted on the right side of the diagram. A typing relation
between V and X is then defined in the obvious way: given p € V and x € X

we let p: z iff 7(v(p)) = p(x).

Ezample 3.2. Continuing the above Example 3.1, we can define a: (N + B) x
Id) = ({int, bool} x Id) for every set S simply by putting as((n,s)) = (int,s)
and ag((b,s)) = (bool, s) for all n € N, b € B, and s € S. For the concrete type
and value definitions x and pg respectively, of Example 3.1, it is easy to check
that 7(v(po)) = p(x), so po : x as expected. In fact, as we will see below, this
can be checked by establishing a bisimulation.

In the above approach the meaning of a type declaration ¢: X — FX is
given by finality, in terms of the unique homomorphism p: X — T. It is thus
independent of the language of values. Next we interpret types semantically, as
sets of values, and subsequently we relate the two interpretations.

Definition 3.1. Types are interpreted as sets of wvalues by [-]: T — P(V),
defined as the inverse of T, i.e., [t] = {v € V| 7(v) =t} for any t € T.

It follows from the above definition that if [¢1] = [t2] and both [[¢1] and [t2]
are non-empty, then ¢t; = to. Types are inhabited by values (thus non-empty) if
the natural transformation o: G = F mapping values to types is surjective in
all of its components, i.e., ax is surjective for any set X.

Lemma 3.1. If « is a surjective natural transformation then T is surjective.

Corollary 3.1. If « is a surjective natural transformation then t1 = to if and
only if [t1] = [te] for all t1,t2 € T.

Note that if [t;] C [to] then [t1] = [t2]. Subtyping will become relevant in the
next section, where we consider subsets of T.
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To see why surjectivity is a natural condition, consider the type definitions z
and y from Example 3.1, and a: (NxId) = ({int, bool} x Id) given by as(n, s) =
(int, s). In this case clearly p(z) # p(y), whereas [p(z)] = 0 = [p(y)]-

Equality of types coincides with bisimilarity, by coinduction: T is a final coal-
gebra. Thus we obtain the following soundness and completeness result.

Theorem 3.1. Using the setting of (3), let ¢: X — FX be a coalgebra, and o
surjective. For all x,y € X we have [p(z)] = [p(v)] iff p(x) = ply) iff x ~F y.

If F is a polynomial functor (constructed by finite sum and product) and
we restrict to type declarations using only finitely many variables (so that types
essentially represent rational trees over a signature) then bisimulation is not only
a sound and complete proof method for type equality, but it is also decidable [7].
We note that in the above framework, computing the typing relation can be seen
as a special case of type equality (by turning G-coalgebras into F-coalgebras),
and therefore it can also be computed using bisimulations.

4 Coinductive Union Types

In the previous section we have introduced a coalgebraic semantics, where types,
i.e., elements of the final coalgebra T, are equal if and only if they represent
the same sets of values. Types and values can be represented by coalgebras,
and bisimulation provides a concrete proof principle for type equivalence. In the
current section we are interested in extending these results to union types, that
is, subsets of T. By P(X) we denote the power set functor applied to a set X, i.e.,
the set of subsets of X; for a function f: X — P(Y) we write f#: P(X) — P(Y)
for its direct image. In the previous section we have coinductively constructed
amap 7: V — T from values to types, from which the semantics [[t] of a type
t € T as a set of values can be defined simply by using the inverse. In order
to have a natural counterpart of Theorem 3.1 in the setting of subtyping we
extend the semantics to sets of types using direct image [—]*: P(T) — P(V),
ie, [S]f ={veV]|r(v) €S}

Theorem 4.1. If a is a surjective natural transformation then Ty C Ty if and
only if [Th]* C [T2]*, for all Ty, T> C T.

One of the main problems is to represent elements of P(T) as coalgebras. In the
previous section we have seen how an F-coalgebra represents a type definition; it
is natural to consider a P F-coalgebra instead, in the case of union types, adding
a top-level union constructor. The problem here is that the branching of PF-
coalgebras should not be considered. Indeed, P(T) is not the final coalgebra of
P F—in fact, PF does not even have a final coalgebra for cardinality reasons. But
even if we restrict ourselves to PyF (where Py(X) is the set of finite subsets of
X)), then the final coalgebra consists of finitely branching synchronization trees
labelled in a and quotiented by strong bisimilarity. Instead, we need the trace
semantics of PF-coalgebras. To this end we base ourselves on the coalgebraic
trace semantics of [21].
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Definition 4.1. Let ¢: X — P(FX) be a coalgebra, and (T,&r) the final F-
coalgebra. A trace map tr is a map that makes the following diagram commute:

X T~ P(T)

c P(&r)

\ i)t \
pFx) " p(FT)

where F(tr) is defined by relation lifting [21]. If the diagram does not commute
but P(ér) o tr € (Ftr)t o ¢, then we say tr is a quasi trace map.

Instead of recalling the definition of relation lifting, we introduce it by examples.

Ezample 4.1. Consider the functor FX = B+ (Ax X). Then T = A* BUAY (see
Example 2.2). A coalgebrac: X — PFX is a nondeterministic Moore automaton.
A trace map is a map tr: X — P(A*B U A¥) such that for all b € B: b € tr(z)
iff b € ¢(x), and for all aw € A(A*B U A¥): aw € tr(z) iff (a,y) € c(x) and
w € tr(y) for some y € X. For a quasi trace map, these equivalences are relaxed
to implications from left to right.

Given any signature functor Hy (Example 2.1), a PH x-coalgebra is a non-
deterministic top-down tree automaton. The trace map associated with a coal-
gebra c: X — P(HxX) satisfies the following: o € tr(x) iff 0 € Xy Ne(x), and
o(ky,... k) € tr(z) iff (o,21,...,2,) € XDy x X" Ne(x) and k; € tr(x;) for
1 < i < n. Again, for a quasi trace map these are implications from left to right.

The set of maps of type X — P(T) forms a complete lattice, by pointwise
extension of the subset inclusion order on P(T). A trace map can be viewed as a
fixpoint of a map on this complete lattice; since relation lifting is monotone, this
is a monotone map, and therefore, by the Knaster-Tarski theorem, for a fixed
P F-coalgebra the greatest trace map as well as the least trace map exist (a
similar approach is taken in [10]). To model coinductive types we are interested
in this greatest trace map (in the sequel typically denoted by T and called
maximal traces). Moreover, we get the following proof principle: if ¢r is a quasi
trace map, then it is a post-fixed point of the above monotone map, so it is
(pointwise) included in the greatest one: ¢tr C T'. This proof technique is applied
in Section 5.

Ezxample 4.2. Continuing Example4.1, the least trace map t for a non-deterministic
Moore automaton assigns to a state the standard definition of its finite traces in
A*B. The greatest trace map T assigns to a state the finite traces as well as the
infinite traces in A¥. For example, recall the type definition z1 from equation (1) of
the introduction, representing finite and infinite lists of integers, and x5 from equa-
tion (2) representing infinite lists of integers. They clearly define Moore automata.
For the least trace map ¢ we have t(x1) = int*null and ¢(xz2) = 0. For the greatest
trace map T we have T'(z1) = t(z1) U int” and T'(x2) = int” (i.e. the desired
coinductive types of definitions 1 and xz2).
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For a non-deterministic (top-down) tree automaton, the least trace map is sim-
ply the standard semantics of tree automata, assigning a tree language (of finite
trees) to each state. The greatest trace map contains this language as well as all
infinite trees such that, when parsed, the automaton does not block. These tree
automata can be used to represent type definitions, similarly to Moore automata,
but generalizing this to arbitrary (finite) use of the product constructor.

Corollary 4.1. For any coalgebra ¢: X — P(FX) and any x,y € X we have
T(z) CT(y) iff [T(@)]* C [TW)]F (given that a is surjective).

Thus, subset inclusion between syntactic unfoldings of sets of types is sound
and complete with respect to semantic subtyping, i.e., inclusion between types
interpreted as sets of values. Unfortunately, since P(T) is not a final coalgebra,
we do not obtain bisimilarity (or similarity) as a proof principle, as was the case
in the framework of Section 3. We address the problem of proving subtyping in
the following section.

5 Approximating Coinductive Union Types

By the main results of the previous section, semantic subtyping coincides with
subtyping between sets of maximal traces, that is, syntactic unfoldings of type
definitions. In this section we provide a generally applicable technique to reduce
subtyping to inclusion between finite traces. This is based on finite approzimation
of maximal traces, which we introduce below.

We fix a functor F': Set — Set (preserving weak pullbacks) and a coalgebra
c: X - PFX. In order to define approximation, consider the functor F'|, = F +
{L}, and the natural transformation v: PF = PF | given by vx(S) = SU{L}.
We can now turn c into the F| -coalgebra yx o c. It is our aim to use the finite
traces of vx o ¢ to approximate the maximal traces of c¢. We use the approach
of [18] to finite trace semantics via finality in the category Rel, where objects are
sets and morphisms are relations (represented as functions X — P(Y)).

Central to this approach is the initial alge-

bra of F\, which we denote by ¢: F1I — I. By X s PO (4)
Lambek’s lemma ¢ is an isomorphism. Now,
by [18, Theorem 3.8], I is the final coalgebra ¢

in Rel, for the functor F| defined by relation P(FX)
lifting. Thus, for any F| -coalgebra in Rel, that

is, a PF| -coalgebra in Set, we obtain a unique X
map into P(I). Applying this to a coalgebra
vx oc: X — PF| X as constructed above, we
get a unique map ¢, : X — P(I) as in (4).

Y = # Y
P(F X)L )

Ezample 5.1. For a non-deterministic Moore automaton ¢: X — P(B+(Ax X)),
the above construction yields the finite trace semantics for vy o ¢, which is the
Moore automaton obtained by adding the output L to each state. We regard a
word wl as a prefiz of a word v € A*B U A¥ if wv' = v for some ¢'; in this
sense, t) (x) is prefix-closed.
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Applying the above construction to T, we get a map approz: T — P(I). This
map, informally, computes the approximations of maximal traces. Consider now
the following map defined from it: maztr: P(I) — P(T), given by maxtr(S) =
{w € T | approzx(w) C S}. The map maztr computes the set of maximal traces
represented by a set of approximations. The following lemma states that the
function t; can be represented as the approximation of maximal traces.

Lemma 5.1. ¢, = approzfoT.

This follows from the fact that I is final in Rel. As a simple consequence of this
result and the fact that maxtr is defined as the (upper) inverse of approz, we
now obtain the following:

Corollary 5.1. T C mazxtrot, .

The converse of the above corollary does not hold in general. There is a standard
counterexample (e.g., [17]): take a non-deterministic Moore automaton containing
a state z that accepts all finite traces of the form a™b (for some b and all n > 0),
but not the infinite trace ¢ = aaa. .. (such an automaton can be realized using
infinite branching). Then maztr o ¢, (x) contains a*, whereas T'(x) does not.

To prove the converse for restricted classes of coalgebras, we use that T is a
greatest fixpoint. Under the condition that maztrot, is a quasi trace map, we ob-
tain the soundness and completeness of finite traces w.r.t. (semantic) subtyping.

Theorem 5.1. Let ¢: X — P(FX) be a coalgebra such that maztr oty is a
quasi trace map. Then for any z,y € X: ¢, (z) Ct1(y) iff T(x) C T(y).

Proof. Suppose t, () C ti(y). If maztr o t; is a quasi trace map then maztr o
t; C T; combined with Corollary 5.1, this yields maztr o t;, = T. Conversely, if
T(x) C T(y) then approz*oT () C approztoT(y),sot, (x) C t; (y) by Lemma5.1.

Moore automata. As shown in Example 4.1, non-deterministic Moore automata
can be used to represent types for finite and infinite lists. However, in general they
do not satisfy the condition of Theorem 5.1; we need to make an appropriate re-
striction on the branching behaviour. We say ¢: X — P(B + (A x X)) is image-
finite when for any € X and any a € A: ¢(x) may contain finitely many elements
of the form (a, z) (but infinitely many of B, and A may itself be infinite).

Proposition 5.1. For any image-finite Moore automaton: t) (x) C ti(y) iff
T(x) CT(y).

Proof. Let ¢ be image-finite. Using Example 4.1, we see that to prove that maztro
t| is a trace map, is to prove that 1) b € maztr o ¢) (z) implies b € ¢(z), and
2) for all aw € A(A*B U A¥): if aw € maxtr oty (z) then (a,y) € c¢(z) and w €
maztrot) (y) for some y € X. The first part 1) is easy: b € maxtrot, (x) implies
b € ty (x), which in turn implies b € ¢(z). For 2), suppose aw € maztr o t) (z).
Then w € U(a,y)EC(ac) maxtrot) (y); by image-finiteness, this is a finite union. The
case that w is finite is straightforward; suppose w is infinite. Then approz(w)
is infinite; and thus there is some y for which infinitely many prefixes of w are
contained in ¢ (y). But ¢, (y) is prefix-closed; so w € maztr ot (y).
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Example 5.2. Consider the following type definition.

r3 — < elm: int, nxt: x4 >
x4 — nullV < elm:int, nxt: z4 > V < elm: bool, nxt: x4 > .

®)

In the coinductive interpretation this represents all finite and infinite lists of
integers and booleans that start with an integer. Consider the types below:

r5 — < elm: int, nxt: g > V < elm: int, nxt: z7 > V < elm: int, nxt: xg >

re — < elm: bool, nxt: g > V < elm: bool, nxt: xg > V < elm: int, nxt: xg >

r7 — < elm: int, nxt: xg > V < elm: bool, nxt: 7 > V < elm: int, nxt: x7 >

xg — null.

(6)

Here z¢ and w7 represent infinite lists, as well as finite lists ending with bool
and int, respectively. We can now prove that T'(z3) C T'(x5) by reducing it to
ti (z3) C ty (x5), which is a simple case of language inclusion.

Tree automata. A tree automaton c: X — PH(HxX) is said to be image finite if
forallz € X and o € Xt there are only finitely many tuples (o, x1,...2,) € c(z),
where n is the arity of o.

Proposition 5.2. For any image-finite tree automaton: ty (x) C ty (y) iff T'(z) C
T(y)-

The proof is a straightforward extension of the case of Moore automata. Thus, we
obtain inclusion of tree languages (of finite trees) as a sound and complete method
to show semantic subtyping of recursive types with product and union, interpreted
coinductively. For regular tree languages, i.e., languages accepted by a top-down
non-deterministic tree automaton with finitely many states, language inclusion
(and thus subtyping) is decidable, although it is EXPTIME-complete [11].

6 Related Work

Axiomatizations and algorithms for subtyping on recursive types interpreted
coinductively have been proposed by Amadio and Cardelli [2] in the context
of functional programming; subsequently, a more concise sound and complete
axiomatization has been proposed by Brandt and Henglein [9], with a novel rule
for a finitary coinduction principle. In these papers types are interpreted as ideals
in a universal domain, hence they do not follow the semantic subtyping approach
where subtyping corresponds to the subset relation. Furthermore, types have no
Boolean operators; as we will see, introducing union types makes sound and
complete axiomatization of subtyping more challenging.

Damm [12] proves decidability of subtyping between recursive types with
intersection, union, and function types, by reduction to the problem of inclusion
between regular tree expressions. However, the paper does not consider record
types, and, more importantly, types are interpreted inductively, rather than
coinductively, over a rather complex metric space of ideals. As a consequence,
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the corresponding subtyping relation is not comparable with ours. Di Cosmo et
al. [13] study subtyping of recursive types up to associativity and commutativity
of products; their definition of subtyping is fully axiomatic, and only products
and arrow types are considered, no Boolean operators. A nice introduction to
the fundamental theory of recursive types and subtyping can be found in the
work by Gapeyev et al. [16]; the survey does not consider Boolean operators, and
subtyping is defined axiomatically, hence a type interpretation is not introduced.

Semantic subtyping in the presence of Boolean operators and product or
record type constructors has been intensively studied in the context of the
XDuce [20] and CDuce [6] programming languages. As in our case, the sub-
typing relation corresponds to a natural semantic notion: types denote sets of
documents (that is, sets of finite trees), and subtyping coincides with inclusion
between the sets denoted by two types. The main difference with coinductive
types is their interpretation: types in both XDuce and CDuce are interpreted
inductively, therefore a type definition as (2) corresponds to the empty set of
values; as a matter of fact, types in XDuce and CDuce fail to capture cyclic val-
ues. Even though CDuce supports references, and, hence, it is possible to create
cycles, the types that can be correctly assigned to cyclic values are “inductive”.

Semantic subtyping with union and coinductive types has been studied in
the context of precise static type analysis for object-oriented programming [3].
Sound but not complete axiomatizations of subtyping have been defined in [4, 5].

7 Future Work

The coalgebraic framework presented in this paper provides the basis for an
extensive, structured investigation of subtyping for coinductive union types.

The subtyping relation could be refined by allowing subtyping between prim-
itive types (e.g., nat is a subtype of int) as well as depth and width subtyping
between records. Technically, this could be achieved by moving our framework
from the category Set to the category of partially ordered sets.

The methods in [8, 14] allow to canonically derive sound and complete axiom-
atizations for the rational subset of the final coalgebra of a polynomial functor.
For example, one can easily obtain a calculus for subtyping, by combining the
axiomatisation of tree regular expressions of [14] with the approximation results
of Section 5 of the present paper.

In our framework we abstracted from concrete calculi of expressions evaluat-
ing to values. It would be interesting to integrate the bialgebraic approach [22]
(defining syntax and semantics of expressions) within our framework by allowing
the specification of typing rules for each operator.
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Abstract. Cellular automata are discrete dynamical systems and amodel
of computation. The limit set of a cellular automaton consists of the con-
figurations having an infinite sequence of preimages. It is well known that
these always contain a computable point and that any non-trivial property
on them is undecidable. We go one step further in this article by giving a
full characterization of the sets of Turing degrees of limit sets of cellular au-
tomata: they are the same as the sets of Turing degrees of effectively closed
sets containing a computable point.

1 Introduction

A d-dimensional cellular automaton (CA for short) consists of cells aligned on Z4
that may be in a finite number of states, and are updated synchronously with a
local rule, i.e. depending only on a finite neighborhood. All cells operate under
the same local rule. The state of all cells at some time step is called a config-
uration. CAs are very well known for being simple systems that may exhibit
complicated behavior.

A d-dimensional subshift of finite type (SFT for short) is a set of colorings
of Z by a finite number of colors containing no pattern from a finite family of
forbidden patterns. Most proofs of undecidability concerning CAs involve the
use of SF'Ts, so both topics are very intertwined [Kar90; Kar92; Kar94a; Mey0§|.
A recent trend in the study of SF'Ts has been to give computational characteri-
zations of dynamical properties, which has been followed by the study of their
computational structure and in particular the comparison with the computa-
tional structure of effectively closed sets, which are the subsets of {0, 1}N on
which some Turing machine does not halt. It is quite easy to see that SF'Ts are
such sets.

In this paper, we follow this trend and study limit sets of CAs, which consist
of all the configurations of a given CA that can occur after arbitrarily long
computations; they were introduced by [CPY89] in order to classify CAs. It
has been proved that non-trivial properties on these sets are undecidable by
[Kar94b| for CAs of all dimensions. Limit sets of CAs are subshifts, and the
question of which subshifts may be limit sets of CA has been a thriving topic,
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see [Hur87; Hur90a; Hur90b; Maa95; FK07; LM09; BGK11]. However, most of
these results are on the language of the limit set or on simple limit sets. Our aim
here is to study the configurations themselves.

In dimension 1, limit sets are effectively closed sets, so it is quite natural
to compare them from a computational point of view. The natural measure of
complexity for effectively closed sets is the Medvedev degree [Simll|, which,
informally, is a measure of the complexity of the simplest points of the set. As
limit sets always contain a uniform configuration (wherein all cells are in the same
state), they always contain a computable point and have Medvedev degree O.
Thus, if we want to study their computational structure, we need a finer measure;
in this sense, the set of Turing degrees is appropriate.

It turns out that for SFTs, there is a characterization of their sets of Turing
degrees found by [JV13b]|, which states that one may construct SFTs with the
same Turing degrees as any effectively closed set containing a computable point.
In the case of limit sets, such a characterization would be perfect, as limit sets
always contain a computable point!. This is exactly what we achieve in this
article:

Theorem 1. For any effectively closed set S, there exists a one-dimensional
cellular automaton A such that

degr 2 (A) = deg, S U{0}.

In the way to achieve this theorem, we introduce a new construction that
allows us some control over the limit set. We hope that this construction will
lead to other unrelated results on limit sets of CAs, as was the case for the
construction in [JV13b], see [JV13a).

The paper is organized as follows: in section 2 we recall the usual definitions
concerning CAs and Turing degrees, then in section 3 we give the reasons for
each trait of the construction that allows us to prove theorem 1, and section 4
gives the actual construction. The choice has been made to have colored figures,
which are best viewed onscreen.

2 Preliminary Definitions

A (1-dimensional) cellular automaton is a triple A = (Q,r,9), where @ is the
finite set of states, r > 0 is the radius and § : Q%" 1 — Q the local transition
Sfunction.

An element of i € Z is called a cell, and the set [i —r,i+r] is the neighborhood
of i (the elements of which are the neighbors of i). A configuration is a function
¢:Z — Q. The local transition function induces a global transition function (that
can be regarded as the automaton itself, hence the notation), which associates
to any configuration ¢ its successor:

JZ—=Q
Ale) { i 0(eli— 1), ci— 1), (i), ¢(i+ 1)y i+ 7)),

! Note that this is not the case for subshifts: there exist non-empty effective subshifts
containing only non-computable points.
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In other words, all cells are finite automata that update their states in parallel,
according to the same local transition rule, transforming a configuration into its
SUCCESSOor.

If we draw some configuration as a horizontal bi-infinite line of cells, then add
its successor above it, then the successor of the latter and so on, we obtain a space-
time diagram, which is a two-dimensional representation of some computation
performed by A.

A site (i,t) € Z? is a cell i at a certain time step ¢ of the computation we
consider (hereinafter there will never be any ambiguity on the automaton nor
on the computation considered).

The limit set of A, denoted by {2 (A), is the set of all the configurations that
can appear after arbitrarily many computation steps:

2(4) = [ A4(Q%).

keN

For surjective CAs, the limit set is the set of all possible configurations Q%,
while for non-surjective CAs, it is the set of all configurations containing no
orphan of any order, see [Hur90b]. An orphan of order n is a finite word w which

has no preimage by Ap .-

An effectively closed set, or IT? class, is a subset S of {0, 1}N for which there
exists a Turing machine that, given any = € {0, 1}N, halts if and only if x ¢ S.
Equivalently, a class S C {0, 1}N is IT) if there exists a computable set L such
that x € S if and only if no prefix of z is in L. It is then quite easy to see that
limit sets of CAs are IT) classes: for any limit set, the set of forbidden patterns
is the set of all orphans of all orders, which form a recursively enumerable set,
since it is computable to check whether a finite word is an orphan.

For z,y € {0, 1}N, we say that z<ry if x is computable by a Turing machine
using y as an oracle. If x<py and x>ry, x and y are said to be Turing-equivalent,
which is noted x=7y. The Turing degree of z, noted deg,x, is its equivalence class
under relation =7. The Turing degrees form a join semi-lattice whose bottom
is 0, the Turing degree of computable sequences. For a set S C {0, 1}N, we note
degrS the set of Turing degrees of all points of S.

Effectively closed sets are quite well understood from a computational point of
view, and there has been numerous contributions concerning their Turing degrees,
see the book of [CR98]| for a survey. One of the most interesting results may be

that there exist IT) classes whose members are two-by-two Turing incomparable
[JS72].

3 Requirements of the Construction

The idea to prove Theorem 1 is to make a construction that embeds computations
of a Turing machine that will check a read-only oracle tape containing a member
of the IT¢ class S that will have to appear completely in a configuration of the
limit set. The following constraints have to be addressed.
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— Since CAs are intrinsically deterministic, the oracle will have to appear in
the “past”, i.e. from the “limit” of the preimages.

— The oracle tape, the element of {0, 1}N that is to be checked, needs to appear
entirely on at least one configuration of the limit set.

— Each configuration of the limit set containing the oracle tape needs to have
exactly one head of the Turing machine, in order to ensure that there really
is a computation going on in the associated space-time diagram.

— The construction, without any computation, needs to have a very simple
limit set, i.e. it needs to be computable, and in particular countable; this
to ensure that no complexity overhead will be added to any configuration
containing the oracle tape, and that “unuseful” configurations of the limit
set—the configurations that do not appear in a space-time diagram corre-
sponding to a computation—will be computable.

— The computation of the embedded Turing machine needs to go backwards,
this to ensure that we can have the non-determinism. And an error in the
computation must ensure that there is no infinite sequence of preimages.

— The computation needs to have a beginning (also to ensure the presence of a
head), hence it requires to mark it, and the representation of the oracle and
work tapes in the construction need to disappear at this point, otherwise
by compactness the part without any computation could be extended bi-
infinitely to contain any member of {0,1}", thus leading to the full set of
Turing degrees.

There are other constraints that we will discuss during the construction, as they
arise.

In order to make a construction complying to all these constraints, we reuse,
with heavy modifications, an idea of [JV13b], which is to construct a sparse grid.
However, their construction, being meant for subshifts, requires to be completely
rethought in order to work for CAs. In particular, there was no determinism
in this construction, and the oracle tape did not need to appear on a single
column /row, since their result was on two-dimensional subshifts.

4 The Construction

4.1 A Self-Vanishing Sparse Grid

In order to have space-time diagrams that constitute sparse grids, the idea is to
have columns of squares, each of these columns containing less and less squares
as we move to the left, see fig. 1. The CA has three categories of states:

— a killer state, which is a spreading state that erases anything on its path; it
appears whenever some neighborhood not on fig. 1 appears.

— a quiescent state, represented in white in the figures; its sole purpose is to
mark the spaces that are “outside” the construction;

— some construction states, which will be constituted of signals and background
colors.
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In order to ensure that just with the signals themselves it is not possible to
encode anything non-computable in the limit set, all signals will need to have,
at all points, at any time, different colors on their left and right, otherwise the
local rule will have a killer state arise. Here are the main signals.

— Vertical lines: serve as boundaries between columns of squares and form the
left /right sides of the squares.

— SW-NE and SE-NW diagonals: used to mark the corners of the squares,
they are signals of respective speeds 1 and —1. Each time they collide with
a vertical line (except for the last square of the row), they bounce and start
the converse diagonal of the next square.

— Counting signal: counts the number of squares inside a column; every time
it crosses the SW-NE diagonal of a square it will shift to the left. When it
is superimposed to a vertical line, it means that the square is the last of its
column, so when it crosses the next SE-NW diagonal, it vanishes and with
it the vertical line.

— Starting signals: used to start the next column to the left, at the bottom of

one column. Here is how they work.

e The bottommost signal, of speed —}1, is at the boundary between the

empty part of the space-time diagram and the construction. It is started
4 time steps after the collision with the signal of speed — é

e The signal of speed 7;’ is started just after the vertical line sees the
incoming SE-NW diagonal of the first square of the row on the right, at
distance 3 (the diagonal will collide with the vertical line 2 time steps
after the start of that signal)?.

e At the same time as the signal of speed —il,) is created, a signal of
speed —é is generated. When this signal collides with the bottommost
signal, it bounces into a signal of speed 411 that will create the first SE-
NW diagonal of the first square of the row of squares of the left, 4 time
steps after its collision with the vertical line.

On top of the construction states, except on the vertical lines, we add a parity
layer {0,1}: on a configuration, two neighboring cells of the construction must
have different parity bits, otherwise a killer state appears. On the left of a vertical
line there has to be parity 1 and on the right parity 0, otherwise the killer state
pops up again. This is to ensure that the columns will always contain an even
number of squares.

The following lemmas address which types of configurations may occur in the
limit set of this CA. First note that any configuration in which the construction
states do not appear in the right order do not have a preimage.

Lemma 1. The sequence of preimages of a segment ended by vertical lines (and
containing none) appearing in the limit set is a slice of a column of squares of
even side.

2 That can be done, provided the radius of the CA is large enough.
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Fig.1. The sparse grid construction: it is based on columns containing a finite number
of squares, whose number decreases when we go left. Note that the figure is squeezed
vertically.

Proof. Suppose a configuration contains two vertical-line symbols, then to be
in the limit set, in between these two symbols there needs to be two diagonal
symbols, one for the SE-NW one and one for SW-NE one, a symbol for the
counting signal, and in between these signals there needs to be the appropriate
colors: there is only one possibility for each of them. If this is not the case, then
the configuration has no preimage since the rule enforces the appearance of a
killer state when they are not correctly ordered.
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Also, the distance between the first vertical line and the SE-NW diagonal
needs to be the same as the distance between the second vertical line and the SW-
NE diagonal, otherwise the signals at the bottom—the ones starting a column,
that are the only preimages of the first diagonals—would have, in one case,
created a vertical line in between, and in the other case, not started at the same
time on the right vertical.

The side of the squares is even, otherwise the parity layer has no preimage. O

Lemma 2. A configuration of the limit set containing at least three vertical-line
symbols needs to verify, for any three consecutive symbols, that if the distance
between the first one and the second one is k, then the distance between the
second one and the third one equals (k + 2).

Proof. Let us take a configuration containing at least three vertical-line symbols,
take three consecutive ones. The states between them have to be of the right
form as we said above. Suppose the first of these symbols is at distance k; from
the second one, which is at distance ko from the third one. This means that the
first (resp. second) segment defines a column of squares of side ky (resp. k2). It
is clear that the second column of squares cannot end before the first one.

Now let 7 be the position of the counting signal of the first column and j the
distance between the SW-NE diagonal and the left vertical line. The preimage of
the first segment ends (k1i+j) (resp. (k1(i —1)+j)) steps before if the counting
signal is on the left (resp. right) of the SW-NE diagonal. Then, the preimages of
the left and right vertical lines of this column are the creating signals. Before the
signal created on the right bounces on the one of speed —}1 created on the left,
it collides with the one of speed — :15, thus determining the height of the squares
on the right column of squares. So k1 = ky — 2. O

Lemma 3. A configuration having two vertical-line symbols pertaining to the
limit set needs to verify one of the following statements.

— It is constituted of a finite number of vertical lines.
— It appears in the space-time diagram of fig. 1.

— It is constituted of an infinite number of vertical lines, then starting from
some position it is equal on the right to some (shifted) line of fig. 1.

Proof. We place ourselves in the case of a configuration of the limit set. Because
of lemma 1, two consecutive vertical lines at distance k from each other define a
column of squares. In a space-time diagram they belong to, on their left there is
necessarily another column of squares, because of the starting signal generated
at the beginning of the left vertical line, except when k = 3, in which case there
is nothing on the left. In this column, the vertical lines are at distance (k — 2),
see lemma 2. So, if there is an infinite number of vertical lines, either it is of the
form of fig. 1, or there is some Kkiller state coming from infinity on the left and
“eating” the construction. O
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4.2 Backward Computation Inside the Grid

We now wish to embed the computation of a reversible Turing machine inside
the aforementioned sparse grid, which for this purpose is better seen as a lattice.
The fact that the TM is reversible allows us to embed it backwards in the CA.
Below we will denote by TM time (resp. CA time) the time going forward for the
Turing machine (resp. the CA); on a space-time diagram, TM time goes from
top to bottom, while CA time goes from bottom to top (cf. arrows in fig. 2a).
That way, the beginning of the computation of the TM will occur in the first
(topmost) square of the first (leftmost) column of squares.

We have to ensure that any computation of the TM is possible, and in partic-
ular ensure that such a computation is consistent over time; the idea is that at
the first TM time step, i.e. the moment the sparse grid disappears, the tape is
on each of the vertical line symbols, but since these all appeared a finite number
of CA steps before (the height of any column of squares being finite), we have
to compel all tape cells to shift to the right regularly as TM time increases.

Moreover, we want to force the presence of exactly one head (there could be
none if it were, for instance, infinitely far right). To do that, the grid is divided
into three parts that must appear in this order (from left to right): the left of the
head, the right of the head (together referred to as the computation zone), and
the unreachable zone (where no computation can ever be performed, because of
the absence of a work tape), resp. in blue, yellow and green in fig. 2a.

The vertices of our lattice are the top left corners of the squares, each one
marked by the rebound of a SE-NW diagonal on a vertical line, while the top
right corners will just serve as intermediate points for signals. More precisely, for
any 4, j € N, the respective sites for the top left and top right corners of s; ;, the
(j 4+ 1)-th square of the (i + 1)-th column, are the following (cf. fig. 2a):

{s;{j =60+ (i(i + 1), —2(i + 1)j)
sp; = st +(2(@+1),0).

Fig. 2b illustrates a computation by the TM, with the three aforementioned
zones, as it would be embedded the usual way (but with reverse time) into a
CA, with site (i, —t) corresponding to the content of the tape at i € N and TM
time ¢t € N.

Fig. 2c represents another, still simple, embedding, which is a distortion of
the previous one: the head moves every even time step within a tape that is
shifted every odd time steps, so that instead of site (i, —t), we have two sites,
(i+t,—2t) and (¢ +t,—2t — 1), resp. the computation site (big circle on fig. 2¢)
and the shifting site (small circle on fig. 2¢). The head only reads the content of
the oracle when it lies on a computation site. This type of embedding can easily
be realized forwards or backwards (provided the TM is reversible).

Our embedding, derived from the latter, is drawn on fig. 2a. The “only” dif-
ference is the replacement of sites (¢ 4+ ¢, —2t) and (i + ¢, —2t — 1) by sites sf’t
and sﬁt +1- Notice that as the number of squares in a column is always finite,
each square can “know” whether its top left corner is a computation or a shifting
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site with a parity bit. More precisely, the j-th square (from bottom to top) of a
column has a computation site on its top left if and only if j is even.

Let s; ; be a square of our construction. Its top left sf’ ; is either a computation
site or a shifting site. In the latter case, it is supposed to receive the content of
a cell of the TM tape with an incoming signal of speed —1. All it has to do
is to send it to sfj_l (at speed 0), which is a computation site. In the former
case, however, things are slightly more complicated. The content of the tape has
to be transmitted to s{_; ; ; (which is a shifting site). To do that, a signal of
speed 0 is sent and waits for site s;_; ;, which sends the content to sffl’jfl with
a signal of speed —1 along the SE-NW diagonal. The problem is to recognize
which s" site is the correct one. Fortunately, there are only two possibilities: it is
either the first or the second s” site to appear after (in CA time, of course) sf j
on the vertical line. The first case corresponds exactly to the unreachable zone
(where j < i), hence the result if the three zones are marked. The lack of other
cases is due to the number of s; squares, which is only 2(i + 1).

Another issue is the superposition of such signals. Here again, there are only
two cases: in the unreachable zone there is none, whereas in the computation
zone a signal of speed 0 from a computation site can be superimposed to the
signal of speed 0 sent by the shifting site just above it. As aforesaid, there is no
other case because of the limited number of s; squares. Thus, there is no problem
to keep the number of states of the CA finite, since the number of signals going
through a same cell is limited to two at the same time.

The two parts of the computation zone are separated by the presence of a
head, while the unreachable zone is easily hardcoded as the right of the path
corresponding to a TM head that would always move rightwards : this is done
simply by seeing whether the counting signal is on the left or right of the crossing
of the SE-NW and SW-NE diagonals.

Now only the movements of the head remain to be described (in black on
fig. 2a). Let Sf,j be a computation site containing the head.

— If the previous move of the head (previous because we are in CA time, that
is, in reverse TM time) was to the left, the next computation site is the one
just above, that is, sf 5. The head is thus transferred by a simple signal of
speed 0.

— If the previous move was to stand still, the next computation site is 3571,j72‘
It can be reached by a signal of speed 0 until the second next s” site, from
which a signal of speed —1 (along a SE-NW diagonal) is launched, to be
replaced by another signal of speed 0 from sffl’ j—1 om.

J=

— If the previous move was to the right, the next computation site is sf_zyj_Q‘
It can be reached by a signal of speed 0 until the second next s” site, from
which a signal of speed —1 (along a SE-NW diagonal) is launched, to be
replaced by another signal of speed 0 from 3571, j—1 on, which itself waits for
the next s” site (which is sj_, ;) to start another signal of speed 1 (along
a SW-NE diagonal) that is finally succeeded to by a last signal of speed 0
from 5?—24—1 on.
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Fig. 2. The embedding of a Turing machine computation in the sparse grid (2a), com-
pared to the usual embedding (2b) and one with a simple shift of the oracle tape (2c).
The paths followed by the content of each cell of the oracle tape are in red and orange
(two colors just to keep track of the signals when they are superimposed), while the one
of the head is in black. The arrows indicate the next move of the head (for TM time,
going towards the bottom). The green background denotes the zone the head cannot
reach, while the computation zone is in blue on the left of the head and in yellow on
its right.

4.3 The Computation Itself

As we said before, the computation will take place on the computation sites,
which will contain two tape cells: one for the oracle and one for the work. In
the unreachable zone there are only oracle cells, which do not change over time
except for the shifting. Now we want to eliminate all space-time diagrams corre-
sponding to rejecting computations of some Turing machine M. [Ben73] proved
that for any Turing machine, we can construct a reversible one computing the
same function. So, a first idea would just be to encode this reversible Turing
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machine in the sparse grid; however there is no way to guarantee that the work
tape corresponds to a valid computation, and even if at some time the CA
detects a problem, the corresponding configuration will nevertheless have an in-
finite number of preimages, and may contain some oracle that should have been
rejected.

The solution to this issue is to use a robust Turing machine in the sense of
[Hoo66], that is to say, a Turing machine that regularly rechecks its whole com-
putation. [KOO08, Theorem 7] explains how to construct reversible such machines.
In these constructions the machines obtained were working on a bi-infinite tape,
which had the drawback that some infinite side of the tape might not be checked;
here it is not the case, hence we can modify the machine so that on an infinite
computation it checks all cells of the tape an infinite number of times (we omit
the details for brevity’s sake).

In terms of limit sets, this means that if some oracle is rejected by the machine,
then it must have been rejected an infinite number of times in the past (CA time).
So, only oracles pertaining to the desired class may appear in the limit set.

Furthermore, even if some killer state coming from the right eats the grid, at
some point in the past of the CA, it will be in the unreachable zone, and stay
there for ever, so the computation from that moment on even ensures that the
oracle computed is correct. Though, that does not matter, because in this case
the configurations of the corresponding space-time diagram that are in the limit
set are uniform both on the right and on the left except for a finite part in the
middle, and are hence computable.

4.4 Limit Set of the Construction

Let us now check what the contents of the limit set of the construction are for
some Turing machine M correspondind to some IT{ class S :

— Given some s € S, it is easy to see that there are several configurations
in the limit set of the CA with the same Turing degree. The configuration
corresponding to a “perfect” space-time diagram, the configurations corre-
sponding to the same space-time diagram, but “eaten” on the left or right by
a killer state, and the configurations corresponding to the same space-time
diagram, but where the beginning of the computation is not at the right
height in the construction.

— In section 4.1 we made sure that the only configurations of the limit set con-
taining an infinite alternation of vertical-line symbols were of the last form
described in lemma 3. This means that the only way to encode something
non-computable in the limit set is through the oracle of the construction. The
backward computation ensures that only oracles allowed by M may appear.
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Abstract. Given a formula in a temporal logic such as LTL or MTL, a
fundamental problem is the complexity of evaluating the formula on a
given finite word. For LTL, the complexity of this task was recently shown
to be in NC [9]. In this paper, we present an NC algorithm for MTL, a
quantitative (or metric) extension of LTL, and give an AC' algorithm
for UTL, the unary fragment of LTL. At the time of writing, MTL is the
most expressive logic with an NC path-checking algorithm, and UTL is
the most expressive fragment of LTL with a more efficient path-checking
algorithm than for full LTL (subject to standard complexity-theoretic as-
sumptions). We then establish a connection between LTL path checking
and planar circuits, which we exploit to show that any further progress
in determining the precise complexity of LTL path checking would im-
mediately entail more efficient evaluation algorithms than are known for
a certain class of planar circuits. The connection further implies that
the complexity of LTL path checking depends on the Boolean connec-
tives allowed: adding Boolean exclusive or yields a temporal logic with
P-complete path-checking problem.

1 Introduction

One of the most fundamental problems in the fields of testing and verification is
the path-checking problem: determine whether a given observation' of a system
satisfies a given specification drawn from a fixed ambient logic. The complexity of
this problem plays a key role in the design and analysis of offline monitoring and
runtime verification procedures [6,12]. The path-checking problem also appears
in testing [1] and in Monte-Carlo-based probabilistic verification [14].

Although the problem is simply stated, determining its precise complexity
can prove to be quite challenging. The case of LTL was investigated more than
a decade ago [5,13], and at the time is was conjectured that the straightforward
polynomial-time dynamic-programming algorithm is not optimal.? And indeed,
using reductions to planar circuits and tree-contraction algorithms, it was re-
cently proved [9] that LTL path checking allows an efficient parallel algorithm

* Full version of the paper is available as [3].

! In this paper, all observations (paths, traces, words, etc.) considered are finite.

2 The best known lower bound for LTL path checking is NC', which crudely arises
from the NC'-hardness of mere Boolean formula evaluation.
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and lies in NC—in fact, in AC*[logDCFL]. (This seminal result was rewarded by
the ICALP 2009 best-paper award.) More recently, this work was extended to a
very restricted metric extension of LTL, in which only temporal operators of the
form U<y are allowed [10].

In this paper, we give an algorithm for full Metric Temporal Logic (MTL) with
the same complexity—AC" [logDCFL]—known algorithm for LTL.

We reprise the strategy, introduced in [9], to represent temporal operators
using a special class of planar monotone circuits, together with a generic algo-
rithm [4] as a subroutine to evaluate those circuits. Such circuits have a very
special form, which led the authors of [9] to ask whether the complexity of
the path-checking algorithm can be improved by devising specialised circuit-
evaluation algorithms. In this paper, we present evidence to the contrary, by
showing that the evaluation of circuits drawn from a class of planar circuits
studied in [11] is reducible to LTL path checking; any further progress in deter-
mining the precise complexity of the latter would therefore immediately entail
more efficient evaluation algorithms than are known for this class of planar cir-
cuits. It is worth pointing out that augmenting this class of planar circuits with
NOT gates makes the evaluation problem P-complete [7]. It follows that the
complexity of path checking is sensitive to non-monotone connectives, as allow-
ing Boolean exclusive-or in formulae enables the evaluation of circuits from this
augmented class, and is therefore itself P-complete.

An examination of the algorithmic constructions of [9] shows that the most
intricate parts arise in handling the Until operator. In this paper, we show that
the removal of binary operators from the logic, yielding Unary Temporal Logic
(UTL), leads to a much simpler path-checking problem, enabling us to devise an
AC! algorithm for UTL path checking.

At the time of writing, our results provide (i) the most expressive known exten-
sion of LTL with an NC path-checking algorithm (MTL), (ii) the simplest known
extension of LTL with a strictly harder path-checking problem (LTL + Xor), and
(iii) the most expressive known fragment of LTL with a strictly more efficient
path-checking algorithm than for full LTL (UTL).?

2 Preliminaries

We denote Boolean true and false by T and L, respectively. The set {L, T} is
denoted by B. A vector v € B" is downward monotone if v(i+1) =T =
v(i) = T. It is upward monotone if v(i —1) =T = v(i) = T. A vector is
monotone if it is upward or downward monotone. The set of monotone vectors
is denoted by M.

Temporal Logics: Let AP be a set of atomic propositions, p € AP and
I C R>¢ be an interval with endpoints in N U {oo}. The formulae of Metric
Temporal Logic (MTL) are defined recursively as follows.

e=p|lplerneleve| Xie| Yie|leUre|eSie|eRre|eTre

3 Subject to standard complexity-theoretic assumptions.
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All logics and results presented in this paper apply to temporal logics with past
temporal operators. Note that negation is applied only to atomic propositions.
Other operators are expressible using the following semantic equalities: Frp =
TUrp, Gro==Fr=p, o Rr¢p = =(=p Ur =) and » Ty ¢ = =(=p S; —1)).
Linear Temporal Logic (LTL) is the subset of MTL in which I is always [0, c0)
(and is omitted). The fragment UTL of LTL consists of all Boolean connectives
and unary (X, F, G) temporal operators and their past duals.

A trace 7 over AP of length n is a function 7 : {1,...,n} x AP — B assigning
a truth value to every p € AP at every index. We identify p € AP with a vector
in B" and use p(¢) = T if w(i,p) = T. The proposition that is true only in the
interval [4, j] and false otherwise is denoted by x; ;, i.e., xs;(k) = T if i <k <j
and y; j (k) = L otherwise. To evaluate MTL formulae on 7, we further associate
with 7 a sequence of strictly-increasing timestamps t1 < ... < t,.

Given an MTL formula ¢ and index 1 < ¢ < n, the satisfaction relation
m,1 = @ is defined recursively as follows.

miEDp ifpE)=T

T, i1 Ay i mi =1 and i = @2

miE 1V fmikEp ormikE g

mi = Xrp ifi+l<nAti—telAmi+lEp

w1 = Yre ifi>landt;—t;1€landm,i—1F ¢
Waj':(pQ

W,i):golUIgog 1fE|j(z§j§n)/\ tjftiGI
VE . i<k<j = mkEp
W,j':(ﬂQ

miEe1Srpr 3 .G >j>)A[ti—t;j el
Vk.i>k>) = mkE@

This paper studies the complexity of evaluating a given formula on a given trace.

Definition 1. The path-checking problem for logic L is to determine, given
a trace ™ and a formula ¢ of L, whether m,1 = .

Let ¢ be an MTL formula. Working from the smallest subformulae and using
the above definitions to tabulate the values 7,i = 9 for every i and subformula
1 yields a polynomial dynamic-programming algorithm evaluating ¢ on 7.

Theorem 1 ([13]). The path-checking problem for MTL is in P.

Given a trace m and formula ¢, we represent the value of ¢ on 7 as the
vector v € B” such that v(i) = T if and only if 7,7 = ¢. We further represent
LTL temporal operators as functions over vectors written in infix notation. For
example, U : B" x B" — B" is a function such that (p Ugq)(¢) = T if and only if
there is ¢ < j < n such that ¢(j) = T and p(k) = T for all i < k < j.

A formula context o(X) is a formula with one occurrence of a proposition
replaced by a variable X . If ¢)(X) is another formula context then (pow)(X) is the
context obtained by substituting (X)) for X in ¢(X). If ¢ € AP is a proposition
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then ¢(g) is obtained by substituting ¢ for X . For example, ((pUX )o (X Sq))(r) =
(pU(XSq))(r) = pU(rSq). Composing formula contexts increases the size linearly
as a formula context contain only one occurrence of X.

Circuits: A Boolean circuit (C,0) consists of a set of gates C and a prede-
cessor function 0 : C — P(C). The type of a gate is either OR, AND,NOT, ID,
ONE or ZERO. If ¢ is of type 7 and §(c) = {c1,...,cn} then we write ¢ =
(1,¢1,...,¢p). If d € 6(c) then we say ¢ depends on d or that there is a wire
from d to ¢. The ONE and ZERO gates provide constants inputs. A gate is an
input gate if it does not have a predecessor. A gate is an output gate if it is not
a predecessor of any other gate. A circuit is monotone if it has no NOT gates.
It is planar if the underlying DAG is planar. In this paper, all edges (wires)
are straight-line segment and so a planar embedding is induced by a function
v : C — R? assigning a point in the plane to every gate.

A circuit is layered if it can be partitioned into layers Cy, ..., C, such that
each wire goes from C; to C;41 for some i. Thus, Cy contains only input gates. A
layered circuit is stratified if all input gates appear in Cy. A circuit is upward
planar if there is a planar embedding such that every edge monotonically in-
creases in the upward direction—the direction of the evaluation of C'. A circuit is
upward layered (stratified) if it is both upward planar and layered (stratified).
Each layer C; of an upward-layered circuit consists of gates a; ; in the left-to-
right ordering. Each «a; ; depends on a contiguous block a;_14,...,a;—1, layer
below and the wires do not cross: if ; ; depends on «;_1,4 and o, depends on
i—1, then j <k <= ¢ <r. Fig. 3 shows upward stratified monotone circuits.

Given a circuit with one output gate, the circuit value problem, abbreviated
as CVP, is the problem of determining the value of the output gate.

Complexity Classes: The class logDCFL consists of problems that are logspace
many-one reducible to deterministic context-free languages. Equivalently, it is the
class of problems decidable by a deterministic logspace Turing machine equipped
with a stack and terminating in polynomial time. The circuit class AC* for i € N con-
sists of problems decidable by polynomial-size unbounded fan-in circuits of depth
log®. All circuits in this paper are uniform—can be generated by a deterministic
logspace Turing machine. Given a problem S and a complexity class C, we write
S e AC'[C] if there is a family of AC! circuits with additional unbounded fan-in
C-oracle gates that decide S. It is known that

L C logDCFL C AC' C AC'[logDCFL] CAC* C --- CAC' CAC*' C...CP

and that CVP for upward-stratified circuits is P-complete [7], CVP for monotone
upward-stratified circuits is in logDCFL [4] and that CVP for monotone upward-
layered circuits is in AC*[logDCFL] [11].

Tree Contraction: Let T = (V| E) be a binary tree, the tree contraction al-
gorithm [8] reduces T to a single node using a sequence of tree contraction steps.
Let I € T be a leaf, p be its parent and s its sibling*. A tree contraction step

4 1f [ does not have a sibling then we take s to be a fresh node.
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collapses the triple (I, p, s) into a single node. Formally, a new tree T" = (V'  E’)
is obtained from T as follows: V' =V \ {I, p}

o {E\{(p,l),(p,S)} if p is the root of T
(E\A{(p,1),(p,s),(g,p)}) U{q,s} otherwise (¢ is the parent of p)

Note that a contraction step is local and hence multiple non-interfering contrac-
tions can be performed in parallel. A tree contraction algorithm using only [logn]
parallel steps exists [8]. Further, this algorithm can be implemented in AC!.

Let ¢ be an LTL formula and 7 a trace. A tree contraction algorithm evaluating
p on m was given in [9]. The tree T used in [9] is the parse tree of ¢. The
leaves of T correspond to the atomic propositions and the internal nodes to
Boolean or temporal operators. Each contraction step (I, p, s) partially evaluates
the operator associated with p.

For example, suppose that the formula rooted at p is ¥ U ¢ where ¢ is a
proposition. Even if the value of ¥ is unknown, we can still make some inferences.
E.g., if q(i) = T then (v U q)(i) = T. If the last value ¢(|7|) = L then (v U
q)(|7]) = L and so on. The contraction step removes the nodes for ¢ and U
and then labels the node s by the partial evaluation of the function (X U g) o %.
It was shown in [9] how to represent, manipulate and evaluate these functions
efficiently. When a subformula ) is fully collapsed into a single node then the
associated function is fully evaluated and the node is labelled by the constant
(¥(1),...,%(x])) € BI7l. The contraction algorithm eventually reduces the tree
into a single node, which is labelled by (¢(1),...,¢(|7|)) € BI7l.

In general, a tree-contraction algorithm can evaluate a function f on a tree;
each contraction step partially evaluating f on a subtree. In this paper, the
evaluation is done as follows. Let C be the set of constants and F be a collection,
closed under composition, of admissible functions f : C — C.

— A constant ¢, € C is attached to every leaf v of T. The values of ¢, for the
initial leaves are given as a part of the input.

— A function f, € F is attached to every node v of T. Initially, f, is the
identity function.

— A tree contraction of (I,p,s) first builds f' € F (depending on ¢; and p)
implementing the partial evaluation on p. Let f” = f, o f’. If s is a leaf then
¢s is replaced by f”(cs). Otherwise, fs is replaced by f” o f.

N

s|fpof ofs
la s| fs 7N
PN

Fig. 1. An example of a tree contraction step

The output of the algorithm is the constant attached to the single remaining
node. If each contraction step and admissible functions are in the complexity
class C' then, by [8], the contraction algorithm calculating coot is in AC*[C].
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A tree contraction algorithm for LTL path checking [9] runs in AC'[logDCFL].
Constants C = B™ denote the truth values of propositions and subformulae.
Functions F are represented by upward stratified circuits with n input and n
output gates (transducer circuits), which are closed under composition [9]
and their evaluation and composition is in logDCFL [2]. For a fixed s € B™, [9]
gives transducer circuits for sAz, sV, sUx, and sRz as the functions of z € B™.
In Section 4, we give transducer circuits for MTL temporal operators.

3 Reduction from Upward Layered CVP to LTL Path
Checking

Given an upward layered monotone circuit C' with n gates and m wires we show
how to build an LTL formula ¢ over at most 2n propositions and a trace 7 of
length || < m such that C' evaluates to T if and only if 7 = .

Denote the layers of C' by Cy, ..., Cy and the size of each C; by n;. Let o ;
be the gates in C; in the left-to-right order in the upward planar embedding of
C. For each layer, we partition the trace into blocks—each of which stores the
outputs of a gate in the layer. Fig. 2 shows a valid partitioning. In the figure,
gate a occupies block [1, 1], gate e occupies [3, 5], gate g occupies [1, 7], etc.

In general, a valid partitioning consists of a trace 7w and intervals v(i, j) asso-
ciated with each gate o ; such that v(i, j) overlaps precisely with the blocks of
the gates the gate o ; depends on. Formally,

— intervalsv(i,1),v(4,2),...,v(i,n;) are disjoint and partition [1, |7|] for every i,
— if a;41,; depends on o p, Qipti,- -, 0 then v(i + 1,7) C Upep, . qv(i,7)
and v(i + 1, j) overlaps with each v(i,r) for p < r < g,
(9)

- @ Q. @

C 1 d d e e e f f

o [TTTTTT ® W WO

Fig. 2. An upward layered circuit (on the right) with its partition (on the left). The
path 7 for the gate labelled e is highlighted.

Suppose we are given a valid partitioning. Then for ¢ > 0 and every 1 < j < n;
we build a formula context ¢; ; mimicking the evaluation of the gate a; ;.

For example, suppose that the gate e in Fig. 2 is an OR gate and the values
of the block in the first layer is r = (a,b,b,b,c,c,c) € BT for some a,b,c € B.
Recall that (¢ U)(i) = 9¥(i) V (¢(i) A (¢ U9)(i + 1)). Hence, if ¢(i) = L then
(¢ U)(i) = () and if @(i) = T then (p U)(5) = (i) V (o U )i + 1).
Further recall that x; ; is a proposition that is true on [4, j] and false otherwise.
Hence, (x34 U7r)(1) = a,(x34 U7r)(2) = b and (x34 Ur)(5,6,7) = c. Also,
(X34 Ur)(4) = r(4) V (x4 Ur)(5) = bV c. Finally, (xaa Ur)(3) = r(3) V (xa.4 U
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r)(4) =bV (bVe)=bVe So xz34Ur = (a,b,bVe,bVec,c,c). Performing a
similar calculation backwards, we get x4,5S (x3,4Ur) = (a,b,bVe,bVe,bVe, e, )
which gives the value of block e in Fig. 2 and leaves other blocks unchanged.

Denote the type of a; ; by 7 and the left and the right endpoint of v(3, j) by
[ and r, respectively. Then ¢; ; is constructed as follows:

If 7 = ONE then ¢; ;(X) = x1,r V X.
— If 7 = ZERO then ¢, ;(X) = (=x1r) A X.
— If 7 =1ID then ¢, ;(X) = X.
— If 7= OR then ¢; ;(X) = xi41,» S (x1,,—1 U X).
— If 7 = AND then ¢; ;(X) = xi+1,» T (xt,r—1 R X).

It can be shown that the formula context ¢, ; updates the block v(i,j) and
leaves the other blocks unchanged. Hence, the formula context 1;(X) = ¢; 1 0
i 200, evaluates the i-th layer C; of C.

Formally, for each layer C; let r; € B™ be a proposition such that r;(k) = T
if k € v(i,j) for some j and a; ; evaluates to T and r;(k) = L, otherwise. Then,
the formula ¢ = (¢ 0 hg_1 0+ 011)(rg) computes the output of the circuit.

Lemma 1. Let v;, ¢ be as above. Then ¢;(r;—1) = r; and o(ro)(1) = T if and
only if C' evaluates to T. Moreover, ¢ can be built in L.

Finally, we show how to devise v(i, j)’s — the partitioning of the trace. Without
loss of generality, connecting to a gate in the previous layer if necessary, we
assume that all ONE and ZERO gates not in Cj have at least one predecessor.

Given a gate «; ; there is unique rightmost gate in the layer C;y; that a ;
is connected to by a wire. Now, start at a; ; and take the rightmost wires until
the sink is reached. Denote the traversed path by m,. Similarly, there is unique
rightmost gate in the layer C;_; that o ; is connected to by a wire. Start at oy ;
and take the rightmost wires going down until a gate in Cj is reached. Denote
the traversed path by m4. Let 7 be the concatenation of 74 and m,. (See Fig. 2)

Let k; ; be the number of wires to the left of 7. A wire from oy ; to oyy1 % is
to the left of the wire from a; 4 to a;11, if j < a or k < b. We store the output
of gate o ; in the block v(i, j) = [k; j—1 + 1, ki ; + 1]. We use k; o = 0.

Fig. 2 shows a circuit and the partitioning obtained by the above procedure.
The rightmost wire going up and down from e are e — g and ¢ — e, respectively.
Thus, 7, = e — g and mqg = ¢ — e. The path m = ¢ — e — g is highlighted in the
figure. Four wires a — d,b — d,b — e,d — g are to the left of 7. We associate
the block [3, 5] with gate e. All blocks, grouped by layers, are shown in Fig. 2.

The following lemma summarises the important properties of k; ;’s.

Lemma 2. Let k; ;’s and v(i, j)’s be as above. Then the following hold:
— kij—1 < kij for every i and j,
— kin, = kjn,; for everyi and j,
— kin, <m for every i,
for every i and j =1,...,n; the intervals v(i,j)’s partition [1, k; n,],
— if at1,; depends on up, Qipyi, ..., Qg then v(i +1,5) C Up—p . qu(i,7)
and v(i 4+ 1,7) overlaps with each v(i,r) forp <r <gq,
each k; ; can be computed in L.
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This finishes the reduction from upward-layered CVP to LTL path checking. It
was shown in [9] that the latter is in AC'[logDCFL]. Therefore:

Theorem 2. The CVP for upward-layered monotone circuits is in AC* [logDCFL].

An alternative proof of Theorem 2 already appeared in [11]. Moreover, the
relationship shows that any improvement in LTL path checking would entail an
improvement in the evaluation of upward-layered monotone circuits.

The above reduction assumes the monotonicity of the input circuit. However,
if the target logic LTL is extended to include binary exclusive or (xor) as a
connective, then evaluating NOT gates becomes possible using ¢; ;(X) = xi,» ®
X as a formula context for NOT gate o ;. Noting that CVP is P-complete for
general (non-monotone) upward stratified circuits [7], we have the following:

Theorem 3. LTL + Xor path checking is P-complete.

Thus, the complexity of LTL path checking depends on the monotonicity of
the Boolean connectives present in the formula.

4 MTL Path Checking is Efficiently Parallelisable

We now show how the tree-contraction method of [9] extends to full MTL; giving
an AC'[logDCFL] path-checking algorithm for MTL. By [9], summarised in Sec-
tion 2, it suffices to give upward stratified transducer circuits for U; and its duals.

Let 7 be the input trace with (floating-point) timestamps t1, . .., t,. Fix an in-
terval I and consider the U operator. We now describe a dynamic-programming
approach that yields planar circuits calculating (11 Uy 42) (7). For i # j the val-
ues (11 Urape)(4) and (1 Urap2)(j) depend on the values of subformulae in some
future intervals. In general, these intervals overlap and so naive constructions of
transducer circuits are not planar. See Fig. 3 for the kind of circuits we build.

Recall, that the tree contraction is applied only to a leaf, its parent and its
sibling. Let s € B™ be a vector. We need to construct only circuits for s Uy ¢
and ¢ Uy s for known s. First consider the case s Ur ¢. (see left part of Fig. 3)

For index 1 < ¢ < n the formula (s U ¢)(7) is true if there is 7 > ¢ such that
ti eti+land ¢(j) = Tands(k) =T foralli <k <j. SoletT; ={j|t; € t;+I}
be the set of indices in t; + I. If T; = @) then (s Uy ¢)(i) = L.

Otherwise, let first(i) = minT; and last(¢) = maxT; be the first and the last
index in the interval t; 4+ I, respectively. So (s Uy ¢)(7) is true if there exists
first(i) < j <last(i) such that p(j) =T and s(k) =T for all ¢t < k < j.

Now, the value of s is known. So let seg(i) = min{j | j > i A s(j) = L} be the
first index no smaller than ¢ such that s(j) evaluates to false, i.e., s(j) is true from
i to seg(i) — 1. Thus, (s U )(¢) is true if there exists first(i) < j < last(i) such
that ¢(j) = T and j < seg(i). So take L; = first(:) and R; = min(last(i), seg(4)).
Then (s Ur ¢)(i) is true if /.o g, ¢(j) is true.

To build the circuits, we formalise the intuition from the left half of Fig. 3. The
circuit C consists of internal gates d, 4 and output gates o; for each 1 < i < n.
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Fig. 3. Transducer circuits for s U1 51 ¢ and ¢ Upy 51 s. The first line below the circuits
are timestamps, the second row are values of s. Note that different timestamps and s
are used in the two examples. The inputs and the outputs of the circuits are denoted
i and o; respectively.

Each internal gate d, 4 calculates ¢, V - - -V ¢q4. Precisely, d, 4 is present in the
circuit if there is an ¢ such that L; <p < g < R;. If p = g then I(dp ) = (ID, ¢p).
Otherwise, I(dp q) = (OR, dp,g—1, dpt+1,9)-

For the output gates, we define o; so that o; = \/; ... ¢(j) = (s Ur ¢)(4).
Specifically, if T; = () then we set [(0;) = L, otherwise, I(0;) = (ID, dr, Rr,)-

An embedding v : C — R? for the circuit C is v(0;) = (i,n), v(v:) = (i,0)
and v(dp,q) = (p,q —p+1). Observe that L; < L;y; and R; < R;11. Hence, it
cannot happen that L; < L; < R; < R; for some ¢ and j. So the intervals may
overlap but never is one properly contained in another. This ensures that the
embedding is planar.

Finally, note that it is possible to compute L; and R; for every i in logarithmic
space. Hence, the circuit construction can be carried out in logarithmic space.

Lemma 3. Let p be any proposition. For each i, set the input @; of the circuit
to p(i). Then for each j, the value of o; is true if and only if (s Ur p)(j) is true.

We now give an analogous derivation and circuit construction for ¢ Uy s. See
the right side of Fig. 3 for an example of a resulting circuit.

For index 1 < ¢ < n the formula (¢ Uy s)(4) is true if there exists j > ¢ such
thatt; € t;+1I and s(j) = T and (k) = T for all i < k < j. Since s is known, we
choose the first possible j. So let limit(¢) = min{j | first(d) < j <last(i) As(j) =
T} be the first j in the interval ¢; + I such that s(j) is true.

If there is no such index then (¢ Uy s)(i) = L. Otherwise, (¢ Uy s)(i) is true
if p(k) =T for all i < k <limit(i). That is, (¢ Ur $)(4) = A\;<j<timic) @3-

Now, the circuit C (see right half of Fig. 3) consists of gates ¢, , calculating
wp N+ A g and output gates o; for i = 1...n. The gate c¢p 4 is present in C
if there is ¢ such that ¢ < p < ¢ < limit(¢). If p = ¢ then l(cpq) = (ID, pp).
Otherwise, I(cp,q) = (AND, ¢p g1, Cpt1,q)-
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For output, we set 0; so that 0; = /\;<; cjimie(s) ¥5 = (¢Urs)(7). If limit (i) = oo
then [(o;) = L, if limit(i) = 4 then [(0;) = T and else I(0;) = (ID, ¢; timit(i)—1)-

The embedding v : C' — R? of the circuit C is the same as above, v(0;) = (i,n),
v(ps) = (4,0) and v(cp,q) = (p,g—p+1). Since, i < j implies limit(z) < limit(j),
the embedding is planar.

This finishes the construction of circuits for U;. Circuits for the dual operators
of U; are obtained either by dualising OR and AND gates (Release operator), by
performing the construction backwards in time (Since operator) or both (Trigger
operator). Therefore,

Theorem 4. MTL path checking is in AC*[logDCFL].

A considerably weaker result appeared in [10], where the authors gave circuits
and an AC'[logDCFL] algorithm only for a fragment of MTL interpreted over
traces with integral timestamps ¢; = ¢ and intervals of the form [0, a] for a € N.

5 UTL

The most complicated circuits in the LTL path-checking algorithm [9] correspond
to s Uy and ¥ U s formulae. As in the case of MTL, the circuits are also not
uniform but depend on s. In this section, we devise an AC' tree-contraction
algorithm for UTL—the fragment of LTL obtained by omitting binary temporal
operators. The algorithm works even if XOR is allowed and is based on the
analysis of functions arising in the tree contraction algorithm applied to UTL
formulae. First consider the future-only fragment of UTL.

Let p € B™ be any proposition. If p(i) = L for every i then (Fp)(i) = L
for every i. Otherwise, let i be the largest index such that p(i) = T. Then,
(Fp)(j) = T for all j < i. By construction, p(k) = L for all & > 4. Hence,
(Fp)(k) = L for all k > i. Thus, Fp is downward monotone and depends only on
the largest ¢ with p(¢) = T. In particular, only n + 1 possible values exist for Fp.

Similarly, let ¢ be the largest index such that p(t) = L. Then p(j) = T for all
j >t. Hence (Gp)(j) = T for all j > ¢t. Since p(t) = L we have (Gp)(k) = L for
all £ <t. Thus, Gp is upward monotone and depends only on the largest ¢t with
p(t) = L. In particular, only n + 1 possible values exist for Gp.

So for any formula ¢ the value of F o4 or G o1 is a monotone vector—of
which there are only 2n many. Hence for any formula context ¢(X), the formula
contexts ¢ o (FX) and ¢ o (GX) can be represented as g o F or g o G where
g : M — B” is a function with monotone domain. Since |M| = O(n),
enumerating all outputs of g explicitly requires only |g| = O(n?) space. Similar
results hold for the past equivalents of G and F.

Now, Boolean operators are applied componentwise and obey the usual iden-
tities: LAp= L, TAp=p,LVp=p, TVp=T,L®p=pand T ®p = —p.
Therefore, to represent partial evaluation of conjunction (p A X,z A X), disjunc-
tion (pV X, X Vp) and xor (p@® X, X @ p) it suffices to keep track whether each
component is |, T or equal to the original or the negation of the value in X.
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Furthermore, Next (Xp) and Yesterday (Yp) temporal operators shift p by
1 and —1, respectively. Let m be the size of the input formula. The last two
paragraphs motivate the definition of filters: let v € {1, T,ID,NOT}" and k €
[-m,m] satisfy v(i) € Bif i + k ¢ {1,...,n}. Then a filter with offset k and
pattern v is the function f, ; : B” — B™ such that

n if (i) = L
L )T ifo(t)=T
Jor(p)(i) = p(i + k) if v(i) =1D

-p(i+k) ifv(i) =NOT

The identity function as well as the partial evaluation of conjunction, disjunc-
tion, and xor are expressible as filters with offset 0. Temporal operators Next
and Yesterday are identity filters with offsets 1 and —1, respectively. Note that
filters are closed under composition.

Storing v explicitly and & in unary requires O(n + |p|) bits per filter. By
fully expanding the definition, we can evaluate and compose two filters in AC°.
Moreover, if g : M — B” is a function with monotone domain then (f, o g) :
M — B" is also a function with monotone domain and the composition in ACC.

Lemma 4. There are uniform AC® circuits calculating fopo for i and fou 1 (p)(3)
and fyr0g and Fog and G o g, where f’s are filters and g is a function with
monotone domain.

We represent the functions arising in the tree-contraction algorithm as follows.
If the contracted subtree S does not contain F or G operators then it is repre-
sentable by a filter. If it contains F or G then let T" be the first such occurrence.
Then the segment from the leaves to T is representable by a filter and the seg-
ment above T is representable by a function with monotone domain. Thus, the
function h associated with S can be represented as:

b filter no temporal operator
| foT ofilter T is the first temporal operator; f : M — B

Now, if the contracted node is a Boolean connective, X or Y then we calculate
fv,koh for an appropriate filter. If the contracted node is F or G then we calculate
F o h or Go h. In either case, the resulting function is representable using the
above format. Moreover, by Lemma 4, the composition is in AC®. Hence, the
complexity of the tree contraction algorithm is AC'[AC’] = AC'.

Theorem 5. UTL path checking is in AC'.

Same results apply to past temporal operators. Note that the construction
works also when the negation is applied to arbitrary subformulae, and not only
to propositions. Also note that Fj, .)p is downward monotone and the corre-
sponding circuits are constructible in logarithmic space. Therefore, the above
arguments apply to the more powerful logic UTL> obtained by allowing Fj, )
and Gp, o) operators. To the best of our knowledge, UTL> is the most expressive
and powerful fragment of LTL with a sub—/—\Cl[IogDCFL] path-checking problem.
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Conclusion

The results obtained in this paper shed further light on the complexity land-
scape of temporal-logic path-checking problems. Several open questions however
remain, the main one being to determine the precise complexity of LTL path
checking. In particular, there has been no progress on the trivial NC' lower
bound over the past ten years. Furthermore, might it be possible to separate the
complexity of LTL and MTL, or of these logics and their future-only fragment?
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Abstract Many concurrent libraries are parameterised, meaning that they imple-
ment generic algorithms that take another library as a parameter. In such cases,
the standard way of stating the correctness of concurrent libraries via linearisab-
ility is inapplicable. We generalise linearisability to parameterised libraries and
investigate subtle trade-offs between the assumptions that such libraries can make
about their environment and the conditions that linearisability has to impose on
different types of interactions with it. We prove that the resulting parameterised
linearisability is closed under instantiating parameter libraries and composing
several non-interacting libraries, and furthermore implies observational refine-
ment. These results allow modularising the reasoning about concurrent programs
using parameterised libraries and confirm the appropriateness of the proposed
definitions. We illustrate the applicability of our results by proving the correct-
ness of a parameterised library implementing flat combining.

1 Introduction

Concurrent libraries encapsulate high-performance concurrent algorithms and data
structures behind a well-defined interface, providing a set of methods for clients to call.
Many such libraries [6,7,13] are parameterised, meaning that they implement generic
algorithms that take another library as a parameter and use it to implement more com-
plex functionality (we give a concrete example in §2). Reasoning about the correctness
of parameterised libraries is challenging, as it requires considering all possible libraries
that they can take as parameters.

Correctness of concurrent libraries is usually stated using linearisability [8], which
fixes a certain correspondence between the concrete library implementation and a (pos-
sibly simpler) abstract library, whose behaviour the concrete one is supposed to simu-
late. For example, a high-performance concurrent stack that allows multiple push and
pop operations to access the data structure at the same time may be specified by an
abstract library where each operation takes effect atomically. However, linearisability
considers only ground libraries, where all of the library implementation is given, and
is thus inapplicable to parameterised ones. In this paper we propose a notion of para-
meterised linearisability (§3 and §4) that lifts this limitation. The key idea is to take
into account not only interactions of a library with its client, but also with its parameter
library, with the two types of interactions being subject to different conditions.

A challenge we have to deal with while generalising linearisability in this way is
that parameterised libraries are often correct only under some assumptions about the
context in which they are used. Thus, a parameterised library may assume that the lib-
rary it takes as a parameter is encapsulated, meaning that clients cannot call its methods
directly. A parameterised library may also accept as a parameter only libraries satisfying
certain properties. For this reason, we actually present three notions of parameterised

J. Esparza et al. (Eds.): ICALP 2014, Part IT, LNCS 8573, pp. 98-109, 2014.
(© Springer-Verlag Berlin Heidelberg 2014
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linearisability, appropriate for different situations: a general one, which does not make
any assumptions about the client or the parameter library, a notion appropriate for the
case when the parameter library is encapsulated, and up-fo linearisability, which allows
making assumptions about the parameter library. These notions differ in subtle ways:
we find that there is a trade-off between the assumptions that parameterised libraries
make about their environment and the conditions that a notion of linearisability has to
impose on different types of interactions with it.

We prove that the proposed notions of parameterised linearisability are contextual
(85), i.e., closed under parameter instantiation. This includes the case when the para-
meter library is itself parameterised. On the other hand, when the parameter is an or-
dinary ground library, this result allows us to derive the classical linearisability of the
instantiated library from our notion for the parameterised one. We also prove that para-
meterised linearisability is compositional (8§5): if several non-interacting libraries are
linearisable, so is their composition. Finally, we show that parameterised linearisability
implies observational refinement (§6): the behaviours of any complete program using a
concrete parameterised library can be reproduced if the program uses a corresponding
abstract one instead. All these results allow modularising the reasoning about concur-
rent programs using parameterised libraries: contextuality and compositionality break
the reasoning about complex parameterised libraries into that about individual libraries
from which they are constructed; observational refinement then lifts this to complete
programs, including clients. The properties of parameterised linearisability we estab-
lish also serve to confirm the appropriateness of the proposed definitions.

We illustrate the applicability of our results by proving the up-to linearisability of
flat combining [6] (§4), a generic algorithm for converting hard-to-parallelise sequential
data structures into concurrent ones.

Due to space constraints, we defer the proofs of most theorems to [1, §B].

2 Parameterised Libraries

We consider parameterised libraries (or simply libraries) L, which provide some pub-
lic methods to their clients. The latter are multi-threaded programs that can call the
methods in parallel. In §4 and §6 we introduce a particular syntax for libraries and cli-
ents; for now it suffices to treat them abstractly. Our libraries are called parameterised
because we allow their method implementations to call abstract methods, whose imple-
mentation is left unspecified. Abstract methods are meant to be implemented by another
library provided by L’s client, which we call the parameter library of L.

We identify methods by names from a set M, ranged over by m, and threads by
identifiers from a set T, ranged over by t. For the sake of simplicity, we assume that
methods take a single integer as a parameter and always return an integer. We annotate
libraries with types as in L : M — M’', where M, M’ C M give the sets of abstract
and public methods of L, respectively. If M = () we call L a ground library. The sets
M and M’ do not have to be disjoint: methods in M N M’ may be called by L’s clients,
but their implementation is inherited from the one given by the parameter library.

Example: Flat Combining. Flat combining [6] is a recent synchronisation paradigm,
which can be viewed [14] as a parameterised library FC : {m;}}" ; — {do m;} , fora
given set of methods {m;}?_, . In Figure 1 we show a pseudocode of its implementation,
which simplifies the original one in ways orthogonal to our goals. FC takes a library,
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whose methods m; are meant to be executed sequentially, and efficiently turns it into a
library with methods do m; that can be called concurrently.

As usual, this is achieved by means
of mutual exclusion, implemented using a
lock, but in a way that is more sophistic-
ated than just acquiring it before calling
a method m;. A thread executing do m;
first publishes the operation it would like
to execute and its parameter in its entry of
the requests array. It then spins, trying to
acquire the global lock. Having acquired
a lock, the thread becomes a combiner:
it performs the operations requested by
all threads, stored in requests, by calling

LOCK lock;
struct{op,param,retval} requests|[NThread];

do m;(int z):

requests[mytid()].op = i;

requests[mytid()].param = z;

requests[mytid()].retval = nil;

do:

if (lock.tryacquire()):
for (t = 0; t < NThread; t++):
if (requests|t].retval == nil):

int j = requests][t].op;

int w = requests|[t].param;
requests[t].retval = m;(w);
lock.release();
while (requests[mytid()].retval == nil);
return requests[mytid()].retval;

methods m; of the parameter library and
writing the values returned into the retval
field of the corresponding entries in re-
quests. Each spinning thread periodically
checks this field and stops if some other
thread has performed the operation it re-
quested (for simplicity, we assume that nil
is a special value that is never returned by any method). This algorithm benefits from
cache locality when the combiner executes several operations in sequence, and thus
yields good performance even for hard-to-parallelise data structures, such as stacks and
queues.

In this paper, we develop a framework for specifying and
verifying parameterised concurrent libraries. For flat combin-
ing, our framework suggests using an abstract library FC -
{m;}_; — {do m;}?_; in Figure 2 as a specification for the
concrete library in Figure 1. FC* specifies the expected beha-
viour of flat combining by using the naive mutual exclusion.
Showing that the implementation satisfies this specification in
our framework amounts to proving that it is related to FC* by
parameterised linearisability, which we present next.

Fig. 1. Flat combining: implementation FC

LOCK lock;

do m;(int z):
lock.acquire();
int retval = m;(z);
lock.release();
return retval;

Fig.2. Flat combining:
specification FC

3 Histories and Parameterised Linearisability

Histories. Informally, for a concrete library (such as the one in Figure 1) to be correct
with respect to an abstract one (such as the one in Figure 2), the two should interact with
their environment—the client and the parameter library—in similar ways. In this paper,
we assume that different libraries and their clients access disjoint portions of memory,
and thus interactions between them are limited to passing parameters and return values
at method calls and returns. This is a standard assumption [8], which we believe can be
relaxed using existing techniques [5]; see §7 for discussion. We record interactions of a
parameterised library L : M — M’ with its environment using histories (Definition 1
below), which are certain sequences of actions of the form

Act ::= (t,call?m/(2)) | (t,ret!m/(2)) | (t,calllm(z)) | (¢, ret? m(z)),
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call?mq(21) calllmq(za) ret? ma(zl,) ret!mi(z1)
t[ I—L T mEmEmEEmEEms= ___)l—,
call? ma(22) calll my (26) .- ret?ring(zp) ret! mo(z5)
hy: e T Ty —1
call? m3(23) retl mg(z5) .- call? ma(24) ret! ma(z})
ts - 1 Y E—
call? my(21) calll ma(za) ret? ma(zz) ret! mi(z1)
call? ma(z2) call! mp(2) ret? my(zy). .- - - retlimng ()
t I ENUPETETS , g
call? ms(z3) ret!'ms(z3) call?ma(z4) ret! ma(z4)
ts | [ |

Fig. 4. Illustration of histories and parameterised linearisability. A solid line represents a thread
executing the code of the parameterised library, and a dashed one, the parameter library.

where t € T is the thread performing the action, m’ € M’ or m € M is the method
involved, and z € Z is the method parameter or a return value.
We illustrate the meaning of the actions in Figure 3:

call?m’(z) ret! m/(z) : > X . A
client call? and ret! describe the client invoking public meth-
ods m’ of the parameterised library L, and call! and
- ret? the library L invoking implementations of ab-
L stract methods m provided by a parameter library L'.
el ) We denote the sets of actions corresponding to inter-
actions with these two entities by ClAct and AbsAct,

respectively. In the spirit of the opponent-proponent
distinction in game semantics [9,11], we annotate ac-
tions by ! or ? depending on whether the action was
: initiated by L or by an external entity, and we denote
callm”(z)" “retm(z) the corresponding sets of actions by Act! and Act?. We
Fig. 3. Interactions of a library L  also use sets ActCall?, ActRet!, ActCall! and ActRet?
with its client and parameter lib-  with the expected meaning. Clients can also call meth-
rary L' ods m"” € M N M’ directly, as represented by the
dashed lines in the figure. Since such interactions do
not involve the library L, we do not include them into Act. Histories are finite sequences
of actions with invocations of abstract methods properly nested inside those of public
ones.

1
1
T
1

Definition 1 (Histories). A history h : M — M’ is a finite sequence of actions such
that for every t, the projection of h to t’s actions is a prefix of a sequence generated by
the grammar SHist below, where m € M and m’ € M’:

SHist
IntSHist 1=

(t,call?m/(2)) IntSHist (¢, ret! m’(z")) | SHist SHist
(t,calllm(z)) (t,ret? m(z")) | IntSHist IntSHist

e |
e |
We denote the set of histories by Hist. See Figure 4 for examples. In this paper, we
focus on safety properties of libraries and thus let histories be finite. This assumption is
also taken by the classical notion of linearisability [8] and can be relaxed as described

in [4] (§7). For a history h and A C Act, we let h| 4 be the projection of h onto actions
in A and we denote the i-th action in & by h(z).
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Parameterised Linearisability. We would like the notion of correctness of a concrete
library L : M — M’ with respect to an abstract one Lf : M — M’ to imply obser-
vational refinement. Informally, this property means that L* can be used to replace L
in any program (consisting of a client, the library and an instantiation of the parameter
library) while keeping its observable behaviours reproducible; a formal definition is
given in §6. While this notion is intuitive, establishing it between two libraries directly
is challenging because of the quantification over all possible programs they can be used
by. We therefore set out to find a correctness criterion that compares the concrete and
abstract libraries in isolation and thus avoids this quantification. For ground libraries,
linearisability [8] formulates such a criterion by matching a history h; of L with a his-
tory ho of L that yields the same client-observable behaviour. The following definition
generalises it to parameterised libraries.

Definition 2 (Parameterised linearisability: general case). A history hy : M — M’ is
linearised by another one ho : M — M’, written hy T hs, if there exists a permutation
7 : N = N such that

Vi hy(z) = ha(m(i)) A (V5.0 < A ((3t. ha(3) = (¢, —) A he(j) = (t,—)) V
(h1(2) € Act! A hi(j) € Act?)) = w(i) < 7(j)).

For sets of histories Hy, Hy we let Hi C Hy <= Yhy € Hy.3hy € Hy. hy C ho.

In §4 we show how to generate all histories of a library in a particular language
and define linearisability on libraries by the C relation on their sets of histories. For
now we explain the above abstract definition. According to it, a history h; is linearised
by a history ho when the latter is a permutation of the former preserving the order of
actions within threads and the precedence relation between the actions initiated by the
library and those initiated by its environment. As we explain below, we have h; C
ho for the histories h1, hso in Figure 4. Hence, parameterised linearisability is able to
match a history of a concurrent library with a simpler one where every contiguous block
of library execution (e.g., the one between (t1, call? my(z1)) and (1, calll mq(24))) is
executed without interleaving with other such blocks. On the other hand, ho [Z hy, since
(t1,calll my(z,)) precedes (t3,call? ms(z3)) in he, but notin hy.

When hy,he : ) — M/, i.e., these are histories of a ground library and thus con-
tain only call? and ret! actions, Definition 2 coincides with a variant of the classical
linearisability [8], which requires preserving the order between ret! and call? actions.
For example, Definition 2 requires preserving the order between (o, ret! ms(z5)) and
(t3,call? m4(z4)) in hq from Figure 4 (shown by a diagonal arrow). This requirement
is needed for linearisability to imply observational refinement: informally, during the
interval of time between (to, ret! mo(25)) and (¢, call? m4(z4)) in an execution of a
program producing h1, both threads t2 and ¢3 execute pieces of client code, which can
communicate via the client memory. To preserve the behaviour of the client when repla-
cing the concrete library in the program by an abstract one in observational refinement,
this communication must not be affected, and, for this, the abstract library has to admit
a history in which the order between the above actions is preserved.

When hi,hy : M — M’ correspond to a non-ground parameterised library, i.e.,
M ## (), a similar situation arises with communication between the methods of the
parameter library executing in different threads. For this reason, our generalisation
of linearisability requires preserving the order between call! and ret? actions, such as
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(t2, calll my(2p)) and (t1, ret? m,(2})) in Figure 4; this requirement is dual to the one
considered in classical linearisability. It is not enough, however. Definition 2 also re-
quires preserving the order between call! and call?, as well as ret! and ret? actions, e.g.,
(t3,ret! ms(24)) and (t2, ret? my,(z;)) in Figure 4. In the case when M N M’ # (), this
is also required to validate observational refinement. For example, during the interval of
time between (t3, ret! ms(z5) and (t2,ret? my(z;)) in an execution producing h,, the
client code in thread t3 can call a method mj € M N M’ of the parameter library (cf. the
dashed arrows in Figure 3). The code of the method m, executed by t3 can then commu-
nicate with that of the method m; executed by ¢,, and to preserve this communication,
we need to preserve the order between (t3, ret! ms(z3)) and (t2, ret? my(zy)).

In §5 and §6 we prove that the above notion of linearisability indeed validates ob-
servational refinement. If the library L : M — M’ producing the histories hq, ho in
Definition 2 is such that M N M’ = (), then the client cannot directly call methods of
its parameter library, and, as we show, parameterised linearisability can be weakened
without invalidating observational refinement.

Definition 3 (Parameterised linearisability: encapsulated case). For hy, ho : M — M’
with MO M’' = () we let h1 C¢ hs if there exists a permutation 7 : N — N such that

Vi.hy(2) = ha(m(i)) A (V5.1 < 7 A (. hi(i) = (t,—) Ahe(f) = (t,—)) V
(h1(2),h1(j)) € (ActRet! x ActCall?) U (ActCalll x ActRet?)) = 7 (i) < w(j)).

Since this definition does not take into account the order between (1, call! m,(z,)) and
(t3,call? ms3(z3)) in hg from Figure 4, we have ha Ce hy even though he I hy.

Definitions 2 and 3 do not make any assumptions about the implementation of the
parameter library. However, sometimes the correctness of a parameterised library can
only be established under certain assumptions about the behaviour of its parameter. In
particular, this is the case for the flat combining library from §2. In its implementation
FC from Figure 1, a request by a thread ¢ to execute a method m; of the parameter lib-
rary can be fulfilled by another thread ¢’ who happens to act as a combiner; in contrast,
the specification FC* in Figure 2 pretends that m; is executed in the requesting thread.
Thus, FC and FC* will behave differently if we supply as their parameter a library whose
methods depend on the identifiers of executing threads (e.g., with m; implemented as
“return mytid()”). As a consequence, FC does not simulate FC*. On the other hand,
this will be the case if we restrict ourselves to parameter libraries whose behaviour is
independent of thread identifiers. The following version of parameterised linearisabil-
ity allows us to use such assumptions, formulated as closure properties on histories of
interactions between a parameterised library and its parameter. Given a history h, let h
be the history obtained by swapping ! and ? actions in h.

Definition 4 (Up-to linearisability). For hy, ha : M — M’ such that M N\ M’ = () and
a binary relation R on histories of type ) — M, we say that h, is linearised by hy up

to R, written hi TR ha, if (h1]ciact) T (h2|ciace) and (hi|absact) R (h2|absAct)-

For flat combining, a suitable relation R; relates two histories if one can be obtained
from the other by replacing thread identifiers of some pairs of a call and a corresponding
(if any) return action. There are other useful choices of R, such as equivalence up to
commuting abstract method invocations [7].

So far we have defined our notions of linearisability abstractly, on sets of histories.
We next introduce a language for parameterised libraries and show how to generate sets
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of histories of a library in this language. This lets us lift the notion of linearisability to
libraries and prove that FC in Figure 1 is indeed linearised up to R by FC* in Figure 2.

4 Lifting Linearisability to Libraries

Library Syntax. We use the following language to define libraries:

L ::= (public: B;private : B) B:=¢| (m«<C);B | (abstract m); B
C =c| m( | C;C | if(E)then Celse C | while(E)C

A parameterised library L is a collection of methods, some implemented by commands
C and others declared as abstract, meant to be implemented by a parameter library.
Methods can be public or private, with only the former made available to clients. In
85 and §6 we extend the language to complete programs, consisting of a multithreaded
client using a parameterised library with its parameter instantiated. In particular, we
introduce private methods here to define parameter library instantiation in §5.

In commands, ¢ ranges over primitive commands from a set PComm, and E over
expressions, whose set we leave unspecified. The command m() invokes the method
m; it does not mention its parameter or return value, since, as we explain below, these
are passed via dedicated thread-local memory locations. We consider only well-formed
libraries where a method is declared at most once and every method called is declared.
We identify libraries up to the order of method declarations and a-renaming of private
non-abstract methods. For a library L = (public : Byyp; private : Bpyt) we have L :
Abs(L) — Pub(L), where Pub(L) is the set of methods declared in Byyp, and Abs(L)
of those declared as abstract in By, or Bpyt.

Linearisability on Libraries and the Semantics Idea. We now show how to generate
the set of histories [L] € 2"t of a library L. Then we let a library L, be linearised by
alibrary Lo, written Ly T Lo, if [L1] C [Ls]); similarly for C. and Cx.

We actually generate all library fraces, which, unlike histories, also record its internal
actions. Let us extend the set of actions Act with elements of the forms (¢, ¢) for ¢ €
PComm, (¢, callm(z)) and (¢, ret m(z)), leading to a set TrAct. The latter two kinds of
actions correspond to calls and returns between methods implemented inside the library.
A trace T is a finite sequence of elements in TrAct; we let Traces = TrAct”.

The denotation [L] of a library L : M — M’ includes the histories extracted from
traces that L produces in any possible environment, i.e., assuming that client threads
perform any sequences of calls to methods in M’ with arbitrary parameter values and
that abstract methods in M return arbitrary values. The definition of [L] follows the
intuitive semantics of our programming language. An impatient reader can skip it on
first reading and jump directly to Theorem 1 at the end of this section.

Heaps and Primitive Command Semantics. Let Locs be the set of memory loca-
tions. As we noted in §3, we impose a standard restriction that different libraries and
their clients access different sets of memory locations, except the ones used for method
parameter passing. Formally, we assume that each library L is associated with a set of
its locations Locs;, C Locs. The state of L is thus given by a heap 0 € Locs;, — Z.
We assume a special subset of locations {arg, } ;7 belonging to every Locsy,, which
we use to pass parameters and return values for method invocations in thread ¢.

We assume that the execution of primitive commands and the evaluation of
expressions are atomic. The semantics of a primitive command ¢ € PComm used by a
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Traces of commands (C)s = (M x T — 2Traces) _ gTraces

(chen = {(t,)} (C1; Ca)en = {mime | 71 € (Ci)en A T2 € (C2)en}

(if (E) then Cy else Ca)tn = (¢, assume(E)) ((Ci])en) U (¢, assume(1E)) ((C2)n)

(while(E) C)en = ((t, assume(E))([C]n))* (t, assume(!E))

(mOhen = {(t,calllm(2)) 7 (t,ret?m(z")) | T €n(m,t) Az 2 €Z}, ifmeM
e {(t,callm(z)) T (t,retm(2")) | 7 € n(m,t) Az, 2 € Z},  otherwise

Traces of library bodies

F:i(MxT =27 & (M x T — 27 (B) : M x T — 2Trces
n(m,t) U ((C)en), if (m < C) appears in L

(Fm)(m,t) = 4 {e}, itm e M (Bpub; Bpwt) = Ifp(F)
0, otherwise

Traces of libraries (L:M — M) 2T

020 = preix (Upo 12, (U vz, (87 m() (B Bl om, ) 6 et m=)) )

Fig. 5. Possible traces of a library L = (public : Byyp; private : Bpyt) : M — M. Here ”leTt
denotes the set of all interleavings of traces from the sets 77, . .., Tk.

O~ Emizys 0 iff o' =0, 0(arg,) = 2 O~ 0 iff o’ =0 0(arg,) =z
o~ o' iff o' = olarg, — 2] T~ o' iff o' = o,0(arg,) = 2

call? m(z),t ret! m(z),t

/. ’_ _ L /- ;o
T Saimz) 0 iff o' =0,0(arg,) =z O et () O iff o' = olarg, = z

Fig. 6. Transformers for calls and returns to, from and inside a library L
library L is defined by a family of transformers {~~Z,},c7, where ~%, C (Locs, —
Z) x (Locs;, — Z) describes how c affects the state of the library. The fact that the
transformers are defined on locations from Locs;, formalises our assumption that L
accesses only these locations. We assume that the transformers satisfy some standard
properties [15], deferred to [1, §A] due to space constraints. To define the semantics of
expressions, we assume that for each E the set PComm contains a special command
assume(FE), used only in defining the semantics, that allows the computation to proceed

e s ’ Ve 1 ) .
only if E is non-zero: o ~ sssume(E),t 7 iff o’ = o and E is non-zero in 0.

Library Denotations. The set of traces of a library is generated in two stages. First,
we generate a superset (L) C 272 of traces produced by L, defined in Figure 5. If
we think of commands as control-flow graphs, these traces contain interleavings of all
possible paths through the control-flow graphs of L’s methods, invoked in an arbitrary
sequence. We then select those traces in (L)) that correspond to valid executions starting
in a given heap using a predicate [7] 1, : (Locsy, — Z) — {true, false}. We define [-] .
by generalising ~ to calls and returns as shown in Figure 6 and letting

[eloo=true; [(t,a)7]ro =if (30’.0~E, 0’ A[r]Lo’ =true) then true else false.

Finally, we let the set of histories [L] of a library L consist of those obtained from
traces representing its valid executions from a heap with all locations set to 0:

[L] = history({7 € (L) | [7]L(Az € Locsr.0) = true}),

where history projects to actions in Act.
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Theorem 1 (Correctness of flat combining). For the libraries FC in Figure 1 and FC
in Figure 2 and the relation R from §3 we have FC Cg, FC*.

PROOF SKETCH. Consider h € [FC]. In such a history, any invocation of an
abstract method (¢, calll m;(z;)) (¢, ret? m;(z})) happens within the execution of the
corresponding wrapper method (¢, call? do m;(z;)) (', retldo m;(%})) (or just
(', call?do m;(z;)) if the execution of the method is uncompleted in k), though not
necessarily in the same thread. This correspondence is one-to-one, as different invoc-
ations of abstract methods correspond to different requests to perform them. Further-
more, abstract methods in h are executed sequentially. We then construct a history b’
by replacing every abstract method call (¢, calll m;(z;)) (¢, ret? m;(z})) in h|apsact by

(t',call?do my(z)) (', calllm;(z;)) (¢, ret? m;(2])) (', ret! do m;(z})),

where ¢’ is the thread identifier of the corresponding wrapper method invocation (sim-
ilarly for uncompleted invocations). It is easy to see that (h|apsact) Rt (R/|absact) and
W' € [FC*]. Since the execution of an abstract method in % happens within the execu-
tion of the corresponding wrapper method, we also have (h|ciact) E (' |ciact)- m]

5 Instantiating Library Parameters and Contextuality

We now define how library parameters are instantiated and show that our notions of
linearisability are preserved under such instantiations. To this end, we introduce a partial
operation o on libraries of §4: informally, for Ly : M — M’ and Ly : M’ — M" the
library Ly o Ly : M — M" is obtained by instantiating abstract methods in Lo with
their implementations from L;. Note that L; can itself have abstract methods M, which
are left unimplemented in Ly o L;. Since we assume that different libraries operate in
disjoint address spaces, for o to be defined we require that the sets of locations of L; and
L5 be disjoint, with the exception of those used for method parameter passing. To avoid
name clashes, we also require that public non-abstract methods of L, not be declared as
abstract in L; (private non-abstract methods are not an issue, since we identify libraries
up to their a-renaming); this also disallows recursion between Lo and L.

Definition 5 (Parameter library instantiation). Consider Ly : M — M’ and Ly :
M’ — M" such that (M"” \ M')N M = () and Locsy, N Locsy, = {arg, }teT
Then Lo o Ly : M — M" is the library with Locsy,,o1, = Locsy,, U Locsy,, obtained
by erasing the declarations for methods in M’ from L, reclassifying the methods from
M'\ M" in Ly as private, and concatenating the method declarations of the resulting
two libraries. We write (Lo o L1)] when Lo o Ly is defined.

We now show that the notions of parameterised linearisability we proposed are con-
textual, i.e., closed under library instantiations. This property is useful in that it allows
us to break the reasoning about a complex library into that about individual libraries
from which it is constructed. As we show in §6, contextuality also helps us establish
observational refinement.

Theorem 2 (Contextuality of parameterised linearisability: general case). For L1, Lo :
M — M’ such that Ly C Lo:

(i) VL: M" — M.(Lyo L){ A(L2oL), = LioLC LyoL.

(ii)) VL : M' — M". (Lo L1){ AN(LoLy)] = LoL;C Lo Ls.
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Theorem 3 (Contextuality of parameterised linearisability: encapsulated case). For
Li,Ly: M — M’ suchthat M " M' = (Qand L, T, Lo:

(i) VL : M" = M.(Lyo L)L A (Lyo L)} = LioLC¢LyolL.
(ii) VL : M' — M" (Lo L)L A (Lo L)l = LoLyCe Lo L.

The restriction on method names in Definition 5 ensures that the library compositions
in Theorem 3 have no public abstract methods and can thus be compared by C.. Note
that if L is ground, then so are L.y o L and Ly o L. In this case, Theorems 2(i) and 3(i)
allow us to establish classical linearisability from parameterised one.

Stating the contextuality of C is more subtle. The relationship L; CEr Lo allows
the use of abstract methods by L; and Lo to differ according to R. As a consequence,
for a non-ground parameter library L, their use by L1 o L and Ly o L may also differ
according to another relation G. We now introduce a property of L ensuring that a
change in L’s interactions with its client according to R (the rely) leads to a change in
L’s interactions with its abstract methods according to G (the guarantee).

Definition 6 (Rely-guarantee Closure). Let R, G be relations between histories of type
0 — M and ® — M, respectively. A library L : M — M’ is (g)-closed if for all
he[L]andh' : O — M’ we have

(hlciact) R B = 30" € [L]. (W' |ciace = h') A (h]absact) G (B |absAct)-

Due to space constraints, we state contextuality of " only for the case in which lib-
rary parameters do not have public abstract methods. A more general statement which
relaxes this assumption is given in [1, §B].

Theorem 4 (Contextuality of linearisability up to R). For L1, Lo : M — M’ such that
M N M' = 0 and a relation R such that L1 T Lo:

(i) VL : M" — M.NG.M" (M = O A (L is ()-closed) A
(LioL)\ A(Lyo L)}, => LioLCg Lyo L.
(ii) VL : M' — M". (Lo L)\ A(LoLs)l = LoL;Cg LoLs.

When L in Theorem 4(i) is ground, G becomes irrelevant. In this case we say that
L is R-closed if it is ( {(ERE)})—closed. Hence, from Theorems 1 and 4(i) we get that for

any Ry-closed (§3) library L we have FCo L C FCfo L: instantiating flat combining
with a library insensitive to thread identifiers, e.g., a sequential stack or a queue, yields
a concurrent library linearisable in the classical sense.

Given two libraries Ly : My — Mj and Lo : My — M that do not interact, i.e.,
(M7 UM/{)N (M2 UM}) = (), we may wish to compose them by merging their method
declarations into a library Ly W Ly : My W My — M/ W M}, as originally proposed
in [8]. Our notions of linearisability are also closed under this composition.

Theorem 5 (Compositionality of parameterised linearisability). For Ly, L} : M; —
M and Lo, Ly : My — MY such that (M; U M{) N (M U M3) = 0:
(i) Ly ELII/\LQ EL/Q — L1 WLy EL&&JL/Q
(ii) 1 Ce LY ALy Ce LYy = Ly WLy Ce L W LA
(iii) VR,G. L1 Cr L) ALy Cg Ly = L1WLo Crgg LWL, where RRG relates
histories if their projections to M1 actions are related by R and the projections to
M actions are related by G.
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6 Clients and Observational Refinement

A program P has the form let Lin Cy || ... | Cp, where L : ) — M is a ground
library and C || ... || C, is a client such that C1, ..., C, call only methods in M,
written (C1 || ... || Cy) : M. Using the contextuality results from §5, we now show

that our notions of linearisability imply observational refinement for such programs.

The semantics of a program P is given by the set of its traces [P] € 27, which
include actions (¢, ¢) recording the execution of primitive commands ¢ by client threads
C and the library L, as well as (¢, callm(z)) and (¢, ret m(z)) actions corresponding
to the former invoking methods of the latter. The semantics [P] is defined similarly
to that of libraries in §4. In particular, we assume that client threads C; access only
locations in a set Locscjient such that Locscjient N Locsy, = {arg, }+e7 for any L. Due to
space constraints, we defer the definition of [P] to [1, §A]. We define the observable
behaviour obs(7) of atrace T € [P] as its projection to client actions, i.e., those outside
method invocations, and lift obs to sets of traces as expected.

Definition 7 (Observational refinement). For L1, Lo : M — M’ we say that L, obser-
vationally refines Lo, written L1 Cops Lo, if for any ground library L : ) — M and
client (Cy || ... || Cpn) : M’ we have

obs([let (Ly o L)inCy || ... || Cpn]) Cobs([let (Lyo L)inCy || ... || Cn])-

For a binary relation R on histories we say that L1 observationally refines Lo up to

R, written L, EZ})S Lo, if the above is true under the assumption that L is R-closed.

Thus, L1 Cops Lo means that Ly can be replaced by Lo in any program that uses it
while keeping observable behaviours reproducible. This allows us to check a property
of a program using L (e.g., the flat combining implementation in Figure 1) by check-
ing this property on a program with L; replaced by a possibly simpler Lo (e.g., the
flat combining specification in Figure 2). Using Theorems 2—4, we can show that our
notions of linearisability validate observational refinement.

Theorem 6 (Observational refinement). For any libraries Ly, Lo : M — M’:

(i) L1 © Ly = L1 Cops Lo.
(ii) MOAM' =0ANLy Ce Ly = Ly Cops Lo
(iii) VR-M O\ M' =0 Ly Cr Ly = Ly C&, Lo,

7 Related Work

Linearisability has recently been extended to handle liveness properties, ownership
transfer and weak memory models [4,5,10]. Most of these extensions have exploited the
connection between linearisability and observational refinement [2]. The same method-
ology is adopted in the present work, but for studying two previously unexplored topics:
parameterised libraries and the impact that common restrictions on their contexts have
on the definition of linearisability. We believe that our results are compatible with the
existing ones and can thus be extended to cover liveness and ownership transfer [4,5].
Our work shares techniques with game semantics of concurrent programming lan-
guages [12,3] and Jeffrey and Rathke’s semantics of concurrent objects [11] (in particu-
lar, we use the 7 and ! notation from the latter). The proofs of our contextuality theorems
rely on the fact that library denotations satisfy certain closure properties related to =, C,
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and C, which are similar to those exploited in these prior works. However, there are
two important differences. First, prior work has not studied common restrictions on lib-
rary contexts (such as the encapsulation and closure conditions in Definitions 3 and 4)
and the induced stronger notions of refinement between libraries, the two key topics of
this paper. Second, prior works have considered all higher-order functions, while our
parameterised libraries are limited to second order. Our motivation for constraining the
setting in this way is to use a simple semantics and study the key issues involved in
linearisability of parameterised libraries without using sophisticated machinery from
game semantics, such as justification pointers and views [9], designed for accurately
modelling higher-order features. However, it is definitely a promising direction to look
for appropriate notions of linearisability for full higher-order concurrent libraries by
combining the ideas from this paper with those from game semantics.

Turon et al. proposed CaReSL [14], a logic that allows proving observational re-
finements between higher-order concurrent programs directly, without going via linear-
isability. Their work is complimentary to ours: it provides efficient proof techniques,
whereas we identify obligations to prove, independent of a particular proof system.

Acknowledgements. We thank Thomas Dinsdale-Young and Ilya Sergey for com-
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Abstract. We consider multi-player graph games with partial-observation and
parity objective. While the decision problem for three-player games with a coali-
tion of the first and second players against the third player is undecidable in gen-
eral, we present a decidability result for partial-observation games where the first
and third player are in a coalition against the second player, thus where the sec-
ond player is adversarial but weaker due to partial-observation. We establish tight
complexity bounds in the case where player 1 is less informed than player 2,
namely 2-EXPTIME-completeness for parity objectives. The symmetric case of
player 1 more informed than player 2 is much more complicated, and we show
that already in the case where player 1 has perfect observation, memory of size
non-elementary is necessary in general for reachability objectives, and the prob-
lem is decidable for safety and reachability objectives. From our results we derive
new complexity results for partial-observation stochastic games.

1 Introduction

Games on Graphs. Games played on graphs are central in several important problems
in computer science, such as reactive synthesis [21,22], verification of open systems [2],
and many others. The game is played by several players on a finite-state graph, with a
set of angelic (existential) players and a set of demonic (universal) players as follows:
the game starts at an initial state, and given the current state, the successor state is de-
termined by the choice of moves of the players. The outcome of the game is a play,
which is an infinite sequence of states in the graph. A strategy is a transducer to resolve
choices in a game for a player that given a finite prefix of the play specifies the next
move. Given an objective (the desired set of behaviors or plays), the goal of the exis-
tential players is to ensure the play belongs to the objective irrespective of the strategies
of the universal players. In verification and control of reactive systems an objective is
typically an w-regular set of paths. The class of w-regular languages, that extends clas-
sical regular languages to infinite strings, provides a robust specification language to
express all commonly used specifications, and parity objectives are a canonical way to
define such w-regular specifications [27]. Thus games on graphs with parity objectives
provide a general framework for analysis of reactive systems.

* This research was partly supported by Austrian Science Fund (FWF) Grant No P23499- N23,
FWF NFEN Grant No S11407-N23 (RiSE), ERC Start grant (279307: Graph Games), Microsoft
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Perfect vs Partial Observation. Many results about games on graphs make the hypoth-
esis of perfect observation (i.e., players have perfect or complete observation about the
state of the game). In this setting, due to determinacy (or switching of the strategy quan-
tifiers for existential and universal players) [17], the questions expressed by an arbitrary
alternation of quantifiers reduce to a single alternation, and thus are equivalent to solv-
ing two-player games (all the existential players against all the universal players). How-
ever, the assumption of perfect observation is often not realistic in practice. For example
in the control of physical systems, digital sensors with finite precision provide partial
information to the controller about the system state [12,14]. Similarly, in a concurrent
system the modules expose partial interfaces and have access to the public variables of
the other processes, but not to their private variables [25,2]. Such situations are better
modeled in the more general framework of partial-observation games [24,25,26].

Partial-Observation Games. Since partial-observation games are not determined, un-
like the perfect-observation setting, the multi-player game problems do not reduce to the
case of two-player games. Typically, multi-player partial-observation games are stud-
ied in the following setting: a set of partial-observation existential players, against a
perfect-observation universal player, such as for distributed synthesis [21,13,23]. The
problem of deciding if the existential players can ensure a reachability (or a safety) ob-
jective is undecidable in general, even for two existential players [20,21]. However, if
the information of the existential players form a chain (i.e., existential player 1 more
informed than existential player 2, existential player 2 more informed than existential
player 3, and so on), then the problem is decidable [21,16,18].

Games with a Weak Adversary. One aspect of multi-player games that has been
largely ignored is the presence of weaker universal players that do not have perfect
observation. However, it is natural in the analysis of composite reactive systems that
some universal players represent components that do not have access to all variables of
the system. In this work we consider games where adversarial players can have partial
observation. If there are two existential (resp., two universal) players with incompara-
ble partial observation, then the undecidability results follows from [20,21]; and if the
information of the existential (resp., universal) players form a chain, then they can be
reduced to one partial-observation existential (resp., universal) player. We consider the
following case of partial-observation games: one partial-observation existential player
(player 1), one partial-observation universal player (player 2), one perfect-observation
existential player (player 3), and one perfect-observation universal player (player 4).
Roughly, having more partial-observation players in general leads to undecidability,
and having more perfect-observation players reduces to two perfect-observation play-
ers. We first present our results and then discuss two applications of the model.

Results. Our main results are as follows:

1. Player 1 less informed. We first consider the case when player 1 is less informed
than player 2. We establish the following results: (¢) a 2-EXPTIME upper bound
for parity objectives and a 2-EXPTIME lower bound for reachability objectives
(i.e., we establish 2-EXPTIME-completeness); (i) an EXPSPACE upper bound for
parity objectives when player 1 is blind (has only one observation), and EXPSPACE
lower bound for reachability objectives even when both player 1 and player 2 are
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Table 1. Complexity of qualitative analysis (almost-sure winning) for partial-observation stochas-
tic games with partial observation for player 1 with reachability and parity objectives. Player 2 has
either perfect observation or more information than player 1(new results boldfaced). For positive
winning, all entries other than the first (randomized strategies for player 1 and perfect observa-
tion for player 2) remain the same, and the complexity for the first entry for positive winning is
PTIME-complete.

Reachability Parity Parity
Player 2 Finite- or infinite-memory strategies Infinite-memory strategies  Finite-memory strategies
m Perfect More informed Perfect More informed Perfect More informed
Randomized EXP-c [9] EXP-c [4] Undec. [3,8] Undec. [3,8] EXP-c [10] 2EXP
Pure EXP-c [7] 2EXP-¢ Undec. [3] Undec. [3] EXP-c[10] 2EXP-c

blind. In all these cases, if the objective can be ensured then the upper bound on
memory requirement of winning strategies is at most doubly exponential.

2. Player 1 more informed. We consider the case when player 1 can be more informed
as compared to player 2, and show that even when player 1 has perfect observa-
tion there is a non-elementary lower bound on the memory required by winning
strategies. This result is also in sharp contrast with distributed games, where if only
one player has partial observation then the upper bound on memory of winning
strategies is exponential.

Applications. We discuss two applications of our results: the sequential synthesis prob-
lem, and new complexity results for partial-observation stochastic games.

1. The sequential synthesis problem consists of a set of partially implemented mod-
ules, where first a set of modules needs to be refined, followed by a refinement of
some modules by an external source, and then the remaining modules are refined so
that the composite open reactive system satisfies a specification. Given the first two
refinements cannot access all private variables, we have a four-player game where
the first refinement corresponds to player 1, the second refinement to player 2, the
third refinement to player 3, and player 4 is the environment.

2. In partial-observation stochastic games, there are two partial-observation players
(one existential and one universal) playing in the presence of uncertainty in the tran-
sition function (i.e., stochastic transition function). The qualitative analysis ques-
tion is to decide the existence of a strategy for the existential player to ensure the
parity objective with probability 1 (or with positive probability) against all strate-
gies of the universal player. The witness strategy can be randomized or determin-
istic (pure). While the qualitative problem is undecidable, the practically relevant
restriction to finite-memory pure strategies reduces to the four-player game prob-
lem. Moreover, for finite-memory strategies, the decision problem for randomized
strategies reduces to the pure-strategy question [7]. By the results we establish in
this paper, new decidability and complexity results are obtained for the qualitative
analysis of partial-observation stochastic games with player 2 partially informed but
more informed than player 1. The complexity results for almost-sure winning are
summarized in Table 1. Surprisingly for reachability objectives, whether player 2 is
perfectly informed or more informed than player 1 does not change the complexity
for randomized strategies, but it results in an exponential increase in the complexity
for pure strategies.
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2 Definitions

We first consider three-player (non-stochastic) games with parity objectives and we
establish new complexity results in Section 3 that we later extend to four-player games
in Section 5. We also present the related model of two-player stochastic games for
which our contribution implies new complexity results.

Three-player games. Given alphabets A; of actions for player ¢ (i = 1,2, 3), a three-
player game is a tuple G = (Q, qo, 0) where:
— (@ is afinite set of states with ¢o € @ the initial state; and
-0:Q x A1 x Ay x A3 — (@ is a deterministic transition function that, given a
current state ¢, and actions a; € Aj, as € As, ag € Az of the players, gives the
successor state ¢’ = (g, a1, az, as).
The games we consider are sometimes called concurrent because all three players need
to choose simultaneously an action to determine a successor state. The special class
of turn-based games corresponds to the case where in every state, one player has the
turn and his sole action determines the successor state. In our framework, a turn-based
state for player 1 is a state ¢ € @ such that 6(q, a1, a2,a3) = §(q,a1,ay,a}) for all
ay € Ay, ag,ah, € Ag, and as,a}y € As. We define analogously turn-based states for
player 2 and player 3. A game is turn-based if every state of G is turn-based (for some
player). The class of two-player games is obtained when Aj is a singleton. In a game G,
given s C Q, a; € Ay, az € Ag, let post(s,ay,a2,—) ={¢ € Q| 3¢ € s-Jaz €
As: ¢ =0(q,a1,a2,a3)}.

Observations. For i = 1,2,3, a set O; C 29 of observations (for player i) is a
partition of @ (i.e., O; is a set of non-empty and non-overlapping subsets of (), and
their union covers Q). Let obs; : @ — O; be the function that assigns to each state
g € @ the (unique) observation for player 7 that contains g, i.e. such that ¢ € obs;(q).
The functions obs; are extended to sequences p = qq...q, of states in the natu-
ral way, namely obs;(p) = obs;(qo)...obs;(¢g,). We say that player ¢ is blind if
O; = {Q}, that is player 7 has only one observation; player i has perfect informa-
tion if O; = {{q} | ¢ € Q}, that is player ¢ can distinguish each state; and player 1 is
less informed than player 2 (we also say player 2 is more informed) if for all 0 € O-,
there exists 01 € 7 such that 05 C 07.

Strategies. For i = 1,2,3, let XJ; be the set of strategies o; : (’)j — A; of player ¢
that, given a sequence of past observations, give an action for player 7. Equivalently,
we sometimes view a strategy of player ¢ as a function o; : Q+ — A, satisfying
ai(p) = oi(p') for all p,p’ € QT such that obs;(p) = obs;(p’), and say that o; is
observation-based.

Outcome. Given strategies o; € X; (1 = 1,2, 3) in G, the outcome play from a state g
is the infinite sequence pgolv‘”‘”‘” = qoq1 - - - such that for all j > 0, we have g1 =

5(qj,a{,a%,a§;) where a] = 0;(qo ... ¢q;) (fori =1,2,3).
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Objectives. An objective is a set « C Q“ of infinite sequences of states. A play p satis-
fies the objective a if p € a. An objective « is visible for player ¢ if for all p, p’ € Q¥,
if p € avand obs;(p) = obs;(p’), then p’ € a.. We consider the following objectives:

— Reachability. Given a set 7 C (@ of target states, the reachability objective
Reach(T') requires that a state in 7 be visited at least once, that is, Reach(7") =
{p=qoq1---|Fk>0:qr €T}

— Safety.Givenaset T C (@ of target states, the safety objective Safe(T) requires that
only states in 7 be visited, that is, Safe(7) = {p =qoq1--- | Vk > 0:qx € T}.

— Parity. For a play p = goq1 ... we denote by Inf(p) the set of states that occur
infinitely often in p, that is, Inf(p) = {¢ € Q | Yk > 0-3In > k : g, = q}. For
deNletp: @ — {0,1,...,d} be a priority function, which maps each state
to a nonnegative integer priority. The parity objective Parity(p) requires that the
minimum priority occurring infinitely often be even. Formally, Parity(p) = {p |
min{p(q) | ¢ € Inf(p)} is even}. Parity objectives are a canonical way to express
w-regular objectives [27]. If the priority function is constant over observations of
player i, that is for all observations v € O; we have p(q) = p(¢’) forall ¢, ¢’ € 7,
then the parity objective Parity(p) is visible for player i.

Decision problem. Given a game G = (Q), qo, d) and an objective @ C Q¥, the three-

player decision problem is to decide if 3o € Y1 -Vog € Yy-dog € V3 : pgg"”"’?’ € a.
The results for the three-player decision problem have implications for decision

problems on partial-observation stochastic games that we formally define below.

Two-player partial-observation stochastic games. Given alphabet A; of actions, and set
O; of observations (for player i € {1,2}), a two-player partial-observation stochastic
game (for brevity, two-player stochastic game) is a tuple G = (Q, qo, ) where @ is
a finite set of states, gy € @ is the initial state, and § : @ X A; x Ay — D(Q) is
a probabilistic transition where D(Q) is the set of probability distributions x : Q@ —
[0,1] on @, such that 3 ° , x(g) = 1. Given a current state ¢ and actions a, b for the
players, the transition probability to a successor state ¢’ is d(g, a, b)(¢q’). Observation-
based strategies are defined as for three-player games. An outcome play from a state
qo under strategies o1, 09 is an infinite sequence p = o agbg ¢ - - . such that a; =
0'1(g0 . Qi), bi = 0’2(qO . Qi)a and 5(Qi7ai, bi)(qH_l) > 0 for all 7 > 0.

Qualitative analysis. Given an objective « that is Borel measurable (all Borel sets in
the Cantor topology and all objectives considered in this paper are measurable [15]), a
strategy o1 for player 1 is almost-sure winning (resp., positive winning) for the objective
a from g if for all observation-based strategies o5 for player 2, we have Prg 7 () =1
(resp., Pry»7*(a) > 0) where Prg*?*(:) is the unique probability measure induced
by the natural probability measure on finite prefixes of plays (i.e., the product of the

transition probabilities in the prefix).

3 Three-Player Games with Player 1 Less Informed

We consider the three-player (non-stochastic) games defined in Section 2. We show that
for reachability and parity objectives the three-player decision problem is decidable
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when player 1 is less informed than player 2. The problem is EXPSPACE-complete
when player 1 is blind, and 2-EXPTIME-complete in general.

Remark 1. Observe that once the strategies of the first two players are fixed we obtain a
graph, and in graphs perfect-information coincides with blind for construction of a path
(see [6, Lemma 2] that counting strategies that count the number of steps are sufficient
which can be ensured by a player with no information). Hence without loss of generality
we consider that player 3 has perfect observation, and drop the observation for player 3.

Theorem 1 (Upper Bounds). Given a three-player game G = (Q, qo, §) with player 1
less informed than player 2 and a parity objective o, the problem of deciding whether
Jdoy € Xy Voo € XYy - Jog € XYy @ p21:92:93 € « can be solved in 2-EXPTIME. If

q0

player 1 is blind, then the problem can be solved in EXPSPACE.

Proof. The proof is by a reduction of the decision problem for three-player games to
a decision problem for partial-observation two-player games with the same objective.
We present the reduction for parity objectives that are visible for player 2 (defined by
priority functions that are constant over observations of player 2). The general case
of not necessarily visible parity objectives can be solved using a reduction to visible
objectives, as in [6, Section 3].

Given a three-player game G = (Q, qo, ) over alphabet of actions A; (i = 1,2, 3),
and observations Oy, O, C 29 for player 1 and player 2, with player 1 less informed
than player 2, we construct a two-player game H = (Qp,{qo},dm) over alphabet of
actions A’ (i = 1,2), and observations O} C 294 and perfect observation for player 2,
where (intuitive explanations follow):

- Qu={5€29|5# N30 € 0y:5C 02};

- All = Al X (2Q X A2 — 02), andA’Q = Az;

-0, ={{s€Qu|sCo}|o €O} andletobs; : Qg — O] be the
corresponding observation function;

- 0u(s, (a1, f),az) = post©(s,ay, as, —) N f(s,az2).

Intuitively, the state space @ is the set of knowledges of player 2 about the current
state in G, i.e., the sets of states compatible with an observation of player 2. Along a
play in H, the knowledge of player 2 is updated to represent the set of possible current
states in which the game G can be. In H player 2 has perfect observation and the role
of player 1 in the game H is to simulate the actions of both player 1 and player 3 in
G. Since player 2 fixes his strategy before player 3 in G, the simulation should not let
player 2 know player-3’s action, but only the observation that player 2 will actually see
while playing the game. The actions of player 1 in H are pairs (a1, f) € A} where
ay is a simple action of player 1 in G, and f gives the observation f (s, az) received by
player 2 after the response of player 3 to the action ag of player 2 when the knowledge of
player 2 is s. In H, player 1 has partial observation, as he cannot distinguish knowledges
of player 2 that belong to the same observation of player 1 in G. The transition relation
updates the knowledges of player 2 as expected. Note that |O;| = |O}], and therefore
if player 1 is blind in G then he is blind in H as well.

Given a visible parity objective & = Parity(p) where p : @ — {0,1,...,d} is
constant over observations of player 2, let o' = Parity(p’) where p’(s) = p(q) for all
g € sand s € Qg. Note that the function p’ is well defined since s is a subset of an
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observation of player 2 and thus p(q) = p(¢’) for all ¢,¢' € s. However, the parity
objective o = Parity(p’) may not be visible to player 1 in G. We establish that given
witness strategies in G we can construct witness strategies in H and vice-versa, and the
details of the strategy constructions are presented in [1]. O

Theorem 2 (Lower Bounds). Given a three-player game G = (Q, qo, §) with player 1
less informed than player 2 and a reachability objective «, the problem of deciding
whether doq € X1 - Vog € X9 -dog € X3 : pgg"”"” € « is 2-EXPTIME-hard. If
player 1 is blind (and even when player 2 is also blind), then the problem is EXPSPACE-
hard.

Proof. The proof of 2-EXPTIME-hardness is obtained by a polynomial-time reduc-
tion of the membership problem for exponential-space alternating Turing machines to
the three-player problem. The same reduction for the special case of exponential-space
nondeterministic Turing machines shows EXPSPACE-hardness when player 1 is blind
(because our reduction yields a game in which player 1 is blind when we start from
a nondeterministic Turing machine). The membership problem for Turing machines is
to decide, given a Turing machine M and a finite word w, whether M accepts w. The
membership problem is 2-EXPTIME-complete for exponential-space alternating Tur-
ing machines, and EXPSPACE-complete for exponential-space nondeterministic Tur-
ing machines [19].

An alternating Turing machine is a tuple M = (Qv,Qn, X, I, A, qo, Gace, Gre;)
where the state space Q) = @\ U QA consists of the set )\, of or-states, and the set ) 5
of and-states. The input alphabet is X, the tape alphabetis I' = X U{#} where # is the
blank symbol. The initial state is gy, the accepting state is qq¢., and the rejecting state
is gre;. The transition relationis A C Q x I' x Q x I' x {—1, 1}, where a transition
(¢,7,4',7,d) € A intuitively means that, given the machine is in state ¢, and the
symbol under the tape head is -, the machine can move to state ¢’, replace the symbol
under the tape head by +/, and move the tape head to the neighbor cell in direction d.
A configuration ¢ of M is a sequence ¢ € (I" U (@ x I'))“ with exactly one symbol in
Q@ x I, which indicates the current state of the machine and the position of the tape head.
The initial configuration of M onw = agay . .. ay, isco = (qo,a0) a1-ag - Qp - #.
Given the initial configuration of M on w, it is routine to define the execution trees of
M where at least one successor of each configuration in an or-state, and all successors
of the configurations in an and-state are present (and we assume that all branches reach
either gqcc Or ¢re;), and to say that M accepts w if all branches of some execution tree
reach gqcc. Note that Q5 = @ for nondeterministic Turing machines, and in that case
the execution tree reduces to a single path. A Turing machine M uses exponential space
if for all words w, all configurations in the execution of M on w contain at most 20(wl)
non-blank symbols.

We present the key steps of our reduction from alternating Turing machines. Given
a Turing machine M and a word w, we construct a three-player game with reachabil-
ity objective in which player 1 and player 2 have to simulate the execution of M on
w, and player 1 has to announce the successive configurations and transitions of the
machine along the execution. Player 1 announces configurations one symbol at a time,
thus the alphabet of player 1 is Ay = I' U (Q x I') U A. In an initialization phase,
the transition relation of the game forces player 1 to announce the initial configuration
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¢p (this can be done with O(n) states in the game, where n = |w|). Then, the game
proceeds to a loop where player 1 keeps announcing symbols of configurations. At all
times along the execution, some finite information is stored in the finite state space of
the game: a window of the last three symbols z;, zo, z3 announced by player 1, as well
as the last symbol head € ) x " announced by player 1 (that indicates the current ma-
chine state and the position of the tape head). After the initialization phase, we should
have z; = z3 = z3 = # and head = (qo, ap). When player 1 has announced a full
configuration, he moves to a state of the game where either player 1 or player 2 has
to announce a transition of the machine: for head = (p, a), if p € Qv, then player 1
chooses the next transition, and if p € @A, then player 2 chooses. Note that the tran-
sitions chosen by player 2 are visible to player 1 and this is the only information that
player 1 observes. Hence player 1 is less informed than player 2, and both player 1 and
player 2 are blind when the machine is nondeterministic. If a transition (¢,7,¢’, 7', d)
is chosen by player 4, and either p # g or a # -, then player 7 loses (i.e., a sink state is
reached to let player 1 lose, and the target state of the reachability objective is reached
to let player 2 lose). If at some point player 1 announces a symbol (p, a) with p = gacc,
then player 1 wins the game.

The role of player 2 is to check that player 1 faithfully simulates the execution of
the Turing machine, and correctly announces the configurations. After every announce-
ment of a symbol by player 1, the game offers the possibility to player 2 to compare
this symbol with the symbol at the same position in the next configuration. We say that
player 2 checks (and whether player 2 checks or not is not visible to player 1), and
the checked symbol is stored as zo. Note that player 2 can be blind to check because
player 2 fixes his strategy after player 1. The window z;, zs, z3 stored in the state space
of the game provides enough information to update the middle cell z5 in the next con-
figuration, and it allows the game to verify the check of player 2. However, the distance
(in number of steps) between the same position in two consecutive configurations is
exponential (say 2" for simplicity), and the state space of the game is not large enough
to check that such a distance exists between the two symbols compared by player 2. We
use player 3 to check that player 2 makes a comparison at the correct position. When
player 2 decides to check, he has to count from O to 2" by announcing after every sym-
bol of player 1 a sequence of n bits, initially all zeros (again, this can be enforced by
the structure of the game with O(n) states). It is then the responsibility of player 3 to
check that player 2 counts correctly. To check this, player 3 can at any time choose a
bit position p € {0,...,n — 1} and store the bit value b, announced by player 2 at
position p. The value of b, and p is not visible to player 2. While player 2 announces
the bits b,11,...,b,—1 at position p + 1,...,n — 1, the finite state of the game is used
to flip the value of b,, if all bits b, 1, ..., b,—1 are equal to 1, hence updating b,, to the
value of the p-th bit in what should be the next announcement of player 2. In the next
bit sequence announced by player 2, the p-th bit is compared with b,,. If they match,
then the game goes to a sink state (as player 2 has faithfully counted), and if they differ
then the game goes to the target state (as player 2 is caught cheating). It can be shown
that this can be enforced by the structure of the game with O(n?) states, that is O(n)
states for each value of p. As before, whether player 3 checks or not is not visible to
player 2.
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Note that the checks of player 2 and player 3 are one-shot: the game will be over
(either in a sink or target state) when the check is finished. This is enough to ensure a
faithful simulation by player 1, and a faithful counting by player 2, because (1) partial
observation allows to hide to a player the time when a check occurs, and (2) player 2
fixes his strategy after player 1 (and player 3 after player 2), thus they can decide to run
a check exactly when player 1 (or player 2) is not faithful. This ensures that player 1
does not win if he does not simulate the execution of M on w, and that player 2 does
not win if he does not count correctly.

Hence this reduction ensures that M accepts w if and only if the answer to the three-
player game problem is YES, where the reachability objective is satisfied if player 1
eventually announces that the machine has reached ¢, (that is if M accepts w), or if
player 2 cheats in counting, which can be detected by player 3. a

4 Three-Player Games with Player 1 Perfect

When player 2 is less informed than player 1, we show that three-player games get much
more complicated (even in the special case where player 1 has perfect information). We
note that for reachability objectives, the three-player decision problem is equivalent
to the qualitative analysis of positive winning in two-player stochastic games, and we
show that the techniques developed in the analysis of two-player stochastic games can
be extended to solve the three-player decision problem with safety objectives as well.
For reachability objectives, the three-player decision problem is equivalent to the
problem of positive winning in two-player stochastic games where the third player is
replaced by a probabilistic choice over the action set with uniform probability. Intu-
itively, after player 1 and player 2 fixed their strategy, the fact that player 3 can con-
struct a (finite) path to the target set is equivalent to the fact that such a path has positive
probability when the choices of player 3 are replaced by uniform probabilistic transi-
tions. Given a three-player game G = (Q, qo, 9), let Uniform(G) = (Q, qo, ¢’) be the
two-player partial-observation stochastic game (with same state space, action sets, and

observations for player 1 and player 2) where §'(gq, a1,a2)(¢') = Haslé(q’a&?%):q /|

foralla; € A1, as € Ag,and q, ¢’ € Q. Formally, the equivalence result is presented in
Lemma 1, and the equivalence holds for all three-player games (not restricted to three-
player games where player 1 has perfect information). However, we will use Lemma 1
to establish results for three-player games where player 1 has perfect information.

Lemma 1. Given a three-player game G and a reachability objective «, the answer to
the three-player decision problem for (G, «) is YES if and only if player 1 is positive
winning for « in the two-player partial-observation stochastic game Uniform(G).

Reachability objectives. Even in the special case where player 1 has perfect informa-
tion, and for reachability objectives, non-elementary memory is necessary in general for
player 1 to win in three-player games. This result follows from Lemma 1 and from the
result of [7, Example 4.2 Journal version] showing that non-elementary memory is nec-
essary to win with positive probability in two-player stochastic games. It also follows
from Lemma 1 and the result of [7, Corollary 4.9 Journal version] that the three-player
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decision problem for reachability games is decidable. The decidability result can be
extended to safety objectives [1].

Theorem 3. When player I has perfect information, the three-player decision problem
is decidable for both reachability and safety games, and for reachability games memory
of size non-elementary is necessary in general for player 1.

5 Four-Player Games

We show that the results presented for three-player games extend to games with four
players (the fourth player is universal and perfectly informed). The definition of four-
player games and related notions is a straightforward extension of Section 2.

In a four-player game with player 1 less informed than player 2, and perfect infor-
mation for both player 3 and player 4, consider the four-player decision problem which
is to decide if doq € X - Vog € Yy - dog € Y3 Vo, € Xy - pgg,02,03,04 € «
for a parity objective « (also see [1, Remark 2] for further discussion). Since player 3
and player 4 have perfect information, we assume without loss of generality that the
game is turn-based for them, that is there is a partition of the state space @ into two
sets Q3 and (@4 (Where Q = (Y3 U Q4) such that the transition function is the union of
03: Q3 x A1 X Ag x Az — Qand 04 : Q4 X A1 X Ay X Ay — Q. Strategies and out-
comes are defined analogously to three-player games. A strategy of player i € {3,4} is
of the form o; : Q* - Q; — A;.

We present a polynomial reduction of the problem for four-player games to solv-
ing a three-player game with the first player less informed than the second player [1].
Hardness follows from the special case of three-player games.

Theorem 4. The four-player decision problem with player 1 less informed than
player 2, and perfect information for both player 3 and player 4 is 2-EXPTIME-
complete for parity objectives.

6 Applications

We now discuss applications of our results in the context of synthesis and qualitative
analysis of two-player partial-observation stochastic games.

Sequential Synthesis. The sequential synthesis problem consists of an open sys-
tem of partially implemented modules (with possible non-determinism or choices)
My, Mo, ..., M, that need to be refined (i.e., the choices determined by strategies) such
that the composite system after refinement satisfy a specification. The system is open
in the sense that after the refinement the composite system is reactive and interact with
an environment. Consider the problem where first a set M1, ..., M} of modules are re-
fined, then a set M1, ..., My are refined by an external implementor, and finally the
remaining set of modules are refined. In other words, the modules are refined sequen-
tially: first a set of modules whose refinement can be controlled, then a set of modules
whose refinement cannot be controlled as they are implemented externally, and finally
the remaining set of modules. If the refinements of modules M, ..., M, do not have
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access to private variables of the remaining modules we obtain a partial-observation
game with four players: the first (existential) player corresponds to the refinement of
modules My, ..., My, the second (universal) player corresponds to the refinement of
modules My1, ..., My, the third (existential) player corresponds to the refinement
of the remaining modules, and the fourth (adversarial) player is the environment. If the
second player has access to all the variables visible to the first player, then player 1 is
less informed.

Two-Player Partial-observation Stochastic Games. Our results for four-player games
imply new complexity results for two-player stochastic games. For qualitative anal-
ysis (positive and almost-sure winning) under finite-memory strategies for the play-
ers the following reduction has been established in [10, Lemma 1] (see Lemma 2.1
of the arxiv version): the probabilistic transition function can be replaced by a turn-
based gadget consisting of two perfect-observation players, one angelic (existential)
and one demonic (universal). The turn-based gadget is the same as used for perfect-
observation stochastic games [5,11]. In [10], only the special case of perfect observa-
tion for player 2 was considered, and hence the problem reduced to three-player games
where only player 1 has partial observation and the other two players have perfect obser-
vation. In case where player 2 has partial observation, the reduction of [10] requires two
perfect-observation players, and gives the problem of four-player games (with perfect
observation for player 3 and player 4). Hence when player 1 is less informed, we obtain
a 2-EXPTIME upper bound from Theorem 4, and obtain a 2-EXPTIME lower bound
from Theorem 2 and Lemma 1 (see [1] for lower bound for almost-sure winning). Thus
we obtain the following result.

Theorem 5. The qualitative analysis problems (almost-sure and positive winning)
for two-player partial-observation stochastic parity games where player 1 is less in-
formed than player 2, under finite-memory strategies for both players, are 2-EXPTIME-
complete.

Remark 2. Note that the lower bounds for Theorem 5 are established for reachability
objectives. Moreover, it was shown in [7, Section 5] that for qualitative analysis of two-
player partial-observation stochastic games with reachability objectives, finite-memory
strategies suffice, i.e., if there is a strategy to ensure almost-sure (resp., positive) win-
ning, then there is a finite-memory strategy. Thus the results of Theorem 5 hold for
reachability objectives even without the restriction of finite-memory strategies, and it
extends the result of [7, Theorem 1] which showed EXPTIME-completeness for reach-
ability objectives when player 2 has perfect observation.
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The Complexity of Ergodic Mean-payoff Games *f

Krishnendu Chatterjee and Rasmus Ibsen-Jensen

IST Austria

Abstract. We study two-player (zero-sum) concurrent mean-payoff games
played on a finite-state graph. We focus on the important sub-class of ergodic
games where all states are visited infinitely often with probability 1. The algorith-
mic study of ergodic games was initiated in a seminal work of Hoffman and Karp
in 1966, but all basic complexity questions have remained unresolved. Our main
results for ergodic games are as follows: We establish (1) an optimal exponential
bound on the patience of stationary strategies (where patience of a distribution
is the inverse of the smallest positive probability and represents a complexity
measure of a stationary strategy); (2) the approximation problem lies in FNP;
(3) the approximation problem is at least as hard as the decision problem for
simple stochastic games (for which NP N coNP is the long-standing best known
bound). We present a variant of the strategy-iteration algorithm by Hoffman and
Karp; show that both our algorithm and the classical value-iteration algorithm
can approximate the value in exponential time; and identify a subclass where
the value-iteration algorithm is a FPTAS. We also show that the exact value can
be expressed in the existential theory of the reals, and establish square-root sum
hardness for a related class of games.

1 Introduction

Concurrent Games. Concurrent games are played over finite-state graphs by two play-
ers (Player 1 and Player 2) for an infinite number of rounds. In every round, both players
simultaneously choose moves (or actions), and the current state and the joint moves de-
termine a probability distribution over the successor states. The outcome of the game
(or a play) is an infinite sequence of states and action pairs. Concurrent games were
introduced in a seminal work by Shapley [21], and they are the most well-studied game
models in stochastic graph games, with many important special cases.

Mean-payoff (Limit-average) Objectives. The most fundamental objective for con-
current games is the limit-average (or mean-payoff) objective, where a reward is asso-
ciated to every transition and the payoff of a play is the limit-inferior (or limit-superior)
average of the rewards of the play. The original work of Shapley [21] considered dis-
counted sum objectives (or games that stop with probability 1); and the class of con-
current games with limit-average objectives (or games that have zero stop probabilities)
was introduced by Gillette in [14]. The Player-1 value val(s) of the game at a state s is
the supremum value of the expectation that Player 1 can guarantee for the limit-average
objective against all strategies of Player 2. The games are zero-sum, so the objective of

* The research was partly supported by FWF Grant No P 23499-N23, FWF NFN Grant No
S11407-N23 (RiSE), ERC Start grant (279307: Graph Games), and Microsoft faculty fellows
award.
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Player 2 is the opposite. The study of concurrent mean-payoff games and its sub-classes
have received huge attention over the last decades, both for mathematical results as well
as algorithmic studies. Some key celebrated results are as follows: (1) the existence of
values (or determinacy or equivalence of switching of strategy quantifiers for the play-
ers as in von-Neumann’s min-max theorem) for concurrent discounted games was es-
tablished in [21]; (2) the existence of values for the celebrated game of Big-Match was
established in [4]; and (3) developing on the results of [4] and on Puiseux series [3] the
existence of values for concurrent mean-payoff games was established in [19].

Sub-classes. The general class of concurrent mean-payoff games is notoriously diffi-
cult for algorithmic analysis. The current best known solution for general concurrent
mean-payoff games is achieved by a reduction to the theory of the reals over addition
and multiplication with three quantifier alternations [7] (also see [16] for a better reduc-
tion for constant state spaces). The strategies that are required in general for concurrent
mean-payoff games are infinite-memory strategies that depend in a complex way on the
history of the game [19,4], and analysis of such strategies make the algorithmic study
complicated. Hence several sub-classes of concurrent mean-payoff games have been
studied algorithmically both in terms of restrictions of the graph structure and restric-
tions of the objective. The three prominent restrictions in terms of the graph structure
are as follows: (1) Ergodic games (aka irreducible games) where every state is visited
infinitely often almost-surely. (2) Turn-based stochastic games, where in each state at
most one player can choose between multiple moves. (3) Deterministic games, where
the transition functions are deterministic. The most well-studied restriction in terms of
objective is the reachability objectives. A reachability objective consists of a set U of
terminal states (absorbing or sink states that are states with only self-loops), such that
the set U is exactly the set of states where out-going transitions are assigned reward 1
and all other transitions are assigned reward 0. For all these sub-classes, except de-
terministic mean-payoff games (that is ergodic mean-payoff games, concurrent reach-
ability games, and turn-based stochastic mean-payoff games) stationary strategies are
sufficient, where a stationary strategy is independent of the past history of the game and
depends only on the current state.

An Example. Consider the ergodic mean-payoff ) 2

game shown in Figure 1. All transitions other than 5. /) B

the dashed edges have probability 1, and each s+ fe /\\\f t:
dashed edge has probability 1/2. The transitions ar) - 2

are annotated with the rewards. The stationary op- @2

2
timal strategy for both players is to play the first b\\—_//
2

action (a1 and by for Player 1 and Player 2, re- by 1

spectively) with probability 4 — 2 - v/3 in state s,
and this ensures that the value is v/3.

Fig. 1. Example game GG

Previous Results. The decision problem of

whether the value of the game at a state is at least a given threshold for turn-based
stochastic reachability games (and also turn-based mean-payoff games with determin-
istic transition function) lie in NP N cONP [8,23]. They are among the rare and intrigu-
ing combinatorial problems that lie in NP N coNP, but not known to be in PTIME.
The existence of polynomial-time algorithms for the above decision questions are long-
standing open problems. The algorithmic solution for turn-based games that is most
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efficient in practice is the strategy-iteration algorithm, where the algorithm iterates over
local improvement of strategies which is then established to converge to a globally opti-
mal strategy. For ergodic games, Hoffman and Karp [17] presented a strategy-iteration
algorithm and established that stationary strategies are sufficient. For concurrent reach-
ability games, again stationary strategies are sufficient (for e-optimal strategies, for all
€ > 0) [12,9]; the decision problem is in PSPACE and square-root sum hard [10].

Key Intriguing Complexity Questions. There are several key intriguing open questions
related to the complexity of the various sub-classes of concurrent mean-payoff games.
Some of them are: (1) Does there exist a sub-class of concurrent mean-payoff games
where the approximation problem is simpler than the exact decision problem, e.g., the
decision problem is square-root sum hard, but the approximation problem can be solved
in FNP? (2) There is no convergence result associated with the two classical algorithms,
namely the strategy-iteration algorithm [17], and the value-iteration algorithm, for er-
godic games; and is it possible to establish convergence for them for approximating the
values. (3) The complexity of a stationary strategy is described by its patience which is
the inverse of the minimum non-zero probability assigned to a move [12], and no bound
is known for the patience of stationary strategies for ergodic games.

Our Results. The study of the ergodic games was initiated in the seminal work of Hoff-
man and Karp [17], and most of the complexity questions (related to computational-
, strategy-, and algorithmic-complexity) have remained open. In this work we focus
on the complexity of simple generalizations of ergodic games (that subsume ergodic
games). Ergodic games form a very important sub-class of concurrent games subsum-
ing the special cases of uni-chain Markov decision processes and uni-chain turn-based
stochastic games (that have been studied in great depth in the literature with numer-
ous applications, see [13,20]). We consider generalizations of ergodic games called
sure ergodic games where all plays are guaranteed to reach an ergodic component (a
sub-game that is ergodic); and almost-sure ergodic games where with probability 1 an
ergodic component is reached. Every ergodic game is sure ergodic, and every sure er-
godic game is almost-sure ergodic. Intuitively the generalizations allow us to consider
that after a finite prefix an ergodic component is reached.

1. (Strategy and approximation complexity). We show that for almost-sure ergodic
games the optimal bound on patience required for e-optimal stationary strategies,
for e > 0, is exponential (we establish the upper bound for almost-sure ergodic
games, and the lower bound for ergodic games). We then show that the approxi-
mation problem for furn-based stochastic ergodic mean-payoff games is at least as
hard as solving the decision problem for turn-based stochastic reachability games
(aka simple stochastic games); and finally show that the approximation problem be-
longs to FNP for almost-sure ergodic games. Observe that our results imply that im-
proving our FNP-bound for the approximation problem to polynomial time would
require solving the long-standing open question of whether the decision problem
of turn-based stochastic reachability games can be solved in polynomial time.

2. (Algorithm). We present a variant of the Hoffman-Karp algorithm and show that
for all e-approximation (for ¢ > 0) our algorithm converges with in exponential
number of iterations for almost-sure ergodic games. We analyze the value-iteration
algorithm for ergodic games and show that for all € > 0, the value-iteration algo-
rithm requires at most O(H - W - e~ ! - log(e™!)) iterations, where H is the upper
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bound on the expected hitting time of state pairs that Player 1 can ensure and W is
the maximal reward value. We show that H is at most 7 - (dynin) ", where n is the
number of states of the game, and d,,;,, the smallest positive transition probability.
Thus our result establishes an exponential upper bound for the value-iteration al-
gorithm for approximation. This result is in sharp contrast to concurrent reachabil-
ity games where the value-iteration algorithm requires double exponentially many
steps [15]. Observe that we have a polynomial-time approximation scheme if H is
polynomial and the numbers W and ¢ are represented in unary. Thus we identify a
subclass of ergodic games where the value-iteration algorithm is polynomial (see
Remark 2 for further details).

3. (Complexity of the decision problem for the exact value). We show that the exact
decision problem for almost-sure ergodic games can be expressed in the existen-
tial theory of the reals (in contrast to general concurrent mean-payoff games where
quantifier alternations are required). Finally, we show that the exact decision prob-
lem for sure ergodic games is square-root sum hard.

Technical Contribution and Remarks. Our main result is establishing the opti-
mal bound of exponential patience for e-optimal stationary strategies, for e > 0,
in almost-sure ergodic games. Our result is in sharp contrast to the optimal bound
of double-exponential patience for concurrent reachability games [15], and also the
double-exponential iterations required by the strategy-iteration and the value-iteration al-
gorithms for concurrent reachability games [15]. Our upper bound on the exponential pa-
tience is achieved by a coupling argument. While coupling argument is a well-established
tool in probability theory, to the best of our knowledge the argument has not been used for
concurrent mean-payoff games before. Our lower bound example constructs a family of
ergodic mean-payoff games where exponential patience is required. Our results provide
a complete picture for almost-sure and sure ergodic games (subsuming ergodic games)
in terms of strategy-, computational-, and algorithmic-complexity; and present answers
to some of the key intriguing open questions related to the computational complexity of
concurrent mean-payoff games.

Comparison with Results for Shapley Games. For Shapley (concurrent discounted)
games, the exact decision problem is square-root sum hard [11], and the fact that the
approximation problem is in FNP is straight-forward to prove (for details, see [18,
Lemma 6, Section 1.10]). The more interesting and challenging question is whether the
approximation problem can be solved in PPAD. The PPAD complexity for the approx-
imation problem for Shapley games was established in [11]; and the PPAD complexity
arguments use the existence of unique (Banach) fixpoint (due to contraction mapping)
and the fact that weak approximation implies strong approximation. A PPAD com-
plexity result for the class of ergodic games (in particular, whether weak approximation
implies strong approximation) is a subject for future work. Another interesting direction
of future work would be to extend our results for concurrent games where the values of
all states are very close together; and for this class of games existence of near optimal
stationary strategies was established in [5].

2 Definitions

Probability Distributions. For a finite set A, a probability distribution on A is a function
6: A —[0,1] such that ), d(a) = 1. We denote the set of probability distributions
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on A by D(A). Given a distribution 6 € D(A), we denote by Supp(d) = {z € A |
d(z) > 0} the support of the distribution 0.

Concurrent Game Structures. A concurrent stochastic game structure G =
(S, A, Iy, Iz, d) consists of:

— A finite state space S and a finite set A of actions (or moves).

— Two move assignments Iy, I : S — 24\ (. For4 € {1,2}, assignment I asso-
ciates with each state s € .S the non-empty set [;(s) C A of moves available to
Player i at state s.

— A probabilistic transition function §: S x A x A — D(S), which for every s € S
and a1 € I'(s) and a2 € I(s), gives a probability distribution (s, a1, az) €
D(S) for the successor state.

We denote by dn,i, the minimum non-zero transition probability, i.e., dpmin =
ming tes MiNg, e 1y (5),a0e ()10 (5, a1, a2)(t) | 0(s,a1,a2)(t) > 0}. We denote by
n the number of states (i.e., n = |S|), and by m the maximal number of actions avail-
able for a player at a state (i.e., m = max,ecs max{|I1(s)|, |[I2(s)|}). We denote by
r the number of random states where the transition function is not deterministic, i.e.,
r=\{s€S|3as € I(s),az € I(s).|Supp(d(s,ar,az))| > 2}|.

Plays. At every state s € S, Player 1 chooses a move a1 € I'1(s), and simultaneously
and independently Player 2 chooses a move as € I5(s). The game then proceeds to
the successor state ¢ with probability §(s, a1, az2)(t), forall t € S. A path or a play of
G is an infinite sequence m = ((so, al,a), (s1,al,a3), (s2,a?,a3)...) of states and
action pairs such that for all k& > 0 we have (i) a¥ € I'/(sx) and a§ € I'3(sg); and
(ii) sx+1 € Supp(d(sk,al,ak)). Let IT be the set of all paths.

Strategies. A strategy for a player is a recipe that describes how to extend prefixes
of a play. Formally, a strategy for Player ¢ € {1,2} is a mapping o; : (S X A x
A)* x S — D(A) that associates with every finite sequence x € (S x A x A)* of
state and action pairs, and the current state s in .S, representing the past history of the
game, a probability distribution o;(x - s) used to select the next move. The strategy
o; can prescribe only moves that are available to Player ¢; that is, for all sequences
x € (Sx Ax A)* and states s € S, we require that Supp(o;(z-s)) C I;(s). We denote
by X; the set of all strategies for Player ¢ € {1,2}. Once the starting state s and the
strategies o and o5 for the two players have been chosen, then we have a random walk
w2172 for which the probabilities of events are uniquely defined [22], where an event
A C IT is a measurable set of paths. For an event A C II, we denote by Prl*72(A) the
probability that a path belongs to .4 when the game starts from s and the players use the
strategies o1 and o9; and denote E7172[-] as the associated expectation measure. We
consider in particular stationary and positional strategies. A strategy o; is stationary (or
memoryless) if it is independent of the history but only depends on the current state,
e, forallz, 2’ € (S x Ax A)*andall s € S, we have o (x - s) = 0;(z - s), and thus
can be expressed as a function o; : S — D(A). For stationary strategies, the complexity
of the strategy is described by the patience of the strategy, which is the inverse of the
minimum non-zero probability assigned to an action [12]. Formally, for a stationary
strategy o; : S — D(A) for Player i, the patience is maxsecg maXaeFi(s){gi(:)(a) |
oi(s)(a) > 0}. A strategy is pure (deterministic) if it does not use randomization, i.e.,
for any history there is always some unique action a that is played with probability 1.
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A pure stationary strategy o; is also called a positional strategy, and represented as a
function o; : S — A. We call a pair of strategies (01, 02) € X1 X X9 a strategy profile.

The Mean-payoff Function. In this work we consider maximizing limit-average
(or mean-payoff) functions for Player 1, and the objective of Player 2 is op-
posite (i.e., the games are zero-sum). We consider concurrent games with a re-
ward function R : § x A x A — [0,1] that assigns a reward value 0 <
R(s,a1,a2) < 1lforall s € S, a; € I1(s), and as € I%(s). For a path 1 =
((s0,a%,a9), (s1,a1,a3),...), the limit-inferior average (resp. limit-superior average)
is defined as follows: LimInfAvg(r) = liminf, o | - S R(sq, al,ab) (resp.
LimSupAvg(m) = limsup,,_,, S R(si, @, ab)). For brevity we denote concur-
rent games with mean-payoff functions as CMPGs (concurrent mean-payoff games).
Values and e-optimal Strategies. Given a CMPG G and a reward function R, the lower
value v 4 (resp. the upper value v,) at a state s is defined as follows:

vy, = sup inf EJ“2[LimInfAvg]; vs = inf sup EZ“72[LimSupAvg].
01€5, 92622 02632 5,65,

The celebrated result of Mertens and Neyman [19] shows that the upper and lower value
coincide and gives the value of the game denoted as v,. For ¢ > 0, a strategy oy for
Player 1 is e-optimal if we have v, — € < inf,,ex, E9072[LimInfAvg]. An optimal
strategy is a 0-optimal strategy.

Game Classes. We consider the following special classes of CMPGs.

1. Variants of ergodic CMPGs. Given a CMPG G, a set C of states in G is called an
ergodic component, if for all states s,¢t € C, for all strategy profiles (o1, 02), if
we start at s, then ¢ is visited infinitely often with probability 1 in the random walk
w2192 A CMPG is ergodic if the set S of states is an ergodic component. A CMPG
is sure ergodic if for all strategy profiles (o1, 02) and for all start states s, ergodic
components are reached certainly (all plays reach some ergodic component). A
CMPG is almost-sure ergodic if for all strategy profiles (o1, 02) and for all start
states s, ergodic components are reached with probability 1. Observe that every
ergodic CMPG is also a sure ergodic CMPG, and every sure ergodic CMPG is also
an almost-sure ergodic CMPG.

2. Turn-based stochastic games, MDPs and SSGs. A game structure G is turn-based
stochastic if at every state at most one player can choose among multiple moves;
that is, for every state s € S there exists at most one ¢ € {1,2} with |I;(s)| > 1.
A game structure is a Player-2 Markov decision process (MDP) if for all s € S
we have |I'1(s)| = 1, i.e., only Player 2 has choice of actions in the game, and
Player-1 MDPs are defined analogously. A simple stochastic game (SSG) [8] is an
almost-sure ergodic turn-based stochastic game with reachability objective.

Remark 1. The results of Hoffman and Karp [17] established that for ergodic CMPGs
optimal stationary strategies exist (for both players). Also, for an ergodic CMPG the
value for every state is the same, which is called the value of the game. The result for
existence of optimal stationary strategies easily extends to almost-sure ergodic CMPGs.

Value and the Approximation Problem. Given a CMPG G, a state s of G, and a ra-
tional threshold ), the value problem is the decision problem that asks whether v, is
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at most \. Given a CMPG G, a state s of GG, and a tolerance ¢ > 0, the approxima-
tion problem asks to compute an interval of length € such that the value v, lies in the
interval. We present the formal definition of the decision version of the approximation
problem in Section 3.2. In the following sections we consider the value problem and
the approximation problem for almost-sure ergodic, sure ergodic, and ergodic games.

3 Complexity of Approximation for Almost-Sure Ergodic Games

In this section we present three results for almost-sure ergodic games: (1) First we
establish (in Section 3.1) an optimal exponential bound on the patience of e-optimal
stationary strategies, for all € > 0. (2) Second we show (in Section 3.2) that the approx-
imation problem (even for turn-based stochastic ergodic mean-payoff games) is at least
as hard as solving the value problem for SSGs. (3) Finally, we show (in Section 3.2)
that the approximation problem lies in FNP.

3.1 Strategy Complexity

In this section we present results related to e-optimal stationary strategies for almost-
sure ergodic CMPGs, that on one hand establishes an optimal exponential bound for
patience, and on the other hand is used to establish the complexity of approximation of
values in Section 3.2. The results of this section is also used in the algorithmic analysis
in Section 3.3. We start with the notion of g-rounded strategies.

The Classes of g-rounded Distributions and Strategies. For ¢ € N, a distribution d
over a finite set Z is a g-rounded distribution if for all z € Z we have that d(z) = } for
some number p € N. A stationary strategy o is a q-rounded strategy, if for all states s
the distribution o (s) is a g-rounded distribution.

Patience. Observe that the patience of a ¢g-rounded strategy is at most q. We show that
for almost-sure ergodic CMPGs for all € > 0 there are g-rounded e-optimal strategies,
where gis [4- €' -m - n? - (6min) " |. This immediately implies an exponential upper
bound on the patience. We start with a lemma related to the probability of reaching
states that are guaranteed to be reached with positive probability.

Lemma 1. Given a CMPG G, let s be a state in G, and T be a set of states such that
for all strategy profiles the set T is reachable (with positive probability) from s. For all
strategy profiles the probability to reach T from s in n steps is at least (Omin)” (Where
r is the number of random states).

Variation Distance. We use a coupling argument in our proofs and this requires the
definition of variation distance of two probability distributions. Given a finite set Z,
and two distributions d; and ds over Z, the variation distance of the distributions is
Val’(dl,dg) = é . ZzeZ \dl(z) — d2(2)|

Coupling and Coupling Lemma. Let Z be a finite set. For distributions d; and ds over
the finite set Z, a coupling w is a distribution over Z X Z, such that for all z € Z we
have ) ., w(z,2) = di(z) andalso forall 2’ € Z wehave ) _, w(z,2') = da(2").
We only use the second part of coupling lemma [2] which is stated as follows:

— (Coupling Lemma). For a pair of distributions d; and ds, there exists a coupling
w of dy and dg, such that for a random variable (X,Y") from the distribution w, we
have that var(dy, ds) = Pr[X # Y.
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We show that in almost-sure ergodic CMPGs strategies that play with probabilities
“close” to what is played by an optimal strategy also achieve values that are “close”
to the values achieved by the optimal strategy.

Lemma 2. Consider an almost-sure ergodic CMPG and let ¢ > O be a real number.
Let 01 be an optimal stationary strategy for Player 1. Let o} be a stationary strategy for
Player 1 s.t. o (s)(a) € [o1(s)(a)— ; ;01(8)(a)+ ;] where ¢ = 4-¢L-m-n2-(Spin) ",
Sor all states s and actions a € I'1(s). Then the strategy o' is an e-optimal strategy.

Proof. First observe that we can consider ¢ < 1, because as the rewards are in the
interval [0, 1] any strategy is an e-optimal strategy for e > 1. We will present the proof
when the play starts in an ergodic component; and the details of the other case is in [1].
We show that o guarantees a mean-payoff within e of the mean-payoff guaranteed by
o1, thus implying the statement. Let o2 be a positional best response strategy against
o} . Our proof is based on a novel coupling argument. For any state s, it is clear that the

variation distance between o/ (s) and o1 (s) is at most |F;.(S)‘ , by definition of o/ (s).
For a state s, let di be the distribution over states defined as follows: for t € S we
have di(t) = 32, e (s) Lasers(s) 9(5,a1,a2)(t) - 01(s)(ar) - 02(s)(az). Define d3
similarly using o7 (s) instead of o1 (s). Then d§ and d§ also have a variation distance
of at most |F;,(;)‘ < 27; . Let sg be the start state, and P = o 72 be the random walk

from sg, where Player 1 follows o and Player 2 follows o5. Also let P’ = w;’g 72 be
the similar defined walk, except that Player 1 follows o} instead of o1. Let X* be the
random variable indicating the ¢-th state of P, and let Y* be the similar defined random
variable in P’.

Consider that sg is part of an ergodic component. Irrespective of the strategy profile,
all states of the ergodic component are visited infinitely often almost-surely (by def-
inition of an ergodic component). Hence, we can apply Lemma 1 and obtain that we
require at most 7 - (dmin)” = , 7 steps in expectation to get from one state of the
component to any other state of the component.

Coupling argument. We now construct a coupling argument. We define the coupling
using induction. First observe that X° = Y9 = s (the starting state). For i, j € N, let
ai; > 0 be the smallest number such that X+ = YJi+1+aii By the preceding we
know that a; ; exists for all 4, j with probability 1 and a; ; < 46'? in expectation. The
coupling is done as follows: (1) (Base case): Couple X9 and YO We have that X0 =

Y9 (2) (Inductive case): (i) if X? is coupled to Y7 and X? = Y7 = s;, then also couple
X1 and Y7+ such that Pr[X T # YJT1] = var(d;’, d5) (using coupling lemma);
(i) if X7 is coupled to Y7, but X? # Y7, then X*+! = YJ+1+%is = 5, | and X!
is coupled to Y7+1+%5 and we couple X*+2? and Y/*2+%.J such that Pr[X*+? #
Yit2taii] = var(d;"*", d3*") (using coupling lemma). Notice that all X are coupled
to some Y7 almost-surely; and moreover in expectation Z is bounded as follows: Z <
1+ 2’,’; s aod =1+ (. The expression can be understood as follows: consider
X" being coupled to Y. With probability at most ;" they differ. In that case X i+l
coupled to Y71 +ais Otherwise X*™! is coupled to Y7*+1. By using our bound on a;_;
we get the desired expression. For a state s, let f, (resp. f,) denote the limit-average
frequency of s given o1 (resp. o}) and o9. Then it follows easily that for every state
s, we have |f, — fl| < 4 . The formal argument is as follows: for every state s,
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consider the reward function Ry that assigns reward 1 to all transitions from s and 0
otherwise; and then it is clear that the difference of the mean-payoffs of P and P’ is
maximized if the mean-payoff of P is 1 under R, and the rewards of the steps of P’
that are not coupled to P are 0. In that case the mean-payoff of P’ under Ry is at least

€ 1 € 2 € € 1 H
1+18_En > 1= (sincel >1— ()7 = (1+ )1 — ) in expectation and
thus the difference between the mean-payoff of P and the mean-payoff of P’ under Ry
is at most % in expectation. The mean-payoff value if Player 1 follows a stationary
strategy o and Player 2 follows a stationary strategy o4, such that the frequencies of
the states encountered is f7,is > ¢ Y (s) aneln(s) fs 101 (8)(a1) - o3(s)(az) -
R(s, a1, az). Thus the differences in mean-payoff value when Player 1 follows o (resp.
o1) and Player 2 follows the positional strategy o2, which plays action a$ in state s, is
ZSGS ZmEFl(s) (fs . 01(8)(0‘1) - f; . 0,1(8)(0‘1» . R(Sa ai, a;) Since ‘fs - f;| < 8.6n

(by the preceding argument) and |o1(s)(a1) — o} (s)(a1)| < (11 for all s € S and

a1 € I'(s) (by definition), we have >0 . o >, < () (fs-o1(s)(ar)— fl-of(s)(ar))-
R(s,a1,a3) < 5. The desired result follows. O

We show that for every integer ¢’ > ¢, for every distribution over £ elements, there
exists a ¢’-rounded distribution “close” to it. Together with Lemma 2 it shows the exis-
tence of ¢’-rounded e-optimal strategies, for every integer ¢’ greater than the ¢ defined
in Lemma 2.

Lemma 3. Let dy be a distribution over a finite set Z of size {. Then for all integers
q > { there exists a q-rounded distribution dg over Z, such that |di(z) — da2(2)| < (11.

Corollary 1. For all almost-sure ergodic CMPGs, for all ¢ > 0, there exists an e-
optimal, q'-rounded strategy o for Player 1, for all integers ¢ > q, where ¢ = 4-€~1-
m-n? - (Gmin) "

Exponential Lower Bound on Patience. We present a family of ergodic CMPGs where
the lower bound on patience is exponential in r for every 1/48-optimal strategies (de-
tails in [1]).

Theorem 1 (Strategy Complexity). The following assertions hold:
1. (Upper bound). For almost-sure ergodic CMPGs, for all € > 0, there exists an
e-optimal strategy of patience at most [4- e~ -m - n? - (Oin) ™"
2. (Lower bound). There exists a family of ergodic CMPGs Gf;“‘“, foreach oddn > 9
and 0 < Opin < 2,1n, such that n = r + 5 and any 418 -optimal strategy in Gomin
has patience at least é < (Opmin) "4

3.2 Approximation Complexity
We establish the approximation complexity for almost-sure ergodic CMPGs.

Hardness of Approximation. We present a polynomial reduction from the value prob-
lem for SSGs to the problem of approximation of values for turn-based stochastic er-
godic mean-payoff games (TEMPGs) (details in [1]).

Approximation Decision Problem. Given an almost-sure ergodic CMPG G (with ra-
tional transition probabilities given in binary), a state s, an € > 0 (in binary), and a
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rational number A (in binary), the promise problem PROMVALERG (i) accepts if the
value of s is at least ), (ii) rejects if the value of s is at most A\ — ¢, and (iii) if the value
is in the interval (A — €; \), then it may both accept or reject.

Theorem 2 (Approximation Complexity). For almost-sure ergodic CMPGs, the fol-
lowing assertions hold:
1. (Upper bound). The problem PROMVALERG is in FNP.
2. (Hardness). The problem of finding the value of a state in an SSG is polynomial time
Turing reducible to the problem PROMVALERG, even for turn-based stochastic
ergodic mean-payoff games (TEMPGs).

3.3 Strategy-Iteration Algorithm for Almost-Sure Ergodic CMPGs

The classic algorithm for solving ergodic CMPGs was given by Hoffman and Karp [17].
We present a variant of the algorithm, and show that for every e > 0 it runs in expo-
nential time for e approximation. Our algorithm is a variant of the original algorithm,
where instead of all stationary strategies we iterate over g-rounded strategies, depend-
ing on € > 0. We refer our algorithm as VARHOFFMANKARP and show the following
result (details in [1]).

Theorem 3. For an almost-sure ergodic CMPG, for all ¢ > 0, VARHOFFMANKARP
correctly computes an e-optimal strategy, and (i) requires at most

0] ((6*1 -m-n2- (5min)*’")n'm> iterations, and each iteration requires at most

O(QPOLY(m) - POLY (n,log(e 1), log(6.1.))) time; and (ii) requires polynomial
space.

4 Analysis of the Value-Iteration Algorithm

We show that the classical value-iteration algorithm requires at most exponentially
many steps to approximate the value of ergodic concurrent mean-payoff games
(ECMPGs).

Notations. Given an ECMPG G, let v* denote the value of the game (recall that all
states in an ECMPG have the same value). Let v = sup, ¢y, infs,ex, EJ172[Avgy]
denote the value function for the objective Avg,, i.e., playing the game for 7" steps.
For an ECMPG G we call the game with the objective Avg as Gr. A strategy o is
optimal for the objective Avgy if v’ = inf,,cx, EZ472[Avgy], and a strategy o9 is
optimal for the objective Avgy if vI' = sup,, 5 EJ"7[Avgy]. The function v} is
computed iteratively in 7" and is refered to as the value-iteration algorithm. It is well-
known that v, = liminfr_,o v = limsupy_, . v [19]. We first establish a result
that shows that for all 7" there exist s and s such that v* is bounded by v1 and v7,.

Lemma 4. For all ECMPGs G and for all T > 0, there exists a pair of states s', s,
such that vg: <v*< v?.

Proof Overview: The proof is by contradiction, that is, we assume that for all s we
have vI' < v* (the other case follows from the same game where the players have
exchanged roles). The idea is that we can consider plays of GG, defined by an optimal
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strategy for the objective LimInfAvg for Player 1 in G and a strategy for Player 2 that
plays an optimal strategy for objective Avg, in G for T steps and then starts over.
We then split the plays into sub-plays of length T'. Since for all s we have v! < v*
and because Player 2 plays optimally in the sub-plays, in every segment of length 7" the
expected mean-payoff is strictly less than v*. But then also the expected mean-payoff of
the plays is strictly less than v*. This contradicts that Player 1 played optimally (which

ensures that the expected mean-payoffis at least v*).

The Numbers H and H. Given an ECMPG G, strategies 01 and o5 for the players,
and two states s and ¢, let H, : 172 denote the expected hitting time from s to ¢, given
the strategies. Let H,, = sup,,cs, max,es HJ 7% and H = inf, cx, Hy, and
H = sup,, ¢, Ho, . Intuitively, H is the minimum expected hitting time between all
state pairs that Player 1 can ensure against all strategies of Player 2.

Lemma 5. For all ECMPGs G we have H < H < n - (din) "

We now present our result for the bounds required for approximation by the value-
iteration algorithm.

4-H-c~logc,f0r

Theorem 4. For all ECMPGs, forall 0 < ¢ < 1, and all T
T
(O *+e

>
¢ =2-¢1 we have that v* — e < min, ng <maxzv; <v

Proof. (Sketch). Let T > 4-H -c-logc, forc = 2 - e~ 1. Also, let d=4-H-logc
andT' =T — (. By Lemma 4 we have mlnS vl <v* < max, vl We now argue that
v* — e < ming v, and then max, vl < v* +¢€ follows by Cons1der1ng the game where
the players have exchanged roles Let s’ be some state in argming v, and let s” be
some state such that v* < v7, , (such a state exists by Lemma 4). Let o} be an optimal
strategy for the objective Ang, in G, and let o] be a strategy that ensures that the
hitting time from s’ to s” is at most 2 - H, i.e., Hyx < 2- H (such a strategy exists by
definition of H). Let o1 be the strategy for Player 1 that plays as o7 until s” is reached,
and then switches to o/ . We show that o, ensures that vg is at least v* — €. O

Remark 2. Theorem 4 presents the bound for value-iteration when the rewards are
n [0,1]. If the rewards are in [0, W], for some positive integer W, then for e-
approximation we first divide all rewards by W, and then apply results of Theorem 4 for
€/ W -approximation. We have shown that in the worst case H is at most 1 - (dmin) "
If H,W,e ! are bounded by a polynomial, then the value-iteration algorithm requires
polynomial-time to approximate; and hence if H and W are bounded by polynomial,
then the value-iteration algorithm is a FPTAS. In particular, if either (i) r is constant
and (0uin) " is bounded by a polynomial, or (i) (dmin) " is bounded by a constant
and r is logarithmic in n, then H is polynomial; and if W is polynomial as well, then
the value-iteration algorithm is a FPTAS. There could also be other cases where H
is polynomial, and then the value-iteration is a pseudo-polynomial time algorithm for
constant-factor approximation.

5 Exact Value Problem for Almost-Sure Ergodic Games

We present two results for the exact value problem: (1) First we show that for almost-sure
ergodic CMPGs the exact value can be expressed in the existential theory of the reals



The Complexity of Ergodic Mean-payoff Games 133

(for details about the existential theory see [6]). This is achieved by first showing that
the fixpoint of the Hoffman-Karp algorithm can be expressed in the existential theory;
and then combining it with a sentence in the existential theory for reachability games.
(2) We establish that the value problem for sure ergodic CMPGs is square-root sum hard
(using techniques similiar to [11]) generalizing the example shown in Figure 1.

Theorem 5. (1) The value problem for almost-sure ergodic CMPGs can be expressed
in the existential theory of the reals. (2) The value problem for sure ergodic CMPGs is
square-root sum hard.
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Abstract. The family of regular languages of infinite words is struc-
tured into a hierarchy where each level is characterized by a class of
deterministic w-automata — the class of deterministic Biichi automata
being the most prominent among them. In this paper, we analyze the
situation of regular languages of infinite Mazurkiewicz traces that model
non-terminating, concurrent behaviors of distributed systems. Here, a
corresponding classification is still missing. We introduce the model of
“synchronization-aware asynchronous automata”, which allows us to ini-
tiate a classification of regular infinitary trace languages in a form that
is in nice correspondence to the case of w-regular word languages.

1 Introduction

In the theory of w-regular word languages, a natural classification is induced
by various forms of deterministic w-automata. The three fundamental cases are
given by (a) deterministic Muller automata, capturing the class of w-regular word
languages; (b) deterministic Biichi automata, capturing recurrence properties
of infinite words; and (c) weak automata, capturing reachability properties of
infinite words. In this paper, we concentrate on the first two automata models,
on which fundamental facts can be summarized as follows (see e.g. [8]):

1. A language is deterministically Biichi recognizable if and only if it can be
expressed as lim(K) = {a € X | a has infinitely many prefixes in K} for
some regular language K C X*.

2. An w-regular language is deterministically Biichi recognizable if and only if
this language is recognized by a Muller automaton whose acceptance com-
ponent is closed under supersets.

3. The class of Boolean combinations of deterministically Biichi recognizable
languages coincides with the class of Muller recognizable languages.

We consider the question of defining corresponding classes in the framework
of Mazurkiewicz traces [4] that model infinite, concurrent behaviors of a finite
set of interacting processes. The concept of “w-regular trace language” can be
introduced in close correspondence to the case of w-regular word languages,
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for example!, in terms of finite partially-commutative monoids, asynchronous
automata, concurrent regular expressions, or MSO logic.

However, it is remarkable that there does not yet exist a definition of Biichi
automaton over traces that allows for results analogous to any of the items 1-3
above. The objective of the present paper is to fill this gap, while making sure
at all times that the corresponding definitions and results for word languages
emerge from our study as special cases.

Muscholl [7] took a major step toward establishing such structural results
by introducing a parameterized lim operator for trace languages. She showed
that the class of Boolean combinations of parameterized lim-languages is pre-
cisely the class of w-regular trace languages, and also characterized the class of
linearizations of these parameterized languages in terms of “I-diamond” Biichi
(word) automata with “extended” acceptance condition. The respective family
of I-diamond automata characterizing Boolean combinations of linearizations of
reachability languages (where an infinite trace is in the language if it contains
a certain finite prefix) is studied in [2]. However, I-diamond word automata do
not offer a proper modeling of concurrency as realized over traces.

We introduce a new concept of asynchronous automata, viz. synchronization-
aware asynchronous automata (over traces rather than their linearizations).
These, when equipped with Biichi and Muller acceptance conditions, estab-
lish not only item 1, but also items 2 and 3 above. At the same time, the
synchronization-aware Muller automata are equivalent in expressive power to
the standard deterministic asynchronous Muller automata for infinitary trace
languages. Thus we provide a new framework that prepares — at least in impor-
tant parts — a structure theory for w-regular trace languages that is compatible
with that of deterministic w-automata over words.

Synchronization-aware automata are “aware” of the fact that during a run
over an infinite trace, the set of processes may be partitioned in a manner that
each part is minimal and, after a finite prefix, a process belonging to one part
never interacts directly or indirectly with a process belonging to another part.
The processes infer this partition by observing their infinitely recurring inter-
actions. Although infinite traces induce such partitions in all asynchronous au-
tomata, current models cannot perform such inferencing.

Another aspect of infinite runs is that while some processes may remain live
ad infinitum, others may halt after finitely many steps. However, the set of live
processes can be explicitly coded in the Biichi acceptance condition since this
directly corresponds to Muscholl’s parameterized lim operation mentioned above.

By combining both these aspects, we obtain the family of synchronization-
aware Biichi automata corresponding to item 1 above (see Thm. 13). We also
introduce synchronization-aware Muller automata recognizing precisely the class
of w-regular trace languages (see Thm. 18). Finally, Theorems 20 and 21 respec-
tively demonstrate a characterization a la item 2 and the equivalence result of
item 3. We conclude with a discussion of a number of open problems.

! We refer the reader to [4] for a comprehensive survey of early results.
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2 Preliminaries

2.1 Finite and Infinite Traces

Over a finite alphabet X, let D C X2 be a binary, reflexive, and symmetric
dependence relation. We also refer to the corresponding independence relation
I = X2\ D, and to the independence alphabet (X,I). Given an independence
alphabet, a finite trace is an isomorphism class of directed acyclic graphs t =
[V, <, A] where V is a finite set of events; A: V' — X is a labeling function; and
for events e, e’ € V: A(e)DA(e') & e< e or e <eore=e'. The concatenation
of two finite traces t1 = [Vi, <1, A1] and to = [Va, <2, A2 is given by ¢ @ty =
[‘/1 W Vs, </, A1 Lﬂ)\g}, where <’ = <i1W<oW {(61, 62) e Vi x Vs | )\1(61)D)\2(€2)}.
We denote the set of all finite traces over an alphabet (X, I) with M(X, I).

For convenience, we work with “simplified” traces t = [V, <, \] where we
remove all edges that may be inferred from others, i.e. by < we mean < \ <2
(see Fig. 1a). We also refer to the partial order < obtained from the transitive
closure of this edge relation; and define relations <, >, >, and > in the natural
manner. We use the abbreviation e € ¢ to convey ¢t = [V, <,\] and e € V.

An infinite trace is a directed acyclic graph 8 = [V, <, A\] where V' is a count-
able set of events, and A and < are like above except < satisfies an additional
requirement, namely, for each e € 6, the set {e’ € 6 | ¢/ < e} is finite. Denote the
set of all infinite traces with R(X,I). For traces t € M(X,1),0 € R(X,I), we
refer to sets alph(t), alph(8) of letters occurring in them, and to the set alphinf(f)
of letters occurring infinitely often in 6.

We say ty is a prefix of tg, ie. t1 C to = It 1t =t O, and t; C to iff
t1 C ty and t; # ta. We also refer to prefixes ¢ of some § € R(X, ) in a similar
way. If E C tis a set of events, then t[E] = [V', <, X'] is a prefix of ¢ with the set
Vi={fet]|f<eforsomeeéc F} and <’ and A\ are obtained by restricting
the corresponding entities in ¢ to V'. The least upper bound of two traces t1, t2,
whenever it exists, denoted t; Lit, is the smallest trace s such that t; C sAts C s.
Similarly, if it exists, the greatest lower bound of ¢; and t5, denoted ¢; Mts, is
the largest trace s such that s C ¢1 A s C to.

2.2 Asynchronous Transition Systems

We refer to a deterministic asynchronous automaton as a pair 20 = (T, F), where
T is a deterministic asynchronous transition system and F is an appropriate
acceptance condition. We discuss these components separately.

For a fixed alphabet (X, I), an asynchronous transition system consists of a
set P of processes, a mapping dom : X — 2% assigning the domain of each letter
such that |J,c 5, dom(a) = P and a I b < dom(a) N dom(b) = {). Naturally, for
X' C ¥, we also refer to dom(X’) = | J, 5, dom(a). Moreover for an event e € t,
we refer to dom(e) instead of referring to dom(A(e)). Similarly, for F C t¢.

Processes p have sets X, of local p-states. Introducing a symbol $ ¢ (J,cp Xp,
for a set P C P the set Xp of P-states is a defined as Xp = {(zp)pep | zi €
Xp, if p; € P, otherwise z; = $}. We find it convenient to assume an order over
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Fig.1. For ¥ = {a,b,c}, a I b, a finite trace (prefix) t € M(X,I) and the run p of an
ATS, with dom(a) = {q}, dom(b) = {p}, and dom(c) = {p, ¢}

P and view a P-state as a tuple. So we refer to a state as a tuple m € Xp for
some P C P. A state is a global state if P = P. We always distinguish between
a {p}-state m and a local p-state x; and for a state 7, define the p-state in 7 as
mlp = xp € Xp U {8}, and similarly the P-state mp in w. Also, dom(w) = {p €
P | m, # $}. Finally, we denote the set of all states Xor = (Jpcp Xp.

We now define a deterministic asynchronous transition system (an ATS) as
a tuple T = ((Xp)pep, (0a)acx, ™), where X, are sets of local p-states; transi-
tion functions dq : Xgom(a) = Xdom(a) define how processes jointly perform state
transitions on input letters a; and mg € Xp is the global initial state of ¥.

Given a trace t = [V, <,\] € M(X, 1), or 0 = [V, <,\] € R(X,I), we define
the corresponding run p = [V/, </, X', A] of T on the trace where V' .=V U{e}
contains a fictional, minimum event e, . The relation <’ is identical to the edge
relation <, except that e is the unique minimum event.

During the run p of an ATS T over a trace, each process p makes state tran-
sitions on events e € dom_l(p). Each such event may be called a p-event as well
as a P-event where P = dom(e). All p-events in the run are totally ordered, and
this order <; can be defined with the help of the order < of the trace. The maz-
imum p-event in p according to the ordering <7, is denoted as max,(p) > e . If
it exists, the p-predecessor f of an event e is denoted by f <7, e. The labeling \’
is defined similarly except A(e ) :=¢; and A: V' — X,» is defined inductively:

— A(er) = (mo),

— for any e >" ey, if 1. a = A(e), and 2. for e, <] e, if z, = A(e,)|, are the
most recent p-states just before e, then A(e) := (yp)pep, where the local-state
Yp = 6a((Zp)pedom(e))|p if p € dom(e), yp, = $ otherwise.

Fig. 1 shows the labeled events of a trace and the corresponding run; but \’
is omitted in p for readability. The processes are assumed to be totally ordered,
hence the representation of states as tuples. Note that, in Fig. 1b, the edges
are shown as per the relations <,,p € P. Importantly, although e; <’ ez and
el <; e, it is not the case that e <’ es.

Analogous to trace prefixes, we refer to run prefixes, and to prefixes ple], p[F]
for e € p and E C p respectively. For e € p, we also refer to the label A(e) as
the state of T at e. Similarly, if p is a finite run, then the state of T at p is given
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by A(p) = (xp)pep where z;, = A(max,(p))|, is the p-state of T at max,(p);
T, = To)p if max,(p) = er. Obviously, A(p) is always a global state.

Finally, a deterministic asynchronous automaton (a DAA) over finite traces
is a pair 2 = (%, F'), where T is an ATS and F' C Xp is a set of global states of
¥. A finite trace t € M(X, I) is said to be accepted by 2 if, for the run p of ¥ on
t, A(p) € F. The set L(2) C M(X, I) denotes the set of all finite traces accepted
by the DAA 2. A language T' C M(X, I) is called recognizable or regular if there
exists a DAA 2 such that T = L(2).

2.3 Regular Infinitary Languages

The definition of regular languages of infinite traces, w-regular trace languages,
was first provided by Gastin-Petit using monoid morphisms [5]. We use as defini-
tion, a characterization of the same family in terms of deterministic asynchronous
(cellular) Muller automata [3,7]. The notion of acceptance of an infinite trace
0 € R(X,I) by an ATS ¥ is defined by referring to the local infinity sets Inf,(p)
of local p-states that occur infinitely often during the run p of ¥ over 6, with

{x €Xp|I¥eecp: Ale)p = x} if p € dom(alphinf(6)),

Inf,(p) = {a: € X, Je € p: e =max,(p) } otherwise.
and A(e);, =z

Let F = {1, F», ...} be a table where each F; = (F!),ep is a tuple of sets of
local states of the processes. A deterministic asynchronous Biichi automaton (a
DABA) is a pair 2 = (T, F). A DABA is said to accept a trace § € R(X, ) if,
on the run p of 2 on 6, there exists a tuple F; € F such that for each process p,
FP Clnfy(p) [5,3]. A deterministic asynchronous Muller automaton (a DAMA)
is a pair 2 = (%, F), and is said to accept a trace 6 if there exists a tuple F; € F
such that for each process p, F = Inf,(p) [3].

Definition 1. A language © C R(X,I) is said to be a regular infinitary lan-
guage (or an w-regular trace language) if it is recognized by a DAMA.

Definition 2 ([3]). For a language T C M(X,I) finite traces, the infinitary
limit of T, denoted lim(T), is the language containing traces § € R(X,I) such
that there exists a sequence (t;)ien,ti € T satisfying t; C tiv1 and | | ti = 0.

Fig. 2 illustrates the definition of lim(7T") with the help of an infinite run of an
asynchronous automaton recognizing T'. Fig. 2a illustrates an induced run if the
trace 0 ¢ lim(T), whereas Fig. 2b illustrates the contrary.

Muscholl studies infinitary limits that are parameterized by a set of letters.
This set governs which letters from the alphabet must occur infinitely often in the
traces, and which letters may not. Recalling the dependence relation D C X2,
for a set A C X we define D(A) .= {a € X' | 3b € A: aDb}.

Definition 3 ([7]). For T C M(X,I) and some A C X, the A-infinitary limit
of T is defined as lim(T') := {6 € lim(T) | D(alphinf(8)) = D(A)}.
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(a) t; € T and t; T ti41, but 0 € lim(T) (b) 0 € lim(T) since each event is eventu-
since | |, ti 7# 0 ally covered by an accepting prefix.

Fig. 2. Illustrating Def. 2. Shaded regions constitute sequences of accepting runs.

Definition 4 ([7]). An w-regular trace language is called a deterministic trace
language if it can be expressed as a finite union \J;lima,(T;) for regular trace
languages T; C M(X, 1) and sets A; C X.

Clearly, the language lim(7T') is a deterministic trace language since lim(T) =
Uacs lima(T). However, not every deterministic trace language can be ex-
pressed in the form lim(T') for any 7.

Tt is still open whether there exists a DABA recognizing the language lim(7T')
for any given regular trace language T C M(X, I). Furthermore, there exist
deterministic trace languages that are not accepted by any DABA [7]. In this
regard the term “deterministic trace language” [7] is not well motivated, since it
has no equivalent in any of the classes of deterministic asynchronous w-automata
known so far. The results of this paper justify this term by providing a matching
class of deterministic, “synchronization-aware” Biichi automata.

2.4 Secondaries and Frontiers

During a run p of an ATS, the processes can be thought of as “possessing and
updating information” regarding other processes [6]. If p is finite and p,q € P,
the first-hand information that p has about ¢ at p, denoted by latest,_.q(p), is
the maximal g-event in the prefix p[max,(p)]. Trivially, latest,_,(p) = max,(p).
Similarly, for p, g, € P, the second-hand information that p has about r via g at
p, denoted by latest, 4 (p), is the maximal r-event in the prefix p[latest,_,4(p)].
Trivially, latest,_,,—q(p) = latest,_q(p).

The primary information of p at p is defined as the ordered set Pri,(p) =
{latest,—q(p) | ¢ € P}. The secondary information of p at p is given by the set
Sec,(p) = {latestp—q—r(p) | g, € P}. It is easy to see that on the one hand
Pri,(p) C Sec,(p), on the other hand the events of Sec,(p) may be ordered as
per the partial order < of p. This gives us a view of the secondary graph of p
at p, which we identify with secondary information itself. In this paper, we are
mainly interested in secondary information of the form Sec,(p[e]) for p € dom(e).
Since, Sec,(ple]) = Secq(ple]) for all p,q € dom(e), for convenience we denote
this information simply as Sec(e).

While referring to finite runs p over finite traces, or over finite prefixes of
infinite traces, it is useful to refer to their maximum p-events as a set. Define
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Fig. 3. Partial frontiers (see below); and illustration of Lemma 6 (see Ex. 7)

frontier of pas Hy :=={e € p| 3Ip € P,e = maxy(p)}. Any set H C H, is called a
partial frontier if it is upward closed with respect to the < order over the events.
E.g., the set {e5,es} in Fig. 3 is not a partial frontier of p since it is not an
upward closed subset of the frontier {es, es,eq}.

Finally, for event e € p, define the top of e in p as T,(e) = {f € p|e <
fA3p € P: f=maxy(p)}. Of course for any eq,...,e, € p, Ui, T,le;) is a
partial frontier of p. If A(p) is the global state of an automaton, and if H is a
(partial) frontier of p, then we define A(H) := A(p)|dom(#)- Roughly speaking,
identifying a reasonable set of partial frontiers is necessary and sufficient for
computing the global state at the end of a finite run.

3 A New Model of Asynchronous Automata

Any infinite run p of an ATS ¥ over a trace § € R(X,I) yields a partition
U = (Py,...,P,) of set P of processes such that each part P; C P is minimal,
and after finite prefixes p; T p, the processes p € P; no longer interact directly
or indirectly with another process p’ € P;,i # j. We wish to obtain a family of
ATS’s where each process can infer during a run the part to which it belongs.
Owing to space restrictions, we present a concise discussion here, and refer the
reader to [1] for details and for proofs of all the claims made in this section.

3.1 Degrees of Synchronization

For an ATS ¥ and a run p of ¥ over any trace, we associate with each event e € p
a measure (cf. Def. 5) of how much information is exchanged among the processes
in dom(e). We use sets P C P of processes as the gauge for this measure.

Definition 5. For a run p of an ATS and an event e € p, let the secondary up-
date at e be the setU, .= {g € ple] | Ip,q,r € P,3fp<pe: g = latesty_qr(fp) #
latest,—q—r(€)}. Then, the degree of synchronization at e is defined as as the
set ds(e) == U yepy, dom(T () (9)). By default, ds(er) == P.

The set ds(e) implies that there must exist prefixes p’ T ple] with partial
frontiers H, dom(H) = ds(e), such that for some process p € dom(e) with a
predecessor f, <, e, H ¢ p[f,]. The following lemma illustrates this point, and
demonstrates the importance of the set U,.
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Lemma 6. Fore € p, e > e, let pn == |_|f,,<,,e plfp] be the greatest lower bound
of all its p-prefizes. For every prefiz p' T ple] with p' L pn, there exist H C p/
and U C U, such that 1. H is a partial frontier in p' with dom(H) = ds(e); and
2. Uyev To(g) = H.

Ezample 7. Referring to Fig. 3, at es, we have ey <, e4 and e3 <, es. Then,
ds(eq) = P because U, = {e,e1,e2,e3}. For instance e = latesty_,,_,s(e2) #
latesty—,—s(e4). Since pn = plei], we have four possibilities of p’, viz. p| = pled],
Py = plea,es], ps = ples], and ply = plez]. For ply, H = {ey,e1,e2} and we can
choose U = e; C U,,. Symmetrically for p4. Also verify that, for pfy, H=U =
{ea,e3}; and for p}, H = {eq,e3,e4} and U = {e }.

Considering eg next, we have eg <4 eg, eg <, €9, and U, = {e2, €4, €6,€5}.
For instance, ex = latest,_q_,p(€6) # latest,qp(e9) = es. Clearly, ds(eg) =
{p,q,r}. And since pn = ples], we have three possibilities of p’ T pleg] s.t.
P’ Z pr, the most interesting one being p’ = pler]. Now H = {e4, e6, €7} is the
partial frontier of ple7] with dom(H) = ds(eg), so we choose U = {ea} C U,,. K

Remark 8. If M. is the set of the (mutually concurrent) minimal events of U,
then it suffices to always consider U = M, in Lemma 6.

Why we are interested in precisely these frontiers will be clear from Lemma 9
and Remark 10 below. Presently, with respect to the partial frontiers H that are
revealed by Lemma 6 at an event e, we refer to the set Y, of states A(H) as the
yield at e. Clearly, for each m1,m € Y.: dom(m) = dom(me) = ds(e). We say
that the yield Y, is bigger than yield Y if ds(f) C ds(e).

Lemma 9. For an infinite run p and p € P, if p € dom(alphinf(p)) then there
exists a unique mazimal P C P such that 3%°e € p: p € dom(e) Ads(e) = P.

We call the set P from Lemma 9 the maz-degree of p-synchronizations in
p, denoted by [ds,(p)]. For processes p ¢ dom(alphinf(p)) that eventually halt,
we define [ds,(p)] = {p} regardless of the value of ds(max,(p)) The following
remark follows immediately from Lemma 9, and demonstrates the “symmetric”
nature of max-degree of synchronizations.

Remark 10. For an infinite run p and p,q € P, either [ds,(p)] = [ds4(p)] or
[dsy(0)] 1 [ds,(p)] = 0.

In particular, for each part P, € ¥: ¢ € P; < [dsy(p)] = P;. This concretizes
our observation that every run p induces a partition ¥ of the set of states, where
each part is minimal.

Definition 11. A synchronization-aware transition system (an SATS) is a pair
(T,D) where T = ((Xp)pepr, (0a)acs,m0) is an ATS and D = (Dp)pep is a
collection of mappings D,: X, — 2F such that 1. Dy(mop) = P, and 2. for
every run p of T and every event e € p, if Ale) = m and p € dom(e) then
ds(e) =P& Dp(71'|p) = P.

This definition implies that the local p-states of an SATS always match the
degrees of synchronization of events where they occur. It is easy to see that
property 2 therein is in fact decidable, whence the definition is “syntactic”.
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3.2 Synchronization-aware Asynchronous Biichi Automata

A set X C X, of local p-states is called homosynchronous if for all local p-
states x,y € X: Dp(x) = Dp(y). For an infinite run p of an SATS, we define the
homosynchronous mazimal local infinity sets [Inf,(p)] as follows.

{x € X, Dy(x) = [ds,(p)] and

if ped Iphinf(6)),
H‘X’eEp:A(e)p:x} ip om(alphinf(9))

z € X, Je € p: e =max,(p)

fInfy ()] =
{ and A(e), =z

} otherwise.

Definition 12. A deterministic, synchronization-aware asynchronous Biichi au-
tomaton (a D-SABA) is a tuple A = (%,D, F), where (T,D) is an SATS, and
the acceptance table F = {(Q1, F1), ... (Qk, F)} is such that each Q; C P and
F; = (EP)pep is a tuple of homosynchronous sets FY. A D-SABA 2 accepts a
trace 6 € R(X, I) if, for the run p of A on 0, there exists a pair (Q;, F;) € F s.L.
dom(alphinf(#)) = Q; and for each process p € P: F} N [Infy(p)] # 0.

The above definition essentially requires that processes p ignore all of their
infinitely occurring local p-states except those whose image under D, matches
the maximal degree of p-synchronizations. One of our main results is as follows.

Theorem 13. A language © C R(X, I) is recognized by a D-SABA iff © is a de-
terministic trace language, i.e. © can be expressed as a finite union of languages
of the form lima(T) for reqular languages T C M(X,I) and sets A C X.

We prove this claim by breaking it up into Lemmas 14 and 15, and Prop. 16.

Lemma 14. Given a regular trace language T C M(X,I) and a set A C X,
there exists a D-SABA accepting © = lima(T).

To prove Lemma 14, we start with a DAA A = (%, F) recognizing T and
construct a D-SABA ' = (%', D, F) where (¥',D) is an SATS such that over
every trace § € R(X,I) (a) the run p’ of " mimics the run p of ¥; and (b) at
each event e € p’, T computes the yield Y, for the corresponding event e € p.

Fig. 4 illustrates a run p induced by a trace 6 € lim4(T) on 2. The shaded
regions represent the partition ¥ of P induced by p. Note that f = max,(p) and
[dss(p)] = {s} even though ds(f) = P. It is easy to see here that all partial
frontiers H' in the top region are concurrent to all partial frontiers H” in the
bottom region. This means that H' U H” U {f} are partial frontiers of some
prefixes t C p. In particular, if dom(H'),dom(H") € ¥ then H := H' UH" U{f}
is a frontier, and A(H) is the global state at ¢.

Lemma 6 helps in retroactively computing partial frontiers. One can verify
that ds(es) = {p,q,r} and H” = {e1, e2,e3} is one of the partial frontiers com-
puted at es. Then A(H") belongs to the yield Y., at es. Similarly, at g we have
Y, = {A(g)}. Lastly, if m; = A(f)|(s} is the {s}-state at f, then by “joining” the
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yields Y., and Y, with m,, we obtain a set II of global states which contains the
state A(H) at prefix p[H] C p, for H = {e1,ez,e3, f, g}

However, such computations of global states are only required at the “end”
of the infinite run p. By joining 75 with the maximal yields that occur infinitely
often (as guaranteed by Lemma 9 and Remark 10), ' can compute precisely
the set of global states occurring infinitely often in the run p of 2.

Consequently, a local p-state of the SATS ¥’ is of the form x = (z,Sec,Y),
where x is a local p-state of T, Sec is a finite data structure to help compute the
yields, and Y is a yield. T ensures that for each e € p’ of T, A(e)), = (, Sec,Y)
iff for the corresponding e € p of T, A(e), =z and Y =Y, is the yield at e.

Since the set @ := dom(A) of “live” processes is given, ¥’ can distinguish
between the cases, e.g., that p € dom(alphinf(#)) and s ¢ dom(alphinf(f)) as
shown in Fig. 4. By observing the sets [Inf,(p")],p € P in its run p’, T can ex-
tract (a) the infinitely recurring maximal yields Y, of ¥, from infinitely recurring
maximal p-states x of live processes p; and (b) the final {p}-states m, of T, from
the final p-states x for processes p that halt.

Thus, T’ computes the set IT of global states occurring infinitely often in the
run p of A. The run p’ of T’ is accepting if IT has a non-empty intersection with
the acceptance set F' of . The Biichi acceptance table F = {(Q, F1), ... (Q, Fx)}
is defined accordingly. For precise construction and proofs, see [1].

Lemma 15. If A = (%, D, F) is a D-SABA with |F| =1 and L(A) = O, then
there exists a set A C X and T C M(X,I) regular such that © = lima(T).

The proof of this lemma relies on constructing a non-deterministic asyn-
chronous automaton recognizing the language T such that if 7 = {(Q, F)} then
for A :=dom™1(Q)\ dom™ (P \ Q) it holds that © = lima(T) (cf. [1]).

Proposition 16. The family of D-SABA-recognizable languages is closed under
finite unions.

Hence, Thm. 13 follows. Lastly, following the result established for the class
of deterministic trace languages in [7], one obtains that the family of D-SABA-
recognizable languages is also closed under finite intersections.

3.3 Synchronization-aware Asynchronous Muller Automata

We now define the class of synchronization-aware asynchronous Muller automata
that accept precisely the w-regular trace languages.
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Definition 17. A deterministic synchronization-aware asynchronous Muller au-
tomaton (a D-SAMA) is a tuple A = (T, D, F), where (%, D) is an SATS and the
acceptance table F = {Fy,...Fy} is s.t. F; = (EF)pep are tuples of homosyn-
chronous sets FY'. A D-SAMA 2 accepts a trace 6 € R(X, I) if, for the run p of
2 on 0, there exists a tuple F; € F s.t. for each process p € P: [Inf,(p)] = F}.

Theorem 18. Any language © C R(X,I) of infinite traces is recognized by a
D-SAMA if and only if © is recognized by a DAMA.

The proofs of this theorem and of the result that the family of D-SAMASs is
closed under Boolean operations may be found in [1].

4 Characterization of Deterministic Biichi Recognizability

A prominent result on w-regular word languages, due to Landweber [8], states
that a language L C X“ is deterministically Biichi recognizable iff for some
(in fact, for each) deterministic Muller automaton recognizing L the acceptance
component — assuming it contains only realizable sets — is closed under super-
sets. The stronger (bracketed) version supplies a decision procedure for Biichi
recognizability of w-regular languages. Here we present a weaker existential char-
acterization over infinite traces. We define supersets in a manner that retains the
essence of acceptance tables. Consider Fy = (FY),ep and Fy = (FY)pep from F
where both F; and F are tuples of homosynchronous sets F¥ and FY,p € P. We
say that Fy is a superset of F denoted Fy D F if for each p € P, F¥ D FY. A
table F is said to be closed under supersets if (F € F)A(F' 2 F)) = (F' € F).
While discussing the closure under supersets, we must exempt the acceptance
tuples that guarantee the halting of some processes. Let F' € F be a realizable
acceptance tuple with F? = {x} C X, for some p € P. Process p is guaranteed to
halt during any run p that is accepted by referring to F' only if it is the case that
during two successive visits to x, p must visit another state y € X, such that
Dy(y) € Dp(x). Then p must halt because otherwise, either [ds,(p)] 2 Dp(z) or
[Inf,(p)] 2 {x}. Such a singleton F? is referred to as a finitary acceptance set.

Definition 19. A Muller acceptance table F is said to be closed under supersets
modulo finitary acceptance sets if (a) whenever F € F does not contain any
finitary acceptance sets and F' O F, then F' € F; and (b) whenever F € F
contains a finitary acceptance set FP and F' O F with F'P = FP, then F' € F.

Theorem 20. A language O is recognized by a D-SABA %6 = (T, D', F') if and
only if © is recognized by a D-SAMA A = (T, D, F) whose acceptance table F is
closed under supersets modulo finitary acceptance sets.

As mentioned previously, every w-regular trace language can be written as a
finite Boolean combination of A-infinitary limit languages [3]. Our results allow
us to state an equivalent claim by referring to classes of automata.

Theorem 21. For any language © C R(X,I) of infinite traces, © is D-SAMA
recognizable if and only if © can be expressed as a finite Boolean combination of
D-SABA recognizable languages.
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5 Conclusion

We introduced synchronization-aware asynchronous transition systems that al-
low us to define for the first time the family of deterministic Biichi automata that
matches the expressive power of the lim operator for trace languages. Not only is
this definition a generalization of that for the word case but, more importantly,
the corresponding languages are closed under finite unions and intersections —
analogous to the deterministically Biichi recognizable word languages. In this
sense, our results have further justified Muscholl’s definition of “deterministic
trace languages” as finite unions of parameterized lim-languages. Finally, we
have also characterized deterministically Biichi recognizable trace languages in
terms of recognition via a special subset of deterministic Muller automata.

The results of this paper uncover a clear path for completing a structure theory
of regular infinitary trace languages. In ongoing work, we address the issue of
weak recognizability, leading to a definition of weak D-SAMA’s recognizing the
languages that can be expressed as Boolean combinations of reachability trace
languages. A next step is concerned with conceivable characterization of these
weak trace languages as those that are recognized by both D-SABA’s and D-
SAcBA’s (the latter equipped with the co-Biichi acceptance condition). Finally,
it would be interesting to establish decidability of membership in each of these
subclasses, for instance, by showing a strong Landweber theorem as indicated
at the beginning of Section 4.
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Abstract. We consider decision problems for deterministic pushdown
automata over the unary alphabet (udpda, for short). Udpda are a sim-
ple computation model that accept exactly the unary regular languages,
but can be exponentially more succinct than finite-state automata. We
complete the complexity landscape for udpda by showing that emptiness
(and thus universality) is P-hard, equivalence and compressed member-
ship problems are P-complete, and inclusion is coNP-complete. Our
upper bounds are based on a translation theorem between udpda and
straight-line programs over the binary alphabet (SLPs). We show that
the characteristic sequence of any udpda can be represented as a pair
of SLPs—one for the prefix, one for the lasso—that have size linear in
the size of the udpda and can be computed in polynomial time. Hence,
decision problems on udpda are reduced to decision problems on SLPs.
Conversely, any SLP can be converted in logarithmic space into a udpda,
and this forms the basis for our lower bound proofs. We show coNP-
hardness of the ordered matching problem for SLPs, from which we derive
coNP-hardness for inclusion. In addition, we complete the complexity
landscape for unary nondeterministic pushdown automata by showing
that the universality problem is IIsP-hard, using a new class of inte-
ger expressions. Our techniques have applications beyond udpda. We
show that our results imply IIsP-completeness for a natural fragment of
Presburger arithmetic and coNP lower bounds for compressed matching
problems with one-character wildcards.

1 Introduction

Any model of computation comes with a set of fundamental decision questions:
emptiness (does a machine accept some input?), universality (does it accept all
inputs?), inclusion (are all inputs accepted by one machine also accepted by
another?), and equivalence (do two machines accept exactly the same inputs?).
The theoretical computer science community has a fairly good understanding
of the precise complexity of these problems for most “classical” models, such as
finite and pushdown automata, with only a few prominent open questions (e. g.,
the precise complexity of equivalence for deterministic pushdown automata).

* The full version of the paper is available at http://arxiv.org/abs/1403.0509.
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In this paper, we study a simple class of machines: deterministic pushdown
automata working on unary alphabets (unary dpda, or udpda for short). A clas-
sic theorem of Ginsburg and Rice [7] shows that they accept exactly the unary
regular languages, albeit with potentially exponential succinctness when com-
pared to finite automata. However, the precise complexity of most basic decision
problems for udpda has remained open.

Our first and main contribution is that we close the complexity picture for
these devices. We show that emptiness is already P-hard for udpda (even when
the stack is bounded by a linear function of the number of states) and thus
P-complete. By closure under complementation, it follows that universality is
P-complete as well. Our main technical construction shows equivalence is in P
(and so P-complete). Somewhat unexpectedly, inclusion is coNP-complete. In
addition, we study the compressed membership problem: given a udpda over the
alphabet {a} and a number n in binary, is a” in the language? We show that
this problem is P-complete too.

A natural attempt at a decision procedure for equivalence or compressed mem-
bership would go through translations to finite automata (since udpda only
accept regular languages, such a translation is possible). Unfortunately, these
automata can be exponentially larger than the udpda and, as we demonstrate,
such algorithms are not optimal. Instead, our approach establishes a connec-
tion to straight-line programs (SLPs) on binary words—a well-studied model for
word compression (see, e. g., Lohrey [20]). An SLP P is a context-free grammar
generating a single word, denoted eval(P), over {0,1}. Our main construction
is a translation theorem: for any udpda, we construct in polynomial time two
SLPs P’ and P” such that the infinite sequence eval(P’) - eval(P”)“ € {0,1}* is
the characteristic sequence of the language of the udpda (for any ¢ > 0, its ith
element is 1 iff a’ is in the language). With this construction, decision problems
on udpda reduce to decision problems on compressed words. Conversely, we show
that from any pair (P’,P”) of SLPs one can compute, in logarithmic space, a
udpda accepting the language with characteristic sequence eval(P’) - eval(P")¥.
Thus, lower bounds for computational complexity of decision problems for ud-
pda may be obtained from the corresponding lower bounds for SLPs. Indeed, we
show coNP-hardness of inclusion via coNP-hardness of the ordered matching
problem for compressed words (i. e., is eval(P1) < eval(Ps) letter-by-letter, where
the alphabet comes with an ordering <), a problem of independent interest.

As a second contribution, we complete the complexity picture for unary non-
deterministic pushdown automata (unpda, for short). For unpda, the precise
complexity of most decision problems was already known [14]. The remaining
open question was the precise complexity of the universality problem, and we
show that it is IIpP-hard (membership in II; P was shown earlier by Huynh [14]).
An equivalent question was left open in Kopczynski and To [18] in 2010, but
the question was posed as early as 1976 by Hunt III, Rosenkrantz, and Szy-
manski [12, Open Problem 2], where it was asked whether the problem was in
NP or PSPACE or outside both. Huynh’s II;P-completeness result for equiv-
alence [14] showed, in particular, that universality was in PSPACE, and our
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[IoP-hardness result reveals that membership in NP is unlikely under usual
complexity assumptions. As a corollary, we characterize the complexity of the
Vbounded 3*-fragment of Presburger arithmetic, where the universal quantifier
ranges over numbers at most exponential in the size of the formula.

To show ITpP-hardness, we show hardness of the universality problem for a
class of integer expressions. Several decision problems of this form, with the
set of operations {+,U}, were studied in the classic paper of Stockmeyer and
Meyer [30], and we show that checking universality of expressions over {+, U, X2,
xN} is IIoP-complete (the upper bound follows from Huynh [14]).

Related Work. Table 1 provides the current complexity picture, including the
results in this paper. Results on general alphabets are mostly classical and in-
cluded for comparison. Note that the complexity landscape for udpda differs
from those for unpda, dpda, and finite automata. Upper bounds for emptiness
and universality are classical, and the lower bounds for emptiness are originally
by Jones and Laaser [17] and Goldschlager [9]. In the nondeterministic unary
case, NP-completeness of compressed membership is from Huynh [14], rediscov-
ered later by Plandowski and Rytter [25]. The PSPACE-completeness of the
compressed membership problem for binary pushdown automata (see definition
in Section 6) is by Lohrey [22].

The main remaining open question is the precise complexity of the equiva-
lence problem for dpda. It was shown decidable by Sénizergues [28] and primitive
recursive by Stirling [29] and Jancar [15], but only P-hardness (from empti-
ness) is currently known. Recently, the equivalence question for dpda when the
stack alphabet is unary was shown to be NL-complete by Béhm, Goéller, and
Jancar [4]. From this, it is easy to show that emptiness and universality are also
NL-complete. Compressed membership, however, remains PSPACE-complete
(see Caussinus et al. [5] and Lohrey [21]), and inclusion is already undecidable
(see Valiant [31]). When we restrict dpda to both unary input and unary stack
alphabet, all five decision problems are L-complete.

We discuss corollaries of our results and other related work in Section 6.

2 Preliminaries

Pushdown Automata. A unary pushdown automaton (unpda) over the al-
phabet {a} is a finite structure A = (Q, T, L, qo, F, ), with @ a set of (control)
states, I' a stack alphabet, 1 € I' a bottom-of-the-stack symbol, gy € @ an initial
state, F' C @Q a set of final states, and § C (Q x ({a}U{e}) xT') x (Q x ') a set
of transitions with the property that, for every (qi1,0,7, g2, s) € 9, either v # L
and s € ('\ {L})*, orv= 1 and s € (I'\ {L})*L. Here and everywhere below
€ denotes the empty word.

The semantics of unpda is defined in the following standard way. The set
of configurations of A is @ x (I'\ {L})*L. Suppose (q1,s1) and (gq,s2) are
configurations; we write (g1,51) Fo (g2, s2) and say that a move to (g2, s2) is
available to A at (g1, s1) iff there exists a transition (¢1, 0,7, g2, s) € d such that
s1 = s’ and sp = ss’ for some s’ € I'*. A unary pushdown automaton is called



Unary Pushdown Automata and Straight-Line Programs 149

Table 1. Complexity of decision problems for pushdown automata

unary binary
dpda npda dpda npda
Emptiness P! P P P
Universality P! P! P undecidable
Equivalence P“ 1P P..pr.rec. undecidable
Inclusion coNP“' [I;P  undecidable undecidable

Compressed membership P! NP PSPACE PSPACE

Legend: “dpda” and “npda” stand for deterministic and possibly nondetermin-
istic pushdown automata, respectively; “unary” and “binary” refer to their in-
put alphabets. Names of complexity classes stand for completeness with respect
to logarithmic-space reductions; abbreviation “pr.rec.” stands for “primitive
recursive”. Superscripts v and ! denote new upper and lower bounds shown in
this paper.

deterministic, shortened to udpda, if at every configuration at most one move is
available.

A word w € {a}* is accepted by A if there exists a configuration (g, sx) with
gr € F and a sequence of moves (¢;, ;) Fo; (¢it1,Si+1), @ = 0,...,k — 1, such
that sp = L and o0g...0r_1 = w; that is, the acceptance is by final state. The
language of A, denoted L(.A), is the set of all words w € {a}* accepted by A.

We define the size of a unary pushdown automaton A as |Q| - |T'|, provided
that for all transitions (¢1,0,7,q2,s) € d the length of the word s is at most 2
(see also [24]). While this definition is better suited for deterministic rather than
nondeterministic automata, it already suffices for the purposes of Section 5,
where we handle unpda, because it is always the case that |§| < 2[Q|? |T'|*.

Decision Problems. We consider the following decision problems: emptiness
(L(A) ="0), universality (L(A) =7 {a}*), equivalence (L(A;) =" L(Az)), and
inclusion (L(A1) C° L(Az)). The compressed membership problem for unary
pushdown automata is associated with the question a™ €’ L(A), with n given in
binary as part of the input. In complexity statements, hardness is with respect
to logarithmic-space reductions.

Straight-Line Programs. A straight-line program [20], or an SLP, over an
alphabet X is a context-free grammar that generates a single word; in other
words, it is a tuple P = (S, X, A, ), where ¥ and A are disjoint sets of terminal
and nonterminal symbols (terminals and nonterminals), S € A is the axiom,
and the function 7: A — (X UA)* defines a set of productions written as “N —
w”, w = w(N), and satisfies the property that the relation {(N,D) | N —
w and D occurs in w} is acyclic. An SLP P is said to generate a (unique) word
w € ¥*, denoted eval(P), which is the result of applying substitutions 7 to S.

An SLP is said to be in Chomsky normal form if for all productions N — w
it holds that either w € ¥ or w € A?. The size of an SLP is the number of
nonterminals in its Chomsky normal form.
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3 Indicator Pairs and the Translation Theorem

We say that a pair of SLPs (P’,P”) over an alphabet ¥ generates a sequence
c € X¥ if eval(P’) - (eval(P”))¥ = c¢. We call an infinite sequence ¢ € {0,1}*,
¢ = cpc1C2 ..., the characteristic sequence of a unary language L C {a}* if, for
all 4 > 0, it holds that ¢; is 1 if a* € L and 0 otherwise. One may note that the
characteristic sequence is eventually periodic if and only if L is regular.

Definition 1. A pair of straight-line programs (P’,P") over {0,1} is called an
indicator pair for a unary language L C {a}* if it generates the characteristic
sequence of L.

A unary language can have several different indicator pairs. Indicator pairs form
a descriptional system for unary languages, with the size of (P’,P”) defined as
the sum of sizes of P’ and P”. The following translation theorem shows that
udpda and indicator pairs are polynomially equivalent representations for unary
regular languages. We remark that the theorem does not give a normal form for
udpda because of the non-uniqueness of indicator pairs.

Theorem 1 (translation theorem). For a unary language L C {a}*:

(1) if there exists a udpda A of size m with L(A) = L, then there exists an
indicator pair for L of size O(m);

(2) if there exists an indicator pair for L of size m, then there exists a udpda A
of size O(m) with L(A) = L.

Both translations can be performed by polynomial-time algorithms, the second of

which works in logarithmic space.

Proof idea. We only discuss part 1, which presents the main technical challenge.
The starting point is the simple observation that a udpda A has a single infi-
nite computation, provided that the input tape supplies A with as many input
symbols a as it needs to consume. Along this computation, events of two types
are encountered: A can consume a symbol from the input and can enter a final
state.

The crucial technical task is to construct inductively, using dynamic program-
ming, straight-line programs that record these events along finite computational
segments. These segments are of two types: first, between matching push and
pop moves (“procedure calls”) and, second, from some starting point until a
move pops the symbol that has been on top of the stack at that point (“exits
from current context”). Loops are detected, and infinite computations are asso-
ciated with pairs of SLPs: in such a pair, one SLP records the initial segment,
or prefix of the computation, and the other SLP records events within the loop.

After constructing these SLPs, it remains to transform the computational
“history”, or transcript, associated with the initial configuration of A into the
characteristic sequence. This transformation can easily be performed in poly-
nomial time, without expanding SLPs into the words that they generate. The
result is an indicator pair for A. a
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Any (possibly nondeterministic) logarithmic-space translation from udpda to
indicator pairs would imply NL = P. This is because the emptiness problem for
udpda (P-hard, see Proposition 1 in Section 4 below) reduces to checking if at
least one of the SLPs in an indicator pair generates a word containing a 1, and
this can be checked in NL.

Note that going from indicator pairs to udpda is useful for obtaining lower
bounds on the computational complexity of decision problems for udpda (Theo-
rems 2 and 5). For this purpose, it suffices to model just a single SLP, but taking
into account the whole pair is interesting from the point of view of descriptional
complexity (see also Section 6).

4 Decision Problems for UDPDA

4.1 Compressed Membership and Equivalence

For an SLP P, by |P| we denote the length of the word eval(P), and by P[n]
the nth symbol of eval(P), counting from 0 (that is, 0 < n < |P| —1). We write
Py = Ps if and only if eval(P;) = eval(Ps).

The following SLP-QUERY problem is known to be P-complete (see Lifshits
and Lohrey [19]): given an SLP P over {0,1} and a number n in binary, decide
whether P[n] = 1. The problem SLP-EQUIVALENCE is only known to be in P
(see, e. g., Lohrey [20]): given two SLPs P;, Pa, decide whether P; = Ps.

Theorem 2. UDPDA-COMPRESSED-MEMBERSHIP is P-complete.

Proof. The upper bound follows from Theorem 1. Indeed, given a udpda A and
a number n, first construct an indicator pair (P’,P") for L(.A). Now compute
|P’| and |P”| and then decide if n < |[P’| — 1. If so, the answer is given by
P’n], otherwise by P”[r], where r = (n — |P’|) mod |P”| and in both cases 1 is
interpreted as “yes” and 0 as “no”.

To prove the lower bound, we reduce from the SLP-QUERY problem. Take
an instance with an SLP P and a number n in binary. By transforming the
pair (P, Py), with Py any fixed SLP over {0, 1}, into a udpda A using part 2 of
Theorem 1, this problem is reduced, in logspace, to whether a™ € L(A). O

The following proposition can be shown by a reduction from the monotone circuit
value problem (for hardness) and polynomial-time algorithms for emptiness of
pushdown automata and complementation of deterministic pushdown automata.

Proposition 1. UDPDA-EMPTINESS, UDPDA-UNIVERSALITY are P-complete.
We now extend this result to the general equivalence problem for udpda.
Theorem 3. UDPDA-EQUIVALENCE is P-complete.

Proof idea. Hardness follows from Proposition 1. We show how Theorem 1 can
be used to prove the upper bound: given udpda A; and As, first construct
indicator pairs (P, Py) and (P4, PY) for L(A;) and L(Asz), respectively. Now
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reduce the problem of whether L(A;) = L(A3) to SLP-EQUIVALENCE. The key
observation is that an eventually periodic sequence that has periods |Py| and
|P§] also has period t = ged(|Py|, | P45 |). Therefore, it suffices to check that, first,
the initial segments of the generated sequences match and, second, that P;" and
Py generate powers of the same word up to a certain circular shift. a

4.2 Inclusion

A natural idea for handling the inclusion problem for udpda would be to extend
the result of Theorem 3, that is, to tackle inclusion similarly to equivalence. This
raises the problem of comparing the words generated by two SLPs in the com-
ponentwise sense with respect to the order 0 < 1. To the best of our knowledge,
this problem has not been studied previously, so we deal with it separately. As
it turns out, here one cannot hope for an efficient algorithm unless P = NP.

Let us define the following family of problems, parameterized by partial order
R on the alphabet of size at least 2, and denoted SLP-COMPONENTWISE-R.
The input is a pair of SLPs P;, P2 over an alphabet partially ordered by R,
generating words of equal length. The output is “yes” iff for all 4, 0 < i < |P4],
the relation R(P1[i], Pz[é]) holds. By SLP-COMPONENTWISE-(0 < 1) we mean a
special case of this problem with R the partial order on {0,1} given by 0 < 0,
0<1,1<1.

Theorem 4. SLP-COMPONENTWISE-R is coNP-complete if R is not the equal-
ity relation (that is, if R(a,b) holds for some a #0b), and in P otherwise.

Proof idea. The technical part is to show coNP-hardness of SLP-COMPONENT-
WISE-(0 < 1) by a reduction from the complement of SUBSET-SUM. We use
so-called Lohrey words [22, Theorem 5.2]: given a vector w = (wi,...,wy), a
natural ¢, and the question of whether there exists an x = (z1,...,2,) € {0,1}"
such that z - w = ¢, where x - w = Z?Zl z;w;, it is possible to construct in log-
arithmic space two SLPs that generate words W, = er{o,l}" a®"ba®~"" and

n

Wy = (a'ba*~*)?", where s = (1,...,1) - w and the product in W; enumerates
the xs in the lexicographic order. Now W; and W5 share a symbol b in some
position iff the original instance of SUBSET-SUM is a yes-instance. Substituting
0 for @ and 1 for b in the first SLP, and 0 for b and 1 for a in the second SLP
brings us to (the complement of) SLP-COMPONENTWISE-(0 < 1). a

Remark. An alternative reduction can be derived from Bertoni, Choffrut, and
Radicioni [3, Lemma 3]. A corollary of Theorem 4 on a problem of matching for
compressed partial words is demonstrated in Section 6.

Theorem 5. UDPDA-INCLUSION is coNP-complete.

Proof idea. We rely on Theorem 1: hardness is by a reduction from SLP-CoMPO-
NENTWISE-(0 < 1) using part 2, and membership in coNP depends on part 1
and follows from the fact that L(A;) € L(Asg) if and only if there exists an n
such that a™ € L(Az) \ L(A;) and, moreover, n < 290" where m is the size of
the input. The upper bound on n follows from the translation to deterministic
finite automata (see discussion in Section 6 or Pighizzini [24, Theorem 8]). O
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5 Universality of UNPDA

In this section we settle the complexity status of the universality problem for
unary, possibly nondeterministic pushdown automata. While IIaP-completeness
of equivalence and inclusion is shown by Huynh [14], it has been unknown
whether the universality problem is also IIsP-hard.

For convenience of notation, we use an auxiliary descriptional system. Define
integer expressions over the set of operations {+,U, x2, xN} inductively: the
base case is a non-negative integer n, written in binary, and the inductive step
is associated with binary operations +, U, and unary operations x2, xN. To
each expression E we associate a set of non-negative integers S(E): S(n) = {n},
S(El +E2) = {81 + 82: 81 € S(El),SQ S S(EQ)}, S(El UEQ) = S(El) US(EQ),
S(Ex2)=S(E+E), S(ExN) = {sk: s€ S(E),k=0,1,2,...}.

Expressions E; and Fj are called equivalent iff S(E;) = S(Es3); an expression
E is universal iff it is equivalent to 1xN. The problem of deciding universality
is denoted by INTEGER-{+, U, X2, X N}-EXPRESSION-UNIVERSALITY.

Decision problems for integer expressions have been studied for more than
40 years: Stockmeyer and Meyer [30] showed that for expressions over {+,U}
compressed membership is NP-complete and equivalence is Iz P-complete (uni-
versality is, of course, trivial). For recent results on such problems with opera-
tions from {+,U,N, x, }, see McKenzie and Wagner [23] and Glafer et al. [8].

Lemma 1. INTEGER-{+, U, x2, xN}-EXPRESSION-UNIVERSALITY isII2P-hard.

Proof idea. The reduction is from the GENERALIZED-SUBSET-SUM problem [1,
Lemma 6.2], which is defined as follows. The input consists of two vectors of
naturals, v and v, and a natural ¢, and the problem is to decide whether for all
y € {0,1}™ there exists an x € {0,1}"™ such that x - u + y - v = ¢, where the
middle dot - denotes the inner product. Let M be a big enough number, and
consider the integer expression F defined by E = E' U E”, where

E'=(2"M + 1xN)U (MxN+ ([0,t —1JU [t + 1, M — 1])),

E"=3 (0U @M +uv;)) + > _(0Uu),

j=1 i=1

and segments [a,b] are given by expressions of size O(log(b — a)). Then FE is
universal iff the input is a yes-instance of GENERALIZED-SUBSET-SUM. O

Remark. With circuits instead of formulae (see also [23] and [8]) we would not
need doubling. Furthermore, we only use XN on fixed numbers, so instead we
could use any feature for expressing an arithmetic progression with fixed common
difference.

Theorem 6. UNARY-PDA-UNIVERSALITY is I[IoP-complete.

Hardness is by a reduction from INTEGER-{+, U, X2, xN}-EXPRESSION-UNIVER-
SALITY, and membership in IIoP follows from Huynh [14].
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Corollary 1. Universality, equivalence, and inclusion are IaP-complete for
(possibly nondeterministic) unary pushdown automata, unary context-free gram-
mars, and integer expressions over {+,U, x2, xN}.

Another consequence of Theorem 6 is that deciding equality of a (not necessar-
ily unary) context-free language, given as a context-free grammar, to any fixed
context-free language Lg that contains an infinite regular subset, is IIsP-hard
and, if Ly C {a}*, IIoP-complete. The lower bound is by a reduction due to
Hunt III, Rosenkrantz, and Szymanski [12, Theorem 3.8], who show that de-
ciding equivalence to {a}* reduces to deciding equivalence to any such Ly. The
reduction is shown to be polynomial-time, but is easily seen to be logarithmic-
space as well. The upper bound for the unary case is by Huynh [14]; in the
general case, the problem can be undecidable.

6 Corollaries and Discussion

Descriptional Complexity Aspects of UDPDA. Theorem 1 can be used
to obtain several results on descriptional complexity aspects of udpda proved
earlier by Pighizzini [24]. He shows how to transform a udpda of size m into
an equivalent deterministic finite automaton (DFA) with at most 2™ states [24,
Theorem 8] and into an equivalent context-free grammar in Chomsky normal
form (CNF) with at most 2m + 1 nonterminals [24, Theorem 12]. In our con-
struction m gets multiplied by a small constant, but the advantage is that we
now see (the slightly weaker variants of) these results as easy corollaries of a
single underlying theorem. Indeed, using an indicator pair (P’,P”) for L, it is
straightforward to construct a DFA of size |eval(P’)| + |eval(P”)| accepting L,
as well as to transform the pair into a CFG in CNF that generates L and has at
most thrice the size of (P’,P").

Another result which follows, even more directly, from ours is a lower bound
on the size of udpda accepting a specific language Ly [24, Theorem 15]. To obtain
this lower bound, Pighizzini employs a known lower bound on the SLP-size of the
word W = W[0]... WK — 1] € {0,1}¥ such that a™ € L; iff W[n mod K] = 1.
To this end, a udpda A accepting L; is intersected (we are glossing over some
technicalities here) with a small deterministic finite automaton that “captures”
the end of the word W. The obtained udpda, which only accepts a’, is trans-
formed into an equivalent context-free grammar. It is then possible to use the
structure of the grammar to transform it into an SLP that produces W (note
that such a transformation in general is NP-hard). While the proof produces
from a udpda for L; a related SLP with a polynomial blowup, this construc-
tion depends crucially on the structure of the language L1, so it is difficult to
generalize the argument to all udpda and thus obtain Theorem 1. Our proof of
Theorem 1 therefore follows a very different path.

Relationship to Presburger Arithmetic. An alternative way to prove the
upper bound in Theorem 5 is via Presburger arithmetic, using the observation
that there is a poly-time computable existential Presburger formula that ex-
presses the membership of a word a™ in L(—A;) and L(Ag). This technique
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distills the arguments used by Huynh [13,14] to show that the compressed mem-
bership problem for unary pushdown automata is in NP. It is used in a purified
form by Plandowski and Rytter [25, Theorems 4 and 8], who developed a much
shorter proof of the same fact (apparently unaware of the previous proof). The
same idea was later rediscovered and used in a combination with Presburger
arithmetic by Verma, Seidl, and Schwentick [32, Theorem 4].

Yet another application of this technique provides an alternative proof of the
IIo P upper bound for unpda universality, equivalence, and inclusion (Theorem 6
and Corollary 1). Indeed, we can use the same approach as for inclusion of
udpda; the only difference is that there is no polynomial-time complementation,
so another level of quantifier alternation is introduced. The proof known to date,
due to Huynh [14], involves reproving Parikh’s theorem and is more than 10 pages
long. Reduction to Presburger formulae produces a much simpler proof.

Also, our IIaP-hardness result for unpda shows that the Vioundeq 3°-fragment
of Presburger arithmetic is IIaP-complete, where the variable bound by the
universal quantifier is at most exponential in the size of the formula. The upper
bound holds because the 3*-fragment is NP-complete, see von zur Gathen and
Sieveking [33]. In comparison, the V 3*-fragment, without restrictions on the
domain of the universally quantified variable, requires co-nondeterministic gn®
time, see Grédel [10]. Previously known fragments that are complete for the
second level of the polynomial hierarchy involve alternation depth 3 and a fixed
number of quantifiers, as in Gradel [11] and Schoéning [27]. Also note that the
V¢ 3-fragment is coNP-complete for all fixed s > 1 and ¢ > 2, see Gradel [11].

Problems Involving Compressed Words. Recall Theorem 4: given two
SLPs, it is coNP-complete to compare the generated words componentwise with
respect to any partial order different from equality. As a corollary, we get tight
complexity bounds for SLP equivalence in the presence of wildcards or, equiva-
lently, compressed matching in the well-known model of partial words (see, e. g.,
Fischer and Paterson [6] and Berstel and Boasson [2]). Consider the problem
SLP-PARTIAL-WORD-MATCHING: the input is a pair of SLPs Py, P2 over the
alphabet {a,b, 7}, generating words of equal length, and the output is “yes” iff
for every i, 0 < i < |Py], either P1[i] = Ps[i] or at least one of Py [i] and Ps[i]
is ? (a hole, or a single-character wildcard).

Schmidt-Schaufl [26] defines a problem equivalent to SLP-PARTIAL-WORD-
MATCHING, along with another related problem, where one needs to find occur-
rences of eval(Py) in eval(P2) (as in pattern matching), Ps is known to contain no
holes, and two symbols match iff they are equal or at least one of them is a hole.
For this related problem, he develops a polynomial-time algorithm that finds (a
representation of) all matching occurrences and operates under the assumption
that the number of holes in eval(P;) is polynomial in the size of the input. He
also points out that no solution for (the general case of) SLP-PARTIAL-WORD-
MATCHING is known—unless a polynomial upper bound on the number of ?s in
eval(P;) and eval(P2) is given. Our next proposition shows that such a solution
is not possible unless P = NP. It is an easy consequence of Theorem 4.



156 D. Chistikov and R. Majumdar

Proposition 2. SLP-PARTIAL-WORD-MATCHING is coNP-complete.

Proof. Membership in coNP is obvious, and the hardness is by a reduction
from SLP-COMPONENTWISE-(0 < 1). Given a pair of SLPs Py, Pz over {0,1},
substitute ? for 0 and a for 1 in Py, and b for 0 and ? for 1 in Ps. The resulting
pair of SLPs over {a,b, 7} is a yes-instance of SLP-PARTIAL-WORD-MATCHING
iff the original pair is a yes-instance of SLP-COMPONENTWISE-(0 < 1). O

The wide class of compressed membership problems (deciding eval(P) € L) is
first introduced in Plandowski and Rytter [25] and further studied and discussed
in, e.g., Jez [16] and Lohrey [20]. In the case of words over the unary alphabet,
w € {a}*, expressing w with an SLP is poly-time equivalent to representing
it with its length |w| written in binary. An easy corollary of Theorem 2 is that
deciding w € L(A), where A is a (not necessarily unary) deterministic pushdown
automaton and w = a™ with n given in binary, is P-complete.
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Robustness against Power is PSpace-complete*
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Abstract. Power is a RISC architecture developed by IBM, Freescale,
and several other companies and implemented in a series of POWER
processors. The architecture features a relaxed memory model provid-
ing very weak guarantees with respect to the ordering and atomicity of
memory accesses.

Due to these weaknesses, some programs that are correct under sequen-
tial consistency (SC) show undesirable effects when run under Power. We
say that these programs are not robust against the Power memory model.
Formally, a program is robust if every computation under Power has the
same data and control dependencies as some SC computation.

Our contribution is a decision procedure for robustness of concurrent
programs against the Power memory model. It is based on three ideas.
First, we reformulate robustness in terms of the acyclicity of a happens-
before relation. Second, we prove that among the computations with
cyclic happens-before relation there is one in a certain normal form.
Finally, we reduce the existence of such a normal-form computation to a
language emptiness problem. Altogether, this yields a PSPACE algorithm
for checking robustness against Power. We complement it by a matching
lower bound to show PSPACE-completeness.

1 Introduction

To execute code as fast as possible, modern processors reorder operations. For
example, Intel x86 /x86-64 and SPARC processors implement the Total Store Or-
dering (TSO) memory model [14] which allows write buffering: store operations
in each thread can be queued and get executed on memory later. Processors
can also execute independent instructions out of program order as soon as the
input data and computational units are available for them. This is an inherent
feature of the POWER and ARM microprocessors [13]. Moreover, Power and
ARM memory models, unlike TSO, do not guarantee store atomicity: one write
can become visible to different threads at different times. They only ensure that
all threads see stores to the same memory location in the same order; stores to
different memory locations can be seen in different order by different threads.
All these optimizations are usually designed so that a single-threaded program
has the illusion that its instructions are executed in program order. The picture
changes in the presence of concurrency. Concurrent programs are often assumed
to have sequentially consistent (SC) semantics [11]: each thread executes its

* The full version of this paper is available online [9].
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Thread 1 Thread 2
a: mem[&x] <+ 1 c: r; < mem[&y]
! !
b: mem[&yl + 1 d: ro + mem[&x]

Fig. 1. Message Passing (MP) program [15]. By &z and &y we denote the addresses of
the variables x and y. Initially, x = y = 0. The first thread writes a message into x and
sets flag variable y, signifying that the message is written. The second thread reads the
flag and, if it is set, expects to see the message written to « by the first thread.

operations in program order, stores become visible immediately to all threads.
Concurrent programs may observe a difference from SC when run on a modern
processor with a weak memory model. To see this, consider the MP program
in Figure 1. SC and TSO forbid the situation where r; > ro upon termination
of both threads. However, this is possible on Power: instruction ¢ can read the
value written by b, whereas d reads the initial value.

We call a program not robust against Power [16,6,7,2,5,8,4], if it exhibits non-
SC behaviors when executed under the Power memory model. More formally, a
program is robust if all its Power computations have the same data and control
dependencies as the computations under SC. That is, for every Power compu-
tation there is a sequentially consistent computation which executes the same
instructions, all loads read from the same stores in both computations, and stores
to the same address happen in the same order. Robust programs produce the
same results on Power and SC architectures, which means verification results for
SC remain valid for the weak memory model.

We present an algorithm for deciding robustness against Power. This is the
first decidability result for this architecture and, more generally, the first decid-
ability result for a non-store-atomic memory model. We obtain the algorithm
in the following steps. First, we reformulate robustness in terms of acyclicity of
happens-before, using the result by Shasha and Snir [16]. Second, we show that
among the computations with cyclic happens-before relation there is always one
in a certain normal form. Next, we prove that the set of all normal-form compu-
tations can be generated by a multiheaded automaton — an automaton model
developed recently in the context of robustness [8]. Finally, to check cyclicity of
the happens-before relation we intersect this automaton with regular languages.
The program is robust iff the intersection is empty. This reduces robustness to
language emptiness for multiheaded automata. The algorithm works in space
polynomial in the size of the program. We obtain a matching lower bound by a
reduction of SC-reachability to robustness, similar to [5].

Related Work. The happens-before relation was formulated by Lamport [10].
Shasha and Snir [16] have shown that a computation violates sequential consis-
tency iff it has a cyclic happens-before relation. Burckhardt and Musuvathi [6]
proposed the first algorithm for detecting non-robustness against TSO based on
monitoring SC computations. Burnim et al. [7] pointed out a mistake in the def-
inition of TSO used in [6] and described monitoring algorithms for the TSO and
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PSO memory models. Alglave and Maranget [2] presented a tool to statically
over-approximate happens-before cycles in programs written in x86 and Power
assembly, and to insert synchronization primitives (memory fences and syncs)
as required for robustness (called stability in their work). Bouajjani et al. [5]
obtained the first decidability result for robustness: robustness against TSO is
PSPACE-complete for finite-state programs. In [4] they presented a reduction of
robustness against TSO to SC reachability working for general programs and an
algorithm for optimal fence insertion.

The Power architecture has attracted considerable recent attention. Alglave
et al. [3] give an overview of the numerous publications devoted to defining its
semantics. We highlight two Power models: the operational model by Sarkar
et al. [15] and the axiomatic one by Mador-Haim et al. [12]. These models were
extensively tested against the architecture and were proven to be equivalent [12].
Nevertheless, the operational model is known to forbid certain behaviors that are
possible on real hardware! and in the axiomatic model?® [3]. Fortunately, there
is a suggestion for a fix: in Section 4.5 of [15] one should read from a coherence-
order-earlier write instead of from a different write (two occurrences). Then,
the operational model is believed to tightly over-approximate Power [1]. In the
present paper we stick to the corrected operational model from [15].

Finally, we would like to note that ARM has a memory model very similar to
that of Power. The differences and similarities are highlighted by Maranget et
al. in [13,3]. This fact promises a relatively easy transfer of the proof techniques
used in the present paper to the ARM memory model.

2 Programming Model

We define programs and their semantics in terms of automata. An automaton
is a tuple A = (5, X, A, s, F), where S is a set of states, X is an alphabet,
A C Sx(XU{e}) xS is aset of transitions, so € S is an initial state, and F' C S
is a set of final states. We call the automaton finite if S and X' are finite. We write
51 % 89 if t = (s1,a,52) € A and denote src(t) := s1, dst(t) := sq, lab(t) := a.
The language of the automaton is £L(A) := {0 € X* | 59 = s for some s € F}.
For a sequence o = a; ...a, € X* we define |o| := n, ofi] := a;, first(o) := ay,
and last(o) := a,. We use - for concatenation,|for projection, and ¢ for the empty
sequence. Given o € X* and a,b € a, we write a <, bif a=a1-a-as-b-as.
Given a function f: X - Y, 2’ € X, and ¢y’ € Y, we define f' = f[z' <= ¢'] by
f(x) = f(z) for z € X \ {a'} and f'(z') =¥/ .

A program is a finite sequence of threads: P = T;...7T,. A thread is an
automaton Trd = (Qtid, CMD, Zid, qotiqs Qtid) Wwith a finite set of control states
Qtid, all of them being final, initial state goq4, and a set of transitions Zijq called
instructions and labeled with commands CMD defined below. Each thread has
an id from TID := [1..|P]].

! http://diy.inria.fr/cats/pldi-power/#lessvs
2 http://diy.inria.fr/cats/cav-power/
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Let DOM = ADDR be a finite domain of values and addresses containing the
value 0. Let REG be a finite set of registers that take values from DOM. Commands
CMD include loads, stores, local assignments, and conditionals (assume): The set

(emd) ::= (reg) + mem[{expr)] | mem[{expr)] <+ (expr)
| (reg) < (expr) | assume ({expr))

of expressions EXPR is defined over constants from DOM, registers from REG, and
(unspecified) functions FUN over DOM U {L}. We assume that these functions
return L iff any of the arguments is L.

2.1 Power Semantics

We briefly recall the corrected model from [15]. The state of a running program
consists of the runtime states of threads and the state of a storage subsystem.

The runtime state of a thread includes information about the instructions be-
ing executed by the thread. In order to start executing an instruction, the thread
must fetch it. The thread can fetch any instruction whose source control state is
equal to the destination state of the last fetched instruction. Then, the thread
must perform any computation required by the semantics of this instruction.
For example, for a load the thread must compute the address being accessed,
then read the value at this address, and place it into the target register. The
last step of executing an instruction is committing it. Committing an instruction
requires committing all its dependencies. For example, before committing a load
the thread must commit all its address dependencies — the instructions which
define the values of registers used in the address expression — and control depen-
dencies — the program-order-earlier (fetched earlier than the load) conditional
instructions. Moreover, all loads and stores accessing the same address must be
committed in the order in which they were fetched.

The storage subsystem keeps track, for each address, of the global ordering
of stores to this address — the coherence order — and the last store to this
address propagated to each thread. When a thread commits a store, this store is
assigned a position in the coherence order which we identify by a rational number
— the coherence key. We choose rational numbers (rather than naturals) to be
able to insert a store between any two stores in the coherence order. The key
must be greater than the coherence key of the last store to the same address
propagated to this thread. The committed store is immediately propagated to
its own thread. At some point later this store can be propagated to any other
thread, as long as it is coherence-order-later (has a greater coherence key) than
the last store to the same address propagated to that thread. When a thread
loads a value from a certain address, it gets the value written by the last store
to this address propagated to the thread. A thread can also forward the value
being written by a not yet committed store to a later load reading the same
address. This situation is called an early read.

An important property of Power is that it maintains the illusion of sequen-
tial consistency for single-threaded programs. This means that reorderings on
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the thread level must not lead to situations when, e.g., a program-order-later
load reads a coherence-order-earlier store than the one read by a program-order-
earlier load from the same address. In [15] these restrictions are enforced by the
mechanism of restarting operations. We put these conditions into the require-
ments on final states of the running program instead.

To keep the paper readable, we omit the description of Power synchroniza-
tion instructions: sync, lwsync, isync. All constructions in the paper can be
consistently extended to support them with the final result continuing to hold.

Formally, we define the semantics of program P on Power by a Power au-
tomaton Z(P) := (Sz,E, Az, s0z, Fz). Here, E is a set of labels called events
that we define together with the transitions.

State Space. A state of the Power automaton is a pair sz = (ts, sy) € Sz with
runtime thread states ts: TID — Sx and storage subsystem state sy € Sy.

A runtime thread state sx = (fetched, committed, loaded) € Sx includes a
finite sequence of fetched instructions fetched € 7%, a set of indices of committed
instructions committed C [1..|fetched|], and a function giving the store read by
a load loaded: [1..|fetched|] — { L} U {init, | a € ADDR} U TID x N. We use init,
to denote the initial store of value 0 to address a. The initial state of a running
thread is sox := (g,0, Ai.L).

A state of the storage subsystem sy = (co,prop) € Sy includes a mapping
from a store instruction (its thread id and index in the list of fetched instructions)
to its position in the coherence order co: TID x NU {init, | a € ADDR} — Q,
and a mapping from a thread id and an address to the last store to this address
propagated to this thread prop: TID x ADDR — {init, | a € ADDR} UTID x N.
The initial state of the storage subsystem is spy := (Atid.\i.0, Atid. Aa.init,).

The initial state of automaton Z(P) is soz := (Atid.sox, Soy )-

Transition Relation. Fix a state sz = (ts,sy) with sy = (co, prop) and a
thread id tid € TID with runtime state ts(tid) = (fetched, committed, loaded).

Let eval(tid, 4, ¢) return the value in DOM of expression e in the i’th fetched
instruction of thread tid, or L when the value is undefined. Let addr(tid, ) and
val(tid, ) return the values of the address and value arguments of the i’th fetched
instruction of thread tid. We use the special value T if the instruction has no such
arguments. The expressions addrdep(tid, ), datadep(tid, ), ctrldep(tid, ) denote
the sets of indices of instructions in thread tid being respectively address, data,
and control dependencies of the ¢’th instruction.

Let Tid = (Qtid; CMD, Ziid, Gotiqs Qtid) € P- The transition relation Az is the
smallest relation defined by the rules below:

POW-FETCH. Consider instr € Ty with src(instr) = dst(last(fetched)) or
src(instr) = qoyq if fetched = ¢, then:

(ts, sy) fetch tid instr), (ts[tid <= (fetched - instr, committed, loaded)], sy ).

POW-LOAD. If fetched[i] is a load, loaded[i] = L, a = addr(tid, ) # L, then:

(load, tid,,a)
_—

(ts, sy) (ts[tid < (fetched, committed, loaded[i < prop(tid, a)])], sy ).
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POW-EARLY. Let fetched[i] be a load, loaded[i] = L, and a = addr(tid, i) #
L. Let i’ € [1..i —1] be the greatest index such that fetched[i’] is a store with
a’ = addr(tid, ') € {a, L}. If a’ # L, val(tid,’) # L, i’ ¢ committed, then:

(ts, sy) lloadidi2), (ts[tid <= (fetched, committed, loaded[i < (tid,')])], sy ).

POW-COMMIT. Consider i € [1..|fetched|]\ committed where fetched[] is not
a store. Assume addrdep(tid, 7) U datadep(tid, ¢) U ctrldep(tid, i) C committed.
Assume a = addr(tid,i) # L, v = val(tid,i) # L. If a # T, assume {i’ €
[1..i — 1] | addr(tid,i") € {a, L}} C committed. In case fetched[:] is a load,
assume loaded[i] # L. In case fetched[i] is an assume (), assume v # 0. Then:

(commit,tid,2)

(ts, sy) (ts[tid <= (fetched, committed U {i}, loaded)], sy ).

POW-STORE. Assume all the preconditions from the previous rule hold, but
fetched[i] is a store. Choose a coherence key k € Q such that there is no
tid’ € TID, i’ € N for which co(tid’, i") = k. Then:

(commit,tid,é,k,a)
%

(ts, sy) (ts[tid <— (fetched,committed U {i},loaded)], s% ),
where s := (co|(tid, ) <= k], prop).
Additionally, this transition is immediately followed by a POW-PROP tran-
sition propagating the store to the thread where it was committed.
POW-PROP. Consider tid' € TID, i’ € N with co(tid’,i’) # L. Let a =
addr(tid’,i’). Assume co(prop(tid,a)) < co(tid’,4’). Then:
(prop,tid,tid’ i’ ,a)

(ts, sy) (ts, (co, prop|(tid,a) < (tid’,i")])).

Final States. The set of final states Fz C Sz consists of all states sz =
(ts, (co, prop)) € Sz, such that for each tid € TID, ts[tid] = (fetched, committed,
loaded) the following holds:

FIN-COMM. All instructions are committed: committed = [1..|fetched]|].

FIN-LD. Loads agree with the coherence order. Let fetched[i] be a load, and
fetched[i’] be an earlier load to the same address: i < 4, addr(tid,i) =
addr(tid,4"). Then co(loaded[i']) < co(loaded][i]).

FIN-LD-ST. Loads and stores in the same thread agree with the coherence
order. Let fetched[i] be a load, let fetched[i’] be an earlier store to the same
address: ¢’ < 4, addr(tid, i) = addr(tid, ¢"). Then co(tid, i) < co(loaded[i]).

The set of all Power computations of program P is Cpower(P) := L(Z(P)). The
set of all SC' computations of the program Csc(P) C Cpower(P) includes only
those computations where each instruction is executed atomically, and stores
are immediately propagated to all threads.

Ezample 1. opp = fetch(a)-commit(a)-prop(a, 1)-fetch(b)-commit(b)-prop(b,1)-
prop(b, 2) - fetch(c) - fetch(d) - load(c) - load(d) - commit(d) - commit(c) is a feasible
Power computation of program MP in Figure 1 (we simplified the events by re-
moving information unimportant for this example). Load ¢ reads value 1 written
by store b, because b is propagated to thread 2 before the load(c) event. Store a
is never propagated to thread 2, consequently, d reads the initial value 0.
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3 Robustness

Intuitively, a trace T'(o) abstracts a program computation o to the dataflow
and control-flow relations between instructions. Formally, the trace of o is a
directed graph T'(o) := (V, =po, —>cos —>sre, —ef) With nodes V' and four kinds
of arcs. The nodes are instructions together with their thread identifiers and
fetch indices (in order to distinguish instructions executed in different threads
and the same instruction executed multiple times in the same thread): V C
{inita | a € ADDR} U Usigeipitid} x N x Zijq. The program order —,, is the
order in which instructions were fetched in each thread. The coherence order — .,
gives the global ordering of stores to each address. The source order — ;.. shows
the store from which a load took its value. The conflict order —.¢ shows, for a
load, the stores to the same address following the store the load took its value
from. We define the happens-before relation as —pp 1= —po U —=co U =g U —cr.

We also need address — g4 and data —4q:, dependence relations (defined as
expected based on addrdep and datadep). Since —, includes all the information
from the fetched component of a thread state, —,qqr and —g4qtq can be recon-
structed from —, by inspecting the instructions labeling the nodes. They are
therefore not included in the trace explicitly.

The robustness problem is, given a program P, to check whether the set of all
traces under Power is a subset of all traces under SC: Tpower(P) C Tec(P), where
Tom(P) :={T(0) | 0 € Cam(P)} for mm € {power, sc}.

Shasha and Snir have shown that a trace belongs to an SC computation iff
its happens-before relation is acyclic:

Lemma 1 ([16]). A program P is robust against Power iff there is no trace
T € Tpower(P) with cyclic —pp.

Ezample 2. The trace of computation oyp (Figure 2) has a cyclic happens-
before relation. By Lemma 1, this means that the program is not robust. Indeed,
in no SC computation load d can read 0 whereas ¢ has read 1.

Thread 1 : Thread 2
src
inite, — ' a: mem[&z] +— 1+———d: ry < mem[&x]
co cf
po| po]

initgy — % mem[&y] < 1 T mem [&y]

Fig. 2. Trace of computation oyp from Example 1

4 Normal-Form Computations
We say that a computation 7 € Cpower(P) is in normal form of degree n if there

is a partitioning 7 = 7y - - - 7,,, such that

NF-A (7o---7,)lfetch = ¢.
NF-B For j € {1,2} let e;, e’ be events related to instruction (tid;,d;). If
e1,ep € 7, and €], ey € Ty, then e <, ey iff e <, , €.
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With NF-A, all fetch events occur in 7. With NF-B, the different parts of the
computation have the same ordering of related events. In the rest of this section
we prove the following theorem:

Theorem 1. A program is robust iff it has no normal-form computation of de-
gree |P| + 3 with cyclic happens-before relation.

Consider 0 € Cpym(P). By o \ (tid,i) we denote the computation obtained
from o by deleting all events related to the i’th fetched instruction in thread tid.

Lemma 2. Consider a non-empty computation o € Cpower(P). Then there is a
(tidy,ix), such that o’ = o\ (tidy,ix) satisfies |0'| < |o| and 0" € Cpower(P).

Proof. Consider the last fetched instruction in each thread. If among such in-
structions there is a non-store instruction, delete it: its result cannot be used by
any other instruction. If all these instructions are stores, delete the one, on which
(1) no load or store depends via (—sre U —data)™ * —>addr, and (2) no condition
depends via (—sre U —data) ™

Towards a contradiction, assume there is no such store. Consider the last
fetched (store) instruction in a thread tidy: (tidy,41). Case 1: there is a load or a
store (tidg,45) whose address depends on (tidy,41). Case 2: there is a condition
(tida, i5) whose value depends on (tidy,41). Consider the last fetched instruction
in thread tids: (tidz, é2). It must be a store, and it must have been committed after
(tidq,41): a store can only be committed after all loads and stores fetched before
it have their addresses determined (Case 1) and after all preceding conditions
are committed (Case 2).

Continuing the reasoning, for any last fetched instruction in a thread (tid;, i;)
there is a last instruction in a different thread (tidjt+1,%;41) which must have
been committed later. Taking into account finiteness of the number of threads,
we get a contradiction. O

Fix a program P. Consider a shortest Power computation @ € Cyower(P)
with cyclic —pp. Let (tidy, ix) be the instruction determined by Lemma 2. Let
Q= Q1 X] Qg XoQy, where {x1...x,-1} are the events related to the
ix’'th instruction fetched in thread tidy. Then a\ (tidy, ix) := o' := a1 - g - ay.
Since o’ is shorter than a, its —p; is acyclic. Therefore, there is a computation
B € Coe(P) with T(B8) = T'(a).

The computations 8 and o consist of the same fetch, load, and commit events:
fetch events are determined by —,,; address component a of load and store
commit events is determined by —4ddr, —date (derivable from —,,), and —gp;
since —., is the same for both computations, we can assume that matching
store commit events have the same value of coherence key k. Notably, S can
have more propagate events than o’ as the Power semantics does not guarantee
that all stores are propagated to all threads. Now we reorder the events in
each part o; of a in the way they follow in 8. This gives the computation

vi=pBlar-x1-Blag-xg- Blag.
Lemma 3. v € Cooner(P) and T'(y) = T(v).
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Wlog we may assume that all fetch events of a are located within a; -x;: every
thread can always first fetch all instructions and in the rest of the computation
only execute them; such a reordering does not change the trace. Also, note that
the maximal number of events an instruction can generate is |P|+ 2. This bound
is achieved by a store that is fetched, committed, and propagated to all threads.
Then the following lemma holds; together with Lemma 1 it proves Theorem 1.

Lemma 4. Computation v is in normal form of degree |P|+ 3.

Ezample 3. Consider o := fetch(c) - fetch(d) - fetch(a) - feteh{d) - commit(a) -
prop(a, 1) - commit(B) - prop{t;T) - propt; 2] -load(c) - load(d) - commit(d) - commit(c),
which is opp with fetch events moved to the front. We cancel the x; events
(crossed out) related to store instruction b, as b is the last instruction of thread 1
and no address depends on it (we could also cancel the events of d instead).
Therefore, ay := fetch(c) - fetch(d) - fetch(a), az := commit(a) - prop(a, 1), as =
a4 = €, as := load(c)-load(d) -commit(d)-commit(c), and o/ := a1 -2 az- s 5.
The trace of o is the trace of o (Figure 2) with node b and adjacent arcs re-
moved, and a source arc from init, to ¢ added. The SC computation with the
same trace is § := fetch(c) - load(c) - commit(c) - fetch(d) - load(d) - commit(d) -
fetch(a) - commit(a) - prop(a, 1) - prop(a,2). The normal-form computation is
v:=flag %1 Blas = (fetch(c) - fetch(d) - fetch(a)) - fetch(b) - (commit(a) -
prop(a, 1))-commit(b)-prop(b, 1)-prop(b, 2)-(load(c)-commit(c)-load(d)-commit(d)).
It is feasible and has the same trace as o and opyp (Figure 2).

5 From Normal-Form Computations to Emptiness

We now reduce robustness to language emptiness. First, we define a multiheaded
automaton capable of generating all normal-form computations of a program.
Next, we intersect it with regular languages that check cyclicity of the happens-
before relation. Altogether, the program is robust iff the intersection is empty.

5.1 Generating Normal-Form Computations

To generate all normal-form computations, we use multiheaded automata [8].
A multiheaded automaton generates a computation o . ..o, by simultaneously
generating its parts o;. The automaton has a head for each part, and transitions
define the head producing an event. Formally, an n-headed automaton over X
is an automaton over an extended alphabet: A = (5, [1..n] x X, A, s¢, F'). The
language is L(A) = {second(c | ({1} x X)---al ({n} x X)) | s0 = s € F},
where second((a1,b1) -+ (m, b)) := b1 - - - by,. Multiheaded automata are closed
under regular intersection, and language emptiness is NL-complete [8].

We generate all normal-form computations of program P with the n-headed
automaton M (P) := (S, E, Aar, sSonr, Far), where n := |P|+ 3. The automaton
generates all events related to a single instruction in one shot, but, possibly, in
different parts of the computation. All fetch events are generated in the first
part. To generate them, the automaton stores the destination state of the last
fetched instruction in each thread (component ctrl-state of the automaton state).

Each instruction can only read the last value written to a register. There-
fore, the automaton only needs to remember |REG| register values per thread
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(component reg-value). However, an instruction cannot be executed until the
values of all registers that it reads become known. To obey this restriction,
the automaton memorizes the part of the computation in which the register
value gets computed (reg-comp-head). For example, while handling an assign-
ment ry; < ry + ro, the automaton learns that the new value of r; is the sum of
the current values of r; and ry. It also remembers that this value is available no
earlier than the current values of r; and ry are computed. Similarly, the automa-
ton remembers the parts of the computation in which the addresses of load and
store instructions become known (addr-comp-head), and certain kinds of instruc-
tions get committed (reg-comm-head, assume-comm-head, addr-comm-head).

The automaton has to keep a separate memory state for each thread and for
each part of the computation. The memory state of a thread in a part is updated
when a store instruction gets propagated to this thread in this part. When a load
instruction is handled, the automaton chooses a part where the load event takes
place and uses the memory state of that part. Besides the memory valuation
(mem-value), the memory state includes coherence keys (last-key) to guarantee
that the generated computation respects the coherence order.

When starting the computation, the automaton non-deterministically guesses
the memory valuations and coherence keys for all parts of the computation
(except the first one). Upon termination, the automaton checks that the parts
of the computation generated by each head fit together at the concatenation
points. This ensures the overall computation is valid for the program. The trick
is to remember the guess of the initial memory valuations and coherence keys
in immutable components of the automaton state (mem-valueg, last-key,). The
final states require that the current memory state in part h of the computation
coincides with the guessed initial state in part h + 1.

We now formally define the transition rules for assignments and loads. The
remaining rules are given in [9]. Fix a state sp; and consider a thread tid € TID

in control state ctrl-state(tid) = ¢; and an instruction instr = ¢; ﬂ q2 € Tiid.
The automaton uses three indices from HEAD := [1..n]. Index hy := 1 denotes
the part where the automaton generates fetch events. Index hy € HEAD refers
to the part in which the computation of the instruction takes place. There
are constraints on this index. The instruction has to be fetched, ho > hy, and
the computation can only complete when the value of each register r read in
cmd has been computed: hy > reg-comp-head(tid, r). Finally, index hs € HEAD
determines the part of the computation where the instruction is committed.
An instruction has to be computed to be committed: hs > hs. Moreover, the
last assignment to each register r read in cmd has to be committed before
cmd can be committed itself: hs > reg-comm-head(tid,r). The instruction
count is incremented with each instruction: let ¢ := instr-count(tid) + 1, then
instr-count” := instr-count|tid < i]. We use primed variables for the new values
of state components. We overload eval(tid, ¢) to mean the value of expression e
for the valuation of registers defined by Ar.reg-value(tid, r).
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MH-ASSIGN. For an assignment cmd = r « e, let v := eval(tid,e,)
be the value. We update the register reg-value’ := reg-value[(tid,r) < V]
and store the part in which the value has been computed reg-comp-head’ :=
reg-comp-head|(tid, r) <= hy]. We also keep the part where it has been committed
reg-comm-head’ := reg-comm-head|[(tid,r) <> h3]. The transition is labeled by
A := (hy, fetch, tid, instr) - (hs, commit, tid, ¢), which means it is actually decom-
posed into two transitions.

MH-LOAD. Let cmd = r < mem[e,] and a := eval(tid, e,). All preceding
accesses to this address have to be committed before the load can be com-
mitted: hs > addr-comm-head(tid, a). The value stems either from memory or
from an early read. In the former case, we check that there are no pending
stores early-mem-value(tid,a) = L and set v := mem-value(tid, a, h2). In the
latter case, we find a pending store and make sure there is no later store
with an undetermined address: v := early-mem-value(tid, a, hy) with v # T.
We modify the register information as for assignments. We update the index
of the leftmost part of the computation where all addresses are determined:
addr-comp-head’ := addr-comp-head|tid <> max{addr-comp-head(tid), ho}]. We
also remember the position of the last commit to the current address:
addr-comm-head’ := addr-comm-head|(tid,a) <> h3]. The transition label is
A := (hy, fetch, tid, instr) - (ho, load, tid, ¢, a) - (hg, commit, tid, 7).

The set of final states Fj; consists of all states with mem-value(tid,a,h) =

mem-valuey (tid, a, h + 1) and last-key(tid, a, h) = last-key,(tid,a,h + 1).

Lemma 5. {7 € Cooner(P) | T is in normal form of degree n} C L(M(P)) and
LIM(P)) € Cponer(P)-

5.2 Checking Cyclicity of the Happens-Before Relation
We call a happens-before cycle beautiful, if it has the following form:

(tidy, 1, instry)—pe " (tidy, 47, instr} ) —pop - - -

—hop(tidn, in, iINStry, )—po " (tidy,, i1, , instr) )—>pop(tidy, i1, instry ).

Here, —hop = (—co U —rsre U —¢y) and tidy # tid; for k # . We call 0 :=
tidy .. .tid,, the profile of the cycle.

Ezxample 4. The happens-before cycle shown in Figure 2 is beautiful.

Lemma 6 ([8]). A computation T € Cponer(P) has a happens-before cycle iff it
has a beautiful happens-before cycle.

Given a cycle profile 6, we define the automaton M’(P,0) as a modification
of M(P) that marks one event in each thread tid; € 6 with enter (identifying
(tidj,7j,)) and a later (or the same) event with leave (identifying (tid;, i, *),
i; < z;) Note that M (P) generates the events in program order, which ensures
(tid;, iz, %)—>po ™ (tid;, %, *). To check (tid;, 7}, *)—=nop(tidjt1,454+1, %), we use an
intersection with a regular language H'di-tidi+1,
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Lemma 7. Program P has a beautiful cycle with profile 6 = tid; ... tid,, iff
M/(P, 9) N Htidl,tidz Nn...N Htidn,tidl # @

Automaton M (P) is infinite-state. To ensure M'(P,0) has finitely many states,
we note that the instruction indices are irrelevant for the detection of happens-
before cycles (instr-count can be dropped), and that the number of different
coherence keys that must be stored in the state at any moment is polynomial in
the size of P. Together with the observation that emptiness is in NL, we obtain
a PSPACE upper bound for robustness. The lower bound is by a reduction of
SC-reachability similar to [5].

Theorem 2. Robustness against Power is PSPACE-complete.
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Abstract. Weighted timed automata (WTA) model quantitative aspects of real-
time systems like continuous consumption of memory, power or financial re-
sources. They accept quantitative timed languages where every timed word is
mapped to a value, e.g., a real number. In this paper, we prove a Nivat theorem
for WTA which states that recognizable quantitative timed languages are exactly
those which can be obtained from recognizable boolean timed languages with the
help of several simple operations. We also introduce a weighted extension of rel-
ative distance logic developed by Wilke, and we show that our weighted relative
distance logic and WTA are equally expressive. The proof of this result can be
derived from our Nivat theorem and Wilke’s theorem for relative distance logic.
Since the proof of our Nivat theorem is constructive, the translation process from
logic to automata and vice versa is also constructive. This leads to decidability
results for weighted relative distance logic.

Keywords: Weighted timed automata, linearly priced timed automata, average
behavior, discounting, Nivat’s theorem, quantitative logic.

1 Introduction

Timed automata introduced by Alur and Dill [1] are a prominent model for real-
time systems. Timed automata form finite representations of infinite-state automata
for which various fundamental results from the theory of finite-state automata can be
transferred to the timed setting. Although time has a quantitative nature, the questions
asked in the theory of timed automata are of a qualitative kind. On the other side,
quantitative aspects of systems, e.g., costs, probabilities and energy consumption can
be modelled using weighted automata, i.e., classical nondeterministic automata with a
transition weight function. The behaviors of weighted automata can be considered as
quantitative languages (also known as formal power series) where every word carries a
value. Semiring-weighted automata have been extensively studied in the literature (cf.
[6, 17, 20] and the handbook of weighted automata [12]).

Weighted extensions of timed automata are of much interest for the real-time com-
munity, since weighted timed automata (WTA) can model continuous time-dependent
consumption of resources. In the literature, various models of WTA were considered,
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e.g., linearly priced timed automata [3, 4, 21], multi-weighted timed automata with
knapsack-problem objective [22], and WTA with measures like average, reward-cost
ratio [7, 8] and discounting [2, 18, 19]. In [24, 25], WTA over semirings were stud-
ied with respect to classical automata-theoretic questions. However, various models,
e.g., WTA with average and discounting measures as well as multi-weighted automata
cannot be defined using semirings. For the latter situations, only several algorithmic
problems were handled. But many questions whether the results known from the theo-
ries of timed and weighted automata also hold for WTA remain open. Moreover, there
is no unified framework for WTA.

The main goal of this paper is to build a bridge between the theories of WTA and
timed automata. First, we develop a general model of fimed valuation monoids for
WTA. Recall that Nivat’s theorem [23] is one of the fundamental characterizations of
rational transductions and establishes a connection between rational transductions and
rational languages. Our first main result is an extension of Nivat’s theorem to WTA
over timed valuation monoids. By Nivat’s theorem for semiring-weighted automata de-
scribed recently in [13], recognizable quantitative languages are exactly those which
can be constructed from recognizable languages using operations like morphisms and
intersections. The proof of this result requires the fact that finite automata are deter-
minizable. However, timed automata do not enjoy this property. Nevertheless, for idem-
potent timed valuation monoids which model all mentioned examples of WTA, we do
not need determinization. In this case, our Nivat theorem for WTA 1is similar to the one
for weighted automata. In the non-idempotent case, we give an example showing that
this statement does not hold true. But in this case we can establish a connection be-
tween recognizable quantitative timed languages and sequentially, deterministically or
unambiguously recognizable timed languages.

As an application of our Nivat theorem, we provide a characterization of recog-
nizable quantitative timed languages by means of quantitative logics. The classical
Biichi-Elgot theorem [9] was extended to both weighted [10, 11, 14] and timed settings
[26, 27]. In [24, 25], a semiring-weighted extension of Wilke’s relative distance logic
[26, 27] was considered. Here, we develop a different weighted version of relative dis-
tance logic based on our notion of timed valuation monoids. In our second main result,
we show that this logic and WTA have the same expressive power. For the proof of this
result, we use a new proof technique and our Nivat theorem to derive our result from
the corresponding result for unweighted logic [26, 27]. Since the proof of our Nivat
theorem is constructive, the translation process from weighted relative distance logic
to WTA and vice versa is constructive. This leads to decidability results for weighted
relative distance logic. In particular, based on the results of [3, 4, 21], we show the
decidability of several weighted extensions of the satisfiability problem for our logic.

2 Timed Automata

An alphabet is a non-empty finite set. Let X' be a non-empty set. A finite word over X
is a finite sequence a; ...a,, where n > 0 and aq, ...,a, € 2. If n > 1, then we say that
w is non-empty. Let X denote the set of all non-empty words over X. Let R>( denote
the set of all non-negative real numbers. A finite timed word over X is a finite word over
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¥ X Rxo, i.e., a finite sequence w = (a1, t1)...(an,ty) where n > 0, a1, ...,a, € X
andty,...,t, € R>o.Let |w| =nand (w) =t; +...+t, andlet TEH = (X x R>o) T,
the set of all non-empty finite timed words. Any set £ C TX T of timed words is called
a timed language.

Let C be a finite set of clock variables ranging over R>o. A clock constraint over C
is either TRUE or (if C'is non-empty) a finite conjunction of formulas of the form = > ¢
where € C, ¢ € Nand < € {<,<,=,>,>}. Let $(C) denote the set of all clock
constraints over C. A clock valuation over C'is a mapping v : C' — Rx>( which assigns
a value to each clock variable. Let RS, be the set of all clock valuations over C. The
satisfaction relation = C RS, x &(C) is defined as usual. Now let v € RS, t € R>
and A C C. Let v + t denote the clock valuation v € RS, such that v/ (z) = v(z) + ¢
forall # € C. Let v[A := 0] denote the clock valuation v/ € R, such that v/(z) = 0
forallz € Aand V' (x) = v(x) forall z ¢ A. -

Definition 2.1. Let Y be an alphabet. A timed automaton over X is a tuple
A= (L,C,1,E,F) such that L is a finite set of locations, C' is a finite set of clocks,
I, F C L are sets of initial resp. final locations and E C L x X x &(C) x 2¢ x L is
a finite set of edges.

For an edge e = (¢, a, ¢, A, ¢'), let label(e) = a be the label of e. A run of A is a finite
sequence

p = (lo,v0) =5 (b1, 11) B2 255 (U, vy) )
where n > 1, 80,61,...,% e L, vo,v1,...,uy € RQO’ t1,...,tn € IRZO and
e1,...,en € E satisfy the following conditions: £y € I, vo(x) = 0 forall z € C,
l, € Fand, foralll <i<n,e; = (E,»_l,a,»,@,/li,&) for some a; € X, ¢; € @(C)
and A; C C suchthatv;,_1 +t; = ¢; and v; = (v;—1 + t;)[A; := 0]. The label of p
is the timed word label(p) = (label(eq), t1)...(label(ey,), t,,) € TX*. For any timed
word w € TX*, let Run 4 (w) denote the set of all runs p of A such that label(p) = w.
Let £L(A) = {w € TXT | Rung(w) # 0}. We say that an arbitrary timed lan-
guage L C TXT is recognizable if there exists a timed automaton A over X such that
L(A) = L. We say that a timed automaton A = (L,C, I, E, F) is unambiguous if
|Rung(w)| < 1 for all w € TXT. We call A deterministic if |I| = 1 and, for all
e1 = (l,a,¢1,41,01) € Eand ex = (£, a, ¢a, Az, l3) € E with e; # es, there exists
no clock valuation v € RS, with v = ¢1 A ¢o. We call A sequential if |I| = 1 and,
forall ey = (¢,a,¢1,A1,01) € E and e2 = ({,a, da, Az, l2) € E, we have e; = ea;
this property can be viewed as a strong form of determinism. Based on these notions,
we can define sequentially recognizable, deterministically recognizable and unambigu-
ously recognizable timed languages.

3 Weighted Timed Automata

In this section, we introduce a general model of weighted timed automata (WTA) over
timed valuation monoids. We will show that our new model covers a variety of situations
known from the literature: linearly priced timed automata [3, 4, 21] and WTA with the
measures like average [7, 8] and discounting [2, 18, 19].
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A timed valuation monoid is a tuple M = (M, +, val, 0) where (M, +,0) is a com-
mutative monoid and val : T(M x M)™ — M is a timed valuation function. We will
say that M is the domain of M. We say that M is idempotent if + is idempotent, i.e.,
m+m =mforallm € M.

Let X' be an alphabet and M = (M, +, val, 0) a timed valuation monoid. A weighted
timed automaton (WTA) over X' and M is a tuple A = (L,C,I,E, F,wt) where
(L,C,1,E,F) is a timed automaton over X and wt : L U E — M is a weight func-
tion. Let p be a run of A of the form (1). Let wt*(p) € T(M x M)* be the timed
word (u1,t1)...(un,t,) where, forall 1 < ¢ < n, u; = (wt(€;—1), wt(e;)). Then,
the weight of p is defined as wt 4(p) = val(wtf(p)) € M. The behavior of A is the
mapping ||A|| : TXYT — M defined by ||A||(w) = > (wta(p) | p € Run.4(w)) for all
w € TX™T. A quantitative timed language (QTL) over M is a mapping L : TX T — M.
We say that L is recognizable if there exists a WTA A over X and M such that L = ||A]].

Example 3.1. All of the subsequent WTA model the property that staying in a loca-
tion invokes costs depending on the length of the stay; the subsequent transition also
invokes costs but happens instantaneously. We assume that, for all z € R U {oo},
rz-00=00-x=o00and x + 00 = 00 + x = 0.

(a) Linearly priced timed automata were considered in [3, 4, 21]. We can describe
this model by the timed valuation monoid
MU = (R U {oo}, min, val*"™ oo) where val®™ is defined by val*™(v) =
S (my -ty +ml) forallv = ((mq,m}), t1)...((mp,mY,), t,) € T(M x M)™T.

(b) The situation of the average behavior for WTA considered in
[7, 8] can be described by means of the timed valuation monoid
M8 = (RU {oo}, min, val™® 00) where val™® is defined as follows. Let
v=((m1,m}),t1)...((mp,m}),tn) € T(M x M)T. If (v) > 0, then we let
val™®(v) = Z;;l(?ﬁjmé). If
m,, = 0, then we pllt val™®(v) = m;. Otherwise, we put val™®(v) = oo.

(c) The model of WTA with the discounting measure was investigated in [2, 18,
19]. These WTA can be considered as WTA over the timed valuation monoid
Mdiser = (R U {oo}, min, val®™ | 0o) where 0 < A < 1 is a discounting factor
and val®™** is defined for all v = ((my,m}), t1)...((Mp, M%), tn) € T(M x M)+

by val™™ (v) = 1| Attt ( Oti m; - ATdT + At - ml).

(wy=0,m =..=m, € Randm} = ... =

Note that the timed valuation monoids M'™, M2'8 and Mdisex are idempotent.

4 Closure Properties

In this section, we consider several closure properties of recognizable quantitative timed
languages which we will use for the proof of our Nivat theorem and which could be of
independent interest. For lack of space, we will omit the proofs.

Let X be a set, I' an alphabet and h : I' — X a mapping. For a timed word
v=(y1,t1)...(Ynstn) € TIT, welet h(v) = (h(m1),t1)...(A(7n), tn) € TXT. Then,
foraQTL 7 : TI'™ — M over M, we define the QTL h(r) : TXT — M over M by
h(r)(w) = > (r(v) | v € TI'" and h(v) = w) for all w € TXT. Observe that for any
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w € TXT there are only finitely many v € TI'™ with h(v) = w, hence the sum exists
in (M,+).

Lemma 4.1. Let X, I" be alphabets, M = (M, +, val, 0) a timed valuation monoid and
h: T — X amapping. If r : TI'T — M is a recognizable QTL over M, then the QTL
h(r) is also recognizable.

For the proof of this lemma, we use a similar construction as in [16], Lemma 1.

Let g : ¥ — M x M be a mapping. We denote by valog : TXT — M the QTL
over M defined for all w € TXT by (valog)(w) = val(g(w)). We say
that a timed valuation monoid M = (M, +,val,0) is location-independent
if, for any v = ((m1,m}),t1)...((mp,m,),t,) € T(M x M)T and
v = ((k1, k), t1)e e (kny kL), tn) € T(M x M) with m] = k] forall 1 < i < n,
we have val(v) = val(v').

Lemma 4.2. Let X' be an alphabet, M = (M, +, val, 0) a timed valuation monoid and
g : X — M x M a mapping. Then, val og is unambiguously recognizable. If M is
location-independent, then val og is sequentially recognizable.

However, in general, val og is not deterministically recognizable (and hence not se-
quentially recognizable). Let X = {a,b} and M = M*™ as in Example 3.1 (a). Let
g(a) = (1,0) and g(b) = (2,0). Then, one can show that val og is not deterministically
recognizable.

Let £ C TXT be atimed language and r : TXT — M a QTL over M. The intersec-
tion (rN L) : TXt — M is the QTL over M defined by (r N £)(w) = r(w) if w € L
and (rN L)(w) =0ifw e TXT\ L.

Example 4.3. As opposed to weighted untimed automata, recognizable quantitative
timed languages are not closed under the intersection with recognizable timed lan-
guages. Let X' be a singleton alphabet and £ a recognizable timed language over
2} which is not unambiguously recognizable. Wilke [26] showed that such a lan-
guage exists. Consider the non-idempotent and location-independent timed valuation
monoid M = (N, +,val,0) where + is the usual addition of natural numbers and
val(v) = my - ... -m], forall v = ((my,m}),t1)...((Mn, M), tn) € TN x N)T.

Let the QTL r : TX+ — N over M be defined by r(w) = 1 for all w € TX". Then, r
is recognizable but N L is not recognizable.

Nevertheless, the intersection enjoys the following closure properties.

Lemma 4.4. Let X be an alphabet, Y1 = (M, +,val,0) a timed valuation monoid,
L C TX* arecognizable timed language and r : TX T — M a recognizable QTL over
M. If M is idempotent, then r N L is recognizable. If L is unambiguously recognizable,
then r N L is recognizable. If L, r are unambiguously (deterministically, sequentially,
respectively) recognizable, then N L is also unambiguously (deterministically, sequen-
tially, respectively) recognizable.

For the proof, we use a kind of product construction for timed automata.
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5 A Nivat Theorem for Weighted Timed Automata

Nivat’s theorem [23] (see also [5], Theorem 4.1) is one of the fundamental character-
izations of rational transductions and establishes a connection between rational trans-
ductions and rational languages. A version for semiring-weighted automata was given
in [13]; this shows a connection between recognizable quantitative and qualitative lan-
guages. In this chapter, we prove a Nivat-like theorem for recognizable quantitative
timed languages.

Let X be an alphabet and M = (M,+,val,0) a timed valuation monoid. Let
REC(X, M) denote the collection of all QTL recognizable by a WTA over X and M.
Let M(X,M) (with N standing for Nivat) denote the set of all QTL L : TXY+ — M
over M such that there exist an alphabet I", mappings h : I’ — Y'andg: I' - M x M
and a recognizable timed language £ C TX* such that L = h((valog) N L). Let the
collection N'5E (3 M) be defined like NV'(X, M) with the only difference that £ is se-
quentially recognizable. The collections N'UNAMB (37 M) and A'PET(X, M) are defined
similarly using unambiguously resp. deterministically recognizable timed languages.

Our Nivat theorem for weighted timed automata is the following.

Theorem 5.1. Let Y be an alphabet and ™M a timed valuation monoid. Then,
ReEC(X,M) = NSEQ(E,M) = NDET(E,M) = NUNAMB(E,M) C N(XEM).
If M is idempotent, then REC(X, M) = N (X2, M).

As opposed to the result of [13] for weighted untimed automata, the equality
REC(X,M) = N(X,M) does not always hold: let X, M, £ and r be defined as in
Example 4.3. Then, one can show that 7 N £ € N(X, M) \ REC(X,M).

The proof of Theorem 5.1 is based on the closure properties of WTA (cf. Sect. 4)
and the following lemma.

Lemma 5.2. Let 3 be an alphabet and M a timed valuation monoid. Then,
REC(XZ,M) C NSEQ(X ).

Proof (Sketch). Let A = (L,C,I,E, F,wt) be a WTA over ¥ and M. Let I" = E. We
define the mappings h : I' — Y and g : I' - M x M forally = ({,a,¢,A,0') € I
by h(y) = a and g(y) = (wt(€), wt(y)). Let £ be the set of all timed words w =
(71, 71)-..(Yn, Tn) such that there exists a run p of A of the form (1) with v; = e; and
7, = t; forall 1 < ¢ < n. It can be shown that £ is sequentially recognizable and
[|[A]| = h((valog) N L) € NSER(X ). |

Let X' be an alphabet and M a timed valuation monoid with the domain M. Let
HUNAME (57 M) denote the collection of all QTL I : TX ™ — M over M such that there
exist an alphabet I', a mapping h : I' — X and an unambiguously recognizable
QTL r : TI't — M over M such that L = h(r). The collections H55 (X, M) and
HPET (3, M) are defined like HYNMB (3, 1) with the only difference that 7 is sequen-
tially resp. deterministically recognizable.

As a corollary from Theorem 5.1, we establish the following connections between
recognizable and unambiguously, sequentially and deterministically recognizable QTL.
For the proof of this corollary, we apply Theorem 5.1 and closure properties of WTA
considered in Sect. 4.
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Corollary 5.3. Let X be an alphabet and M a timed valuation monoid. Then,
HSEQ(X M) = HPEN(X M) C HUMMB(X M) = REC(X,M). If M is location-
independent, then H5 (X, M) = REC(X, M).

However, the equality HS®?(X,M) = REC(X,M) does not always hold. Let
Y ={a,b} and M = M"™ be the timed valuation monoid as in Example 3.1 (a); note
that M is not location-independent. Consider the QTL L : TX " — M over M defined
forall w = (a1, t1)...(an, t,) by L(w) = t1 if a; = aand L(w) = 2 - ¢ otherwise. We
can show that L € REC(X, M) \ H5Q (X2, M).

6 Weighted Relative Distance Logic

In this section, we develop a weighted relative distance logic. Relative distance logic on
finite and infinite timed words was introduced by Wilke in [26, 27]. It was shown that
restricted relative distance logic and timed automata have the same expressive power.
Here, we will derive a weighted version of this result for finite timed words. We will
show that the proof of our result can be deduced from Wilke’s result and our Nivat
theorem for WTA.

We fix a countable set V; of first-order variables and a countable set V5 of second-
order variables such that Vi N Vo = 0. Let V = V; U Vs,

6.1 Relative Distance Logic

Let X be an alphabet. The set RDL(X') of relative distance formulas over X is defined
by the grammar:

@ = Pux) e <y| X(z)| d2(X,2) |~ o Ve |Tze|IXp

wherea € X, x,y € V1, X € Vo, € {<,<,=,>,>} and ¢ € N. The formulas of
the form d%°°(X, ) are called past formulas.

Let w = (a1, t1)...(an,t,) € TXT be a timed word. For every 1 < i < n, let
(w); = t1 + ... + ;. The domain of w is the set dom(w) = {1,...,n} of positions
of w. Let y € dom(w), Y C dom(w), = € {<,<,=,>,>}and ¢ € N. Then, we
write d7°“" (Y, y) iff either there exists a position z € Y such that z < y and, for the
greatest such position z, (w), — (w), > ¢, or there exists no position z € Y with
z <y, and (w),, > c. A w-assignment is a mapping o : V — dom(w) U 29°™(*) such
that o(V;) € dom(w) and o(V3) C 29°™(®), We define the update o[z /i) to be the w-
assignment such that o[z /i](x) = i and o[z /i](y) = o(y) forall y € V\{z}. Similarly,
for X € V5 and I C dom(w), we define the update o[X/I]. Let ¢ € RDL(X) and o
be a w-assignment. The definition that the pair (w, o) satisfies the formula ¢, written
(w,0) = ¢, is given inductively on the structure of ¢ as usual for MSO logic where,
for the new formulas d5*°(X, x), we put (w, o) | d7°(X, z) iff &5 (0(X), o(2)).

A formula ¢ € RDL(X) is called a sentence if every variable occurring in ¢ is bound
by a quantifier. Note that, for a sentence ¢ € RDL(X'), the relation (w, o) = ¢ does not
depend on o, i.e., for any w-assignments o1, 02, (w,01) | ¢ iff (w,02) = . Then,
we will write w = . For a sentence ¢ € RDL(X), let L(¢) = {w € TYT | w | ¢},
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the timed language defined by ¢. Let A C RDL(X). We say that a timed language
L C TY* is A-definable if there exists a sentence ¢ € A such that £(y) = L.

LetV = {X1,.., X} €V with |V| = m. For ¢ € RDL(X), let 3V.¢ denote the
formula 3X;. ... 3X,,.¢. For a formula ¢ € RDL(X'), let D(¢) C V4 denote the set
of all variables X for which there exist z € V3, € {<,<,=,>,>} and ¢ € N such
that d3°(X, x) is a subformula of ¢. Let RDL (X)) C RDL(Y) denote the set of all
formulas ¢ where quantification of second-order variables is applied only to variables
not in D(y). We denote by IRDL (X)) C RDL(X) the set of all sentences of the form

ID(p).e.

Theorem 6.1 (Wilke [27]). Let X be an alphabet and £ C TXT a timed language.
Then, L is recognizable iff L is IRDL (X)-definable.

6.2 Weighted Relative Distance Logic

In this subsection, we consider a weighted version of relative distance logic. For un-
timed words, weighted MSO logic over semirings was defined in [10]. A weighted
MSO logic over (untimed) product valuation monoids was considered in [14]. We will
use a similar approach to define the syntax and the semantics of our weighted relative
distance logic. In [14], valuation monoids were augmented with a product operation
and a unit element to define the semantics of weighted formulas. Here, we proceed in a
similar way and consider timed product valuation monoids.

A timed product valuation monoid (timed pv-monoid) M = (M, +,val,¢,0,1) is a
timed valuation monoid (M, +, val, 0) equipped with a multiplicationo : M xM — M
andaunitl € M suchthat mol =1om = mand mo0 = 0o m = 0 for all
m € M, val(((1,1),t1),...,((1,1),¢,)) = L forall n > 1 and all ¢4, ...,t, € R>q,
and val(((m1,m}),t1)...((my,m)), tn)) = 0 whenever m); = 0 for some 1 < i < n.
We say that M is idempotent if + is idempotent.

Example 6.2. If we augment the timed valuation monoids M*"™, M2'¢ and MYx from
Example 3.1 with the multiplication ¢ = + and the unit 1 = 0, then we obtain the timed
pv-monoids M&™, M and M3* . Note that these timed pv-monoids are idempotent.

Motivated by the examples, for the clarity of presentation, we restrict ourselves to
idempotent timed pv-monoids.

Let X' be an alphabet and M = (M, +,val,¢,0,1) a timed pv-monoid. The set
WRDL(X, M) of formulas of weighted relative distance logic over X and M is defined
by the grammar

o u=BB|m|oVel|loAp|Ir.e|Vr(pp)|IX.p

where 3 € RDL (X)), m € M,z € V; and X € V&; the notation B.£ indicates that
here 3 will be interpreted in a quantitative way.

Let TZ{; denote the set of all pairs (w, o) where w € TX ™ and o is a w-assignment.
For ¢ € WRDL(X,M), the semantics of ¢ is the mapping [¢] : TX{, — M de-
fined for all (w,0) € TX\ with w = (a1,t1)...(an, t,) inductively on the structure
of ¢ as shown in Table 1. Here, z € V;, X € V5, 8 € RDL™ (X)), m € M and
©, p1,p2 € WRDL(XZ, M).
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Table 1. The semantics of weighted relative distance logic

1, if (w,0o) E B, [p2 A p2](w,0) = [p1](w, 0) o [p2](w, o)

[[B-B]](wvo)={®7 plw o) =0 Beelwo) = 92 " Tolw.ole/i)
[m](w,0) = m 3X. ), o) = Lo X/1

[o1 v al(w, o) = [p1](w, o) + [l (w, o) Breltoey =, 5, e o X

Ivz.(o1; p2)](w, 0) = val[(([pa](w, ol /), [p2](w, olz/i])), t:)]icaom(w)

Remark 6.3. In [24, 25], Quaas introduced a weighted version of relative distance logic
over a semiring S = (S, +, -, 0, 1) and a family of functions 7 C S®>¢ where elements
of S model discrete weights and functions f € F model continuous weights. If F is
a one-parametric family of functions (f;)scs, then our weighted logic incorporates the
logic of Quaas over S and F. However, for more complicated timed valuation functions
(like average and discounting) we must have formulas which combine both discrete and
continuous weights. Therefore, we use the formulas Vz.(p1, @2). Our approach also
extends the idea of [14] to define the semantics of formulas with a first-order universal
quantifier using the valuation function.

Example 6.4. Let X = {a,b} andlet C'(a), C(b) € Rbe the continuous costs of a, b and
D(a), D(b) € R the discrete costs. Given a timed word w = (1, t1)...(Yn, tn) € TET,

the average cost of w is defined as A(w) = >=1 (Ci(:ﬂff)'th(%)) .Let My® be defined as
i=1ti

in Example 6.2. For U € {C, D}, let py(x) = (P,(z) AU (a)) V (Py(z) AU (b)). Con-

sider the WRDL(X, M¢'®)-sentence ¢ = Vz.(pc(z), ¢ p(x)). Then, for all w € TXT,

we have: [¢](w) = A(w).

A sentence ¢ € WRDL(X, M) is defined as usual as a formula without free variables.
Then, for every sentence ¢ € WRDL(X', M), every timed word w € TX T and every w-
assignment o, the value [¢](w, o) does not depend on o. Hence, we can consider the
semantics of ¢ as a quantitative timed language [p] : TY T — M over M.

Similarly to the results of [10], in general weighted relative distance logic and WTA
are not expressively equivalent. We can show that the QTL L : TX T — R U {oco} with
L(w) = |w|? is not recognizable over the timed valuation monoid M*"™. But this QTL
is defined by the WRDL (X, M{™)-sentence Vz.(0, Vy.(0, 1)).

Nevertheless, there is a syntactically restricted fragment of weighted relative dis-
tance logic which is expressively equivalent to WTA. Let 3 be an alphabet and
M = (M, +,val, ¢, 0, 1) an idempotent timed pv-monoid. A formula ¢ € WRDL(X, M)
is called almost boolean if it is built from boolean formulas B.3 € RDL™ (X, M) and
constants m € M using disjunctions and conjunctions. We say that a formula ¢ is
syntactically restricted if whenever it contains a subformula Vx.(¢1, p2), then ¢1, 2
are almost boolean; whenever it contains a subformula ¢1 A @9, then either ¢1, o are
almost boolean or 1 = B.¢' or v = B.¢’ with ¢’ € RDL(X); every constant
m € M is in the scope of a first-order universal quantifier. Let DEF™*(X, M) denote the
collection of all QTL IL : TX+ — M over M such that I = [¢] for some syntactically
restricted WRDL (X', M)-sentence (.

Our main result for weighted relative distance logic is the following theorem.

Theorem 6.5. Let X' be an alphabet and M an idempotent timed pv-monoid. Then,
DEF® (X, M) = REC(X, M).
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Now we give a sketch of the proof of this theorem. Let A ZRPL™ (5, M) denote the
collection of all QTL L : TX " — M over M such that there exist an alphabet I", map-
pingsh : ' - X, g: ' - M x M and a IRDL* (I")-definable timed language £
such that L = h((val og) N L£). For the proof of Theorem 6.5, we establish a Nivat-like
characterization of definable QTL.

Theorem 6.6. Let X' be an alphabet and M an idempotent timed pv-monoid. Then,
NFRCLT (57 M) = DEF™ (2, M).

Proof (Sketch). To show the inclusion C, let L = h((valog) N L) where I, h, g
and £ are as in the definition of A/FR°" (5 M). Let 8 be a IRDL* (X)-sentence
defining £. We introduce a family V = (X, ),er of second-order variables not oc-
curring in 3. We replace each predicate P, (z) with v € I occurring in 3 by the
formula Py, (z) A X, (x); so we obtain a formula 8’ € FRDL (X). Assume that
B’ = ID(B").0"” with 8”7 € RDL™ (X). We construct a formula Part € RDL™ (X))
which demands that the variables ) form a partition of the domain, and a formula
H € RDL™ (X)) which demands that, whenever a position of a word belongs to
X, then this position is labelled by h(7). Then, the following syntactically restricted
WRDL(X, M)-sentence defines L:

I(vu D(/BN)). [[B.(,B" APart A H) A V"E'(Vvel‘ B.X,(z) A gi(v), VweF B.X,(z) A gg('y))]

where, for i € {1,2}, g, is the projection of ¢ to the i-th coordinate.

To show the inclusion 2, we introduce canonical WRDL(X', M)-sentences which are
of the form ¢ = IV.y.(\/5_, B.B; Amg, \/o_, B.B; Am}) where V is a set of variables,
M, e, Mg, MY, ...,m), € M and B, ..., B, € RDL* (X)) are such that, for every timed
word w € TXT and every w-assignment o, there exists exactly one i € {1, ..., k} such
that (w, o) |E B;. By structural induction every syntactically-restricted sentence can be
transformed into a canonical one. It remains to prove that, for a canonical sentence ¢ as
above, ] € NFRLT (2 M). Let M} = {my,...,my} and M2 = {m{, ..., m]}. We
put I' = 5 x M} x MZ.Leth : I' = X be the projection to the first coordinate. Let
g : ' = M x M be the projection to M x M. Then we can construct a JRDL* (I')-
sentence § of the form 3V.Vy.S’ such that [¢] = h((valog) N L(B)). |

Then, our Theorem 6.5 follows from Theorem 6.6, the Nivat Theorem 5.1 and
Wilke’s Theorem 6.1.

Remark 6.7. We can also follow the approach of [10] to prove our Theorem 6.5. Com-
pared to this way, our new proof technique has the following advantages. The proof idea
of [10] involves technical details like Biichi’s encodings of assignments and a bulky log-
ical description of accepting runs of timed automata. In our new proof, these details are
taken care of by Wilke’s proof for unweighted relative distance logic.

Let X be an alphabet, M"™ the timed valuation monoid as in Example 3.1(a) and
A a WTA over X and M. As it was shown in [3, 4, 21], inf{||A||(w) | w € TX T} is
computable. This result and our Theorem 6.5 imply decidability results for weighted
relative distance logic.

— Let M3'™ be the timed pv-monoid as in Example 6.2. It is decidable, given an al-
phabet X, a syntactically restricted sentence ¢ € WRDL (X', M*"™) with constants
from Q and a threshold 6 € Q, whether there exists w € TXt with [¢] (w) < 6.
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— Let MJ"® be the timed pv-monoid as in Example 6.2. It is decidable, given an al-
phabet X, a syntactically restricted sentence ¢ € WRDL(X, M*¢) with constants
from Q and a threshold 6 € Q, whether there exists w € TX T with (w) > 0 and

[l (w) < 6.

7 Conclusion and Future Work

In this paper, we proved a version of Nivat’s theorem for weighted timed automata
on finite words which states a connection between the quantitative and qualitative be-
haviors of timed automata. We also considered several applications of this theorem.
Using this theorem, we studied the relations between sequential, unambiguous and non-
deterministic WTA. We also introduced a weighted version of Wilke’s relative distance
logic and established a Biichi-like result for this logic, i.e., we showed the equivalence
between restricted weighted relative distance logic and WTA. Using our Nivat theorem,
we deduced this from Wilke’s result.

Because of space constraints, we did not present in this paper the following results.
As in [14], for timed pv-monoid with additional properties there are larger fragments
of weighted relative-distance logic which are still expressively equivalent to WTA. For
the simplicity of presentation, we restricted ourselves to idempotent timed pv-monoids.
However, we also obtained a more complicated result for non-idempotent timed pv-
monoids. In [24, 25], for weighted relative distance logic over non-idempotent semi-
rings, a strong restriction on the use of a first-order universal quantification was done.
Surprisingly, in our result we could avoid this restriction.

Our future work concerns the following directions. Ongoing research will extend the
currently obtained results to w-infinite words. This work should be further extended to
the multi-weighted setting for WTA, e.g., the optimal reward-cost ratio [7, 8] or the op-
timal consumption of several resources where some resources must be restricted [22]. A
logical characterization of untimed multi-weighted automata was given in [15]. It could
be also interesting to compare for the weighted and unweighted cases the complexity
of translations between logic and automata. We believe that our Nivat theorem will be
helpful for this.
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Abstract. What can be computed in an anonymous network, where
nodes are not equipped with unique identifiers? It turns out that the
answer to this question depends on the commitment of the nodes to
their first computed output value: Two classes of problems solvable in
anonymous networks are defined, where in the first class nodes are al-
lowed to revoke their outputs and in the second class they are not. These
two classes are then related to the class of all centrally solvable network
problems, observing that the three classes form a strict linear hierar-
chy, and for several classic and/or characteristic problems in distributed
computing, we determine the exact class to which they belong.

Does this hierarchy exhibit complete problems? We answer this ques-
tion in the affirmative by introducing the concept of a distributed oracle,
thus establishing a more fine grained classification for distributed com-
putability which we apply to the classic/characteristic problems. Among
our findings is the observation that the three classes are characterized
by the three pillars of distributed computing, namely, local symmetry
breaking, coordination, and leader election.

1 Introduction

We study computability in networks, referred to hereafter as distributed com-
putability. Distributed computability is equivalent to classic centralized (Turing
Machine) computability when the nodes are equipped with unique (compara-
ble) identifiers. However, as Angluin noticed in her seminal work [3], distributed
computability becomes fascinating in anonymous networks, where nodes do not
have unique IDs. What can be computed with deterministic algorithms merely
depends on the topology of the network, and it is well known that problems
like maximal independent set can be solved in an anonymous network only if
the nodes are allowed to toss coins. We therefore consider the distributed com-
putability of randomized algorithms running in anonymous networks. Notice that

* Due to space limitations most proofs are omitted or replaced by proof sketches in
this extended abstract. Also most results obtained in Section 4 are left out. We refer
the interested reader to the full version which is available at http://disco.ethz.
ch/publications/ICALP2014-revocability-full. pdf.

J. Esparza et al. (Eds.): ICALP 2014, Part II, LNCS 8573, pp. 183-195, 2014.
© Springer-Verlag Berlin Heidelberg 2014
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in the scope of this paper, we do not impose any limitations on the complexity
resources (time, message/memory size, ...), however, like in classic sequential
computability theory, we do require a correct result after a finite amount of time.

Apart from its theoretical interest, the study of anonymous networks is moti-
vated by various real-world scenarios. For example, the nodes may be indistin-
guishable due to their fabrication in a large-scale industrial process [5], in which
equipping every node with a unique identifier (serial number) is not economically
feasible. In other cases nodes may not wish to reveal their unique identity out
of privacy and security concerns [24].

1.1 Setting

Distributed Problems. We consider simple (undirected, loop-free and no parallel
edges) connected finite graphs G, and denote the node and edge sets of a graph
G by V(G) and E(G) or V and E if G is clear from the context. A function
f:V(G) — L is called a labeling of the graph G, and we refer to the set L as
the set of values that f assigns to nodes in G. A distributed problem II is a set
of three-tuples (G, i, 0), where G is a graph as described above, and i and o are
input labels and output labels for G. For every problem there are two sets I(IT)
and O(IT) denoting the input values and output values of II, i.e., the values that
the labels ¢ and o assign, correspondingly. Such a three-tuple (G,,0) € II is
called a (solved) instance of IT. An input instance of IT is a two-tuple (G, i) for
which there exists a valid output o satisfying (G,i,0) € II, and we also write
(G,1i) € II for input instances of the problem. We restrict ourselves to problems
that are solvable in a centralized setting.

Randomized Anonymous Algorithms. Our definition of how distributed algo-
rithms work follows the convention of [30] for synchronized network systems
(message passing) with simultaneous starting times. Nodes execute the same
randomized and uniform algorithm in synchronous rounds, and in each round
we allow each node access to finitely many random bits. Every node v knows
its degree deg(v) and can distinguish between its neighbors I'(v) (by means of
a bijection {1,...,deg(v)} — I'(v), cf. the port model). In each round every
node sends and receives a message of unbounded, yet finite, size to and from
each individual neighbor. To ease our discussion every node v is equipped with
one input register holding some problem-dependent input value and one output
register. The output register initially contains a special symbol ¢ indicating v is
not ready to return an output. Any value x # € contained in v’s output register
is interpreted as v being ready to return its output and we say that v has output
x. A global configuration in which all nodes are ready is called a ready config-
uration. When algorithm A is in a ready configuration, we define A’s output
o4 : V(G) = O by setting 04(v) to be the content of node v’s output register.
In the following, we consider two different notions of output revocability.

Definition (Output Revocability). An algorithm is referred to as a write-
once algorithm if every node is restricted to write to its output register at most
once. If this restriction is lifted, then we call it a rewrite algorithm.
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In other words, in a rewrite algorithm a node may revoke its output, e.g., by
writing € to its output register. While every execution of a write-once algorithm
reaches at most one ready configuration, during the execution of a rewrite al-
gorithm many ready configurations can occur. Note that the converse does not
hold: an algorithm that is guaranteed to reach at most one ready configuration
is not necessarily a write-once algorithm. In the existing literature, algorithms
are typically considered to be write-once algorithms.

Definition (Correctness). Fix some problem IT and an algorithm A. A ready
configuration of A when invoked on an input instance (G,¢) € II is said to be
valid if the output o4 of A in this configuration is a valid output for (G, ).
Algorithm A is said to solve IT if it satisfies the following two conditions for
every input instance (G, i) € II:

1. A ready configuration is reached within finite time with probability 1.

2. Every ready configuration that can occur with a positive probability is valid.

The aforementioned definition of correctness requires that all occurring ready
configurations will be correct (i.e., correspond to a valid output). In Section 2
we show that our definition of correctness is robust to certain changes. Notice
that in the scope of this paper, we do not require that an algorithm terminates
in order to be correct. However, the algorithms designed throughout the paper
do terminate, and the general transformation techniques we present (i.e., com-
pilers/simulations) can be designed to ensure termination if the algorithms to
which the transformation is applied terminate.

The choice of output revocability has a significant impact on the problems
that an algorithm can solve. In the following the terms WO-algorithms and RW-
algorithms will thus be used to denominate write-once and rewrite algorithms
running in an anonymous network, respectively; RW and WO refer to the classes
of distributed problems solvable by these two types of algorithms. Lastly, we
denote by CF the class of distributed problems that are solvable in a centralized
setting (by a Turing machine), bearing in mind that this class essentially includes
every computable function on graphs. The distinction of these classes is justified
by the following observation. The full version of this paper contains a straight-
forward proof.

Observation. The classes of distributed problems satisfy WO C RW C CF (in
the strict sense).

1.2 Owur Contribution

What can be computed in anonymous networks? As it turns out the effect out-
put revocability has on the distributed computability of anonymous networks
is remarkable. A total of 21 problems, including some of the most fundamental
problems in distributed computing, are classified according to the exact class to
which they belong (Section 4).

Does the hierarchy we present exhibit complete problems? To answer this
question we introduce the notion of accessing an oracle in a distributed setting
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and show that this notion is sound (Section 3). As the first stepping stone in this
effort we show that the classes WO and RW are robust against two modifications
to the aforementioned correctness condition (Section 2). In the full version of
this paper each of our 21 problems is then classified according to its hardness
or completeness for the three classes, thus obtaining a deeper understanding of
the intrinsic properties of these problems. For reasons of brevity this extended
abstract only gives a brief overview of those results (Section 4). Surprisingly,
the WO, RW, and CF classes turn out to capture exactly the three pillars
of distributed computing, namely, local symmetry breaking, coordination, and
leader election, respectively.

1.3 Related Work

The history of distributed computability starts with the work of Angluin [3]
proving that randomization does not help to elect a leader in anonymous net-
works. Later, it was shown that electing a leader in an anonymous ring network
is possible if the size n of the ring is known [25], in fact, a (2 — €)-approximation
of n is enough [1], not only in the special case of a ring but in general networks
[34]. It turns out that all these results, and many similar ones, come almost for
free once our characterization for the class RW (established in the full version)
is available.

There is a line of work that concentrates on deterministic distributed algorithms
for problems in CF, in particular if some parameters of the topology of the graph
(for instance, its size) are known, e.g. [35,10]. Deterministic algorithms are inter-
esting to investigate even if the graph is restricted to a ring [18,13], and also as-
signments of not necessarily unique identifiers were studied in this context [31].

Another line of research studies computability in anonymous (directed) net-
works in connection with termination. Not unlike us it is argued that termination
in distributed systems is an issue that is not directly evident, since one may be in-
terested in systems where nodes terminate independently of others. The strongest
anonymous model considered in [11] is equivalent to deterministic write-once al-
gorithms with knowledge of an upper bound to the network size. When no prior
knowledge is assumed the class of solvable problems can be fully characterized
using local views' and recursive functions [14]. Extending their approach, in the
context of the current paper an individual node executing a RW-algorithm can
never be entirely sure about termination. We show that the class RW lies between
the two classes WO (local termination) and CF (global termination).

Output revocability should not be confused with the concept of eventual
correctness, where the network eventually converges to a correct output. For
example, self-stabilizing algorithms [15] allow the system to return an incorrect
output for a finite amount of time, thus allowing a fault-tolerant algorithm to re-
cover from errors. With randomization, self-stabilizing leader election is possible
on general graphs [16], hence with randomization every CF-problem is eventu-
ally solvable in an anonymous network. In our terminology eventual correctness

! Local views are only discussed in the full version of this paper.
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could be viewed as requiring that some ready configuration, not necessarily the
first one, is stable? and valid. We require though that an output is returned
after finite time and that every output returned by the network is correct, but
we do allow the network to revoke partial outputs. The problems solvable by
self-stabilizing algorithms in directed graphs can be characterized by fibrations
[12] similar to our characterization for RW that is presented in the full paper.
The notion of eventual correctness is also used in the scope of population pro-
tocols [5] in which nodes are modeled by finite state machines, see [9] for an
overview. In a clique network, the predicates a population protocol can solve
are exactly those expressible in first-order Presburger arithmetic [5,6,7], whereas
in bounded-degree graphs a Turing machine with linearly bounded space can be
simulated [4]. It was also studied how the correctness condition for population
protocols affects solvability of the CONSENSUS problem ([8].

Apart from these results, not much is known about distributed computability
(in contrast to distributed complexity). However, there are surprising connec-
tions between complexity and computability, which go beyond us borrowing the
terms hardness and completeness. Regarding network algorithms, in the last 30
years, a lot of research went into the question how fast a particular problem can
be computed by the network.

Naor and Stockmeyer [33] introduced the notion of locally checkable labelings
(essentially an apply-once oracle) in identified networks and ask the question how
a constant-time deterministic algorithm can decide whether the labeling repre-
sents a correct solution to a given problem. Follow-up work looked at the bit
complexity required to solve problems [26,21] and a problem hierarchy depending
on the size of checkable labelings was suggested [23], also for anonymous net-
works. Our work also yields a characterization for the decision problems in RW.
However, we do not restrict the run-time to be constant and allow randomization
for symmetry breaking. Pruning algorithms [27] that build a solution gradually
in a write-once fashion were inspired by the same line of research, in an effort to
remove the necessity of global knowledge about the graph. While our algorithms
are required to give a correct output in every execution [19,22] study the notion
of (p, q)-decidable decision problems (an anonymous randomized algorithm may
return a wrong output with constant probability) and find a hierarchy among
the solvable problem-classes depending on the success probabilities. If a random-
ized algorithm is allowed to fail (Monte-Carlo algorithm), then a leader can be
elected [32] with high probability (w.h.p, i.e., with probability 1 — n~¢ for any
¢). Hence any CF-problem can be solved in an anonymous network w.h.p. In
contrast to that, we require a correct output with probability 1.

Non-deterministic algorithms running in an anonymous setting can fully de-
termine the structure of the radius t-ball around itself in [20], and thus solve
exactly the decision problems that are closed under so-called t-homomorphisms.
In our model only the local view can be retrieved. It may thus be surprising

2 A configuration is said to be stable if the nodes no longer revoke their outputs, see
Section 2.



188 Y. Emek, J. Seidel, and R. Wattenhofer

that RW-algorithms can solve exactly the problems that such non-deterministic
constant-time algorithms can solve in a single round.

2 Notions of Correctness

Our definition of a correct algorithm requires every ready configuration that
occurs throughout an execution to be valid. For WO-algorithms this requirement
is superfluous since its execution will reach at most one ready configuration.
However, RW-algorithms may invalidate or change a ready configuration after
it occurred. One may therefore wonder if strengthening the definition by allowing
only one durable ready configuration makes the class of solvable problems strictly
smaller. On the other hand one may be tempted to weaken this definition, in
hope to capture a larger class of problems by requiring only the first occurring
ready configuration to be correct. Perhaps surprisingly we show that these two
variants have no effect and are equivalent to the current definition of correctness.
This equivalence will play a key role when we reason about RW-algorithms in
the next section which covers distributed oracles.

Definition (Sustainable Correctness). A ready configuration is said to be
stable, if the nodes no longer revoke their outputs. Algorithm A is said to sus-
tainably solve a problem IT if it satisfies the following two conditions for every
input instance (G, ) € II:

1. A ready configuration is reached within finite time with probability 1.

2. The first ready configuration that occurs is valid and stable.

Definition (Loose Correctness). Algorithm Aissaid to loosely solve a problem
IT if it satisfies the following two conditions for every input instance (G, i) € II:
1. A ready configuration is reached within finite time with probability 1.

2. The first ready configuration that occurs is valid.

The class Sustainable-RW (respectively, Loose-RW) consists of every dis-
tributed problem that can be sustainably solved (resp., loosely solved) by a
RW-algorithm. Since sustainable correctness (resp., loose correctness) is a re-
striction (resp., a relaxation) of correctness as defined in Section 1.1, we con-
clude that Sustainable-RW C RW C Loose-RW. Note that the corresponding
classes Sustainable- WO and Loose- WO for WO-algorithms are equal to the class
WO due to the write-once restriction of these algorithms. The following theorem
states that also for RW-algorithms the three classes are, in fact, equal.

Theorem 1. The classes of problems solvable by RW -algorithms under the three
different notions of correctness satisfy Sustainable-RW = RW = Loose-RW.

The proof of Theorem 1 relies on a sustainability compiler that takes a RW-
algorithm A that loosely solves a problem IT and transforms it into a RW-
algorithm A that sustainably solves this problem. At the heart of the compiler
lies the concept of inhibiting messages, i.e., a refinement of a simple concept
referred to as safe broadcast in which information is broadcast throughout the
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whole network and no ready configuration is reached before all nodes have re-
ceived the information. Specifically, the inhibiting messages ensure that the first
ready configuration reached by algorithm A is stable. We refer to the appended
full version of this paper for the details of the sustainability compiler and its
underlying inhibiting message technique.

3 Distributed Oracles

In this section, we introduce the concepts of hardness and completeness, which
are central to this work and allow us to gain a deeper understanding how the
computability classes relate to each other. To that end, we introduce the notion
of an oracle working in a distributed setting.

Definition (Algorithm with access to a IT-oracle). Consider some problem
IT. A C-algorithm, C € {WO,RW}, with access to a IT-oracle is a distributed
C-algorithm in which every node v is equipped with a designated oracle input
register and a designated oracle output register. Given some r > 1, let %(v) be
the content of v’s oracle input register in round r and let 6(v) be the content of
v’s oracle output register in round r + 1. If (G, 5) is an input instance of IT, then
it is guaranteed that 6 is a valid output for (G, 5) No assumptions are made on
the operation of the algorithm if (G,4) ¢ IT.

While applying the oracle in every round of the algorithm may seem powerful,
allowing the distributed algorithm to arbitrarily choose the rounds in which
the oracle is applied may require some sort of global coordination, which is
not necessarily possible. In comparison, a weaker definition of “accessing an
oracle” would be to allow application of the oracle only once in round 1. This
distinction does not make a difference for problems IT without inputs (|I(IT)| =
1), e.g., for graph theoretic problems like coloring, maximal independent set, or
determining the diameter, because the oracle is always applied on the same input
instance. It does however affect problems that do receive inputs (|I(I1)] > 2),
e.g., CONSENSUS or logical AND and OR.

As stated above, based on the oracle concept, we will soon introduce the
notion of hard and complete problems for the hierarchy of problem classes. This
notion would be ill-defined if accessing an oracle to a problem II¢ € C could
enhance the computational power of a C-algorithm. We ensure that the notion
of an algorithm with access to an oracle is sound in the following theorem. Note
that the statement of the theorem does not mention the case C = CF, since the
soundness of oracles for centralized models is well understood and in any case,
beyond the scope of the current paper.

Theorem 2 (Soundness). If a problem II is solvable by a C-algorithm, C €
{RW, WO}, accessing an oracle to a problem Ilc € C, then IT can also be solved
by a C-algorithm that does not access any oracle.

The key to proving this theorem is to show that in a C-algorithm A?* that
solves a problem IT with access to a Ilg-oracle, II¢ € C, one can replace the
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oracle access by simulating a C-algorithm A" that solves I without any oracle
access. This turns out to be a non-trivial task especially for RW-algorithms since
a node v simulating A" cannot know for sure that the output returned by A" will
not be revoked later on, i.e., whether it can be safely used for the execution of
A?. In other words, node v does not know when such a result is valid so that the
execution of A* can continue based on this result (as if it was returned by the
IIc-oracle). The technique we present to resolve this issue for RW-algorithms
is based on Theorem 1. Since the sustainability compiler (discussed in detail in
the full paper) works independently of the algorithm’s access to an oracle, the
arguments to establish Theorem 1 can be repeated to yield the following.

Lemma 1. Fiz some problem II'. Let A be a RW -algorithm with access to a II'-
oracle loosely solving a problem II and let A be the RW -algorithm with access
to a II'-oracle obtained by applying the sustainability compiler to A. Then A
sustainably solves IT with an access to a II'-oracle.

The ability to transform any RW-algorithm to ensure sustainable correctness
plays a key role in the proof of Theorem 2. Recall that our goal is to replace
the access to a Ilc-oracle of a C-algorithm A4* by a C-algorithm A" solving
Il without any oracle access. In other words, the crux is to show how a C-
algorithm A can interleave the execution of algorithm A4* with an invocation
of A" in every round in a correct manner, without any additional knowledge of
the run-time of A" or properties of the underlying network. As noted before,
in the case C = RW, algorithm A faces the issue that an output returned to
a node v by A" may not be part of a ready configuration and thus it is not
clear whether v should use this value as an output of the IIg-oracle that A*
invoked. Theorem 1 however relieves A from the burden of dealing with more
than one ready configuration of A", whereas Lemma 1 does the same with A4?.
Therefore, A is left with the task of determining when A" and A* have reached
a ready configuration.

In the full version of this paper we show how this can be accomplished by
carefully dividing the simulation into phases of a predetermined length and re-
cycling previously used random bits. Assuming that Theorem 2 is established
we introduce the concept of hard problems by borrowing the terminology from
sequential complexity theory.

Definition (Hardness). For two classes B O C, a problem IT is said to be B-
hard with respect to C, denoted by II € B-hardc, if for every problem ITg € B,
there exists a C-algorithm that solves IIg with access to a Il-oracle. We say
that II is complete in B with respect to C, denoted by II € B-complete, if
additionally IT itself is contained in B.

Following our notational convention, we would refer to an NP-hard problem
as being N'P-hardp. For example, the problem of electing a leader is well known
to be CF-hardwo since once a leader is available, this leader can assign unique
identifiers to all other nodes and solve the problem centrally. Our definition yields
the three hardness classes CF-hardrw, CF-hardwo and RW-hardwo, allowing
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us to study how algorithms running in anonymous networks relate to centralized
algorithms as well as how the two output revocability notions relate among each
other. By definition, every CF-hardwo problem is both CF-hardgw and RW-
hardwo; in Section 5 we present a proof sketch for the following theorem, which
states that the converse direction is also true. A thorough proof appears in the
full version.

Theorem 3. It holds that CF-hardwo = CF-hardrw N RW-hardwo.

4 Problem Zoo

We study the computability and hardness of 21 problems in our setting, and
develop different proof techniques to tackle this tedious task. In this extended
abstract we confine ourselves to summarize the fruits of our effort in Figure 1.
Exemplarily we also present the hardness result for logical OrR which is necessary
for the sketched proof of Theorem 3 in Section 5.

Overview of Problems. We briefly explain the problems listed in Figure 1.

— LEADER-ELECTION: all but one node output “NOT LEADER”, while a single
node outputs “LEADER”.

— UNIQUENESS: determine whether all nodes have a unique input value.

— IDs: without any input, every node must return a unique identifier.

— a-S1ZE-APX: determine a value n such that n < n < a - n, where n is the
number of nodes in the network.

— MIN-CUT: determine a partition of the network inducing a minimum cut as
well as the size of this cut.

— MiIN-CuUT-VALUE: determine the size of a minimum cut.

— MIN-CUT-PARTITION: determine a partition of the network inducing a min-
imum cut.

— DIAMETER: determine the diameter D of the network.

CF
MIN-COLORING
MiIN-CUT-VALUE

CF-h arde RW

’ (2 3)-HoP-COLORING /o croR-DIAMETER WO
FACTOR-MULTIPLICITY (> 3)-Hopr-MIS CONSENSUS COLORING
2-Hor-COLORING
CF-hardwo RW-hardwo 2-Hop-MIS

(< 2)-S1ZE-APX MIS
LEADER-ELECTION,
Min-Cut
UNIQUENESS
IDs

COORDINATION

FACTOR-GRAPH

AND
Or

(> 2)-S1zE-APX
MIN-CUT-PARTITION
DIAMETER
a-DIAMETER-APX

Fig. 1. Classes CF, RW and WO, and the respective hardness classes
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— a-DIAMETER-APX: determine a value d such that D < d < a - D.

— MIN-COLORING: color the graph with the minimum number of colors.

— COLORING: determine some coloring of the graph.

— k-Hopr-COLORING: color the graph so that the color of every node v differs
from the color of every other node in its k-hop neighborhood.

— MIS: determine a maximal independent set.

— k-Hopr-MIS: find a maximal subset S of the nodes so that the distance be-
tween every two nodes in S is greater than k.

— CONSENSUS: nodes return the same value z which is at least one node’s input.

— COORDINATION: determine whether all nodes have the same input.

— AND: nodes have input 0 or 1 and have to return the logical AND of all inputs.

— OR: nodes have input 0 or 1 and have to return the logical OR of all inputs.

— FACTOR-GRAPH: agree on a mapping f inducing a factor F' of the network
graph. Each node v returns F and its corresponding node f(v) in F.

— FACTOR-DIAM: determine the diameter of a factor graph of the network.

— FACTOR-MULTIPLICITY: determine the multiplicity of the smallest factor of
the network.

The last three problems on this list require the notion of graph factors® which is

introduced in the full version of this paper. Connections from distributed com-

putability to graph factors were witnessed before, for example in [3]. For some

problems on the list, namely k-Hopr-MIS, k-HOP-COLORING, and a-SIZE-APX,

computability and/or hardness depends on the choice of k and «, respectively.
Of course for many problems on this list it is known whether they are con-

tained in WO or CF \ WO. For example the well studied symmetry breaking

tasks MIS or COLORING with A + 1 colors (where A denotes the maximum

degree of a node in the graph) are known to be in WO [29,2,28]. The work

[17] presents WO-algorithms for each of the two problems 2-Hop-MIS and 2-

Hopr-COLORING. An example of a previously known hardness result is that an

approximation a-SIZE-APX with a < 2 is sufficient to find unique identifiers

with a WO-algorithm [34].

Example (Logical OR). Denote by p the output register of a node v. The
following “algorithm” loosely solves OR. In the first round if node v has input
0, then it sets p < 0, otherwise v sets p <— €. In the second round all nodes set
p < 1 regardless of their input.

This method highlights how convenient Theorem 1 can be for an algorithm
designer. The straight-forward solution however is no testimony to the crudeness
of OR, since the following argument shows that it is indeed RW-complete ;. We
show how to turn a RW-algorithm Agw solving IT € RW into a WO-algorithm
Awo that solves IT with access to an OR-oracle. In algorithm Awo every node v
will simulate one round of Agw in every round; we denote v’s simulated output
register of Arw by prw, and the actual output register of Awo by pwo. If in
round r the register pgw = ¢, then v writes 1 to the input register of the oracle,
otherwise it invokes the oracle with input 0. When the oracle answers 0 in round

3 In the distributed computing literature, the concept of graph factors was also referred
to as covering graphs and graph lifts.
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r 4+ 1, the network was in a ready configuration in round r and v sets pwo to
the value contained in pryw in round r.

5 Proof of Theorem 3

In this section we only present a sketch for the proof of Theorem 3; a compre-
hensive proof is presented in the appended full paper. Our proof is based on the
techniques introduced in Section 2 and utilizes the aforementioned completeness
result for OR. Theorem 3 states that if a problem IT is both CF-hardgw and
RW-hardwo, then it is also CF-hardwo. Let IT € CF-hardrw N RW-hardwo
be a problem satisfying the premise. Denote by Apg a RW-algorithm solving
LEADER-ELECTION with an access to a IT-oracle, and by Aor a WO-algorithm
solving OR with an access to a Il-oracle respectively.

The idea is to design a WO-algorithm A solving LEADER-ELECTION with
access to a IT-oracle by simulating one execution of Ay and multiple executions
of Aor, where the task of the latter is to determine whether the former has
reached a ready configuration. That is, for every simulated round r of algorithm
ALg a corresponding simulation Aog, called the fork [r] of Aog, is initiated.
The input to fork [r] is 0 if v was ready in round r under Apg (v observes that
from the simulated outcome of Apg’s round 7); the input is 1 otherwise. Since
in A the IT-oracle can only be accessed once in every round, algorithm A uses
a careful mechanism to schedule disjoint accesses by the simulated execution of
Arg and all forks to this scarce resource; we refer to the full version for the
details.

The logic of ORr guarantees that fork [r] of Apr has output 0 if and only
if round r under Apg’s simulation is in a ready configuration. Since Aog is a
WO-algorithm, node v can immediately rely on a returned 0 value to conclude
that this indeed happened. Employing Lemma 1, one can assume that Apg
sustainably solves the leader election problem, thus ensuring that the output
returned in v’s simulated round r of Apg yields a correct output for LEADER-
ELECTION. This establishes Theorem 3.
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Abstract. Strong bisimulation for labelled transition systems is one of
the most fundamental equivalences in process algebra, and has been
generalised to numerous classes of systems that exhibit richer transi-
tion behaviour. Nearly all of the ensuing notions are instances of the
more general notion of coalgebraic bisimulation. Weak bisimulation, how-
ever, has so far been much less amenable to a coalgebraic treatment.
Here we attempt to close this gap by giving a coalgebraic treatment of
(parametrized) weak equivalences, including weak bisimulation. Our anal-
ysis requires that the functor defining the transition type of the system
is based on a suitable order-enriched monad, which allows us to capture
weak equivalences by least fixpoints of recursive equations. Our notion
is in agreement with existing notions of weak bisimulations for labelled
transition systems, probabilistic and weighted systems, and simple Segala
systems.

1 Introduction

Both strong and weak bisimulations are fundamental equivalences in process al-
gebra [13]. Both have been adapted to systems with richer behaviour such as
probabilistic and weighted transition systems. For each class of systems, strong
bisimulation is defined in a similar way which is explained by universal coalgebra
where strong bisimulation is recovered as a canonical equivalence that paramet-
rically depends on the type of system [16]. Weak bisimulations are much more
difficult to analyse even for labelled transition systems (LTS), and much less
canonical in status (e.g. branching and delay bisimulations [21]).

We present a unified, coalgebraic treatment of various types of weak bisim-
ulation. An important special (and motivating) case of our definition is proba-
bilistic weak bisimulation of Baier and Herrmanns [2]. Unlike labelled transition
systems, probabilistic weak bisimulation needs to account for point-to-set transi-
tions, while point-to-point transitions, as for labelled transition systems, do not
suffice: Every LTS with a transition relation — induces an LTS with a weak
transition relation = and weak bisimulation for the original system is strong
bisimulation of the transformed one. This approach fails in the probabilistic

case, as weak point-to-point transitions no longer form a probability distribu-

. 0.5 0.5 . 1
tion: in a system where x M y and x u T, we obtain x g y as the

probability that = evolves to y along a trace of the form 7* - a - 7* is clearly
1
one, but also z g x as the system will also evolve from x to x along 7* also
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with probability one (by simply doing nothing). Crucially, both events are not
independent. This is resolved by relating states to state sets along transition
sequences, and the probability P(z, A, S) of x evolving to a state in S along a
trace in A is the probability of the event that contains all execution sequences
leading from x to S via A, called total probability in op.cit. By re-formulating
this idea axiomatically, we show that it is applicable to a large class of systems,
specifically coalgebras of the form X — T'(X x A) where T is enriched over di-
rected complete partial orders with least element (pointed dcpos) and non-strict
maps. Not surprisingly, similar (but stronger) assumptions also play a prominent
role in coalgebraic trace semantics [8], and have two ramifications: the fact that
the functor T that describes the branching behaviour extends to a monad allows
us to consider transition sequences, and order-enrichment permits us to compute
the cumulative effect of (sets of) transition sequences recursively using Kleene’s
fixpoint theorem. Our construction is parametric in an observation pattern that
can be varied to obtain e.g. weak and delay bisimulation. We demonstrate by
example that our definition generalises concrete definitions of probabilistic and
weak weighted and probabilistic bisimulation found in the literature [2, 5, 18, 17].

A special role in our model is played by the operation of binary join, which
is a continuous operation of the monad. We show that if it is also algebraic in
the sense of Plotkin and Power [15], which holds in the case of LTS, then weak
bisimulation can be recovered as a strong bisimulation for a system of the same
type, thus reestablishing Milner’s weak transition construction. In the proba-
bilistic case, for which join is unsurprisingly nonalgebraic, we show that weak
bisimulation arises as strong bisimulation of a system based on the continuation
monad.

2 Preliminaries

We use basic notions of category theory and coalgebra, see e.g. [16] for an
overview. For a functor F : Set — Set, an F-coalgebra is a pair (X, f) with
f + X — TX. Coalgebras form a category where the morphisms between
(X, f) and (Y, g) are functions ¢ : X — Y with go ¢ = F¢o f. A relation
E C X x X is a kernel bisimulation on (X, f) if there is an F-coalgebra (Z, h)
and two morphisms ¢ : (X, f) — (Z,h) and ¥ : (X,g9) — (Z,h) such that
E = Ker(¢) = {(z,y) € X x X | ¢(x) = (y)} is the kernel of ¢. Clearly, kernel
bisimulations are equivalence relations, and we only consider kernel bisimula-
tions in what follows. Kernel bisimulation agrees with Aczel-Mendler bisimula-
tion (and its variants) in case F preserves pullbacks weakly but is mathematically
better behaved in case F' does not. It also agrees (in all cases) with the notion
of behavioural equivalence: a thorough comparison is provided in [20].

We take monads (on sets) as given by their extension form, i.e. as Kleisli
triples T = (T,7n,—') where T : Set — Set is a functor, nx : X — TX is a
map for all sets X and f: TX — TY is a map for all f: X — TY subject
to the equations finx = f, n; = idrx and (ffg)T = fig" for all sets X and
all f, g of appropriate type. Throughout, we write T for the underlying functor
of a monad T. The Kleisli category induced by a monad T has sets as objects,
but Kleisli-morphisms between X and Y are functions f : X — TY with Kleisli
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composition go f = g’ o f where g o f is function composition in Set and nx is
the identity at X. We use Haskell-style do-notation to manipulate monad terms:
for any p € TX and ¢ : X — TY we write do « < p; ¢(z) to denote ¢f(p) € TY;
if pe T(X xY) we write do(z,y) < p;q(z,y).

In the sequel, we consider (among other examples) monads induced by semir-
ings: A semiring is a structure (R, 4+, -,0,1) such that (R, +,0) is a commutative
monoid, (R,-,1) is a monoid and multiplication distributes over addition, i.e.
x-(y+z)=z-y+z-zand (y+2) -2 =y-x+2z-x. A positively ordered semiring
is a semiring (R, +,-,0,1, <) equipped with a partial order < that is positive
(0 < r for all » € R) and compatible with the ring structure (z < y implies
that z0z < yOz and z0x < zOy for all z,y,z € R and O € {+,-}). A contin-
uous semiring is a positively ordered semiring where every directed set D C R
has a least upper bound sup D € R that is compatible with the ring structure
(rOsup D = sup{rad | d € D} and sup DOr = sup{dOr | d € D} for all directed
sets D C R, allr € R) and O € {+, -}. Every continuous semiring R is a complete
semiring, i.e. has infinite sums given by >, r; = sup{} ;. ;7 | J C I finite}.
We refer to [7] for details. If R is complete, the functor TR X = X — R extends to
a monad Tg, called the complete semimodule monad (c.f. [9]) with nx (x)(y) =1
if & = y and nx (2)(y) = 0, otherwise, and f1(9)(y) = ey 6(z) - £(2)(y) for
f: X — TrY. Note if R is continuous then all Tr X are pointed dcpos under
the pointwise ordering of R and the same applies to Kleisli homsets, i.e. the set
of Kleisli-maps of type X — TY.

3 Examples

We illustrate our generic approach to weak bisimulation by means of the following
examples. For all examples, strong bisimulation is well understood and known
to coincide with kernel bisimulation. As we will see later, the same is true for
weak bisimulation, introduced in the next section.

Labelled Transition Systems. We consider the monad T where Q = {0, 1} is
the boolean semiring. Clearly Ty = P where P is the covariant powerset functor.
A labelled transition system can now be described as a coalgebra (X, f : X —
To(X xA)). It is well known that bisimulation equivalences on labelled transition
systems coincide with kernel bisimulations as introduced in the previous section.

Probabilistic Systems. Consider the monad Ty ) induced by the com-
plete semiring of non-negative real numbers, extended with infinity. Vari-
ous types of probabilistic systems arise as sub-classes of systems of type
(X, f + X = Tooq(X x A)). For reactive systems, one postulates
>yex f(@)(y,a) € {0,1} for all # € X and all @ € A. Generative systems
satisfy >, ey xa [(@)(y,a) € {0,1} for all x € X, and fully probabilistic sys-
tems satisfy 30, nexxaf(@)(y,a) = 1 for all z € X. We refer to [3] for a
detailed analysis of various types of probabilistic systems in coalgebraic terms.
It is known that probabilistic bisimulation equivalence [10] and kernel bisimula-
tions agree [6]. Our justification of viewing these various types of probabilistic
systems as [0, oo] weighted transition systems comes from the fact that kernel
bisimulations are reflected by embeddings:
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Lemma 1. Let k : F — G be a monic natural transformation between two
set-functors F and G and (X, f) be an F-coalgebra. Then kernel bisimulations
on the F-coalgebra (X, f) agree with kernel bisimulations on the G-coalgebra

(XaK:XOf)'

Integer Weighted Transition Systems. Weighted transition systems, much
like probabilistic systems, arise as coalgebras for the functor FF.X = Tiyfeo) (X ¥
A) where NU{oo} is the (complete) semiring of natural numbers extended with oo
and the usual arithmetic operations. In an (integer) weighted transition system,

every labelled transition comes with a weight, and we can write x a(—n; y if

f(x)(y,a) = n. In process algebra, weights represent different ways in which the

2
same transition can be derived syntactically, e.g. .0 + a.0 M 0, according to

the reduction of the term on the left and right, respectively. The ensuing (strong)
notion of equivalence has been studied in [1] and shown to be coalgebraic.

The three examples above are a special instance of semiring-weighted transi-
tion systems, studied for instance in [11]. This is not the case for systems that
combine probability and non-determinism.

Non-Deterministic Probabilistic Systems. As we have motivated in the
introduction, a coalgebraic analysis of weak bisimulation hinges on the ability
to sequence transitions, i.e. the fact that the functor F' defining the concrete
shape of a transition system (X,f : X — F(X x A)) extends to a monad.
The naive combination of probability and non-determinism, i.e. considering the
functor F' = P o D where D(X) is the set of finitely distributed probability
distributions does not extend to a monad [22]. One solution, discussed in op.cit.
and elaborated in [9] is to restrict to conver sets of valuations. Informally, we use
monad CoM (a variant of the CM monad from [9]), encompassing two semiring
structures, for probability and non-determinism, and the former distributes over
the latter, i.e. a4, (b+¢) = (a+,b) + (a+p ) where + is nondeterministic choice
and 4+, is probabilistic choice (choose ‘left’ with probability p and ’right’ with
probability 1 — p). Concretely, for the underlying functor CoM of the monad
CoM, CoM X is the set of nonempty convez sets of finite valuations over [0, c0),
i.e. finitely supported maps to [0, c0), containing the trivial valuation identically
equal to 0. A set S is convex if ). 7; - & € S whenever all §; € S and ), r; = 1.
Our definition deviates slightly from [9] in that we require that CoM X contains
the zero valuation, whereas in op.cit. (and also in [4]) this condition is used to
restrict the class of systems to which the theory is applied.

4 Weak Bisimulation, Coalgebraically

Capturing weak bisimulation for transition systems (X, f : X — T(X x A))
coalgebraically, where A is a set of labels that we keep fixed throughout, amounts
to two requirements: first, T' needs to extend to a monad which enables us to
sequence transitions. Second, we need to be able to compute the cumulative
effect of transitions which requires the monad to be enriched over the category
of directed complete partial orders (and non-strict morphisms).
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Definition 2 (Completely Ordered Monads). A monad T is completely or-
dered if its Kleisli category is enriched over the category DCPO | of directed-
complete partial orders with least element (pointed decpos) and continuous maps:
every hom-set Set(X,TY) is a pointed dcpo and Kleisli composition is continu-
ous, i.e. the joins fTo (||, g;) =, fT o gi and (|, fi)log= LI, fi o g exist and
are equal whenever the join on the left hand side is taken over a directed set.
A continuous operation of arity n on a completely ordered monad is a natural
transformation « : T™ — T for which every component ax is Scott-continuous.

The diligent reader will have noticed that the same type of enrichment is also
required in the coalgebraic treatment of trace semantics [8]. This is by no means
a surprise, as the observable effect of weak transitions are precisely given in
terms of (sets of) traces.

Often, these sets are defined in terms of weak transitions of the form .
% . 5" We think of weak transitions as transitions along trace sets closed

under Brzozowski derivatives which enables us to recursively decompose a weak
transition into a (standard) transition, followed by a weak transition.

Definition 3 (Observation Pattern). An observation pattern over a set A
of labels is a subset B C P(A*) that is closed under Brzozowski derivatives, i.e.
b/a={we A* |aw e b} € Bforallbe Bandall a € A.

Different observation patterns capture different notions of weak bisimulation,
and B stands for both bisimulation and closure under Brzozowski derivatives.

Example 4 (Observation Patterns). Let A contain a silent action 7.

(i) the strong pattern over A is given by B = {{a} | a € A} U {@,{e}}.

(ii) the weak pattern over A is given by B = {a | a € A} where 7 = 7* and
a=T1*-a-7" for a # 7.

(iii) The delay pattern is B = {r*a|a € A\ {r}} U {r*}.

It is immediate that all are closed under Brzozowski derivatives.

Given an observation pattern that determines the notion of traces, our definition
of weak bisimulation relies on the fact that the cumulative effect of transitions
can be computed recursively. This is ensured by enrichment, and we have the
following (see Section 2 for the do-notation):

Lemma 5. Suppose B is an observation pattern over A, T is a completely or-
dered monad and @ : T? — T is continuous. Then the equation

n(h(z)) ife€bd
1L otherwise

i (@)(b) = { } @ do(y,a) + f(a); fi (y)(b/a) ()

has a unique least solution fP : X — (TY)B for all f: X — T(X x A) and all
h:X =Y.

Lemma (5) follows from Kleene’s fixpoint theorem [23] using order-enrichment.
The central notion of our paper can now be given as follows:
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Definition 6. Suppose that T is a completely ordered monad with a continuous
operation @, B is an observation pattern over A and let f: X — T(X x A). An
equivalence relation £ C X x X is a B-@-bisimulation if E C Ker(f2) where
7 : X — X/E is the canonical projection (and fZ is the unique least solution
of (%)). We often elide the continuous operation, and say that z,2’ € X are
B-bisimilar, if they are related by a B-bisimulation.

Some remarks are in order before we show that the above definition agrees with
various notions of weak bisimulation studied in the literature.

Remark 7. (i) Intuitively, the requirement E C Ker(f2) expresses that any
two E-related states x and x’ have the same cumulative behaviour under all trace
sets in B, provided that E-related states are not distinguished. In other words,
a state [z]g of the quotient of the original system exhibits the same behaviour
with respect to all trace sets in B, as the representative x of [x]g. This intuition
is made precise in Section 6 where we show how B-bisimulation can be recovered
as strong bisimulation (and hence quotients can be constructed).

(ii) The definition of weak bisimulation above caters for systems of the form
(X,f: X - T(X x A)), i.e. we implicitly consider the labels as part of the
observable behaviour, or as ’output’. The role of labels appears to be reversed
when computing the cumulative effect of transitions via the function 2 : X —
T(X/E)B. This apparent reversal of roles is due to the fact that every element
of B is a set of traces. Accordingly, the function application fZ(z)(b) represents
the totality of behaviour that can be observed along traces in b, starting from =z,
and trace sets are now ’input’.

As a slogan, B-bisimilarity is a B-bisimulation:

Lemma 8. Let (E;)icr be a family of B-bisimulation equivalences on (X, f:

X = T(X x A). Then so is the transitive closure of | J;c; Ei

5 Examples, Revisited

We demonstrate that B-bisimulation agrees with the known (and expected) no-
tion of weak bisimulation for the examples in Section 3. To instantiate the general
definition to coalgebras of the form X — T'(X x A), we need to verify that the
monad T is completely ordered. This is the case for complete semimodule monads
over continuous semirings.

Lemma 9. Let R be a continuous semiring. Then the monad Tgr is completely
ordered, and both join LI and semiring sum + are continuous operations on T'.

This lemma in particular ensures that B-bisimulation is meaningful for transi-
tions systems weighted in a complete semiring, and in particular for labelled,
probabilistic and integer-weighted systems.

Labelled Transitions Systems. As in Section 3, labelled transition systems
are coalgebras for the functor FX = P(X x A). For an F-coalgebra (X, f),
Equation (%) stipulates that

w(2)(b )| ee b}UU y)(b/a)
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where z % y iff (y,a) € f(z). By Kleene’s fixpoint theorem, the least solution is
fr(x)(b) = {h(xk) ’ e B %, areap € b}.
If 7 € A, B is the weak pattern and £ C X x X is an equivalence, this gives
2|5 € fB(z)(a) iff z=2 2

where © == 2’ if there are (y1,a1),..., (Yn,an) such that z % 4 B ... %8
yn = 2’ and a1 ---a, € a. By Definition 6, F is a B-bisimulation if for any
(z,y) € E, {[2']p |z =2’} = {[¥]g | y = y'} for any a € A (including 7). The
latter is easily shown to be equivalent to the standard notion of weak bisimula-
tion equivalence. By analogous reasoning one readily recovers delay bisimulation
equivalences from the delay pattern.

Probabilistic Systems. Fully probabilistic system (Section 3) are coalgebras
of type (X, f : X — Tjo,o)(X x A)), where Tjg o is the complete semimodule
monad induced by [0, o] and additionally satisfy >, ,yexxa f(@)(y,a) =1 for

all x € X. In [2], an equivalence relation F C X x X is a weak bisimulation, if
P(Z‘, a, [y}E) = P(x/,&, [y}E)

for all a € A,y € X and (x,2') € E. Here é is given as in Example 4 and
P(z, A, C) is the total probability of the system evolving from state x to a state
in C' via a trace in A C A*. Op.cit. states that total probabilities satisfy the
recursive equations: P(z, A,C) =11if e € C' and z € A, and

P(z,4,0) =) f(x)(y,a) - Py, A/a,C)

(y,a)EX XA
otherwise. In fact, total probabilities are the least solution (with respect to the
pointwise order on [0, c0]) of the recursive equations above.

Lemma 10. Let (X, f : X — Ty o)(X x A)) be a fully probabilistic system,
B an observation pattern over A and E C X x X an equivalence relation. If
7 : X — X/E is the canonical projection, then P(z,b,[ylg) = f2(z)(b)([y]r)
for all x;y € X and all b € B, using U as continuous operation.

As a corollary, we obtain that weak bisimulation of fully probabilistic systems is
a special case of B-bisimulation for the weak pattern.

Weighted Transition Systems. Weighted transition systems are technically
similar to probabilistic systems as they also appear as coalgebras for a (complete)
semimodule monad, but without any restriction on the sum of weights. The
associated notion of weak resource bisimulation is described syntactically in [5].
Abstracting from the concrete syntax and taking weighted transition systems as
primitive, we are faced with a situation that is reminiscent of the probabilistic
case: a weak resource bisimulation equivalence on a weighted transition system
(X, f + X = Thuso(X x A)) is an equivalence relation E C X x X such that
zPy and a € A implies that W(z, A, C) = W(y, A, C) for all equivalence classes
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C € X /E and all A that are of the form 7*a7* for a # 7 and 7*. Here W (z, A, C)
is the total weight, i.e. the maximal number of possibilities in which x can evolve
into a state in C via a path from A. Total weights can be understood as (weighted)
sums over all independent paths that lead from x into C' via a trace in A, where
two paths are independent if neither is a prefix of the other. Analogously to the
probabilistic case, these weights are given by the least solution of the recursive
equations

Z f(x)(yv CL) ’ W(y’ A/av C)

0 otherwise
y,a)EX XA

1 66/17 (S
(

and represent the total number of possibilities in which a process z can
evolve into a process in C along a trace in A. For example, we have that
W0+ 7.0 + 7.7.0,7*,{0}) = 3 representing the three different possibilities in

which the given process can become inert along a 7-trace, and W (z,7*,z) = 6

2 2 2
for the triangle-shaped system =z T(—>) Y, T TL>) z and y TL>) z. It is routine to check

that W (z, b, [z'|g) = f2(x)(b)([2'] £). Unlike the probabilistic case, the number
of different ways in which processes may evolve is strictly additive. For the weak
pattern, B-bisimulation is therefore the semantic manifestation of weak resource
bisimulation advocated in [5].

Probability and Nondeterminism. Systems that combine probabilistic and
nondeterministic behaviour arise as coalgebras of type (X, f : X — CoM (X x A))
where Cyo.M is the monad from Section 3. Systems of this type capture so-called
Segala systems. Here we stick to simple Segala systems, which are colagebras of
type P(D x A) and for which the ensuing notion of weak probabilistic bisimulation
was introduced in [18]. These systems extend probabilistic systems by additionally
allowing non-deterministic transitions. As was essentially elaborated in [4], every
simple Segala system embeds into a coalgebra (X, f : X — CoM (X x A)).

Completing a simple Segala system to a coalgebra over Cy M amounts to form-
ing conver sets of valuations; convexity arises from probabilistic choice as follows:
given non-deterministic transitions x — £ and z — (, where £ and ( are valua-
tions over X x A induces a transition z — £+, where +,, is probabilistic choice.
Following [22], one way to understand this is to also consider non-deterministic
choice + and to observe that

EFC=(E+CHO)HpEFCHO) =+ HpEF+ QO+ (E+p ) =EFCH(E+pCQ)

by the axioms {+€ =&+, =&, (E+C)+p0 = (§+,0) + (( +p 0), the last one
describing the interaction between probabilistic and non-deterministic choice.
We argue that B-bisimulation where B is the weak observation pattern agrees
with the notion from [18, 17]. We make a forward reference to Theorem 16 which
shows that B-bisimulation for (X, f) amounts to strong bisimulation for (X, f5).
In other words, weak bisimilarity can be recovered from strong bisimilarity for
the system whose transitions are weak transitions of the original system. Solving
the recursive equation for i’g (where B is the weak pattern and we use the

notation of Example 4) we can write x £ € if € € fB(x)(a). Intuitively, this
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represents that x can evolve along a trace in a to the valuation &, interleaving
probabilistic and nondeterministic steps. We then obtain that an equivalence

relation £ C X x X is a B-bisimulation if, whenever (z,y) € E and = == £,

there exists ¢ such that y == ¢ and & and ¢ are ’equivalent up to E’, that is,
(Fr)¢ = (Frr)¢ where 7 : X — X /E is the projection and FX = [0,00)X. More
concretely, the weak relation = € X x B x [0,00)% is obtained by (%) and is
the least solution of the following system:

T = 0

P ¢ iff Fe f(x). e {Zyexﬁ(y,a) 0y +&(y,T) - 0y |Vy.yg9§;}

where z =% ¢ (b € {a,7}) abbreviates (x,b,() € =; 6,(y) = 1if y = ¢ and
dy(y") = 0 otherwise; and scalar multiplication and summation act on valuations
pointwise. Kleene’s fixpoint theorem underlying Lemma 5 ensures that the rela-
tion = can be calculated iteratively, i.e. = = J, =; where the =; replace = in
the above recursive equations in the obvious way, hence making them recurrent.

Then z = ¢ iff there is ¢ such that = éi ¢. The resulting definition in terms of
weak transitions =; matches weak probabilistic bisimulation from [18, 17]. Note
that convexity of the monad precisely ensures that £ in the recursive clause above

for z = ( represents a combined step of the underlying Segala system, which by
definition, is exactly a convex combination of ordinary probabilistic transitions.

6 Weak Bisimulation as Strong Bisimulation

Milner’s weak transition construction characterises weak bisimilarity as bisimi-
larity for a (modified) system whose transitions are the weak transitions of the
original system. This construction does not transfer to the general case, wit-
nessed by the case of (fully) probabilistic systems. The pivotal role is played
by the continuous operation @ that determines B-bisimulation. We show that
Milner’s construction generalises if & is algebraic and present a variation of the
construction if algebraicity fails. An algebraic operation of arity n on a monad T
(e.g. [15]) is a natural transformation a : 7™ — T such that ay o (f1)" = ffoax
for all f: X — TY. Algebraic operations are automatically continuous:

Lemma 11. Algebraic operations of completely ordered monads are continuous.

Example 12 (Algebraic Operations). Semiring summation + is algebraic
on continuous semimodule monads. If the underlying semiring is idempotent,
e.g. the boolean semiring, summation coincides with the join operation LI which
is therefore also algebraic. The bottom element L is a nullary algebraic operation
(constant). The join operation is algebraic on the monad CoM from Section 3.
The join operation LI is generally not algebraic for free (complete) semimodule
monads unless the semiring is idempotent.
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Algebraicity of @ allows us to lift Milner’s construction to the coalgebraic case:
B-bisimulations coincide with kernel bisimulations for a modified system of the
same transition type. This instantiates to labelled transition systems, as LI is
algebraic on the semimodule monad induced by the boolean semiring. We show
this using a sequence of lemmas, the first asserting that algebraic operations
commute over fixpoints.

Lemma 13. Suppose h : X - Y and v : Y — Z. Given a coalgebra (X, f :
X = T(X x A)) we have that f8 =TBuo fB if & is algebraic.

Similarly, sans algebraicity, B-bisimulations commute with morphisms.

Lemma 14. Let h : X — Y be a morphism from (X, f : X — T(X x A)) to
(Y,g:Y = T(Y x A)). Then gBoh=fE foralu:Y — Z.

Consequently, kernel bisimulations are B-bisimulations:

Corollary 15. Let h : X — Y be a morphism of coalgebras (X,f : X —
T(X x A)) and (Y,g:Y — T(Y x A)). Then Kerh C Ker fB.

Lemma 13 shows that for monads equipped with an algebraic operation @ (such
as the monad defining) labelled transition systems, we can recover B-bisimilarity
as strong bisimilarity of a transformed system.

Theorem 16. Provided & is algebraic, E is a B-bisimulation on a monad-type
coalgebra (X, f) iff E is a kernel bisimulation equivalence on (X, f5).

If @ is not algebraic it can still be possible to recover B-bisimulation as a kernel
bisimulation for a system of a different type. For probabilistic systems this was
done in [19]. Here, we obtain a similar result in a more conceptual way using
the continuous continuation monad T, which is obtained from the standard con-
tinuation monad [14] by restricting to continuous functions: the functorial part
of Tis TX = (X — D) —. D where —. it the continuous function space, D is
a directed-complete partial order, and (X — D) is ordered pointwise.

Lemma 17. For a pointed decpo D, TX = (X — D) —. D extends to a sub-
monad T of the corresponding continuation monad, T is completely ordered, and
every @& : T? — T, given pointwise, i.e. (p @ q)(c) = p(c) ® q(c), is algebraic.

The following lemma is the B-bisimulation analogue of Lemma 1 and is the main
technical tool for reducing B-bisimulation to kernel bisimulation.

Lemma 18. Let (X, f: X — T(X x A)) be a coalgebra and : T — T an in-
jective monad morphism. If & is an algebraic operation on T such that B o k2 =
ko @ then B-®-bisimulation equivalences on (X, f) and B-&-bisimulation equiv-
alences on (X, kf) agree.

We use Lemma 18 as follows. Given a complete semimodule monad T over a
(complete) semiring R, we embed TX into TX = (X — T1) —. T1 (where
T1 = R) by mapping p € TX to the function A\c : X — T'1.cf(p). This embedding
is injective, and the conditions of Lemma 18 are fulfilled with & = LI and & the
pointwise extension of @ (which is algebraic by Lemma 17). This gives:
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Theorem 19. Let T be a continuous semimodule monad over a continuous
semiring R. Let (X, f : X — (X x A)) be a coalgebra and let ® be the join
on R. Then E is a B-bisimulation equivalence on (X, f) iff it is a bisimulation
equivalence on (X, (kx o f)B: X = (X x A—. R) —» R).

In summary, Milner’s weak transition construction generalises to the coalgebraic
case if L is algebraic, and lifts to a different transition type for semirings.

7 Conclusions and Related Work

We have presented a generic definition, and basic structural properties, of weak
bisimulation in a general, coalgebraic framework. We use coalgebraic methods
and enriched monads, similar to the coalgebraic treatment of trace semantics [8].
Our definition applies uniformity to labelled transition systems, probabilistic
and weighted systems, and to Segala systems from [18]. Most of our results, in-
cluding the notions of B-bisimulation as a solution of the recursive equation (%),
easily transfer to categories other than Set. An important conceptual contribu-
tion is the fact that algebraicity allows to generalise Milner’s weak transition
construction to the coalgebraic setting (Theorem 16), recovering B-bisimulation
as kernel bisimulation for a (modified) system of the same transition type. We
also provide an alternative for cases where this fails (Theorem 19).

Related Work. Results similar to ours are presented both in [4] and [12].
Brengos [4] uses a remarkably similar tool set (order-enriched monads) but in
a substantially different way: Given a system of type T'(F + —) with T order-
enriched, the monad structure on T extends to T'(F + —), and saturation w.r.t.
internal transitions is achieved by iterating the obtained monad in a way resem-
bling the weak transition construction for LTS. Examples include labelled tran-
sition systems and (simple) Segala systems. For both underlying monads, join
is algebraic, so that both examples are covered by our lifting Theorem 16. Fully
probabilistic systems, for which algebraicity fails, are not treated in [4]. Miculan
and Peresotti [12] also approach weak bisimulation by solving recurrence rela-
tions, but only treat (continuous) semimodule monads and do not account for
(simple) Segala systems. Our treatment covers all examples considered in both
[4] and [12], and additionally identifies the pivotal role of algebraicity in the
generalisation of Milner’s construction. Sokolova et.al. [19] are concerned with
probabilistic systems only and reduce probabilistic weak bisimulation to strong
(kernel) bisimulation for a system of type (— x A — 2) — [0, 1]. This is similar
to our Theorem 19, which establishes an analogous transformation (to a system
of type (— x A — [0,00]) — [0, 00]) by a rather more high-level argument.

Future Work. We plan to investigate to what extent our treatment extends to
coalgebras X — T(X + FX) for a monad T (the branching type) and a functor
F (the transition type) and are interested in both a logical and an equational
characterisation of B-bisimulation, and in algorithms to compute B-bisimilarity.
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Abstract. We characterise piecewise Boolean domains, that is, those
domains that arise as Boolean subalgebras of a piecewise Boolean alge-
bra. This leads to equivalent descriptions of the category of piecewise
Boolean algebras: either as piecewise Boolean domains equipped with an
orientation, or as full structure sheaves on piecewise Boolean domains.

1 Introduction

Boolean algebras embody the logical calculus of observations. But in many appli-
cations it does not make sense to consider any two observations simultaneously.
For a simple example, can you really verify that “there is a polar bear in the Arc-
tic” and “there is a penguin in Antarctica”, when you cannot be in both places at
once? This leads to the notion of a piecewise Boolean algebra', which is roughly
a Boolean algebra where only certain pairs of elements have a conjunction.

You could say that the issue in the above example is merely caused by a
constructive interpretation. But it is a real, practical concern in quantum logic,
where the laws of nature forbid jointly observing certain pairs (the famous exam-
ple being to measure position and momentum), and piecewise Boolean algebras
consequently play a starring role [3-6].

Another cause of incompatible observations relates to partiality. Some (ob-
servations of) computations might not yet have returned a result, but neverthe-
less already give some partial information. It might not make sense to compare
two partial observations, whereas the completed observations would be perfectly
compatible. Partiality is also at play in quantum theory, where measurements
can be fine-grained, so that the course-grained version only gives partial infor-
mation. This leads to domain theory [7, 8].

This paper brings the two topics, domain theory and quantum logic, together.
The main construction sends a piecewise Boolean algebra P to the collection
Sub(P) of its compatible parts, i.e. its Boolean subalgebras. This well-known
construction [1, 3-5, 9-13] assigns a domain Sub(P) to a piecewise Boolean
algebrac P. Our main result is a characterisation of the domains of the form
Sub(P), called piecewise Boolean domains; it turns out they are the so-called
algebraic L-domains whose bottom two rungs satisfy some extra properties. This

* Supported by EPSRC Fellowship EP/L002388/1.
! Née partial Boolean algebra; recent authors use piecewise to avoid ‘partial complete
Boolean algebra’ [1]. Incidentally, this is the structure Boole originally studied [2].
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gives an alternative description of piecewise Boolean algebras, that is more con-
cise, amenable to domain theoretic techniques, and addresses open questions [11,
Problems 1 and 2]. Colloquially, it shows that to reconstruct the whole, it suf-
fices to know how the parts fit together, without having to know the internal
structure of the parts.

Commutative rings, such as Boolean algebras, can be reconstructed from their
Zariski spectrum together with the structure sheaf over that spectrum [14, V.3].
Analogously, we prove that a piecewise Boolean algebra can be reconstructed
from its piecewise Boolean domain together with the structure sheaf over that
domain. (Equivalently, we could use the Stone dual of the structure sheaf.) We
prove a categorical equivalence between piecewise Boolean algebras, and piece-
wise Boolean domains with a subobject-preserving functor valued in Boolean
algebras. We call the latter objects piecewise Boolean diagrams.

There is a beautiful microcosm principle at play in the reconstruction of a
piecewise Boolean diagram from a piecewise Boolean domain: piecewise Boolean
diagrams are really structure-preserving functors from a piecewise Boolean do-
main into the category of Boolean algebras. The piecewise Boolean diagram
is almost completely determined by the piecewise Boolean domain, but some
choices have to be made. We condense those choices into an orientation, that
fixes a choice between two possibilities on each atom of a piecewise Boolean
domain. Finally, we prove that the category of piecewise Boolean algebras is
equivalent to the category of oriented piecewise Boolean domains.

We proceed as follows. Section 2 recalls the basics of piecewise Boolean al-
gebras, after which Section 3 introduces piecewise Boolean domains and proves
they are precisely those domains of the form Sub(P). This characterisation is
simplified further in Section 4. Section 5 proves the equivalence between piece-
wise Boolean algebras and piecewise Boolean diagrams, and Section 6 reduces
from piecewise Boolean diagrams to oriented piecewise Boolean domains. Fi-
nally, Section 7 concludes with directions for future work. For example, it would
be interesting to explore connections to other work [15, 16].

2 Piecewise Boolean Algebras

Definition 1. A piecewise Boolean algebra consists of a set P with:

— a reflexive and symmetric binary (commeasurability) relation © C P x P;
— elements 0,1 € P;

a (total) unary operation —: P — P;

— (partial) binary operations \,V: ® — P;

such that every set A C P of pairwise commeasurable elements is contained in a
set B C P, whose elements are also pairwise commeasurable, and on which the
above operations determine a Boolean algebra structure.

A morphism of piecewise Boolean algebras is a function that preserves commea-
surability and all the algebraic structure, whenever defined. Piecewise Boolean al-
gebras and their morphisms form a category PBool.
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A piecewise Boolean algebra in which every two elements are commeasurable
is just a Boolean algebra. Given a piecewise Boolean algebra P, we write Sub(P)
for the collection of its commeasurable subalgebras, ordered by inclusion. (The
maximal elements of Sub(P) are also called blocks, see [6, Section 1.4].) In fact,
Sub is a functor PBool — Poset to the category of partially ordered sets and
monotone functions, acting on morphisms by direct image. If P is a piecewise
Boolean algebra, Sub(P) is called its piecewise Boolean domain.

We now list two main results about piecewise Boolean algebras and their
domains. First, we can reconstruct P from Sub(P) up to isomorphism.

Theorem 2 ([1]). Any piecewise Boolean algebra P is a colimit of Sub(P). O

Boolean algebras are precisely objects of the ind-completion of the category of
finite Boolean algebras [14, VI.2.3], defining Boolean algebras as colimits of dia-
grams of finite Boolean algebras. The previous theorem extends this to piecewise
Boolean algebras. Second, Sub(P) determines P up to isomorphism.

Theorem 3 ([11]). If P and P’ are piecewise Boolean algebras and ¢: Sub(P) —
Sub(P’) is an isomorphism, then there is an isomorphism f: P — P’ with ¢ =
Sub(f). Moreover, f is unique iff atoms of Sub(P) are not mazimal. O

However, the functor Sub is not an equivalence. It is not faithful: see the above
theorem. Neither is it full: not every monotone function Sub(P) — Sub(P’)
preserves atoms. Nevertheless, the previous two theorems show that the functor
Sub is almost an equivalence. Later, we will upgrade the functor Sub to an
equivalence. But first we investigate posets of the form Sub(P).

3 Piecewise Boolean Domains

This section characterises piecewise Boolean domains in terms of finite partition
lattices, which we will characterise further in the next section. Recall that an
element z of a poset P is compact when, if z < \/ D for a directed subset D C P
with a supremum, then z < y for some y € D. Write K(P) for the partially
ordered set of compact elements of P.

Definition 4. A poset is called a piecewise Boolean domain when:

(1) it has directed suprema;

(2) it has nonempty infima;

(3) each element is the directed supremum of compact ones;

(4) the downset of each compact element is dual to a finite partition lattice.

Posets satisfying properties (1)—(3) are also known as Scott domains [17].

Proposition 5. If P is a piecewise Boolean algebra, Sub(P) is a piecewise
Boolean domain.
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Proof. If B; € Sub(P), then also (| B; € Sub(P), giving nonempty infima. If
{B;} is a directed family of elements of Sub(P), then | B; is a Boolean algebra,
which is the supremum in Sub(P). To show that every element is the directed
supremum of compact ones, it therefore suffices to show that the compact ele-
ments are the finite Boolean subalgebras of P. But this is easily verified. Finally,
the downset of any compact element is pairwise commeasurable, hence a finite
Boolean algebra, and it is dual to a finite partition lattice. [12, 13]. O

We now set out to prove that any piecewise Boolean domain L is of the form
Sub(P) for some piecewise Boolean algebra P. The first step is to show L gives
rise to a functor L — Bool that preserves the structure of L. For x € L, we
write Sub(x) for the principal ideal of x.

Remark 6. Both occurrences of Sub are instances of a more general scheme. If
C is a category with epi-mono factorizations, we write Sub: C — Poset for the
covariant subobject functor. It acts as direct image on morphisms f: z — v,
that is, a subobject m: e — z gets mapped to the image f[m]: Im(f om) — y.
If C is a poset, then Sub(z) is just the principal ideal of z, and functoriality
just means that Sub(z) C Sub(y) when z < y. If C = Bool, then Sub(B) is
the lattice of Boolean subalgebras of B, and the direct image f[A] of a Boolean
subalgebra A under a homomorphism f: B — B’ is a Boolean subalgebra of B’.
By slight abuse of notation, if C is the category PBool, we let Sub(P) be the
poset of Boolean subalgebras of P (instead of piecewise Boolean subalgebras),
as before. The action on morphisms by direct image is then still well-defined.

Lemma 7. Let L be a piecewise Boolean domain.

(a) For each x € L there is a Boolean algebra F(x) with Sub(F(x)) 2 Sub(z).
(b) There is a functor F: L — Bool and a natural isomorphism SuboF = Sub.

Proof. Properties (1) and (2) make L into an L-domain [8, Theorem 2.9]. Adding
property (3) makes L into an algebraic L-domain [8, Section 2.2]. It follows that
every downset is an algebraic lattice [8, Corollary 1.7 and Proposition 2.8], and
in fact that |J, K(Sub(z)) = K(L) [8, Proposition 1.6]. Finally, property (4)
ensures that every downset satisfies the following property: it is an algebraic lat-
tice, and each compact element in it is dual to a finite partition lattice. Therefore
every downset is the lattice of Boolean subalgebras of some Boolean algebra [12],
establishing (a).
Towards (b), define ¢, , for x <y € L as the following composition.

~

Sub(z) «—— Sub(F(x))
Sub(x < y)l J%c,y
Sub(y) —g— Sub(F(y))

Because Sub(z < y) is a monomorphism of complete lattices [8, Proposition 2.8],
50 is ¢g,y. Now, Sub(ps ) (Sub(F(x))) € Sub(Sub(F(y))); that is, the direct



212 C. Heunen

image of ¢, , is downward closed in Sub(F'(y)). So, by construction, the direct
image of ¢, is Sub(B), where B = ¢, ,(F(z)). Hence ¢, , factors as an isomor-
phism ¢: Sub(F(z)) — Sub(B) followed by an inclusion Sub(B) C Sub(F(y)).
By [12, Theorem 4] or [13, Corollary 2], there is an isomorphism f: F(z) — B
such that 1) = Sub(f). Also, B € Sub(B) C Sub(F'(y)), so B is a Boolean sub-
algebra of F'(y). That is, there is an inclusion g: B < F(y) such that Sub(g)
is the inclusion Sub(B) C Sub(F(y)). Thus F(z < y) := go f: F(z) — F(y)
is a monomorphism of Boolean algebras that satisfies Sub(F(z < y)) = @gy. If
|F'(z)| # 4, then F(x < y) is in fact the unique such map [12, Lemma 5], and in
this case it follows that F(y < z) o F(z <y) = F(z < 2).

Next, we will adjust F'(z < y) for |F(z)| = 4 if need be, to ensure functoriality
of F. Let x be an atom of L. If z is maximal, there is nothing to do. Otherwise
choose y covering x. Select one of the two possible F'(z < y) inducing ¢, ,. Now,
for any 3y’ > x such that z = y V 3/ exists we need to choose F(z < y’) making
the following diagram commute.

) =) g
Fo<y)| [Py <2 )
FW) = FO)

Let us write a, for the isomorphism Sub(F(z)) — Sub(z). Next, notice that
X :=F(y < z)oFlx <y)F(x)] = pz.(F(z)) = ar(z) C F(z), and similarly
Y = F@y < 2)[F)] = ¢y (F(y)) = a.(y') C F(2); because z < y’ hence
X CY, and there is a unique F(z < y’) making the diagram commute. Moreover
Sub(F(x < y')) = ¢s,,. Thus F is functorial, and the isomorphisms SuboF =
Sub are natural by construction. This proves part (b). O

We say a functor F': L — Bool preserves subobjects when there is a natural
isomorphism Sub oF’ = Sub.

Next, we show that the data contained in the functor L — Bool can equiva-
lently be packaged as a piecewise Boolean algebra by taking its colimit.

Lemma 8. Let L be a piecewise Boolean domain, let F' be the functor of Lemma 7,
and let the piecewise Boolean algebra P be the colimit of F' in PBool.

(a) Mazimal elements of L correspond bijectively to mazimal elements of Sub(P).
(b) The colimit maps F(x) — P are injective.

Proof. In general, colimits of piecewise Boolean algebras are hard to compute
(see [1, Theorem 2], and also [18]). But injectivity of F(z < y) makes it man-
agable. Namely, P = [[ ., F(x)/ ~, where ~ is the smallest equivalence rela-
tion satistying b ~ F(zr < y)(b) when x < y and b € F(z). That is, F(x1) >
by ~ b, € F(z,) means there are x3,...,2,-1 € L with 1 > x2 < 3 >
4 <5 > 2 Xy < Ty, and b; € F(x;) for i = 2,...,n — 1 that satisfy
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bit1 = F(z; < x441)(b;) for even i and b; = F(z;41 < x;)(zi41) for odd i. Let
us write p,: F(x) — P for the colimiting maps p,(a) = [a]~.

If z; and x,, are maximal, then without loss of generality we may assume that
x; is maximal for odd 7 and that z;11 = x; A z;42 for odd i. By the naturality
of Lemma 7(b), this means that the subalgebra F'(z2) of F(x1) and F(x3) is
identified. So, by injectivity of F'(z < y), the only way the entire algebra F(z1)
can be identified with F(z,) is when 21 = ... = z,,.

Define a function f: Max(L) — Max(Sub(P)) by f(z) = p.[F(z)] = [F(z)]~.
The discussion above shows that f is injective. Any B € Sub(P) is commeasur-
able, and hence there is € L such that B C [F(z)]~. If B is maximal, then we
must have B = f(z). Thus f is well-defined, and surjective. This proves (a).

For part (b), let « € L. It follows from Zorn’s Lemma and property (1) that
x is below some maximal y € L. By part (a), then p, is injective. Therefore
Pz = py o F(z < y) is injective, too. 0

We are now ready to prove our main result.

Theorem 9. Any piecewise Boolean domain is isomorphic to Sub(P) for a
piecewise Boolean algebra P.

Proof. Let L be a piecewise Boolean domain. Fix a functor F' as in Lemma 7,
and its piecewise Boolean algebra colimit p,: F'(z) — P as in Lemma 8. Define
f: L — Sub(P) as f(z) = py[F(x)].

We first prove that f is surjective. Any B € Sub(P) is commeasurable, so B
is a Boolean subalgebra of p,[F(y)] for some y € L. Hence p, ' (B) € Sub(F(y)).
Because F' preserves subobjects, p, ' (B) = F(z < y)[F(x)] for some y < z.
Then:

f(@) = pz[F(2)] = py o F(z < y)[F(z)] = pylp, ' (B)] = B.

Next we prove that f is injective by exhibiting a left-inverse g: Sub(P) — L.
Set g(B) = Mz € L | B C f()}. Note that g(f(x)) = Aly | [F(@)~ C
[F(y)]~} < @ Now, if y < @ then [F(y)]~ = py[F(y)] = pa o Fy < 2)[F(y)] €
[F(x)]~. Hence if also [F'(x)]~ C [F(y)]~, then F(y < ) is an isomorphism, and
z=y.So g(f(z)) =z

Clearly g(B) < g(C) when B C C, so f(x) C f(y) implies z < y. Conversely,
if z <y, then f(z) = p[F(x)] = py[F(z < y)[F(2)]] € py[F(y)] = f(y). Thus f
is an order isomorphism Sub(P) = L. O

4 Partition Lattices

There exist many characterisations of finite partition lattices [19-25]. We now
summarise one of them that we will use to reformulate condition (4). In a par-
tition lattice, the intervals [p, 1] for atoms p are again partition lattices. This
leads to the following result. For terminology, recall that a finite lattice is (up-
per) semimodular when x covers x Ay implies that xVy covers y, that a geometric
lattice is a finite atomistic semimodular lattice, and that an element x of a lattice
is called modular if aV (x Ay) = (aV x) Ay for all a < y.
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Theorem 10 ([24, 25]). Suppose L is a geometric lattice with a modular coatom,
and the interval [p, 1] is a partition lattice of height n — 1 for all atomsp. If n < 4,
assume that L has (g) atoms. Then L is a partition lattice of height n. Conversely,
a partition lattice of height n satisfies these requirements. a

Let us call a lattice cogeometric when it is dual to a geometric lattice; this
is equivalent to being finite, lower semimodular, and coatomistic. We can now
simplify condition (4), showing that piecewise Boolean domains are domains that
are determined entirely by their behaviour on the bottom three rungs.

Proposition 11. A poset is a piecewise Boolean domain precisely if it meets
conditions (1)-(3) and

(4°) the downset of a compact element is cogeometric and has a modular atom;

(47) each element of height n < 3 covers ezxactly ("'ZH) elements.

Proof. We show that we may replace condition (4) in Definition 4 by (4’) and
(47). Observe that a dual lattice having a modular coatom is equivalent to the
lattice itself having a modular atom. Assuming condition (4) and = € K(L),
then Sub(z) is dual to a finite partition lattice, so that condition (4’) is satisfied.
For ht(x) < 4, condition (4”) is verified by computing the partition lattices of
height up to three, see Figure 1.

Conversely, assume (4’) and (4”). Then the downset of each compact element
is finite, so that compact elements have finite height. Hence condition (4) follows

by induction on the height by Theorem 10. O

123

1/2 ‘

I, = I, = ‘ I3 = Y/ 13‘/2 12/3
12 1/2/3
1234
123/4%1/234
Iy =
12/3/4 13/2/4 14/2/3 1/23/4 1/3/24 1/2/34
1/2/3/4

Fig. 1. The partition lattices of height up to three

5 Piecewise Boolean Diagrams

Definition 12. A piecewise Boolean diagram is a subobject-preserving functor
from a piecewise Boolean domain to Bool. A morphism of piecewise Boolean dia-
grams from F': L — Bool to F': L' — Bool consists of a morphism p: L — L'
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of posets and a natural transformation n: F = F' o ¢. Piecewise Boolean dia-
grams and their morphisms form a category PBoolD. Composition is given by
(1,0) 0 (o,n) = (Yo, 0p-n), and identies are (id,1d).

F
el PN
L d L F Bool
0
o o

L//

Notice that, because F' preserves subobjects, also Sub(¢(x)) = ¢[Sub(z)], so
that ¢ preserves directed suprema.

The functor Sub extends from piecewise Boolean domains to piecewise Boolean
diagrams as follows.

Proposition 13. There is a functor Spec: PBool — PBoolD defined as fol-
lows. On objects P € PBool, define Spec(P): Sub(P) — Bool by B — B. On
morphisms f: P — P', define Spec(f)p = flg: B — f[B]. O

There is also a functor in the other direction. We will prove that the two
functors in fact form an equivalence.

Proposition 14. There is a functor colim: PBoolD — PBool defined as
follows. On objects F: L — Bool, let colim(F') be the colimit py: F(x) —
11 F(x)/ ~. On morphisms (p,n): F — F', let colim(p,n) be the morphism
colim(F) — colim(F") induced by the cocone p,,\ o ne: F(x) = colim(F'). O

Theorem 15. The functors Spec and colim form an equivalence between the
category of piecewise Boolean algebras and the category of piecewise Boolean
diagrams.

Proof. If P € PBool, then colim(Spec(P)) = P by Theorem 2. The isomor-
phism P 2 colim(Spec(P)) is given by b — [b]~. If f: P — P’ unrolling defini-
tions shows that colim(Spec(f)) sends [b]~ to [f(b)]~. Therefore colim o Spec is
naturally isomorphic to the identity.

For a diagram F: L — Bool, fix P = colim(F'). Set ¢: L — Sub(P) by
x — pg[F(x)], and 1, = py: F(x) — pz[F(z)]. This is a well-defined iso-
morphism (p,n): F — Spec(colim(F')) by Lemma 8. If (¢,¢): F — F’, then
(¢',€") = Spec(colim(¢),€)) consists of 1': Sub(colim(F')) — Sub(colim(EF"))
given by ¢'(B) = [Uyepnp(z) €2(b)]~, and e B — [¢[B]]. given by ej5(b) =
[e2(b)]~ when b € F(z). It follows that

U o p(z) = [a[F(2)]]~ = ¢’ 0 ¥(2),
(') - €)x(b) = [e2(D)]~ = (€' - n)x (D),

whence (¢’, 7)o (¢, ) = (W', €") o (p,n), and Spec o colim is naturally isomorphic
to the identity. O
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6 Orientation

We have lifted the functor Sub, that is full nor faithful, to an equivalence.

Spec
PBool ~ PBoolD

L 0=
colim

Sub

However, the cost was to add the full structure sheaf to Sub(P). In this section
we reduce to minimal extra structure on a piecewise Boolean domain instead
of the full structure sheaf. In other words: we want to find a converse to the
forgetful functor, dashed in the diagram above. Lemma 7 goes towards such a
functor, on the level of objects. However, notice that its proof required making
some arbitrary choices. We will now fix these choices to obtain a functor.

Proposition 16. Let L be a piecewise Boolean domain. If x € L is not an atom
or 0, we may fix F(x) to be the power set of the set of modular atoms in Sub(z)
in Lemma 7(a).

Proof. If x has at least four, it follows from a lattice-theoretic characterisation
of partition lattices by Sachs [19, Theorem 14] that Sub(x) is dually isomorphic
to the lattice of partitions of {modular coatoms in Sub(x)°P}.

For x of height two or three we may explicitly compute which coatoms of
II,, are modular. Notice that the element y = 12/34 is not modular in I, (see
Figure 1); taking z = 13/2/4 and z = 13/24 gives zV (yAz) = © # z = (zVy)Az.
Similarly, 13/24 and 14/23 are not modular. But 123/4, 124/3, 134/2, 234/1 are
modular elements. Hence I1; has 4 modular coatoms. Similarly, one can check
that all 3 coatoms in IT3 are modular. |

Definition 17. An orientation of a piecewise Boolean domain L consists of a
pointed four-element Boolean algebra b, € F(a) for each atom a € L. A mor-
phism of oriented piecewise Boolean domains consists of a monotone function
p: L — L' satisfying

— ifa € L is an atom, then either ¢(a) is an atom or ¢(a) =0,
— if a is a modular atom in Sub(z), then v(a) is modular in Sub(p(x)),

and a map na: Fa) = F'(p(a)) satisfying na(ba) = b, for atoms a € L for
which @(a) is a nonmazimal atom. The resulting category is denoted OPBoolD.

Proposition 18. The functor Sub: PBool — Poset extends to orientations as
follows. On objects, the orientation is given by F(B) = B. The point bg is the
unique element of At(C)NB for an atom B covered by C, and 0 if B is mazimal.
A morphism ¢ = Sub(f) extends to orientations by ng = flg: B — f[B].
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Proof. First of all, notice that this is well-defined on objects. If B € At(Sub(P))
is covered by C' € Sub(P), say B = {0, x, ~z, 1} for x € P, then precisely one of
2 and —z must be an atom in C' (and the other one a coatom). Also, this does
not depend on C.

We have to show it is also well-defined on morphisms f: P — P’. If B is an
atom, say B = {0,z, -z, 1}, then ¢(B) = f[B] = {0, f(z),~f(z),1} is clearly
either an atom or {0, 1}. If f[B] is a nonmaximal atom, then f[C] covers f[B] for
some C' € Sub(P) covering B, so f(bp) = by by construction. Now suppose B
is modular in Sub(D). Let A’ C C" € Sub(f[D]); then A’ = f[A] and C" = f[C]
for some A,C' € Sub(D), namely A = f~1(A’) N D. Since AV C is generated
by AUC, we have f[AV C] = f[A] Vv f[C] by [26, Proposition 2.4.4]. We may
assume BN C = {0,1}, for if B C C then f[C] C f[A]V f[B] = f[AV B]
and f[B] is modular in Sub(f[D]). Of course always f[BNC] C f[B] N f[C].
Hence A"V (f[BINC") = f[AV B]N f[C] 2 fl(AVB)NC] = f[AV(BNC)] =
fIA Vv f[BN C] = f[A]. Because A C C, the reverse inclusion also holds, and
f[B] is modular in Sub(f[D]).

Finally, this extension is clearly functorial. a

It follows that the forgetful functor PBoolD — Poset also extends to orien-
tations as a functor PBoolD — OPBoolD.

Lemma 19. An oriented piecewise Boolean domain (L, F,b) extends uniquely
to a piecewise Boolean diagram F: L — Bool where F(a < x)(b,) is an atom if
x covers an atom a € L.

Proof. 1t suffices to show that the requirement in the statement fixes the choice
of maps F(a < y) for atoms a € L in Lemma 7(b) in a well-defined way. Pick
any y covering a, and fix F'(a < y) to be the map that sends b, to an atom in
F(y). By diagram (x), then F(a < y') maps b, to an atom for any 3’ > a for
which z = y V ¢ exists (because Theorem 15 lets us assume that F = Spec(P)
for some piecewise Boolean algebra P). Hence F'(a < y) does not depend on the
choice of y. O

Lemma 20. A morphism of oriented piecewise Boolean domains extends uniquely
to a morphism of piecewise Boolean diagrams.

Proof. We have to extend a map 71,: F(a) = F'(p(a)), that is only defined on
atoms a € L, to a natural transformation 7, : F(z) — F'(p(x)). Let © € L be
nonzero, and let b’ € F(x). Then there is an atom a < x and an element b € F(a)
such that F(a < z)(b) = V'. Define n,(b) = F'(¢(a) < ¢(x))(b'). Because a and
b are unique unless &’ € {0,1}, this is a well-defined function. Moreover, it is
natural by construction. Therefore it is also automatically unique.

We have to show 7, is a homomorphism of Boolean algebras. It clearly pre-
serves 0 and —, so it suffices to show that it preserves A. Let b # b € F(x),
say b € F(a) and b’ € F(a') for atoms a,a’ < z. By naturality, we may assume
that z = aVa'. Hence « and ¢(z) have height 2, and F(x) and F’(p(z)) have 8
elements. We can now distinguish four cases, depending on whether b = b, and
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b = by or not. In each case it is easy to see that n,(b A V') = n,(b) A n, ().
For example, if b = b, and b’ = b,/, then they are distinct atoms in F(x), so
bAb = 0. But n,(b) = b, and 7, (') = b/, are distinct atoms in F(p(z)), so
72 (b) A 7 (8) = 0, t00. 0

It follows that morphisms of oriented piecewise Boolean domains preserve
directed suprema.

Theorem 21. There is a functor OPBoolD — PBoolD that, together with
the forgetful functor, forms an isomorphism of categories.

Proof. Lemmas 19 and 20 define the functor on objects and morphisms, respec-
tively; it is functorial by construction. Extending an oriented piecewise Boolean
domain to a piecewise Boolean diagram and then restricting again to an oriented
piecewise Boolean domain leads back to the original. Conversely, starting with
a piecewise Boolean diagram, restricting it to an oriented piecewise Boolean do-
main, and then extending, leads back to the original piecewise Boolean diagram
by unicity. Hence this is an isomorphism of categories. a

7 Future Work

We conclude by listing several directions for future research.

— Many examples of piecewise Boolean algebras come from orthomodular lat-
tices [1, 6]. These are precisely the piecewise Boolean algebras that are transi-
tive and joined: the union < of the orders on each commeasurable subalgebra
is a transitive relation, and every two elements have a least upper bound with
respect to < [6, 1.4.22]; see also [4, 5]. An isomorphism of piecewise Boolean al-
gebras between orthomodular lattices is in fact an isomorphism of orthomod-
ular lattices.? Reformulating these properties in terms of piecewise Boolean
domains would extend our results to orthomodular lattices.

— The introduction discussed the analogy between piecewise Boolean diagrams
on a piecewise Boolean domains and structure sheaves on a Zariski spectrum.
The latter form a topos and hence come with an internal logic [9]. However,
piecewise Boolean domains are not (pointless) topological spaces. Can we
formalise a notion of “skew sheaf” over piecewise Boolean domains so that
it still makes sense to perform logic in the resulting “skew topos”?

— An obvious question is whether our results extend to piecewise complete
Boolean algebras.

— Although there are many characterisations of finite partition lattices, there
is no known equivalence between the category of finite partition lattices and
the category of finite sets. For concreteness’ sake, it would be very satisfying
to explicate the maps ¢, , in Lemma 7.

— Any C*-algebra A gives rise to a piecewise Boolean algebra P. In fact, Sub(P)
determines A up to isomorphism of Jordan algebras [28, 29]. Can our results
be used to give an equivalent description of Jordan C*-algebras?

2 This was observed in Sarah Cannon’s MSc thesis [27], which prompted this work.



Piecewise Boolean Algebras and Their Domains 219

References

1.

Gk

2

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.
20.

21.
22.

23.

24.

25.

26.
27.

28.

29.

van den Berg, B., Heunen, C.. Noncommutativity as a colimit. Appl. Cat.
Struct. 20(4), 393-414 (2012)

Hailperin, T.: Boole’s algebra isn’t Boolean algebra. Math. Mag. 54(4) (1981)
Hughes, R.I.G.: Omnibus review. J. Symb. Logic 50(2), 558-566 (1985)

Finch, P.E.: On the structure of quantum logic. J. Symb. Logic 34(2) (1969)
Gudder, S.P.: Partial algebraic structures associated with orthomodular posets.
Pacific J. Math. 41(3) (1972)

Kalmbach, G.: Orthomodular Lattices. Acad. Pr (1983)

Abramsky, S., Jung, A.: Domain Theory. In: Handbook of Logic in Comp. Sci.,
vol. 3. Clarendon Press (1994)

Jung, A.: Cartesian closed categories of domains. PhD thesis, Tech. Hochsch.
Darmstadt (1988)

Heunen, C., Landsman, N.P.; Spitters, B.: A topos for algebraic quantum theory.
Comm. Math. Phys. 291, 63-110 (2009)

Doring, A., Barbosa, R.S.: Unsharp values, domains and topoi. In: Quantum Field
Theory and Gravity, pp. 65-96. Birkhauser (2011)

Harding, J., Navara, M.: Subalgebras of orthomodular lattices. Order 28, 549-563
(2011)

Grétzer, G., Koh, K.M., Makkai, M.: On the lattice of subalgebras of a Boolean
algebra. Proc. Amer. Math. Soc. 36, 87-92 (1972)

Sachs, D.: The lattice of subalgebras of a Boolean algebra. Can. J. Math. 14,
451-460 (1962)

Johnstone, P.T.: Stone spaces. Cambridge Studies in Advanced Mathematics,
vol. 3. Cambridge Univ. Pr. (1982)

Laird, J.: Locally Boolean domains. Theor. Comp. Sci. 342(1), 132-148 (2005)
Abramsky, S., Vickers, S.: Quantales, observational logic and process semantics.
Math. Struct. Comp. Sci. 3, 161-227 (1993)

Scott, D.S.: Domains for denotational semantics. In: Nielsen, M., Schmidt, E.M.
(eds.) ICALP 1982. LNCS, vol. 140, pp. 577-613. Springer, Heidelberg (1982)
Haimo, F.: Some limits of Boolean algebras. Proc. Amer. Math. Soc. 2(4), 566-576
(1951)

Sachs, D.: Partition and modulated lattices. Pacific J. Math. 11(1), 325-345 (1961)
Sasaki, U., Fujiwara, S.: The characterization of partition lattices. J. Sci. Hiroshima
Univ (A) 15, 189-201 (1952)

Ore, O.: Theory of equivalence relations. Duke Math. J. 9(3), 573-627 (1942)
Firby, P.A.: Lattices and compactifications I, II. Proc. London Math. Soc. 27, 22-60
(1973)

Aigner, M.: Uniformitdt des Verbandes der Partitionen. Math. Ann. 207, 1-22
(1974)

Stonesifer, J.R., Bogart, K.P.: Characterizations of partition lattices. Alg. Univ. 19,
92-98 (1984)

Yoon, Y.J.: Characterizations of partition lattices. Bull. Korean Math. Soc. 31(2),
237-242 (1994)

Koppelberg, S.: Handbook of Boolean algebras, vol. 1. North-Holland (1989)
Cannon, S.: The spectral presheaf of an orthomodular lattice. Master’s thesis, Univ.
Oxford (2013)

Harding, J., Doring, A.: Abelian subalgebras and the Jordan structure of a von
Neumann algebra. Houston J. Math (2014)

Hamhalter, J.: Isomorphisms of ordered structures of abelian C*-subalgebras of
C*-algebras. J. Math. Anal. Appl. 383, 391-399 (2011)



Between Linearizability and Quiescent Consistency*
Quantitative Quiescent Consistency

Radha Jagadeesan and James Riely
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Abstract Linearizability is the de facto correctness criterion for concurrent data
structures. Unfortunately, linearizability imposes a performance penalty which
scales linearly in the number of contending threads. Quiescent consistency is an
alternative criterion which guarantees that a concurrent data structure behaves
correctly when accessed sequentially. Yet quiescent consistency says very little
about executions that have any contention.

We define quantitative quiescent consistency (QQC), a relaxation of lineariz-
ability where the degree of relaxation is proportional to the degree of contention.
When quiescent, no relaxation is allowed, and therefore QQC refines quiescent
consistency, unlike other proposed relaxations of linearizability. We show that
high performance counters and stacks designed to satisfy quiescent consistency
continue to satisfy QQC. The precise assumptions under which QQC holds pro-
vides fresh insight on these structures. To demonstrate the robustness of QQC,
we provide three natural characterizations and prove compositionality.

1 Introduction

This paper defines Quantitative Quiescent Consistency (QQC) as a criterion that lies
between linearizability [10] and quiescent consistency [3], [11], [17]. The following
example should give some intuition about these criteria.

Example 1.1. Consider a counter object with a single getAndIncrement method. The
counter’s sequential behavior can be defined as a set of strings such as [* 15 {" } (")}
where [* denotes an invocation (or call) of the method and 17 denotes the response (or
return) with value i. Suppose each invocation is initiated by a different thread.

A concurrent execution may have overlapping method invocations. For example, in
(" [T {7 ¥ )5 the execution of (")} overlaps with both [* ]f and {" }} , whereas
[* 15 finishes executing before {* }{ begins. Consider the following four executions.

CUROYS  COXUL, FORORL Feney

Linearizability states roughly that every response-to-invocation order in a concurrent
execution must be consistent with the sequential specification. Thus, the first execu-
tion is linearizable, since the response of [* If; precedes the invocation of {* }{ in the
specification. However, none of the other executions is linearizable. For example, the
response of {" } precedes the invocation of [* 1§ in the second execution.
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Linearizability can also be understood in terms the linearization point of a method
execution, which must occur between the invocation and response. From this perspec-
tive, the first execution above is linearizable because we can find a sequence of
linearization points that agrees with the specification; this requires only that the lin-
earization point of (" )} follow that of {" }] . No such sequence of linearization points
exists for the two other executions.

Quiescent consistency is similar to linearizability, except that the response-to-invoca-
tion order must be respected only across a quiescent point, that is, a point with no open
method calls. The first three executions above are quiescently consistent because there
are no non-trivial quiescent points. The last execution fails to be quiescently consistent
since the order from () to {" }] is not preserved in the specification.

We define Quantitative Quiescent Consistency (QQC) to require that the number
of response-to-invocation pairs that are out-of-order at any point be bounded by the
number of open calls that might be ordered later in the specification. We also give a
counting characterization of QQC, which requires that if a response matches the i
method call in the specification, then it must be preceded by at least i invocations.

The first two executions above are QQC; however, the last two are not. In the second
execution, the open call to (")} justifies the return of {" } before [* If; since ()}
occurs after {* } in the specification. However, in the third execution, the return of
(") before {*}] cannot be justified only by the call to [* 1 since [* 1] occurs
earlier in the specification. Following the counting characterization sketched above, the
third execution fails since (* )5 is the third method call in the specification trace, but
the response of (" )3 is only preceded by two invocations: [* and (*. O

Quiescent consistency is too coarse to be of much use in reasoning about concur-
rent executions. For example, a sequence of interlocking calls never reaches a quiescent
point; therefore it is trivially quiescently consistent. This includes obviously correct ex-
ecutions, suchas [* (" 15 [*)] (" 15 [* )5 (" 1; [ ---, nearly correct executions, such
as [F (17 )5 150703 (P15 [ -+, and also ridiculous executions, such as [* (*

+ + \+ + 7+ +\+ o+
to7a [ 17 Claaag U3 C -

Linearizability has proven quite useful in reasoning about concurrent executions;
however, it fundamentally constrains efficiency in a multicore setting: Dwork, Herlihy,
and Waarts [6] show that if many threads concurrently access a linearizable counter,
there must be either a location with high contention or an execution path that accesses
many shared variables. Shavit [14] argues that the performance penalty of linearizable
data structures is increasingly unacceptable in the multicore age. This observation has
lead to a recent renewal of interest in nonlinearizable data structures. As a simple exam-
ple, consider the following counter implementation: a simplified version of the counting
networks of Aspnes, Herlihy, and Shavit[3].

class Counter<N:Int> {
field b:[0..N-1] = 0; // 1 balancer
field c:Int[] = [0, 1, ..., N-11; /N counters
method getAndIncrement ():Int {
val i:[0..N-1];
atomic { i = b; b++; }
atomic { val v = c[i]; c[i] += N; return v; } } }
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The N-Counter has two fields: a balancer b and an array c of N integer counters. There
are two atomic actions in the code: The first reads and updates the balancer, setting the
local index variable i. The second reads and updates the i” counter. Although the
balancer has high contention in our simplified implementation, the counters do not;
balancers that avoid high contention are described in [3].

Example 1.2. The N-Counter behaves like a sequential counter if calls to getAnd-
Increment are sequentialized. To see this, consider a 2-Counter, with initial state
(b=0, c =10, 1]). In a series of sequential calls, the state progresses as follows, where
we show the execution of the first atomic with the invocation and the second atomic
with the response. The execution [* 15 {" } (7 )5 can be elaborated as follows.

(b=0.c=[0, 1) b=1c=[0. 1) Drfp=1,c=[2,1))
(b=0,c=[2, 1]>%<b =0,c=[2,3])

Sb=1,c=[2,3)20b=1c=[43)

~ |~
+ +

When there is concurrent access, the 2-Counter allows nonlinearizable executions,
suchas (" {" } [" 153 .

With a sequence of interlocking calls, it is also possible for the N-Counter to execute
as [F (P17 )5 13 [7)5 1L [F -+, producing an infinite sequence of values that
are just slightly out of order. Using the results of this paper, one can conclude that with
a maximum of two open calls, the value returned by getAndIncrement will be “off”
by no more than 2, but this does not follow from quiescent consistency. O

Our results are related to those of [2], [3], [5], [16]. In particular, Aspnes, Herlihy,
and Shavit[3] prove that in any quiescent state (with no call that has not returned), such
a counter has a “step-property”, indicating the shape of c. Between }; and 1;; in the
second displayed execution of Example 1.2, the states with ¢ = [0, 3] do not have the
step property, since the two adjacent counters differ by more than 1.

Aspnes, Herlihy, and Shavit[3] imply that the step property is related to quiescent
consistency, but they do not provide a formal definition. It appears that they have in
mind is something like the following: An execution is weakly quiescent consistent if
any uninterrupted subsequence of sequential calls (single calls separated by quiescent
points) is a subtrace of a specification trace.

The situation is delicate: Although the increment-only counters of [3] are quies-
cently consistent in the sense we defined in Example 1.1 (indeed, they are QQC), the
increment-decrement counters of [2], [5], [16] are only weakly quiescent consistent. In-
deed, the theorems proven in [16] state only that, at a quiescent point, a variant of the
step property holds. They state nothing about the actual values read from the individual
counters. Instead, our definition requires that a quiescently consistent execution be a
permutation of some specification trace, even if it has no nontrivial quiescent points.
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Example 1.3. Consider an extension of the 2-Counter with decrementAndGet.

method decrementAndGet () :Int {
val i:[0..N-1];
atomic { i = b-1; b--; }
atomic { c[i] -= N; return c[i]; } }

The execution [* {* (" <~ >, 1%, } )] is possible, although this is not a permutation
of any specification trace. The execution proceeds as follows

b=0,c=[0,1]) (b=1,c =0, }> (b=0,c=10,1])
S b=1,c=0,1] > (b=0,c=10,1])
>—><b 0,c=[-2 ]> 2(b=0,c=0,1])

2 b=0,c=0, } )2 (b=0,c=10,1]) 0

It is important to emphasize that this increment-decrement counter is not even quies-
cently consistent according to our definition. There is no hope that it could satisfy any
stronger criterion.

Of course counters are not the only data structures of interest. In the full paper, we
treat concurrent stacks in detail. We define a simplified N-Stack below; the full, tree-
based data structure is defined in Shavit and Touitou[16].

class Stack<N:Int> {
field b:[0..N-1] = 0; // 1 balancer
field s:Stack[] = [0, [0, ..., [11; /N stacks of values
method push(x:0bject) :Unit {
val i:[0..N-1];
atomic { i = b; b++; }
atomic { val v = s[i].push(x); return v; } }
method pop() :0bject {
val i:[0..N-1];
atomic { i = b-1; b--; }
atomic { val v = s[i].pop(); return v; } } }
The trace given in Example 1.3 for the increment-decrement counter is also a trace
of the stack, where we interpret + as push and - as pop. Whereas this is a nonsense
execution for a counter, it is a linearizable execution of a stack: simply choose the
linearization points so that each push occurs immediately before the corresponding pop.
Nonetheless, the N-Stack is only weakly quiescent consistent in general.

Example 1.4. The N-Stack generates the execution [, 1" (; )" {J <~ >, }" as follows.

(b=0,5=1[},[]] )=(b=1,5=[1], )] )->(b=1,5=[d, ]])
Lo =0,5=al,[] )2 (b=0,s = [[al, [b]])
“S(b=1,s=|la], b]])
<—><b=o,s=na},[bn> (b =0,5 =[], 5] )

Lo =0,5= [, B])

However, this specification is not quiescently consistent with any stack execution: There
is a quiescent point after each of the first two pushes; therefore it is impossible to pop a
before b. This execution is possible even when there are several pushes beforehand. O
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In the case of the N-Stack, a simple local constraint can be imposed in order to es-
tablish quiescent consistency: intuitively, we require that no pop overtakes a push on
the same stack s[i]. In the full paper, we show that the stack is actually QQC under
this constraint, and therefore quiescently consistent. We also prove that the elimination-
tree stacks of Shavit and Touitou [16] are QQC. The increment-only counters of [3] are
also QQC; the proofs for the tree-based increment-only counter follow the structure of
the proofs for the elimination-tree stacks. (We have not found a /ocal constraint under
which the increment-decrement counter is quiescently consistent.) Our correctness re-
sult is much stronger than that of [16], which only proves weak quiescent consistency.

The preliminary version of Shavit and Touitou’s paper [15] suggests an upcoming
definition e-linearizability, “a variant of linearizability that captures the notion of ‘al-
mostness’ by allowing a certain fraction of concurrent operations to be out-of-order.”
This thread was picked up by Afek, Korland, and Yanovsky[1] and improved by Hen-
zinger, Kirsch, Payer, Sezgin, and Sokolova[9]. As defined in [9], the idea is to define
a cost metric on relaxations of strings and to bound the relaxation cost for the specifi-
cation trace that matches an execution. This relaxation-based approach has been used
to validate several novel concurrent data structures [1], [7]. With the exception of the
increment-only counter validated in [1], all of these data structures intentionally vio-
late quiescent consistency. In Section 4, we show that this approach in incomparable to
QQC.

With QQC, the maximal degradation depends upon the amount of concurrent access,
whereas in the relaxation-based approach it does not. Thus, QQC “degrades gracefully”
as concurrency increases. In particular, a QQC data structure that is accessed sequen-
tially will exactly obey the sequential specification, whereas a data structure validated
against the relaxation-based approach may not.

In the rest of the paper, we formalize QQC and study its properties. Our contributions
are as follows.

— We define linearizability (Section 2), quiescent consistency (Section 3) and QQC
(Section 4) in terms of partial orders over events with duration. As in Example 1.1,
the definitions are given in terms of the order from response to invocation.

— For sequential specifications, we provide alternative characterizations of lineariz-
ability, quiescent consistency and QQC in terms of the number of invocations that
precede a response. For linearizability, this approach can be found in [4].

— We provide an alternative characterization of QQC in terms of a proxy that controls
access to the underlying sequential data structure. The proxy adds a form of specu-
lation to the flat combining technique of Hendler, Incze, Shavit, and Tzafrir[8]. This
characterization can be seen as a language generator, rather than an accepter.

— Like linearizability and quiescent consistency [11], QQC is non-blocking and com-
positional. Like quiescent consistency and unlike linearizability, a QQC execution
may not respect program order, and therefore QQC is incomparable to sequential
consistency [12]. We prove that QQC is compositional for sequential specifications,
in the sense of Herlihy and Wing[10].

— We show that QQC is useful for reasoning about data structures in the literature. In
the full paper, we prove that the elimination tree stacks of Shavit and Touitou[16] are
QQC, as long as no pop overtakes a push on the same stack.
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2 Linearizability

A trace is alabelled partial order with polarity and bracketing. We use 7 and ! to denote
polarities. The polarity indicates whether an event in the partial order is a call/input
(?) or a return/output (!). Bracketing matches each return with the particular call that
precedes it. Let p— range over traces and let a, b range over names, which form the
carrier set of the partial order. We introduce notation over traces as needed.

Intuitively, linearizability requires that the response-to-invocation order in an execu-
tion be respected by a specification trace. To show that s” is linearizable, it suffices to
do the following

— Choose a specification trace ¢.

— Choose an extension s' of s’ that closes the open calls in s”. We say that s’ extends
s if (1) if s” is a prefix of s, and (2) all of the new events in s’ — s” are ordered after
all events of opposite polarity in s” (that is, calls after returns and returns after calls).
Let extensions(s”) be the set of extensions of s”.

— Choose a renaming s =, §' such that s =, t. Here =, denotes equivalence up to
renaming and =, denotes equivalence up to permutation. This establishes that s’ is a
permutation of r. The names are witness to the permutation.

— Show that for every response a' and invocation b7, if a' precedes b in s (a' = b"),
then the same must be true in ¢ (a' =, b%).

This definition differs from the traditional one in several small details, enumerated in
the full paper. In particular, we allow s’ € extensions(s”) to include calls that are not in
s”, in addition to returns. We can refactor the definition slightly to pull it into the shape
used to define quiescent consistency and QQC.

Definition 2.1. For traces s, t, we write s Cyin ¢ if s =5 ¢ and for every prefix p < s
Va'€ p. Vo' s—p. (a' =, b") implies (a' = b").

Then (s” Cin £) = (35’ € extensions(s”). Is =¢ 5. 5 Ciin 1),

and (SCinT)=(Vs" €S. FH€T. 5" Cint). ]

This characterization of linearizability requires that we look at every way to cut the
trace s into a prefix p and suffix s — p. We then look at the return events in p and the
call events in s — p and ensure that the order of events crossing the cut is respected in ¢.
The definitions are equivalent since we quantify over all possible cuts.

Consider the counter specification from Example 1.1: [* 15 {" }{ (" )5 . The trace
{"[" ¥} ("1§)% is linearizable. The interesting cut is {* [* }] which requires only
that {" }] precede (" )} in the specification. By the same reasoning, {* (" }] [" )5 17,
is not linearizable, since it requires that {" }| precede [* 1 .

Given a sequential specification, a trace is linearizable if every return is preceded by
the calls that come before it in specification order. This holds for operational traces,
in which all events of opposite polarity are ordered. Operational traces correspond to
those generated by a standard interleaving semantics. Define s < ¢ to mean that s is a
subtrace of a permutation of ¢: (s < t) = (3. sCs =x1).

Theorem 2.2. Let t be a sequential trace with name order (a%,a},a, a}, ... a., a)).
Let s be an operational trace such that s < t. Then

sCint iff Va}ES.{aT,...,a;}Q{ai?|ai?:>sll}} o
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3  Quiescent Consistency

Let open(s) be the set of calls in s that have no matching return. We say that trace s is
quiescent if open(s) = 0. This notion of quiescence does not require that there be no
active thread, but only that there be no open calls. Thus, this notion of quiescence is
compatible with libraries that maintain their own thread pools.

The definition of quiescent consistency is similar to Definition 2.1 of linearizability.
The difference lies in the quantifier for the prefix p: Whereas linearizability quantifies
over every prefix, quiescent consistency only quantifies over quiescent prefixes.

Definition 3.1. We write s Cqc t if s =5 t and for any qguiescent prefix p < s
Va'e p. Vb'e s—p. (a' =, b") implies (a' = b"). ]

(Cqc) is defined similarly to (Cjin). Again let us revisit the counter specification
from Example 1.1: [* 1§ {" }] (7 )3 . This notion of quiescent consistency places some
constraints on the system even when it has no nontrivial quiescent points. For example,
the execution [* {* (" )} }{ 1 is not quiescently consistent with the given specification,
since it is not a permutation. If one extends the execution to [* {* (")} ¥/ 1 <" >
and attempts to matches it against the specification [* 15 {" ¥ <* > (")}, quiescent
consistency continues to fail: In the quiescent prefix [* {* (* ) }} 1§, the order across
the cut from )3 to <" is not preserved in the specification.

For linearizability, only responses need be included in the extensions of a trace. The
same does not hold for quiescent consistency. For example, since (" {"} ["1]); is
quiescently consistent, its prefix (* {" }} should also be quiescently consistent. How-
ever, there is no specification trace that can be matched that does not include [* 1.
Therefore, it does not suffice merely to close the open call by adding )3 ; we must also
include [* and Ij) .

We now give a counting characterization of quiescent consistency. Define u = v to
mean that # =, v and there is no quiescent cut that separates « and v.

Theorem 3.2. Let t be a sequential trace with name order (a},a},a, a}, ..., a., a,).
Let s be an operational trace such that s < t. Then

sCqct  iff Va]!- €s. ’{a;, ...,a;}| < ’{a,-? | af :>Sa]!-}U{a,? | a]!- B ai?}| |

If aj’-, the jth return in ¢, occurs in s, then there must be at least j calls contained in
two sets: (1) the calls that precede a]’- in s, and (2) the calls that follow a' in s but are

J
“quiescently concurrent” — that is, not separated by a quiescent point.

4 Quantitative Quiescent Consistency

We provide three characterizations of QQC and prove their equivalence.
(1) Definition 4.1 defines QQC in the style that we have defined linearizability and qui-
escent consistency, from response to invocation. (2) Theorem 4.3 provides a counting
characterization of QQC, which requires that if a response matches the i method call
in the specification, then it must be preceded by at least i invocations. (3) Theorem 4.4
provides an operational characterization of QQC as a proxy between the concurrent
world and an underlying sequential data structure.
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To develop some intuition for the what is allowed by QQC, we give some examples
using the 2-Counter from the introduction. First we note that the capability given by
an open call can be used repeatedly, as in (" [* 17 {" X [" 15 {" 3 [" 1 {" ¥} )¢ . The
open call (* enables the inversion of {* } with [* 1} and also of {* }} with [* 1} .

Alternatively, multiple open calls may be accumulated to create an trace with events
that are arbitrarily far off, asin (" [*17 " [713 (" [ 15 (" [T 15 [7 1503 )5 )¢ Jg - Note
that [* 1; follows [* 15 in this execution! It is worth emphasizing that the order be-
tween these actions is observable to the outside: a single thread can call getAndInc-
rement and get 7, then subsequently call getAndIncrement and get 0. Such behaviors
are a hallmark of nonlinearizable data structures. In general, an N-Counter can give
results that are k X N off of the expected value, where k& is the maximum number of open
calls and N is the width of the counter. There is no way to bound the behavior of this
counter, as in [9], without also bounding the amount of concurrency, as in [1].

It is also possible for open calls to overlap in nontrivial ways. The trace (" [* 1] {
[T 1503 ()3 ¥ is QQC. Here, the first (" justifies the out-of-order execution of [* 1}
and [* 1§ . The subsequent {* justifies an inversion of the previous justifier, namely
(*)% and (7)3 . A similar exampleis {* (" )] (" [" 1505 [T 15 3.

Finally, we note that the stack execution {. [*1; (()*}* is QQC with respect to
the specification (J,)* [~ 17 {] }*. This follows from exactly the kind of reasoning that
we have done for the counter. For the counter this simply means that we are seeing an
integer value early, but for a stack holding pointers, it means that we can potentially
see a pointer before it has been allocated! To prevent such executions, causality can be
specified as a relation from calls to returns, consistent with specification order: A trace
is causal if it respects the specified causality relation. We have elided causality from the
definition of QQC because it is orthogonal and can be enforced independently.

Linearizability requires that for every cut, all response-to-invocation order crossing
the cut must be respected in the specification. Quiescent consistency limits attention
to quiescent cuts. QQC restores the quantification over every cut, but relaxes the re-
quirement to match all response-to-invocation order crossing the cut. When checking
response-to-invocation pairs across the cut, QQC allows some invocations to be ig-
nored. How many?

One constraint comes from our desire to refine quiescent consistency. For quiescent
cuts, we cannot drop any invocations, since quiescent consistency does not. As a first
attempt at a definition, we may take the number of dropped invocations at any cut to be
bounded by |open(p)|. This criterion would allow both of the traces (" {* ¥] [* 1§ )}
and [* (")3 {" }{ 1§ in Example 1.1. In each case, the interesting cut splits the trace in
half, with one open call and one completed. In the first trace, we can ignore [* in the
suffix, and in the second trace, we can ignore {* in the suffix; thus, both are allowed.
However, in the second trace, the first call completed is two steps in the future, even
though there is only one concurrent action. In the first trace this does not happen. The
difference can be seen by looking not only at the number of open calls, but also at
which calls are open. In the first trace we have (* before }], and in the second, we
have [* before );. We say that (* is early for }|, since it does not precede }| in the
specification, whereas [ is not early for )}, since it does precede )5 . We restrict our
attention to calls that are both open and early with respect to the response of interest.

+
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Given a specification ¢ and a response a' € ¢, none of the actions in the ¢-down-
closure of a' could possibly be early for a'; any other action could be. Thus, the actions
in open(p) — (J+a') are both open and early for a'. This leads us to the following def-
inition. (In the full paper, we show that for sequential specifications, we can swap the
quantifiers (3r) and (Va'), pulling out the existential.)

Definition 4.1. We write s Cqqc t if s =5 t and for any prefix p < s
Va'e p. Ir Cs. |r| < |open(p) — (1:a")|.

Vb€ ((s—p) —r). (a' =, b?) implies (a' = b"). ]
As before, (Cqqc) is defined by analogy to (Ciin).
Theorem 4.2. (Siin) C (Sgqc) € (Bqe) O

Given the subtlety of Definition 4.1, it may be surprising that QQC has the following
simple characterization for sequential specifications.

Theorem 4.3. Let t be a sequential trace with name order (a%,a},a, a}, ..., a., a)).
Let s be an operational trace such that s < t. Then

§Cqqct iff Va}€s.|{a?,...,a;}|S’{af\af:sa}}’ O

This characterization provides a simple method for calculating whether a trace is QQC.
For example, the trace {" (") (" ["15)3 [" 13} is QQC since )} is preceded by two
calls, 15, )3 by four, and 15, ¥, by five. The trace {* (")} ()3 [" 1§ [" 13 ¥, is not
QQCssince )j is only preceded by three calls, yet it is the fourth call in the specification.

Our third characterization of QQC describes how QQC affects an arbitrary sequential
data structure, using a proxy that generates QQC traces from an underlying sequential
implementation. This characterization of QQC incorporates speculation into flat com-
bining [8]. We push the obligation to predict the future into the underlying sequential
object, with must conform to the following interface.

interface Object {
method run(i:Invocation):Response;
method predict():Invocation; 1}

The run method passes invocations to the underlying sequential structure and returns
the appropriate response. The predict method is an oracle that guesses the invocations
that are to come in the future. It is the use of predict that makes our code speculative.

The code for the proxy is given in Figure 1. Communication between the implemen-
tation threads and the underlying Object is mediated by two maps. When a thread
would like to interact with the Object, it creates a semaphore, registers it in called
and waits. Upon awakening, the thread removes the result from returned and returns.

The Object is serviced by a single proxy thread which loops forever making one
of two nondeterministic choices. The proxy keeps two private maps. Upon receiving
an invocation in called, the proxy moves the invocation from called to received.
Rather than executing the received invocation, the proxy asks the oracle to predict an
arbitrary invocation i and executes that instead, placing the result in executed. Once
a invocation is both received and executed, it may become returned.

At the beginning of this section, we noted that the stack execution {} [* 1; ;)" }* is
QQC with respect to the specification (},)* [* 1, {] }*. How can such a trace possibly
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class QQCProxy<o:0Object> {
field called:ThreadSafeMultiMap<Invocation,Semaphore> = [];

field returned:ThreadSafeMap <Semaphore, Response> = [];
method run(i:Invocation):Response { //proxy for external access to o
val m:Semaphore = [];
called.add(i, m);
m.wait();

return returned.remove(m); }
thread { // single thread to interact with o
val received:MultiMap<Invocation,Semaphore> = [];
val executed:MultiMap<Invocation,Response> = [];
repeatedly choose {
choice if called.notEmpty() {
received.add(called.removeAny()) ;
val i:Invocation = o.predict();
val r:Response = o.run(i);
executed.add(i, r); }
choice if exists i in received.keys() intersect executed.keys() {
val m:Semaphore = received.remove(i);
val r:Response = executed.remove(i);
returned.add(m, r);

m.signal(); } + } }

Fig. 1. QQC Proxy

be generated? The execution of the proxy proceeds as follows. Upon receipt of {_, the
proxy executes (], storing response )*. Upon receipt of [, the proxy executes [, storing
response 1, . At this point [~ ]} can return. Upon receipt of (},, the proxy executes {;.,
storing response }. At this point both (], )* and {] }* can return.

Such noncausal behaviors can be eliminated by requiring when a pop is executed, a
corresponding push must have been received. The prior execution is invalidated since
()" is not received when [~ 1 returns. However, nonlinearizable behaviors are still
allowed. For example {;. [, 1" (; )" }" [* 1; (")} is generating by predicting (; )*.
Theorem 4.4. The concurrent proxy is sound for QQC with respect to the underlying
Object. It is also complete for operational traces. O

In the full paper, we show that the elimination-tree stack of [16] and increment-only
counter of [3] are QQC. The characterizations of QQC also allow us to predict the QQC
behavior of other data structures, such as a queues, even if no implementation is known.
The following examples, from Sezgin[13], allow a useful comparison with [9].

To see that QQC makes distinctions not found in [9], consider the two stack traces {.
C1 G < > ¥ and {] [[ 1" (;)" ¥ < >,. In the framework of [9], these are both
1 out-of-order (when a is popped, at least » must be above a on the stack). However,
only the first is QQC.

In the other direction, the queue execution {; [} 1% [; 17 --- [; 17 (C)" < >} is
QQC with respect to the queue specification (; )" [ 1" [ 1° --- [} 1" < > {; ¥.In
the framework of [9], this would be n out-of-order because at least all b;’s should be
in the queue before c is inserted into the queue; the removal of ¢ from the queue must
happen when there are n elements ahead of ¢ in the queue.
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Finally, we prove compositionality for QQC. Let + denote partial order difference.
Theorem 4.5. Let t| and ty be sequential traces.

Let s, s1 and s, be operational traces such that s = s+ s and sy = s+ 5].

Forie {1,2}, suppose that each s; Cqqc t;.

Then there exists a sequential trace t € (t1 ||| t2) such that s Cqqc t.
PROOF SKETCH. Assume that the names in #; and t, are disjoint. Let the sequence of
names in 7, be (af, aj, ..., al,, a,,) and sequence of names in 7, be (b7, bj, ..., b5, b}).
Applying Theorem 4.3 to the supposition sy Cyi, 71, we have that j < ’{ai? | al = a]’-} ’,
and similarly ¢ < |{b] | b = b} }|. It suffices to construct an interleaving € (1, || 72)
such that whenever ¢ contains a subsequence with names

7 0 37 0 7 ! ? !
aja aja bka bk’ bk+1’ bk+1’ ""bk+x’ bk+x
then for every k < ¢ < k+ x, we have

{ai | af =aj} C{a] |a] = bi}

: ? g1 2 1 2 ! ? !
and symmetrically for subsequences by, by, Aj QA s ey Gy, To dem-
onstrate the existence of an appropriate ¢, it suffices to show that merge(ajaj ... a, a;,,

bibj ... by b,) is nonempty. By operationality, it must be the case that either (1) a} =
bj, in which case {a] | af =, ai} C {a] | af = b;}, (2) bj = a;, in which case
{bf | bf =5 bj} C{b | bj =sa’}, or (3) a} and b} are unordered, in which case both
conclusions hold. Therefore an appropriate ¢ exists. O

5 Conclusions

Quantitative quiescent consistency (QQC) is a correctness criterion for concurrent data
structures that relaxes linearizability and refines quiescent consistency. To the best of
our knowledge, it is the first such criterion to be proposed.

To show that QQC is a robust concept, we have provided three alternate characteriza-
tions: (1) in the style of linearizability, (2) counting the number of calls before a return,
and (3) using speculative flat combining. We have also proven compositionality (in the
style of Herlihy and Wing [10]) and, in the full paper, the correctness of data structures
defined by Aspnes, Herlihy, and Shavit [3] and Shavit and Touitou [16].

In order to establish the correctness of the elimination-tree stack of [16], we had to
restrict attention to traces in which no pop overtakes a push on the same stack. (The for-
malities are given in the full paper.) A related constraint appears in a footnote of [14]:
“To keep things simple, pop operations should block until a matching push appears.”
This, however, is not strong enough to guarantee quiescent consistency as we have de-
fined it. Our analysis provides a full account: The stack is QQC with the no-overtaking
requirement and only weakly quiescently consistent without it.

There are many unanswered questions, chief among them: Is QQC useful in rea-
soning about client programs? Is there a verification methodology for QQC analogous
to that developed for linearizability? Are there other useful data structures that can be
shown to satisfy QQC?
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Linearizability is, at its core, linear. We have defined QQC in terms of general partial
orders, and yet the results reported here are stated in terms of sequential specifications.
Partly we have done this so that we can relate the definition of QQC to the vast amount
of existing work on linearizability. However, the general case is interesting.
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work. Alexey Gotsman suggested the connection to flat combining. Ali Sezgin provided
a comparison with [9]. We also thank Alan Jeffrey, Corin Pitcher and Hongseok Yang
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Abstract. A decidability proof for bisimulation equivalence of first-
order grammars (i.e., finite sets of labelled rules for rewriting roots of
first-order terms) is presented. The result, generalizing the decidability of
the DPDA (deterministic pushdown automata) equivalence, is equivalent
to the result achieved by Sénizergues (1998, 2005) in the framework of
equational graphs, or of PDA with restricted e-steps, but the framework
of classical first-order terms seems to be particularly useful for providing
a concise proof that should be understandable for a wider audience.

1 Introduction

Decision problems for semantic equivalences have been a frequent topic in com-
puter science. Pushdown automata (PDA) constitute a well-known example;
language equivalence of PDA is a standard undecidable problem, but the decid-
ability for deterministic PDA (DPDA) is a famous result by Sénizergues [14].

In concurrency theory, logic, verification, and other areas, a finer equivalence,
called bisimulation equivalence or bisimilarity, has emerged as another funda-
mental behavioural equivalence; on deterministic systems it essentially coincides
with language equivalence. We name [1] to exemplify the first decidability results
for infinite-state systems, and refer to [16] for a survey of a specific area.

One of the most involved results in the area [15] shows the decidability of
bisimilarity of equational graphs with finite out-degree (or of PDA with de-
terministic popping e-steps); this generalizes the result for DPDA. The recent
nonelementary lower bound [2] for the problem is, in fact, TOWER-hardness
in the terminology of [13], and it holds even for real-time PDA, i.e. PDA with
no e-steps. For the full above mentioned PDA the problem is even not prim-
itive recursive, since it is Ackermann-hard [11]. In the deterministic case, the
equivalence problem is known to be PTIME-hard, and has a primitive recur-
sive upper bound shown by Stirling [17]; a finer analysis places the problem in
TOWER [11]. This complexity gap is just one indication that the respective
fundamental equivalence problems are far from being fully understood. Another

* A version with more details can be found at arxiv.org/abs/1405.7923.
** Supported by the Grant Agency of the Czech Rep., project GACR:P202/11/0340.
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such indication might be the length and the technical nature of the so far pub-
lished proofs (including the unpublished [18]).

This paper is an attempt to make a further step in clarifying the main de-
cidability proof in the mentioned area. It provides a self-contained decidability
proof for bisimulation equivalence in labelled transition systems generated by
first-order grammars (FO-grammars), which seems to be a particularly conve-
nient formalism. The states are here first-order terms over a specified finite set
of function symbols (or “nonterminals”); the transitions are induced by a finite
set of labelled rules that allow to rewrite the roots of terms. This framework is
equivalent to the framework of [15], as follows already from the works referred
to in [4], e.g. (A concrete transformation from PDA to FO-grammars can be
found, e.g., in [9].) The proof here is in principle based on the same high-level
ideas as the proof in [15] but it is considerably shorter and simpler. This paper is
a (self-contained) continuation of [9] where the first-order term framework was
used to give a decidability proof in the deterministic case.

Some further related work is briefly discussed in the concluding remarks.

2 Preliminaries and Result

In this section we define the basic notions and state the result. Some standard
definitions are restricted when we do not need the full generality.

By N we denote the set {0,1,2,...} of nonnegative integers; we use [i, j] to
denote the set {i,i+1,...,5}. For a set A, by A* we denote the set of finite
sequences of elements of A, which are also called words (over A). By |w| we
denote the length of w € A*. By € we denote the empty sequence (hence |¢| = 0).

LTSs. A labelled transition system (an LTS) is a tuple £ = (S, X, (—)acs)
where S is a finite or countable set of states, X is a finite set of actions (or
letters), and —=C S x S is a set of a-transitions (for each a € X). Moreover,
we assume image-finiteness, which requires that the set {s’ | s — s’} is finite
for each pair s € S, a € X. We say that L is a deterministic LTS if for each pair
s €S8, ae X there is at most one s’ such that s — §'.

By s AN s', where w = aqas...a, € X*, we denote that there is a path
s=80 5 2 ... I, =5 if s — &, then s is reachable from s, within
|w| steps. By s — we denote that w is enabled by s, i.e., s — s’ for some s’.
If £ is deterministic, then s — s’ or s — denotes a unique path.

(Stratified) Bisimilarity. Let £ = (S, X, (—%)acx) be a given LTS. We say
that a set BC S xS covers (s,t) € S x S if for any a € X and s’ € S such that
s —%» s there is t' € S such that t % ¢/ and (s',t') € B, and for any a € X
and ¢’ € S such that ¢t - ¢’ there is s’ € S such that s —— s’ and (s',t') € B.
For B,B' C § x § we say that B’ covers B if B’ covers each (s,t) € B. A set
B C S x S is a bisimulation if B covers B. States s,t € S are bisimilar, written
s ~ t, if there is a bisimulation B containing (s,t). We note the standard fact
that ~C § x § is the maximal bisimulation, the union of all bisimulations.

We put ~g= S8 X S. For k € N, ~;11C S x S is the set of all pairs covered
by ~. We easily verify that ~ and ~y, are equivalence relations, and that ~g 2
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~N1 D9 D e D ~. For the (first infinite) ordinal w we put s ~, t if s ~ ¢
for all £k € N; hence ~,= Ngen ~k. It is a standard fact that Ngeny ~k is a
bisimulation in any image-finite LTS, where we thus have ~=n~,.

Eg-levels. Given an image-finite LTS, we attach the equivalence level (eq-
level) to each pair of states: EQLv(s,t) = max{k € NU{w} | s ~j t}.

First-order-term LTSs Informally. We focus on certain (image-finite)
LTSs in which states are first-order terms; we mean standard finite terms pri-
marily but it will turn out convenient to consider also infinite regular terms
(i.e. infinite terms with finitely many pairwise different subterms). The terms
are built from wvariables from a fixed countable set VAR = {x1,z2,23,...}
and from function symbols, also called (ranked) nonterminals, from some spe-
cified finite set N; each A € N has arity(A) € N. An example of a (stan-
dard finite) term is A(D(zs,C(x2, B)), x5, B) where the arities of A, B,C,D
are 3,0,2,2, respectively. Transitions are determined by a finite set of root-
rewriting rules. An example of a “non-popping” rule is A(x1,zo,3) —
C(D(x3, B),x2), an example of a “popping” rule is A(xy,z2,x3) LN 1.
Each rule induces the transitions arising by applying the same substitu-
tion o to both the left-hand side (lhs) and the right-hand side (rhs). E.g.,
the rule A(x1,x2,23) — C(D(x3,B),r2) and the substitution o for which
o(x1) = D(x5,C(x2,B)), o(ze) = x5, o(xz) = B (where A(z1,x2,3)
after applying o becomes A(D(xs5,C(z2,B)),x5,B)) induce the transition
A(D(x5,C (29, B)), x5, B) — C(D(B, B),z5); the rule A(x1, x2,x3) -5 21 and
o induce A(D(zs5,C(x2, B)), x5, B) LN D(z5,C(z2, B)).

The Result Informally. We will show that there is an algorithm that com-
putes EQLvV(Ty, Uy) when given a finite set of root-rewriting rules and two terms
Ty, Up. In the rest of this section we formalize this statement, making also some
conventions about our use of (finite and infinite) terms and substitutions.

Regular Terms, Presentation Size. We identify terms with their syntactic
trees, and denote them by E, F,.... Thus a term E over N is a rooted, ordered,
finite or infinite tree where each node has a label from A U VAR; if the label of a
node is z; € VAR, then the node has no successors, and if the label is A € N, then
it has m (immediate) successor-nodes where m = arity(A). A subtree of a term
(i.e. tree) E is also called a subterm of E. A subterm can have more (maybe
infinitely many) occurrences in E. Each subterm-occurrence has its (nesting)
depth in E, which is its (naturally defined) distance from the root of E. We also
use the standard notation for terms: we write E = z; or E = A(G1,...,Gp)
with the obvious meaning; in the latter case we have ROOT(E) = A € N,
m = arity(A), and Gy, ..., G, are the root-successors, i.e., the or