
Javier Esparza
Pierre Fraigniaud
Thore Husfeldt
Elias Koutsoupias (Eds.)

 123

41st International Colloquium, ICALP 2014
Copenhagen, Denmark, July 8-11, 2014
Proceedings, Part II

Automata, Languages,
and ProgrammingLN

CS
 8

57
3

AR
Co

SS

Lecture Notes in Computer Science 8573
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK

Josef Kittler, UK

Alfred Kobsa, USA

John C. Mitchell, USA

Oscar Nierstrasz, Switzerland

Bernhard Steffen, Germany

Demetri Terzopoulos, USA

Gerhard Weikum, Germany

Takeo Kanade, USA

Jon M. Kleinberg, USA

Friedemann Mattern, Switzerland

Moni Naor, Israel

C. Pandu Rangan, India

Doug Tygar, USA

Advanced Research in Computing and Software Science

Subline of Lectures Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, University of Freiburg, Germany

Benjamin C. Pierce, University of Pennsylvania, USA

Bernhard Steffen, University of Dortmund, Germany

Deng Xiaotie, City University of Hong Kong

Jeannette M. Wing, Microsoft Research, Redmond, WA, USA

Javier Esparza Pierre Fraigniaud
Thore Husfeldt Elias Koutsoupias (Eds.)

Automata, Languages,
and Programming

41st International Colloquium, ICALP 2014
Copenhagen, Denmark, July 8-11, 2014
Proceedings, Part II

13

Volume Editors

Javier Esparza
Technische Universität München, Germany
E-mail: esparza@in.tum.de

Pierre Fraigniaud
LIAFA, Université Paris Diderot-Paris 7, France
E-mail: pierre.fraigniaud@liafa.univ-paris-diderot.fr

Thore Husfeldt
IT University of Copenhagen, Denmark
E-mail: thore@itu.dk

Elias Koutsoupias
University of Oxford, UK
E-mail: elias@cs.ox.ac.uk

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-662-43950-0 e-ISBN 978-3-662-43951-7
DOI 10.1007/978-3-662-43951-7
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014941781

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the papers presented at ICALP 2014: the 41st International
Colloquium on Automata, Languages and Programming, held during July 8–11,
2014, at IT University of Copenhagen. ICALP is the main conference and annual
meeting of the European Association for Theoretical Computer Science (EATCS)
and first took place in 1972. This year the ICALP program consisted of three
tracks:

– Track A: Algorithms, Complexity, and Games
– Track B: Logic, Semantics, Automata, and Theory of Programming
– Track C: Foundations of Networked Computation

In response to the call for papers, the three Program Committees received 484
submissions, a record number for ICALP. Track A received 319 submissions
(another record), track B received 106 submissions, and track C received 59
submissions. Each submission was reviewed by at least three Program Committee
members, aided by many subreviewers. The committee decided to accept 136
papers, which are collected in these proceedings. The selection was made by the
Program Committees based on originality, quality, and relevance to theoretical
computer science. The quality of the submissions was very high indeed, and
many deserving papers could not be selected.

The EATCS sponsored awards for both a best paper and a best student paper
for each of the three tracks, selected by the Program Committees.

The best paper awards were given to the following papers:

– Track A: Andreas Björklund and Thore Husfeldt, “Shortest Two Disjoint
Paths in Polynomial Time”

– Track B: Joel Ouaknine and James Worrell.“Ultimate Positivity Is Decidable
for Simple Linear Recurrence Sequences”

– Track C: Oliver Göbel, Martin Hoefer, Thomas Kesselheim, Thomas Schlei-
den, and Berthold Vöcking, “Online Independent Set Beyond the Worst-
Case: Secretaries, Prophets, and Periods”

The best student paper awards, for papers that are solely authored by stu-
dents, were given to the following papers:

– Track A: Sune K. Jakobsen, “Information Theoretical Cryptogenography”
– Track B: Michael Wehar, “Hardness Results for Intersection Non-Emptiness”
– Track C: Mohsen Ghaffari, “Near-Optimal Distributed Approximation of

Minimum-Weight Connected Dominating Set”

Apart from the contributed talks, the conference included invited presenta-
tions by Sanjeev Arora, Maurice Herlihy, Viktor Kuncak, and Claire Mathieu.
Abstracts of their talks are included in these proceedings as well.

VI Preface

The program of ICALP 2014 also included presentation of the Presburger
Award 2014 to David Woodruff, the EATCS Award 2014 to Gordon Plotkin,
and the Gödel Prize to Ronald Fagin, Amnon Lotem, and Moni Naor.

Two satellite events of ICALP were held on 7 July, 2014:

– Trends in Online Algorithms (TOLA 2014)
– Young Researcher Workshop on Automata, Languages and Programming

(YR-ICALP 2014)

We wish to thank all the authors who submitted extended abstracts for con-
sideration, the members of the three Program Committees for their scholarly
efforts, and all additional reviewers who assisted the Program Committees in
the evaluation process. We thank the sponsors Springer-Verlag, EATCS, CWI
Amsterdam, and Statens Kunstfond for their support, and the IT University of
Copenhagen for hosting ICALP 2014.

We are also grateful to all members of the Organizing Committee and to their
support staff.

The conference-management system EasyChair was used to handle the sub-
missions, to conduct the electronic Program Committee meetings, and to assist
with the assembly of the proceedings.

May 2014 Javier Esparza
Pierre Fraigniaud

Thore Husfeldt
Elias Koutsoupias

Organization

Program Committee

Dimitris Achlioptas UC, Santa Cruz, USA
Pankaj Agrawal Duke University, USA
Paolo Baldan Università di Padova, Italy
Nikhil Bansal Eindhoven University of Technology,

The Netherlands
Michele Boreale Università di Firenze, Italy
Tomas Brazdil Masaryk University, Czech Republic
Gerth Stølting Brodal Aarhus University, Denmark
Véronique Bruyère University of Mons, Belgium
Jean Cardinal Université libre de Bruxelles, Belgium
Ning Chen Nanyang Technological University, Singapore
Giorgos Christodoulou University of Liverpool, UK
Andrea Clementi University of Rome Tor Vergata, Italy
Veronique Cortier CNRS, Loria, France
Anuj Dawar University of Cambridge, UK
Xiaotie Deng Shanghai Jiaotong University, China
Ilias Diakonikolas University of Edinburgh, UK
Benjamin Doerr MPI Saarbrücken, Germany
Chaled Elbassioni Masdar Institute, Abu Dhabi
Javier Esparza TU München, Germany
Kousha Etessami University of Edinburgh, UK
Panagiota Fatourou University of Crete, Greece
Michal Feldman Hebrew University, Israel
Maribel Fernandez Kings College London, UK
Antonio Fernández Anta Universidad Rey Juan Carlos, Spain
Amos Fiat Tel Aviv University, Israel
Pierre Fraigniaud CNRS and University of Paris Diderot, France
David Frutos Escrig Complutense University of Madrid, Spain
Pierre Ganty IMDEA Software Institute, Spain
Leszek Gasieniec University of Liverpool, UK
Phillip Gibbons Intel Labs, USA
Leslie Goldberg University of Oxford, UK
Vipul Goyal Microsoft, India
Peter Habermehl LIAFA, University of Paris 7, France
Magnus Halldorsson Reykjavik University, Iceland
Giuseppe Italiano University of Rome Tor Vergata, Italy
Marcin Kaminski University of Warsaw, Poland

VIII Organization

Haim Kaplan Tel Aviv University, Israel
Anna Karlin University of Washington, USA
Ioardanis Kerenidis University of Paris Diderot, France
Anne-Marie Kermarrec Inria Rennes, France
Robert Kleinberg Cornell University, USA
Michal Koucky Czech Academy of Sciences, Czech Republic
Elias Koutsoupias University of Oxford, UK
Robert Krauthgamer Weizmann Institute, Israel
Manfred Kufleitner University of Stuttgart, Germany
SΠlawomir Lasota Warsaw University, Poland
James Lee University of Washington, USA
Oded Maler CNRS-VERIMAG, France
Sebastian Maneth NICTA and UNSW, Australia
Madhavan Mukund Chennai Mathematical Institute, India
Ashwin Nayak University of Waterloo, Canada
Jens Palsberg UCLA, USA
Gopal Pandurangan Nanyang Technological University, Singapore
Boaz Patt-Shamir Tel Aviv University, Israel
Andrea Pietracaprina Università di Padova, Italy
Andrea Richa Arizona State University, USA
Lúıs Rodrigues Universidade Técnica de Lisboa, Portugal
Jared Saia University of New Mexico, USA
Piotr Sankowski University of Warsaw, Poland
Christian Scheideler Universität Paderborn, Germany
Thomas Schwentick TU Dortmund, Germany
Maria Serna UP Catalunya, Spain
Sonja Smets University of Amsterdam, The Netherlands
Christian Sohler TU Dortmund, Germany
Jiri Srba Aalborg University, Denmark
Jukka Suomela Aalto University, Finland
Ryan Williams Stanford University, USA
Philipp Woelfel University of Calgary, Canada
Steve Zdancewic University of Pennsylvania, USA

Additional Reviewers

Aaronson, Scott
Abe, Masayuki
Abraham, Ittai
Aceto, Luca
Adler, Isolde
Adsul, Bharat
Afshani, Peyman
Agarwal, Alekh

Agarwal, Rachit
Aghazadeh, Zahra
Agrawal, Shweta
Ajwani, Deepak
Akutsu, Tatsuya
Al-Humaimeedy, Abeer
Alamdari, Soroush
Alglave, Jade

Organization IX

Allender, Eric
Alon, Noga
Althaus, Ernst
Alves, Sandra
An, Hyung-Chan
Anagnostopoulos, Aris
Ananth, Prabhanjan
Andoni, Alex
Andoni, Alexandr
Ardenboim, Alon
Arkhipov, Alex
Asarin, Eugene
Aspnes, James
Atig, Mohamed Faouzi
Atserias, Albert
Augustine, John
Avron, Haim
Babichenko, Yakov
Bacci, Giorgio
Bacci, Giovanni
Bach, Eric
Balabonski, Thibaut
Banerjee, Abhishek
Barrington, David
Bartoletti, Massimo
Basset, Nicolas
Bavarian, Mohammad
Beame, Paul
Becchetti, Luca
Bei, Xiaohui
Belmonte, Rémy
Ben Avraham, Rinat
Ben-Amram, Amir
Berger, Eli
Berry, Jonathan
Bertrand, Nathalie
Berwanger, Dietmar
Bhaskar, Umang
Bitansky, Nir
Blazy, Olivier
Blesa, Maria J.
Blömer, Johannes
Bodirsky, Manuel
Bodlaender, Hans L.
Bodlaender, Marijke

Bogdanov, Andrej
Bojanczyk, Mikolaj
Boker, Udi
Bollig, Beate
Bollig, Benedikt
Bonamy, Marthe
Bonchi, Filippo
Boneh, Dan
Bonifaci, Vincenzo
Bonnet, Edouard
Bonsangue, Marcello
Bonsma, Paul
Borgström, Johannes
Boutsidis, Christos
Boyar, Joan
Boyle, Elette
Brakerski, Zvika
Brandstadt, Andreas
Braverman, Mark
Bremner, Michael
Brettell, Nick
Briet, Jop
Brihaye, Thomas
Broadbent, Anne
Brody, Joshua
Bruni, Roberto
Brzuska, Christina
Buchbinder, Niv
Buchin, Kevin
Buhrman, Harry
Byrka, Jaroslaw
Böhl, Florian
Cai, Yang
Caltais, Georgiana
Canetti, Ran
Canonne, Clément
Cao, Yixin
Carraro, Alberto
Cash, David
Ceccarello, Matteo
Chakrabarti, Amit
Chakraborty, Supratik
Chalermsook, Parinya
Chan, Hubert
Chan, Siu On

X Organization

Chan, Timothy
Chandran, Nishanth
Charatonik, Witold
Chase, Melissa
Chatterjee, Krishnendu
Chechik, Shiri
Chekuri, Chandra
Chen, Jing
Chen, Xujin
Chen, Zhou
Cheval, Vincent
Choudhury, Ashish
Chow, Sherman S.M.
Chrobak, Marek
Chung, Kai-Min
Ciancia, Vincenzo
Cicalese, Ferdinando
Clavier, Christophe
Clemente, Lorenzo
Codenotti, Paolo
Cohen, Edith
Cohen, Sarel
Cohn, Henry
Colcombet, Thomas
Colini Baldeschi, Riccardo
Costello, Craig
Crescenzi, Pierluigi
Cryan, Mary
Cygan, Marek
Czerwiński, Wojciech
Dalmau, Victor
Damaschke, Peter
Damg̊ard, Ivan
Dang, Thao
Dani, Varsha
Dasgupta, Bhaskar
Datta, Samir
David, Alexandre
De Bonis, Annalisa
de Caro, Angelo
De Caro, Angelo
De Liguoro, Ugo
de Wolf, Ronald
Decker, Normann
Degorre, Aldric

Delahaye, Benoit
Delling, Daniel
Delvenne, Jean-Charles
Delzanno, Giorgio
Denysyuk, Oksana
Dereniowski, Dariusz
Devanur, Nikhil
Devroye, Luc
Diaz, Josep
Dietzfelbinger, Martin
Diks, Krzysztof
Dima, Catalin
Diochnos, Dimitris
Dobrev, Stefan
Doerr, Carola
Doyen, Laurent
Driemel, Anne
Duflot, Marie
Dumitrescu, Adrian
Dupuis, Frédéric
Durand, Arnaud
Durand-Gasselin, Antoine
Durnoga, Konrad
Dvir, Zeev
Dyer, Martin
Edmonds, Jeff
Efremenko, Klim
Efthymiou, Charilaos
Ehrgott, Matthias
Ehsanfar, Ebrahim
Elbassioni, Khaled
Elberfeld, Michael
Elmasry, Amr
Elsässer, Robert
Emmi, Michael
Ene, Alina
Enea, Constantin
Enqvist, Sebastian
Eppstein, David
Epstein, Leah
Erlebach, Thomas
Escoffier, Bruno
Even, Guy
Fahrenberg, Uli
Fanelli, Angelo

Organization XI

Farshim, Pooya
Fefferman, Bill
Feige, Uriel
Fekete, Sándor
Fernau, Henning
Fijalkow, Nathanaël
Filiot, Emmanuel
Filmus, Yuval
Fiorini, Samuel
Firmani, Donatella
Fisman, Dana
Flammini, Michele
Forbes, Michael A.
Forejt, Vojtech
Fortnow, Lance
Fotakis, Dimitris
Fountoulakis, Nikolaos
Franciosa, Paolo
Frati, Fabrizio
Frieze, Alan
Fu, Hu
Fu, Zhiguo
Fábregas, Ignacio
Gaboardi, Marco
Gadducci, Fabio
Gaertner, Bernd
Galanis, Andreas
Galesi, Nicola
Gambs, Sebastien
Garg, Ankit
Gaspers, Serge
Gastin, Paul
Gavinsky, Dmitry
Gawrychowski, Pawel
Geck, Gaetano
Geeraerts, Gilles
Gelles, Ran
Genest, Blaise
Ghaffari, Mohsen
Giakkoupis, George
Giannakopoulos, Yiannis
Giannopoulou, Archontia
Giaquinta, Emanuele
Gierasimczuk, Nina
Gilbert, Seth

Gille, Marc
Giunti, Marco
Gkatzelis, Vasilis
Glacet, Christian
Glen, Amy
Gmyr, Robert
Gogacz, Tomasz
Goldberg, Paul
Gonzalez Vasco, Maria Isabel
Gopalan, Parikshit
Gorbunov, Sergey
Gorecki, Pawel
Gorgunov, Sergey
Gorla, Daniele
Grandoni, Fabrizio
Greco, Gianluigi
Green, Oded
Grenet, Bruno
Grigorescu, Elena
Grigoryev, Dmitry
Grossi, Roberto
GualÃ, Luciano
Guo, Heng
Guo, Jiong
Guo, Siyao
Guruswami, Venkatesan
Gutwenger, Carsten
Göbel, Andreas
Haeupler, Bernhard
Haghpanah, Nima
Haitner, Iftach
Hajiaghayi, Mohammadtaghi
Hansen, Kristoffer Arnsfelt
Hansen, Thomas Dueholm
Hardt, Moritz
Harju, Tero
Harrow, Aram
Harsha, Prahladh
Hatami, Hamed
Haviv, Ishay
Hayes, Thomas
Hazay, Carmit
He, Meng
Heam, Pierre-Cyrille
Heggernes, Pinar

XII Organization

Helmi, Maryam
Hirschkoff, Daniel
Hlout, Loc
Hoefer, Martin
Hoffmann, Hella-Franziska
Hofheinz, Dennis
Hofman, Piotr
Huang, Chien-Chung
Huang, Sangxia
Huang, Xiangru
Huang, Zhiyi
Hunter, Paul
Husfeldt, Thore
Im, Hyeonseung
Indyk, Piotr
Iovino, Vincenzo
Irani, Sandy
Isopi, Marco
Ito, Takehiro
Jacob, Riko
Jain, Rahul
Jansen, Bart M.P.
Jao, David
Jerrum, Mark
Jeż, Artur
Jeż, ΠLukasz
Jiang, Minghui
Jiang, Zhansheng
Joret, Gwenaël
Joux, Antoine
Jurdzinski, Tomasz
Jørgensen, Allan Grønlund
Kakimura, Naonori
Kantor, Erez
Kao, Ming-Yang
Kapralov, Michael
Kapur, Deepak
Kara, Ahmet
Karakostas, George
Karhumäki, Juhani
Kausch, Jonathan
Kavitha, Telikepalli
Kawamura, Akitoshi
Kayal, Neeraj
Keller, Orgad

Kerber, Michael
Kesselheim, Thomas
Khandekar, Rohit
Kiefer, Stefan
King, Valerie
Kiraly, Tamas
Klauck, Hartmut
Klein, Philip
Klima, Ondrej
Klin, Bartek
Klivans, Adam
Kniesburges, Sebastian
Kobayashi, Yusuke
Kobourov, Stephen
Koebler, Johannes
Koiran, Pascal
Kolay, Sudeshna
Kolliopoulos, Stavros
Komjathy, Julia
Kontchakov, Roman
Kopczyński, Eryk
Kopelowitz, Tsvi
Kopparty, Swastik
Kortsarz, Guy
Kosowski, Adrian
Kosub, Sven
Kothari, Nishad
Kothari, Pravesh
Koutis, Ioannis
Koutsopoulos, Andreas
Kovacs, Annamaria
Kratsch, Stefan
Krcal, Jan
Kretinsky, Jan
Krishnaswamy, Ravishankar
Krivosija, Amer
Krug, Robert
Krysta, Piotr
Kucera, Antonin
Kulikov, Alexander
Kulkarni, Janardhan
Kulkarni, Raghav
Kumar, Akash
Kumar, Amit
Kumar, K. Narayan

Organization XIII

Kuperberg, Denis
Kurz, Denis
Kyropoulou, Maria
Labourel, Arnauld
Lachish, Oded
Laekhanukit, Bundit
Lagniez, Jean Marie
Lanik, Jan
Laura, Luigi
Lauria, Massimo
Lauriere, Mathieu
Laursen, Simon
Lauser, Alexander
Le Gall, Francois
Le Scouarnec, Nicolas
Lee, James
Lee, Troy
Leonardos, Nikos
Lerays, Virginie
Leroux, Jerome
Levavi, Ariel
Levin, Asaf
Levy, Jean-Jacques
Lewenstein, Moshe
Li, Jian
Li, Minming
Li, Shi
Li, Yi
Li, Yingkai
Libert, Benoit
Libkin, Leonid
Lime, Didier
Lin, Anthony Widjaja
Lin, Chengyu
Liu, Feng-Hao
Llana, Luis
Lodaya, Kamal
Lohrey, Markus
Lopez-Ortiz, Alejandro
Loreti, Michele
Lotker, Zvi
Lovett, Shachar
Lozin, Vadim
Lu, Pinyan
Lu, Steve

Lucier, Brendan
Löding, Christof
M.S., Ramanujan
Ma, Minghui
Magniez, Frederic
Mahdian, Mohammad
Mahmoody, Mohammad
Makarychev, Konstantin
Makarychev, Yury
Maletti, Andreas
Malizia, Enrico
Mallmann-Trenn, Frederik
Manea, Florin
Maneva, Elitza
Mansour, Yishay
Mardare, Radu
Markey, Nicolas
Markou, Euripides
Martens, Wim
Martin, Barnaby
Martin, Russell
Marx, Dániel
Marx, Maarten
Masopust, Tomas
Mathieson, Luke
Matulef, Kevin
May, Alexander
Mayr, Richard
McColl, Robert
McGregor, Andrew
McSherry, Frank
Megow, Nicole
Meier, Arne
Meiklejohn, Sarah
Meir, O.
Mendel, Manor
Meng, Xianmeng
Mens, Irini-Eleftheria
Mertzios, George
Meunier, Pierre-Etienne
Miao, Peihan
Michail, Dimitrios
Michalak, Tomasz
Mignot, Ludovic
Milanic, Martin

XIV Organization

Milchtaich, Igal
Miltersen, Peter Bro
Misra, Pranabendu
Molinero, Xavier
Monemizadeh, Morteza
Monmege, Benjamin
Montanaro, Ashley
Montecchiani, Fabrizio
Montenegro, Ravi
Moore, Cristopher
Moran, Tal
Morere, Philippe
Morris, Ben
Morsy, Ehab
Moseley, Benjamin
Movahedi, Mahnush
Mucha, Marcin
Munagala, Kamesh
Munteanu, Alexander
Murawski, Andrzej
Murlak, Filip
Muscholl, Anca
Mvprao
Nagaj, Daniel
Nanongkai, Danupon
Narayan Kumar, K.
Narodytska, Nina
Natale, Emanuele
Nathan, Lemons
Navara, Mirko
Navarra, Alfredo
Nederlof, Jesper
Neiman, Ofer
Nekrich, Yakov
Newman, Alantha
Nguyen, Hung Son
Nguyen, Huy
Nguyen, Trung Thanh
Niehren, Joachim
Nielsen, Jesper Sindahl
Niewerth, Matthias
Nikishkin, Vladimir
Nikoletseas, Sotiris
Nikolov, Aleksandar
Nissim, Kobbi

Niwinski, Damian
Nordstrom, Jakob
Novotný, Petr
Nowotka, Dirk
Nutov, Zeev
Nuñez Chiroque, Luis
O’Donnell, Ryan
O’Neill, Adam
Obdrzalek, Jan
Ogierman, Adrian
Olesen, Mads C.
Oliveira, Igor
Onak, Krzysztof
Ong, Luke
Ortega-Mallén, Yolanda
Ortmann, Mark
Ossona De Mendez, Patrice
Oualhadj, Youssouf
Paes Leme, Renato
Pagh, Rasmus
Palomino, Miguel
Paluch, Katarzyna
Pan, Jiangwei
Pan, Jiaxin
Panagiotou, Konstantinos
Panangaden, Prakash
Pandey, Omkant
Panigrahi, Debmalya
Papadopoulos, Dimitrios
Papakonstantinou, Periklis
Paparas, Dimitris
Parys, Pawel
Pasquale, Francesco
Pastro, Valerio
Patt-Shamir, Boaz
Paulusma, Daniel
Pauly, Arno
Pavan, A.
Peikert, Christopher
Peng, Pan
Peressotti, Marco
Peretz, Ron
Perez, Guillermo
Perifel, Sylvain
Perrin, Dominique

Organization XV

Peserico, Enoch
Pettie, Seth
Peña, Ricardo
Picaronny, Claudine
Pieris, Andreas
Pighizzini, Giovanni
Pilipczuk, Marcin
Pilipczuk, Michal
Pin, Jean-Eric
Plandowski, Wojciech
Polychroniadou, Antigoni
Pottier, Franois
Pottonen, Olli
Pous, Damien
Pozzato, Gian Luca
Prabhakar, Pavithra
Praveen, M.
Price, Eric
Pruhs, Kirk
Pucci, Geppino
Pulina, Luca
Pérez, Jorge A.
Qiang, Ruixin
Qiao, Youming
Quyen, Vuong Anh
Rabani, Yuval
Rabie, Mikael
Raecke, Harald
Raghavendra, Prasad
Raghunathan, Ananth
Raghvendra, Sharathkumar
Rahaman, Anisur
Rampersad, Narad
Raskin, Jean-François
Raz, Ran
Regev, Oded
Rehak, Vojtech
Reynier, Pierre-Alain
Riba, Colin
Richerby, David
Riondato, Matteo
Robinson, Peter
Roditty, Liam
Rodriguez, Ismael
Roetteler, Martin

Roland, Jérémie
Romano, Paolo
Ron, Dana
Rosa-Velardo, Fernando
RosoΠlek, Robert
Rossi, Gianluca
Rossmanith, Peter
Rosulek, Michael
Rothvoss, Thomas
Rubin, Natan
Rubio, Fernando
Ruppert, Eric
Saad, George
Sablik, Mathieu
Sack, Joshua
Sadrzadeh, Mehrnoosh
Saha, Chandan
Salvati, Sylvain
Sammartino, Matteo
Sangnier, Arnaud
Sankur, Ocan
Santaroni, Federico
Santhanam, Rahul
Santocanale, Luigi
Santos, Nuno
Saptharishi, Ramprasad
Sarkar, Susmit
Satti, Srinivasa Rao
Sau, Ignasi
Sauerwald, Thomas
Saurabh, Saket
Sawada, Joe
Saxena, Nitin
Scarpa, Giannicola
Scheder, Dominik
Schmidt, Melanie
Schmidt-Schauss, Manfred
Schmitz, Sylvain
Schneider, Stefan
Schroder, Dominique
Schröder, Lutz
Schuster, Martin
Schwartz, Roy
Schweikardt, Nicole
Schwiegelshohn, Chris

XVI Organization

Schwoon, Stefan
Servais, Frédéric
Servedio, Rocco
Seshadhri, C.
Setzer, Alexander
Shah, Rahul
Shah, Simoni
Shamir, Ohad
Sharma, Vikram
Shen, Alexandre
Shenoy R., Gautham
Shpilka, Amir
Shraibman, Adi
Sidiropoulos, Anastasios
Siebertz, Sebastian
Sikdar, Somnath
Silva, Alexandra
Silvestri, Riccardo
Singh, Mohit
Sitchinava, Nodari
Sitters, Rene
Skowron, Piotr
Sokolova, Ana
Solomon, Shay
Sommer, Christian
Sousi, Perla
Spoerhase, Joachim
Sramek, Rastislav
Srinivasan, Srikanth
Srivastava, Piyush
Srivathsan, B.
Stachowiak, Grzegorz
Staiger, Ludwig
Stainer, Julien
Starikovskaya, Tatiana
Stefankovic, Daniel
Stehle, Damien
Stephan, Frank
Stergiou, Christos
Stoddard, Greg
Strassburger, Lutz
Straubing, Howard
Strefler, Mario
Strejcek, Jan
Strothmann, Thim

Struth, Georg
Su, Le
Suchy, Ondrej
Sun, Xiaoming
Sun, Xiaorui
Suomela, Jukka
Suresh, S.P.
Syrgkanis, Vasilis
Sénizergues, Géraud
Ta-Shma, Amnon
Tamaki, Suguru
Tamir, Tami
Tan, Li-Yang
Tang, Bo
Tao, Yufei
Tarjan, Robert
Tavenas, Sébastien
Telle, Jan Arne
Terhal, Barbara
Terui, Kazushige
Terzi, Evimaria
Thaler, Justin
Thanh, Nguyen
Thapper, Johan
Thiagarajan, P.S.
Thilikos, Dimitrios
Thorup, Mikkel
Thraves, Christopher
Toledo, Sivan
Toledoii, Sivan
Tompits, Hans
Torres Vieira, Hugo
Torunczyk, Szymon
Toruńczyk, Szymon
Trevisan, Luca
Trivedi, Ashutosh
Tschudi, Daniel
Tulsiani, Madhur
Uehara, Ryuhei
Ulus, Dogan
Umans, Chris
Umboh, Seeun
Uno, Yushi
Upadhyay, Jalaj
Valiant, Gregory

Organization XVII

Valiente, Gabriel
Valiron, Benôıt
van Breugel, Franck
van Melkebeek, Dieter
Van Melkebeek, Dieter
van Stee, Rob
Varacca, Daniele
Vassilevska Williams, Virginia
Vegh, Laszlo
Velickovic, Boban
Venkitasubramaniam,

Muthuramakrishnan
Ventre, Carmine
Verschae, Jose
Vidick, Thomas
Viet Tung, Hoang
Viglietta, Giovanni
Vijayaraghavan, Aravindan
Vilaça, Xavier
Visconti, Ivan
Viswanathan, Mahesh
Vogler, Walter
Volkovich, Ilya
Vrgoc, Domagoj
Wachter-Zeh, Antonia
Wahlström, Magnus
Walter, Tobias
Walukiewicz, Igor
Wang, Juntao
Wang, Kainan
Wanka, Rolf
Watson, Thomas
Wee, Hoeteck
Weinstein, Omri
Weiss, Armin
Westermann, Matthias
Whistler, William
Wieder, Udi
Wiese, Andreas
Wilkinson, Bryan T.
Wilson, David
Winslow, Andrew
Witek, Maximilian
Witkowski, Piotr
Wollan, Paul

Wong, Prudence W.H.
Woodruff, David
Wootters, Mary
Wright, John
Wrochna, Marcin
Wu, Xiaodi
Wulff-Nilsen, Christian
Wullschleger, Juerg
Xia, Ge
Xiao, Tao
Xie, Ning
Xing, Chaoping
Xu, Xiaoming
Xue, Guoliang
Yamada, Shota
Yamakami, Tomoyuki
Yamauchi, Yukiko
Yang, Kaiyu
Yao, Penghui
Yaroslavtsev, Grigory
Ye, Tao
Yekhanin, Sergey
Yi, Ke
Yiannakopoulos, Yiannis
Yin, Yitong
Yoshida, Yuichi
Young, Max
Yu, Huacheng
Yuen, Tsz Hon
Zacharias, Thomas
Zamani, Mahdi
Zang, Wenan
Zeh, Norbert
Zhang, Bingsheng
Zhang, Chihao
Zhang, Hongyang
Zhang, Jialin
Zhang, Jie
Zhang, Jin
Zhang, Shengyu
Zhang, Wuzhou
Zhang, Yong
Zhao, Zhiguang
Zhou, Hong-Sheng
Zhou, Yuan

XVIII Organization

Zhu, Zeyuan Allen
Ziegler, Martin
Zimand, Marius
Ziv-Ukelson, Michal

Zivny, Stanislav
Zuckerman, David
Zwick, Uri
Zych, Anna

Table of Contents – Part II

Track B: Logic, Semantics, Automata, and Theory
of Programming

Symmetric Groups and Quotient Complexity of Boolean Operations 1
Jason Bell, Janusz Brzozowski, Nelma Moreira, and Rogério Reis

Handling Infinitely Branching WSTS . 13
Michael Blondin, Alain Finkel, and Pierre McKenzie

Transducers with Origin Information . 26
Miko�laj Bojańczyk

Weak MSO+U with Path Quantifiers over Infinite Trees 38
Miko�laj Bojańczyk

On the Decidability of MSO+U on Infinite Trees . 50
Miko�laj Bojańczyk, Tomasz Gogacz, Henryk Michalewski, and
Micha�l Skrzypczak

A Coalgebraic Foundation for Coinductive Union Types 62
Marcello Bonsangue, Jurriaan Rot, Davide Ancona,
Frank de Boer, and Jan Rutten

Turing Degrees of Limit Sets of Cellular Automata 74
Alex Borello, Julien Cervelle, and Pascal Vanier

On the Complexity of Temporal-Logic Path Checking 86
Daniel Bundala and Joël Ouaknine

Parameterised Linearisability . 98
Andrea Cerone, Alexey Gotsman, and Hongseok Yang

Games with a Weak Adversary . 110
Krishnendu Chatterjee and Laurent Doyen

The Complexity of Ergodic Mean-payoff Games . 122
Krishnendu Chatterjee and Rasmus Ibsen-Jensen

Toward a Structure Theory of Regular Infinitary Trace Languages 134
Namit Chaturvedi

Unary Pushdown Automata and Straight-Line Programs 146
Dmitry Chistikov and Rupak Majumdar

XX Table of Contents – Part II

Robustness against Power is PSpace-complete . 158
Egor Derevenetc and Roland Meyer

A Nivat Theorem for Weighted Timed Automata and Weighted
Relative Distance Logic . 171

Manfred Droste and Vitaly Perevoshchikov

Computability in Anonymous Networks: Revocable vs. Irrecovable
Outputs . 183

Yuval Emek, Jochen Seidel, and Roger Wattenhofer

Coalgebraic Weak Bisimulation from Recursive Equations
over Monads . 196

Sergey Goncharov and Dirk Pattinson

Piecewise Boolean Algebras and Their Domains . 208
Chris Heunen

Between Linearizability and Quiescent Consistency: Quantitative
Quiescent Consistency . 220

Radha Jagadeesan and James Riely

Bisimulation Equivalence of First-Order Grammars 232
Petr Jančar

Context Unification is in PSPACE . 244
Artur Jeż

Monodic Fragments of Probabilistic First-Order Logic 256
Jean Christoph Jung, Carsten Lutz, Sergey Goncharov, and
Lutz Schröder

Stability and Complexity of Minimising Probabilistic Automata 268
Stefan Kiefer and Björn Wachter

Kleene Algebra with Equations . 280
Dexter Kozen and Konstantinos Mamouras

All–Instances Termination of Chase is Undecidable 293
Tomasz Gogacz and Jerzy Marcinkowski

Non-uniform Polytime Computation in the Infinitary Affine
Lambda-Calculus . 305

Damiano Mazza

On the Positivity Problem for Simple Linear Recurrence Sequences 318
Joël Ouaknine and James Worrell

Ultimate Positivity is Decidable for Simple Linear Recurrence
Sequences . 330

Joël Ouaknine and James Worrell

Table of Contents – Part II XXI

Going Higher in the First-Order Quantifier Alternation Hierarchy on
Words . 342

Thomas Place and Marc Zeitoun

Hardness Results for Intersection Non-Emptiness . 354
Michael Wehar

Branching Bisimilarity Checking for PRS . 363
Qiang Yin, Yuxi Fu, Chaodong He, Mingzhang Huang, and
Xiuting Tao

Track C: Foundations of Networked Computing

Labeling Schemes for Bounded Degree Graphs . 375
David Adjiashvili and Noy Rotbart

Bounded-Angle Spanning Tree: Modeling Networks with Angular
Constraints . 387

Rom Aschner and Matthew J. Katz

Distributed Computing on Core-Periphery Networks: Axiom-Based Design 399
Chen Avin, Michael Borokhovich, Zvi Lotker, and David Peleg

Fault-Tolerant Rendezvous in Networks . 411
Jérémie Chalopin, Yoann Dieudonné, Arnaud Labourel, and
Andrzej Pelc

Data Delivery by Energy-Constrained Mobile Agents on a Line 423
Jérémie Chalopin, Riko Jacob, Matúš Mihalák, and Peter Widmayer

The Power of Two Choices in Distributed Voting . 435
Colin Cooper, Robert Elsässer, and Tomasz Radzik

Jamming-Resistant Learning in Wireless Networks 447
Johannes Dams, Martin Hoefer, and Thomas Kesselheim

Facility Location in Evolving Metrics . 459
David Eisenstat, Claire Mathieu, and Nicolas Schabanel

Solving the ANTS Problem with Asynchronous Finite State
Machines . 471

Yuval Emek, Tobias Langner, Jara Uitto, and Roger Wattenhofer

Near-Optimal Distributed Approximation of Minimum-Weight
Connected Dominating Set . 483

Mohsen Ghaffari

Randomized Rumor Spreading in Dynamic Graphs 495
George Giakkoupis, Thomas Sauerwald, and Alexandre Stauffer

XXII Table of Contents – Part II

Online Independent Set Beyond the Worst-Case: Secretaries, Prophets,
and Periods . 508

Oliver Göbel, Martin Hoefer, Thomas Kesselheim,
Thomas Schleiden, and Berthold Vöcking

Optimal Competitiveness for Symmetric Rectilinear Steiner
Arborescence and Related Problems . 520

Erez Kantor and Shay Kutten

Orienting Fully Dynamic Graphs with Worst-Case Time Bounds 532
Tsvi Kopelowitz, Robert Krauthgamer, Ely Porat, and Shay Solomon

Does Adding More Agents Make a Difference? A Case Study of Cover
Time for the Rotor-Router . 544

Adrian Kosowski and Dominik Paj Σak

The Melbourne Shuffle: Improving Oblivious Storage in the Cloud 556
Olga Ohrimenko, Michael T. Goodrich, Roberto Tamassia, and
Eli Upfal

Sending Secrets Swiftly: Approximation Algorithms for Generalized
Multicast Problems . 568

Afshin Nikzad and R. Ravi

Bypassing Erdős’ Girth Conjecture: Hybrid Stretch and Sourcewise
Spanners . 608

Merav Parter

Author Index . 621

Table of Contents – Part I

Invited Talks

Sporadic Solutions to Zero-One Exclusion Tasks . 1
Eli Gafni and Maurice Herlihy

Verifying and Synthesizing Software with Recursive Functions
(Invited Contribution) . 11

Viktor Kuncak

Track A: Algorithms, Complexity, and Games

Weak Parity . 26
Scott Aaronson, Andris Ambainis, Kaspars Balodis, and
Mohammad Bavarian

Consequences of Faster Alignment of Sequences . 39
Amir Abboud, Virginia Vassilevska Williams, and Oren Weimann

Distance Labels with Optimal Local Stretch . 52
Ittai Abraham and Shiri Chechik

Time-Expanded Packings . 64
David Adjiashvili, Sandro Bosio, Robert Weismantel, and
Rico Zenklusen

Deterministic Rectangle Enclosure and Offline Dominance Reporting
on the RAM . 77

Peyman Afshani, Timothy M. Chan, and Konstantinos Tsakalidis

The Tropical Shadow-Vertex Algorithm Solves Mean Payoff Games in
Polynomial Time on Average . 89

Xavier Allamigeon, Pascal Benchimol, and Stéphane Gaubert

Tighter Relations between Sensitivity and Other Complexity
Measures . 101

Andris Ambainis, Mohammad Bavarian, Yihan Gao, Jieming Mao,
Xiaoming Sun, and Song Zuo

On Hardness of Jumbled Indexing . 114
Amihood Amir, Timothy M. Chan, Moshe Lewenstein, and
Noa Lewenstein

Morphing Planar Graph Drawings Optimally . 126
Patrizio Angelini, Giordano Da Lozzo, Giuseppe Di Battista,
Fabrizio Frati, Maurizio Patrignani, and Vincenzo Roselli

XXIV Table of Contents – Part I

Incremental Algorithm for Maintaining DFS Tree for Undirected
Graphs . 138

Surender Baswana and Shahbaz Khan

On the Role of Shared Randomness in Simultaneous Communication . . . 150
Mohammad Bavarian, Dmitry Gavinsky, and Tsuyoshi Ito

Short PCPs with Projection Queries . 163
Eli Ben-Sasson and Emanuele Viola

Star Partitions of Perfect Graphs . 174
René van Bevern, Robert Bredereck, Laurent Bulteau, Jiehua Chen,
Vincent Froese, Rolf Niedermeier, and Gerhard J. Woeginger

Coordination Mechanisms for Selfish Routing over Time on a Tree 186
Sayan Bhattacharya, Janardhan Kulkarni, and Vahab Mirrokni

On Area-Optimal Planar Graph Drawings . 198
Therese Biedl

Shortest Two Disjoint Paths in Polynomial Time . 211
Andreas Björklund and Thore Husfeldt

Listing Triangles . 223
Andreas Björklund, Rasmus Pagh,
Virginia Vassilevska Williams, and Uri Zwick

On DNF Approximators for Monotone Boolean Functions 235
Eric Blais, Johan H̊astad, Rocco A. Servedio, and Li-Yang Tan

Internal DLA: Efficient Simulation of a Physical Growth Model
(Extended Abstract) . 247

Karl Bringmann, Fabian Kuhn, Konstantinos Panagiotou,
Ueli Peter, and Henning Thomas

Lower Bounds for Approximate LDCs . 259
Jop Briët, Zeev Dvir, Guangda Hu, and Shubhangi Saraf

Holographic Algorithms Beyond Matchgates . 271
Jin-Yi Cai, Heng Guo, and Tyson Williams

Testing Probability Distributions Underlying Aggregated Data 283
Clément Canonne and Ronitt Rubinfeld

Parallel Repetition of Entangled Games with Exponential Decay via
the Superposed Information Cost . 296

André Chailloux and Giannicola Scarpa

The Bose-Hubbard Model is QMA-complete . 308
Andrew M. Childs, David Gosset, and Zak Webb

Table of Contents – Part I XXV

Characterization of Binary Constraint System Games 320
Richard Cleve and Rajat Mittal

Fast Algorithms for Constructing Maximum Entropy Summary Trees . . . 332
Richard Cole and Howard Karloff

Thorp Shuffling, Butterflies, and Non-markovian Couplings 344
Artur Czumaj and Berthold Vöcking

Dynamic Complexity of Directed Reachability and Other Problems 356
Samir Datta, William Hesse, and Raghav Kulkarni

One Tile to Rule Them All: Simulating Any Tile Assembly System
with a Single Universal Tile . 368

Erik D. Demaine, Martin L. Demaine, Sándor P. Fekete,
Matthew J. Patitz, Robert T. Schweller, Andrew Winslow, and
Damien Woods

Canadians Should Travel Randomly . 380
Erik D. Demaine, Yamming Huang, Chung-Shou Liao, and
Kunihiko Sadakane

Efficiency Guarantees in Auctions with Budgets . 392
Shahar Dobzinski and Renato Paes Leme

Parameterized Complexity of Bandwidth on Trees . 405
Markus Sortland Dregi and Daniel Lokshtanov

Testing Equivalence of Polynomials under Shifts . 417
Zeev Dvir, Rafael Mendes de Oliveira, and Amir Shpilka

Optimal Analysis of Best Fit Bin Packing . 429
György Dósa and Jǐŕı Sgall

Light Spanners . 442
Michael Elkin, Ofer Neiman, and Shay Solomon

Semi-Streaming Set Cover (Extended Abstract) . 453
Yuval Emek and Adi Rosén

Online Stochastic Reordering Buffer Scheduling . 465
Hossein Esfandiari, MohammadTaghi Hajiaghayi,
Mohammad Reza Khani, Vahid Liaghat,
Hamid Mahini, and Harald Räcke

Demand Queries with Preprocessing . 477
Uriel Feige and Shlomo Jozeph

Algorithmic Aspects of Regular Graph Covers with Applications to
Planar Graphs . 489

Jǐŕı Fiala, Pavel Klav́ık, Jan Kratochv́ıl, and Roman Nedela

XXVI Table of Contents – Part I

Public vs Private Coin in Bounded-Round Information 502
Mark Braverman and Ankit Garg

En Route to the Log-Rank Conjecture: New Reductions and Equivalent
Formulations . 514

Dmitry Gavinsky and Shachar Lovett

Improved Submatrix Maximum Queries in Monge Matrices 525
Pawe�l Gawrychowski, Shay Mozes, and Oren Weimann

For-All Sparse Recovery in Near-Optimal Time . 538
Anna C. Gilbert, Yi Li, Ely Porat, and Martin J. Strauss

Families with Infants: A General Approach to Solve Hard Partition
Problems . 551

Alexander Golovnev, Alexander S. Kulikov, and Ivan Mihajlin

Changing Bases: Multistage Optimization for Matroids and
Matchings . 563

Anupam Gupta, Kunal Talwar, and Udi Wieder

Near-Optimal Online Algorithms for Prize-Collecting Steiner
Problems . 576

MohammadTaghi Hajiaghayi, Vahid Liaghat, and
Debmalya Panigrahi

Nearly Linear-Time Model-Based Compressive Sensing 588
Chinmay Hegde, Piotr Indyk, and Ludwig Schmidt

Breaking the PPSZ Barrier for Unique 3-SAT . 600
Timon Hertli

Privately Solving Linear Programs . 612
Justin Hsu, Aaron Roth, Tim Roughgarden, and Jonathan Ullman

How Unsplittable-Flow-Covering Helps Scheduling with Job-Dependent
Cost Functions . 625

Wiebke Höhn, Julián Mestre, and Andreas Wiese

Why Some Heaps Support Constant-Amortized-Time Decrease-Key
Operations, and Others Do Not . 637

John Iacono and Özgür Özkan

Partial Garbling Schemes and Their Applications . 650
Yuval Ishai and Hoeteck Wee

On the Complexity of Trial and Error for Constraint Satisfaction
Problems . 663

Gábor Ivanyos, Raghav Kulkarni, Youming Qiao,
Miklos Santha, and Aarthi Sundaram

Table of Contents – Part I XXVII

Information Theoretical Cryptogenography . 676
Sune K. Jakobsen

The Complexity of Somewhat Approximation Resistant Predicates 689
Subhash Khot, Madhur Tulsiani, and Pratik Worah

Approximate Nonnegative Rank Is Equivalent to the Smooth Rectangle
Bound . 701

Gillat Kol, Shay Moran, Amir Shpilka, and Amir Yehudayoff

Distance Oracles for Time-Dependent Networks . 713
Spyros Kontogiannis and Christos Zaroliagis

Efficient Indexing of Necklaces and Irreducible Polynomials over Finite
Fields . 726

Swastik Kopparty, Mrinal Kumar, and Michael Saks

Coloring Relatives of Interval Overlap Graphs via On-line Games 738
Tomasz Krawczyk and Bartosz Walczak

Superpolynomial Lower Bounds for General Homogeneous Depth 4
Arithmetic Circuits . 751

Mrinal Kumar and Shubhangi Saraf

Testing Forest-Isomorphism in the Adjacency List Model 763
Mitsuru Kusumoto and Yuichi Yoshida

Parameterized Approximation Schemes Using Graph Widths 775
Michael Lampis

FPTAS for Weighted Fibonacci Gates and Its Applications 787
Pinyan Lu, Menghui Wang, and Chihao Zhang

Parameterized Algorithms to Preserve Connectivity 800
Manu Basavaraju, Fedor V. Fomin, Petr Golovach,
Pranabendu Misra, M.S. Ramanujan, and Saket Saurabh

Nonuniform Graph Partitioning with Unrelated Weights 812
Konstantin Makarychev and Yury Makarychev

Precedence-Constrained Scheduling of Malleable Jobs with
Preemption . 823

Konstantin Makarychev and Debmalya Panigrahi

Unbounded Entanglement Can Be Needed to Achieve the Optimal
Success Probability . 835

Laura Mančinska and Thomas Vidick

QCSP on Semicomplete Digraphs . 847
Petar Dapić, Petar Marković, and Barnaby Martin

XXVIII Table of Contents – Part I

Fast Pseudorandomness for Independence and Load Balancing
[Extended Abstract] . 859

Raghu Meka, Omer Reingold, Guy N. Rothblum, and
Ron D. Rothblum

Determining Majority in Networks with Local Interactions and Very
Small Local Memory . 871

George B. Mertzios, Sotiris E. Nikoletseas,
Christoforos L. Raptopoulos, and Paul G. Spirakis

Lower Bounds for Oblivious Subspace Embeddings 883
Jelani Nelson and Huy L. Nguy˜̂en

On Input Indistinguishable Proof Systems . 895
Rafail Ostrovsky, Giuseppe Persiano, and Ivan Visconti

Secure Computation Using Leaky Tokens . 907
Manoj Prabhakaran, Amit Sahai, and Akshay Wadia

An Improved Interactive Streaming Algorithm for the Distinct
Elements Problem . 919

Hartmut Klauck and Ved Prakash

A Faster Parameterized Algorithm for Treedepth . 931
Felix Reidl, Peter Rossmanith, Fernando Sánchez Villaamil, and
Somnath Sikdar

Pseudorandom Graphs in Data Structures . 943
Omer Reingold, Ron D. Rothblum, and Udi Wieder

Sampling-Based Proofs of Almost-Periodicity Results and Algorithmic
Applications . 955

Eli Ben-Sasson, Noga Ron-Zewi, Madhur Tulsiani, and Julia Wolf

The Mondshein Sequence . 967
Jens M. Schmidt

Balanced Allocations: A Simple Proof for the Heavily Loaded Case 979
Kunal Talwar and Udi Wieder

Close to Uniform Prime Number Generation with Fewer Random
Bits . 991

Pierre-Alain Fouque and Mehdi Tibouchi

Optimal Strong Parallel Repetition for Projection Games on Low
Threshold Rank Graphs . 1003

Madhur Tulsiani, John Wright, and Yuan Zhou

Sparser Random 3-SAT Refutation Algorithms and the Interpolation
Problem (Extended Abstract) . 1015

Iddo Tzameret

Table of Contents – Part I XXIX

On Learning, Lower Bounds and (un)Keeping Promises 1027
Ilya Volkovich

Certificates in Data Structures . 1039
Yaoyu Wang and Yitong Yin

Optimal Query Complexity for Estimating the Trace of a Matrix 1051
Karl Wimmer, Yi Wu, and Peng Zhang

Faster Separators for Shallow Minor-Free Graphs via Dynamic
Approximate Distance Oracles . 1063

Christian Wulff-Nilsen

Spatial Mixing of Coloring Random Graphs . 1075
Yitong Yin

Author Index . 1087

Symmetric Groups and Quotient Complexity

of Boolean Operations�

Jason Bell1, Janusz Brzozowski2, Nelma Moreira3, and Rogério Reis3

1 Department of Pure Mathematics, University of Waterloo,
Waterloo, ON, Canada N2L 3G1

jpbell@uwaterloo.ca
2 David R. Cheriton School of Computer Science, University of Waterloo,

Waterloo, ON, Canada N2L 3G1
brzozo@uwaterloo.ca

3 CMUP & DCC, Faculdade de Ciências da Universidade do Porto,
Rua do Campo Alegre, 4169–007 Porto, Portugal

{nam,rvr}@dcc.fc.up.pt

Abstract. The quotient complexity of a regular language L is the num-
ber of left quotients of L, which is the same as the state complexity of
L. Suppose that L and L′ are binary regular languages with quotient
complexities m and n, and that the subgroups of permutations in the
transition semigroups of the minimal deterministic automata accepting
L and L′ are the symmetric groups Sm and Sn of degrees m and n,
respectively. Denote by ◦ any binary boolean operation that is not a
constant and not a function of one argument only. For m,n ≥ 2 with
(m,n) ∨∈ {(2, 2), (3, 4), (4, 3), (4, 4)} we prove that the quotient complex-
ity of L ◦ L′ is mn if and only either (a) m ∨= n or (b) m = n and
the bases (ordered pairs of generators) of Sm and Sn are not conjugate.
For (m,n) ∈ {(2, 2), (3, 4), (4, 3), (4, 4)} we give examples to show that
this need not hold. In proving these results we generalize the notion of
uniform minimality to direct products of automata. We also establish
a non-trivial connection between complexity of boolean operations and
group theory.

Keywords: Boolean operation, quotient complexity, regular language,
state complexity, symmetric group, transition semigroup.

1 Motivation

The left quotient, or simply quotient, of a regular language L over an alphabet
Σ by a word w ∈ Σ∗ is the regular language w−1L = {x ∈ Σ∗ : wx ∈ L}. It
is well known that a language is regular if and only if it has a finite number
of quotients. Consequently, the number of quotients of a regular language, its
quotient complexity [1], is a natural measure of complexity of the language. Quo-
tient complexity is also known as state complexity [15], which is the number of

ω For a complete version of this work see http://arxiv.org/abs/1310.1841.

J. Esparza et al. (Eds.): ICALP 2014, Part II, LNCS 8573, pp. 1–12, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

2 J. Bell et al.

states in the complete minimal deterministic finite automaton (DFA) recognizing
the language. We prefer quotient complexity because it is a language-theoretic
concept, and we refer to it simply as complexity.

The problem of determining the complexity of an operation [1,8,15,16] on
regular languages has received much attention. It is defined as the maximal
complexity of the language resulting from the operation, taken as a function
of the complexities of the operands. When operations are performed on large
automata it is important to have some information about the size of the result
and the time it will take to compute it. The quotient complexity of an operation
gives an upper bound on its time and space complexity [15].

Languages that meet the upper bound on the complexity of an operation are
witnesses for this operation. Although witnesses for common operations on reg-
ular languages are well known, there are occasions when one has to look for new
witnesses:

1. One may be interested in a class of languages that have the same com-
plexity with respect to a given operation. For example, let Σ = {a, b} and
let |w|a be the number of times the letter a appears in the word w ∈ Σ∗.
Then the intersection of the languages L = {w ∈ Σ∗ : |w|a ≡ m − 1 mod m}
and L≥ = {w ∈ Σ∗ : |w|b ≡ n − 1 mod n} has complexity mn. The languages
K = (b∗a)m−1Σ∗ and K ≥ = (a∗b)n−1Σ∗ also meet this bound; hence (L,L≥) and
(K,K ≥) are in the same complexity class with respect to intersection.

2. Whenever one studies complexity within a proper subclass of regular lan-
guages, one usually needs to find new witnesses. For example, in the class of
regular right ideals – languages L ⊆ Σ∗ satisfying L = LΣ∗ – languages K and
K ≥ are appropriate, but L and L≥ are not. The main result of the present paper
has been applied to right ideals in [4], where the proof that the witnesses used
there meet the bounds for boolean operations was greatly simplified with the
aid of our theorem.

3. When one studies combined operations – operations that involve more than
one basic operation, for example, the intersection of reversed languages – one
again need new witnesses [7].

Before stating our result, we provide some additional background information.
The syntactic congruence ↔L of L is defined as follows: For all x, y ∈ Σ∗,
x ↔L y if and only if uxv ∈ L ⇔ uyv ∈ L for all u, v ∈ Σ∗. The set Σ+/ ↔L

of equivalence classes of the relation ↔L is a semigroup with concatenation as
the operation; it is called the syntactic semigroup of L, which we denote by SL.
It is well known that the syntactic semigroup is isomorphic to the semigroup
SD of transformations performed by non-empty words on the set of states in
the minimal DFA D recognizing L; this semigroup is known as the transition
semigroup of D. If D has n states, the cardinality of the transition semigroup is
bounded from above by nn, and this bound is reachable.

The atoms [5,6] of a regular language are non-empty intersections of all left
quotients of the language, some or all of which may be complemented. A regular
language has at most 2n atoms, and their quotient complexities are known [5].

Symmetric Groups and Quotient Complexity of Boolean Operations 3

The reverse of a word is defined inductively: the reverse of the empty word
ε is εR = ε, and the reverse of wa with w ∈ Σ∗ and a ∈ Σ is (wa)R = awR.
The reverse of a language L is LR = {wR : w ∈ L}. For L with complexity n the
maximal complexity of LR is 2n, and this bound is reachable.

Whenever new witnesses are used, it is necessary to prove that these witnesses
meet the required bound. It would be very useful to have results stating that if
the languages in question have some property P , then they meet the upper bound
for a given operation. Some results of this type are now briefly discussed.

Let MSC denote the class of languages with maximal syntactic complexity
(languages with largest syntactic semigroups), let STT denote the class of lan-
guages whose minimal DFAs have set-transitive transition semigroups (for any
two sets of states of the same cardinality there is a transformation that maps
one set to the other), let MAL denote the class of maximally atomic languages
(languages that have all 2n atoms, all of which have maximal possible quotient
complexity), let MNA denote the class of languages with the maximal number
(2n) of atoms, and let MCR denote the class of languages with a maximally
complex reverse (reverse of complexity 2n). The following relations hold [3]:

MSC ⊂ STT = MAL ⊂ MNA = MCR.

The fact that MSC ⊂ MCR is a result of A. Salomaa, Wood, and Yu [12], and
the observation that MNA = MCR was made by Brzozowski and Tamm [6].

Our main theorem relates the complexity of proper binary boolean operations
on regular languages to the nature of the syntactic semigroups of the languages.
A boolean operation is proper if it is not a constant and not a function of one
variable only.

Let Sn denote the symmetric group of degree n. A basis [9] of Sn is an ordered
pair (s, t) of distinct transformations of Qn = {0, . . . , n − 1} that generate Sn.
Two bases (s, t) and (s≥, t≥) of Sn are conjugate if there exists a transformation
r ∈ Sn such that rsr−1 = s≥, and rtr−1 = t≥.

Assume that a DFA D (respectively, D≥) has state set Qm (Qn), and transition
semigroup Sm (Sn). Let L (L≥) be the language accepted by D (D≥). Our main
theorem is a generalization of a result of Brzozowski and Liu [2]:

Theorem 1. Let D and D≥ be binary DFAs with m and n states respectively,
where m,n ≥ 2 and (m,n) ⇒∈ {(2, 2), (3, 4), (4, 3), (4, 4)}. If the subgroups of per-
mutations in the transition semigroups of D and D≥ are Sm and Sn respectively,
and ◦ is a proper binary boolean operation, then the complexity of L ◦ L≥ is
mn, unless m = n and the bases of the transition semigroups of D and D≥ are
conjugate, in which case the quotient complexity of L ◦ L≥ is at most m = n.

The proof that the complexity of a binary boolean operation is maximal in-
volves two steps. First, one proves that the direct product of the minimal DFAs
of the languages is connected, meaning that all of its states are reachable from
the initial state. Second, one verifies that any two states in the direct product
are distinguishable by some word, that is, that they are not equivalent. Since
both reachability and distinguishability will be proved using only permutations,

4 J. Bell et al.

it is convenient to ignore other transformations and assume that the transition
semigroups of the DFAs we deal with are symmetric groups.

The remainder of the paper is structured as follows: Section 2 defines our
terminology and notation. Section 3 deals with the conditions under which the
direct product of two automata is connected. Section 4 studies uniformly mini-
mal semiautomata (automata without final states), that is, semiautomata which
become minimal DFAs if one adds an arbitrary set of final states, other than the
empty set and the set of all states. Section 5 contains our main result relating
symmetric groups to the complexity of boolean operations for all except a few
cases. Section 6 concludes the paper.

2 Preliminaries

Groups. Our results rely heavily on the theory of finite groups. We refer the
reader to [11,13], for example, for basic facts about groups.
Transformations. A transformation of a set Q is a mapping of Q into itself.
We deal only with finite non-empty sets and, without loss of generality, assume
that Q = Qn = {0, 1, . . . , n− 1}. If t is a transformation of Qn and i ∈ Qn, then
t(i) is the image of i under t. An arbitrary transformation is written in the form

t =

(
0 1 . . . n− 2 n− 1
i0 i1 . . . in−2 in−1

)
,

where ik = t(k), 0 ≤ k ≤ n−1, and ik ∈ Qn. The composition of two transforma-
tions t1 and t2 of Qn is a transformation t1 ◦ t2 such that (t1 ◦ t2)(i) = t1(t2(i))
for all i ∈ Qn. We usually omit the composition operator and write t1t2. The set
of all transformations of Qn is a monoid under composititon with the identity
transformation acting as the unit element 1.

A permutation is a mapping of Qn onto itself. A permutation t is a cycle of
of length k or a k-cycle , where k ≥ 2, if there exist pairwise different elements
i1, . . . , ik such that t(i1) = i2, t(i2) = i3, . . . , t(ik−1) = ik, and t(ik) = i1,
and t does not affect any other elements. A cycle is denoted by (i1, i2, . . . , ik).
A transposition is a 2-cycle. Every permutation is a product (composition) of
transpositions, and the parity of the number of transpositions in the factorization
is an invariant. A permutation is odd (even) if its factorization has an odd
(even) number of factors. The symmetric group Sn of degree n is the set of all
permutations of Qn, with composition as the group operation, and the identity
as 1. The alternating group An is the set of all even permutations of Sn.

Given a subgroup H of Sn, we say that H acts transitively on Qn if for each
i, j ∈ Qn there is some t ∈ H such that t(i) = j. We say that H acts doubly
transitively on Qn if whenever i, j, k, Ω ∈ Qn with i ⇒= j and k ⇒= Ω there is some
t ∈ H such that t(i) = k, t(j) = Ω.
Semiautomata and Automata. A deterministic finite semiautomaton (DFS)
is a quadruple A = (Q,Σ, δ, q0), where Q is a finite set of states, Σ is a finite
non-empty alphabet, δ : Q×Σ → Q is the transition function, and q0 is the initial
state. We extend δ to Q × Σ∗ in the usual way. A state q is reachable from the

Symmetric Groups and Quotient Complexity of Boolean Operations 5

initial state if there is a word w such that q = δ(q0, w). A DFS is connected if
every state q ∈ Q is reachable.

For a DFS A = (Q,Σ, δ, q0) and a word w ∈ Σ∗, the transition function
δ(·, w) is a transformation of Q, the transformation induced by w. The set of all
transformations induced by non-empty words is the transition semigroup SA of
A. For w ∈ Σ+, we denote by w : t the transformation t of Qn induced by w.

Given semiautomata A = (Q,Σ, δ, q0) and A≥ = (Q≥, Σ, δ≥, q≥0), we define their
direct product to be the DFS A×A≥ = (Q×Q≥, Σ, (δ, δ≥), (q0, q≥0)).

A deterministic finite automaton (DFA) is a quintuple D = (Q,Σ, δ, q0, F),
where (Q,Σ, δ, q0) is a DFS and F ⊆ Q is the set of final states. The DFA D
accepts a word w ∈ Σ∗ if δ(q0, w) ∈ F . The set of all words accepted by D is
the language L(D) of D. The language accepted from a state q of a DFA is the
language Lq(D) accepted by the DFA (Q,Σ, δ, q, F). Two states of a DFA are
distinguishable if there exists a word w which is accepted from one of the states
and rejected from the other. Otherwise, the two states are equivalent. A DFA is
minimal if all of its states are reachable from the initial state and no two states
are equivalent. Note that if |Q| ≥ 2 and D is minimal, then ∅ � F � Q.

3 Connectedness

From now on we are interested in semiautomata A and A≥ whose transition
semigroups are symmetric groups generated by two-element bases. We assume
that permutations s and s≥ are induced by a in A and A≥, and permutations t
and t≥ by b, that is, a : s, b : t in A and a : s≥, b : t≥ in A≥.

Example 1. Let Σ = {a, b}, A = (Q3, Σ, δ, 0), and A≥ = (Q3, Σ, δ≥, 0), where
a : s = (0, 1, 2), b : t = (0, 1) in A, and a : s≥ = (0, 1, 2), b : t≥ = (1, 2) in A≥. Then
(s, t) and (s≥, t≥) are conjugate, since rsr−1 = s≥ and rtr−1 = t≥ for r = (0, 1, 2).
If A≥≥ has s≥≥ = (0, 1) and t≥≥ = (0, 1, 2), then (s, t) and (s≥≥, t≥≥) are not conjugate.

The transition semigroups of A, A≥ and A≥≥ all have 6 elements. Those of A
and A≥, when viewed as semigroups generated by a and b, are identical, but
those of A and A≥≥ are not: for example, a3 = 1 in SA but a2 = 1 in SA⊥⊥ . �

Theorem 2. Let Σ = {a, b}, let A = (Qm, Σ, δ, 0) and A≥ = (Qn, Σ, δ≥, 0) be
semiautomata with transition semigroups that are symmetric groups of degrees
m and n respectively, and let the corresponding bases be B and B≥. For m,n ≥ 1,
the direct product A × A≥ is connected if and only if either (1) m ⇒= n or (2)
m = n and B and B≥ are not conjugate.

Proof. Without loss of generality, assume that m ≤ n. Let H denote the tran-
sition semigroup of A × A≥; then H is a subgroup of Sm × Sn. Define homo-
morphisms π1 : H → Sm and π2 : H → Sn by π1((s, t)) = s and π2((s, t)) = t.
Observe that π1 and π2 are surjective, since the transition semigroups of A and
A≥ are Sm and Sn respectively. We let H0 denote the subgroup of H consisting
of all elements that map the set {0} ×Qn to itself. Then H0 has index m in H
and thus π2(H0) has index at most m in π2(H) = Sn. Thus the order of π2(H0)
is at least n!/m ≥ (n− 1)!.

6 J. Bell et al.

Since a subgroup of Sn that does not act transitively on Qn is necessarily iso-
morphic to a subgroup of Si×Sn−i for some i ∈ {1, . . . , n−1} [14, Section 2.5.1],
a subgroup of Sn whose order is strictly greater than (n−1)! acts transitively on
Qn. Moreover, a subgroup of order (n− 1)! that does not act transitively on Qn

is isomorphic to S1 × Sn−1; that is, it is the stabilizer of a point. Thus π2(H0)
fails to act transitively on Qn if and only if m = n and π2(H0) is the stabilizer
of a point.

Suppose that m < n or m = n and π2(H0) is not the stabilizer of a point,
which is equivalent to assuming that π2(H0) acts transitively on Qn. We claim
that the direct product A×A≥ is connected. To see this, notice that given (i, j)
and (i≥, j≥) in Qm × Qn, we can find t (respectively t≥) in H that sends (i, j)
to (0, k) (respectively (i≥, j≥) to (0, k≥)) for some k (respectively k≥) in Qn, since
π1(H) = Sm acts transitively on Qm. Since we have assumed that π2(H0) acts
transitively on Qn, we can find t≥≥ ∈ H such that π2(t≥≥) ∈ π2(H0) sends (0, k)
to (0, k≥). Hence (t≥)−1t≥≥t sends (i, j) to (i≥, j≥), and so A×A≥ is connected.

Suppose next that m = n and π2(H0) is the stabilizer of a point. By relabelling
if necessary, we may assume that π2(H0) stabilizes 0. Then H cannot send (0, 0)
to (0, i) for i ⇒= 0 and so A × A≥ is not connected. We claim that the bases B
and B≥ are conjugate.

To prove this claim, note that H has the property that if (s, t) ∈ H ⊆ Sn×Sn

and s(0) = 0, then t(0) = 0. We claim there is a permutation u ∈ Sn with
u(0) = 0 such that if (s, t) ∈ H sends (0, 0) to (j, k), then k = u(j). First
suppose that k1, k2 ∈ Qn have the property that there is some j ∈ Qn such that
(j, k1) and (j, k2) are in the orbit of (0, 0) under the action of H . Then we can
pick h in H such that π1(h)(j) = 0. Then (0, π2(h)(k1)) and (0, π2(h)(k2)) are
both in the orbit of (0, 0), which means that π2(h)(k1) = π2(h)(k2) = 0, giving
k1 = k2. It follows that there is a map u : Qn → Qn with u(0) = 0 such that, if
(s, t) ∈ H sends (0, 0) to (j, k), then k = u(j). Since π2(H) acts transitively on
Qn, the map u must be surjective and hence is a permutation, as claimed.

Let s1, s2 ∈ Sn denote the elements in the transition semigroup corresponding
to a ∈ Σ, and let t1, t2 ∈ Sn correspond to b ∈ Σ. Let H ≥ be the group generated
by (s1, u

−1t1u), (s2, u
−1t2u). Then H ≥ is conjugate to H (we conjugate H by

(1, u) to obtain H ≥); furthermore, H ≥ has the property that if (s, t) ∈ H ≥ sends
(0, 0) to (i, j), then i = j. Thus H ≥ acts transitively on the diagonal of Qn×Qn;
if (s, t) ∈ H ≥ then s(i) = t(i) for all i ∈ Qn, which gives that s = t. Hence, if
(s, t≥) ∈ H , then u−1t≥u = s and so the bases B and B≥ are conjugate. Thus if
A×A≥ is not connected, then m = n and the bases B and B≥ are conjugate.

Now we show the converse: If m = n and the bases B = (s, t) and B≥ =
(s≥, t≥) are conjugate, then A ×A≥ is not connected. If rsr−1 = s≥, and rtr−1 =
t≥, let ψr : {s, t}+ → {s≥, t≥}+ be the mapping that assigns to x ∈ {s, t}+ the
element rxr−1 ∈ {s≥, t≥}+. For any x, y ∈ {s, t}+, if xy = z, then ψr(x)ψr(y) =
(rxr−1)(ryr−1) = r(xy)r−1 = ψr(z). Hence the transition semigroups of A and
A≥ are isomorphic.

Symmetric Groups and Quotient Complexity of Boolean Operations 7

The direct product A×A≥ is defined by (Qn×Qn, {a, b}, (δ, δ≥), (0, 0)), where
(δ, δ≥)((i, j), a) = (s(i), rsr−1(j)) and (δ, δ≥)((i, j), b) = (t(i), rtr−1(j)) for any
i, j ∈ Qn.

If A × A≥ is connected, then for all (i, j) ∈ Qn × Qn there must exist a
word w ∈ Σ+ such that (δ, δ≥)((0, 0), w) = (i, j) or, equivalently, there exists a
permutation p such that p(0) = i and rpr−1(0) = j. There are now two cases:

1. If r−1(0) ⇒= 0, we prove that state (i, r(i)) is unreachable for all i ∈ Qn.
If (i, r(i)) is reachable, then there exists a permutation p such that p(0) = i
and rpr−1(0) = r(i). But then r−1rpr−1(0) = pr−1(0) = i = p(0), and so
p−1pr−1(0) = r−1(0) = 0, which is a contradiction.

2. If r−1(0) = 0, we prove that state (i, i) is unreachable for some i ∈ Qn.
Since r cannot be the identity, there must exist an i such that r(i) ⇒= i. Suppose
(i, i) is reachable for that i. Then there exists a permutation p such that p(0) = i
and rpr−1(0) = i. Thus i = rpr−1(0) = rp(0) = p(0) and r(i) = i, which is a
contradiction.

Hence A×A≥ cannot be connected. ⊇�
Remark 1. If A×A≥ is connected, then it is strongly connected, since the tran-
sition semigroup of A×A≥ is a group.

4 Uniformly Minimal Semiautomata

Semiautomata that result in minimal DFAs under any non-trivial assignment of
final states were studied by Restivo and Vaglica [10]. We modify their definitions
slightly to suit our purposes. A strongly connected DFS A = (Q,Σ, δ, q0) with
|Q| ≥ 2 is uniformly minimal if the DFA D = (Q,Σ, δ, q0, F) is minimal for each
set F of final states, where ∅ � F � Q.

Given a DFS A = (Q,Σ, δ, q0), we define the pair graph of A to be the
directed graph GA = (VA, EA), where the set VA of vertices is the set of all two-
element subsets {p, q} of Q, and the set EA of edges consists of unordered pairs
({p, q}, {p≥, q≥}) such that {δ(p, a), δ(q, a)} = {p≥, q≥}. The following is from [10]:

Proposition 1 (Restivo and Vaglica). Let A = (Q,Σ, δ, q0) be a strongly
connected DFS with at least two states. If the pair graph (VD, ED) is strongly
connected, then A is uniformly minimal.

We prove a similar result for semiautomata with symmetric groups.

Proposition 2. Suppose that A = (Qn, Σ, δ, q0) is a DFS and the transition
semigroup SA of A is the symmetric group Sn. Then A is strongly connected
and uniformly minimal.

Proof. If SA = Sn, then SA contains all permutations of Qn, in particular, the
cycle (0, . . . , n−1); hence A is strongly connected. For any (i, j), (k, Ω) ∈ Qn×Qn

with i ⇒= j, k ⇒= Ω, and {i, j} ⇒= {k, Ω}, any permutation that maps i to k and
j to Ω connects {i, j} to {k, Ω} in the pair graph of A. Hence the pair graph is
strongly connected, and A is uniformly minimal by Proposition 1. ⊇�

8 J. Bell et al.

Let the truth values of propositions be 1 (true) and 0 (false). Let ◦ : {0, 1} ×
{0, 1} → {0, 1} be a binary boolean function. Extend ◦ to a function ◦ : 2Σ

∗ ×
2Σ

∗ → 2Σ
∗
: If w ∈ Σ∗ and L,L≥ ⊆ Σ∗, then w ∈ (L ◦ L≥) ⇔ (w ∈ L) ◦ (w ∈ L≥).

Also, extend ◦ to a function ◦ : 2Qm × 2Qn → 2Qm×Qn : If q ∈ Qm, q≥ ∈ Qn,
F ⊆ Qm, and F ≥ ⊆ Qn, then (q, q≥) ∈ (F ◦ F ≥) ⇔ (q ∈ F) ◦ (q≥ ∈ F ≥).

Suppose that A = (Q,Σ, δ, 0) and A≥ = (Q≥, Σ, δ≥, 0) with |Q| = m and
|Q≥| = n are uniformly minimal DFSs, and ◦ is any proper boolean function.
The pair (A,A≥) is uniformly minimal for ◦ if the direct product P = (Q ×
Q≥, Σ, (δ, δ≥), (0, 0), F ◦F ≥) is minimal for all valid assignments of sets F and F ≥

of final states to A and A≥, that is, sets such that ∅ � F � Q and ∅ � F ≥ � Q≥.
If n = 1, then A×A≥ is isomorphic to A and no boolean function ◦ is proper.

Hence this case, and also the case with m = 1, is of no interest. Henceforth we
assume that m,n ≥ 2.

We now consider pair graphs of DFSs with symmetric groups as their transi-
tion semigroups.

Example 2. Suppose that m = n = 2, and A and A≥ both have S2 as their
transition semigroup. There are two permutations in S2: (0, 1) and 1, and there
are three bases: B1 = (a : (0, 1), b : (0, 1)), B2 = (a : (0, 1), b : 1), and B3 =
(a : 1, b : (0, 1)). Note that no two of these bases are conjugate.

For each basis, there are two possible final states, 0 or 1, and hence two DFAs;
thus there are six different DFAs. There are then twelve direct products Di

j×Dk
ψ

with non-conjugate bases, where Di
j (Dk

ψ) uses basis Bi (Bk) and has j (Ω) as
final state, for i, k = 1, 2, 3 and j, Ω = 1, 2.

For each pair of DFAs accepting languages L and L≥ respectively, we tested
the complexity of five boolean functions: L ∪ L≥, L ∩ L≥, L ⊕ L≥ , L \ L≥ and
L≥ \ L. Note that the complexity of each remaining proper boolean function is
the same as that of one of these five functions. For all twelve direct products of
DFAs with non-conjugate bases, all proper boolean functions reach the maximal
complexity 4, except for the functions L⊕L≥ and L⊕ L≥, which fail in all twelve
cases. Thus any two DFAs D = (Q2, Σ, δi, 0, F) and D≥ = (Q2, Σ, δk, 0, F

≥),
where Q2 = {0, 1}, Σ = {a, b}, δi (δk) is defined by basis Bi (Bk), F = {j} and
F ≥ = {Ω}, are uniformly minimal for all proper boolean functions, except ⊕ and
its complement. So our main result applies only in some cases if m = n = 2. �

Proposition 3. Let A = (Qm, Σ, δ, 0) and A≥ = (Qn, Σ, δ≥, 0), with m,n ≥ 2
and max(m,n) ≥ 3, be DFSs with transition semigroups that are symmetric
groups, and let P be their direct product. Then the following hold:

1. The pair graph of P consists of strongly connected components – which we
will call simply components – of one of the following three types:

(a) T1 ⊆ C1 = {{(i, j), (k, Ω)} : i ⇒= k, j ⇒= Ω},
(b) T2 ⊆ C2 = {{(i, j), (i, Ω)} : j ⇒= Ω},
(c) T3 ⊆ C3 = {{(i, j), (k, j)} : i ⇒= k}.

2. Every state (i, j) of the direct product P appears in at least one pair in
each component.

3. Each component has at least mn/2 ≥ 3 pairs.

Symmetric Groups and Quotient Complexity of Boolean Operations 9

Proof. The first claim follows since the transition semigroup of P is a group.
The second claim holds because the direct product is strongly connected, by
Remark 1. For the third claim, note that there are mn states in P , but they can
appear in pairs; hence the bound mn/2. Since we are assuming that mn ≥ 6,
the last claim follows. ⊇�

Now consider DFAs D = (Qm, Σ, δ, 0, F) and D≥ = (Qn, Σ, δ≥, 0, F ≥), where
∅ � F � Qm and ∅ � F ≥ � Qn. A state {(i, j), (k, Ω)} of the pair graph of the
direct product P of D and D≥ is distinguishing if and only if (i, j) is final and
(k, Ω) is not, or vice versa.

Example 3. Suppose m = 3, n = 4, δ is defined by the basis (a : (0, 1), b : (0, 1, 2))
of S3, and δ≥ by the basis (a : (0, 1), b : (1, 3, 2)) of S4. One verifies that these bases
are not conjugate. The direct product P is connected and has twelve states.

If F = {2}, F ≥ = {0, 1} and intersection is the boolean function, then there
are no distinguishing pairs in the component of the pair graph T containing
{(0, 0), (0, 3)}. Hence any two states appearing in the same pair of T are equiv-
alent. Indeed, the minimal version of P has only six states. �

Example 4. Suppose m = n = 4, δ is defined by the basis (a : (0, 1, 2), b : (2, 3)),
and δ≥ by the basis (a : (1, 3, 2), b : (0, 2, 1, 3)). If F = {0, 1} and F ≥ = {0, 1}, then
the complexity of L⊕ L≥ is 4, but all the other complexities are 12. �

Lemma 1. Let D = (Q,Σ, δ, 0, F) and D≥ = (Q≥, Σ, δ≥, 0, F ≥), with |Q|, |Q≥| ≥
2, be DFAs with transition semigroups that are groups, and let P = (Q ×
Q≥, Σ, (δ, δ≥), (0, 0), F ◦ F ≥) be their direct product. Then P is minimal if and
only if every component of the pair graph GP of P has a distinguishing pair.

5 Symmetric Groups and Boolean Operations

We begin with a well-known but apparently unpublished result.

Lemma 2. Let n be a positive integer, let G be either Sn or An, and let H be
a subgroup of G of index m ≤ n. Then the following hold:

(i) if n ⇒= 4 and m < n, then H is either An or Sn;
(ii) if m = n and n ⇒= 6, then there is some i ∈ Qn such that H is the set of

permutations in G that fix i.
(iii) if m = n = 6, then there is an automorphism φ of S6 such that φ(H) is

the set of elements that fix 0.

The following lemma, like Theorem 2, deals with reachability. The conditions
in the lemma, however, are useful for determining reachability in the pair graph
of A×A≥, rather than in A×A≥ itself.

Lemma 3. Let Σ = {a, b}, let A = (Qm, Σ, δ, 0) and A≥ = (Qn, Σ, δ≥, 0) be
semiautomata with transition semigroups that are symmetric groups of degrees
m and n respectively with m ≤ n, n ⇒= 4 and (m,n) ⇒= (6, 6). Let H be the
transition semigroup of A × A≥, and let π1 and π2 be the natural projections
from H onto Sm and Sn respectively. If H0 = {h ∈ H : π1(h)(0) = 0}, then

10 J. Bell et al.

1. π2(H0) is either Sn or An, or is the stabilizer of a point in Qn.
2. π2(H0) is the stabilizer of a point if and only if m = n, and in this case

the direct product A×A≥ is not connected.

Proof. For Part 1, since π1(H) = Sm, for each i ∈ {0, . . . ,m− 1} there is some
hi ∈ H such that π1(hi) takes 0 to i. For a given h ∈ H , π1(h) takes 0 to j for
some j ∈ {0, 1, . . . ,m − 1}, and thus h−1

j h ∈ H0 and so h ∈ hjH0. However,

since π1(h) takes 0 to j, we have h−1
i h ⇒∈ H0 and thus h ⇒∈ hiH0 for i ⇒= j.

Thus the cosets h0H, . . . , hm−1H are distinct, and H0 has index m in H . Since
π2(H) ⊆ ⋃m−1

i=0 π2(hi)π2(H0), π2(H0) has index at most m in π2(H) = Sn. If
n ⇒= 4 and m < n, then π2(H0) is either An or Sn by Lemma 2. If m = n and
n ⇒= 6, then π2(H0) has index n in Sn and hence must be the stabilizer of a some
i ∈ Qn by Lemma 2.

For Part 2, suppose that m = n and π2(H0) is the stabilizer of a point in Qn.
By relabelling if necessary, we may assume that π2(H0) stabilizes 0. Hence, if
h ∈ H sends (0, 0) to (0, j) then j = 0. In particular, there is no h ∈ H that
sends (0, 0) to (0, 1) or that sends (0, 1) to (0, 0), and so A × A≥ is necessarily
not connected. ⊇�
Lemma 4. Let A = (Qm, Σ, δ, 0) and A≥ = (Qn, Σ, δ≥, 0) be semiautomata with
transition semigroups that are the symmetric groups of degrees m and n, re-
spectively with m ≤ n, m ≥ 2, n ≥ 5, and (m,n) ⇒= (6, 6). If A × A≥ is
connected, then the pair graph of A × A≥ has exactly three connected compo-
nents: C1 = {{(i, j), (k, Ω)} : i ⇒= k, j ⇒= Ω}, C2 = {{(i, j), (i, Ω)} : j ⇒= Ω}, and
C3 = {{(i, j), (k, j)} : i ⇒= k}.
Proof. We let H denote the transition semigroup of A×A≥. We show that each
of C1, C2, C3 is strongly connected. Note that each of C1, C2, C3 is necessarily
a union of connected components.

We show that C1 is strongly connected. Suppose we have pairs {(i, j), (k, Ω)}
and {(i≥, j≥), (k≥, Ω≥)} with i, k distinct, i≥, k≥ distinct, j, Ω distinct, and j≥, Ω≥ dis-
tinct. Since Sm acts doubly transitively on Qm when m ≥ 2, there is some s ∈ H
that sends (i, j) to (i≥, j≥≥) and (k, Ω) to (k≥, Ω≥≥) for some j≥≥, Ω≥≥ ∈ Qn.

Thus we may assume without loss of generality that i≥ = i and k≥ = k. Let H0

be the subgroup of Sm × Sn consisting of all x ∈ H such that π1(x) fixes i. By
Lemma 3, since we assume that A×A≥ is connected, π2(H0) is not a stabilizer of
a point in Qn. Hence π2(H0) is either Sn or An. Let H1 denote the subgroup of
Sm × Sn consisting of all x ∈ H such that π1(x) fixes i and k. By the argument
used in Lemma 3 to show that {h ∈ H : π1(h)(0) = 0} has index m in H , we see
that π2(H1) has index at most m − 1 in π2(H0). Thus π2(H1) is a subgroup of
An or Sn of index at most n− 1, and hence must again be An or Sn by Lemma
2. Since An and Sn both act doubly transitively on Qn, there is some h ∈ H
that sends (i, j) to (i, j≥) and (k, Ω) to (k, Ω≥) whenever Ω and Ω≥ are distinct. This
proves that C1 is indeed a strongly connected component.

Next, consider pairs {(i, j), (i, k)} with j, k distinct. For given {(i≥, j≥), (i≥, k≥)}
with j≥, k≥ distinct, there is some element s ∈ H such that π1(s)(i) = i≥ and thus
s sends (i, j) to (i≥, j≥≥) and (i, k) to (i≥, k≥≥) for some j≥≥, k≥≥ ∈ Qn with j≥≥ ⇒= k≥≥.

Symmetric Groups and Quotient Complexity of Boolean Operations 11

Now note that π2({x ∈ H : π1(x)(i≥) = i≥}) is either Sn or An by Lemma 3, and
thus acts doubly transitively on Qn. It follows that there is some s≥ ∈ H such
that s≥ sends (i≥, j≥≥) to (i≥, j≥) and (i≥, k≥≥) to (i≥, k≥). Then s≥s sends {(i, j), (i, k)}
to {(i≥, j≥), (i≥, k≥)} and thus C2 is strongly connected.

Finally, consider pairs {(i, j), (k, j)} and {(i≥, j≥), (k≥, j≥)} with i, k distinct and
i≥, k≥ distinct. From the argument used in proving C1 is strongly connected, we
see that we can find s ∈ H that sends {(i, j), (k, j)} to {(i≥, j≥≥), (k≥, j≥≥)} for some
j≥≥. As in the proof that C1 is strongly connected, we see that the image of the
set of h ∈ H for which π1(h) stabilizes both i≥ and k≥ under π2 acts transitively
on Qn; hence we can find s≥ ∈ H that sends {(i≥, j≥≥), (k≥, j≥≥)} to {(i≥, j≥), (k≥, j≥)}.
Thus C3 is strongly connected. ⊇�

Corollary 1. Let m and n be positive integers with n ≥ m ≥ 2, n ≥ 5, and
(m,n) ⇒= (6, 6), and let A = (Qm, Σ, δ, 0) and A≥ = (Qn, Σ, δ≥, 0) be semiau-
tomata with transition semigroups that are the symmetric groups of degrees m
and n. Suppose that the direct product A ×A≥ is connected and assume further
that sets of final states are added to A and A≥ and that ◦ is a proper binary
boolean function that defines the set of final states of the direct product P. Then
P is minimal for any such ◦.

Proof. By Lemma 4, the pair graph of A × A≥ has three strongly connected
components: C1 = {{(i, j), (k, Ω)} : i ⇒= k, j ⇒= Ω}, C2 = {{(i, j), (i, Ω)} : j ⇒= Ω},
and C3 = {{(i, j), (k, j)} : i ⇒= k}.

For (i, j) ∈ Qm × Qn, define f((i, j)) to be 1 if (i, j) is a final state, and 0,
otherwise. We first claim that C1 has a distinguishing pair, that is, there are pairs
(i, j) and (k, Ω) in Qm ×Qn with i ⇒= k and j ⇒= Ω such that f((i, j)) ⇒= f((k, Ω)).

Suppose no distinguishing pair exists in C1. Assume without loss of generality
that f((0, 0)) = 0. then f((i, j)) = 0 whenever i ⇒= 0 and j ⇒= 0. Given k ∈ Qn,
we pick Ω ∈ Qn \ {0, k}; this is always possible since n ≥ 3. Since {(0, k), (1, Ω)}
is in C1 and we have assumed that C1 has no distinguishing pairs, we must have
f((0, k)) = f((1, Ω)). But f(1, Ω) must be 0, for otherwise we would have the
distinguishing pair {(0, 0), (1, Ω)}. Hence f((0, k)) = f((1, Ω)) = 0. Thus we have
f((i, j)) = 0 for every i ∈ Qm and every j ∈ Qn \ {0}. Similarly, we must have
f((i, 0)) = f((0, 1)) = 0 for i ∈ Qm \ {0}, and hence f is the zero function, a
contradiction.

The fact that C2 and C3 both have distinguishing pairs follows from the fact
that ◦ is a proper boolean function. By Lemma 1, we conclude that A × A≥ is
uniformly minimal. ⊇�

We have proved our main result in the case that m ≤ n and n ≥ 5 if
(m,n) ⇒= (6, 6). By symmetry we may always assume that m ≤ n. The case
(m,n) = (2, 2) was handled in Example 2, that of (m,n) = (3, 4), in Exam-
ple 3, and that of (m,n) = (4, 4), in Example 4. So the only cases to consider
are those with (m,n) ∈ {(2, 3), (2, 4), (3, 3), (6, 6)}; these cases are covered at
http://arxiv.org/abs/1310.1841.

12 J. Bell et al.

6 Conclusions

We have shown that if the inputs of two DFAs induce transformations that con-
stitute non-conjugate bases of symmetric groups, then the quotient complexity
of all non-trivial boolean operations on the languages accepted by the DFAs is
maximal, except for a few special cases when the sizes of the DFAs are small.
We believe that other similar results are possible and deserve further study.

Acknowledgments. This work was supported by the Natural Sciences and En-
gineering Research Council of Canada under grants No. 611456 and OGP0000871,
by the European Regional Development Fund through the programme COM-
PETE, and by the Portuguese Government through the FCT under projects
PEst-C/MAT/UI0144/2011 and CANTE-PTDC/EIA-CCO/101904/2008. We
thank Gareth Davies for his careful proofreading and constructive comments.

References

1. Brzozowski, J.: Quotient complexity of regular languages. J. Autom. Lang.
Comb. 15(1/2), 71–89 (2010)

2. Brzozowski, J.: In search of the most complex regular languages. Int. J. Found.
Comput. Sc. 24(6), 691–708 (2013)

3. Brzozowski, J., Davies, G.: Maximally atomic languages. In: Ésik, Z., Fülop, Z.
(eds.) 14th International Conference Automata and Formal Languages, AFL 2014,
Szeged, Hungary, May 27-29. EPTCS, vol. 151, pp. 151–161 (2014)

4. Brzozowski, J., Davies, G.: Most complex regular right-ideal languages. In: 16th
International Workshop on Descriptional Complexity of Formal Systems, DCFS
2014, Turku, Finland, August 5-8. LNCS 8614 (to appear, 2014)

5. Brzozowski, J., Tamm, H.: Complexity of atoms of regular languages. Int. J. Found.
Comput. Sc. 24(7), 1009–1027 (2013)

6. Brzozowski, J., Tamm, H.: Theory of átomata. Theoret. Comput. Sci. (article in
press, 2014)

7. Liu, G., Martin-Vide, C., Salomaa, A., Yu, S.: State complexity of basic language
operations combined with reversal. Inform. and Comput. 206, 1178–1186 (2008)

8. Maslov, A.N.: Estimates of the number of states of finite automata. Dokl. Akad.
Nauk SSSR 194, 1266–1268 (1970) (Russian); English Translation: Soviet Math.
Dokl. 11, 1373–1375 (1970)

9. Piccard, S.: Sur les bases du groupe symétrique. Časopis Pro Pěstováńı Matematiky
a Fysiky 68(1), 15–30 (1939)

10. Restivo, A., Vaglica, R.: A graph theoretic approach to automata minimality. The-
oret. Comput. Sc. 429, 282–291 (2012)

11. Rotman, J.: The Theory of Groups: An Introduction. Allyn and Bacon, Inc., Boston
(1965)

12. Salomaa, A., Wood, D., Yu, S.: On the state complexity of reversals of regular
languages. Theoret. Comput. Sci. 320, 315–329 (2004)

13. Suzuki, M.: Group Theory, vol. 1. Springer, Berlin (1982)
14. Wilson, R.: The Finite Simple Groups. Springer, Berlin (2009)
15. Yu, S.: State complexity of regular languages. J. Autom. Lang. Comb. 6, 221–234

(2001)
16. Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations

on regular languages. Theoret. Comput. Sci. 125(2), 315–328 (1994)

Handling Infinitely Branching WSTS�

Michael Blondin1, Alain Finkel2, and Pierre McKenzie1

1 Université de Montréal and ENS Cachan
{blondimi,mckenzie}@iro.umontreal.ca

2 ENS Cachan
alain.finkel@lsv.ens-cachan.fr

Abstract. Most decidability results concerning well-structured transi-
tion systems apply to the finitely branching variant. Yet some models
(inserting automata, ω-Petri nets, ...) are naturally infinitely branching.
Here we develop tools to handle infinitely branching WSTS by exploiting
the crucial property that in the (ideal) completion of a well-quasi-ordered
set, downward-closed sets are finite unions of ideals. Then, using these
tools, we derive decidability results and we delineate the undecidability
frontier in the case of the termination, the control-state maintainability
and the coverability problems. Coverability and boundedness under new
effectivity conditions are shown decidable.

1 Introduction

Well-structured transition systems (WSTS) [12,11,2] as a general class of infinite-
state systems have spawned decidability results for important problems such as
termination, boundedness, control-state maintainability and coverability. WSTS
consist of a (usually infinite) well ordered set of states, together with a monotone
transition relation. WSTS have found multiple uses : in settling the decidability
status of reachability and coverability for graph transformation systems [4,22],
in the forward analysis of depth-bounded processes [26,27], in the verification of
parameterized protocols [10] and the verification of multi-threaded asynchronous
software [21]. WSTS remain under development and are actively being investi-
gated [13,14,18,25,5,24].

Most existing decidability results for WSTS apply to the finitely branching
variant. However, WSTS such as inserting FIFO automata [7], inserting au-
tomata [6] and ω-Petri nets [17], that can arbitrarily increase some values, are
intrinsically infinitely branching, and any finitely branching WSTS parameter-
ized with an infinite set of initial states (such as broadcast protocols [10]) also
inherits an infinitely branching state. For instance, Geeraerts, Heußner, Praveen
and Raskin argue in [17] that parametric concurrent systems with dynamic

� Supported by the French Agence Nationale de la Recherche, REACHARD (grant
ANR-11-BS02-001), by the Fonds québécois de la recherche sur la nature et les
technologies, by the Natural Sciences and Engineering Research Council of Canada
and by the “Chaire DIGITEO, ENS Cachan - École Polytechnique”.

J. Esparza et al. (Eds.): ICALP 2014, Part II, LNCS 8573, pp. 13–25, 2014.
c∗ Springer-Verlag Berlin Heidelberg 2014

14 M. Blondin, A. Finkel, and P. McKenzie

thread creation can naturally be modelled by some classes of infinitely branch-
ing systems, like ω-Petri nets, i.e. Petri net with arcs that can consume/create
arbitrarily many tokens.

An outcome of our work is that the finite tree construction technique can be
recovered, even in the infinitely branching case, for the purpose of deciding the
boundedness problem for example.

The primary motivation for this paper is to explore the decidability status
of the termination, boundedness, control-state maintainability and coverability
problems for infinitely branching (general) WSTS. For the coverability problem,
known to be decidable for WSTS fulfilling the so-called prebasis computability
hypothesis [2], we wish to draw from the recent algebra-theoretic characteriza-
tions of downward-closed sets [13] and conceive of a post-oriented computability
hypothesis suitable for the design of a forward algorithm. (Indeed, forward algo-
rithms are arguably more intuitive than backward algorithms and post-oriented
computability more easily verified than prebasis computability, where prebasis
computability means computability of a finite basis of the upward closure of the
set of immediate predecessors, the testing of which is provably undecidable in
some WSTS.) Our contributions are the following:

1. As technical tools, we simplify and extend the analysis of the completion of
a general WSTS and we relate the behavior of a WSTS to that of its com-
pletion. In particular, we provide a general presentation of the completion
that is much less daunting than the presentations currently available in the
literature. This sets the stage for exploiting the main property of the com-
pletion of a WSTS, namely, the expressibility of any downward-closed set as
a (unique, as shown here) finite union of ideals, in the design of algorithms.

2. We uncover a new termination property (called strong termination) that
is computationally equivalent to the usual termination property for finitely
branching WSTS but that subtly differs from it in the presence of infinite
branching. Indeed, we exhibit WSTS for which strong termination is decid-
able yet the usual termination is undecidable. A similar subtle issue arises
as well in our generalization of the maintainability problem to infinitely
branching.

3. We generalize most decidability results mentioned for finitely branching
WSTS earlier to the infinitely branching case. This requires carefully tracking
the effectiveness and the monotonicity conditions which support decidability.
When possible, we delineate the frontier between decidability for a problem
and the undecidabilty that results from dropping one of these conditions.
The new decidability results for (strong) termination and (strong) maintain-
ability exploit the completion. The new algorithm for coverability uses a
forward strategy coupled with a post-oriented computability hypothesis.

Our work further highlights the naturalness of the class of ω2-WSTS. Indeed
our decidability results apply in one blow to known classes of infinitely branching
WSTS like inserting FIFO automata [7], inserting automata [6], ω-Petri nets [17]
and broadcast protocols [10].

Handling Infinitely Branching WSTS 15

Section 2 below introduces notation and preliminaries. Section 3 surveys
known decidabilities and exhibits some undecidabilities. Section 4 develops our
tools to handle infinite branching. Section 5 contains the bulk of our decidability
results for infinitely branching WSTS. Section 6 summarizes our contribution
and suggests future work.

2 WSTS

Let X be a set and ∈ a quasi-ordering on X (∈ reflexive and transitive), then ∈
is a well-quasi-ordering (wqo) if for every infinite sequence x0, x1, . . . of elements
xn ≡ X , there exist i < j such that xi ∈ xj . It is well-known that Nd is well-
quasi-ordered under (x1, . . . , xd) ∈Nd (x′

1, . . . , x
′
d) where the latter means that

⊆i xi ∈ x′
i (Dickson’s Lemma). We extend N to Nω by adding an element ω

verifying ω ↔Nω x for all x ≡ Nω. The set Nd
ω is also well-quasi-ordered. We

simply write ∈ for ∈N and ∈Nω when there is no ambiguity.
Recall that a WSTS is an ordered transition system S = (X,−⇔S ,∈) such that

∈ is a well-quasi-ordering on X , and the relation −⇔S ⊂ X ×X is monotone (or
compatible) with ∈ meaning that for all x, y, x′ such that x −⇔S y and x ∈ x′,
there exists a state y′ such that x′ ≥−⇔S y′ and y ∈ y′. WSTS thus satisfy a
general monotony by definition. There exist other variations of monotony:

strong: x −⇔S y ≥ x′ ↔ x =⇒ x′ −⇔S y′ ↔ y,

stuttering: x −⇔S y ≥ x′ ↔ x =⇒ x′ = x′
0 −⇔S . . . −⇔S x′

k −⇔S y′ ↔ y, ⊆i x′
i ↔ x,

transitive: x −⇔S y ≥ x′ ↔ x =⇒ x′ +−⇔S y′ ↔ y,

strict: x −⇔S y ≥ x′ > x =⇒ x′ ≥−⇔S y′ > y.

Strong monotony implies stuttering monotony which implies transitive monotony.
We denote, as usual, PreS(x) = {y : y −⇔S x}, PostS(x) = {y : x −⇔S y},

PreS(T) =
⋃

x∈T PreS(x) and PostS(T) =
⋃

x∈T PostS(x).
Throughout this paper, WSTS will be assumed effective in the following sense:

(1) the set of states X is r.e. (which suffices to compute PostS(x) when |PostS(x)|
is known and finite); (2) the transition relation is decidable, i.e., the WSTS comes
equipped with an algorithm that can decide, given x, y ≡ X , whether x −⇔S y
or equivalently whether y ≡ PostS(x); (3) the quasi-ordering ∈ is decidable,
i.e., the WSTS also comes equipped with an algorithm that can decide, given
x, y ≡ X , whether x ∈ y. Forward analysis techniques for (finitely branching)
WSTS typically compute the finite set PostS(x), which is made possible by
assuming PostS computable. Because our new setting allows PostS(x) to be
infinite, we need to adapt this assumption. Our “post-effectivity” notion mildly
weakens the usual hypothesis of “being able to compute PostS”:

Definition 2.1. A transition system S = (X,−⇔S) is post-effective if S is ef-
fective and f : X ⇔ N ◦ {“infinite”} given by f(x) = |PostS(x)| is computable.

Transition systems defined by a finite set of recursive functions are typical
examples of finitely branching systems and they will be called functional. Let Fd

16 M. Blondin, A. Finkel, and P. McKenzie

denote the set of WSTS whose transitions relation is prescribed by finitely many
increasing functions f from Nd to Nd (i.e. x ∈ y =⇒ f(x) ∈ f(y)) which are
also recursive (i.e., given by halting Turing machines); these WSTS are finitely
branching and post-effective. Inserting FIFO automata [7], inserting automata
[6] and ω-Petri nets [17] are post-effective infinitely branching WSTS.

Recall that an effective ordered transition system is said essentially finite
branching [2] if the subset maxpost(x) of maximal elements of PostS(x) is non
empty, finite and computable. Some WSTS, e.g. ω-Petri nets, are post-effective
but are not essentially finite branching and conversely, we can exhibit essentially
finite branching WSTS that are not post-effective.

Post-effectivity (Definition 2.1) is a weaker notion than “having a finite and
computable PostS”. The weaker notion does imply “computable PostS” for ef-
fective WSTS that are finitely branching. Hence it is natural to ask whether the
finitely branching property is decidable for post-effective WSTS. It is not:

Proposition 2.2. Testing, given a post-effective WSTS S and x0 ≡ X, whether
there exists an execution x0

≥−⇔S x such that PostS(x) is infinite is undecidable.

Let ≤T and →T stand respectively for the set of states that are ↔ and ∈
some state in T . A set T is upward closed if T = ≤T and downward closed if
T = →T . An upward basis of a set T is a set B such that T = ≤B. An ideal I
is a downward closed set that is also directed, i.e., ⊆a, b ≡ I, ∅c ≡ I such that
a ∈ c and b ∈ c. We note Ideals(X) the set of ideals of an ordered set X . A
directed complete partial ordering (dcpo) is an ordered set (X,∈) such that every
directed set D ⊂ X has a least upper bound (lub) in X : for instance, (N,∈),
with the usual notations, is not a dcpo since the directed set N has no lub in
N; if we add the lub ω to N, then (Nω,∈) is a dcpo. There is a way to add all
lubs to any ordered set (X,∈), that is called the ideal completion, since each
element x ≡ X can be identified with → x ≡ Ideals(X) and since it is well-known
that (Ideals(X),⊂) is a dcpo [3,13]. We will consider the following problems for
WSTS, where the input to each problem is an effective WSTS S = (X,−⇔S ,∈)
and a state x0 ≡ X , together with an x ≡ X in the case of coverability, and a
set t1, . . . , tn ≡ X in the case of the maintainability problem:

– Coverability: ∅ execution x0 −⇔S x1 −⇔S . . . −⇔S xk ↔ x?
– Boundedness: Post≥S(x0) is infinite?
– Termination: ∅ infinite execution x0 −⇔S x1 −⇔S . . .?
– Strong termination: ∅k ≡ N s.t. x0 −⇔S x1 −⇔S . . . −⇔S xm =⇒ m ∈ k?
– Control-state maintainability:∅ computation (i.e. an infinite execution x0−⇔S

x1 −⇔S . . . or a finite execution x0 −⇔S x1 −⇔S . . . −⇔S xk that cannot be
further extended) such that ⊆i xi ≡ ≤ {t1, . . . , tn}?

– Strong control-state maintainability: ⊆k ≡ N, ∅ execution x0 −⇔S x1 −⇔S

. . . −⇔S xm such that m ↔ k and ⊆i xi ≡ ≤ {t1, . . . , tn}?

3 Decidability for WSTS

Recall that a WSTS S = (X,−⇔S ,∈) has a computable prebasis [11,2] if the
WSTS comes equipped with a computable function that maps each x ≡ X to

Handling Infinitely Branching WSTS 17

some finite basis of the upward closed set ≤PreS(≤x). We summarize the four
main decidability results known about (essentially) finite branching WSTS:

Theorem 3.1 ([12,11,2]).

– Termination is decidable for post-effective finitely branching WSTS with
transitive monotony [12], and for essentially finite branching effective WSTS
with strong monotony [2].

– Boundedness is decidable for post-effective finitely branching WSTS with
strict transitive monotony and well partial ordering [11].

– Control-state maintainability is decidable for post-effective finitely branching
WSTS with stuttering monotony [11], and for essentially finite branching
effective WSTS with strong monotony [2].

– Coverability is decidable for effective WSTS with prebasis computability [11,2].

Theorem 3.1 states results exactly as they appear in the literature, but it
would not be difficult to unify some of the hypotheses made here. For instance,
termination can be shown decidable for essentially finite branching effective
WSTS with transitive monotony. We defer a systematic treatment of this unifi-
cation to a future version of the present paper.

Our goals in this paper are to extend the decidability of termination, bound-
edness and maintainability given by Theorem 3.1 to the more general case of
infinitely branching WSTS. Our goal for the coverability problem is to investi-
gate alternative effectivity hypotheses. We first note:

Theorem 3.2. Termination is undecidable for post-effective WSTS with tran-
sitive (and even strong and strict) monotony.

In Sect. 5, we prove boundedness decidable for post-effective infinitely branch-
ing WSTS with strict monotony and well partial ordering. By contrast, as exem-
plified by Petri nets with Reset [8], boundedness is well known to be undecidable
for post-effective finitely branching WSTS with non-strict yet transitive (even
strong) monotony and with well partial ordering. Concerning maintainability,

Theorem 3.3. Control-state maintainability is undecidable for post-effective
WSTS with stuttering (and even strong and strict) monotony.

We now turn to coverability. Existing proofs that coverability is decidable
need the prebasis hypothesis: Abdulla et al. use a backward algorithm [11,1]
that computes a finite basis of ≤Pre≥(≤ x) and Geeraerts et al. use a forward
algorithm [18] that requires further hypotheses (i.e. restriction to an adequate
domain of limits, a mathematical hypothesis subsequently shown superfluous
[16,13]). Note that coverability for post-effective (even finitely branching) WSTS
becomes undecidable without the prebasis hypothesis, as is the case for instance
for WSTS in F2 (recall definition from Sect 2, i.e., WSTS composed of recursive
increasing functions from N2 to N2) [15].

Prebasis computability is sufficient to ensure decidability of coverability. How-
ever, as we show in Prop. 3.4 below, prebasis computability is not necessary:
there is a class of WSTS, namely F1, for which coverability is decidable yet no
prebasis function is computable.

18 M. Blondin, A. Finkel, and P. McKenzie

Proposition 3.4. Coverability for F1 is decidable, but no algorithm that takes
as input S ≡ F1 and x ≡ N can systematically output a finite basis of ≤PreS(≤ x).

4 Handling Infinite Branching Finitely

In this section we prepare the ground for developping decision procedures ca-
pable of handling, under natural hypotheses, infinitely branching systems. First
we would like the ability to compute finite representations of each term in the
sequence → x, →PostS(→ x), →PostS(→PostS(→ x)), This requires finitely repre-
senting downward closed sets, which is possible for wqo. This section describes
how this is done and presents effective tools for doing it.

4.1 Downward Closed Sets and Ideals

It has long been known that in a wqo, any upward closed set has a finite basis;
this is Dickson’s lemma in (Nk,∈) and it is Higman’s lemma in (Σ≥,∈) when ∈
is the subword relation. It has recently been discovered that a similar situation
occurs for downward closed sets in wqo.

Theorem 4.1. [13] Any downward closed subset in a wqo X is a finite union
of ideals.

The original proof of Theorem 4.1 needs a technical bridge between topological
completions and ordering completions of a set. A short and self-contained proof
of Theorem 4.1 was given by Goubault-Larrecq [19].

Theorem 4.3 below slightly refines Theorem 4.1. It shows that any downward
closed set uniquely decomposes as a certain finite union of ideals. This requires:

Proposition 4.2. Any ideal contained in a finite union of ideals is contained in
one of these ideals. In particular, testing the inclusion of an ideal I in a union
J1 ◦J2 ◦ ...◦Jk of ideals is equivalent to testing whether I ⊂ Jj for some j such
that 1 ∈ j ∈ k.

A finite union D =
⋃m

i=1 Ii of ideals will be said to canonically decompose D if
the Ii’s are pairwise incomparable under inclusion. This terminology is justified:

Theorem 4.3. Any downward closed subset in a wqo X admits a unique decom-
position as a finite union of pairwise incomparable ideals. Therefore, a downward
closed subset decomposes canonically as the union of its maximal ideals.

Ideals in a wqo cannot necessarily be manipulated effectively. For instance,
there exist some ordered countable sets X such that Ideals(X) is not countable.
Consider X = Σ≥, with the prefix ordering. Then Ideals(X) is isomorphic to
Σ≥ ◦Σω and is not countable when Σ contains at least two letters. However:

Proposition 4.4. A wqo X is countable iff Ideals(X) is countable.

Fortunately, inclusion between ideals is decidable for well-quasi-ordered sets
obtained by closing finite sets and closing naturals numbers under finite prod-
ucts, disjoint sums, multiset operator and Kleene star (respectively with their
natural associated orderings) [13]. Therefore inclusion of ideals of Nd and inclu-
sion of ideals of Σ≥ are decidable.

Handling Infinitely Branching WSTS 19

4.2 Completion of WSTS

Recall that for a functional WSTS S = (X,
F−⇔,∈) where F is a finite set of

increasing recursive functions f : X ⇔ X , the functional completion [14] is

defined by S = (X,
F−⇔,⊂) where X = Ideals(X) and F is the set of functions

f : Ideals(X) ⇔ Ideals(X) defined by f(I)
def
= → f(I) for every f ≡ F . We note

that f(I) is an ideal if I is an ideal. Here we extend the completion process to
any (infinitely) branching WSTS:

Definition 4.5. The completion Ŝ of a WSTS S = (X,−⇔S ,∈) is the ordered

transition system Ŝ = (X̂,−⇔
̂S ,⊂) where X̂ = Ideals(X), and I −⇔

̂S J if J
appears in the canonical decomposition of →Post(I).

Let S = (X,
F−⇔,∈) be a functional WSTS, then the following relation holds

between S, Ŝ and S for every ideal I ≡ Ideals(X):

PostS(I) =
⋃
f∈F

f(I) =
⋃
f∈F

→ f(I) =
⋃

J∈Post
̂S(I)

J = →PostS(I).

Another good news is that:

Proposition 4.6. The completion Ŝ of any WSTS S is finitely branching.

Moreover the completion computes exactly the downward closure of the reach-
ability set of its original system.

Proposition 4.7. Let S = (X,−⇔S ,∈) be a WSTS and Post≥
̂S
(→x) = {J1, . . . ,

Jn}. We have →Post≥S(x) = J1 ◦ . . . ◦ Jn.

A natural question that arises is whether the completion of a WSTS is also a
WSTS. It does indeed have monotony:

Proposition 4.8. Let S = (X,−⇔S ,∈) then Ŝ has strong monotony.

However, (Ideals(X),⊂) is not always a wqo and therefore the completion is
not always a WSTS. In fact, it is known to be a wqo iff (X,∈) is a so-called
ω2-wqo, a notion we will not define here. In general, a wqo is not necessarily a
ω2-wqo and the typical counter-example is the Rado ordering [20]. Now, a result
from Jancar [20] simplifies the characterization of ω2-wqos as follows: a wqo ∈
is a ω2-wqo iff ∈# is a wqo, where ∈# is the Hoare ordering defined by A ∈# B
iff ≤ B ⊂≤ A.

Extending the terminology to WSTS, we obtain the following result general-
izing the known result for functional WSTS [14]:

Theorem 4.9. Let S be a WSTS, then Ŝ is a WSTS iff S is a ω2-WSTS.

We end this section with the observations that a WSTS inherits the strict
monotony of its completion but not conversely, and that post-effectivity of a
WSTS is independent from the post-effectivity of its completion.

20 M. Blondin, A. Finkel, and P. McKenzie

Proposition 4.10. Let (X,−⇔S ,∈) be a WSTS. If Ŝ has strict monotony, then

so does S. However, if S has strict monotony then Ŝ doesn’t necessarily have it.

Proposition 4.11. There exists a post-effective WSTS whose completion is not
post-effective. Conversely, there exists a non post-effective WSTS whose comple-
tion is post-effective.

4.3 Post-effectiveness of Completions in Concrete Examples

An affine net S is a WSTS in Fd in which the recursive functions are affine
and a Petri net can be seen as an affine net where all matrices are the identity.
An ω-Petri net [17] is an (extended) Petri net in which arcs can be labelled by
positive integers or by ω. The completions of affine nets, ω-Petri nets and Lossy
Channel Systems can be shown post-effective.

5 Decidability in Infinitely Branching Post-effective
WSTS

5.1 (Strong) Termination

We are able to strengthen the hypotheses of Theorem 3.2 and to obtain: ter-
mination is undecidable, even for post-effective ω2-WSTS with strong and strict
monotony, and with post-effective completion by reducing from structural ter-
mination for Transfer Petri nets [9].

When a WSTS is infinitely branching, its termination problem differs in a
subtle way from its strong termination problem. We show the latter decidable
under suitable hypotheses:

Theorem 5.1. Strong termination is decidable for ω2-WSTS with transitive
monotony and post-effective completion.

Proving Theorem 5.1 requires comparing executions in a system with execu-
tions in its completion:

Proposition 5.2. Let S = (X,−⇔S ,∈) be a WSTS, and I, J ≡ X̂. If I
k−⇔

̂S J ,
then for every xJ ≡ J there exists xI ≡ I, y ≡ ≤xJ and k′ ≡ N such that

xI
k′−⇔S y. Moreover, if S has transitive monotony then k′ ↔ k; if S has strong

monotony then k′ = k.

Proposition 5.3. Let S = (X,−⇔S ,∈) be a WSTS and x, y ≡ X. If x
k−⇔S y,

then for every ideal I ⊇ →x there exists an ideal J ⊇ → y such that I
k−⇔

̂S J .

Proof sketch of Theorem 5.1. Consider a ω2-WSTS S = (X,−⇔S ,∈) such that Ŝ
is post-effective. Finkel and Schnoebelen [11, Theorem 4.6] show that termina-
tion, and thus strong termination, is decidable for post-effective WSTS having

Handling Infinitely Branching WSTS 21

transitive monotony. By hypothesis, Ŝ is a WSTS and Ŝ has strong (and tran-

sitive) monotony by Prop. 4.8. Therefore, strong termination for Ŝ is decidable.
From Prop. 5.2 and Prop. 5.3, no bound on the length of executions from x0

exists in S iff no bound on the length of executions from → x0 exists in Ŝ. Hence
decidability of strong termination from x0 in S follows from being able to decide
strong termination from →x0 in Ŝ. Note that we have implicitly assumed that a
representation of → x0 can be effectively computed. �∪

5.2 Boundedness

Drawing from [8], we know that boundedness is undecidable, even for finitely
branching post-effective ω2-WSTS with strong (but not strict) monotony and
post-effective completion. Petri net with reset arcs are such a class.

It is known that for finitely branching post-effective WSTS with strict tran-
sitive monotony and a well partial ordering (wpo), the boundedness problem is
decidable [11]. We generalize this result to (possibly) infinitely branching WSTS
and we note that the hypothesis of transitive monotony was not necessary in the
proof of [11]. The proof follows [11] by building a finite reachability tree, with
the extra step of testing whether PostS(x) is infinite for each new node.

Theorem 5.4. Boundedness is decidable for post-effective WSTS with strict
monotony and with well partial ordering.

5.3 (Strong) Control-State Maintainability

By a reduction from the termination problem, the hypotheses of Theorem 3.3
can be strengthened: control-state maintainability is undecidable, even for post-
effective ω2-WSTS with strong and strict monotony, and with post-effective com-
pletion. By contrast, the strong variant of the problem introduced in this paper
is decidable, under suitable hypotheses, for infinitely branching WSTS:

Theorem 5.5. Strong control-state maintainability is decidable for ω2-WSTS
with strong monotony and a post-effective completion.

Before proving Theorem 5.5, we need Prop. 5.6 and Prop. 5.7 to relate covering
executions in a WSTS to covering executions in its completion.

Proposition 5.6. Let S = (X,−⇔S ,∈) be a WSTS with strong monotony and
{t1, . . . , tn} ⊂ X. Let I0 −⇔

̂S I1 −⇔
̂S . . . −⇔

̂S Ik be an execution such that for all
0 ∈ j ∈ k we have Ij ≡ ≤

̂X {→ t1, . . . , → tn}. Then for every y ≡ Ik there exists
an execution x0 −⇔S x1 −⇔S . . . −⇔S xk such that x0 ≡ I0, xk ≡ ≤ y and for all
0 ∈ j ∈ k we have xj ≡ ≤ {t1, . . . , tn}.

Proof. Let I0 be an execution of length 0 in Ŝ as described in the proposition,
and let y ≡ I0. By hypothesis, there exists ti such that → ti ⊂ I0 and thus ti ≡ I0.
Since I0 is an ideal, there exists x0 ≡ I0 such that x0 ↔ y and x0 ↔ ti. Therefore
the execution x0 of length 0 in S meets all requirements.

22 M. Blondin, A. Finkel, and P. McKenzie

Let I0 −⇔
̂S I1 −⇔

̂S . . . −⇔
̂S Ik be an execution of length k > 0 in Ŝ as described

in the proposition. By induction, for every y ≡ Ik there exists an execution
x1 −⇔S x2 −⇔S . . . −⇔S xk such that x1 ≡ I1, xk ≡ ≤ y and for all 1 ∈ j ∈ k we
have xj ≡ ≤ {t1, . . . , tn}.

Since x1 ≡ I1 ⊂ →PostS(I0), there exists x0 ≡ I0 and y′ ≡ ≤x1 such that
x0 −⇔S y′. By hypothesis, there exists ti such that → ti ⊂ I0 and thus ti ≡ I0.
Since I0 is an ideal, there exists x′

0 ≡ I0 such that x′
0 ↔ x0 and x0 ↔ ti. By

strong monotony, there exists x′
1 ↔ y′ such that x′

0 −⇔S x′
1.

Moreover, applying strong monotony to x1 −⇔S x2 −⇔S . . . −⇔S xk with x′
1 ↔

x1, we obtain an execution x′
1 −⇔S x′

2 −⇔S . . . −⇔S x′
k such that for all 1 ∈ j ∈ k

we have x′
j ↔ xj . Therefore, x′

0 −⇔S x′
1 −⇔S . . . −⇔S x′

k, x′
0 ≡ I0, x′

k ≡ ≤ y and for
all 0 ∈ j ∈ k we have x′

j ≡ ≤ {t1, . . . , tn}. �∪

Proposition 5.7. Let S = (X,−⇔S ,∈) be a WSTS and {t1, . . . , tn} ⊂ X. Let
x0 −⇔S x1 −⇔S . . . −⇔S xk be an execution such that for all 0 ∈ j ∈ k we have
xi ≡ ≤ {t1, . . . , tn}. Then for every ideal I0 ⊇ →x0 there exists an execution
I0 −⇔

̂S I1 −⇔
̂S . . . −⇔

̂S Ik such that Ik ⊇ →xk and for all 0 ∈ j ∈ k we have
Ij ≡ ≤

̂X {→ t1, . . . , → tn}.

Proof of Theorem 5.5. By Prop. 5.6 and Prop. 5.7 there exists an execution
x0 −⇔S x1 −⇔S . . . −⇔S xk such that for all 0 ∈ j ∈ k we have xj ≡ ≤ {t1, . . . , tn}
iff there exists an execution I0 −⇔

̂S I1 −⇔
̂S . . . −⇔

̂S Ik such that for all 0 ∈ i ∈ k

we have Ij ≡ ≤
̂X {→ t1, . . . , → tn}. Therefore, it suffices to solve the problem in Ŝ

with →x0 and {→ t1, . . . , → tn}.
The algorithm from [11] solving the control-state maintainability problem

for finitely branching post-effective WSTS with stuttering monotony can easily
be adapted to solve strong control-state maintainability for finitely branching
WSTS. Since Ŝ is a post-effective WSTS by hypothesis and has strong (and
stuttering) monotony by Prop. 4.8, we obtain an algorithm.

More specifically, it suffices to build the finite reachability tree of Ŝ and verify
that it contains a maximal path labelled I0, I1, . . . , Ik with Ij ≡ ≤

̂X {→ t1, . . . , → tn}
for every 0 ∈ j ∈ k and Ij ⊂ Ik for some 0 ∈ j < k. �∪

5.4 Coverability

Some classes of WSTS admit both post-effective completions and prebasis com-
putability, e.g., WSTS from Fd where the recursive increasing functions have
computable limits (called ω-well-structured nets in [15]). Therefore, coverabil-
ity was already known to be decidable for these classes. However, the following
Theorem 5.8 yields an algorithm that relies on evaluating PostS on ideals rather
than PreS on upward closed sets. Often this is more efficient, e.g., it is easier to
evaluate affine functions in Nd

ω than inverting them.

Theorem 5.8. Coverability is decidable for WSTS having a post-effective com-
pletion.

Handling Infinitely Branching WSTS 23

Proof. Let S = (X,−⇔S ,∈) be a post-effective WSTS and x0 ≡ X .
Coverability is semi-decidable by iteratively building larger portions of the

reachability tree looking for a path with some state x′ ↔ x.
We note that x is coverable from x0 in S iff there exists an ideal I ⊇ →x

reachable from→x0 in Ŝ. To prove that non-coverability is semi-decidable, one
enumerates all the downward closed sets Di (as finite unions of ideals) that are
inductive invariants, i.e., such that x0 ≡ Di and →PostS(Di) ⊂ Di. If x is not
coverable, a downward closed set Di such that x ∩≡ Di will inevitably be found.

The inclusion →PostS(Di) ⊂ Di is decidable for WSTS whose completion is
post-effective since there is an algorithm, which runs Post

̂S on Di (expressed as
the union J1◦. . .◦Jm of ideals) to obtain ideals I1, . . . , In such that →PostS(Di) =
◦1⊆i⊆m ◦I∈Post

̂S(Ji) → I = I1 ◦ . . . ◦ In. Now Prop. 4.2 says that this inclusion
I1 ◦ I2 ◦ . . . ◦ In ⊂ J1 ◦ J2 ◦ . . . ◦ Jm is decidable. �∪

The technique of enumerating inductive invariants, used in our coverabil-
ity algorithm, was already used by Pachl in 1982 to provide a witness of non-
reachability for finite automata communicating through fifo channels, having
recognizable reachability sets (Corollary 9.6 in [23]). More recently, Raskin et
al. [18,16] also used enumeration of inductive invariants to provide forward al-
gorithms for deciding coverability of WSTS. Note that their forward algorithms
use the prebasis hypothesis while we appeal to post-effective completion.

6 Conclusion and Further Work

Here we have continued the development of tools to manipulate completions of
wqos and we have applied these tools together with new ideas to deduce the fol-
lowing decidabilities: strong termination for ω2-WSTS with transitive monotony
and post-effective completion, boundedness for post-effective WSTS with strict
transitive monotony and with well partial ordering, strong control-state main-
tainability for ω2-WSTS with strong monotony and a post-effective completion
and finally, coverability for WSTS having a post-effective completion.

Future work should apply these decidabilities to parameterized WSTS and
should investigate algorithmic aspects of these decidabilities, including a com-
parison of the relative efficiencies of backward and forward strategies.

Acknowledgements. We thank the referees for helpful comments and pointers.

References

1. Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.K.: General decidability theorems
for infinite-state systems. In: LICS, pp. 313–321 (1996)

2. Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.K.: Algorithmic analysis of pro-
grams with well quasi-ordered domains. Inf. Comput. 160(1-2), 109–127 (2000)

3. Abramsky, S., Jung, A.: Domain theory. In: Handbook of Logic in Comp. Sci.,
vol. 3, pp. 1–168. Oxford University Press (1994)

24 M. Blondin, A. Finkel, and P. McKenzie

4. Bertrand, N., Delzanno, G., König, B., Sangnier, A., Stückrath, J.: On the decid-
ability status of reachability and coverability in graph transformation systems. In:
RTA, pp. 101–116 (2012)

5. Bertrand, N., Schnoebelen, P.: Computable fixpoints in well-structured symbolic
model checking. Formal Methods in System Design 43(2), 233–267 (2013)

6. Bouyer, P., Markey, N., Ouaknine, J., Schnoebelen, P., Worrell, J.: On termination
and invariance for faulty channel systems. FAC 24(4-6), 595–607 (2012)

7. Cécé, G., Finkel, A., Iyer, S.P.: Unreliable channels are easier to verify than perfect
channels. Inf. Comput. 124(1), 20–31 (1996)

8. Dufourd, C., Finkel, A., Schnoebelen, P.: Reset nets between decidability and un-
decidability. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS,
vol. 1443, pp. 103–115. Springer, Heidelberg (1998)

9. Dufourd, C., Jančar, P., Schnoebelen, P.: Boundedness of reset P/T nets. In: Wie-
dermann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644,
pp. 301–310. Springer, Heidelberg (1999)

10. Esparza, J., Finkel, A., Mayr, R.: On the verification of broadcast protocols. In:
LICS, pp. 352–359 (1999)

11. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theo-
ret. Comput. Sci. 256(1–2), 63–92 (2001)

12. Finkel, A.: Reduction and covering of infinite reachability trees. Information and
Computation 89(2), 144–179 (1990)

13. Finkel, A., Goubault-Larrecq, J.: Forward analysis for WSTS, part I: Completions.
In: STACS, pp. 433–444 (2009)

14. Finkel, A., Goubault-Larrecq, J.: Forward analysis for WSTS, Part II: Com-
plete WSTS. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S.,
Thomas, W. (eds.) ICALP 2009, Part II. LNCS, vol. 5556, pp. 188–199. Springer,
Heidelberg (2009)

15. Finkel, A., McKenzie, P., Picaronny, C.: A well-structured framework for analysing
Petri net extensions. Information and Computation 195(1-2), 1–29 (2004)

16. Ganty, P., Raskin, J.-F., Van Begin, L.: A complete abstract interpretation frame-
work for coverability properties of WSTS. In: Emerson, E.A., Namjoshi, K.S. (eds.)
VMCAI 2006. LNCS, vol. 3855, pp. 49–64. Springer, Heidelberg (2006)

17. Geeraerts, G., Heußner, A., Praveen, M., Raskin, J.F.: ω-Petri nets. In: Petri Nets,
pp. 49–69 (2013)

18. Geeraerts, G., Raskin, J.F., Begin, L.V.: Expand, enlarge and check: New algo-
rithms for the coverability problem of WSTS. JCSS 72(1), 180–203 (2006)

19. Goubault-Larrecq, J., Schnoebelen, P.: Personal communication (October 2013)
20. Jancar, P.: A note on well quasi-orderings for powersets. Inf. Process. Lett. 72(5-6),

155–160 (1999)
21. Kaiser, A., Kroening, D., Wahl, T.: Efficient coverability analysis by proof mini-

mization. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454,
pp. 500–515. Springer, Heidelberg (2012)

22. König, B., Stückrath, J.: Well-structured graph transformation systems with neg-
ative application conditions. In: Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg,
G. (eds.) ICGT 2012. LNCS, vol. 7562, pp. 81–95. Springer, Heidelberg (2012)

23. Pachl, J.K.: Reachability problems for communicating finite state machines. Tech-
nical Report CS-82-12, University of Waterloo (1982)

24. Schmitz, S., Schnoebelen, P.: Multiply-recursive upper bounds with Higman’s
lemma. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS,
vol. 6756, pp. 441–452. Springer, Heidelberg (2011)

Handling Infinitely Branching WSTS 25

25. Schmitz, S., Schnoebelen, P.: The power of well-structured systems. In: D’Argenio,
P.R., Melgratti, H. (eds.) CONCUR 2013 – Concurrency Theory. LNCS, vol. 8052,
pp. 5–24. Springer, Heidelberg (2013)

26. Wies, T., Zufferey, D., Henzinger, T.A.: Forward analysis of depth-bounded pro-
cesses. In: Ong, L. (ed.) FOSSACS 2010. LNCS, vol. 6014, pp. 94–108. Springer,
Heidelberg (2010)

27. Zufferey, D., Wies, T., Henzinger, T.A.: Ideal abstractions for well-structured
transition systems. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS,
vol. 7148, pp. 445–460. Springer, Heidelberg (2012)

Transducers with Origin Information

Mikofflaj BojańczykΣ

University of Warsaw

Abstract. Call a string-to-string function regular if it can be realised by
one of the following equivalent models: mso transductions, two-way
deterministic automata with output, and streaming transducers with reg-
isters. This paper proposes to treat origin information as part of the seman-
tics of a regular string-to-string function. With such semantics, the model
admits a machine-independent characterisation, Angluin-style learning in
polynomial time, as well as effective characterisations of natural subclasses
such as one-way transducers or first-order definable transducers.

This paper is about string-to-string functions which can be described by deter-
ministic two-way automata with output [AU70]. As shown in [EH01], this model
is equivalent to mso definable string transductions. Another equivalent model,
used in [AC10], is a deterministic one-way automaton with registers that store
parts of the output1. Examples of such functions include: duplication w ∈≡ ww;
reversing w ∈≡ wR; a function w ∈≡ wwR which maps an input to a palindrome
whose first half is w; and a function which duplicates inputs of even length and
reverses inputs of odd length. As witnessed by the multiple equivalent definitions,
this class of string-to-string function is robust, and therefore, following [AC10],
we call it the class of regular string-to-string functions. Regular string-to-string
functions have good closure properties. For instance, if f and g are regular,
then the composition w ∈≡ f(g(w)) is also regular, which is straightforward if
the mso definition is used, but nontrivial if the two-way automata definition is
used [CJ77]. Also the concatenation w ∈≡ f(w)·g(w) is regular, which is apparent
in any of the three definitions. Equivalence of regular string-to-string functions
is decidable, as was shown in [Gur82] using the two-way automata definition.

Origins. The motivation of this paper is the simple observation that the mod-
els discussed above, namely deterministic two-way automata with output, mso
definable string transductions, and automata with registers, provide more than
just a function from strings to strings. In each case, one can also reconstruct
origin information, which says how positions of the output string originate from
positions in the input string. How do we reconstruct the origin of a position x in

� Supported by ERC Starting Grant “Sosna”.
1 Registers are similar to attributes in attribute grammars. The equivalence of mso
definable transductions with a form of attribute grammars, in the tree-to-tree case,
was shown in [BE00]. In the special case of string-to-string functions, the attribute
grammars from [BE00] correspond to left-to-right deterministic automata with reg-
isters and regular lookahead.

J. Esparza et al. (Eds.): ICALP 2014, Part II, LNCS 8573, pp. 26–37, 2014.
c∗ Springer-Verlag Berlin Heidelberg 2014

Transducers with Origin Information 27

an output string? In the case of a deterministic two-way automaton, this is the
position of the head when x was output. In the case of an mso definable trans-
ducer, this is the position in which x is interpreted. In the case of an automaton
with registers, this is the position in the input when the letter x was first loaded
into a register. In other words, for a transducer we can consider two semantics:
the standard semantics, where the output is a string, and the origin semantics,
where the output is a string with origin information. The second semantics is
finer in the sense that some transducers might be equivalent under the standard
semantics, but not under the origin semantics.

Tracking origin information for transducers has been studied before, for in-
stance in the programming language community, see e.g. [vDKT93]. Origin in-
formation has also been used as a technical tool in the study of tree-to-tree
transducers. Examples include [EM03], where origin information is used to char-
acterise those macro tree transducers which are mso definable, and [LMN10],
where origin information is used to get a Myhill-Nerode characterisation of de-
terministic top-down tree transducers. The novelty of this paper is that origin
information is built into the semantics of a transducer.

Origin semantics. To illustrate the diΠerence between the two semantics (stan-
dard and origin) of a string-to-string transducer, consider a transducer which
is the identity on the string ab, and which maps other strings to the empty
string. If we care about origins, then this description is incomplete, and can be
instantiated in four diΠerent ways depicted below.

a b

a b

a b

a b

a b

a b

a b

a boutput

input

For example, the second diagram above describes a two-way automaton that
first reads it input to determine if it is ab, and then moves its head to the first
position, where it outputs both a and b.

Another example is the identity function on strings over a one letter alphabet,
which can be realised by copying the input left-to-right or right-to-left. Actually
the function can be realised in infinitely many diΠerent ways once origins are
taken into account: consider an automaton that outputs n letters in input posi-
tions divisible by n, and then outputs the remainder under division by n in the
last input position.

This paper is a study of the more refined semantics. Almost any “natural”
construction for transducers will respect origin information. For instance, the
translation from [EH01] which converts an mso interpretation into a determinis-
tic two-way automaton remains correct when the origin information is taken into
account. The same holds for the other translations between the three models. In
other words, one can also talk about regular string-to-string functions with origin
information. Various closure properties, such as composition and concatenation,
are retained when origins are taken into account. Some results become easier to
prove, e.g. decidability of equivalence of string-to-string transducers.

28 M. Bojańczyk

A machine independent characterisation. The main contribution of this paper
is a machine independent characterisation of regular string-to-string functions
with origin information, which is given in Theorem 1. The characterisation is
similar to the Myhill-Nerode theorem, which says that a language L is regular
if and only if it has finitely many left derivatives of the form

w−1L
def
= {v : wv ⊆ L}.

From the usual Myhill-Nerode theorem for regular languages one obtains a
canonical device, which is the minimal deterministic automaton. The situation is
similar here. We define a notion of left and right derivatives for string-to-string
functions with origin information, and show that a function is regular if and only
if it has finitely many left and right derivatives (finitely many left derivatives is
not enough, same for right derivatives). The proof of the theorem yields a canon-
ical device, which is obtained from the function itself and not its representation
as a two-way automaton, mso transduction, or machine with registers. One use
for the canonical device is testing equivalence: two devices are equivalent if and
only if they yield the same canonical machine.

Another use of the canonical device is that it is easy to see when the under-
lying function actually belongs to a restricted class, e.g. if it can be defined by a
deterministic one-way automaton with output (see Theorem 4), or by functional
nondeterministic one-way automaton with output (see Theorem 3). A more ad-
vanced application is given in Theorem 5, which characterises the first-order
fragment of mso definable transducers with origin information.

Learning. One of the advantages of origin information is that it allows functions
to be learned, using an Angluin style algorithm. We show that a regular string-to-
string function with origin information can be learned with a number of queries
that is polynomial in the size of the canonical device. The queries are of two
types: the learner can ask for the output on a given input string; or the learner
can propose a transducer with origin information, and in case this is not the
correct one, then the teacher gives a counterexample string where the proposed
transducer produces a wrong output.

In the algorithm, the learner uses the origin information. However, it seems
that the learner’s advantage from the origin information does not come at any
significant cost to the teacher. Suppose that we want to learn a transducer inside
a text editor, e.g. the user wants to teach the text editor that she is thinking
of the transducer which replaces every = by :=. If a user is trying to show
an example of this transducer on some input, then she will probably place the
cursor on occurrences of = in the input, delete them, and retype :=, thus giving
origin information to the algorithm. A user who backspaces the whole input and
retypes a new version will possibly be thinking of some diΠerent transformation.
It would be wasteful to ignore this additional information supplied by the user.

Thank you. I would like to thank Sebastian Maneth and the anonymous ref-
erees for their valuable feedback; Anca Muscholl, Szymon Toruńczyk and Igor

Transducers with Origin Information 29

Walukiewicz for discussions about the model; and Rajeev Alur for asking the
question about a machine-independent characterisation of transducers.

1 Regular String to String Transducers

A string-to-string function is any function from strings over some fixed input
alphabet to strings over some fixed output alphabet, such that the empty string is
mapped to the empty string. A string-to-string function with origin information
is defined in the same way, but for every input string w it provides not only
an output string f(w), but also origin information, which is a function from
positions in f(w) to positions in w. We consider total functions, although the
results can easily be adapted to partial functions. In this section we recall three
equivalent models recognising string-to-string functions.

Streaming transducer. Following [AC10], a streaming transducer is defined as
follows. It has finite input and output alphabets. There is a finite set of control
states with a distinguished initial state, and a finite set of registers, with a
distinguished output register. The transition function inputs a control state and
an input letter, and outputs a new control state and a register update, which is
a sequence of register operations of two possible types:

– Concatenate. Replace the contents of register r with rs, and replace the
contents of register s by the empty string;

– Create. Replace the contents of register r with output letter b.

Finally, there is an end of input function, which maps each state to a sequence
of register operations of the first type2.

When given an input string, the transducer works as follows. It begins in the
initial state with all registers containing the empty string. Then it processes
each input letter from left to right, updating the control state and the registers
according to the transition function. Once the whole input has been processed,
the end of input function is applied to the last state, yielding another sequence
of register operations, and finally the value of the transducer is extracted from
the output register. For the origin semantics, we observe that every letter in a
register is created once using an operation of type create, and then moved around
using operations of type concatenate. The origin of an output letter is defined
to be the input position which triggered the transition whose register update
contained the appropriate create operation.

Observe that the register operations do not allow copying registers. This is
an important restriction which guarantees, among other things, that the size of
the output is linear in the size of the input.

Example 1. By composing the atomic register operations and using additional
registers, we can recover additional register operations such as “add letter b to

2 The end of input function is prohibited to produce new output letters so that the
origin information can be assigned. Alternatively, one could assume that the positions
produced by the end of input function have a special origin, “created out of nothing”.

30 M. Bojańczyk

the end of register r”, “add letter b to the beginning of register r”, “move register
r to register s, leaving r empty”. The examples use the additional operations.

Consider the function w ∈≡ wwR, where wR is the reverse of w. The transducer
has one control state and two registers, used to store w and wR. When it reads
an input letter a, the transducer adds a to the end of the register storing w and
adds a to the beginning of the register storing wR. The end of input update
concatenates both registers, and puts the result in the first register, which is the
output register.

A transducer for the duplication function is obtained in a similar way. Observe
that since the register operations do not allow copying, it is still necessary to
have two registers, both storing w.

Deterministic two-way automaton with output. A deterministic two-way au-
tomaton with output is like a deterministic two-way finite automaton, except
that every transition is additionally labelled by a string (possibly empty) over
the output alphabet. A run over an input w can be seen as a sequence of pairs
(Σ1, x1), . . . , (Σn, xn) where Σi is a transition and xi a position in the string ↔ w ⇔.
The transition Σi reads the label of position xi and the state generated by the
previous transition, and chooses the new position xi+1, a new state, and what
will be appended to the output. The output of the automaton is the concatena-
tion of the strings labelling the transitions Σ1, . . . , Σn. The origin of a position
in the output string that is generated by the transition Σi is defined to be the
position xi. To make the origin well-defined, we require that every output letter
is produced for transitions that have their source in input letters, and not over
the markers ↔ and ⇔.

mso transduction. Following [Tho97], a string over an alphabet A can be treated
as a relational structure, whose universe is the positions of the string, and which
has a binary position order predicate x < y and label predicates a(x) for the
letters of the alphabet. To transform strings into strings, we can use mso inter-
pretations. An mso interpretation is a function from structures over some fixed
input vocabulary (set of relation names with their arities) to structures over
some fixed output vocabulary, which is specified by a system of mso formulas,
as follows. There is a universe formula with one free variable over the input vo-
cabulary, which selects the elements of the universe of the input structure that
will appear in the universe of the output structure. Furthermore, for every predi-
cate of the output vocabulary there is a formula over the input vocabulary of the
same arity, which says how the predicates are defined in the output structure.

Another function from structures to structures is called k-copying; which
maps a structure to k disjoint copies of itself, together with binary relations
1(x, y), . . . , k(x, y) such that i(x, y) holds if y is the i-th copy of x. A copying
mso transduction consists of first a copying function, followed by an mso inter-
pretation. A string-to-string function f is called mso-definable if there is some
copying mso transduction such that for every input string w, the transduction
transforms the relational structure corresponding to w into a relational structure
corresponding to f(w). The origin information in such a transducer is defined in

Transducers with Origin Information 31

the natural way: a position in the output string is interpreted in some copy of a
position in the input string, the latter is defined to be the origin.

Equivalence of the models. Deterministic two-way automata with output define
the same translations as copying mso transductions in [EH01]. The same proof
works if the semantics with origin information is used. Streaming transducers are
shown to be equivalent to the previous two models in [AC10]; the same proof
also works with the origin semantics. A string-to-string function with origin
information is called a regular string-to-string function with origin information
if it can be defined by any one of the three models mentioned above.

2 A Machine Independent Characterisation

In this section we present a Myhill-Nerode style characterisation of regular trans-
ducers with origin information.

Factorised output. Suppose that f is a string-to-string function with origin infor-
mation and output alphabet B. A factorised input is a tuple of strings w1, . . . , wn

over the input alphabet, which is meant to describe an input string factorised
into n blocks. Given such a factorised input, define an output block of type i
to be a maximal connected subset of positions in the output f(w1 · · ·wn) that
originates in wi. Define the factorised output corresponding to a factorised input
w1, . . . , wn, denoted by

f(w1| . . . |wn) ⊆ ⎛{1, . . . , n} ×B+
⎝∗
.

to be the sequence of output blocks read from left to right, with each block
described by its type and corresponding part of the output. In particular, if
we concatenate all of the strings coming from B+, we obtain the output string
f(w1 · · ·wn). When n = 3, instead of numbers 1, 2, 3 we use “left”, “middle”
and “right” to indicate types of blocks. We use fraction-style notation for output
blocks, with the lower part indicating the type, and the upper part describing
the output. For instance, if f is the duplicating function, then

f(ab|cd|e) =
ab
left

cd
middle

e
right

ab
left

cd
middle

e
right.

Some input blocks might be empty, as in the following example:

f(ab||e) =
ab
left

e
right

ab
left

e
right.

If some of the input blocks are underlined, then in the output we just keep the
information that there is a nonempty output block, but we do not store the
actual output strings which originate in the underlined blocks. For example,

f(ab|cd|e) = left
cd

middle right left
cd

middle right.

Note that we will never have two consecutive blocks of the same type, e.g. left left,
in the factorised output, since blocks are maximal. In particular, for underlined
input blocks we lose track of how long their corresponding output blocks are.

32 M. Bojańczyk

Derivatives. Define a two-sided derivative of string-to-string function with origin
information f to be any function of the form

fu w
def
= v ∈≡ f(u|v|w),

for some choice of strings u and w over the input alphabet. Left derivatives and
right derivatives are the special cases of the two-sided derivative when either u
or w is empty, i.e. they are functions of the forms:

fu
def
= v ∈≡ f(u|v) f w

def
= v ∈≡ f(v|w).

Example 2. Let f be the function w ∈≡ wRw. Then

fu w(v) = right
vR

middle left
v

middle right

for every nonempty strings u or w. When the string u is empty, then the left
block disappears, likewise when w is empty then the right blocks disappear. In
particular, this function has four possible values for the two-sided derivative.
There are two possible values for the left derivative fu , namely the functions

v ∈≡ vRv
right v ∈≡ vR

right left
v

right.

Example 3. Let f be the function which is the identity on strings of even length,
and which maps strings of odd length to the empty string. This function has
three possible left derivatives fv , depending on whether v is empty, nonempty
and even length, or odd length. Below is the derivative for the last case.

w ∈≡
⎞
left

w
right if w has odd length

ε otherwise

Example 4. Here is a function with finitely many right derivatives, but infinitely
many left derivatives. Consider first the function which scans its input from left
to right, and outputs only those letters whose position is a prime number

f(a1 · · · an) = w1 · · ·wn where wi =

⎞
ai if i is a prime number

ε otherwise.

This particular function has infinitely many right derivatives, since

f w(v) =

⎧⎨
⎩

f(v)

left right if there is a prime number in {|v| + 1, . . . , |vw|}
f(v)

left otherwise.

However finitely many right derivatives can be obtained by making the last
position to be output unconditionally, i.e. in the string-to-string function

Transducers with Origin Information 33

g(a1 · · · an) = f(a1 · · · an−1)an.

In this case, g has only two right derivatives, namely

v ∈≡
g(v)

left v ∈≡
f(v)

left right.

The function has infinitely many left derivatives gv because the criterion “i is
a prime number” needs to be replaced by “i + |v| is a prime number”.

To present our machine independent characterisation, we need a notion of
regularity for functions from tuples of strings to a finite set. Define the language
encoding of a function f : (A∗)n ≡ C, with C finite, to be

{w1#w2# · · ·#wn#f(w1, . . . , wn) : w1, . . . , wn ⊆ A∗} ⊂ (A ≥ C ≥ {#})∗.

assuming # is a symbol outside A≥C. The function f is called a regular colouring
if its language encoding is regular. Among several models of automata reading
tuples of strings, regular colourings correspond to the weakest model, called
recognisable. For instance, the equality function, seen as a colouring of string
pairs by “equal” or “not equal”, is not a regular colouring.

Theorem 1 (Machine Independent Characterisation). For a string-to-
string function f with origin information, the following conditions are equivalent

1. f is regular;
2. f has finitely many left derivatives and finitely many right derivatives;
3. for every letter a in the input alphabet, the following is a regular colouring

(v, w) ∈≡ f(v|a|w).

The function (v, a, w) ∈≡ f(v|a|w), where v, w are words and a is a letter over
the input alphabet, is called the characteristic function of f .

Proof (rough sketch). The implication from 1 to 2 is shown by using deterministic
two-way automata with output. For the implication from 2 to 3, one observes
that the functions v ∈≡ fv and w ∈≡ f w are regular colorings, and that f(v|a|w)
is uniquely determined by fv , a and f w. For the implication from 3 to 1, one
shows that an arbitrary string-to-string function with origin information can
be uniquely reconstructed based on its characteristic function, and when the
characteristic function happens to be a regular coloring then this reconstruction
can be done by a finite state device.

Since a string-to-string function is uniquely determined by its characteristic
function, instead of studying string-to-string functions, one can study their char-
acteristic functions. This is the case in the learning algorithm from Section 3,
and the studies of subclasses of transducers in Sections 4 and 5. The character-
istic function can be computed based on a representation as a transducer model,

34 M. Bojańczyk

e.g. from a copying mso transduction. In particular, Theorem 1 gives a concep-
tually simple equivalence check for origin semantics: compute the characteristic
functions and test if they are equal. The complexity of this algorithm, especially
in the case when the function is given by streaming transducers, is left open.

As shown in Example 4, it is not enough to require finitely many derivatives
of one kind, say right derivatives, since a function might have finitely many
derivatives of one kind, but infinitely many derivatives of the other kind3.

3 Learning

This section shows that transducers with origin information can be learned. We
first recall the Angluin algorithm for regular languages, which will be used as a
black box in our learning algorithm for learning transducers. The setup for the
Angluin algorithm is as follows. A teacher knows a regular language. A learner
wants to learn this language, by asking two kinds of queries. In a membership
query, the learner gives a string and the teacher responds whether this string is
in the language. In an equivalence query, the learner proposes a candidate for the
teacher’s language, and the teacher either says that this candidate is correct, in
which case the protocol is finished by learner’s success, or otherwise the teacher
returns a counterexample, which is a string in the symmetric diΠerence between
the candidate and teacher’s languages.

Angluin proposed an algorithm [Ang87], in which the learner learns the language
by asking a number of queries which is polynomial in the minimal deterministic
automaton for the teacher’s language, and the size of the counterexamples given
during the interaction. Theorem 2 shows that a variant of this algorithm works for
regular string-to-string transducers with origin information. In the case of trans-
ducers, the membership query becomes a value query, where the learner gives a
string and the teacher responds with the output of the transducer on that string. In
the equivalence query, the counterexample becomes a string where the transducer
proposed by the learner gives a diΠerent value than the transducer of the teacher.
In both the value query and in the counterexample, the teacher also provides the
origin information.

Theorem 2. A regular string-to-string function with origin information can be
learned using value and equivalence queries in polynomial time (both number of
queries and computation time) in terms of the number of left and right deriva-
tives, and the size of the counterexamples given by the teacher.

4 Order-Preserving Transducers

In this section, we present two characterisations of subclasses of transducers.
For semantics without origins, [FGRS13] shows how to decide if a determinis-
tic two-way transducer is equivalent to a nondeterministic one-way transducer,

3 It does follow from the theorem that a function with finitely many left and right
derivatives has finitely many two-sided derivatives. This is because every regular
string-to-string function has finitely many two-sided derivatives.

Transducers with Origin Information 35

while [WK94] shows how to decide (in polynomial time) if a nondeterministic
one-way transducer is equivalent to a deterministic one-way transducer. This sec-
tion shows analogous results for the origin semantics. Unlike [FGRS13, WK94],
the characterisations for the origin semantics are self-evident, which shows how
changing the semantics (and therefore changing the problem) makes some tech-
nical problems go away. A more difficult characterisation, about first-order de-
finable transducers, is presented in the next section.

In the following theorem, a string-to-string function with origin information is
called order preserving if for every input positions x < y, every output position
corresponding to x is before every output position corresponding to y.

Theorem 3. For a regular string-to-string function with origin information f ,
the following conditions are equivalent.

1. f is order-preserving.
2. f(v|w) is one of ε, left, right or left right for all input strings v, w.
3. f is recognised by a streaming transducer with lookahead which has only one

register, and which only appends output letters to that register.
4. f is recognised by a nondeterministic one-way automaton with output, which

has exactly one run over every input string.

Proof. The implication from item 1 to item 2 follows straight from the definition.
For the implication from item 2 to 3, we observe that if condition 1 is satisfied,
then the transducer constructed in the proof of Theorem 1 will only have one
register, and it will only append letters to that register during the run. For
the implication from item 3 to item 4, we observe that a nondeterministic one-
way automaton with output can guess, for each position of the input, what the
lookahead will say. Since the lookahead is computed by a deterministic right-to-
left automaton, this leads to a unique run on every input string. The implication
from item 4 to item 1 also follows straight from the definition.

Observe that the condition in item 2 can be decided, even in polynomial time,
when the characteristic function of the transducer is known.

We can further restrict the model by requiring that the transducer in item 3
does not use any lookahead, or equivalently, by requiring that the automaton in
item 4 be deterministic. This restricted model is characterised in the following
theorem.

Theorem 4. Let f be a regular string-to-string function which satisfies any
of the equivalent conditions in Theorem 3. Then f is defined by a left-to-right
deterministic automaton with output if and only if all input strings u, v, w satisfy

f(u|v) = f(u|w).

Proof. The left-to-right implication is immediate. For the right-to-left implica-
tion, we observe that the assumption implies that

f(u|a|v)

36 M. Bojańczyk

does not depend on v, but only on fu and the letter a. Furthermore, since f
satisfies the assumptions from Theorem 3, the above value is of the form

left
x

right,

where each block is possibly missing. After reading input u, the automaton stores
in its control state the derivative fu . When it reads a letter a, it updates its
control state, and outputs the string w, which depends only on the control state
and input letter a.

5 First-Order Definable Transducers

In this section we consider first-order definable transducers. Recall that when
coding a string as a relational structure, we have a predicate for the order. We
underline this because, unlike for mso, for first-order logic order is more powerful
than successor. The notion of first-order definability makes sense for:

– languages: there is a first-order formula that is true in the strings from the
language and false in strings from outside the language.

– regular colourings: the language encoding is first-order definable.
– string-to-string functions with origin information: the same definition as for

mso-definable ones, except that set quantification is disallowed.

Theorem 5. The following conditions are equivalent for a regular string-to-
string function f with origin information.

1. it is definable by a first-order string-to-string transduction.
2. the colourings w ∈≡ fw and w ∈≡ f w are first-order definable.
3. for every letters a, b, the following is a first-order definable colouring

(u, v, w) ∈≡ f(u|a|v|b|w)

Before proving the theorem, we observe that condition in item 2 is eΠective. Us-
ing a straightforward extension of the the Schützenberger-McNaughton-Papert
Theorem, one can decide if a regular colouring is first-order definable. By ap-
plying the decision procedure to the functions w ∈≡ fw and w ∈≡ f w, we can
decide if a regular string-to-string function with origin semantics is first-order
definable. It is unclear if this sheds any light for the analogous question for
semantics without origins.

Without origin information, a variant of first-order definable transducers was
considered in [MSTV06], namely the transducers which are first-order definable
in the sense of Theorem 5 and simultaneously order preserving in the sense
of Theorem 3. For instance, the doubling transducer w ∈≡ ww is first-order
definable in the sense of Theorem 5, but not in the sense of [MSTV06], because
it is not order preserving. By testing for both Condition 2 from Theorem 5 and
Condition 2 of Theorem 3, we get an eΠective characterisation of the origin
version of the transducers from [MSTV06].

Transducers with Origin Information 37

6 Further Work

Preliminary work indicates that the ideas in this paper extend to mso-definable
tree-to-tree transducers; this should be followed up. Another direction for fur-
ther study is the computational complexity of equivalence with respect to origin
semantics; in particular finding models for which equivalence is polynomial time.

References

[AC10] Alur, R., Cerný, P.: Expressiveness of streaming string transducers. In:
FSTTCS 2010, pp. 1–12 (2010)

[Ang87] Angluin, D.: Learning regular sets from queries and counterexamples. Inf.
Comput. 75(2), 87–106 (1987)

[AU70] Aho, A.V., Ullman, J.D.: A characterization of two-way deterministic
classes of languages. J. Comput. Syst. Sci. 4(6), 523–538 (1970)

[BE00] Bloem, R., Engelfriet, J.: A comparison of tree transductions defined by
monadic second order logic and by attribute grammars. J. Comput. Syst.
Sci. 61(1), 1–50 (2000)

[CJ77] Chytil, M., Jákl, V.: Serial composition of 2-way finite-state transducers
and simple programs on strings. In: Salomaa, A., Steinby, M. (eds.) ICALP
1977. LNCS, vol. 52, pp. 135–147. Springer, Heidelberg (1977)

[EH01] Engelfriet, J., Hoogeboom, H.J.: mso definable string transductions and
two-way finite-state transducers. ACM Trans. Comput. Log. 2(2), 216–254
(2001)

[EM03] Engelfriet, J., Maneth, S.: Macro tree translations of linear size increase
are mso definable. SIAM J. Comput. 32(4), 950–1006 (2003)

[FGRS13] Filiot, E., Gauwin, O., Reynier, P.-A., Servais, F.: From two-way to one-way
finite state transducers. In: LICS, pp. 468–477. IEEE Computer Society
(2013)

[Gur82] Gurari, E.M.: The equivalence problem for deterministic two-way sequen-
tial transducers is decidable. SIAM J. Comput. 11(3), 448–452 (1982)

[LMN10] Lemay, A., Maneth, S., Niehren, J.: A learning algorithm for top-down
xml transformations. In: Paredaens, J., Van Gucht, D. (eds.) PODS,
pp. 285–296. ACM (2010)

[MSTV06] McKenzie, P., Schwentick, T., Thérien, D., Vollmer, H.: The many faces of
a translation. J. Comput. Syst. Sci. 72(1), 163–179 (2006)

[Tho97] Thomas, W.: Languages, automata, and logic. In: Handbook of Formal
Language Theory, vol. III, pp. 389–455. Springer (1997)

[vDKT93] van Deursen, A., Klint, P., Tip, F.: Origin tracking. J. Symb. Com-
put. 15(5/6), 523–545 (1993)

[WK94] Weber, A., Klemm, R.: Economy of description for single-valued trans-
ducers. In: Enjalbert, P., Mayr, E.W., Wagner, K.W. (eds.) STACS 1994.
LNCS, vol. 775, pp. 607–618. Springer, Heidelberg (1994)

Weak MSO+U with Path Quantifiers

over Infinite Trees�

Mikofflaj BojańczykΣΣ

University of Warsaw

Abstract. This paper shows that over infinite trees, satisfiability is de-
cidable for weak monadic second-order logic extended by the unbounding
quantifier U and quantification over infinite paths. The proof is by re-
duction to emptiness for a certain automaton model, while emptiness for
the automaton model is decided using profinite trees.

This paper presents a logic over infinite trees with decidable satisfiability. The
logic is weak monadic second-order logic with U and path quantifiers (wmso+up).
A formula of the logic is evaluated in an infinite binary labelled tree. The logic
can quantify over: nodes, finite sets of nodes, and paths (a path is a possibly
infinite set of nodes totally ordered by the descendant relation and connected
with respect to the child relation). The predicates are as usual in mso for trees:
a unary predicate for every letter of the input alphabet, binary left and right
child predicates, and membership of a node in a set (which is either a path or a
finite set). Finally, formulas can use the unbounding quantifier, denoted by

UX ϕ(X),

which says that ϕ(X) holds for arbitrarily large finite sets X . As usual with
quantifiers, the formula ϕ(X) might have other free variables except for X . The
main contribution of the paper is the following theorem.

Theorem 1. Satisfiability is decidable for wmso+up over infinite trees.

Background. This paper is part of a program researching the logic mso+u,
i.e. monadic second-order logic extended with the U quantifier. The logic was
introduced in [1], where it was shown that satisfiability is decidable over infinite
trees as long as the U quantifier is used once and not under the scope of set
quantification. A significantly more powerful fragment of the logic, albeit for
infinite words, was shown decidable in [3] using automata with counters. These
automata where further developed into the theory of cost functions initiated by
Colcombet in [8]. Cost functions can be seen as a special case of mso+u in the
sense that decision problems regarding cost functions, such as limitedness or
domination, can be easily encoded into satisfiability of mso+u formulas. This

� Full version of this paper with proofs is at arxiv.org/abs/1404.7278.
�� Supported by ERC Starting Grant “Sosna”.

J. Esparza et al. (Eds.): ICALP 2014, Part II, LNCS 8573, pp. 38–49, 2014.
c∗ Springer-Verlag Berlin Heidelberg 2014

Weak MSO+U with Path Quantifiers over Infinite Trees 39

encoding need not be helpful, since the unsolved problems for cost functions get
encoded into unsolved problems from mso+u.

The logic mso+u can be used to solve problems that do not have a simple
solution in mso alone. One example (discussed later in Example 1) is the finite
model problem for the two-way μ-calculus [1]. A more famous problem is the star
height problem, which can be solved by a reduction to the satisfiability of mso+u
on infinite words; the particular fragment of mso+u used in this reduction is
decidable by [3]. In Section 1 we give more examples of problems which can
be reduced to satisfiability for mso+u, examples which use the fragment that is
solved in this paper. An example of an unsolved problem that reduces to mso+u
is the decidability of the nondeterministic parity index problem, see [9].

The first strong evidence that mso+u can be too expressive was given in [11],
where it was shown that mso+u can define languages of infinite words that are
arbitrarily high in the projective hierarchy. In [4], the result from [11] is used to
show that there is no algorithm which decides satisfiability of mso+u on infinite
trees and has a correctness proof using the axioms of zfc. A challenging open
question is whether satisfiability of mso+u is decidable on infinite words.

The principal reason for the undecidability result above is that mso+u can
define languages of high topological complexity. Such problems go away in the
weak variant, where only quantification over finite sets is allowed, because weak
quantification can only define Borel languages. Indeed, satisfiability is decidable
for wmso+u over infinite words [2] and infinite trees [6]. This paper continues
the research on weak fragments from [2,6]. Note that wmso+up can, unlike
wmso+u, define non Borel-languages, e.g. “finitely many a’s on every path”,
which is complete for level Π1

1 of the projective hierarchy. The automaton char-
acterization of wmso+up in this paper implies that wmso+up definable lan-
guages are contained in level Δ1

2.
What is the added value of path quantifiers? One answer is given in the

following section, where we show how wmso+up can be used to solve games
winning conditions definable in wmso+u; here the use of path quantifiers is
crucial. Another answer is that solving a logic with path quantifiers is a step
in the direction of tackling one of the most notorious diΠculties when dealing
with the unbounding quantifier, namely the interaction between quantitative
properties (e.g. some counters have small values) with qualitative limit properties
(e.g. the parity condition). The diΠculty of this interaction is one of the reasons
why the boundedness problem for cost-parity automata on infinite trees remains
open [9]. Such interaction is also a source of diΠculty in the present paper,
arguably more so than in the previous paper on wmso+u for infinite trees [6].
One of the main contributions of the paper is a set of tools that can be used to
tackle this interaction. The tools use profinite trees.

1 Notation and Some Applications

Let us begin by fixing notation for trees and parity automata. Notions of root,
leaf, sibling, descendant, ancestor, parent are used in the usual sense. A tree in

40 M. Bojańczyk

this paper is labelled, binary, possibly infinite and not necessarily complete. In
other words, a tree is a partial function from {0, 1}∗ to the input alphabet, whose
domain is closed under parents and siblings. The logic wmso+up, as defined in
the introduction, is used to define languages of such trees. To recognise properties
of trees, we use the following variant of parity automata. A parity automaton is
given by an input alphabet A, a set of states Q, an initial state, a total order on
the states, a set of accepting states, and finite sets of transitions

δ0 ∈ Q×A and δ2 ∈ Q×A×Q2.

A run of the automaton is a labeling of the input tree by states such that for
every node with i ≡ {0, 2} children, the set δi contains the tuple consisting of the
node’s state, label and the sequence of states in its children. A run is accepting
if it has the initial state in the root, and on every infinite path, the maximal
state appearing infinitely often is accepting. Parity automata defined this way
have the same expressive power as mso.

Before continuing, we underline the distinction between paths, which are con-
nected sets of nodes totally ordered by the ancestor relation, and chains which
can be possibly disconnected. Having chain quantification and the U quantifier
would be suΠcient to express all properties of the leftmost path definable in
mso+u, and therefore its decidability would imply decidability of mso+u on
infinite words, which is open.

The rest of this section is devoted to describing some consequences of Theo-
rem 1, which says that satisfiability is decidable for wmso+up on infinite trees.

Stronger than mso. When deciding satisfiability of wmso+up in Theorem 1, we
ask for the existence of a tree labelled by the input alphabet. Since the labelling
is quantified existentially in the satisfiability problem, the decidability result
immediately extends to formulas of existential wmso+up , which are obtained
from formulas of wmso+up by adding a prefix of existential quantifiers over
arbitrary, possibly infinite, sets. A result equivalent to Theorem 1 is that the
existential wmso+up theory of the unlabeled complete binary tree is decidable.

Existential wmso+up contains all of mso, because it can express that a parity
tree automaton has an accepting run. The existential prefix is used to guess the
accepting run, while the path quantifiers are used to say that it is accepting. One
can prove a stronger result. Define wmso+up with mso subformulas, to be the
extension of wmso+up where quantification over arbitrary sets is allowed under
the following condition: if a subformula ⊆X ϕ(X) quantifies over an arbitrary
set X , then ϕ(X) does not use the unbounding quantifier.

Fact 1. wmso+up with mso subformulas is contained in existential wmso+up.

The idea behind the fact is to use the existential prefix to label each node with
the mso-theory of its subtree.

Example 1. Consider the modal μ-calculus with backward modalities, as intro-
duced in [16]. As shown in [1], for every formula ϕ of the modal μ-calculus with

Weak MSO+U with Path Quantifiers over Infinite Trees 41

backward modalities, one can compute a formula ψ(X) of mso such that ϕ is
true in some finite Kripke structure if and only if

UXϕ(X) (1)

is true in some infinite tree. The paper [1] gives a direct algorithm for testing
satisfiability of formulas of the form as in (1). Since this formula is in wmso+up
with mso subformulas, Theorem 1 can be used instead.

By inspecting the proofs of [6], one can show that also [6] would be enough
for the above example. This is no longer the case for the following example.

Example 2. Consider a two-player game over an arena with a finite set of vertices
V , where the winning condition is a subset of V ψ defined in wmso+u over infinite
words. For instance, the winning condition could say that a node v ≡ V is visited
infinitely often, but the time between visits is unbounded. A winning strategy
for player 1 in such a game is a subset σ ∈ V ∗, which can be visualized as a tree
of branching at most V . The properties required of a strategy can be formalised
in wmso+up over infinite trees, using path quantifiers to range over strategies
of the opposing player. Therefore, one can write a formula of wmso+up over
infinite trees, which is true in some tree if and only if player 1 has a winning
strategy in the game. Therefore Theorem 1 implies that one can decide the
winner in games over finite arenas with wmso+u winning conditions.

The games described in Example 2 generalize cost-parity games from [10]
or energy consumption games from [7], so Theorem 1 implies the decidability
results from those papers (but not the optimal complexities).

Example 3. Consider a game as in the previous example, but where the winning
condition is defined by a formula ϕ of wmso+u which can also use a binary
predicate “x and y are close”. For n ≡ N, consider the winning condition ϕn to
be the formula ϕ with “x and y are close” replaced by “the distance between x
and y is at most n”. Consider the following problem: is there some n ≡ N, such
that player 1 has a winning strategy according to the winning condition ϕn?
This problem can also be reduced to satisfiability of wmso+up on infinite trees.
The idea is to guess a strategy σ ∈ V ∗, and a set of nodes X ∈ σ, such that 1)
there is a common upper bound on the length of finite paths that do not contain
nodes from X ; 2) every infinite path consistent with σ satisfies the formula ϕ
with “x and y are close” replaced by “between x and y there is at most one
node from X”. Using the same idea, one can solve the realizability problem for
Prompt LTL [12].

2 Automata

In this section, we define an automaton model with the same expressive power as
existential wmso+up, which is called a wmso+up automaton. The automaton
uses a labellings of trees by counter operations called counter trees, so we begin
by describing these.

42 M. Bojańczyk

Counter trees. Let C be a finite set of counters. A counter tree over a set of
counters C is defined to be a tree where every node is labelled by a subset of

C × {parent, self} × {increment, transfer} × C × {parent, self}, (2)

where every tuple contains “self” at least once. The counter tree induces a graph
with edges labelled by “increment” or “transfer”, called its associated counter
configuration graph. The vertices of this graph, called counter configurations, are
pairs (x, c) where x is a node of the counter tree and c is a counter. The counter
configuration graph contains an edge from (x0, c0) to (x1, c1) labelled by o if and
only if there exists a node x in the counter tree whose label contains a tuple

(c0, τ0, o, c1, τ1) with τ0, τ1 ≡ {parent, self}

such that xi is x or its parent depending on whether τi is “self” or “parent”.
A path in the counter configuration graph, using possibly both kinds of edges,

is called a counter path. Its value is defined to be the number of “increment”
edges. The value of a counter configuration is defined to be the supremum of
values of counter paths that end in it. When t is a counter tree, then we write
[[t]] for the tree with the same nodes but with alphabet N̄

C , where the label of a
node x maps c ≡ C to the value of (x, c) in the associated counter graph.

wmso+up automata. We now present the automaton model used to decide
wmso+up. The syntax of a wmso+up consists of:

1. A parity automaton;
2. A set of counters C, partitioned into bounded and unbounded counters;
3. For every state q of the parity automaton:

(a) a set cut(q) of bounded counters, called the counters cut by q;
(b) a set check(q) of unbounded counters, called the counters checked by q;
(c) a subset counterops(q) of the set in (2).

The automaton inputs a tree over the input alphabet of the parity automaton
in the first item. A run of the automaton is a labelling of the input tree by states,
consistent with the transition relation of the parity automaton. Using the sets
counterops(q), we get a counter tree with counters C, call it counterops(ρ). By
abuse of notation, we write [[ρ]] for the tree [[counterops(ρ)]], which is a tree over
N̄

C . Using the sets cut(q) and check(q), we can talk about the nodes in a run
where a bounded counter gets cut, or an unbounded counter gets checked. A
run is accepting if it has the initial state in the root, and it satisfies all three
acceptance conditions defined below. In the conditions, we define the limsup of
a function ranging over a countable set to be

lim sup
x≥X

f(x)
def
= lim sup

n≥N

f(xn) for some enumeration of X = {x1, x2, . . .},

which is well-defined because it does not depend on the enumeration.

Weak MSO+U with Path Quantifiers over Infinite Trees 43

– Parity. On every path the maximal state seen infinitely often is accepting.
– Boundedness. If a bounded counter c is never cut in a connected1 set of nodes

X , then

lim sup
x≥X

[[ρ]](x, c) < ↔

– Unboundedness. If an unbounded counter c is checked infinitely often on a
path π, then

lim sup
x

[[ρ]](x, c) = ↔

with x ranging over those nodes in π where c is checked.

The automaton accepts an input tree if it admits an accepting run.

Equivalence to logic and emptiness. Below are the two main technical results
about wmso+up automata. The two results immediately imply that satisfiabil-
ity is decidable for wmso+up logic.

Theorem 2. For every formula of existential wmso+up one can compute a
wmso+up automaton that accepts the same trees, and vice versa.

Theorem 3. Emptiness is decidable for wmso+up automata.

The proof of Theorem 2 is in the appendix. The rest of this paper is devoted
to describing the proof of Theorem 3. The proof itself is described in Section 4,
while the next section is about profinite trees, which are used in the proof.

Remark 1. If in the definition of the unboundedness acceptance condition, we
replace lim sup by lim inf, we get a more powerful model. The same proof as for
Theorem 3 also shows that this more powerful model has decidable emptiness.

3 Profinite Trees and Automata on them

In the emptiness algorithm for wmso+up automata, we use profinite trees. The
connection between boundedness problems and profiniteness was already ex-
plored in [14], in the case of words. Profinite trees are similar to profinite words,
because the recognizers are mso formulas, the diffierence is that the objects are
(infinite) trees. Consider an input alphabet A. Fix an enumeration of all mso
formulas over the alphabet A. We define the distance between two trees to be
1/n where n is the smallest number such that the n-th formula is true in one
of the trees but not the other. The distance itself depends on the enumeration,
but the notion of an open set or Cauchy sequence does not. Cauchy sequences
are considered equivalent if some (equivalently, every) shuffle of them is also a
Cauchy sequence. A profinite tree is defined to be an equivalence class of Cauchy
sequences. To avoid confusion with profinite trees, we use from now on the term
real tree instead of tree. Therefore, a profinite tree is a limit of a sequence of real
trees. Every real tree is also a profinite tree, as a limit of a constant sequence.

1 It suffices to restrict attention to maximal connected sets of nodes where c is not
cut, such sets are called c-cut factors.

44 M. Bojańczyk

Evaluatingmso formulas on profinite trees. A Cauchy sequence is said to satisfy an
mso formula if almost all trees in the sequence satisfy it. A Cauchy sequence sat-
isfies either an mso formula, or its negation. Equivalent Cauchy sequences satisfy
the same mso formulas, and therefore satisfaction of mso formulas is meaningful
for profinite trees: a profinite tree is said to satisfy an mso formula if this is true
for some (equivalently, every) Cauchy sequence that tends to it. Formulas of mso
are the only ones that can be extended to profinite trees in this way; one can show
that if L is a set of real trees that is not mso-definable (for instance, L is defined
by a formula of wmso+up that is not in mso), then there is a Cauchy sequence
which has infinitely many elements in L and infinitely many elements outside L.
Summing up, it makes sense to ask if a profinite tree satisfies a formula of mso,
but it does not make sense to ask if it satisfies a formula of wmso+up.

Profinite subtrees. The topological closure of a binary relation on real trees is
defined to be the pairs of profinite trees that are limits of pairs of real trees in the
binary relation; with the metric in the product being the maximum of distances
over coordinates. Define the profinite subtree relation to be the topological clo-
sure of the subtree relation. A real tree might have profinite subtrees that are
not real. For example, consider a real tree t such that for every n, some subtree
sn of t has exactly one a, which occurs at depth n on the leftmost branch. By
compactness, the sequence s1, s2, . . . has a convergent subsequence, whose limit
is not a real tree, but is a profinite subtree of t.

Partially colored trees. Let A and Q be finite sets. A partially Q-colored tree
over A is a tree, possibly profinite, over the alphabet A × (Q ⇔ {⊂}). Suppose
that ρ is a real partially Q-colored tree over A. If a node has second coordinate
q ≡ Q, then we say that it is colored by q. When the second coordinate is ⊂,
then the node is called uncolored. A color zone of ρ is a connected set of nodes
X in ρ such that:

– the unique minimal element of X is either the root of ρ or is colored;
– maximal elements of X are either leaves of ρ or are colored;
– all other elements of X are uncolored.

A real tree is called real factor of ρ if it is obtained from ρ by only keeping the
nodes in some color zone. These notions are illustrated in Figure 1. The notions
of defined color, color zone and real factor are only meaningful when ρ is a real
tree. When ρ is not a real tree, then we can still use mso-definable properties,
such as “the root has undefined color” or “only the leaves and root have defined
color”. Define the profinite factor relation to be the topological closure of the
real factor relation.

Generalized parity automata. A transition in a parity automaton can be visualized
as a little tree, with one or three nodes, all of them colored by states. We introduce
a generalized model, where transitions can be arbitrary trees, possibly infinite, and
possibly profinite. A generalized parity automaton consists of: a totally ordered set
of statesQ, a subset of accepting states, an input alphabet, and a set of transitions,
which is an arbitrary set of Q-colored profinite trees over the input alphabet. An

Weak MSO+U with Path Quantifiers over Infinite Trees 45

aa

a`a

bb

aa

a ab b

aa

aa

a`a bb

a b

aa

aa

a`a bb

aa

a ab b

aa

aaa`a bb

a b

aa

aa

a`a

bb

aa

a ab b

aa

aa

a`a bb

a b

aa

aa

a`a

bb

aa

a b

aa

aa

a`a bb

a b

aa

aa

aa

b

bbb a

aa

a

bb

aaab

bb

color zones

real factor

uncolored
node

node colored
by

Fig. 1. A real { , }-colored tree over {a, b}, together with a real factor. Uncolored
nodes are white. Note how color zones overlap on colored nodes.

input to the automaton is a profinite tree over the input alphabet. A run over
such an input is a partially Q-colored profinite tree over the input alphabet, call
it ρ, which projects to the input on the coordinate corresponding to the input
alphabet. By projection we mean the topological closure of the projection relation
on real trees. A run ρ is accepting if all of its profinite factors are transitions, and
it satisfies the mso properties “the root is uncolored” and “on every infinite path
where colored nodes appear infinitely often, the maximal color seen infinitely often
is accepting”. (The transitions where the root is uncolored play the role of the
initial state.) There might be some infinite paths which have colors finitely often,
because some transitions might have infinite paths. Every profinite factor of a run
will necessarily satisfy the mso property “every node that is not the root or a leaf
is uncolored”, therefore it only makes sense to have transitions that satisfy this
property. It is not diΠcult to show that if a run satisfies the property “the root is
uncolored”, which is the case for every accepting run, then the run has a unique
profinite factor that satisfies this property.

A run is called regular if it has finitely many profinite subtrees rooted in
colored nodes. For a generalized parity automaton A, define L(A) to be the set
of profinite trees accepted by A, and let Lreg(A) be the subset of those profinite
trees which are accepted via a regular run. The following theorem shows that
two sets have the same topological closure (denoted by a bar on top), i.e. the
smaller set is dense in the bigger one.

Theorem 4. Lreg(A) = L(A) holds for every generalized parity automaton A.

3.1 Automaton Chains

Generalised parity automata are too general to be useful. For instance, every
set of profinite trees is recognised by a generalised parity automaton, which has
no states, and uses the recognised set as its transitions. Also, these automata
do not allow a finite representation, and therefore cannot be used in algorithms.
The emptiness algorithm for wmso+up automata uses a special case of gener-
alised parity automata, called automaton chains, which can be represented in

46 M. Bojańczyk

a finite way. Roughly speaking, an automaton chain is a generalised parity au-
tomaton where the set of transitions is the set of profinite trees defined by a
simpler automaton chain, with the additional requirement that one cost func-
tion is bounded and another cost function is unbounded. The definitions of cost
functions and automaton chains are given below.

Cost functions. A cost function on trees is a function α from real trees to N̄,
such that the inverse image of every finite number n ≡ N is definable in mso. As
proposed by Toruńczyk in [14], a cost function α can be applied to a profinite
tree t by defining α(t) to be a finite number n ≡ N if t satisfies the mso property
“has value n under α”, and to be ↔ otherwise. Cost functions on finite words
were introduced by Colcombet in [8] and then extended to finite trees, infinite
words and infinite trees. The specific variant of cost functions that we use is
the logic cost wmso that was proposed by Vanden Boom in [15]. A sentence
of this logic is built the same way as a sentence of wmso over infinite trees,
except that it can use an additional predicate “X is small”, which takes a set X
as a parameter, and can only be used under an even number of negations. The
predicate can be used for diffierent sets, like in the following example, call it α:

⊆X ⊆Y X is small ≥ Y is small ≥ (⇒x a(x) ◦ x ≡ X) ≥ (⇒y b(y) ◦ y ≡ Y)

The cost function defined by a sentence of cost wmso maps a tree to the smallest
number n such that the sentence becomes true after “X is small” is replaced
by |X | < n. If such a number does not exist, the result is ↔. In the case of
the example α above, the function maps a tree to the number of a’s or to the
number of b’s, whichever is bigger.

Automaton chains. We now define automaton chains, by induction on a param-
eter called depth. A automaton chain of depth 0 is any parity automaton. For
n > 0, an automaton chain of depth n is a generalised parity automaton A whose
set of transitions is

{t : t is accepted by B and α(t) < ↔ and β(t) = ↔}
for some automaton chain B of smaller depth and some cost functions α, β that
are definable in cost wmso. An automaton chain can be represented in a finite way
and therefore used as an input for an algorithm, such as in the following lemmas.

Lemma 1. Nonemptiness is decidable for automaton chains.

Lemma 2. Automaton chains are effectively closed under intersection with mso.

4 Emptiness of wmso+up Automata

In this section, we describe the proof of Theorem 3, which says that empti-
ness is decidable for wmso+up automata. We reduce emptiness for wmso+up
automata to emptiness of automaton chains, which is decidable by Lemma 1.

A normal form. We begin by normalising the automaton. A counter c is called
separated in a counter tree if the counter tree does not contain edges that involve
c and and some other counter. A counter c is called root-directed if every counter

Weak MSO+U with Path Quantifiers over Infinite Trees 47

edge involving c is directed toward the root. A wmso+up automaton is said to
be in normal form if:
(a) for every run, in the counter graph generated by the automaton, every

bounded counter is separated and root-directed.
(b) there is a total order on the states which is consistent with the order from

the parity condition, and a mapping which maps every state q to sets of
counters larcut(q) and larcheck(q) with the following property. For every
run and every finite path in the run that starts and ends in state q and does
not visit bigger states in the meantime,
– the counters checked in the path are exactly larcheck(q);
– the counters cut in the path are exactly larcut(q).

Lemma 3. For every wmso+up automaton one can compute an equivalent one
in normal form.

In the proof, to achieve property (b), we use the latest appearance record data
structure introduced by McNaughton in [13].

Partial runs. LetA be awmso+up automaton that we want to test for emptiness.
Thanks to Lemma 3, we assume without loss of generality that it is in normal form.
In the emptiness algorithm, we describe properties of pieces of runs of A, called
partial runs, and defined below. Recall that in a parity automaton, there are two
types of transitions δ0 and δ2, for leaves and non-leaves, respectively. A partial
run of a parity automaton is a labelling of the input tree by states which respect
δ2 in nodes with two children, but need not respect δ0 in leaves. A partial run of
a wmso+up automaton is a partial run of the underlying parity automaton. A
partial run is called accepting if it satisfies the parity, boundedness and unbound-
edness acceptance conditions. An accepting run of A is a partial accepting run
where the root has the initial state and for every leaf, its (state, label) pair is in
δ0. Note that every finite partial run is an accepting partial run.

Chain automata recognising accepting runs. For a state q of A, consider the
following sets of real trees over the alphabet A×Q, where A is the input alphabet
of A and Q is its state space:

Rq accepting partial runs where states strictly bigger than q appear only in
nodes with finitely many descendants;

Rq∗ the subset of Rq where state q is allowed only finitely often on every path.

Note that if q is a parity-rejecting state of the automaton A, then Rq = Rq∗. By
induction on q in the order on states from the assumption on A being in normal
form we define automaton chains Rq and Rq∗ such that

Rq∗ = L(Rq∗) and Rq = L(Rq). (3)

The definition of Rq and Rq∗ is given below. The proof of (3) is in the appendix.

The automaton Rq∗. The automaton Rq∗ has a unique state, call it “state”,
which is rejecting, meaning that it must appear finitely often on every path. A
transition of this automaton is any profinite partially {“state”}-colored tree σ
over A×Q such that:

48 M. Bojańczyk

1. the projection of σ onto the A×Q coordinate belongs to Rp, where p is the
predecessor of q in the order on states; and

2. for every root-to-leaf path in σ which ends in a leaf with defined color “state”,
the maximal value of the Q coordinate is q.

Property 1 is recognised by an automaton chain by the induction assumption.
Property 2 is mso-definable, and therefore the conjunction of properties 1 and
2 is recognised by an automaton chain thanks to Lemma 2. It follows that Rq∗
is a degenerate form of an automaton chain where the cost functions α and β
are not used. This degenerate form is a special case of an automaton chain, by
taking α to be the constant 0 and β to be the constant ↔.

The automaton Rq. If q is a parity-rejecting state of A, then Rq is equal to Rq∗.
Otherwise, it is defined as follows. The automaton Rq has a unique state, call
it “state”, which is accepting, meaning that it can appear infinitely often on a
path. A transition of this automaton is any profinite partially {“state”}-colored
tree σ over A×Q such that:

1. the projection of σ onto the A×Q coordinate belongs to Rq∗; and
2. for every root-to-leaf path in σ which ends in a leaf with defined color “state”,

the maximal value of the Q coordinate is q.
3. α(σ) < ↔ holds for the cost function defined by

α(σ) = max
c

max
x

[[σ]](x, c)

with c ranging over bounded counters not in larcut(q) and x ranging over
nodes which do not have an ancestor where c is cut.

4. β(σ) = ↔ holds for the cost function defined by

β(σ) =

{
min
c

min
x

max
y

[[σ]](y, c) if the root of σ has defined color “state”

↔ otherwise

with c ranging over unbounded counters in larcheck(q), x ranging over leaves
with defined color “state”, and y ranging over ancestors of xwhere c is checked.

As for the automaton Rq∗, the conjunction of properties 1 and 2 is recognised
by an automaton chain, and therefore Rq is an automaton chain.

Proof (of Theorem 3). If q is the maximal state of A, then Rq is the set of all
partial accepting runs. Therefore, the automaton A is nonempty if and only if Rq

accepts some tree which is an accepting run of the underlying parity automaton
in A. This is decidable by Lemmas 1 and 2 ≤→
5 Conclusions

This paper shows that satisfiability is decidable for wmso+up on infinite trees.
We conjecture the logic remains decidable after adding the R quantifier from [5].
We also conjecture that the methods developed here, maybe the automaton
mentioned in Remark 1, can be used to decide satisfiability of tree languages
of the form “every path is in L”, with L being ωB- or ωS-regular languages of
infinite words, as defined in [3].

Weak MSO+U with Path Quantifiers over Infinite Trees 49

Acknowledgment. I would like to thank Szymon Toruńczyk and Martin Zim-
mermann for months of discussions about this paper; in particular Szymon
Toruńczyk suggested the use of profinite trees. Also, I would like to thank the
anonymous referees for their comments.

References

1. Bojańczyk, M.: A bounding quantifier. In: Marcinkowski, J., Tarlecki, A. (eds.)
CSL 2004. LNCS, vol. 3210, pp. 41–55. Springer, Heidelberg (2004)

2. Bojańczyk, M.: Weak mso with the unbounding quantifier. Theory Comput.
Syst. 48(3), 554–576 (2011)

3. Bojańczyk, M., Colcombet, T.: Bounds in ω-regularity. In: LICS, pp. 285–296
(2006)

4. Bojańczyk, M., Gogacz, T., Michalewski, H., Skrzypczak, M.: On the decidability of
MSO+U on infinite trees. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias,
E. (eds.) ICALP 2014, Part II. LNCS, vol. 8573, pp. 50–61. Springer, Heidelberg
(2014)

5. Bojańczyk, M., Toruńczyk, S.: Deterministic automata and extensions of weak
mso. In: FSTTCS, pp. 73–84 (2009)

6. Bojańczyk, M., Toruńczyk, S.: wmso+u over infinite trees. In: STACS, pp. 648–660
(2012)

7. Brázdil, T., Chatterjee, K., Kučera, A., Novotný, P.: Efficient controller synthesis
for consumption games with multiple resource types. In: Madhusudan, P., Seshia,
S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 23–38. Springer, Heidelberg (2012)

8. Colcombet, T.: The theory of stabilisation monoids and regular cost functions.
In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W.
(eds.) ICALP 2009, Part II. LNCS, vol. 5556, pp. 139–150. Springer, Heidelberg
(2009)

9. Colcombet, T., Löding, C.: The non-deterministic Mostowski hierarchy and
distance-parity automata. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson,
M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS,
vol. 5126, pp. 398–409. Springer, Heidelberg (2008)

10. Fijalkow, N., Zimmermann, M.: Cost-parity and cost-Streett games. In: FSTTCS,
pp. 124–135 (2012)

11. Hummel, S., Skrzypczak, M.: The topological complexity of mso+u and related
automata models. Fundam. Inform. 119(1), 87–111 (2012)

12. Kupferman, O., Piterman, N., Vardi, M.Y.: From liveness to promptness. Formal
Methods in System Design 34(2), 83–103 (2009)

13. McNaughton, R.: Finite state infinite games. Project MAC Report, MIT (1965)
14. Toruńczyk, S.: Languages of profinite words and the limitedness problem. In: Czu-

maj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part II.
LNCS, vol. 7392, pp. 377–389. Springer, Heidelberg (2012)

15. Vanden Boom, M.: Weak cost monadic logic over infinite trees. In: Murlak, F.,
Sankowski, P. (eds.)MFCS 2011. LNCS, vol. 6907, pp. 580–591. Springer, Heidelberg
(2011)

16. Vardi, M.Y.: Reasoning about the past with two-way automata. In: Larsen, K.G.,
Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 628–641. Springer,
Heidelberg (1998)

On the Decidability of MSO+U on Infinite Trees

Mikofflaj Bojańczyk1, Tomasz Gogacz2,
Henryk Michalewski1, and Michaffl Skrzypczak1,Σ

1 University of Warsaw
2 University of Wrocfflaw

Abstract. This paper is about mso+u, an extension of monadic second-
order logic, which has a quantifier that can express that a property of sets
is true for arbitrarily large sets. We conjecture that the mso+u theory of
the complete binary tree is undecidable. We prove a weaker statement:
there is no algorithm which decides this theory and has a correctness
proof in zfc. This is because the theory is undecidable, under a set-
theoretic assumption consistent with zfc, namely that there exists of
projective well-ordering of 2ω of type ω1. We use Shelah’s undecidability
proof of the mso theory of the real numbers.

1 Introduction

This paper is about mso+u, which is the extension of mso by the unbounding
quantifier. The unbounding quantifier, denoted by

UX. Σ(X),

says that Σ(X) holds for arbitrarily large finite sets X . As usual with quantifiers,
the formula Σ(X) might have other free variables except for X . The main con-
tribution of the paper is the following theorem, which talks about the complete
binary tree 2∗.

Theorem 1.1. Assuming that there exists a projective well-ordering of 2ψ of
type ε1, it is undecidable if a given sentence of mso+u is true in the complete
binary tree.

The assumption on the projective ordering can be seen as a set theory axiom.
The assumption follows from the axiom V=L, which is relatively consistent
with zfc. Therefore, if zfc has a model, then it has one where the assumption of
Theorem 1.1 is true, and therefore it has a model where the mso+u theory of the
complete binary tree is undecidable. In particular, there is no algorithm which
decides the mso+u theory of the complete binary tree, and has a correctness
proof in zfc. Although the theorem stops short of full undecidability, which
we conjecture to be the case, it seems to settle the decidability question for all
practical purposes.

γ The first and fourth author are supported by ERC Starting Grant “Sosna”, the third
author is supported by the Polish NCN grant DEC-2012/07/D/ST6/02443.

J. Esparza et al. (Eds.): ICALP 2014, Part II, LNCS 8573, pp. 50–61, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

On the Decidability of MSO+U on Infinite Trees 51

Background. This paper is part of a programme researching the logic mso+u,
i.e. monadic second-order logic extended with the U quantifier. The logic was
introduced in [Boj04], where it was shown that satisfiability is decidable for for-
mulae on infinite trees where the U quantifier is used once and not under the
scope of set quantification. A significantly more powerful fragment of the logic,
albeit for infinite words, was shown decidable in [BC06] using automata with
counters. These automata where further developed into the theory of cost func-
tions initiated by Colcombet in [Col09]. Cost functions can be seen as a special
case of mso+u in the sense that decision problems regarding cost functions, such
as limitedness or domination, can be easily encoded into satisfiability of mso+u
formulae. This encoding need not be helpful, since the unsolved problems for
cost functions get encoded into unsolved problems from mso+u.

The added expressive power of mso+u can be used to solve problems that do
not have a simple solution in mso alone. An example is the star height problem,
one of the most diΠcult problems in the theory of automata, which can be
straightforwardly reduced to the satisfiability of mso+u on infinite words; the
particular fragment of mso+u used in this reduction is decidable by [BC06].
An example of an important unsolved problem that reduces to mso+u is the
decidability of the nondeterministic parity index problem [CL08].

So far, most research on mso+u has focussed on the weak variant, call it
wmso+u, where only quantification over finite sets is allowed. Satisfiability is
decidable for wmso+u over infinite words [Boj11] and infinite trees [BT12].
In a parallel submission to this conference, it is shown that wmso+u remains
decidable over infinite trees even after adding quantification over infinite paths.
The decidability proofs use automata with counters.

Undecidability. The first strong evidence that mso+u can be too expressive was
given in [HS12], where it was shown that mso+u can define languages of infi-
nite words that are arbitrarily high in the projective hierarchy from descriptive
set theory. The present paper builds on that observation. We show that, using
the languages from [HS12], one can use mso+u on the complete binary tree 2∗

to simulate a variant of mso on the Cantor set 2ψ, which we call projective mso.
Projective mso is like mso, except that set quantification is restricted to projec-
tive sets. As shown by Shelah in [She75], the mso theory of 2ψ is undecidable.
From the proof of Shelah it follows that, under the assumption that there exists
a projective well-ordering of 2ψ, already projective mso is undecidable on 2ψ.
Therefore, thanks to our reduction, mso+u is undecidable on 2∗.

2 mso+u on 2∗

We consider the following logical structures: the complete binary tree 2∗, the
Cantor set 2ψ, and the union of the two 2≥ψ. In the complete binary tree 2∗,
the universe consists of finite strings over {0, 1}, called nodes, and there are
predicates for the lexicographic and prefix orders. The prefix order corresponds
to the ancestor relation. In the Cantor set 2ψ, the universe consists of infinite

52 M. Bojańczyk et al.

strings over {0, 1}, called branches, and there is a predicate for the lexicographic
order. Finally, in 2≥ψ, the universe consists of both nodes and branches, and there
are predicates for the prefix and lexicographic order. In 2≥ψ, the prefix relation
can hold between two nodes, or between a node and a branch. The lexicographic
order is a total order on both nodes and branches, e.g. 0 < 0ψ < 01.

Two fundamental theorems about mso are that the mso theory is decidable
for 2∗, but undecidable for 2ψ, and therefore also undecidable for 2≥ψ. The
decidability was shown by Rabin in [Rab69], while the undecidability was shown
by Shelah in [She75] conditionally on the Continuum Hypothesis, and by Shelah
and Gurevich in [GS82] without any conditions.

The projective hierarchy. Consider a topological space X . The family of Borel
sets is the least family of subsets of X that contains open sets, and is closed under
complements and countable unions. Define the family of projective sets to be the
least family of subsets of X which contains the Borel sets, and is closed under
complements and images under continuous functions. The projective sets can be
organised into a hierarchy, called the projective hierarchy, where Σ1

0 = Π1
0 is the

class of Borel sets, Π1
n is the class of complements of sets from Σ1

n, and Σ1
n+1

is the class of images of sets from Π1
n under continuous functions. Additionally,

Δ1
n is the intersection of Σ1

n and Π1
n. When the space X is not clear from the

context, we add it in parentheses, e.g. Σ1
n(X)

We are mostly interested in the projective hierarchy for the space 2ψ with
the topology of the Cantor set. This topology is induced by a metric, where the
distance between two infinite bit strings is the inverse of the first position where
they diffier. We write Σ1

n(2ψ) for the subsets of 2ψ that are in level Σ1
n of the

projective hierarchy under this topology.

The main result. The main result of this paper is Theorem 1.1 from the intro-
duction, which says that the mso+u theory of 2∗ is undecidable. The proof of
Theorem 1.1 is by a reduction from the undecidability of mso on 2ψ. Our proof
uses a stronger undecidability version of mso on 2ψ, where instead of full mso we
have a logic called projective mso , where quantification is restricted to projective
sets, as defined later in Section 2.1. We are unable to prove the projective mso
theory of 2ψ to be undecidable without any conditions, or even conditionally
on the Continuum Hypothesis, but only assuming the stronger assumption that
there exists a projective well-ordering of 2ψ of type ε1.

This assumption can be seen as a conjunction of two assumptions: the Con-
tinuum Hypothesis (the type ε1 part) and that the well-ordering is “definable”
in some sense (the projective part). As shown in [GS82] the mso theory of 2ψ

remains undecidable even without the Continuum Hypothesis. This does not
help us, because our reduction to mso+u crucially depends on the definability.

Before proving the theorem, we observe the following corollary.

Corollary 2.1. If zfc is consistent, then there is no algorithm which decides
the mso+u theory of 2∗ and has a proof of correctness in zfc.

On the Decidability of MSO+U on Infinite Trees 53

Proof. [The following proof is in zfc] If zfc is consistent, then Gödel’s con-
structible universe L is a model of zfc, as shown by Gödel (for a modern treat-
ment of this topic see Chapter 13 and specifically Theorem 13.6 in [Jec02]). In
Gödel’s constructible universe, there exists a well-ordering of 2ψ of type ε1 that
is in level Δ1

2 of the projective hierarchy on 2ψ × 2ψ ([Jec02, Theorem 25.26]).
Therefore, if zfc is consistent, then by Theorem 1.1 it has a model where the
mso+u theory of 2∗ is undecidable. ∈≡

2.1 Projective mso on 2≤ω, and its Reduction to mso+u on 2∗

For n ⊆ ε, define the syntax of mson to be the same as the syntax of mso,
except that instead of one pair of set quantifiers ↔X and ⇔X , there is a pair of
quantifiers ↔iX and ⇔iX for every i ⊆ n. To evaluate a sentence of mson over
a structure, we need a sequence {Xj}j≥i of families of sets, called the monadic
domains. The semantics are then the same as for mso, except that the quantifiers
↔j and ⇔j are interpreted to range over subsets of the universe that belong to
Xj . First-order quantification is as usual, it can quantify over arbitrary elements
of the universe. We write mso[X1,X2, . . .] for the above logic with the monadic
domains being fixed to X1,X2, Standard mso for structures with a universe Ω
is the same as mso[P(Ω)], i.e. there is one monadic domain for the powerset of
the universe. If Ω is equipped with a topology, we define projective mso over Ω
to be

mso[Σ1
1(Ω),Σ1

2(Ω), . . .]

The expressive power of projective mso is incomparable with the expressive
power of mso. Although projective mso cannot quantify over arbitrary subsets,
it can express that a set is in, say, Σ1

1.

Example 2.2. In the structure 2≥ψ, being a node is first-order definable: a node
is an element of the universe that is a proper prefix of some other element.
Since there are countably many nodes, every set of nodes is Borel, and therefore
in Σ1

1(2≥ψ). Therefore, in projective mso on 2≥ψ one can quantify over arbitrary
sets of nodes. It is easy to see that a subset of 2≥ψ is in Σ1

n(2≥ψ) if and only if it
is a union of a set of nodes and a set from Σ1

n(2ψ). It follows that projective mso
on 2≥ψ has the same expressive power as the logic

mso[P(2∗),Σ1
1(2ψ),Σ1

2(2ψ), . . .].

Example 2.3. In projective mso on 2≥ψ, one can say that a set of branches
is countable. This is by using notions of interval, closed set, and perfect. A
set of branches is open if and only if for every element, it contains some open
interval around that element. A perfect is a set of branches which is closed
(i.e. its complement is open) and contains no isolated points. The notions of open
interval, closed set, and perfect are first-order definable. By [Kec95, Theorem
29.1], a set of branches is countable if and only if it is in Σ1

1(2ψ) and does not
contain any perfect subset, which is a property definable in projective mso.

54 M. Bojańczyk et al.

The following lemma shows that the projective mso theory of 2≥ψ can be
reduced to the mso+u theory of 2∗.

Lemma 2.4. For every sentence of projective mso on 2≥ψ, one can compute an
equivalently satisfiable sentence of mso+u on 2∗.

The proof uses Theorem 5.1 from [HS12] and the following lemma.

Lemma 2.5. Suppose that L1, L2, . . . ⊂ Aψ are definable in mso+u, and let

Xi
def
= {f−1(Li)|f : 2ψ ≥ Aψ is a continuous function}.

Then for every sentence of mso[P(2∗),X1,X2, . . .] on 2≥ψ, one can compute an
equivalently satisfiable sentence of mso+u on 2∗.

Proof. The proof of this lemma is based on the observation that, using quantifi-
cation over sets of nodes, one can quantify over continuous functions 2ψ ≥ Aψ.

Call a mapping f : 2∗ ≥ A ⇒ {δ} proper if on every infinite path in 2∗, the
labelling f contains infinitely many letters diffierent than δ. If f is proper then
define f̂ : 2ψ ≥ Aψ to be the function that maps a branch to the concatenation
of values under f of nodes on the branch. It is not diΠcult to see that a function
g : 2ψ ≥ Aψ is continuous if and only if there exists a proper f such that g = f̂ ,
see e.g. Proposition 2.6 in [Kec95]. Since a mapping f : 2∗ ≥ A ⇒ {δ} can be
encoded as a family of disjoint sets {Xa ⊂ 2∗}a∈A, one can use quantification over
sets of nodes to simulate quantification over continuous functions g : 2ψ ≥ Aψ .

The reduction in the statement of the lemma works as follows. First-order
quantification over branches is replaced by (monadic second-order) quantifica-
tion over paths, i.e. subsets of 2∗ that are totally ordered and maximal for that
property. For a formula ↔X ◦ Xi. Σ, we replace the quantifier by existential
quantification over a family of disjoint subsets {Xa}a∈A which encode a con-
tinuous function. In the formula Σ, we replace a subformula x ◦ X , where x is
now encoded as a path, by a formula which says that the image of x, under the
function encoded by {Xa}a∈A, belongs to the language Li. In order to verify if a
given element belongs to the language Li definable in mso+u on infinite words,
we can use a formula of mso+u on infinite trees. ∈≡

Proof (of Lemma 2.4). Theorem 5.1 of [HS12] shows that there is an alphabet
A such that for every i ≤ 1, there is a language Li ⊂ Aψ which is definable
in mso+u on infinite words and hard for Σ1

i (2ψ). It is easy to check (see the
full version) that Li is in fact complete for Σ1

i (2ψ). Apply Lemma 2.5 to these
languages. By their completeness, the classes X1,X2, . . . in Lemma 2.5 are exactly
the projective hierarchy on 2ψ, and therefore Lemma 2.4 follows thanks to the
observation at the end of Example 2.2. ∈≡

Before we move on, we present an example of a nontrivial property that can
be expressed in the projective mso on 2≥ψ.

On the Decidability of MSO+U on Infinite Trees 55

Example: projective determinacy. A Gale-Stewart game with winning condition
W ⊂ 2ψ is the following two-player game. For ε rounds, the players propose bits
in an alternating fashion, with the first player proposing a bit in even-numbered
rounds, and the second player proposing a bit in odd-numbered rounds. At the
end of such a play, an infinite sequence of bits is produced, and the first player
wins if this sequence belongs to W , otherwise the second player wins. Such a
game is called determined if either the first or the second player has a winning
strategy, see [Kec95, Chapter 20] or [Jec02, Chapter 33] for a broader reference.
Martin [Mar75] proved that the games are determined if W is a Borel set.

It is not diΠcult to see that for every i > 0, the statement

“every Gale-Stewart game with a winning condition in Σ1
i is determined” (1)

can be formalised as a sentence Σi
det of projective mso on 2≥ψ (see the full

version). As we show below, the ability to formalise determinacy of Gale-Stewart
games with winning conditions in Σ1

1 already indicates that it is unlikely that
projective mso on 2≥ψ is decidable.

Indeed, suppose that there is an algorithm P deciding the projective mso
theory of 2≥ψ with a correctness proof in zfc. Note that by Lemma 2.4, this
would be the case if there was an algorithm deciding the mso+u theory of 2∗

with a correctness proof in zfc. Run the algorithm on Σ1
det obtaining an answer,

either “yes” or “no”. The algorithm together with its proof of correctness and
the run on Σ1

det form a proof in zfc resolving Statement (1) for i = 1. The
determinacy of all Σ1

1 games cannot be proved in zfc, because it does not hold
if V=L, see [Jec02, Corollary 25.37 and Section 33.9], and therefore P must
answer “no” given input Σ1

det.
This means that a proof of correctness for P would imply a zfc proof that

Statement (1) is false for i = 1. Such a possibility is considered very unlikely
by set theorists, see [FFMS00] for a discussion of plausible axioms extending
the standard set of zfc axioms. A similar example regarding mso(R) and the
Continuum Hypothesis was provided in [She75].

3 Undecidability of Projective mso on 2ω

In this section we show that projective mso is undecidable already on 2ψ with
the lexicographic order. From the discussion in Example 2.2 it follows that the
projective mso theory of 2ψ reduces to the projective mso theory of 2≥ψ. There-
fore, the undecidability result for 2ψ is stronger than for 2≥ψ, in particular it
implies the undecidability result for mso+u from Theorem 1.1.

Theorem 3.1. Assume that there is a projective well-ordering of 2ψ of type ε1.
Then the projective mso theory of 2ψ is undecidable.

The proof of Theorem 3.1 is a minor adaptation of Shelah’s proof [She75] that,
assuming the Continuum Hypothesis, the mso theory of 2ψ is undecidable. In
fact, Shelah already observed that such an adaptation is possible, in the following

56 M. Bojańczyk et al.

remark on p. 410: “Aside from countable sets, we can use only a set constructible
from any well-ordering of the reals.” To make the paper self-contained, we include
a proof of Theorem 3.1.

Proof strategy. We use the name ⇔∗↔∗ sentence for a sentence of first-order
logic in the prenex normal form that has a ⇔∗↔∗ quantification pattern. The
vocabulary of graphs is defined to be the vocabulary with one binary predicate
E(x, y). Finally, an equality-free formula is one that does not use equality. The
proof is by a reduction from the following satisfiability problem:

– Input. An equality-free ⇔∗↔∗ sentence over the vocabulary of graphs.

– Question. Is the sentence true in some undirected simple graph?

The above problem is undecidable by Theorem 1 in Section 9 of [Gur80].
Reducing from the above problem is one of the main diffierences between our

proof and Shelah’s proof, which uses a reduction from the first-order theory of
arithmetic (N,+, →). The other main diffierence is that we introduce two defini-
tions, which we call modal graphs and Shelah graphs, which are only implicit
in Shelah’s proof. Our intention behind these definitions is to give the reader a
better intuition of what exactly is being coded into the mso theory of 2ψ.

3.1 Modal Graphs

Instead of encoding undirected simple graphs in projective mso, it will be more
convenient to encode a less rigid structure, which we call a modal graph1. A
modal graph consists of

– a partially ordered set of worlds with a least element;

– for every world I a set of local vertices2 VI ;

– for every world I a set of local edges EI ⊂ VI × VI

subject to the monotonicity property that VI ⊂ VJ and EI ⊂ EJ holds for every
worlds I ⊆ J . Furthermore, for every I the local edges EI are a symmetric
irreflexive relation, i.e. modal graphs are simple and undirected.

We use first-order logic to describe properties of modal graphs, with the se-
mantics relation denoted by

G, I, val |= Σ, (2)

where Σ is a formula of first-order logic, G is a modal graph, I is a world in the
modal graph, and val is a valuation that maps the free variables of Σ to the local
vertices VI of the world I. The definition is by induction on the formula:

1 Another take on modality is presented in [GS82] using the language of forcing.
2 We will only construct graphs where every world has the same local vertices, but we
give the more general definition to match Kripke models for intuitionistic logic.

On the Decidability of MSO+U on Infinite Trees 57

G, I, val |= E(x, y) iffi (val(x), val(y)) ◦ EI

G, I, val |= Σ ∅ π iffi G, I, val |= Σ and G, I, val |= π
G, I, val |= Σ ⊇ π iffi G, I, val |= Σ or G, I, val |= π
G, I, val |= ¬Σ iffi G, J, val �|= Σ for every J ≤ I
G, I, val |= ↔x Σ iffi G, J, val[x ≥ v] |= Σ for some J ≤ I and v ◦ VJ

G, I, val |= ⇔x Σ iffi G, J, val[x ≥ v] |= Σ for every J ≤ I and v ◦ VJ

The definition above is almost the same as Kripke’s semantics for intuitionistic
logic [Kri65]. The only diffierence is in the ↔ quantifier: Kripke requires the world
J to be equal to I. We say that a sentence (i.e. a formula without free variables)
is satisfied in a modal graph if (2) holds with I being the least world and val
being the empty valuation.

Example 3.2. A modal graph with one world is the same thing as an undirected
simple graph. In this case, the standard semantics of first-order logic coincide
with the semantics on modal graphs.

Example 3.3. Modal graphs satisfy more sentences of first-order logic than undi-
rected simple graphs. In particular, if two existentially quantified sentences are
satisfied in (possibly diffierent) modal graphs, then their conjunction is also satis-
fied in the modal graph obtained by joining the two modal graphs by a common
least world where the are no local edges.

The following lemma shows that for ⇔∗↔∗-sentences, the answers are the same
for the satisfiability problem in modal graphs and the satisfiability problem in
simple undirected graphs. The same lemma would hold for directed graphs, and
also for vocabularies with more predicates.

Lemma 3.4. For every ⇔∗↔∗ sentence ψ over the vocabulary of graphs, ψ is
satisfied in some undirected simple graph if and only if it is satisfied in some
modal graph.

Proof. The left-to-right implication is true for all sentences, not just ⇔∗↔∗ sen-
tences, and follows from Example 3.2.

For the right-to-left implication, consider a ⇔∗↔∗ sentence

ψ = ⇔x1, . . . , xk. ↔xk+1, . . . , xn. φ

where φ is quantifier-free. For directed graphs G and H , we say that H is an
ψ-extension of G if G is an induced subgraph of H , and for every valuation of
the universally quantified variables of ψ that uses only vertices of G, there is a
valuation of the existentially quantified variables of ψ which makes the formula
φ true, but possibly uses vertices from H .

Suppose that G is a modal graph. For a world I and a subset V of the local
vertices VI , define GI,V to be the undirected simple graph where the vertices
are V and the edges are local edges EI restricted to V × V . By monotonicity
of local edges, the set of edges in GI,V grows or stays equal as I grows. We say
that GI,V is stable if GI,V = GJ,V holds for every J ≤ I. The key properties of
being stable are:

58 M. Bojańczyk et al.

1. If GI,V is stable then for every valuation val : {x1, . . . , xn} ≥ V ,

G, I, val |= φ iffi GI,V , val |= φ.

In the equivalence above, the left side talks about semantics in modal graphs
and the right side talks about semantics in simple undirected graphs.

2. For every world I and finite V ⊂ VI , there exists a world J ≤ I such that
GI,V is stable;

3. If I ⊆ J are worlds and V ⊂ W are such that GI,V and GJ,W are stable,
then GI,V is an induced subgraph of GJ,W .

Suppose that ψ is satisfied in G.

Claim. There exists a sequence of worlds I1 ⊆ I2 ⊆ . . . and a sequence V1 ⊂
V2 ⊂ · · · of finite sets of vertices such that GIi,Vi is stable and ψ-extended by
GIi+1,Vi+1 for every i.

This claim proves the lemma, since the limit, i.e. union, of the graphs GIi,Vi

is a simple undirected graph that satisfies ψ.

Proof (of the claim). The sequence is constructed by induction; we only show
the induction step. Suppose that Ii and Vi have already been defined. Let αi be
the finite set of valuations from the universally quantified variables x1, . . . , xk

to the vertices Vi. Repeatedly using the assumption that G satisfies ψ for every
valuation in αi, one shows that there exists a world J ≤ Ii such that every
valuation val ◦ αi extends to a valuation

val⊆ : {x1, . . . , xn} ≥ VJ such that G, J, val⊆ |= φ.

Define Vi+1 ⊂ VJ to be the finite set of vertices that are used by valuations
of the form val⊆ with val ranging over elements of αi. Define Ii+1 ≤ Ii to be
the world, which exists by property 2 of stability, such that GIi+1,Vi+1 is stable.
For quantifier-free formulas, the semantics in modal graphs are preserved when
going into bigger worlds, and therefore

G, Ii+1, val
⊆ |= φ

holds for every val ◦ αi. By property 1 of stability, it follows that

GIi+1,Vi+1 , val
⊆ |= φ.

Together with property 3 of stability, this implies that GIi,Vi is ψ-extended by
GIi+1,Ii+1 . ∈≡

∈≡

3.2 Coding a Modal Graph in 2ω

In this section, we describe how a modal graph can be coded in 2ψ. We use
the name interval for a subset of 2ψ which consists of all branches that are

On the Decidability of MSO+U on Infinite Trees 59

lexicographically between some two distinct branches. Intervals defined this way
are homeomorphic with 2ψ. Intervals are denoted I, J,K.

Define a Shelah graph to be two families V , E of subsets of 2ψ such that
every set in V is dense. For a Shelah graph, define its associated modal graph as
follows. The worlds are the intervals in 2ψ, ordered by the opposite of inclusion,
in particular the least world is the whole space 2ψ. The local vertices do not
depend on the worlds: for every interval I, the local vertices VI are are V (in
particular a vertex is a subset of 2ψ). For an interval I and V,W ◦ V , the local
edge set EI contains (V,W) if and only if

I ∪ V ∪W = ∩ (3)

I ∪ (V ⇒W) = I ∪ E for some E ◦ E . (4)

It is easy to see that EI ⊂ EJ when interval J is included in interval I. Since
worlds are ordered by the opposite of inclusion, this means that I ⊆ J implies
EI ⊂ EJ . Every local edge set is symmetric because it is defined in terms of union
and intersection. Every local edge is irreflexive because (3) implies V �= W (here
we use density, since the dense sets V,W must have nonempty intersections with
I). In other words the associated modal graph is a modal graph.

For a sentence Σ of mso2, and families V , E of subsets in 2ψ, we write

2ψ,V , E |= Σ

if Σ holds, with the quantifiers ↔1X and ⇔1X interpreted to range over sets in V ,
and the quantifiers ↔2X and ⇔2X interpreted to range over sets in E . By using
logic to formalise the definition of a Shelah graph, its associated modal graph,
and the semantics of first-order logic on modal graphs, we get the following
lemma.

Lemma 3.5. For every sentence ψ of first-order logic over the vocabulary of
graphs, one can compute a sentence ψ̂ of mso2 such that

2ψ,V , E |= ψ̂

if and only if (V , E) is a Shelah graph whose associated modal graph satisfies ψ.

The general idea in the undecidability result is to use ψ̂ from the above lemma.
The main problem is that a projective mso sentence cannot begin saying “there
exists a Shelah graph”, because a Shelah graph is described by an infinite (even
uncountable) family of subsets of 2ψ. The solution to this problem, and the tech-
nical heart of the undecidability proof, is Proposition 3.6 below, which shows how
to describe the infinite families (V , E) by using just four sets. The corresponding
part in Shelah’s paper [She75] consists of Lemmas 7.6–7.9.

Proposition 3.6. Assume that there exists a well-ordering of 2ψ of type ε1

which belongs to Δ1
k(2ψ × 2ψ) for some k.

60 M. Bojańczyk et al.

Then there is a formula Σelem(V,Q, S) of projective mso on 2ψ with the fol-
lowing property. If G is a countable undirected simple graph, then there are sets

QV , QE, SV , SE ⊂ 2ψ, (5)

such that the families

V = {V ⊂ 2ψ : Σelem(V,QV , SV)}, E = {E ⊂ 2ψ : Σelem(E,QE , SE)} (6)

are a Shelah graph whose associated modal graph satisfies the same equality-free
⇔∗↔∗ sentences as G.

Furthermore, the formula Σelem quantifies only over Σ1
1 sets; the sets from (5)

are in Σ1
k+4, and the families from (6) contain only countable sets.

We now use the proposition and the previous results to show the undecidabil-
ity of projective mso from Theorem 3.1.

Corollary 3.7. Assume that there exists a projective well-ordering of 2ψ of
type ε1. Let ψ be an equality-free ⇔∗↔∗ sentence over the vocabulary of graphs.
Then the following conditions are equivalent:

1. ψ is true in some undirected simple graph, with standard semantics of logic.
2. There are sets as in (5) such that the families V , E from (6) satisfy

2ψ,V , E |= ψ̂

where ψ̂ is the sentence defined in Lemma 3.5.
3. ψ is true in some modal graph, with semantics of logic on modal graphs.

Proof. By the Löwenheim-Skolem theorem, if ψ is true in some undirected simple
graph, then it is true in some countable undirected simple graph. Therefore, the
implication 1 ⊕ 2 follows from Proposition 3.6 and Lemma 3.5.

The implication 2 ⊕ 3 follows from Lemma 3.5, which implies that ψ is true
in some modal graph, namely the modal graph associated to the Shelah graph
given by formula (6). The implication 3 ⊕ 1 is the right-to-left implication in
Lemma 3.4. ∈≡
Proof (of Theorem 3.1). Condition 2 in the above corollary can be formalised
by the formula of projective mso on 2ψ

↔SV , QV , SE , QE ◦ Σ1
k+4. ψ̃

where k is the natural number from Proposition 3.6 and ψ̃ is the same as ψ̂, except
that instead of quantifying over a set V ◦ V , it quantifies over a countable set
V satisfying Σelem(V,QV , SV); likewise for quantifying over E ◦ E .

We have thus shown a reduction from the undecidable satisfiability problem
for equality-free ⇔∗↔∗ sentences over undirected simple graphs to the theory of
projective mso on 2ψ. Therefore, the latter is undecidable. ∈≡

On the Decidability of MSO+U on Infinite Trees 61

4 Conclusions

We have shown that the mso+u theory of 2∗ is undecidable, conditional on the
existence of a projective well-ordering of 2ψ of type ε1. Apart from the obvious
question about unconditional undecidability, a natural question is about the
decidability of mso+u on infinite words: is the mso+u theory of the natural
numbers with successor decidable? The methods used in this paper are strongly
reliant on trees, so an undecidability proof would need new ideas to be adapted
to the word case. Evidence for undecidability is that the topological hardness of
mso+u on words is shown in [HS12] by encoding trees in words.

An interesting related problem [She75, Conjecture 7a] is the decidability of
mso[Borel] on 2≥ψ, i.e. the logic defined analogously to projective mso except,
that set quantification is over Borel sets only.

References

[BC06] Bojańczyk,M.,Colcombet,T.: Bounds inω-regularity. In: LICS, pp. 285–296
(2006)

[Boj04] Bojańczyk, M.: A bounding quantifier. In: Marcinkowski, J., Tarlecki, A.
(eds.) CSL 2004. LNCS, vol. 3210, pp. 41–55. Springer, Heidelberg (2004)

[Boj11] Bojańczyk, M.: Weak MSO with the unbounding quantifier. Theory Com-
put. Syst. 48(3), 554–576 (2011)

[BT12] Bojańczyk, M., Toruńczyk, S.: Weak MSO+U over infinite trees. In:
STACS, pp. 648–660 (2012)

[CL08] Colcombet, T., Löding, C.: The non-deterministic Mostowski hierarchy
and distance-parity automata. In: Aceto, L., Damg̊ard, I., Goldberg, L.A.,
Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008,
Part II. LNCS, vol. 5126, pp. 398–409. Springer, Heidelberg (2008)

[Col09] Colcombet, T.: The theory of stabilisation monoids and regular cost func-
tions. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S.,
Thomas, W. (eds.) ICALP 2009, Part II. LNCS, vol. 5556, pp. 139–150.
Springer, Heidelberg (2009)

[FFMS00] Feferman, S., Friedman, H.M., Maddy, P., Steel, J.R.: Does mathematics
need new axioms? The Bulletin of Symbolic Logic 6(4), 401–446 (2000)

[GS82] Gurevich, Y., Shelah, S.: Monadic theory of order and topology in ZFC.
Annals of Mathematical Logic 23(2-3), 179–198 (1982)

[Gur80] Gurevich, Y.: Existential interpretation II. Archiv für Mathematische Logik
und Grundlagenforschung 22(3-4), 103–120 (1980)

[HS12] Hummel, S., Skrzypczak, M.: The topological complexity of mso+u and
related automata models. Fundamenta Informaticae 119(1), 87–111 (2012)

[Jec02] Jech, T.: Set Theory. Springer (2002)
[Kec95] Kechris, A.: Classical descriptive set theory. Springer, New York (1995)
[Kri65] Kripke, S.A.: Semantical analysis of intuitionistic logic I. Studies in Logic

and the Foundations of Mathematics (1965)
[Mar75] Martin, D.A.: Borel determinacy. Annals of Mathematics 102(2), 363–371

(1975)
[Rab69] Rabin, M.O.: Decidability of second-order theories and automata on infinite

trees. Trans. of the American Math. Soc. 141, 1–35 (1969)
[She75] Shelah, S.: The monadic theory of order. The Annals of Mathemat-

ics 102(3), 379–419 (1975)

A Coalgebraic Foundation

for Coinductive Union Types

Marcello Bonsangue1,2, Jurriaan Rot1,2,Σ, Davide Ancona3,
Frank de Boer2,1, and Jan Rutten2,4

1 LIACS — Leiden University, The Netherlands
2 Formal Methods — Centrum Wiskunde en Informatica, The Netherlands

3 DIBRIS — Universita di Genova, Italy
4 ICIS — Radboud University Nijmegen, The Netherlands

Abstract. This paper introduces a coalgebraic foundation for coinduc-
tive types, interpreted as sets of values and extended with set theoretic
union. We give a sound and complete characterization of semantic sub-
typing in terms of inclusion of maximal traces. Further, we provide a
technique for reducing subtyping to inclusion between sets of finite traces,
based on approximation. We obtain inclusion of tree languages as a sound
and complete method to show semantic subtyping of recursive types with
basic types, product and union, interpreted coinductively.

1 Introduction

Basically all programming languages today support recursion to manipulate in-
ductively defined data structures such as linked lists and trees. Whereas induc-
tion deals with finite but unbounded data, its dual, coinduction, deals with
possibly infinite data. The relevant distinction here concerns traditional alge-
braic data structures which can be fully unfolded by a recursive program, and
coalgebraic data structures which can be manipulated while they unfold, even
if this process may never terminate. The interest in theoretical foundations for
coinductive types and reasoning techniques is rapidly growing. Practical appli-
cations of coinductive types are found in the world of functional languages with
lazy evaluation. Moreover a coinductive interpretation of structural recursively
defined types with record, product and union type constructors allows one to
assign types to coinductive data, such as infinite and circular lists of objects in
object-oriented languages [3]. Union types allow a more precise analysis than
disjoint sum [6], for example to type constructs like if-then-else. Consider, for
instance, the recursive type definition below.

x1 ∈≡ null⊆ < elm: int, nxt: x1 > . (1)

Here null and int are primitive type constants for representing the empty list and
the integer values, respectively, and < elm: x, nxt: y > represents the (tagged)
product of the type variables x and y.

� The research of this author has been funded by the Netherlands Organisation for
Scientific Research (NWO), CoRE project, dossier number: 612.063.920.

J. Esparza et al. (Eds.): ICALP 2014, Part II, LNCS 8573, pp. 62–73, 2014.
c∗ Springer-Verlag Berlin Heidelberg 2014

A Coalgebraic Foundation for Coinductive Union Types 63

Intuitively, the type defined by (1) is a recursive type representing all finite
and infinite linked lists of integer values. More formally, the type definition in
(1) can be interpreted both syntactically and semantically. Syntactically, (1) can
be interpreted as the set of finite and infinite closed terms over the alphabet
consisting of the constants null and int, obtained by unfolding. Semantically, the
set theoretic interpretation of the type definition (1) is based on a given semantic
interpretation of type constructors. The usual interpretation of null and int is
the set containing the empty list and the set of all integers, respectively. The
product type constructor then corresponds to the Cartesian product, and the
union type to set theoretic union. Recursion is interpreted by fixed points. Since
the interpretations of the union and product type constructors are monotonic
functions, by the Knaster-Tarski theorem we have that (1) admits both the least
and the greatest fixed point, that is, the equation can be interpreted either in-
ductively, or coinductively. The inductive interpretation yields the set of integer
linked lists of finite length. Notably, cyclic and other infinite lists are not cap-
tured. In contrast, the coinductive interpretation consists of finite and infinite
lists.

Moreover, the inductive interpretation of a type definition

x2 ∈≡< elm: int, nxt: x2 > (2)

is the empty set. In a setting where cyclic lists can be built (e.g., in an object-
oriented program) it is unsound to give an inductive type as above to cyclic lists.
In fact, in the semantic subtyping approach an empty type cannot be inhabited
by any value, otherwise the system becomes unsound: any such value can have
an arbitrary type, by subsumption. In order to guarantee soundness either cyclic
values are banned, or cyclic values are allowed but have less precise types. For
instance, an acceptable inductive type for a cyclic list would be x1 from (1).
This, however, is not very precise, since accessing the n-th element of the list in
a type safe way would require n non-emptiness checks which are useless in the
case of a cyclic list.

The above argument shows that we have to consider a coinductive interpreta-
tion of recursive types (yielding, for example, for x2, the set of infinite lists), and
define subtyping semantically as set inclusion of coinductive interpretations. The
main challenge is to provide an equivalent syntactic interpretation of recursive
type declarations, and a corresponding sound and complete method for proving
subtyping. Note that such a syntactic representation cannot be inductive either,
because we are dealing with infinite terms. Existing coinductive proof methods
such as [3–5] are incomplete and involve complex soundness proofs.

The theory of coalgebras has emerged as a general framework for a transparent
and uniform study of coinduction (the basics are recalled in Section 2). Our aim
therefore is to develop a coalgebraic approach to coinductive types, providing a
single framework for the formalization of both canonical syntactic interpretations
and equivalent semantic interpretations.

To achieve this goal we first focus on the basic notion of coinductive types
without union (Section 3). This allows us to derive a natural syntactic interpre-
tation of coinductive types by final coalgebras with bisimulation as a sound and

64 M. Bonsangue et al.

complete proof method for equivalence of coinductive types. Further, this basic
class of coinductive types allows us to focus on the general development of a
final coalgebra of values from which we derive, in our framework, a semantic
interpretation equivalent to the syntactic one.

The main challenge for a coalgebraic formalization of union types is to capture
the distributivity of the union constructor over the product type constructor.
In the setting of coalgebras this problem is reflected in the difference between
bisimilarity and trace semantics. Our solution uses a coalgebraic approach to
trace semantics based on [10, 18, 21], to extend the case of types without union
to a precise characterization of semantic subtyping as inclusion between subsets
of the final coalgebra, thus incorporating union types (Section 4).

Finally, we show how to reduce subtyping to inclusion between sets of finite
traces, based on approximation of maximal traces by finite ones (Section 5). Such
a reduction does not hold for arbitrary types of systems, but we devise a general
coinductive proof technique for showing that it does apply in mildly restricted
settings. This technique is instantiated to Moore automata and tree automata,
yielding sound and complete methods for proving subtyping.

The contributions of this paper are as follows. We provide a structural and
natural coalgebraic semantics for semantic subtyping of coinductive union types,
which is parametric in the type constructors and abstracts away from a specific
choice of syntax. We extend the theory of coalgebraic trace semantics with a
novel coinductive method for finitely approximating maximal traces. We apply
this technique to give the first sound and complete method for deciding semantic
subtyping of coinductively interpreted recursive types with product and union.

2 Coalgebras

For an extensive introduction to the theory of universal coalgebra see [23]. We
denote by Set the category of sets and functions and by Id the identity functor.
Given a functor F : Set ≡ Set, an F -coalgebra is a pair (X, c) of a set X and
a function c : X ≡ FX . A homomorphism between two coalgebras (X, c) and
(Y, d) is a function h : X ≡ Y such that d ↔ h = Fh ↔ c. An F -bisimulation
between two F -coalgebras (X, c) and (Y, d) is a relation R ⇔ X × Y that can be
equipped with an F -coalgebra structure γ turning both projections πl : R ≡ X
and πr : R ≡ Y into coalgebra homomorphisms. Two elements x ⊂ X and y ⊂ Y
are F -bisimilar, denoted by x ≥F y, if there exists a bisimulation R containing
the pair (x, y). If F is clear from the context we write ≥ instead of ≥F .

Example 2.1. Let A be a set. For the functor A × Id, a coalgebra consists of a
set X and a function ⇒o, δ◦ : X ≡ A ×X . Here ⇒o, δ◦ denotes the pairing of the
output function o : X ≡ A and the next state function δ : X ≡ X . Given sets
A and B, coalgebras for the functor LX = B + (A ×X) are representations of
infinite lists over A and finite lists over A with termination in B.

A (single-sorted) signature Σ = (Σn)n∈N can be represented by a polynomial
Set functor defined by Hψ(X) =

∐
n∈N

Σn ×Xn. A Σ-coalgebra over the set of

A Coalgebraic Foundation for Coinductive Union Types 65

variables X is given by a function assigning each x ⊂ X to a term σ(x1, . . . , xn),
where σ ⊂ Σn is an operator of arity n ≤ 0, and xi ⊂ X for all 1 → i → n.

For a given functor F , the final coalgebra (Ω, ξF) (if it exists) is a canonical
domain of behaviour of F -coalgebras, with the property that for any F -coalgebra
(X, c) there exists a unique homomorphism h : X ≡ Ω into it [23]. Final coalge-
bras exist under mild conditions on the functor.

Example 2.2. The carrier of the final coalgebra for the functor A × Id consists
of the set of all infinite lists over A. For LX = B + (A×X), the final coalgebra
consists of all finite lists in A≥B and infinite lists in Aθ. It is thus given by the
set AΣB∅Aθ with coalgebra map ζ : AΣB∅Aθ ≡ B+(A× (AΣB∅Aθ)) defined
by ζ(b) = b and ζ(aw) = ⇒a, w◦ for all a ⊂ A, b ⊂ B and w ⊂ AΣB ∅ Aθ. The
final coalgebra of a signature functor Hψ is given by ω : T∈

ψ ≡ Σ(T∈
ψ) where

T∈
ψ is the set of all finite and infinite Σ-trees (see, for instance, [1]).

One of the central elements of the theory of coalgebras is the (proof) principle
of coinduction, which says that bisimilar states are mapped to the same element
of the final coalgebra: if x ≥ y then h(x) = h(y). Establishing bisimulations
is a concrete proof method for bisimilarity, and thus, by the above principle,
for equality in the final coalgebra. If the functor preserves weak pullbacks, a
rather mild condition satisfied by all of the above examples, the converse holds
as well [23], i.e., h(x) = h(y) implies x ≥ y. In the following sections we implicitly
assume all functors to preserve weak pullbacks.

3 A Semantic Approach to Coinductive Types

In this section we propose a framework for coinductive types without union. We
use two functors F and G as follows: F -coalgebras are interpreted as (recur-
sive) type definitions, whereas G-coalgebras are (recursive) value definitions. We
assume that the final coalgebras of F and G exist. The carrier T of the final
F -coalgebra (T, ξF) consists of all coinductive types. The carrier V of the final
G-coalgebra (V, ξG) is the set of all coinductive values.

Example 3.1. A type definition such as x ∈≡< elm: int, nxt: y > together with
y ∈≡< elm: bool, nxt: x >, can be given as a coalgebra for {int, bool} × Id. The
homomorphism into the final coalgebra maps x to int, bool, int, bool, . . . ⊂ T.

An infinite recursive definition pi ∈≡ (i, qi) and qi ∈≡ (true, pi+1) for i ⊂ N can
be represented as a coalgebra for the functor (N+B)×Id, where B = {true, false}
is the set of Boolean values, and N is the set of non-negative integers. Then p0
is mapped to the infinite list 0, true, 1, true, 2, . . . ⊂ V in the final coalgebra.

The functors F and G will be connected by a natural transformation. A natural
transformation α : G ⊇ F associates to every set X a function αX : GX ≡ FX
such that for any function f : X ≡ Y we have Ff ↔ αX = αY ↔ Gf . In order
to assign types to values we assume given a natural transformation α : G ⊇ F ,
which represents an assignment of types to basic values. We will exhibit an

66 M. Bonsangue et al.

example below, but first we set up the general framework, which coinductively
assigns types to values. More precisely, by applying the natural transformation α
to the final G-coalgebra, we turn it into an F -coalgebra and thus obtain a unique
F -coalgebra homomorphism from coinductive values to coinductive types. This
is depicted in the middle of the diagram below.

V
ν ������

d
��

V

��

λ ������ T

��

X
ρ��� � � �

c

��

GV
Gν ��

αV

��

GV

αV

��
FV

Fν �� FV
Fλ �� FT FX

Fρ��

(3)
The map τ defined by fi-

nality gives the assignment of
types to values. The left and
the right side of the diagram
are representations:
– Given a value representation
d : V ≡ GV we let ν : V ≡ V

be the unique coalgebra ho-
momorphism and extend d,
again using α, to a F -coalgebra. This is depicted in the two commuting squares
on the left side of the diagram.
– Given a type representation c : X ≡ FX we let ρ : X ≡ T be the unique homo-
morphism into T, as depicted on the right side of the diagram. A typing relation
between V and X is then defined in the obvious way: given p ⊂ V and x ⊂ X
we let p : x iff τ(ν(p)) = ρ(x).

Example 3.2. Continuing the above Example 3.1, we can define α : ((N + B) ×
Id) ⊇ ({int, bool} × Id) for every set S simply by putting αS((n, s)) = (int, s)
and αS((b, s)) = (bool, s) for all n ⊂ N, b ⊂ B, and s ⊂ S. For the concrete type
and value definitions x and p0 respectively, of Example 3.1, it is easy to check
that τ(ν(p0)) = ρ(x), so p0 : x as expected. In fact, as we will see below, this
can be checked by establishing a bisimulation.

In the above approach the meaning of a type declaration c : X ≡ FX is
given by finality, in terms of the unique homomorphism ρ : X ≡ T. It is thus
independent of the language of values. Next we interpret types semantically, as
sets of values, and subsequently we relate the two interpretations.

Definition 3.1. Types are interpreted as sets of values by �−� : T ≡ P(V),
defined as the inverse of τ , i.e., �t� = {v ⊂ V | τ(v) = t} for any t ⊂ T.

It follows from the above definition that if �t1� = �t2� and both �t1� and �t2�
are non-empty, then t1 = t2. Types are inhabited by values (thus non-empty) if
the natural transformation α : G ⊇ F mapping values to types is surjective in
all of its components, i.e., αX is surjective for any set X .

Lemma 3.1. If α is a surjective natural transformation then τ is surjective.

Corollary 3.1. If α is a surjective natural transformation then t1 = t2 if and
only if �t1� = �t2� for all t1, t2 ⊂ T.

Note that if �t1� ⇔ �t2� then �t1� = �t2�. Subtyping will become relevant in the
next section, where we consider subsets of T.

A Coalgebraic Foundation for Coinductive Union Types 67

To see why surjectivity is a natural condition, consider the type definitions x
and y from Example 3.1, and α : (N× Id) ⊇ ({int, bool}× Id) given by αS(n, s) =
(int, s). In this case clearly ρ(x) �= ρ(y), whereas �ρ(x)� = ∪ = �ρ(y)�.

Equality of types coincides with bisimilarity, by coinduction: T is a final coal-
gebra. Thus we obtain the following soundness and completeness result.

Theorem 3.1. Using the setting of (3), let c : X ≡ FX be a coalgebra, and α
surjective. For all x, y ⊂ X we have �ρ(x)� = �ρ(y)� iff ρ(x) = ρ(y) iff x ≥F y.

If F is a polynomial functor (constructed by finite sum and product) and
we restrict to type declarations using only finitely many variables (so that types
essentially represent rational trees over a signature) then bisimulation is not only
a sound and complete proof method for type equality, but it is also decidable [7].
We note that in the above framework, computing the typing relation can be seen
as a special case of type equality (by turning G-coalgebras into F -coalgebras),
and therefore it can also be computed using bisimulations.

4 Coinductive Union Types

In the previous section we have introduced a coalgebraic semantics, where types,
i.e., elements of the final coalgebra T, are equal if and only if they represent
the same sets of values. Types and values can be represented by coalgebras,
and bisimulation provides a concrete proof principle for type equivalence. In the
current section we are interested in extending these results to union types, that
is, subsets of T. By P(X) we denote the power set functor applied to a set X , i.e.,
the set of subsets of X ; for a function f : X ≡ P(Y) we write f ϕ : P(X) ≡ P(Y)
for its direct image. In the previous section we have coinductively constructed
a map τ : V ≡ T from values to types, from which the semantics �t� of a type
t ⊂ T as a set of values can be defined simply by using the inverse. In order
to have a natural counterpart of Theorem 3.1 in the setting of subtyping we
extend the semantics to sets of types using direct image �−�ϕ : P(T) ≡ P(V),
i.e., �S�ϕ = {v ⊂ V | τ(v) ⊂ S}.

Theorem 4.1. If α is a surjective natural transformation then T1 ⇔ T2 if and
only if �T1�

ϕ ⇔ �T2�
ϕ, for all T1, T2 ⇔ T.

One of the main problems is to represent elements of P(T) as coalgebras. In the
previous section we have seen how an F -coalgebra represents a type definition; it
is natural to consider a PF -coalgebra instead, in the case of union types, adding
a top-level union constructor. The problem here is that the branching of PF -
coalgebras should not be considered. Indeed, P(T) is not the final coalgebra of
PF—in fact, PF does not even have a final coalgebra for cardinality reasons. But
even if we restrict ourselves to PfF (where Pf (X) is the set of finite subsets of
X), then the final coalgebra consists of finitely branching synchronization trees
labelled in a and quotiented by strong bisimilarity. Instead, we need the trace
semantics of PF -coalgebras. To this end we base ourselves on the coalgebraic
trace semantics of [21].

68 M. Bonsangue et al.

Definition 4.1. Let c : X ≡ P(FX) be a coalgebra, and (T, ξT) the final F -
coalgebra. A trace map tr is a map that makes the following diagram commute:

X

c

��

tr �� P(T)

P(ξT)

��
P(FX)

(F̄ tr)ω �� P(FT)

where F̄ (tr) is defined by relation lifting [21]. If the diagram does not commute
but P(ξT) ↔ tr ⇔ (F̄ tr)ϕ ↔ c, then we say tr is a quasi trace map.

Instead of recalling the definition of relation lifting, we introduce it by examples.

Example 4.1. Consider the functor FX = B+(A×X). Then T = A≥B∅Aθ (see
Example 2.2). A coalgebra c : X ≡ PFX is a nondeterministic Moore automaton.
A trace map is a map tr : X ≡ P(A≥B ∅ Aθ) such that for all b ⊂ B: b ⊂ tr(x)
iff b ⊂ c(x), and for all aw ⊂ A(A≥B ∅ Aθ): aw ⊂ tr(x) iff (a, y) ⊂ c(x) and
w ⊂ tr(y) for some y ⊂ X . For a quasi trace map, these equivalences are relaxed
to implications from left to right.

Given any signature functor Hψ (Example 2.1), a PHψ-coalgebra is a non-
deterministic top-down tree automaton. The trace map associated with a coal-
gebra c : X ≡ P(HψX) satisfies the following: σ ⊂ tr(x) iff σ ⊂ Σ0 ∩ c(x), and
σ(k1, . . . , kn) ⊂ tr(x) iff ⇒σ, x1, . . . , xn◦ ⊂ Σn × Xn ∩ c(x) and ki ⊂ tr(xi) for
1 → i → n. Again, for a quasi trace map these are implications from left to right.

The set of maps of type X ≡ P(T) forms a complete lattice, by pointwise
extension of the subset inclusion order on P(T). A trace map can be viewed as a
fixpoint of a map on this complete lattice; since relation lifting is monotone, this
is a monotone map, and therefore, by the Knaster-Tarski theorem, for a fixed
PF -coalgebra the greatest trace map as well as the least trace map exist (a
similar approach is taken in [10]). To model coinductive types we are interested
in this greatest trace map (in the sequel typically denoted by T and called
maximal traces). Moreover, we get the following proof principle: if tr is a quasi
trace map, then it is a post-fixed point of the above monotone map, so it is
(pointwise) included in the greatest one: tr ⇔ T . This proof technique is applied
in Section 5.

Example 4.2. Continuing Example 4.1, the least trace map t for a non-deterministic
Moore automaton assigns to a state the standard definition of its finite traces in
A≥B. The greatest trace map T assigns to a state the finite traces as well as the
infinite traces in Aθ. For example, recall the type definition x1 from equation (1) of
the introduction, representing finite and infinite lists of integers, and x2 from equa-
tion (2) representing infinite lists of integers. They clearly define Moore automata.
For the least trace map t we have t(x1) = int≥null and t(x2) = ∪. For the greatest
trace map T we have T (x1) = t(x1) ∅ intθ and T (x2) = intθ (i.e. the desired
coinductive types of definitions x1 and x2).

A Coalgebraic Foundation for Coinductive Union Types 69

For a non-deterministic (top-down) tree automaton, the least trace map is sim-
ply the standard semantics of tree automata, assigning a tree language (of finite
trees) to each state. The greatest trace map contains this language as well as all
infinite trees such that, when parsed, the automaton does not block. These tree
automata can be used to represent type definitions, similarly to Moore automata,
but generalizing this to arbitrary (finite) use of the product constructor.

Corollary 4.1. For any coalgebra c : X ≡ P(FX) and any x, y ⊂ X we have
T (x) ⇔ T (y) iff �T (x)�ϕ ⇔ �T (y)�ϕ (given that α is surjective).

Thus, subset inclusion between syntactic unfoldings of sets of types is sound
and complete with respect to semantic subtyping, i.e., inclusion between types
interpreted as sets of values. Unfortunately, since P(T) is not a final coalgebra,
we do not obtain bisimilarity (or similarity) as a proof principle, as was the case
in the framework of Section 3. We address the problem of proving subtyping in
the following section.

5 Approximating Coinductive Union Types

By the main results of the previous section, semantic subtyping coincides with
subtyping between sets of maximal traces, that is, syntactic unfoldings of type
definitions. In this section we provide a generally applicable technique to reduce
subtyping to inclusion between finite traces. This is based on finite approximation
of maximal traces, which we introduce below.

We fix a functor F : Set ≡ Set (preserving weak pullbacks) and a coalgebra
c : X ≡ PFX . In order to define approximation, consider the functor F⊆ = F +
{⊕}, and the natural transformation γ : PF ⊇ PF⊆ given by γX(S) = S ∅ {⊕}.
We can now turn c into the F⊆-coalgebra γX ↔ c. It is our aim to use the finite
traces of γX ↔ c to approximate the maximal traces of c. We use the approach
of [18] to finite trace semantics via finality in the category Rel, where objects are
sets and morphisms are relations (represented as functions X ≡ P(Y)).

X

c

��

t⊥ �� P(I)

��

P(FX)

γX

��
P(F⊆X)

(F̄⊥t⊥)ω�� P(F⊆I)

(4)
Central to this approach is the initial alge-

bra of F⊆, which we denote by ι : F⊆I ≡ I. By
Lambek’s lemma ι is an isomorphism. Now,
by [18, Theorem 3.8], I is the final coalgebra
in Rel, for the functor F̄⊆ defined by relation
lifting. Thus, for any F⊆-coalgebra in Rel, that
is, a PF⊆-coalgebra in Set, we obtain a unique
map into P(I). Applying this to a coalgebra
γX ↔ c : X ≡ PF⊆X as constructed above, we
get a unique map t⊆ : X ≡ P(I) as in (4).

Example 5.1. For a non-deterministic Moore automaton c : X ≡ P(B+(A×X)),
the above construction yields the finite trace semantics for γX ↔ c, which is the
Moore automaton obtained by adding the output ⊕ to each state. We regard a
word w⊕ as a prefix of a word v ⊂ A≥B ∅ Aθ if wv⊗ = v for some v⊗; in this
sense, t⊆(x) is prefix-closed.

70 M. Bonsangue et al.

Applying the above construction to T, we get a map approx : T ≡ P(I). This
map, informally, computes the approximations of maximal traces. Consider now
the following map defined from it: maxtr : P(I) ≡ P(T), given by maxtr(S) =
{w ⊂ T | approx (w) ⇔ S}. The map maxtr computes the set of maximal traces
represented by a set of approximations. The following lemma states that the
function t⊆ can be represented as the approximation of maximal traces.

Lemma 5.1. t⊆ = approx ϕ ↔ T .
This follows from the fact that I is final in Rel. As a simple consequence of this
result and the fact that maxtr is defined as the (upper) inverse of approx , we
now obtain the following:

Corollary 5.1. T ⇔ maxtr ↔ t⊆.
The converse of the above corollary does not hold in general. There is a standard
counterexample (e.g., [17]): take a non-deterministic Moore automaton containing
a state x that accepts all finite traces of the form anb (for some b and all n ≤ 0),
but not the infinite trace aθ = aaa . . . (such an automaton can be realized using
infinite branching). Then maxtr ↔ t⊆(x) contains aθ, whereas T (x) does not.

To prove the converse for restricted classes of coalgebras, we use that T is a
greatest fixpoint. Under the condition that maxtr ↔t⊆ is a quasi trace map, we ob-
tain the soundness and completeness of finite traces w.r.t. (semantic) subtyping.

Theorem 5.1. Let c : X ≡ P(FX) be a coalgebra such that maxtr ↔ t⊆ is a
quasi trace map. Then for any x, y ⊂ X: t⊆(x) ⇔ t⊆(y) iff T (x) ⇔ T (y).

Proof. Suppose t⊆(x) ⇔ t⊆(y). If maxtr ↔ t⊆ is a quasi trace map then maxtr ↔
t⊆ ⇔ T ; combined with Corollary 5.1, this yields maxtr ↔ t⊆ = T . Conversely, if
T (x) ⇔ T (y) then approx ϕ↔T (x) ⇔ approx ϕ↔T (y), so t⊆(x) ⇔ t⊆(y) by Lemma 5.1.

Moore automata. As shown in Example 4.1, non-deterministic Moore automata
can be used to represent types for finite and infinite lists. However, in general they
do not satisfy the condition of Theorem 5.1; we need to make an appropriate re-
striction on the branching behaviour. We say c : X ≡ P(B + (A×X)) is image-
finite when for any x ⊂ X and any a ⊂ A: c(x) may contain finitely many elements
of the form (a, x) (but infinitely many of B, and A may itself be infinite).

Proposition 5.1. For any image-finite Moore automaton: t⊆(x) ⇔ t⊆(y) iff
T (x) ⇔ T (y).

Proof. Let c be image-finite. Using Example 4.1, we see that to prove that maxtr↔
t⊆ is a trace map, is to prove that 1) b ⊂ maxtr ↔ t⊆(x) implies b ⊂ c(x), and
2) for all aw ⊂ A(A≥B ∅ Aθ): if aw ⊂ maxtr ↔ t⊆(x) then (a, y) ⊂ c(x) and w ⊂
maxtr ↔ t⊆(y) for some y ⊂ X . The first part 1) is easy: b ⊂ maxtr ↔ t⊆(x) implies
b ⊂ t⊆(x), which in turn implies b ⊂ c(x). For 2), suppose aw ⊂ maxtr ↔ t⊆(x).
Then w ⊂ ⋃

(a,y)∈c(x)maxtr ↔t⊆(y); by image-finiteness, this is a finite union. The

case that w is finite is straightforward; suppose w is infinite. Then approx (w)
is infinite; and thus there is some y for which infinitely many prefixes of w are
contained in t⊆(y). But t⊆(y) is prefix-closed; so w ⊂ maxtr ↔ t⊆(y).

A Coalgebraic Foundation for Coinductive Union Types 71

Example 5.2. Consider the following type definition.

x3 ∈≡ < elm: int, nxt: x4 >
x4 ∈≡ null⊆ < elm: int, nxt: x4 > ⊆ < elm: bool, nxt: x4 > .

(5)

In the coinductive interpretation this represents all finite and infinite lists of
integers and booleans that start with an integer. Consider the types below:

x5 ∈≡ < elm: int, nxt: x6 > ⊆ < elm: int, nxt: x7 > ⊆ < elm: int, nxt: x8 >
x6 ∈≡ < elm: bool, nxt: x8 > ⊆ < elm: bool, nxt: x6 > ⊆ < elm: int, nxt: x6 >
x7 ∈≡ < elm: int, nxt: x8 > ⊆ < elm: bool, nxt: x7 > ⊆ < elm: int, nxt: x7 >
x8 ∈≡ null .

(6)
Here x6 and x7 represent infinite lists, as well as finite lists ending with bool
and int, respectively. We can now prove that T (x3) ⇔ T (x5) by reducing it to
t⊆(x3) ⇔ t⊆(x5), which is a simple case of language inclusion.

Tree automata. A tree automaton c : X ≡ P+(HψX) is said to be image finite if
for all x ⊂ X and σ ⊂ Σ⊆ there are only finitely many tuples ⇒σ, x1, . . . xn◦ ⊂ c(x),
where n is the arity of σ.

Proposition 5.2. For any image-finite tree automaton: t⊆(x) ⇔ t⊆(y) iff T (x)⇔
T (y).

The proof is a straightforward extension of the case of Moore automata. Thus, we
obtain inclusion of tree languages (of finite trees) as a sound and complete method
to show semantic subtyping of recursive types with product and union, interpreted
coinductively. For regular tree languages, i.e., languages accepted by a top-down
non-deterministic tree automaton with finitely many states, language inclusion
(and thus subtyping) is decidable, although it is EXPTIME-complete [11].

6 Related Work

Axiomatizations and algorithms for subtyping on recursive types interpreted
coinductively have been proposed by Amadio and Cardelli [2] in the context
of functional programming; subsequently, a more concise sound and complete
axiomatization has been proposed by Brandt and Henglein [9], with a novel rule
for a finitary coinduction principle. In these papers types are interpreted as ideals
in a universal domain, hence they do not follow the semantic subtyping approach
where subtyping corresponds to the subset relation. Furthermore, types have no
Boolean operators; as we will see, introducing union types makes sound and
complete axiomatization of subtyping more challenging.

Damm [12] proves decidability of subtyping between recursive types with
intersection, union, and function types, by reduction to the problem of inclusion
between regular tree expressions. However, the paper does not consider record
types, and, more importantly, types are interpreted inductively, rather than
coinductively, over a rather complex metric space of ideals. As a consequence,

72 M. Bonsangue et al.

the corresponding subtyping relation is not comparable with ours. Di Cosmo et
al. [13] study subtyping of recursive types up to associativity and commutativity
of products; their definition of subtyping is fully axiomatic, and only products
and arrow types are considered, no Boolean operators. A nice introduction to
the fundamental theory of recursive types and subtyping can be found in the
work by Gapeyev et al. [16]; the survey does not consider Boolean operators, and
subtyping is defined axiomatically, hence a type interpretation is not introduced.

Semantic subtyping in the presence of Boolean operators and product or
record type constructors has been intensively studied in the context of the
XDuce [20] and CDuce [6] programming languages. As in our case, the sub-
typing relation corresponds to a natural semantic notion: types denote sets of
documents (that is, sets of finite trees), and subtyping coincides with inclusion
between the sets denoted by two types. The main difference with coinductive
types is their interpretation: types in both XDuce and CDuce are interpreted
inductively, therefore a type definition as (2) corresponds to the empty set of
values; as a matter of fact, types in XDuce and CDuce fail to capture cyclic val-
ues. Even though CDuce supports references, and, hence, it is possible to create
cycles, the types that can be correctly assigned to cyclic values are “inductive”.

Semantic subtyping with union and coinductive types has been studied in
the context of precise static type analysis for object-oriented programming [3].
Sound but not complete axiomatizations of subtyping have been defined in [4, 5].

7 Future Work

The coalgebraic framework presented in this paper provides the basis for an
extensive, structured investigation of subtyping for coinductive union types.

The subtyping relation could be refined by allowing subtyping between prim-
itive types (e.g., nat is a subtype of int) as well as depth and width subtyping
between records. Technically, this could be achieved by moving our framework
from the category Set to the category of partially ordered sets.

The methods in [8, 14] allow to canonically derive sound and complete axiom-
atizations for the rational subset of the final coalgebra of a polynomial functor.
For example, one can easily obtain a calculus for subtyping, by combining the
axiomatisation of tree regular expressions of [14] with the approximation results
of Section 5 of the present paper.

In our framework we abstracted from concrete calculi of expressions evaluat-
ing to values. It would be interesting to integrate the bialgebraic approach [22]
(defining syntax and semantics of expressions) within our framework by allowing
the specification of typing rules for each operator.

References

1. Aczel, P., Adámek, J., Milius, S., Velebil, J.: Infinite trees and completely iterative
theories: A coalgebraic view. Theoretical Computer Science 300(1-3), 1–45 (2003)

2. Amadio, R., Cardelli, L.: Subtyping recursive types. ACM Transactions on Pro-
gramming Languages and Systems 15(4) (1993)

A Coalgebraic Foundation for Coinductive Union Types 73

3. Ancona, D., Lagorio, G.: Coinductive type systems for object-oriented languages.
In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS, vol. 5653, pp. 2–26. Springer,
Heidelberg (2009)

4. Ancona, D., Lagorio, G.: Coinductive subtyping for abstract compilation of object-
oriented languages into Horn formulas. In: GandALF 2010. EPTCS, vol. 25 (2010)

5. Ancona, D., Lagorio, G.: Complete coinductive subtyping for abstract compilation
of object-oriented languages. In: FTfJP 2010. ACM Digital Library (2010)

6. Benzaken, V., Castagna, G., Frisch, A.: CDuce: An XML-Centric General-Purpose
Language. In: ICFP (2003)

7. Bonsangue, M., Caltais, G., Goriac, E.-I., Lucanu, D., Rutten, J., Silva, A.: Auto-
matic equivalence proofs for non-deterministic coalgebras. Science of Computer Pro-
gramming 798(9), 1324–1345 (2013)

8. Bonsangue, M., Milius, S., Silva, A.: Sound and Complete Axiomatizations of Coal-
gebraic Language Equivalence. ACM Trans. on Comp. Logic 14(1), 7 (2013)

9. Brandt, M., Henglein, F.: Coinductive axiomatization of recursive type equality
and subtyping. Fundamentae Informatica 33(4) (1998)

10. Ĉırstea, C.: From Branching to Linear Time, Coalgebraically. In: FICS 2013.
EPTCS, vol. 126, pp. 11–27 (2013)

11. Comon, H., Dauchet,M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D., Tison,
S., Tommasi, M.: Tree Automata Techniques and Applications,
http://www.grappa.univ-lille3.fr/tata

12. Damm, F.: Subtyping with Union Types, Intersection Types and Recursive Types.
In: Hagiya, M., Mitchell, J.C. (eds.) TACS 1994. LNCS, vol. 789, pp. 687–706.
Springer, Heidelberg (1994)

13. Di Cosmo, R., Pottier, F., Rémy, D.: Subtyping Recursive Types Modulo Associa-
tive Commutative Products. In: Urzyczyn, P. (ed.) TLCA 2005. LNCS, vol. 3461,
pp. 179–193. Springer, Heidelberg (2005)

14. Ésik, Z.: Axiomatizing the equational theory of regular tree languages. Journal of
Logic and Algebraic Programming 79(2), 189–213 (2010)

15. Frisch, A., Castagna, G., Benzaken, V.: Semantic Subtyping: dealing set-
theoretically with function, union, intersection, and negation types. The Journal
of the ACM (2008)

16. Gapeyev, V., Levin, M.Y., Pierce, B.C.: Recursive subtyping revealed. The Journal
of Functional Programming 12(6), 511–548 (2002)

17. van Glabbeek, R.: The linear time - branching time spectrum I. The semantics of
concrete, sequential processes. In: Handbook of Process Algebra, pp. 3–99 (2001)

18. Hasuo, I., Jacobs, B., Sokolova, A.: Generic trace semantics via coinduction. Logical
Methods in Computer Science 3, 1–36 (2007)

19. Hosoya, H., Vouillon, J., Pierce, B.C.: Regular expression types for XML. ACM
Trans. Program. Lang. Syst. 27(1), 46–90 (2005)

20. Hosoya, H., Pierce, B.C.: XDuce. A statically typed XML processing language.
ACM Trans. Internet Techn. 3(2), 117–148 (2003)

21. Jacobs, B.: Trace Semantics for Coalgebras. In: CMCS 2004. ENTCS, vol. 106
(2004)

22. Klin, B.: Bialgebras for structural operational semantics: An introduction. Theo-
retical Computer Science 412(38), 5043–5069 (2011)

23. Rutten, J.: Universal coalgebra: a theory of systems. Theoretical Computer Science
249 (2000)

http://www.grappa.univ-lille3.fr/tata

Turing Degrees of Limit Sets of Cellular
Automata�

Alex Borello, Julien Cervelle, and Pascal Vanier

Laboratoire d’algorithmique, complexité et logique
Université de Paris-Est, LACL, UPEC, France

Abstract. Cellular automata are discrete dynamical systems and amodel
of computation. The limit set of a cellular automaton consists of the con-
figurations having an infinite sequence of preimages. It is well known that
these always contain a computable point and that any non-trivial property
on them is undecidable. We go one step further in this article by giving a
full characterization of the sets of Turing degrees of limit sets of cellular au-
tomata: they are the same as the sets of Turing degrees of effectively closed
sets containing a computable point.

1 Introduction

A d-dimensional cellular automaton (CA for short) consists of cells aligned on Z
d

that may be in a finite number of states, and are updated synchronously with a
local rule, i.e. depending only on a finite neighborhood. All cells operate under
the same local rule. The state of all cells at some time step is called a config-
uration. CAs are very well known for being simple systems that may exhibit
complicated behavior.

A d-dimensional subshift of finite type (SFT for short) is a set of colorings
of Zd by a finite number of colors containing no pattern from a finite family of
forbidden patterns. Most proofs of undecidability concerning CAs involve the
use of SFTs, so both topics are very intertwined [Kar90; Kar92; Kar94a; Mey08].
A recent trend in the study of SFTs has been to give computational characteri-
zations of dynamical properties, which has been followed by the study of their
computational structure and in particular the comparison with the computa-
tional structure of effectively closed sets, which are the subsets of {0, 1}N on
which some Turing machine does not halt. It is quite easy to see that SFTs are
such sets.

In this paper, we follow this trend and study limit sets of CAs, which consist
of all the configurations of a given CA that can occur after arbitrarily long
computations; they were introduced by [CPY89] in order to classify CAs. It
has been proved that non-trivial properties on these sets are undecidable by
[Kar94b] for CAs of all dimensions. Limit sets of CAs are subshifts, and the
question of which subshifts may be limit sets of CA has been a thriving topic,
� This work was sponsored by grants EQINOCS ANR 11 BS02 004 03 and TARMAC

ANR 12 BS02 007 01.

J. Esparza et al. (Eds.): ICALP 2014, Part II, LNCS 8573, pp. 74–85, 2014.
© Springer-Verlag Berlin Heidelberg 2014

Turing Degrees of Limit Sets of Cellular Automata 75

see [Hur87; Hur90a; Hur90b; Maa95; FK07; LM09; BGK11]. However, most of
these results are on the language of the limit set or on simple limit sets. Our aim
here is to study the configurations themselves.

In dimension 1, limit sets are effectively closed sets, so it is quite natural
to compare them from a computational point of view. The natural measure of
complexity for effectively closed sets is the Medvedev degree [Sim11], which,
informally, is a measure of the complexity of the simplest points of the set. As
limit sets always contain a uniform configuration (wherein all cells are in the same
state), they always contain a computable point and have Medvedev degree 0.
Thus, if we want to study their computational structure, we need a finer measure;
in this sense, the set of Turing degrees is appropriate.

It turns out that for SFTs, there is a characterization of their sets of Turing
degrees found by [JV13b], which states that one may construct SFTs with the
same Turing degrees as any effectively closed set containing a computable point.
In the case of limit sets, such a characterization would be perfect, as limit sets
always contain a computable point1. This is exactly what we achieve in this
article:

Theorem 1. For any effectively closed set S, there exists a one-dimensional
cellular automaton A such that

degTΩ (A) = degTS ∈ {0}.
In the way to achieve this theorem, we introduce a new construction that

allows us some control over the limit set. We hope that this construction will
lead to other unrelated results on limit sets of CAs, as was the case for the
construction in [JV13b], see [JV13a].

The paper is organized as follows: in section 2 we recall the usual definitions
concerning CAs and Turing degrees, then in section 3 we give the reasons for
each trait of the construction that allows us to prove theorem 1, and section 4
gives the actual construction. The choice has been made to have colored figures,
which are best viewed onscreen.

2 Preliminary Definitions

A (1-dimensional) cellular automaton is a triple A = (Q, r, δ), where Q is the
finite set of states, r > 0 is the radius and δ : Q2r+1 ≡ Q the local transition
function.

An element of i ⊆ Z is called a cell, and the set �i−r, i+r� is the neighborhood
of i (the elements of which are the neighbors of i). A configuration is a function
c : Z ≡ Q. The local transition function induces a global transition function (that
can be regarded as the automaton itself, hence the notation), which associates
to any configuration c its successor :

A(c) :

{
Z ≡ Q
i ↔≡ δ(c(i − r), . . . , c(i− 1), c(i), c(i + 1), . . . , c(i+ r))).

1 Note that this is not the case for subshifts: there exist non-empty effective subshifts
containing only non-computable points.

76 A. Borello, J. Cervelle, and P. Vanier

In other words, all cells are finite automata that update their states in parallel,
according to the same local transition rule, transforming a configuration into its
successor.

If we draw some configuration as a horizontal bi-infinite line of cells, then add
its successor above it, then the successor of the latter and so on, we obtain a space-
time diagram, which is a two-dimensional representation of some computation
performed by A.

A site (i, t) ⊆ Z
2 is a cell i at a certain time step t of the computation we

consider (hereinafter there will never be any ambiguity on the automaton nor
on the computation considered).

The limit set of A, denoted by Ω (A), is the set of all the configurations that
can appear after arbitrarily many computation steps:

Ω (A) =
⋂
k∈N

Ak(QZ).

For surjective CAs, the limit set is the set of all possible configurations QZ,
while for non-surjective CAs, it is the set of all configurations containing no
orphan of any order, see [Hur90b]. An orphan of order n is a finite word w which
has no preimage by An

Q|w| .

An effectively closed set, or Π0
1 class, is a subset S of {0, 1}N for which there

exists a Turing machine that, given any x ⊆ {0, 1}N, halts if and only if x ⇔⊆ S.
Equivalently, a class S ⊂ {0, 1}N is Π0

1 if there exists a computable set L such
that x ⊆ S if and only if no prefix of x is in L. It is then quite easy to see that
limit sets of CAs are Π0

1 classes: for any limit set, the set of forbidden patterns
is the set of all orphans of all orders, which form a recursively enumerable set,
since it is computable to check whether a finite word is an orphan.

For x, y ⊆ {0, 1}N, we say that x≥T y if x is computable by a Turing machine
using y as an oracle. If x≥T y and x⇒T y, x and y are said to be Turing-equivalent,
which is noted x◦T y. The Turing degree of x, noted degTx, is its equivalence class
under relation ◦T . The Turing degrees form a join semi-lattice whose bottom
is 0, the Turing degree of computable sequences. For a set S ⊂ {0, 1}N, we note
degTS the set of Turing degrees of all points of S.

Effectively closed sets are quite well understood from a computational point of
view, and there has been numerous contributions concerning their Turing degrees,
see the book of [CR98] for a survey. One of the most interesting results may be
that there exist Π0

1 classes whose members are two-by-two Turing incomparable
[JS72].

3 Requirements of the Construction

The idea to prove Theorem 1 is to make a construction that embeds computations
of a Turing machine that will check a read-only oracle tape containing a member
of the Π0

1 class S that will have to appear completely in a configuration of the
limit set. The following constraints have to be addressed.

Turing Degrees of Limit Sets of Cellular Automata 77

– Since CAs are intrinsically deterministic, the oracle will have to appear in
the “past”, i.e. from the “limit” of the preimages.

– The oracle tape, the element of {0, 1}N that is to be checked, needs to appear
entirely on at least one configuration of the limit set.

– Each configuration of the limit set containing the oracle tape needs to have
exactly one head of the Turing machine, in order to ensure that there really
is a computation going on in the associated space-time diagram.

– The construction, without any computation, needs to have a very simple
limit set, i.e. it needs to be computable, and in particular countable; this
to ensure that no complexity overhead will be added to any configuration
containing the oracle tape, and that “unuseful” configurations of the limit
set—the configurations that do not appear in a space-time diagram corre-
sponding to a computation—will be computable.

– The computation of the embedded Turing machine needs to go backwards,
this to ensure that we can have the non-determinism. And an error in the
computation must ensure that there is no infinite sequence of preimages.

– The computation needs to have a beginning (also to ensure the presence of a
head), hence it requires to mark it, and the representation of the oracle and
work tapes in the construction need to disappear at this point, otherwise
by compactness the part without any computation could be extended bi-
infinitely to contain any member of {0, 1}N, thus leading to the full set of
Turing degrees.

There are other constraints that we will discuss during the construction, as they
arise.

In order to make a construction complying to all these constraints, we reuse,
with heavy modifications, an idea of [JV13b], which is to construct a sparse grid.
However, their construction, being meant for subshifts, requires to be completely
rethought in order to work for CAs. In particular, there was no determinism
in this construction, and the oracle tape did not need to appear on a single
column/row, since their result was on two-dimensional subshifts.

4 The Construction

4.1 A Self-Vanishing Sparse Grid

In order to have space-time diagrams that constitute sparse grids, the idea is to
have columns of squares, each of these columns containing less and less squares
as we move to the left, see fig. 1. The CA has three categories of states:

– a killer state, which is a spreading state that erases anything on its path; it
appears whenever some neighborhood not on fig. 1 appears.

– a quiescent state, represented in white in the figures; its sole purpose is to
mark the spaces that are “outside” the construction;

– some construction states, which will be constituted of signals and background
colors.

78 A. Borello, J. Cervelle, and P. Vanier

In order to ensure that just with the signals themselves it is not possible to
encode anything non-computable in the limit set, all signals will need to have,
at all points, at any time, different colors on their left and right, otherwise the
local rule will have a killer state arise. Here are the main signals.

– Vertical lines: serve as boundaries between columns of squares and form the
left/right sides of the squares.

– SW-NE and SE-NW diagonals: used to mark the corners of the squares,
they are signals of respective speeds 1 and −1. Each time they collide with
a vertical line (except for the last square of the row), they bounce and start
the converse diagonal of the next square.

– Counting signal: counts the number of squares inside a column; every time
it crosses the SW-NE diagonal of a square it will shift to the left. When it
is superimposed to a vertical line, it means that the square is the last of its
column, so when it crosses the next SE-NW diagonal, it vanishes and with
it the vertical line.

– Starting signals: used to start the next column to the left, at the bottom of
one column. Here is how they work.
• The bottommost signal, of speed − 1

4 , is at the boundary between the
empty part of the space-time diagram and the construction. It is started
4 time steps after the collision with the signal of speed − 1

3 .
• The signal of speed − 1

3 is started just after the vertical line sees the
incoming SE-NW diagonal of the first square of the row on the right, at
distance 3 (the diagonal will collide with the vertical line 2 time steps
after the start of that signal)2.

• At the same time as the signal of speed − 1
3 is created, a signal of

speed − 1
2 is generated. When this signal collides with the bottommost

signal, it bounces into a signal of speed 1
4 that will create the first SE-

NW diagonal of the first square of the row of squares of the left, 4 time
steps after its collision with the vertical line.

On top of the construction states, except on the vertical lines, we add a parity
layer {0, 1}: on a configuration, two neighboring cells of the construction must
have different parity bits, otherwise a killer state appears. On the left of a vertical
line there has to be parity 1 and on the right parity 0, otherwise the killer state
pops up again. This is to ensure that the columns will always contain an even
number of squares.

The following lemmas address which types of configurations may occur in the
limit set of this CA. First note that any configuration in which the construction
states do not appear in the right order do not have a preimage.

Lemma 1. The sequence of preimages of a segment ended by vertical lines (and
containing none) appearing in the limit set is a slice of a column of squares of
even side.

2 That can be done, provided the radius of the CA is large enough.

Turing Degrees of Limit Sets of Cellular Automata 79

4
3
2
1

2
1

time

Fig. 1. The sparse grid construction: it is based on columns containing a finite number
of squares, whose number decreases when we go left. Note that the figure is squeezed
vertically.

Proof. Suppose a configuration contains two vertical-line symbols, then to be
in the limit set, in between these two symbols there needs to be two diagonal
symbols, one for the SE-NW one and one for SW-NE one, a symbol for the
counting signal, and in between these signals there needs to be the appropriate
colors: there is only one possibility for each of them. If this is not the case, then
the configuration has no preimage since the rule enforces the appearance of a
killer state when they are not correctly ordered.

80 A. Borello, J. Cervelle, and P. Vanier

Also, the distance between the first vertical line and the SE-NW diagonal
needs to be the same as the distance between the second vertical line and the SW-
NE diagonal, otherwise the signals at the bottom—the ones starting a column,
that are the only preimages of the first diagonals—would have, in one case,
created a vertical line in between, and in the other case, not started at the same
time on the right vertical.

The side of the squares is even, otherwise the parity layer has no preimage. ≤→

Lemma 2. A configuration of the limit set containing at least three vertical-line
symbols needs to verify, for any three consecutive symbols, that if the distance
between the first one and the second one is k, then the distance between the
second one and the third one equals (k + 2).

Proof. Let us take a configuration containing at least three vertical-line symbols,
take three consecutive ones. The states between them have to be of the right
form as we said above. Suppose the first of these symbols is at distance k1 from
the second one, which is at distance k2 from the third one. This means that the
first (resp. second) segment defines a column of squares of side k1 (resp. k2). It
is clear that the second column of squares cannot end before the first one.

Now let i be the position of the counting signal of the first column and j the
distance between the SW-NE diagonal and the left vertical line. The preimage of
the first segment ends (k1i+ j) (resp. (k1(i−1)+ j)) steps before if the counting
signal is on the left (resp. right) of the SW-NE diagonal. Then, the preimages of
the left and right vertical lines of this column are the creating signals. Before the
signal created on the right bounces on the one of speed − 1

4 created on the left,
it collides with the one of speed − 1

3 , thus determining the height of the squares
on the right column of squares. So k1 = k2 − 2. ≤→

Lemma 3. A configuration having two vertical-line symbols pertaining to the
limit set needs to verify one of the following statements.

– It is constituted of a finite number of vertical lines.
– It appears in the space-time diagram of fig. 1.
– It is constituted of an infinite number of vertical lines, then starting from

some position it is equal on the right to some (shifted) line of fig. 1.

Proof. We place ourselves in the case of a configuration of the limit set. Because
of lemma 1, two consecutive vertical lines at distance k from each other define a
column of squares. In a space-time diagram they belong to, on their left there is
necessarily another column of squares, because of the starting signal generated
at the beginning of the left vertical line, except when k = 3, in which case there
is nothing on the left. In this column, the vertical lines are at distance (k − 2),
see lemma 2. So, if there is an infinite number of vertical lines, either it is of the
form of fig. 1, or there is some killer state coming from infinity on the left and
“eating” the construction. ≤→

Turing Degrees of Limit Sets of Cellular Automata 81

4.2 Backward Computation Inside the Grid

We now wish to embed the computation of a reversible Turing machine inside
the aforementioned sparse grid, which for this purpose is better seen as a lattice.
The fact that the TM is reversible allows us to embed it backwards in the CA.
Below we will denote by TM time (resp. CA time) the time going forward for the
Turing machine (resp. the CA); on a space-time diagram, TM time goes from
top to bottom, while CA time goes from bottom to top (cf. arrows in fig. 2a).
That way, the beginning of the computation of the TM will occur in the first
(topmost) square of the first (leftmost) column of squares.

We have to ensure that any computation of the TM is possible, and in partic-
ular ensure that such a computation is consistent over time; the idea is that at
the first TM time step, i.e. the moment the sparse grid disappears, the tape is
on each of the vertical line symbols, but since these all appeared a finite number
of CA steps before (the height of any column of squares being finite), we have
to compel all tape cells to shift to the right regularly as TM time increases.

Moreover, we want to force the presence of exactly one head (there could be
none if it were, for instance, infinitely far right). To do that, the grid is divided
into three parts that must appear in this order (from left to right): the left of the
head, the right of the head (together referred to as the computation zone), and
the unreachable zone (where no computation can ever be performed, because of
the absence of a work tape), resp. in blue, yellow and green in fig. 2a.

The vertices of our lattice are the top left corners of the squares, each one
marked by the rebound of a SE-NW diagonal on a vertical line, while the top
right corners will just serve as intermediate points for signals. More precisely, for
any i, j ⊆ N, the respective sites for the top left and top right corners of si,j , the
(j + 1)-th square of the (i+ 1)-th column, are the following (cf. fig. 2a):

{
sΣi,j = sΣ0,0 + (i(i+ 1),−2(i+ 1)j)
sri,j = sΣi,j + (2(i+ 1), 0).

Fig. 2b illustrates a computation by the TM, with the three aforementioned
zones, as it would be embedded the usual way (but with reverse time) into a
CA, with site (i,−t) corresponding to the content of the tape at i ⊆ N and TM
time t ⊆ N.

Fig. 2c represents another, still simple, embedding, which is a distortion of
the previous one: the head moves every even time step within a tape that is
shifted every odd time steps, so that instead of site (i,−t), we have two sites,
(i+ t,−2t) and (i+ t,−2t− 1), resp. the computation site (big circle on fig. 2c)
and the shifting site (small circle on fig. 2c). The head only reads the content of
the oracle when it lies on a computation site. This type of embedding can easily
be realized forwards or backwards (provided the TM is reversible).

Our embedding, derived from the latter, is drawn on fig. 2a. The “only” dif-
ference is the replacement of sites (i + t,−2t) and (i + t,−2t − 1) by sites sΣi,t
and sΣi,t+1. Notice that as the number of squares in a column is always finite,
each square can “know” whether its top left corner is a computation or a shifting

82 A. Borello, J. Cervelle, and P. Vanier

site with a parity bit. More precisely, the j-th square (from bottom to top) of a
column has a computation site on its top left if and only if j is even.

Let si,j be a square of our construction. Its top left sΣi,j is either a computation
site or a shifting site. In the latter case, it is supposed to receive the content of
a cell of the TM tape with an incoming signal of speed −1. All it has to do
is to send it to sΣi,j−1 (at speed 0), which is a computation site. In the former
case, however, things are slightly more complicated. The content of the tape has
to be transmitted to sΣi−1,j−1 (which is a shifting site). To do that, a signal of
speed 0 is sent and waits for site sri−1,j , which sends the content to sΣi−1,j−1 with
a signal of speed −1 along the SE-NW diagonal. The problem is to recognize
which sr site is the correct one. Fortunately, there are only two possibilities: it is
either the first or the second sr site to appear after (in CA time, of course) sΣi,j
on the vertical line. The first case corresponds exactly to the unreachable zone
(where j ≥ i), hence the result if the three zones are marked. The lack of other
cases is due to the number of si squares, which is only 2(i+ 1).

Another issue is the superposition of such signals. Here again, there are only
two cases: in the unreachable zone there is none, whereas in the computation
zone a signal of speed 0 from a computation site can be superimposed to the
signal of speed 0 sent by the shifting site just above it. As aforesaid, there is no
other case because of the limited number of si squares. Thus, there is no problem
to keep the number of states of the CA finite, since the number of signals going
through a same cell is limited to two at the same time.

The two parts of the computation zone are separated by the presence of a
head, while the unreachable zone is easily hardcoded as the right of the path
corresponding to a TM head that would always move rightwards : this is done
simply by seeing whether the counting signal is on the left or right of the crossing
of the SE-NW and SW-NE diagonals.

Now only the movements of the head remain to be described (in black on
fig. 2a). Let sΣi,j be a computation site containing the head.

– If the previous move of the head (previous because we are in CA time, that
is, in reverse TM time) was to the left, the next computation site is the one
just above, that is, sΣi,j−2. The head is thus transferred by a simple signal of
speed 0.

– If the previous move was to stand still, the next computation site is sΣi−1,j−2.
It can be reached by a signal of speed 0 until the second next sr site, from
which a signal of speed −1 (along a SE-NW diagonal) is launched, to be
replaced by another signal of speed 0 from sΣi−1,j−1 on.

– If the previous move was to the right, the next computation site is sΣi−2,j−2.
It can be reached by a signal of speed 0 until the second next sr site, from
which a signal of speed −1 (along a SE-NW diagonal) is launched, to be
replaced by another signal of speed 0 from sΣi−1,j−1 on, which itself waits for
the next sr site (which is sri−2,j) to start another signal of speed 1 (along
a SW-NE diagonal) that is finally succeeded to by a last signal of speed 0

from sΣi−2,j−1 on.

Turing Degrees of Limit Sets of Cellular Automata 83

time

CA TM

(a)

(b)

(c)

Fig. 2. The embedding of a Turing machine computation in the sparse grid (2a), com-
pared to the usual embedding (2b) and one with a simple shift of the oracle tape (2c).
The paths followed by the content of each cell of the oracle tape are in red and orange
(two colors just to keep track of the signals when they are superimposed), while the one
of the head is in black. The arrows indicate the next move of the head (for TM time,
going towards the bottom). The green background denotes the zone the head cannot
reach, while the computation zone is in blue on the left of the head and in yellow on
its right.

4.3 The Computation Itself

As we said before, the computation will take place on the computation sites,
which will contain two tape cells: one for the oracle and one for the work. In
the unreachable zone there are only oracle cells, which do not change over time
except for the shifting. Now we want to eliminate all space-time diagrams corre-
sponding to rejecting computations of some Turing machine M . [Ben73] proved
that for any Turing machine, we can construct a reversible one computing the
same function. So, a first idea would just be to encode this reversible Turing

84 A. Borello, J. Cervelle, and P. Vanier

machine in the sparse grid; however there is no way to guarantee that the work
tape corresponds to a valid computation, and even if at some time the CA
detects a problem, the corresponding configuration will nevertheless have an in-
finite number of preimages, and may contain some oracle that should have been
rejected.

The solution to this issue is to use a robust Turing machine in the sense of
[Hoo66], that is to say, a Turing machine that regularly rechecks its whole com-
putation. [KO08, Theorem 7] explains how to construct reversible such machines.
In these constructions the machines obtained were working on a bi-infinite tape,
which had the drawback that some infinite side of the tape might not be checked;
here it is not the case, hence we can modify the machine so that on an infinite
computation it checks all cells of the tape an infinite number of times (we omit
the details for brevity’s sake).

In terms of limit sets, this means that if some oracle is rejected by the machine,
then it must have been rejected an infinite number of times in the past (CA time).
So, only oracles pertaining to the desired class may appear in the limit set.

Furthermore, even if some killer state coming from the right eats the grid, at
some point in the past of the CA, it will be in the unreachable zone, and stay
there for ever, so the computation from that moment on even ensures that the
oracle computed is correct. Though, that does not matter, because in this case
the configurations of the corresponding space-time diagram that are in the limit
set are uniform both on the right and on the left except for a finite part in the
middle, and are hence computable.

4.4 Limit Set of the Construction

Let us now check what the contents of the limit set of the construction are for
some Turing machine M correspondind to some Π0

1 class S :
– Given some s ⊆ S, it is easy to see that there are several configurations

in the limit set of the CA with the same Turing degree. The configuration
corresponding to a “perfect” space-time diagram, the configurations corre-
sponding to the same space-time diagram, but “eaten” on the left or right by
a killer state, and the configurations corresponding to the same space-time
diagram, but where the beginning of the computation is not at the right
height in the construction.

– In section 4.1 we made sure that the only configurations of the limit set con-
taining an infinite alternation of vertical-line symbols were of the last form
described in lemma 3. This means that the only way to encode something
non-computable in the limit set is through the oracle of the construction. The
backward computation ensures that only oracles allowed by M may appear.

References

[Ben73] Bennett, C.H.: Logical Reversibility of Computation. IBM J. Res. Dev. 17(6),
525–532 (1973)

[BGK11] Ballier, A., Guillon, P., Kari, J.: Limit Sets of Stable and Unstable Cellular
Automata. Fundam. Inform. 110(1-4), 45–57 (2011)

Turing Degrees of Limit Sets of Cellular Automata 85

[CR98] Cenzer, D., Remmel, J.: Π0
1 classes in mathematics. In: Handbook of Re-

cursive Mathematics - Volume 2: Recursive Algebra, Analysis and Combina-
torics. Studies in Logic and the Foundations of Mathematics, ch. 13, vol. 139,
pp. 623–821 (1998)

[FK07] Formenti, E., Kůrka, P.: Subshift attractors of cellular automata. Nonlinear-
ity 20, 105–117 (2007)

[Hoo66] Hooper, P.K.: The Undecidability of the Turing Machine Immortality Prob-
lem. Journal of Symbolic Logic 31(2), 219–234 (1966)

[Hur87] Hurd, L.P.: Formal Language Characterization of Cellular Automaton Limit
Sets. Complex Systems 1(1), 69–80 (1987)

[Hur90a] Hurd, L.P.: Nonrecursive Cellular Automata Invariant Sets. Complex Sys-
tems 4(2), 131–138 (1990)

[Hur90b] Hurd, L.P.: Recursive Cellular Automata Invariant Sets. Complex Sys-
tems 4(2), 131–138 (1990)

[JS72] Jockusch, C.G., Soare, R.I.: Degrees of members of classes Π0
1 . Pacific J.

Math. 40(3), 605–616 (1972)
[JV13a] Jeandel, E., Vanier, P.: Hardness of Conjugacy, Embedding and Factorization

of multidimensional Subshifts of Finite Type. In: STACS. LIPIcs, vol. 20,
pp. 490–501 (2013)

[JV13b] Jeandel, E., Vanier, P.: Turing degrees of multidimensional SFTs. In: Theo-
retical Computer Science 505.0. Theory and Applications of Models of Com-
putation, pp. 81–92 (2011)

[Kar90] Kari, J.: Reversibility of 2D cellular automata is undecidable. Physica D:
Nonlinear Phenomena 45(1-3), 379–385 (1990)

[Kar92] Kari, J.: The Nilpotency Problem of One-Dimensional Cellular Automata.
SIAM Journal on Computing 21(3), 571–586 (1992)

[Kar94a] Kari, J.: Reversibility and surjectivity problems of cellular automata. Journal
of Computer and System Sciences 48(1), 149–182 (1994)

[Kar94b] Kari, J.: Rice’s theorem for the limit sets of cellular automata. Theoretical
Computer Science 127(2), 229–254 (1994)

[KO08] Kari, J., Ollinger, N.: Periodicity and Immortality in Reversible Comput-
ing. In: Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162,
pp. 419–430. Springer, Heidelberg (2008)

[LM09] Lena, P.D., Margara, L.: Undecidable Properties of Limit Set Dynamics of
Cellular Automata. In: 26th International Symposium on Theoretical As-
pects of Computer Science. Leibniz International Proceedings in Informatics
(LIPIcs), vol. 3, pp. 337–348 (2009)

[Maa95] Maass, A.: On the sofic limit sets of cellular automata. Ergodic Theory and
Dynamical Systems 15(04), 663–684 (1995)

[Mey08] Meyerovitch, T.: Finite entropy for multidimensional cellular automata. Er-
godic Theory and Dynamical Systems 28(04), 1243–1260 (2008)

[Sim11] Simpson, S.G.: Mass problems associated with effectively closed sets. Tohoku
Mathematical Journal 63(4), 489–517 (2011)

[CPY89] Čulik, K., Pachl, J., Yu, S.: On the limit sets of cellular automata. SIAM
Journal on Computing 18(4), 831–842 (1989)

On the Complexity of Temporal-Logic

Path Checking�

Daniel Bundala and Joël Ouaknine

Department of Computer Science, University of Oxford
Wolfson Building, Parks Road, Oxford, OX1 3QD, UK

Abstract. Given a formula in a temporal logic such as LTL or MTL, a
fundamental problem is the complexity of evaluating the formula on a
given finite word. For LTL, the complexity of this task was recently shown
to be in NC [9]. In this paper, we present an NC algorithm for MTL, a
quantitative (or metric) extension of LTL, and give an AC1 algorithm
for UTL, the unary fragment of LTL. At the time of writing, MTL is the
most expressive logic with an NC path-checking algorithm, and UTL is
the most expressive fragment of LTL with a more efficient path-checking
algorithm than for full LTL (subject to standard complexity-theoretic as-
sumptions). We then establish a connection between LTL path checking
and planar circuits, which we exploit to show that any further progress
in determining the precise complexity of LTL path checking would im-
mediately entail more efficient evaluation algorithms than are known for
a certain class of planar circuits. The connection further implies that
the complexity of LTL path checking depends on the Boolean connec-
tives allowed: adding Boolean exclusive or yields a temporal logic with
P-complete path-checking problem.

1 Introduction

One of the most fundamental problems in the fields of testing and verification is
the path-checking problem: determine whether a given observation1 of a system
satisfies a given specification drawn from a fixed ambient logic. The complexity of
this problem plays a key role in the design and analysis of offline monitoring and
runtime verification procedures [6,12]. The path-checking problem also appears
in testing [1] and in Monte-Carlo-based probabilistic verification [14].

Although the problem is simply stated, determining its precise complexity
can prove to be quite challenging. The case of LTL was investigated more than
a decade ago [5,13], and at the time is was conjectured that the straightforward
polynomial-time dynamic-programming algorithm is not optimal.2 And indeed,
using reductions to planar circuits and tree-contraction algorithms, it was re-
cently proved [9] that LTL path checking allows an efficient parallel algorithm

ω Full version of the paper is available as [3].
1 In this paper, all observations (paths, traces, words, etc.) considered are finite.
2 The best known lower bound for LTL path checking is NC1, which crudely arises
from the NC1-hardness of mere Boolean formula evaluation.

J. Esparza et al. (Eds.): ICALP 2014, Part II, LNCS 8573, pp. 86–97, 2014.
c∗ Springer-Verlag Berlin Heidelberg 2014

On the Complexity of Temporal-Logic Path Checking 87

and lies in NC—in fact, in AC1[logDCFL]. (This seminal result was rewarded by
the ICALP 2009 best-paper award.) More recently, this work was extended to a
very restricted metric extension of LTL, in which only temporal operators of the
form U≤b are allowed [10].

In this paper, we give an algorithm for full Metric Temporal Logic (MTL) with
the same complexity—AC1[logDCFL]—known algorithm for LTL.

We reprise the strategy, introduced in [9], to represent temporal operators
using a special class of planar monotone circuits, together with a generic algo-
rithm [4] as a subroutine to evaluate those circuits. Such circuits have a very
special form, which led the authors of [9] to ask whether the complexity of
the path-checking algorithm can be improved by devising specialised circuit-
evaluation algorithms. In this paper, we present evidence to the contrary, by
showing that the evaluation of circuits drawn from a class of planar circuits
studied in [11] is reducible to LTL path checking; any further progress in deter-
mining the precise complexity of the latter would therefore immediately entail
more efficient evaluation algorithms than are known for this class of planar cir-
cuits. It is worth pointing out that augmenting this class of planar circuits with
NOT gates makes the evaluation problem P-complete [7]. It follows that the
complexity of path checking is sensitive to non-monotone connectives, as allow-
ing Boolean exclusive-or in formulae enables the evaluation of circuits from this
augmented class, and is therefore itself P-complete.

An examination of the algorithmic constructions of [9] shows that the most
intricate parts arise in handling the Until operator. In this paper, we show that
the removal of binary operators from the logic, yielding Unary Temporal Logic
(UTL), leads to a much simpler path-checking problem, enabling us to devise an
AC1 algorithm for UTL path checking.

At the time of writing, our results provide (i) the most expressive known exten-
sion of LTL with an NC path-checking algorithm (MTL), (ii) the simplest known
extension of LTL with a strictly harder path-checking problem (LTL + Xor), and
(iii) the most expressive known fragment of LTL with a strictly more efficient
path-checking algorithm than for full LTL (UTL).3

2 Preliminaries

We denote Boolean true and false by ∈ and ≡, respectively. The set {≡,∈} is
denoted by B. A vector v ⊆ B

n is downward monotone if v(i + 1) = ∈ =↔
v(i) = ∈. It is upward monotone if v(i − 1) = ∈ =↔ v(i) = ∈. A vector is
monotone if it is upward or downward monotone. The set of monotone vectors
is denoted by M.

Temporal Logics: Let AP be a set of atomic propositions, p ⊆ AP and
I ⇔ R≥0 be an interval with endpoints in N ⊂ {≥}. The formulae of Metric
Temporal Logic (MTL) are defined recursively as follows.

ϕ = p | ¬p | ϕ ⇒ ϕ | ϕ ◦ ϕ | XI ϕ | YI ϕ | ϕ UI ϕ | ϕ SI ϕ | ϕ RI ϕ | ϕ TI ϕ

3 Subject to standard complexity-theoretic assumptions.

88 D. Bundala and J. Ouaknine

All logics and results presented in this paper apply to temporal logics with past
temporal operators. Note that negation is applied only to atomic propositions.
Other operators are expressible using the following semantic equalities: FIϕ =
∈ UI ϕ, GIϕ = ¬ FI ¬ϕ, ϕ RI ψ = ¬(¬ϕ UI ¬ψ) and ϕ TI ψ = ¬(¬ϕ SI ¬ψ).
Linear Temporal Logic (LTL) is the subset of MTL in which I is always [0,≥)
(and is omitted). The fragment UTL of LTL consists of all Boolean connectives
and unary (X,F,G) temporal operators and their past duals.

A trace π over AP of length n is a function π : {1, . . . , n}×AP ≤ B assigning
a truth value to every p ⊆ AP at every index. We identify p ⊆ AP with a vector
in B

n and use p(i) = ∈ if π(i, p) = ∈. The proposition that is true only in the
interval [i, j] and false otherwise is denoted by χi,j , i.e., χi,j(k) = ∈ if i → k → j
and χi,j(k) = ≡ otherwise. To evaluate MTL formulae on π, we further associate
with π a sequence of strictly-increasing timestamps t1 < . . . < tn.

Given an MTL formula ϕ and index 1 → i → n, the satisfaction relation
π, i |= ϕ is defined recursively as follows.

π, i |= p if p(i) = ∈
π, i |= ϕ1 ⇒ ϕ2 if π, i |= ϕ1 and π, i |= ϕ2

π, i |= ϕ1 ◦ ϕ2 if π, i |= ϕ1 or π, i |= ϕ2

π, i |= XIϕ if i + 1 < n ⇒ ti+1 − ti ⊆ I ⇒ π, i + 1 |= ϕ
π, i |= YIϕ if i > 1 and ti − ti−1 ⊆ I and π, i− 1 |= ϕ

π, i |= ϕ1UIϕ2 if ∅j . (i → j → n) ⇒
⎛
⎝π, j |= ϕ2

tj − ti ⊆ I
⊇k . i → k < j =↔ π, k |= ϕ1

⎞
⎧

π, i |= ϕ1SIϕ2 if ∅j . (i ≥ j ≥ 1) ⇒
⎛
⎝π, j |= ϕ2

ti − tj ⊆ I
⊇k . i ≥ k > j =↔ π, k |= ϕ1

⎞
⎧

This paper studies the complexity of evaluating a given formula on a given trace.

Definition 1. The path-checking problem for logic L is to determine, given
a trace π and a formula ϕ of L, whether π, 1 |= ϕ.

Let ϕ be an MTL formula. Working from the smallest subformulae and using
the above definitions to tabulate the values π, i |= ψ for every i and subformula
ψ yields a polynomial dynamic-programming algorithm evaluating ϕ on π.

Theorem 1 ([13]). The path-checking problem for MTL is in P.

Given a trace π and formula ϕ, we represent the value of ϕ on π as the
vector v ⊆ B

n such that v(i) = ∈ if and only if π, i |= ϕ. We further represent
LTL temporal operators as functions over vectors written in infix notation. For
example, U : Bn ×B

n ≤ B
n is a function such that (p U q)(i) = ∈ if and only if

there is i → j → n such that q(j) = ∈ and p(k) = ∈ for all i → k < j.
A formula context ϕ(X) is a formula with one occurrence of a proposition

replaced by a variableX . If ψ(X) is another formula context then (ϕ∪ψ)(X) is the
context obtained by substituting ψ(X) for X in ϕ(X). If q ⊆ AP is a proposition

On the Complexity of Temporal-Logic Path Checking 89

then ϕ(q) is obtained by substituting q for X . For example, ((pUX)∪(XSq))(r) =
(pU(XSq))(r) = pU(rSq). Composing formula contexts increases the size linearly
as a formula context contain only one occurrence of X .

Circuits: A Boolean circuit (C, δ) consists of a set of gates C and a prede-
cessor function δ : C ≤ P(C). The type of a gate is either OR,AND,NOT, ID,
ONE or ZERO. If c is of type τ and δ(c) = {c1, . . . , cn} then we write c =
(τ, c1, . . . , cn). If d ⊆ δ(c) then we say c depends on d or that there is a wire
from d to c. The ONE and ZERO gates provide constants inputs. A gate is an
input gate if it does not have a predecessor. A gate is an output gate if it is not
a predecessor of any other gate. A circuit is monotone if it has no NOT gates.
It is planar if the underlying DAG is planar. In this paper, all edges (wires)
are straight-line segment and so a planar embedding is induced by a function
γ : C ≤ R

2 assigning a point in the plane to every gate.
A circuit is layered if it can be partitioned into layers C0, . . . , Cn such that

each wire goes from Ci to Ci+1 for some i. Thus, C0 contains only input gates. A
layered circuit is stratified if all input gates appear in C0. A circuit is upward
planar if there is a planar embedding such that every edge monotonically in-
creases in the upward direction—the direction of the evaluation of C. A circuit is
upward layered (stratified) if it is both upward planar and layered (stratified).
Each layer Ci of an upward-layered circuit consists of gates αi,j in the left-to-
right ordering. Each αi,j depends on a contiguous block αi−1,l, . . . , αi−1,r layer
below and the wires do not cross: if αi,j depends on αi−1,q and αi,k depends on
αi−1,r then j → k ∩↔ q → r. Fig. 3 shows upward stratified monotone circuits.

Given a circuit with one output gate, the circuit value problem , abbreviated
as CVP , is the problem of determining the value of the output gate.

ComplexityClasses:The class logDCFLconsists of problems that are logspace
many-one reducible to deterministic context-free languages. Equivalently, it is the
class of problems decidable by a deterministic logspace Turing machine equipped
with a stack and terminating in polynomial time. The circuit classACi for i ⊆ N con-
sists of problems decidable by polynomial-size unbounded fan-in circuits of depth
logi. All circuits in this paper are uniform—can be generated by a deterministic
logspace Turing machine. Given a problem S and a complexity class C, we write
S ⊆ AC1[C] if there is a family of AC1 circuits with additional unbounded fan-in
C-oracle gates that decide S. It is known that

L ⇔ logDCFL ⇔ AC1 ⇔ AC1[logDCFL] ⇔ AC2 ⇔ · · · ⇔ ACi ⇔ ACi+1 ⇔ · · · ⇔ P

and that CVP for upward-stratified circuits is P-complete [7], CVP for monotone
upward-stratified circuits is in logDCFL [4] and that CVP for monotone upward-
layered circuits is in AC1[logDCFL] [11].

Tree Contraction: Let T = (V,E) be a binary tree, the tree contraction al-
gorithm [8] reduces T to a single node using a sequence of tree contraction steps.
Let l ⊆ T be a leaf, p be its parent and s its sibling4. A tree contraction step

4 If l does not have a sibling then we take s to be a fresh node.

90 D. Bundala and J. Ouaknine

collapses the triple (l, p, s) into a single node. Formally, a new tree T ∈ = (V ∈, E∈)
is obtained from T as follows: V ∈ = V \ {l, p}

E∈ =

⎨
E \ {(p, l), (p, s)} if p is the root of T
(E \ {(p, l), (p, s), (q, p)}) ⊂ {q, s} otherwise (q is the parent of p)

Note that a contraction step is local and hence multiple non-interfering contrac-
tions can be performed in parallel. A tree contraction algorithm using only ⊕logn�
parallel steps exists [8]. Further, this algorithm can be implemented in AC1.

Let ϕ be an LTL formula and π a trace. A tree contraction algorithm evaluating
ϕ on π was given in [9]. The tree T used in [9] is the parse tree of ϕ. The
leaves of T correspond to the atomic propositions and the internal nodes to
Boolean or temporal operators. Each contraction step (l, p, s) partially evaluates
the operator associated with p.

For example, suppose that the formula rooted at p is ψ U q where q is a
proposition. Even if the value of ψ is unknown, we can still make some inferences.
E.g., if q(i) = ∈ then (ψ U q)(i) = ∈. If the last value q(|π|) = ≡ then (ψ U
q)(|π|) = ≡ and so on. The contraction step removes the nodes for ψ and U
and then labels the node s by the partial evaluation of the function (X U q) ∪ ψ.
It was shown in [9] how to represent, manipulate and evaluate these functions
efficiently. When a subformula ψ is fully collapsed into a single node then the
associated function is fully evaluated and the node is labelled by the constant
(ψ(1), . . . , ψ(|π|)) ⊆ B

|π|. The contraction algorithm eventually reduces the tree
into a single node, which is labelled by (ϕ(1), . . . , ϕ(|π|)) ⊆ B

|π|.
In general, a tree-contraction algorithm can evaluate a function f on a tree;

each contraction step partially evaluating f on a subtree. In this paper, the
evaluation is done as follows. Let C be the set of constants and F be a collection,
closed under composition, of admissible functions f : C ≤ C.
– A constant cv ⊆ C is attached to every leaf v of T . The values of cv for the

initial leaves are given as a part of the input.
– A function fv ⊆ F is attached to every node v of T . Initially, fv is the

identity function.
– A tree contraction of (l, p, s) first builds f ∈ ⊆ F (depending on cl and p)

implementing the partial evaluation on p. Let f ∈∈ = fp ∪ f ∈. If s is a leaf then
cs is replaced by f ∈∈(cs). Otherwise, fs is replaced by f ∈∈ ∪ fs.

l | cl

p | fp
s | fs

=⇒
s | fp ◦ f ′ ◦ fs

Fig. 1. An example of a tree contraction step

The output of the algorithm is the constant attached to the single remaining
node. If each contraction step and admissible functions are in the complexity
class C then, by [8], the contraction algorithm calculating croot is in AC1[C].

On the Complexity of Temporal-Logic Path Checking 91

A tree contraction algorithm for LTL path checking [9] runs in AC1[logDCFL].
Constants C = B

n denote the truth values of propositions and subformulae.
Functions F are represented by upward stratified circuits with n input and n
output gates (transducer circuits), which are closed under composition [9]
and their evaluation and composition is in logDCFL [2]. For a fixed s ⊆ B

n, [9]
gives transducer circuits for s⇒x, s◦x, sUx, and sRx as the functions of x ⊆ B

n.
In Section 4, we give transducer circuits for MTL temporal operators.

3 Reduction from Upward Layered CVP to LTL Path
Checking

Given an upward layered monotone circuit C with n gates and m wires we show
how to build an LTL formula ϕ over at most 2n propositions and a trace π of
length |π| → m such that C evaluates to ∈ if and only if π |= ϕ.

Denote the layers of C by C0, . . . , Ck and the size of each Ci by ni. Let αi,j

be the gates in Ci in the left-to-right order in the upward planar embedding of
C. For each layer, we partition the trace into blocks—each of which stores the
outputs of a gate in the layer. Fig. 2 shows a valid partitioning. In the figure,
gate a occupies block [1, 1], gate e occupies [3, 5], gate g occupies [1, 7], etc.

In general, a valid partitioning consists of a trace π and intervals v(i, j) asso-
ciated with each gate αi,j such that v(i, j) overlaps precisely with the blocks of
the gates the gate αi,j depends on. Formally,
– intervals v(i, 1), v(i, 2), . . . , v(i, ni) are disjoint and partition [1, |π|] for every i,
– if αi+1,j depends on αi,p, αi,p+1, . . . , αi,q then v(i + 1, j) ⇔ ⊂r=p,...,qv(i, r)

and v(i + 1, j) overlaps with each v(i, r) for p → r → q,

C0 a b b b c c c

C1 d d e e e f f

C2 g g g g g g g

a b c

d e f

g

Fig. 2. An upward layered circuit (on the right) with its partition (on the left). The
path π for the gate labelled e is highlighted.

Suppose we are given a valid partitioning. Then for i > 0 and every 1 → j → ni

we build a formula context ϕi,j mimicking the evaluation of the gate αi,j .
For example, suppose that the gate e in Fig. 2 is an OR gate and the values

of the block in the first layer is r = (a, b, b, b, c, c, c) ⊆ B
7 for some a, b, c ⊆ B.

Recall that (ϕ U ψ)(i) = ψ(i) ◦ (ϕ(i) ⇒ (ϕ U ψ)(i + 1)). Hence, if ϕ(i) = ≡ then
(ϕ U ψ)(i) = ψ(i) and if ϕ(i) = ∈ then (ϕ U ψ)(i) = ψ(i) ◦ (ϕ U ψ)(i + 1).
Further recall that χi,j is a proposition that is true on [i, j] and false otherwise.
Hence, (χ3,4 U r)(1) = a, (χ3,4 U r)(2) = b and (χ3,4 U r)(5, 6, 7) = c. Also,
(χ3,4 U r)(4) = r(4)◦ (χ3,4 U r)(5) = b◦ c. Finally, (χ3,4 U r)(3) = r(3) ◦ (χ3,4 U

92 D. Bundala and J. Ouaknine

r)(4) = b ◦ (b ◦ c) = b ◦ c. So χ3,4 U r = (a, b, b ◦ c, b ◦ c, c, c, c). Performing a
similar calculation backwards, we get χ4,5 S(χ3,4 Ur) = (a, b, b◦c, b◦c, b◦c, c, c)
which gives the value of block e in Fig. 2 and leaves other blocks unchanged.

Denote the type of αi,j by τ and the left and the right endpoint of v(i, j) by
l and r, respectively. Then ϕi,j is constructed as follows:
– If τ = ONE then ϕi,j(X) = χl,r ◦X .
– If τ = ZERO then ϕi,j(X) = (¬χl,r) ⇒X .
– If τ = ID then ϕi,j(X) = X .
– If τ = OR then ϕi,j(X) = χl+1,r S (χl,r−1 U X).
– If τ = AND then ϕi,j(X) = χl+1,r T (χl,r−1 R X).
It can be shown that the formula context ϕi,j updates the block v(i, j) and

leaves the other blocks unchanged. Hence, the formula context ψi(X) = ϕi,1 ∪
ϕi,2 ∪ · · · ∪ ϕi,ni evaluates the i-th layer Ci of C.

Formally, for each layer Ci let ri ⊆ B
n be a proposition such that ri(k) = ∈

if k ⊆ v(i, j) for some j and αi,j evaluates to ∈ and ri(k) = ≡, otherwise. Then,
the formula ϕ = (ψk ∪ ψk−1 ∪ · · · ∪ ψ1)(r0) computes the output of the circuit.

Lemma 1. Let ψi, ϕ be as above. Then ψi(ri−1) = ri and ϕ(r0)(1) = ∈ if and
only if C evaluates to ∈. Moreover, ϕ can be built in L.

Finally, we show how to devise v(i, j)’s – the partitioning of the trace. Without
loss of generality, connecting to a gate in the previous layer if necessary, we
assume that all ONE and ZERO gates not in C0 have at least one predecessor.

Given a gate αi,j there is unique rightmost gate in the layer Ci+1 that αi,j

is connected to by a wire. Now, start at αi,j and take the rightmost wires until
the sink is reached. Denote the traversed path by πu. Similarly, there is unique
rightmost gate in the layer Ci−1 that αi,j is connected to by a wire. Start at αi,j

and take the rightmost wires going down until a gate in C0 is reached. Denote
the traversed path by πd. Let π be the concatenation of πd and πu. (See Fig. 2)

Let ki,j be the number of wires to the left of π. A wire from αi,j to αi+1,k is
to the left of the wire from αi,a to αi+1,b if j < a or k < b. We store the output
of gate αi,j in the block v(i, j) := [ki,j−1 + 1, ki,j + 1]. We use ki,0 = 0.

Fig. 2 shows a circuit and the partitioning obtained by the above procedure.
The rightmost wire going up and down from e are e ≤ g and c ≤ e, respectively.
Thus, πu = e ≤ g and πd = c ≤ e. The path π = c ≤ e ≤ g is highlighted in the
figure. Four wires a ≤ d, b ≤ d, b ≤ e, d ≤ g are to the left of π. We associate
the block [3, 5] with gate e. All blocks, grouped by layers, are shown in Fig. 2.

The following lemma summarises the important properties of ki,j ’s.

Lemma 2. Let ki,j ’s and v(i, j)’s be as above. Then the following hold:
– ki,j−1 < ki,j for every i and j,
– ki,ni = kj,nj for every i and j,
– ki,ni → m for every i,
– for every i and j = 1, . . . , ni the intervals v(i, j)’s partition [1, ki,ni],
– if αi+1,j depends on αi,p, αi,p+1, . . . , αi,q then v(i + 1, j) ⇔ ⊂r=p,...,qv(i, r)

and v(i + 1, j) overlaps with each v(i, r) for p → r → q,
– each ki,j can be computed in L.

On the Complexity of Temporal-Logic Path Checking 93

This finishes the reduction from upward-layered CVP to LTL path checking. It
was shown in [9] that the latter is in AC1[logDCFL]. Therefore:

Theorem 2. The CVP for upward-layered monotone circuits is in AC1[logDCFL].

An alternative proof of Theorem 2 already appeared in [11]. Moreover, the
relationship shows that any improvement in LTL path checking would entail an
improvement in the evaluation of upward-layered monotone circuits.

The above reduction assumes the monotonicity of the input circuit. However,
if the target logic LTL is extended to include binary exclusive or (xor) as a
connective, then evaluating NOT gates becomes possible using ϕi,j(X) = χl,r ⊕
X as a formula context for NOT gate αi,j . Noting that CVP is P-complete for
general (non-monotone) upward stratified circuits [7], we have the following:

Theorem 3. LTL + Xor path checking is P-complete.

Thus, the complexity of LTL path checking depends on the monotonicity of
the Boolean connectives present in the formula.

4 MTL Path Checking is Efficiently Parallelisable

We now show how the tree-contraction method of [9] extends to full MTL; giving
an AC1[logDCFL] path-checking algorithm for MTL. By [9], summarised in Sec-
tion 2, it suffices to give upward stratified transducer circuits for UI and its duals.

Let π be the input trace with (floating-point) timestamps t1, . . . , tn. Fix an in-
terval I and consider the UI operator. We now describe a dynamic-programming
approach that yields planar circuits calculating (ψ1 UI ψ2)(i). For i �= j the val-
ues (ψ1 UI ψ2)(i) and (ψ1 UI ψ2)(j) depend on the values of subformulae in some
future intervals. In general, these intervals overlap and so naive constructions of
transducer circuits are not planar. See Fig. 3 for the kind of circuits we build.

Recall, that the tree contraction is applied only to a leaf, its parent and its
sibling. Let s ⊆ B

n be a vector. We need to construct only circuits for s UI ϕ
and ϕ UI s for known s. First consider the case s UI ϕ. (see left part of Fig. 3)

For index 1 → i → n the formula (s UI ϕ)(i) is true if there is j ≥ i such that
tj ⊆ ti+I and ϕ(j) = ∈ and s(k) = ∈ for all i → k < j. So let Ti = {j | tj ⊆ ti+I}
be the set of indices in ti + I. If Ti = ∅ then (s UI ϕ)(i) = ≡.

Otherwise, let first(i) = minTi and last(i) = maxTi be the first and the last
index in the interval ti + I, respectively. So (s UI ϕ)(i) is true if there exists
first(i) → j → last(i) such that ϕ(j) = ∈ and s(k) = ∈ for all i → k < j.

Now, the value of s is known. So let seg(i) = min{j | j ≥ i⇒ s(j) = ≡} be the
first index no smaller than i such that s(j) evaluates to false, i.e., s(j) is true from
i to seg(i) − 1. Thus, (s UI ϕ)(i) is true if there exists first(i) → j → last(i) such
that ϕ(j) = ∈ and j → seg(i). So take Li = first(i) and Ri = min(last(i), seg(i)).
Then (s UI ϕ)(i) is true if

⎩
Li≤j≤Ri

ϕ(j) is true.
To build the circuits, we formalise the intuition from the left half of Fig. 3. The

circuit C consists of internal gates dp,q and output gates oi for each 1 → i → n.

94 D. Bundala and J. Ouaknine

ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6 ϕ7

t : 1

s : ⊆
2

⊗
3

⊗
4

⊗
5

⊗
6

⊗
8.5

⊆

∨

∨

∨

∨

∨

∨

∨

∨

o1 o2 o3 o4 o5 o6 o7

⊥ ⊥

ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6 ϕ7

t : 1

s : ⊆
2

⊆
3

⊆
3.5

⊆
3.8

⊗
4

⊆
4.5

⊗

∧

∧

∧

∧

∧

∧

∧

∧

∧

∧

∧

∧

∧

o1 o2 o3 o4 o5 o6 o7

⊥

Fig. 3. Transducer circuits for sU[1,5] ϕ and ϕU[1,5] s. The first line below the circuits
are timestamps, the second row are values of s. Note that different timestamps and s
are used in the two examples. The inputs and the outputs of the circuits are denoted
ϕi and oi respectively.

Each internal gate dp,q calculates ϕp ◦ · · · ◦ ϕq. Precisely, dp,q is present in the
circuit if there is an i such that Li → p → q → Ri. If p = q then l(dp,q) = (ID, ϕp).
Otherwise, l(dp,q) = (OR, dp,q−1, dp+1,q).

For the output gates, we define oi so that oi =
⎩

Li≤j≤Ri
ϕ(j) = (s UI ϕ)(i).

Specifically, if Ti = ∅ then we set l(oi) = ≡, otherwise, l(oi) = (ID, dLi,Ri).
An embedding γ : C ≤ R

2 for the circuit C is γ(oi) = (i, n), γ(ϕi) = (i, 0)
and γ(dp,q) = (p, q − p + 1). Observe that Li → Li+1 and Ri → Ri+1. Hence, it
cannot happen that Li < Lj → Rj < Ri for some i and j. So the intervals may
overlap but never is one properly contained in another. This ensures that the
embedding is planar.

Finally, note that it is possible to compute Li and Ri for every i in logarithmic
space. Hence, the circuit construction can be carried out in logarithmic space.

Lemma 3. Let p be any proposition. For each i, set the input ϕi of the circuit
to p(i). Then for each j, the value of oj is true if and only if (s UI p)(j) is true.

We now give an analogous derivation and circuit construction for ϕ UI s. See
the right side of Fig. 3 for an example of a resulting circuit.

For index 1 → i → n the formula (ϕ UI s)(i) is true if there exists j ≥ i such
that tj ⊆ ti+I and s(j) = ∈ and ϕ(k) = ∈ for all i → k < j. Since s is known, we
choose the first possible j. So let limit(i) = min{j | first(i) → j → last(i)⇒ s(j) =
∈} be the first j in the interval ti + I such that s(j) is true.

If there is no such index then (ϕ UI s)(i) = ≡. Otherwise, (ϕ UI s)(i) is true
if ϕ(k) = ∈ for all i → k < limit(i). That is, (ϕ UI s)(i) =

∧
i≤j<limit(i) ϕj .

Now, the circuit C (see right half of Fig. 3) consists of gates cp,q calculating
ϕp ⇒ · · · ⇒ ϕq and output gates oi for i = 1 . . . n. The gate cp,q is present in C
if there is i such that i → p → q < limit(i). If p = q then l(cp,q) = (ID, ϕp).
Otherwise, l(cp,q) = (AND, cp,q−1, cp+1,q).

On the Complexity of Temporal-Logic Path Checking 95

For output, we set oi so that oi =
∧

i≤j<limit(i) ϕj = (ϕUI s)(i). If limit(i) = ≥
then l(oi) = ≡, if limit(i) = i then l(oi) = ∈ and else l(oi) = (ID, ci,limit(i)−1).

The embedding γ : C ≤ R
2 of the circuit C is the same as above, γ(oi) = (i, n),

γ(ϕi) = (i, 0) and γ(cp,q) = (p, q− p+ 1). Since, i < j implies limit(i) → limit(j),
the embedding is planar.

This finishes the construction of circuits for UI . Circuits for the dual operators
of UI are obtained either by dualising OR and AND gates (Release operator), by
performing the construction backwards in time (Since operator) or both (Trigger
operator). Therefore,

Theorem 4. MTL path checking is in AC1[logDCFL].

A considerably weaker result appeared in [10], where the authors gave circuits
and an AC1[logDCFL] algorithm only for a fragment of MTL interpreted over
traces with integral timestamps ti = i and intervals of the form [0, a] for a ⊆ N.

5 UTL

The most complicated circuits in the LTL path-checking algorithm [9] correspond
to s U ψ and ψ U s formulae. As in the case of MTL, the circuits are also not
uniform but depend on s. In this section, we devise an AC1 tree-contraction
algorithm for UTL—the fragment of LTL obtained by omitting binary temporal
operators. The algorithm works even if XOR is allowed and is based on the
analysis of functions arising in the tree contraction algorithm applied to UTL
formulae. First consider the future-only fragment of UTL.

Let p ⊆ B
n be any proposition. If p(i) = ≡ for every i then (Fp)(i) = ≡

for every i. Otherwise, let i be the largest index such that p(i) = ∈. Then,
(Fp)(j) = ∈ for all j → i. By construction, p(k) = ≡ for all k > i. Hence,
(Fp)(k) = ≡ for all k > i. Thus, Fp is downward monotone and depends only on
the largest i with p(i) = ∈. In particular, only n+ 1 possible values exist for Fp.

Similarly, let t be the largest index such that p(t) = ≡. Then p(j) = ∈ for all
j > t. Hence (Gp)(j) = ∈ for all j > t. Since p(t) = ≡ we have (Gp)(k) = ≡ for
all k → t. Thus, Gp is upward monotone and depends only on the largest t with
p(t) = ≡. In particular, only n + 1 possible values exist for Gp.

So for any formula ψ the value of F ∪ ψ or G ∪ ψ is a monotone vector—of
which there are only 2n many. Hence for any formula context ϕ(X), the formula
contexts ϕ ∪ (FX) and ϕ ∪ (GX) can be represented as g ∪ F or g ∪ G where
g : M ≤ B

n is a function with monotone domain . Since |M| = O(n),
enumerating all outputs of g explicitly requires only |g| = O(n2) space. Similar
results hold for the past equivalents of G and F.

Now, Boolean operators are applied componentwise and obey the usual iden-
tities: ≡ ⇒ p = ≡,∈ ⇒ p = p,≡ ◦ p = p,∈ ◦ p = ∈,≡ ⊕ p = p and ∈ ⊕ p = ¬p.
Therefore, to represent partial evaluation of conjunction (p⇒X, x⇒X), disjunc-
tion (p◦X,X ◦ p) and xor (p⊕X,X ⊕ p) it suffices to keep track whether each
component is ≡,∈ or equal to the original or the negation of the value in X .

96 D. Bundala and J. Ouaknine

Furthermore, Next (Xp) and Yesterday (Yp) temporal operators shift p by
1 and −1, respectively. Let m be the size of the input formula. The last two
paragraphs motivate the definition of filters: let v ⊆ {≡,∈, ID,NOT}n and k ⊆
[−m,m] satisfy v(i) ⊆ B if i + k �⊆ {1, . . . , n}. Then a filter with offset k and
pattern v is the function fv,k : Bn ≤ B

n such that

fv,k(p)(i) =

⎪⎪
⎪⎪

≡ if v(i) = ≡
∈ if v(i) = ∈
p(i + k) if v(i) = ID
¬p(i + k) if v(i) = NOT

The identity function as well as the partial evaluation of conjunction, disjunc-
tion, and xor are expressible as filters with offset 0. Temporal operators Next
and Yesterday are identity filters with offsets 1 and −1, respectively. Note that
filters are closed under composition.

Storing v explicitly and k in unary requires O(n + |ϕ|) bits per filter. By
fully expanding the definition, we can evaluate and compose two filters in AC0.
Moreover, if g : M ≤ B

n is a function with monotone domain then (fv,k ∪ g) :
M ≤ B

n is also a function with monotone domain and the composition in AC0.

Lemma 4. There are uniform AC0 circuits calculating fv,k ∪fv′,k′ and fv,k(p)(i)
and fv,k ∪ g and F ∪ g and G ∪ g, where f ’s are filters and g is a function with
monotone domain.

We represent the functions arising in the tree-contraction algorithm as follows.
If the contracted subtree S does not contain F or G operators then it is repre-
sentable by a filter. If it contains F or G then let T be the first such occurrence.
Then the segment from the leaves to T is representable by a filter and the seg-
ment above T is representable by a function with monotone domain. Thus, the
function h associated with S can be represented as:

h =

⎨
filter no temporal operator
f ∪ T ∪ filter T is the first temporal operator; f : M ≤ B

n

Now, if the contracted node is a Boolean connective, X or Y then we calculate
fv,k∪h for an appropriate filter. If the contracted node is F or G then we calculate
F ∪ h or G ∪ h. In either case, the resulting function is representable using the
above format. Moreover, by Lemma 4, the composition is in AC0. Hence, the
complexity of the tree contraction algorithm is AC1[AC0] = AC1.

Theorem 5. UTL path checking is in AC1.

Same results apply to past temporal operators. Note that the construction
works also when the negation is applied to arbitrary subformulae, and not only
to propositions. Also note that F[a,∃)p is downward monotone and the corre-
sponding circuits are constructible in logarithmic space. Therefore, the above
arguments apply to the more powerful logic UTL≥ obtained by allowing F[a,∃)

and G[b,∃) operators. To the best of our knowledge, UTL≥ is the most expressive

and powerful fragment of LTL with a sub-AC1[logDCFL] path-checking problem.

On the Complexity of Temporal-Logic Path Checking 97

6 Conclusion

The results obtained in this paper shed further light on the complexity land-
scape of temporal-logic path-checking problems. Several open questions however
remain, the main one being to determine the precise complexity of LTL path
checking. In particular, there has been no progress on the trivial NC1 lower
bound over the past ten years. Furthermore, might it be possible to separate the
complexity of LTL and MTL, or of these logics and their future-only fragment?

Acknowledgments. This research was financially supported by EPSRC.

References

1. Artho, C., Barringer, H., Goldberg, A., Havelund, K., Khurshid, S., Lowry, M.,
Pasareanu, C., Rosu, G., Sen, K., Visser, W., Washington, R.: Combining test case
generation and runtime verification. Theoretical Computer Science 336(2-3) (2005)

2. Barrington, D.A.M., Lu, C.-J., Miltersen, P.B., Skyum, S.: On monotone planar
circuits. In: Proceedings of Fourteenth Annual IEEE Conference on Computational
Complexity (1999)

3. Bundala, D., Ouaknine, J.: On the complexity of path checking of temporal logics
(full version). CoRR, abs/1312.7603

4. Chakraborty, T., Datta, S.: One-input-face MPCVP is hard for L, but in LogDCFL.
In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 57–68.
Springer, Heidelberg (2006)

5. Demri, S., Schnoebelen, P.: The complexity of propositional linear temporal logics
in simple cases. Information and Computation 174(1), 84–103 (2002)

6. Finkbeiner, B., Sipma, H.: Checking finite traces using alternating automata. For-
mal Methods in System Design 24(2), 101–127 (2004)

7. Goldschlager, L.M.: The monotone and planar circuit value problems are log space
complete for P. SIGACT News 9 (July 1977)

8. Karp, R.M., Ramachandran, V.: Parallel algorithms for shared-memory machines.
In: Handbook of Theoretical Computer Science, Volume A: Algorithms and Com-
plexity (A) (1990)

9. Kuhtz, L., Finkbeiner, B.: LTL path checking is efficiently parallelizable. In: Al-
bers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.)
ICALP 2009, Part II. LNCS, vol. 5556, pp. 235–246. Springer, Heidelberg (2009)

10. Kuhtz, L., Finkbeiner, B.: Efficient parallel path checking for linear-time temporal
logic with past and bounds. Logical Methods in Computer Science 8(4) (2012)

11. Limaye, N., Mahajan, M., Sarma, J.M.N.: Evaluating monotone circuits on cylin-
ders, planes and tori. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS,
vol. 3884, pp. 660–671. Springer, Heidelberg (2006)

12. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals.
In: Lakhnech, Y., Yovine, S. (eds.) FORMATS 2004 and FTRTFT 2004. LNCS,
vol. 3253, pp. 152–166. Springer, Heidelberg (2004)

13. Markey, N., Schnoebelen, P.: Model checking a path (Preliminary report). In:
Amadio, R.M., Lugiez, D. (eds.) CONCUR 2003. LNCS, vol. 2761, pp. 251–265.
Springer, Heidelberg (2003)

14. Younes, H.L.S., Simmons, R.G.: Probabilistic verification of discrete event systems
using acceptance sampling. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS,
vol. 2404, pp. 223–235. Springer, Heidelberg (2002)

Parameterised Linearisability

Andrea Cerone1, Alexey Gotsman1, and Hongseok Yang2

1 IMDEA Software Institute, Madrid, Spain
2 University of Oxford, England

Abstract Many concurrent libraries are parameterised, meaning that they imple-
ment generic algorithms that take another library as a parameter. In such cases,
the standard way of stating the correctness of concurrent libraries via linearisab-
ility is inapplicable. We generalise linearisability to parameterised libraries and
investigate subtle trade-offs between the assumptions that such libraries can make
about their environment and the conditions that linearisability has to impose on
different types of interactions with it. We prove that the resulting parameterised
linearisability is closed under instantiating parameter libraries and composing
several non-interacting libraries, and furthermore implies observational refine-
ment. These results allow modularising the reasoning about concurrent programs
using parameterised libraries and confirm the appropriateness of the proposed
definitions. We illustrate the applicability of our results by proving the correct-
ness of a parameterised library implementing flat combining.

1 Introduction

Concurrent libraries encapsulate high-performance concurrent algorithms and data
structures behind a well-defined interface, providing a set of methods for clients to call.
Many such libraries [6,7,13] are parameterised, meaning that they implement generic
algorithms that take another library as a parameter and use it to implement more com-
plex functionality (we give a concrete example in §2). Reasoning about the correctness
of parameterised libraries is challenging, as it requires considering all possible libraries
that they can take as parameters.

Correctness of concurrent libraries is usually stated using linearisability [8], which
fixes a certain correspondence between the concrete library implementation and a (pos-
sibly simpler) abstract library, whose behaviour the concrete one is supposed to simu-
late. For example, a high-performance concurrent stack that allows multiple push and
pop operations to access the data structure at the same time may be specified by an
abstract library where each operation takes effect atomically. However, linearisability
considers only ground libraries, where all of the library implementation is given, and
is thus inapplicable to parameterised ones. In this paper we propose a notion of para-
meterised linearisability (§3 and §4) that lifts this limitation. The key idea is to take
into account not only interactions of a library with its client, but also with its parameter
library, with the two types of interactions being subject to different conditions.

A challenge we have to deal with while generalising linearisability in this way is
that parameterised libraries are often correct only under some assumptions about the
context in which they are used. Thus, a parameterised library may assume that the lib-
rary it takes as a parameter is encapsulated, meaning that clients cannot call its methods
directly. A parameterised library may also accept as a parameter only libraries satisfying
certain properties. For this reason, we actually present three notions of parameterised

J. Esparza et al. (Eds.): ICALP 2014, Part II, LNCS 8573, pp. 98–109, 2014.
c∗ Springer-Verlag Berlin Heidelberg 2014

Parameterised Linearisability 99

linearisability, appropriate for different situations: a general one, which does not make
any assumptions about the client or the parameter library, a notion appropriate for the
case when the parameter library is encapsulated, and up-to linearisability, which allows
making assumptions about the parameter library. These notions differ in subtle ways:
we find that there is a trade-off between the assumptions that parameterised libraries
make about their environment and the conditions that a notion of linearisability has to
impose on different types of interactions with it.

We prove that the proposed notions of parameterised linearisability are contextual
(§5), i.e., closed under parameter instantiation. This includes the case when the para-
meter library is itself parameterised. On the other hand, when the parameter is an or-
dinary ground library, this result allows us to derive the classical linearisability of the
instantiated library from our notion for the parameterised one. We also prove that para-
meterised linearisability is compositional (§5): if several non-interacting libraries are
linearisable, so is their composition. Finally, we show that parameterised linearisability
implies observational refinement (§6): the behaviours of any complete program using a
concrete parameterised library can be reproduced if the program uses a corresponding
abstract one instead. All these results allow modularising the reasoning about concur-
rent programs using parameterised libraries: contextuality and compositionality break
the reasoning about complex parameterised libraries into that about individual libraries
from which they are constructed; observational refinement then lifts this to complete
programs, including clients. The properties of parameterised linearisability we estab-
lish also serve to confirm the appropriateness of the proposed definitions.

We illustrate the applicability of our results by proving the up-to linearisability of
flat combining [6] (§4), a generic algorithm for converting hard-to-parallelise sequential
data structures into concurrent ones.

Due to space constraints, we defer the proofs of most theorems to [1, §B].

2 Parameterised Libraries

We consider parameterised libraries (or simply libraries) L, which provide some pub-
lic methods to their clients. The latter are multi-threaded programs that can call the
methods in parallel. In §4 and §6 we introduce a particular syntax for libraries and cli-
ents; for now it suffices to treat them abstractly. Our libraries are called parameterised
because we allow their method implementations to call abstract methods, whose imple-
mentation is left unspecified. Abstract methods are meant to be implemented by another
library provided by L’s client, which we call the parameter library of L.

We identify methods by names from a set M, ranged over by m, and threads by
identifiers from a set T , ranged over by t. For the sake of simplicity, we assume that
methods take a single integer as a parameter and always return an integer. We annotate
libraries with types as in L : M ∈ M ′, where M,M ′ ≡ M give the sets of abstract
and public methods of L, respectively. If M = ⊆ we call L a ground library. The sets
M and M ′ do not have to be disjoint: methods in M ↔M ′ may be called by L’s clients,
but their implementation is inherited from the one given by the parameter library.

Example: Flat Combining. Flat combining [6] is a recent synchronisation paradigm,
which can be viewed [14] as a parameterised library FC : {mi}ni=1 ∈ {do mi}ni=1 for a
given set of methods {mi}ni=1. In Figure 1 we show a pseudocode of its implementation,
which simplifies the original one in ways orthogonal to our goals. FC takes a library,

100 A. Cerone, A. Gotsman, and H. Yang

whose methods mi are meant to be executed sequentially, and efficiently turns it into a
library with methods do mi that can be called concurrently.

LOCK lock;
struct{op,param,retval} requests[NThread];

do mi(int z):
requests[mytid()].op = i;
requests[mytid()].param = z;
requests[mytid()].retval = nil;
do:
if (lock.tryacquire()):
for (t = 0; t < NThread; t++):
if (requests[t].retval == nil):
int j = requests[t].op;
int w = requests[t].param;
requests[t].retval = mj(w);

lock.release();
while (requests[mytid()].retval == nil);
return requests[mytid()].retval;

Fig. 1. Flat combining: implementation FC

As usual, this is achieved by means
of mutual exclusion, implemented using a
lock, but in a way that is more sophistic-
ated than just acquiring it before calling
a method mi. A thread executing do mi

first publishes the operation it would like
to execute and its parameter in its entry of
the requests array. It then spins, trying to
acquire the global lock. Having acquired
a lock, the thread becomes a combiner:
it performs the operations requested by
all threads, stored in requests, by calling
methods mi of the parameter library and
writing the values returned into the retval
field of the corresponding entries in re-
quests. Each spinning thread periodically
checks this field and stops if some other
thread has performed the operation it re-
quested (for simplicity, we assume that nil
is a special value that is never returned by any method). This algorithm benefits from
cache locality when the combiner executes several operations in sequence, and thus
yields good performance even for hard-to-parallelise data structures, such as stacks and
queues.

LOCK lock;
do mi(int z):
lock.acquire();
int retval = mi(z);
lock.release();
return retval;

Fig. 2. Flat combining:
specification FCω

In this paper, we develop a framework for specifying and
verifying parameterised concurrent libraries. For flat combin-
ing, our framework suggests using an abstract library FCΣ :

{mi}ni=1 ∈ {do mi}ni=1 in Figure 2 as a specification for the
concrete library in Figure 1. FCΣ specifies the expected beha-
viour of flat combining by using the naive mutual exclusion.
Showing that the implementation satisfies this specification in
our framework amounts to proving that it is related to FCΣ by
parameterised linearisability, which we present next.

3 Histories and Parameterised Linearisability

Histories. Informally, for a concrete library (such as the one in Figure 1) to be correct
with respect to an abstract one (such as the one in Figure 2), the two should interact with
their environment—the client and the parameter library—in similar ways. In this paper,
we assume that different libraries and their clients access disjoint portions of memory,
and thus interactions between them are limited to passing parameters and return values
at method calls and returns. This is a standard assumption [8], which we believe can be
relaxed using existing techniques [5]; see §7 for discussion. We record interactions of a
parameterised library L : M ∈ M ′ with its environment using histories (Definition 1
below), which are certain sequences of actions of the form

Act ::= (t, call?m′(z)) | (t, ret!m′(z)) | (t, call!m(z)) | (t, ret?m(z)),

Parameterised Linearisability 101

h1:

call?m1(z1) call!ma(za) ret?ma(z
⊥
a) ret!m1(z

⊥
1)

call?m2(z2) call!mb(zb) ret?mb(z
⊥
b) ret!m2(z

⊥
2)

call?m3(z3) ret!m3(z
⊥
3) call?m4(z4) ret!m4(z

⊥
4)

t1

t2

t3

h2:

call?m1(z1) call!ma(za) ret?ma(z
⊥
a) ret!m1(z

⊥
1)

call?m2(z2) call!mb(zb) ret?mb(z
⊥
b) ret!m2(z

⊥
2)

call?m3(z3) ret!m3(z
⊥
3) call?m4(z4) ret!m4(z

⊥
4)

t1

t2

t3

Fig. 4. Illustration of histories and parameterised linearisability. A solid line represents a thread
executing the code of the parameterised library, and a dashed one, the parameter library.

where t ⇔ T is the thread performing the action, m′ ⇔ M ′ or m ⇔ M is the method
involved, and z ⇔ Z is the method parameter or a return value.

L⊂

L

client
call?m′(z) ret!m′(z)

call!m(z) ret?m(z)

callm′′(z) retm′′(z)

Fig. 3. Interactions of a library L
with its client and parameter lib-
rary L⊥

We illustrate the meaning of the actions in Figure 3:
call? and ret! describe the client invoking public meth-
ods m′ of the parameterised library L, and call! and
ret? the library L invoking implementations of ab-
stract methods m provided by a parameter library L′.
We denote the sets of actions corresponding to inter-
actions with these two entities by ClAct and AbsAct,
respectively. In the spirit of the opponent-proponent
distinction in game semantics [9,11], we annotate ac-
tions by ! or ? depending on whether the action was
initiated by L or by an external entity, and we denote
the corresponding sets of actions byAct! andAct?. We
also use sets ActCall?, ActRet!, ActCall! and ActRet?
with the expected meaning. Clients can also call meth-
ods m′′ ⇔ M ↔ M ′ directly, as represented by the
dashed lines in the figure. Since such interactions do

not involve the library L, we do not include them into Act. Histories are finite sequences
of actions with invocations of abstract methods properly nested inside those of public
ones.

Definition 1 (Histories). A history h : M ∈ M ′ is a finite sequence of actions such
that for every t, the projection of h to t’s actions is a prefix of a sequence generated by
the grammar SHist below, where m ⇔ M and m′ ⇔ M ′:

SHist ::= ε | (t, call?m′(z)) IntSHist (t, ret!m′(z′)) | SHist SHist
IntSHist ::= ε | (t, call!m(z)) (t, ret?m(z′)) | IntSHist IntSHist

We denote the set of histories by Hist. See Figure 4 for examples. In this paper, we
focus on safety properties of libraries and thus let histories be finite. This assumption is
also taken by the classical notion of linearisability [8] and can be relaxed as described
in [4] (§7). For a history h and A ≡ Act, we let h|A be the projection of h onto actions
in A and we denote the i-th action in h by h(i).

102 A. Cerone, A. Gotsman, and H. Yang

Parameterised Linearisability. We would like the notion of correctness of a concrete
library L : M ∈ M ′ with respect to an abstract one LΣ : M ∈ M ′ to imply obser-
vational refinement. Informally, this property means that LΣ can be used to replace L
in any program (consisting of a client, the library and an instantiation of the parameter
library) while keeping its observable behaviours reproducible; a formal definition is
given in §6. While this notion is intuitive, establishing it between two libraries directly
is challenging because of the quantification over all possible programs they can be used
by. We therefore set out to find a correctness criterion that compares the concrete and
abstract libraries in isolation and thus avoids this quantification. For ground libraries,
linearisability [8] formulates such a criterion by matching a history h1 of L with a his-
tory h2 of LΣ that yields the same client-observable behaviour. The following definition
generalises it to parameterised libraries.

Definition 2 (Parameterised linearisability: general case). A history h1 : M ∈ M ′ is
linearised by another one h2 : M ∈ M ′, written h1 ≥ h2, if there exists a permutation
π : N ∈ N such that

⇒i. h1(i) = h2(π(i)) ◦ (⇒j. i < j ◦ ((≤t. h1(i) = (t,−) ◦ h2(j) = (t,−)) →
(h1(i) ⇔ Act! ◦ h1(j) ⇔ Act?)) =∅ π(i) < π(j)).

For sets of histories H1, H2 we let H1 ≥ H2 ⊇∅ ⇒h1 ⇔ H1. ≤h2 ⇔ H2. h1 ≥ h2.

In §4 we show how to generate all histories of a library in a particular language
and define linearisability on libraries by the ≥ relation on their sets of histories. For
now we explain the above abstract definition. According to it, a history h1 is linearised
by a history h2 when the latter is a permutation of the former preserving the order of
actions within threads and the precedence relation between the actions initiated by the
library and those initiated by its environment. As we explain below, we have h1 ≥
h2 for the histories h1, h2 in Figure 4. Hence, parameterised linearisability is able to
match a history of a concurrent library with a simpler one where every contiguous block
of library execution (e.g., the one between (t1, call?m1(z1)) and (t1, call!ma(za))) is
executed without interleaving with other such blocks. On the other hand, h2 �≥ h1, since
(t1, call!ma(za)) precedes (t3, call?m3(z3)) in h2, but not in h1.

When h1, h2 : ⊆ ∈ M ′, i.e., these are histories of a ground library and thus con-
tain only call? and ret! actions, Definition 2 coincides with a variant of the classical
linearisability [8], which requires preserving the order between ret! and call? actions.
For example, Definition 2 requires preserving the order between (t2, ret!m2(z

′
2)) and

(t3, call?m4(z4)) in h1 from Figure 4 (shown by a diagonal arrow). This requirement
is needed for linearisability to imply observational refinement: informally, during the
interval of time between (t2, ret!m2(z

′
2)) and (t3, call?m4(z4)) in an execution of a

program producing h1, both threads t2 and t3 execute pieces of client code, which can
communicate via the client memory. To preserve the behaviour of the client when repla-
cing the concrete library in the program by an abstract one in observational refinement,
this communication must not be affected, and, for this, the abstract library has to admit
a history in which the order between the above actions is preserved.

When h1, h2 : M ∈ M ′ correspond to a non-ground parameterised library, i.e.,
M �= ⊆, a similar situation arises with communication between the methods of the
parameter library executing in different threads. For this reason, our generalisation
of linearisability requires preserving the order between call! and ret? actions, such as

Parameterised Linearisability 103

(t2, call!mb(zb)) and (t1, ret?ma(z
′
a)) in Figure 4; this requirement is dual to the one

considered in classical linearisability. It is not enough, however. Definition 2 also re-
quires preserving the order between call! and call?, as well as ret! and ret? actions, e.g.,
(t3, ret!m3(z

′
3)) and (t2, ret?mb(z

′
b)) in Figure 4. In the case when M ↔M ′ �= ⊆, this

is also required to validate observational refinement. For example, during the interval of
time between (t3, ret!m3(z

′
3) and (t2, ret?mb(z

′
b)) in an execution producing h1, the

client code in thread t3 can call a methodm′
b ⇔ M↔M ′ of the parameter library (cf. the

dashed arrows in Figure 3). The code of the method m′
b executed by t3 can then commu-

nicate with that of the method mb executed by t2, and to preserve this communication,
we need to preserve the order between (t3, ret!m3(z

′
3)) and (t2, ret?mb(z

′
b)).

In §5 and §6 we prove that the above notion of linearisability indeed validates ob-
servational refinement. If the library L : M ∈ M ′ producing the histories h1, h2 in
Definition 2 is such that M ↔M ′ = ⊆, then the client cannot directly call methods of
its parameter library, and, as we show, parameterised linearisability can be weakened
without invalidating observational refinement.

Definition 3 (Parameterised linearisability: encapsulated case). For h1, h2 : M ∈ M ′

with M ↔M ′ = ⊆ we let h1 ≥e h2 if there exists a permutation π : N∈N such that

⇒i. h1(i) = h2(π(i)) ◦ (⇒j. i < j ◦ ((≤t. h1(i) = (t,−) ◦ h2(j) = (t,−)) →
(h1(i), h1(j)) ⇔ (ActRet!× ActCall?) ∪ (ActCall!× ActRet?)) =∅ π(i) < π(j)).

Since this definition does not take into account the order between (t1, call!ma(za)) and
(t3, call?m3(z3)) in h2 from Figure 4, we have h2 ≥e h1 even though h2 �≥ h1.

Definitions 2 and 3 do not make any assumptions about the implementation of the
parameter library. However, sometimes the correctness of a parameterised library can
only be established under certain assumptions about the behaviour of its parameter. In
particular, this is the case for the flat combining library from §2. In its implementation
FC from Figure 1, a request by a thread t to execute a method mi of the parameter lib-
rary can be fulfilled by another thread t′ who happens to act as a combiner; in contrast,
the specification FCΣ in Figure 2 pretends that mi is executed in the requesting thread.
Thus, FC and FCΣ will behave differently if we supply as their parameter a library whose
methods depend on the identifiers of executing threads (e.g., with mi implemented as
“return mytid()”). As a consequence, FC does not simulate FCΣ. On the other hand,
this will be the case if we restrict ourselves to parameter libraries whose behaviour is
independent of thread identifiers. The following version of parameterised linearisabil-
ity allows us to use such assumptions, formulated as closure properties on histories of
interactions between a parameterised library and its parameter. Given a history h, let h
be the history obtained by swapping ! and ? actions in h.

Definition 4 (Up-to linearisability). For h1, h2 : M ∈ M ′ such that M ↔M ′ = ⊆ and
a binary relation R on histories of type ⊆ ∈ M , we say that h1 is linearised by h2 up
to R, written h1 ≥R h2, if (h1|ClAct) ≥ (h2|ClAct) and (h1|AbsAct) R (h2|AbsAct).
For flat combining, a suitable relation Rt relates two histories if one can be obtained
from the other by replacing thread identifiers of some pairs of a call and a corresponding
(if any) return action. There are other useful choices of R, such as equivalence up to
commuting abstract method invocations [7].

So far we have defined our notions of linearisability abstractly, on sets of histories.
We next introduce a language for parameterised libraries and show how to generate sets

104 A. Cerone, A. Gotsman, and H. Yang

of histories of a library in this language. This lets us lift the notion of linearisability to
libraries and prove that FC in Figure 1 is indeed linearised up to Rt by FCΣ in Figure 2.

4 Lifting Linearisability to Libraries

Library Syntax. We use the following language to define libraries:

L ::= ∩public :B; private :B⊕ B ::= ε | (m ⊇ C);B | (abstract m);B
C ::= c | m() | C;C | if(E) then C else C | while(E) C

A parameterised library L is a collection of methods, some implemented by commands
C and others declared as abstract, meant to be implemented by a parameter library.
Methods can be public or private, with only the former made available to clients. In
§5 and §6 we extend the language to complete programs, consisting of a multithreaded
client using a parameterised library with its parameter instantiated. In particular, we
introduce private methods here to define parameter library instantiation in §5.

In commands, c ranges over primitive commands from a set PComm, and E over
expressions, whose set we leave unspecified. The command m() invokes the method
m; it does not mention its parameter or return value, since, as we explain below, these
are passed via dedicated thread-local memory locations. We consider only well-formed
libraries where a method is declared at most once and every method called is declared.
We identify libraries up to the order of method declarations and α-renaming of private
non-abstract methods. For a library L = ∩public :Bpub; private :Bpvt⊕ we have L :

Abs(L) ∈ Pub(L), where Pub(L) is the set of methods declared in Bpub, and Abs(L)
of those declared as abstract in Bpub or Bpvt.

Linearisability on Libraries and the Semantics Idea. We now show how to generate
the set of histories �L� ⇔ 2Hist of a library L. Then we let a library L1 be linearised by
a library L2, written L1 ≥ L2, if �L1� ≥ �L2�; similarly for ≥e and ≥R.

We actually generate all library traces, which, unlike histories, also record its internal
actions. Let us extend the set of actions Act with elements of the forms (t, c) for c ⇔
PComm, (t, callm(z)) and (t, retm(z)), leading to a set TrAct. The latter two kinds of
actions correspond to calls and returns between methods implemented inside the library.
A trace τ is a finite sequence of elements in TrAct; we let Traces = TrAct≥.

The denotation �L� of a library L : M ∈ M ′ includes the histories extracted from
traces that L produces in any possible environment, i.e., assuming that client threads
perform any sequences of calls to methods in M ′ with arbitrary parameter values and
that abstract methods in M return arbitrary values. The definition of �L� follows the
intuitive semantics of our programming language. An impatient reader can skip it on
first reading and jump directly to Theorem 1 at the end of this section.

Heaps and Primitive Command Semantics. Let Locs be the set of memory loca-
tions. As we noted in §3, we impose a standard restriction that different libraries and
their clients access different sets of memory locations, except the ones used for method
parameter passing. Formally, we assume that each library L is associated with a set of
its locations LocsL ≡ Locs. The state of L is thus given by a heap σ ⇔ LocsL ∈ Z.
We assume a special subset of locations {argt}t∈T belonging to every LocsL, which
we use to pass parameters and return values for method invocations in thread t.

We assume that the execution of primitive commands and the evaluation of
expressions are atomic. The semantics of a primitive command c ⇔ PComm used by a

Parameterised Linearisability 105

Traces of commands �C�t : (M×T ◦ 2Traces) ◦ 2Traces

�c�tη = {(t, c)} �C1;C2�tη = {τ1τ2 | τ1 ≥ �C1�tη ∨ τ2 ≥ �C2�tη}
�if(E) then C1 else C2�tη = (t, assume(E)) (�C1�tη) ∈ (t, assume(!E))(�C2�tη)

�while(E) C�tη = ((t, assume(E))(�C�η))∗(t, assume(!E))

�m()�tη =

{
{(t, call!m(z)) τ (t, ret?m(z⊥)) | τ ≥ η(m, t) ∨ z, z⊥ ≥ Z}, if m ≥ M

{(t, callm(z)) τ (t, retm(z⊥)) | τ ≥ η(m, t) ∨ z, z⊥ ≥ Z}, otherwise

Traces of library bodies

F : (M×T ◦ 2Traces) ◦ (M×T ◦ 2Traces) �B� : M×T ◦ 2Traces

(F(η))(m, t) =

⎧⎪⎨
⎪⎩
η(m, t) ∈ (�C�tη), if (m ∧ C) appears in L

{ε}, if m ≥ M

∅, otherwise

�Bpub;Bpvt� = lfp(F)

Traces of libraries �L : M ◦ M ⊥� : 2Traces

�L� = prefix

(⋃
k>0

⎡⎡k

t=1

(⋃
z,z⊥∗Z

m∈M⊥\M
(t, call?m(z)) (�Bpub;Bpvt�(m, t)) (t, ret!m(z⊥))

⎣∗⎣

Fig. 5. Possible traces of a library L = 〈public : Bpub; private : Bpvt⊇ : M ◦ M ⊥. Here
⎡⎡k

t=1
Tt

denotes the set of all interleavings of traces from the sets T1, . . . , Tk.

σ �L
call m(z),t σ

⊥ iff σ⊥ = σ, σ(argt) = z σ �L
ret m(z),t σ

⊥ iff σ⊥ = σ, σ(argt) = z

σ �L
call?m(z),t σ

⊥ iff σ⊥ = σ[argt
◦ z] σ �L
ret!m(z),t σ

⊥ iff σ⊥ = σ, σ(argt) = z

σ �L
call!m(z),t σ

⊥ iff σ⊥ = σ, σ(argt) = z σ �L
ret?m(z),t σ

⊥ iff σ⊥ = σ[argt
◦ z]

Fig. 6. Transformers for calls and returns to, from and inside a library L

library L is defined by a family of transformers {�L
c,t}t∈T , where �L

c,t ≡ (LocsL ∈
Z) × (LocsL ∈ Z) describes how c affects the state of the library. The fact that the
transformers are defined on locations from LocsL formalises our assumption that L
accesses only these locations. We assume that the transformers satisfy some standard
properties [15], deferred to [1, §A] due to space constraints. To define the semantics of
expressions, we assume that for each E the set PComm contains a special command
assume(E), used only in defining the semantics, that allows the computation to proceed
only if E is non-zero: σ �L

assume(E),t σ
′ iff σ′ = σ and E is non-zero in σ.

Library Denotations. The set of traces of a library is generated in two stages. First,
we generate a superset �L� ≡ 2Traces of traces produced by L, defined in Figure 5. If
we think of commands as control-flow graphs, these traces contain interleavings of all
possible paths through the control-flow graphs of L’s methods, invoked in an arbitrary
sequence. We then select those traces in �L� that correspond to valid executions starting
in a given heap using a predicate �τ�L : (LocsL ∈ Z) ∈ {true, false}. We define �·�L
by generalising � to calls and returns as shown in Figure 6 and letting

�ε�Lσ= true; �(t, a) τ�Lσ = if (≤σ′. σ�L
a,t σ

′ ◦ �τ�Lσ
′ = true) then true else false.

Finally, we let the set of histories �L� of a library L consist of those obtained from
traces representing its valid executions from a heap with all locations set to 0:

�L� = history({τ ⇔ �L� | �τ�L(λx ⇔ LocsL. 0) = true}),
where history projects to actions in Act.

106 A. Cerone, A. Gotsman, and H. Yang

Theorem 1 (Correctness of flat combining). For the libraries FC in Figure 1 and FCΣ

in Figure 2 and the relation Rt from §3 we have FC ≥Rt FC
Σ.

PROOF SKETCH. Consider h ⇔ �FC�. In such a history, any invocation of an
abstract method (t, call!mi(zi)) (t, ret?mi(z

′
i)) happens within the execution of the

corresponding wrapper method (t′, call? do mi(zi)) (t
′, ret! do mi(z

′
i)) (or just

(t′, call? do mi(zi)) if the execution of the method is uncompleted in h), though not
necessarily in the same thread. This correspondence is one-to-one, as different invoc-
ations of abstract methods correspond to different requests to perform them. Further-
more, abstract methods in h are executed sequentially. We then construct a history h′
by replacing every abstract method call (t, call!mi(zi)) (t, ret?mi(z

′
i)) in h|AbsAct by

(t′, call?do mi(zi)) (t
′, call!mi(zi)) (t

′, ret?mi(z
′
i)) (t

′, ret! do mi(z
′
i)),

where t′ is the thread identifier of the corresponding wrapper method invocation (sim-
ilarly for uncompleted invocations). It is easy to see that (h|AbsAct) Rt (h′|AbsAct) and
h′ ⇔ �FCΣ�. Since the execution of an abstract method in h happens within the execu-
tion of the corresponding wrapper method, we also have (h|ClAct) ≥ (h′|ClAct). ��

5 Instantiating Library Parameters and Contextuality

We now define how library parameters are instantiated and show that our notions of
linearisability are preserved under such instantiations. To this end, we introduce a partial
operation ◦ on libraries of §4: informally, for L1 : M ∈ M ′ and L2 : M ′ ∈ M ′′ the
library L2 ◦ L1 : M ∈ M ′′ is obtained by instantiating abstract methods in L2 with
their implementations from L1. Note that L1 can itself have abstract methods M , which
are left unimplemented in L2 ◦ L1. Since we assume that different libraries operate in
disjoint address spaces, for ◦ to be defined we require that the sets of locations of L1 and
L2 be disjoint, with the exception of those used for method parameter passing. To avoid
name clashes, we also require that public non-abstract methods of L2 not be declared as
abstract in L1 (private non-abstract methods are not an issue, since we identify libraries
up to their α-renaming); this also disallows recursion between L2 and L1.

Definition 5 (Parameter library instantiation). Consider L1 : M ∈ M ′ and L2 :

M ′ ∈ M ′′ such that (M ′′ \ M ′) ↔ M = ⊆ and LocsL1 ↔ LocsL2 = {argt}t∈T .
Then L2 ◦ L1 : M ∈ M ′′ is the library with LocsL2⊆L1 = LocsL1 ∪ LocsL2 obtained
by erasing the declarations for methods in M ′ from L2, reclassifying the methods from
M ′ \ M ′′ in L1 as private, and concatenating the method declarations of the resulting
two libraries. We write (L2 ◦ L1)↓ when L2 ◦ L1 is defined.

We now show that the notions of parameterised linearisability we proposed are con-
textual, i.e., closed under library instantiations. This property is useful in that it allows
us to break the reasoning about a complex library into that about individual libraries
from which it is constructed. As we show in §6, contextuality also helps us establish
observational refinement.

Theorem 2 (Contextuality of parameterised linearisability: general case). For L1, L2 :

M ∈ M ′ such that L1 ≥ L2:

(i) ⇒L : M ′′ ∈ M. (L1 ◦ L)↓ ◦ (L2 ◦ L)↓ =∅ L1 ◦ L ≥ L2 ◦ L.
(ii) ⇒L : M ′ ∈ M ′′. (L ◦ L1)↓ ◦ (L ◦ L2)↓ =∅ L ◦ L1 ≥ L ◦ L2.

Parameterised Linearisability 107

Theorem 3 (Contextuality of parameterised linearisability: encapsulated case). For
L1, L2 : M ∈ M ′ such that M ↔M ′ = ⊆ and L1 ≥e L2:

(i) ⇒L : M ′′ ∈ M. (L1 ◦ L)↓ ◦ (L2 ◦ L)↓ =∅ L1 ◦ L ≥e L2 ◦ L.
(ii) ⇒L : M ′ ∈ M ′′. (L ◦ L1)↓ ◦ (L ◦ L2)↓ =∅ L ◦ L1 ≥e L ◦ L2.

The restriction on method names in Definition 5 ensures that the library compositions
in Theorem 3 have no public abstract methods and can thus be compared by ≥e. Note
that if L is ground, then so are L1 ◦ L and L2 ◦ L. In this case, Theorems 2(i) and 3(i)
allow us to establish classical linearisability from parameterised one.

Stating the contextuality of ≥R is more subtle. The relationship L1 ≥R L2 allows
the use of abstract methods by L1 and L2 to differ according to R. As a consequence,
for a non-ground parameter library L, their use by L1 ◦ L and L2 ◦ L may also differ
according to another relation G. We now introduce a property of L ensuring that a
change in L’s interactions with its client according to R (the rely) leads to a change in
L’s interactions with its abstract methods according to G (the guarantee).

Definition 6 (Rely-guarantee Closure). Let R,G be relations between histories of type
⊆ ∈ M ′ and ⊆ ∈ M , respectively. A library L : M ∈ M ′ is

(R
G
)
-closed if for all

h ⇔ �L� and h′ : ⊆ ∈ M ′ we have

(h|ClAct) R h′ =∅ ≤h′′ ⇔ �L�. (h′′|ClAct = h′) ◦ (h|AbsAct) G (h′′|AbsAct).
Due to space constraints, we state contextuality of ≥R only for the case in which lib-
rary parameters do not have public abstract methods. A more general statement which
relaxes this assumption is given in [1, §B].

Theorem 4 (Contextuality of linearisability up to R). For L1, L2 : M ∈ M ′ such that
M ↔M ′ = ⊆ and a relation R such that L1 ≥R L2:

(i) ⇒L : M ′′ ∈ M. ⇒G.M ′′ ↔M = ⊆ ◦ (L is
(R
G
)
-closed) ◦

(L1 ◦ L)↓ ◦ (L2 ◦ L)↓ =∅ L1 ◦ L ≥G L2 ◦ L.
(ii) ⇒L : M ′ ∈ M ′′. (L ◦ L1)↓ ◦ (L ◦ L2)↓ =∅ L ◦ L1 ≥R L ◦ L2.

When L in Theorem 4(i) is ground, G becomes irrelevant. In this case we say that
L is R-closed if it is

(R
{(ψ,ψ)}

)
-closed. Hence, from Theorems 1 and 4(i) we get that for

any Rt-closed (§3) library L we have FC ◦ L ≥ FCΣ ◦ L: instantiating flat combining
with a library insensitive to thread identifiers, e.g., a sequential stack or a queue, yields
a concurrent library linearisable in the classical sense.

Given two libraries L1 : M1 ∈ M ′
1 and L2 : M2 ∈ M ′

2 that do not interact, i.e.,
(M1∪M ′

1)↔ (M2∪M ′
2) = ⊆, we may wish to compose them by merging their method

declarations into a library L1 � L2 : M1 � M2 ∈ M ′
1 � M ′

2, as originally proposed
in [8]. Our notions of linearisability are also closed under this composition.

Theorem 5 (Compositionality of parameterised linearisability). For L1, L
′
1 : M1 ∈

M ′
1 and L2, L

′
2 : M2 ∈ M ′

2 such that (M1 ∪M ′
1) ↔ (M2 ∪M ′

2) = ⊆:

(i) L1 ≥ L′
1 ◦ L2 ≥ L′

2 =∅ L1 � L2 ≥ L′
1 � L′

2.
(ii) L1 ≥e L

′
1 ◦ L2 ≥e L

′
2 =∅ L1 � L2 ≥e L

′
1 � L′

2.
(iii) ⇒R,G. L1 ≥R L′

1 ◦L2 ≥G L′
2 =∅ L1�L2 ≥R⊗G L′

1�L′
2, where R⊗G relates

histories if their projections to M1 actions are related by R and the projections to
M2 actions are related by G.

108 A. Cerone, A. Gotsman, and H. Yang

6 Clients and Observational Refinement

A program P has the form let L in C1 ‖ . . . ‖ Cn, where L : ⊆ ∈ M is a ground
library and C1 ‖ . . . ‖ Cn is a client such that C1, . . . , Cn call only methods in M ,
written (C1 ‖ . . . ‖ Cn) : M . Using the contextuality results from §5, we now show
that our notions of linearisability imply observational refinement for such programs.

The semantics of a program P is given by the set of its traces �P � ⇔ 2Traces, which
include actions (t, c) recording the execution of primitive commands c by client threads
Ct and the library L, as well as (t, callm(z)) and (t, retm(z)) actions corresponding
to the former invoking methods of the latter. The semantics �P � is defined similarly
to that of libraries in §4. In particular, we assume that client threads Ct access only
locations in a set Locsclient such that Locsclient ↔ LocsL = {argt}t∈T for any L. Due to
space constraints, we defer the definition of �P � to [1, §A]. We define the observable
behaviour obs(τ) of a trace τ ⇔ �P � as its projection to client actions, i.e., those outside
method invocations, and lift obs to sets of traces as expected.

Definition 7 (Observational refinement). For L1, L2 : M ∈ M ′ we say that L1 obser-
vationally refines L2, written L1 ≥obs L2, if for any ground library L : ⊆ ∈ M and
client (C1 ‖ . . . ‖ Cn) : M

′ we have

obs(�let (L1 ◦ L) in C1 ‖ . . . ‖ Cn�) ≡ obs(�let (L2 ◦ L) in C1 ‖ . . . ‖ Cn�).

For a binary relation R on histories we say that L1 observationally refines L2 up to
R, written L1 ≥R

obs L2, if the above is true under the assumption that L is R-closed.

Thus, L1 ≥obs L2 means that L1 can be replaced by L2 in any program that uses it
while keeping observable behaviours reproducible. This allows us to check a property
of a program using L1 (e.g., the flat combining implementation in Figure 1) by check-
ing this property on a program with L1 replaced by a possibly simpler L2 (e.g., the
flat combining specification in Figure 2). Using Theorems 2–4, we can show that our
notions of linearisability validate observational refinement.

Theorem 6 (Observational refinement). For any libraries L1, L2 : M ∈ M ′:

(i) L1 ≥ L2 =∅ L1 ≥obs L2.
(ii) M ↔M ′ = ⊆ ◦ L1 ≥e L2 =∅ L1 ≥obs L2.

(iii) ⇒R.M ↔M ′ = ⊆ ◦ L1 ≥R L2 =∅ L1 ≥R
obs L2.

7 Related Work

Linearisability has recently been extended to handle liveness properties, ownership
transfer and weak memory models [4,5,10]. Most of these extensions have exploited the
connection between linearisability and observational refinement [2]. The same method-
ology is adopted in the present work, but for studying two previously unexplored topics:
parameterised libraries and the impact that common restrictions on their contexts have
on the definition of linearisability. We believe that our results are compatible with the
existing ones and can thus be extended to cover liveness and ownership transfer [4,5].

Our work shares techniques with game semantics of concurrent programming lan-
guages [12,3] and Jeffrey and Rathke’s semantics of concurrent objects [11] (in particu-
lar, we use the ? and ! notation from the latter). The proofs of our contextuality theorems
rely on the fact that library denotations satisfy certain closure properties related to ≥, ≥e

Parameterised Linearisability 109

and ≥R, which are similar to those exploited in these prior works. However, there are
two important differences. First, prior work has not studied common restrictions on lib-
rary contexts (such as the encapsulation and closure conditions in Definitions 3 and 4)
and the induced stronger notions of refinement between libraries, the two key topics of
this paper. Second, prior works have considered all higher-order functions, while our
parameterised libraries are limited to second order. Our motivation for constraining the
setting in this way is to use a simple semantics and study the key issues involved in
linearisability of parameterised libraries without using sophisticated machinery from
game semantics, such as justification pointers and views [9], designed for accurately
modelling higher-order features. However, it is definitely a promising direction to look
for appropriate notions of linearisability for full higher-order concurrent libraries by
combining the ideas from this paper with those from game semantics.

Turon et al. proposed CaReSL [14], a logic that allows proving observational re-
finements between higher-order concurrent programs directly, without going via linear-
isability. Their work is complimentary to ours: it provides efficient proof techniques,
whereas we identify obligations to prove, independent of a particular proof system.

Acknowledgements. We thank Thomas Dinsdale-Young and Ilya Sergey for com-
ments that helped improve the paper. This work was supported by the EU FET project
ADVENT.

References
1. Cerone, A., Gotsman, A., Yang, H.: Parameterised linearisability (extended version),

http://software.imdea.org/~gotsman/
2. Filipovic, I., O’Hearn, P.W., Rinetzky, N., Yang, H.: Abstraction for concurrent objects.

Theor. Comput. Sci. 411(51-52) (2010)
3. Ghica, D.R., Murawski, A.S.: Angelic semantics of fine-grained concurrency. Ann. Pure

Appl. Logic 151(2-3) (2008)
4. Gotsman, A., Yang, H.: Liveness-preserving atomicity abstraction. In: Aceto, L., Henzinger,

M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp. 453–465. Springer, Heidelberg
(2011)

5. Gotsman, A., Yang, H.: Linearizability with ownership transfer. Logical Methods in Com-
puter Science 9 (2013)

6. Hendler, D., Incze, I., Shavit, N., Tzafrir, M.: Flat combining and the synchronization-
parallelism tradeoff. In: SPAA (2010)

7. Herlihy, M., Koskinen, E.: Transactional boosting: a methodology for highly-concurrent
transactional objects. In: PPOPP (2008)

8. Herlihy, M., Wing, J.M.: Linearizability: A correctness condition for concurrent objects.
ACM Trans. Program. Lang. Syst. 12(3) (1990)

9. Hyland, J.M.E., Luke Ong, C.-H.: On full abstraction for PCF: I, II, and III. Inf. Com-
put. 163(2) (2000)

10. Jagadeesan, R., Petri, G., Pitcher, C., Riely, J.: Quarantining weakness. In: Felleisen, M.,
Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 492–511. Springer, Heidelberg (2013)

11. Jeffrey, A., Rathke, J.: A fully abstract testing semantics for concurrent objects. Theor. Com-
put. Sci. 338(1-3) (2005)

12. Laird, J.: A game semantics of idealized CSP. ENTCS 45 (2001)
13. Russo, C.V.: The Joins Concurrency Library. In: Hanus, M. (ed.) PADL 2007. LNCS,

vol. 4354, pp. 260–274. Springer, Heidelberg (2007)
14. Turon, A., Dreyer, D., Birkedal, L.: Unifying refinement and Hoare-style reasoning in a logic

for higher-order concurrency. In: ICFP (2013)
15. Yang, H., O’Hearn, P.W.: A semantic basis for local reasoning. In: Nielsen, M., Engberg, U.

(eds.) FOSSACS 2002. LNCS, vol. 2303, pp. 402–416. Springer, Heidelberg (2002)

http://software.imdea.org/~gotsman/

Games with a Weak Adversaryφ,φφ

Krishnendu Chatterjee1 and Laurent Doyen2

1 IST Austria
2 LSV, ENS Cachan & CNRS, France

Abstract. We consider multi-player graph games with partial-observation and
parity objective. While the decision problem for three-player games with a coali-
tion of the first and second players against the third player is undecidable in gen-
eral, we present a decidability result for partial-observation games where the first
and third player are in a coalition against the second player, thus where the sec-
ond player is adversarial but weaker due to partial-observation. We establish tight
complexity bounds in the case where player 1 is less informed than player 2,
namely 2-EXPTIME-completeness for parity objectives. The symmetric case of
player 1 more informed than player 2 is much more complicated, and we show
that already in the case where player 1 has perfect observation, memory of size
non-elementary is necessary in general for reachability objectives, and the prob-
lem is decidable for safety and reachability objectives. From our results we derive
new complexity results for partial-observation stochastic games.

1 Introduction

Games on Graphs. Games played on graphs are central in several important problems
in computer science, such as reactive synthesis [21,22], verification of open systems [2],
and many others. The game is played by several players on a finite-state graph, with a
set of angelic (existential) players and a set of demonic (universal) players as follows:
the game starts at an initial state, and given the current state, the successor state is de-
termined by the choice of moves of the players. The outcome of the game is a play,
which is an infinite sequence of states in the graph. A strategy is a transducer to resolve
choices in a game for a player that given a finite prefix of the play specifies the next
move. Given an objective (the desired set of behaviors or plays), the goal of the exis-
tential players is to ensure the play belongs to the objective irrespective of the strategies
of the universal players. In verification and control of reactive systems an objective is
typically an ω-regular set of paths. The class of ω-regular languages, that extends clas-
sical regular languages to infinite strings, provides a robust specification language to
express all commonly used specifications, and parity objectives are a canonical way to
define such ω-regular specifications [27]. Thus games on graphs with parity objectives
provide a general framework for analysis of reactive systems.

ω This research was partly supported by Austrian Science Fund (FWF) Grant No P23499- N23,
FWF NFN Grant No S11407-N23 (RiSE), ERC Start grant (279307: Graph Games), Microsoft
Faculty Fellowship Award, and European project Cassting (FP7-601148).

ωω Fuller version: [1].

J. Esparza et al. (Eds.): ICALP 2014, Part II, LNCS 8573, pp. 110–121, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Games with a Weak Adversary, 111

Perfect vs Partial Observation. Many results about games on graphs make the hypoth-
esis of perfect observation (i.e., players have perfect or complete observation about the
state of the game). In this setting, due to determinacy (or switching of the strategy quan-
tifiers for existential and universal players) [17], the questions expressed by an arbitrary
alternation of quantifiers reduce to a single alternation, and thus are equivalent to solv-
ing two-player games (all the existential players against all the universal players). How-
ever, the assumption of perfect observation is often not realistic in practice. For example
in the control of physical systems, digital sensors with finite precision provide partial
information to the controller about the system state [12,14]. Similarly, in a concurrent
system the modules expose partial interfaces and have access to the public variables of
the other processes, but not to their private variables [25,2]. Such situations are better
modeled in the more general framework of partial-observation games [24,25,26].

Partial-Observation Games. Since partial-observation games are not determined, un-
like the perfect-observation setting, the multi-player game problems do not reduce to the
case of two-player games. Typically, multi-player partial-observation games are stud-
ied in the following setting: a set of partial-observation existential players, against a
perfect-observation universal player, such as for distributed synthesis [21,13,23]. The
problem of deciding if the existential players can ensure a reachability (or a safety) ob-
jective is undecidable in general, even for two existential players [20,21]. However, if
the information of the existential players form a chain (i.e., existential player 1 more
informed than existential player 2, existential player 2 more informed than existential
player 3, and so on), then the problem is decidable [21,16,18].

Games with a Weak Adversary. One aspect of multi-player games that has been
largely ignored is the presence of weaker universal players that do not have perfect
observation. However, it is natural in the analysis of composite reactive systems that
some universal players represent components that do not have access to all variables of
the system. In this work we consider games where adversarial players can have partial
observation. If there are two existential (resp., two universal) players with incompara-
ble partial observation, then the undecidability results follows from [20,21]; and if the
information of the existential (resp., universal) players form a chain, then they can be
reduced to one partial-observation existential (resp., universal) player. We consider the
following case of partial-observation games: one partial-observation existential player
(player 1), one partial-observation universal player (player 2), one perfect-observation
existential player (player 3), and one perfect-observation universal player (player 4).
Roughly, having more partial-observation players in general leads to undecidability,
and having more perfect-observation players reduces to two perfect-observation play-
ers. We first present our results and then discuss two applications of the model.

Results. Our main results are as follows:
1. Player 1 less informed. We first consider the case when player 1 is less informed

than player 2. We establish the following results: (i) a 2-EXPTIME upper bound
for parity objectives and a 2-EXPTIME lower bound for reachability objectives
(i.e., we establish 2-EXPTIME-completeness); (ii) an EXPSPACE upper bound for
parity objectives when player 1 is blind (has only one observation), and EXPSPACE
lower bound for reachability objectives even when both player 1 and player 2 are

112 K. Chatterjee and L. Doyen

Table 1. Complexity of qualitative analysis (almost-sure winning) for partial-observation stochas-
tic games with partial observation for player 1 with reachability and parity objectives. Player 2 has
either perfect observation or more information than player 1(new results boldfaced). For positive
winning, all entries other than the first (randomized strategies for player 1 and perfect observa-
tion for player 2) remain the same, and the complexity for the first entry for positive winning is
PTIME-complete.

Reachability Parity Parity

Player 1
Player 2 Finite- or infinite-memory strategies Infinite-memory strategies Finite-memory strategies

Perfect More informed Perfect More informed Perfect More informed
Randomized EXP-c [9] EXP-c [4] Undec. [3,8] Undec. [3,8] EXP-c [10] 2EXP
Pure EXP-c [7] 2EXP-c Undec. [3] Undec. [3] EXP-c [10] 2EXP-c

blind. In all these cases, if the objective can be ensured then the upper bound on
memory requirement of winning strategies is at most doubly exponential.

2. Player 1 more informed. We consider the case when player 1 can be more informed
as compared to player 2, and show that even when player 1 has perfect observa-
tion there is a non-elementary lower bound on the memory required by winning
strategies. This result is also in sharp contrast with distributed games, where if only
one player has partial observation then the upper bound on memory of winning
strategies is exponential.

Applications. We discuss two applications of our results: the sequential synthesis prob-
lem, and new complexity results for partial-observation stochastic games.
1. The sequential synthesis problem consists of a set of partially implemented mod-

ules, where first a set of modules needs to be refined, followed by a refinement of
some modules by an external source, and then the remaining modules are refined so
that the composite open reactive system satisfies a specification. Given the first two
refinements cannot access all private variables, we have a four-player game where
the first refinement corresponds to player 1, the second refinement to player 2, the
third refinement to player 3, and player 4 is the environment.

2. In partial-observation stochastic games, there are two partial-observation players
(one existential and one universal) playing in the presence of uncertainty in the tran-
sition function (i.e., stochastic transition function). The qualitative analysis ques-
tion is to decide the existence of a strategy for the existential player to ensure the
parity objective with probability 1 (or with positive probability) against all strate-
gies of the universal player. The witness strategy can be randomized or determin-
istic (pure). While the qualitative problem is undecidable, the practically relevant
restriction to finite-memory pure strategies reduces to the four-player game prob-
lem. Moreover, for finite-memory strategies, the decision problem for randomized
strategies reduces to the pure-strategy question [7]. By the results we establish in
this paper, new decidability and complexity results are obtained for the qualitative
analysis of partial-observation stochastic games with player 2 partially informed but
more informed than player 1. The complexity results for almost-sure winning are
summarized in Table 1. Surprisingly for reachability objectives, whether player 2 is
perfectly informed or more informed than player 1 does not change the complexity
for randomized strategies, but it results in an exponential increase in the complexity
for pure strategies.

Games with a Weak Adversary, 113

2 Definitions

We first consider three-player (non-stochastic) games with parity objectives and we
establish new complexity results in Section 3 that we later extend to four-player games
in Section 5. We also present the related model of two-player stochastic games for
which our contribution implies new complexity results.

Three-player games. Given alphabets Ai of actions for player i (i = 1, 2, 3), a three-
player game is a tuple G = ∈Q, q0, δ≡ where:

– Q is a finite set of states with q0 ⊆ Q the initial state; and
– δ : Q × A1 × A2 × A3 ↔ Q is a deterministic transition function that, given a

current state q, and actions a1 ⊆ A1, a2 ⊆ A2, a3 ⊆ A3 of the players, gives the
successor state q∗ = δ(q, a1, a2, a3).

The games we consider are sometimes called concurrent because all three players need
to choose simultaneously an action to determine a successor state. The special class
of turn-based games corresponds to the case where in every state, one player has the
turn and his sole action determines the successor state. In our framework, a turn-based
state for player 1 is a state q ⊆ Q such that δ(q, a1, a2, a3) = δ(q, a1, a

∗
2, a

∗
3) for all

a1 ⊆ A1, a2, a∗2 ⊆ A2, and a3, a
∗
3 ⊆ A3. We define analogously turn-based states for

player 2 and player 3. A game is turn-based if every state of G is turn-based (for some
player). The class of two-player games is obtained when A3 is a singleton. In a game G,
given s ⇔ Q, a1 ⊆ A1, a2 ⊆ A2, let postG(s, a1, a2,−) = {q∗ ⊆ Q | ⊂q ⊆ s · ⊂a3 ⊆
A3 : q∗ = δ(q, a1, a2, a3)}.

Observations. For i = 1, 2, 3, a set Oi ⇔ 2Q of observations (for player i) is a
partition of Q (i.e., Oi is a set of non-empty and non-overlapping subsets of Q, and
their union covers Q). Let obsi : Q ↔ Oi be the function that assigns to each state
q ⊆ Q the (unique) observation for player i that contains q, i.e. such that q ⊆ obsi(q).
The functions obsi are extended to sequences ρ = q0 . . . qn of states in the natu-
ral way, namely obsi(ρ) = obsi(q0) . . . obsi(qn). We say that player i is blind if
Oi = {Q}, that is player i has only one observation; player i has perfect informa-
tion if Oi = {{q} | q ⊆ Q}, that is player i can distinguish each state; and player 1 is
less informed than player 2 (we also say player 2 is more informed) if for all o2 ⊆ O2,
there exists o1 ⊆ O1 such that o2 ⇔ o1.

Strategies. For i = 1, 2, 3, let Σi be the set of strategies σi : O+
i ↔ Ai of player i

that, given a sequence of past observations, give an action for player i. Equivalently,
we sometimes view a strategy of player i as a function σi : Q+ ↔ Ai satisfying
σi(ρ) = σi(ρ

∗) for all ρ, ρ∗ ⊆ Q+ such that obsi(ρ) = obsi(ρ
∗), and say that σi is

observation-based.

Outcome. Given strategies σi ⊆ Σi (i = 1, 2, 3) in G, the outcome play from a state q0
is the infinite sequence ρΣ1,Σ2,Σ3

q0 = q0q1 . . . such that for all j ≥ 0, we have qj+1 =

δ(qj , a
j
1, a

j
2, a

j
3) where aji = σi(q0 . . . qj) (for i = 1, 2, 3).

114 K. Chatterjee and L. Doyen

Objectives. An objective is a set α ⇔ Qψ of infinite sequences of states. A play ρ satis-
fies the objective α if ρ ⊆ α. An objective α is visible for player i if for all ρ, ρ∗ ⊆ Qψ,
if ρ ⊆ α and obsi(ρ) = obsi(ρ

∗), then ρ∗ ⊆ α. We consider the following objectives:
– Reachability. Given a set T ⇔ Q of target states, the reachability objective
Reach(T) requires that a state in T be visited at least once, that is, Reach(T) =

{ρ = q0q1 · · · | ⊂k ≥ 0 : qk ⊆ T }.
– Safety. Given a set T ⇔ Q of target states, the safety objective Safe(T) requires that

only states in T be visited, that is, Safe(T) = {ρ = q0q1 · · · | ⇒k ≥ 0 : qk ⊆ T }.
– Parity. For a play ρ = q0q1 . . . we denote by Inf(ρ) the set of states that occur

infinitely often in ρ, that is, Inf(ρ) = {q ⊆ Q | ⇒k ≥ 0 · ⊂n ≥ k : qn = q}. For
d ⊆ N, let p : Q ↔ {0, 1, . . . , d} be a priority function, which maps each state
to a nonnegative integer priority. The parity objective Parity(p) requires that the
minimum priority occurring infinitely often be even. Formally, Parity(p) = {ρ |
min{p(q) | q ⊆ Inf(ρ)} is even}. Parity objectives are a canonical way to express
ω-regular objectives [27]. If the priority function is constant over observations of
player i, that is for all observations γ ⊆ Oi we have p(q) = p(q∗) for all q, q∗ ⊆ γ,
then the parity objective Parity(p) is visible for player i.

Decision problem. Given a game G = ∈Q, q0, δ≡ and an objective α ⇔ Qψ, the three-
player decision problem is to decide if ⊂σ1 ⊆ Σ1 ·⇒σ2 ⊆ Σ2 ·⊂σ3 ⊆ Σ3 : ρΣ1,Σ2,Σ3

q0 ⊆ α.
The results for the three-player decision problem have implications for decision

problems on partial-observation stochastic games that we formally define below.

Two-player partial-observation stochastic games. Given alphabetAi of actions, and set
Oi of observations (for player i ⊆ {1, 2}), a two-player partial-observation stochastic
game (for brevity, two-player stochastic game) is a tuple G = ∈Q, q0, δ≡ where Q is
a finite set of states, q0 ⊆ Q is the initial state, and δ : Q × A1 × A2 ↔ D(Q) is
a probabilistic transition where D(Q) is the set of probability distributions κ : Q ↔
[0, 1] on Q, such that

∑
q∈Q κ(q) = 1. Given a current state q and actions a, b for the

players, the transition probability to a successor state q∗ is δ(q, a, b)(q∗). Observation-
based strategies are defined as for three-player games. An outcome play from a state
q0 under strategies σ1, σ2 is an infinite sequence ρ = q0 a0b0 q1 . . . such that ai =

σ1(q0 . . . qi), bi = σ2(q0 . . . qi), and δ(qi, ai, bi)(qi+1) > 0 for all i ≥ 0.

Qualitative analysis. Given an objective α that is Borel measurable (all Borel sets in
the Cantor topology and all objectives considered in this paper are measurable [15]), a
strategy σ1 for player 1 is almost-sure winning (resp., positive winning) for the objective
α from q0 if for all observation-based strategies σ2 for player 2, we havePrΣ1,Σ2

q0 (α) = 1

(resp., PrΣ1,Σ2
q0 (α) > 0) where PrΣ1,Σ2

q0 (·) is the unique probability measure induced
by the natural probability measure on finite prefixes of plays (i.e., the product of the
transition probabilities in the prefix).

3 Three-Player Games with Player 1 Less Informed

We consider the three-player (non-stochastic) games defined in Section 2. We show that
for reachability and parity objectives the three-player decision problem is decidable

Games with a Weak Adversary, 115

when player 1 is less informed than player 2. The problem is EXPSPACE-complete
when player 1 is blind, and 2-EXPTIME-complete in general.

Remark 1. Observe that once the strategies of the first two players are fixed we obtain a
graph, and in graphs perfect-information coincides with blind for construction of a path
(see [6, Lemma 2] that counting strategies that count the number of steps are sufficient
which can be ensured by a player with no information). Hence without loss of generality
we consider that player 3 has perfect observation, and drop the observation for player 3.

Theorem 1 (Upper Bounds). Given a three-player game G = ∈Q, q0, δ≡ with player 1
less informed than player 2 and a parity objective α, the problem of deciding whether
⊂σ1 ⊆ Σ1 · ⇒σ2 ⊆ Σ2 · ⊂σ3 ⊆ Σ3 : ρΣ1,Σ2,Σ3

q0 ⊆ α can be solved in 2-EXPTIME. If
player 1 is blind, then the problem can be solved in EXPSPACE.

Proof. The proof is by a reduction of the decision problem for three-player games to
a decision problem for partial-observation two-player games with the same objective.
We present the reduction for parity objectives that are visible for player 2 (defined by
priority functions that are constant over observations of player 2). The general case
of not necessarily visible parity objectives can be solved using a reduction to visible
objectives, as in [6, Section 3].

Given a three-player game G = ∈Q, q0, δ≡ over alphabet of actions Ai (i = 1, 2, 3),
and observations O1,O2 ⇔ 2Q for player 1 and player 2, with player 1 less informed
than player 2, we construct a two-player game H = ∈QH , {q0}, δH≡ over alphabet of
actions A∗

i (i = 1, 2), and observations O∗
1 ⇔ 2QH and perfect observation for player 2,

where (intuitive explanations follow):
– QH = {s ⊆ 2Q | s ◦= ∅ ≤ ⊂o2 ⊆ O2 : s ⇔ o2};
– A∗

1 = A1 × (2Q ×A2 ↔ O2), and A∗
2 = A2;

– O∗
1 =

{{s ⊆ QH | s ⇔ o1} | o1 ⊆ O1

}
, and let obs∗1 : QH ↔ O∗

1 be the
corresponding observation function;

– δH(s, (a1, f), a2) = postG(s, a1, a2,−) → f(s, a2).
Intuitively, the state space QH is the set of knowledges of player 2 about the current

state in G, i.e., the sets of states compatible with an observation of player 2. Along a
play in H , the knowledge of player 2 is updated to represent the set of possible current
states in which the game G can be. In H player 2 has perfect observation and the role
of player 1 in the game H is to simulate the actions of both player 1 and player 3 in
G. Since player 2 fixes his strategy before player 3 in G, the simulation should not let
player 2 know player-3’s action, but only the observation that player 2 will actually see
while playing the game. The actions of player 1 in H are pairs (a1, f) ⊆ A∗

1 where
a1 is a simple action of player 1 in G, and f gives the observation f(s, a2) received by
player 2 after the response of player 3 to the action a2 of player 2 when the knowledge of
player 2 is s. InH , player 1 has partial observation, as he cannot distinguish knowledges
of player 2 that belong to the same observation of player 1 in G. The transition relation
updates the knowledges of player 2 as expected. Note that |O1| = |O∗

1|, and therefore
if player 1 is blind in G then he is blind in H as well.

Given a visible parity objective α = Parity(p) where p : Q ↔ {0, 1, . . . , d} is
constant over observations of player 2, let α∗ = Parity(p∗) where p∗(s) = p(q) for all
q ⊆ s and s ⊆ QH . Note that the function p∗ is well defined since s is a subset of an

116 K. Chatterjee and L. Doyen

observation of player 2 and thus p(q) = p(q∗) for all q, q∗ ⊆ s. However, the parity
objective α∗ = Parity(p∗) may not be visible to player 1 in G. We establish that given
witness strategies in G we can construct witness strategies in H and vice-versa, and the
details of the strategy constructions are presented in [1]. ∅⊇
Theorem 2 (Lower Bounds). Given a three-player game G = ∈Q, q0, δ≡ with player 1
less informed than player 2 and a reachability objective α, the problem of deciding
whether ⊂σ1 ⊆ Σ1 · ⇒σ2 ⊆ Σ2 · ⊂σ3 ⊆ Σ3 : ρΣ1,Σ2,Σ3

q0 ⊆ α is 2-EXPTIME-hard. If
player 1 is blind (and even when player 2 is also blind), then the problem is EXPSPACE-
hard.

Proof. The proof of 2-EXPTIME-hardness is obtained by a polynomial-time reduc-
tion of the membership problem for exponential-space alternating Turing machines to
the three-player problem. The same reduction for the special case of exponential-space
nondeterministic Turing machines shows EXPSPACE-hardness when player 1 is blind
(because our reduction yields a game in which player 1 is blind when we start from
a nondeterministic Turing machine). The membership problem for Turing machines is
to decide, given a Turing machine M and a finite word w, whether M accepts w. The
membership problem is 2-EXPTIME-complete for exponential-space alternating Tur-
ing machines, and EXPSPACE-complete for exponential-space nondeterministic Tur-
ing machines [19].

An alternating Turing machine is a tuple M = ∈Q≥, Q∈, Σ, Γ,Δ, q0, qacc, qrej≡
where the state space Q = Q≥ ∪Q∈ consists of the set Q≥ of or-states, and the set Q∈
of and-states. The input alphabet is Σ, the tape alphabet is Γ = Σ∪{#} where # is the
blank symbol. The initial state is q0, the accepting state is qacc, and the rejecting state
is qrej . The transition relation is Δ ⇔ Q × Γ × Q × Γ × {−1, 1}, where a transition
(q, γ, q∗, γ∗, d) ⊆ Δ intuitively means that, given the machine is in state q, and the
symbol under the tape head is γ, the machine can move to state q∗, replace the symbol
under the tape head by γ∗, and move the tape head to the neighbor cell in direction d.
A configuration c of M is a sequence c ⊆ (Γ ∪ (Q× Γ))ψ with exactly one symbol in
Q×Γ , which indicates the current state of the machine and the position of the tape head.
The initial configuration of M on w = a0a1 . . . an is c0 = (q0, a0) ·a1 ·a2 · · · · ·an ·#ψ .
Given the initial configuration of M on w, it is routine to define the execution trees of
M where at least one successor of each configuration in an or-state, and all successors
of the configurations in an and-state are present (and we assume that all branches reach
either qacc or qrej), and to say that M accepts w if all branches of some execution tree
reach qacc. Note that Q∈ = ∅ for nondeterministic Turing machines, and in that case
the execution tree reduces to a single path. A Turing machine M uses exponential space
if for all words w, all configurations in the execution of M on w contain at most 2O(|w|)

non-blank symbols.
We present the key steps of our reduction from alternating Turing machines. Given

a Turing machine M and a word w, we construct a three-player game with reachabil-
ity objective in which player 1 and player 2 have to simulate the execution of M on
w, and player 1 has to announce the successive configurations and transitions of the
machine along the execution. Player 1 announces configurations one symbol at a time,
thus the alphabet of player 1 is A1 = Γ ∪ (Q × Γ) ∪ Δ. In an initialization phase,
the transition relation of the game forces player 1 to announce the initial configuration

Games with a Weak Adversary, 117

c0 (this can be done with O(n) states in the game, where n = |w|). Then, the game
proceeds to a loop where player 1 keeps announcing symbols of configurations. At all
times along the execution, some finite information is stored in the finite state space of
the game: a window of the last three symbols z1, z2, z3 announced by player 1, as well
as the last symbol head ⊆ Q× Γ announced by player 1 (that indicates the current ma-
chine state and the position of the tape head). After the initialization phase, we should
have z1 = z2 = z3 = # and head = (q0, a0). When player 1 has announced a full
configuration, he moves to a state of the game where either player 1 or player 2 has
to announce a transition of the machine: for head = (p, a), if p ⊆ Q≥, then player 1
chooses the next transition, and if p ⊆ Q∈, then player 2 chooses. Note that the tran-
sitions chosen by player 2 are visible to player 1 and this is the only information that
player 1 observes. Hence player 1 is less informed than player 2, and both player 1 and
player 2 are blind when the machine is nondeterministic. If a transition (q, γ, q∗, γ∗, d)
is chosen by player i, and either p ◦= q or a ◦= γ, then player i loses (i.e., a sink state is
reached to let player 1 lose, and the target state of the reachability objective is reached
to let player 2 lose). If at some point player 1 announces a symbol (p, a) with p = qacc,
then player 1 wins the game.

The role of player 2 is to check that player 1 faithfully simulates the execution of
the Turing machine, and correctly announces the configurations. After every announce-
ment of a symbol by player 1, the game offers the possibility to player 2 to compare
this symbol with the symbol at the same position in the next configuration. We say that
player 2 checks (and whether player 2 checks or not is not visible to player 1), and
the checked symbol is stored as z2. Note that player 2 can be blind to check because
player 2 fixes his strategy after player 1. The window z1, z2, z3 stored in the state space
of the game provides enough information to update the middle cell z2 in the next con-
figuration, and it allows the game to verify the check of player 2. However, the distance
(in number of steps) between the same position in two consecutive configurations is
exponential (say 2n for simplicity), and the state space of the game is not large enough
to check that such a distance exists between the two symbols compared by player 2. We
use player 3 to check that player 2 makes a comparison at the correct position. When
player 2 decides to check, he has to count from 0 to 2n by announcing after every sym-
bol of player 1 a sequence of n bits, initially all zeros (again, this can be enforced by
the structure of the game with O(n) states). It is then the responsibility of player 3 to
check that player 2 counts correctly. To check this, player 3 can at any time choose a
bit position p ⊆ {0, . . . , n − 1} and store the bit value bp announced by player 2 at
position p. The value of bp and p is not visible to player 2. While player 2 announces
the bits bp+1, . . . , bn−1 at position p+ 1, . . . , n− 1, the finite state of the game is used
to flip the value of bp if all bits bp+1, . . . , bn−1 are equal to 1, hence updating bp to the
value of the p-th bit in what should be the next announcement of player 2. In the next
bit sequence announced by player 2, the p-th bit is compared with bp. If they match,
then the game goes to a sink state (as player 2 has faithfully counted), and if they differ
then the game goes to the target state (as player 2 is caught cheating). It can be shown
that this can be enforced by the structure of the game with O(n2) states, that is O(n)
states for each value of p. As before, whether player 3 checks or not is not visible to
player 2.

118 K. Chatterjee and L. Doyen

Note that the checks of player 2 and player 3 are one-shot: the game will be over
(either in a sink or target state) when the check is finished. This is enough to ensure a
faithful simulation by player 1, and a faithful counting by player 2, because (1) partial
observation allows to hide to a player the time when a check occurs, and (2) player 2
fixes his strategy after player 1 (and player 3 after player 2), thus they can decide to run
a check exactly when player 1 (or player 2) is not faithful. This ensures that player 1
does not win if he does not simulate the execution of M on w, and that player 2 does
not win if he does not count correctly.

Hence this reduction ensures that M accepts w if and only if the answer to the three-
player game problem is YES, where the reachability objective is satisfied if player 1
eventually announces that the machine has reached qacc (that is if M accepts w), or if
player 2 cheats in counting, which can be detected by player 3. ∅⊇

4 Three-Player Games with Player 1 Perfect

When player 2 is less informed than player 1, we show that three-player games get much
more complicated (even in the special case where player 1 has perfect information). We
note that for reachability objectives, the three-player decision problem is equivalent
to the qualitative analysis of positive winning in two-player stochastic games, and we
show that the techniques developed in the analysis of two-player stochastic games can
be extended to solve the three-player decision problem with safety objectives as well.

For reachability objectives, the three-player decision problem is equivalent to the
problem of positive winning in two-player stochastic games where the third player is
replaced by a probabilistic choice over the action set with uniform probability. Intu-
itively, after player 1 and player 2 fixed their strategy, the fact that player 3 can con-
struct a (finite) path to the target set is equivalent to the fact that such a path has positive
probability when the choices of player 3 are replaced by uniform probabilistic transi-
tions. Given a three-player game G = ∈Q, q0, δ≡, let Uniform(G) = ∈Q, q0, δ

∗≡ be the
two-player partial-observation stochastic game (with same state space, action sets, and

observations for player 1 and player 2) where δ∗(q, a1, a2)(q∗) =
|{a3|θ(q,a1,a2,a3)=q′}|

|A3|
for all a1 ⊆ A1, a2 ⊆ A2, and q, q∗ ⊆ Q. Formally, the equivalence result is presented in
Lemma 1, and the equivalence holds for all three-player games (not restricted to three-
player games where player 1 has perfect information). However, we will use Lemma 1
to establish results for three-player games where player 1 has perfect information.

Lemma 1. Given a three-player game G and a reachability objective α, the answer to
the three-player decision problem for ∈G,α≡ is YES if and only if player 1 is positive
winning for α in the two-player partial-observation stochastic game Uniform(G).

Reachability objectives. Even in the special case where player 1 has perfect informa-
tion, and for reachability objectives, non-elementary memory is necessary in general for
player 1 to win in three-player games. This result follows from Lemma 1 and from the
result of [7, Example 4.2 Journal version] showing that non-elementary memory is nec-
essary to win with positive probability in two-player stochastic games. It also follows
from Lemma 1 and the result of [7, Corollary 4.9 Journal version] that the three-player

Games with a Weak Adversary, 119

decision problem for reachability games is decidable. The decidability result can be
extended to safety objectives [1].

Theorem 3. When player 1 has perfect information, the three-player decision problem
is decidable for both reachability and safety games, and for reachability games memory
of size non-elementary is necessary in general for player 1.

5 Four-Player Games

We show that the results presented for three-player games extend to games with four
players (the fourth player is universal and perfectly informed). The definition of four-
player games and related notions is a straightforward extension of Section 2.

In a four-player game with player 1 less informed than player 2, and perfect infor-
mation for both player 3 and player 4, consider the four-player decision problem which
is to decide if ⊂σ1 ⊆ Σ1 · ⇒σ2 ⊆ Σ2 · ⊂σ3 ⊆ Σ3 · ⇒σ4 ⊆ Σ4 : ρΣ1,Σ2,Σ3,Σ4

q0 ⊆ α
for a parity objective α (also see [1, Remark 2] for further discussion). Since player 3
and player 4 have perfect information, we assume without loss of generality that the
game is turn-based for them, that is there is a partition of the state space Q into two
sets Q3 and Q4 (where Q = Q3 ∪ Q4) such that the transition function is the union of
δ3 : Q3 ×A1 ×A2 ×A3 ↔ Q and δ4 : Q4 ×A1 ×A2 ×A4 ↔ Q. Strategies and out-
comes are defined analogously to three-player games. A strategy of player i ⊆ {3, 4} is
of the form σi : Q

⊆ ·Qi ↔ Ai.
We present a polynomial reduction of the problem for four-player games to solv-

ing a three-player game with the first player less informed than the second player [1].
Hardness follows from the special case of three-player games.

Theorem 4. The four-player decision problem with player 1 less informed than
player 2, and perfect information for both player 3 and player 4 is 2-EXPTIME-
complete for parity objectives.

6 Applications

We now discuss applications of our results in the context of synthesis and qualitative
analysis of two-player partial-observation stochastic games.

Sequential Synthesis. The sequential synthesis problem consists of an open sys-
tem of partially implemented modules (with possible non-determinism or choices)
M1,M2, . . . ,Mn that need to be refined (i.e., the choices determined by strategies) such
that the composite system after refinement satisfy a specification. The system is open
in the sense that after the refinement the composite system is reactive and interact with
an environment. Consider the problem where first a set M1, . . . ,Mk of modules are re-
fined, then a set Mk+1, . . . ,Mν are refined by an external implementor, and finally the
remaining set of modules are refined. In other words, the modules are refined sequen-
tially: first a set of modules whose refinement can be controlled, then a set of modules
whose refinement cannot be controlled as they are implemented externally, and finally
the remaining set of modules. If the refinements of modules M1, . . . ,Mν do not have

120 K. Chatterjee and L. Doyen

access to private variables of the remaining modules we obtain a partial-observation
game with four players: the first (existential) player corresponds to the refinement of
modules M1, . . . ,Mk, the second (universal) player corresponds to the refinement of
modules Mk+1, . . . ,Mν, the third (existential) player corresponds to the refinement
of the remaining modules, and the fourth (adversarial) player is the environment. If the
second player has access to all the variables visible to the first player, then player 1 is
less informed.

Two-Player Partial-observation Stochastic Games. Our results for four-player games
imply new complexity results for two-player stochastic games. For qualitative anal-
ysis (positive and almost-sure winning) under finite-memory strategies for the play-
ers the following reduction has been established in [10, Lemma 1] (see Lemma 2.1
of the arxiv version): the probabilistic transition function can be replaced by a turn-
based gadget consisting of two perfect-observation players, one angelic (existential)
and one demonic (universal). The turn-based gadget is the same as used for perfect-
observation stochastic games [5,11]. In [10], only the special case of perfect observa-
tion for player 2 was considered, and hence the problem reduced to three-player games
where only player 1 has partial observation and the other two players have perfect obser-
vation. In case where player 2 has partial observation, the reduction of [10] requires two
perfect-observation players, and gives the problem of four-player games (with perfect
observation for player 3 and player 4). Hence when player 1 is less informed, we obtain
a 2-EXPTIME upper bound from Theorem 4, and obtain a 2-EXPTIME lower bound
from Theorem 2 and Lemma 1 (see [1] for lower bound for almost-sure winning). Thus
we obtain the following result.

Theorem 5. The qualitative analysis problems (almost-sure and positive winning)
for two-player partial-observation stochastic parity games where player 1 is less in-
formed than player 2, under finite-memory strategies for both players, are 2-EXPTIME-
complete.

Remark 2. Note that the lower bounds for Theorem 5 are established for reachability
objectives. Moreover, it was shown in [7, Section 5] that for qualitative analysis of two-
player partial-observation stochastic games with reachability objectives, finite-memory
strategies suffice, i.e., if there is a strategy to ensure almost-sure (resp., positive) win-
ning, then there is a finite-memory strategy. Thus the results of Theorem 5 hold for
reachability objectives even without the restriction of finite-memory strategies, and it
extends the result of [7, Theorem 1] which showed EXPTIME-completeness for reach-
ability objectives when player 2 has perfect observation.

References

1. ArXiv (2014), Full version http://arxiv.org/abs/1404.5453
2. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. Journal of the

ACM 49, 672–713 (2002)
3. Baier, C., Bertrand, N., Größer, M.: On decision problems for probabilistic Büchi automata.

In: Amadio, R.M. (ed.) FoSSaCS 2008. LNCS, vol. 4962, pp. 287–301. Springer, Heidelberg
(2008)

http://arxiv.org/abs/1404.5453

Games with a Weak Adversary, 121

4. Bertrand, N., Genest, B., Gimbert, H.: Qualitative determinacy and decidability of stochastic
games with signals. In: Proc. of LICS, pp. 319–328 (2009)

5. Chatterjee, K.: Stochastic ω-Regular Games. PhD thesis, UC Berkeley (2007)
6. Chatterjee, K., Doyen, L.: The complexity of partial-observation parity games. In: Fermüller,

C.G., Voronkov, A. (eds.) LPAR-17. LNCS, vol. 6397, pp. 1–14. Springer, Heidelberg (2010)
7. Chatterjee, K., Doyen, L.: Partial-observation stochastic games: How to win when belief

fails. In: Proc. of LICS 2012; Journal version ACM ToCL, pp. 175–184. IEEE (2012)
8. Chatterjee, K., Doyen, L., Gimbert, H., Henzinger, T.A.: Randomness for free. In: Hliněný,

P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 246–257. Springer, Heidelberg
(2010)

9. Chatterjee, K., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Algorithms for omega-regular
games of incomplete information. Logical Methods in Computer Science 3(3:4) (2007)

10. Chatterjee, K., Doyen, L., Nain, S., Vardi, M.Y.: The complexity of partial-observation
stochastic parity games with finite-memory strategies. In: Muscholl, A. (ed.) FoSSaCS 2014.
LNCS, vol. 8412, pp. 242–257. Springer, Heidelberg (2014)

11. Chatterjee, K., Jurdziński, M., Henzinger, T.A.: Simple stochastic parity games. In: Baaz, M.,
Makowsky, J.A. (eds.) CSL 2003. LNCS, vol. 2803, pp. 100–113. Springer, Heidelberg (2003)

12. De Wulf, M., Doyen, L., Raskin, J.-F.: A lattice theory for solving games of imperfect in-
formation. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS, vol. 3927, pp. 153–168.
Springer, Heidelberg (2006)

13. Finkbeiner, B., Schewe, S.: Coordination logic. In: Dawar, A., Veith, H. (eds.) CSL 2010.
LNCS, vol. 6247, pp. 305–319. Springer, Heidelberg (2010)

14. Henzinger, T.A., Kopke, P.W.: Discrete-time control for rectangular hybrid automata. Theor.
Comp. Science 221, 369–392 (1999)

15. Kechris, A.: Classical Descriptive Set Theory. Springer (1995)
16. Madhusudan, P., Thiagarajan, P.S.: Distributed controller synthesis for local specifications.

In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp.
396–407. Springer, Heidelberg (2001)

17. Martin, D.A.: Borel determinacy. Annals of Mathematics 102(2), 363–371 (1975)
18. Mohalik, S., Walukiewicz, I.: Distributed games. In: Pandya, P.K., Radhakrishnan, J. (eds.)

FSTTCS 2003. LNCS, vol. 2914, pp. 338–351. Springer, Heidelberg (2003)
19. Papadimitriou, C.H.: Computational complexity. Addison-Wesley (1994)
20. Peterson, G.L., Reif, J.H.: Multiple-person alternation. In: FOCS, pp. 348–363 (1979)
21. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proc. of POPL, pp. 179–190.

ACM Press (1989)
22. Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete-event processes.

SIAM Journal of Control and Optimization 25(1), 206–230 (1987)
23. Ramanujam, R., Simon, S.: A communication based model for games of imperfect informa-

tion. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 509–523.
Springer, Heidelberg (2010)

24. Reif, J.H.: Universal games of incomplete information. In: Proc. of STOC, pp. 288–308
(1979)

25. Reif, J.H.: The complexity of two-player games of incomplete information. JCSS 29,
–301 (1984)

26. Reif, J.H., Peterson, G.L.: A dynamic logic of multiprocessing with incomplete information.
In: Proc. of POPL, pp. 193–202. ACM (1980)

27. Thomas, W.: Languages, automata, and logic. In: Handbook of Formal Languages. Beyond
Words, vol. 3, ch. 7, pp. 389–455. Springer (1997)

The Complexity of Ergodic Mean-payoff Games ∈,†

Krishnendu Chatterjee and Rasmus Ibsen-Jensen

IST Austria

Abstract. We study two-player (zero-sum) concurrent mean-payoff games
played on a finite-state graph. We focus on the important sub-class of ergodic
games where all states are visited infinitely often with probability 1. The algorith-
mic study of ergodic games was initiated in a seminal work of Hoffman and Karp
in 1966, but all basic complexity questions have remained unresolved. Our main
results for ergodic games are as follows: We establish (1) an optimal exponential
bound on the patience of stationary strategies (where patience of a distribution
is the inverse of the smallest positive probability and represents a complexity
measure of a stationary strategy); (2) the approximation problem lies in FNP;
(3) the approximation problem is at least as hard as the decision problem for
simple stochastic games (for which NP ∩ coNP is the long-standing best known
bound). We present a variant of the strategy-iteration algorithm by Hoffman and
Karp; show that both our algorithm and the classical value-iteration algorithm
can approximate the value in exponential time; and identify a subclass where
the value-iteration algorithm is a FPTAS. We also show that the exact value can
be expressed in the existential theory of the reals, and establish square-root sum
hardness for a related class of games.

1 Introduction

Concurrent Games. Concurrent games are played over finite-state graphs by two play-
ers (Player 1 and Player 2) for an infinite number of rounds. In every round, both players
simultaneously choose moves (or actions), and the current state and the joint moves de-
termine a probability distribution over the successor states. The outcome of the game
(or a play) is an infinite sequence of states and action pairs. Concurrent games were
introduced in a seminal work by Shapley [21], and they are the most well-studied game
models in stochastic graph games, with many important special cases.

Mean-payoff (Limit-average) Objectives. The most fundamental objective for con-
current games is the limit-average (or mean-payoff) objective, where a reward is asso-
ciated to every transition and the payoff of a play is the limit-inferior (or limit-superior)
average of the rewards of the play. The original work of Shapley [21] considered dis-
counted sum objectives (or games that stop with probability 1); and the class of con-
current games with limit-average objectives (or games that have zero stop probabilities)
was introduced by Gillette in [14]. The Player-1 value val(s) of the game at a state s is
the supremum value of the expectation that Player 1 can guarantee for the limit-average
objective against all strategies of Player 2. The games are zero-sum, so the objective of

∗ The research was partly supported by FWF Grant No P 23499-N23, FWF NFN Grant No
S11407-N23 (RiSE), ERC Start grant (279307: Graph Games), and Microsoft faculty fellows
award.

† Full version available at [1].

J. Esparza et al. (Eds.): ICALP 2014, Part II, LNCS 8573, pp. 122–133, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

The Complexity of Ergodic Mean-payoff Games 123

Player 2 is the opposite. The study of concurrent mean-payoff games and its sub-classes
have received huge attention over the last decades, both for mathematical results as well
as algorithmic studies. Some key celebrated results are as follows: (1) the existence of
values (or determinacy or equivalence of switching of strategy quantifiers for the play-
ers as in von-Neumann’s min-max theorem) for concurrent discounted games was es-
tablished in [21]; (2) the existence of values for the celebrated game of Big-Match was
established in [4]; and (3) developing on the results of [4] and on Puiseux series [3] the
existence of values for concurrent mean-payoff games was established in [19].

Sub-classes. The general class of concurrent mean-payoff games is notoriously diffi-
cult for algorithmic analysis. The current best known solution for general concurrent
mean-payoff games is achieved by a reduction to the theory of the reals over addition
and multiplication with three quantifier alternations [7] (also see [16] for a better reduc-
tion for constant state spaces). The strategies that are required in general for concurrent
mean-payoff games are infinite-memory strategies that depend in a complex way on the
history of the game [19,4], and analysis of such strategies make the algorithmic study
complicated. Hence several sub-classes of concurrent mean-payoff games have been
studied algorithmically both in terms of restrictions of the graph structure and restric-
tions of the objective. The three prominent restrictions in terms of the graph structure
are as follows: (1) Ergodic games (aka irreducible games) where every state is visited
infinitely often almost-surely. (2) Turn-based stochastic games, where in each state at
most one player can choose between multiple moves. (3) Deterministic games, where
the transition functions are deterministic. The most well-studied restriction in terms of
objective is the reachability objectives. A reachability objective consists of a set U of
terminal states (absorbing or sink states that are states with only self-loops), such that
the set U is exactly the set of states where out-going transitions are assigned reward 1
and all other transitions are assigned reward 0. For all these sub-classes, except de-
terministic mean-payoff games (that is ergodic mean-payoff games, concurrent reach-
ability games, and turn-based stochastic mean-payoff games) stationary strategies are
sufficient, where a stationary strategy is independent of the past history of the game and
depends only on the current state.

t :
s :

a1

a2

b1 b2

2 2

1

2

1

2

Fig. 1. Example game G

An Example. Consider the ergodic mean-payoff
game shown in Figure 1. All transitions other than
the dashed edges have probability 1, and each
dashed edge has probability 1/2. The transitions
are annotated with the rewards. The stationary op-
timal strategy for both players is to play the first
action (a1 and b1 for Player 1 and Player 2, re-
spectively) with probability 4 − 2 · ≡3 in state s,
and this ensures that the value is

≡
3.

Previous Results. The decision problem of
whether the value of the game at a state is at least a given threshold for turn-based
stochastic reachability games (and also turn-based mean-payoff games with determin-
istic transition function) lie in NP⊆ coNP [8,23]. They are among the rare and intrigu-
ing combinatorial problems that lie in NP ⊆ coNP, but not known to be in PTIME.
The existence of polynomial-time algorithms for the above decision questions are long-
standing open problems. The algorithmic solution for turn-based games that is most

124 K. Chatterjee and R. Ibsen-Jensen

efficient in practice is the strategy-iteration algorithm, where the algorithm iterates over
local improvement of strategies which is then established to converge to a globally opti-
mal strategy. For ergodic games, Hoffman and Karp [17] presented a strategy-iteration
algorithm and established that stationary strategies are sufficient. For concurrent reach-
ability games, again stationary strategies are sufficient (for Σ-optimal strategies, for all
Σ > 0) [12,9]; the decision problem is in PSPACE and square-root sum hard [10].

Key Intriguing Complexity Questions. There are several key intriguing open questions
related to the complexity of the various sub-classes of concurrent mean-payoff games.
Some of them are: (1) Does there exist a sub-class of concurrent mean-payoff games
where the approximation problem is simpler than the exact decision problem, e.g., the
decision problem is square-root sum hard, but the approximation problem can be solved
in FNP? (2) There is no convergence result associated with the two classical algorithms,
namely the strategy-iteration algorithm [17], and the value-iteration algorithm, for er-
godic games; and is it possible to establish convergence for them for approximating the
values. (3) The complexity of a stationary strategy is described by its patience which is
the inverse of the minimum non-zero probability assigned to a move [12], and no bound
is known for the patience of stationary strategies for ergodic games.

Our Results. The study of the ergodic games was initiated in the seminal work of Hoff-
man and Karp [17], and most of the complexity questions (related to computational-
, strategy-, and algorithmic-complexity) have remained open. In this work we focus
on the complexity of simple generalizations of ergodic games (that subsume ergodic
games). Ergodic games form a very important sub-class of concurrent games subsum-
ing the special cases of uni-chain Markov decision processes and uni-chain turn-based
stochastic games (that have been studied in great depth in the literature with numer-
ous applications, see [13,20]). We consider generalizations of ergodic games called
sure ergodic games where all plays are guaranteed to reach an ergodic component (a
sub-game that is ergodic); and almost-sure ergodic games where with probability 1 an
ergodic component is reached. Every ergodic game is sure ergodic, and every sure er-
godic game is almost-sure ergodic. Intuitively the generalizations allow us to consider
that after a finite prefix an ergodic component is reached.
1. (Strategy and approximation complexity). We show that for almost-sure ergodic

games the optimal bound on patience required for Σ-optimal stationary strategies,
for Σ > 0, is exponential (we establish the upper bound for almost-sure ergodic
games, and the lower bound for ergodic games). We then show that the approxi-
mation problem for turn-based stochastic ergodic mean-payoff games is at least as
hard as solving the decision problem for turn-based stochastic reachability games
(aka simple stochastic games); and finally show that the approximation problem be-
longs to FNP for almost-sure ergodic games. Observe that our results imply that im-
proving our FNP-bound for the approximation problem to polynomial time would
require solving the long-standing open question of whether the decision problem
of turn-based stochastic reachability games can be solved in polynomial time.

2. (Algorithm). We present a variant of the Hoffman-Karp algorithm and show that
for all Σ-approximation (for Σ > 0) our algorithm converges with in exponential
number of iterations for almost-sure ergodic games. We analyze the value-iteration
algorithm for ergodic games and show that for all Σ > 0, the value-iteration algo-
rithm requires at most O(H ·W · Σ−1 · log(Σ−1)) iterations, where H is the upper

The Complexity of Ergodic Mean-payoff Games 125

bound on the expected hitting time of state pairs that Player 1 can ensure and W is
the maximal reward value. We show that H is at most n · (εmin)

−n, where n is the
number of states of the game, and εmin the smallest positive transition probability.
Thus our result establishes an exponential upper bound for the value-iteration al-
gorithm for approximation. This result is in sharp contrast to concurrent reachabil-
ity games where the value-iteration algorithm requires double exponentially many
steps [15]. Observe that we have a polynomial-time approximation scheme if H is
polynomial and the numbers W and Σ are represented in unary. Thus we identify a
subclass of ergodic games where the value-iteration algorithm is polynomial (see
Remark 2 for further details).

3. (Complexity of the decision problem for the exact value). We show that the exact
decision problem for almost-sure ergodic games can be expressed in the existen-
tial theory of the reals (in contrast to general concurrent mean-payoff games where
quantifier alternations are required). Finally, we show that the exact decision prob-
lem for sure ergodic games is square-root sum hard.

Technical Contribution and Remarks. Our main result is establishing the opti-
mal bound of exponential patience for Σ-optimal stationary strategies, for Σ > 0,
in almost-sure ergodic games. Our result is in sharp contrast to the optimal bound
of double-exponential patience for concurrent reachability games [15], and also the
double-exponential iterations required by the strategy-iteration and the value-iteration al-
gorithms for concurrent reachability games [15]. Our upper bound on the exponential pa-
tience is achieved by a coupling argument. While coupling argument is a well-established
tool in probability theory, to the best of our knowledge the argument has not been used for
concurrent mean-payoff games before. Our lower bound example constructs a family of
ergodic mean-payoff games where exponential patience is required. Our results provide
a complete picture for almost-sure and sure ergodic games (subsuming ergodic games)
in terms of strategy-, computational-, and algorithmic-complexity; and present answers
to some of the key intriguing open questions related to the computational complexity of
concurrent mean-payoff games.

Comparison with Results for Shapley Games. For Shapley (concurrent discounted)
games, the exact decision problem is square-root sum hard [11], and the fact that the
approximation problem is in FNP is straight-forward to prove (for details, see [18,
Lemma 6, Section 1.10]). The more interesting and challenging question is whether the
approximation problem can be solved in PPAD. The PPAD complexity for the approx-
imation problem for Shapley games was established in [11]; and the PPAD complexity
arguments use the existence of unique (Banach) fixpoint (due to contraction mapping)
and the fact that weak approximation implies strong approximation. A PPAD com-
plexity result for the class of ergodic games (in particular, whether weak approximation
implies strong approximation) is a subject for future work. Another interesting direction
of future work would be to extend our results for concurrent games where the values of
all states are very close together; and for this class of games existence of near optimal
stationary strategies was established in [5].

2 Definitions

Probability Distributions. For a finite setA, a probability distribution onA is a function
ε : A ↔ [0, 1] such that

∑
a∗A ε(a) = 1. We denote the set of probability distributions

126 K. Chatterjee and R. Ibsen-Jensen

on A by D(A). Given a distribution ε ⇔ D(A), we denote by Supp(ε) = {x ⇔ A |
ε(x) > 0} the support of the distribution ε.

Concurrent Game Structures. A concurrent stochastic game structure G =
(S,A, Ω1, Ω2, ε) consists of:

– A finite state space S and a finite set A of actions (or moves).
– Two move assignments Ω1, Ω2 : S ↔ 2A \ ⊂. For i ⇔ {1, 2}, assignment Ωi asso-

ciates with each state s ⇔ S the non-empty set Ωi(s) ≥ A of moves available to
Player i at state s.

– A probabilistic transition function ε : S ×A ×A ↔ D(S), which for every s ⇔ S
and a1 ⇔ Ω1(s) and a2 ⇔ Ω2(s), gives a probability distribution ε(s, a1, a2) ⇔
D(S) for the successor state.

We denote by εmin the minimum non-zero transition probability, i.e., εmin =
mins,t∗S mina1∗Σ1(s),a2∗Σ2(s){ε(s, a1, a2)(t) | ε(s, a1, a2)(t) > 0}. We denote by
n the number of states (i.e., n = |S|), and by m the maximal number of actions avail-
able for a player at a state (i.e., m = maxs∗S max{|Ω1(s)|, |Ω2(s)|}). We denote by
r the number of random states where the transition function is not deterministic, i.e.,
r = |{s ⇔ S | ⇒a1 ⇔ Ω1(s), a2 ⇔ Ω2(s).|Supp(ε(s, a1, a2))| ◦ 2}|.
Plays. At every state s ⇔ S, Player 1 chooses a move a1 ⇔ Ω1(s), and simultaneously
and independently Player 2 chooses a move a2 ⇔ Ω2(s). The game then proceeds to
the successor state t with probability ε(s, a1, a2)(t), for all t ⇔ S. A path or a play of
G is an infinite sequence δ =

(
(s0, a

0
1, a

0
2), (s1, a

1
1, a

1
2), (s2, a

2
1, a

2
2) . . .

)
of states and

action pairs such that for all k ◦ 0 we have (i) ak1 ⇔ Ω1(sk) and ak2 ⇔ Ω2(sk); and
(ii) sk+1 ⇔ Supp(ε(sk, a

k
1 , a

k
2)). Let π be the set of all paths.

Strategies. A strategy for a player is a recipe that describes how to extend prefixes
of a play. Formally, a strategy for Player i ⇔ {1, 2} is a mapping ψi : (S × A ×
A)∗ × S ↔ D(A) that associates with every finite sequence x ⇔ (S × A × A)∗ of
state and action pairs, and the current state s in S, representing the past history of the
game, a probability distribution ψi(x · s) used to select the next move. The strategy
ψi can prescribe only moves that are available to Player i; that is, for all sequences
x ⇔ (S×A×A)∗ and states s ⇔ S, we require that Supp(ψi(x·s)) ≥ Ωi(s). We denote
by φi the set of all strategies for Player i ⇔ {1, 2}. Once the starting state s and the
strategies ψ1 and ψ2 for the two players have been chosen, then we have a random walk
δψ1,ψ2
s for which the probabilities of events are uniquely defined [22], where an event

A ≥ π is a measurable set of paths. For an event A ≥ π , we denote by Prψ1,ψ2
s (A) the

probability that a path belongs to A when the game starts from s and the players use the
strategies ψ1 and ψ2; and denote E

ψ1,ψ2
s [·] as the associated expectation measure. We

consider in particular stationary and positional strategies. A strategy ψi is stationary (or
memoryless) if it is independent of the history but only depends on the current state,
i.e., for all x, x≥ ⇔ (S ×A×A)∗ and all s ⇔ S, we have ψi(x · s) = ψi(x

≥ · s), and thus
can be expressed as a function ψi : S ↔ D(A). For stationary strategies, the complexity
of the strategy is described by the patience of the strategy, which is the inverse of the
minimum non-zero probability assigned to an action [12]. Formally, for a stationary
strategy ψi : S ↔ D(A) for Player i, the patience is maxs∗S maxa∗Σi(s){ 1

ψi(s)(a)
|

ψi(s)(a) > 0}. A strategy is pure (deterministic) if it does not use randomization, i.e.,
for any history there is always some unique action a that is played with probability 1.

The Complexity of Ergodic Mean-payoff Games 127

A pure stationary strategy ψi is also called a positional strategy, and represented as a
function ψi : S ↔ A. We call a pair of strategies (ψ1, ψ2) ⇔ φ1 ×φ2 a strategy profile.

The Mean-payoff Function. In this work we consider maximizing limit-average
(or mean-payoff) functions for Player 1, and the objective of Player 2 is op-
posite (i.e., the games are zero-sum). We consider concurrent games with a re-
ward function R : S × A × A ↔ [0, 1] that assigns a reward value 0 ≤
R(s, a1, a2) ≤ 1 for all s ⇔ S, a1 ⇔ Ω1(s), and a2 ⇔ Ω2(s). For a path δ =(
(s0, a

0
1, a

0
2), (s1, a

1
1, a

1
2), . . .

)
, the limit-inferior average (resp. limit-superior average)

is defined as follows: LimInfAvg(δ) = lim infn∈⊆ 1
n · ∑n−1

i=0 R(si, ai1, a
i
2) (resp.

LimSupAvg(δ) = lim supn∈⊆
1
n ·∑n−1

i=0 R(si, ai1, a
i
2)). For brevity we denote concur-

rent games with mean-payoff functions as CMPGs (concurrent mean-payoff games).

Values and Σ-optimal Strategies. Given a CMPG G and a reward function R, the lower
value vs (resp. the upper value vs) at a state s is defined as follows:

vs = sup
ψ1∗θ1

inf
ψ2∗θ2

E
ψ1,ψ2
s [LimInfAvg]; vs = inf

ψ2∗θ2

sup
ψ1∗θ1

E
ψ1,ψ2
s [LimSupAvg].

The celebrated result of Mertens and Neyman [19] shows that the upper and lower value
coincide and gives the value of the game denoted as vs. For Σ ◦ 0, a strategy ψ1 for
Player 1 is Σ-optimal if we have vs − Σ ≤ infψ2∗θ2 E

ψ1,ψ2
s [LimInfAvg]. An optimal

strategy is a 0-optimal strategy.

Game Classes. We consider the following special classes of CMPGs.
1. Variants of ergodic CMPGs. Given a CMPG G, a set C of states in G is called an

ergodic component, if for all states s, t ⇔ C, for all strategy profiles (ψ1, ψ2), if
we start at s, then t is visited infinitely often with probability 1 in the random walk
δψ1,ψ2
s . A CMPG is ergodic if the set S of states is an ergodic component. A CMPG

is sure ergodic if for all strategy profiles (ψ1, ψ2) and for all start states s, ergodic
components are reached certainly (all plays reach some ergodic component). A
CMPG is almost-sure ergodic if for all strategy profiles (ψ1, ψ2) and for all start
states s, ergodic components are reached with probability 1. Observe that every
ergodic CMPG is also a sure ergodic CMPG, and every sure ergodic CMPG is also
an almost-sure ergodic CMPG.

2. Turn-based stochastic games, MDPs and SSGs. A game structure G is turn-based
stochastic if at every state at most one player can choose among multiple moves;
that is, for every state s ⇔ S there exists at most one i ⇔ {1, 2} with |Ωi(s)| > 1.
A game structure is a Player-2 Markov decision process (MDP) if for all s ⇔ S
we have |Ω1(s)| = 1, i.e., only Player 2 has choice of actions in the game, and
Player-1 MDPs are defined analogously. A simple stochastic game (SSG) [8] is an
almost-sure ergodic turn-based stochastic game with reachability objective.

Remark 1. The results of Hoffman and Karp [17] established that for ergodic CMPGs
optimal stationary strategies exist (for both players). Also, for an ergodic CMPG the
value for every state is the same, which is called the value of the game. The result for
existence of optimal stationary strategies easily extends to almost-sure ergodic CMPGs.

Value and the Approximation Problem. Given a CMPG G, a state s of G, and a ra-
tional threshold α, the value problem is the decision problem that asks whether vs is

128 K. Chatterjee and R. Ibsen-Jensen

at most α. Given a CMPG G, a state s of G, and a tolerance Σ > 0, the approxima-
tion problem asks to compute an interval of length Σ such that the value vs lies in the
interval. We present the formal definition of the decision version of the approximation
problem in Section 3.2. In the following sections we consider the value problem and
the approximation problem for almost-sure ergodic, sure ergodic, and ergodic games.

3 Complexity of Approximation for Almost-Sure Ergodic Games
In this section we present three results for almost-sure ergodic games: (1) First we
establish (in Section 3.1) an optimal exponential bound on the patience of Σ-optimal
stationary strategies, for all Σ > 0. (2) Second we show (in Section 3.2) that the approx-
imation problem (even for turn-based stochastic ergodic mean-payoff games) is at least
as hard as solving the value problem for SSGs. (3) Finally, we show (in Section 3.2)
that the approximation problem lies in FNP.

3.1 Strategy Complexity
In this section we present results related to Σ-optimal stationary strategies for almost-
sure ergodic CMPGs, that on one hand establishes an optimal exponential bound for
patience, and on the other hand is used to establish the complexity of approximation of
values in Section 3.2. The results of this section is also used in the algorithmic analysis
in Section 3.3. We start with the notion of q-rounded strategies.

The Classes of q-rounded Distributions and Strategies. For q ⇔ N, a distribution d
over a finite set Z is a q-rounded distribution if for all z ⇔ Z we have that d(z) = p

q for
some number p ⇔ N. A stationary strategy ψ is a q-rounded strategy, if for all states s
the distribution ψ(s) is a q-rounded distribution.

Patience. Observe that the patience of a q-rounded strategy is at most q. We show that
for almost-sure ergodic CMPGs for all Σ > 0 there are q-rounded Σ-optimal strategies,
where q is

⌈
4 · Σ−1 ·m · n2 · (εmin)

−r
⌉
. This immediately implies an exponential upper

bound on the patience. We start with a lemma related to the probability of reaching
states that are guaranteed to be reached with positive probability.

Lemma 1. Given a CMPG G, let s be a state in G, and T be a set of states such that
for all strategy profiles the set T is reachable (with positive probability) from s. For all
strategy profiles the probability to reach T from s in n steps is at least (εmin)

r (where
r is the number of random states).

Variation Distance. We use a coupling argument in our proofs and this requires the
definition of variation distance of two probability distributions. Given a finite set Z ,
and two distributions d1 and d2 over Z , the variation distance of the distributions is
var(d1, d2) =

1
2 ·∑z∗Z |d1(z)− d2(z)|.

Coupling and Coupling Lemma. Let Z be a finite set. For distributions d1 and d2 over
the finite set Z , a coupling β is a distribution over Z × Z , such that for all z ⇔ Z we
have

∑
z⊥∗Z β(z, z≥) = d1(z) and also for all z≥ ⇔ Z we have

∑
z∗Z β(z, z≥) = d2(z

≥).
We only use the second part of coupling lemma [2] which is stated as follows:

– (Coupling Lemma). For a pair of distributions d1 and d2, there exists a coupling
β of d1 and d2, such that for a random variable (X,Y) from the distribution β, we
have that var(d1, d2) = Pr[X →= Y].

The Complexity of Ergodic Mean-payoff Games 129

We show that in almost-sure ergodic CMPGs strategies that play with probabilities
“close” to what is played by an optimal strategy also achieve values that are “close”
to the values achieved by the optimal strategy.

Lemma 2. Consider an almost-sure ergodic CMPG and let Σ > 0 be a real number.
Let ψ1 be an optimal stationary strategy for Player 1. Let ψ≥

1 be a stationary strategy for
Player 1 s.t. ψ≥

1(s)(a) ⇔ [ψ1(s)(a)− 1
q ;ψ1(s)(a)+

1
q], where q = 4·Σ−1·m·n2·(εmin)

−r,
for all states s and actions a ⇔ Ω1(s). Then the strategy ψ≥

1 is an Σ-optimal strategy.

Proof. First observe that we can consider Σ ≤ 1, because as the rewards are in the
interval [0, 1] any strategy is an Σ-optimal strategy for Σ ◦ 1. We will present the proof
when the play starts in an ergodic component; and the details of the other case is in [1].
We show that ψ≥

1 guarantees a mean-payoff within Σ of the mean-payoff guaranteed by
ψ1, thus implying the statement. Let ψ2 be a positional best response strategy against
ψ≥
1. Our proof is based on a novel coupling argument. For any state s, it is clear that the

variation distance between ψ≥
1(s) and ψ1(s) is at most |Σ1(s)|

2·q , by definition of ψ≥
1(s).

For a state s, let ds1 be the distribution over states defined as follows: for t ⇔ S we
have ds1(t) =

∑
a1∗Σ1(s)

∑
a2∗Σ2(s)

ε(s, a1, a2)(t) · ψ1(s)(a1) · ψ2(s)(a2). Define ds2
similarly using ψ≥

1(s) instead of ψ1(s). Then ds1 and ds2 also have a variation distance
of at most |Σ1(s)|

2·q ≤ m
2·q . Let s0 be the start state, and P = δψ1,ψ2

s0 be the random walk

from s0, where Player 1 follows ψ1 and Player 2 follows ψ2. Also let P ≥ = δ
ψ⊥
1,ψ2

s0 be
the similar defined walk, except that Player 1 follows ψ≥

1 instead of ψ1. Let X i be the
random variable indicating the i-th state of P , and let Y i be the similar defined random
variable in P ≥.

Consider that s0 is part of an ergodic component. Irrespective of the strategy profile,
all states of the ergodic component are visited infinitely often almost-surely (by def-
inition of an ergodic component). Hence, we can apply Lemma 1 and obtain that we
require at most n · (εmin)

r = ν·q
4·n·m steps in expectation to get from one state of the

component to any other state of the component.
Coupling argument. We now construct a coupling argument. We define the coupling
using induction. First observe that X0 = Y 0 = s0 (the starting state). For i, j ⇔ N, let
ai,j ◦ 0 be the smallest number such that X i+1 = Y j+1+ai,j . By the preceding we
know that ai,j exists for all i, j with probability 1 and ai,j ≤ ν·q

4·n·m in expectation. The
coupling is done as follows: (1) (Base case): Couple X0 and Y 0. We have that X0 =
Y 0; (2) (Inductive case): (i) if X i is coupled to Y j and X i = Y j = si, then also couple
X i+1 and Y j+1 such that Pr[X i+1 →= Y j+1] = var(dsi1 , dsi2) (using coupling lemma);
(ii) if X i is coupled to Y j , but X i →= Y j , then X i+1 = Y j+1+ai,j = si+1 and X i+1

is coupled to Y j+1+ai,j , and we couple X i+2 and Y j+2+ai,j such that Pr[X i+2 →=
Y j+2+ai,j] = var(d

si+1

1 , d
si+1

2) (using coupling lemma). Notice that all X i are coupled
to some Y j almost-surely; and moreover in expectation j

i is bounded as follows: j
i ≤

1 + m
2·q · ν·q

4·n·m = 1 + ν
8·n . The expression can be understood as follows: consider

X i being coupled to Y j . With probability at most m
2·q they differ. In that case X i+1 is

coupled to Y j+1+ai,j . Otherwise X i+1 is coupled to Y j+1. By using our bound on ai,j
we get the desired expression. For a state s, let fs (resp. f ≥

s) denote the limit-average
frequency of s given ψ1 (resp. ψ≥

1) and ψ2. Then it follows easily that for every state
s, we have |fs − f ≥

s| ≤ ν
8·n . The formal argument is as follows: for every state s,

130 K. Chatterjee and R. Ibsen-Jensen

consider the reward function Rs that assigns reward 1 to all transitions from s and 0
otherwise; and then it is clear that the difference of the mean-payoffs of P and P ≥ is
maximized if the mean-payoff of P is 1 under Rs and the rewards of the steps of P ≥

that are not coupled to P are 0. In that case the mean-payoff of P ≥ under Rs is at least
1

1+ ω
8·n

> 1 − ν
8·n (since 1 > 1 − (

ν
8·n

)2
= (1 + ν

8·n)(1 − ν
8·n)) in expectation and

thus the difference between the mean-payoff of P and the mean-payoff of P ≥ under Rs

is at most ν
8·n in expectation. The mean-payoff value if Player 1 follows a stationary

strategy ψ1
1 and Player 2 follows a stationary strategy ψ1

2 , such that the frequencies of
the states encountered is f1

s , is
∑

s∗S

∑
a1∗Σ1(s)

∑
a2∗Σ2(s)

f1
s ·ψ1

1(s)(a1) ·ψ1
2(s)(a2) ·

R(s, a1, a2). Thus the differences in mean-payoff value when Player 1 follows ψ1 (resp.
ψ≥
1) and Player 2 follows the positional strategy ψ2, which plays action as2 in state s, is∑
s∗S

∑
a1∗Σ1(s)

(
fs ·ψ1(s)(a1)− f ≥

s ·ψ≥
1(s)(a1)

) ·R(s, a1, as2). Since |fs− f ≥
s| ≤ ν

8·n
(by the preceding argument) and |ψ1(s)(a1) − ψ≥

1(s)(a1)| ≤ 1
q for all s ⇔ S and

a1 ⇔ Ω1(s) (by definition), we have
∑

s∗S

∑
a1∗Σ1(s)

(
fs ·ψ1(s)(a1)−f ≥

s ·ψ≥
1(s)(a1)

) ·
R(s, a1, as2) ≤ ν

2 . The desired result follows. ∅⊇
We show that for every integer q≥ ◦ Δ, for every distribution over Δ elements, there

exists a q≥-rounded distribution “close” to it. Together with Lemma 2 it shows the exis-
tence of q≥-rounded Σ-optimal strategies, for every integer q≥ greater than the q defined
in Lemma 2.

Lemma 3. Let d1 be a distribution over a finite set Z of size Δ. Then for all integers
q ◦ Δ there exists a q-rounded distribution d2 over Z , such that |d1(z)− d2(z)| < 1

q .

Corollary 1. For all almost-sure ergodic CMPGs, for all Σ > 0, there exists an Σ-
optimal, q≥-rounded strategy ψ1 for Player 1, for all integers q≥ ◦ q, where q = 4 · Σ−1 ·
m · n2 · (εmin)

−r.

Exponential Lower Bound on Patience. We present a family of ergodic CMPGs where
the lower bound on patience is exponential in r for every 1/48-optimal strategies (de-
tails in [1]).

Theorem 1 (Strategy Complexity). The following assertions hold:
1. (Upper bound). For almost-sure ergodic CMPGs, for all Σ > 0, there exists an

Σ-optimal strategy of patience at most �4 · Σ−1 ·m · n2 · (εmin)
−r∪.

2. (Lower bound). There exists a family of ergodic CMPGs Gλmin
n , for each odd n ◦ 9

and 0 < εmin < 1
2·n , such that n = r + 5 and any 1

48 -optimal strategy in Gλmin
n

has patience at least 1
2 · (εmin)

−r/4.

3.2 Approximation Complexity
We establish the approximation complexity for almost-sure ergodic CMPGs.

Hardness of Approximation. We present a polynomial reduction from the value prob-
lem for SSGs to the problem of approximation of values for turn-based stochastic er-
godic mean-payoff games (TEMPGs) (details in [1]).

Approximation Decision Problem. Given an almost-sure ergodic CMPG G (with ra-
tional transition probabilities given in binary), a state s, an Σ > 0 (in binary), and a

The Complexity of Ergodic Mean-payoff Games 131

rational number α (in binary), the promise problem PROMVALERG (i) accepts if the
value of s is at least α, (ii) rejects if the value of s is at most α− Σ, and (iii) if the value
is in the interval (α− Σ;α), then it may both accept or reject.

Theorem 2 (Approximation Complexity). For almost-sure ergodic CMPGs, the fol-
lowing assertions hold:
1. (Upper bound). The problem PROMVALERG is in FNP.
2. (Hardness). The problem of finding the value of a state in an SSG is polynomial time

Turing reducible to the problem PROMVALERG, even for turn-based stochastic
ergodic mean-payoff games (TEMPGs).

3.3 Strategy-Iteration Algorithm for Almost-Sure Ergodic CMPGs

The classic algorithm for solving ergodic CMPGs was given by Hoffman and Karp [17].
We present a variant of the algorithm, and show that for every Σ > 0 it runs in expo-
nential time for Σ approximation. Our algorithm is a variant of the original algorithm,
where instead of all stationary strategies we iterate over q-rounded strategies, depend-
ing on Σ > 0. We refer our algorithm as VARHOFFMANKARP and show the following
result (details in [1]).

Theorem 3. For an almost-sure ergodic CMPG, for all Σ > 0, VARHOFFMANKARP

correctly computes an Σ-optimal strategy, and (i) requires at most

O
((

Σ−1 ·m · n2 · (εmin)
−r

)n·m)
iterations, and each iteration requires at most

O(2POLY(m) · POLY(n, log(Σ−1), log(ε−1
min))) time; and (ii) requires polynomial

space.

4 Analysis of the Value-Iteration Algorithm

We show that the classical value-iteration algorithm requires at most exponentially
many steps to approximate the value of ergodic concurrent mean-payoff games
(ECMPGs).

Notations. Given an ECMPG G, let v∗ denote the value of the game (recall that all
states in an ECMPG have the same value). Let vTs = supψ1∗θ1

infψ2∗θ2 E
ψ1,ψ2
s [AvgT]

denote the value function for the objective AvgT , i.e., playing the game for T steps.
For an ECMPG G we call the game with the objective AvgT as GT . A strategy ψ1 is
optimal for the objective AvgT if vTs = infψ2∗θ2 E

ψ1,ψ2
s [AvgT], and a strategy ψ2 is

optimal for the objective AvgT if vTs = supψ1∗θ1
E
ψ1,ψ2
s [AvgT]. The function vTs is

computed iteratively in T and is refered to as the value-iteration algorithm. It is well-
known that vs = lim infT∈⊆ vTs = lim supT∈⊆ vTs [19]. We first establish a result
that shows that for all T there exist s and s≥ such that v∗ is bounded by vTs and vTs⊥ .

Lemma 4. For all ECMPGs G and for all T > 0, there exists a pair of states s≥, s,
such that vTs⊥ ≤ v∗ ≤ vTs .

Proof Overview: The proof is by contradiction, that is, we assume that for all s we
have vTs < v∗ (the other case follows from the same game where the players have
exchanged roles). The idea is that we can consider plays of G, defined by an optimal

132 K. Chatterjee and R. Ibsen-Jensen

strategy for the objective LimInfAvg for Player 1 in G and a strategy for Player 2 that
plays an optimal strategy for objective AvgT in GT for T steps and then starts over.
We then split the plays into sub-plays of length T . Since for all s we have vTs < v∗

and because Player 2 plays optimally in the sub-plays, in every segment of length T the
expected mean-payoff is strictly less than v∗. But then also the expected mean-payoff of
the plays is strictly less than v∗. This contradicts that Player 1 played optimally (which
ensures that the expected mean-payoff is at least v∗).

The Numbers H and H . Given an ECMPG G, strategies ψ1 and ψ2 for the players,
and two states s and t, let Hψ1,ψ2

s,t denote the expected hitting time from s to t, given
the strategies. Let Hψ1 = supψ2∗θ2

maxs,t∗S Hψ1,ψ2

s,t ; and H = infψ1∗θ1 Hψ1 and
H = supψ1∗θ1

Hψ1 . Intuitively, H is the minimum expected hitting time between all
state pairs that Player 1 can ensure against all strategies of Player 2.

Lemma 5. For all ECMPGs G we have H ≤ H ≤ n · (εmin)
−r.

We now present our result for the bounds required for approximation by the value-
iteration algorithm.

Theorem 4. For all ECMPGs, for all 0 < Σ < 1, and all T ◦ 4 · H · c · log c, for
c = 2 · Σ−1, we have that v∗ − Σ ≤ mins v

T
s ≤ v∗ ≤ maxs v

T
s ≤ v∗ + Σ.

Proof. (Sketch). Let T ◦ 4 · H · c · log c, for c = 2 · Σ−1. Also, let c≥ = 4 ·H · log c
and T ≥ = T − c≥. By Lemma 4 we have mins v

T
s ≤ v∗ ≤ maxs v

T
s . We now argue that

v∗ − Σ ≤ mins v
T
s , and then maxs v

T
s ≤ v∗ + Σ follows by considering the game where

the players have exchanged roles. Let s≥ be some state in argmins⊥ v
T
s⊥ and let s≥≥ be

some state such that v∗ ≤ vT
⊥

s⊥⊥ (such a state exists by Lemma 4). Let ψ≥
1 be an optimal

strategy for the objective AvgT ⊥ in GT ⊥ , and let ψ∗
1 be a strategy that ensures that the

hitting time from s≥ to s≥≥ is at most 2 ·H , i.e., Hψ∗
1
≤ 2 ·H (such a strategy exists by

definition of H). Let ψ1 be the strategy for Player 1 that plays as ψ∗
1 until s≥≥ is reached,

and then switches to ψ≥
1. We show that ψ1 ensures that vTs⊥ is at least v∗ − Σ. ∅⊇

Remark 2. Theorem 4 presents the bound for value-iteration when the rewards are
in [0, 1]. If the rewards are in [0,W], for some positive integer W , then for Σ-
approximation we first divide all rewards by W , and then apply results of Theorem 4 for
Σ/W -approximation. We have shown that in the worst case H is at most n · (εmin)

−r.
If H,W, Σ−1 are bounded by a polynomial, then the value-iteration algorithm requires
polynomial-time to approximate; and hence if H and W are bounded by polynomial,
then the value-iteration algorithm is a FPTAS. In particular, if either (i) r is constant
and (εmin)

−1 is bounded by a polynomial, or (ii) (εmin)
−1 is bounded by a constant

and r is logarithmic in n, then H is polynomial; and if W is polynomial as well, then
the value-iteration algorithm is a FPTAS. There could also be other cases where H
is polynomial, and then the value-iteration is a pseudo-polynomial time algorithm for
constant-factor approximation.

5 Exact Value Problem for Almost-Sure Ergodic Games

We present two results for the exact value problem: (1) First we show that for almost-sure
ergodic CMPGs the exact value can be expressed in the existential theory of the reals

The Complexity of Ergodic Mean-payoff Games 133

(for details about the existential theory see [6]). This is achieved by first showing that
the fixpoint of the Hoffman-Karp algorithm can be expressed in the existential theory;
and then combining it with a sentence in the existential theory for reachability games.
(2) We establish that the value problem for sure ergodic CMPGs is square-root sum hard
(using techniques similiar to [11]) generalizing the example shown in Figure 1.

Theorem 5. (1) The value problem for almost-sure ergodic CMPGs can be expressed
in the existential theory of the reals. (2) The value problem for sure ergodic CMPGs is
square-root sum hard.

References

1. ArXiv CoRR (2014), Full version http://arxiv.org/abs/1404.5734
2. Aldous, D.: Random walks on finite groups and rapidly mixing Markov chains. Lecture Notes

in Mathematics, vol. 986, pp. 243–297. Springer, Berlin (1983)
3. Bewley, T., Kohlberg, E.: The asymptotic behavior of stochastic games. Math. Op. Res. (1)

(1976)
4. Blackwell, D., Ferguson, T.: The big match. AMS 39, 159–163 (1968)
5. Boros, E., Elbassioni, K., Gurvich, V., Makino, K.: A potential reduction algorithm for two-

person zero-sum limiting average payoff stochastic games. RUTCOR Research Report 13-
2012 (2012)

6. Canny, J.F.: Some algebraic and geometric computations in PSPACE. In: STOC, pp. 460–467
(1988)

7. Chatterjee, K., Majumdar, R., Henzinger, T.A.: Stochastic limit-average games are in EXP-
TIME. Int. J. Game Theory 37(2), 219–234 (2008)

8. Condon, A.: The complexity of stochastic games. I&C 96(2), 203–224 (1992)
9. de Alfaro, L., Majumdar, R.: Quantitative solution of omega-regular games. In: STOC 2001,

pp. 675–683. ACM Press (2001)
10. Etessami, K., Yannakakis, M.: Recursive concurrent stochastic games. Logical Methods in

Computer Science 4(4) (2008)
11. Etessami, K., Yannakakis, M.: On the complexity of nash equilibria and other fixed points.

SIAM J. Comput. 39(6), 2531–2597 (2010)
12. Everett, H.: Recursive games. In: CTG. AMS, vol. 39, pp. 47–78 (1957)
13. Filar, J., Vrieze, K.: Competitive Markov Decision Processes. Springer (1997)
14. Gillette, D.: Stochastic games with zero stop probabilitites. In: CTG, pp. 179–188. Princeton

University Press (1957)
15. Hansen, K.A., Ibsen-Jensen, R., Miltersen, P.B.: The complexity of solving reachability

games using value and strategy iteration. In: Kulikov, A., Vereshchagin, N. (eds.) CSR 2011.
LNCS, vol. 6651, pp. 77–90. Springer, Heidelberg (2011)

16. Hansen, K.A., Koucký, M., Lauritzen, N., Miltersen, P.B., Tsigaridas, E.P.: Exact algorithms
for solving stochastic games: extended abstract. In: STOC, pp. 205–214 (2011)

17. Hoffman, A.J., Karp, R.M.: On nonterminating stochastic games. Management Sci-
ence 12(5), 359–370 (1966)

18. Ibsen-Jensen, R.: Strategy complexity of two-player, zero-sum games. PhD thesis, Aarhus
University (2013)

19. Mertens, J., Neyman, A.: Stochastic games. IJGT 10, 53–66 (1981)
20. Puterman, M.: Markov Decision Processes. John Wiley and Sons (1994)
21. Shapley, L.: Stochastic games. PNAS 39, 1095–1100 (1953)
22. Vardi, M.: Automatic verification of probabilistic concurrent finite-state systems. In: FOCS

1985, pp. 327–338. IEEE Computer Society Press (1985)
23. Zwick, U., Paterson, M.: The complexity of mean payoff games on graphs. Theoretical Com-

puter Science 158, 343–359 (1996)

http://arxiv.org/abs/1404.5734

Toward a Structure Theory of Regular Infinitary

Trace Languages

Namit ChaturvediΣ

RWTH Aachen University, Lehrstuhl für Informatik 7, Aachen, Germany
chaturvedi@automata.rwth-aachen.de

Abstract. The family of regular languages of infinite words is struc-
tured into a hierarchy where each level is characterized by a class of
deterministic ω-automata – the class of deterministic Büchi automata
being the most prominent among them. In this paper, we analyze the
situation of regular languages of infinite Mazurkiewicz traces that model
non-terminating, concurrent behaviors of distributed systems. Here, a
corresponding classification is still missing. We introduce the model of
“synchronization-aware asynchronous automata”, which allows us to ini-
tiate a classification of regular infinitary trace languages in a form that
is in nice correspondence to the case of ω-regular word languages.

1 Introduction

In the theory of Σ-regular word languages, a natural classification is induced
by various forms of deterministic Σ-automata. The three fundamental cases are
given by (a) deterministic Muller automata, capturing the class of Σ-regular word
languages; (b) deterministic Büchi automata, capturing recurrence properties
of infinite words; and (c) weak automata, capturing reachability properties of
infinite words. In this paper, we concentrate on the first two automata models,
on which fundamental facts can be summarized as follows (see e.g. [8]):

1. A language is deterministically Büchi recognizable if and only if it can be
expressed as lim(K) := {ε ∈ Ωψ | ε has infinitely many prefixes in K} for
some regular language K ≡ Ω∗.

2. An Σ-regular language is deterministically Büchi recognizable if and only if
this language is recognized by a Muller automaton whose acceptance com-
ponent is closed under supersets.

3. The class of Boolean combinations of deterministically Büchi recognizable
languages coincides with the class of Muller recognizable languages.

We consider the question of defining corresponding classes in the framework
of Mazurkiewicz traces [4] that model infinite, concurrent behaviors of a finite
set of interacting processes. The concept of “Σ-regular trace language” can be
introduced in close correspondence to the case of Σ-regular word languages,

ω Supported by the DFG Research Training Group-1298 AlgoSyn and the CASSTING
Project funded by the European Commission’s 7th Research Framework Programme.

J. Esparza et al. (Eds.): ICALP 2014, Part II, LNCS 8573, pp. 134–145, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Toward a Structure Theory of Regular Infinitary Trace Languages 135

for example1, in terms of finite partially-commutative monoids, asynchronous
automata, concurrent regular expressions, or MSO logic.

However, it is remarkable that there does not yet exist a definition of Büchi
automaton over traces that allows for results analogous to any of the items 1–3
above. The objective of the present paper is to fill this gap, while making sure
at all times that the corresponding definitions and results for word languages
emerge from our study as special cases.

Muscholl [7] took a major step toward establishing such structural results
by introducing a parameterized lim operator for trace languages. She showed
that the class of Boolean combinations of parameterized lim-languages is pre-
cisely the class of Σ-regular trace languages, and also characterized the class of
linearizations of these parameterized languages in terms of “I-diamond” Büchi
(word) automata with “extended” acceptance condition. The respective family
of I-diamond automata characterizing Boolean combinations of linearizations of
reachability languages (where an infinite trace is in the language if it contains
a certain finite prefix) is studied in [2]. However, I-diamond word automata do
not offer a proper modeling of concurrency as realized over traces.

We introduce a new concept of asynchronous automata, viz. synchronization-
aware asynchronous automata (over traces rather than their linearizations).
These, when equipped with Büchi and Muller acceptance conditions, estab-
lish not only item 1, but also items 2 and 3 above. At the same time, the
synchronization-aware Muller automata are equivalent in expressive power to
the standard deterministic asynchronous Muller automata for infinitary trace
languages. Thus we provide a new framework that prepares – at least in impor-
tant parts – a structure theory for Σ-regular trace languages that is compatible
with that of deterministic Σ-automata over words.

Synchronization-aware automata are “aware” of the fact that during a run
over an infinite trace, the set of processes may be partitioned in a manner that
each part is minimal and, after a finite prefix, a process belonging to one part
never interacts directly or indirectly with a process belonging to another part.
The processes infer this partition by observing their infinitely recurring inter-
actions. Although infinite traces induce such partitions in all asynchronous au-
tomata, current models cannot perform such inferencing.

Another aspect of infinite runs is that while some processes may remain live
ad infinitum, others may halt after finitely many steps. However, the set of live
processes can be explicitly coded in the Büchi acceptance condition since this
directly corresponds to Muscholl’s parameterized lim operation mentioned above.

By combining both these aspects, we obtain the family of synchronization-
aware Büchi automata corresponding to item 1 above (see Thm. 13). We also
introduce synchronization-aware Muller automata recognizing precisely the class
of Σ-regular trace languages (see Thm. 18). Finally, Theorems 20 and 21 respec-
tively demonstrate a characterization à la item 2 and the equivalence result of
item 3. We conclude with a discussion of a number of open problems.

1 We refer the reader to [4] for a comprehensive survey of early results.

136 N. Chaturvedi

2 Preliminaries

2.1 Finite and Infinite Traces

Over a finite alphabet Ω, let D ≡ Ω2 be a binary, reflexive, and symmetric
dependence relation. We also refer to the corresponding independence relation
I = Ω2 \ D, and to the independence alphabet (Ω, I). Given an independence
alphabet, a finite trace is an isomorphism class of directed acyclic graphs t =
[V,∅, δ] where V is a finite set of events; δ : V ⊆ Ω is a labeling function; and
for events e, e≥ ∈ V : δ(e)Dδ(e≥) ↔ e ∅ e≥ or e≥ ∅ e or e = e≥. The concatenation
of two finite traces t1 = [V1,∅1, δ1] and t2 = [V2,∅2, δ2] is given by t1 ⇔ t2 =
[V1 ⊂V2,∅

≥, δ1 ⊂δ2], where ∅≥ = ∅1 ⊂∅2 ⊂{(e1, e2) ∈ V1 ×V2 | δ1(e1)Dδ2(e2)}.
We denote the set of all finite traces over an alphabet (Ω, I) with M(Ω, I).

For convenience, we work with “simplified” traces t = [V,∅, δ] where we
remove all edges that may be inferred from others, i.e. by ∅ we mean ∅ \ ∅2

(see Fig. 1a). We also refer to the partial order < obtained from the transitive
closure of this edge relation; and define relations ≥, �, ⇒, and > in the natural
manner. We use the abbreviation e ∈ t to convey t = [V,∅, δ] and e ∈ V .

An infinite trace is a directed acyclic graph π = [V,∅, δ] where V is a count-
able set of events, and δ and ∅ are like above except ∅ satisfies an additional
requirement, namely, for each e ∈ π, the set {e≥ ∈ π | e≥ ≥ e} is finite. Denote the
set of all infinite traces with R(Ω, I). For traces t ∈ M(Ω, I), π ∈ R(Ω, I), we
refer to sets alph(t), alph(π) of letters occurring in them, and to the set alphinf(π)
of letters occurring infinitely often in π.

We say t1 is a prefix of t2, i.e. t1 ◦ t2 :↔ ≤t≥ : t2 = t1 ⇔ t≥, and t1 � t2 iff
t1 ◦ t2 and t1 →= t2. We also refer to prefixes t of some π ∈ R(Ω, I) in a similar
way. If E ≡ t is a set of events, then t[E] = [V ≥,∅≥, δ≥] is a prefix of t with the set
V ≥ := {f ∈ t | f ≥ e for some e ∈ E} and ∅≥ and δ≥ are obtained by restricting
the corresponding entities in t to V ≥. The least upper bound of two traces t1, t2,
whenever it exists, denoted t1∅t2 is the smallest trace s such that t1 ◦ s⊇t2 ◦ s.
Similarly, if it exists, the greatest lower bound of t1 and t2, denoted t1 � t2, is
the largest trace s such that s ◦ t1 ⊇ s ◦ t2.

2.2 Asynchronous Transition Systems

We refer to a deterministic asynchronous automaton as a pair A = (T,F), where
T is a deterministic asynchronous transition system and F is an appropriate
acceptance condition. We discuss these components separately.

For a fixed alphabet (Ω, I), an asynchronous transition system consists of a
set P of processes, a mapping dom : Ω ⊆ 2P assigning the domain of each letter
such that

⎛
a∈θ dom(a) = P and a I b ↔ dom(a) ∪ dom(b) = ∩. Naturally, for

Ω≥ ≡ Ω, we also refer to dom(Ω≥) :=
⎛

a∈θ⊥ dom(a). Moreover for an event e ∈ t,
we refer to dom(e) instead of referring to dom(δ(e)). Similarly, for E ≡ t.

Processes p have sets Xp of local p-states. Introducing a symbol $ /∈ ⎛
p∈P Xp,

for a set P ≡ P the set XP of P -states is a defined as XP := {(xp)p∈P | xi ∈
Xpi if pi ∈ P, otherwise xi = $}. We find it convenient to assume an order over

Toward a Structure Theory of Regular Infinitary Trace Languages 137

a a a

b

c c

e1 e2 e3 e4 e5 e6

(a) Trace prefix t = [V,∅, λ].

p

q

(x
0
,y

0
)

($
,y

1
)

(x
2
,y

2
)

($
,y

3
)

(x
3
,$
) ($

,y
4
)

(x
4
,y

5
)

e⊥ e1 e2 e3 e4 e5 e6

(b) Run ρ = [V ◦ {e⊥},∅∗, λ∗, Λ].

Fig. 1. For Σ = {a, b, c}, a I b, a finite trace (prefix) t ≥ M(Σ, I) and the run ρ of an
ATS, with dom(a) = {q}, dom(b) = {p}, and dom(c) = {p, q}

P and view a P -state as a tuple. So we refer to a state as a tuple ψ ∈ XP for
some P ≡ P . A state is a global state if P = P . We always distinguish between
a {p}-state ψ and a local p-state x; and for a state ψ, define the p-state in ψ as
ψ|p := xp ∈ Xp ⊕ {$}, and similarly the P -state ψ|P in ψ. Also, dom(ψ) := {p ∈
P | ψ|p →= $}. Finally, we denote the set of all states X2P :=

⎛
P⊆P XP .

We now define a deterministic asynchronous transition system (an ATS) as
a tuple T = ((Xp)p∈P , (φa)a∈θ , ψ0), where Xp are sets of local p-states; transi-
tion functions φa : Xdom(a) ⊆ Xdom(a) define how processes jointly perform state
transitions on input letters a; and ψ0 ∈ XP is the global initial state of T.

Given a trace t = [V,∅, δ] ∈ M(Ω, I), or π = [V,∅, δ] ∈ R(Ω, I), we define
the corresponding run α = [V ≥,∅≥, δ≥, β] of T on the trace where V ≥ := V ⊕{e⊗}
contains a fictional, minimum event e⊗. The relation ∅≥ is identical to the edge
relation ∅, except that e⊗ is the unique minimum event.

During the run α of an ATS T over a trace, each process p makes state tran-
sitions on events e ∈ dom−1(p). Each such event may be called a p-event as well
as a P -event where P = dom(e). All p-events in the run are totally ordered, and
this order <≥

p can be defined with the help of the order < of the trace. The max-
imum p-event in α according to the ordering <≥

p is denoted as maxp(α) ⇒ e⊗. If
it exists, the p-predecessor f of an event e is denoted by f ∅≥

p e. The labeling δ≥

is defined similarly except δ≥(e⊗) := Δ; and β : V ≥ ⊆ X2P is defined inductively:

– β(e⊗) := (ψ0),
– for any e >≥ e⊗, if 1. a = δ(e), and 2. for ep ∅≥

p e, if xp = β(ep)|p are the
most recent p-states just before e, then β(e) := (yp)p∈P , where the local-state
yp = φa((xp)p∈dom(e))|p if p ∈ dom(e), yp = $ otherwise.

Fig. 1 shows the labeled events of a trace and the corresponding run; but δ≥

is omitted in α for readability. The processes are assumed to be totally ordered,
hence the representation of states as tuples. Note that, in Fig. 1b, the edges
are shown as per the relations ∅≥

p, p ∈ P . Importantly, although e⊗ <≥ e2 and
e⊗ ∅≥

p e2, it is not the case that e⊗ ∅≥ e2.
Analogous to trace prefixes, we refer to run prefixes, and to prefixes α[e], α[E]

for e ∈ α and E ≡ α respectively. For e ∈ α, we also refer to the label β(e) as
the state of T at e. Similarly, if α is a finite run, then the state of T at α is given

138 N. Chaturvedi

by β(α) = (xp)p∈P where xp := β(maxp(α))|p is the p-state of T at maxp(α);
xp = ψ0|p if maxp(α) = e⊗. Obviously, β(α) is always a global state.

Finally, a deterministic asynchronous automaton (a DAA) over finite traces
is a pair A = (T, F), where T is an ATS and F ≡ XP is a set of global states of
T. A finite trace t ∈ M(Ω, I) is said to be accepted by A if, for the run α of T on
t, β(α) ∈ F . The set L(A) ≡ M(Ω, I) denotes the set of all finite traces accepted
by the DAA A. A language T ≡ M(Ω, I) is called recognizable or regular if there
exists a DAA A such that T = L(A).

2.3 Regular Infinitary Languages

The definition of regular languages of infinite traces, Σ-regular trace languages,
was first provided by Gastin-Petit using monoid morphisms [5]. We use as defini-
tion, a characterization of the same family in terms of deterministic asynchronous
(cellular) Muller automata [3,7]. The notion of acceptance of an infinite trace
π ∈ R(Ω, I) by an ATS T is defined by referring to the local infinity sets Infp(α)
of local p-states that occur infinitely often during the run α of T over π, with

Infp(α) :=

⎝⎞⎞⎧
⎞⎞⎨

⎩
x ∈ Xp | ≤∃e ∈ α : β(e)|p = x

}
if p ∈ dom(alphinf(π)),{

x ∈ Xp ≤e ∈ α : e = maxp(α)

and β(e)|p = x

⎪
otherwise.

Let F = {F1, F2, . . . } be a table where each Fi = (F p
i)p∈P is a tuple of sets of

local states of the processes. A deterministic asynchronous Büchi automaton (a
DABA) is a pair A = (T,F). A DABA is said to accept a trace π ∈ R(Ω, I) if,
on the run α of A on π, there exists a tuple Fi ∈ F such that for each process p,
F p
i ≡ Infp(α) [5,3]. A deterministic asynchronous Muller automaton (a DAMA)

is a pair A = (T,F), and is said to accept a trace π if there exists a tuple Fi ∈ F
such that for each process p, F p

i = Infp(α) [3].

Definition 1. A language Θ ≡ R(Ω, I) is said to be a regular infinitary lan-
guage (or an Σ-regular trace language) if it is recognized by a DAMA.

Definition 2 ([3]). For a language T ≡ M(Ω, I) finite traces, the infinitary
limit of T , denoted lim(T), is the language containing traces π ∈ R(Ω, I) such
that there exists a sequence (ti)i∈�, ti ∈ T satisfying ti � ti+1 and

⊔
i∈� ti = π.

Fig. 2 illustrates the definition of lim(T) with the help of an infinite run of an
asynchronous automaton recognizing T . Fig. 2a illustrates an induced run if the
trace π /∈ lim(T), whereas Fig. 2b illustrates the contrary.

Muscholl studies infinitary limits that are parameterized by a set of letters.
This set governs which letters from the alphabet must occur infinitely often in the
traces, and which letters may not. Recalling the dependence relation D ≡ Ω2,
for a set A ≡ Ω we define D(A) := {a ∈ Ω | ≤b ∈ A : aDb}.

Definition 3 ([7]). For T ≡ M(Ω, I) and some A ≡ Ω, the A-infinitary limit
of T is defined as limA(T) := {π ∈ lim(T) | D(alphinf(π)) = D(A)}.

Toward a Structure Theory of Regular Infinitary Trace Languages 139

(a) ti ≥ T and ti � ti+1, but θ /≥ lim(T)
since

⊔
i∈� ti ∨= θ.

(b) θ ≥ lim(T) since each event is eventu-
ally covered by an accepting prefix.

Fig. 2. Illustrating Def. 2. Shaded regions constitute sequences of accepting runs.

Definition 4 ([7]). An Σ-regular trace language is called a deterministic trace
language if it can be expressed as a finite union

⎛
i limAi(Ti) for regular trace

languages Ti ≡ M(Ω, I) and sets Ai ≡ Ω.

Clearly, the language lim(T) is a deterministic trace language since lim(T) =⎛
A⊆θ limA(T). However, not every deterministic trace language can be ex-

pressed in the form lim(T) for any T .
It is still open whether there exists a DABA recognizing the language lim(T)

for any given regular trace language T ≡ M(Ω, I). Furthermore, there exist
deterministic trace languages that are not accepted by any DABA [7]. In this
regard the term “deterministic trace language” [7] is not well motivated, since it
has no equivalent in any of the classes of deterministic asynchronous Σ-automata
known so far. The results of this paper justify this term by providing a matching
class of deterministic, “synchronization-aware” Büchi automata.

2.4 Secondaries and Frontiers

During a run α of an ATS, the processes can be thought of as “possessing and
updating information” regarding other processes [6]. If α is finite and p, q ∈ P ,
the first-hand information that p has about q at α, denoted by latestp∀q(α), is
the maximal q-event in the prefix α[maxp(α)]. Trivially, latestp∀p(α) = maxp(α).
Similarly, for p, q, r ∈ P , the second-hand information that p has about r via q at
α, denoted by latestp∀q∀r(α), is the maximal r-event in the prefix α[latestp∀q(α)].
Trivially, latestp∀p∀q(α) = latestp∀q(α).

The primary information of p at α is defined as the ordered set Prip(α) :=
{latestp∀q(α) | q ∈ P}. The secondary information of p at α is given by the set
Secp(α) := {latestp∀q∀r(α) | q, r ∈ P}. It is easy to see that on the one hand
Prip(α) ≡ Secp(α), on the other hand the events of Secp(α) may be ordered as
per the partial order < of α. This gives us a view of the secondary graph of p
at α, which we identify with secondary information itself. In this paper, we are
mainly interested in secondary information of the form Secp(α[e]) for p ∈ dom(e).
Since, Secp(α[e]) = Secq(α[e]) for all p, q ∈ dom(e), for convenience we denote
this information simply as Sec(e).

While referring to finite runs α over finite traces, or over finite prefixes of
infinite traces, it is useful to refer to their maximum p-events as a set. Define

140 N. Chaturvedi

p

q
r

s

e⊥ e1 e2 e3 e4 e5 e6 e7 e8 e9

Partial frontiers for ρ: {e5}, {e9}, {e5, e9}, {e8, e9}, and {e5, e8, e9}.
At e4, ρ� = ρ[e1]; and at e9, ρ� = ρ[e6]. Note that e5 /≥ ρ[e9].

Fig. 3. Partial frontiers (see below); and illustration of Lemma 6 (see Ex. 7)

frontier of α as Hν := {e ∈ α | ≤p ∈ P , e = maxp(α)}. Any set H ≡ Hν is called a
partial frontier if it is upward closed with respect to the < order over the events.
E.g., the set {e5, e8} in Fig. 3 is not a partial frontier of α since it is not an
upward closed subset of the frontier {e5, e8, e9}.

Finally, for event e ∈ α, define the top of e in α as �ν(e) := {f ∈ α | e ≥
f ⊇ ≤p ∈ P : f = maxp(α)}. Of course for any e1, . . . , en ∈ α,

⎛n
i=1 �ν(ei) is a

partial frontier of α. If β(α) is the global state of an automaton, and if H is a
(partial) frontier of α, then we define β(H) := β(α)|dom(H). Roughly speaking,
identifying a reasonable set of partial frontiers is necessary and sufficient for
computing the global state at the end of a finite run.

3 A New Model of Asynchronous Automata

Any infinite run α of an ATS T over a trace π ∈ R(Ω, I) yields a partition
ν = (P1, . . . , Pn) of set P of processes such that each part Pi ≡ P is minimal,
and after finite prefixes αi � α, the processes p ∈ Pi no longer interact directly
or indirectly with another process p≥ ∈ Pj , i →= j. We wish to obtain a family of
ATS’s where each process can infer during a run the part to which it belongs.
Owing to space restrictions, we present a concise discussion here, and refer the
reader to [1] for details and for proofs of all the claims made in this section.

3.1 Degrees of Synchronization

For an ATS T and a run α of T over any trace, we associate with each event e ∈ α
a measure (cf. Def. 5) of how much information is exchanged among the processes
in dom(e). We use sets P ≡ P of processes as the gauge for this measure.

Definition 5. For a run α of an ATS and an event e ∈ α, let the secondary up-
date at e be the set Ue := {g ∈ α[e] | ≤p, q, r ∈ P , ≤fp∅pe : g = latestp∀q∀r(fp) →=
latestp∀q∀r(e)}. Then, the degree of synchronization at e is defined as as the
set ds(e) :=

⎛
g∈Ue

dom(�ν[e](g)). By default, ds(e⊗) := P.

The set ds(e) implies that there must exist prefixes α≥ ◦ α[e] with partial
frontiers H, dom(H) = ds(e), such that for some process p ∈ dom(e) with a
predecessor fp ∅p e, H � α[fp]. The following lemma illustrates this point, and
demonstrates the importance of the set Ue.

Toward a Structure Theory of Regular Infinitary Trace Languages 141

Lemma 6. For e ∈ α, e > e⊗, let α
 :=
�

fp�pe
α[fp] be the greatest lower bound

of all its p-prefixes. For every prefix α≥ ◦ α[e] with α≥ →◦ α
, there exist H ≡ α≥

and U ≡ Ue such that 1. H is a partial frontier in α≥ with dom(H) = ds(e); and
2.

⎛
g∈U �ν⊥(g) = H.

Example 7. Referring to Fig. 3, at e4, we have e2 ∅q e4 and e3 ∅r e4. Then,
ds(e4) = P because Ue4 = {e⊗, e1, e2, e3}. For instance e⊗ = latestq∀r∀s(e2) →=
latestq∀r∀s(e4). Since α
 = α[e1], we have four possibilities of α≥, viz. α≥1 = α[e4],
α≥2 = α[e2, e3], α≥3 = α[e3], and α≥4 = α[e2]. For α≥4, H = {e⊗, e1, e2} and we can
choose U = e⊗ ≡ Ue4 . Symmetrically for α≥3. Also verify that, for α≥2, H = U =
{e2, e3}; and for α≥1, H = {e2, e3, e4} and U = {e⊗}.

Considering e9 next, we have e8 ∅q e9, e6 ∅r e9, and Ue9 = {e2, e4, e6, e8}.
For instance, e2 = latestr∀q∀p(e6) →= latestr∀q∀p(e9) = e8. Clearly, ds(e9) =
{p, q, r}. And since α
 = α[e6], we have three possibilities of α≥ ◦ α[e9] s.t.
α≥ →◦ α
, the most interesting one being α≥ = α[e7]. Now H = {e4, e6, e7} is the
partial frontier of α[e7] with dom(H) = ds(e9), so we choose U = {e2} ≡ Ue9 . �
Remark 8. If Me is the set of the (mutually concurrent) minimal events of Ue,
then it suffices to always consider U = Me in Lemma 6.

Why we are interested in precisely these frontiers will be clear from Lemma 9
and Remark 10 below. Presently, with respect to the partial frontiers H that are
revealed by Lemma 6 at an event e, we refer to the set Ye of states β(H) as the
yield at e. Clearly, for each ψ1, ψ2 ∈ Ye : dom(ψ1) = dom(ψ2) = ds(e). We say
that the yield Ye is bigger than yield Yf if ds(f) � ds(e).

Lemma 9. For an infinite run α and p ∈ P, if p ∈ dom(alphinf(α)) then there
exists a unique maximal P ≡ P such that ≤∃e ∈ α : p ∈ dom(e) ⊇ ds(e) = P .

We call the set P from Lemma 9 the max-degree of p-synchronizations in
α, denoted by �dsp(α)�. For processes p /∈ dom(alphinf(α)) that eventually halt,
we define �dsp(α)� := {p} regardless of the value of ds(maxp(α)) The following
remark follows immediately from Lemma 9, and demonstrates the “symmetric”
nature of max-degree of synchronizations.

Remark 10. For an infinite run α and p, q ∈ P , either �dsp(α)� = �dsq(α)� or
�dsp(α)� ∪ �dsq(α)� = ∩.

In particular, for each part Pi ∈ ν : q ∈ Pi ↔ �dsq(α)� = Pi. This concretizes
our observation that every run α induces a partition ν of the set of states, where
each part is minimal.

Definition 11. A synchronization-aware transition system (an SATS) is a pair
(T,D) where T = ((Xp)p∈P , (φa)a∈θ, ψ0) is an ATS and D = (Dp)p∈P is a
collection of mappings Dp : Xp ⊆ 2P such that 1. Dp(ψ0|p) = P, and 2. for
every run α of T and every event e ∈ α, if β(e) = ψ and p ∈ dom(e) then
ds(e) = P ↔ Dp(ψ|p) = P .

This definition implies that the local p-states of an SATS always match the
degrees of synchronization of events where they occur. It is easy to see that
property 2 therein is in fact decidable, whence the definition is “syntactic”.

142 N. Chaturvedi

3.2 Synchronization-aware Asynchronous Büchi Automata

A set X ≡ Xp of local p-states is called homosynchronous if for all local p-
states x, y ∈ X : Dp(x) = Dp(y). For an infinite run α of an SATS, we define the
homosynchronous maximal local infinity sets �Infp(α)� as follows.

�Infp(α)� :=

⎝⎞⎞⎞⎞⎧
⎞⎞⎞⎞⎨

{
x ∈ Xp Dp(x) = �dsp(α)� and

≤∃e ∈ α : β(e)|p = x

⎪
if p ∈ dom(alphinf(π)),

{
x ∈ Xp ≤e ∈ α : e = maxp(α)

and β(e)|p = x

⎪
otherwise.

Definition 12. A deterministic, synchronization-aware asynchronous Büchi au-
tomaton (a D-SABA) is a tuple A = (T,D,F), where (T,D) is an SATS, and
the acceptance table F = {(Q1, F1), . . . (Qk, Fk)} is such that each Qi ≡ P and
Fi = (F p

i)p∈P is a tuple of homosynchronous sets F p
i . A D-SABA A accepts a

trace π ∈ R(Ω, I) if, for the run α of A on π, there exists a pair (Qi, Fi) ∈ F s.t.
dom(alphinf(π)) = Qi and for each process p ∈ P : F p

i ∪ �Infp(α)� →= ∩.
The above definition essentially requires that processes p ignore all of their

infinitely occurring local p-states except those whose image under Dp matches
the maximal degree of p-synchronizations. One of our main results is as follows.

Theorem 13. A language Θ ≡ R(Ω, I) is recognized by a D-SABA iff Θ is a de-
terministic trace language, i.e. Θ can be expressed as a finite union of languages
of the form limA(T) for regular languages T ≡ M(Ω, I) and sets A ≡ Ω.

We prove this claim by breaking it up into Lemmas 14 and 15, and Prop. 16.

Lemma 14. Given a regular trace language T ≡ M(Ω, I) and a set A ≡ Ω,
there exists a D-SABA accepting Θ = limA(T).

To prove Lemma 14, we start with a DAA A = (T, F) recognizing T and
construct a D-SABA A≥ = (T≥,D,F) where (T≥,D) is an SATS such that over
every trace π ∈ R(Ω, I) (a) the run α≥ of T≥ mimics the run α of T; and (b) at
each event e ∈ α≥, T≥ computes the yield Ye for the corresponding event e ∈ α.

Fig. 4 illustrates a run α induced by a trace π ∈ limA(T) on A. The shaded
regions represent the partition ν of P induced by α. Note that f = maxs(α) and
�dss(α)� = {s} even though ds(f) = P . It is easy to see here that all partial
frontiers H ≥ in the top region are concurrent to all partial frontiers H ≥≥ in the
bottom region. This means that H ≥ ⊕ H ≥≥ ⊕ {f} are partial frontiers of some
prefixes t � α. In particular, if dom(H ≥), dom(H ≥≥) ∈ ν then H := H ≥ ⊕H ≥≥ ⊕{f}
is a frontier, and β(H) is the global state at t.

Lemma 6 helps in retroactively computing partial frontiers. One can verify
that ds(e5) = {p, q, r} and H ≥≥ = {e1, e2, e3} is one of the partial frontiers com-
puted at e5. Then β(H ≥≥) belongs to the yield Ye5 at e5. Similarly, at g we have
Yg = {β(g)}. Lastly, if ψs = β(f)|{s} is the {s}-state at f , then by “joining” the

Toward a Structure Theory of Regular Infinitary Trace Languages 143

p

q

r

s
s∗

e⊥

f
g

e1

e2

e3

e4

e5

Fig. 4. Processes eventually halt, or settle in maximally interacting sets

yields Ye5 and Yg with ψs, we obtain a set Π of global states which contains the
state β(H) at prefix α[H] � α, for H = {e1, e2, e3, f, g}.

However, such computations of global states are only required at the “end”
of the infinite run α. By joining ψs with the maximal yields that occur infinitely
often (as guaranteed by Lemma 9 and Remark 10), T≥ can compute precisely
the set of global states occurring infinitely often in the run α of A.

Consequently, a local p-state of the SATS T≥ is of the form x = (x, Sec, Y),
where x is a local p-state of T, Sec is a finite data structure to help compute the
yields, and Y is a yield. T≥ ensures that for each e ∈ α≥ of T≥, β(e)|p = (x, Sec, Y)
iff for the corresponding e ∈ α of T, β(e)p = x and Y = Ye is the yield at e.

Since the set Q := dom(A) of “live” processes is given, T≥ can distinguish
between the cases, e.g., that p ∈ dom(alphinf(π)) and s /∈ dom(alphinf(π)) as
shown in Fig. 4. By observing the sets �Infp(α≥)�, p ∈ P in its run α≥, T≥ can ex-
tract (a) the infinitely recurring maximal yields Yp of T, from infinitely recurring
maximal p-states x of live processes p; and (b) the final {p}-states ψp of T, from
the final p-states x for processes p that halt.

Thus, T≥ computes the set Π of global states occurring infinitely often in the
run α of A. The run α≥ of T≥ is accepting if Π has a non-empty intersection with
the acceptance set F of A. The Büchi acceptance table F = {(Q,F1), . . . (Q,Fk)}
is defined accordingly. For precise construction and proofs, see [1].

Lemma 15. If A = (T,D,F) is a D-SABA with |F| = 1 and L(A) = Θ, then
there exists a set A ≡ Ω and T ≡ M(Ω, I) regular such that Θ = limA(T).

The proof of this lemma relies on constructing a non-deterministic asyn-
chronous automaton recognizing the language T such that if F = {(Q,F)} then
for A := dom−1(Q) \ dom−1(P \Q) it holds that Θ = limA(T) (cf. [1]).

Proposition 16. The family of D-SABA-recognizable languages is closed under
finite unions.

Hence, Thm. 13 follows. Lastly, following the result established for the class
of deterministic trace languages in [7], one obtains that the family of D-SABA-
recognizable languages is also closed under finite intersections.

3.3 Synchronization-aware Asynchronous Muller Automata

We now define the class of synchronization-aware asynchronous Muller automata
that accept precisely the Σ-regular trace languages.

144 N. Chaturvedi

Definition 17. A deterministic synchronization-aware asynchronous Muller au-
tomaton (a D-SAMA) is a tuple A = (T,D,F), where (T,D) is an SATS and the
acceptance table F = {F1, . . . Fk} is s.t. Fi = (F p

i)p∈P are tuples of homosyn-
chronous sets F p

i . A D-SAMA A accepts a trace π ∈ R(Ω, I) if, for the run α of
A on π, there exists a tuple Fi ∈ F s.t. for each process p ∈ P : �Infp(α)� = F p

i .

Theorem 18. Any language Θ ≡ R(Ω, I) of infinite traces is recognized by a
D-SAMA if and only if Θ is recognized by a DAMA.

The proofs of this theorem and of the result that the family of D-SAMAs is
closed under Boolean operations may be found in [1].

4 Characterization of Deterministic Büchi Recognizability

A prominent result on Σ-regular word languages, due to Landweber [8], states
that a language L ≡ Ωψ is deterministically Büchi recognizable iff for some
(in fact, for each) deterministic Muller automaton recognizing L the acceptance
component – assuming it contains only realizable sets – is closed under super-
sets. The stronger (bracketed) version supplies a decision procedure for Büchi
recognizability of Σ-regular languages. Here we present a weaker existential char-
acterization over infinite traces. We define supersets in a manner that retains the
essence of acceptance tables. Consider F1 = (F p

1)p∈P and F2 = (F p
2)p∈P from F

where both F1 and F2 are tuples of homosynchronous sets F p
1 and F p

2 , p ∈ P . We
say that F1 is a superset of F2 denoted F1 ⊇ F2 if for each p ∈ P , F p

1 ⊇ F p
2 . A

table F is said to be closed under supersets if
(
(F ∈ F)⊇(F ≥ ⊇ F)

⎡ ⇒ (F ≥ ∈ F).
While discussing the closure under supersets, we must exempt the acceptance

tuples that guarantee the halting of some processes. Let F ∈ F be a realizable
acceptance tuple with F p = {x} ≡ Xp for some p ∈ P . Process p is guaranteed to
halt during any run α that is accepted by referring to F only if it is the case that
during two successive visits to x, p must visit another state y ∈ Xp such that
Dp(y) →� Dp(x). Then p must halt because otherwise, either �dsp(α)� � Dp(x) or
�Infp(α)� � {x}. Such a singleton F p is referred to as a finitary acceptance set.

Definition 19. A Muller acceptance table F is said to be closed under supersets
modulo finitary acceptance sets if (a) whenever F ∈ F does not contain any
finitary acceptance sets and F ≥ ⊇ F , then F ≥ ∈ F ; and (b) whenever F ∈ F
contains a finitary acceptance set F p and F ≥ ⊇ F with F ≥p = F p, then F ≥ ∈ F .

Theorem 20. A language Θ is recognized by a D-SABA B = (T≥,D≥,F ≥) if and
only if Θ is recognized by a D-SAMA A = (T,D,F) whose acceptance table F is
closed under supersets modulo finitary acceptance sets.

As mentioned previously, every Σ-regular trace language can be written as a
finite Boolean combination of A-infinitary limit languages [3]. Our results allow
us to state an equivalent claim by referring to classes of automata.

Theorem 21. For any language Θ ≡ R(Ω, I) of infinite traces, Θ is D-SAMA
recognizable if and only if Θ can be expressed as a finite Boolean combination of
D-SABA recognizable languages.

Toward a Structure Theory of Regular Infinitary Trace Languages 145

5 Conclusion

We introduced synchronization-aware asynchronous transition systems that al-
low us to define for the first time the family of deterministic Büchi automata that
matches the expressive power of the lim operator for trace languages. Not only is
this definition a generalization of that for the word case but, more importantly,
the corresponding languages are closed under finite unions and intersections –
analogous to the deterministically Büchi recognizable word languages. In this
sense, our results have further justified Muscholl’s definition of “deterministic
trace languages” as finite unions of parameterized lim-languages. Finally, we
have also characterized deterministically Büchi recognizable trace languages in
terms of recognition via a special subset of deterministic Muller automata.

The results of this paper uncover a clear path for completing a structure theory
of regular infinitary trace languages. In ongoing work, we address the issue of
weak recognizability, leading to a definition of weak D-SAMA’s recognizing the
languages that can be expressed as Boolean combinations of reachability trace
languages. A next step is concerned with conceivable characterization of these
weak trace languages as those that are recognized by both D-SABA’s and D-
SAcBA’s (the latter equipped with the co-Büchi acceptance condition). Finally,
it would be interesting to establish decidability of membership in each of these
subclasses, for instance, by showing a strong Landweber theorem as indicated
at the beginning of Section 4.

Acknowledgement. I am grateful to Wolfgang Thomas for encouragement
and numerous suggestions for improving this paper, to Marcus Gelderie and
Christof Löding for many fruitful discussions. I also thank anonymous referees
of a previous conference to which a prior version of this paper was submitted.

References

1. Chaturvedi, N.: Languages of infinite traces and deterministic asynchronous au-
tomata. Technical Report AIB-2014-04, RWTH Aachen University (2014)

2. Chaturvedi, N., Gelderie, M.: Weak ω-Regular Trace Languages. arXiv.org, CoRR
abs/1402.3199 (2014)

3. Diekert, V., Muscholl, A.: Deterministic asynchronous automata for infinite traces.
Acta Informatica 31(4), 379–397 (1994)

4. Diekert, V., Rozenberg, G. (eds.): The Book of Traces. World Scientific Publishing
Co., Inc., River Edge (1995)

5. Gastin, P., Petit, A.: Asynchronous cellular automata for infinite traces. In: Kuich,
W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 583–594. Springer, Heidelberg (1992)

6. Madhavan, M.: Automata on distributed alphabets. In: D’Souza, D., Shankar, P.
(eds.) Modern Applications of Automata Theory. IISc Research Monographs Series,
vol. 2, pp. 257–288. World Scientific (May 2012)

7. Muscholl, A.: Über die Erkennbarkeit unendlicher Spuren. PhD thesis (1994)
8. Perrin, D., Pin, J.-É.: Automata and Infinite Words. In: Infinite Words: Automata,

Semigroups, Logic and Games. Pure and Applied Mathematics, vol. 141. Elsevier
(2004)

Unary Pushdown Automata

and Straight-Line Programs�

Dmitry Chistikov and Rupak Majumdar

Max Planck Institute for Software Systems (MPI-SWS)
Kaiserslautern and Saarbrücken, Germany

{dch,rupak}@mpi-sws.org

Abstract. We consider decision problems for deterministic pushdown
automata over the unary alphabet (udpda, for short). Udpda are a sim-
ple computation model that accept exactly the unary regular languages,
but can be exponentially more succinct than finite-state automata. We
complete the complexity landscape for udpda by showing that emptiness
(and thus universality) is P-hard, equivalence and compressed member-
ship problems are P-complete, and inclusion is coNP-complete. Our
upper bounds are based on a translation theorem between udpda and
straight-line programs over the binary alphabet (SLPs). We show that
the characteristic sequence of any udpda can be represented as a pair
of SLPs—one for the prefix, one for the lasso—that have size linear in
the size of the udpda and can be computed in polynomial time. Hence,
decision problems on udpda are reduced to decision problems on SLPs.
Conversely, any SLP can be converted in logarithmic space into a udpda,
and this forms the basis for our lower bound proofs. We show coNP-
hardness of the ordered matching problem for SLPs, from which we derive
coNP-hardness for inclusion. In addition, we complete the complexity
landscape for unary nondeterministic pushdown automata by showing
that the universality problem is Π2P-hard, using a new class of inte-
ger expressions. Our techniques have applications beyond udpda. We
show that our results imply Π2P-completeness for a natural fragment of
Presburger arithmetic and coNP lower bounds for compressed matching
problems with one-character wildcards.

1 Introduction

Any model of computation comes with a set of fundamental decision questions:
emptiness (does a machine accept some input?), universality (does it accept all
inputs?), inclusion (are all inputs accepted by one machine also accepted by
another?), and equivalence (do two machines accept exactly the same inputs?).
The theoretical computer science community has a fairly good understanding
of the precise complexity of these problems for most “classical” models, such as
finite and pushdown automata, with only a few prominent open questions (e. g.,
the precise complexity of equivalence for deterministic pushdown automata).

ω The full version of the paper is available at http://arxiv.org/abs/1403.0509.

J. Esparza et al. (Eds.): ICALP 2014, Part II, LNCS 8573, pp. 146–157, 2014.
c∗ Springer-Verlag Berlin Heidelberg 2014

http://arxiv.org/abs/1403.0509

Unary Pushdown Automata and Straight-Line Programs 147

In this paper, we study a simple class of machines: deterministic pushdown
automata working on unary alphabets (unary dpda, or udpda for short). A clas-
sic theorem of Ginsburg and Rice [7] shows that they accept exactly the unary
regular languages, albeit with potentially exponential succinctness when com-
pared to finite automata. However, the precise complexity of most basic decision
problems for udpda has remained open.

Our first and main contribution is that we close the complexity picture for
these devices. We show that emptiness is already P-hard for udpda (even when
the stack is bounded by a linear function of the number of states) and thus
P-complete. By closure under complementation, it follows that universality is
P-complete as well. Our main technical construction shows equivalence is in P
(and so P-complete). Somewhat unexpectedly, inclusion is coNP-complete. In
addition, we study the compressed membership problem: given a udpda over the
alphabet {a} and a number n in binary, is an in the language? We show that
this problem is P-complete too.

A natural attempt at a decision procedure for equivalence or compressed mem-
bership would go through translations to finite automata (since udpda only
accept regular languages, such a translation is possible). Unfortunately, these
automata can be exponentially larger than the udpda and, as we demonstrate,
such algorithms are not optimal. Instead, our approach establishes a connec-
tion to straight-line programs (SLPs) on binary words—a well-studied model for
word compression (see, e. g., Lohrey [20]). An SLP P is a context-free grammar
generating a single word, denoted eval(P), over {0, 1}. Our main construction
is a translation theorem: for any udpda, we construct in polynomial time two
SLPs P ′ and P ′′ such that the infinite sequence eval(P ′) · eval(P ′′)ω ∈ {0, 1}ω is
the characteristic sequence of the language of the udpda (for any i ≡ 0, its ith
element is 1 iff ai is in the language). With this construction, decision problems
on udpda reduce to decision problems on compressed words. Conversely, we show
that from any pair (P ′,P ′′) of SLPs one can compute, in logarithmic space, a
udpda accepting the language with characteristic sequence eval(P ′) · eval(P ′′)ω .
Thus, lower bounds for computational complexity of decision problems for ud-
pda may be obtained from the corresponding lower bounds for SLPs. Indeed, we
show coNP-hardness of inclusion via coNP-hardness of the ordered matching
problem for compressed words (i. e., is eval(P1) ⊆ eval(P2) letter-by-letter, where
the alphabet comes with an ordering ⊆), a problem of independent interest.

As a second contribution, we complete the complexity picture for unary non-
deterministic pushdown automata (unpda, for short). For unpda, the precise
complexity of most decision problems was already known [14]. The remaining
open question was the precise complexity of the universality problem, and we
show that it is Π2P-hard (membership in Π2P was shown earlier by Huynh [14]).
An equivalent question was left open in Kopczyński and To [18] in 2010, but
the question was posed as early as 1976 by Hunt III, Rosenkrantz, and Szy-
manski [12, Open Problem 2], where it was asked whether the problem was in
NP or PSPACE or outside both. Huynh’s Π2P-completeness result for equiv-
alence [14] showed, in particular, that universality was in PSPACE, and our

148 D. Chistikov and R. Majumdar

Π2P-hardness result reveals that membership in NP is unlikely under usual
complexity assumptions. As a corollary, we characterize the complexity of the
↔bounded ⇔≥-fragment of Presburger arithmetic, where the universal quantifier
ranges over numbers at most exponential in the size of the formula.

To show Π2P-hardness, we show hardness of the universality problem for a
class of integer expressions. Several decision problems of this form, with the
set of operations {+,⊂}, were studied in the classic paper of Stockmeyer and
Meyer [30], and we show that checking universality of expressions over {+,⊂,×2,
×N} is Π2P-complete (the upper bound follows from Huynh [14]).

Related Work. Table 1 provides the current complexity picture, including the
results in this paper. Results on general alphabets are mostly classical and in-
cluded for comparison. Note that the complexity landscape for udpda differs
from those for unpda, dpda, and finite automata. Upper bounds for emptiness
and universality are classical, and the lower bounds for emptiness are originally
by Jones and Laaser [17] and Goldschlager [9]. In the nondeterministic unary
case, NP-completeness of compressed membership is from Huynh [14], rediscov-
ered later by Plandowski and Rytter [25]. The PSPACE-completeness of the
compressed membership problem for binary pushdown automata (see definition
in Section 6) is by Lohrey [22].

The main remaining open question is the precise complexity of the equiva-
lence problem for dpda. It was shown decidable by Sénizergues [28] and primitive
recursive by Stirling [29] and Jančar [15], but only P-hardness (from empti-
ness) is currently known. Recently, the equivalence question for dpda when the
stack alphabet is unary was shown to be NL-complete by Böhm, Göller, and
Jančar [4]. From this, it is easy to show that emptiness and universality are also
NL-complete. Compressed membership, however, remains PSPACE-complete
(see Caussinus et al. [5] and Lohrey [21]), and inclusion is already undecidable
(see Valiant [31]). When we restrict dpda to both unary input and unary stack
alphabet, all five decision problems are L-complete.

We discuss corollaries of our results and other related work in Section 6.

2 Preliminaries

Pushdown Automata. A unary pushdown automaton (unpda) over the al-
phabet {a} is a finite structure A = (Q,Γ,≥, q0, F, δ), with Q a set of (control)
states, Γ a stack alphabet, ≥ ∈ Γ a bottom-of-the-stack symbol, q0 ∈ Q an initial
state, F ⇒ Q a set of final states, and δ ⇒ (Q× ({a}⊂{ε})×Γ)× (Q×Γ≥) a set
of transitions with the property that, for every (q1, σ, γ, q2, s) ∈ δ, either γ ◦= ≥
and s ∈ (Γ \ {≥})≥, or γ = ≥ and s ∈ (Γ \ {≥})≥≥. Here and everywhere below
ε denotes the empty word.

The semantics of unpda is defined in the following standard way. The set
of configurations of A is Q × (Γ \ {≥})≥≥. Suppose (q1, s1) and (q2, s2) are
configurations; we write (q1, s1) ≤σ (q2, s2) and say that a move to (q2, s2) is
available to A at (q1, s1) iff there exists a transition (q1, σ, γ, q2, s) ∈ δ such that
s1 = γs′ and s2 = ss′ for some s′ ∈ Γ≥. A unary pushdown automaton is called

Unary Pushdown Automata and Straight-Line Programs 149

Table 1. Complexity of decision problems for pushdown automata

unary binary
dpda npda dpda npda

Emptiness Pl P P P

Universality Pl Π2P
l P undecidable

Equivalence Pu,l Π2P P.. pr.rec. undecidable

Inclusion coNPu,l Π2P undecidable undecidable
Compressed membership Pu,l NP PSPACE PSPACE

Legend: “dpda” and “npda” stand for deterministic and possibly nondetermin-
istic pushdown automata, respectively; “unary” and “binary” refer to their in-
put alphabets. Names of complexity classes stand for completeness with respect
to logarithmic-space reductions; abbreviation “pr.rec.” stands for “primitive
recursive”. Superscripts u and l denote new upper and lower bounds shown in
this paper.

deterministic, shortened to udpda, if at every configuration at most one move is
available.

A word w ∈ {a}≥ is accepted by A if there exists a configuration (qk, sk) with
qk ∈ F and a sequence of moves (qi, si) ≤σi (qi+1, si+1), i = 0, . . . , k − 1, such
that s0 = ≥ and σ0 . . . σk−1 = w; that is, the acceptance is by final state. The
language of A, denoted L(A), is the set of all words w ∈ {a}≥ accepted by A.

We define the size of a unary pushdown automaton A as |Q| · |Γ|, provided
that for all transitions (q1, σ, γ, q2, s) ∈ δ the length of the word s is at most 2
(see also [24]). While this definition is better suited for deterministic rather than
nondeterministic automata, it already suffices for the purposes of Section 5,
where we handle unpda, because it is always the case that |δ| ⊆ 2 |Q|2 |Γ|4.

Decision Problems. We consider the following decision problems: emptiness
(L(A) =? →), universality (L(A) =? {a}≥), equivalence (L(A1) =? L(A2)), and
inclusion (L(A1) ⇒? L(A2)). The compressed membership problem for unary
pushdown automata is associated with the question an ∈?L(A), with n given in
binary as part of the input. In complexity statements, hardness is with respect
to logarithmic-space reductions.

Straight-Line Programs. A straight-line program [20], or an SLP, over an
alphabet Σ is a context-free grammar that generates a single word; in other
words, it is a tuple P = (S,Σ,Δ, π), where Σ and Δ are disjoint sets of terminal
and nonterminal symbols (terminals and nonterminals), S ∈ Δ is the axiom,
and the function π : Δ ∅ (Σ⊂Δ)≥ defines a set of productions written as “N ∅
w”, w = π(N), and satisfies the property that the relation {(N,D) | N ∅
w and D occurs in w} is acyclic. An SLP P is said to generate a (unique) word
w ∈ Σ≥, denoted eval(P), which is the result of applying substitutions π to S.

An SLP is said to be in Chomsky normal form if for all productions N ∅ w
it holds that either w ∈ Σ or w ∈ Δ2. The size of an SLP is the number of
nonterminals in its Chomsky normal form.

150 D. Chistikov and R. Majumdar

3 Indicator Pairs and the Translation Theorem

We say that a pair of SLPs (P ′,P ′′) over an alphabet Σ generates a sequence
c ∈ Σω if eval(P ′) · (eval(P ′′))ω = c. We call an infinite sequence c ∈ {0, 1}ω,
c = c0c1c2 . . . , the characteristic sequence of a unary language L ⇒ {a}≥ if, for
all i ≡ 0, it holds that ci is 1 if ai ∈ L and 0 otherwise. One may note that the
characteristic sequence is eventually periodic if and only if L is regular.

Definition 1. A pair of straight-line programs (P ′,P ′′) over {0, 1} is called an
indicator pair for a unary language L ⇒ {a}≥ if it generates the characteristic
sequence of L.

A unary language can have several different indicator pairs. Indicator pairs form
a descriptional system for unary languages, with the size of (P ′,P ′′) defined as
the sum of sizes of P ′ and P ′′. The following translation theorem shows that
udpda and indicator pairs are polynomially equivalent representations for unary
regular languages. We remark that the theorem does not give a normal form for
udpda because of the non-uniqueness of indicator pairs.

Theorem 1 (translation theorem). For a unary language L ⇒ {a}≥:

(1) if there exists a udpda A of size m with L(A) = L, then there exists an
indicator pair for L of size O(m);

(2) if there exists an indicator pair for L of size m, then there exists a udpda A
of size O(m) with L(A) = L.

Both translations can be performed by polynomial-time algorithms, the second of
which works in logarithmic space.

Proof idea. We only discuss part 1, which presents the main technical challenge.
The starting point is the simple observation that a udpda A has a single infi-
nite computation, provided that the input tape supplies A with as many input
symbols a as it needs to consume. Along this computation, events of two types
are encountered: A can consume a symbol from the input and can enter a final
state.

The crucial technical task is to construct inductively, using dynamic program-
ming, straight-line programs that record these events along finite computational
segments. These segments are of two types: first, between matching push and
pop moves (“procedure calls”) and, second, from some starting point until a
move pops the symbol that has been on top of the stack at that point (“exits
from current context”). Loops are detected, and infinite computations are asso-
ciated with pairs of SLPs: in such a pair, one SLP records the initial segment,
or prefix of the computation, and the other SLP records events within the loop.

After constructing these SLPs, it remains to transform the computational
“history”, or transcript, associated with the initial configuration of A into the
characteristic sequence. This transformation can easily be performed in poly-
nomial time, without expanding SLPs into the words that they generate. The
result is an indicator pair for A. ⊇�

Unary Pushdown Automata and Straight-Line Programs 151

Any (possibly nondeterministic) logarithmic-space translation from udpda to
indicator pairs would imply NL = P. This is because the emptiness problem for
udpda (P-hard, see Proposition 1 in Section 4 below) reduces to checking if at
least one of the SLPs in an indicator pair generates a word containing a 1, and
this can be checked in NL.

Note that going from indicator pairs to udpda is useful for obtaining lower
bounds on the computational complexity of decision problems for udpda (Theo-
rems 2 and 5). For this purpose, it suffices to model just a single SLP, but taking
into account the whole pair is interesting from the point of view of descriptional
complexity (see also Section 6).

4 Decision Problems for UDPDA

4.1 Compressed Membership and Equivalence

For an SLP P , by |P| we denote the length of the word eval(P), and by P [n]
the nth symbol of eval(P), counting from 0 (that is, 0 ⊆ n ⊆ |P| − 1). We write
P1 ∪ P2 if and only if eval(P1) = eval(P2).

The following SLP-Query problem is known to be P-complete (see Lifshits
and Lohrey [19]): given an SLP P over {0, 1} and a number n in binary, decide
whether P [n] = 1. The problem SLP-Equivalence is only known to be in P
(see, e. g., Lohrey [20]): given two SLPs P1, P2, decide whether P1 ∪ P2.

Theorem 2. UDPDA-Compressed-Membership is P-complete.

Proof. The upper bound follows from Theorem 1. Indeed, given a udpda A and
a number n, first construct an indicator pair (P ′,P ′′) for L(A). Now compute
|P ′| and |P ′′| and then decide if n ⊆ |P ′| − 1. If so, the answer is given by
P ′[n], otherwise by P ′′[r], where r = (n− |P ′|) mod |P ′′| and in both cases 1 is
interpreted as “yes” and 0 as “no”.

To prove the lower bound, we reduce from the SLP-Query problem. Take
an instance with an SLP P and a number n in binary. By transforming the
pair (P ,P0), with P0 any fixed SLP over {0, 1}, into a udpda A using part 2 of
Theorem 1, this problem is reduced, in logspace, to whether an ∈ L(A). ⊇�
The following proposition can be shown by a reduction from the monotone circuit
value problem (for hardness) and polynomial-time algorithms for emptiness of
pushdown automata and complementation of deterministic pushdown automata.

Proposition 1. UDPDA-Emptiness,UDPDA-UniversalityareP-complete.

We now extend this result to the general equivalence problem for udpda.

Theorem 3. UDPDA-Equivalence is P-complete.

Proof idea. Hardness follows from Proposition 1. We show how Theorem 1 can
be used to prove the upper bound: given udpda A1 and A2, first construct
indicator pairs (P ′

1,P ′′
1) and (P ′

2,P ′′
2) for L(A1) and L(A2), respectively. Now

152 D. Chistikov and R. Majumdar

reduce the problem of whether L(A1) = L(A2) to SLP-Equivalence. The key
observation is that an eventually periodic sequence that has periods |P ′′

1 | and
|P ′′

2 | also has period t = gcd(|P ′′
1 |, |P ′′

2 |). Therefore, it suffices to check that, first,
the initial segments of the generated sequences match and, second, that P ′′

1 and
P ′′
2 generate powers of the same word up to a certain circular shift. ⊇�

4.2 Inclusion

A natural idea for handling the inclusion problem for udpda would be to extend
the result of Theorem 3, that is, to tackle inclusion similarly to equivalence. This
raises the problem of comparing the words generated by two SLPs in the com-
ponentwise sense with respect to the order 0 ⊆ 1. To the best of our knowledge,
this problem has not been studied previously, so we deal with it separately. As
it turns out, here one cannot hope for an efficient algorithm unless P = NP.

Let us define the following family of problems, parameterized by partial order
R on the alphabet of size at least 2, and denoted SLP-Componentwise-R.
The input is a pair of SLPs P1, P2 over an alphabet partially ordered by R,
generating words of equal length. The output is “yes” iff for all i, 0 ⊆ i < |P1|,
the relation R(P1[i],P2[i]) holds. By SLP-Componentwise-(0 ⊆ 1) we mean a
special case of this problem with R the partial order on {0, 1} given by 0 ⊆ 0,
0 ⊆ 1, 1 ⊆ 1.

Theorem 4. SLP-Componentwise-R is coNP-complete if R is not the equal-
ity relation (that is, if R(a, b) holds for some a ◦= b), and in P otherwise.

Proof idea. The technical part is to show coNP-hardness of SLP-Component-
wise-(0 ⊆ 1) by a reduction from the complement of Subset-Sum. We use
so-called Lohrey words [22, Theorem 5.2]: given a vector w = (w1, . . . , wn), a
natural t, and the question of whether there exists an x = (x1, . . . , xn) ∈ {0, 1}n
such that x · w = t, where x · w =

∑n
i=1 xiwi, it is possible to construct in log-

arithmic space two SLPs that generate words W1 =
∏

x∈{0,1}n ax·wbas−x·w and

W2 = (atbas−t)2
n

, where s = (1, . . . , 1) · w and the product in W1 enumerates
the xs in the lexicographic order. Now W1 and W2 share a symbol b in some
position iff the original instance of Subset-Sum is a yes-instance. Substituting
0 for a and 1 for b in the first SLP, and 0 for b and 1 for a in the second SLP
brings us to (the complement of) SLP-Componentwise-(0 ⊆ 1). ⊇�
Remark. An alternative reduction can be derived from Bertoni, Choffrut, and
Radicioni [3, Lemma 3]. A corollary of Theorem 4 on a problem of matching for
compressed partial words is demonstrated in Section 6.

Theorem 5. UDPDA-Inclusion is coNP-complete.

Proof idea. We rely on Theorem 1: hardness is by a reduction from SLP-Compo-
nentwise-(0 ⊆ 1) using part 2, and membership in coNP depends on part 1
and follows from the fact that L(A1) ◦⇒ L(A2) if and only if there exists an n
such that an ∈ L(A2) \L(A1) and, moreover, n ⊆ 2O(m), where m is the size of
the input. The upper bound on n follows from the translation to deterministic
finite automata (see discussion in Section 6 or Pighizzini [24, Theorem 8]). ⊇�

Unary Pushdown Automata and Straight-Line Programs 153

5 Universality of UNPDA

In this section we settle the complexity status of the universality problem for
unary, possibly nondeterministic pushdown automata. While Π2P-completeness
of equivalence and inclusion is shown by Huynh [14], it has been unknown
whether the universality problem is also Π2P-hard.

For convenience of notation, we use an auxiliary descriptional system. Define
integer expressions over the set of operations {+,⊂,×2,×N} inductively: the
base case is a non-negative integer n, written in binary, and the inductive step
is associated with binary operations +, ⊂, and unary operations ×2, ×N. To
each expression E we associate a set of non-negative integers S(E): S(n) = {n},
S(E1 + E2) = {s1 + s2 : s1 ∈ S(E1), s2 ∈ S(E2)}, S(E1 ⊂ E2) = S(E1) ⊂ S(E2),
S(E × 2) = S(E + E), S(E×N) = {sk : s ∈ S(E), k = 0, 1, 2, . . .}.

Expressions E1 and E2 are called equivalent iff S(E1) = S(E2); an expression
E is universal iff it is equivalent to 1×N. The problem of deciding universality
is denoted by Integer-{+,⊂,×2,×N}-Expression-Universality.

Decision problems for integer expressions have been studied for more than
40 years: Stockmeyer and Meyer [30] showed that for expressions over {+,⊂}
compressed membership is NP-complete and equivalence is Π2P-complete (uni-
versality is, of course, trivial). For recent results on such problems with opera-
tions from {+,⊂,∩,×, }, see McKenzie and Wagner [23] and Glaßer et al. [8].

Lemma 1. Integer-{+,⊂,×2,×N}-Expression-Universality isΠ2P-hard.

Proof idea. The reduction is from the Generalized-Subset-Sum problem [1,
Lemma 6.2], which is defined as follows. The input consists of two vectors of
naturals, u and v, and a natural t, and the problem is to decide whether for all
y ∈ {0, 1}m there exists an x ∈ {0, 1}n such that x · u + y · v = t, where the
middle dot · denotes the inner product. Let M be a big enough number, and
consider the integer expression E defined by E = E′ ⊂ E′′, where

E′ = (2mM + 1×N) ⊂ (M×N + ([0, t− 1] ⊂ [t + 1,M − 1])),

E′′ =

m∑
j=1

(0 ⊂ (2j−1M + vj)) +

n∑
i=1

(0 ⊂ ui),

and segments [a, b] are given by expressions of size O(log(b − a)). Then E is
universal iff the input is a yes-instance of Generalized-Subset-Sum. ⊇�
Remark. With circuits instead of formulae (see also [23] and [8]) we would not
need doubling. Furthermore, we only use ×N on fixed numbers, so instead we
could use any feature for expressing an arithmetic progression with fixed common
difference.

Theorem 6. Unary-PDA-Universality is Π2P-complete.

Hardness is by a reduction from Integer-{+,⊂,×2,×N}-Expression-Univer-
sality, and membership in Π2P follows from Huynh [14].

154 D. Chistikov and R. Majumdar

Corollary 1. Universality, equivalence, and inclusion are Π2P-complete for
(possibly nondeterministic) unary pushdown automata, unary context-free gram-
mars, and integer expressions over {+,⊂,×2,×N}.
Another consequence of Theorem 6 is that deciding equality of a (not necessar-
ily unary) context-free language, given as a context-free grammar, to any fixed
context-free language L0 that contains an infinite regular subset, is Π2P-hard
and, if L0 ⇒ {a}≥, Π2P-complete. The lower bound is by a reduction due to
Hunt III, Rosenkrantz, and Szymanski [12, Theorem 3.8], who show that de-
ciding equivalence to {a}≥ reduces to deciding equivalence to any such L0. The
reduction is shown to be polynomial-time, but is easily seen to be logarithmic-
space as well. The upper bound for the unary case is by Huynh [14]; in the
general case, the problem can be undecidable.

6 Corollaries and Discussion

Descriptional Complexity Aspects of UDPDA. Theorem 1 can be used
to obtain several results on descriptional complexity aspects of udpda proved
earlier by Pighizzini [24]. He shows how to transform a udpda of size m into
an equivalent deterministic finite automaton (DFA) with at most 2m states [24,
Theorem 8] and into an equivalent context-free grammar in Chomsky normal
form (CNF) with at most 2m + 1 nonterminals [24, Theorem 12]. In our con-
struction m gets multiplied by a small constant, but the advantage is that we
now see (the slightly weaker variants of) these results as easy corollaries of a
single underlying theorem. Indeed, using an indicator pair (P ′,P ′′) for L, it is
straightforward to construct a DFA of size |eval(P ′)| + |eval(P ′′)| accepting L,
as well as to transform the pair into a CFG in CNF that generates L and has at
most thrice the size of (P ′,P ′′).

Another result which follows, even more directly, from ours is a lower bound
on the size of udpda accepting a specific language L1 [24, Theorem 15]. To obtain
this lower bound, Pighizzini employs a known lower bound on the SLP-size of the
word W = W[0] . . .W[K − 1] ∈ {0, 1}K such that an ∈ L1 iff W[n mod K] = 1.
To this end, a udpda A accepting L1 is intersected (we are glossing over some
technicalities here) with a small deterministic finite automaton that “captures”
the end of the word W . The obtained udpda, which only accepts aK , is trans-
formed into an equivalent context-free grammar. It is then possible to use the
structure of the grammar to transform it into an SLP that produces W (note
that such a transformation in general is NP-hard). While the proof produces
from a udpda for L1 a related SLP with a polynomial blowup, this construc-
tion depends crucially on the structure of the language L1, so it is difficult to
generalize the argument to all udpda and thus obtain Theorem 1. Our proof of
Theorem 1 therefore follows a very different path.

Relationship to Presburger Arithmetic. An alternative way to prove the
upper bound in Theorem 5 is via Presburger arithmetic, using the observation
that there is a poly-time computable existential Presburger formula that ex-
presses the membership of a word an in L(¬A1) and L(A2). This technique

Unary Pushdown Automata and Straight-Line Programs 155

distills the arguments used by Huynh [13,14] to show that the compressed mem-
bership problem for unary pushdown automata is in NP. It is used in a purified
form by Plandowski and Rytter [25, Theorems 4 and 8], who developed a much
shorter proof of the same fact (apparently unaware of the previous proof). The
same idea was later rediscovered and used in a combination with Presburger
arithmetic by Verma, Seidl, and Schwentick [32, Theorem 4].

Yet another application of this technique provides an alternative proof of the
Π2P upper bound for unpda universality, equivalence, and inclusion (Theorem 6
and Corollary 1). Indeed, we can use the same approach as for inclusion of
udpda; the only difference is that there is no polynomial-time complementation,
so another level of quantifier alternation is introduced. The proof known to date,
due to Huynh [14], involves reproving Parikh’s theorem and is more than 10 pages
long. Reduction to Presburger formulae produces a much simpler proof.

Also, our Π2P-hardness result for unpda shows that the ↔bounded ⇔≥-fragment
of Presburger arithmetic is Π2P-complete, where the variable bound by the
universal quantifier is at most exponential in the size of the formula. The upper
bound holds because the ⇔≥-fragment is NP-complete, see von zur Gathen and
Sieveking [33]. In comparison, the ↔ ⇔≥-fragment, without restrictions on the

domain of the universally quantified variable, requires co-nondeterministic 2n
Ω(1)

time, see Grädel [10]. Previously known fragments that are complete for the
second level of the polynomial hierarchy involve alternation depth 3 and a fixed
number of quantifiers, as in Grädel [11] and Schöning [27]. Also note that the
↔s ⇔t-fragment is coNP-complete for all fixed s ≡ 1 and t ≡ 2, see Grädel [11].

Problems Involving Compressed Words. Recall Theorem 4: given two
SLPs, it is coNP-complete to compare the generated words componentwise with
respect to any partial order different from equality. As a corollary, we get tight
complexity bounds for SLP equivalence in the presence of wildcards or, equiva-
lently, compressed matching in the well-known model of partial words (see, e. g.,
Fischer and Paterson [6] and Berstel and Boasson [2]). Consider the problem
SLP-Partial-Word-Matching: the input is a pair of SLPs P1, P2 over the
alphabet {a, b, ?}, generating words of equal length, and the output is “yes” iff
for every i, 0 ⊆ i < |P1|, either P1[i] = P2[i] or at least one of P1[i] and P2[i]
is ? (a hole, or a single-character wildcard).

Schmidt-Schauß [26] defines a problem equivalent to SLP-Partial-Word-
Matching, along with another related problem, where one needs to find occur-
rences of eval(P1) in eval(P2) (as in pattern matching), P2 is known to contain no
holes, and two symbols match iff they are equal or at least one of them is a hole.
For this related problem, he develops a polynomial-time algorithm that finds (a
representation of) all matching occurrences and operates under the assumption
that the number of holes in eval(P1) is polynomial in the size of the input. He
also points out that no solution for (the general case of) SLP-Partial-Word-
Matching is known—unless a polynomial upper bound on the number of ?s in
eval(P1) and eval(P2) is given. Our next proposition shows that such a solution
is not possible unless P = NP. It is an easy consequence of Theorem 4.

156 D. Chistikov and R. Majumdar

Proposition 2. SLP-Partial-Word-Matching is coNP-complete.

Proof. Membership in coNP is obvious, and the hardness is by a reduction
from SLP-Componentwise-(0 ⊆ 1). Given a pair of SLPs P1, P2 over {0, 1},
substitute ? for 0 and a for 1 in P1, and b for 0 and ? for 1 in P2. The resulting
pair of SLPs over {a, b, ?} is a yes-instance of SLP-Partial-Word-Matching
iff the original pair is a yes-instance of SLP-Componentwise-(0 ⊆ 1). ⊇�
The wide class of compressed membership problems (deciding eval(P) ∈ L) is
first introduced in Plandowski and Rytter [25] and further studied and discussed
in, e. g., Jeż [16] and Lohrey [20]. In the case of words over the unary alphabet,
w ∈ {a}≥, expressing w with an SLP is poly-time equivalent to representing
it with its length |w| written in binary. An easy corollary of Theorem 2 is that
deciding w ∈ L(A), where A is a (not necessarily unary) deterministic pushdown
automaton and w = an with n given in binary, is P-complete.

Acknowledgements. We thank Rayna Dimitrova, Joshua Dunfield, Rose
Hoberman, Patrick Totzke, and the anonymous reviewers for comments.

References

1. Berman, P., Karpinski, M., Larmore, L.L., Plandowski, W., Rytter, W.: On the
complexity of pattern matching for highly compressed two-dimensional texts.
JCSS 65(2), 332–350 (2002)

2. Berstel, J., Boasson, L.: Partial words and a theorem of Fine and Wilf. TCS 218(1),
135–141 (1999)

3. Bertoni, A., Choffrut, C., Radicioni, R.: Literal shuffle of compressed words. In:
Ausiello, G., Karhumäki, J., Mauri, G., Ong, L. (eds.) IFIP TCS 2008. IFIP,
vol. 273, pp. 87–100. Springer, Boston (2008)

4. Böhm, S., Göller, S., Jančar, P.: Equivalence of deterministic one-counter automata
is NL-complete. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) STOC’13,
pp. 131–140. ACM (2013)

5. Caussinus, H., McKenzie, P., Thérien, D., Vollmer, H.: Nondeterministic NC1

computation. JCSS 57(2), 200–212 (1998)
6. Fischer, M.J., Paterson, M.S.: String-matching and other products. In: Karp, R.

(ed.) SIAM-AMS Proceedings, vol. 7, pp. 113–125. AMS (1974)
7. Ginsburg, S., Rice, H.G.: Two families of languages related to ALGOL. Journal of

the ACM 9(3), 350–371 (1962)
8. Glaßer, C., Herr, K., Reitwießner, C., Travers, S., Waldherr, M.: Equivalence prob-

lems for circuits over sets of natural numbers. Theory of Computing Systems 46(1),
80–103 (2010)

9. Goldschlager, L.M.: ε-productions in context-free grammars. Acta Informat-
ica 16(3), 303–308 (1981)

10. Grädel, E.: Dominoes and the complexity of subclasses of logical theories. Annals
of Pure and Applied Logic 43(1), 1–30 (1989)

11. Grädel, E.: Subclasses of Presburger arithmetic and the polynomial-time hierarchy.
TCS 56(3), 289–301 (1988)

12. Hunt III, H.B., Rosenkrantz, D.J., Szymanski, T.G.: On the equivalence, con-
tainment, and covering problems for the regular and context-free languages.
JCSS 12(2), 222–268 (1976)

Unary Pushdown Automata and Straight-Line Programs 157

13. Huynh, D.T.: Commutative grammars: the complexity of uniform word problems.
Information and Control 57, 21–39 (1983)

14. Huynh, D.T.: Deciding the inequivalence of context-free grammars with 1-letter
terminal alphabet is Σp

2 -complete. TCS 33(2-3), 305–326 (1984)
15. Jančar, P.: Decidability of DPDA language equivalence via first-order grammars.

In: LICS 2012, pp. 415–424. IEEE Computer Society (2012)
16. Jeż, A.: The complexity of compressed membership problems for finite automata.

Theory of Computing Systems, 1–34 (2013)
17. Jones, N.D., Laaser, W.T.: Complete problems for deterministic polynomial time.

TCS 3(2), 105–117 (1976)
18. Kopczyński, E., To, A.W.: Parikh images of grammars: complexity and applica-

tions. In: LICS 2010, pp. 80–89. IEEE Computer Society (2010)
19. Lifshits, Y., Lohrey, M.: Querying and embedding compressed texts. In: Královič,

R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 681–692. Springer,
Heidelberg (2006)

20. Lohrey, M.: Algorithmics on SLP-compressed strings: a survey. Groups Complexity
Cryptology 4(2), 241–299 (2012)

21. Lohrey, M.: Leaf languages and string compression. Information and Computa-
tion 209(6), 951–965 (2011)

22. Lohrey, M.: Word problems and membership problems on compressed words. SIAM
Journal on Computing 35(5), 1210–1240 (2006)

23. McKenzie, P., Wagner, K.W.: The complexity of membership problems for circuits
over sets of natural numbers. Computational Complexity 16(3), 211–244 (2007)

24. Pighizzini, G.: Deterministic pushdown automata and unary languages. Interna-
tional Journal of Foundations of Computer Science 20(4), 629–645 (2009)

25. Plandowski, W., Rytter, W.: Complexity of language recognition problems for com-
pressed words. In: Karhumäki, J., Maurer, H., Păun, G., Rozenberg, G. (eds.)
Jewels are Forever, pp. 262–272. Springer (1999)

26. Schmidt-Schauß, M.: Matching of compressed patterns with character variables.
In: Tiwari, A. (ed.) RTA 2012. LIPIcs, vol. 15, pp. 272–287. Dagstuhl (2012)

27. Schöning, U.: Complexity of Presburger arithmetic with fixed quantifier dimension.
Theory of Computing Systems 30(4), 423–428 (1997)

28. Sénizergues, G.: L(A) = L(B)? A simplified decidability proof. TCS 281(1-2),
555–608 (2002)

29. Stirling, C.: Deciding DPDA equivalence is primitive recursive. In: Widmayer, P.,
Eidenbenz, S., Triguero, F., Morales, L., Conejo, R., Hennessy, M. (eds.) ICALP
2002. LNCS, vol. 2380, pp. 821–832. Springer, Heidelberg (2002)

30. Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time: Pre-
liminary report. In: STOC 1973, pp. 1–9. ACM (1973)

31. Valiant, L.: Decision procedures for families of deterministic pushdown automata.
PhD thesis. University of Warwick (1973)

32. Verma, K.N., Seidl, H., Schwentick, T.: On the complexity of equational Horn
clauses. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632,
pp. 337–352. Springer, Heidelberg (2005)

33. Von zur Gathen, J., Sieveking, M.: A bound on solutions of linear integer equalities
and inequalities. Proceedings of the AMS 72(1), 155–158 (1978)

Robustness against Power is PSpace-complete�

Egor Derevenetc1,2 and Roland Meyer2

1 Fraunhofer ITWM, Germany
2 University of Kaiserslautern, Germany

Abstract. Power is a RISC architecture developed by IBM, Freescale,
and several other companies and implemented in a series of POWER
processors. The architecture features a relaxed memory model provid-
ing very weak guarantees with respect to the ordering and atomicity of
memory accesses.

Due to these weaknesses, some programs that are correct under sequen-
tial consistency (SC) show undesirable effects when run under Power. We
say that these programs are not robust against the Power memory model.
Formally, a program is robust if every computation under Power has the
same data and control dependencies as some SC computation.

Our contribution is a decision procedure for robustness of concurrent
programs against the Power memory model. It is based on three ideas.
First, we reformulate robustness in terms of the acyclicity of a happens-
before relation. Second, we prove that among the computations with
cyclic happens-before relation there is one in a certain normal form.
Finally, we reduce the existence of such a normal-form computation to a
language emptiness problem. Altogether, this yields a PSpace algorithm
for checking robustness against Power. We complement it by a matching
lower bound to show PSpace-completeness.

1 Introduction

To execute code as fast as possible, modern processors reorder operations. For
example, Intel x86/x86-64 and SPARC processors implement the Total Store Or-
dering (TSO) memory model [14] which allows write buffering: store operations
in each thread can be queued and get executed on memory later. Processors
can also execute independent instructions out of program order as soon as the
input data and computational units are available for them. This is an inherent
feature of the POWER and ARM microprocessors [13]. Moreover, Power and
ARM memory models, unlike TSO, do not guarantee store atomicity: one write
can become visible to different threads at different times. They only ensure that
all threads see stores to the same memory location in the same order; stores to
different memory locations can be seen in different order by different threads.

All these optimizations are usually designed so that a single-threaded program
has the illusion that its instructions are executed in program order. The picture
changes in the presence of concurrency. Concurrent programs are often assumed
to have sequentially consistent (SC) semantics [11]: each thread executes its

ω The full version of this paper is available online [9].

J. Esparza et al. (Eds.): ICALP 2014, Part II, LNCS 8573, pp. 158–170, 2014.
c∗ Springer-Verlag Berlin Heidelberg 2014

Robustness against Power is PSpace-complete 159

Thread 1 Thread 2

a : mem[&x] ← 1 c : r1 ← mem[&y]

b : mem[&y] ← 1 d : r2 ← mem[&x]

Fig. 1. Message Passing (MP) program [15]. By &x and &y we denote the addresses of
the variables x and y. Initially, x = y = 0. The first thread writes a message into x and
sets flag variable y, signifying that the message is written. The second thread reads the
flag and, if it is set, expects to see the message written to x by the first thread.

operations in program order, stores become visible immediately to all threads.
Concurrent programs may observe a difference from SC when run on a modern
processor with a weak memory model. To see this, consider the MP program
in Figure 1. SC and TSO forbid the situation where r1 > r2 upon termination
of both threads. However, this is possible on Power: instruction c can read the
value written by b, whereas d reads the initial value.

We call a program not robust against Power [16,6,7,2,5,8,4], if it exhibits non-
SC behaviors when executed under the Power memory model. More formally, a
program is robust if all its Power computations have the same data and control
dependencies as the computations under SC. That is, for every Power compu-
tation there is a sequentially consistent computation which executes the same
instructions, all loads read from the same stores in both computations, and stores
to the same address happen in the same order. Robust programs produce the
same results on Power and SC architectures, which means verification results for
SC remain valid for the weak memory model.

We present an algorithm for deciding robustness against Power. This is the
first decidability result for this architecture and, more generally, the first decid-
ability result for a non-store-atomic memory model. We obtain the algorithm
in the following steps. First, we reformulate robustness in terms of acyclicity of
happens-before, using the result by Shasha and Snir [16]. Second, we show that
among the computations with cyclic happens-before relation there is always one
in a certain normal form. Next, we prove that the set of all normal-form compu-
tations can be generated by a multiheaded automaton — an automaton model
developed recently in the context of robustness [8]. Finally, to check cyclicity of
the happens-before relation we intersect this automaton with regular languages.
The program is robust iff the intersection is empty. This reduces robustness to
language emptiness for multiheaded automata. The algorithm works in space
polynomial in the size of the program. We obtain a matching lower bound by a
reduction of SC-reachability to robustness, similar to [5].

Related Work. The happens-before relation was formulated by Lamport [10].
Shasha and Snir [16] have shown that a computation violates sequential consis-
tency iff it has a cyclic happens-before relation. Burckhardt and Musuvathi [6]
proposed the first algorithm for detecting non-robustness against TSO based on
monitoring SC computations. Burnim et al. [7] pointed out a mistake in the def-
inition of TSO used in [6] and described monitoring algorithms for the TSO and

160 E. Derevenetc and R. Meyer

PSO memory models. Alglave and Maranget [2] presented a tool to statically
over-approximate happens-before cycles in programs written in x86 and Power
assembly, and to insert synchronization primitives (memory fences and syncs)
as required for robustness (called stability in their work). Bouajjani et al. [5]
obtained the first decidability result for robustness: robustness against TSO is
PSpace-complete for finite-state programs. In [4] they presented a reduction of
robustness against TSO to SC reachability working for general programs and an
algorithm for optimal fence insertion.

The Power architecture has attracted considerable recent attention. Alglave
et al. [3] give an overview of the numerous publications devoted to defining its
semantics. We highlight two Power models: the operational model by Sarkar
et al. [15] and the axiomatic one by Mador-Haim et al. [12]. These models were
extensively tested against the architecture and were proven to be equivalent [12].
Nevertheless, the operational model is known to forbid certain behaviors that are
possible on real hardware1 and in the axiomatic model2 [3]. Fortunately, there
is a suggestion for a fix: in Section 4.5 of [15] one should read from a coherence-
order-earlier write instead of from a different write (two occurrences). Then,
the operational model is believed to tightly over-approximate Power [1]. In the
present paper we stick to the corrected operational model from [15].

Finally, we would like to note that ARM has a memory model very similar to
that of Power. The differences and similarities are highlighted by Maranget et
al. in [13,3]. This fact promises a relatively easy transfer of the proof techniques
used in the present paper to the ARM memory model.

2 Programming Model

We define programs and their semantics in terms of automata. An automaton
is a tuple A = (S,Σ,ε, s0, F), where S is a set of states, Σ is an alphabet,
ε ∈ S×(Σ≡{Ω})×S is a set of transitions, s0 ⊆ S is an initial state, and F ∈ S
is a set of final states. We call the automaton finite if S and Σ are finite. We write
s1

a−↔ s2 if t = (s1, a, s2) ⊆ ε and denote src(t) := s1, dst(t) := s2, lab(t) := a.

The language of the automaton is L(A) := {δ ⊆ Σ∗ | s0 σ−↔ s for some s ⊆ F}.
For a sequence δ = a1 . . . an ⊆ Σ∗ we define |δ| := n, δ[i] := ai, first(δ) := a1,
and last(δ) := an. We use · for concatenation,⇔for projection, and Ω for the empty
sequence. Given π ⊆ Σ∗ and a, b ⊆ π, we write a <α b if π = π1 · a · π2 · b · π3.
Given a function f : X ↔ Y , x≥ ⊆ X , and y≥ ⊆ Y , we define f ≥ = f [x≥ ⊂ψ y≥] by
f ≥(x) := f(x) for x ⊆ X \ {x≥} and f ≥(x≥) := y≥.

A program is a finite sequence of threads: P = T1 . . . Tn. A thread is an
automaton Ttid = (Qtid,CMD, Itid, q0tid, Qtid) with a finite set of control states
Qtid, all of them being final, initial state q0tid, and a set of transitions Itid called
instructions and labeled with commands CMD defined below. Each thread has
an id from TID := [1..|P|].

1 http://diy.inria.fr/cats/pldi-power/#lessvs
2 http://diy.inria.fr/cats/cav-power/

http://diy.inria.fr/cats/pldi-power/#lessvs
http://diy.inria.fr/cats/cav-power/

Robustness against Power is PSpace-complete 161

Let DOM = ADDR be a finite domain of values and addresses containing the
value 0. Let REG be a finite set of registers that take values from DOM. Commands
CMD include loads, stores, local assignments, and conditionals (assume): The set

≥cmd⇒ ::= ≥reg⇒ ⊂ mem[≥expr⇒] | mem[≥expr⇒] ⊂ ≥expr⇒
| ≥reg⇒ ⊂ ≥expr⇒ | assume(≥expr⇒)

of expressions EXPR is defined over constants from DOM, registers from REG, and
(unspecified) functions FUN over DOM ≡ {◦}. We assume that these functions
return ◦ iff any of the arguments is ◦.

2.1 Power Semantics

We briefly recall the corrected model from [15]. The state of a running program
consists of the runtime states of threads and the state of a storage subsystem.

The runtime state of a thread includes information about the instructions be-
ing executed by the thread. In order to start executing an instruction, the thread
must fetch it. The thread can fetch any instruction whose source control state is
equal to the destination state of the last fetched instruction. Then, the thread
must perform any computation required by the semantics of this instruction.
For example, for a load the thread must compute the address being accessed,
then read the value at this address, and place it into the target register. The
last step of executing an instruction is committing it. Committing an instruction
requires committing all its dependencies. For example, before committing a load
the thread must commit all its address dependencies — the instructions which
define the values of registers used in the address expression — and control depen-
dencies — the program-order-earlier (fetched earlier than the load) conditional
instructions. Moreover, all loads and stores accessing the same address must be
committed in the order in which they were fetched.

The storage subsystem keeps track, for each address, of the global ordering
of stores to this address — the coherence order — and the last store to this
address propagated to each thread. When a thread commits a store, this store is
assigned a position in the coherence order which we identify by a rational number
— the coherence key. We choose rational numbers (rather than naturals) to be
able to insert a store between any two stores in the coherence order. The key
must be greater than the coherence key of the last store to the same address
propagated to this thread. The committed store is immediately propagated to
its own thread. At some point later this store can be propagated to any other
thread, as long as it is coherence-order-later (has a greater coherence key) than
the last store to the same address propagated to that thread. When a thread
loads a value from a certain address, it gets the value written by the last store
to this address propagated to the thread. A thread can also forward the value
being written by a not yet committed store to a later load reading the same
address. This situation is called an early read.

An important property of Power is that it maintains the illusion of sequen-
tial consistency for single-threaded programs. This means that reorderings on

162 E. Derevenetc and R. Meyer

the thread level must not lead to situations when, e.g., a program-order-later
load reads a coherence-order-earlier store than the one read by a program-order-
earlier load from the same address. In [15] these restrictions are enforced by the
mechanism of restarting operations. We put these conditions into the require-
ments on final states of the running program instead.

To keep the paper readable, we omit the description of Power synchroniza-
tion instructions: sync, lwsync, isync. All constructions in the paper can be
consistently extended to support them with the final result continuing to hold.

Formally, we define the semantics of program P on Power by a Power au-
tomaton Z(P) := (SZ ,E, εZ , s0Z , FZ). Here, E is a set of labels called events
that we define together with the transitions.

State Space. A state of the Power automaton is a pair sZ = (ts, sY) ⊆ SZ with
runtime thread states ts : TID ↔ SX and storage subsystem state sY ⊆ SY .

A runtime thread state sX = (fetched, committed, loaded) ⊆ SX includes a
finite sequence of fetched instructions fetched ⊆ I∗, a set of indices of committed
instructions committed ∈ [1..|fetched|], and a function giving the store read by
a load loaded : [1..|fetched|] ↔ {◦}≡ {inita | a ⊆ ADDR} ≡TID×N. We use inita
to denote the initial store of value 0 to address a. The initial state of a running
thread is s0X := (Ω, ≤, φi.◦).

A state of the storage subsystem sY = (co, prop) ⊆ SY includes a mapping
from a store instruction (its thread id and index in the list of fetched instructions)
to its position in the coherence order co : TID × N ≡ {inita | a ⊆ ADDR} ↔ Q,
and a mapping from a thread id and an address to the last store to this address
propagated to this thread prop : TID× ADDR ↔ {inita | a ⊆ ADDR} ≡ TID× N.
The initial state of the storage subsystem is s0Y := (φtid.φi.0, φtid.φa.inita).

The initial state of automaton Z(P) is s0Z := (φtid.s0X , s0Y).

Transition Relation. Fix a state sZ = (ts, sY) with sY = (co, prop) and a
thread id tid ⊆ TID with runtime state ts(tid) = (fetched, committed, loaded).

Let eval(tid, i, e) return the value in DOM of expression e in the i’th fetched
instruction of thread tid, or ◦ when the value is undefined. Let addr(tid, i) and
val(tid, i) return the values of the address and value arguments of the i’th fetched
instruction of thread tid. We use the special value → if the instruction has no such
arguments. The expressions addrdep(tid, i), datadep(tid, i), ctrldep(tid, i) denote
the sets of indices of instructions in thread tid being respectively address, data,
and control dependencies of the i’th instruction.

Let Ttid = (Qtid,CMD, Itid, q0tid, Qtid) ⊆ P . The transition relation εZ is the
smallest relation defined by the rules below:

POW-FETCH. Consider instr ⊆ Itid with src(instr) = dst(last(fetched)) or
src(instr) = q0tid if fetched = Ω, then:

(ts, sY)
(fetch,tid,instr)−−−−−−−−−↔ (ts[tid ⊂ψ (fetched · instr, committed, loaded)], sY).

POW-LOAD. If fetched[i] is a load, loaded[i] = ◦, a = addr(tid, i) ∅= ◦, then:

(ts, sY)
(load,tid,i,a)−−−−−−−→ (ts[tid ←ω (fetched, committed, loaded[i ←ω prop(tid, a)])], sY).

Robustness against Power is PSpace-complete 163

POW-EARLY. Let fetched[i] be a load, loaded[i] = ◦, and a = addr(tid, i) ∅=
◦. Let i≥ ⊆ [1..i−1] be the greatest index such that fetched[i≥] is a store with
a≥ = addr(tid, i≥) ⊆ {a,◦}. If a≥ ∅= ◦, val(tid, i≥) ∅= ◦, i≥ ∅⊆ committed, then:

(ts, sY)
(load,tid,i,a)−−−−−−−↔ (ts[tid ⊂ψ (fetched, committed, loaded[i ⊂ψ (tid, i≥)])], sY).

POW-COMMIT. Consider i ⊆ [1..|fetched|]\committed where fetched[i] is not
a store. Assume addrdep(tid, i)≡ datadep(tid, i)≡ ctrldep(tid, i) ∈ committed.
Assume a = addr(tid, i) ∅= ◦, v = val(tid, i) ∅= ◦. If a ∅= →, assume {i≥ ⊆
[1..i − 1] | addr(tid, i≥) ⊆ {a,◦}} ∈ committed. In case fetched[i] is a load,
assume loaded[i] ∅= ◦. In case fetched[i] is an assume(), assume v ∅= 0. Then:

(ts, sY)
(commit,tid,i)−−−−−−−−↔ (ts[tid ⊂ψ (fetched, committed ≡ {i}, loaded)], sY).

POW-STORE. Assume all the preconditions from the previous rule hold, but
fetched[i] is a store. Choose a coherence key k ⊆ Q such that there is no
tid≥ ⊆ TID, i≥ ⊆ N for which co(tid≥, i≥) = k. Then:

(ts, sY)
(commit,tid,i,k,a)−−−−−−−−−−↔ (ts[tid ⊂ψ (fetched, committed ≡ {i}, loaded)], s≥Y),

where s≥Y := (co[(tid, i) ⊂ψ k], prop).

Additionally, this transition is immediately followed by a POW-PROP tran-
sition propagating the store to the thread where it was committed.

POW-PROP. Consider tid≥ ⊆ TID, i≥ ⊆ N with co(tid≥, i≥) ∅= ◦. Let a =
addr(tid≥, i≥). Assume co(prop(tid, a)) < co(tid≥, i≥). Then:

(ts, sY)
(prop,tid,tid′,i′,a)−−−−−−−−−−↔ (ts, (co, prop[(tid, a) ⊂ψ (tid≥, i≥)])).

Final States. The set of final states FZ ∈ SZ consists of all states sZ =
(ts, (co, prop)) ⊆ SZ , such that for each tid ⊆ TID, ts[tid] = (fetched, committed,
loaded) the following holds:

FIN-COMM. All instructions are committed: committed = [1..|fetched|].
FIN-LD. Loads agree with the coherence order. Let fetched[i] be a load, and

fetched[i≥] be an earlier load to the same address: i≥ < i, addr(tid, i) =
addr(tid, i≥). Then co(loaded[i≥]) ⊇ co(loaded[i]).

FIN-LD-ST. Loads and stores in the same thread agree with the coherence
order. Let fetched[i] be a load, let fetched[i≥] be an earlier store to the same
address: i≥ < i, addr(tid, i) = addr(tid, i≥). Then co(tid, i≥) ⊇ co(loaded[i]).

The set of all Power computations of program P is Cpower(P) := L(Z(P)). The
set of all SC computations of the program Csc(P) ∈ Cpower(P) includes only
those computations where each instruction is executed atomically, and stores
are immediately propagated to all threads.

Example 1. δMP = fetch(a)·commit(a)·prop(a, 1)·fetch(b)·commit(b)·prop(b, 1)·
prop(b, 2) · fetch(c) · fetch(d) · load(c) · load(d) · commit(d) · commit(c) is a feasible
Power computation of program MP in Figure 1 (we simplified the events by re-
moving information unimportant for this example). Load c reads value 1 written
by store b, because b is propagated to thread 2 before the load(c) event. Store a
is never propagated to thread 2, consequently, d reads the initial value 0.

164 E. Derevenetc and R. Meyer

3 Robustness

Intuitively, a trace T (δ) abstracts a program computation δ to the dataflow
and control-flow relations between instructions. Formally, the trace of δ is a
directed graph T (δ) := (V,↔po,↔co,↔src,↔cf) with nodes V and four kinds
of arcs. The nodes are instructions together with their thread identifiers and
fetch indices (in order to distinguish instructions executed in different threads
and the same instruction executed multiple times in the same thread): V ∈
{inita | a ⊆ ADDR} ≡ ⋃

tid∈TID{tid} × N × Itid. The program order ↔po is the
order in which instructions were fetched in each thread. The coherence order ↔co

gives the global ordering of stores to each address. The source order ↔src shows
the store from which a load took its value. The conflict order ↔cf shows, for a
load, the stores to the same address following the store the load took its value
from. We define the happens-before relation as ↔hb := ↔po ≡↔co≡↔src≡↔cf .

We also need address ↔addr and data ↔data dependence relations (defined as
expected based on addrdep and datadep). Since ↔po includes all the information
from the fetched component of a thread state, ↔addr and ↔data can be recon-
structed from ↔po by inspecting the instructions labeling the nodes. They are
therefore not included in the trace explicitly.

The robustness problem is, given a program P , to check whether the set of all
traces under Power is a subset of all traces under SC: Tpower(P) ∈ Tsc(P), where
Tmm(P) := {T (δ) | δ ⊆ Cmm(P)} for mm ⊆ {power, sc}.

Shasha and Snir have shown that a trace belongs to an SC computation iff
its happens-before relation is acyclic:

Lemma 1 ([16]). A program P is robust against Power iff there is no trace
T ⊆ Tpower(P) with cyclic ↔hb.

Example 2. The trace of computation δMP (Figure 2) has a cyclic happens-
before relation. By Lemma 1, this means that the program is not robust. Indeed,
in no SC computation load d can read 0 whereas c has read 1.

Thread 1 Thread 2

init&x a : mem[&x] ← 1 d : r2 ← mem[&x]

init&y b : mem[&y] ← 1 c : r1 ← mem[&y]

po po
src

cf

src

co

co

Fig. 2. Trace of computation λMP from Example 1

4 Normal-Form Computations

We say that a computation α ⊆ Cpower(P) is in normal form of degree n if there
is a partitioning α = α1 · · · αn, such that

NF-A (α2 · · · αn)⇔ fetch = Ω.
NF-B For j ⊆ {1, 2} let ej , e≥j be events related to instruction (tidj , ij). If

e1, e2 ⊆ αs and e≥1, e
≥
2 ⊆ αs′ , then e1 <τs e2 iff e≥1 <τs′ e

≥
2.

Robustness against Power is PSpace-complete 165

With NF-A, all fetch events occur in α1. With NF-B, the different parts of the
computation have the same ordering of related events. In the rest of this section
we prove the following theorem:

Theorem 1. A program is robust iff it has no normal-form computation of de-
gree |P| + 3 with cyclic happens-before relation.

Consider δ ⊆ Cmm(P). By δ \ (tid, i) we denote the computation obtained
from δ by deleting all events related to the i’th fetched instruction in thread tid.

Lemma 2. Consider a non-empty computation δ ⊆ Cpower(P). Then there is a
(tidx, ix), such that δ≥ = δ \ (tidx, ix) satisfies |δ≥| < |δ| and δ≥ ⊆ Cpower(P).

Proof. Consider the last fetched instruction in each thread. If among such in-
structions there is a non-store instruction, delete it: its result cannot be used by
any other instruction. If all these instructions are stores, delete the one, on which
(1) no load or store depends via (↔src ≡↔data)+ · ↔addr, and (2) no condition
depends via (↔src ≡↔data)+.

Towards a contradiction, assume there is no such store. Consider the last
fetched (store) instruction in a thread tid1: (tid1, i1). Case 1: there is a load or a
store (tid2, i

≥
2) whose address depends on (tid1, i1). Case 2: there is a condition

(tid2, i
≥
2) whose value depends on (tid1, i1). Consider the last fetched instruction

in thread tid2: (tid2, i2). It must be a store, and it must have been committed after
(tid1, i1): a store can only be committed after all loads and stores fetched before
it have their addresses determined (Case 1) and after all preceding conditions
are committed (Case 2).

Continuing the reasoning, for any last fetched instruction in a thread (tidj , ij)
there is a last instruction in a different thread (tidj+1, ij+1) which must have
been committed later. Taking into account finiteness of the number of threads,
we get a contradiction. �∪

Fix a program P . Consider a shortest Power computation π ⊆ Cpower(P)
with cyclic ↔hb. Let (tidx, ix) be the instruction determined by Lemma 2. Let
π := π1 · x1 · π2 · x2 · · ·πn, where {x1 . . . xn−1} are the events related to the
ix’th instruction fetched in thread tidx. Then π \ (tidx, ix) := π≥ := π1 · π2 · · ·πn.
Since π≥ is shorter than π, its ↔hb is acyclic. Therefore, there is a computation
β ⊆ Csc(P) with T (β) = T (π≥).

The computations β and π≥ consist of the same fetch, load, and commit events:
fetch events are determined by ↔po; address component a of load and store
commit events is determined by ↔addr, ↔data (derivable from ↔po), and ↔src;
since ↔co is the same for both computations, we can assume that matching
store commit events have the same value of coherence key k. Notably, β can
have more propagate events than π≥ as the Power semantics does not guarantee
that all stores are propagated to all threads. Now we reorder the events in
each part πj of π in the way they follow in β. This gives the computation
Δ := β ⇔π1 · x1 · β ⇔π2 · x2 · · ·β ⇔πn.

Lemma 3. Δ ⊆ Cpower(P) and T (Δ) = T (π).

166 E. Derevenetc and R. Meyer

Wlog we may assume that all fetch events of π are located within π1 ·x1: every
thread can always first fetch all instructions and in the rest of the computation
only execute them; such a reordering does not change the trace. Also, note that
the maximal number of events an instruction can generate is |P|+2. This bound
is achieved by a store that is fetched, committed, and propagated to all threads.
Then the following lemma holds; together with Lemma 1 it proves Theorem 1.

Lemma 4. Computation Δ is in normal form of degree |P| + 3.

Example 3. Consider π := fetch(c) · fetch(d) · fetch(a) ·����fetch(b) · commit(a) ·
prop(a, 1) ·�����commit(b) ·�����prop(b, 1)·�����prop(b, 2)· load(c) · load(d) ·commit(d) ·commit(c),
which is δMP with fetch events moved to the front. We cancel the xi events
(crossed out) related to store instruction b, as b is the last instruction of thread 1
and no address depends on it (we could also cancel the events of d instead).
Therefore, π1 := fetch(c) · fetch(d) · fetch(a), π2 := commit(a) · prop(a, 1), π3 :=
π4 := Ω, π5 := load(c)· load(d)·commit(d)·commit(c), and π≥ := π1 ·π2 ·π3 ·π4 ·π5.
The trace of π≥ is the trace of π (Figure 2) with node b and adjacent arcs re-
moved, and a source arc from inity to c added. The SC computation with the
same trace is β := fetch(c) · load(c) · commit(c) · fetch(d) · load(d) · commit(d) ·
fetch(a) · commit(a) · prop(a, 1) · prop(a, 2). The normal-form computation is
Δ := β ⇔π1 · x1 · · ·β ⇔π5 = (fetch(c) · fetch(d) · fetch(a)) · fetch(b) · (commit(a) ·
prop(a, 1))·commit(b)·prop(b, 1)·prop(b, 2)·(load(c)·commit(c)·load(d)·commit(d)).
It is feasible and has the same trace as π and δMP (Figure 2).

5 From Normal-Form Computations to Emptiness

We now reduce robustness to language emptiness. First, we define a multiheaded
automaton capable of generating all normal-form computations of a program.
Next, we intersect it with regular languages that check cyclicity of the happens-
before relation. Altogether, the program is robust iff the intersection is empty.

5.1 Generating Normal-Form Computations

To generate all normal-form computations, we use multiheaded automata [8].
A multiheaded automaton generates a computation δ1 . . . δn by simultaneously
generating its parts δi. The automaton has a head for each part, and transitions
define the head producing an event. Formally, an n-headed automaton over Σ
is an automaton over an extended alphabet: A = (S, [1..n] × Σ,ε, s0, F). The

language is L(A) := {second(δ ⇔ ({1} × Σ) · · ·δ ⇔ ({n} × Σ)) | s0
σ−↔ s ⊆ F},

where second((a1, b1) · · · (am, bm)) := b1 · · · bm. Multiheaded automata are closed
under regular intersection, and language emptiness is NL-complete [8].

We generate all normal-form computations of program P with the n-headed
automaton M(P) := (SM ,E, εM , s0M , FM), where n := |P|+3. The automaton
generates all events related to a single instruction in one shot, but, possibly, in
different parts of the computation. All fetch events are generated in the first
part. To generate them, the automaton stores the destination state of the last
fetched instruction in each thread (component ctrl-state of the automaton state).

Each instruction can only read the last value written to a register. There-
fore, the automaton only needs to remember |REG| register values per thread

Robustness against Power is PSpace-complete 167

(component reg-value). However, an instruction cannot be executed until the
values of all registers that it reads become known. To obey this restriction,
the automaton memorizes the part of the computation in which the register
value gets computed (reg-comp-head). For example, while handling an assign-
ment r1 ⊂ r1 + r2, the automaton learns that the new value of r1 is the sum of
the current values of r1 and r2. It also remembers that this value is available no
earlier than the current values of r1 and r2 are computed. Similarly, the automa-
ton remembers the parts of the computation in which the addresses of load and
store instructions become known (addr-comp-head), and certain kinds of instruc-
tions get committed (reg-comm-head, assume-comm-head, addr-comm-head).

The automaton has to keep a separate memory state for each thread and for
each part of the computation. The memory state of a thread in a part is updated
when a store instruction gets propagated to this thread in this part. When a load
instruction is handled, the automaton chooses a part where the load event takes
place and uses the memory state of that part. Besides the memory valuation
(mem-value), the memory state includes coherence keys (last-key) to guarantee
that the generated computation respects the coherence order.

When starting the computation, the automaton non-deterministically guesses
the memory valuations and coherence keys for all parts of the computation
(except the first one). Upon termination, the automaton checks that the parts
of the computation generated by each head fit together at the concatenation
points. This ensures the overall computation is valid for the program. The trick
is to remember the guess of the initial memory valuations and coherence keys
in immutable components of the automaton state (mem-valueg, last-keyg). The
final states require that the current memory state in part h of the computation
coincides with the guessed initial state in part h + 1.

We now formally define the transition rules for assignments and loads. The
remaining rules are given in [9]. Fix a state sM and consider a thread tid ⊆ TID

in control state ctrl-state(tid) = q1 and an instruction instr = q1
cmd−−↔ q2 ⊆ Itid.

The automaton uses three indices from HEAD := [1..n]. Index h1 := 1 denotes
the part where the automaton generates fetch events. Index h2 ⊆ HEAD refers
to the part in which the computation of the instruction takes place. There
are constraints on this index. The instruction has to be fetched, h2 ∩ h1, and
the computation can only complete when the value of each register r read in
cmd has been computed: h2 ∩ reg-comp-head(tid, r). Finally, index h3 ⊆ HEAD
determines the part of the computation where the instruction is committed.
An instruction has to be computed to be committed: h3 ∩ h2. Moreover, the
last assignment to each register r read in cmd has to be committed before
cmd can be committed itself: h3 ∩ reg-comm-head(tid, r). The instruction
count is incremented with each instruction: let i := instr-count(tid) + 1, then
instr-count≥ := instr-count[tid ⊂ψ i]. We use primed variables for the new values
of state components. We overload eval(tid, e) to mean the value of expression e
for the valuation of registers defined by φr.reg-value(tid, r).

168 E. Derevenetc and R. Meyer

MH-ASSIGN. For an assignment cmd = r ⊂ ev, let v := eval(tid, ev)
be the value. We update the register reg-value≥ := reg-value[(tid, r) ⊂ψ v]
and store the part in which the value has been computed reg-comp-head≥ :=
reg-comp-head[(tid, r) ⊂ψ h2]. We also keep the part where it has been committed
reg-comm-head≥ := reg-comm-head[(tid, r) ⊂ψ h3]. The transition is labeled by
φ := (h1, fetch, tid, instr) · (h3, commit, tid, i), which means it is actually decom-
posed into two transitions.

MH-LOAD. Let cmd = r ⊂ mem[ea] and a := eval(tid, ea). All preceding
accesses to this address have to be committed before the load can be com-
mitted: h3 ∩ addr-comm-head(tid, a). The value stems either from memory or
from an early read. In the former case, we check that there are no pending
stores early-mem-value(tid, a) = ◦ and set v := mem-value(tid, a, h2). In the
latter case, we find a pending store and make sure there is no later store
with an undetermined address: v := early-mem-value(tid, a, h2) with v ∅= →.
We modify the register information as for assignments. We update the index
of the leftmost part of the computation where all addresses are determined:
addr-comp-head≥ := addr-comp-head[tid ⊂ψ max{addr-comp-head(tid), h2}]. We
also remember the position of the last commit to the current address:
addr-comm-head≥ := addr-comm-head[(tid, a) ⊂ψ h3]. The transition label is
φ := (h1, fetch, tid, instr) · (h2, load, tid, i, a) · (h3, commit, tid, i).

The set of final states FM consists of all states with mem-value(tid, a, h) =
mem-valueg(tid, a, h + 1) and last-key(tid, a, h) = last-keyg(tid, a, h + 1).

Lemma 5. {α ⊆ Cpower(P) | α is in normal form of degree n} ∈ L(M(P)) and
L(M(P)) ∈ Cpower(P).

5.2 Checking Cyclicity of the Happens-Before Relation

We call a happens-before cycle beautiful, if it has the following form:

(tid1, i1, instr1)↔po
∗(tid1, i

≥
1, instr

≥
1)↔hop . . .

↔hop(tidn, in, instrn)↔po
∗(tidn, i

≥
n, instr

≥
n)↔hop(tid1, i1, instr1).

Here, ↔hop := (↔co ≡ ↔src ≡ ↔cf) and tidk ∅= tidl for k ∅= l. We call Θ :=
tid1 . . . tidn the profile of the cycle.

Example 4. The happens-before cycle shown in Figure 2 is beautiful.

Lemma 6 ([8]). A computation α ⊆ Cpower(P) has a happens-before cycle iff it
has a beautiful happens-before cycle.

Given a cycle profile Θ, we define the automaton M ≥(P , Θ) as a modification
of M(P) that marks one event in each thread tidj ⊆ Θ with enter (identifying
(tidj , ij, ⊕)) and a later (or the same) event with leave (identifying (tidj , i

≥
j, ⊕),

ij ⊇ i≥j). Note that M(P) generates the events in program order, which ensures
(tidj , ij, ⊕)↔po

∗(tidj , i
≥
j , ⊕). To check (tidj , i

≥
j, ⊕)↔hop(tidj+1, ij+1, ⊕), we use an

intersection with a regular language H tidj ,tidj+1 .

Robustness against Power is PSpace-complete 169

Lemma 7. Program P has a beautiful cycle with profile Θ = tid1 . . . tidn iff

M ≥(P , Θ) ∩H tid1,tid2 ∩ . . . ∩H tidn,tid1 ∅= ≤.

Automaton M(P) is infinite-state. To ensure M ≥(P , Θ) has finitely many states,
we note that the instruction indices are irrelevant for the detection of happens-
before cycles (instr-count can be dropped), and that the number of different
coherence keys that must be stored in the state at any moment is polynomial in
the size of P . Together with the observation that emptiness is in NL, we obtain
a PSpace upper bound for robustness. The lower bound is by a reduction of
SC-reachability similar to [5].

Theorem 2. Robustness against Power is PSpace-complete.

Acknowledgements. The authors thank Parosh Aziz Abdulla, Jade Alglave,
Mohamed Faouzi Atig, Ahmed Bouajjani, and Carl Leonardsson for helpful dis-
cussions on Power and the reviewers for suggestions on the presentation. The
authors were supported by Fraunhofer ITWM and the DFG project R2M2.

References

1. Alglave, J.: Personal communication (October 2013)

2. Alglave, J., Maranget, L.: Stability in weak memory models. In: Gopalakrishnan,
G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 50–66. Springer, Heidelberg
(2011)

3. Alglave, J., Maranget, L., Tautschnig, M.: Herding cats. ACM TOPLAS (to appear,
2014)

4. Bouajjani, A., Derevenetc, E., Meyer, R.: Checking and enforcing robustness
against TSO. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792,
pp. 533–553. Springer, Heidelberg (2013)

5. Bouajjani, A., Meyer, R., Möhlmann, E.: Deciding robustness against total store
ordering. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS,
vol. 6756, pp. 428–440. Springer, Heidelberg (2011)

6. Burckhardt, S., Musuvathi, M.: Effective program verification for relaxed memory
models. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 107–120.
Springer, Heidelberg (2008)

7. Burnim, J., Sen, K., Stergiou, C.: Sound and complete monitoring of sequential
consistency for relaxed memory models. In: Abdulla, P.A., Leino, K.R.M. (eds.)
TACAS 2011. LNCS, vol. 6605, pp. 11–25. Springer, Heidelberg (2011)

8. Calin, G., Derevenetc, E., Majumdar, R., Meyer, R.: A theory of partitioned global
address spaces. In: FSTTCS. LIPIcs, vol. 24, pp. 127–139 (2013)

9. Derevenetc, E., Meyer, R.: Robustness against Power is PSPACE-complete. CoRR,
abs/1404.7092 (2014), http://arxiv.org/abs/1404.7092

10. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
CACM 21(7), 558–565 (1978)

11. Lamport, L.: How to make a multiprocessor computer that correctly executes mul-
tiprocess programs. IEEE Transactions on Computers 28(9), 690–691 (1979)

12. Mador-Haim, S., et al.: An axiomatic memory model for POWER multiprocessors.
In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 495–512.
Springer, Heidelberg (2012)

http://arxiv.org/abs/1404.7092

170 E. Derevenetc and R. Meyer

13. Maranget, L., Sarkar, S., Sewell, P.: A tutorial introduction to the ARM and
POWER relaxed memory models,
https://www.cl.cam.ac.uk/~pes20/ppc-supplemental/test7.pdf

14. Owens, S., Sarkar, S., Sewell, P.: A better x86 memory model: x86-TSO (extended
version). Technical Report CL-TR-745, University of Cambridge (2009)

15. Sarkar, S., Sewell, P., Alglave, J., Maranget, L., Williams, D.: Understanding
POWER multiprocessors. In: PLDI, pp. 175–186. ACM (2011)

16. Shasha, D., Snir, M.: Efficient and correct execution of parallel programs that share
memory. TOPLAS 10(2), 282–312 (1988)

https://www.cl.cam.ac.uk/~pes20/ppc-supplemental/test7.pdf

A Nivat Theorem for Weighted Timed Automata
and Weighted Relative Distance Logic

Manfred Droste and Vitaly PerevoshchikovΣ

Universität Leipzig, Institut für Informatik,
04109 Leipzig, Germany

{droste,perev}@informatik.uni-leipzig.de

Abstract. Weighted timed automata (WTA) model quantitative aspects of real-
time systems like continuous consumption of memory, power or financial re-
sources. They accept quantitative timed languages where every timed word is
mapped to a value, e.g., a real number. In this paper, we prove a Nivat theorem
for WTA which states that recognizable quantitative timed languages are exactly
those which can be obtained from recognizable boolean timed languages with the
help of several simple operations. We also introduce a weighted extension of rel-
ative distance logic developed by Wilke, and we show that our weighted relative
distance logic and WTA are equally expressive. The proof of this result can be
derived from our Nivat theorem and Wilke’s theorem for relative distance logic.
Since the proof of our Nivat theorem is constructive, the translation process from
logic to automata and vice versa is also constructive. This leads to decidability
results for weighted relative distance logic.

Keywords: Weighted timed automata, linearly priced timed automata, average
behavior, discounting, Nivat’s theorem, quantitative logic.

1 Introduction

Timed automata introduced by Alur and Dill [1] are a prominent model for real-
time systems. Timed automata form finite representations of infinite-state automata
for which various fundamental results from the theory of finite-state automata can be
transferred to the timed setting. Although time has a quantitative nature, the questions
asked in the theory of timed automata are of a qualitative kind. On the other side,
quantitative aspects of systems, e.g., costs, probabilities and energy consumption can
be modelled using weighted automata, i.e., classical nondeterministic automata with a
transition weight function. The behaviors of weighted automata can be considered as
quantitative languages (also known as formal power series) where every word carries a
value. Semiring-weighted automata have been extensively studied in the literature (cf.
[6, 17, 20] and the handbook of weighted automata [12]).

Weighted extensions of timed automata are of much interest for the real-time com-
munity, since weighted timed automata (WTA) can model continuous time-dependent
consumption of resources. In the literature, various models of WTA were considered,

ω Supported by DFG Graduiertenkolleg 1763 (QuantLA).

J. Esparza et al. (Eds.): ICALP 2014, Part II, LNCS 8573, pp. 171–182, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

172 M. Droste and V. Perevoshchikov

e.g., linearly priced timed automata [3, 4, 21], multi-weighted timed automata with
knapsack-problem objective [22], and WTA with measures like average, reward-cost
ratio [7, 8] and discounting [2, 18, 19]. In [24, 25], WTA over semirings were stud-
ied with respect to classical automata-theoretic questions. However, various models,
e.g., WTA with average and discounting measures as well as multi-weighted automata
cannot be defined using semirings. For the latter situations, only several algorithmic
problems were handled. But many questions whether the results known from the theo-
ries of timed and weighted automata also hold for WTA remain open. Moreover, there
is no unified framework for WTA.

The main goal of this paper is to build a bridge between the theories of WTA and
timed automata. First, we develop a general model of timed valuation monoids for
WTA. Recall that Nivat’s theorem [23] is one of the fundamental characterizations of
rational transductions and establishes a connection between rational transductions and
rational languages. Our first main result is an extension of Nivat’s theorem to WTA
over timed valuation monoids. By Nivat’s theorem for semiring-weighted automata de-
scribed recently in [13], recognizable quantitative languages are exactly those which
can be constructed from recognizable languages using operations like morphisms and
intersections. The proof of this result requires the fact that finite automata are deter-
minizable. However, timed automata do not enjoy this property. Nevertheless, for idem-
potent timed valuation monoids which model all mentioned examples of WTA, we do
not need determinization. In this case, our Nivat theorem for WTA is similar to the one
for weighted automata. In the non-idempotent case, we give an example showing that
this statement does not hold true. But in this case we can establish a connection be-
tween recognizable quantitative timed languages and sequentially, deterministically or
unambiguously recognizable timed languages.

As an application of our Nivat theorem, we provide a characterization of recog-
nizable quantitative timed languages by means of quantitative logics. The classical
Büchi-Elgot theorem [9] was extended to both weighted [10, 11, 14] and timed settings
[26, 27]. In [24, 25], a semiring-weighted extension of Wilke’s relative distance logic
[26, 27] was considered. Here, we develop a different weighted version of relative dis-
tance logic based on our notion of timed valuation monoids. In our second main result,
we show that this logic and WTA have the same expressive power. For the proof of this
result, we use a new proof technique and our Nivat theorem to derive our result from
the corresponding result for unweighted logic [26, 27]. Since the proof of our Nivat
theorem is constructive, the translation process from weighted relative distance logic
to WTA and vice versa is constructive. This leads to decidability results for weighted
relative distance logic. In particular, based on the results of [3, 4, 21], we show the
decidability of several weighted extensions of the satisfiability problem for our logic.

2 Timed Automata

An alphabet is a non-empty finite set. Let Σ be a non-empty set. A finite word over Σ
is a finite sequence a1...an where n ∈ 0 and a1, ..., an ≡ Σ. If n ∈ 1, then we say that
w is non-empty. Let Σ+ denote the set of all non-empty words over Σ. Let �∗0 denote
the set of all non-negative real numbers. A finite timed word over Σ is a finite word over

A Nivat Theorem for Weighted Timed Automata 173

Σ × �∗0, i.e., a finite sequence w = (a1, t1)...(an, tn) where n ∈ 0, a1, ..., an ≡ Σ
and t1, ..., tn ≡ �∗0. Let |w| = n and ⊆w↔ = t1+ ...+ tn and let �Σ+ = (Σ×�∗0)

+,
the set of all non-empty finite timed words. Any set L ⇔ �Σ+ of timed words is called
a timed language.

Let C be a finite set of clock variables ranging over �∗0. A clock constraint over C
is either TRUE or (if C is non-empty) a finite conjunction of formulas of the form x εΩ c
where x ≡ C, c ≡ � and εΩ ≡ {<,⊂,=,∈, >}. Let δ(C) denote the set of all clock
constraints over C. A clock valuation over C is a mapping π : C ≥ �∗0 which assigns
a value to each clock variable. Let �C

∗0 be the set of all clock valuations over C. The
satisfaction relation |= ⇔ �C

∗0 × δ(C) is defined as usual. Now let π ≡ �C
∗0, t ≡ �∗0

and ψ ⇔ C. Let π + t denote the clock valuation π′ ≡ �C
∗0 such that π′(x) = π(x) + t

for all x ≡ C. Let π[ψ := 0] denote the clock valuation π′ ≡ �C
∗0 such that π′(x) = 0

for all x ≡ ψ and π′(x) = π(x) for all x /≡ ψ.

Definition 2.1. Let Σ be an alphabet. A timed automaton over Σ is a tuple
A = (L,C, I, E, F) such that L is a finite set of locations, C is a finite set of clocks,
I, F ⇔ L are sets of initial resp. final locations and E ⇔ L×Σ × δ(C) × 2C × L is
a finite set of edges.

For an edge e = (φ, a, α, ψ, φ′), let label(e) = a be the label of e. A run of A is a finite
sequence

β = (φ0, π0)
t1−≥ e1−≥ (φ1, π1)

t2−≥ e2−≥ ...
tn−≥ en−≥ (φn, πn) (1)

where n ∈ 1, φ0, φ1, ..., φn ≡ L, π0, π1, ..., πn ≡ �C
∗0, t1, ..., tn ≡ �∗0 and

e1, ..., en ≡ E satisfy the following conditions: φ0 ≡ I , π0(x) = 0 for all x ≡ C,
φn ≡ F and, for all 1 ⊂ i ⊂ n, ei = (φi−1, ai, αi, ψi, φi) for some ai ≡ Σ, αi ≡ δ(C)
and ψi ⇔ C such that πi−1 + ti |= αi and πi = (πi−1 + ti)[ψi := 0]. The label of β
is the timed word label(β) = (label(e1), t1)...(label(en), tn) ≡ �Σ+. For any timed
word w ≡ �Σ+, let RunA(w) denote the set of all runs β of A such that label(β) = w.
Let L(A) = {w ≡ �Σ+ | RunA(w) ⇒= ◦}. We say that an arbitrary timed lan-
guage L ⇔ �Σ+ is recognizable if there exists a timed automaton A over Σ such that
L(A) = L. We say that a timed automaton A = (L,C, I, E, F) is unambiguous if
|RunA(w)| ⊂ 1 for all w ≡ �Σ+. We call A deterministic if |I| = 1 and, for all
e1 = (φ, a, α1, ψ1, φ1) ≡ E and e2 = (φ, a, α2, ψ2, φ2) ≡ E with e1 ⇒= e2, there exists
no clock valuation π ≡ �C

∗0 with π |= α1 ≤ α2. We call A sequential if |I| = 1 and,
for all e1 = (φ, a, α1, ψ1, φ1) ≡ E and e2 = (φ, a, α2, ψ2, φ2) ≡ E, we have e1 = e2;
this property can be viewed as a strong form of determinism. Based on these notions,
we can define sequentially recognizable, deterministically recognizable and unambigu-
ously recognizable timed languages.

3 Weighted Timed Automata

In this section, we introduce a general model of weighted timed automata (WTA) over
timed valuation monoids. We will show that our new model covers a variety of situations
known from the literature: linearly priced timed automata [3, 4, 21] and WTA with the
measures like average [7, 8] and discounting [2, 18, 19].

174 M. Droste and V. Perevoshchikov

A timed valuation monoid is a tuple � = (M,+, val, �) where (M,+, �) is a com-
mutative monoid and val : �(M ×M)+ ≥ M is a timed valuation function. We will
say that M is the domain of �. We say that � is idempotent if + is idempotent, i.e.,
m+m = m for all m ≡ M .

Let Σ be an alphabet and � = (M,+, val, �) a timed valuation monoid. A weighted
timed automaton (WTA) over Σ and � is a tuple A = (L,C, I, E, F,wt) where
(L,C, I, E, F) is a timed automaton over Σ and wt : L → E ≥ M is a weight func-
tion. Let β be a run of A of the form (1). Let wtψ(β) ≡ �(M × M)+ be the timed
word (u1, t1)...(un, tn) where, for all 1 ⊂ i ⊂ n, ui = (wt(φi−1),wt(ei)). Then,
the weight of β is defined as wtA(β) = val(wtψ(β)) ≡ M . The behavior of A is the
mapping ||A|| : �Σ+ ≥ M defined by ||A||(w) = ∑

(wtA(β) | β ≡ RunA(w)) for all
w ≡ �Σ+. A quantitative timed language (QTL) over � is a mapping � : �Σ+ ≥ M .
We say that � is recognizable if there exists a WTA A overΣ and� such that � = ||A||.
Example 3.1. All of the subsequent WTA model the property that staying in a loca-
tion invokes costs depending on the length of the stay; the subsequent transition also
invokes costs but happens instantaneously. We assume that, for all x ≡ � → {∅},
x · ∅ = ∅ · x = ∅ and x+∅ = ∅+ x = ∅.

(a) Linearly priced timed automata were considered in [3, 4, 21]. We can describe
this model by the timed valuation monoid
�sum = (� → {∅},min, valsum,∅) where valsum is defined by valsum(v) =∑n

i=1(mi · ti +m′
i) for all v = ((m1,m

′
1), t1)...((mn,m

′
n), tn) ≡ �(M ×M)+.

(b) The situation of the average behavior for WTA considered in
[7, 8] can be described by means of the timed valuation monoid
�avg = (� → {∅},min, valavg,∅) where valavg is defined as follows. Let
v = ((m1,m

′
1), t1)...((mn,m

′
n), tn) ≡ �(M ×M)+. If ⊆v↔ > 0, then we let

valavg(v) =
∑n

i=1(mi·ti+m⊥
i)

∑

n
i=1 ti

. If ⊆v↔ = 0, m1 = ... = mn ≡ � and m′
1 = ... =

m′
n = 0, then we put valavg(v) = m1. Otherwise, we put valavg(v) = ∅.

(c) The model of WTA with the discounting measure was investigated in [2, 18,
19]. These WTA can be considered as WTA over the timed valuation monoid
�discλ = (� → {∅},min, valdiscλ ,∅) where 0 < Δ < 1 is a discounting factor
and valdiscλ is defined for all v = ((m1,m

′
1), t1)...((mn,m

′
n), tn) ≡ �(M ×M)+

by valdiscλ(v) =
∑n

i=1 Δ
t1+...+ti−1 · (∫ ti

0 mi · ΔθdΘ + Δti ·m′
i

)
.

Note that the timed valuation monoids �sum, �avg and �discλ are idempotent.

4 Closure Properties

In this section, we consider several closure properties of recognizable quantitative timed
languages which we will use for the proof of our Nivat theorem and which could be of
independent interest. For lack of space, we will omit the proofs.

Let Σ be a set, ν an alphabet and h : ν ≥ Σ a mapping. For a timed word
v = (γ1, t1)...(γn, tn) ≡ �ν+, we let h(v) = (h(γ1), t1)...(h(γn), tn) ≡ �Σ+. Then,
for a QTL r : �ν+ ≥ M over �, we define the QTL h(r) : �Σ+ ≥ M over � by
h(r)(w) =

∑
(r(v) | v ≡ �ν+ and h(v) = w) for all w ≡ �Σ+. Observe that for any

A Nivat Theorem for Weighted Timed Automata 175

w ≡ �Σ+ there are only finitely many v ≡ �ν+ with h(v) = w, hence the sum exists
in (M,+).

Lemma 4.1. Let Σ,ν be alphabets,� = (M,+, val, �) a timed valuation monoid and
h : ν ≥ Σ a mapping. If r : �ν+ ≥ M is a recognizable QTL over �, then the QTL
h(r) is also recognizable.

For the proof of this lemma, we use a similar construction as in [16], Lemma 1.
Let g : Σ ≥ M × M be a mapping. We denote by val ⊇g : �Σ+ ≥ M the QTL

over � defined for all w ≡ �Σ+ by (val ⊇g)(w) = val(g(w)). We say
that a timed valuation monoid � = (M,+, val, �) is location-independent
if, for any v = ((m1,m

′
1), t1)...((mn,m

′
n), tn) ≡ �(M × M)+ and

v′ = ((k1, k
′
1), t1)...((kn, k

′
n), tn) ≡ �(M ×M)+ with m′

i = k′i for all 1 ⊂ i ⊂ n,
we have val(v) = val(v′).

Lemma 4.2. Let Σ be an alphabet, � = (M,+, val, �) a timed valuation monoid and
g : Σ ≥ M × M a mapping. Then, val ⊇g is unambiguously recognizable. If � is
location-independent, then val ⊇g is sequentially recognizable.

However, in general, val ⊇g is not deterministically recognizable (and hence not se-
quentially recognizable). Let Σ = {a, b} and � = �sum as in Example 3.1 (a). Let
g(a) = (1, 0) and g(b) = (2, 0). Then, one can show that val ⊇g is not deterministically
recognizable.

Let L ⇔ �Σ+ be a timed language and r : �Σ+ ≥ M a QTL over �. The intersec-
tion (r ∩ L) : �Σ+ ≥ M is the QTL over � defined by (r ∩ L)(w) = r(w) if w ≡ L
and (r ∩ L)(w) = � if w ≡ �Σ+ \ L.

Example 4.3. As opposed to weighted untimed automata, recognizable quantitative
timed languages are not closed under the intersection with recognizable timed lan-
guages. Let Σ be a singleton alphabet and L a recognizable timed language over
Σ which is not unambiguously recognizable. Wilke [26] showed that such a lan-
guage exists. Consider the non-idempotent and location-independent timed valuation
monoid � = (�,+, val, 0) where + is the usual addition of natural numbers and
val(v) = m′

1 · ... · m′
n for all v = ((m1,m

′
1), t1)...((mn,m

′
n), tn) ≡ �(� × �)+.

Let the QTL r : �Σ+ ≥ � over � be defined by r(w) = 1 for all w ≡ �Σ+. Then, r
is recognizable but r ∩ L is not recognizable.

Nevertheless, the intersection enjoys the following closure properties.

Lemma 4.4. Let Σ be an alphabet, � = (M,+, val, �) a timed valuation monoid,
L ⇔ �Σ+ a recognizable timed language and r : �Σ+ ≥ M a recognizable QTL over
�. If � is idempotent, then r ∩ L is recognizable. If L is unambiguously recognizable,
then r ∩ L is recognizable. If L, r are unambiguously (deterministically, sequentially,
respectively) recognizable, then r∩L is also unambiguously (deterministically, sequen-
tially, respectively) recognizable.

For the proof, we use a kind of product construction for timed automata.

176 M. Droste and V. Perevoshchikov

5 A Nivat Theorem for Weighted Timed Automata

Nivat’s theorem [23] (see also [5], Theorem 4.1) is one of the fundamental character-
izations of rational transductions and establishes a connection between rational trans-
ductions and rational languages. A version for semiring-weighted automata was given
in [13]; this shows a connection between recognizable quantitative and qualitative lan-
guages. In this chapter, we prove a Nivat-like theorem for recognizable quantitative
timed languages.

Let Σ be an alphabet and � = (M,+, val, �) a timed valuation monoid. Let
REC(Σ,�) denote the collection of all QTL recognizable by a WTA over Σ and �.
Let N (Σ,�) (with N standing for Nivat) denote the set of all QTL � : �Σ+ ≥ M
over� such that there exist an alphabet ν , mappings h : ν ≥ Σ and g : ν ≥ M ×M
and a recognizable timed language L ⇔ �Σ+ such that � = h((val ⊇g) ∩ L). Let the
collection N SEQ(Σ,�) be defined like N (Σ,�) with the only difference that L is se-
quentially recognizable. The collections N UNAMB(Σ,�) and N DET(Σ,�) are defined
similarly using unambiguously resp. deterministically recognizable timed languages.

Our Nivat theorem for weighted timed automata is the following.

Theorem 5.1. Let Σ be an alphabet and � a timed valuation monoid. Then,
REC(Σ,�) = N SEQ(Σ,�) = N DET(Σ,�) = N UNAMB (Σ,�) ⇔ N (Σ,�).
If � is idempotent, then REC(Σ,�) = N (Σ,�).

As opposed to the result of [13] for weighted untimed automata, the equality
REC(Σ,�) = N (Σ,�) does not always hold: let Σ, �, L and r be defined as in
Example 4.3. Then, one can show that r ∩ L ≡ N (Σ,�) \ REC(Σ,�).

The proof of Theorem 5.1 is based on the closure properties of WTA (cf. Sect. 4)
and the following lemma.

Lemma 5.2. Let Σ be an alphabet and � a timed valuation monoid. Then,
REC(Σ,�) ⇔ N SEQ(Σ,�).

Proof (Sketch). Let A = (L,C, I, E, F,wt) be a WTA over Σ and �. Let ν = E. We
define the mappings h : ν ≥ Σ and g : ν ≥ M ×M for all γ = (φ, a, α, ψ, φ′) ≡ ν
by h(γ) = a and g(γ) = (wt(φ),wt(γ)). Let L be the set of all timed words w =
(γ1, Θ1)...(γn, Θn) such that there exists a run β of A of the form (1) with γi = ei and
Θi = ti for all 1 ⊂ i ⊂ n. It can be shown that L is sequentially recognizable and
||A|| = h((val ⊇g) ∩ L) ≡ N SEQ(Σ,�). ∪∩

Let Σ be an alphabet and � a timed valuation monoid with the domain M . Let
HUNAMB(Σ,�) denote the collection of all QTL � : �Σ+ ≥ M over � such that there
exist an alphabet ν , a mapping h : ν ≥ Σ and an unambiguously recognizable
QTL r : �ν+ ≥ M over � such that � = h(r). The collections HSEQ(Σ,�) and
HDET(Σ,�) are defined like HUNAMB (Σ,�) with the only difference that r is sequen-
tially resp. deterministically recognizable.

As a corollary from Theorem 5.1, we establish the following connections between
recognizable and unambiguously, sequentially and deterministically recognizable QTL.
For the proof of this corollary, we apply Theorem 5.1 and closure properties of WTA
considered in Sect. 4.

A Nivat Theorem for Weighted Timed Automata 177

Corollary 5.3. Let Σ be an alphabet and � a timed valuation monoid. Then,
HSEQ(Σ,�) = HDET(Σ,�) ⇔ HUNAMB(Σ,�) = REC(Σ,�). If � is location-
independent, then HSEQ(Σ,�) = REC(Σ,�).

However, the equality HSEQ(Σ,�) = REC(Σ,�) does not always hold. Let
Σ = {a, b} and � = �sum be the timed valuation monoid as in Example 3.1 (a); note
that � is not location-independent. Consider the QTL � : �Σ+ ≥ M over � defined
for all w = (a1, t1)...(an, tn) by �(w) = t1 if a1 = a and �(w) = 2 · t1 otherwise. We
can show that � ≡ REC(Σ,�) \ HSEQ(Σ,�).

6 Weighted Relative Distance Logic

In this section, we develop a weighted relative distance logic. Relative distance logic on
finite and infinite timed words was introduced by Wilke in [26, 27]. It was shown that
restricted relative distance logic and timed automata have the same expressive power.
Here, we will derive a weighted version of this result for finite timed words. We will
show that the proof of our result can be deduced from Wilke’s result and our Nivat
theorem for WTA.

We fix a countable set V1 of first-order variables and a countable set V2 of second-
order variables such that V1 ∩ V2 = ◦. Let V = V1 → V2.

6.1 Relative Distance Logic

Let Σ be an alphabet. The set RDL(Σ) of relative distance formulas over Σ is defined
by the grammar:

ι ::= Pa(x) | x ⊂ y | X(x) | dνλc≥ (X, x) | ¬ι | ι ⊕ ι | ∃x.ι | ∃X.ι

where a ≡ Σ, x, y ≡ V1, X ≡ V2, εΩ ≡ {<,⊂,=,∈, >} and c ≡ �. The formulas of
the form dνλc≥ (X, x) are called past formulas.

Let w = (a1, t1)...(an, tn) ≡ �Σ+ be a timed word. For every 1 ⊂ i ⊂ n, let
⊆w↔i = t1 + ... + ti. The domain of w is the set dom(w) = {1, ..., n} of positions
of w. Let y ≡ dom(w), Y ⇔ dom(w), εΩ ≡ {<,⊂,=,∈, >} and c ≡ �. Then, we
write dνλc,w≥ (Y, y) iff either there exists a position z ≡ Y such that z < y and, for the
greatest such position z, ⊆w↔y − ⊆w↔z εΩ c, or there exists no position z ≡ Y with
z < y, and ⊆w↔y εΩ c. A w-assignment is a mapping σ : V ≥ dom(w) → 2dom(w) such
that σ(V1) ⇔ dom(w) and σ(V2) ⇔ 2dom(w). We define the update σ[x/i] to be the w-
assignment such that σ[x/i](x) = i and σ[x/i](y) = σ(y) for all y ≡ V \{x}. Similarly,
for X ≡ V2 and I ⇔ dom(w), we define the update σ[X/I]. Let ι ≡ RDL(Σ) and σ
be a w-assignment. The definition that the pair (w, σ) satisfies the formula ι, written
(w, σ) |= ι, is given inductively on the structure of ι as usual for MSO logic where,
for the new formulas dνλc≥ (X, x), we put (w, σ) |= dνλc≥ (X, x) iff dνλc,w≥ (σ(X), σ(x)).

A formulaι ≡ RDL(Σ) is called a sentence if every variable occurring in ι is bound
by a quantifier. Note that, for a sentence ι ≡ RDL(Σ), the relation (w, σ) |= ι does not
depend on σ, i.e., for any w-assignments σ1, σ2, (w, σ1) |= ι iff (w, σ2) |= ι. Then,
we will write w |= ι. For a sentence ι ≡ RDL(Σ), let L(ι) = {w ≡ �Σ+ | w |= ι},

178 M. Droste and V. Perevoshchikov

the timed language defined by ι. Let ∆ ⇔ RDL(Σ). We say that a timed language
L ⇔ �Σ+ is ∆-definable if there exists a sentence ι ≡ ∆ such that L(ι) = L.

Let V = {X1, ..., Xm} ⇔ V with |V| = m. For ι ≡ RDL(Σ), let ∃V .ι denote the
formula ∃X1. ... ∃Xm.ι. For a formula ι ≡ RDL(Σ), let D(ι) ⇔ V2 denote the set
of all variables X for which there exist x ≡ V1, εΩ ≡ {<,⊂,=,∈, >} and c ≡ � such
that dνλc≥ (X, x) is a subformula of ι. Let RDL≥(Σ) ⇔ RDL(Σ) denote the set of all
formulas ι where quantification of second-order variables is applied only to variables
not in D(ι). We denote by ∃RDL≥(Σ) ⇔ RDL(Σ) the set of all sentences of the form
∃D(ι).ι.

Theorem 6.1 (Wilke [27]). Let Σ be an alphabet and L ⇔ �Σ+ a timed language.
Then, L is recognizable iff L is ∃RDL≥(Σ)-definable.

6.2 Weighted Relative Distance Logic

In this subsection, we consider a weighted version of relative distance logic. For un-
timed words, weighted MSO logic over semirings was defined in [10]. A weighted
MSO logic over (untimed) product valuation monoids was considered in [14]. We will
use a similar approach to define the syntax and the semantics of our weighted relative
distance logic. In [14], valuation monoids were augmented with a product operation
and a unit element to define the semantics of weighted formulas. Here, we proceed in a
similar way and consider timed product valuation monoids.

A timed product valuation monoid (timed pv-monoid) � = (M,+, val, �, �, �) is a
timed valuation monoid (M,+, val, �) equipped with a multiplication � : M×M ≥ M
and a unit � ≡ M such that m � � = � � m = m and m � � = � � m = � for all
m ≡ M , val(((�, �), t1), ..., ((�, �), tn)) = � for all n ∈ 1 and all t1, ..., tn ≡ �∗0,
and val(((m1,m

′
1), t1)...((mn,m

′
n), tn)) = � whenever m′

i = � for some 1 ⊂ i ⊂ n.
We say that � is idempotent if + is idempotent.

Example 6.2. If we augment the timed valuation monoids �sum, �avg and �discλ from
Example 3.1 with the multiplication � = + and the unit � = 0, then we obtain the timed
pv-monoids�sum

0 , �avg
0 and �discλ

0 . Note that these timed pv-monoids are idempotent.

Motivated by the examples, for the clarity of presentation, we restrict ourselves to
idempotent timed pv-monoids.

Let Σ be an alphabet and � = (M,+, val, �, �, �) a timed pv-monoid. The set
WRDL(Σ,�) of formulas of weighted relative distance logic over Σ and � is defined
by the grammar

ι ::= �.β | m | ι ⊕ ι | ι ≤ ι | ∃x.ι | ∀x.(ι, ι) | ∃X.ι

where β ≡ RDL≥(Σ), m ≡ M , x ≡ V1 and X ≡ V2; the notation �.β indicates that
here β will be interpreted in a quantitative way.

Let �Σ+
V denote the set of all pairs (w, σ) where w ≡ �Σ+ and σ is a w-assignment.

For ι ≡ WRDL(Σ,�), the semantics of ι is the mapping [[ι]] : �Σ+
V ≥ M de-

fined for all (w, σ) ≡ �Σ+
V with w = (a1, t1)...(an, tn) inductively on the structure

of ι as shown in Table 1. Here, x ≡ V1, X ≡ V2, β ≡ RDL≥(Σ), m ≡ M and
ι, ι1, ι2 ≡ WRDL(Σ,�).

A Nivat Theorem for Weighted Timed Automata 179

Table 1. The semantics of weighted relative distance logic

[[�.ρ]](w,α) =

{

�, if (w,α) |= ρ,

�, otherwise
[[m]](w,α) = m

[[ϕ1 ∈ ϕ2]](w,α) = [[ϕ1]](w,α) + [[ϕ2]](w,α)

[[ϕ2 ⊆ ϕ2]](w,α) = [[ϕ1]](w,α) ⊗ [[ϕ2]](w,α)
[[∃x.ϕ]](w,α) =

∑

i∗dom(w)

[[ϕ]](w,α[x/i])

[[∃X.ϕ]](w,α) =
∑

I⊆dom(w)

[[ϕ]](w,α[X/I])

[[∀x.(ϕ1, ϕ2)]](w,α) = val[(([[ϕ1]](w,α[x/i]), [[ϕ2]](w,α[x/i])), ti)]i∗dom(w)

Remark 6.3. In [24, 25], Quaas introduced a weighted version of relative distance logic
over a semiring 	 = (S,+, ·, �, �) and a family of functionsF ⇔ S�≥0 where elements
of S model discrete weights and functions f ≡ F model continuous weights. If F is
a one-parametric family of functions (fs)s∈S , then our weighted logic incorporates the
logic of Quaas over 	 and F . However, for more complicated timed valuation functions
(like average and discounting) we must have formulas which combine both discrete and
continuous weights. Therefore, we use the formulas ∀x.(ι1, ι2). Our approach also
extends the idea of [14] to define the semantics of formulas with a first-order universal
quantifier using the valuation function.

Example 6.4. LetΣ = {a, b} and letC(a), C(b) ≡ � be the continuous costs of a, b and
D(a), D(b) ≡ � the discrete costs. Given a timed word w = (γ1, t1)...(γn, tn) ≡ �Σ+,

the average cost of w is defined as A(w) =
∑n

i=1(C(ξi)·ti+D(ξi))
∑

n
i=1 ti

. Let�avg
0 be defined as

in Example 6.2. For U ≡ {C,D}, let ιU (x) = (Pa(x)≤U(a))⊕ (Pb(x)≤U(b)). Con-
sider the WRDL(Σ,�avg

0)-sentence ι = ∀x.(ιC(x), ιD(x)). Then, for all w ≡ �Σ+,
we have: [[ι]](w) = A(w).

A sentence ι ≡ WRDL(Σ,�) is defined as usual as a formula without free variables.
Then, for every sentence ι ≡ WRDL(Σ,�), every timed word w ≡ �Σ+ and every w-
assignment σ, the value [[ι]](w, σ) does not depend on σ. Hence, we can consider the
semantics of ι as a quantitative timed language [[ι]] : �Σ+ ≥ M over �.

Similarly to the results of [10], in general weighted relative distance logic and WTA
are not expressively equivalent. We can show that the QTL � : �Σ+ ≥ � → {∅} with
�(w) = |w|2 is not recognizable over the timed valuation monoid �sum. But this QTL
is defined by the WRDL(Σ,�sum

0)-sentence ∀x.(0, ∀y.(0, 1)).
Nevertheless, there is a syntactically restricted fragment of weighted relative dis-

tance logic which is expressively equivalent to WTA. Let Σ be an alphabet and
� = (M,+, val, �, �, �) an idempotent timed pv-monoid. A formulaι ≡ WRDL(Σ,�)
is called almost boolean if it is built from boolean formulas �.β ≡ RDL≥(Σ,�) and
constants m ≡ M using disjunctions and conjunctions. We say that a formula ι is
syntactically restricted if whenever it contains a subformula ∀x.(ι1, ι2), then ι1, ι2

are almost boolean; whenever it contains a subformula ι1 ≤ ι2, then either ι1, ι2 are
almost boolean or ι1 = �.ι′ or ι2 = �.ι′ with ι′ ≡ RDL≥(Σ); every constant
m ≡ M is in the scope of a first-order universal quantifier. Let DEFres(Σ,�) denote the
collection of all QTL � : �Σ+ ≥ M over � such that � = [[ι]] for some syntactically
restricted WRDL(Σ,�)-sentence ι.

Our main result for weighted relative distance logic is the following theorem.

Theorem 6.5. Let Σ be an alphabet and � an idempotent timed pv-monoid. Then,
DEFres(Σ,�) = REC(Σ,�).

180 M. Droste and V. Perevoshchikov

Now we give a sketch of the proof of this theorem. Let N ∃RDL←
(Σ,�) denote the

collection of all QTL � : �Σ+ ≥ M over � such that there exist an alphabet ν , map-
pings h : ν ≥ Σ, g : ν ≥ M × M and a ∃RDL≥(ν)-definable timed language L
such that � = h((val ⊇g) ∩ L). For the proof of Theorem 6.5, we establish a Nivat-like
characterization of definable QTL.

Theorem 6.6. Let Σ be an alphabet and � an idempotent timed pv-monoid. Then,
N ∃RDL←

(Σ,�) = DEFres(Σ,�).

Proof (Sketch). To show the inclusion ⇔, let � = h((val ⊇g) ∩ L) where ν , h, g
and L are as in the definition of N ∃RDL←

(Σ,�). Let β be a ∃RDL≥(Σ)-sentence
defining L. We introduce a family V = (Xξ)ξ∈γ of second-order variables not oc-
curring in β. We replace each predicate Pξ(x) with γ ≡ ν occurring in β by the
formula Ph(ξ)(x) ≤Xξ(x); so we obtain a formula β′ ≡ ∃RDL≥(Σ). Assume that
β′ = ∃D(β′′).β′′ with β′′ ≡ RDL≥(Σ). We construct a formula Part ≡ RDL≥(Σ)
which demands that the variables V form a partition of the domain, and a formula
H ≡ RDL≥(Σ) which demands that, whenever a position of a word belongs to
Xξ , then this position is labelled by h(γ). Then, the following syntactically restricted
WRDL(Σ,�)-sentence defines L:

∃(V ∪D(β⊥⊥)).
[
�.(β⊥⊥ ∧ Part ∧H)∧ ∀x.(∨γ∗Γ �.Xγ(x)∧ g1(γ),

∨
γ∗Γ �.Xγ(x)∧ g2(γ)

)]
where, for i ≡ {1, 2}, gi is the projection of g to the i-th coordinate.

To show the inclusion ⊇, we introduce canonical WRDL(Σ,�)-sentences which are
of the form ι = ∃V .∀y.(∨k

i=1 �.βi≤mi,
∨k

i=1 �.βi≤m′
i) where V is a set of variables,

m1, ...,mk,m
′
1, ...,m

′
k ≡ M and β1, ..., βk ≡ RDL≥(Σ) are such that, for every timed

word w ≡ �Σ+ and every w-assignment σ, there exists exactly one i ≡ {1, ..., k} such
that (w, σ) |= βi. By structural induction every syntactically-restricted sentence can be
transformed into a canonical one. It remains to prove that, for a canonical sentence ι as
above, [[ι]] ≡ N ∃RDL←

(Σ,�). Let M1
ϕ = {m1, ...,mk} and M2

ϕ = {m′
1, ...,m

′
k}. We

put ν = Σ ×M1
ϕ ×M2

ϕ. Let h : ν ≥ Σ be the projection to the first coordinate. Let
g : ν ≥ M ×M be the projection to M1

ϕ×M2
ϕ. Then we can construct a ∃RDL≥(ν)-

sentence β of the form ∃V .∀y.β′ such that [[ι]] = h((val ⊇g) ∩ L(β)). ∪∩
Then, our Theorem 6.5 follows from Theorem 6.6, the Nivat Theorem 5.1 and

Wilke’s Theorem 6.1.

Remark 6.7. We can also follow the approach of [10] to prove our Theorem 6.5. Com-
pared to this way, our new proof technique has the following advantages. The proof idea
of [10] involves technical details like Büchi’s encodings of assignments and a bulky log-
ical description of accepting runs of timed automata. In our new proof, these details are
taken care of by Wilke’s proof for unweighted relative distance logic.

Let Σ be an alphabet, �sum the timed valuation monoid as in Example 3.1(a) and
A a WTA over Σ and �. As it was shown in [3, 4, 21], inf{||A||(w) | w ≡ �Σ+} is
computable. This result and our Theorem 6.5 imply decidability results for weighted
relative distance logic.

– Let �sum
0 be the timed pv-monoid as in Example 6.2. It is decidable, given an al-

phabet Σ, a syntactically restricted sentence ι ≡ WRDL(Σ,�sum) with constants
from
 and a threshold θ ≡
, whether there exists w ≡ �Σ+ with [[ι]](w) < θ.

A Nivat Theorem for Weighted Timed Automata 181

– Let �avg
0 be the timed pv-monoid as in Example 6.2. It is decidable, given an al-

phabet Σ, a syntactically restricted sentence ι ≡ WRDL(Σ,�avg) with constants
from
 and a threshold θ ≡
, whether there exists w ≡ �Σ+ with ⊆w↔ > 0 and
[[ι]](w) < θ.

7 Conclusion and Future Work

In this paper, we proved a version of Nivat’s theorem for weighted timed automata
on finite words which states a connection between the quantitative and qualitative be-
haviors of timed automata. We also considered several applications of this theorem.
Using this theorem, we studied the relations between sequential, unambiguous and non-
deterministic WTA. We also introduced a weighted version of Wilke’s relative distance
logic and established a Büchi-like result for this logic, i.e., we showed the equivalence
between restricted weighted relative distance logic and WTA. Using our Nivat theorem,
we deduced this from Wilke’s result.

Because of space constraints, we did not present in this paper the following results.
As in [14], for timed pv-monoid with additional properties there are larger fragments
of weighted relative-distance logic which are still expressively equivalent to WTA. For
the simplicity of presentation, we restricted ourselves to idempotent timed pv-monoids.
However, we also obtained a more complicated result for non-idempotent timed pv-
monoids. In [24, 25], for weighted relative distance logic over non-idempotent semi-
rings, a strong restriction on the use of a first-order universal quantification was done.
Surprisingly, in our result we could avoid this restriction.

Our future work concerns the following directions. Ongoing research will extend the
currently obtained results to ω-infinite words. This work should be further extended to
the multi-weighted setting for WTA, e.g., the optimal reward-cost ratio [7, 8] or the op-
timal consumption of several resources where some resources must be restricted [22]. A
logical characterization of untimed multi-weighted automata was given in [15]. It could
be also interesting to compare for the weighted and unweighted cases the complexity
of translations between logic and automata. We believe that our Nivat theorem will be
helpful for this.

References

[1] Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126(2),
183–235 (1994)

[2] Alur, R., Triverdi, A.: Relating average and discounted costs for quantitative analysis of
timed systems. In: EMSOFT 2011, pp. 165–174. IEEE (2011)

[3] Alur, R., La Torre, S., Pappas, G.J.: Optimal paths in weighted timed automata. In: Di
Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp.
49–62. Springer, Heidelberg (2001)

[4] Behrmann, G., Fehnker, A., Hune, T., Larsen, K.G., Petterson, P., Romijn, J., Vaan-
drager, F.: Minimum-cost reachability for priced timed automata. In: Di Benedetto, M.D.,
Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 147–161. Springer,
Heidelberg (2001)

[5] Berstel, J.: Transductions and Context-Free Languages. Teubner Studienbücher: Infor-
matik. Teubner, Stuttgart (1979)

182 M. Droste and V. Perevoshchikov

[6] Berstel, J., Reutenauer, C.: Rational Series and Their Languages. EATCS Monographs on
Theoretical Computer Science, vol. 12. Springer (1988)

[7] Bouyer, P., Brinksma, E., Larsen, K.G.: Staying alive as cheaply as possible. In: Alur,
R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 203–218. Springer, Heidelberg
(2004)

[8] Bouyer, P., Brinksma, E., Larsen, K.G.: Optimal infinite scheduling for multi-priced timed
automata. Formal Methods in System Design 32, 3–23 (2008)

[9] Büchi, J.R.: Weak second-order arithmetic and finite automata. Z. Math. Logik und Grundl.
Math. 6, 66–92 (1960)

[10] Droste, M., Gastin, P.: Weighted automata and weighted logics. Theoret. Comp. Sci. 380
(1-2), 69–86 (2007)

[11] Droste, M., Gastin, P.: Weighted automata and weighted logics. In: Droste, M., Kuich, W.,
Vogler, H. (eds.) [12], ch. 5

[12] Droste, M., Kuich, W., Vogler, H. (eds.): Handbook of Weighted Automata. EATCS Mono-
graphs on Theoretical Computer Science. Springer (2009)

[13] Droste, M., Kuske, D.: Weighted automata. In: Pin, J.-E. (ed.) Handbook: “Automata: from
Mathematics to Applications”. European Mathematical Society (to appear)

[14] Droste, M., Meinecke, I.: Weighted automata and weighted MSO logics for average and
long-time behaviors. Inf. Comput. 220-221, 44–59 (2012)

[15] Droste, M., Perevoshchikov, V.: Multi-weighted automata and MSO logic. In: Bulatov,
A.A., Shur, A.M. (eds.) CSR 2013. LNCS, vol. 7913, pp. 418–430. Springer, Heidelberg
(2013)

[16] Droste, M., Vogler, H.: Kleene and Büchi theorems for weighted automata and multi-valued
logic over arbitrary bounded lattices. In: Gao, Y., Lu, H., Seki, S., Yu, S. (eds.) DLT 2010.
LNCS, vol. 6224, pp. 160–172. Springer, Heidelberg (2010)

[17] Eilenberg, S.: Automata, Languages and Machines, vol. A. Academic Press, New York
(1974)

[18] Fahrenberg, U., Larsen, K.G.: Discount-optimal infinite runs in priced timed automata.
Electr. Notes Theor. Comput. Sci. 239, 179–191 (2009)

[19] Fahrenberg, U., Larsen, K.G.: Discounting in time. Electr. Notes Theor. Comput. Sci. 253,
25–31 (2009)

[20] Kuich, W., Salomaa, A.: Semirings, Automata and Languages. EATCS Monographs on
Theoretical Computer Science, vol. 5. Springer (1986)

[21] Larsen, K.G., Behrmann, G., Brinksma, E., Fehnker, A., Hune, T., Pettersson, P., Romijn,
J.: As cheap as possible: Efficient cost-optimal reachability for priced timed automata.
In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 493–505.
Springer, Heidelberg (2001)

[22] Larsen, K.G., Rasmussen, J.I.: Optimal conditional reachability for multi-priced timed au-
tomata. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 234–249. Springer,
Heidelberg (2005)

[23] Nivat, M.: Transductions des langages de Chomsky. Ann. de L’Inst. Fourier 18, 339–456
(1968)

[24] Quaas, K.: Kleene-Schützenberger and Büchi theorems for weighted timed automata. PhD
thesis, Universität Leipzig (2010)

[25] Quaas, K.: MSO Logics for weighted timed automata. Formal Methods in System De-
sign 38(3), 193–222 (2011)

[26] Wilke, T.: Automaten und Logiken zur Beschreibung zeitabhängiger Systeme. PhD thesis,
Christian-Albrecht-Universität Kiel (1994)

[27] Wilke, T.: Specifying timed state sequences in powerful decidable logics and timed au-
tomata. In: Langmaack, H., de Roever, W.-P., Vytopil, J. (eds.) FTRTFT 1994 and ProCoS
1994. LNCS, vol. 863, pp. 694–715. Springer, Heidelberg (1994)

Computability in Anonymous Networks:
Revocable vs. Irrecovable Outputs�

Yuval Emek1, Jochen Seidel2, and Roger Wattenhofer2

1 Faculty of Industrial Engineering and Management, Technion, Haifa, Israel
yemek@ie.technion.ac.il

2 Distributed Computing, ETH Zürich, Zürich, Switzerland
{seidelj,wattenhofer}@ethz.ch

Abstract. What can be computed in an anonymous network, where
nodes are not equipped with unique identifiers? It turns out that the
answer to this question depends on the commitment of the nodes to
their first computed output value: Two classes of problems solvable in
anonymous networks are defined, where in the first class nodes are al-
lowed to revoke their outputs and in the second class they are not. These
two classes are then related to the class of all centrally solvable network
problems, observing that the three classes form a strict linear hierar-
chy, and for several classic and/or characteristic problems in distributed
computing, we determine the exact class to which they belong.

Does this hierarchy exhibit complete problems? We answer this ques-
tion in the affirmative by introducing the concept of a distributed oracle,
thus establishing a more fine grained classification for distributed com-
putability which we apply to the classic/characteristic problems. Among
our findings is the observation that the three classes are characterized
by the three pillars of distributed computing, namely, local symmetry
breaking, coordination, and leader election.

1 Introduction

We study computability in networks, referred to hereafter as distributed com-
putability. Distributed computability is equivalent to classic centralized (Turing
Machine) computability when the nodes are equipped with unique (compara-
ble) identifiers. However, as Angluin noticed in her seminal work [3], distributed
computability becomes fascinating in anonymous networks, where nodes do not
have unique IDs. What can be computed with deterministic algorithms merely
depends on the topology of the network, and it is well known that problems
like maximal independent set can be solved in an anonymous network only if
the nodes are allowed to toss coins. We therefore consider the distributed com-
putability of randomized algorithms running in anonymous networks. Notice that
� Due to space limitations most proofs are omitted or replaced by proof sketches in

this extended abstract. Also most results obtained in Section 4 are left out. We refer
the interested reader to the full version which is available at http://disco.ethz.
ch/publications/ICALP2014-revocability-full.pdf.

J. Esparza et al. (Eds.): ICALP 2014, Part II, LNCS 8573, pp. 183–195, 2014.
c√ Springer-Verlag Berlin Heidelberg 2014

http://disco.ethz.ch/publications/ICALP2014-revocability-full.pdf
http://disco.ethz.ch/publications/ICALP2014-revocability-full.pdf

184 Y. Emek, J. Seidel, and R. Wattenhofer

in the scope of this paper, we do not impose any limitations on the complexity
resources (time, message/memory size, . . .), however, like in classic sequential
computability theory, we do require a correct result after a finite amount of time.

Apart from its theoretical interest, the study of anonymous networks is moti-
vated by various real-world scenarios. For example, the nodes may be indistin-
guishable due to their fabrication in a large-scale industrial process [5], in which
equipping every node with a unique identifier (serial number) is not economically
feasible. In other cases nodes may not wish to reveal their unique identity out
of privacy and security concerns [24].

1.1 Setting

Distributed Problems. We consider simple (undirected, loop-free and no parallel
edges) connected finite graphs G, and denote the node and edge sets of a graph
G by V (G) and E(G) or V and E if G is clear from the context. A function
f : V (G) → L is called a labeling of the graph G, and we refer to the set L as
the set of values that f assigns to nodes in G. A distributed problem Π is a set
of three-tuples (G, i, o), where G is a graph as described above, and i and o are
input labels and output labels for G. For every problem there are two sets I(Π)
and O(Π) denoting the input values and output values of Π , i.e., the values that
the labels i and o assign, correspondingly. Such a three-tuple (G, i, o) ∈ Π is
called a (solved) instance of Π . An input instance of Π is a two-tuple (G, i) for
which there exists a valid output o satisfying (G, i, o) ∈ Π , and we also write
(G, i) ∈ Π for input instances of the problem. We restrict ourselves to problems
that are solvable in a centralized setting.

Randomized Anonymous Algorithms. Our definition of how distributed algo-
rithms work follows the convention of [30] for synchronized network systems
(message passing) with simultaneous starting times. Nodes execute the same
randomized and uniform algorithm in synchronous rounds, and in each round
we allow each node access to finitely many random bits. Every node v knows
its degree deg(v) and can distinguish between its neighbors Γ (v) (by means of
a bijection {1, . . . , deg(v)} → Γ (v), cf. the port model). In each round every
node sends and receives a message of unbounded, yet finite, size to and from
each individual neighbor. To ease our discussion every node v is equipped with
one input register holding some problem-dependent input value and one output
register. The output register initially contains a special symbol ε indicating v is
not ready to return an output. Any value x �= ε contained in v’s output register
is interpreted as v being ready to return its output and we say that v has output
x. A global configuration in which all nodes are ready is called a ready config-
uration. When algorithm A is in a ready configuration, we define A’s output
oA : V (G) → O by setting oA(v) to be the content of node v’s output register.
In the following, we consider two different notions of output revocability.

Definition (Output Revocability). An algorithm is referred to as a write-
once algorithm if every node is restricted to write to its output register at most
once. If this restriction is lifted, then we call it a rewrite algorithm.

Computability in Anonymous Networks 185

In other words, in a rewrite algorithm a node may revoke its output, e.g., by
writing ε to its output register. While every execution of a write-once algorithm
reaches at most one ready configuration, during the execution of a rewrite al-
gorithm many ready configurations can occur. Note that the converse does not
hold: an algorithm that is guaranteed to reach at most one ready configuration
is not necessarily a write-once algorithm. In the existing literature, algorithms
are typically considered to be write-once algorithms.

Definition (Correctness). Fix some problem Π and an algorithm A. A ready
configuration of A when invoked on an input instance (G, i) ∈ Π is said to be
valid if the output oA of A in this configuration is a valid output for (G, i).
Algorithm A is said to solve Π if it satisfies the following two conditions for
every input instance (G, i) ∈ Π :
1. A ready configuration is reached within finite time with probability 1.
2. Every ready configuration that can occur with a positive probability is valid.

The aforementioned definition of correctness requires that all occurring ready
configurations will be correct (i.e., correspond to a valid output). In Section 2
we show that our definition of correctness is robust to certain changes. Notice
that in the scope of this paper, we do not require that an algorithm terminates
in order to be correct. However, the algorithms designed throughout the paper
do terminate, and the general transformation techniques we present (i.e., com-
pilers/simulations) can be designed to ensure termination if the algorithms to
which the transformation is applied terminate.

The choice of output revocability has a significant impact on the problems
that an algorithm can solve. In the following the terms WO-algorithms and RW-
algorithms will thus be used to denominate write-once and rewrite algorithms
running in an anonymous network, respectively; RW and WO refer to the classes
of distributed problems solvable by these two types of algorithms. Lastly, we
denote by CF the class of distributed problems that are solvable in a centralized
setting (by a Turing machine), bearing in mind that this class essentially includes
every computable function on graphs. The distinction of these classes is justified
by the following observation. The full version of this paper contains a straight-
forward proof.

Observation. The classes of distributed problems satisfy WO ⊂ RW ⊂ CF (in
the strict sense).

1.2 Our Contribution

What can be computed in anonymous networks? As it turns out the effect out-
put revocability has on the distributed computability of anonymous networks
is remarkable. A total of 21 problems, including some of the most fundamental
problems in distributed computing, are classified according to the exact class to
which they belong (Section 4).

Does the hierarchy we present exhibit complete problems? To answer this
question we introduce the notion of accessing an oracle in a distributed setting

186 Y. Emek, J. Seidel, and R. Wattenhofer

and show that this notion is sound (Section 3). As the first stepping stone in this
effort we show that the classes WO and RW are robust against two modifications
to the aforementioned correctness condition (Section 2). In the full version of
this paper each of our 21 problems is then classified according to its hardness
or completeness for the three classes, thus obtaining a deeper understanding of
the intrinsic properties of these problems. For reasons of brevity this extended
abstract only gives a brief overview of those results (Section 4). Surprisingly,
the WO, RW, and CF classes turn out to capture exactly the three pillars
of distributed computing, namely, local symmetry breaking, coordination, and
leader election, respectively.

1.3 Related Work

The history of distributed computability starts with the work of Angluin [3]
proving that randomization does not help to elect a leader in anonymous net-
works. Later, it was shown that electing a leader in an anonymous ring network
is possible if the size n of the ring is known [25], in fact, a (2 − ε)-approximation
of n is enough [1], not only in the special case of a ring but in general networks
[34]. It turns out that all these results, and many similar ones, come almost for
free once our characterization for the class RW (established in the full version)
is available.

There is a line of work that concentrates on deterministic distributed algorithms
for problems in CF, in particular if some parameters of the topology of the graph
(for instance, its size) are known, e.g. [35,10]. Deterministic algorithms are inter-
esting to investigate even if the graph is restricted to a ring [18,13], and also as-
signments of not necessarily unique identifiers were studied in this context [31].

Another line of research studies computability in anonymous (directed) net-
works in connection with termination. Not unlike us it is argued that termination
in distributed systems is an issue that is not directly evident, since one may be in-
terested in systems where nodes terminate independently of others. The strongest
anonymous model considered in [11] is equivalent to deterministic write-once al-
gorithms with knowledge of an upper bound to the network size. When no prior
knowledge is assumed the class of solvable problems can be fully characterized
using local views1 and recursive functions [14]. Extending their approach, in the
context of the current paper an individual node executing a RW-algorithm can
never be entirely sure about termination. We show that the class RW lies between
the two classes WO (local termination) and CF (global termination).

Output revocability should not be confused with the concept of eventual
correctness, where the network eventually converges to a correct output. For
example, self-stabilizing algorithms [15] allow the system to return an incorrect
output for a finite amount of time, thus allowing a fault-tolerant algorithm to re-
cover from errors. With randomization, self-stabilizing leader election is possible
on general graphs [16], hence with randomization every CF-problem is eventu-
ally solvable in an anonymous network. In our terminology eventual correctness
1 Local views are only discussed in the full version of this paper.

Computability in Anonymous Networks 187

could be viewed as requiring that some ready configuration, not necessarily the
first one, is stable2 and valid. We require though that an output is returned
after finite time and that every output returned by the network is correct, but
we do allow the network to revoke partial outputs. The problems solvable by
self-stabilizing algorithms in directed graphs can be characterized by fibrations
[12] similar to our characterization for RW that is presented in the full paper.
The notion of eventual correctness is also used in the scope of population pro-
tocols [5] in which nodes are modeled by finite state machines, see [9] for an
overview. In a clique network, the predicates a population protocol can solve
are exactly those expressible in first-order Presburger arithmetic [5,6,7], whereas
in bounded-degree graphs a Turing machine with linearly bounded space can be
simulated [4]. It was also studied how the correctness condition for population
protocols affects solvability of the Consensus problem [8].

Apart from these results, not much is known about distributed computability
(in contrast to distributed complexity). However, there are surprising connec-
tions between complexity and computability, which go beyond us borrowing the
terms hardness and completeness. Regarding network algorithms, in the last 30
years, a lot of research went into the question how fast a particular problem can
be computed by the network.

Naor and Stockmeyer [33] introduced the notion of locally checkable labelings
(essentially an apply-once oracle) in identified networks and ask the question how
a constant-time deterministic algorithm can decide whether the labeling repre-
sents a correct solution to a given problem. Follow-up work looked at the bit
complexity required to solve problems [26,21] and a problem hierarchy depending
on the size of checkable labelings was suggested [23], also for anonymous net-
works. Our work also yields a characterization for the decision problems in RW.
However, we do not restrict the run-time to be constant and allow randomization
for symmetry breaking. Pruning algorithms [27] that build a solution gradually
in a write-once fashion were inspired by the same line of research, in an effort to
remove the necessity of global knowledge about the graph. While our algorithms
are required to give a correct output in every execution [19,22] study the notion
of (p, q)-decidable decision problems (an anonymous randomized algorithm may
return a wrong output with constant probability) and find a hierarchy among
the solvable problem-classes depending on the success probabilities. If a random-
ized algorithm is allowed to fail (Monte-Carlo algorithm), then a leader can be
elected [32] with high probability (w.h.p, i.e., with probability 1 − n−c for any
c). Hence any CF-problem can be solved in an anonymous network w.h.p. In
contrast to that, we require a correct output with probability 1.

Non-deterministic algorithms running in an anonymous setting can fully de-
termine the structure of the radius t-ball around itself in [20], and thus solve
exactly the decision problems that are closed under so-called t-homomorphisms.
In our model only the local view can be retrieved. It may thus be surprising

2 A configuration is said to be stable if the nodes no longer revoke their outputs, see
Section 2.

188 Y. Emek, J. Seidel, and R. Wattenhofer

that RW-algorithms can solve exactly the problems that such non-deterministic
constant-time algorithms can solve in a single round.

2 Notions of Correctness

Our definition of a correct algorithm requires every ready configuration that
occurs throughout an execution to be valid. For WO-algorithms this requirement
is superfluous since its execution will reach at most one ready configuration.
However, RW-algorithms may invalidate or change a ready configuration after
it occurred. One may therefore wonder if strengthening the definition by allowing
only one durable ready configuration makes the class of solvable problems strictly
smaller. On the other hand one may be tempted to weaken this definition, in
hope to capture a larger class of problems by requiring only the first occurring
ready configuration to be correct. Perhaps surprisingly we show that these two
variants have no effect and are equivalent to the current definition of correctness.
This equivalence will play a key role when we reason about RW-algorithms in
the next section which covers distributed oracles.

Definition (Sustainable Correctness). A ready configuration is said to be
stable, if the nodes no longer revoke their outputs. Algorithm A is said to sus-
tainably solve a problem Π if it satisfies the following two conditions for every
input instance (G, i) ∈ Π :
1. A ready configuration is reached within finite time with probability 1.
2. The first ready configuration that occurs is valid and stable.

Definition (Loose Correctness). Algorithm A is said to loosely solve a problem
Π if it satisfies the following two conditions for every input instance (G, i) ∈ Π :
1. A ready configuration is reached within finite time with probability 1.
2. The first ready configuration that occurs is valid.

The class Sustainable-RW (respectively, Loose-RW) consists of every dis-
tributed problem that can be sustainably solved (resp., loosely solved) by a
RW-algorithm. Since sustainable correctness (resp., loose correctness) is a re-
striction (resp., a relaxation) of correctness as defined in Section 1.1, we con-
clude that Sustainable-RW ⊆ RW ⊆ Loose-RW. Note that the corresponding
classes Sustainable-WO and Loose-WO for WO-algorithms are equal to the class
WO due to the write-once restriction of these algorithms. The following theorem
states that also for RW-algorithms the three classes are, in fact, equal.

Theorem 1. The classes of problems solvable by RW-algorithms under the three
different notions of correctness satisfy Sustainable-RW = RW = Loose-RW.

The proof of Theorem 1 relies on a sustainability compiler that takes a RW-
algorithm A that loosely solves a problem Π and transforms it into a RW-
algorithm Â that sustainably solves this problem. At the heart of the compiler
lies the concept of inhibiting messages, i.e., a refinement of a simple concept
referred to as safe broadcast in which information is broadcast throughout the

Computability in Anonymous Networks 189

whole network and no ready configuration is reached before all nodes have re-
ceived the information. Specifically, the inhibiting messages ensure that the first
ready configuration reached by algorithm Â is stable. We refer to the appended
full version of this paper for the details of the sustainability compiler and its
underlying inhibiting message technique.

3 Distributed Oracles

In this section, we introduce the concepts of hardness and completeness, which
are central to this work and allow us to gain a deeper understanding how the
computability classes relate to each other. To that end, we introduce the notion
of an oracle working in a distributed setting.

Definition (Algorithm with access to a Π-oracle). Consider some problem
Π . A C-algorithm, C ∈ {WO,RW}, with access to a Π-oracle is a distributed
C-algorithm in which every node v is equipped with a designated oracle input
register and a designated oracle output register. Given some r ≥ 1, let ĩ(v) be
the content of v’s oracle input register in round r and let õ(v) be the content of
v’s oracle output register in round r + 1. If (G, ĩ) is an input instance of Π , then
it is guaranteed that õ is a valid output for (G, ĩ). No assumptions are made on
the operation of the algorithm if (G, ĩ) /∈ Π .

While applying the oracle in every round of the algorithm may seem powerful,
allowing the distributed algorithm to arbitrarily choose the rounds in which
the oracle is applied may require some sort of global coordination, which is
not necessarily possible. In comparison, a weaker definition of “accessing an
oracle” would be to allow application of the oracle only once in round 1. This
distinction does not make a difference for problems Π without inputs (|I(Π)| =
1), e.g., for graph theoretic problems like coloring, maximal independent set, or
determining the diameter, because the oracle is always applied on the same input
instance. It does however affect problems that do receive inputs (|I(Π)| ≥ 2),
e.g., Consensus or logical And and Or.

As stated above, based on the oracle concept, we will soon introduce the
notion of hard and complete problems for the hierarchy of problem classes. This
notion would be ill-defined if accessing an oracle to a problem ΠC ∈ C could
enhance the computational power of a C-algorithm. We ensure that the notion
of an algorithm with access to an oracle is sound in the following theorem. Note
that the statement of the theorem does not mention the case C = CF, since the
soundness of oracles for centralized models is well understood and in any case,
beyond the scope of the current paper.

Theorem 2 (Soundness). If a problem Π is solvable by a C-algorithm, C ∈
{RW,WO}, accessing an oracle to a problem ΠC ∈ C, then Π can also be solved
by a C-algorithm that does not access any oracle.

The key to proving this theorem is to show that in a C-algorithm Aa that
solves a problem Π with access to a ΠC-oracle, ΠC ∈ C, one can replace the

190 Y. Emek, J. Seidel, and R. Wattenhofer

oracle access by simulating a C-algorithm Ar that solves ΠC without any oracle
access. This turns out to be a non-trivial task especially for RW-algorithms since
a node v simulating Ar cannot know for sure that the output returned by Ar will
not be revoked later on, i.e., whether it can be safely used for the execution of
Aa. In other words, node v does not know when such a result is valid so that the
execution of Aa can continue based on this result (as if it was returned by the
ΠC-oracle). The technique we present to resolve this issue for RW-algorithms
is based on Theorem 1. Since the sustainability compiler (discussed in detail in
the full paper) works independently of the algorithm’s access to an oracle, the
arguments to establish Theorem 1 can be repeated to yield the following.

Lemma 1. Fix some problem Π ∈. Let A be a RW-algorithm with access to a Π ∈-
oracle loosely solving a problem Π and let Â be the RW-algorithm with access
to a Π ∈-oracle obtained by applying the sustainability compiler to A. Then Â
sustainably solves Π with an access to a Π ∈-oracle.

The ability to transform any RW-algorithm to ensure sustainable correctness
plays a key role in the proof of Theorem 2. Recall that our goal is to replace
the access to a ΠC-oracle of a C-algorithm Aa by a C-algorithm Ar solving
ΠC without any oracle access. In other words, the crux is to show how a C-
algorithm A can interleave the execution of algorithm Aa with an invocation
of Ar in every round in a correct manner, without any additional knowledge of
the run-time of Ar or properties of the underlying network. As noted before,
in the case C = RW, algorithm A faces the issue that an output returned to
a node v by Ar may not be part of a ready configuration and thus it is not
clear whether v should use this value as an output of the ΠC-oracle that Aa

invoked. Theorem 1 however relieves A from the burden of dealing with more
than one ready configuration of Ar, whereas Lemma 1 does the same with Aa.
Therefore, A is left with the task of determining when Ar and Aa have reached
a ready configuration.

In the full version of this paper we show how this can be accomplished by
carefully dividing the simulation into phases of a predetermined length and re-
cycling previously used random bits. Assuming that Theorem 2 is established
we introduce the concept of hard problems by borrowing the terminology from
sequential complexity theory.

Definition (Hardness). For two classes B ⊇ C, a problem Π is said to be B-
hard with respect to C, denoted by Π ∈ B-hardC, if for every problem ΠB ∈ B,
there exists a C-algorithm that solves ΠB with access to a Π-oracle. We say
that Π is complete in B with respect to C, denoted by Π ∈ B-completeC, if
additionally Π itself is contained in B.

Following our notational convention, we would refer to an N P-hard problem
as being N P-hard P . For example, the problem of electing a leader is well known
to be CF-hardWO since once a leader is available, this leader can assign unique
identifiers to all other nodes and solve the problem centrally. Our definition yields
the three hardness classes CF-hardRW, CF-hardWO and RW-hard WO, allowing

Computability in Anonymous Networks 191

us to study how algorithms running in anonymous networks relate to centralized
algorithms as well as how the two output revocability notions relate among each
other. By definition, every CF-hard WO problem is both CF-hard RW and RW-
hardWO; in Section 5 we present a proof sketch for the following theorem, which
states that the converse direction is also true. A thorough proof appears in the
full version.

Theorem 3. It holds that CF-hardWO = CF-hardRW ∩ RW-hardWO.

4 Problem Zoo

We study the computability and hardness of 21 problems in our setting, and
develop different proof techniques to tackle this tedious task. In this extended
abstract we confine ourselves to summarize the fruits of our effort in Figure 1.
Exemplarily we also present the hardness result for logical Or which is necessary
for the sketched proof of Theorem 3 in Section 5.

Overview of Problems. We briefly explain the problems listed in Figure 1.
– Leader-Election: all but one node output “NOT LEADER”, while a single

node outputs “LEADER”.
– Uniqueness: determine whether all nodes have a unique input value.
– IDs: without any input, every node must return a unique identifier.
– α-Size-Apx: determine a value ñ such that n ≤ ñ ≤ α · n, where n is the

number of nodes in the network.
– Min-Cut: determine a partition of the network inducing a minimum cut as

well as the size of this cut.
– Min-Cut-Value: determine the size of a minimum cut.
– Min-Cut-Partition: determine a partition of the network inducing a min-

imum cut.
– Diameter: determine the diameter D of the network.

CF

CF-hardRW

CF-hardWO
RW-hardWO

Min-Coloring
Min-Cut-Value

Factor-Multiplicity

Diameter
Min-Cut-Partition

Leader-Election
Min-Cut

Factor-Graph(≥ 2)-Size-Apx
(< 2)-Size-Apx

(≥ 3)-Hop-MIS
(≥ 3)-Hop-Coloring

Coordination

RW

Factor-Diameter
Consensus

WO

Coloring

2-Hop-MIS
2-Hop-Coloring

MIS

And
Uniqueness Or

IDs α-Diameter-Apx

Fig. 1. Classes CF, RW and WO, and the respective hardness classes

192 Y. Emek, J. Seidel, and R. Wattenhofer

– α-Diameter-Apx: determine a value d̃ such that D ≤ d̃ ≤ α · D.
– Min-Coloring: color the graph with the minimum number of colors.
– Coloring: determine some coloring of the graph.
– k-Hop-Coloring: color the graph so that the color of every node v differs

from the color of every other node in its k-hop neighborhood.
– MIS: determine a maximal independent set.
– k-Hop-MIS: find a maximal subset S of the nodes so that the distance be-

tween every two nodes in S is greater than k.
– Consensus: nodes return the same value x which is at least one node’s input.
– Coordination: determine whether all nodes have the same input.
– And: nodes have input 0 or 1 and have to return the logical And of all inputs.
– Or: nodes have input 0 or 1 and have to return the logical Or of all inputs.
– Factor-Graph: agree on a mapping f inducing a factor F of the network

graph. Each node v returns F and its corresponding node f(v) in F .
– Factor-Diam: determine the diameter of a factor graph of the network.
– Factor-Multiplicity: determine the multiplicity of the smallest factor of

the network.
The last three problems on this list require the notion of graph factors3 which is
introduced in the full version of this paper. Connections from distributed com-
putability to graph factors were witnessed before, for example in [3]. For some
problems on the list, namely k-Hop-MIS, k-Hop-Coloring, and α-Size-Apx,
computability and/or hardness depends on the choice of k and α, respectively.

Of course for many problems on this list it is known whether they are con-
tained in WO or CF \ WO. For example the well studied symmetry breaking
tasks MIS or Coloring with Δ + 1 colors (where Δ denotes the maximum
degree of a node in the graph) are known to be in WO [29,2,28]. The work
[17] presents WO-algorithms for each of the two problems 2-Hop-MIS and 2-
Hop-Coloring. An example of a previously known hardness result is that an
approximation α-Size-Apx with α < 2 is sufficient to find unique identifiers
with a WO-algorithm [34].

Example (Logical Or). Denote by ρ the output register of a node v. The
following “algorithm” loosely solves Or. In the first round if node v has input
0, then it sets ρ ← 0, otherwise v sets ρ ← ε. In the second round all nodes set
ρ ← 1 regardless of their input.

This method highlights how convenient Theorem 1 can be for an algorithm
designer. The straight-forward solution however is no testimony to the crudeness
of Or, since the following argument shows that it is indeed RW-completeWO. We
show how to turn a RW-algorithm ARW solving Π ∈ RW into a WO-algorithm
AWO that solves Π with access to an Or-oracle. In algorithm AWO every node v
will simulate one round of ARW in every round; we denote v’s simulated output
register of ARW by ρRW, and the actual output register of AWO by ρWO. If in
round r the register ρRW = ε, then v writes 1 to the input register of the oracle,
otherwise it invokes the oracle with input 0. When the oracle answers 0 in round
3 In the distributed computing literature, the concept of graph factors was also referred

to as covering graphs and graph lifts.

Computability in Anonymous Networks 193

r + 1, the network was in a ready configuration in round r and v sets ρWO to
the value contained in ρRW in round r.

5 Proof of Theorem 3

In this section we only present a sketch for the proof of Theorem 3; a compre-
hensive proof is presented in the appended full paper. Our proof is based on the
techniques introduced in Section 2 and utilizes the aforementioned completeness
result for Or. Theorem 3 states that if a problem Π is both CF-hardRW and
RW-hardWO, then it is also CF-hardWO. Let Π ∈ CF-hardRW ∩ RW-hardWO
be a problem satisfying the premise. Denote by ALE a RW-algorithm solving
Leader-Election with an access to a Π-oracle, and by AOR a WO-algorithm
solving Or with an access to a Π-oracle respectively.

The idea is to design a WO-algorithm A solving Leader-Election with
access to a Π-oracle by simulating one execution of ALE and multiple executions
of AOR, where the task of the latter is to determine whether the former has
reached a ready configuration. That is, for every simulated round r of algorithm
ALE a corresponding simulation AOR, called the fork [r] of AOR, is initiated.
The input to fork [r] is 0 if v was ready in round r under ALE (v observes that
from the simulated outcome of ALE’s round r); the input is 1 otherwise. Since
in A the Π-oracle can only be accessed once in every round, algorithm A uses
a careful mechanism to schedule disjoint accesses by the simulated execution of
ALE and all forks to this scarce resource; we refer to the full version for the
details.

The logic of Or guarantees that fork [r] of AOR has output 0 if and only
if round r under ALE’s simulation is in a ready configuration. Since AOR is a
WO-algorithm, node v can immediately rely on a returned 0 value to conclude
that this indeed happened. Employing Lemma 1, one can assume that ALE
sustainably solves the leader election problem, thus ensuring that the output
returned in v’s simulated round r of ALE yields a correct output for Leader-
Election. This establishes Theorem 3.

References

1. Abrahamson, K., Adler, A., Higham, L., Kirkpatrick, D.: Probabilistic solitude
verification on a ring. In: PODC (1986)

2. Alon, N., Babai, L., Itai, A.: A fast and simple randomized parallel algorithm for
the maximal independent set problem. Journal of Algorithms 7(4), 567–583 (1986)

3. Angluin, D.: Local and global properties in networks of processors (extended ab-
stract). In: Theory of Computing (1980)

4. Angluin, D., Aspnes, J., Chan, M., Fischer, M.J., Jiang, H., Peralta, R.: Sta-
bly computable properties of network graphs. In: Prasanna, V.K., Iyengar, S.S.,
Spirakis, P.G., Welsh, M. (eds.) DCOSS 2005. LNCS, vol. 3560, pp. 63–74. Springer,
Heidelberg (2005)

5. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in
networks of passively mobile finite-state sensors. In: PODC (2004)

194 Y. Emek, J. Seidel, and R. Wattenhofer

6. Angluin, D., Aspnes, J., Eisenstat, D.: Stably computable predicates are semilinear.
In: PODC (2006)

7. Angluin, D., Aspnes, J., Eisenstat, D., Ruppert, E.: The computational power of
population protocols. Distributed Computing 20, 279–304 (2007)

8. Angluin, D., Fischer, M.J., Jiang, H.: Stabilizing consensus in mobile networks. In:
Gibbons, P.B., Abdelzaher, T., Aspnes, J., Rao, R. (eds.) DCOSS 2006. LNCS,
vol. 4026, pp. 37–50. Springer, Heidelberg (2006)

9. Aspnes, J., Ruppert, E.: An introduction to population protocols. In: Garbinato,
B., Miranda, H., Rodrigues, L. (eds.) MiNEMA (2009)

10. Boldi, P., Vigna, S.: Computing anonymously with arbitrary knowledge. In: PODC
(1999)

11. Boldi, P., Vigna, S.: An effective characterization of computability in anonymous
networks. In: Welch, J.L. (ed.) DISC 2001. LNCS, vol. 2180, pp. 33–47. Springer,
Heidelberg (2001)

12. Boldi, P., Vigna, S.: Universal dynamic synchronous self-stabilization. Distributed
Computing 15(3), 137–153 (2002)

13. Chalopin, J., Das, S., Santoro, N.: Groupings and pairings in anonymous networks.
In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 105–119. Springer, Heidelberg
(2006)

14. Chalopin, J., Godard, E., Métivier, Y.: Local terminations and distributed com-
putability in anonymous networks. In: Taubenfeld, G. (ed.) DISC 2008. LNCS,
vol. 5218, pp. 47–62. Springer, Heidelberg (2008)

15. Dolev, S.: Self-Stabilization (2000)
16. Dolev, S., Israeli, A., Moran, S.: Uniform dynamic self-stabilizing leader election.

In: Toueg, S., Spirakis, P.G., Kirousis, L. (eds.) WDAG 1991. LNCS, vol. 579, pp.
167–180. Springer, Heidelberg (1992)

17. Emek, Y., Wattenhofer, R.: Stone age distributed computing. In: PODC (2013)
18. Flocchini, P., Kranakis, E., Krizanc, D., Luccio, F.L., Santoro, N.: Sorting and

election in anonymous asynchronous rings. J. Parallel Distrib. Comput. 64(2),
254–265 (2004)

19. Fraigniaud, P., Korman, A., Peleg, D.: Local distributed decision. In: FOCS
(October 2011)

20. Fraigniaud, P., Halldórsson, M.M., Korman, A.: On the impact of identifiers on
local decision. In: Baldoni, R., Flocchini, P., Binoy, R. (eds.) OPODIS 2012. LNCS,
vol. 7702, pp. 224–238. Springer, Heidelberg (2012)

21. Fraigniaud, P., Ilcinkas, D., Pelc, A.: Oracle size: A new measure of difficulty for
communication tasks. In: PODC (2006)

22. Fraigniaud, P., Korman, A., Parter, M., Peleg, D.: Randomized distributed deci-
sion. In: Aguilera, M.K. (ed.) DISC 2012. LNCS, vol. 7611, pp. 371–385. Springer,
Heidelberg (2012)

23. Göös, M., Suomela, J.: Locally checkable proofs. In: PODC (2011)
24. Guerraoui, R., Ruppert, E.: What can be implemented anonymously? In:

Fraigniaud, P. (ed.) DISC 2005. LNCS, vol. 3724, pp. 244–259. Springer, Heidelberg
(2005)

25. Itai, A., Rodeh, M.: Symmetry breaking in distributive networks. In: FOCS (1981)
26. Korman, A., Kutten, S., Peleg, D.: Proof labeling schemes. In: PODC (2005)
27. Korman, A., Sereni, J.S., Viennot, L.: Toward more localized local algorithms:

removing assumptions concerning global knowledge. In: PODC (2011)
28. Linial, N.: Locality in distributed graph algorithms. SIAM Journal on Comput-

ing 21(1), 193–201 (1992)

Computability in Anonymous Networks 195

29. Luby, M.: A simple parallel algorithm for the maximal independent set problem.
In: Theory of Computing (1985)

30. Lynch, N.A.: Distributed Algorithms (1996)
31. Mavronicolas, M., Michael, L., Spirakis, P.: Computing on a partially eponymous

ring. In: Shvartsman, A. (ed.) OPODIS 2006. LNCS, vol. 4305, pp. 380–394.
Springer, Heidelberg (2006)

32. Métivier, Y., Robson, J.M., Zemmari, A.: Analysis of fully distributed splitting and
naming probabilistic procedures and applications. In: Moscibroda, T., Rescigno,
A.A. (eds.) SIROCCO 2013. LNCS, vol. 8179, pp. 153–164. Springer, Heidelberg
(2013)

33. Naor, M., Stockmeyer, L.: What can be computed locally? SIAM Journal on Com-
puting 24(6), 1259–1277 (1995)

34. Schieber, B., Snir, M.: Calling names on nameless networks. In: PODC (1989)
35. Yamashita, M., Kameda, T.: Computing on anonymous networks: Part i-

characterizing the solvable cases. IEEE Trans. Parallel Distrib. Syst. 7(1), 69–89
(1996)

Coalgebraic Weak Bisimulation from Recursive
Equations over Monads

Sergey Goncharov1 and Dirk Pattinson2

1 Department of Computer Science, FAU Erlangen-Nürnberg, Germany
2 Research School of Computer Science, Australian National University, Australia

Abstract. Strong bisimulation for labelled transition systems is one of
the most fundamental equivalences in process algebra, and has been
generalised to numerous classes of systems that exhibit richer transi-
tion behaviour. Nearly all of the ensuing notions are instances of the
more general notion of coalgebraic bisimulation. Weak bisimulation, how-
ever, has so far been much less amenable to a coalgebraic treatment.
Here we attempt to close this gap by giving a coalgebraic treatment of
(parametrized) weak equivalences, including weak bisimulation. Our anal-
ysis requires that the functor defining the transition type of the system
is based on a suitable order-enriched monad, which allows us to capture
weak equivalences by least fixpoints of recursive equations. Our notion
is in agreement with existing notions of weak bisimulations for labelled
transition systems, probabilistic and weighted systems, and simple Segala
systems.

1 Introduction

Both strong and weak bisimulations are fundamental equivalences in process al-
gebra [13]. Both have been adapted to systems with richer behaviour such as
probabilistic and weighted transition systems. For each class of systems, strong
bisimulation is defined in a similar way which is explained by universal coalgebra
where strong bisimulation is recovered as a canonical equivalence that paramet-
rically depends on the type of system [16]. Weak bisimulations are much more
difficult to analyse even for labelled transition systems (LTS), and much less
canonical in status (e.g. branching and delay bisimulations [21]).

We present a unified, coalgebraic treatment of various types of weak bisim-
ulation. An important special (and motivating) case of our definition is proba-
bilistic weak bisimulation of Baier and Herrmanns [2]. Unlike labelled transition
systems, probabilistic weak bisimulation needs to account for point-to-set transi-
tions, while point-to-point transitions, as for labelled transition systems, do not
suffice: Every LTS with a transition relation ∈ induces an LTS with a weak
transition relation ≡ and weak bisimulation for the original system is strong
bisimulation of the transformed one. This approach fails in the probabilistic
case, as weak point-to-point transitions no longer form a probability distribu-

tion: in a system where x
a(0.5)−−−−∈ y and x

τ(0.5)−−−−∈ x, we obtain x
a(1)
==≡ y as the

probability that x evolves to y along a trace of the form Σ∗ · a · Σ∗ is clearly

one, but also x
τ(1)
==≡ x as the system will also evolve from x to x along Σ∗ also

J. Esparza et al. (Eds.): ICALP 2014, Part II, LNCS 8573, pp. 196–207, 2014.
© Springer-Verlag Berlin Heidelberg 2014

Coalgebraic Weak Bisimulation from Recursive Equations over Monads 197

with probability one (by simply doing nothing). Crucially, both events are not
independent. This is resolved by relating states to state sets along transition
sequences, and the probability P (x, ε, S) of x evolving to a state in S along a
trace in ε is the probability of the event that contains all execution sequences
leading from x to S via ε, called total probability in op.cit. By re-formulating
this idea axiomatically, we show that it is applicable to a large class of systems,
specifically coalgebras of the form X ∈ T (X × A) where T is enriched over di-
rected complete partial orders with least element (pointed dcpos) and non-strict
maps. Not surprisingly, similar (but stronger) assumptions also play a prominent
role in coalgebraic trace semantics [8], and have two ramifications: the fact that
the functor T that describes the branching behaviour extends to a monad allows
us to consider transition sequences, and order-enrichment permits us to compute
the cumulative effect of (sets of) transition sequences recursively using Kleene’s
fixpoint theorem. Our construction is parametric in an observation pattern that
can be varied to obtain e.g. weak and delay bisimulation. We demonstrate by
example that our definition generalises concrete definitions of probabilistic and
weak weighted and probabilistic bisimulation found in the literature [2, 5, 18, 17].

A special role in our model is played by the operation of binary join, which
is a continuous operation of the monad. We show that if it is also algebraic in
the sense of Plotkin and Power [15], which holds in the case of LTS, then weak
bisimulation can be recovered as a strong bisimulation for a system of the same
type, thus reestablishing Milner’s weak transition construction. In the proba-
bilistic case, for which join is unsurprisingly nonalgebraic, we show that weak
bisimulation arises as strong bisimulation of a system based on the continuation
monad.

2 Preliminaries

We use basic notions of category theory and coalgebra, see e.g. [16] for an
overview. For a functor F : Set ∈ Set, an F -coalgebra is a pair (X, f) with
f : X ∈ TX . Coalgebras form a category where the morphisms between
(X, f) and (Y, g) are functions Ω : X ∈ Y with g ⊆ Ω = FΩ ⊆ f . A relation
E ↔ X ×X is a kernel bisimulation on (X, f) if there is an F -coalgebra (Z, h)
and two morphisms Ω : (X, f) ∈ (Z, h) and δ : (X, g) ∈ (Z, h) such that
E = Ker(Ω) = {(x, y) ⇔ X ×X | Ω(x) = δ(y)} is the kernel of Ω. Clearly, kernel
bisimulations are equivalence relations, and we only consider kernel bisimula-
tions in what follows. Kernel bisimulation agrees with Aczel-Mendler bisimula-
tion (and its variants) in case F preserves pullbacks weakly but is mathematically
better behaved in case F does not. It also agrees (in all cases) with the notion
of behavioural equivalence: a thorough comparison is provided in [20].

We take monads (on sets) as given by their extension form, i.e. as Kleisli
triples � = (T, π, ---†) where T : Set ∈ Set is a functor, πX : X ∈ TX is a
map for all sets X and f † : TX ∈ TY is a map for all f : X ∈ TY subject

to the equations f †πX = f , π†X = idTX and (f †g)† = f †g† for all sets X and
all f, g of appropriate type. Throughout, we write T for the underlying functor
of a monad �. The Kleisli category induced by a monad � has sets as objects,
but Kleisli-morphisms between X and Y are functions f : X ∈ TY with Kleisli

198 S. Goncharov and D. Pattinson

composition g ⊆ f = g† ⊆ f where g† ⊆ f is function composition in Set and πX is
the identity at X . We use Haskell-style do-notation to manipulate monad terms:
for any p ⇔ TX and q : X ∈ TY we write do x ⊂ p; q(x) to denote q†(p) ⇔ TY ;
if p ⇔ T (X × Y) we write do≥x, y⇒ ⊂ p; q(x, y).

In the sequel, we consider (among other examples) monads induced by semir-
ings: A semiring is a structure (R,+, ·, 0, 1) such that (R,+, 0) is a commutative
monoid, (R, ·, 1) is a monoid and multiplication distributes over addition, i.e.
x · (y+ z) = x ·y+x · z and (y+ z) ·x = y ·x+ z ·x. A positively ordered semiring
is a semiring (R,+, ·, 0, 1,◦) equipped with a partial order ◦ that is positive
(0 ◦ r for all r ⇔ R) and compatible with the ring structure (x ◦ y implies
that x�z ◦ y�z and z�x ◦ z�y for all x, y, z ⇔ R and � ⇔ {+, ·}). A contin-
uous semiring is a positively ordered semiring where every directed set D ↔ R
has a least upper bound supD ⇔ R that is compatible with the ring structure
(r� supD = sup{r�d | d ⇔ D} and supD�r = sup{d�r | d ⇔ D} for all directed
sets D ↔ R, all r ⇔ R) and � ⇔ {+, ·}. Every continuous semiring R is a complete
semiring, i.e. has infinite sums given by

∑
i∈I ri = sup{∑i∈J ri | J ↔ I finite}.

We refer to [7] for details. If R is complete, the functor TRX = X ∈ R extends to
a monad �R, called the complete semimodule monad (c.f. [9]) with πX(x)(y) = 1
if x = y and πX(x)(y) = 0, otherwise, and f †(Ω)(y) =

∑
x∈X Ω(x) · f(x)(y) for

f : X ∈ TRY . Note if R is continuous then all TRX are pointed dcpos under
the pointwise ordering of R and the same applies to Kleisli homsets, i.e. the set
of Kleisli-maps of type X ∈ TY .

3 Examples

We illustrate our generic approach to weak bisimulation by means of the following
examples. For all examples, strong bisimulation is well understood and known
to coincide with kernel bisimulation. As we will see later, the same is true for
weak bisimulation, introduced in the next section.

Labelled Transition Systems. We consider the monad �Q where Q = {0, 1} is
the boolean semiring. Clearly TQ

≤= P where P is the covariant powerset functor.
A labelled transition system can now be described as a coalgebra (X, f : X ∈
TQ(X×A)). It is well known that bisimulation equivalences on labelled transition
systems coincide with kernel bisimulations as introduced in the previous section.

Probabilistic Systems. Consider the monad �[0,≥] induced by the com-
plete semiring of non-negative real numbers, extended with infinity. Vari-
ous types of probabilistic systems arise as sub-classes of systems of type
(X, f : X ∈ T[0,≥](X × A)). For reactive systems, one postulates∑

y∈X f(x)(y, a) ⇔ {0, 1} for all x ⇔ X and all a ⇔ A. Generative systems

satisfy
∑

(y,a)∈Y×A f(x)(y, a) ⇔ {0, 1} for all x ⇔ X , and fully probabilistic sys-

tems satisfy
∑

(y,a)∈X×A f(x)(y, a) = 1 for all x ⇔ X . We refer to [3] for a

detailed analysis of various types of probabilistic systems in coalgebraic terms.
It is known that probabilistic bisimulation equivalence [10] and kernel bisimula-
tions agree [6]. Our justification of viewing these various types of probabilistic
systems as [0,→] weighted transition systems comes from the fact that kernel
bisimulations are reflected by embeddings:

Coalgebraic Weak Bisimulation from Recursive Equations over Monads 199

Lemma 1. Let ψ : F ∈ G be a monic natural transformation between two
set-functors F and G and (X, f) be an F -coalgebra. Then kernel bisimulations
on the F -coalgebra (X, f) agree with kernel bisimulations on the G-coalgebra
(X,ψX ⊆ f).

Integer Weighted Transition Systems. Weighted transition systems, much
like probabilistic systems, arise as coalgebras for the functor FX = T�∈{≥}(X×
A) where �∅{→} is the (complete) semiring of natural numbers extended with →
and the usual arithmetic operations. In an (integer) weighted transition system,

every labelled transition comes with a weight, and we can write x
a(n)−∈ y if

f(x)(y, a) = n. In process algebra, weights represent different ways in which the

same transition can be derived syntactically, e.g. a.0 + a.0
a(2)−−∈ 0, according to

the reduction of the term on the left and right, respectively. The ensuing (strong)
notion of equivalence has been studied in [1] and shown to be coalgebraic.

The three examples above are a special instance of semiring-weighted transi-
tion systems, studied for instance in [11]. This is not the case for systems that
combine probability and non-determinism.

Non-Deterministic Probabilistic Systems. As we have motivated in the
introduction, a coalgebraic analysis of weak bisimulation hinges on the ability
to sequence transitions, i.e. the fact that the functor F defining the concrete
shape of a transition system (X, f : X ∈ F (X × A)) extends to a monad.
The naive combination of probability and non-determinism, i.e. considering the
functor F = P ⊆ D where D(X) is the set of finitely distributed probability
distributions does not extend to a monad [22]. One solution, discussed in op.cit.
and elaborated in [9] is to restrict to convex sets of valuations. Informally, we use
monad C0M (a variant of the CM monad from [9]), encompassing two semiring
structures, for probability and non-determinism, and the former distributes over
the latter, i.e. a+p (b+c) = (a+p b)+(a+p c) where + is nondeterministic choice
and +p is probabilistic choice (choose ‘left’ with probability p and ’right’ with
probability 1 − p). Concretely, for the underlying functor C0M of the monad
C0M, C0MX is the set of nonempty convex sets of finite valuations over [0,→),
i.e. finitely supported maps to [0,→), containing the trivial valuation identically
equal to 0. A set S is convex if

∑
i ri · φi ⇔ S whenever all φi ⇔ S and

∑
i ri = 1.

Our definition deviates slightly from [9] in that we require that C0MX contains
the zero valuation, whereas in op.cit. (and also in [4]) this condition is used to
restrict the class of systems to which the theory is applied.

4 Weak Bisimulation, Coalgebraically

Capturing weak bisimulation for transition systems (X, f : X ∈ T (X × A))
coalgebraically, where A is a set of labels that we keep fixed throughout, amounts
to two requirements: first, T needs to extend to a monad which enables us to
sequence transitions. Second, we need to be able to compute the cumulative
effect of transitions which requires the monad to be enriched over the category
of directed complete partial orders (and non-strict morphisms).

200 S. Goncharov and D. Pattinson

Definition 2 (Completely Ordered Monads). A monad � is completely or-
dered if its Kleisli category is enriched over the category DCPO⊆ of directed-
complete partial orders with least element (pointed dcpos) and continuous maps:
every hom-set Set(X,TY) is a pointed dcpo and Kleisli composition is continu-

ous, i.e. the joins f † ⊆ (
⊔

i gi) =
⊔

i f
† ⊆ gi and (

⊔
i fi)

† ⊆ g =
⊔

i f
†
i ⊆ g exist and

are equal whenever the join on the left hand side is taken over a directed set.
A continuous operation of arity n on a completely ordered monad is a natural
transformation α : T n ∈ T for which every component αX is Scott-continuous.

The diligent reader will have noticed that the same type of enrichment is also
required in the coalgebraic treatment of trace semantics [8]. This is by no means
a surprise, as the observable effect of weak transitions are precisely given in
terms of (sets of) traces.

Often, these sets are defined in terms of weak transitions of the form
τ∈∗ ·

a∈ · τ∈∗
. We think of weak transitions as transitions along trace sets closed

under Brzozowski derivatives which enables us to recursively decompose a weak
transition into a (standard) transition, followed by a weak transition.

Definition 3 (Observation Pattern). An observation pattern over a set A
of labels is a subset B ↔ P(A∗) that is closed under Brzozowski derivatives, i.e.
b/a = {w ⇔ A∗ | aw ⇔ b} ⇔ B for all b ⇔ B and all a ⇔ A.

Different observation patterns capture different notions of weak bisimulation,
and B stands for both bisimulation and closure under Brzozowski derivatives.

Example 4 (Observation Patterns). Let A contain a silent action Σ .

(i) the strong pattern over A is given by B = {{a} | a ⇔ A} ∅ {/0, {β}}.

(ii) the weak pattern over A is given by B = {â | a ⇔ A} where Σ̂ = Σ∗ and
â = Σ∗ · a · Σ∗ for a ⊇= Σ .

(iii) The delay pattern is B = {Σ∗a | a ⇔ A \ {Σ}} ∅ {Σ∗}.

It is immediate that all are closed under Brzozowski derivatives.

Given an observation pattern that determines the notion of traces, our definition
of weak bisimulation relies on the fact that the cumulative effect of transitions
can be computed recursively. This is ensured by enrichment, and we have the
following (see Section 2 for the do-notation):

Lemma 5. Suppose B is an observation pattern over A, � is a completely or-
dered monad and ⊕ : T 2 ∈ T is continuous. Then the equation

fB
h (x)(b) =

{
π(h(x)) if β ⇔ b

∪ otherwise

}
⊕ do≥y, a⇒ ⊂ f(x); fB

h (y)(b/a) (�)

has a unique least solution fB
h : X ∈ (TY)B for all f : X ∈ T (X ×A) and all

h : X ∈ Y .

Lemma (5) follows from Kleene’s fixpoint theorem [23] using order-enrichment.
The central notion of our paper can now be given as follows:

Coalgebraic Weak Bisimulation from Recursive Equations over Monads 201

Definition 6. Suppose that � is a completely ordered monad with a continuous
operation ⊕, B is an observation pattern over A and let f : X ∈ T (X ×A). An
equivalence relation E ↔ X × X is a B-⊕-bisimulation if E ↔ Ker(fB

π) where
Δ : X ∈ X/E is the canonical projection (and fB

π is the unique least solution
of (�)). We often elide the continuous operation, and say that x, x⊗ ⇔ X are
B-bisimilar, if they are related by a B-bisimulation.

Some remarks are in order before we show that the above definition agrees with
various notions of weak bisimulation studied in the literature.

Remark 7. (i) Intuitively, the requirement E ↔ Ker(fB
π) expresses that any

two E-related states x and x⊗ have the same cumulative behaviour under all trace
sets in B, provided that E-related states are not distinguished. In other words,
a state [x]E of the quotient of the original system exhibits the same behaviour
with respect to all trace sets in B, as the representative x of [x]E . This intuition
is made precise in Section 6 where we show how B-bisimulation can be recovered
as strong bisimulation (and hence quotients can be constructed).

(ii) The definition of weak bisimulation above caters for systems of the form
(X, f : X ∈ T (X × A)), i.e. we implicitly consider the labels as part of the
observable behaviour, or as ’output’. The role of labels appears to be reversed
when computing the cumulative effect of transitions via the function fB

π : X ∈
T (X/E)B. This apparent reversal of roles is due to the fact that every element
of B is a set of traces. Accordingly, the function application fB

h (x)(b) represents
the totality of behaviour that can be observed along traces in b, starting from x,
and trace sets are now ’input’.

As a slogan, B-bisimilarity is a B-bisimulation:

Lemma 8. Let (Ei)i∈I be a family of B-bisimulation equivalences on (X, f :
X ∈ T (X ×A). Then so is the transitive closure of

⋃
i∈I Ei.

5 Examples, Revisited

We demonstrate that B-bisimulation agrees with the known (and expected) no-
tion of weak bisimulation for the examples in Section 3. To instantiate the general
definition to coalgebras of the form X ∈ T (X ×A), we need to verify that the
monad � is completely ordered. This is the case for complete semimodule monads
over continuous semirings.

Lemma 9. Let R be a continuous semiring. Then the monad �R is completely
ordered, and both join ∩ and semiring sum + are continuous operations on T .

This lemma in particular ensures that B-bisimulation is meaningful for transi-
tions systems weighted in a complete semiring, and in particular for labelled,
probabilistic and integer-weighted systems.

Labelled Transitions Systems. As in Section 3, labelled transition systems
are coalgebras for the functor FX = P(X × A). For an F -coalgebra (X, f),
Equation (�) stipulates that

fh(x)(b) =
{
h(x)

∣∣ β ⇔ b
} ∅

⋃
x

a−∈y
fh(y)(b/a)

202 S. Goncharov and D. Pattinson

where x
a−∈ y iff ≥y, a⇒ ⇔ f(x). By Kleene’s fixpoint theorem, the least solution is

fh(x)(b) =
{
h(xk)

∣∣ x a1−∈ x1
a2−∈ . . .

ak−∈ xk, a1 · · · ak ⇔ b
}
.

If Σ ⇔ A, B is the weak pattern and E ↔ X ×X is an equivalence, this gives

[x⊗]E ⇔ fB
π (x)(â) iff x

â
=≡ x⊗

where x
â

=≡ x⊗ if there are (y1, a1), . . . , (yn, an) such that x
a1∈ y1

a2∈ · · · an∈
yn = x⊗ and a1 · · · an ⇔ â. By Definition 6, E is a B-bisimulation if for any

≥x, y⇒ ⇔ E,
{

[x⊗]E | x â≡ x⊗} =
{

[y⊗]E | y â≡ y⊗
}

for any a ⇔ A (including Σ). The
latter is easily shown to be equivalent to the standard notion of weak bisimula-
tion equivalence. By analogous reasoning one readily recovers delay bisimulation
equivalences from the delay pattern.

Probabilistic Systems. Fully probabilistic system (Section 3) are coalgebras
of type (X, f : X ∈ T[0,≥](X × A)), where �[0,≥] is the complete semimodule
monad induced by [0,→] and additionally satisfy

∑
(y,a)∈X×A f(x)(y, a) = 1 for

all x ⇔ X . In [2], an equivalence relation E ↔ X ×X is a weak bisimulation, if

P (x, â, [y]E) = P (x⊗, â, [y]E)

for all a ⇔ A, y ⇔ X and (x, x⊗) ⇔ E. Here â is given as in Example 4 and
P (x, ε,C) is the total probability of the system evolving from state x to a state
in C via a trace in ε ↔ A∗. Op.cit. states that total probabilities satisfy the
recursive equations: P (x, ε,C) = 1 if β ⇔ C and x ⇔ ε, and

P (x, ε,C) =
∑

(y,a)∈X×A
f(x)(y, a) · P (y, ε/a, C)

otherwise. In fact, total probabilities are the least solution (with respect to the
pointwise order on [0,→]) of the recursive equations above.

Lemma 10. Let (X, f : X ∈ T[0,≥](X × A)) be a fully probabilistic system,
B an observation pattern over A and E ↔ X × X an equivalence relation. If
Δ : X ∈ X/E is the canonical projection, then P (x, b, [y]E) = fB

π (x)(b)([y]E)
for all x, y ⇔ X and all b ⇔ B, using ∩ as continuous operation.

As a corollary, we obtain that weak bisimulation of fully probabilistic systems is
a special case of B-bisimulation for the weak pattern.

Weighted Transition Systems. Weighted transition systems are technically
similar to probabilistic systems as they also appear as coalgebras for a (complete)
semimodule monad, but without any restriction on the sum of weights. The
associated notion of weak resource bisimulation is described syntactically in [5].
Abstracting from the concrete syntax and taking weighted transition systems as
primitive, we are faced with a situation that is reminiscent of the probabilistic
case: a weak resource bisimulation equivalence on a weighted transition system
(X, f : X ∈ T�∈≥(X × A)) is an equivalence relation E ↔ X × X such that
xEy and a ⇔ A implies that W (x, ε,C) = W (y, ε, C) for all equivalence classes

Coalgebraic Weak Bisimulation from Recursive Equations over Monads 203

C ⇔ X/E and all ε that are of the form Σ∗aΣ∗ for a ⊇= Σ and Σ∗. Here W (x, ε,C)
is the total weight, i.e. the maximal number of possibilities in which x can evolve
into a state in C via a path from ε. Total weights can be understood as (weighted)
sums over all independent paths that lead from x into C via a trace in ε, where
two paths are independent if neither is a prefix of the other. Analogously to the
probabilistic case, these weights are given by the least solution of the recursive
equations

W (x, ε,C) =

{
1 β ⇔ ε, x ⇔ C

0 otherwise

}
∩

∑
(y,a)∈X×A

f(x)(y, a) ·W (y, ε/a, C)

and represent the total number of possibilities in which a process x can
evolve into a process in C along a trace in ε. For example, we have that
W (0 + Σ.0 + Σ.Σ.0, Σ∗, {0}) = 3 representing the three different possibilities in
which the given process can become inert along a Σ -trace, and W (x, Σ∗, z) = 6

for the triangle-shaped system x
τ(2)∈ y, x

τ(2)∈ z and y
τ(2)∈ z. It is routine to check

that W (x, b, [x⊗]E) = fB
π (x)(b)([x⊗]E). Unlike the probabilistic case, the number

of different ways in which processes may evolve is strictly additive. For the weak
pattern, B-bisimulation is therefore the semantic manifestation of weak resource
bisimulation advocated in [5].

Probability and Nondeterminism. Systems that combine probabilistic and
nondeterministic behaviour arise as coalgebras of type (X, f : X ∈ C0M(X×A))
where C0M is the monad from Section 3. Systems of this type capture so-called
Segala systems. Here we stick to simple Segala systems, which are colagebras of
type P(D×A) and for which the ensuing notion of weak probabilistic bisimulation
was introduced in [18]. These systems extend probabilistic systems by additionally
allowing non-deterministic transitions. As was essentially elaborated in [4], every
simple Segala system embeds into a coalgebra (X, f : X ∈ C0M(X ×A)).

Completing a simple Segala system to a coalgebra over C0M amounts to form-
ing convex sets of valuations; convexity arises from probabilistic choice as follows:
given non-deterministic transitions x ∈ φ and x ∈ Θ, where φ and Θ are valua-
tions over X×A induces a transition x ∈ φ+p Θ where +p is probabilistic choice.
Following [22], one way to understand this is to also consider non-deterministic
choice + and to observe that

φ + Θ = (φ + Θ + φ) +p (φ + Θ + Θ) = (φ + Θ) +p (φ + Θ) + (φ +p Θ) = φ + Θ + (φ +p Θ)

by the axioms φ + φ = φ +p φ = φ, (φ + Θ) +p ν = (φ +p ν) + (Θ +p ν), the last one
describing the interaction between probabilistic and non-deterministic choice.

We argue that B-bisimulation where B is the weak observation pattern agrees
with the notion from [18, 17]. We make a forward reference to Theorem 16 which
shows that B-bisimulation for (X, f) amounts to strong bisimulation for (X, fB

id).
In other words, weak bisimilarity can be recovered from strong bisimilarity for
the system whose transitions are weak transitions of the original system. Solving
the recursive equation for fB

id (where B is the weak pattern and we use the

notation of Example 4) we can write x
â

=≡ φ if φ ⇔ fB
id (x)(a). Intuitively, this

204 S. Goncharov and D. Pattinson

represents that x can evolve along a trace in â to the valuation φ, interleaving
probabilistic and nondeterministic steps. We then obtain that an equivalence

relation E ↔ X × X is a B-bisimulation if, whenever (x, y) ⇔ E and x
â

=≡ φ,

there exists Θ such that y
â

=≡ Θ and φ and Θ are ’equivalent up to E’, that is,
(FΔ)φ = (FΔ)Θ where Δ : X ∈ X/E is the projection and FX = [0,→)X . More
concretely, the weak relation ≡ ⇔ X × B × [0,→)X is obtained by (�) and is
the least solution of the following system:

x
τ̂

=≡ δx

x
â

=≡ Θ iff ⊕φ ⇔ f(x). Θ ⇔
{∑

y∈X
φ(y, a) · ντy + φ(y, Σ) · νay

∣∣∀y. y b̂
=≡ νby

}

where x
b̂

=≡ Θ (b ⇔ {a, Σ}) abbreviates ≥x, b, Θ⇒ ⇔ ≡; δy(y⊗) = 1 if y = y⊗ and
δy(y⊗) = 0 otherwise; and scalar multiplication and summation act on valuations
pointwise. Kleene’s fixpoint theorem underlying Lemma 5 ensures that the rela-
tion ≡ can be calculated iteratively, i.e. ≡ =

⋃
i ≡i where the ≡i replace ≡ in

the above recursive equations in the obvious way, hence making them recurrent.

Then x
b̂

=≡ Θ iff there is i such that x
b̂

=≡i Θ. The resulting definition in terms of
weak transitions ≡i matches weak probabilistic bisimulation from [18, 17]. Note
that convexity of the monad precisely ensures that φ in the recursive clause above

for x
â

=≡ Θ represents a combined step of the underlying Segala system, which by
definition, is exactly a convex combination of ordinary probabilistic transitions.

6 Weak Bisimulation as Strong Bisimulation

Milner’s weak transition construction characterises weak bisimilarity as bisimi-
larity for a (modified) system whose transitions are the weak transitions of the
original system. This construction does not transfer to the general case, wit-
nessed by the case of (fully) probabilistic systems. The pivotal role is played
by the continuous operation ⊕ that determines B-bisimulation. We show that
Milner’s construction generalises if ⊕ is algebraic and present a variation of the
construction if algebraicity fails. An algebraic operation of arity n on a monad �
(e.g. [15]) is a natural transformation α : T n ∈ T such that αY ⊆ (f †)n = f † ⊆αX

for all f : X ∈ TY . Algebraic operations are automatically continuous:

Lemma 11. Algebraic operations of completely ordered monads are continuous.

Example 12 (Algebraic Operations). Semiring summation + is algebraic
on continuous semimodule monads. If the underlying semiring is idempotent,
e.g. the boolean semiring, summation coincides with the join operation ∩ which
is therefore also algebraic. The bottom element ∪ is a nullary algebraic operation
(constant). The join operation is algebraic on the monad C0M from Section 3.
The join operation ∩ is generally not algebraic for free (complete) semimodule
monads unless the semiring is idempotent.

Coalgebraic Weak Bisimulation from Recursive Equations over Monads 205

Algebraicity of ⊕ allows us to lift Milner’s construction to the coalgebraic case:
B-bisimulations coincide with kernel bisimulations for a modified system of the
same transition type. This instantiates to labelled transition systems, as ∩ is
algebraic on the semimodule monad induced by the boolean semiring. We show
this using a sequence of lemmas, the first asserting that algebraic operations
commute over fixpoints.

Lemma 13. Suppose h : X ∈ Y and u : Y ∈ Z. Given a coalgebra (X, f :
X ∈ T (X ×A)) we have that fB

uh = TBu ⊆ fB
h if ⊕ is algebraic.

Similarly, sans algebraicity, B-bisimulations commute with morphisms.

Lemma 14. Let h : X ∈ Y be a morphism from (X, f : X ∈ T (X × A)) to
(Y, g : Y ∈ T (Y ×A)). Then gBu ⊆ h = fB

uh for all u : Y ∈ Z.

Consequently, kernel bisimulations are B-bisimulations:

Corollary 15. Let h : X ∈ Y be a morphism of coalgebras (X, f : X ∈
T (X ×A)) and (Y, g : Y ∈ T (Y ×A)). Then Ker h ↔ Ker fB

h .

Lemma 13 shows that for monads equipped with an algebraic operation ⊕ (such
as the monad defining) labelled transition systems, we can recover B-bisimilarity
as strong bisimilarity of a transformed system.

Theorem 16. Provided ⊕ is algebraic, E is a B-bisimulation on a monad-type
coalgebra (X, f) iff E is a kernel bisimulation equivalence on (X, fB

id).

If ⊕ is not algebraic it can still be possible to recover B-bisimulation as a kernel
bisimulation for a system of a different type. For probabilistic systems this was
done in [19]. Here, we obtain a similar result in a more conceptual way using
the continuous continuation monad �, which is obtained from the standard con-
tinuation monad [14] by restricting to continuous functions: the functorial part
of � is TX = (X ∈ D) ∈c D where ∈c it the continuous function space, D is
a directed-complete partial order, and (X ∈ D) is ordered pointwise.

Lemma 17. For a pointed dcpo D, TX = (X ∈ D) ∈c D extends to a sub-
monad � of the corresponding continuation monad, � is completely ordered, and
every ⊕ : T 2 ∈ T , given pointwise, i.e. (p⊕ q)(c) = p(c) ⊕ q(c), is algebraic.

The following lemma is the B-bisimulation analogue of Lemma 1 and is the main
technical tool for reducing B-bisimulation to kernel bisimulation.

Lemma 18. Let (X, f : X ∈ T (X × A)) be a coalgebra and ψ : T ∈ T̂ an in-

jective monad morphism. If ⊕̂ is an algebraic operation on T̂ such that ⊕̂ ⊆ψ2 =
ψ ⊆⊕ then B-⊕-bisimulation equivalences on (X, f) and B-⊕̂-bisimulation equiv-
alences on (X,ψf) agree.

We use Lemma 18 as follows. Given a complete semimodule monad � over a

(complete) semiring R, we embed TX into T̂X = (X ∈ T 1) ∈c T 1 (where
T 1 = R) by mapping p ⇔ TX to the function ιc : X ∈ T 1.c†(p). This embedding
is injective, and the conditions of Lemma 18 are fulfilled with ⊕ = ∩ and ⊕̂ the
pointwise extension of ⊕ (which is algebraic by Lemma 17). This gives:

206 S. Goncharov and D. Pattinson

Theorem 19. Let � be a continuous semimodule monad over a continuous
semiring R. Let (X, f : X ∈ (X × A)) be a coalgebra and let ⊕ be the join
on R. Then E is a B-bisimulation equivalence on (X, f) iff it is a bisimulation
equivalence on (X, (ψX ⊆ f)Bid : X ∈ (X ×A ∈c R) ∈ R).

In summary, Milner’s weak transition construction generalises to the coalgebraic
case if ∩ is algebraic, and lifts to a different transition type for semirings.

7 Conclusions and Related Work

We have presented a generic definition, and basic structural properties, of weak
bisimulation in a general, coalgebraic framework. We use coalgebraic methods
and enriched monads, similar to the coalgebraic treatment of trace semantics [8].
Our definition applies uniformity to labelled transition systems, probabilistic
and weighted systems, and to Segala systems from [18]. Most of our results, in-
cluding the notions of B-bisimulation as a solution of the recursive equation (�),
easily transfer to categories other than Set. An important conceptual contribu-
tion is the fact that algebraicity allows to generalise Milner’s weak transition
construction to the coalgebraic setting (Theorem 16), recovering B-bisimulation
as kernel bisimulation for a (modified) system of the same transition type. We
also provide an alternative for cases where this fails (Theorem 19).

Related Work. Results similar to ours are presented both in [4] and [12].
Brengos [4] uses a remarkably similar tool set (order-enriched monads) but in
a substantially different way: Given a system of type T (F + ---) with � order-
enriched, the monad structure on � extends to T (F + ---), and saturation w.r.t.
internal transitions is achieved by iterating the obtained monad in a way resem-
bling the weak transition construction for LTS. Examples include labelled tran-
sition systems and (simple) Segala systems. For both underlying monads, join
is algebraic, so that both examples are covered by our lifting Theorem 16. Fully
probabilistic systems, for which algebraicity fails, are not treated in [4]. Miculan
and Peresotti [12] also approach weak bisimulation by solving recurrence rela-
tions, but only treat (continuous) semimodule monads and do not account for
(simple) Segala systems. Our treatment covers all examples considered in both
[4] and [12], and additionally identifies the pivotal role of algebraicity in the
generalisation of Milner’s construction. Sokolova et.al. [19] are concerned with
probabilistic systems only and reduce probabilistic weak bisimulation to strong
(kernel) bisimulation for a system of type (--- × A ∈ 2) ∈ [0, 1]. This is similar
to our Theorem 19, which establishes an analogous transformation (to a system
of type (--- ×A ∈ [0,→]) ∈ [0,→]) by a rather more high-level argument.

Future Work. We plan to investigate to what extent our treatment extends to
coalgebras X ∈ T (X + FX) for a monad � (the branching type) and a functor
F (the transition type) and are interested in both a logical and an equational
characterisation of B-bisimulation, and in algorithms to compute B-bisimilarity.

Coalgebraic Weak Bisimulation from Recursive Equations over Monads 207

References
[1] Aceto, L., Ingolfsdottir, A., Sack, J.: Resource bisimilarity and graded bisimilarity

coincide. Information Processing Letters 111(2), 68–76 (2010)
[2] Baier, C., Hermanns, H.: Weak bisimulation for fully probabilistic processes. In:

Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 119–130. Springer, Heidelberg
(1997)

[3] Bartels, F., Sokolova, A., de Vink, E.: A hierarchy of probabilistic system types.
In: Coalgebraic Methods in Computer Science. ENTCS, vol. 82. Elsevier (2003)

[4] Brengos, T.: Weak bisimulation for coalgebras over order enriched monads (2013),
http://arxiv.org/abs/1310.3656

[5] Corradini, F., De Nicola, R., Labella, A.: Graded modalities and resource bisimu-
lation. In: Pandu Rangan, C., Raman, V., Ramanujam, R. (eds.) FST TCS 1999.
LNCS, vol. 1738, pp. 381–393. Springer, Heidelberg (1999)

[6] de Vink, E., Rutten, J.: Bisimulation for probabilistic transition systems: a coal-
gebraic approach. Theoretical Computer Science 221(1-2), 271–293 (1999)

[7] Droste, M., Kuich, W.: Semirings and formal power series. In: Droste, M., Kuich,
W., Vogler, H. (eds.) Handbook of Weighted Automata. Monographs in Theoret-
ical Computer Science, pp. 3–28. Springer (2009)

[8] Hasuo, I., Jacobs, B., Sokolova, A.: Generic trace semantics via coinduction. Log-
ical Methods in Comp. Sci. (2007)

[9] Jacobs, B.: Coalgebraic trace semantics for combined possibilitistic and proba-
bilistic systems. Electr. Notes Theor. Comput. Sci. 203(5), 131–152 (2008)

[10] Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Information
and Computation 94(1), 1–28 (1991)

[11] Latella, D., Massink, M., de Vink, E.P.: Bisimulation of labeled state-to-function
transition systems of stochastic process languages. In: Golas, U., Soboll, T. (eds.)
Proc. ACCAT 2012. EPTCS, vol. 93, pp. 23–43 (2012)

[12] Miculan, M., Peressotti, M.: Weak bisimulations for labelled transition systems
weighted over semirings (2013), http://arxiv.org/abs/1310.4106

[13] Milner, R.: Communication and concurrency. Prentice-Hall (1989)
[14] Moggi, E.: A modular approach to denotational semantics. In: Curien, P.-L., Pitt,

D.H., Pitts, A.M., Poigné, A., Rydeheard, D.E., Abramsky, S. (eds.) CTCS 1991.
LNCS, vol. 530, pp. 138–139. Springer, Heidelberg (1991)

[15] Plotkin, G., Power, J.: Notions of computation determine monads. In: Nielsen,
M., Engberg, U. (eds.) FOSSACS 2002. LNCS, vol. 2303, pp. 342–356. Springer,
Heidelberg (2002)

[16] Rutten, J.: Universal Coalgebra: A theory of systems. Theoret. Comput.
Sci. 249(1), 3–80 (2000)

[17] Segala, R.: Modelling and Verification of Randomized Distributed Real-Time Sys-
tems. PhD thesis, Massachusetts Institute of Technology (1995)

[18] Segala, R., Lynch, N.A.: Probabilistic simulations for probabilistic processes. In:
Jonsson, B., Parrow, J. (eds.) CONCUR 1994. LNCS, vol. 836, pp. 481–496.
Springer, Heidelberg (1994)

[19] Sokolova, A., de Vink, E.P., Woracek, H.: Coalgebraic weak bisimulation for
action-type systems. Sci. Ann. Comp. Sci. 19, 93–144 (2009)

[20] Staton, S.: Relating coalgebraic notions of bisimulation. Logical Methods in Com-
puter Science 7(1) (2011)

[21] van Glabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimula-
tion semantics. J. ACM 43(3), 555–600 (1996)

[22] Varacca, D., Winskel, G.: Distributing probability over non-determinism. Math.
Struct. Comput. Sci. 16, 87–113 (2006)

[23] Winskel, G.: The Formal Semantics of Programming Languages. MIT Press,
Cambridge (1993)

http://arxiv.org/abs/1310.3656
http://arxiv.org/abs/1310.4106

Piecewise Boolean Algebras and Their Domains

Chris HeunenΣ

University of Oxford, Department of Computer Science, United Kingdom
heunen@cs.ox.ac.uk

Abstract. We characterise piecewise Boolean domains, that is, those
domains that arise as Boolean subalgebras of a piecewise Boolean alge-
bra. This leads to equivalent descriptions of the category of piecewise
Boolean algebras: either as piecewise Boolean domains equipped with an
orientation, or as full structure sheaves on piecewise Boolean domains.

1 Introduction

Boolean algebras embody the logical calculus of observations. But in many appli-
cations it does not make sense to consider any two observations simultaneously.
For a simple example, can you really verify that “there is a polar bear in the Arc-
tic” and “there is a penguin in Antarctica”, when you cannot be in both places at
once? This leads to the notion of a piecewise Boolean algebra1, which is roughly
a Boolean algebra where only certain pairs of elements have a conjunction.

You could say that the issue in the above example is merely caused by a
constructive interpretation. But it is a real, practical concern in quantum logic,
where the laws of nature forbid jointly observing certain pairs (the famous exam-
ple being to measure position and momentum), and piecewise Boolean algebras
consequently play a starring role [3–6].

Another cause of incompatible observations relates to partiality. Some (ob-
servations of) computations might not yet have returned a result, but neverthe-
less already give some partial information. It might not make sense to compare
two partial observations, whereas the completed observations would be perfectly
compatible. Partiality is also at play in quantum theory, where measurements
can be fine-grained, so that the course-grained version only gives partial infor-
mation. This leads to domain theory [7, 8].

This paper brings the two topics, domain theory and quantum logic, together.
The main construction sends a piecewise Boolean algebra P to the collection
Sub(P) of its compatible parts, i.e. its Boolean subalgebras. This well-known
construction [1, 3–5, 9–13] assigns a domain Sub(P) to a piecewise Boolean
algebrac P . Our main result is a characterisation of the domains of the form
Sub(P), called piecewise Boolean domains ; it turns out they are the so-called
algebraic L-domains whose bottom two rungs satisfy some extra properties. This

� Supported by EPSRC Fellowship EP/L002388/1.
1 Née partial Boolean algebra; recent authors use piecewise to avoid ‘partial complete
Boolean algebra’ [1]. Incidentally, this is the structure Boole originally studied [2].

J. Esparza et al. (Eds.): ICALP 2014, Part II, LNCS 8573, pp. 208–219, 2014.
c∗ Springer-Verlag Berlin Heidelberg 2014

Piecewise Boolean Algebras and Their Domains 209

gives an alternative description of piecewise Boolean algebras, that is more con-
cise, amenable to domain theoretic techniques, and addresses open questions [11,
Problems 1 and 2]. Colloquially, it shows that to reconstruct the whole, it suf-
fices to know how the parts fit together, without having to know the internal
structure of the parts.

Commutative rings, such as Boolean algebras, can be reconstructed from their
Zariski spectrum together with the structure sheaf over that spectrum [14, V.3].
Analogously, we prove that a piecewise Boolean algebra can be reconstructed
from its piecewise Boolean domain together with the structure sheaf over that
domain. (Equivalently, we could use the Stone dual of the structure sheaf.) We
prove a categorical equivalence between piecewise Boolean algebras, and piece-
wise Boolean domains with a subobject-preserving functor valued in Boolean
algebras. We call the latter objects piecewise Boolean diagrams.

There is a beautiful microcosm principle at play in the reconstruction of a
piecewise Boolean diagram from a piecewise Boolean domain: piecewise Boolean
diagrams are really structure-preserving functors from a piecewise Boolean do-
main into the category of Boolean algebras. The piecewise Boolean diagram
is almost completely determined by the piecewise Boolean domain, but some
choices have to be made. We condense those choices into an orientation, that
fixes a choice between two possibilities on each atom of a piecewise Boolean
domain. Finally, we prove that the category of piecewise Boolean algebras is
equivalent to the category of oriented piecewise Boolean domains.

We proceed as follows. Section 2 recalls the basics of piecewise Boolean al-
gebras, after which Section 3 introduces piecewise Boolean domains and proves
they are precisely those domains of the form Sub(P). This characterisation is
simplified further in Section 4. Section 5 proves the equivalence between piece-
wise Boolean algebras and piecewise Boolean diagrams, and Section 6 reduces
from piecewise Boolean diagrams to oriented piecewise Boolean domains. Fi-
nally, Section 7 concludes with directions for future work. For example, it would
be interesting to explore connections to other work [15, 16].

2 Piecewise Boolean Algebras

Definition 1. A piecewise Boolean algebra consists of a set P with:

– a reflexive and symmetric binary (commeasurability) relation ∈ ≡ P × P ;
– elements 0, 1 ⊆ P ;
– a (total) unary operation ¬ : P ↔ P ;
– (partial) binary operations ⇔,⊂ : ∈ ↔ P ;

such that every set A ≡ P of pairwise commeasurable elements is contained in a
set B ≡ P , whose elements are also pairwise commeasurable, and on which the
above operations determine a Boolean algebra structure.

A morphism of piecewise Boolean algebras is a function that preserves commea-
surability and all the algebraic structure, whenever defined. Piecewise Boolean al-
gebras and their morphisms form a category PBool.

210 C. Heunen

A piecewise Boolean algebra in which every two elements are commeasurable
is just a Boolean algebra. Given a piecewise Boolean algebra P , we write Sub(P)
for the collection of its commeasurable subalgebras, ordered by inclusion. (The
maximal elements of Sub(P) are also called blocks, see [6, Section 1.4].) In fact,
Sub is a functor PBool ↔ Poset to the category of partially ordered sets and
monotone functions, acting on morphisms by direct image. If P is a piecewise
Boolean algebra, Sub(P) is called its piecewise Boolean domain.

We now list two main results about piecewise Boolean algebras and their
domains. First, we can reconstruct P from Sub(P) up to isomorphism.

Theorem 2 ([1]). Any piecewise Boolean algebra P is a colimit of Sub(P). ≥⇒

Boolean algebras are precisely objects of the ind-completion of the category of
finite Boolean algebras [14, VI.2.3], defining Boolean algebras as colimits of dia-
grams of finite Boolean algebras. The previous theorem extends this to piecewise
Boolean algebras. Second, Sub(P) determines P up to isomorphism.

Theorem 3 ([11]). IfP andP ′ are piecewise Boolean algebras andΣ : Sub(P) ↔
Sub(P ′) is an isomorphism, then there is an isomorphism f : P ↔ P ′ with Σ =
Sub(f). Moreover, f is unique iff atoms of Sub(P) are not maximal. ≥⇒

However, the functor Sub is not an equivalence. It is not faithful: see the above
theorem. Neither is it full: not every monotone function Sub(P) ↔ Sub(P ′)
preserves atoms. Nevertheless, the previous two theorems show that the functor
Sub is almost an equivalence. Later, we will upgrade the functor Sub to an
equivalence. But first we investigate posets of the form Sub(P).

3 Piecewise Boolean Domains

This section characterises piecewise Boolean domains in terms of finite partition
lattices, which we will characterise further in the next section. Recall that an
element x of a poset P is compact when, if x ◦ ∨

D for a directed subset D ≡ P
with a supremum, then x ◦ y for some y ⊆ D. Write K(P) for the partially
ordered set of compact elements of P .

Definition 4. A poset is called a piecewise Boolean domain when:

(1) it has directed suprema;
(2) it has nonempty infima;

(3) each element is the directed supremum of compact ones;
(4) the downset of each compact element is dual to a finite partition lattice.

Posets satisfying properties (1)–(3) are also known as Scott domains [17].

Proposition 5. If P is a piecewise Boolean algebra, Sub(P) is a piecewise
Boolean domain.

Piecewise Boolean Algebras and Their Domains 211

Proof. If Bi ⊆ Sub(P), then also
⋂
Bi ⊆ Sub(P), giving nonempty infima. If

{Bi} is a directed family of elements of Sub(P), then
⋃
Bi is a Boolean algebra,

which is the supremum in Sub(P). To show that every element is the directed
supremum of compact ones, it therefore suffices to show that the compact ele-
ments are the finite Boolean subalgebras of P . But this is easily verified. Finally,
the downset of any compact element is pairwise commeasurable, hence a finite
Boolean algebra, and it is dual to a finite partition lattice. [12, 13]. ≥⇒

We now set out to prove that any piecewise Boolean domain L is of the form
Sub(P) for some piecewise Boolean algebra P . The first step is to show L gives
rise to a functor L ↔ Bool that preserves the structure of L. For x ⊆ L, we
write Sub(x) for the principal ideal of x.

Remark 6. Both occurrences of Sub are instances of a more general scheme. If
C is a category with epi-mono factorizations, we write Sub: C ↔ Poset for the
covariant subobject functor. It acts as direct image on morphisms f : x ↔ y,
that is, a subobject m : • � x gets mapped to the image f [m] : Im(f ≤m) � y.
If C is a poset, then Sub(x) is just the principal ideal of x, and functoriality
just means that Sub(x) ≡ Sub(y) when x ◦ y. If C = Bool, then Sub(B) is
the lattice of Boolean subalgebras of B, and the direct image f [A] of a Boolean
subalgebra A under a homomorphism f : B ↔ B′ is a Boolean subalgebra of B′.
By slight abuse of notation, if C is the category PBool, we let Sub(P) be the
poset of Boolean subalgebras of P (instead of piecewise Boolean subalgebras),
as before. The action on morphisms by direct image is then still well-defined.

Lemma 7. Let L be a piecewise Boolean domain.

(a) For each x ⊆ L there is a Boolean algebra F (x) with Sub(F (x)) →= Sub(x).
(b) There is a functor F : L ↔ Bool and a natural isomorphism Sub ≤F →= Sub.

Proof. Properties (1) and (2) make L into an L-domain [8, Theorem 2.9]. Adding
property (3) makes L into an algebraic L-domain [8, Section 2.2]. It follows that
every downset is an algebraic lattice [8, Corollary 1.7 and Proposition 2.8], and
in fact that

⋃
xK(Sub(x)) = K(L) [8, Proposition 1.6]. Finally, property (4)

ensures that every downset satisfies the following property: it is an algebraic lat-
tice, and each compact element in it is dual to a finite partition lattice. Therefore
every downset is the lattice of Boolean subalgebras of some Boolean algebra [12],
establishing (a).

Towards (b), define Σx,y for x ◦ y ⊆ L as the following composition.

Sub(x)

Sub(y)

Sub(F (x))

Sub(F (y))

→=

→=

Sub(x ◦ y) Σx,y

Because Sub(x ◦ y) is a monomorphism of complete lattices [8, Proposition 2.8],
so is Σx,y. Now, Sub(Σx,y)(Sub(F (x))) ⊆ Sub(Sub(F (y))); that is, the direct

212 C. Heunen

image of Σx,y is downward closed in Sub(F (y)). So, by construction, the direct
image of Σx,y is Sub(B), where B = Σx,y(F (x)). Hence Σx,y factors as an isomor-
phism ε : Sub(F (x)) ↔ Sub(B) followed by an inclusion Sub(B) ≡ Sub(F (y)).
By [12, Theorem 4] or [13, Corollary 2], there is an isomorphism f : F (x) ↔ B
such that ε = Sub(f). Also, B ⊆ Sub(B) ≡ Sub(F (y)), so B is a Boolean sub-
algebra of F (y). That is, there is an inclusion g : B Ω↔ F (y) such that Sub(g)
is the inclusion Sub(B) ≡ Sub(F (y)). Thus F (x ◦ y) := g ≤ f : F (x) � F (y)
is a monomorphism of Boolean algebras that satisfies Sub(F (x ◦ y)) = Σx,y. If
|F (x)| ∅= 4, then F (x ◦ y) is in fact the unique such map [12, Lemma 5], and in
this case it follows that F (y ◦ z) ≤ F (x ◦ y) = F (x ◦ z).

Next, we will adjust F (x ◦ y) for |F (x)| = 4 if need be, to ensure functoriality
of F . Let x be an atom of L. If x is maximal, there is nothing to do. Otherwise
choose y covering x. Select one of the two possible F (x < y) inducing Σx,y. Now,
for any y′ > x such that z = y ⊂ y′ exists we need to choose F (x < y′) making
the following diagram commute.

F (x)

F (y′)

F (y)

F (z)

F (x < y)

F (x < y′) F (y < z)

F (y′ < z)

(⊇)

Let us write δz for the isomorphism Sub(F (z)) ↔ Sub(z). Next, notice that
X := F (y < z) ≤ F (x < y)[F (x)] = Σx,z(F (x)) = δz(x) ≡ F (z), and similarly
Y := F (y′ < z)[F (y′)] = Σy′,z(F (y′)) = δz(y′) ≡ F (z); because x < y′ hence
X ≡ Y , and there is a unique F (x < y′) making the diagram commute. Moreover
Sub(F (x < y′)) = Σx,y′ . Thus F is functorial, and the isomorphisms Sub ≤F →=
Sub are natural by construction. This proves part (b). ≥⇒

We say a functor F : L ↔ Bool preserves subobjects when there is a natural
isomorphism Sub ≤F →= Sub.

Next, we show that the data contained in the functor L ↔ Bool can equiva-
lently be packaged as a piecewise Boolean algebra by taking its colimit.

Lemma 8. Let L be a piecewise Boolean domain, let F be the functor of Lemma 7,
and let the piecewise Boolean algebra P be the colimit of F in PBool.

(a) Maximal elements of L correspond bijectively to maximal elements of Sub(P).
(b) The colimit maps F (x) ↔ P are injective.

Proof. In general, colimits of piecewise Boolean algebras are hard to compute
(see [1, Theorem 2], and also [18]). But injectivity of F (x ◦ y) makes it man-
agable. Namely, P =

∐
x≥L F (x)/ →, where → is the smallest equivalence rela-

tion satisfying b → F (x ◦ y)(b) when x ◦ y and b ⊆ F (x). That is, F (x1) �
b1 → bn ⊆ F (xn) means there are x2, . . . , xn−1 ⊆ L with x1 ∪ x2 ◦ x3 ∪
x4 ◦ x5 ∪ · · · ∪ xn−1 ◦ xn, and bi ⊆ F (xi) for i = 2, . . . , n − 1 that satisfy

Piecewise Boolean Algebras and Their Domains 213

bi+1 = F (xi ◦ xi+1)(bi) for even i and bi = F (xi+1 ◦ xi)(xi+1) for odd i. Let
us write px : F (x) ↔ P for the colimiting maps px(a) = [a]∈.

If x1 and xn are maximal, then without loss of generality we may assume that
xi is maximal for odd i and that xi+1 = xi ⇔ xi+2 for odd i. By the naturality
of Lemma 7(b), this means that the subalgebra F (x2) of F (x1) and F (x3) is
identified. So, by injectivity of F (x ◦ y), the only way the entire algebra F (x1)
can be identified with F (xn) is when x1 = . . . = xn.

Define a function f : Max(L) ↔ Max(Sub(P)) by f(x) = px[F (x)] = [F (x)]∈.
The discussion above shows that f is injective. Any B ⊆ Sub(P) is commeasur-
able, and hence there is x ⊆ L such that B ≡ [F (x)]∈. If B is maximal, then we
must have B = f(x). Thus f is well-defined, and surjective. This proves (a).

For part (b), let x ⊆ L. It follows from Zorn’s Lemma and property (1) that
x is below some maximal y ⊆ L. By part (a), then py is injective. Therefore
px = py ≤ F (x ◦ y) is injective, too. ≥⇒

We are now ready to prove our main result.

Theorem 9. Any piecewise Boolean domain is isomorphic to Sub(P) for a
piecewise Boolean algebra P .

Proof. Let L be a piecewise Boolean domain. Fix a functor F as in Lemma 7,
and its piecewise Boolean algebra colimit px : F (x) ↔ P as in Lemma 8. Define
f : L ↔ Sub(P) as f(x) = px[F (x)].

We first prove that f is surjective. Any B ⊆ Sub(P) is commeasurable, so B
is a Boolean subalgebra of py[F (y)] for some y ⊆ L. Hence p−1

y (B) ⊆ Sub(F (y)).
Because F preserves subobjects, p−1

y (B) = F (x ◦ y)[F (x)] for some y ◦ x.
Then:

f(x) = px[F (x)] = py ≤ F (x ◦ y)[F (x)] = py[p−1
y (B)] = B.

Next we prove that f is injective by exhibiting a left-inverse g : Sub(P) ↔ L.
Set g(B) =

∧{x ⊆ L | B ≡ f(x)}. Note that g(f(x)) =
∧{y | [F (x)]∈ ≡

[F (y)]∈} ◦ x. Now, if y ◦ x then [F (y)]∈ = py[F (y)] = px ≤ F (y ◦ x)[F (y)] ≡
[F (x)]∈. Hence if also [F (x)]∈ ≡ [F (y)]∈, then F (y ◦ x) is an isomorphism, and
x = y. So g(f(x)) = x.

Clearly g(B) ◦ g(C) when B ≡ C, so f(x) ≡ f(y) implies x ◦ y. Conversely,
if x ◦ y, then f(x) = px[F (x)] = py[F (x ◦ y)[F (x)]] ≡ py[F (y)] = f(y). Thus f
is an order isomorphism Sub(P) →= L. ≥⇒

4 Partition Lattices

There exist many characterisations of finite partition lattices [19–25]. We now
summarise one of them that we will use to reformulate condition (4). In a par-
tition lattice, the intervals [p, 1] for atoms p are again partition lattices. This
leads to the following result. For terminology, recall that a finite lattice is (up-
per) semimodular when x covers x⇔y implies that x⊂y covers y, that a geometric
lattice is a finite atomistic semimodular lattice, and that an element x of a lattice
is called modular if a ⊂ (x ⇔ y) = (a ⊂ x) ⇔ y for all a ◦ y.

214 C. Heunen

Theorem 10 ([24, 25]). SupposeL is a geometric lattice with a modular coatom,
and the interval [p, 1] is a partition lattice of height n− 1 for all atoms p. If n ◦ 4,
assume that L has

(
n
2

)
atoms. Then L is a partition lattice of height n. Conversely,

a partition lattice of height n satisfies these requirements. ≥⇒
Let us call a lattice cogeometric when it is dual to a geometric lattice; this

is equivalent to being finite, lower semimodular, and coatomistic. We can now
simplify condition (4), showing that piecewise Boolean domains are domains that
are determined entirely by their behaviour on the bottom three rungs.

Proposition 11. A poset is a piecewise Boolean domain precisely if it meets
conditions (1)–(3) and

(4’) the downset of a compact element is cogeometric and has a modular atom;
(4”) each element of height n ◦ 3 covers exactly

(
n+1
2

)
elements.

Proof. We show that we may replace condition (4) in Definition 4 by (4’) and
(4”). Observe that a dual lattice having a modular coatom is equivalent to the
lattice itself having a modular atom. Assuming condition (4) and x ⊆ K(L),
then Sub(x) is dual to a finite partition lattice, so that condition (4’) is satisfied.
For ht(x) ◦ 4, condition (4”) is verified by computing the partition lattices of
height up to three, see Figure 1.

Conversely, assume (4’) and (4”). Then the downset of each compact element
is finite, so that compact elements have finite height. Hence condition (4) follows
by induction on the height by Theorem 10. ≥⇒

Π1 = 1 Π2 =
12

1/2

Π3 =

1/2/3

1/23 13/2 12/3

123

Π4 =

1/2/3/4

12/3/4 13/2/4 14/2/3 1/23/4 1/3/24 1/2/34

123/4 124/3 13/24 12/34 14/23 134/2 1/234

1234

Fig. 1. The partition lattices of height up to three

5 Piecewise Boolean Diagrams

Definition 12. A piecewise Boolean diagram is a subobject-preserving functor
from a piecewise Boolean domain to Bool. A morphism of piecewise Boolean dia-
grams from F : L ↔ Bool to F ′ : L′ ↔ Bool consists of a morphism Σ : L ↔ L′

Piecewise Boolean Algebras and Their Domains 215

of posets and a natural transformation π : F ∩ F ′ ≤ Σ. Piecewise Boolean dia-
grams and their morphisms form a category PBoolD. Composition is given by
(ε, ψ) ≤ (Σ, π) = (ε ≤ Σ, ψΣ · π), and identies are (id, Id).

L L′

L′′

Bool

F

F ′

F ′′
ε

Σ

ψ

π

Notice that, because F preserves subobjects, also Sub(Σ(x)) = Σ[Sub(x)], so
that Σ preserves directed suprema.

The functor Sub extends from piecewise Boolean domains to piecewise Boolean
diagrams as follows.

Proposition 13. There is a functor Spec: PBool ↔ PBoolD defined as fol-
lows. On objects P ⊆ PBool, define Spec(P) : Sub(P) ↔ Bool by B ⊕↔ B. On
morphisms f : P ↔ P ′, define Spec(f)B = f�B : B ↔ f [B]. ≥⇒

There is also a functor in the other direction. We will prove that the two
functors in fact form an equivalence.

Proposition 14. There is a functor colim: PBoolD ↔ PBool defined as
follows. On objects F : L ↔ Bool, let colim(F) be the colimit px : F (x) ↔∐

F (x)/ →. On morphisms (Σ, π) : F ↔ F ′, let colim(Σ, π) be the morphism
colim(F) ↔ colim(F ′) induced by the cocone p′ψ(x) ≤ πx : F (x) ↔ colim(F ′). ≥⇒
Theorem 15. The functors Spec and colim form an equivalence between the
category of piecewise Boolean algebras and the category of piecewise Boolean
diagrams.

Proof. If P ⊆ PBool, then colim(Spec(P)) →= P by Theorem 2. The isomor-
phism P →= colim(Spec(P)) is given by b ⊕↔ [b]∈. If f : P ↔ P ′, unrolling defini-
tions shows that colim(Spec(f)) sends [b]∈ to [f(b)]∈. Therefore colim ≤ Spec is
naturally isomorphic to the identity.

For a diagram F : L ↔ Bool, fix P = colim(F). Set Σ : L ↔ Sub(P) by
x ⊕↔ px[F (x)], and πx = px : F (x) ↔ px[F (x)]. This is a well-defined iso-
morphism (Σ, π) : F ↔ Spec(colim(F)) by Lemma 8. If (ε, φ) : F ↔ F ′, then
(ε′, φ′) = Spec(colim(ε, φ)) consists of ε′ : Sub(colim(F)) ↔ Sub(colim(F ′))
given by ε′(B) = [

⋃
b≥B⊆F (x) φx(b)]∈, and φ′B : B ↔ [φ[B]]∈ given by φ′B(b) =

[φx(b)]∈ when b ⊆ F (x). It follows that

ε′ ≤ Σ(x) = [φx[F (x)]]∈ = Σ′ ≤ ε(x),

(π′ε · φ)x(b) = [φx(b)]∈ = (φ′Σ · π)x(b),

whence (Σ′, π′)≤(ε, φ) = (ε′, φ′)≤(Σ, π), and Spec ≤ colim is naturally isomorphic
to the identity. ≥⇒

216 C. Heunen

6 Orientation

We have lifted the functor Sub, that is full nor faithful, to an equivalence.

PBool PBoolD

Poset

Sub

Spec

colim
�

However, the cost was to add the full structure sheaf to Sub(P). In this section
we reduce to minimal extra structure on a piecewise Boolean domain instead
of the full structure sheaf. In other words: we want to find a converse to the
forgetful functor, dashed in the diagram above. Lemma 7 goes towards such a
functor, on the level of objects. However, notice that its proof required making
some arbitrary choices. We will now fix these choices to obtain a functor.

Proposition 16. Let L be a piecewise Boolean domain. If x ⊆ L is not an atom
or 0, we may fix F (x) to be the power set of the set of modular atoms in Sub(x)
in Lemma 7(a).

Proof. If x has at least four, it follows from a lattice-theoretic characterisation
of partition lattices by Sachs [19, Theorem 14] that Sub(x) is dually isomorphic
to the lattice of partitions of {modular coatoms in Sub(x)op}.

For x of height two or three we may explicitly compute which coatoms of
αn are modular. Notice that the element y = 12/34 is not modular in α4 (see
Figure 1); taking x = 13/2/4 and z = 13/24 gives x⊂(y⇔z) = x ∅= z = (x⊂y)⇔z.
Similarly, 13/24 and 14/23 are not modular. But 123/4, 124/3, 134/2, 234/1 are
modular elements. Hence α4 has 4 modular coatoms. Similarly, one can check
that all 3 coatoms in α3 are modular. ≥⇒
Definition 17. An orientation of a piecewise Boolean domain L consists of a
pointed four-element Boolean algebra ba ⊆ F (a) for each atom a ⊆ L. A mor-
phism of oriented piecewise Boolean domains consists of a monotone function
Σ : L ↔ L′ satisfying

– if a ⊆ L is an atom, then either Σ(a) is an atom or Σ(a) = 0,
– if a is a modular atom in Sub(x), then Σ(a) is modular in Sub(Σ(x)),

and a map πa : F (a) ↔ F ′(Σ(a)) satisfying πa(ba) = b′ψ(a) for atoms a ⊆ L for

which Σ(a) is a nonmaximal atom. The resulting category is denoted OPBoolD.

Proposition 18. The functor Sub: PBool ↔ Poset extends to orientations as
follows. On objects, the orientation is given by F (B) = B. The point bB is the
unique element of At(C)∩B for an atom B covered by C, and 0 if B is maximal.
A morphism Σ = Sub(f) extends to orientations by πB = f�B : B ↔ f [B].

Piecewise Boolean Algebras and Their Domains 217

Proof. First of all, notice that this is well-defined on objects. If B ⊆ At(Sub(P))
is covered by C ⊆ Sub(P), say B = {0, x,¬x, 1} for x ⊆ P , then precisely one of
x and ¬x must be an atom in C (and the other one a coatom). Also, this does
not depend on C.

We have to show it is also well-defined on morphisms f : P ↔ P ′. If B is an
atom, say B = {0, x,¬x, 1}, then Σ(B) = f [B] = {0, f(x),¬f(x), 1} is clearly
either an atom or {0, 1}. If f [B] is a nonmaximal atom, then f [C] covers f [B] for
some C ⊆ Sub(P) covering B, so f(bB) = b′f [B] by construction. Now suppose B

is modular in Sub(D). Let A′ ≡ C′ ⊆ Sub(f [D]); then A′ = f [A] and C′ = f [C]
for some A,C ⊆ Sub(D), namely A = f−1(A′) ∩ D. Since A ⊂ C is generated
by A ∪ C, we have f [A ⊂ C] = f [A] ⊂ f [C] by [26, Proposition 2.4.4]. We may
assume B ∩ C = {0, 1}, for if B ≡ C then f [C] ≡ f [A] ⊂ f [B] = f [A ⊂ B]
and f [B] is modular in Sub(f [D]). Of course always f [B ∩ C] ≡ f [B] ∩ f [C].
Hence A′ ⊂ (f [B] ∩C ′) = f [A ⊂B] ∩ f [C] ⊇ f [(A ⊂B) ∩C] = f [A ⊂ (B ∩C)] =
f [A] ⊂ f [B ∩ C] = f [A]. Because A ≡ C, the reverse inclusion also holds, and
f [B] is modular in Sub(f [D]).

Finally, this extension is clearly functorial. ≥⇒
It follows that the forgetful functor PBoolD ↔ Poset also extends to orien-

tations as a functor PBoolD ↔ OPBoolD.

Lemma 19. An oriented piecewise Boolean domain (L, F, b) extends uniquely
to a piecewise Boolean diagram F : L ↔ Bool where F (a ◦ x)(ba) is an atom if
x covers an atom a ⊆ L.

Proof. It suffices to show that the requirement in the statement fixes the choice
of maps F (a ◦ y) for atoms a ⊆ L in Lemma 7(b) in a well-defined way. Pick
any y covering a, and fix F (a < y) to be the map that sends ba to an atom in
F (y). By diagram (⊇), then F (a < y′) maps ba to an atom for any y′ > a for
which z = y ⊂ y′ exists (because Theorem 15 lets us assume that F = Spec(P)
for some piecewise Boolean algebra P). Hence F (a < y) does not depend on the
choice of y. ≥⇒
Lemma 20. Amorphism of oriented piecewise Boolean domains extends uniquely
to a morphism of piecewise Boolean diagrams.

Proof. We have to extend a map πa : F (a) ↔ F ′(Σ(a)), that is only defined on
atoms a ⊆ L, to a natural transformation πx : F (x) ↔ F ′(Σ(x)). Let x ⊆ L be
nonzero, and let b′ ⊆ F (x). Then there is an atom a ◦ x and an element b ⊆ F (a)
such that F (a ◦ x)(b) = b′. Define πx(b) = F ′(Σ(a) ◦ Σ(x))(b′). Because a and
b are unique unless b′ ⊆ {0, 1}, this is a well-defined function. Moreover, it is
natural by construction. Therefore it is also automatically unique.

We have to show πx is a homomorphism of Boolean algebras. It clearly pre-
serves 0 and ¬, so it suffices to show that it preserves ⇔. Let b ∅= b′ ⊆ F (x),
say b ⊆ F (a) and b′ ⊆ F (a′) for atoms a, a′ ◦ x. By naturality, we may assume
that x = a⊂ a′. Hence x and Σ(x) have height 2, and F (x) and F ′(Σ(x)) have 8
elements. We can now distinguish four cases, depending on whether b = ba and

218 C. Heunen

b′ = ba′ or not. In each case it is easy to see that πx(b ⇔ b′) = πx(b) ⇔ πx(b′).
For example, if b = ba and b′ = ba′ , then they are distinct atoms in F (x), so
b ⇔ b′ = 0. But πx(b) = b′a and πx(b′) = b′a′ are distinct atoms in F (Σ(x)), so
πx(b) ⇔ πx(b′) = 0, too. ≥⇒

It follows that morphisms of oriented piecewise Boolean domains preserve
directed suprema.

Theorem 21. There is a functor OPBoolD ↔ PBoolD that, together with
the forgetful functor, forms an isomorphism of categories.

Proof. Lemmas 19 and 20 define the functor on objects and morphisms, respec-
tively; it is functorial by construction. Extending an oriented piecewise Boolean
domain to a piecewise Boolean diagram and then restricting again to an oriented
piecewise Boolean domain leads back to the original. Conversely, starting with
a piecewise Boolean diagram, restricting it to an oriented piecewise Boolean do-
main, and then extending, leads back to the original piecewise Boolean diagram
by unicity. Hence this is an isomorphism of categories. ≥⇒

7 Future Work

We conclude by listing several directions for future research.

– Many examples of piecewise Boolean algebras come from orthomodular lat-
tices [1, 6]. These are precisely the piecewise Boolean algebras that are transi-
tive and joined : the union ◦ of the orders on each commeasurable subalgebra
is a transitive relation, and every two elements have a least upper bound with
respect to ◦ [6, 1.4.22]; see also [4, 5]. An isomorphism of piecewise Boolean al-
gebras between orthomodular lattices is in fact an isomorphism of orthomod-
ular lattices.2 Reformulating these properties in terms of piecewise Boolean
domains would extend our results to orthomodular lattices.

– The introduction discussed the analogy between piecewise Boolean diagrams
on a piecewise Boolean domains and structure sheaves on a Zariski spectrum.
The latter form a topos and hence come with an internal logic [9]. However,
piecewise Boolean domains are not (pointless) topological spaces. Can we
formalise a notion of “skew sheaf” over piecewise Boolean domains so that
it still makes sense to perform logic in the resulting “skew topos”?

– An obvious question is whether our results extend to piecewise complete
Boolean algebras.

– Although there are many characterisations of finite partition lattices, there
is no known equivalence between the category of finite partition lattices and
the category of finite sets. For concreteness’ sake, it would be very satisfying
to explicate the maps Σx,y in Lemma 7.

– Any C*-algebra A gives rise to a piecewise Boolean algebra P . In fact, Sub(P)
determines A up to isomorphism of Jordan algebras [28, 29]. Can our results
be used to give an equivalent description of Jordan C*-algebras?

2 This was observed in Sarah Cannon’s MSc thesis [27], which prompted this work.

Piecewise Boolean Algebras and Their Domains 219

References

1. van den Berg, B., Heunen, C.: Noncommutativity as a colimit. Appl. Cat.
Struct. 20(4), 393–414 (2012)

2. Hailperin, T.: Boole’s algebra isn’t Boolean algebra. Math. Mag. 54(4) (1981)
3. Hughes, R.I.G.: Omnibus review. J. Symb. Logic 50(2), 558–566 (1985)
4. Finch, P.E.: On the structure of quantum logic. J. Symb. Logic 34(2) (1969)
5. Gudder, S.P.: Partial algebraic structures associated with orthomodular posets.

Pacific J. Math. 41(3) (1972)
6. Kalmbach, G.: Orthomodular Lattices. Acad. Pr (1983)
7. Abramsky, S., Jung, A.: Domain Theory. In: Handbook of Logic in Comp. Sci.,

vol. 3. Clarendon Press (1994)
8. Jung, A.: Cartesian closed categories of domains. PhD thesis, Tech. Hochsch.

Darmstadt (1988)
9. Heunen, C., Landsman, N.P., Spitters, B.: A topos for algebraic quantum theory.

Comm. Math. Phys. 291, 63–110 (2009)
10. Döring, A., Barbosa, R.S.: Unsharp values, domains and topoi. In: Quantum Field

Theory and Gravity, pp. 65–96. Birkhäuser (2011)
11. Harding, J., Navara, M.: Subalgebras of orthomodular lattices. Order 28, 549–563

(2011)
12. Grätzer, G., Koh, K.M., Makkai, M.: On the lattice of subalgebras of a Boolean

algebra. Proc. Amer. Math. Soc. 36, 87–92 (1972)
13. Sachs, D.: The lattice of subalgebras of a Boolean algebra. Can. J. Math. 14,

451–460 (1962)
14. Johnstone, P.T.: Stone spaces. Cambridge Studies in Advanced Mathematics,

vol. 3. Cambridge Univ. Pr. (1982)
15. Laird, J.: Locally Boolean domains. Theor. Comp. Sci. 342(1), 132–148 (2005)
16. Abramsky, S., Vickers, S.: Quantales, observational logic and process semantics.

Math. Struct. Comp. Sci. 3, 161–227 (1993)
17. Scott, D.S.: Domains for denotational semantics. In: Nielsen, M., Schmidt, E.M.

(eds.) ICALP 1982. LNCS, vol. 140, pp. 577–613. Springer, Heidelberg (1982)
18. Haimo, F.: Some limits of Boolean algebras. Proc. Amer. Math. Soc. 2(4), 566–576

(1951)
19. Sachs, D.: Partition and modulated lattices. Pacific J. Math. 11(1), 325–345 (1961)
20. Sasaki, U., Fujiwara, S.: The characterization of partition lattices. J. Sci. Hiroshima

Univ (A) 15, 189–201 (1952)
21. Ore, O.: Theory of equivalence relations. Duke Math. J. 9(3), 573–627 (1942)
22. Firby, P.A.: Lattices and compactifications I, II. Proc. London Math. Soc. 27, 22–60

(1973)
23. Aigner, M.: Uniformität des Verbandes der Partitionen. Math. Ann. 207, 1–22

(1974)
24. Stonesifer, J.R., Bogart, K.P.: Characterizations of partition lattices. Alg. Univ. 19,

92–98 (1984)
25. Yoon, Y.J.: Characterizations of partition lattices. Bull. Korean Math. Soc. 31(2),

237–242 (1994)
26. Koppelberg, S.: Handbook of Boolean algebras, vol. 1. North-Holland (1989)
27. Cannon, S.: The spectral presheaf of an orthomodular lattice. Master’s thesis, Univ.

Oxford (2013)
28. Harding, J., Döring, A.: Abelian subalgebras and the Jordan structure of a von

Neumann algebra. Houston J. Math (2014)
29. Hamhalter, J.: Isomorphisms of ordered structures of abelian C*-subalgebras of

C*-algebras. J. Math. Anal. Appl. 383, 391–399 (2011)

Between Linearizability and Quiescent ConsistencyΣ

Quantitative Quiescent Consistency

Radha Jagadeesan and James Riely

DePaul University

Abstract Linearizability is the de facto correctness criterion for concurrent data
structures. Unfortunately, linearizability imposes a performance penalty which
scales linearly in the number of contending threads. Quiescent consistency is an
alternative criterion which guarantees that a concurrent data structure behaves
correctly when accessed sequentially. Yet quiescent consistency says very little
about executions that have any contention.

We define quantitative quiescent consistency (QQC), a relaxation of lineariz-
ability where the degree of relaxation is proportional to the degree of contention.
When quiescent, no relaxation is allowed, and therefore QQC refines quiescent
consistency, unlike other proposed relaxations of linearizability. We show that
high performance counters and stacks designed to satisfy quiescent consistency
continue to satisfy QQC. The precise assumptions under which QQC holds pro-
vides fresh insight on these structures. To demonstrate the robustness of QQC,
we provide three natural characterizations and prove compositionality.

1 Introduction

This paper defines Quantitative Quiescent Consistency (QQC) as a criterion that lies
between linearizability [10] and quiescent consistency [3], [11], [17]. The following
example should give some intuition about these criteria.

Example 1.1. Consider a counter object with a single getAndIncrementmethod. The
counter’s sequential behavior can be defined as a set of strings such as [+]+0 {

+ }+1 (
+)+2

where [+ denotes an invocation (or call) of the method and]+i denotes the response (or
return) with value i. Suppose each invocation is initiated by a different thread.

A concurrent execution may have overlapping method invocations. For example, in
(+ [+]+0 {

+ }+1)
+
2 the execution of (+)+2 overlaps with both [+]+0 and {+ }+1 , whereas

[+]+0 finishes executing before {+ }+1 begins. Consider the following four executions.

(+ [+]+0 {
+ }+1)

+
2 (+ {+ }+1 [

+]+0)
+
2 [+ (+)+2 {

+ }+1]
+
0 [+ (+)+2]

+
0 {

+ }+1

Linearizability states roughly that every response-to-invocation order in a concurrent
execution must be consistent with the sequential specification. Thus, the first execu-
tion is linearizable, since the response of [+]+0 precedes the invocation of {+ }+1 in the
specification. However, none of the other executions is linearizable. For example, the
response of {+ }+1 precedes the invocation of [+]+0 in the second execution.

Σ Research supported by NSF 0916741.
The full version of this paper is available at http://arxiv.org/abs/1402.4043.

J. Esparza et al. (Eds.): ICALP 2014, Part II, LNCS 8573, pp. 220–231, 2014.
c∈ Springer-Verlag Berlin Heidelberg 2014

http://arxiv.org/abs/1402.4043

Between Linearizability and Quiescent Consistency 221

Linearizability can also be understood in terms the linearization point of a method
execution, which must occur between the invocation and response. From this perspec-
tive, the first execution above is linearizable because we can find a sequence of
linearization points that agrees with the specification; this requires only that the lin-
earization point of (+)+2 follow that of {+ }+1 . No such sequence of linearization points
exists for the two other executions.

Quiescent consistency is similar to linearizability, except that the response-to-invoca-
tion order must be respected only across a quiescent point, that is, a point with no open
method calls. The first three executions above are quiescently consistent because there
are no non-trivial quiescent points. The last execution fails to be quiescently consistent
since the order from (+)+2 to {+ }+1 is not preserved in the specification.

We define Quantitative Quiescent Consistency (QQC) to require that the number
of response-to-invocation pairs that are out-of-order at any point be bounded by the
number of open calls that might be ordered later in the specification. We also give a
counting characterization of QQC, which requires that if a response matches the ith

method call in the specification, then it must be preceded by at least i invocations.
The first two executions above are QQC; however, the last two are not. In the second

execution, the open call to (+)+2 justifies the return of {+ }+1 before [+]+0 since (+)+2
occurs after {+ }+1 in the specification. However, in the third execution, the return of
(+)+2 before {+ }+1 cannot be justified only by the call to [+]+0 since [+]+0 occurs
earlier in the specification. Following the counting characterization sketched above, the
third execution fails since (+)+2 is the third method call in the specification trace, but
the response of (+)+2 is only preceded by two invocations: [+ and (+ . �

Quiescent consistency is too coarse to be of much use in reasoning about concur-
rent executions. For example, a sequence of interlocking calls never reaches a quiescent
point; therefore it is trivially quiescently consistent. This includes obviously correct ex-
ecutions, such as [+ (+]+0 [

+)+1 (
+]+2 [

+)+3 (
+]+4 [

+ · · · , nearly correct executions, such
as [+ (+]+1 [

+)+0 (
+]+3 [

+)+2 (
+]+5 [

+ · · · , and also ridiculous executions, such as [+ (+

]+1074 [
+)+17 (

+]+2344 [
+)+3 (

+ · · · .
Linearizability has proven quite useful in reasoning about concurrent executions;

however, it fundamentally constrains efficiency in a multicore setting: Dwork, Herlihy,
and Waarts [6] show that if many threads concurrently access a linearizable counter,
there must be either a location with high contention or an execution path that accesses
many shared variables. Shavit [14] argues that the performance penalty of linearizable
data structures is increasingly unacceptable in the multicore age. This observation has
lead to a recent renewal of interest in nonlinearizable data structures. As a simple exam-
ple, consider the following counter implementation: a simplified version of the counting
networks of Aspnes, Herlihy, and Shavit[3].

class Counter<N:Int> {
field b:[0..N-1] = 0; // 1 balancer
field c:Int[] = [0, 1, ..., N-1]; // N counters
method getAndIncrement():Int {

val i:[0..N-1];
atomic { i = b; b++; }
atomic { val v = c[i]; c[i] += N; return v; } } }

222 R. Jagadeesan and J. Riely

The N-Counter has two fields: a balancer b and an array c of N integer counters. There
are two atomic actions in the code: The first reads and updates the balancer, setting the
local index variable i. The second reads and updates the ith counter. Although the
balancer has high contention in our simplified implementation, the counters do not;
balancers that avoid high contention are described in [3].

Example 1.2. The N-Counter behaves like a sequential counter if calls to getAnd-
Increment are sequentialized. To see this, consider a 2-Counter, with initial state
≡b= 0, c= [0, 1]⊆. In a series of sequential calls, the state progresses as follows, where
we show the execution of the first atomic with the invocation and the second atomic
with the response. The execution [+]+0 {

+ }+1 (
+)+2 can be elaborated as follows.

≡b = 0, c= [0, 1]⊆ [+−−↔≡b = 1, c= [0, 1]⊆]+0−↔≡b= 1, c= [2, 1]⊆
{+−−↔≡b = 0, c= [2, 1]⊆ }+1−↔≡b= 0, c= [2, 3]⊆
(+−−↔≡b = 1, c= [2, 3]⊆)+2−↔≡b= 1, c= [4, 3]⊆

When there is concurrent access, the 2-Counter allows nonlinearizable executions,
such as (+ {+ }+1 [

+]+0)
+
2 .

≡b = 0, c= [0, 1]⊆ (+−−↔≡b = 1, c= [0, 1]⊆
{+−−↔≡b = 0, c= [0, 1]⊆ }+1−↔≡b= 0, c= [0, 3]⊆
[+−−↔≡b = 1, c= [0, 3]⊆]+0−↔≡b= 1, c= [2, 3]⊆

)+2−↔≡b= 1, c= [4, 3]⊆
With a sequence of interlocking calls, it is also possible for the N-Counter to execute
as [+ (+]+1 [

+)+0 (
+]+3 [

+)+2 (
+]+5 [

+ · · · , producing an infinite sequence of values that
are just slightly out of order. Using the results of this paper, one can conclude that with
a maximum of two open calls, the value returned by getAndIncrement will be “off”
by no more than 2, but this does not follow from quiescent consistency. �

Our results are related to those of [2], [3], [5], [16]. In particular, Aspnes, Herlihy,
and Shavit[3] prove that in any quiescent state (with no call that has not returned), such
a counter has a “step-property”, indicating the shape of c. Between }+1 and]+0 in the
second displayed execution of Example 1.2, the states with c = [0, 3] do not have the
step property, since the two adjacent counters differ by more than 1.

Aspnes, Herlihy, and Shavit[3] imply that the step property is related to quiescent
consistency, but they do not provide a formal definition. It appears that they have in
mind is something like the following: An execution is weakly quiescent consistent if
any uninterrupted subsequence of sequential calls (single calls separated by quiescent
points) is a subtrace of a specification trace.

The situation is delicate: Although the increment-only counters of [3] are quies-
cently consistent in the sense we defined in Example 1.1 (indeed, they are QQC), the
increment-decrement counters of [2], [5], [16] are only weakly quiescent consistent. In-
deed, the theorems proven in [16] state only that, at a quiescent point, a variant of the
step property holds. They state nothing about the actual values read from the individual
counters. Instead, our definition requires that a quiescently consistent execution be a
permutation of some specification trace, even if it has no nontrivial quiescent points.

Between Linearizability and Quiescent Consistency 223

Example 1.3. Consider an extension of the 2-Counter with decrementAndGet.

method decrementAndGet():Int {
val i:[0..N-1];
atomic { i = b-1; b--; }
atomic { c[i] -= N; return c[i]; } }

The execution [+ {+ (- <- >-−2]
+
−2 }

+
1)

-
1 is possible, although this is not a permutation

of any specification trace. The execution proceeds as follows.

≡b= 0, c= [0, 1]⊆ [+−−↔ ≡b= 1, c= [0, 1] ⊆ {+−−↔ ≡b= 0, c= [0, 1]⊆
(-−−↔ ≡b= 1, c= [0, 1] ⊆ <-−−↔ ≡b= 0, c= [0, 1]⊆
>-−2−−↔≡b= 0, c= [−2, 1]⊆]+−2−−↔≡b= 0, c= [0, 1]⊆
}+1−↔ ≡b= 0, c= [0, 3] ⊆)-1−↔ ≡b= 0, c= [0, 1]⊆ �

It is important to emphasize that this increment-decrement counter is not even quies-
cently consistent according to our definition. There is no hope that it could satisfy any
stronger criterion.

Of course counters are not the only data structures of interest. In the full paper, we
treat concurrent stacks in detail. We define a simplified N-Stack below; the full, tree-
based data structure is defined in Shavit and Touitou[16].

class Stack<N:Int> {
field b:[0..N-1] = 0; // 1 balancer
field s:Stack[] = [[], [], ..., []]; // N stacks of values
method push(x:Object):Unit {

val i:[0..N-1];
atomic { i = b; b++; }
atomic { val v = s[i].push(x); return v; } }

method pop():Object {
val i:[0..N-1];
atomic { i = b-1; b--; }
atomic { val v = s[i].pop(); return v; } } }

The trace given in Example 1.3 for the increment-decrement counter is also a trace
of the stack, where we interpret + as push and - as pop. Whereas this is a nonsense
execution for a counter, it is a linearizable execution of a stack: simply choose the
linearization points so that each push occurs immediately before the corresponding pop.
Nonetheless, the N-Stack is only weakly quiescent consistent in general.

Example 1.4. The N-Stack generates the execution [+a]
+ (+b)

+ {+c <
- >-a }

+ as follows.

≡b= 0, s= [[], []] ⊆ [+a−−↔≡b= 1, s= [[], []] ⊆]+−↔≡b= 1, s= [[a], []] ⊆
(+b−−↔≡b= 0, s= [[a], []] ⊆)+−↔≡b= 0, s= [[a], [b]]⊆
{+c−−↔≡b= 1, s= [[a], [b]]⊆
<-−−↔≡b= 0, s= [[a], [b]]⊆ >-a−↔≡b= 0, s= [[], [b]] ⊆

}+−↔≡b= 0, s= [[c], [b]]⊆
However, this specification is not quiescently consistent with any stack execution: There
is a quiescent point after each of the first two pushes; therefore it is impossible to pop a
before b. This execution is possible even when there are several pushes beforehand. �

224 R. Jagadeesan and J. Riely

In the case of the N-Stack, a simple local constraint can be imposed in order to es-
tablish quiescent consistency: intuitively, we require that no pop overtakes a push on
the same stack s[i]. In the full paper, we show that the stack is actually QQC under
this constraint, and therefore quiescently consistent. We also prove that the elimination-
tree stacks of Shavit and Touitou [16] are QQC. The increment-only counters of [3] are
also QQC; the proofs for the tree-based increment-only counter follow the structure of
the proofs for the elimination-tree stacks. (We have not found a local constraint under
which the increment-decrement counter is quiescently consistent.) Our correctness re-
sult is much stronger than that of [16], which only proves weak quiescent consistency.

The preliminary version of Shavit and Touitou’s paper [15] suggests an upcoming
definition ε-linearizability, “a variant of linearizability that captures the notion of ‘al-
mostness’ by allowing a certain fraction of concurrent operations to be out-of-order.”
This thread was picked up by Afek, Korland, and Yanovsky[1] and improved by Hen-
zinger, Kirsch, Payer, Sezgin, and Sokolova[9]. As defined in [9], the idea is to define
a cost metric on relaxations of strings and to bound the relaxation cost for the specifi-
cation trace that matches an execution. This relaxation-based approach has been used
to validate several novel concurrent data structures [1], [7]. With the exception of the
increment-only counter validated in [1], all of these data structures intentionally vio-
late quiescent consistency. In Section 4, we show that this approach in incomparable to
QQC.

With QQC, the maximal degradation depends upon the amount of concurrent access,
whereas in the relaxation-based approach it does not. Thus, QQC “degrades gracefully”
as concurrency increases. In particular, a QQC data structure that is accessed sequen-
tially will exactly obey the sequential specification, whereas a data structure validated
against the relaxation-based approach may not.

In the rest of the paper, we formalize QQC and study its properties. Our contributions
are as follows.
– We define linearizability (Section 2), quiescent consistency (Section 3) and QQC

(Section 4) in terms of partial orders over events with duration. As in Example 1.1,
the definitions are given in terms of the order from response to invocation.

– For sequential specifications, we provide alternative characterizations of lineariz-
ability, quiescent consistency and QQC in terms of the number of invocations that
precede a response. For linearizability, this approach can be found in [4].

– We provide an alternative characterization of QQC in terms of a proxy that controls
access to the underlying sequential data structure. The proxy adds a form of specu-
lation to the flat combining technique of Hendler, Incze, Shavit, and Tzafrir[8]. This
characterization can be seen as a language generator, rather than an accepter.

– Like linearizability and quiescent consistency [11], QQC is non-blocking and com-
positional. Like quiescent consistency and unlike linearizability, a QQC execution
may not respect program order, and therefore QQC is incomparable to sequential
consistency [12]. We prove that QQC is compositional for sequential specifications,
in the sense of Herlihy and Wing[10].

– We show that QQC is useful for reasoning about data structures in the literature. In
the full paper, we prove that the elimination tree stacks of Shavit and Touitou[16] are
QQC, as long as no pop overtakes a push on the same stack.

Between Linearizability and Quiescent Consistency 225

2 Linearizability

A trace is a labelled partial order with polarity and bracketing. We use ? and ! to denote
polarities. The polarity indicates whether an event in the partial order is a call/input
(?) or a return/output (!). Bracketing matches each return with the particular call that
precedes it. Let p–t range over traces and let a, b range over names, which form the
carrier set of the partial order. We introduce notation over traces as needed.

Intuitively, linearizability requires that the response-to-invocation order in an execu-
tion be respected by a specification trace. To show that s⇔⇔ is linearizable, it suffices to
do the following

– Choose a specification trace t.
– Choose an extension s⇔ of s⇔⇔ that closes the open calls in s⇔⇔. We say that s⇔ extends

s⇔⇔ if (1) if s⇔⇔ is a prefix of s⇔, and (2) all of the new events in s⇔ − s⇔⇔ are ordered after
all events of opposite polarity in s⇔⇔ (that is, calls after returns and returns after calls).
Let extensions(s⇔⇔) be the set of extensions of s⇔⇔.

– Choose a renaming s =α s⇔ such that s =π t. Here =α denotes equivalence up to
renaming and =π denotes equivalence up to permutation. This establishes that s⇔ is a
permutation of t. The names are witness to the permutation.

– Show that for every response a! and invocation b?, if a! precedes b? in s (a!⊂s b?),
then the same must be true in t (a!⊂t b?).

This definition differs from the traditional one in several small details, enumerated in
the full paper. In particular, we allow s⇔ ≥ extensions(s⇔⇔) to include calls that are not in
s⇔⇔, in addition to returns. We can refactor the definition slightly to pull it into the shape
used to define quiescent consistency and QQC.

Definition 2.1. For traces s, t, we write s ⇒lin t if s =π t and for every prefix p ◦pre s
≤a!≥ p. ≤b?≥ s− p. (a!⊂s b?) implies (a!⊂t b?).

Then (s⇔⇔ →�lin t)
�
= (∅s⇔ ≥ extensions(s⇔⇔). ∅s =α s⇔. s ⇒lin t),

and (S →�lin T)
�
= (≤s⇔⇔ ≥ S. ∅t ≥ T. s⇔⇔ →�lin t). �

This characterization of linearizability requires that we look at every way to cut the
trace s into a prefix p and suffix s− p. We then look at the return events in p and the
call events in s− p and ensure that the order of events crossing the cut is respected in t.
The definitions are equivalent since we quantify over all possible cuts.

Consider the counter specification from Example 1.1: [+]+0 {
+ }+1 (

+)+2 . The trace
{+ [+ }+1 (

+]+0)
+
2 is linearizable. The interesting cut is {+ [+ }+1 which requires only

that {+ }+1 precede (+)+2 in the specification. By the same reasoning, {+ (+ }+1 [
+)+2]

+
0 ,

is not linearizable, since it requires that {+ }+1 precede [+]+0 .
Given a sequential specification, a trace is linearizable if every return is preceded by

the calls that come before it in specification order. This holds for operational traces,
in which all events of opposite polarity are ordered. Operational traces correspond to
those generated by a standard interleaving semantics. Define s ◦π t to mean that s is a
subtrace of a permutation of t: (s ◦π t)

�
= (∅s⇔. s ⊇ s⇔ =π t).

Theorem 2.2. Let t be a sequential trace with name order (a?
1, a!

1, a?
2, a!

2, . . . , a?
n, a!

n).
Let s be an operational trace such that s ◦π t. Then

s →�lin t iff ≤a!
j ≥ s. {a?

1, . . . , a?
j} ⊇ {a?

i | a?
i ⊂s a!

j} �

226 R. Jagadeesan and J. Riely

3 Quiescent Consistency

Let open(s) be the set of calls in s that have no matching return. We say that trace s is
quiescent if open(s) = /0. This notion of quiescence does not require that there be no
active thread, but only that there be no open calls. Thus, this notion of quiescence is
compatible with libraries that maintain their own thread pools.

The definition of quiescent consistency is similar to Definition 2.1 of linearizability.
The difference lies in the quantifier for the prefix p: Whereas linearizability quantifies
over every prefix, quiescent consistency only quantifies over quiescent prefixes.

Definition 3.1. We write s ⇒qc t if s =π t and for any quiescent prefix p ◦pre s

≤a!≥ p. ≤b?≥ s− p. (a!⊂s b?) implies (a!⊂t b?). �

(→�qc) is defined similarly to (→�lin). Again let us revisit the counter specification
from Example 1.1: [+]+0 {

+ }+1 (
+)+2 . This notion of quiescent consistency places some

constraints on the system even when it has no nontrivial quiescent points. For example,
the execution [+ {+ (+)+3 }

+
1]

+
0 is not quiescently consistent with the given specification,

since it is not a permutation. If one extends the execution to [+ {+ (+)+3 }
+
1]

+
0 <

+ >+2
and attempts to matches it against the specification [+]+0 {

+ }+1 <
+ >+2 (

+)+3 , quiescent
consistency continues to fail: In the quiescent prefix [+ {+ (+)+3 }

+
1]

+
0 , the order across

the cut from)+3 to <+ is not preserved in the specification.
For linearizability, only responses need be included in the extensions of a trace. The

same does not hold for quiescent consistency. For example, since (+ {+ }+1 [
+]+0)

+
2 is

quiescently consistent, its prefix (+ {+ }+1 should also be quiescently consistent. How-
ever, there is no specification trace that can be matched that does not include [+]+0 .
Therefore, it does not suffice merely to close the open call by adding)+2 ; we must also
include [+ and]+0 .

We now give a counting characterization of quiescent consistency. Define u �⊂s v to
mean that u ⊂s v and there is no quiescent cut that separates u and v.
Theorem 3.2. Let t be a sequential trace with name order (a?

1, a!
1, a?

2, a!
2, . . . , a?

n, a!
n).

Let s be an operational trace such that s ◦π t. Then

s →�qc t iff ≤a!
j ≥ s.

∣∣{a?
1, . . . , a?

j}
∣∣◦ ∣∣{a?

i | a?
i ⊂s a!

j}∪{a?
i | a!

j �⊂s a?
i }
∣∣ �

If a!
j , the jth return in t, occurs in s, then there must be at least j calls contained in

two sets: (1) the calls that precede a!
j in s, and (2) the calls that follow a!

j in s but are
“quiescently concurrent” — that is, not separated by a quiescent point.

4 Quantitative Quiescent Consistency

We provide three characterizations of QQC and prove their equivalence.
(1) Definition 4.1 defines QQC in the style that we have defined linearizability and qui-
escent consistency, from response to invocation. (2) Theorem 4.3 provides a counting
characterization of QQC, which requires that if a response matches the ith method call
in the specification, then it must be preceded by at least i invocations. (3) Theorem 4.4
provides an operational characterization of QQC as a proxy between the concurrent
world and an underlying sequential data structure.

Between Linearizability and Quiescent Consistency 227

To develop some intuition for the what is allowed by QQC, we give some examples
using the 2-Counter from the introduction. First we note that the capability given by
an open call can be used repeatedly, as in (+ [+]+1 {

+ }+0 [
+]+3 {

+ }+2 [
+]+5 {

+ }+4)
+
6 . The

open call (+ enables the inversion of {+ }+0 with [+]+1 and also of {+ }+2 with [+]+3 .
Alternatively, multiple open calls may be accumulated to create an trace with events

that are arbitrarily far off, as in (+ [+]+1 (
+ [+]+3 (

+ [+]+5 (
+ [+]+7 [

+]+0)
+
2)

+
4)

+
6)

+
8 . Note

that [+]+0 follows [+]+7 in this execution! It is worth emphasizing that the order be-
tween these actions is observable to the outside: a single thread can call getAndInc-
rement and get 7, then subsequently call getAndIncrement and get 0. Such behaviors
are a hallmark of nonlinearizable data structures. In general, an N-Counter can give
results that are k×N off of the expected value, where k is the maximum number of open
calls and N is the width of the counter. There is no way to bound the behavior of this
counter, as in [9], without also bounding the amount of concurrency, as in [1].

It is also possible for open calls to overlap in nontrivial ways. The trace (+ [+]+1 {
+

[+]+0)
+
3 (

+)+2 }
+
4 is QQC. Here, the first (+ justifies the out-of-order execution of [+]+1

and [+]+0 . The subsequent {+ justifies an inversion of the previous justifier, namely
(+)+3 and (+)+2 . A similar example is {+ (+)+1 (

+ [+]+0)
+
3 [

+]+2 }
+
4 .

Finally, we note that the stack execution {+c [
-]-a (

+
a)

+ }+ is QQC with respect to
the specification (+a)

+ [-]-a {
+
c }

+ . This follows from exactly the kind of reasoning that
we have done for the counter. For the counter this simply means that we are seeing an
integer value early, but for a stack holding pointers, it means that we can potentially
see a pointer before it has been allocated! To prevent such executions, causality can be
specified as a relation from calls to returns, consistent with specification order: A trace
is causal if it respects the specified causality relation. We have elided causality from the
definition of QQC because it is orthogonal and can be enforced independently.

Linearizability requires that for every cut, all response-to-invocation order crossing
the cut must be respected in the specification. Quiescent consistency limits attention
to quiescent cuts. QQC restores the quantification over every cut, but relaxes the re-
quirement to match all response-to-invocation order crossing the cut. When checking
response-to-invocation pairs across the cut, QQC allows some invocations to be ig-
nored. How many?

One constraint comes from our desire to refine quiescent consistency. For quiescent
cuts, we cannot drop any invocations, since quiescent consistency does not. As a first
attempt at a definition, we may take the number of dropped invocations at any cut to be
bounded by

∣∣open(p)
∣∣. This criterion would allow both of the traces (+ {+ }+1 [

+]+0)
+
2

and [+ (+)+2 {
+ }+1]

+
0 in Example 1.1. In each case, the interesting cut splits the trace in

half, with one open call and one completed. In the first trace, we can ignore [+ in the
suffix, and in the second trace, we can ignore {+ in the suffix; thus, both are allowed.
However, in the second trace, the first call completed is two steps in the future, even
though there is only one concurrent action. In the first trace this does not happen. The
difference can be seen by looking not only at the number of open calls, but also at
which calls are open. In the first trace we have (+ before }+1 , and in the second, we
have [+ before)+2 . We say that (+ is early for }+1 , since it does not precede }+1 in the
specification, whereas [+ is not early for)+2 , since it does precede)+2 . We restrict our
attention to calls that are both open and early with respect to the response of interest.

228 R. Jagadeesan and J. Riely

Given a specification t and a response a! ≥ t, none of the actions in the t-down-
closure of a! could possibly be early for a!; any other action could be. Thus, the actions
in open(p)− (∪t a!) are both open and early for a!. This leads us to the following def-
inition. (In the full paper, we show that for sequential specifications, we can swap the
quantifiers (∅r) and (≤a!), pulling out the existential.)

Definition 4.1. We write s ⇒qqc t if s =π t and for any prefix p ◦pre s

≤a!≥ p. ∅r ⊇ s.
∣∣r∣∣◦ ∣∣open(p)− (∪t a!)

∣∣.
≤b?≥ ((s− p)− r). (a!⊂s b?) implies (a!⊂t b?). �

As before, (→�qqc) is defined by analogy to (→�lin).
Theorem 4.2. (→�lin)∩ (→�qqc)∩ (→�qc) �

Given the subtlety of Definition 4.1, it may be surprising that QQC has the following
simple characterization for sequential specifications.
Theorem 4.3. Let t be a sequential trace with name order (a?

1, a!
1, a?

2, a!
2, . . . , a?

n, a!
n).

Let s be an operational trace such that s ◦π t. Then

s →�qqc t iff ≤a!
j ≥ s.

∣∣{a?
1, . . . , a?

j}
∣∣◦ ∣∣{a?

i | a?
i ⊂s a!

j}
∣∣ �

This characterization provides a simple method for calculating whether a trace is QQC.
For example, the trace {+ (+)+1 (

+ [+]+0)
+
3 [

+]+2 }
+
4 is QQC since)+1 is preceded by two

calls,]+0 ,)+3 by four, and]+2 , }+4 by five. The trace {+ (+)+1 (
+)+3 [

+]+0 [
+]+2 }

+
4 is not

QQC since)+3 is only preceded by three calls, yet it is the fourth call in the specification.
Our third characterization of QQC describes how QQC affects an arbitrary sequential

data structure, using a proxy that generates QQC traces from an underlying sequential
implementation. This characterization of QQC incorporates speculation into flat com-
bining [8]. We push the obligation to predict the future into the underlying sequential
object, with must conform to the following interface.

interface Object {
method run(i:Invocation):Response;
method predict():Invocation; }

The run method passes invocations to the underlying sequential structure and returns
the appropriate response. The predictmethod is an oracle that guesses the invocations
that are to come in the future. It is the use of predict that makes our code speculative.

The code for the proxy is given in Figure 1. Communication between the implemen-
tation threads and the underlying Object is mediated by two maps. When a thread
would like to interact with the Object, it creates a semaphore, registers it in called
and waits. Upon awakening, the thread removes the result from returned and returns.

The Object is serviced by a single proxy thread which loops forever making one
of two nondeterministic choices. The proxy keeps two private maps. Upon receiving
an invocation in called, the proxy moves the invocation from called to received.
Rather than executing the received invocation, the proxy asks the oracle to predict an
arbitrary invocation i and executes that instead, placing the result in executed. Once
a invocation is both received and executed, it may become returned.

At the beginning of this section, we noted that the stack execution {+c [
-]-a (

+
a)

+ }+ is
QQC with respect to the specification (+a)

+ [-]-a {
+
c }

+ . How can such a trace possibly

Between Linearizability and Quiescent Consistency 229

class QQCProxy<o:Object> {
field called:ThreadSafeMultiMap<Invocation,Semaphore> = [];
field returned:ThreadSafeMap <Semaphore, Response> = [];
method run(i:Invocation):Response { // proxy for external access to o

val m:Semaphore = [];
called.add(i, m);
m.wait();
return returned.remove(m); }

thread { // single thread to interact with o
val received:MultiMap<Invocation,Semaphore> = [];
val executed:MultiMap<Invocation,Response> = [];
repeatedly choose {

choice if called.notEmpty() {
received.add(called.removeAny());
val i:Invocation = o.predict();
val r:Response = o.run(i);
executed.add(i, r); }

choice if exists i in received.keys() intersect executed.keys() {
val m:Semaphore = received.remove(i);
val r:Response = executed.remove(i);
returned.add(m, r);
m.signal(); } } } }

Fig. 1. QQC Proxy

be generated? The execution of the proxy proceeds as follows. Upon receipt of {+c , the
proxy executes (+a , storing response)+. Upon receipt of [-, the proxy executes [-, storing
response]-a . At this point [-]-a can return. Upon receipt of (+a , the proxy executes {+c ,
storing response }+. At this point both (+a)

+ and {+c }
+ can return.

Such noncausal behaviors can be eliminated by requiring when a pop is executed, a
corresponding push must have been received. The prior execution is invalidated since
(+a)

+ is not received when [-]-a returns. However, nonlinearizable behaviors are still
allowed. For example {+c [

+
a]

+ (+b)
+ }+ [-]-a (

-)-b is generating by predicting (+b)
+.

Theorem 4.4. The concurrent proxy is sound for QQC with respect to the underlying
Object. It is also complete for operational traces. �

In the full paper, we show that the elimination-tree stack of [16] and increment-only
counter of [3] are QQC. The characterizations of QQC also allow us to predict the QQC
behavior of other data structures, such as a queues, even if no implementation is known.
The following examples, from Sezgin[13], allow a useful comparison with [9].

To see that QQC makes distinctions not found in [9], consider the two stack traces {+c
[+a]

+ (+b)
+ <- >-a }

+ and {+c [
+
a]

+ (+b)
+ }+ <- >-a . In the framework of [9], these are both

1 out-of-order (when a is popped, at least b must be above a on the stack). However,
only the first is QQC.

In the other direction, the queue execution {+a [
+
b1
]+ [+b1

]+ · · ·[+bn
]+ (+c)

+ <- >-c }
+ is

QQC with respect to the queue specification (+c)
+ [+b1

]+ [+b1
]+ · · ·[+bn

]+ <- >-c {
+
a }

+. In
the framework of [9], this would be n out-of-order because at least all bi’s should be
in the queue before c is inserted into the queue; the removal of c from the queue must
happen when there are n elements ahead of c in the queue.

230 R. Jagadeesan and J. Riely

Finally, we prove compositionality for QQC. Let ÷ denote partial order difference.
Theorem 4.5. Let t1 and t2 be sequential traces.

Let s, s1 and s2 be operational traces such that s1 = s÷ s2 and s2 = s÷ s1.
For i ≥ {1, 2}, suppose that each si ⇒qqc ti.
Then there exists a sequential trace t ≥ (t1 � t2) such that s ⇒qqc t.

PROOF SKETCH. Assume that the names in t1 and t2 are disjoint. Let the sequence of
names in t1 be (a?

1, a!
1, . . . , a?

m, a!
m) and sequence of names in t2 be (b?

1, b!
1, . . . , b?

n, b!
n).

Applying Theorem 4.3 to the supposition s1 ⇒lin t1, we have that j ◦ ∣∣{a?
i | a?

i ⊂s a!
j}
∣∣,

and similarly ε ◦ ∣∣{b?
k | b?

k ⊂s b!
ε}
∣∣. It suffices to construct an interleaving t ≥ (t1 � t2)

such that whenever t contains a subsequence with names

a?
j , a!

j , b?
k , b!

k, b?
k+1, b!

k+1, . . . , b?
k+x, b!

k+x

then for every k ◦ ε◦ k+ x, we have

{a?
i | a?

i ⊂s a!
j} ⊇ {a?

i | a?
i ⊂s b!

ε}
and symmetrically for subsequences b?

k , b!
k , a?

j , a!
j , a?

j+1, a!
j+1, . . . , a?

j+y, a!
j+y. To dem-

onstrate the existence of an appropriate t, it suffices to show that merge(a?
1 a!

1 . . . a?
m a!

m,
b?

1 b!
1 . . . b?

n b!
n) is nonempty. By operationality, it must be the case that either (1) a!

j ⊂s

b!
ε , in which case {a?

i | a?
i ⊂s a!

j} ⊇ {a?
i | a?

i ⊂s b!
ε}, (2) b!

ε ⊂s a!
j , in which case

{b?
k | b?

k ⊂s b!
ε} ⊇ {b?

k | b?
k ⊂s a!

j}, or (3) a!
j and b!

ε are unordered, in which case both
conclusions hold. Therefore an appropriate t exists. �

5 Conclusions

Quantitative quiescent consistency (QQC) is a correctness criterion for concurrent data
structures that relaxes linearizability and refines quiescent consistency. To the best of
our knowledge, it is the first such criterion to be proposed.

To show that QQC is a robust concept, we have provided three alternate characteriza-
tions: (1) in the style of linearizability, (2) counting the number of calls before a return,
and (3) using speculative flat combining. We have also proven compositionality (in the
style of Herlihy and Wing [10]) and, in the full paper, the correctness of data structures
defined by Aspnes, Herlihy, and Shavit [3] and Shavit and Touitou [16].

In order to establish the correctness of the elimination-tree stack of [16], we had to
restrict attention to traces in which no pop overtakes a push on the same stack. (The for-
malities are given in the full paper.) A related constraint appears in a footnote of [14]:
“To keep things simple, pop operations should block until a matching push appears.”
This, however, is not strong enough to guarantee quiescent consistency as we have de-
fined it. Our analysis provides a full account: The stack is QQC with the no-overtaking
requirement and only weakly quiescently consistent without it.

There are many unanswered questions, chief among them: Is QQC useful in rea-
soning about client programs? Is there a verification methodology for QQC analogous
to that developed for linearizability? Are there other useful data structures that can be
shown to satisfy QQC?

Between Linearizability and Quiescent Consistency 231

Linearizability is, at its core, linear. We have defined QQC in terms of general partial
orders, and yet the results reported here are stated in terms of sequential specifications.
Partly we have done this so that we can relate the definition of QQC to the vast amount
of existing work on linearizability. However, the general case is interesting.

Acknowledgements. Gustavo Petri participated in the early discussions motivating this
work. Alexey Gotsman suggested the connection to flat combining. Ali Sezgin provided
a comparison with [9]. We also thank Alan Jeffrey, Corin Pitcher and Hongseok Yang
for useful discussion.

References

[1] Afek, Y., Korland, G., Yanovsky, E.: Quasi-linearizability: Relaxed consistency for im-
proved concurrency. In: Lu, C., Masuzawa, T., Mosbah, M. (eds.) OPODIS 2010. LNCS,
vol. 6490, pp. 395–410. Springer, Heidelberg (2010)

[2] Aiello, W., Busch, C., Herlihy, M., et al.: Supporting increment and decrementoperations
in balancing networks. Chicago J. Theor. Comput. Sci. (2000)

[3] Aspnes, J., Herlihy, M., Shavit, N.: Counting networks. J. ACM 41(5), 1020–1048 (1994)
[4] Batty, M., Dodds, M., Gotsman, A.: Library abstraction for C/C++ concurrency. In: POPL

(2013)
[5] Busch, C., Mavronicolas, M.: The strength of counting networks (abstract). In: Burns, J.E.,

Moses, Y. (eds.) PODC, p. 311. ACM (1996)
[6] Dwork, C., Herlihy, M., Waarts, O.: Contention in shared memory algorithms. J.

ACM 44(6), 779–805 (1997)
[7] Haas, A., Lippautz, M., Henzinger, T.A., et al.: Distributed queues in shared memory. In:

Conf. Computing Frontiers, p. 17. ACM (2013)
[8] Hendler, D., Incze, I., Shavit, N., Tzafrir, M.: Flat combining and the synchronization-

parallelism tradeoff. In: SPAA, pp. 355–364 (2010)
[9] Henzinger, T.A., Kirsch, C.M., Payer, H., Sezgin, A., Sokolova, A.: Quantitative relaxation

of concurrent data structures. In: POPL, pp. 317–328 (2013)
[10] Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kaufmann

(2008)
[11] Herlihy, M., Wing, J.M.: Linearizability: a correctness condition for concurrent objects.

ACM TOPLAS 12(3), 463–492 (1990)
[12] Lamport, L.: How to make a multiprocessor computer that correctly executes multiprocess

programs. IEEE Trans. Comput. 28(9), 690–691 (1979)
[13] Sezgin, A.: Private correspondence (March 18, 2014)
[14] Shavit, N.: Data structures in the multicore age. Commun. ACM 54(3), 76–84 (2011)
[15] Shavit, N., Touitou, D.: Elimination trees and the construction of pools and stacks (prelim-

inary version). In: SPAA, pp. 54–63 (1995)
[16] Shavit, N., Touitou, D.: Elimination trees and the construction of pools and stacks. Theory

Comput. Syst. 30(6), 645–670 (1997)
[17] Shavit, N., Zemach, A.: Diffracting trees. ACM Trans. Comput. Syst. 14(4), 385–428

(1996)

Bisimulation Equivalence

of First-Order Grammars�

Petr JančarΣΣ

Dept Comp. Sci., FEI, Techn. Univ. of Ostrava (VŠB-TUO),
17. listopadu 15, 70833 Ostrava, Czech Rep.

petr.jancar@vsb.cz

Abstract. A decidability proof for bisimulation equivalence of first-
order grammars (i.e., finite sets of labelled rules for rewriting roots of
first-order terms) is presented. The result, generalizing the decidability of
the DPDA (deterministic pushdown automata) equivalence, is equivalent
to the result achieved by Sénizergues (1998, 2005) in the framework of
equational graphs, or of PDA with restricted ε-steps, but the framework
of classical first-order terms seems to be particularly useful for providing
a concise proof that should be understandable for a wider audience.

1 Introduction

Decision problems for semantic equivalences have been a frequent topic in com-
puter science. Pushdown automata (PDA) constitute a well-known example;
language equivalence of PDA is a standard undecidable problem, but the decid-
ability for deterministic PDA (DPDA) is a famous result by Sénizergues [14].

In concurrency theory, logic, verification, and other areas, a finer equivalence,
called bisimulation equivalence or bisimilarity, has emerged as another funda-
mental behavioural equivalence; on deterministic systems it essentially coincides
with language equivalence. We name [1] to exemplify the first decidability results
for infinite-state systems, and refer to [16] for a survey of a specific area.

One of the most involved results in the area [15] shows the decidability of
bisimilarity of equational graphs with finite out-degree (or of PDA with de-
terministic popping Σ-steps); this generalizes the result for DPDA. The recent
nonelementary lower bound [2] for the problem is, in fact, TOWER-hardness
in the terminology of [13], and it holds even for real-time PDA, i.e. PDA with
no Σ-steps. For the full above mentioned PDA the problem is even not prim-
itive recursive, since it is Ackermann-hard [11]. In the deterministic case, the
equivalence problem is known to be PTIME-hard, and has a primitive recur-
sive upper bound shown by Stirling [17]; a finer analysis places the problem in
TOWER [11]. This complexity gap is just one indication that the respective
fundamental equivalence problems are far from being fully understood. Another

� A version with more details can be found at arxiv.org/abs/1405.7923.
�� Supported by the Grant Agency of the Czech Rep., project GAČR:P202/11/0340.

J. Esparza et al. (Eds.): ICALP 2014, Part II, LNCS 8573, pp. 232–243, 2014.
c∗ Springer-Verlag Berlin Heidelberg 2014

arxiv.org/abs/1405.7923

Bisimulation Equivalence of First-Order Grammars 233

such indication might be the length and the technical nature of the so far pub-
lished proofs (including the unpublished [18]).

This paper is an attempt to make a further step in clarifying the main de-
cidability proof in the mentioned area. It provides a self-contained decidability
proof for bisimulation equivalence in labelled transition systems generated by
first-order grammars (FO-grammars), which seems to be a particularly conve-
nient formalism. The states are here first-order terms over a specified finite set
of function symbols (or “nonterminals”); the transitions are induced by a finite
set of labelled rules that allow to rewrite the roots of terms. This framework is
equivalent to the framework of [15], as follows already from the works referred
to in [4], e.g. (A concrete transformation from PDA to FO-grammars can be
found, e.g., in [9].) The proof here is in principle based on the same high-level
ideas as the proof in [15] but it is considerably shorter and simpler. This paper is
a (self-contained) continuation of [9] where the first-order term framework was
used to give a decidability proof in the deterministic case.

Some further related work is briefly discussed in the concluding remarks.

2 Preliminaries and Result

In this section we define the basic notions and state the result. Some standard
definitions are restricted when we do not need the full generality.

By N we denote the set {0, 1, 2, . . .} of nonnegative integers; we use [i, j] to
denote the set {i, i+1, . . . , j}. For a set A, by A∗ we denote the set of finite
sequences of elements of A, which are also called words (over A). By |w| we
denote the length of w ∈ A∗. By Σ we denote the empty sequence (hence |Σ| = 0).

LTSs. A labelled transition system (an LTS) is a tuple L = (S, ε, (
a−≡)a≥ψ)

where S is a finite or countable set of states, ε is a finite set of actions (or

letters), and
a−≡⊆ S × S is a set of a-transitions (for each a ∈ ε). Moreover,

we assume image-finiteness, which requires that the set {s∈ | s a−≡ s∈} is finite
for each pair s ∈ S, a ∈ ε. We say that L is a deterministic LTS if for each pair
s ∈ S, a ∈ ε there is at most one s∈ such that s

a−≡ s∈.
By s

w−≡ s∈, where w = a1a2 . . . an ∈ ε∗, we denote that there is a path
s = s0

a1−≡ s1
a2−≡ · · · an−≡ sn = s∈; if s

w−≡ s∈, then s∈ is reachable from s, within
|w| steps. By s

w−≡ we denote that w is enabled by s, i.e., s
w−≡ s∈ for some s∈.

If L is deterministic, then s
w−≡ s∈ or s

w−≡ denotes a unique path.
(Stratified) Bisimilarity. Let L = (S, ε, (

a−≡)a≥ψ) be a given LTS. We say
that a set B ⊆ S ×S covers (s, t) ∈ S ×S if for any a ∈ ε and s∈ ∈ S such that

s
a−≡ s∈ there is t∈ ∈ S such that t

a−≡ t∈ and (s∈, t∈) ∈ B, and for any a ∈ ε

and t∈ ∈ S such that t
a−≡ t∈ there is s∈ ∈ S such that s

a−≡ s∈ and (s∈, t∈) ∈ B.
For B,B∈ ⊆ S × S we say that B∈ covers B if B∈ covers each (s, t) ∈ B. A set
B ⊆ S × S is a bisimulation if B covers B. States s, t ∈ S are bisimilar, written
s ↔ t, if there is a bisimulation B containing (s, t). We note the standard fact
that ↔⊆ S × S is the maximal bisimulation, the union of all bisimulations.

We put ↔0= S × S. For k ∈ N, ↔k+1⊆ S × S is the set of all pairs covered
by ↔k. We easily verify that ↔ and ↔k are equivalence relations, and that ↔0⇔

234 P. Jančar

↔1 ⇔↔2⇔ · · · · · · ⇔↔. For the (first infinite) ordinal Ω we put s ↔θ t if s ↔k t
for all k ∈ N; hence ↔θ= ⊂k≥N ↔k. It is a standard fact that ⊂k≥N ↔k is a
bisimulation in any image-finite LTS, where we thus have ↔=↔θ.

Eq-levels. Given an image-finite LTS, we attach the equivalence level (eq-
level) to each pair of states: EqLv(s, t) = max {k ∈ N ≥ {Ω} | s ↔k t}.

First-order-term LTSs Informally. We focus on certain (image-finite)
LTSs in which states are first-order terms ; we mean standard finite terms pri-
marily but it will turn out convenient to consider also infinite regular terms
(i.e. infinite terms with finitely many pairwise different subterms). The terms
are built from variables from a fixed countable set Var = {x1, x2, x3, . . . }
and from function symbols, also called (ranked) nonterminals, from some spe-
cified finite set N ; each A ∈ N has arity(A) ∈ N. An example of a (stan-
dard finite) term is A(D(x5, C(x2, B)), x5, B) where the arities of A,B,C,D
are 3, 0, 2, 2, respectively. Transitions are determined by a finite set of root-
rewriting rules. An example of a “non-popping” rule is A(x1, x2, x3)

a−≡
C(D(x3, B), x2), an example of a “popping” rule is A(x1, x2, x3)

b−≡ x1.
Each rule induces the transitions arising by applying the same substitu-
tion δ to both the left-hand side (lhs) and the right-hand side (rhs). E.g.,

the rule A(x1, x2, x3)
a−≡ C(D(x3, B), x2) and the substitution δ for which

δ(x1) = D(x5, C(x2, B)), δ(x2) = x5, δ(x3) = B (where A(x1, x2, x3)
after applying δ becomes A(D(x5, C(x2, B)), x5, B)) induce the transition

A(D(x5, C(x2, B)), x5, B)
a−≡ C(D(B,B), x5); the rule A(x1, x2, x3)

b−≡ x1 and

δ induce A(D(x5, C(x2, B)), x5, B)
b−≡ D(x5, C(x2, B)).

The Result Informally. We will show that there is an algorithm that com-
putes EqLv(T0, U0) when given a finite set of root-rewriting rules and two terms
T0, U0. In the rest of this section we formalize this statement, making also some
conventions about our use of (finite and infinite) terms and substitutions.

Regular Terms, Presentation Size. We identify terms with their syntactic
trees, and denote them by E,F, Thus a term E over N is a rooted, ordered,
finite or infinite tree where each node has a label from N ≥Var; if the label of a
node is xi ∈ Var, then the node has no successors, and if the label is A ∈ N , then
it has m (immediate) successor-nodes where m = arity(A). A subtree of a term
(i.e. tree) E is also called a subterm of E. A subterm can have more (maybe
infinitely many) occurrences in E. Each subterm-occurrence has its (nesting)
depth in E, which is its (naturally defined) distance from the root of E. We also
use the standard notation for terms: we write E = xi or E = A(G1, . . . , Gm)
with the obvious meaning; in the latter case we have root(E) = A ∈ N ,
m = arity(A), and G1, . . . , Gm are the root-successors, i.e., the ordered subterm-
occurrences with the depth 1.

A term E is finite if the respective tree is finite; by Height(E) we then mean
the largest depth of a subterm in E. A (possibly infinite) term is regular if it
has only finitely many subterms (though the subterms may be infinite and can
have infinitely many occurrences). Any regular term has a natural finite-graph
presentation (with possible cycles); by PrSize(E) (the presentation size of E)
we mean the size of the smallest graph presentation of E.

Bisimulation Equivalence of First-Order Grammars 235

In what follows, by a “term” we mean a “regular term” if we do not say
explicitly that the term is finite. (We do not consider non-regular terms.) We
reserve symbols E,F,G,H , and also T, U, V,W , for denoting (regular) terms.

Substitutions, Associative Composition. By TermsN we denote the set
of all (regular) terms over a set N of (ranked) nonterminals. A substitution δ
is a mapping δ : Var ≡ TermsN whose support supp(δ) = {xi | δ(xi) ⇒= xi}
is finite; we reserve the symbol δ for substitutions. By range(δ) we mean the
set {δ(xi) | xi ∈ supp(δ)}. By applying a substitution δ to a term E we get the
term Eδ that arises from E by replacing each occurrence of xi with δ(xi). Hence
E = xi implies Eδ = xi δ = δ(xi). The composition of substitutions, where
δ = δ1δ2 satisfies δ(xi) = (δ1(xi))δ2, can be easily verified to be associative.
We thus write simply Eδ1δ2 when meaning (Eδ1)δ2 or E(δ1δ2).

First-order Grammars. A first-order grammar, an FO-grammar or just a
grammar for short, is a tuple G = (N , ε,R) where N is a finite set of ranked
nonterminals, viewed as function symbols with arities, ε is a finite set of actions
(or letters), and R is a finite set of rules of the form A(x1, x2, . . . , xm)

a−≡ E
where A ∈ N , arity(A) = m, a ∈ ε, and E is a finite term over N in which
each occurring variable is from the set {x1, x2, . . . , xm}.

LTSs Generated by Grammars. Given G = (N , ε,R), by Lr
G we denote

the (rule based) LTS Lr
G = (TermsN ,R, (

r−≡)r≥R) where each rule r of the form

A(x1, x2, . . . , xm)
a−≡ E induces (A(x1, . . . , xm))δ

r−≡ Eδ for any substitution

δ. (Thus also A(x1, . . . , xm)
r−≡ E, using δ with supp(δ) = ◦.)

The LTS Lr
G is deterministic, since for each F and r there is at most one H

such that F
r−≡ H . We note that transitions cannot add variables, i.e., F

w−≡ H
implies that each variable occurring in H also occurs in F . We also note that
F

w−≡ H implies Fδ
w−≡ Hδ for any substitution δ.

Since the right-hand sides (rhs) E in the rules A(x1, . . . , xm)
a−≡ E are finite,

all terms reachable from a finite term are finite. (It is technically convenient to
have the rhs finite while including regular terms into our LTSs.)

By the action-based LTS we mean La
G = (TermsN , ε, (

a−≡)a≥ψ) where each

rule A(x1, . . . , xm)
a−≡ E induces (A(x1, . . . , xm))δ

a−≡ Eδ (for any δ). Hence

F
w−≡ H in Lr

G implies F
act(w)−≡ H in La

G , where act(w) is the naturally defined
action-image of w. We note that La

G is image-finite, and non-deterministic in
general. We complete the definition of La

G by stipulating that

EqLv(xi, H) = 0 if H ⇒= xi (in particular, xi ⇒↔1 xj for i ⇒= j).

Remark. This reflects the fact that xi ⇒= H implies that EqLv(xiδ,Hδ) = 0 for
some δ, unless the underlying grammar G is trivial.

In what follows we refer to the action-based LTSs La
G , if we do not say explic-

itly that we have Lr
G in mind.

Theorem 1. There is an algorithm that, given an FO-grammar G = (N , ε,R)
and T0, U0 ∈ Terms(N), computes EqLv(T0, U0) in La

G.

236 P. Jančar

3 Proof of Theorem 1

As a convenient tool we introduce a round-based game between Prover(she) and
Refuter(he); the game is more involved than the standard bisimulation game.
We start with a simple first version of the game, and then we stepwise enhance
it. Refuter will be always able to force his win in finite time if the terms in
the initial pair (T0, U0) are non-equivalent. Prover will be always able to avoid
losing if T0 ↔ U0, but only in the final version she will be able to force her win in
finite time. Before the first game-version we observe some simple standard facts
related to (stratified) bisimulation equivalence.

Expansions. Assume an LTS L = (S, ε, (
a−≡)a≥ψ). By B�B∈, where B,B∈ ⊆

S × S, we denote that B∈ is a minimal expansion for B, i.e., B∈ covers B and no
proper subset of B∈ covers B; this also implies that for each (s∈, t∈) ∈ B∈ there is

(s, t) ∈ B such that s
a−≡ s∈ and t

a−≡ t∈ for some a ∈ ε. We note that ◦ � ◦,
and if s, t are dead (not enabling any action), then {(s, t)}� ◦.

For any k ∈ N we have k < Ω and we stipulate Ω − k = Ω + k = Ω. We also
stipulate min ◦ = Ω, and define MinEqL(B) = min{EqLv(s, t) | (s, t) ∈ B}.

Proposition 2.
(1) If MinEqL(B) = 0 then there is no B∈ such that B � B∈.
(2) If B � B∈ and MinEqL(B) < Ω, then MinEqL(B) > MinEqL(B∈).
(3) If MinEqL(B) > 0 then there is B∈ such that B � B∈ and MinEqL(B∈) ≤
MinEqL(B) − 1. (In particular, if B ⊆↔ then B � B∈ for some B∈ ⊆↔.)
(4) For k ∈ N we have s ↔k t iff there is a sequence {(s, t)}�B1�B2� · · ·�Bk.

Prover-Refuter Game (First Version). A play starts with a grammar G =
(N , ε,R) and an initial pair (T0, U0) of terms. For i = 0, 1, 2 . . . , the (i+1)-th
round of the play starts with some specified pair (Ti, Ui) and proceeds as follows:

1. Prover chooses k > 0 and some Bj ⊆ TermsN ×TermsN for j = 1, 2 . . . , k
and shows that B0 � B1 � B2 � . . .� Bk where B0 = {(Ti, Ui)}.
If this is impossible (i.e., if Ti ⇒↔1 Ui), then Refuter wins.

2. Refuter chooses a pair (T ∈
i , U

∈
i) in Bk ∅

⋃k−1
j=0 Bj. If this is impossible, i.e. if

Bk ⊆ ⋃k−1
j=0 Bj (which includes the case Bk = ◦), then Prover wins. (In this

case Ti ↔ Ui, as follows by using Prop. 2.)

3. The pair (Ti+1, Ui+1) = (T ∈
i , U

∈
i) is taken for starting the (i+2)-th round.

We say that Refuter uses the least-eqlevel strategy, if he always chooses
(T ∈

i , U
∈
i) so that EqLv(T ∈

i , U
∈
i) = MinEqL(Bk); in this case EqLv(T ∈

i , U
∈
i) <

MinEqL(
⋃k−1

j=0 Bj), and thus EqLv(T ∈
i , U

∈
i) < EqLv(Ti, Ui) − (k−1), unless

T ↔ U for all (T, U) ∈ ⋃k
j=0 Bj. We easily observe the following facts.

Proposition 3. Let EqLv(T0, U0) = e ∈ N ≥ {Ω}.
1. If e < Ω, then Refuter wins within e+1 rounds by the least-eqlevel strategy.
2. Prover can guarantee that she will not lose within e rounds.

Bisimulation Equivalence of First-Order Grammars 237

We note that ↔k is decidable for each fixed k, and there is an algorithm that,
given G, T0, U0, outputs EqLv(T0, U0) if T0 ⇒↔ U0, and does not halt if T0 ↔ U0.

Prover’s Additional Tool. A challenge is to add sound possibilities to
Prover to enable her to force her win in finite time if T0 ↔ U0. We allow Prover
to claim a win when she can (soundly) demonstrate, in some (i+1)-th round,
that either Refuter has not used the least-eqlevel strategy or T0 ↔ U0. This
new abstract rule does not change Prop. 3. A simple instance is a repeat : if
{Ti, Ui} = {Tj, Uj} for some j < i, then Prover can claim her win.

We further assume that Prover wins when a repeat appears, and we look at
more involved options for Prover, enabling to “balance”, i.e., to replace T ∈

i , U
∈
i

with Ti+1, Ui+1 that are “closer” to each other, while not changing the eq-level
if Refuter uses the least eq-level strategy. Before formulating the second version
of the game, we clarify the crucial underlying facts. First a trivial one:

Proposition 4. Assume an LTS L. If EqLv(s, t)=k and EqLv(s, s∈) > k, then
EqLv(s∈, t) = k (since s∈ ↔k s ↔k t and s∈ ↔k+1 s ⇒↔k+1 t).

Congruence, the Crux of Balancing. Assume a grammar G = (N , ε,R).
We put δ ↔k δ∈ (for two substitutions δ, δ∈) if δ(xi) ↔k δ∈(xi) for each xi ∈ Var,
and we define EqLv(δ, δ∈) = max { k ∈ N ≥ {Ω} | δ ↔k δ∈}. We now note that
↔k and ↔ are congruences (which is obvious, e.g. by induction on k):

Proposition 5.
(1) If E ↔k F , then Eδ ↔k Fδ; hence EqLv(E,F) → EqLv(Eδ, Fδ).
(2) If δ ↔k δ∈, then Eδ ↔k Eδ∈; hence EqLv(δ, δ∈) → EqLv(Eδ,Eδ∈).

We illustrate how Prover can use the above facts. Suppose the (i+1)-th round
starts with (Ti, Ui) and Refuter chooses (T ∈

i , U
∈
i) in Bk (we refer to the notation

in the game definition). We thus have Ti
u1−≡ T ∈

i , Ui
u2−≡ U ∈

i in Lr
G , for some

u1, u2 ∈ R∗, where |u1| = |u2| = k (and act(u1) = act(u2)). Suppose that

Ti
u1−≡ T ∈

i is not a shortest path from Ti to T ∈
i (in Lr

G). Then we have Ti
v1−≡ T ∈

i

for some v1 ∈ R∗ where |v1| < |u1|. Since {(Ti, Ui)} � B1 � B2 � · · · � Bk, we

must have Ui
v2−≡ U ∈∈ for some U ∈∈ and some v2 ∈ R∗ such that |v1| = |v2|

(and act(v1) = act(v2)) and (T ∈
i , U

∈∈) ∈ ⋃k−1
j=0 Bj . (Hence EqLv(T ∈

i , U
∈∈) >

EqLv(T ∈
i , U

∈
i) when T ∈

i ⇒↔ U ∈
i and Refuter uses the least-eqlevel strategy.)

Therefore Refuter “cannot protest” when Prover puts (Ti+1, Ui+1) = (U ∈∈, U ∈
i)

instead of (Ti+1, Ui+1) = (T ∈
i , U

∈
i), since EqLv(T ∈

i , U
∈
i) = EqLv(U ∈∈, U ∈

i) if Refuter
uses the least-eqlevel strategy. We note that U ∈∈, U ∈

i are close to each other in
the sense that they are both reachable within k steps from one “pivot term”,
namely Ui. We have Ui �k (U ∈∈, U ∈

i), where generally we define

W �k (T, U) ∅df W
v1−≡ T,W

v2−≡ U for some v1, v2 of length at most k. (1)

We give Prover also other possibilities how to replace T ∈
i or U ∈

i :

Prover-Refuter Game (Second Version). The only change w.r.t. the first
game-version is in the point 3:

238 P. Jančar

3. Prover creates (Ti+1, Ui+1) for the start of the (i+2)-th round:

Either she puts (Ti+1, Ui+1) = (T ∈
i , U

∈
i), thus making no change, or she can

use one of the following options if available:

i/ Left-balancing : Prover presents T ∈
i as Gδ for some finite term G and

some substitution δ, where for each V ∈ range(δ) she finds V ∈ such

that (V, V ∈) ∈ ⋃k−1
j=0 Bj. She defines δ∈ with supp(δ∈) = supp(δ) as

follows: if δ(xν) = V , then δ∈(xν) = V ∈, where (V, V ∈) is an above found
pair. Finally she puts (Ti+1, Ui+1) = (Gδ∈, U ∈

i).

ii/ Right-balancing: Symmetrically, Prover presents U ∈
i as Gδ, finds all ap-

propriate pairs (V ∈, V) in
⋃k−1

j=0 Bj, and puts (Ti+1, Ui+1) = (T ∈
i , Gδ∈).

Our previous illustration was a special case: we had T ∈
i = Gδ where G = x1,

supp(δ) = {x1} and δ(x1) = T ∈
i , and we replaced Gδ with Gδ∈ where δ∈(x1) =

U ∈∈ (and thus (δ(xi), δ
∈(xi)) ∈

⋃k−1
j=0 Bj for all xi ∈ supp(δ) = supp(δ∈) = {x1}).

We can easily verify that Prop. 3 holds also for the second game-version. The
crucial point is that EqLv(Ti+1, Ui+1) = EqLv(T ∈

i , U
∈
i) when Refuter uses the

least-eqlevel strategy (this is based on Prop. 5(2) and Prop. 4).
When doing a left-balancing, replacing (T ∈

i , U
∈
i) = (Gδ,U ∈

i) with the bal-result
(Ti+1, Ui+1) = (Gδ∈, U ∈

i), we might not have Ui �k (Ti+1, Ui+1), but we surely

have Ui
L: d� k (Ti+1, Ui+1), for d = Height(G), where we generally define

W
L: d�k (T, U) ∅df there is a finite term G and δ such that (2)

T = Gδ, Height(G) → d, and U and all V ∈ range(δ) are reachable from W
within k steps; here L signals that we allow a special head, of height at most d,

in the left-hand component. Symmetrically we define W
R: d� k (T, U), where R

refers to the right-hand component.

Two Remaining Steps in the Proof of Theorem 1. We recall that a
play gives rise to a sequence (T0, U0), (T1, U1), (T2, U2), . . . of pairs of terms that
are the starting pairs for the rounds 1, 2, 3, . . . , respectively. We show that in the
case T0 ↔ U0 Prover can force a certain potentially infinite (n, g)-subsequence of
(T1, U1), (T2, U2), . . . (by Lemma 6), and then we bound the lengths of eqlevel-
decreasing (n, g)-sequences, which is used in the final game-version.

Eqlevel-decreasing Sequences, and (n, g)-sequences. A sequence
(V1,W1), (V2,W2), (V3,W3), . . . is eqlevel-decreasing if Ω > EqLv(V1,W1) >
EqLv(V2,W2) > · · · . In this case the sequence must be finite, and our require-
ment V1 ⇒↔ W1 implies that its length is bounded by 1+EqLv(V1,W1).

Given a pair (n, g) where n ∈ N and g : N+ ≡ N+ is a nondecreasing function
(where N+ = {1, 2, . . .}), a (finite or infinite) sequence of pairs of terms is an
(n, g)-sequence if it can be presented as (E1δ, F1δ), (E2δ, F2δ), (E3δ, F3δ), . . .
for a substitution δ with |supp(δ)| → n, where PrSize(Ej , Fj) → g(j) for j =
1, 2, (We put PrSize(E,F) = PrSize(E) + PrSize(F), say.) Thus the
growth of the (regular) “head-terms” Ej , Fj is bounded by the function g, while
at most n fixed “tail-subterms” (of unrestricted size) suffice for this presentation.

Bisimulation Equivalence of First-Order Grammars 239

Lemma 6. There are n, g determined by (in fact, computable from) grammar
G such that Prover can force for any initial T0 ↔ U0 that she either wins or the
sequence (T1, U1), (T2, U2), . . . has an infinite (n, g)-subsequence.

Proof. Before showing a strategy of Prover that proves the claim, we introduce
some technical notions related to a given grammar G = (N , ε,R); in our nota-
tion we assume that arity(A) = m for all A ∈ N .

If A(x1, . . . , xm)
w−≡ xi in Lr

G , then we call w ∈ R∗ an (A, i)-sink word. We
assume that for each pair A ∈ N , i ∈ [1,m] there is a fixed shortest (A, i)-sink
word w[A,i], and we put M0 = 1 + max { |w[A,i]|;A ∈ N , i ∈ [1,m] }. The words
w[A,i] can be found and (exponentially bounded) M0 can be computed by stan-
dard dynamic programming approach; the grammar can be easily transformed
to the required form if there are no (A, i)-sink words for some A, i.

A path V
u−≡ in Lr

G is root-performable, if A(x1, . . . , xm)
u−≡ where A =

root(V) (in which case u is enabled by any term with the root A). A path

V
w−≡ in Lr

G is a non-sink segment, a non-sink for short, if |w| = M0 and V
w−≡

is root-performable. (For each root-successor V ∈ in V we thus have V
v−≡ V ∈ for

some v shorter than w.)

A path T
u−≡ T ∈ in Lr

G is sinking if it contains no non-sink, i.e., for any
partition u = u1u2u3 with |u2| = M0 we have u2 = u∈

2u
∈∈
2 (u∈

2 ⇒= Σ) where

T
u1−≡ V

u′
2−≡ V ∈ u′′

2 u3−≡ T ∈ and V ∈ is a root-successor in V . Hence if T
u−≡ T ∈ is

sinking, then it can be written T
u1−≡ V

u2−≡ T ∈ where |u2| < M0 and V is a
subterm of T in depth at least |u| ÷M0. (By ÷ we denote integer division.)

Finally we consider a shortest path T
u−≡ T ∈ from T to T ∈ that is not sinking.

It can be written T
u1−≡ V

u2−≡ V ∈ u3−≡ T ∈ where V
u2−≡ V ∈ is the last non-

sink. Since V
u2u3−≡ T ∈ is root-performable (if a prefix of u2u3 exposes a root-

successor in V , then V
u2u3−≡ T ∈ is not a shortest path from V to T ∈, which

contradicts the assumption that T
u−≡ T ∈ is shortest), for A = root(V) we

have A(x1, . . . , xm)
u2u3−≡ G (and thus V = (A(x1, . . . , xm))δ

u2u3−≡ T ∈ = Gδ where
range(δ) consists of the root-successors in V), and this path is sinking after
the first step (since we took the last non-sink). Obviously, Height(G) → M ∈

0,
for some M ∈

0 computable from G. We now take M1 such that (M1 ÷M0) > M ∈
0,

and show Prover’s strategy in the (i+1)-th round, starting with Ti ↔ Ui:

i/ Prover chooses k = M1 and {(Ti, Ui)} = B0 � B1 � B2 � . . . � BM1 where
Bj ⊆↔ (for all j ∈ [1,M1]). Refuter chooses (T ∈

i , U
∈
i) and we get the paths

Ti
u1−≡ T ∈

i , Ui
u2−≡ U ∈

i in Lr
G (where |u1| = |u2| = M1, act(u1) = act(u2)).

ii/ If Ti
u1−≡ T ∈

i is not shortest or contains a non-sink, and Prover did not do a
right-balancing in the (previous) i-th round, then she makes a left-balancing,
replacing (T ∈

i , U
∈
i) = (Gδ,U ∈

i) with (Ti+1, Ui+1) = (Gδ∈, U ∈
i), for some head

G with the smallest possible height. (We know that Height(G) → M ∈
0.)

iii/ If ii/ did not apply, and Ui
u2−≡ U ∈

i is not shortest or contains a non-sink,
and Prover did not do a left-balancing in the i-th round, then she makes a
right-balancing, symmetrically to ii/.

iv/ If none of ii/, iii/ applied, Prover puts (Ti+1, Ui+1) = (T ∈
i , U

∈
i).

240 P. Jančar

We recall that each bal-result (Ti+1, Ui+1) has its pivot W , where W
L:M ′

0� M1

(Ti+1, Ui+1) or W
R:M ′

0� M1 (Ti+1, Ui+1) (recall the definition (2)).
If Prover balances in the (i+1)-th round, e.g., she does a left-balancing with

pivot W , hence W
L:M ′

0� M1 (Ti+1, Ui+1) = (Gδ∈, Ui+1), and she cannot balance

in the (i+2)-th round, since the respective path Ti+1 = Gδ∈ u−≡ T ∈
i+1 is sinking

(and shortest), then W �2M1 (Ti+2, Ui+2) (we have chosen M1 large enough so

that the sinking path Gδ∈ u−≡ T ∈
i+1 “erases” the special head G and exposes

some δ∈(xν) that is reachable from W within M1 steps).
We now explore an infinite play from T0 ↔ U0 where Prover uses the above

strategy. There are infinitely many balancings; otherwise from some round on we
would have constant sinking on both sides, which necessarily leads to a repeat
since our terms are regular. We denote the respective pivots W1,W2, . . . , and

easily verify that for each j we have a path Wj
wj−≡ Wj+1 (in Lr

G) of the form

Wj
v1−≡ V

v2−≡ V ∈ v3−≡ Wj+1 where |v1|, |v3| are bounded (surely by 2M1)
and V ∈ is a subterm of V ; though v2 can be sometimes long, we can assume
it to be sinking. Suppose that there is a term V such that the “pivot path”
W1

w1−≡ W2
w2−≡ W3

w3−≡ · · · visits subterms of V infinitely often. Then the pivots
Wj are infinitely often boundedly reachable from a subterm of V , as follows from

the above form of paths Wj
wj−≡ Wj+1. In this case one pivot reappears infinitely

often but there are boundedly many bal-results for one pivot — a repeat.

In some segment Wj
wj−≡ Wj+1 we thus have V , hence Wj

w′
j−≡ V

w′′
j−≡ Wj+1,

such that its subterms are never visited by the path after; this implies that the

infinite path V
w′′

j−≡wj+1−≡wj+2−≡ · · · is root-performable; for A = root(V) we have

A(x1, . . . , xm)
w′′

j−≡ G1
wj+1−≡ G2

wj+2−≡ G3
wj+3−≡ · · · . Hence V = (A(x1, . . . , xm))δ∈

and Wj+ν = Gνδ
∈ for δ∈ whose range consists of the root-successors in V . We

note that Height(Gν) can only boundedly grow (with growing π).
We are interested in the bal-results related to G1δ

∈, G2δ
∈, G3δ

∈, Since the

bal-result (T, U) related to Gjδ
∈ satisfies Gjδ

∈ L:M ′
0� M1 (T, U) or Gjδ

∈ R:M ′
0� M1

(T, U) (recall (2)), it is useful to rather write V = Fδ for a finite F in
which each branch has length M1 if it is not a complete branch of V , and
where range(δ∈) consists of the subterms of V with depth M1. Then we
rewrite G1δ

∈, G2δ
∈, G3δ

∈, . . . as H1δ,H2δ,H3δ, . . . (where each occurrence of
xi ∈ supp(δ) in Hν has depth at least M1), and we now easily derive that the
respective bal-results can be written as (E1δ, F1δ), (E2δ, F2δ), (E3δ, F3δ), . . . ,
namely as an (n, g)-sequence for n, g determined by the grammar G. ⊇�

Lemma 9 bounds the lengths of eqlevel-decreasing (n, g)-sequences. Before its
proof we show some useful facts and convenient notions, assuming a grammar
G = (N , ε,R). We first recall that EqLv(E,F) → EqLv(Eδ, Fδ), and note:

Proposition 7. If EqLv(E,F) = k < e = EqLv(Eδ, Fδ) (where e ∈ N ≥ {Ω})
then there are xi ∈ supp(δ), H ⇒= xi, and w ∈ ε∗, where |w| → k, such that

E
w−≡ xi, F

w−≡ H or E
w−≡ H, F

w−≡ xi, and δ(xi) ↔e−k Hδ.

Bisimulation Equivalence of First-Order Grammars 241

Proof. We take {(Eδ, Fδ)} = B0�B1� · · ·�Bk+1, so that MinEqL(Bj) = e−j.
When trying to make {(E,F)} = B∈

0 � B∈
1 � · · ·� B∈

k+1, by replacing δ with the
empty-support substitution in the pairs in Bj , we must get (xi, H), H ⇒= xi,

somewhere in
⋃k

j=0 B∈
j , otherwise we proved E ↔k+1 F . ⊇�

By {(xi, H)} we denote the substitution that (only) replaces xi with H . Hence
{(xi, H)}δ is the substitution arising from δ by replacing δ(xi) with Hδ. We note
that the (“limit” regular) term H ∈ = H{(xi, H)}{(xi, H)} · · · is well defined; a
graph presentation of H ∈ arises from a graph of H by redirecting each arc leading
to xi (if there is any) towards the root.

By δ[−xi] we denote the substitution arising from δ by removing xi from the
support (if it is there), i.e., δ[−xi](xi) = xi and δ[−xi](xj) = δ(xj) for j ⇒= i.
Since xi does not occur in the above H ∈, we have H ∈δ = H ∈δ[−xi]. Prop. 5(2)
can be repeatedly used to show the following fact, referring to the above H ∈:

Proposition 8. If δ(xi) ↔k Hδ and H ⇒= xi, then δ ↔k {(xi, H
∈)}δ[−xi].

For any B ⊆ TermsN ×TermsN we put MaxEqL(B) = max{EqLv(E,F) |
(E,F) ∈ B}, stipulating max ◦ = 0. (MinEqL(B) has been already defined.) For
any b ∈ N, we put SIZE⊆b = {(E,F) | PrSize(E,F) → b }. For each b ∈ N we
define the following finite number: MELb = MaxEqL(SIZE⊆b ⊂ ⇒↔).

For any n ∈ N and g : N+ ≡ N+ we define πn,g ∈ N by the following recursive
definition: π0,g = 1 + MELg(1), πn+1,g = 1 + MELg(1) + πn,g′ where

g∈(j) = g(1 +MELg(1) + j) + 2 · (g(1) +MELg(1) ·StepInc) for all j ∈ N+. (3)

StepInc (step-increase) is the maximal size of the right-hand sides of the rules

of G; hence F
w−≡ G implies PrSize(G) → PrSize(F) + |w| · StepInc.

Lemma 9. Any eqlevel-decreasing (n, g)-sequence has length at most πn,g.

Proof. By induction on n. Assume an eqlevel-decreasing (n, g)-sequence
(E1δ, F1δ), (E2δ, F2δ), . . . , (Eνδ, Fνδ); recall that we also require E1δ ⇒↔ F1δ.
Hence E1 ⇒↔ F1, and we have EqLv(E1, F1) → MELg(1). If n = 0, then
(E1, F1) = (E1δ, F1δ), and thus π → 1+EqLv(E1, F1) → 1+MELg(1) = π0,g.

If EqLv(E1, F1) = k < e = EqLv(E1δ, F1δ) then δ ↔e−k {(xi, H
∈)}δ[−xi] for

some xi ∈ supp(δ) and some H ∈ with PrSize(H ∈) → g(1) +MELg(1) ·StepInc;
this can be easily derived from Prop. 7 and 8.

We now put (shift) s = 1+MELg(1); hence s > EqLv(E1, F1) = k, and
thus EqLv(Es+1δ, Fs+1δ) < e−k. For j = 1, 2, . . . , π − s we define (E∈

j , F
∈
j) =

(Es+j{(xi, H
∈)}, Fs+j{(xi, H

∈)}). We thus have EqLv(E∈
jδ[−xi], F

∈
jδ[−xi]) =

EqLv(Es+jδ, Fs+jδ) (by Prop. 4). Hence π − s → πn−1,g′ by the induction hy-
pothesis, for g∈ defined by (3). ⊇�

If T0 ↔ U0, then Prover can force a potentially infinite (n, g)-sequence for cer-
tain n, g. She could claim a win after creating an (n, g)-sequence longer than πn,g,
if she could demonstrate πn,g. Inspecting the above, we can verify that for com-
puting πn,g for concrete n, g it suffices to know SIZE⊆B ⊂ ⇒↔ for a sufficiently large

242 P. Jančar

B ∈ N. The final idea is that Prover guesses B and C ⊆ SIZE⊆B, demonstrating
the finite eq-levels of all pairs in C. She claims that Rest = SIZE⊆B∅C is a subset
of ↔, and she computes π Cn,g by the recursive procedure for πn,g above, but consis-
tently with her choice of C and the claim that Rest ⊆↔. Mimicking the proof of
Lemma 9, we derive the next lemma, which leads to the final game-version.

Lemma 10. Any eqlevel-decreasing (n, g)-sequence starting with a pair whose
eq-level is less than MinEqL(Rest) has length at most π Cn,g.

Prover-Refuter Game (Third Version). We separate G from the initial
pair, now denoted E0, F0, to stress that the initial phase depends on G only.

i) A grammar G = (N , ε,R) is given.
ii) Prover provides some finite set C ⊆ TermsN × TermsN , some n ∈ N, a

sequence of increasing values denoted g(1), g(2), . . . , g(i) for some i ∈ N,
and some B ∈ N such that C ⊆ SIZE⊆B. For each pair (E,F) ∈ C Prover
provides e ∈ N and demonstrates that EqLv(E,F) = e (recall that ↔k is
decidable for each k ∈ N); thus C ⊆ ⇒↔. Prover now computes π Cn,g (which
fails when B is not sufficiently large).

iii) An initial pair (E0, F0) is given.
iv) For Rest = SIZE⊆B ∅ C, Refuter chooses (T0, U0) from {(E0, F0)} ≥Rest

(with the least eq-level when using the least-eqlevel strategy).
v) Now a play of the second game-version starts with (T0, U0). A new feature

is that Prover can claim her win when she shows that (T1, U1), (T2, U2), . . .
contains an (n, g)-subsequence that is longer than π Cn,g.

The least-eqlevel strategy guarantees Refuter’s win for E0 ⇒↔ F0 (by Lemma 10).
On the other hand, Prover can correctly guess C = SIZE⊆B ⊂ ⇒↔ for B that is
sufficient for computing (the real) πn,g (related to n, g that are guaranteed for G
by Lemma 6), and she can force her win when E0 ↔ F0.

Since a winning strategy of Prover (for any G, E0, F0 where E0 ↔ F0) is finitely
presentable and effectively verifiable, a proof of Theorem 1 is now clear.

Concluding Remarks. Further work is needed to fully understand the dis-
cussed problems. Even the case of BPA processes, generated by real-time PDA
with a single control-state, is not quite clear. Here the bisimilarity problem is
EXPTIME-hard [12] and in 2-EXPTIME [3] (proven explicitly in [10]); for the
subclass of normed BPA the problem is polynomial [7] (see [5] for the best pub-
lished upper bound). Another issue is the precise decidability border. This was
also studied in [8]; in our context, allowing (nondeterministic) popping Σ-rules

A(x1, . . . , xm)
λ−≡ xi in FO-grammars leads to undecidability of bisimilarity.

This aspect has been very recently refined, using branching bisimilarity [19]. Y.
Fu and Q. Yin [6] also announced a result that would translate in our setting as
the decidability of branching bisimilarity of FO-grammars with popping Σ-rules
(while “pushing” Σ-rules lead to undecidability by adapting the constructions
in [8]). Such result should be also achievable by the following adaptation of our
Prover-Refuter game: Prover is required to tell, whenever she presents a new
(sub)term V , if V is equivalent with some root-successor V ∈ in V , and she must

Bisimulation Equivalence of First-Order Grammars 243

also extend the respective sets Bj with such claimed pairs (V, V ∈). Her later
choices must be consistent, which essentially allows us to proceed analogously
to the case studied in this paper.

References

1. Baeten, J., Bergstra, J., Klop, J.: Decidability of bisimulation equivalence for pro-
cesses generating context-free languages. J. ACM 40(3), 653–682 (1993)

2. Benedikt, M., Göller, S., Kiefer, S., Murawski, A.S.: Bisimilarity of pushdown au-
tomata is nonelementary. In: Proc. LICS 2013, pp. 488–498. IEEE Computer So-
ciety Press (2013)

3. Burkart, O., Caucal, D., Steffen, B.: An elementary bisimulation decision procedure
for arbitrary context-free processes. In: Hájek, P., Wiedermann, J. (eds.) MFCS
1995. LNCS, vol. 969, pp. 423–433. Springer, Heidelberg (1995)

4. Courcelle, B.: Recursive applicative program schemes. In: Handbook of Theoretical
Computer Science, vol. B, pp. 459–492. Elsevier, MIT Press (1990)

5. Czerwiński, W., Lasota, S.: Fast equivalence-checking for normed context-free pro-
cesses. In: Proc. FSTTCS 2010. LIPIcs, vol. 8. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik (2010)

6. Fu, Y., Yin, Q.: Dividing line between decidable PDA’s and undecidable ones.
CoRR abs/1404.7015 (2014)

7. Hirshfeld, Y., Jerrum, M., Moller, F.: A polynomial algorithm for deciding bisimi-
larity of normed context-free processes. Theor. Comput. Sci. 158, 143–159 (1996)

8. Jančar, P., Srba, J.: Undecidability of bisimilarity by Defender’s forcing. J.
ACM 55(1) (2008)

9. Jančar, P.: Decidability of DPDA language equivalence via first-order grammars.
In: Proc. LICS 2012, pp. 415–424. IEEE Computer Society (2012)

10. Jančar, P.: Bisimilarity on basic process algebra is in 2-ExpTime (an explicit proof).
Logical Methods in Computer Science 9(1) (2013)

11. Jančar, P.: Equivalences of pushdown systems are hard. In: Muscholl, A. (ed.)
FOSSACS 2014. LNCS, vol. 8412, pp. 1–28. Springer, Heidelberg (2014)

12. Kiefer, S.: BPA bisimilarity is EXPTIME-hard. Inf. Proc. Letters 113(4), 101–106
(2013)

13. Schmitz, S.:Complexity hierarchies beyond elementary.CoRRabs/1312.5686 (2013)
14. Sénizergues, G.: L(A)=L(B)? Decidability results from complete formal systems.

Theor. Comput. Sci. 251(1–2), 1–166 (2001)
15. Sénizergues, G.: The bisimulation problem for equational graphs of finite out-

degree. SIAM J.Comput. 34(5), 1025–1106 (2005), presented at FOCS 1998
16. Srba, J.: Roadmap of infinite results. In: Current Trends In Theoretical Computer

Science, The Challenge of the New Century, vol. 2, pp. 337–350. World Scientific
Publishing Co. (2004), http://users-cs.au.dk/srba/roadmap/

17. Stirling, C.: Deciding DPDA equivalence is primitive recursive. In: Widmayer, P.,
Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP
2002. LNCS, vol. 2380, pp. 821–832. Springer, Heidelberg (2002)

18. Stirling, C.: Decidability of bisimulation equivalence for pushdown processes
(2000), available at the author’s web-page

19. Yin, Q., Fu, Y., He, C., Huang, M., Tao, X.: Branching bisimilarity checking for
PRS. CoRR abs/1402.0050 (2014), Accepted to ICALP 2014

http://users-cs.au.dk/srba/roadmap/

Context Unification is in PSPACEφ

Artur Jeż1,2

1 Max Planck Institute für Informatik, Saarbrücken, Germany
2 Institute of Computer Science, University of Wrocfflaw, Wrocfflaw, Poland

Abstract. Contexts are terms with one ‘hole’, i.e. a place in which we
can substitute an argument. In context unification we are given an equa-
tion over terms with variables representing contexts and ask about the
satisfiability of this equation. Context unification at the same time is
subsumed by a second-order unification, which is undecidable, and sub-
sumes satisfiability of word equations, which is in PSPACE. We show
that context unification is in PSPACE, so as word equations. For both
problems NP is still the best known lower-bound.

This result is obtained by an extension of the recompression tech-
nique, recently developed by the author and used in particular to obtain
a new PSPACE algorithm for satisfiability of word equations, to context
unification. The recompression is based on applying simple compression
rules (replacing pairs of neighbouring function symbols), which are (con-
ceptually) applied on the solution of the context equation and modifying
the equation in a way so that such compression steps can be performed
directly on the equation, without the knowledge of the actual solution.

Keywords: Context unification; Second order unification; Term
rewriting.

1 Introduction

Context Unification. In context unification we solve equations over context
terms, let us recall the appropriate notions: A ground context is a ground term
(i.e. function symbols have fixed arity and a symbol of arity k has exactly k
children) with exactly one occurrence of a special constant Σ (a hole), which
represents a missing argument. Ground contexts can be applied to ground terms,
which results in a replacement of the hole by the given ground term; similarly we
define a composition of two ground contexts, which is again a ground context.
We build context terms using using function symbols, variables (which shall de-
note ground terms) and context variables (which shall denote ground contexts).
A context equation is an equation between two such terms. A solution of a con-
text equation assigns to each context variable a ground context (over the given
input signature) and to each variable a ground term (over the same signature)
such that both sides of the equation evaluate to the same (ground) term. The

ω Supported by the Humboldt Foundation Postdoctoral grant. The full version of this
paper is available at http://arxiv.org/abs/1310.4367.

J. Esparza et al. (Eds.): ICALP 2014, Part II, LNCS 8573, pp. 244–255, 2014.
c∗ Springer-Verlag Berlin Heidelberg 2014

http://arxiv.org/abs/1310.4367

Context Unification is in PSPACE 245

corresponding decision problem is known as the context unification. It was in-
troduced by Comon [1,2] and independently by Schmidt-Schauß [10] and found
many applications in diverse fields.

The problem gained considerable attention and there was a large body of
work [2,3,5,6,7,11,12,13] focused on context unification and several partial re-
sults were obtained. This popularity is fueled by the fact that this is the only
known natural problem which is on one hand subsumed by second order uni-
fication, which is undecidable in many restricted cases, and subsumes satisfia-
bility of word equations, which is decidable (in PSPACE). To be more precise:
in second-order unification the argument of the second-order variable X can be
used unbounded number of times in the substitution term for X . Hence context
unification imposes a semantic restriction on the substitutions, which makes the
proofs of undecidability of second order unification inapplicable. On the other
hand, when the underlying signature contains only unary functions and con-
stants, the context equation becomes a word equation. Whether algorithms for
word equations extend to context unification, remained an open problem.

In this paper we show that context unification can be nondeterministically
decided in polynomial space. The presented algorithm ContextEqSat is an exten-
sion of the recompression-based algorithm for word equations recently developed
by the author [4].

Theorem 1. ContextEqSat non-deterministically verifies the satisfiability of a
context equation. It stores equation of length O(nk) and uses additional O(n2k2)
memory, where n is the size of the input equation while k is the maximal arity
of symbols used in the equation.

Corollary 1. Context unification is in PSPACE.

The best known lower bound for context unification is NP, which holds already
for systems of word equations over one-letter signature.

Recompression. The connection between compression and unification was first
observed by Plandowski and Rytter [9], who showed that each length-minimal
solution (of size N) of the word equation (of size n) has a poly(n, logN) de-
scription (in terms of LZ77); this work gave no upper-bound on N , though. This
connection was further exploited by Plandowski [8], whose PSPACE algorithm
works on compressed representation of the word equation (and uses some finely
tuned word factorisations to process such an equation).

The recompression method, which was introduced recently by the author [4],
further exploits the connection between compression and word equations. It em-
ploys simple compression steps to compress a solution of a word equation. The
crucial trick is that those compression steps are performed directly on the equa-
tion, without unfolding the implicit word. In order to make such compression
steps applicable, the variables in the word equation are modified a bit. The ad-
vantage over the earlier solution by Plandowski is the apparent simplicity of
both the compression steps and the modifications applied to the variables.

246 A. Jeż

It is known that compression-based techniques are applicable also to context
unification [14]. This paper extends the recompression method to terms in full
generality. The first step is to devise a set of operations that guarantee a reduc-
tion of the term size by a constant factor. Since typically in a term at least half
of symbols’ occurrences are at leaves, one of our rules ‘absorbs’ constants into
their parents: we replace a term f(t1, . . . , ti−1, c, ti+1, . . . , tm) (where c is a con-
stant) with f ′(t1, . . . , ti−1, ti+1, . . . , tm), where f ′ is a fresh function symbol (i.e.
not in signature ε). Applying such compression rule to every constant present
at the beginning of the phase reduces the size of the term by a constant factor,
assuming that there are no long ‘chains’, i.e. sequences of function symbols of
arity 1. However, chains are very similar to strings and so it is natural to take
the (known) compression rules used by string recompression [4]. There are two
such rules: one replaces maximal chains aΣ with a single fresh symbol aΣ, the
other replaces a chain ab, where a ∈= b, with a fresh letter c.

It can be shown that such compression rules reduce the size of the tree by
a constant factor. It remains to show, how to modify the equation so that the
compression of the solution of the equation is performed directly on the equation.
The modification boils down to replacement of variable X with a(X) or X(b),
where a is the label of the topmost node in substitution for X and b is the one
above the Σ (i.e. above the ‘hole’).

All our operations do not introduce new context variables, though they can
introduce new variables (i.e. ones denoting closed terms). Still it can be shown
that at any time there are at most kn variables, where k is the maximal arity
of symbols in the input equation. The variable replacements can introduce O(1)
new symbols per variable and context variable, thus O(kn) new symbols are
introduced in one phase. On the other hand, the replacement rules guarantee that
the size of the context equation is decreased by a constant factor (for appropriate
nondeterministic choices). Thus the size of the equation remains O(nk).

2 Labelled Trees and Their Compression

Labelled Trees. We deal with rooted, ordered trees. Nodes are labelled with
a ranked alphabet ε, i.e. each a ≡ ε has a fixed arity ar(f). A tree is well-formed
if a node labelled with f has exactly ar(f) children. Unless explicitly written,
we consider well-formed trees (i.e. ground terms over ε).

A set of labels ε may be infinite and it is growing during the run of our
algorithm. Without loss of generality, if ε contains a label of arity k it also
contains at least one label of arity k′, for each k′ ⊆ k. Initially ε may be
restricted to symbols used in the equation (and perhaps one additional binary
symbol). We call the labels from ε letters, letters of arity 1 unary letters and
letters of arity 0 constants. Ω (perhaps with some subscripts) is used for some
subalphabet of ε, say, letters used in some particular tree or letters of arity at
least 1, etc.

We replace with new letters fragments of a tree that are not necessarily well-
formed. Thus a subtree is not necessarily well-formed, but in such a case we

Context Unification is in PSPACE 247

explicitly mention it. A pattern is a tree (perhaps not well-formed) in which
a node labelled with f has at most ar(f) children; since we imagine a pattern as
a part of a term with some of the subterms removed, the 0 ⊆ m ⊆ ar(f) children
of f in the pattern are numbered 1 ⊆ i1 < · · · < im ⊆ ar(f) to denote which
children of f are those in a ‘real term’. A subpattern of a tree t is any subtree
of t which is a pattern; we often consider individual occurrences of subpatterns
of a tree t within t. In this terminology, our algorithm replaces occurrences of
subpattern p of t in t by pattern p′ (the subtrees rooted in children which are
omitted in p are attached in p′ in the same order, details are given later).

A chain is a pattern that consists only of unary letters. We consider 2-chains,
so consisting only of two unary letters (usually different) and a-chains, which
consists solely of letters a. We treat chains as strings and write them in the
string notation and ‘concatenate’ them: for two chains s and s′ the ss′ denotes
the chain obtained by attaching the top node in s to the bottom one in s. A
chain t′ that is a subpattern of t is a chain subpattern of t, an occurrence of
a chain subpattern aΣ is a-maximal if it cannot be extended by a up nor down.

Local Compression of Trees. We perform three types of compressions on a
tree t, all of them replace subpatterns by a single letter:

a-chain Compression. For a unary letter a we replace each a-maximal chain
subpattern aΣ (where δ > 1) by a fresh unary letter aΣ (making the fa-
ther/child of aΣ the father/child of aΣ).

a, b Pair Compression. For two unary letters a and b we replace each 2-chain
subpattern ab with a fresh unary letter c.

(f, i, c) Leaf Compression. For a constant c and letter f of arity ar(f) =
m ↔ i ↔ 1, we replace each subtree f(t1, . . . , ti−1, c, ti+1, . . . , tm) with
f ′(t1, . . . , ti−1, ti+1, . . . , tm) where f ′ is a fresh letter of arity m− 1.

To make the compression effective, we apply several compression steps in
parallel: consider the a-maximal chain compression. As occurrences of a-maximal
and b-maximal chain subpatterns do not overlap (it does not matter whether
a = b or not), we can perform a-maximal chain compression for a ≡ Ω1 in
parallel (as long as the letters that are used to replace the chains are not taken
from Ω1). We call the resulting procedure TreeChainComp(Ω1, t) or simply chain
compression, when Ω1 and t are clear from the context.

Algorithm 1. TreeLeafComp(Ω≥1, Ω0, t):

1: for f ◦ ω⊥1, 0 < i1 < i2 < · · · < iγ ≥ ar(f) =: m, (a1, a2, . . . , aγ) ◦ ω γ
0 do

2: replace each f(t1, . . . , tm) by f ∗(t1, . . . , ti1−1, ti1+1, . . . , tiω−1, tiω+1, . . . , tm)
where tij = aj for 1 ≥ j ≥ λ and ti /◦ ω0 for i ∨◦ {i1, . . . , iγ}

For Ω≥1 and Ω0 that consist of letters of arity at least 1 and 0, respec-
tively, we would like to perform all possible (f, i, a) leaf compressions for f ≡
Ω≥1, i ⊆ ar(f) and a ≡ Ω0, at the same time. To avoid the ambiguity we
introduce the (f, i1, a1, i2, a2, . . . , iΣ, aΣ) leaf compression, which replaces each

248 A. Jeż

subtree f(t1, . . . , tm) where tiω = aΣ and ti /≡ Ω0 for i /≡ {i1, . . . , iΣ} with
f ′(t1, . . . , ti1−1, ti1+1, . . . , tiω−1, tiω+1, . . . , tm). Note that in this way for a given
node there is exactly one (f, i1, a1, i2, a2, . . . , iΣ, aΣ) compression that is applica-
ble to this node, which allows making several such compressions in parallel (as
long as we do not try to compress also the letters introduced during the com-
pression). When Ω≥1, Ω0, and t are clear from the context, we simply call this
operation leaf compression or TreeLeafComp.

Algorithm 2. TreeComp(t)

1: ω ∈ unary letters in t
2: t ∈ TreeChainComp(ω, t)
3: ω ∈ unary letters in t
4: guess partition of ω into ω1 ·∧ω2

5: t ∈ TreePartitionComp(ω1, ω2, t)
6: ω0 ∈ constants in t
7: ω⊥1 ∈ letters of arity ∅ 1 in t
8: t ∈ TreeLeafComp(ω⊥1, ω0, t)

In case of pair compression we cannot
make parallel compressions, as 2-chains may
overlap. However, parallel a, b pair compres-
sions are possible when we take a and b from
disjoint subalphabets Ω1 and Ω2. Those sub-
alphabets are usually a partition of letters
present in some tree and so we call them a
partition, even if we do not explicitly say of
what. In this case for each unary letter we
can tell whether it should be the parent node or the child node in the compres-
sion step and the result does not depend on the order of the considered pairs,
as long as new letters are outside Ω1 ⇔ Ω2. The obtained procedure is called
TreePartitionComp(Ω1, Ω2, t), when t is clear from the context we refer to it sim-
ply as Ω1, Ω2 compression (we list the Ω1 and Ω2 to stress the dependency of the
procedure on them).

The final compression procedure TreeComp applies all subprocedures once and
it shrinks the tree by a constant factor.

Theorem 2. Let t′ = TreeComp(t), then |t′| < 3|t|/4 for some partition Ω1, Ω2.

3 Context Unification

By Σ we denote a special constant outside ε; no letter added to ε is Σ. A
ground context is a ground (ε ⇔{Σ})-term t, where ar(Σ) = 0, that has exactly
one occurrence of the constant Σ.

Given a ground context s and a ground term/context t we write st for the
ground term/context that is obtained from s when we replace the occurrence of
Σ in s by t. In the same spirit, when a is a unary letter, we usually write at to
denote a(t).

Let V denote an infinite set of context variables X , Y , Z, . . . , while X denotes
variables x, y, z, The terms over ε, X , V are ground terms over ε ⇔X ⇔V
in which ar(X) = 1 and ar(x) = 0 for each x ≡ X and X ≡ V . A context equation
is an equation of the form u = v where both u and v are terms.

Letters from ε occurring in a context equation are explicit letters and those
occurrences are explicit.

A substitution replaces variables with ground terms and context variables with
ground contexts. It is extended to terms and context terms in a natural way: let
us just note that S(X(t)) is equal to S(X)S(t). A substitution S is a solution
of a context equation u = v if S(u) = S(v). A solution S is size-minimal, if for

Context Unification is in PSPACE 249

every solution S′ it holds that |S(u)| ⊆ |S′(u)|; it is non-empty if S(X) ∈= Σ for
each X ≡ X occurring in u = v; we are interested only in non-empty solutions.
This is not restricting, as for the input instance we can guess, which context
variable is Σ and remove all such variables.

We recall the bound on exponent of periodicity for context equations.

Lemma 1 ([12]). Let S be a size-minimal solution of a context equation u = v.
Suppose that S(X) (or S(x)) can be written as tsmt′, where t, s, t′ are ground
context terms (t′ is a ground term, respectively). Then m = 2O(|u|+|v|).

For a ground term S(u) and an occurrence of a letter a in it we say that this
occurrence comes from u if it was obtained from the letter in u and that it comes
from X (or x) if it was obtained from S(X) (or S(x), respectively).

Solutions may use letters from ε that do not occur in the equation, however,
we can eliminate almost all such letters.

Lemma 2. Consider a context equation u = v over a signature ε and let Ω ⊂ ε
be the set of letters used in u = v. Then

1. If ε has no constant then u = v is not satisfiable.
2. If ε has only constant and unary letters then u = v reduces to a word

equation.
3. If ε has both constant and letter of arity greater than 1 then u = v has a

solution over ε iff it has a solution over Ω ⇔ c⇔ f , where c, f are letters, of
arity 0 and 2, respectively. Moreover, if there is a constant c′ ≡ Ω then we
can take c = c′ and if there is an f ′ of arity 2 in Ω then we can take f = f ′.

The proof follows by a simple substitution argument: if letter f is used in the
solution but not in the equation then in the solution f can be replaced with
another letter of the same arity.

The usage of Lemma 2 is as follows: the case without constants in ε is trivial,
the case with only unary letters and constants reduces to simpler problem of
word equations. In the remaining nontrivial case we can remove from ε every
letter that is not used in the equation (except perhaps 2 letters). In particular,
we eliminate infinite signatures and make sure that the arity of letters in ε is
bounded by the size of the equation.

4 Compression of Non-crossing Subpatterns

In this section we adapt the tree compression from Section 2 to the case when
the tree is given implicitly, as a solution of a context equation. To this end we
identify cases, in which performing such a compression is easy and those in which
it is hard and show how to make the compression in the easy cases. In the next
section we present how to transform the difficult cases to the easy ones.

We first formalise the notions about correctness of the nondeterministic proce-
dures transforming the equation. A (nondeterministic) procedure is sound, when
given an unsatisfiable word equation u = v it cannot transform it to a satisfiable

250 A. Jeż

one, regardless of the nondeterministic choices; such a procedure is complete, if
given a satisfiable equation u = v for some nondeterministic choices it returns
a satisfiable equation u′ = v′. A composition of sound (complete) procedures is
also sound (complete).

Non-crossing Partitions. Suppose that we want to perform the Ω1, Ω2 com-
pression on the equation u = v with a solution S. i.e. we want to replace each
occurrence of a chain subpattern ab ≡ Ω1Ω2 with a fresh unary letter c. Such re-
placement is easy, when the occurrence of ab subpattern comes from the equation
or from S(X) (or S(x)) for some context variable X (or a variable x, respec-
tively): in the former case we modify the equation by replacing each subpattern
ab with c, in the latter the modification is done implicitly (i.e. we replace the
subpattern ab in S(X) or S(x) with c). The problematic part is with the ab chain
subpattern that is of neither of those forms, as they ‘cross’ between S(X) (or
S(x)) and some letter outside this S(X) (or S(x)). This is formalised as follows:
For an equation u = v and a non-empty substitution S we say that an occurrence
of a chain subpattern ab in S(u) (or S(v)) is explicit in S if the occurrences of
both a and b come from explicit letters a and b in u = v; implicit in S if the
occurrences of both a and b come from the same occurrence of S(x) (or S(X));
crossing in S otherwise. We say that ab is a crossing pair in S if they have at
least one crossing occurrence in S; otherwise ab is a non-crossing pair (in S). A
partition Ω1, Ω2 of Ω is non-crossing (in S) if there is no crossing pair ab ≡ Ω1Ω2

(in S); otherwise it is crossing (in S). Unless explicitly written, we consider only
crossing/noncrossing pairs ab in which a ∈= b.

The notions of a crossing chain subpattern can be defined in a more opera-
tional way: for a non-empty substitution S by the first letter of S(X) (S(x))
we denote the topmost-letter in S(X) (S(x), respectively), by the last letter of
S(X) we denote the function symbol that is the father of Σ in S(X). Then ab
is crossing in non-empty S iff one of the following conditions holds for some
context variables X,Y (or a context variable X and a variable y):

(CP1) aX (or ax) is a chain subpattern in u = v and b is the first letter of S(X)
(or S(x), respectively) or

(CP2) Xb is a chain subpattern in u = v and a is the last letter of S(X) or
(CP3) XY (or Xy) is a chain subpattern in u = v, a is the last letter of S(X)

and b the first letter of S(Y) (S(y), respectively).

When a partition Ω1, Ω2 is non-crossing in a solution S, we can simulate
the TreePartitionComp(Ω1, Ω2, S(u)) on u = v simply be performing the Ω1, Ω2

compression on the explicit letters in the equation. To be more precise we treat
the equation u = v as a term over ε ⇔X ⇔V ⇔{=} (imagine u and v as children
of the root labelled with ‘=’, which has arity 2) and apply the Ω1, Ω2 pair
compression on this tree, we call this operation PartitionComp(Ω1, Ω2, ‘u = v’).

Lemma 3. PartitionComp(Ω1, Ω2, ‘u = v’) is sound. If u = v has a solution S such
that Ω1,Ω2 is a non-crossing partition in S then it is complete: the returned equation
u′ = v′ has a solution S′ such that S′(u′) = TreePartitionComp(Ω1, Ω2, S(u)).

Context Unification is in PSPACE 251

The occurrences of ab that come from explicit letters are compressed, the ones
that come from S(X) and S(x) are compressed by changing the solution and
there are no other possibilities, by assumption that ab is noncrossing.

Non-crossing a-maximal Chains and Their Compression. Suppose that
we want to perform the a-maximal chain compression on u = v which has a so-
lution S, i.e. all occurrences of a-maximal chains are to be replaced. Such re-
placement is easy, when the chain subpattern comes from the equation or from
S(X) (or S(x)) for some context variable X (or a variable x, respectively). The
problematic part is with the occurrences that are of neither of those forms, as
they ‘cross’ between S(X) (or S(x)) and another subtree. This is formalised as
follows: For an equation u = v and a substitution S we say that an occurrence
of an a-maximal chain subpattern aΣ in S(u) (or S(v)) is explicit in S if this
occurrence comes wholly from u (or v); implicit in S if this occurrence comes
wholly from a single occurrence of S(X) or S(x); crossing in S otherwise. We
say that a has a crossing chain if there is at least one occurrence of a crossing
a-maximal chain subpattern. Otherwise, a has no crossing chain. It is easy to
show that a has a crossing chain if and only if aa is a crossing pair, in particular
the classification (CP1)–(CP3) applies.

When no unary letter (from Ω) has a crossing chain to simulate the chain
compression on the context equation we perform the TreeChainComp on the
explicit letters, treating the context equation as a tree, similarly as in the case
of the Ω1, Ω2 compression; we refer to this algorithm as ChainComp(Ω, ‘u = v’).

Lemma 4. ChainComp(Ω, ‘u = v’) is sound. If u = v has a solution S such that
no letter in Ω has a crossing chain then it is complete: the returned equation
u′ = v′ has a solution S′ such that S′(u′) = TreeChainComp(Ω, S(u)).

Non-crossing Father-Leaf Pairs and Their Compression. Suppose now
that given a context equation u = v with a solution S we would like to perform
leaf compression on S(u) and S(v). This is easy if each occurrence of respective
subpattern comes either from explicit letters in u = v or wholly from S(X) (or
S(x)) then we treat u = v as a tree and perform leaf compression on it. Consider
a subpattern consisting of f with a child a on some position i ⊆ ar(f). For
an equation u = v and a substitution S we say that an occurrence of such a
subpattern is explicit in S if both the occurrence of f and a come from explicit
letters in u (or v); implicit in S if both the occurrence of f and a come from
a single occurence of S(X) or S(x); crossing in S otherwise. Then (f, a) is a
crossing parent-leaf pair in u = v in S if it has at least one crossing occurrence
in u = v in S. Otherwise it is noncrossing in S.

Then (f, a) is a crossing father-leaf pair in S if and only if one of the following
holds for some context variable X and variable y

(CFL 1) f with a son x is a subpattern in u = v and S(x) = a or
(CFL 2) Xa is a subpattern in u = v and the last letter of S(X) is f or
(CFL 3) Xy is a subpattern in u = v, S(y) = a and f is the last letter of S(X).

252 A. Jeż

When there is no crossing father-leaf pair (f, a) for f ≡ Ω≥1 and a ≡ Ω0 then
to simulate leaf compression on S(u) and S(v) it is enough to perform it on
u = v, treating it as a tree. This procedure is called LeafComp(Ω≥1, Ω0, ‘u = v’).

Lemma 5. LeafComp is sound. If u = v has a solution S such that there is
no crossing father-leaf pair (f, a) with f ≡ Ω≥1 and a ≡ Ω0 in u = v in S
then it is complete: the returned equation u′ = v′ has a solution S′ such that
S′(u′) = TreeLeafComp(Ω≥1, Ω0, S(u)).

5 Uncrossing

One cannot assume that an arbitrary partition Ω1, Ω2 is noncrossing, nor that
there are no crossing chains nor crossing father-leaf pairs. Still, for a fixed par-
tition Ω1, Ω2 and a solution S we can modify the instance so that this partition
becomes non-crossing in a solution S′ (that corresponds to S of the original
equation); similarly, given an equation u = v we can turn it into an equation
that has no letters with a crossing chain in a solution S′; lastly, for Ω≥1 and Ω0

we can modify the instance so that no father-leaf pair (f, a) with f ≡ Ω≥1 and
Ω0 is crossing in S′.

Uncrossing Partitions. We first show how to turn a partition into a non-
crossing one. For each of (CP1)–(CP3) we modify the instance so that ab is no
longer a crossing pair:

– In (CP1) we pop up the letter b: we replace X (or x) with bX (bx, respec-
tively). We also modify the solution S(X) (S(x)) from S(X) = bt (S(x) = bt,
respectively) to S′(X) = t (S′(x) = t, respectively). If S′(X) = Σ, we remove
X from the equation.

– In (CP2) we pop down the letter a: we replace each X with Xa. We also
implicitly change S(X) = saΣ to S′(X) = s. If S′(X) is empty, we remove
X .

– The case (CP3) is a combination of the two cases above, in which we need
to pop-down from X and pop-up from Y (or y).

Algorithm 3. Pop(Ω1, Ω2, ‘u = v’)

1: for X ◦ V do
2: let a be the last letter of S(X)
3: if a ◦ ω1 then
4: replace each X by Xa
5: if S(X) is empty then
6: replace each X(s) by s

7: for X ◦ V or x ◦ X do
8: Do a symmetric action for first letter

replacing X (or x) with bX (or bx)

Popping can be performed on all
ab ≡ Ω1Ω2 in parallel.

Lemma 6. Let Ω1, Ω2 be disjoint.
Then Pop(Ω1, Ω2, ‘u = v’) is sound
and complete; more precisely, if u =
v has a solution S then for appro-
priate non-deterministic choices the
returned equation u′ = v′ has a non-
empty solution S′ such that S′(u′) =
S(u) and Ω1, Ω2 is a non-crossing
partition in S′.

Context Unification is in PSPACE 253

Uncrossing Chains. Suppose that some unary letter a has a crossing chain
in a non-empty solution S. Recall that a has a crossing chain if and only if aa
satisfies one of (CP1)–(CP3). Suppose that (CP2) holds. Then we can replace
X with Xa throughout the equation u = v (implicitly changing S(X) = taΣ
to S(X) = t) but it can still happen that a is the last letter of S(X). So we
keep popping down a until the last letter of S(X) is not a, in other words we
replace X with Xar, where S(X) = tarΣ and the last letter of t is not a. Then
a and X no longer satisfy (CP2), as S′(X) ends with a letter different than a. A
symmetric action and analysis applies to (CP1), and (CP3) follows by applying
the popping down for X and popping up for Y (or y). To simplify the description,
for a ground term (or context) t we say that aΣ is the a-prefix of t if t = aΣt′ and
the first letter of t′ is not a (t′ may be empty). Similarly, for a ground context
t we say that br is a b-suffix of t if t = t′brΣ and the last letter of t′ is not b
(t′ may be empty). CutPrefSuff(Ω1, ‘u = v’) pops up a-prefix and b-suffix down
from each context variable and variable (where a, b ≡ Ω1).

Lemma 7. CutPrefSuff(Ω1, ‘u = v’) is sound and complete; more precisely, if
u = v has a non-empty solution S then for appropriate non-deterministic choices
the returned u′ = v′ has a solution S′ such that S′(u′) = S(u) and there are no
crossing chains in S′.

Uncrossing Father-Leaf Pairs. Let (f, a) be a crossing father-leaf pair, this
is because it satisfies one of (CFL1)–(CFL3).

– In (CFL1) we pop up the letter a from x: we replace each x with a = S(x).
– In (CFL2) we pop down the letter f : let S(X) = sf(t1, . . . , ti−1, Σ, ti+1, . . . ,

tm). Then we replace each X with Xf(x1, . . . , xi−1, Σ, xi+1, . . . , xm), where
x1, . . . ,xi−1,xi+1, . . . ,xm are fresh variables. We also implicitly changeS(X) =
sf(t1, . . . , ti−1, Σ, ti+1, . . . , tm) to S′(X) = s and add S′(xj) = tj for j =
1 . . . , i− 1, i + 1, . . . ,m. If S′(X) is empty, we remove X from the equation.

– The third case (CFL3) is a combination of (CFL1)–(CFL2), in which we
need to pop down from X and pop up from y.

Algorithm 4. GenPop(Ω≥1, Ω0, ‘u = v’)

1: for x ◦ X do
2: if S(x) ◦ ω0 then
3: replace each x in u = v by S(x)

4: for X ◦ V do
5: let f be the last letter of S(X), m ∈ ar(f)
6: let ρ be i-th child of its father in S(X)
7: if Xa occurs in u = v, a ◦ ω0, f ◦ ω⊥1 then
8: replace each X in u = v by

Xf(x1, . . . , xi−1, ρ, xi+1, . . . , xm)
9: if S(X) is empty then
10: replace each X(u) by u

11: for new variables x ◦ X do
12: if S(x) ◦ ω0 then
13: replace each x in u = v by S(x)

This procedure is per-
formed on all f ≡ Ω≥1 and
a ≡ Ω0 in parallel.

Note that popping down
last letters in Ω≥1 from X is
done only when it is needed:
i.e. we want to make (f, i, a)
leaf compression, f is the
last letter of S(X), its i-th
child is Σ and Xa occurs in
u = v.

Lemma 8. Let Ω≥1 be an
alphabet without constants
and Ω0 alphabet of constants.

254 A. Jeż

GenPop(Ω≥1, Ω0, ‘u = v’) is sound and complete, more precisely: if u = v has a
solution S then for appropriate non-deterministic choices the returned u′ = v′

has a solution S′ such that S′(u′) = S(u) and there is no crossing father-leaf
pair (f, a) with f ≡ Ω≥1 and a ≡ Ω0 in S′.

6 Main Algorithm

Our algorithm for testing the satisfiability of context equations works in phases,
each of which is divided into two subphases. In each subphase we uncross all
unary letters and then perform the chain compression; guess the Ω1, Ω2 partition
of unary letters, uncross it and perform the Ω1, Ω2 compression and lastly remove
all crossing father-leaf pairs and perform the leaf compression.

The first subphase ensures that the size of the (size-minimal) solution de-
creases by a constant factor (cf. Theorem 2), the second phase is used to make
sure that the size of the equation is bounded (in some sense the second phase
decreases the size of the equation, but as the equation grows in both subphases
due to popping, in total we can only guarantee that the equation is of more or
less the same size).

Algorithm 5. ContextEqSat(‘u = v’, ε) Satisfiability of a context equation

1: while |u| > 1 or |v| > 1 do
2: for i ∈ 1 . . 2 do Λ One iteration to shorten the solution, one to the equation
3: ω1 ∈ unary letters in u = v Λ By Lemma 2
4: CutPrefSuff(ω1, ‘u = v’) Λ No letter has a crossing block
5: ChainComp(ω1, ‘u = v’) Λ Chain compression
6: ω ∈ the set of unary in u = v Λ By Lemma 2
7: guess partition of ω into ω1 and ω2

8: Pop(ω1, ω2, ‘u = v’) Λ ω1, ω2 is a non-crossing partition
9: PartitionComp(ω1, ω2, ‘u = v’) Λ ω1, ω2 compression
10: ω0 ∈ constants in ‘u = v’ plus one fresh constant c Λ By Lemma 2
11: ω⊥1 ∈ non-constants in ‘u = v’ plus one fresh letter f of arity 2
12: GenPop(ω⊥1, ω0, ‘u = v’) Λ No crossing father-leaf pairs
13: LeafComp(ω⊥1, ω0, ‘u = v’) Λ Leaf compression

14: Solve the problem naively Λ With sides of size 1, the problem is trivial

Lemma 9. ContextEqSat is sound and complete, to be more precise for some
nondeterministic choices the following conditions are satisfied:

1. kept equation has at most n context variables, kn variables and O(nk) letters;
2. if N is the size of the size-minimal solution at the beginning of the phase then

at the end of the phase the equation has a solution of size at most 3N/4;
3. the additional memory usage is at most O(k2n2) (counted in bits);
4. the maximal arity of symbols in ε does not increase during ContextEqSat.

The intuition of the space bound is as follows: in the second subphase we
treat the equation as a term and try to ensure that its size drops by one fourth,
just as in the case of Theorem 2. However, in the meantime we also increased

Context Unification is in PSPACE 255

the size of the equation, as we pop the letters into the context equation (in
both subphases). The number of those letters depends linearly on the number
of occurrences of variables and context variables in u = v, which is known to be
O(kn). Hence when u = v and u′ = v′ are the equation at the beginning and
end of the phase, we have that |u′| + |v′| ⊆ 3

4 (|u| + |v|) + ckn for some constant
c. By a simple induction this shows that |u| + |v| ⊆ 4ckn.

References

1. Comon, H.: Completion of rewrite systems with membership constraints. Part I:
Deduction rules. J. Symb. Comput. 25(4), 397–419 (1998)

2. Comon, H.: Completion of rewrite systems with membership constraints. Part II:
Constraint solving. J. Symb. Comput. 25(4), 421–453 (1998)

3. Gascón, A., Godoy, G., Schmidt-Schauß, M., Tiwari, A.: Context unification with
one context variable. J. Symb. Comput. 45(2), 173–193 (2010)

4. Jeż, A.: Recompression: a simple and powerful technique for word equations. In:
Portier, N., Wilke, T. (eds.) STACS. LIPIcs, vol. 20, pp. 233–244. Schloss Dagstuhl–
Leibniz-Zentrum für Informatik, Dagstuhl (2013)

5. Levy, J.: Linear second-order unification. In: Ganzinger, H. (ed.) RTA 1996. LNCS,
vol. 1103, pp. 332–346. Springer, Heidelberg (1996)

6. Levy, J., Schmidt-Schauß, M., Villaret, M.: On the complexity of bounded
second-order unification and stratified context unification. Logic Journal of the
IGPL 19(6), 763–789 (2011)

7. Levy, J., Villaret, M.: Currying second-order unification problems. In: Tison, S.
(ed.) RTA 2002. LNCS, vol. 2378, pp. 326–339. Springer, Heidelberg (2002)

8. Plandowski, W.: Satisfiability of word equations with constants is in PSPACE.
J. ACM 51(3), 483–496 (2004)

9. Plandowski, W., Rytter, W.: Application of lempel-ziv encodings to the solution
of word equations. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998.
LNCS, vol. 1443, pp. 731–742. Springer, Heidelberg (1998)

10. Schmidt-Schauß, M.: Unification of stratified second-order terms, internal Report
12/94, Johann-Wolfgang-Goethe-Universität (1994)

11. Schmidt-Schauß, M.: A decision algorithm for stratified context unification. J. Log.
Comput. 12(6), 929–953 (2002)

12. Schmidt-Schauß, M., Schulz, K.U.: On the exponent of periodicity of minimal so-
lutions of context equations. In: Nipkow, T. (ed.) RTA 1998. LNCS, vol. 1379,
pp. 61–75. Springer, Heidelberg (1998)

13. Schmidt-Schauß, M., Schulz, K.U.: Solvability of context equations with two con-
text variables is decidable. J. Symb. Comput. 33(1), 77–122 (2002)

14. Schmidt-Schauß, M., Schulz, K.U.: Decidability of bounded higher-order unifica-
tion. J. Symb. Comput. 40(2), 905–954 (2005)

Monodic Fragments of Probabilistic First-Order Logic

Jean Christoph Jung1, Carsten Lutz1, Sergey Goncharov2, and Lutz Schröder2

1 Universität Bremen, Germany
{jeanjung,clu}@informatik.uni-bremen.de

2 Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
{Sergey.Goncharov,Lutz.Schroeder}@fau.de

Abstract. By classical results of Abadi and Halpern, validity for probabilistic
first-order logic of type 2 (ProbFO) is Π2

1 -complete and thus not recursively
enumerable, and even small fragments of ProbFO are undecidable. In tempo-
ral first-order logic, which has similar computational properties, these problems
have been addressed by imposing monodicity, that is, by allowing temporal oper-
ators to be applied only to formulas with at most one free variable. In this paper,
we identify a monodic fragment of ProbFO and show that it enjoys favorable
computational properties. Specifically, the valid sentences of monodic ProbFO
are recursively enumerable and a slight variation of Halpern’s axiom system for
type-2 ProbFO on bounded domains is sound and complete for monodic ProbFO.
Moreover, decidability can be obtained by restricting the FO part of monodic
ProbFO to any decidable FO fragment. In some cases, which notably include the
guarded fragment, our general constructions result in tight complexity bounds.

1 Introduction

Both logic and probability theory are fundamental to the formalization and solution
of many important problems in computer science. While logic is a way to address the
combinatorics hidden in such problems, the main use of probabilities is to capture un-
certainty that arises from many different sources such as noisy or untrusted data (in
database systems), a high level of abstraction (in verification), or incomplete training
data (in machine learning). Unfortunately, the combination of logic and probability is
notoriously difficult and involves a large number of choices and trade-offs, which has
resulted in a broad spectrum of probabilistic logic formalisms to be proposed that vary
greatly in spirit, semantics, and expressive power.

A natural and fundamental way to combine logic and probabilities is to enrich clas-
sical first-order logic (FO) with a probabilistic component [12,4,5]. Although reasoning
in the resulting probabilistic FO logics is, of course, undecidable, they are still useful as
a general and uniform ‘baseline formalism’ that encompasses many other probabilistic
logics, much in the same way that FO provides a baseline formalism for many other
logics used in computer science. However, it turns out that probabilistic FO logics are
not only undecidable, but tend to be computationally even less well-behaved than clas-
sical FO. They come in essentially two versions, called type-1 and type-2 [12]. While
type-1 is for reasoning about statistical probabilities, reflected in the semantics by a
probability distribution over the domain of the FO structure, the purpose of type-2 is

J. Esparza et al. (Eds.): ICALP 2014, Part II, LNCS 8573, pp. 256–267, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Monodic Fragments of Probabilistic First-Order Logic 257

reasoning about subjective probabilities by adopting a possible worlds semantics. In
this paper, we concentrate on the latter and use ‘ProbFO’ to refer to Halpern’s prob-
abilistic FO logic of type-2 [12]. The disastrous computational behaviour of ProbFO
was analyzed by Abadi and Halpern, who show that validity is Π2

1 -complete [1], thus
outside the arithmetic and analytic hierarchies and, in particular, far from being recur-
sively enumerable. This result holds up even when only unary predicates are admitted,
and we add in this work the observation that ProbFO is still Π1

1 -hard even with only
two (object) variables (and no quantification over real-valued variables, see below).

Our aim in the current work is to analyze how and how far the problematic compu-
tational properties of ProbFO can be improved. We start by observing that there is a
clear semantic and computational similarity between ProbFO and temporal first-order
logic (TFO). Both logics use a possible worlds semantics, and although TFO is only
Π1

1 -complete, just like ProbFO it is not recursively enumerable. In the case of TFO,
Hodkinson, Wolter and Zakharyaschev have given an elegant explanation of why this is
the case and how better computational properties can be recovered, by introducing the
monodic fragment of TFO that restricts temporal operators to be applied only to formu-
las with at most one free variable [17]. In fact, monodic TFO turns out to be recursively
enumerable [23] and decidable fragments of monodic TFO can often be obtained by
restricting the FO part of monodic TFO to a decidable FO fragment [18,14,16,15]. In
the present work, we identify a monodic fragment of ProbFO and show that, as in the
case of TFO, this recovers good computational properties. Note that the formulas of
unrestricted ProbFO are obtained by combining classical FO with the language of real
closed fields (including quantification over real numbers) via real-valued terms of the
form w(ϕ) denoting the probability that the formula ϕ is true. Atomic formulas in this
extended language of real closed fields are called weight formulas. In analogy to TFO,
a natural candidate for monodicity in ProbFO is to admit only weight terms w(ϕ) in
which ϕ has at most one free first-order variable. We show that this is not an effective
choice since the resulting fragment of ProbFO still fails to be recursively enumerable.

We thus have to adopt stronger restrictions and define a ProbFO formula to be
monodic if it contains no variables for real numbers (thus no quantification over the
reals) and every weight formula in it contains at most one free (object) variable. Under
this definition, we can establish a useful abstract representation of models of monodic
ProbFO formulas – so-called quasi-models – which are essentially a collection of
monadic formula types that satisfy certain integrity conditions and are associated with
a system of polynomial inequalities over the reals to capture probabilities. This repre-
sentation yields in a rather direct way that monodic ProbFO is recursively enumerable.
Moreover, we exploit quasi-models to establish a concrete axiomatization of monodic
ProbFO, a variation of a complete axiomatization of unrestricted ProbFO on finite
domains of fixed size by Halpern [12] (we use unrestricted domains). Finally, quasi-
models can be used to identify decidable fragments of monodic ProbFO. We show that
for any FO-fragment L such that a slightly generalized version of satisfiability in L
called realizability is decidable, monodic ProbL is decidable, too. In particular, we thus
obtain decidability for the case where L is the monadic fragment of FO, the guarded
fragment (GF), the two-variable fragment, and the guarded negation fragment. The fi-
nite model property transfers in the same way.

258 J.C. Jung et al.

We also analyze the computational complexity of some important decidable frag-
ments of monodic ProbFO. The naive version of our general algorithm yields a
2NEXPTIME∗�,C upper bound where superscripts denote access to oracles, ∈� is the
class of problems that reduce in polynomial time to solving systems of polynomial in-
equalities over the reals (recall NP ≡ ∈� ≡ PSPACE), and C is the complexity of decid-
ing realizability in the underlying FO fragment L. We then propose two improvements
to our algorithm. The first one consists of a more careful realizability check as known
from monodic TFO, and this modification sometimes allows removing the oracle for C.
For monodic ProbGF, in particular, we obtain in this way an improved 2NEXPTIME∗�

upper bound. The second improvement applies only when L satisfies a certain model-
theoretic property that we call closedness under unions of types, and it allows improving
the runtime by one exponential by reducing the size of quasi-models. GF satisfies the
mentioned property, and thus we obtain a tight 2EXPTIME upper bound for monodic
ProbGF. We also obtain a NEXPTIME∗� upper bound when the arity of predicates is
bounded, and a tight NEXPTIME upper bound for the case where only linear weight
formulas are admitted, that is, multiplication of probabilities is disallowed. Note that
the relatively high computational complexities are partly due to the fact that we aim at
identifying maximal decidable fragments of monodic ProbFO. In fact, monodic ProbFO
can be viewed as a natural generalization of the family of probabilistic description log-
ics introduced in [20,11] and provides a principled explanation for why these logics
are computationally much more well-behaved than traditional ProbFO. Conversely, the
mentioned description logics can be viewed as fragments of monodic ProbFO with
lower computational complexity, typically EXPTIME-complete.

Proofs are generally omitted or only sketched; a full version is available at http://
www.informatik.uni-bremen.de/tdki/research/papers.html.

2 Preliminaries

Type-2 probabilistic first-order logic (ProbFO) [12] comprises two sorts: objects of the
domain of discourse and the real numbers �. Accordingly, there are object variables
and field variables, the latter being used to represent probabilities. Object terms are
object variables or object constants. ProbFO-formulas and field terms are defined by
mutual recursion:

ϕ, ψ ::= R(t1, . . . , tk) | ϕ ⊆ ψ | ¬ϕ | ↔xϕ(x) | f1 ⇔ f2

f1, f2 ::= 0 | 1 | w(ϕ) | f1 + f2 | f1 × f2

where R is a k-ary predicate symbol, t1, . . . , tk are object terms, and formulas of the
form f1 ⇔ f2 are called weight formulas. Quantification is possible both over object
and field variables, with field variables ranging over�. We use ProbFO= to denote the
extension of ProbFO with equality on object terms. We could admit rational constants
in field terms to represent concrete probabilities, but as usual we refrain from doing so
because rational constants can be eliminated by clearing denominators.

Formulas of ProbFO are interpreted in probabilistic structures M = (D,W, μ, π)
that consist of a non-empty domain D, a set of worlds W , a discrete probability distri-
bution μ over W and a function π that maps each pair (R,w) to a subset of Dk and each
pair (c, w) to an element of D for each k-ary predicate symbol R, w ⊂ W , and constant
symbol c. Intuitively,M can be viewed as a set of classical FO structures (over the same

http://www.informatik.uni-bremen.de/tdki/research/papers.html
http://www.informatik.uni-bremen.de/tdki/research/papers.html

Monodic Fragments of Probabilistic First-Order Logic 259

domain) with weights given by μ. A valuation for M is a function ν that maps object
variables to elements of D and field variables to real numbers. Given M, ν, and a world
w ⊂ W , the interpretation [f](M,w,ν) ⊂ � of a field term f is defined in the natural
way, with terms w(ϕ) interpreted as [w(ϕ)](M,w,ν) = μ({w′ ⊂ W | (M, w′, ν) |= ϕ}).
The semantics of formulas is standard. A ProbFO-sentence ϕ is satisfiable if there is a
probabilistic structure M = (D,W, μ, π) and a world w ⊂ W such that (M, w) |= ϕ.
A sentence ϕ is valid if ¬ϕ is not satisfiable.

When we speak of (non-probabilistic) first-order logic (FO), we mean the FO frag-
ment of ProbFO as introduced above. In particular, we mean FO without equality unless
we write FO=. A classical FO-structure has the form A = (A, π) where A is a domain
and π is a function as above except that its second argument (the world) is omitted.

3 Monodic ProbFO
Abadi and Halpern have shown that validity in ProbFO is Π2

1 -complete, and thus highly
undecidable and far from being recursively enumerable [1]. They also show that already
over vocabularies that contain only constants, validity is Π1

≥-complete when equality
is allowed. The lower bounds of these theorems are proved by reductions of suitable
higher-order theories of integer arithmetics. We give additional evidence of the compu-
tational difficulty of ProbFO by proving (in the full version) the following orthogonal
result by a reduction of recurring domino systems that is rather different in spirit from
the mentioned reductions from integer arithmetic.

Theorem 1. Validity in ProbFO is Π1
1 -hard even if quantification over field variables

is disallowed and only two object variables are admitted.

The mentioned previous results and Theorem 1 illustrate that several restrictions of
ProbFO that might at first sight seem promising fail to improve the computational prop-
erties of this logic. Inspired by the good computational properties of monodic fragments
of temporal first-order logic [17,23], we aim to define monodic fragments of ProbFO
that are computationally well-behaved. In the context of temporal first-order logic, a
formula is monodic when temporal operators are applied only to formulas with at most
one free variable. We first show that one has to be careful when adapting this notion to
ProbFO; the following result is proved by a reduction of finite validity in FO.

Theorem 2. Validity in ProbFO is Π0
1 -hard even if only one free object variable is

allowed to occur in weight formulas.

Although a natural candidate for monodicity, the restriction formulated in Theorem 2
is thus not strong enough to regain recursive enumerability. Intuitively, this is because
it is still possible to compare the probabilities of different domain elements such as in
the formula ↔x↔r (w(A(x)) = r ≥ ∈yw(A(y)) = r/2), which says that for each
object x, there is an object y that has half the probability of satisfying A. To avoid this,
we require a weight formula with a free object variable to have no other free variables
(object or field). This restriction makes field variables and quantification over them
mostly useless, so we disallow them altogether.

Definition 3 (Monodic ProbFO Formula). A ProbFO formula is monodic if it con-
tains no field variables and every weight formula contains at most one free (object)
variable.

260 J.C. Jung et al.

We will see that the above definition of monodicity indeed guarantees good computa-
tional properties such as recursive enumerability of validity. In the balance, of course,
we lose some expressive power, in particular the ability to relate different domain ele-
ments in terms of their probabilities. The following proposition gives explicit examples
of ProbFO-formulas that cannot be expressed in monodic ProbFO. Its proof relies on
Theorem 7 below, which states that every satisfiable monodic ProbFO sentence is sat-
isfiable in a model with only finitely many worlds. In the full version, we show how to
enforce infinitely many worlds using the formulas in Proposition 4.

Proposition 4. The following formulas are not expressible in monodic ProbFO:

1. w(P (x, y)) ⇒ p with P binary, p ⊂ (0, 1), and ⇒ ⊂ {<,⇔,=,◦, >};
2. w(A(x)) > w(A(y)) with A unary.

Formulas as in Item 1 can be used to express that any two persons who show up at a
party together and both wear rings are probably married; with a formula as in Item 2,
we could say that children are more likely to use a smartphone than their parents. Note
that formulas such as w(∈y P (x, y)) ⇒ p and w(↔y P (x, y)) ⇒ p, which are similar to
the formulas in Item 1 but only have one free variable, do fall within monodic ProbFO.

The following theorem illustrates that the positive results for monodic ProbFO rely
on disallowing equality; it is again proved by reduction of finite validity in FO.

Theorem 5. Validity in monodic ProbFO= is Π0
1 -hard.

4 The Quasi-Model Machinery

We introduce quasi-models, an abstraction of probabilistic structures that underlies the
proofs of all positive results established in this paper. This requires some preliminaries.
In the following, fix a monodic ProbFO-sentence ϕ0. We denote by sub(ϕ0) the set of
all subformulas of ϕ0 and their negations, and by subn(ϕ0) the formulas from sub(ϕ0)

with precisely n free variables, for n ⊂ {0, 1}. By con(ϕ0), we denote the set of all
constant symbols that occur in ϕ0. Reflecting monodicity, we concentrate on formulas
with at most one free variable when defining quasi-models. In particular, these formulas
are from the following set, where x is a distinguished variable:

subx(ϕ0) = sub0(ϕ0) ≤ {ψ(x), ψ(c) | ψ(y) ⊂ sub1(ϕ0), c ⊂ con(ϕ0)}.
We introduce a way to represent ProbFO formulas as FO formulas by replacing weight
formulas with new predicates. Introduce a fresh nullary predicate symbol Pψ for every
weight formula ψ ⊂ sub0(ϕ0) and a fresh unary predicate symbol Pψ for every weight
formula ψ ⊂ sub1(ϕ0). Denote by ϕ the FO formula that is obtained from the ProbFO
formula ϕ by replacing each weight formula ψ() (resp. ψ(x)) that is not within the
scope of another weight formula with Pψ() (resp. Pψ(x)). This notation is lifted to sets
of formulas in the obvious way.

A type is a subset t of subx(ϕ0) such that the set of FO formulas t is a maximal
satisfiable subset of subx(ϕ0). Intuitively, a type is a set of FO formulas with one free
variable that are satisfied by a domain element in a world of a probabilistic structure;
it also records the sentences true in that world, including the FO formulas with one

Monodic Fragments of Probabilistic First-Order Logic 261

free variable that are satisfied by constants. Two types t1, t2 agree on sentences, written
t1 →0 t2, if for all sentences ψ ⊂ subx(ϕ0), we have ψ ⊂ t1 iff ψ ⊂ t2.

A world type is a set of types that agree on sentences; it can be viewed as an abstract
representation of a world in a probabilistic structure, that is, of an FO structure. For an
FO structure A = (A, π) and an element d ⊂ A, define

tp(A, d) = {ψ ⊂ subx(ϕ0) | A |= ψ[d]} and tp(A) = {tp(A, d) | d ⊂ A}.
Note that tp(A, d) is a type and tp(A) is a world type. A world type T is realizable
if there is an FO structure A such that tp(A) = T , that is, if the FO formula χ(T) is
satisfiable, where we define

χ(T) =
∧

t∈T ∈x ∧
t(x) ⊆ ↔x ∨

t∈T

∧
t(x).

World types will play a central role in the definition of quasi-models, but need to be
suitably enriched with (i) runs that describe the types of a single domain element in all
worlds of a probabilistic structure and (ii) relevant conditions that have to be satisfied
by the probabilities of worlds. Note that runs and world types in a sense represent
orthogonal dimensions. Let Q be a set of world types. A run through Q is a function
r that assigns to each world type T ⊂ Q a non-empty set r(T) ≡ T and is coherent,
that is, whenever some t ⊂ r(T) contains a weight formula θ, then for all T ′ ⊂ Q and
t′ ⊂ r(T ′), we have θ ⊂ t′. Coherence allows us to write θ ⊂ r to denote that for
all (equivalently: some) T ⊂ Q and t ⊂ r(T), we have θ ⊂ t. A run selects a set of
types for each world type instead of only a single type because each world type can
represent several actual worlds, and an element might have different types in each of
these worlds. A quasi-model candidate is a triple (T0, Q,R) with T0 a world type, Q a
set of world types, and R a set of runs through Q≤{T0} such that for all T ⊂ Q≤{T0}
and t ⊂ T , there is a run r ⊂ R with t ⊂ r(T). Intuitively, T0 describes a (single)
world of probability 0 while each T ⊂ Q describes worlds of positive probability. To
address Point (ii) above and obtain our final quasi-model representation, we augment
quasi-model candidates with a system of polynomial inequalities. It uses a variable xT

for each world type T to represent the probability of T (obtained by summing up the
probabilities of all worlds of world type T) and a variable xr,t,T for each run r, world
type T , and type t ⊂ T to describe the (summed up) probability of those worlds of
world type T in which the element described by run r has type t.

Definition 6 (Quasi-Model). A quasi-model candidate (T0, Q,R) is a quasi-model if
every T ⊂ Q ≤ {T0} is realizable and the following system of polynomial inequalities
E(Q,R) has a positive solution over the reals:

1. distribution on world types:
∑

T∈Q xT = 1;
2. the probabilities of the types associated by a run r ⊂ R to a quasi-world T ⊂ Q

sum up to the probability of T : xT =
∑

t∈r(T) xr,t,T ;

3. runs respect weight formulas, that is, for all f1 ⇒ f2 ⊂ r with ⇒ ⊂ {⇔, >}1 we
include an equation [f1]r ⇒ [f2]r where [f]r is obtained from f by replacing each
outermost term w(ψ(x)) with the following expression describing its probability:∑

T∈Q

∑
t∈r(T),ψ(x)∈t

xr,t,T .

1 We write f1 > f2 ∈ r in place of f1 ≤ f2 /∈ r.

262 J.C. Jung et al.

Note that the field terms f1, f2 in Item 3 of Definition 6 can contain addition and mul-
tiplication, thus the system E(Q,R) need not be linear.

We say that a quasi-model candidate (or quasi model) (T0, Q,R) satisfies a ProbFO
sentence ϕ0 if ϕ0 ⊂ t for some t ⊂ T0. The following provides the basis for our use of
quasi-models in subsequent sections.

Theorem 7. A monodic ProbFO sentence ϕ0 is satisfiable iff it is satisfied in some
quasi-model. Moreover, any satisfiable monodic ProbFO sentence is satisfied in a prob-
abilistic structure with finitely many worlds.

In the “≥” direction, we read off a quasi-model satisfying ϕ0 from a probabilistic
structure that satisfies ϕ0. To show that the system E(Q,R) has a solution, the values
for the variables xT and xr,t,T are also read off in a straightforward way.

The “∅” direction is more interesting. Let (T0, Q,R) be a quasi-model that satisfies
ϕ0. Hence, every T ⊂ Q ≤ {T0} is realizable and E(Q,R) has a positive solution; we
use x⊆

T to denote the value of xT in this solution and likewise for x⊆
r,t,T . To construct a

probabilistic structure M that satisfies ϕ0, it would be convenient to use the world types
in Q as worlds. Since runs can associate more than one type with a world type, though,
this is not sufficient. We thus need to subdivide each T ⊂ Q into several worlds, each
accommodating a single type that a given run assigns to T . This has to be done in a
careful way since we have to do this simultaneously for all runs while also ensuring
that all types in T are realized in each of the worlds that T is subdivided into.

Let r ⊂ R andT ⊂ Q. A subdivision of T for r is a tuple s = (b1, . . . , bn, ζ) such that
b1 < b2 < · · · < bn = x⊆

T , n = |r(T)| + 1, and ζ is a surjective function that assigns
to every bi a type ζ(bi) ⊂ r(T) such that for all t ⊂ r(T) we have

∑
i∈[1,n],ζ(bi)=t(bi−

bi−1) = x⊆
r,t,T where, here and in what follows, b0 := 0. Intuitively, the interval [0, x⊆

T]

represents the probability covered by all worlds of type T and we subdivide this range
into the intervals (bi, bi+1], with i < n. Elements described by the run r then have type
ζ(bi+1) in the interval (bi, bi+1]. For easier reference, we say for all p ⊂ (0, x⊆

T] that s
has type t at p if ζ(bi) = t and p ⊂ (bi−1, bi]. A subdivided run is a pair (r, S) with r
a run through Q and S a function that assigns to every T ⊂ Q a subdivision S(T) of
T for r. If we had only the single run r, we could use the subintervals identified by a
subdivided run (r, S) as worlds. Since this is not the case, we first identify a sufficiently
rich set of subdivisions which we then combine into a finer ‘overall’ subdivision: in the
full version, we show how to define a finite set Γ of subdivided runs such that

(⊇) for all T ⊂ Q, t ⊂ T , and p ⊂ (0, x⊆
T], there is some (r, S) ⊂ Γ such that S(T)

has type t at p.

To define the worlds for a world type T , let z1 < · · · < zm be all numbers that occur
in a subdivision for T in (a subdivided run from) Γ . We introduce one world of type
T for every zi and assign to it the probability zi − zi−1, with z0 := 0. Note that the
probabilities of all worlds for T sum up to x⊆

T . Doing this for all world types T (and
adding one world with world type T0 and probability 0) gives us the set of worlds W for
the desired probabilistic structure M along with their probabilities μ(w). Since every
T ⊂ Q≤{T0} is realizable, we find for eachw ⊂ W an FO structureAw that realizes the
world type T associated with w. The domain of M is the disjoint union of the domains
of all these Aw (recall that we do not allow equality), and the further construction of

Monodic Fragments of Probabilistic First-Order Logic 263

M is detailed in the full version. Notably, (⊇) guarantees that every t ⊂ T is realized in
every world w associated with world type T .

5 Recursive Enumerability and Axiomatization

We now show that the set of valid monodic ProbFO sentences is recursively enumerable
and also provide a concrete axiomatization. For the former, it suffices to provide a semi-
decision procedure for unsatisfiability, based on Theorem 7. The crucial observation
is that, for any input sentence ϕ0, the number of quasi-model candidates (T0, Q,R)

that satisfy ϕ0 is bounded. It is thus possible to construct all quasi-model candidates
that satisfy ϕ0 and then eliminate those that do not satisfy the system of polynomial
inequalities E(Q,R) from Definition 6. Then, enumerate all unsatisfiable FO formulas.
For each such formula ψ, eliminate all quasi-model candidates (T0, Q,R) such that
χ(T) = ψ for some T ⊂ Q ≤ {T0} (since T is not realizable, (T0, Q,R) cannot be a
quasi-model). Once all quasi-model candidates have been eliminated, return with ‘ϕ0

is unsatisfiable’.

Theorem 8. The set of valid monodic ProbFO sentences is recursively enumerable.

Halpern gives an axiomatization of ProbFO for the case where probabilistic structures
are restricted to a domain of bounded size [12]. We propose a variation of this axiom-
atization that is sound and complete for monodic ProbFO (without assuming bounded
domains). Let AX2 be the set of the following axioms:

– PC: an axiomatization of FO [7];2

– OF : all instances of the axioms of ordered fields (formulated in terms of ⇔) that
are well-formed formulas in monodic ProbFO;

– PW1: ϕ ≥ (w(ϕ) = 1) if all occurrences of predicate symbols in ϕ are inside the
scope of w();

– PW2: w(ϕ) ◦ 0;
– PW3: w(ϕ ⊆ ψ) + w(ϕ ⊆ ¬ψ) = w(ϕ);
– PW4: w(∈xϕ(x)) > 0 ≥ ∈xw(ϕ(x)) > 0;
– RPW : from ϕ → ψ infer w(ϕ) = w(ψ).

In comparison to Halpern’s axiomatization, we have removed the axiom FINN for
bounded domains of size N and added axiom PW4. This axiom follows from Halpern’s
axiomatization, but is independent of the axioms that remain when FINN is removed
– in a nutshell, its soundness over discrete measures depends on σ-additivity, while
PW3 captures only finite additivity. Moreover, as we exclude field variables, we no
longer need the full axiomatization of real-closed fields but, by the Artin-Schreier The-
orem [3], can make do with the axioms of ordered fields. These can be phrased as
quantifier-free open formulas (e.g. x ◦ 0 ∨ −x ◦ 0) and hence can be instantiated to
monodic ProbFO formulas (by replacing real variables with weight terms, observing
the monodicity restriction).

2 Since constants can be interpreted differently in different worlds, a slight adaptation of the def-
inition of when a term t is substitutable for x in the axiom ∀xϕ ⇒ ϕ(x/t) is necessary [12].

264 J.C. Jung et al.

Theorem 9. AX2 axiomatizes validity in monodic ProbFO.

Soundness is proved essentially as in [12]. For showing completeness, we make use
of Theorem 7. We use AX2 ∪ ϕ to denote that ϕ can be derived in AX2, and call a
sentence ϕ consistent if AX2 ∪ ¬ϕ does not hold. By Theorem 7, it suffices to show
that if a monodic ProbFO sentence ϕ0 is consistent, then there is a quasi-model that
satisfies ϕ0. The strategy is to use consistency of ϕ0 to derive a consistent sentence ϕ′

that describes a quasi-model that satisfies ϕ0. The general structure of ϕ′ is

χ(T0) ⊆
∑
T∈Q

w(χ(T)) = 1 ⊆
∧
T∈Q

w(χ(T)) > 0 ⊆ Ψ(x1, . . . , xk)

where T0 is a world type that contains some t with ϕ0 ⊂ t, Q is a set of world types,
Ψ(x1, . . . , xk) is a quantifier-free formula in which each free variable xi identifies a
run ri through Q ≤ {T0}, and Ψ is a conjunction of weight formulas with weight terms
of the form w(χ(T)) and w(χ(T) ⊆ t(xi)) for some t ⊂ T . Intuitively, these weight
terms correspond to the variables xT and xri,t,T , respectively, in E(Q,R); moreover,
Ψ(x1, . . . , xk) describes precisely E(Q,R) under this correspondence. Observe that ϕ′

is consistent relative to OF and thus has a solution which is also a solution to E(Q,R).

6 Decidability and Complexity

Theorem 7 reduces satisfiability in monodic ProbFO to satisfiability in FO and solvabil-
ity of systems of polynomial inequalities over the reals. In the following, we use this
observation to establish decidability results for fragments of monodic ProbFO that are
obtained by restricting its FO part to a decidable FO fragment such as the guarded frag-
ment or the two-variable fragment. We also derive complexity results, which in some
cases are tight. For a fragment L of FO, monodic ProbL is the fragment of monodic
ProbFO that consists of all formulas ϕ such that, for all ψ ⊂ sub(ϕ), the FO formula ψ
belongs to L. To warm up, we start with considering the finite model property (FMP).
Recall that, by Theorem 7, even full monodic ProbFO has the FMP regarding the num-
ber of worlds. Here, we thus mean the number of domain elements.

Theorem 10. For an FO fragment L, monodic ProbL has the FMP iff L has the FMP.

Theorem 10 is a direct consequence of the proof of Theorem 7. In the “if”-direction of
that proof, we combine FO structures that witness realizability of world types. If L has
the finite model property, we can choose these structures to be finite. Then, the resulting
probabilistic structure is also finite.

Based on quasi-models, transfer of decidability is also easy to establish. We say that
realizability is decidable in L if it is decidable whether a given world type T formulated
in monodic ProbL is realizable, that is, whether the L formula χ(T) is satisfiable.

Theorem 11. If realizability is decidable in the FO fragment L, then so is satisfiability
in monodic ProbL.

Theorem 11 is established by the following algorithm which decides satisfiability of a
given ProbL sentence ϕ0:

Monodic Fragments of Probabilistic First-Order Logic 265

1. guess a quasi-model candidate (T0, Q,R) that satisfies ϕ0;
2. verify that the system E(Q,R) has a positive solution in �;
3. verify that each world type T ⊂ Q ≤ {T0} is realizable.

Step 1 is effective since the size of quasi-model candidates is bounded by a computable
function in the size of ϕ0 (analyzed in more detail below).
Theorem 11 applies for instance to the monadic fragment of FO (MonaFO), the guarded
fragment (GF) [2], the guarded negation fragment (GNFO) [6], and the two-variable
fragment FO2 [10]: In all these cases, the formulas χ(T) for checking realizability re-
main within the fragment, and satisfiability in all the mentioned fragments is decidable.

Corollary 12. Let L be one of MonaFO, GF, GNFO, FO2. Then satisfiability in
monodic ProbL is decidable.

To analyze the complexity of the algorithm from the proof of Theorem 11, first note that
it suffices to guess a quasi-model candidate (T0, Q,R) of size at most double exponen-
tial in the size of ϕ0. In fact, Q contains at most double exponentially many world types
T , and each T contains at most exponentially many types. While R can in principle be
larger than double exponential, it suffices to include one run r for each T ⊂ Q ≤ {T0}
and t ⊂ T , such that t ⊂ r(T). Considering for example GF in which satisfiability is
2EXPTIME-complete, we thus obtain a 2NEXPTIME∗�,2EXPTIME upper bound for satis-
fiability in monodic ProbGF where the superscripts indicate access to two oracles: one
for solving systems of polynomial inequalities over the reals and one for realizability in
GF. Recall that ∈� denotes the class of all problems that are reducible in polynomial
time to solving the mentioned systems [22], and that NP ≡ ∈� ≡ PSPACE.

For many FO fragments L, though, we can improve on the upper bounds obtained
in this direct way. First, it is helpful to not consider satisfiability of the exponential size
realizability formula χ(T) as a black box. In particular, the regular structure of χ(T)
implies that its satisfiability can be decided in time double exponential in the size of ϕ0

for GF and in space exponential in the size of ϕ0 for both MonaFO and FO2 [16]. This
yields a 2NEXPTIME∗� upper bound for monodic ProbGF, monodic ProbMonaFO,
and monodic ProbFO2. Second, for some FO fragments L the quasi-model machinery
can be refined so that each quasi-model candidate has at most exponential size. The
following is a sufficient condition for when this is possible.

Definition 13. An FO fragmentL is closed under unions of types if for each L-sentence
ψ and any two structures A1 and A2 that satisfy the same sentences from subx(ψ), there
is a structure B such that tp(B) = tp(A1) ≤ tp(A2).

For GF without constant symbols, closure under unions of types can be shown easily
by taking disjoint unions. The following result is proved in the full version.

Theorem 14. If L is closed under unions of types, then for every satisfiable monodic
ProbL sentence ϕ0, there is a quasi-model (T0, Q,R) that satisfies ϕ0 and in which no
two distinct world types agree on sentences.

As a consequence of Theorem 14, we obtain the following improved complexity bounds
for monodic ProbGF.

266 J.C. Jung et al.

Corollary 15. Satisfiability in monodic ProbGF is

(a) 2EXPTIME-complete;
(b) in NEXPTIME∗� when the arity of predicates is bounded;
(c) NEXPTIME-complete when additionally only linear weight formulas are allowed.

For part (a), where our general machinery even yields a tight upper bound, it suffices to
guess a quasi-model candidate (T0, Q,R) of exponential size (Theorem 14); the asso-
ciated system E(Q,R) is then also of exponential size and thus the existence of a solu-
tion can thus be checked in space exponential in the size of the input formula ϕ0 since
∈� ≡ PSPACE. It remains to verify that every world type is realizable, in time double
exponential in the size of ϕ0. The lower bound is inherited from satisfiability in GF. For
part (b), we can argue analogously with the difference that realizability can be checked
in exponential time. For part (c), observe that in this case E(Q,R) is a system of linear
inequalities and can thus be solved in polynomial time. The lower bound follows from
the fact that the NEXPTIME-hard modal logic S5ALC [8] is contained in this fragment.

Other FO fragments such as FO2 and MonaFO are not closed under unions of types.
Consider for example the FO2 sentence ψ = ↔x(↔y R(x, y) ∨ ↔y¬R(y, x)

)
which

states that R is either the full relation or the empty relation. It does this in a slightly
unorthodox way to ensure that no sentence from subx(ψ) can distinguish the two cases.
But the cases are distinguished in types because if R is full, then every type contains
the formula ↔y R(x, y) and if R is empty, then every type contains its negation. It is
thus easy to show that closure under unions of types fails.

7 Conclusion

We have analyzed the reasons for the bad computational behaviour of ProbFO and we
have shown that, unlike other natural restrictions that fail to establish recursive enumer-
ability and decidability, monodicity is able to tame ProbFO computationally. We thus
believe that monodic ProbFO lays a promising foundation for identifying decidable and
useful probabilistic logics for computer science.

An interesting direction for further research is to enrich monodic ProbFO with addi-
tional expressive power that enables more complex and succinct statements about inde-
pendence and conditioning. Note that existing decidable probabilistic first-order logics
used in statistical relational learning such as Markov logic [9,21] are largely orthogonal
to monodic ProbFO as they typically assume bounded domains and their main use is to
encode a fixed distribution for a propositional theory (over ground instances).

Another important extension to be investigated is to combine statistical and sub-
jective probabilities in a probabilistic FO logic. A basic version of ProbFO that com-
bines both kinds of probability was considered by Halpern [12] under the name type-3
ProbFO, and later refined to include stronger forms of independence and condition-
ing [19]. Adapting the quasi-model machinery to type-3 ProbFO and the mentioned
extensions is a challenging open research objective.

We have given a tight upper complexity bound for monodic ProbGF. An open prob-
lem that remains is to determine the exact computational complexity of other relevant
fragments of monodic ProbFO such as monodic ProbMonaFO, ProbFO2, and negation-
guarded monodic ProbFO.

Monodic Fragments of Probabilistic First-Order Logic 267

Acknowledgments. This work was supported by the DFG project Probabilistic De-
scription Logics (LU1417/1-1, SCHR1118/6-1).

References

1. Abadi, M., Halpern, J.: Decidability and expressiveness for first-order logics of probability.
Inf. Comput. 112, 1–36 (1994)

2. Andréka, H., van Benthem, J., Németi, I.: Back and forth between modal logic and classical
logic. Logic J. IGPL 3, 685–720 (1995)

3. Artin, E., Schreier, O.: Algebraische Konstruktion reeller Körper. Abh. Math. Sem. Univ.
Hamburg 5, 85–99 (1927)

4. Bacchus, F.: Representing and reasoning with probabilistic knowledge - a logical approach
to probabilities. MIT Press (1990)

5. Bacchus, F., Grove, A., Koller, D., Halpern, J.: From statistics to beliefs. In: Artificial Intel-
ligence, AAAI 1992, pp. 602–608. AAAI Press/The MIT Press (1992)

6. Bárány, V., ten Cate, B., Segoufin, L.: Guarded negation. In: Aceto, L., Henzinger, M., Sgall,
J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp. 356–367. Springer, Heidelberg (2011)

7. Enderton, H.B.: A mathematical introduction to logic. Academic Press (1972)
8. Gabbay, D., Kurucz, A., Wolter, F., Zakharyaschev, M.: Many-dimensional modal logics:

theory and applications. Studies in Logic, vol. 148. Elsevier (2003)
9. Getoor, L., Taskar, B.: Introduction to Statistical Relational Learning. MIT Press (2007)

10. Grädel, E., Kolaitis, P., Vardi, M.: On the decision problem for two-variable first-order logic.
Bull. Symb. Log. 3, 53–69 (1997)

11. Gutiérrez-Basulto, V., Jung, J., Lutz, C., Schröder, L.: A closer look at the probabilistic de-
scription logic prob-EL. In: Artificial Intelligence, AAAI 2011. AAAI Press (2011)

12. Halpern, J.: An analysis of first-order logics of probability. Artif. Intell. 46, 311–350 (1990)
13. Harel, D.: Recurring dominoes: making the highly undecidable highly understandable. Ann.

Discrete Math. 24, 51–72 (1985)
14. Hodkinson, I.: Monodic packed fragment with equality is decidable. Stud. Log. 72, 185–197

(2002)
15. Hodkinson, I.: Complexity of monodic guarded fragments over linear and real time. Ann.

Pure Appl. Logic 138, 94–125 (2006)
16. Hodkinson, I., Kontchakov, R., Kurucz, A., Wolter, F., Zakharyaschev, M.: On the compu-

tational complexity of decidable fragments of first-order linear temporal logics. In: Proc.
TIME-ICTL 2003, pp. 91–98. IEEE Computer Society (2003)

17. Hodkinson, I., Wolter, F., Zakharyaschev, M.: Decidable fragment of first-order temporal
logics. Ann. Pure Appl. Logic 106, 85–134 (2000)

18. Hodkinson, I., Wolter, F., Zakharyaschev, M.: Monodic fragments of first-order temporal log-
ics: 2000-2001 A.D. In: Nieuwenhuis, R., Voronkov, A. (eds.) LPAR 2001. LNCS (LNAI),
vol. 2250, pp. 1–23. Springer, Heidelberg (2001)

19. Koller, D., Halpern, J.: Irrelevance and conditioning in first-order probabilistic logic. In: Proc.
AAAI/IAAI 1096, pp. 569–576. AAAI Press / The MIT Press (1996)

20. Lutz, C., Schröder, L.: Probabilistic description logics for subjective uncertainty. In: Princi-
ples of Knowledge Representation and Reasoning, KR 2010. AAAI Press (2010)

21. Richardson, M., Domingos, P.: Markov logic networks. Machine Learning 62, 107–136
(2006)

22. Schaefer, M.: Complexity of some geometric and topological problems. In: Eppstein, D.,
Gansner, E.R. (eds.) GD 2009. LNCS, vol. 5849, pp. 334–344. Springer, Heidelberg (2010)

23. Wolter, F., Zakharyaschev, M.: Axiomatizing the monodic fragment of first-order temporal
logic. Ann. Pure Appl. Logic 118, 133–145 (2002)

Stability and Complexity of Minimising

Probabilistic Automata�

Stefan Kiefer and Björn Wachter

University of Oxford, UK

Abstract. We consider the state-minimisation problem for weighted
and probabilistic automata. We provide a numerically stable polynomial-
time minimisation algorithm for weighted automata, with guaranteed
bounds on the numerical error when run with floating-point arithmetic.
Our algorithm can also be used for “lossy” minimisation with bounded
error. We show an application in image compression. In the second part
of the paper we study the complexity of the minimisation problem for
probabilistic automata. We prove that the problem is NP-hard and in
PSPACE, improving a recent EXPTIME-result.

1 Introduction

Probabilistic and weighted automata were introduced in the 1960s, with many
fundamental results established by Schützenberger [25] and Rabin [23]. Nowa-
days probabilistic automata are widely used in automated verification, natural-
language processing, and machine learning.

Probabilistic automata (PAs) generalise deterministic finite automata (DFAs):
The transition relation specifies, for each state q and each input letter a, a
probability distribution on the successor state. Instead of a single initial state,
a PA has a probability distribution over states; and instead of accepting states, a
PA has an acceptance probability for each state. As a consequence, the language
induced by a PA is a probabilistic language, i.e., a mapping L : Σ∗ ∈ [0, 1],
which assigns each word an acceptance probability. Weighted automata (WAs),
in turn, generalise PAs: the numbers appearing in the specification of a WA may
be arbitrary real numbers. As a consequence, a WA induces a weighted language,
i.e., a mapping L : Σ∗ ∈ R. Loosely speaking, the weight of a word w is the
sum of the weights of all accepting w-labelled paths through the WA.

Given an automaton, it is natural to ask for a small automaton that accepts
the same weighted language. A small automaton is particularly desirable when
further algorithms are run on the automaton, and the runtime of those algo-
rithms depends crucially on the size of the automaton [17]. In this paper we
consider the problem of minimising the number of states of a given WA or PA,
while preserving its (weighted or probabilistic) language.

WAs can be minimised in polynomial time, using, e.g., the standardisation
procedure of [25]. When implemented efficiently (for instance using triangular

ω For a full version of this paper, see [19].

J. Esparza et al. (Eds.): ICALP 2014, Part II, LNCS 8573, pp. 268–279, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Stability and Complexity of Minimising Probabilistic Automata 269

matrices), one obtains an O(|Σ|n3) minimisation algorithm, where n is the num-
ber of states. As PAs are special WAs, the same holds in principle for PAs.

There are two problems with these algorithms: (1) numerical instability, i.e.,
round-off errors can lead to an automaton that is not minimal and/or induces a
different probabilistic language; and (2) minimising a PA using WA minimisation
algorithms does not necessarily result in a PA: transition weights may, e.g.,
become negative. This paper deals with those two issues.

Concerning problem (1), numerical stability is crucial under two scenarios: (a)
when the automaton size makes the use of exact rational arithmetic prohibitive,
and thus necessitates floating-point arithmetic [17]; or (b) when exact minimi-
sation yields an automaton that is still too large and a “lossy compression” is
called for, as in image compression [15]. Besides finding a numerically stable
algorithm, we aim at two further goals: First, a stable algorithm should also be
efficient; i.e., it should be as fast as classical (efficient, but possibly unstable)
algorithms. Second, stability should be provable, and ideally there should be
easily computable error bounds. In Section 3 we provide a numerically stable
O(|Σ|n3) algorithm for minimising WAs. The algorithm generalises the Arnoldi
iteration [2] which is used for locating eigenvalues in numerical linear algebra.
The key ingredient, leading to numerical stability and allowing us to give error
bounds, is the use of special orthonormal matrices, called Householder reflec-
tors [14]. To the best of the authors’ knowledge, these techniques have not been
previously utilised for computations on weighted automata.

Problem (2) suggests a study of the computational complexity of the PA min-
imisation problem: given a PA and m ≡ N, is there an equivalent PA with m
states? In the 1960s and 70s, PAs were studied extensively, see the survey [7] for
references and Paz’s influential textbook [22]. PAs appear in various flavours and
under different names. For instance, in stochastic sequential machines [22] there
is no fixed initial state distribution, so the semantics of a stochastic sequential
machine is not a probabilistic language, but a mapping from initial distributions
to probabilistic languages. This gives rise to several notions of minimality in this
model [22]. In this paper we consider only PAs with an initial state distribution;
equivalence means equality of probabilistic languages.

One may be tempted to think that PA minimisation is trivially in NP, by
guessing the minimal PA and verifying equivalence. However, it is not clear that
the minimal PA has rational transition probabilities, even if this holds for the
original PA.

For DFAs, which are special PAs, an automaton is minimal (i.e., has the least
number of states) if and only if all states are reachable and no two states are
equivalent. However, this equivalence does in general not hold for PAs. In fact,
even if a PA has the property that no state behaves like a convex combination of
other states, the PA may nevertheless not be minimal. As an example, consider
the PA in the middle of Figure 2 on page 276. State 3 behaves like a convex
combination of states 2 and 4: state 3 can be removed by splitting its incoming
arc with weight 1 in two arcs with weight 1/2 each and redirecting the new arcs
to states 2 and 4. The resulting PA is equivalent and no state can be replaced

270 S. Kiefer and B. Wachter

by a convex combination of other states. But the PA on the right of the figure
is equivalent and has even fewer states.

In Section 4 we show that the PA minimisation problem is NP-hard by a
reduction from 3SAT. A step in our reduction is to show that the following
problem, the hypercube problem, is NP-hard: given a convex polytope P within
the d-dimensional unit hypercube and m ≡ N, is there a convex polytope with
m vertices that is nested between P and the hypercube? We then reduce the
hypercube problem to PA minimisation. To the best of the authors’ knowledge,
no lower complexity bound for PA minimisation has been previously obtained,
and there was no reduction from the hypercube problem to PA minimisation.
However, towards the converse direction, the textbook [22] suggests that an
algorithm for the hypercube problem could serve as a “subroutine” for a PA
minimisation algorithm, leaving the decidability of both problems open. In fact,
problems similar to the hypercube problem were subsequently studied in the field
of computational geometry, citing PA minimisation as a motivation [26,21,11,10].

The PA minimisation problem was shown to be decidable in [20], where the
authors provided an exponential reduction to the existential theory of the reals,
which, in turn, is decidable in PSPACE [8,24], but not known to be PSPACE-
hard. In Section 4.2 we give a polynomial-time reduction from the PA min-
imisation problem to the existential theory of the reals. It follows that the PA
minimisation problem is in PSPACE, improving the EXPTIME result of [20].

2 Preliminaries

In the technical development that follows it is more convenient to talk about
vectors and transition matrices than about states, edges, alphabet labels and
weights. However, a PA “of size n” can be easily viewed as a PA with states
1, 2, . . . , n. We use this equivalence in pictures.

Let N = {0, 1, 2, . . .}. For n ≡ N we write Nn for the set {1, 2, . . . , n}. For
m,n ≡ N, elements of R

m and R
m×n are viewed as vectors and matrices, re-

spectively. Vectors are row vectors by default. Let ε ≡ R
m and M ≡ R

m×n.
We denote the entries by ε[i] and M [i, j] for i ≡ Nm and j ≡ Nn. By M [i, ·]
we refer to the ith row of M . By ε[i..j] for i ⊆ j we refer to the sub-vector
(ε[i], ε[i + 1], . . . , ε[j]), and similarly for matrices. We denote the transpose by
εT (a column vector) and MT ≡ R

n×m. We write In for the n × n identity
matrix. When the dimension is clear from the context, we write e(i) for the
vector with e(i)[i] = 1 and e(i)[j] = 0 for j ↔= i. A vector ε ≡ R

m is stochastic
if ε[i] ⇔ 0 for all i ≡ Nm and

∑m
i=1 ε[i] ⊆ 1. A matrix is stochastic if all its

rows are stochastic. By ⊂·⊂ = ⊂·⊂2, we mean the 2-norm for vectors and matrices
throughout the paper unless specified otherwise. If a matrix M is stochastic,
then ⊂M⊂ ⊆ ⊂M⊂1 ⊆ 1. For a set V ≥ R

n, we write ⇒V ◦ to denote the vec-
tor space spanned by V , where we often omit the braces when denoting V . For
instance, if ε, Ω ≡ R

n, then ⇒{ε, Ω}◦ = ⇒ε, Ω◦ = {rε + sΩ | r, s ≡ R}.
An R-weighted automaton (WA) A = (n,Σ,M,ε, δ) consists of a size

n ≡ N, a finite alphabet Σ, a map M : Σ ∈ R
n×n, an initial (row) vector

Stability and Complexity of Minimising Probabilistic Automata 271

ε ≡ R
n, and a final (column) vector δ ≡ R

n. Extend M to Σ∗ by setting
M(a1 · · ·ak) := M(a1) · · ·M(ak). The language LA of a WA A is the mapping
LA : Σ∗ ∈ R with LA(w) = εM(w)δ. WAs A,B over the same alphabet Σ are
said to be equivalent if LA = LB. A WA A is minimal if there is no equivalent
WA B of smaller size.

A probabilistic automaton (PA) A = (n,Σ,M,ε, δ) is a WA, where ε is
stochastic, M(a) is stochastic for all a ≡ Σ, and δ ≡ [0, 1]n. A PA is a DFA if all
numbers in M,ε, δ are 0 or 1.

3 Stable WA Minimisation

In this section we discuss WA minimisation. In Section 3.1 we describe a WA
minimisation algorithm in terms of elementary linear algebra. The presentation
reminds of Brzozowski’s algorithm for NFA minimisation [6].1 WA minimisation
techniques are well known, originating in [25], cf. also [4, Chapter II] and [3]. Our
algorithm and its correctness proof may be of independent interest, as they ap-
pear to be particularly succinct. In Sections 3.2 and 3.3 we take further advantage
of the linear algebra setting and develop a numerically stable WA minimisation
algorithm.

3.1 Brzozowski-like WA Minimisation

Let A = (n,Σ,M,ε, δ) be a WA. Define the forward space of A as the (row)
vector space F := ⇒εM(w) | w ≡ Σ∗◦. Similarly, let the backward space of A be
the (column) vector space B := ⇒M(w)δ | w ≡ Σ∗◦. Let −∈n ≡ N and F ≡ R

−≥n×n

such that the rows of F form a basis of F. Similarly, let ≤−n ≡ N and B ≡ R
n×∈−n

such that the columns of B form a basis of B. Since FM(a) ≥ F and M(a)B ≥ B

for all a ≡ Σ, there exist maps
−∈
M : Σ ∈ R

−≥n×−≥n and
≤−
M : Σ ∈ R

∈−n×∈−n such that

FM(a) =
−∈
M(a)F and M(a)B = B

≤−
M(a) for all a ≡ Σ. (1)

We call (F,
−∈
M) a forward reduction and (B,

≤−
M) a backward reduction. We will

show that minimisation reduces to computing such reductions. By symmetry we

can focus on forward reductions. We call a forward reduction (F,
−∈
M) canonical

if F [1, ·] (i.e., the first row of F) is a multiple of ε, and the rows of F are
orthonormal, i.e., FFT = I−≥n .

Let A = (n,Σ,M,ε, δ) be a WA with forward and backward reductions

(F,
−∈
M) and (B,

≤−
M), respectively. Let −∈ε ≡ R

−≥n be a row vector such that

ε = −∈εF ; let ≤−δ ≡ R
∈−n be a column vector such that δ = B≤−δ . (If (F,

−∈
M) is

canonical, we have −∈ε = (±⊂ε⊂, 0, . . . , 0).) Call
−∈A := (−∈n ,Σ,

−∈
M,−∈ε , Fδ) a for-

ward WA of A with base F and
≤−A := (≤−n ,Σ,

≤−
M,εB,≤−δ) a backward WA of A

with base B. By extending (1) one can see that these automata are equivalent
to A:
1 In [5] a very general Brzozowski-like minimization algorithm is presented in terms
of universal algebra. One can show that it specialises to ours in the WA setting.

272 S. Kiefer and B. Wachter

Proposition 1. Let A be a WA. Then LA = L−≥A = L∈−A .

Further, applying both constructions consecutively yields a minimal WA:

Theorem 2. Let A be a WA. Let A⊆ =
≤−−∈A or A⊆ =

−∈≤−A . Then A⊆ is minimal and
equivalent to A.

Theorem 2 mirrors Brzozowski’s NFA minimisation algorithm. We give a short
proof in [19].

3.2 Numerically Stable WA Minimisation

Theorem 2 reduces the problem of minimising a WA to the problem of comput-
ing a forward and a backward reduction. In the following we focus on computing

a canonical (see above for the definition) forward reduction (F,
−∈
M). Figure 1

shows a generalisation of Arnoldi’s iteration [2] to multiple matrices. Arnoldi’s
iteration is typically used for locating eigenvalues [12]. Its generalisation to mul-
tiple matrices is novel, to the best of the authors’s knowledge. Using (1) one can
see that it computes a canonical forward reduction by iteratively extending a
partial orthonormal basis {f1, . . . , fj} for the forward space F.

function ArnoldiReduction
input: ω ◦ R

n; M : λ ≥ R
n×n

output: canonical forward reduction (F,
−≥
M) with F ◦ R

−⊥n×n and
−≥
M : λ ≥ R

−⊥n×−⊥n

ρ := 0; j := 1; f1 := ω/∨ω∨ (or f1 := −ω/∨ω∨)
while ρ < j do

ρ := ρ+ 1
for a ◦ λ do

if fγM(a) ∈◦ ∧f1, . . . , fj∅
j := j + 1
define fj orthonormal to f1, . . . , fj−1 such that

∧f1, . . . , fj−1, fγM(a)∅ = ∧f1, . . . , fj∅
define

−≥
M(a)[ρ, ·] such that fγM(a) =

∑j
i=1

−≥
M(a)[ρ, i]fi

and
−≥
M(a)[ρ, j+1..n] = (0, . . . , 0)−≥n := j; form F ◦ R

−⊥n×−⊥n with rows f1, . . . , f−⊥n
return F and

−≥
M(a)[1..−≥n , 1..−≥n] for all a ◦ λ

Fig. 1. Generalised Arnoldi iteration

For efficiency, one would like to run generalised Arnoldi iteration (Figure 1)
using floating-point arithmetic. This leads to round-off errors. The check “if
fΣM(a) ↔≡ ⇒f1, . . . , fj◦” is particularly problematic: since the vectors f1, . . . , fj
are computed with floating-point arithmetic, we cannot expect that fΣM(a) lies
exactly in the vector space spanned by those vectors, even if that would be
the case without round-off errors. As a consequence, we need to introduce an
error tolerance parameter π > 0, so that the check “fΣM(a) ↔≡ ⇒f1, . . . , fj◦”
returns true only if fΣM(a) has a “distance” of more than π to the vector space

Stability and Complexity of Minimising Probabilistic Automata 273

⇒f1, . . . , fj◦.2 Without such a “fuzzy” comparison the resulting automaton could
even have more states than the original one. The error tolerance parameter π
causes further errors.

To assess the impact of those errors, we use the standard model of floating-
point arithmetic, which assumes that the elementary operations +,−, ·, / are
computed exactly, up to a relative error of at most the machine epsilon ψmach ⇔
0. It is stated in [13, Chapter 2]: “This model is valid for most computers, and, in
particular, holds for IEEE standard arithmetic.” The bit length of numbers aris-
ing in a numerical computation is bounded by hardware, using suitable roundoff.
So we adopt the convention of numerical linear algebra to take the number of
arithmetic operations as a measure of time complexity.

The algorithm ArnoldiReduction (Figure 1) leaves open how to implement
the conditional “if fΣM(a) ↔≡ ⇒f1, . . . , fj◦”, and how to compute the new basis
element fj . In [19] we propose an instantiation HouseholderReduction of Arnoldi-
Reduction based on so-called Householder reflectors [14], which are special or-
thonormal matrices. We prove the following stability property:

Proposition 3. Consider the algorithm HouseholderReduction in [19], which
has the following interface:

function HouseholderReduction
input: ω ◦ R

n; M : λ ≥ R
n×n; error tolerance parameter Λ ≥ 0

output: canonical forward reduction (F,
−≥
M) with F ◦ R

−⊥n×n and
−≥
M : λ ≥ R

−⊥n×−⊥n

We have:

1. The number of arithmetic operations is O(|Σ|n3).
2. HouseholderReduction instantiates ArnoldiReduction.
3. The computed matrices satisfy the following error bound: For each a ≡ Σ,

the matrix E(a) ≡ R
−≥n×n with E(a) := FM(a) −−∈

M(a)F satisfies

⊂E(a)⊂ ⊆ 2
→
nπ + cmn3ψmach ,

where m > 0 is such that ⊂M(a)⊂ ⊆ m holds for all a ≡ Σ, and c > 0 is an
input-independent constant.

The proof follows classical error-analysis techniques for QR factorisations with
Householder reflectors [13, Chapter 19], but is substantially complicated by the
presence of the “if” conditional and the resulting need for the π parameter. By
Proposition 3.2. HouseholderReduction computes a precise canonical forward
reduction for ψmach = π = 0. For positive ψmach and π the error bound grows lin-
early in ψmach and π , and with modest polynomials in the WA size n. In practice
ψmach is very small3, so that the term cmn3ψmach can virtually be ignored.

The use of Householder reflectors is crucial to obtain the bound of Propo-
sition 3. Let us mention a few alternative techniques, which have been used
for computing certain matrix factorisations. Such factorisations (QR or LU) are

2 This will be made formal in our algorithm.
3 With IEEE double precision, e.g., it holds Σmach = 2−53 [13].

274 S. Kiefer and B. Wachter

related to our algorithm. Gaussian elimination can also be used for WA min-
imisation in time O(|Σ|n3), but its stability is governed by the growth factor,
which can be exponential even with pivoting [13, Chapter 9], so the bound on
⊂E(a)⊂ in Proposition 3 would include a term of the form 2nψmach. The most
straightforward implementation of ArnoldiReduction would use the Classical
Gram-Schmidt process, which is highly unstable [13, Chapter 19.8]. A variant,
the Modified Gram-Schmidt process is stable, but the error analysis is compli-
cated by a possibly loss of orthogonality of the computed matrix F . The extent
of that loss depends on certain condition numbers (cf. [13, Equation (19.30)]),
which are hard to estimate or control in our case. In contrast, our error bound
is independent of condition numbers.

Using Theorem 2 we can prove:

Theorem 4. Consider the following algorithm:

function HouseholderMinimisation
input: WA A = (n,λ,M,ω, θ); error tolerance parameter Λ ≥ 0
output: minimised WA A∗ = (n∗, λ,M ∗, ω∗, θ∗).

compute forward reduction (F,
−≥
M) of A using HouseholderReduction

form
−≥A := (−≥n ,λ,

−≥
M,−≥ω ,−≥θ) as the forward WA of A with base F

compute backward reduction (B,M ∗) of
−≥A using HouseholderReduction

form A∗ := (n∗, λ,M ∗, ω∗, θ∗) as the backward WA of
−≥A with base B

return A∗

We have:

1. The number of arithmetic operations is O(|Σ|n3).
2. For ψmach = π = 0, the computed WA A⊆ is minimal and equivalent to A.
3. Let π > 0. Let m > 0 such that ⊂A⊂ ⊆ m holds for all

A ≡ {M(a),
−∈
M(a),M ⊆(a) | a ≡ Σ}. Then for all w ≡ Σ∗ we have

|LA(w) − LA′(w)| ⊆ 4|w|⊂ε⊂m|w|−1⊂δ⊂→nπ

+ cmax{|w|, 1}⊂ε⊂m|w|⊂δ⊂n3ψmach ,

where c > 0 is an input-independent constant.

The algorithm computes a backward reduction by running the straightforward
backward variant of HouseholderReduction. We remark that for PAs one can
take m = 1 for the norm bound m from part 3. of the theorem (or m = 1 + ψ
for a small ψ if unfortunate roundoff errors occur). It is hard to avoid an error
bound exponential in the word length |w|, as |LA(w)| itself may be exponential
in |w| (consider a WA of size 1 with M(a) = 2). Theorem 4 is proved in [19].

The error bounds in Proposition 3 and Theorem 4 suggest to choose a small
value for the error tolerance parameter π . But as we have discussed, the computed
WA may be non-minimal if π is set too small or even to 0, intuitively because
round-off errors may cause the algorithm to overlook minimisation opportunities.
So it seems advisable to choose π smaller (by a few orders of magnitude) than the
desired bound on ⊂E(a)⊂, but larger (by a few orders of magnitude) than ψmach.

Stability and Complexity of Minimising Probabilistic Automata 275

Note that for ψmach > 0 Theorem 4 does not provide a bound on the number of
states of A⊆.

To illustrate the stability issue we have experimented with minimising a PA A
derived from Herman’s protocol as in [17]. The PA has 190 states and Σ = {a}.
When minimising with the (unstable) Classical Gram-Schmidt process, we have
measured a huge error of |LA(a190) − LA′(a190)| ∅ 1036. With the Modified
Gram-Schmidt process and the method from Theorem 4 the corresponding errors
were about 10−7, which is in the same order as the error tolerance parameter π .

3.3 Lossy WA Minimisation

A larger error tolerance parameter π leads to more “aggressive” minimisation
of a possibly already minimal WA. The price to pay is a shift in the language:
one would expect only L⊆

A(w) ∅ LA(w). Theorem 4 provides a bound on this
imprecision. In this section we illustrate the trade-off between size and precision
using an application in image compression.

Weighted automata can be used for image compression, as suggested by Culik
et al. [15]. An image, represented as a two-dimensional matrix of grey-scale val-
ues, can be encoded as a weighted automaton where each pixel is addressed by a
unique word. To obtain this automaton, the image is recursively subdivided into
quadrants. There is a state for each quadrant and transitions from a quadrant
to its sub-quadrants. At the level of the pixels, the automaton accepts with the
correct grey-scale value.

Following this idea, we have implemented a prototype tool for image compres-
sion based on the algorithm of Theorem 4. We give details and show example
pictures in [19]. This application illustrates lossy minimisation. The point is that
Theorem 4 guarantees bounds on the loss.

4 The Complexity of PA Minimisation

Given a PA A = (n,Σ,M,ε, δ) and n⊆ ≡ N, the PA minimisation problem
asks whether there exists a PA A⊆ = (n⊆, Σ,M ⊆, ε⊆, δ⊆) so that A and A⊆ are
equivalent. For the complexity results in this section we assume that the numbers
in the description of the given PA are fractions of natural numbers represented
in binary, so they are rational. In Section 4.1 we show that the minimisation
problem is NP-hard. In Section 4.2 we show that the problem is in PSPACE by
providing a polynomial-time reduction to the existential theory of the reals.

4.1 NP-Hardness

We will show:

Theorem 5. The PA minimisation problem is NP-hard.

For the proof we reduce from a geometrical problem, the hypercube problem,
which we show to be NP-hard. Given d ≡ N, a finite set P = {p1, . . . , pk} ≥ [0, 1]d

276 S. Kiefer and B. Wachter

of vectors (“points”) within the d-dimensional unit hypercube, and φ ≡ N, the
hypercube problem asks whether there is a set Q = {q1, . . . , qΣ} ≥ [0, 1]d of at
most φ points within the hypercube such that conv(Q) ⊇ P , where

conv (Q) := {α1q1 + · · · + αΣqΣ | α1, . . . , αΣ ⇔ 0, α1 + · · · + αΣ = 1}

denotes the convex hull of Q. Geometrically, the convex hull of P can be viewed
as a convex polytope, nested inside the hypercube, which is another convex
polytope. The hypercube problem asks whether a convex polytope with at most
φ vertices can be nested in between those polytopes. The answer is trivially yes,
if φ ⇔ k (take Q = P) or if φ ⇔ 2d (take Q = {0, 1}d). We speak of the restricted
hypercube problem if P contains the origin (0, . . . , 0). We prove the following:

Proposition 6. The restricted hypercube problem can in polynomial time be
reduced to the PA minimisation problem.

Proof (sketch). Let d ≡ N and P = {p1, . . . , pk} ≥ [0, 1]d and φ ≡ N be an
instance of the restricted hypercube problem, where p1 = (0, . . . , 0) and φ ⇔ 1.
We construct in polynomial time a PA A = (k + 1, Σ,M, ε, δ) such that there
is a set Q = {q1, . . . , qΣ} ≥ [0, 1]d with conv(Q) ⊇ P if and only if there is a PA
A⊆ = (φ+ 1, Σ,M ⊆, ε⊆, δ⊆) equivalent to A. Take Σ := {a2, . . . , ak}∪{b1, . . . , bd}.
Set M(ai)[1, i] := 1 and M(bs)[i, k + 1] := pi[s] for all i ≡ {2, . . . , k} and all
s ≡ Nd, and set all other entries of M to 0. Set ε := e(1) and δ := e(k + 1)T .
Figure 2 shows an example of this reduction. We prove the correctness of this
reduction in [19]. ∪∩

p1

p2

p3

p4

p5

1

2

3

4

5

6

1a2 3
4
b2

1a3

1
4
b1 1

2
b2

1a4 1
2
b1

1
4
b2

1a5
1
2
b1

3
4
b2

1

2

3

4

3
4
a2

3
8
a3

1
2
a5

1b2

1
4
a3

1
2
a4

1
2
a5

1b1

1
2
b2

Fig. 2. Reduction from the hypercube problem to the minimisation problem. The left
figure shows an instance of the hypercube problem with d = 2 and P = {p1, . . . , p5} =
{(0, 0), (0, 3

4
), (1

4
, 1
2
), (1

2
, 1
4
), (1

2
, 3
4
)}. It also suggests a set Q = {(0, 0), (0, 1), (1, 1

2
)} with

conv(Q) ⊇ P . The middle figure depicts the PA A obtained from P . The right figure
depicts a minimal equivalent PA A∗, corresponding to the set Q suggested in the left
figure.

Stability and Complexity of Minimising Probabilistic Automata 277

Next we show that the hypercube problem is NP-hard, which together with
Proposition 6 implies Theorem 5. A related problem is known4 to be NP-hard:

Theorem 7 (Theorem 4.2 of [10]). Given two nested convex polyhedra in
three dimensions, the problem of nesting a convex polyhedron with minimum
faces between the two polyhedra is NP-hard.

Note that this NP-hardness result holds even in d = 3 dimensions. However,
the outer polyhedron is not required to be a cube, and the problem is about
minimising the number of faces rather than the number of vertices. Using a
completely different technique we show:

Proposition 8. The hypercube problem is NP-hard. This holds even for the
restricted hypercube problem.

The proof is by a reduction from 3SAT, see [19].

Remark 9. The hypercube problem is in PSPACE, by appealing to decision al-
gorithms for ExTh(R), the existential fragment of the first-order theory of the
reals. For every fixed d the hypercube problem is5 in P , exploiting the fact that
ExTh(R) can be decided in polynomial time, if the number of variables is fixed.
(For d = 2 an efficient algorithm is provided in [1].) It is an open question
whether the hypercube problem is in NP. It is also open whether the search for
a minimum Q can be restricted to sets of points with rational coordinates (this
holds for d = 2).

Propositions 6 and 8 together imply Theorem 5.

4.2 Reduction to the Existential Theory of the Reals

In this section we reduce the PA minimisation problem to ExTh(R), the existen-
tial fragment of the first-order theory of the reals. A formula of ExTh(R) is of the
form ⊕x1 . . . ⊕xmR(x1, . . . , xn), where R(x1, . . . , xn) is a boolean combination of
comparisons of the form p(x1, . . . , xn) ∼ 0, where p(x1, . . . , xn) is a multivariate
polynomial and ∼ ≡ {<,>,⊆,⇔,=, ↔=}. The validity of closed formulas (m = n)
is decidable in PSPACE [8,24], and is not known to be PSPACE-hard.

Proposition 10. Let A1 = (n1, Σ,M1, ε1, δ1) be a PA. A PA
A2 = (n2, Σ,M2, ε2, δ2) is equivalent to A1 if and only if there exist ma-

trices
−∈
M(a) ≡ R

(n1+n2)×(n1+n2) for a ≡ Σ and a matrix F ≡ R
(n1+n2)×(n1+n2)

such that F [1, ·] = (ε1, ε2), and F (δT1 ,−δT2)T = (0, . . . , 0)T , and

F

(
M1(a) 0

0 M2(a)

)
=

−∈
M(a)F for all a ≡ Σ.

The proof is in [19]. The conditions of Proposition 10 on A2, including that it
be a PA, can be phrased in ExTh(R). Thus it follows:

4 The authors thank Joseph O’Rourke for pointing out [10].
5 This observation is in part due to Radu Grigore.

278 S. Kiefer and B. Wachter

Theorem 11. The PA minimisation problem can be reduced in polynomial time
to ExTh(R). Hence, PA minimisation is in PSPACE.

Theorem 11 improves on a result in [20] where the minimisation problem was
shown to be in EXPTIME. (More precisely, Theorem 4 of [20] states that a
minimal PA can be computed in EXPSPACE, but the proof reveals that the
decision problem can be solved in EXPTIME.)

5 Conclusions and Open Questions

We have developed a numerically stable and efficient algorithm for minimising
WAs, based on linear algebra and Brzozowski-like automata minimisation. We
have given bounds on the minimisation error in terms of both the machine epsilon
and the error tolerance parameter π .

We have shown NP-hardness for PA minimisation, and have given a
polynomial-time reduction to ExTh(R). Our work leaves open the precise com-
plexity of the PA minimisation problem. The authors do not know whether the
search for a minimal PA can be restricted to PAs with rational numbers. As
stated in the Remark after Proposition 8, the corresponding question is open
even for the hypercube problem. If rational numbers indeed suffice, then an NP
algorithm might exist that guesses the (rational numbers of the) minimal PA
and checks for equivalence with the given PA. Proving PSPACE-hardness would
imply PSPACE-hardness of ExTh(R), thus solving a longstanding open problem.

For comparison, the corresponding minimisation problems involving WAs (a
generalisation of PAs) and DFAs (a special case of PAs) lie in P . More precisely,
minimisation of WAs (with rational numbers) is in randomised NC [18], and DFA
minimisation is NL-complete [9]. NFA minimisation is PSPACE-complete [16].

Acknowledgements. The authors would like to thank James Worrell, Radu
Grigore, and Joseph O’Rourke for valuable discussions, and the anonymous ref-
erees for their helpful comments. Stefan Kiefer is supported by a Royal Society
University Research Fellowship.

References

1. Aggarwal, A., Booth, H., O’Rourke, J., Suri, S., Yap, C.K.: Finding minimal convex
nested polygons. Information and Computation 83(1), 98–110 (1989)

2. Arnoldi, W.E.: The principle of minimized iteration in the solution of the matrix
eigenvalue problem. Quarterly of Applied Mathematics 9, 17–29 (1951)

3. Beimel, A., Bergadano, F., Bshouty, N.H., Kushilevitz, E., Varricchio, S.: Learning
functions represented as multiplicity automata. Journal of the ACM 47(3), 506–530
(2000)

4. Berstel, J., Reutenauer, C.: Rational Series and Their Languages. Springer (1988)
5. Bonchi, F., Bonsangue, M.M., Hansen, H.H., Panangaden, P., Rutten, J.J.M.M.,

Silva, A.: Algebra-coalgebra duality in Brzozowski’s minimization algorithm. ACM
Transactions on Computational Logic (to appear)

Stability and Complexity of Minimising Probabilistic Automata 279

6. Brzozowski, J.A.: Canonical regular expressions and minimal state graphs for defi-
nite events. In: Symposium on Mathematical Theory of Automata. MRI Symposia
Series, vol. 12, pp. 529–561. Polytechnic Press, Polytechnic Institute of Brooklyn
(1962)

7. Bukharaev, R.G.: Probabilistic automata. Journal of Soviet Mathematics 13(3),
359–386 (1980)

8. Canny, J.: Some algebraic and geometric computations in PSPACE. In: Proceed-
ings of STOC 1988, pp. 460–467 (1988)

9. Cho, S., Huynh, D.T.: The parallel complexity of finite-state automata problems.
Information and Computation 97(1), 1–22 (1992)

10. Das, G., Goodrich, M.T.: On the complexity of approximating and illuminating
three-dimensional convex polyhedra. In: Sack, J.-R., Akl, S.G., Dehne, F., Santoro,
N. (eds.) WADS 1995. LNCS, vol. 955, pp. 74–85. Springer, Heidelberg (1995)

11. Das, G., Joseph, D.: Minimum vertex hulls for polyhedral domains. Theoretical
Computer Science 103(1), 107–135 (1992)

12. Golub, G.H., van Loan, C.F.: Matrix Computations. John Hopkins University Press
(1989)

13. Higham, N.J.: Accuracy and Stability of Numerical Algorithms, 2nd edn. SIAM
(2002)

14. Householder, A.S.: Unitary triangularization of a nonsymmetric matrix. Journal of
the ACM 5(4), 339–342 (1958)

15. Culik II, K., Kari, J.: Image compression using weighted finite automata. Comput-
ers & Graphics 17(3), 305–313 (1993)

16. Jiang, T., Ravikumar, B.: Minimal NFA problems are hard. SIAM Journal on
Computing 22(6), 1117–1141 (1993)

17. Kiefer, S., Murawski, A.S., Ouaknine, J., Wachter, B., Worrell, J.: Language equiv-
alence for probabilistic automata. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV
2011. LNCS, vol. 6806, pp. 526–540. Springer, Heidelberg (2011)

18. Kiefer, S., Murawski, A.S., Ouaknine, J., Wachter, B., Worrell, J.: On the complex-
ity of equivalence and minimisation for Q-weighted automata. Logical Methods in
Computer Science 9(1:8), 1–22 (2013)

19. Kiefer, S., Wachter, B.: Stability and complexity of minimising probabilistic au-
tomata. Technical report, arxiv.org (2014), http://arxiv.org/abs/1404.6673

20. Mateus, P., Qiu, D., Li, L.: On the complexity of minimizing probabilistic and
quantum automata. Information and Computation 218, 36–53 (2012)

21. Mitchell, J.S.B., Suri, S.: Separation and approximation of polyhedral objects. In:
Proceedings of SODA, pp. 296–306 (1992)

22. Paz, A.: Introduction to probabilistic automata. Academic Press (1971)
23. Rabin, M.O.: Probabilistic automata. Information and Control 6(3), 230–245

(1963)
24. Renegar, J.: On the computational complexity and geometry of the first-order

theory of the reals. Parts I–III. Journal of Symbolic Computation 13(3), 255–352
(1992)

25. Schützenberger, M.-P.: On the definition of a family of automata. Information and
Control 4, 245–270 (1961)

26. Silio, C.B.: An efficient simplex coverability algorithm in E2 with application to
stochastic sequential machines. IEEE Transactions on Computers C-28(2), 109–120
(1979)

http://arxiv.org/abs/1404.6673

Kleene Algebra with Equations

Dexter Kozen and Konstantinos Mamouras

Computer Science Department, Cornell University, Ithaca, NY 14853-7501, USA
{kozen,mamouras}@cs.cornell.edu

Abstract. We identify sufficient conditions for the construction of free
language models for systems of Kleene algebra with additional equa-
tions. The construction applies to a broad class of extensions of KA and
provides a uniform approach to deductive completeness.

1 Introduction

Kleene algebra (KA) is the algebra of regular expressions. Introduced by Stephen
Cole Kleene in 1956, it is fundamental and ubiquitous in computer science.
It has proven useful in countless applications, from program specification and
verification to the design and analysis of algorithms [1–8].

One can augment KA with Booleans in a seamless way to obtain Kleene alge-
bra with tests (KAT). Unlike many other related logics for program verification,
KAT is classically based, requiring no specialized syntax or deductive appara-
tus other than classical equational logic. In practice, statements in the logic are
typically universal Horn formulas

s1 = t1 ∈ s2 = t2 ∈ · · · ∈ sn = tn ∈ s = t,
where the conclusion s = t is the main target task and the premises si = ti are
the verification conditions needed to prove it. The conclusion s = t may encode
a partial correctness assertion, an equivalence between an optimized and an un-
optimized version of a program, or an equivalence between a program annotated
with static analysis information and the unannotated program. The verification
conditions si = ti are typically simple properties of the underlying domain of
computation that describe how atomic actions interact with atomic assertions.
They may require first-order interpreted reasoning, but are proven once and for
all, then abstracted to propositional form. The proof of the conclusion s = t
from the premises takes place at the propositional level in KAT. This methodol-
ogy affords a clean separation of the theory of the domain of computation from
the program restructuring operations. It is advantageous to separate the two
levels of reasoning, because the full first-order theory of the domain of compu-
tation may be highly undecidable, even though we may only need small parts
of it. By isolating those parts, we can often maintain decidability and deductive
completeness.

A typical form of premise that arises frequently in practice is a commutativity
condition pb = bp for an action p and a test b. This captures the idea that the
action p does not affect the truth of b. For example, the action p might be an

J. Esparza et al. (Eds.): ICALP 2014, Part II, LNCS 8573, pp. 280–292, 2014.
c∗ Springer-Verlag Berlin Heidelberg 2014

Kleene Algebra with Equations 281

assignment x := 3 and b might be a test y = 4, where x and y are distinct
variables. It is clear that the truth value of b is not affected by the action p, so
it would be the same before as after. But once this is established, we no longer
need to know what p and b are, but only that pb = bp. It follows by purely
equational reasoning in KAT that p1b = bp1 ∈ · · · ∈ pnb = bpn ∈ qb = bq,
where q is any program built from atomic actions p1, . . . , pn.

In some instances, Horn formulas with premises of a certain form can be
reduced to the equational theory without loss of deductive completeness or de-
cision efficiency using a technique known as elimination of hypotheses [3, 9, 10].
One important class of premises for which this is possible are those of the form
s = 0. The universal Horn theory restricted to premises of this form is called
the Hoare theory, because it subsumes Hoare logic: the partial correctness as-
sertion {b}p{c} can be encoded as the equation bpc̄ = 0. Other forms that arise
frequently in practice are bp = b, which says that the action p is not necessary
if b is true, useful in optimizations to eliminate redundant actions; and pq = qp,
which says that the atomic actions p and q can occur in either order with the
same effect, useful in reasoning about concurrency. Unfortunately, KAT with
general commutativity assumptions pq = qp is undecidable [11].

As a case in point, the NetKAT system [8] incorporates a number of such
equational premises as part of the theory, which are taken as additional axioms
besides those of KAT. Proofs of deductive completeness and complexity as given
in [8] required extensive adaptation of the analogous proofs for KA and KAT.
Indeed, this was already the case with KAT, which was an adaptation of KA to
incorporate an embedded Boolean algebra.

Although each of these instances was studied separately, there are some strik-
ing similarities. It turns out that the key to progress in all of them is the iden-
tification of a suitable class of language models that characterize the equational
theory of the system. A language model is a structure in which expressions are
interpreted as sets of elements of some monoid. The language models should
form the free models for the system at hand. For KA, a language model is the
regular sets of strings over a finite alphabet, elements of a free monoid; for KAT,
the regular sets of guarded strings; for NetKAT, the regular sets of strings of
a certain reduced form. Once a suitable class of language models can be deter-
mined, this opens the door to a systematic treatment of deductive completeness.
It is also clear from previous work [8, 12–15] that the existence of coalgebraic
decision algorithms also depends strongly on the existence of language models
(although we do not develop this connection in this paper). The question thus
presents itself: Is there a general set of criteria that admit a uniform construc-
tion of language models and that would apply in a broad range of situations and
subsume previous ad hoc constructions? That is the subject of this paper.

Alas, such a grand unifying framework is unlikely, given the negative results
of [11] and of §2. However, we have identified a framework that goes quite far in
this direction. It applies in the case in which the additional equational axioms
are monoid equations or partial monoid equations (as is the case in all the ex-
amples mentioned above) and is based on a well-studied class of rewrite systems

282 D. Kozen and K. Mamouras

called inverse context-free systems [16]. We give criteria in terms of these rewrite
systems that imply the existence of free language models in a wide range of pre-
viously studied instances, as well as some new ones.

This paper is organized as follows. In §2 we present preliminary definitions and
our negative result limiting the applicability of the method. In §3 we establish a
connection between the classical theory of string rewriting and Kleene algebra.
We recall from [16] the definition of inverse context-free rewrite systems and the
key result that they preserve regularity. The original proof involved an automata-
theoretic construction, but we show that it can be carried out axiomatically in
KA. In §4 we give examples of partial and total monoid equations and give a
general construction that establishes completeness in those cases. The construc-
tion is a special case of the more general results of §5, but we start with it as a
conceptual first step to illustrate the ideas. However, we can already derive some
interesting consequences in this special case. In §5, we establish completeness for
typed monoid equations. This is the most general setting covered in this paper.
We give the completeness proof along with several applications. In §6 we present
conclusions, future work, and open problems.

Proofs are omitted for lack of space. A full version is available online [17].

2 Preliminaries and a Negative Result

A Kleene algebra (KA) is an idempotent semiring (K,+, ·,∗ , 0, 1) with an itera-
tion operator ∗ satisfying

1 + aa∗ ≡ a∗ 1 + a∗a ≡ a∗ ax ≡ x ⊆ a∗x ≡ x xa ≡ x ⊆ xa∗ ≡ x
where ≡ refers to the natural partial order on K: a ≡ b ↔ a + b = b. A Kleene
algebra with tests (KAT) is a two-sorted structure (K,B,+, ·,∗ , ,̄ 0, 1) such that
(K,+, ·,∗ , 0, 1) is a KA, (B,+, ·, ,̄ 0, 1) is a Boolean algebra, and (B,+, ·, 0, 1) is
a subalgebra of (K,+, ·, 0, 1) as an idempotent semiring.

Let Σ be a finite alphabet of symbols. The free monoid (Σ∗, ·, ε) generated
by Σ is the set Σ∗ of words over Σ together with the operation · of string
concatenation and the empty string ε as identity. To generalize this construction,
we consider a finitely presented monoid M = ⇔a, b, . . . | u1 ⊂ u2, v1 ⊂ v2, . . .≥
with a finite set of generators Σ = {a, b, . . .} and a finite set of relations R =
{(u1, u2), (v1, v2), . . .}. We interchangeably write a relation as an equation u ⊂ u≥

or as a pair (u, u≥). Let ⇒∗
R be the smallest congruence on Σ∗ that contains R.

The congruence class of a string u is denoted by [u]. The finitely presented
monoid M = ⇔Σ | R≥ = Σ∗/R has the congruence classes {[u] | u ◦ Σ∗} of ⇒∗

R

as its carrier. Multiplication is given by [u] · [v] ≤∈ [uv], and the identity is [ε].
We define regular expressions over the alphabet Σ to be the terms given by

the grammar e, e1, e2 ::= a ◦ Σ | 1 | 0 | e1 + e2 | e1; e2 | e∗. We can interpret
a regular expression as a subset of a finitely presented monoid M = ⇔Σ | R≥
with multiplication · and identity 1M = [ε]. The function RM , called language
interpretation in M , sends a regular expression to a set of elements of M :

RM (a) = {[a]} RM (e1 + e2) = RM (e1) →RM (e2)
RM (1) = {1M} RM (e1; e2) = RM (e1) · RM (e2)
RM (0) = ∅ RM (e∗) =

⋃
n∈0 RM (e)n

Kleene Algebra with Equations 283

where · on sets is given by A · B = {u · v | u ◦ A, v ◦ B}, and An is defined
inductively as A0 = RM (1) and An+1 = An ·A. The image of the interpretation
RM together with the operations →, ·, ∗, ∅, {1M} is the algebra of regular sets
over M , denoted by RegM . If M is the free monoid Σ∗, then RM is the standard
language interpretation of regular expressions.

It is known that the algebra of regular sets RegΣ∗ is the free Kleene algebra
generated by Σ [18]. This is equivalent to the completeness of the axioms of KA
for the standard language interpretation R of regular expressions. That is, for
any two regular expressions e1, e2 over Σ, if R(e1) = R(e2) then KA ⊇ e1 ⊂ e2.
The question then arises if this result extends to the general case of RegM
for a finitely presented monoid M = ⇔Σ | R≥. We ask the question of whether
RM (e1) = RM (e2) implies provability of e1 ⊂ e2 in a system of KA augmented
with (at least) the equations corresponding to the relations R.

In general, the answer to the question posed in the previous paragraph is
negative. That is, there exists a finitely presented monoid M = ⇔Σ | R≥ such
that the equational theory of RegM is not recursively enumerable, and therefore
not recursively axiomatizable. The equational theory of the Kleene algebra RegM
is the set of equations between regular expressions that are true in RegM under
the interpretation RM , i.e., the set {e1 ⊂ e2 | RM (e1) = RM (e2)}. We show
this negative result using the ideas developed in [11]. The proof specifies a way
to construct effectively the monoid whose existence we claim.

Theorem 1. There exists a finitely presented monoid M such that the equa-
tional theory of RegM is not recursively enumerable.

This negative result says that we can only hope to identify subclasses of finitely
presented monoids M such that the algebra RegM of regular sets over M is ax-
iomatizable. The idea is to first restrict attention to those finite monoid presen-
tations, where the equations can be oriented to give a confluent and terminating
rewrite system. This allows one to consider as canonical representatives the ir-
reducible strings of the congruence classes. Then, we focus on a subclass that
allows two crucial algebraic constructions: a “descendants” automata-theoretic
construction, and an “ancestors” construction, which is a homomorphism.

The proof of Theorem 1 is similar to that of [11, Theorem 4.1(ii)], but strictly
speaking, neither theorem follows from the other. The theorem of [11] gives
a uniform Ω0

2 -lower bound when the monoid is considered part of the input,
whereas Theorem 1 gives a Ω0

1 -lower bound for a fixed monoid.

3 String Rewriting Systems

In this section we establish a connection between the classical theory of string
rewriting systems and Kleene algebra. More specifically, we recall a result re-
garding the preservation of regularity: for every inverse context-free system R
and a regular set L, the set of the R-descendants of L is also regular [16]. This
result involves an automata-theoretic construction, which can be modeled in
KA, because an automaton can be represented as an appropriate KA term [18].

284 D. Kozen and K. Mamouras

The combinatorial arguments of the construction can then be replaced by equa-
tional reasoning in KA. As it turns out, this connection will allow us to obtain
powerful completeness metatheorems in later sections.

A string rewriting system R over a finite alphabet Σ consists of rules δ ∈ r,
where δ and r are finite strings over Σ. This extends to the one-step rewrite
relation ∈R, given by xδy ∈R xry, for strings x, y and rule δ ∈ r of R. If
x ∈R y then we say that y is an R-successor of x, and x is an R-predecessor
of y. We write ∈∗

R for the reflexive-transitive closure of ∈R, which is called the
rewrite relation for R. If u, v are strings for which u ∈∗

R v we say that v is an
R-descendant of u, and that u is an R-ancestor of v. For a set of strings L:

DescR(L) = {v | ∃u ◦ L. u ∈∗
R v} AnceR(L) = {u | ∃v ◦ L. u ∈∗

R v}
So, DescR(L) is the set of all the R-descendants of the strings in L, and similarly
AnceR(L) is the set of all R-ancestors of the strings in L. The inverse system R−1

of R is the system that results by taking a rule r ∈ δ for every rule δ ∈ r of R.
If u is an R-ancestor of a string v, then u is an R−1-descendant of v. Define ⇒∗

R

to be the smallest congruence on Σ∗ that contains {(u, v) | u ∈ v is R-rule}.
The congruence class of a string u is denoted by [u].

Let R be a rewrite system. We say that R is terminating if there is no infinite
rewrite chain x0 ∈R x1 ∈R x2 ∈R · · · . If R has rules of the form δ ∈ r with
|r| < |δ| then it is terminating, because every rule application strictly reduces
the length of the string. A string x is called R-irreducible if no rule of R applies
to it, that is, there is no y with x ∈R y. We say that R is confluent if u ∈∗

R x
and u ∈∗

R y imply that there exists z with x ∈∗
R z and y ∈∗

R z. It is said that
R has the Church-Rosser property (we also say that “R is Church-Rosser”) if for
all strings x, y with x ⇒∗

R y there exists z such that x ∈∗
R z and y ∈∗

R z. It is a
standard result that confluence and the Church-Rosser property are equivalent
[16]. A system R is said to be locally (or weakly) confluent if for all strings u, x, y
with u ∈R x and u ∈R y, there exists a string z such that x ∈∗

R z and y ∈∗
R z.

If R is both locally confluent and terminating, then R is confluent [16, 19].
Suppose that R is confluent and terminating. We map each string u to the

unique R-irreducible string nfR(u) that results from rewriting u as much as
possible. For strings u, v, it holds that u ⇒∗

R v iff nfR(u) = nfR(v). So, two
strings are congruent iff they can be rewritten to the same R-irreducible. For
every congruence class [u] of ⇒∗

R, we choose as canonical representative (normal
form) the R-irreducible string nfR(u).

Definition 1 (Total Coalesced Product). Assume that R is confluent and
terminating, and let IR be the set of R-irreducible strings. Define the binary
operation ∪ on IR, called coalesced product, by u ∪ v = nfR(uv). We lift the
operation to sets of R-irreducible strings as A ∪B = {u ∪ v | u ◦ A, v ◦ B}.

Definition 2. Let R be an arbitrary string rewrite system. For a language L ∩
Σ∗, we define CR(L) =

⋃
u⊆L[u] = {v | ∃u ◦ L. v ⇒∗

R u}. Assume additionally
that R is confluent and terminating, so that the function nfR is well-defined. For
L ∩ Σ∗, we define GR(L) = {nfR(u) | u ◦ L}.

Lemma 1. Let R be a confluent and terminating rewrite system over Σ.

Kleene Algebra with Equations 285

1. CR(L) =
⋃{[u] | u ◦ GR(L)}, for a language L ∩ Σ∗.

2. GR(L1) = GR(L2) iff CR(L1) = CR(L2), for languages L1, L2 ∩ Σ∗.
3. CR(L) = AnceR(DescR(L)), for a language L ∩ Σ∗.

A rewrite system R is said to preserve regularity if for every regular language
L, the R-descendants DescR(L) form a regular set. A system R is called inverse
context-free if it only contains rules of the form δ ∈ r, where |r| ≡ 1. That
is, every right-hand side of a rule is either a single letter or the empty string.
A classical result of the theory of string rewriting is that inverse context-free
systems preserve regularity (see Chapter 4 of [16] for a detailed proof). The
proof of this fact uses a construction on finite automata, which we briefly present
here. We will be referring to it as the descendants construction. Suppose that L
is a regular language, recognized by an automaton A. The automaton is possibly
nondeterministic and it may have epsilon transitions. We will describe a sequence
of transformations on A. When the sequence reaches a fixpoint, we obtain an
automaton (nondeterministic with epsilon transitions) that recognizes DescR(L).

– Suppose that the system R has a rule δ ∈ a, where a is a single letter, and
δ = δ1δ2 · · · δm is a string of length m. We assume that there is an δ-path from
the state q0 to the state qn of the automaton. That is, a sequence

q0
x1−∈ q1

x2−∈ q2
x3−∈ · · · xn−1−−−∈ qn−1

xn−∈ qn,

where each xi is a letter or ε, x1 · x2 · . . . · xn = δ, and each qi−1
xi−∈ qi is a

transition of the automaton. We add the transition q0
a−∈ qn. The idea is that

if the automaton accepts xδy, then it should also accept the R-descendant xay.
– Similarly, suppose that the system R has a rule δ ∈ ε, where ε is the empty

string, and that there is an δ-path from the state q0 to the state qn. Then, we
add the epsilon transition q0

Σ−∈ qn to the transition table of the automaton.
This process is iterated until no new transitions are added. The resulting au-
tomaton accepts exactly the set of R-descendants DescR(L).

Theorem 2. Let R be an inverse context-free rewrite system and e a regular
expression whose interpretation is L = R(e). We can construct effectively a new
regular expression ê such that KAR ⊇ e ⊂ ê and R(ê) = DescR(L). KAR is the
system KA augmented with an equation δ ⊂ r for every rewrite rule δ ∈ r of R.

Theorem 2 says that the descendants construction, which is combinatorial,
can be modeled algebraically in the system of KA with some extra equations.
This is a central technical result that we will use for our later theorems.

4 Completeness: (Partial) Monoid Equations

In this section we present our first completeness metatheorems, from which we
can prove the existence of free language models for systems of KA with extra
monoid and partial monoid equations. Our metatheorems are not only a concep-
tual first step towards the more general typed monoid case, which we investigate
in §5, but they also allow us to obtain previously unknown completeness re-
sults. As a concrete novel application, think of the assignment statement x := c,

286 D. Kozen and K. Mamouras

where c is a constant. The action x := c is idempotent, meaning that the effect
of x := c;x := c is the same as the effect of x := c. We express this fact with the
monoid equation aa ⊂ a, where a is a single letter abstraction of the assignment.
KA can be augmented with any number of such idempotence equations, and our
metatheorem implies the existence of a free language model (see Example 1).

Definition 3 (Language Interpretation). Let R be a confluent and termi-
nating rewrite system. The corresponding coalesced product is ∪. We define the
function GR that sends a regular expression to a set of R-irreducibles:

GR(a) = {nfR(a)} GR(e1 + e2) = GR(e1) → GR(e2)
GR(0) = ∅ GR(e1; e2) = GR(e1) ∪ GR(e2)

GR(1) = {nfR(ε)} GR(e∗) =
⋃

n∈0 GR(e)⊗n∃

where, for a set A of R-irreducibles, A⊗n∃ is defined by A⊗0∃ = GR(1) and A⊗n+1∃ =
A⊗n∃ ∪A. We also define the interpretation CR(e) = CR(R(e)) =

⋃
u⊆R(e)[u].

Let R be a confluent and terminating system over Σ, and M = ⇔Σ | R≥ be
the corresponding monoid. For a regular expression e, we have that RM (e) =
{[u] | u ◦ GR(e)}. The algebra RegM is isomorphic to the algebra that is the
image of GR. This implies that RM (e1) = RM (e2) iff GR(e1) = GR(e2). So, our
investigations of completeness can be w.r.t. the interpretation GR.

Lemma 2. Let R be a confluent and terminating string rewrite system.
1. GR(e) = {nfR(u) | u ◦ R(e)} = GR(R(e)), for an expression e.
2. CR(e) =

⋃{[v] | v ◦ GR(e)}, for an expression e.
3. GR(e1) = GR(e2) iff CR(e1) = CR(e2), for expressions e1, e2.

Definition 4 (Well-Behaved Rewrite System). Let R be a rewrite system
over Σ. We say that R is well-behaved if it consists of finitely many rules δ ∈ r
with |r| = 1 and |δ| > 1, and it additionally satisfies confluence and the following
property: For every letter a of the alphabet, the R-ancestors of a form a regular
set R(ea) for some expression ea, so that KAR ⊇ ea ⊂ a. Recall that KAR is the
system of KA extended with equations corresponding to the rules of R.

Intuitively, we say that R is well-behaved if it allows two important algebraic
constructions. First, the special form of the rules allows the automata-theoretic
descendants construction (described in §3), which can be modeled in KA, because
automata can be encoded as matrices. Then, the regularity requirement for the
sets of R-ancestors of single letters implies that we can apply a homomorphism to
obtain all the ancestors of a regular set. We can thus “close” a regular expression
under the congruence induced by R.

Theorem 3 (Completeness). Let R be a well-behaved rewrite system over Σ.
For any expressions e1 and e2, GR(e1) = GR(e2) implies that KAR ⊇ e1 ⊂ e2.

Example 1 (Idempotence Hypotheses). We will see how the general com-
pleteness metatheorem we have shown (Theorem 3) can be used to obtain a
completeness result for the regular algebra of a simple finitely presented monoid.
Consider the monoid M = ⇔a, b | aa ⊂ a≥. The rewrite system R contains only
the rule aa ∈ a. In order to invoke Theorem 3 we verify that R is well-behaved:

Kleene Algebra with Equations 287

• For the only rule δ = aa ∈ a = r of R, we have that |r| = 1 and |δ| > 1.
• To show confluence of R, it is sufficient to show local confluence, since R

is terminating. This is known as Newman’s Lemma (see [16, 19]). We have
the following critical-pair lemma: Suppose that u ∈ x and u ∈ y. If x =
y, we are done. If x ⊕= y, then u, x, y must be of the following forms: u =
v1a

m+1v2a
n+1v3, x = v1a

mv2a
n+1v3, and y = v1a

m+1v2a
nv3. Notice now

that x, y ∈ v1a
mv2a

nv3, which establishes local confluence.
• For the R-ancestors of the letters a and b, we see that AnceR(b) = {b}, and
AnceR(a) = {ai | i ≥ 1} = R(a+), where a+ = a; a∗. We put eb = b and
ea = a+. Clearly, KAR ⊇ eb ⊂ b. Reasoning in KAR: a ≡ a+ and a+ = a; a∗ ≡
a ⇐= a; a ≡ a ⇐= a; a ⊂ a. We have thus shown that KAR ⊇ ea ⊂ a.

Since the rewrite system R satisfies the conditions of Theorem 3, we get com-
pleteness of KA together with the equation a; a ⊂ a for the interpretation RM .

We would like to generalize our result in a way that allows us to designate
certain strings as being non-well-formed or undefined. Any string with a non-
well-formed substring has to be discarded from the interpretation. For a string
a1 · · · ak over the alphabet, we declare it to be non-well-formed using the equation
a1 · · · ak ⊂ ⊥, where ⊥ is a special “undefined” symbol not in the alphabet.

We define a partial monoid to be an algebraic structure (M, ·, 1M ,⊥M) satis-
fying the monoid axioms, as well as the equations x·⊥M = ⊥M and ⊥M ·x = ⊥M .
The identity is 1M , and ⊥M is called the undefined element of M . In a presen-
tation of a partial monoid M∀ = ⇔Σ | x1 ⊂ y1, x2 ⊂ y2, . . . , z1 ⊂ ⊥, z2 ⊂ ⊥, . . .≥
we allow equations x ⊂ y between strings over Σ (call the collection of these R),
as well as equations of the form z ⊂ ⊥, where z is a string over Σ (⊥ is not in
Σ). In order to give a concrete description of the partial monoid, we consider
the strings over the extended alphabet Σ → {⊥}, and the equations R∀:

xi ⊂ yi zi ⊂ ⊥ a⊥ ⊂ ⊥, ⊥a ⊂ ⊥ (a ◦ Σ) ⊥⊥ ⊂ ⊥
Let ∼ be the smallest congruence on (Σ →{⊥})∗ that contains the relations R∀.
The partial monoid M∀ is the set of strings (Σ → {⊥})∗ quotiented by the con-
gruence ∼, and hence equal to ⇔Σ→{⊥} | R∀≥. The identity is the ∼-congruence
class [ε], and the undefined element is the class of [⊥].

Assumption 1. We collect a list of assumptions for (Σ,R,R∀). First, assume
that R is a confluent and terminating rewrite system over the alphabet Σ. The
rewrite system R∀ extends R with rules of the form z ∈ ⊥, where z ◦ Σ∗ and
|z| ≥ 2. Moreover, R∀ contains the rule ⊥⊥ ∈ ⊥, as well as all the rules a⊥ ∈ ⊥
and ⊥a ∈ ⊥ for every letter a ◦ Σ. We further assume that R∀ is terminating,
and that the seamlessness property is satisfied: If xzy is a string with z ∈ ⊥
in R∀, then any R-successor of xzy is of the form x≥z≥y≥, where z≥ ∈ ⊥ is in
R∀. Intuitively, seamlessness says that if a string contains a non-well-formed
substring, then no R-rewriting can make it well-formed.

Definition 5 (Partial Coalesced Product). Let (Σ,R,R∀) satisfy Assump-
tion 1. Define the partial coalesced product ∪ on R∀-irreducibles in Σ∗:

u ∪ v = nfR(uv), if uv ⊕∼ ⊥; u ∪ v = undefined, if uv ∼ ⊥.

288 D. Kozen and K. Mamouras

The condition uv ⊕∼ ⊥ is equivalent to nfR(uv) not having a substring z with
z ∈ ⊥. We lift the coalesced product into a total operation on sets of R∀-
irreducibles: A ∪B = {u ∪ v | u ∪ v exists, u ◦ A, v ◦ B}.

Definition 6 (Language Interpretation). Let (Σ,R,R∀) satisfy Assump-
tion 1. For a string u, define [u]ψ = Σ∗ ∩ [u]. For a language L ∩ Σ∗, put:

GR⊥(L) = {nfR(u) | u ◦ L} \ [⊥]ψ CR⊥(L) = [⊥]ψ →⋃
u⊆L[u]ψ

Now, GR⊥ sends a regular expression to a set of R∀-irreducibles of Σ∗:
GR⊥(a) = {nfR(a)} \ [⊥]ψ GR⊥(e1 + e2) = GR⊥(e1) → GR⊥(e2)
GR⊥(0) = ∅ GR⊥(e1; e2) = GR⊥(e1) ∪ GR⊥(e2)

GR⊥(1) = {nfR(ε)} \ [⊥]ψ GR⊥(e∗) =
⋃

n∈0 GR⊥(e)⊗n∃

where A⊗0∃ = GR⊥(1) and A⊗n+1∃ = A⊗n∃ ∪A. Define CR⊥(e) = CR⊥(R(e)). The
interpretation GR⊥ discards the undefined strings, but CR⊥ adds them all in.

Definition 7 (Well-Behaved). We suppose that (Σ,R,R∀) satisfies Assump-
tion 1. We say that it is well-behaved if R∀ consists of finitely many rules, every
rule δ ∈ r of R satisfies |r| = 1 and |δ| > 1, and it satisfies the property: For
every letter a of the alphabet, the R-ancestors of a form a regular set R(ea)
for some regular expression ea, so that KAR ⊇ ea ⊂ a. The empty string and
the single-letter strings are R∀-irreducible. We write KAR⊥ for the system KAR

extended with an equation a1; · · · ; ak ⊂ 0 for every rule a1 · · · ak ∈ ⊥ of R∀.

Theorem 4 (Completeness). Suppose that (Σ,R,R∀) is well-behaved. Then,
GR⊥(e1) = GR⊥(e2) implies that KAR⊥ ⊇ e1 ⊂ e2.

5 Completeness: Typed Monoid Equations

We further generalize the partial monoid setting by assuming more structure on
the strings and the rewrite system. One major difference from the partial monoid
case is the introduction of a new category of primitive symbols, the subidentities,
which allow the encoding of Booleans. We show how to cover several examples:
plain KAT, KAT with simple Hoare hypotheses b; p; c ⊂ 0, KAT with hypotheses
c; p ⊂ c, and NetKAT. There are even more applications which for lack of space
we do not present here: commutativity equations b; p ⊂ p; b (test b, atomic action
p), Boolean equations b ⊂ c (tests b, c), and so on. These examples attest to the
generality and wide applicability of our technique.

Assumption 2. We collect a list of assumptions for (P, Id , R,R∀). Let Σ =
P → Id be a finite alphabet, whose symbols are partitioned into a set P of
action symbols and a set Id of subidentities. We write p, q, r, . . . to vary over
actions symbols, π, ψ, φ, . . . to vary over subidentities, and a, b, c, . . . to vary over
arbitrary symbols of Σ. Let S be the subset of Σ∗ consisting of all strings in
which an action symbol p always appears surrounded by subidentities, as in
πpψ. The set S is regular, and the corresponding regular expression is eS =
Id · (Id∗ · P · Id)∗ · Id∗. Let R be a rewrite system over Σ that includes at least
the rules ππ ∈ π for every subidentity π ◦ Id , and additionally it satisfies:

Kleene Algebra with Equations 289

(1) S is closed under ∈R: if x ◦ S and x ∈R y then y ◦ S. Moreover, S is
closed under the inverse of ∈R: if y ◦ S and x ∈R y then x ◦ S. (2) For every
rule δ ∈ r of R we have that |δ| > |r|. (3) R is confluent on S: For u, x, y ◦ S,
u ∈∗

R x and u ∈∗
R y imply that x ∈∗

R z and y ∈∗
R z for some z ◦ S. Now,

suppose that R∀ extends R with the rules πψ ∈ ⊥ for all subidentities π ⊕= ψ,
and possibly more rules of the form z ∈ ⊥, where z ◦ S and |z| ≥ 2. Moreover,
R∀ contains all the rules a⊥ ∈ ⊥, ⊥a ∈ ⊥ (for each a ◦ Σ), as well as the rule
⊥⊥ ∈ ⊥. We assume that R∀ satisfies additionally the seamlessness property:
For xzy ◦ S with z ∈ ⊥ in R∀, any R-successor of xzy is of the form x≥z≥y≥ for
some rule z≥ ∈ ⊥ of R∀. We will use the term irreducible (unqualified) to mean
R∀-irreducible of S. Finally, define the function cp to send every letter a of Σ to a
finite subset cp(a) of S, called the components of a. For a subidentity π ◦ Id , we
put cp(π) = {π}. For an action symbol p ◦ P , we put cp(p) = {πpψ | π, ψ ◦ Id}.

Definition 8 (Language Interpretation). Let (P, Id , R,R∀) satisfy Assump-
tion 2. For a string u, we put [u]S = S ∩ [u]. For a language L ∩ S, we define:

GR⊥(L) = {nfR(u) | u ◦ L} \ [⊥]S CR⊥(L) = [⊥]S →⋃
u⊆L[u]S

The coalesced product of irreducibles, written ∪, is defined as in Definition 5. The
interpretation GR⊥ sends a regular expression to a set of irreducibles:

GR⊥(a) = nfR(cp(a)) \ [⊥]S GR⊥(e1 + e2) = GR⊥(e1) → GR⊥(e2)
GR⊥(0) = ∅ GR⊥(e1; e2) = GR⊥(e1) ∪ GR⊥(e2)

GR⊥(1) = Id GR⊥(e∗) =
⋃

n∈0 GR⊥(e)⊗n∃

Define CR⊥(e) = CR⊥(R(e)), for expressions e with R(e) ∩ S.

Definition 9 (Well-Behaved). Let (P, Id , R,R∀) be a tuple satisfying As-
sumption 2. We say that the tuple is well-behaved if R∀ consists of finitely many
rules, every rule δ ∈ r of R satisfies |r| = 1 and |δ| > 1, and it satisfies the
following property: For every letter a of the alphabet, the R-ancestors of a form
a regular set R(ea) for some regular expression ea, so that KAR ⊇ ea ⊂ a.

We define the finite collection E of equations associated with the well-behaved
tuple (P, Id , R,R∀) to contain: (1) an equation x ⊂ y for every rule x ∈ y of R,
(2) an equation z ⊂ 0 for every rule z ∈ ⊥ of R∀, as well as (3) the equation∑

θ⊆Id π ⊂ 1. We write KAE for the system of KA augmented with the equations
E. It is easy to prove in KAE the equation

∑
x⊆cp(a) x ⊂ a for every letter a.

Theorem 5 (Completeness). Let (P, Id , R,R∀) be well-behaved, and E be the
associated equations. Then, GR⊥(e1) = GR⊥(e2) implies that KAE ⊇ e1 ⊂ e2.

Applications. Theorem 5 gives us four completeness results as corollaries. First,
we show that KAT is complete for the standard interpretation of KAT terms as
sets of guarded strings. We then consider the case of KAT extended with simple
Hoare hypotheses b; p; c ⊂ 0 (tests b, c, atomic action p), and with hypotheses
c; p ⊂ c. We conclude with a completeness proof for NetKAT.

Theorem 6. Let GKAT be the standard interpretation of KAT expressions. For
any e1 and e2, it holds that GKAT(e1) = GKAT(e2) implies KAT ⊇ e1 ⊂ e2.

290 D. Kozen and K. Mamouras

A simple Hoare assertion is an expression {b}p{c}, where b, c are tests and p is
an atomic action. It can be encoded in KAT with the equation b; p;¬c ⊂ 0. This
equation is equivalent to the conjunction of the equations ψ; p; φ ⊂ 0, where ψ, φ
are atoms with ψ ≡ b and φ ≡ ¬c. So, w.l.o.g. we restrict attention to assertions
of the form ψ; p; φ ⊂ 0, where ψ, φ are atoms and p is an atomic action.

Theorem 7. Let Zh be a finite collection of strings of the form φpα, where
φ, α are atoms and p is an atomic action symbol. Let W be the set of strings
containing some φpα in Zh, and H be the collection of equations φ; p; α ⊂ 0 for
every φpα in Zh. Define the interpretation Gh by Gh(e) = GKAT(e) \ W . Then,
Gh(e1) = Gh(e2) implies KAT + H ⊇ e1 ⊂ e2.

We consider now another class of equations of the form c; p ⊂ c, where c
is a test and p is an atomic action. We see that c; p ⊂ c is equivalent to the
conjunction of φ; p ⊂ φ for φ ≡ c. So, we can restrict our attention to equations
of the form φ; p ⊂ φ, where φ is an atom, and p is an atomic action.

Theorem 8. Let X be a finite set of strings of the form φp, where φ is an atom
and p is an atomic action symbol, and H be the set of equations φ; p ⊂ φ for
every φp in X . For an atomic action symbol p, define the set of atoms A(p) =
{φ | φp ◦ X}. Let Gh be the interpretation that differs from GKAT only for the
base case of atomic action symbols: Gh(p) = A(p) → {φpα | φ /◦ A(p)}. Then,
Gh(e1) = Gh(e2) implies KAT+H ⊇ e1 ⊂ e2, for any KAT expressions e1, e2.

We turn to the case of NetKAT. Fix an alphabet At of atoms. For π ◦ At
we introduce an action symbol pθ, and we put P = {pθ | π ◦ At}. Let dup be a
new action symbol, and set Σ = P → {dup} → At . NetKAT extends KA with:∑

θ⊆At π ⊂ 1 π; dup ⊂ dup;π pθ ⊂ pθ;π
π;ψ ⊂ 0 (π ⊕= ψ) pθ; pν ⊂ pν π ⊂ π; pθ

The axioms imply π;π ⊂ π; pθ;π ⊂ π; pθ ⊂ π, for every atom π. So, NetKAT
can also be defined as an extension of KAT. The following axioms∑

θ⊆At π ⊂ 1 π;π ⊂ π a; pθ;π ⊂ π π; dup;ψ ⊂ 0 (π ⊕= ψ)
π;ψ ⊂ 0 (π ⊕= ψ) pθ;π; pν ⊂ pν π; pν ; φ ⊂ 0 (ψ ⊕= φ)

give an equivalent axiomatization of NetKAT.

Theorem 9. Let At be the subidentities (atoms), and P ≥ = P → {dup} be the
alphabet of action symbols, where P = {pθ | π ◦ At}. Define R and R∀ as:

ππ ∈ π (π ◦ At) πpθπ ∈ π (π ◦ At) pθπpν ∈ pν (π, ψ ◦ At)
πψ ∈ ⊥ (π ⊕= ψ) πdupψ ∈ ⊥ (π ⊕= ψ) πpνφ ∈ ⊥ (ψ ⊕= φ)

(P ≥,At , R,R∀) is well-behaved, and NetKAT is complete for GR⊥ .

6 Conclusion

We have identified sufficient conditions for the construction of free language
models for systems of Kleene algebra with additional equations. The construc-
tion provides a uniform approach to deductive completeness and coalgebraic de-
cision procedures. The criteria are given in terms of inverse context-free rewrite

Kleene Algebra with Equations 291

systems [16]. They imply the existence of free language models in a wide range
of previously studied instances, including KAT [6] and NetKAT [8], as well as
some new ones. We have also given a negative result that establishes a limit to
the applicability of the technique.

For the future, we would like to investigate the possibility of developing a uni-
form approach to coalgebraic bisimulation-based decision procedures [8, 12–15].
Such decision procedures typically involve some variant of Brzozowski derivatives
and are highly dependent on the existence of language models.

Acknowledgments. We thank Bjørn Grathwohl, Stathis Zachos, and the anony-
mous reviewers for helpful suggestions. This work was supported by the National
Security Agency under award #H98230-14-C-0140.

References

1. Angus, A., Kozen, D.: Kleene algebra with tests and program schematology. Tech-
nical Report TR2001-1844, CS Department, Cornell University (July 2001)

2. Barth, A., Kozen, D.: Equational verification of cache blocking in LU decompo-
sition using Kleene algebra with tests. Technical Report TR2002-1865, Computer
Science Department, Cornell University (June 2002)

3. Cohen, E.: Hypotheses in Kleene algebra. Technical report, Bellcore (1993)
4. Cohen, E.: Lazy caching in Kleene algebra (1994)
5. Cohen, E.: Using Kleene algebra to reason about concurrency control. Technical

report, Telcordia, Morristown, N.J (1994)
6. Kozen, D.: Kleene algebra with tests. Transactions on Programming Languages

and Systems 19(3), 427–443 (1997)
7. Kozen, D., Patron, M.C.: Certification of compiler optimizations using Kleene al-

gebra with tests. In: Proc. 1st Int. Conf. Comput. Logic (CL 2000), pp. 568–582
(2000)

8. Anderson, C.J., Foster, N., Guha, A., Jeannin, J.-B., Kozen, D., Schlesinger, C.,
Walker, D.: NetKAT: Semantic foundations for networks. In: Proceedings of POPL
2014, San Diego, California, USA, pp. 113–126. ACM (January 2014)

9. Kozen, D., Smith, F.: Kleene algebra with tests: Completeness and decidability.
In: van Dalen, D., Bezem, M. (eds.) CSL 1996. LNCS, vol. 1258, pp. 244–259.
Springer, Heidelberg (1997)

10. Hardin, C., Kozen, D.: On the elimination of hypotheses in Kleene algebra with
tests. Technical Report TR2002-1879, CS Department, Cornell University (2002)

11. Kozen, D.: On the complexity of reasoning in Kleene algebra. Information and
Computation 179, 152–162 (2002)

12. Foster, N., Kozen, D., Milano, M., Silva, A., Thompson, L.: A coalgebraic decision
procedure for NetKAT. Technical Report, Computing and Information Science,
Cornell University (2014), http://hdl.handle.net/1813/36255

13. Grathwohl, N.B.B., Kozen, D., Mamouras, K.: KAT + B! Technical Report, CIS,
Cornell University (January 2014), http://hdl.handle.net/1813/34898

14. Rot, J., Bonsangue, M., Rutten, J.: Coalgebraic bisimulation-up-to. In: van Emde
Boas, P., Groen, F.C.A., Italiano, G.F., Nawrocki, J., Sack, H. (eds.) SOFSEM
2013. LNCS, vol. 7741, pp. 369–381. Springer, Heidelberg (2013)

http://hdl.handle.net/1813/36255
http://hdl.handle.net/1813/34898

292 D. Kozen and K. Mamouras

15. Bonchi, F., Pous, D.: Checking NFA equivalence with bisimulations up to congru-
ence. In: Proceedings of POPL 2013, pp. 457–468. ACM (2013)

16. Book, R.V., Otto, F.: String-Rewriting Systems. Springer (1993)
17. Kozen, D., Mamouras, K.: Kleene algebra with equations. Technical Report CIS,

Cornell University (February 2014), http://hdl.handle.net/1813/36202
18. Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular

events. Infor. and Comput. 110(2), 366–390 (1994)
19. Baader, F., Nipkow, T.: Term Rewriting and All That. CUP (1998)

http://hdl.handle.net/1813/36202

All–Instances Termination of Chase

is Undecidable

Tomasz GogaczΣ and Jerzy MarcinkowskiΣΣ

Institute of Computer Science,
University of Wrocfflaw, Poland

Abstract. We show that all–instances termination of chase is undecid-
able. More precisely, there is no algorithm deciding, for a given set T
consisting of Tuple Generating Dependencies (a.k.a. Datalog∃ program),
whether the T -chase on D will terminate for every finite database in-
stance D. Our method applies to Oblivious Chase, Semi-Oblivious Chase
and – after a slight modification – also for Standard Chase. This means
that we give a (negative) solution to the all–instances termination prob-
lem for all version of chase that are usually considered.

The arity we need for our undecidability proof is three. We also show
that the problem is EXPSPACE-hard for binary signatures, but decid-
ability for this case is left open.

Both the proofs – for ternary and binary signatures – are easy. Once
you know them.

1 Introduction

The chase procedure was defined in late 1970s and has been considered one
of the most fundamental database theory algorithms since then. It has been
applied to a wide spectrum of problems, for example for checking containment
of queries under constraints [ASU79] or for testing implication between sets of
database dependencies ([MMS79], [BV84]). A new wave of interest in this notion
began when the theory of data exchange was founded ([FKPP05]), where chase is
used to compute solutions to data exchange problems. This interest was further
strengthened recently by the Datalog± program [CGL09], [CGL12].

The basic idea of a T -chase is as follows. We consider a set T of Tuple
Generating Dependencies1, which means rules (constraints) of the form:

Φ(x̄, ȳ) ∈ ≡z̄ Ψ(x̄, z̄)

where Φ and Ψ are conjunctive queries2, and where x̄, ȳ and z̄ are tuples of
variables. Then, for a database instance D we try – step by step – to extend D,

� Supported by Polish National Science Centre grant 2013/09/N/ST6/01188.
�� Supported by Polish National Science Centre grant DEC-2013/09/B/ST6/01535.
1 Such sets are also known as Datalog∃ programs, and we will use the word “program”
in this sense. While chase is sometimes also defined for other types of dependencies,
we only consider Tuple Generating Dependencies in this paper.

2 Φ and Ψ are positive, without equality. Our negative results hold for single head
TGDs, which means that Ψ is a single atom.

J. Esparza et al. (Eds.): ICALP 2014, Part II, LNCS 8573, pp. 293–304, 2014.
c∗ Springer-Verlag Berlin Heidelberg 2014

294 T. Gogacz and J. Marcinkowski

by adding new elements and atoms, so that the new database satisfies the con-
straints from T : whenever there are some elements ā, b̄ in the current structure,
such that Φ(ā, b̄) is true, a tuple c̄ of new elements is created and new relational
atoms added, to make Ψ(ā, c̄) also true. Notice that the tuple z̄ can be empty.
In such case the TGD under consideration degenerates to a plain Datalog rule.

As it turns out, there are several possible semantics of the whenever above, lead-
ing to several versions of the chase procedure. The Standard Chase (also known
as Restricted Chase) is a lazy version – it only adds new elements if Φ(ā, b̄) is true
in the current structure, but ≡z̄ Ψ(ā, z̄) is (at this point of execution) false. Oblivi-
ous and Semi-Oblivious Chase ([M09]) are eager versions. Oblivious Chase always
adds one tuple c̄ for each tuple ā, b̄ such that Φ(ā, b̄) is true. Semi-Oblivious Chase
always adds one tuple c̄ for each tuple ā such that ≡ȳ Φ(ā, ȳ) is true.

It is not hard to notice that the order of execution does not matter for Obliv-
ious and Semi-Oblivious Chase. Whatever order the candidate tuples are picked
in, we will eventually get the same structure3. But Standard Chase is non-
deterministic – different orders in which tuples are picked can eventually lead to
different structures.

One more version of the procedure is Core Chase (see [DNR08]). It is again
a lazy version, but a parallel one: all the rules applicable at some point are
triggered at the same time. In this way the non-determinism of Standard Chase
is got rid of. For reasons that we will not discuss here Core Chase is slightly
more complicated than that (and not really practical – the cost of each step is
DP-complete).

As we said before, the chase procedure is almost ubiquitous in database theory.
This phenomenon is discussed in [DNR08]: “the applicability of the same tool to
(..) seemingly different problems is not accidental, and it is due to a deeper, tool–
independent reason: to solve these problems, it suffices to exhibit a representative
(database) instance U with two key properties, and the chase is an algorithm for
finding such an instance.” The two key properties of the instance U , being the
result of T -chase on an a database instance D, for given set T of tuple generating
dependencies and for given database instance D are that:

-U is a model of T and D;
-U is universal - there is a homomorphism from U into every model of D and T .

But U , or Chase(D, T), as we prefer to call the structure resulting from
running a T -chase on D, is in many cases only useful when it is finite, which only
happens if (and only if) the chase procedure terminates. One of the applications
where finiteness of Chase(D, T) is a key issue is considered in [FKPP05], and
a sufficient condition on T , implying finiteness of Chase(D, T) was studied in
this paper, called Weak Acyclicity. Weak Acyclicity is a property of T alone,
so it implies termination regardless of D. This reflects the fact that the typical
context in which database constraints are analyzed is the static analysis context
– we want to optimize T before knowing D. So, in particular, it is natural to want
to be sure that T –chase on D will terminate on D before knowing the D itself.

3 If chase does not terminate the claim is true provided the order is fair – each tuple
will be eventually picked.

All–Instances Termination of Chase is Undecidable 295

Many other conditions like that were studied. For example the Stratified-Witness
property ([DT03]), which is historically earlier, and stronger (i.e. narrower), than
Weak Acyclicity. Then it was the Rich Acyclicity criterion, introduced in [HS07],
and proved in [GO11] to imply termination of Oblivious Chase for all instances
D. A condition based on stratification of rules was introduced in [DNR08]. As it
turned out to only guarantee termination of the Standard Chase, another class
of sets of rules – Corrected Stratified Class (CSC) was defined in [MSL09], with
Oblivious Chase terminating for all instances D. Then, in [MSL09a], CSC was
extended to Inductively Restricted (IR) class, and further to a whole hierarchy
of classes T [k], where T [2] = IR.

This list is by no means exhaustive – see Adrian Onet’s thesis [O12] for a
35-pages long survey chapter about sufficient conditions for chase termination.
What is however worth mentioning is that all the known conditions imply all-
instances termination and thus none of them depends on D.

With so much effort spent on finding the sufficient conditions it is natural
to ask about decidability of the all–instances termination problem itself. But
surprisingly, this fundamental problem has so far remained open. Some work was
done, but mostly on a related problem of chase termination for given program T
and also given database instance D. It was shown to be undecidable in [DNR08]
for Core Chase and Standard Chase (⊆). In [M09] it was noticed that the proof of
⊆ works also for Semi-oblivious and Oblivious chase. The only previous results
concerning decidability of the all–instances chase termination problem can be
found in [G013], where the problem is shown to be undecidable for Core Chase
(↔1) and the Standard∃ sub-version (↔2), where we ask, for given T , whether
for each database instance D there exists a terminating execution path of
T -Standard Chase on D (let us remind here that Standard Chase is a non-
deterministic procedure). And this is again not really the most natural question
as – having some T in mind – we want to be sure that whenever and however
we run a T -chase, it will always terminate4.

Another result in [GO13] is undecidability of all–instances chase termination
problem for sets of constraints where, apart from TGDs, a denial constraint is
allowed, which is a conjunctive query Q such that when Q is proved somewhere
in Chase(T , D) then the chase procedure terminates and “fails” (⇔).

One more result from [M09], which can be slightly confusing, is undecidability
of what is there – misleadingly – called “all-instances termination” (⊂). The
signature Σ of the TGDs there is a disjoint union of two sub-signatures Σ1 and
Σ2 but only instances where the relations in Σ2 are initially empty are allowed.

1.1 Our Contribution

The main result of this paper is:

Theorem 1. All-instance termination of Oblivious Chase is undecidable (and
r.e.-hard) for Datalog∃ programs consisting of single-head TGDs over ternary
signatures.

4 The termination problem for the Standard∃ version is shown to be Π0
2 complete in

[GO13]. But the result statement there is not correct: co-r.e. completeness is claimed.

296 T. Gogacz and J. Marcinkowski

Proof of Theorem 1 is presented in Section 3. It can also be read, without
any changes, as a proof of undecidability of all-instances termination of Semi-
Oblivious Chase. In short Subsection 3.5 we modify the proof to show that also
all-instances–all–paths Standard Chase termination is undecidable5.

It is common knowledge that whatever can be said about TGDs over high
arity signature usually remains true for binary signature, as long as multi-head
TGDs are allowed. And also the other way round – one who is prepared to
pay the arity cost can usually translate everything into the language of single-
head TGDs. This fails however in the context of chase termination: one can
easily modify our proof of Theorem 1 to get undecidability of all-instance chase
termination for multi-head binary TGDs, but only for Semi-Oblivious Chase,
not for Oblivious. See the full paper for more detailed discussion . In Section 4
we show:

Theorem 2. All-instance termination of Oblivious Chase is EXPSPACE-hard
for Datalog∃ programs consisting of single-head TGDs over binary signatures.

Upper Bounds. It follows easily from Lemma 3 that the all-instances termina-
tion problem of Oblivious and Semi-Oblivious Chase is recursively enumerable,
and so Theorem 1 provides matching lower bounds. But Lemma 3 is not true for
all–instances–all–paths Standard Chase termination, and thus the only upper
bound known for this problem is the Π0

2 level of the Arithmetical Hierarchy.
Our conjecture is that the problem is in fact also r.e., but much more insight
into the structure of Standard Chase is needed in order to prove this claim.

The lower bound given by Theorem 2 is not matched by any upper bound,
and we believe that the problem is undecidable. A similarity that is maybe
worth being mentioned here (see also next subsection) is that Datalog programs
uniform boundedness is also known to be undecidable for ternary arities but
decidability was left open for the binary case [M99].

2 Techniques

It will not be too unfair to say that the proof of ⊆, in [DNR08], is not com-
plicated. The possibility of having our favorite instance D fixed gives a lot of
control, and having this control it is not hard to encode a computation of a
machine of one’s choice as T -chase for some program T . The same can be said
about ⊂, whose proof, in [M09], is an adaptation of the proof of ⊆ – the input
instance over signature Σ1 is neglected, a new instance, over Σ2, hardwired in
dedicated TGDs, is created, and then the proof from [DNR08] is applied.

Flooding Rule. The schema from [DNR08] is repeated, in a sense, in the proof
of ↔2 in [GO13]. The instance D is treated as an input of some machine, and
chase simulates the computation of this machine on given input. Chase ter-
minates when the computation does. The problem are the instances D which

5 This is for sake of completeness, as it was earlier shown in [GO13] that undecid-
ability of all-instances termination of Oblivious Chase implies undecidability of all-
instances–all–paths Standard Chase termination.

All–Instances Termination of Chase is Undecidable 297

contain too much positive information to be understood by a Datalog∃ program
as a finite input – for example instances that contain a loop, which is unavoidably
seen by a program as an infinite path.

The trick used in [GO13] to make sure that chase will terminate on such
unwelcome instances is the flooding rule – a technique earlier used in 1990s in
the numerous papers dealing with the Datalog boundedness problem [GMSV93].
Let us illustrate it by an example:

Example. Consider the program T :

(i) U(x, y, z), E(z, w) ∈ ≡u U(y, u, w);
(ii) E(x, y) ≥ E+(x, y);
(iii) E+(x, y), E(y, z) ∈ E+(x, z);
(iv) E+(x, x) ∈ U(y, u, w) (flooding rule)

To see what is going on here, notice that E-atoms are never produced. Rules
(ii) and (iii) compute E+, being the (non-reflexive) transitive closure of E. Rule
(i) unfolds graph E: if ⇒x, y◦ is an edge in the unfolding, y is “over” an element
z in E and if there is an edge ⇒z, w◦ in E then a new element u must exist in
the unfolding, being “over” w.

It is easy to see that whatever D we begin with, T -Standard Chase on D has
a terminating path. If E is acyclic, then rule (i) terminates for all chase variants.
If E has a cycle, then rules (ii) and (iii) can prove E+(a, a) for some a, and then
rule (iv) can be used to “flood” the predicate U , so that in consequence, the
head of (i) will be always satisfied and (i) will never be triggered again.

But there is no hope for this trick to work for the all–instances–all–paths
Standard Chase: flooding rule only terminates a Standard Chase if we can make
sure it is always used early enough to prevent new elements to be born, which
means that it must be us who decides what the execution order is.

Clearly, this technique also fails for the eager chase variants. T -Oblivious
Chase on D does not terminate whenever D is an instance containing an atom
U(a, b, c), for some c belonging to a cycle in E.

Notice also that adding a denial constraint to the constraints (⇔) is just
another way of using a flooding rule – instead of flooding the database we make
the chase fail.

Drinking from the Well of Positivity. The trick we invented in this paper
to replace the flooding rule is as follows. We treat the instance D as the only
source of some positive facts: there are predicates which are never proved, they
can only come with D.

Then the idea is that each new element a of Chase uses the path leading from
D to a to run its private computation of some Turing-complete computational
model. Only Datalog rules are used in this computation so we do not need to
bother about termination. In order to be able to give birth to a successor a must
first reach, by means of atoms created during its private computation, some atom
that can only be found in D. Elements of Chase which are already too far away
from this source of positivity cannot drink from it any more, dessicate, and do
not produce offspring, thus causing the chase to terminate.

298 T. Gogacz and J. Marcinkowski

As we are going to see in the next Section, once one knows the above idea,
the proof of Theorem 1 is easy.

3 Proof of Theorem 1

3.1 The Well of Positivity

From now on, whenever we say “chase” we mean Oblivious Chase.
Informally we say that Oblivious Chase creates one witness for each tuple

satisfying the body of an existential TGD, regardless whether such a witness is
already present in the current database instance or not. One of the ways how
this informal statement can be formalized is to construct, for a given Datalog∃

program T a new such program T ≥, by replacing each TGD in T , of the form:

(i) Φ(x̄) ∈ ≡y Ψ(y, x̄)

where (i) is the number of the rule in T , and Φ and Ψ are conjunctive queries,
by a rule:

(i’) Φ(x̄) ∈ Ψ(hi(x̄), x̄)

where hi is a Skolem function. In this way Chase(D, T) is the structure whose
active domain is a subset of Herbrand universe, where the elements of D are
treated as constants, and terms are built out of constants using the Skolem
functions hi, and which is a minimal model for all the rules of the program T ≥.
Since T ≥ is a Prolog program it always has such a minimal model.

Now the question whether the T -Oblivious Chase on D terminates is equiva-
lent to the question whether Chase(D, T), seen as a substructure of the Herbrand
universe, contains, for each k ≤ N, a term of depth at least k.

For a given signature Σ, an element aψ of a database instance D over Σ will
be called a well of positivity if for each relation R ≤ Σ the atom R(aψ, aψ , . . . aψ)
is true in D. By Dψ we will denote the database instance consisting of a single
element, being a well of positivity.

Lemma 3. The following conditions are equivalent for Datalog∃ program T :

(i) for each database instance D, T -Oblivious Chase on D terminates;
(ii) T - Oblivious Chase terminates on Dψ.

This is (rephrased) Theorem 2 in [M09]. We sketch its proof for completeness.

Proof. Only the (ii)∈ (i) implication needs a proof. Let us assume that there
exists D such that Chase(D, T), seen as a substructure of the Herbrand universe,
contains, for each k ≤ N, a term of depth at least k. What we need to prove is
that also Chase(Dψ, T) does contain such a term.

So let t be a term of depth at least k in Chase(D, T). This means that there
is a derivation, in program T ≥, having atoms of D in its leaves and some atom
containing t in its root. When we replace all the elements of D, occurring in
atoms of this derivation, by the well of positivity aψ, then we will get another
valid derivation in program T ≥, leading, instead of t, to some new term t≥ in
Chase(Dψ, T). And the depth of t≥ is equal to the depth of t – the two terms
only differ at the level of constants, but are equal otherwise. �

All–Instances Termination of Chase is Undecidable 299

3.2 The Problem to be Reduced

The undecidable problem we are going to encode is the halting problem for
finite automata with three counters (3CM). More precisely, the instance of the
problem Halt3CM is a triple consisting of finite set Q of states, of some initial
state q1 ≤ Q and of a finite set Π of instructions, each of them of the following
format:
if the current state is q ≤ Q,

the value of the 1st counter (is|is not) zero

and the value of the 2nd counter (is|is not) zero

then:

change the state to q≥ ≤ Q;

(increment|decrement|keep unchanged) the value of the 1st counter,

(increment|decrement|keep unchanged) the value of the 2nd counter,

increment the value of the third counter.

We assume here that the automaton is deterministic, which means that the
part of the instruction which is after then is a function of the part occurring
before then. This function is partial – if a configuration is reached with no
instruction applicable then the automaton halts.

The problem, called Halt3CM, is whether, for a given 3CM M , executing the
instructions of M will ever halt when started from the state q1 and three empty
counters. Since 3CM is a Minsky Machine with an additional counter, Halt3CM
is of course undecidable. From now on each time we say “M halts” we mean
that it halts after started from q1 and three empty counters.

Notice that the value of the third counter is never read by the automaton,
and the counter is incremented in each step. This leads to the following:

Lemma 4. A 3CM halts if and only if the set of values of its third counter is
bounded.

From now on a 3CM M = ⇒Q, q1, Π◦ is fixed and we will construct a Datalog∃

program TM , over some signature ΣM such that TM -Oblivious Chase on DψM

terminates if and only if M halts.

3.3 Encoding the Automaton as a Conway Function

Now we will encode the computation of M as a sequence of iterations of a
Conway function. This technique is by no means new, but maybe not as widely
known as some other undecidable problems, so we include this subsection for
completeness.

Suppose |Q| = m. Let p1 = 2, p2 = 3, . . . pm+3 be the first m + 3 primes
and let p = p1p2 . . . pm+3. Let c be a configuration of M with the state being qi
and c1, c2 and c3 being respectively values of the first, second and third counter.
Then by e(c) (or encoding of c) we will mean the number:

300 T. Gogacz and J. Marcinkowski

pip
c1
m+1p

c2
m+2p

c3
m+3

Notice that if c is the initial configuration of M then e(c) = 2.
For two configurations c, c≥ of M we will say that they are consecutive when

c≥ is a result of executing a single step of M in c or when there is no instruction
that can be executed in c and c = c≥. Now it is easy to see that:

Theorem 5. There exist natural numbers q0, q1,. . . qp−1, r0, r1,. . . rp−1, such
that for each two consecutive configurations c, c≥ of M , such that e(c) = i mod p

it holds that e(c≥) = qie(c)
ri

.

For the proof of this theorem notice that the remainder i of e(c) modulo p
carries all the information needed for M to decide which instruction should be
applied: the state is qj if and only if i is divisible by pj and the value of the
(for example) second counter is non-zero if and only if i is divisible by pm+2.
It is equally easy to see that executing an instruction boils down to division
(removing the old state, decrementing a counter) and multiplication (moving to
a new state, incrementing a counter).

From now on the numbers q0, q1,. . . qp−1, r0, r1,. . . rp−1 provided for M by
Theorem 5 are fixed. Denote by g a function that maps a natural number n to
nqi/ri, where n = i mod p. Let G = {gn(2) : n ≤ N} be the smallest subset of
N which contains 2 and is closed under g. Clearly, M halts if and only if G is
bounded. So, what remains for us to do is to construct such a Datalog∃ program
TM that TM -Oblivious Chase on DψM terminates if and only if G is bounded.
Notice that it is here where the third counter is important.

3.4 The Program TM

Denote by QR the set {q0, q1, . . . qp−1, r0, r, . . . rp−1}. The signature ΣM will
consist of the following relations:

– a binary relation E, which will pretend to be the successor relation on the
natural numbers;

– for each j ≤ QR a binary relation Ej – only needed to keep rule (d3) short;
– a unary relation H , which will never occur in the head of any rule, so its

only atom will be H(aψ);
– for each 0 → i → p−1 a ternary relation T i, with T i

x(y, z) meaning something
like “x thinks that y

z = qi
ri

”. Normally we should of course write T (x, y, z)
rather than Tx(y, z). But we like Tx(y, z) more, and it is still ternary;

– for each 0 → i → p− 1 a binary relation Ri, with Ri
x(y) meaning something

like “x thinks that i = y mod p”;
– a binary relation G, with Gx(y) meaning “x thinks that y ≤ G”;
– a unary relation N , with N(x) meaning that x is a natural number. N is

not really needed, we only have it because otherwise the bodies of rules (d2)
and (d4) would be empty, and we do not like rules with empty bodies.

All–Instances Termination of Chase is Undecidable 301

Now we are ready to write the program TM . There is one existential rule:

(e) Gx(y), H(y) ∈ ≡z E(z, x).

Read this rule as “Once x has drunk from the well of positivity, it is allowed to
give birth to a new element z.”

There will be also several Datalog rules:

(d0) E(y, y1), E(y1, y2), . . . E(yj−1, yj) ∈ Ej(y, yj) one rule for each j ≤ QR;

(d1) E(z, x) ∈ N(z)

Rules of the form (d2) and (d3) form a recursive definition of multiplication by
addition (remember – x always thinks it equals zero):

(d2) N(x) ∈ T i
x(x, x) one rule for each 0 → i → p− 1;

(d3) T i
x(y, z), Eqi(y, y≥), Eri(z, z≥) ∈ T i

x(y≥, z≥) one rule for each 0 → i → p− 1;

The next two rules count modulo p:

(d4) N(x) ∈ R0
x(x);

(d5) Ri
x(y), E(y, y≥) ∈ Rj

x(y≥) whenever j = i + 1 mod p;

Now, once we have all the predicates we need for the multiplications, and for
remainders modulo p, we can easily write rules which will compute the set G.
First of them says – as long as x keeps assuming that it equals zero – that 2 ≤ G:

(d6) E(x, y), E(y, z) ∈ Gx(z)

Second rule for G says that G is closed with respect to the function g:

(d7) Ri
x(y), Gx(y), T i

x(y, z) ∈ Gx(z) one rule for each 0 → i → p− 1;

Notice that the rules (d2)–(d7) form a sort of a private Datalog program for
each x, and the atoms proved by such programs for different x, x≥ never see each
other (this is reflected in our notation, which suggests that x is more than merely
an argument of the predicates, but part of their names). Rule (e) creates a new
element z, such that E(z, x), when the program for x can prove that Gx(y) for
some y such that H(y). But, as we said, there is no rule saying that something
is in H and the only element a such that Chase(DψM , TM) |= H(a) is the well
of positivity aψM . So (e) creates a new element z, such that E(z, x), when the
program for x can prove that Gx(aψM).

Now we have a lemma that Theorem 1 follows from:

Lemma 6. TM -Oblivious Chase on DψM terminates if and only if G is bounded.

We think that the lemma follows directly from the construction of TM . But
the readers who like it more formal, are invited to read the full paper.

3.5 The Case of All-Instances-All-Paths Standard Chase
Termination

For any T and D any structure being a result of running a T -Standard Chase on
D is a subset of (oblivious) Chase(D, T). This means that if G is bounded, then
TM -Standard Chase terminates on each instance and each path. What remains

302 T. Gogacz and J. Marcinkowski

to be seen is that if G is not bounded, then there exists D such that TM -Standard
Chase does not terminate on some path. It is easy to see that a structure D,
consisting of the well of positivity aψM and of some a such that D |= E(a, aψM),
has this property.

4 Proof of Theorem 2

It is harder to prove any nontrivial lower bound for all-instances Oblivious Chase
termination problem for single-head TGDs over binary signatures, than to prove
undecidability in the general case. In the proof of Theorem 2 we try to repeat
the idea of proof of Theorem 1, creating a new element of some E-path, for a
binary E, only when some private computation, run by the last element a of the
current path, terminates. But, while having arity three at our disposal, we could
run many mutually non-interfering computations using the same arena, now we
must construct a separate arena for each element of the E-path being built.

This arena needs to be huge enough to contain a complex computation, but on
the other hand the process of the construction of the arena should never lead to
an infinite chase. In other words we need to – and we think it is not immediately
clear how to do it – find a binary Datalog∃ program which builds a huge (i.e.
greater than exponential, with respect to the size of the program) (Oblivious)
Chase, when run on aψ , but finally terminates.

4.1 Constructing the Arena: Chase of Exponential Depth

Let m be a fixed natural number and let M = 2m. Consider the program T 0
b (m)

consisting of the following rules:

(d0) H(x) ∈ K(x)

(d0’) H(x) ∈ Ci(x) (one rule for each i ≤ {0, 1, . . .m})

(e) K(x) ∈ ≡y R(x, y)

(d1) R(x, y) ∈ T (y, y)

(d2) T (x, y), R(x≥, z), R(z, x), R(y≥, y) ∈ T (x≥, y≥)
(d3) T (x, y), Ci(x) ∈ Ci+1(y) (one rule for each i ≤ {0, 1, . . .m− 1})

(d4) R(x, y), Cm(x) ∈ K(y)

Let now a be any element such that H(a) (which means that a may be, but
may not be, a well of positivity), and let Da be a database instance containing
a as a single element.

Exercise 7 Chase(Da, T 0
b (m)), seen as a graph over predicate R, is a path of

length M + 1, having a as its first element

For a solution to this exercise see the full paper. Hint: like in Section 3 there
is no rule saying that something is in H , and the only element satisfying H plays
the role of the well of positivity. Also like in Section 3, Oblivious Chase produces
a path (this time it is an R-path) – if an element is in K then it is “close enough”

All–Instances Termination of Chase is Undecidable 303

to H to be able to produce R-offspring. The predicates Ci are resources – the
further we are from H the more we are running out them.

4.2 Constructing the Arena: Chase of Double Exponential Size

For fixed natural numbers m and p consider now the program T 1
b (m, p) consisting

of all the rules that can be obtained from the rules of T 0
b (m) by replacing each

occurrence of the predicate R with one of the predicates R1, . . . Rp. For example
rule (e) will be replaced by p new rules while rule (d2) will be replaced by p3

new rules. Let a and Da be as in the previous subsection. Then the analysis of
Chase(Da, T 1

b (m, p)) is analogous to the analysis of Chase(Da, T 0
b (m)), except

that the structure we now get is a p-ary tree of depth M + 1 rather than a path
of length M + 1. Notice that the same elements are created regardless if a is a
well of positivity, or any element just satisfying H(a).

4.3 The Encoding Lemma and How it Implies Theorem 2

Now Chase(Da, T 1
b (m, p)) can be used as an arena, where we can run some

computation. Let a and Da be as before.

Lemma 8 (The encoding Lemma). The problem:

Given m, p ≤ N and a Datalog program T , with EDB relations H, R1,
R2, . . . Rp and IDB relations P (binary) and G1,G, G2 and C (unary). Is it
the case that:

Chase(Da, T 1
b (m, p) ∅ T) |= C(a) ?

is EXSPACE-hard.
The size of the instance is here the size of the program T 1

b (m, p) ∅ T .

For the proof of the Lemma see the full paper. Notice that Chase(Da, T 1
b (m, p))∅

T) has the same set of elements as Chase(Da, T 1
b (m)) – this is because the

Datalog rules of T do not prove any atoms that could be used by T 1
b (m, p).

Let now T 2
b (m, p) be T 1

b (m, p) with the following additional rules:

(d’) E(x, y) ∈ H(y)
(e’) C(x) ∈ ≡z E(x, z).

Now, Theorem 2 follows from the next lemma, whose proof can be found in the
full paper:

Lemma 9. For a Datalog program T , as in Lemma 8, the following two condi-
tions are equivalent:

– Chase(Da, T 1
b (m, p) ∅ T) |= C(a)

– Chase(Dψ, T 2
b (m, p) ∅ T does not terminate.

304 T. Gogacz and J. Marcinkowski

References

[ASU79] Aho, A.V., Sagiv, Y., Ullman, J.D.: Efficient Optimization of a Class of Re-
lational Expressions. ACM Transactions on Database Systems 4(4), 435–454
(1979)

[B84] Beeri, C., Vardi, M.Y.: A proof procedure for data dependencies. Journal of
the ACM (JACM) 31(4), 718–741 (1984)

[CGK08] Calı, A., Gottlob, G., Kifer, M.: Taming the infinite chase: Query answering
under expressive relational constraints. In: Proc. of KR, pp. 70–80 (2008)

[CGL09] Calı, A., Gottlob, G., Lukasiewicz, T.: Datalog +/-: A unified approach to
ontologies and integrity constraints. In: Proceedings of the 12th International
Conference on Database Theory. ACM (2009)

[CGL12] Calı, A., Gottlob, G., Lukasiewicz, T.: A general datalog-based framework for
tractable query answering over ontologies. Web Semantics: Science, Services
and Agents on the World Wide Web 14, 57–83 (2012)

[DT03] Deutsch, A., Tannen, V.: Reformulation of XML Queries and Constraints.
In: Calvanese, D., Lenzerini, M., Motwani, R. (eds.) ICDT 2003. LNCS,
vol. 2572, pp. 225–238. Springer, Heidelberg (2002)

[DNR08] Deutsch, A., Nash, A., Remmel, J.: The chase revisited. In: Proceedings
of the 27th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems. ACM (2008)

[FKPP05] Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: semantics
and query answering. Theoretical Computer Science 336(1), 89–124 (2005)

[G10] Greco, S., Spezzano, F.: Chase termination: A constraints rewriting ap-
proach. Proceedings of the VLDB Endowment 3(1-2), 93–104 (2010)

[GMSV93] Gaifman, H., Mairson, H., Sagiv, Y., Vardi, M.Y.: Undecidable optimiza-
tion problems for database logic programs. Journal of the ACM 40(3),
683–713 (1993)

[GO11] Grahne, G., Onet, A.: On Conditional Chase Termination. AMW 11, 46
(2011)

[G013] Grahne, G., Onet, A.: Anatomy of the chase. arXiv:1303.6682 (2013)
[HS07] Hernich, A., Schweikardt, N.: CWA-solutions for data exchange settings with

target dependencies. In: Proceedings of the Twenty-sixth ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems. ACM
(2007)

[M99] Marcinkowski, J.: Achilles, turtle, and undecidable boundedness problems
for small DATALOG programs. SIAM Journal on Computing 29(1), 231–257
(1999)

[MMS79] Maier, D., Mendelzon, A.O., Sagiv, Y.: Testing implications of data depen-
dencies. ACM Transactions on Database Systems 4(4), 455–469 (1979)

[M09] Marnette, B.: Generalized schema-mappings: from termination to tractabil-
ity. In: Proceedings of the Twenty-eighth ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems. ACM (2009)

[MSL09] Meier, M., Schmidt, M., Lausen, G.: On chase termination beyond stratifi-
cation. Proceedings of the VLDB Endowment 2(1), 970–981 (2009)

[MSL09a] Meier, M., Schmidt, M., Lausen, G.: On chase termination beyond stratifi-
cation (technical report and erratum), http://arxiv.org/abs/0906.4228

[O13] Onet, A.: The chase procedure and its applications in data exchange. In: Data
Exchange, Integration, and Streams. Dagstuhl Follow-Ups. Schloss Dagstuhl-
Leibniz-Zentrum für Informatik, Germany (2013)

http://arxiv.org/abs/0906.4228

Non-uniform Polytime Computation in the Infinitary
Affine Lambda-Calculus

Damiano Mazza

CNRS, UMR 7030, LIPN, Université Paris 13, Sorbonne Paris Cité, France
Damiano.Mazza@lipn.univ-paris13.fr

Abstract. We give an implicit, functional characterization of the class of non-
uniform polynomial time languages, based on an infinitary affine lambda-calculus
and on previously defined bounded-complexity subsystems of linear (or affine)
logic. The fact that the characterization is implicit means that the complexity
is guaranteed by structural properties of programs rather than explicit resource
bounds. As a corollary, we obtain a proof of the (already known) P-completeness
of the normalization problem for the affine lambda-calculus which mimics in an
interesting way Ladner’s P-completeness proof of CIRCUIT VALUE (essentially,
the argument giving the Cook-Levin theorem). This suggests that the relation-
ship between affine and usual lambda-calculus is deeply similar to that between
Boolean circuits and Turing machines.

1 Introduction

Loosely speaking, the aim of implicit computational complexity is to replace clocks (or
other explicit resource bounds) with certificates. For example, if we consider polyno-
mial time computation, the idea is to define a structured programming language whose
programs guarantee a polynomial dependence of the runtime on the input by construc-
tion, i.e., because they satisfy some syntactic condition, not because their execution is
artificially stopped after a polynomial number of steps. At the same time, such a pro-
gramming language must be expressive enough so that every polynomial time function
may be somehow implemented. Notable early examples of such methodology are the
work of Bellantoni and Cook [3], Leivant and Marion [10], and Jones [6].

We consider here the question of finding an implicit characterization of non-uniform
polynomial time, i.e., the class P/poly. Our approach brings together two lines of work,
both based on linear logic. The first is the linear-logical take at implicit computational
complexity initiated by Girard [5] and reformulated in the Σ-calculus, for example,
by Asperti and Roversi [2]. The second is the author’s work on the infinitary affine
Σ-calculus [12], previously considered also by Kfoury [7] and Melliès [13].

For our present purposes, the essence of linear logic is in its resource awareness. Lin-
ear (or, more precisely, affine) types describe volatile data, which may be accessed only
once. Accordingly, the linear (or affine) functional type A � B describes programs
producing an output of type B by using their input of type A exactly (or at most) once.
Persistent data is described by the type !A, which may be understood as volatile access

J. Esparza et al. (Eds.): ICALP 2014, Part II, LNCS 8573, pp. 305–317, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

306 D. Mazza

to a bottomless pile of copies of A, thus obtaining unlimited access to A. The usual
functional type A ∈ B may then be expressed by !A � B.

In the Σ-calculus, which is the prototypical functional language, affinity takes the
form of forbidding duplication, which translates into an extremely simple syntactic re-
striction: each variable must appear at most once in a term. Our previous work [12]
shows how affine Σ-terms may approximate usual Σ-terms arbitrarily well, in a precise
topological sense which is compatible with computation (i.e., reduction is continuous).
In the limit, usual Σ-terms are recovered by considering infinitary affine terms (thus
taking quite literally the above idea of “bottomless pile”). However, the limit process
(which is just the completion of a uniform space) introduces a host of infinitary terms
which do not correspond to any usual Σ-term. The reason is easily explained: to act
as a persistent memory cell, a datum of type !A must contain infinitely many identical
copies of a datum of type A. Without further constraints, the infinitary affine Σ-calculus
allows memory cells whose content changes arbitrarily with each access. This is the
“functional gateway” to non-uniform computation.

The technical contribution of this paper is to “tame” the non-uniformity of the un-
restricted calculus εΩ∗ of [12] so as to keep it within interesting boundaries, namely
those of P/poly. Let us give an informal description of what this means. Using (an
adaptation of) the standard Σ-calculus encodings of binary strings, we may say that a
term t decides L ≡ {0, 1}∗ in εΩ∗ if, given w ⊆ {0, 1}∗, tw ∈∗ b with b ⊆ {0, 1}
according to whether w belongs to L (w is the encoding of w and ∈∗ is the reduction
relation of the calculus). Now, t is generally infinite, but we may define a canonical se-
quence ↔t⇔n of approximations of t, which are finite affine terms such that lim↔t⇔n = t.
Intuitively, ↔t⇔n behaves like t in which every internal memory cell is limited to at most
n accesses. We may then appeal to the continuity of reduction, by which, if we let un

be the normal form of ↔t⇔nw, we have that b = limun. But our topology is such that
pieces of data like b are isolated points, so there exists m ⊆ N such that un = b for all
n ⊂ m. This means that a finite approximation of t suffices to compute tw. The size
of ↔t⇔m is linear in m, so the question is: How big is m? Can we relate it to |w|? If
we can make m be polynomial in |w|, the language decided by t is in P/poly: we may
use the ↔t⇔m as (polynomial) advice and then normalize ↔t⇔m w, which may be done in
polynomial time in |w| because it is a finite affine term.

There exist several Σ-calculus characterizations of P based on linear logic (most no-
tably Girard’s [5] and Lafont’s [9]) and the naive idea to polynomially bound m would
be to reuse the recipes given therein. However, non-uniformity in the Σ-calculus is ex-
tremely subtle and the approach “take your favorite Σ-calculus characterization of P
and add non-uniformity” does not necessarily yield P/poly. The most surprising aspect
is that polytime non-uniformity seems to refuse the logical principle of contraction (ex-
pressed by the formula !A � !A≥ !A): in its presence, m may be exponentially big and
we may therefore decide any language (an intuitive explanation is given below). This
rules out Girard’s approach [5]. Lafont’s system [9] does not use contraction but appears
to have the opposite problem: we are currently unaware of whether the expressiveness
of its non-uniform version reaches P/poly.

The key to our solution is a new structural constraint on terms, which we call parsi-
mony. In εΩ∗, affinity is enforced by giving a unique integer index to each occurrence

Non-uniform Polytime Computation in the Infinitary Affine Lambda-Calculus 307

of non-linear variable x: intuitively, xi means “access to the i-th copy of the datum con-
tained in x”. In this setting, contraction (corresponding to duplication) is implemented
using “Hilbert’s hotel”: from an infinite family (xi)i≥N representing an argument of
type !A, we make two infinite families, e.g. x2i and x2i+1. Iterating this n times, we
obtain a family whose first element is xO(2n), causing the exponential growth rate of
m mentioned above. A very high level description of parsimony is that, when such a
reallocation of a family of occurrences is performed, the resulting families may not
“waste” indices: each of them contains either finitely many xi (i.e., it is finite), or al-
most all of them (i.e., it is co-finite). Parsimony therefore refuses contraction, which
necessarily produces infinite co-infinite families. Instead, it allows an asymmetric form
of contraction, also known as absorption, expressed by the formula !A � !A≥A.

Parsimony is coupled with stratification, which is a staple of Girard’s work [5]. Strat-
ification partitions a program into rigid levels which may not interact and, very roughly
speaking, forbids the self-reference that makes the Σ-calculus Turing powerful. Alone,
it guarantees termination (in elementary time, in the uniform case). Without it, parsi-
monious terms may diverge and the question of bounding m may not make sense.

For brevity, most of the results are given here without proof. An extended version of
this paper, containing the missing proofs, is available on the author’s web page.

2 The Affine Lambda-Calculus

Pre-terms. We fix two denumerably infinite disjoint sets of linear variables, ranged
over by a, b, c, and non-linear variables, ranged over by x, y, z. Patterns and pre-terms
are generated by the grammar

p, q ::= a | x | p≥ q, t, u ::= ⇒ | a | xi | Σp.t | tu | t≥ u | u,

where i ⊆ N and u, which we refer to as a box, is a finite sequence of pre-terms, which
for convenience we identify with a function from N to pre-terms almost everywhere
equal to ⇒. We also use the explicit notation ◦u(0), . . . ,u(n− 1)≤, in which we imply
that u(i) = ⇒ for all i ⊂ n. If a variable a or x appears in a pattern p, we write a ⊆ p
or x ⊆ p. We require that, in p ≥ q, a variable cannot appear both in p and q. Free
and bound variables are defined as customary, the only point worth mentioning is that
if x ⊆ p, then all occurrences of the form xi are bound in Σp.t. As usual, we identify
two pre-terms if they only differ in the names of their bound variables (δ-equivalence).

Shallow contexts and contexts are defined by the following grammar:

S ::= • | Σp.S | St | tS | S ≥ t | t≥ S C ::= S | ◦u0, . . . , C, . . . , un≤,

where t, u1, . . . , un are arbitrary pre-terms. As usual, we denote by C[t] the term ob-
tained by substituting t to • in the context C. We say that u is a subterm of t, and we
write u → t, if there exists a context C such that t = C[u].

We will find useful to see pre-terms as labelled trees. Intuitively, this is done in
the obvious way: a pre-term t induces a function t : N

∗ −∈ π, where π :=
{⇒, a, xi, Σp,@,≥, !} and N

∗ is the set of finite sequences of natural numbers, ranged
over by δ and with the empty sequence denoted by ψ. Sequences of arbitrary integers

308 D. Mazza

are needed because of boxes. The symbol t[δ] denotes the kind of constructor at posi-
tion δ in t: ⇒, a variable (a or xi), an abstraction (Σ), an application (@), a tensor (≥) or
a box (!). Also, when u → t, we say that u occurs at position δ if u is rooted at position
δ in t. Note that, when the position δ does not exist in t, we assume that t[δ] = ⇒.

Terms and Reduction. A term is a pre-term t such that:

– every linear variable and occurrence of non-linear variable appears at most once in
t (i.e., if xi, xj → t occur at different positions, then i ∅= j);

– whenever u → t, the free variables of u are all non-linear.

We denote by εΩ the set of all terms.
We say that a term t matches a pattern p, and write t � p, when: t � a for all

t; t � x just if t = u; and if t � p and u � q, then t ≥ u � p ≥ q. In case u �
p, we define the substitution t[u/p] as follows: t[u/a] is defined as usual; t[u/x] is
obtained by substituting u(i) to the unique free occurrence xi in t, for all i ⊆ N; and
t[u1 ≥ u2/p1 ≥ p2] := t[u1/p1][u2/p2].

We define ∈s (shallow reduction) and� (unboxing reduction) as the smallest binary
relations εΩ such that:

– (Σp.t)u ∈s t[u/p] whenever u � p;
– if t ∈s t

∈, then S[t] ∈s S[t
∈] for every shallow context S;

– u � u(0) for every box u.

Note that the unboxing step is not closed under any context: it applies only to a term
which is itself a box, “extracting” its first subterm. Usually, one allows reduction inside
boxes. The non-standard definition adopted here is technically simpler for our purposes.

A redex is a term of the form (Σp.t)u and such that u � p. Each ∈s step is obviously
associated with a redex, which we say is fired by the reduction step.

Reduction is defined by ∈ :=∈s ⊇ �. If ��� is any reduction relation, we denote
by ���∗ its reflexive-transitive closure and by ���l the composition of exactly l ⊆ N

steps of ���. Reduction is obviously confluent and strongly normalizing. Both points
are a consequence of the affinity conditions: no redex is duplicated and the size of terms
(i.e., the number of symbols) strictly decreases with reduction.

Uniform Structure. As noted above, εΩ may be seen as a subset of the set of functions
N

∗ −∈ π. If we equip π with the discrete uniformity,1 then we may endow terms with
the uniformity of uniform convergence on finitely branching trees (as subsets of N∗).
More explicitly, let (NN,≤,∪) be the join-semilattice of infinite sequences of natural
numbers, ranged over by φ, with the pointwise ordering. We denote by φi the ith element
of the sequence φ and by n · φ a sequence whose first element is n. We also write δ ∩ φ
if δ ⊆ N

∗ is a prefix of φ. The uniformity of uniform convergence on finitely branching
trees is generated by the following basis of entourages, for φ ⊆ N

N:

Uξ := {(t, t∈) ⊆ εΩ× εΩ | ⊕δ ∩ φ∈ ≤ φ, t[δ] = t∈[δ]}.
1 The word “uniformity” takes here its standard topological sense [4], which is essentially a

generalization of the concept of metric still allowing one to speak of Cauchy sequences. This,
unfortunately, is completely unrelated to the equally standard meaning more common in com-
puter science (and employed, in particular, in the title of this paper).

Non-uniform Polytime Computation in the Infinitary Affine Lambda-Calculus 309

The intuition is the following: with each φ ⊆ N
N we associate an infinite but finitely

branching tree αξ , such that every node at depth i of αξ has exactly φi + 1 siblings;
then, two terms are φ-close (i.e., belong to Uξ) if they coincide on αξ. A basis of open
neighborhoods of t for the induced topology is Uξ(t) := {t∈ ⊆ εΩ | ⊕δ ∩ φ∈ ≤
φ, t∈[δ] = t[δ]}, for φ ⊆ N

N, i.e., the terms coinciding with t on αξ. Observe that the
local basis is uncountable. In fact, one can show that no countable local basis exists for
this topology, so the space is not metrizable.

The fundamental result concerning the uniform structure on εΩ is the Cauchy-
continuity of reduction. We remind that a function between uniform spaces is Cauchy-
continuous when it preserves Cauchy nets. In particular, it is continuous. Given δ ⊆ N

∗,
we define Rα : εΩ −∈ εΩ by Rα(t) := t∈ if t ∈s t∈ by reducing a redex at position
δ, or Rα(t) := t if no such reduction applies. Similarly, we define U(t) := t∈ if t � t∈

and U(t) := t otherwise.

Proposition 1 (Cauchy-continuity of reduction). For all δ ⊆ N
∗, Rα is Cauchy-

continuous, and so is U .

Infinitary Terms and Approximations. Intuitively, Cauchy sequences in εΩ are made of
terms that coincide on wider and wider trees, such as βn := Σx.x0◦x1, . . . , xn≤. Note,
however, that (βn)n≥N has no limit in εΩ, showing that the space is not complete. We
denote by εΩ∗ the completion of εΩ. From now on, the word “term” will refer to an
element of εΩ∗, whereas the elements of εΩ will be called finite terms.

Indeed, the elements of εΩ∗ may be seen as infinitary terms. They still verify
the affinity constraints and we apply to them the same terminology and notations as
for finite terms (free and bound variable, subterm relation →, etc.). A typical exam-
ple of infinitary term is β := Σx.x0◦x1, x2, x3, . . .≤, which is the limit of (βn)n≥N.
Apart from being infinitely wide, terms of εΩ∗ may also have infinite height, such as
◦Σx.x0, Σx.x0x1, Σx.x0(x1x2), . . .≤. Nevertheless, one may show that they are always
well-founded.

In fact, we will mostly be interested in infinitary terms of finite height, like β
above, but knowing that all terms are well-founded is quite useful because it al-
lows reasoning by induction. For example, given t ⊆ εΩ∗, we may define a default
sequence of finite terms converging to t, its n-th approximations ↔t⇔n, as follows:
↔⇒⇔n := ⇒; ↔a⇔n := a, ↔xi⇔n := xi; ↔Σp.t⇔n := Σp.↔t⇔n; ↔tu⇔n = ↔t⇔n↔u⇔n;
↔t ≥ u⇔n := ↔t⇔n ≥ ↔u⇔n; ↔u⇔n := ◦↔u(0)⇔n, . . . , ↔u(n)⇔n≤. The definition makes
sense because of well-foundedness: technically, what we are saying is that ↔·⇔n is a
function satisfying the above equalities. One may prove by well-founded induction that
such a function is well defined and unique.

Reduction may be defined for terms of εΩ∗ in the obvious way, using substitution
(which may now require infinitely many substitutions in the case t[u/x]). Nevertheless,
we stress that, from a strictly technical point of view, by Proposition 1 we do not need
an explicit definition: indeed, Cauchy-continuity is exactly the property guaranteeing
that a function on a uniform space uniquely extends to its completion.

It is worthwhile noting that reduction in εΩ∗, although still strongly confluent (a
topological proof is given in [12]), is no longer normalizing. In fact, if we set Δ :=
β◦β,β,β, . . .≤, with β as above, we have Δ ∈s Δ.

310 D. Mazza

Correspondence with a Non-linear Σ-calculus. For programming purposes, it will be
convenient to consider a more standard, non-linear Σ-calculus. We use the same sets of
linear and non-linear variables as εΩ (ranged over by a and x, respectively) but for each
non-linear variable we also consider a corresponding §-variable denoted by x§. Patterns
p are defined as in εΩ, with the addition of §-variables. Terms and reduction contexts
are defined as follows:

M,N ::= a | x§ | x | Σp.M | MN | M ≥N | §M | !M,

R ::= • | Σp.R | RM | MR | R≥M | M ≥R.

The affinity constraint is on linear variables and §-variables, which must occur at most
once. Non-linear variables may occur arbitrarily many times. Also, the simultaneous
presence of x§ and x in a term is excluded. In !M (resp. §M), called !-box (resp. §-box),
we require all free variables to be non-linear (resp. to be non-linear or §-variables). The
set of terms thus defined is denoted by Ω.

Matching between terms and patterns is defined as in εΩ, with both §M � x§ and
!M � x§, and !M � x. Substitution is also extended in the obvious way: in M [§N/x§],
M [!N/x§] and M [!N/x], N is substituted to all free occurrences of x or x§ in M (so
several copies of N may be needed). Reduction, denoted by ∈β , is the union of ∈β0

and �β , which are the smallest binary relations on Ω defined as follows:

– (Σp.M)N ∈β0 M [N/p] whenever N � p;
– if M ∈β0 M ∈, then R[M] ∈β0 R[M ∈];
– §M �β M .

We may represent terms of Ω in εΩ∗, as follows. Let Θ : N
∗ −∈ N \ {0}

be an injection. If p is a pattern of Ω, we denote by p− the pattern of εΩ∗ ob-
tained by replacing every x§ with x. Given δ ⊆ N

∗, we define �M�ια by induc-
tion on M : �a�ια := a; �x§�ια := x0; �x�ια := xι(α); �Σp.M�ια := Σp−.�M�ια;
�MN�ια := �M�ι0·α�N�ι1·α; �M ≥ N�ια := �M�ι0·α ≥ �N�ι1·α; �§M�ια := ◦�M�ια≤;
�!M�ια := ◦�M�ι0·α, �M�ι1·α, �M�ι2·α, . . .≤.

We say that t ⊆ εΩ∗ represents M ⊆ Ω, and we write t � M , if there exist δ and Θ
as above such that �M�ια = t.

Proposition 2. Let t � M and M ∈β M ∈, then t ∈ t∈ � M ∈.

Proof. Essentially, this is one direction of the isomorphism of [12]. ��
The converse of Proposition 2 fails: let i > 0, t := (Σx.xi)◦I≤ and M := (Σx.x)§I;

we have t � M , yet M is a normal form whereas t ∈s ⇒. The perfect correspon-
dence of [12] could be recovered by modifying the syntax of εΩ (and εΩ∗) but this is
inessential for our purposes.

3 The Parsimonious Stratified Calculus

Stratification. The box-depth of a specific occurrence of subterm u in t ⊆ εΩ∗, denoted
by du(t), is the number of nested boxes of t in which u is contained. For instance,

Non-uniform Polytime Computation in the Infinitary Affine Lambda-Calculus 311

du(t) = 0 iff t = S[u] for some shallow context S. The box-depth of t, denoted by
d(t), is the supremum of the box-depths of its subterms. It is always finite if the height
of t is finite, which will be the case of interest to us.

The binder-relative box-depth of an occurrence xi appearing (free or bound) in t,
denoted by rdxi(t), is: dxi(t) if x is free in t; if x is bound, then there exists Σp.u → t
such that x ⊆ p and xi appears in u, in which case rdxi(t) := dxi(t)− dλp.u(t) (which
is easily seen to be equal to dxi(u)).

Definition 1 (Stratified term). A term t is stratified if, for all xi → t, rdxi(t) = 1.
We denote by εΩs

∗ the set of all stratified terms and by εΩs0
∗ the set of stratified terms

having no free non-linear variable.

Proposition 3 (Reduction and stratification). 1) If t ⊆ εΩs
∗ and t ∈s t∈, then t∈ ⊆

εΩs∗ and d(t∈) ≤ d(t); 2) moreover, if t ⊆ εΩs0∗ and t � t∈, then t∈ ⊆ εΩs0∗ and
d(t∈) = d(t)− 1; 3) every t ⊆ εΩs0

∗ of finite height is strongly normalizing.

Parsimony. Given m,n ⊆ N and t, t∈ ⊆ εΩ∗, we write:
– t ∼n t∈ if t and t∈ differ only in the indices of the bound occurrences of their non-

linear variables, and the indices vary by at most n, i.e., if xi in t corresponds to xj

in t∈, then |i− j| ≤ n.
– t :<m t∈ if t∈ is obtained from t by replacing every free occurrence of non-linear

variable xi with xi+m.
– t :�m

n t∈ iff there is u s.t. t ∼n u :<m t∈ iff there is u∈ s.t. t :<m u∈ ∼n t∈ (the latter
two conditions are equivalent because the relations act on disjoint occurrences).

Definition 2 (Parsimonious term). A box u is parsimonious if there exist c, k ⊆ N

such that, for all i ⊂ j ⊂ k, u(i) :�i−j
c u(j). The smallest k ⊆ N realizing the above

definition is called the non-uniformity factor ofu, orn.u. factor for short. A term t ⊆ εΩ∗
is parsimonious if all of its boxes are. We denote by εΩp∗ the set of all parsimonious terms.

Note that, unlike stratification, parsimony is inherited by subterms. Another differ-
ence is that every finite term is parsimonious. In fact, intuitively, the structure of a par-
simonious term admits a finite description: in every box u, all u(i) ultimately have the
same “shape”. Nonetheless, the term itself may not be finitely describable at all. For in-
stance, if Ii := Σx.xi with i ⊆ {0, 1}, the term ◦Ii0 , Ii1 , Ii2 , . . .≤ is parsimonious (with
n.u. factor 0) regardless of the sequence in (this will be a key ingredient for encoding
infinite binary words). Moreover, we have:

Lemma 1. 1. Every parsimonious term has finite height;
2. let u be parsimonious of n.u. factor k and let x have infinitely many free occur-

rences in u. Then, for all h ⊆ N, there is exactly one free occurrence xjh in u(k+h)
and jh = j0 + h.

Proposition 4 (Reduction and parsimony). If t ⊆ εΩp
∗ and t ∈ t∈, then t ⊆ εΩp

∗.

Bounds on Parsimonious Stratified Terms. By Propositions 3 and 4, parsimonious strat-
ified terms form a well defined calculus with respect to the reduction relation ∈.

Definition 3 (The calculus εΩps0
∗). We define εΩps0

∗ := εΩs0
∗ ∩ εΩp

∗.

312 D. Mazza

In what follows, νd is the Kronecker symbol, equal to 1 if d = 0 and to 0 otherwise.
Let t ⊆ εΩp

∗. The size of t at box-depth d is defined as follows. First, we define the
size of a pattern by setting |a| := |x| := 1, and |p≥ q| := 1 + |p| + |q|. Then, we set
|⇒|d := |a|d := νd; |xi|d := (1 + i)νd; |Σp.t|d := νd|p| + |t|d; |tu|d := |t ≥ u|d :=

νd + |t|d + |u|d; |u|0 := 1 and |u|d+1 :=
∑k

i=0 |u(i)|d, where k is the n.u. factor of u.

Finally, we define the size by |t| = ∑d(t)
j=0 |t|j .

Lemma 2. Let t ⊆ εΩps0
∗ and let t ∈∗

s t∈. Then, for all j ⊂ 1, |t∈|j ≤ |t|1|t|j .

In what follows, we will make use of the n-th approximations of a term, defined at
page 309. We also introduce the following notation: given two terms t, t∈ and n ⊆ N,
t 	n t∈ just if ↔t⇔n = ↔t∈⇔n. It is obviously a family of equivalence relations.

Definition 4. Let t ⊆ εΩ∗ and let x appear in t. Given n ⊆ N, we define vx,t(n) :=
sup{i ⊆ N | xi appears in ↔t⇔n}.

Let now t ∈ t∈ and n ⊆ N. We define mt⊆t⊥(n) ⊆ N as follows. If t �
t∈, mt⊆t⊥(n) := n. Otherwise, t ∈s t∈ by firing a redex (Σp.u)v such that
x1, . . . , xp are the non-linear variables appearing in p. Then, we set mt⊆t⊥(n) :=
max(n, sup{vx1,t(n), . . . , vxp,t(n)}).

Lemma 3. Let t ⊆ εΩ∗ and let t ∈ t∈. Then, for all n ⊆ N and for all u ⊆ εΩ∗,
u 	mt∗t⊥(n) t implies u ∈ u∈ such that u∈ 	n t∈.

Lemma 4. Let t ⊆ εΩp∗ and let x be a bound variable of t. Then, vx,t(n) ≤ |t| + n,
for all n ⊆ N.

Lemma 5. Let t ⊆ εΩps0∗ and let t ∈l t∈. Then:

1. |t∈| ≤ |t|2d(t) and l ≤ (d(t) + 1)|t|2d(t) + d(t);

2. for all n ⊆ N, there is m ≤ n+ l|t|2d(t) such that ↔t⇔m ∈l t∈∈ 	n t∈.

Proof. Point 1 is proved by by induction on the number of � steps in the reduction, in
a similar way as [5,2]. In synthesis, Lemma 2 and Proposition 3 give d(t) + 1 “rounds”
each squaring the size. The result follows.

For point 2, we reason by induction on l. The case l = 0 is trivial, so let t ∈l⊥ u ∈ t∈.
The induction hypothesis gives us, for all m1 ⊆ N, m(m1) ≤ m1 + l∈|t|2d(t) such that
↔t⇔m(m1) ∈l⊥ u∈ 	m1 u. We then apply Lemma 3 to obtain ↔t⇔m(mu∗t⊥(n)) ∈l⊥ u∈ ∈
t∈∈ 	n t∈. To conclude, we need to bound m(mu⊆t⊥ (n)) ≤ mu⊆t⊥(n) + l∈|t|2d(t) . By
definition, mu⊆t⊥(n) is either n, in which case we are done, or of the form vx,u(n) for
some x appearing in u. By Lemma 4, vx,u(n) ≤ |u| + n. Now, using the size bound

of point 1 (which does not depend on l∈), we have |u| ≤ |t|2d(t) , which allows us to
conclude. ��

Parsimony and Stratification in the Non-linear Calculus. In Ω, the concepts of box-
depth and binder-relative box-depth are defined just as in εΩ, with !- and §-boxes both
counting as boxes.

Non-uniform Polytime Computation in the Infinitary Affine Lambda-Calculus 313

Definition 5 (The uniform calculus Ωps0). We denote by Ωps0 the subset of terms of
Ω satisfying the following requirements, which correspond to those of εΩps0

∗ : 1) occur-
rences of non-linear variables have binder-relative box-depth 1; 2) every non-linear
variable appears in at most one subterm of the form !M , in which case it occurs exactly
once in M ; 3) no §-variable or non-linear variable appears free.

Proposition 5. 1. If t � M , then M ⊆ Ωps0 iff t ⊆ εΩps0∗ ;
2. if M ⊆ Ωps0 and M ∈β M ∈, then M ∈ ⊆ Ωps0.

Proof. Point 1 is an immediate consequence of the definitions. Point 2 easily follows
from point 1, modulo Propositions 3 and 4. ��

4 A Characterization of P/poly

Representing Basic Data and Languages. We consider the usual Church encodings of
Booleans and binary strings (the members of W := {0, 1}∗), adapted to εΩps0

∗ . For the
Booleans, we set tt := Σa.Σb.a and ff := Σa.Σb.b. Given w = w1 · · ·wn ⊆ W, we
say that a term t is a Church encoding of w if t = Σs0.Σs1.◦Σa.sw1

i1
(. . . swn

in
a . . .)≤,

with i1, . . . , in ⊆ N arbitrary as long as affinity is assured. For example, the encodings
of 010 are all of the form Σs0.Σs1.◦Σa.s0i1 (s1j(s0i2a))≤, with i1 ∅= i2. We denote by
w a generic Church encoding of w. Observe that, by choosing the indices as small as
possible, every w ⊆ W admits a Church encoding such that |w| = O(|w|2) (where |w|
is the length of the string w). On the other hand, d(w) = 1 independently of w and of
the Church encoding.

Definition 6 (The class C∗). We say that a language L ≡ W is decidable in εΩps0
∗

(L ⊆ C∗) if there exists t ⊆ εΩps0∗ such that, for all w ⊆ W and for any one of its
Church encodings w, tw ∈∗ tt if w ⊆ L, and tw ∈∗ ff otherwise.

Uniform Programming. A good deal of the expressive power of εΩps0
∗ may be shown

using the more standard calculus Ωps0. This is especially convenient because Ωps0 may
be provided with a typing discipline which greatly facilitates programming.

The types are second order intuitionistic linear logic formulas, generated by A,B ::=
X | A � B | A ≥ B | §A | !A | ⊕X.A, with X ranging over propositional variables.
The usual conventions for parentheses are applied (� associates to the right). The
typing rules are a decoration of the sequent calculus for a subsystem of intuitionistic
linear logic. Typing judgments are of the form Γ � M : A, where Γ is a finite list of
variable assignments of the form p : A. In case p = x§ (resp. p = x), we require that
A = §B (resp. A = !B). The rules are as follows:

a : A � a : A
ax

Γ � N : A β, p : A � M : C

Γ,β � let p = N inM : C
cut

Γ � M : C
Γ, p : A � M : C

weak
Γ, x : !A, y§ : §A � M : C

Γ, x : !A � M [x/y§] : C
asym cntr

Γ, p : A � M : B

Γ � Σp.M : A � B
�R

Γ � N : A β, p : B � M : C

Γ,β, a : A � B � let p = aN inM : C
�L

314 D. Mazza

Γ � M : A β � N : B
Γ,β � M ≥N : A≥B

⊗R
Γ, p : A, q : B � M : C

Γ, p≥ q : A≥B � M : C
⊗L

−∈p :
−∈
B � M : A

−∈x § : §−∈B � §let−∈p = −∈x § inM : §A
§

−∈p :
−∈
B � M : A

−∈x : !
−∈
B � !let−∈p = −∈x inM : !A

!

Γ � M : A
Γ � M : ⊕X.A

∃R (X ∀≥freeΓ)
Γ, p : A � M : C

Γ, p : ⊕X.A � M : C
∃L

We used the following notational conventions: in the rules cut and � L, the notation
let p = N inM stands for M [N/a] in case p = a or (Σp.M)N otherwise (the obvious
n-ary generalization of this notation is used in the § and ! rules); in rule asym cntr, the
substitution M [x/y§] simply means that the unique occurrence of y§ in M is replaced

by x (of which there may already be occurrences); in the § and ! rules, −∈p :
−∈
B means

that the context is of the form p1 : B1, . . . , pn : Bn and, in the conclusion, −∈x § : §−∈B
(resp. −∈x : !

−∈
B) means that every pi : Bi is replaced by xi§ : §Bi (resp. xi : !Bi).

The reader may check that if p1 : A1, . . . , pn : An � M : C is derivable, then
Σp1 . . . Σpn.M ⊆ Ωps0. The system enjoys subject reduction with respect to ∈β0 but
not �β . This failure is to be expected and is actually rather mild: if � M : §A and
M �β N , then � N : A. This is enough for our purposes; subject reduction in itself is
not essential for us, because we never use typing as a means of ensuring properties.

The types of Booleans and Church strings are Bool := ⊕X.X � X � X and
Str := ⊕X.!(X � X) � !(X � X) � §(X � X), which are adaptations of the
corresponding standard System F types. Booleans are the same as in εΩps0

∗ and Church
strings are obtained by erasing indices. In particular, each string has a unique encoding,
e.g. 010 = Σs0.Σs1.§(Σa.s0(s1(s0a))).
Definition 7 (The class C). A language L is decidable in Ωps0 (L ⊆ C) if there is a
derivation � M : Str � §kBool, with §kA = § · · · §A for some k ⊆ N, s.t. Mw ∈∗

β tt
if w ⊆ L and Mw ∈∗

β ff if w ∅⊆ L.

By Propositions 2 and 5 we have C ≡ C∗.
A slight variant of the type of binary strings gives us the Church numerals, i.e.,

unary integers, of type Nat := ⊕X.!(X � X) � §(X � X). These are of the
form n := Σs.§(Σa.s(. . . sa . . .)), with n occurrences of s. If a : Γ, c : A � F : A
and b : β � Z : A, we define it(F,Z) := (Σz§.§(z§Z[y§/b]))(n!(Σc.F [x/a])).
It is readily verified that x : !Γ,y§ : §β,n : Nat � it(F,Z) : §A and that
it(F,Z)n ∈∗

β (Σc.F)(. . . (Σc.F)Z . . .), the n-fold iteration of F on Z . Using itera-
tion, we may define the basic arithmetic functions, including any polynomial, by adapt-
ing the usual definitions, much as in [5,2]. Furthermore, following [2], we may define
a type Tur of Turing machine configurations and, for any deterministic transition func-
tion, a term of type Tur � Tur implementing it. One may also easily implement the
function building an initial configuration from a string (of type Str � Tur), the function
telling whether a configuration is accepting (of type Tur � §Bool) and the function re-
turning the length of a string (of type Str � Nat). Composing all these, with the help of
iteration and the numerical functions shown above, every deterministic Turing machine
with a polynomial clock may be implemented in Ωps0, showing that P ≡ C.

Non-uniform Polytime Computation in the Infinitary Affine Lambda-Calculus 315

The Characterization. We remind thatP/poly is the class of languages decided by poly-
time Turing machines with polynomial advice, or by polynomial-size Boolean circuits
(see for instance [1]).

Theorem 1. C∗ = P/poly and C = P.

Proof. The inclusion C∗ ≡ P/poly is obtained from Lemma 5, as delineated in Sect. 1:
if tw ∈l u, with u the encoding of a Boolean, we have ↔u⇔0 = u. By Lemma 5, there
exists m ≤ (d(tw) + 1)|tw|2d(tw)+1

+ d(tw)|tw|2d(tw)

such that ↔tw⇔m = ↔t⇔m w ∈∗

u. But |tw| = 1 + |t| + |w| = O(|w|2) (by choosing the suitable Church encoding)
and d(tw) = max(d(t), 1) = O(1), so m is polynomial in |w|. From this, to prove
C ≡ P it is enough to observe that, in case t = �M� with M in Ωps0, the ↔t⇔m are in
fact polytime computable (they are actually logspace computable, see Sect. 5).

For the converse, we need to encode Turing machines with advice as terms of εΩps0
∗ .

We will make the simplifying assumption that the advice strings an (where n ⊆ N

is the length of the input) are “cumulative”, i.e., for all n, an is a polynomially-long
prefix of an infinite binary word A. Every polynomial advice may be transformed into
a cumulative polynomial advice, so there is no loss of generality. We will show how
to encode the infinite string A in εΩps0

∗ and how a prefix of a given length may be
extracted. This is enough to conclude, because the rest is all uniform computation which
we already know is representable in εΩps0∗ (via Ωps0): if w is the input string, the prefix
of A to be extracted is of length q(|w|) with q a polynomial, and we know that both q
and | · | are representable; the resulting advice string is then fed to the encoding of the
suitable polynomially-clocked Turing machine, together with a copy of w.

Let Aj be the j-th bit of A, and let

ZA := ◦◦ψ≤≤ ≥ ◦IA0 , IA1 , IA2 , . . .≤,
F := Σw ≥ x.◦(Σf.Σy.◦f0y0≤)(x0◦S0, S1≤)w0≤ ≥ ◦x1, x2, x3, . . .≤,

extrA := Σn.(Σz.◦(Σa ≥ b.a)(z0ZA)≤)(n◦F, F, F, . . .≤),
where, for i ⊆ {0, 1}, Ii := Σx.◦xi≤ and Si represent the two constructors on
Church strings (s.t. Siw ∈∗ iw). The reader may check that the above terms are all
in εΩps0

∗ . The term extrA takes a Church numeral n of εΩps0
∗ (which is of the form

Σs.◦Σa.si1 (. . . sina . . .)≤, with i1, . . . , in pairwise distinct but otherwise arbitrary) and
iterates n times F on ZA. The result is a pair, of which the first component is taken
as the final result. The term ZA is where we fully exploit non-uniformity, representing
A. Finally, if we disregard boxes, F takes a pair (w, iW), composed of a finite and an
infinite string, and returns (iw,W). Therefore, extrA q(n) ∈∗ an for all n ⊆ N. ��

5 Affine Lambda-Terms and Boolean Circuits

Let L ⊆ P. By Theorem 1, we know that L is decided by M ⊆ Ωps0, so deciding
whether w ⊆ L amounts to normalizing Mw, which, by Proposition 5, amounts to
normalizing �M�w (withw any encoding of w in εΩps0

∗). But, for this, we know that it is
enough to normalize ↔�M�⇔m w with m polynomial in |w|. By inspecting the definition
of �·� and ↔·⇔n one may see that building ↔�M�⇔m from M may be done in logarithmic

316 D. Mazza

space (in |w|), much like building the circuit representing the computation of a polytime
Turing machine from the trace of its execution on w.

We have therefore given an alternative proof of the P-completeness of the normaliza-
tion problem for the affine Σ-calculus (given an affine Σ-term, decide whether its normal
form is the Boolean tt). Mairson [11] showed this by encoding Boolean circuits in affine
Σ-terms. The interest of the above proof is that it is virtually identical to the usual P-
completeness proof of CIRCUIT VALUE [8,14], which is essentially the Cook-Levin the-
orem and does not rest on the P-completeness of another problem. It is also noteworthy
that the “locality of computation” is reflected in the continuity of normalization.

The results of this paper seem to suggest the following “equation”:

affine Σ-terms
(infinitary affine) Σ-terms

=
Boolean circuits

Turing machines (with advice)

The relationship between Boolean circuits and affine calculi was of course already
known [11,15]. However, we are seeing a connection here which is deeper than what
was shown by any previous result. An interesting perspective given by the above “equa-
tion” is to study the notion of uniformity of families of Boolean circuits via the unifor-
mity of the infinitary affine Σ-calculus. This may be defined in a purely algebraic way:
the terms t such that t � M may be characterized by means of a partial equivalence
relation, as in [12]. This might be turned into a notion of uniform family of Boolean
circuits which is purely intrinsic, i.e., it depends only on the “shape” of the circuits in
the family and does not invoke external algorithms producing the circuits themselves.
Investigating such a notion is definitely a topic worth further investigation.

Acknowledgments. We wish to thank Kazushige Terui for discussions which greatly con-
tributed to the development of this work. We acknowledge partial support of ANR projects LO-
GOI ANR-2010-BLAN-0213-02 and COQUAS ANR-12-JS02-006-01.

References

1. Arora, S., Barak, B.: Computational Complexity – A Modern Approach. Cambridge Univer-
sity Press (2009)

2. Asperti, A., Roversi, L.: Intuitionistic light affine logic. ACM Trans. Comput. Log. 3(1),
137–175 (2002)

3. Bellantoni, S., Cook, S.A.: A new recursion-theoretic characterization of the polytime func-
tions. Computational Complexity 2, 97–110 (1992)

4. Bourbaki, N.: General Topology, ch. 1-4. Springer (1998)
5. Girard, J.Y.: Light linear logic. Inf. Comput. 143(2), 175–204 (1998)
6. Jones, N.D.: Logspace and ptime characterized by programming languages. Theor. Comput.

Sci. 228(1-2), 151–174 (1999)
7. Kfoury, A.J.: A linearization of the lambda-calculus and consequences. J. Log. Com-

put. 10(3), 411–436 (2000)
8. Ladner, R.E.: The circuit value problem is log-space complete for P . SIGACT News 6(2),

18–20 (1975)
9. Lafont, Y.: Soft linear logic and polynomial time. Theor. Comput. Sci. 318(1-2), 163–180

(2004)

Non-uniform Polytime Computation in the Infinitary Affine Lambda-Calculus 317

10. Leivant, D., Marion, J.Y.: Lambda calculus characterizations of poly-time. Fundam. Inform.
19(1/2) (1993)

11. Mairson, H.G.: Linear lambda calculus and ptime-completeness. J. Funct. Program. 14(6),
623–633 (2004)

12. Mazza, D.: An infinitary affine lambda-calculus isomorphic to the full lambda-calculus. In:
Proceedings of LICS, pp. 471–480 (2012)

13. Melliès, P.A.: Asynchronous games 2: The true concurrency of innocence. Theor. Comput.
Sci. 358(2-3), 200–228 (2006)

14. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1994)
15. Terui, K.: Proof nets and boolean circuits. In: Proceedings of LICS, pp. 182–191 (2004)

On the Positivity Problem

for Simple Linear Recurrence Sequencesφ,φφ

Joël Ouaknine and James Worrell

Department of Computer Science, Oxford University, UK

Abstract. Given a linear recurrence sequence (LRS) over the integers,
the Positivity Problem asks whether all terms of the sequence are posi-
tive. We show that, for simple LRS (those whose characteristic polyno-
mial has no repeated roots) of order 9 or less, Positivity is decidable,
with complexity in the Counting Hierarchy.

1 Introduction

A (real) linear recurrence sequence (LRS) is an infinite sequence u =
∈u0, u1, u2, . . .≡ of real numbers having the following property: there exist con-
stants b1, b2, . . . , bk (with bk ⊆= 0) such that, for all n ↔ 0,

un+k = b1un+k−1 + b2un+k−2 + . . . + bkun . (1)

If the initial values u0, . . . , uk−1 of the sequence are provided, the recurrence
relation defines the rest of the sequence uniquely. Such a sequence is said to
have order k.1

The best-known example of an LRS was given by Leonardo of Pisa in the
12th century: the Fibonacci sequence ∈0, 1, 1, 2, 3, 5, 8, 13, . . .≡, which satisfies the
recurrence relation un+2 = un+1+un. Leonardo of Pisa introduced this sequence
as a means to model the growth of an idealised population of rabbits. Not only
has the Fibonacci sequence been extensively studied since, but LRS now form
a vast subject in their own right, with numerous applications in mathematics
and other sciences. A deep and extensive treatise on the mathematical aspects
of recurrence sequences is the monograph of Everest et al. [9].

Given an LRS u satisfying the recurrence relation (1), the characteristic
polynomial of u is

p(x) = xk − b1x
k−1 − . . .− bk−1x− bk . (2)

An LRS is said to be simple if its characteristic polynomial has no repeated
roots. Simple LRS, such as the Fibonacci sequence, possess a number of desirable

ω This research was partially supported by EPSRC. We are also grateful to Matt Daws
for considerable assistance in the initial stages of this work.

ωω The full version of this paper is available as [21].
1 Some authors define the order of an LRS as the least k such that the LRS obeys such
a recurrence relation. The definition we have chosen allows for a simpler presentation
of our results and is algorithmically more convenient.

J. Esparza et al. (Eds.): ICALP 2014, Part II, LNCS 8573, pp. 318–329, 2014.
c∗ Springer-Verlag Berlin Heidelberg 2014

On the Positivity Problem for Simple Linear Recurrence Sequences 319

properties which considerably simplify their analysis—see, e.g., [9, 10, 2, 3, 23].
They constitute a large2 and well-studied class of sequences, and correspond to
diagonalisable matrices in the matricial formulation of LRS—see Sec. 2.

In this paper, we focus on the Positivity Problem for simple LRS over the
integers (or equivalently, for our purposes, the rationals): given a simple LRS,
are all of its terms positive?3

As detailed in [22], the Positivity Problem (and assorted variants) has applica-
tions in a wide array of scientific areas, including theoretical biology, economics,
software verification, probabilistic model checking, quantum computing, discrete
linear dynamical systems, combinatorics, formal languages, statistical physics,
generating functions, etc. Positivity also bears an important relationship to the
well-known Skolem Problem: does a given LRS have a zero? The decidability of
the Skolem Problem is generally considered to have been open since the 1930s
(notwithstanding the fact that algorithmic decision issues had not at the time
acquired the importance that they have today—see [13] for a discussion on this
subject; see also [28, p. 258] and [16], in which this state of affairs—the endur-
ing openness of decidability for the Skolem Problem—is described as “faintly
outrageous” by Tao and a “mathematical embarrassment” by Lipton). A break-
through occurred in the mid-1980s, when Mignotte et al. [18] and Vereshcha-
gin [30] independently showed decidability for LRS of order 4 or less. These
deep results make essential use of Baker’s theorem on linear forms in logarithms
(which earned Baker the Fields Medal in 1970), as well as a p-adic analogue of
Baker’s theorem due to van der Poorten. Unfortunately, little progress on that
front has since been recorded.4

It is considered folklore that the decidability of Positivity (for arbitrary LRS)
would entail that of the Skolem Problem [22], noting however that the reduction
increases the order of LRS quadratically.5 Nevertheless, the earliest explicit ref-
erences in the literature to the Positivity Problem that we have found are from
the 1970s (see, e.g., [26, 25, 5]). In [26], the Skolem and Positivity Problems are
described as “very difficult”, whereas in [24], the authors assert that the Skolem
and Positivity Problems are “generally conjectured [to be] decidable”. Positivity
is again stated as an open problem in [12, 4, 15, 17, 29, 22], among others.

Unsurprisingly, progress on the Positivity Problem over the last few decades
has been fairly slow. In the early 1980s, Burke and Webb [8] showed that the
closely related problem of Ultimate Positivity (are all but finitely many terms

2 In the measure-theoretic sense, almost all LRS are simple LRS.
3 In keeping with established terminology, ‘positive’ here is taken to mean ‘non-
negative’.

4 A proof of decidability of the Skolem Problem for LRS of order 5 was announced
in [13]. However, as pointed out in [20], the proof seems to have a serious gap.

5 It is worth noting that, under this reduction, the decidability of the Positivity Prob-
lem for simple LRS of order at most 14 would entail the decidability of the Skolem
Problem for simple LRS of order 5, which is open and from which the general case of
the Skolem Problem at order 5 would follow, based on the work carried out in [13];
see also [20], which identifies the last unresolved critical case for the Skolem Problem
at order 5, involving simple LRS.

320 J. Ouaknine and J. Worrell

of a given LRS positive?) is decidable for LRS of order 2, and nine years later
Nagasaka and Shiue [19] showed the same for LRS of order 3 that have repeated
characteristic roots. Much more recently, Halava et al. [12] showed that Positiv-
ity is decidable for LRS of order 2, and subsequently Laohakosol and Tangsup-
phathawat [15] proved that Positivity is decidable for LRS of order 3. In 2012,
an article purporting to show decidability of Positivity for LRS of order 4 was
published [27], with the authors noting they were unable to tackle the case of
order 5. Unfortunately, as pointed out in [22] and acknowledged by the authors
themselves [14], that paper contains a major error, invalidating the order-4 claim.
Very recently, Positivity was nevertheless shown decidable for arbitrary integer
LRS of order 5 or less [22], with complexity in the Counting Hierarchy; moreover,
the same paper shows by way of hardness that the decidability of Positivity for
integer LRS of order 6 would entail major breakthroughs in analytic number
theory (certain longstanding Diophantine-approximation open problems would
become solvable). Finally, in [23], the authors show that Ultimate Positivity for
simple integer LRS of unrestricted order is decidable within PSPACE, and in
polynomial time if the order is fixed.

Main Result. The main result of this paper is that the Positivity Problem for
simple integer LRS of order 9 or less is decidable. An analysis of the decision

procedure shows that its complexity lies in coNPPPPPPP

, i.e., within the fourth
level of the Counting Hierarchy (itself contained in PSPACE).6

Comparison with Related Work. It is important to note the fundamental
difference between the above result and those of [23]: in the latter, Ultimate
Positivity is shown to be decidable for simple LRS of all orders, but in a non-
constructive sense: a given LRS may be certified ultimately positive, yet no
index threshold is provided beyond which all terms of the LRS are positive. At
the time of writing, this appears to be a fundamental difficulty: for simple LRS of
any given order, the ability to compute such index thresholds would immediately
enable one to decide Positivity. Yet as noted earlier, the decidability of Positivity
for simple LRS of order at most 14 would in turn entail the decidability of the
Skolem Problem for arbitrary LRS of order 5, a longstanding and major open
problem.

Our overall approach is similar to that followed in [22], attacking the problem
via the exponential polynomial solution of LRS using sophisticated tools from
analytic and algebraic number theory, Diophantine geometry and approximation,
and real algebraic geometry. However the present paper makes vastly greater and
deeper use of real algebraic geometry, as can be seen from the full version [21].

The present paper also markedly differs from [23]. In fact, aside from sharing
standard material on LRS, the non-constructive approach of [23] eschews most of
the real algebraic geometry of the present paper, as well as Baker’s theorem, and is

6 The complexity is as a function of the bit length of the standard representation of
integer LRS; for an LRS of order k as defined by Eq. (1), this representation consists
of the 2k-tuple (b1, . . . , bk, u0, . . . , uk−1) of integers.

On the Positivity Problem for Simple Linear Recurrence Sequences 321

underpinned instead by non-constructive lower bounds on sums of S-units, which
in turn follow from deep results in Diophantine approximation (Schlickewei’s p-
adic generalisation of Schmidt’s Subspace theorem).

We present a high-level overview of our proof strategy—split in two parts—
within Sec. 3, and also briefly discuss why the present approach does not seem
extendable beyond order 9. As noted earlier, establishing the decidability of
Positivity for simple LRS of order 14 would entail a major advance, namely the
decidability of the Skolem Problem for arbitrary LRS of order 5. It is an open
problem whether similar ‘hardness’ results can be established for simple LRS of
orders 10–13.

In terms of complexity, it is shown in [23] that the Positivity Problem for
simple integer LRS of arbitrary order is hard for co⇔R, the class of problems
whose complements are solvable in the existential theory of the reals, and which
is known to contain coNP. However, no lower bounds are known when the order
is fixed or bounded, as is the case in the present paper. Either establishing non-
trivial lower bounds or improving the Counting-Hierarchy complexity of the
present procedure also appear to be challenging open problems.

2 Linear Recurrence Sequences

We recall some fundamental properties of (simple) linear recurrence sequences.
Results are stated without proof, and we refer the reader to [9, 13] for details.

Let u = ∈un≡∞n=0 be an LRS of order k over the reals satisfying the recurrence
relation un+k = b1un+k−1 + . . .+ bkun, where bk ⊆= 0. We denote by ||u|| the bit
length of its representation as a 2k-tuple of integers, as discussed in the previous
section. The characteristic roots of u are the roots of its characteristic polyno-
mial (cf. Eq. (2)), and the dominant roots are the roots of maximum modulus.
The characteristic roots can be computed in time polynomial in ||u||—see [21]
for further details on algebraic-number manipulations.

The characteristic roots divide naturally into real and non-real ones. Since
the characteristic polynomial has real coefficients, non-real roots always arise in
conjugate pairs. Thus we may write {Σ1, . . . , ΣΣ, ε1, ε1, . . . , εm, εm} to represent
the set of characteristic roots of u, where each Σi ⊂ R and each εj ⊂ C \ R. If
u is a simple LRS, there are algebraic constants a1, . . . , aΣ ⊂ R and c1, . . . , cm
such that, for all n ↔ 0,

un =

Σ∑
i=1

aiΣ
n
i +

m∑
j=1

(
cjε

n
j + cjεj

n
)
. (3)

This expression is referred to as the exponential polynomial solution of u.
For fixed k, all constants ai and cj can be computed in time polynomial in ||u||,
since they can be obtained by solving a system of linear equations involving the
first k instances of Eq. (3).

322 J. Ouaknine and J. Worrell

An LRS is said to be non-degenerate if it does not have two distinct char-
acteristic roots whose quotient is a root of unity. As pointed out in [9], the study
of arbitrary LRS can effectively be reduced to that of non-degenerate LRS, by
partitioning the original LRS into finitely many subsequences, each of which is
non-degenerate. In general, such a reduction will require exponential time. How-
ever, when restricting to LRS of bounded order (in our case, of order at most
9), the reduction can be carried out in polynomial time. In particular, any LRS
of order 9 or less can be partitioned in polynomial time into at most 3.9 · 107

non-degenerate LRS of the same order or less.7 Note that if the original LRS is
simple, this process will yield a collection of simple non-degenerate subsequences.
In the rest of this paper, we shall therefore assume that all LRS we are given
are non-degenerate.

Any LRS u of order k can alternately be given in matrix form, in the sense
that there is a square matrix M of dimension k×k, together with k-dimensional
column vectors v and w, such that, for all n ↔ 0, un = vTMnw. It suffices to take
M to be the transpose of the companion matrix of the characteristic polynomial
of u, let v be the vector (uk−1, . . . , u0) of initial terms of u in reverse order,
and take w to be the vector whose first k− 1 entries are 0 and whose kth entry
is 1. It is worth noting that the characteristic roots of u correspond precisely
to the eigenvalues of M , and that if u is simple then M is diagonalisable. This
translation is instrumental in Sec. 3 to place the Positivity Problem for simple
LRS of order at most 9 within the Counting Hierarchy.

Conversely, given any square matrix M of dimension k × k, and any k-
dimensional vectors v and w, let un = vTMnw. Then ∈vTMnw≡∞n=k is an LRS
of order at most k whose characteristic polynomial divides that of M , as can
be seen by applying the Cayley-Hamilton Theorem.8 When M is diagonalisable,
the resulting LRS is simple.

3 Decidability and Complexity

Let u = ∈un≡∞n=0 be an integer LRS of order k. As discussed in the Introduction,
we assume that u is presented as a 2k-tuple of integers (b1, . . . , bk, u0, . . . , uk−1) ⊂
Z
2k, such that for all n ↔ 0,

un+k = b1un+k−1 + . . . + bkun . (4)

The Positivity Problem asks, given such an LRS u, whether for all n ↔ 0,
it is the case that un ↔ 0. When this holds, we say that u is positive.

In this section, we establish the following:

Theorem 1. The Positivity Problem for simple integer LRS of order 9 or less

is decidable in coNPPPPPPP

.
7 We obtained this value using a bespoke enumeration procedure for order 9. A bound
of e2

√
6·9 log 9 ◦ 2.9 · 109 can be obtained from Cor. 3.3 of [31].

8 In fact, if none of the eigenvalues of M are zero, it is easy to see that the full sequence
≥vTMnw∨∞n=0 is an LRS (of order at most k).

On the Positivity Problem for Simple Linear Recurrence Sequences 323

Note that deciding whether the characteristic roots are simple can easily be
done in polynomial time; cf. [21].

Observe also that Thm. 1 immediately carries over to rational LRS. To see
this, consider a rational LRS u obeying the recurrence relation (4). Let Ω be the
least common multiple of the denominators of the rational numbers b1, . . . , bk,
u0, . . . , uk−1, and define an integer sequence v = ∈vn≡∞n=0 by setting vn = Ωn+1un

for all n ↔ 0. It is easily seen that v is an integer LRS of the same order as u,
and that for all n, vn ↔ 0 iff un ↔ 0. Moreover, v is simple iff u is simple.

High-Level Synopsis (I). At a high level, the algorithm upon which Thm. 1
rests proceeds as follows. Given an LRS u, we first decide whether or not u
is ultimately positive9 by studying its exponential polynomial solution—further
details on this task are provided shortly. As we prove in this paper, whenever
u is an ultimately positive simple LRS of order 9 or less, there is a polynomial-
time computable threshold N of at most exponential magnitude such that all
terms of u beyond N are positive. Clearly u cannot be positive unless it is
ultimately positive. Now in order to assert that an ultimately positive LRS u is
not positive, we use a guess-and-check procedure: find n ≥ N such that un < 0.
By writing un = vTMnw, for some square integer matrix M and vectors v and
w (cf. Sec. 2), we can decide whether un < 0 in PosSLP10 via iterative squaring,
which yields an NPPosSLP procedure for non-Positivity. Thanks to the work of

Allender et al. [1], which asserts that PosSLP ⇒ PPPPPPP

, we obtain the required

coNPPPPPPP

algorithm for deciding Positivity.

The following is an old result concerning LRS; proofs can be found in [11,
Thm. 7.1.1] and [4, Thm. 2]. It also follows easily and directly from either Pring-
sheim’s theorem or from [7, Lem. 4]. It plays an important role in our approach
by enabling us to significantly cut down on the number of subcases that must
be considered, avoiding the sort of quagmire alluded to in [19].

Proposition 2. Let ∈un≡∞n=0 be an LRS with no real positive dominant charac-
teristic root. Then there are infinitely many n such that un < 0 and infinitely
many n such that un > 0.

By Prop. 2, it suffices to restrict our attention to LRS whose dominant char-
acteristic roots include one real positive value. Given an integer LRS u, note
that determining whether the latter holds is easily done in time polynomial in
||u|| (cf. [21]).

Thus let u be a non-degenerate simple integer LRS of order k ≥ 9 having a
real positive dominant characteristic root Σ > 0. Note that u cannot have a real
negative dominant characteristic root (which would be −Σ), since otherwise the
quotient −Σ/Σ = −1 would be a root of unity, contradicting non-degeneracy. Let

9 A sequence is ultimately positive if all but finitely many of its terms are positive.
10 Recall that PosSLP is the problem of determining whether an arithmetic circuit,

with addition, multiplication, and subtraction gates, evaluates to a positive integer.

324 J. Ouaknine and J. Worrell

us write the characteristic roots as {Σ, ε1, ε1, . . . , εm, εm}◦{εm+1, εm+2, . . . , εΣ},
where we assume that the roots in the first set all have common modulus Σ,
whereas the roots in the second set all have modulus strictly smaller than Σ.

Let δi = εi/Σ for 1 ≥ i ≥ Ω. We can then write

un

Σn
= a +

m∑
j=1

(
cjδ

n
j + cjδj

n
)

+ r(n) , (5)

for some real algebraic constant a and complex algebraic constants c1, . . . , cm,
where r(n) is a term tending to zero exponentially fast.

Note that none of δ1, . . . , δm, all of which have modulus 1, can be a root of
unity, as each δi is a quotient of characteristic roots and u is assumed to be
non-degenerate. Likewise, for i ⊆= j, δi/δj and δi/δj cannot be roots of unity.

For i ⊂ {1, . . . , Ω}, observe also that as each δi is a quotient of two roots of
the same polynomial of degree k, it has degree at most k(k − 1). In fact, it is
easily seen that ||δi|| = ||u||O(1), ||a|| = ||u||O(1), and ||ci|| = ||u||O(1) (cf. [21]).

Finally, we place bounds on the rate of convergence of r(n). We have

r(n) = cm+1δ
n
m+1 + . . . + cΣδ

n
Σ .

Combining our estimates on the height and degree of each δi together with root-

separation bounds (cf. [21]), we get 1
1−|ψi| = 2||u||

O(1)

, for m+ 1 ≥ i ≥ Ω. Thanks

also to the bounds on the height and degree of the constants ci, it follows that
we can find π ⊂ (0, 1) and N ⊂ N such that:

1/π = 2||u||
O(1)

(6)

N = 2||u||
O(1)

(7)

For all n > N, |r(n)| < (1 − π)n . (8)

We can compute such π and N in time polynomial in ||u||, since all relevant
calculations on algebraic numbers only require polynomial time (cf. [21]).

We now seek to answer positivity and ultimate positivity questions for the
LRS u = ∈un≡∞n=0 by studying the same for ∈un/Σ

n≡∞n=0.
In what follows, we assume that u is as above, i.e., u is a non-degenerate

simple integer LRS having a real positive dominant characteristic root Σ > 0.

High-Level Synopsis (II). Before launching into technical details, let us pro-
vide a high-level overview of our proof strategy for deciding whether u is ulti-
mately positive, and when that is the case, for computing an index threshold N
beyond which all of its terms are positive. Let us rewrite Eq. (5) as

un

Σn
= a + h(δn

1 , . . . , δ
n
m) + r(n) , (9)

where h : C
m ≤ R is a continuous function. In general, there will be integer

multiplicative relationships among the δ1, . . . , δm, forming a free abelian group

On the Positivity Problem for Simple Linear Recurrence Sequences 325

L for which we can compute a basis (cf. [21]). These multiplicative relationships
define a torus T ⇒ C

m on which the joint iterates {(δn
1 , . . . , δ

n
m) : n ⊂ N} are

dense, as per Kronecker’s theorem (cf. [21]).
Now the critical case arises when a + minh�T = 0, where h�T denotes the

function h restricted to the torus T . Provided that h�T achieves its minimum
−a at only finitely many points, we can use Baker’s theorem (cf. [21]) to bound
the iterates (δn

1 , . . . , δ
n
m) away from these points by an inverse polynomial in

n. By combining Renegar’s results (cf. [21]) with techniques from real algebraic
geometry, we then argue that h(δn

1 , . . . , δ
n
m) is itself eventually bounded away

from the minimum −a by a (different) inverse polynomial in n, and since r(n)
decays to zero exponentially fast, we are able to conclude that un/Σ

n is ultimately
positive, and can compute a threshold N after which all terms un (for n > N)
are positive.

Note in the above that a key component is the requirement that h�T achieve
its minimum at finitely many points. In the full version of this paper [21], we
show that this is the case provided that L, the free abelian group of multiplicative
relationships among the δ1, . . . , δm, has rank 0, 1, m− 1, or m. In fact, simple
counterexamples can be manufactured in the other instances, which seems to
preclude the use of Baker’s theorem. Since non-real characteristic roots always
arise in conjugate pairs, the earliest appearance of this vexing state of affairs is
at order 10: one real dominant root, m = 4 pairs of complex dominant roots, one
non-dominant root ensuring that the term r(n) is not identically 0, and a free
abelian group L of rank 2. The difficulty encountered there is highly reminiscent
of that of the critical unresolved case for the Skolem Problem at order 5, as
described in [20].

We now proceed with the formalisation of the above. Recall that u is assumed to
be a non-degenerate simple LRS of order at most 9, with a real positive dominant
characteristic root Σ > 0 and complex dominant roots ε1, ε1, . . . , εm, εm ⊂ C\R.
We write δj = εj/Σ for 1 ≥ j ≥ m.

Note that the number of dominant roots is odd and at most 9. Because of
space constraints, we focus solely on the most difficult case of there being exactly
7 dominant roots. (Other cases are handled in the full version [21].) We therefore
have m = 3 in Eq. (5).

Let L = {(v1, v2, v3) ⊂ Z
3 : δv1

1 δv2
2 δv3

3 = 1} have rank p (as a free abelian
group), and let {λ1, . . . , λp} be a basis for L. Write λq = (Ωq,1, Ωq,2, Ωq,3) for
1 ≥ q ≥ p. Such a basis may be computed in polynomial time, and moreover
each Ωq,j may be assumed to have magnitude polynomial in ||u|| (cf. [21]).

Let T = {z ⊂ C : |z| = 1} and write

T = {(z1, z2, z3) ⊂ T
3 : for each q ⊂ {1, . . . , p}, z

Σq,1
1 z

Σq,2
2 z

Σq,3
3 = 1} .

Define h : T ≤ R by h(z1, z2, z3) =
∑3

j=1(cjzj + cjzj), so that for all n,

un

Σn
= a + h(δn

1 , δ
n
2 , δ

n
3) + r(n) . (10)

326 J. Ouaknine and J. Worrell

The set {(δn
1 , δ

n
2 , δ

n
3) : n ⊂ N} is a dense subset of T (cf. [21]). Since h is

continuous, we have inf{h(δn
1 , δ

n
2 , δ

n
3) : n ⊂ N} = min h�T = μ, for some μ ⊂ R.

We can represent μ via the following formula ψ(y):

⇔(φ1, φ2, φ3) ⊂ T : (h(φ1, φ2, φ3) = y → ∅(z1, z2, z3) ⊂ T, y ≥ h(z1, z2, z3)) .

We can construct an equivalent formula ψ ≥(y) in the first-order theory of the reals,
over a bounded number of real variables, with ||ψ ≥(y)|| = ||u||O(1). As detailed
in [21], we can then compute in polynomial time an equivalent quantifier-free
formula

α(y) =

I∨
i=1

Ji∧
j=1

hi,j(y) ⊇i,j 0 .

In the above, each ⊇i,j is either > or =. Now α(y) must have a satisfiable
disjunct, and since the satisfying assignment to y is unique (namely y = μ), this
disjunct must comprise at least one equality predicate. Moreover, the degree and

height of each hi,j are bounded by ||u||O(1) and 2||u||
O(1)

respectively, hence we
immediately conclude that μ is an algebraic number and moreover that ||μ|| =
||u||O(1) (cf. [21] for details).

Returning to Eq. (10), we see that if a+ μ < 0, then u is neither positive nor
ultimately positive, whereas if a + μ > 0 then u is ultimately positive. In the

latter case, thanks to our bounds on ||μ||, we have 1
a+μ = 2||u||

O(1)

(cf. [21]). The

latter, together with Eqs. (6)–(8), implies an exponential upper bound on the
index of possible violations of positivity. The actual positivity of u can then be
decided via a coNP procedure that invokes a PosSLP oracle as outlined earlier.

It remains to analyse the case in which μ = −a. To this end, let δj = eiθj for
1 ≥ j ≥ 3. From Eq. (5), we have:

un

Σn
= a +

3∑
j=1

2|cj | cos(nβj + Δj) + r(n) .

In the above, cj = |cj |eiνj for 1 ≥ j ≥ 3. We make the further assumption that
each cj is non-zero; note that if this did not hold, we could simply recast our
analysis in a lower dimension.

Let Z = {(φ1, φ2, φ3) ⊂ T : h(φ1, φ2, φ3) = μ} be the set of points of T at
which h achieves its minimum μ. One of our key results, the Zero-Dimensionality
Lemma, proved in the full version of this paper [21], asserts that Z is finite. We
concentrate on the set Z1 of first coordinates of Z. Write

ψ1(x) = ⇔z1 : (Re(z1) = x → z1 ⊂ Z1)

ψ2(y) = ⇔z1 : (Im(z1) = y → z1 ⊂ Z1) .

Similarly to our earlier construction, ψ1(x) is equivalent to a formula ψ ≥1(x) in
the first-order theory of the reals, over a bounded number of real variables, with

On the Positivity Problem for Simple Linear Recurrence Sequences 327

||ψ ≥1(x)|| = ||u||O(1). As shown in [21], we then obtain an equivalent quantifier-free
formula

α1(x) =

I∨
i=1

Ji∧
j=1

hi,j(x) ⊇i,j 0 .

Note that since there can only be finitely many x̂ ⊂ R such that α1(x̂) holds,
each disjunct of α1(x) must comprise at least one equality predicate, or can
otherwise be entirely discarded as having no solution.

A similar exercise can be carried out with ψ2(y), yielding α2(y). The bounds on
the degree and height of each hi,j in α1(x) and α2(y) then enable us to conclude
that any φ = x̂ + iŷ ⊂ Z1 is algebraic, and moreover satisfies ||φ|| = ||u||O(1).
In addition, bounds on I and Ji guarantee that the cardinality of Z1 is at most
polynomial in ||u||.

Since δ1 is not a root of unity, for each φ ⊂ Z1 there is at most one value of
n such that δn

1 = φ. This value (if it exists) is at most M = ||u||O(1), which we
can take to be uniform across all φ ⊂ Z1 (cf. [21]). We can now invoke Baker’s
theorem (cf. [21]) to conclude that, for n > M , and for all φ ⊂ Z1, we have

|δn
1 − φ| > 1

n||u||D , (11)

where D ⊂ N is some absolute constant.
Let b > 0 be minimal such that the set

{z1 ⊂ C : |z1| = 1 and, for all φ ⊂ Z1, |z1 − φ| ↔ 1

b
}

is non-empty. Thanks to our bounds on the cardinality of Z1, we can use the
first-order theory of the reals, together with suitable size bounds (cf. [21]), to
conclude that b is algebraic and ||b|| = ||u||O(1).

Define the function g : [b,∞) ≤ R as follows:

g(x) = min{h(z1, z2, z3) − μ : (z1, z2, z3) ⊂ T and, for all φ ⊂ Z1, |z1 − φ| ↔ 1

x
} .

It is clear that g is continuous and g(x) > 0 for all x ⊂ [b,∞). Moreover, as
before, g can be rewritten as a function in the first-order theory of the reals over
a bounded number of variables, with ||g|| = uO(1). It follows from Prop. 2.6.2
of [6] (invoked with the function 1/g) that there is a polynomial P ⊂ Z[x] such
that, for all x ⊂ [b,∞),

g(x) ↔ 1

P (x)
. (12)

Moreover, an examination of the proof of [6, Prop. 2.6.2] reveals that P is ob-
tained through a process which hinges on quantifier elimination. We are therefore
able to conclude that ||P || = ||u||O(1), a fact which relies among others on our
upper bounds for ||b|| (cf. [21]).

328 J. Ouaknine and J. Worrell

By Eqs. (6)–(8), we can find π ⊂ (0, 1) and N = 2||u||
O(1)

such that for all

n > N , we have |r(n)| < (1 − π)n, and moreover 1/π = 2||u||
O(1)

. Moreover, it is

shown in [21] that there is N ≥ = 2||u||
O(1)

such that, for all n ↔ N ≥,

1

P (n||u||D)
> (1 − π)n . (13)

Combining Eqs. (10)–(13), we get

un

Σn
= a + h(δn

1 , δ
n
2 , δ

n
3) + r(n)

↔ −μ + h(δn
1 , δ

n
2 , δ

n
3) − (1 − π)n

↔ g(n||u||D) − (1 − π)n

↔ 1

P (n||u||D)
− (1 − π)n

↔ 0 ,

provided n > max{M,N,N ≥}, which establishes ultimate positivity of u and
provides an exponential upper bound on the index of possible violations of posi-
tivity, as required. We can then decide the actual positivity of u via a coNPPosSLP

procedure as detailed earlier.
This completes the proof of Thm. 1.

References

[1] Allender, E., Bürgisser, P., Kjeldgaard-Pedersen, J., Miltersen, P.B.: On the com-
plexity of numerical analysis. SIAM J. Comput. 38(5) (2009)

[2] Amoroso, F., Viada, E.: Small points on subvarieties of a torus. Duke Mathemat-
ical Journal 150(3) (2009)

[3] Amoroso, F., Viada, E.: On the zeros of linear recurrence sequences. Acta Arith-
metica 147(4) (2011)

[4] Bell, J.P., Gerhold, S.: On the positivity set of a linear recurrence. Israel Jour.
Math. 57 (2007)

[5] Berstel, J., Mignotte, M.: Deux propriétés décidables des suites récurrentes
linéaires. Bull. Soc. Math. France 104 (1976)

[6] Bochnak, J., Coste, M., Roy, M.-F.: Real Algebraic Geometry. Springer (1998)
[7] Braverman, M.: Termination of integer linear programs. In: Ball, T., Jones, R.B.

(eds.) CAV 2006. LNCS, vol. 4144, pp. 372–385. Springer, Heidelberg (2006)
[8] Burke, J.R., Webb, W.A.: Asymptotic behavior of linear recurrences. Fib.

Quart. 19(4) (1981)
[9] Everest, G., van der Poorten, A., Shparlinski, I., Ward, T.: Recurrence Sequences.

American Mathematical Society (2003)
[10] Evertse, J.H., Schlickewei, H.P., Schmidt, W.M.: Linear equations in variables

which lie in a multiplicative group. Ann. Math. 155(3) (2002)
[11] Gyori, I., Ladas, G.: Oscillation Theory of Delay Differential Equations. Oxford

Mathematical Monographs. Oxford University Press (1991)

On the Positivity Problem for Simple Linear Recurrence Sequences 329

[12] Halava, V., Harju, T., Hirvensalo, M.: Positivity of second order linear recurrent
sequences. Discrete Appl. Math. 154(3) (2006)

[13] Halava, V., Harju, T., Hirvensalo, M., Karhumäki, J.: Skolem’s problem — on
the border between decidability and undecidability. Technical Report 683, Turku
Centre for Computer Science (2005)

[14] Laohakosol, V.: Personal communication (July 2013)
[15] Laohakosol, V., Tangsupphathawat, P.: Positivity of third order linear recurrence

sequences. Discrete Appl. Math. 157(15) (2009)
[16] Lipton, R.J.: Mathematical embarrassments. Blog entry (December 2009),

http://rjlipton.wordpress.com/2009/12/26/mathematical-embarrassments/

[17] Liu, L.L.: Positivity of three-term recurrence sequences. Electr. J. Comb. 17(1)
(2010)

[18] Mignotte, M., Shorey, T.N., Tijdeman, R.: The distance between terms of an alge-
braic recurrence sequence. Journal für die reine und angewandte Mathematik 349
(1984)

[19] Nagasaka, K., Shiue, J.-S.: Asymptotic positiveness of linear recurrence sequences.
Fib. Quart. 28(4) (1990)

[20] Ouaknine, J., Worrell, J.: Decision problems for linear recurrence sequences. In:
Finkel, A., Leroux, J., Potapov, I. (eds.) RP 2012. LNCS, vol. 7550, pp. 21–28.
Springer, Heidelberg (2012)

[21] Ouaknine, J., Worrell, J.: On the Positivity Problem for simple linear recurrence
sequences (full version). arXiv:1309.1550 (2013)

[22] Ouaknine, J., Worrell, J.: Positivity problems for low-order linear recurrence se-
quences. In: Proc. Symp. on Discrete Algorithms (SODA). ACM-SIAM (2014)

[23] Ouaknine, J., Worrell, J.: Ultimate Positivity is decidable for simple linear re-
currence sequences. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E.
(eds.) ICALP 2014, Part II. LNCS, vol. 8573, pp. 330–341. Springer, Heidelberg
(2014); Full version as arXiv:1309.1914

[24] Rozenberg, G., Salomaa, A.: Cornerstones of Undecidability. Prentice Hall (1994)
[25] Salomaa, A.: Growth functions of Lindenmayer systems: Some new approaches.

In: Lindenmayer, A., Rozenberg, G. (eds.) Automata, Languages, Development.
North-Holland (1976)

[26] Soittola, M.: On D0L synthesis problem. In: Lindenmayer, A., Rozenberg, G.
(eds.) Automata, Languages, Development. North-Holland (1976)

[27] Tangsupphathawat, P., Punnim, N., Laohakosol, V.: The positivity problem for
fourth order linear recurrence sequences is decidable. Colloq. Math. 128(1) (2012)

[28] Tao, T.: Structure and Randomness. American Mathematical Society (2008)
[29] Tarasov, S., Vyalyi, M.: Orbits of linear maps and regular languages. In: Kulikov,

A., Vereshchagin, N. (eds.) CSR 2011. LNCS, vol. 6651, pp. 305–316. Springer,
Heidelberg (2011)

[30] Vereshchagin, N.K.: The problem of appearance of a zero in a linear recurrence
sequence. Mat. Zametki 38(2) (1985) (in Russian)

[31] Yokoyama, K., Li, Z., Nemes, I.: Finding roots of unity among quotients of the
roots of an integral polynomial. In: Proc. Intern. Symp. on Symb. and Algebraic
Comp. (1995)

http://rjlipton.wordpress.com/2009/12/26/mathematical-embarrassments/

Ultimate Positivity is Decidable for Simple

Linear Recurrence Sequencesφ

Joël Ouaknine and James Worrell

Department of Computer Science, University of Oxford, UK

Abstract. We consider the decidability and complexity of the Ultimate
Positivity Problem, which asks whether all but finitely many terms of
a given rational linear recurrence sequence (LRS) are positive. Using
lower bounds in Diophantine approximation concerning sums of S-units,
we show that for simple LRS (those whose characteristic polynomial
has no repeated roots) the Ultimate Positivity Problem is decidable in
polynomial space. If we restrict to simple LRS of a fixed order then
we obtain a polynomial-time decision procedure. As a complexity lower
bound we show that Ultimate Positivity for simple LRS is at least as hard
as the decision problem for the universal theory of the reals: a problem
that is known to lie between coNP and PSPACE.

1 Introduction

A linear recurrence sequence (LRS) is an infinite sequence u = ∈u0, u1, . . .≡
of rational numbers satisfying a recurrence relation

un+k = a1un+k−1 + a2un+k−2 + . . . + akun (1)

for all n ⊆ 0, where a1, a2, . . . , ak are fixed rational numbers with ak ↔= 0. Such
a sequence is determined by its initial values u0, . . . , uk−1 and the recurrence
relation. We say that the recurrence has characteristic polynomial

f(x) = xk − a1x
k−1 − . . .− ak−1x− ak .

The least k such that u satisfies a recurrence of the form (1) is called the order
of u. If the characteristic polynomial of this (unique) recurrence has no repeated
roots then we say that u is simple.

Given an LRS u there are polynomials p1, . . . , pk ⇔ C[x] such that

un = p1(n)γn
1 + . . . + pk(n)γn

k ,

where γ1, . . . , γk are the roots of the characteristic polynomial. Moreover u is
simple if and only if it admits such a representation in which each polynomial
pi is a constant. Simple LRS are a natural and widely studied subclass of LRS
whose analysis nevertheless remains extremely challenging [1,10,12,24].

ω The full version of this paper is available as [23].

J. Esparza et al. (Eds.): ICALP 2014, Part II, LNCS 8573, pp. 330–341, 2014.
c∗ Springer-Verlag Berlin Heidelberg 2014

Ultimate Positivity is Decidable for Simple Linear Recurrence Sequences 331

Motivated by questions in language theory and formal power series, Rozen-
berg, Salomaa, and Soittola [27,29] highlight the following four decision problems
concerning LRS. Given an LRS ∈un≡∞n=0 (represented by a linear recurrence and
sequence of initial values):

1. Does un = 0 for some n?
2. Does un = 0 for infinitely many n?
3. Is un ⊆ 0 for all n?
4. Is un ⊆ 0 for all but finitely many n?

Linear recurrence sequences are ubiquitous in mathematics and computer sci-
ence, and the above four problems (and assorted variants) arise in a variety of
settings; see [25] for references. For example, an LRS modelling population size
is biologically meaningful only if it never becomes negative.

Problem 1 is known as Skolem’s Problem, after the Skolem-Mahler-Lech
Theorem [18,19,28], which characterises the set {n ⇔ N : un = 0} of zeros of an
LRS u as an ultimately periodic set. The proof of the Skolem-Mahler-Lech The-
orem is non-effective, and the decidability of Skolem’s Problem is open. Blondel
and Tsitsiklis [6] remark that “the present consensus among number theorists is
that an algorithm [for Skolem’s Problem] should exist”. However, so far decid-
ability is known only for LRS of order at most 4: a result due independently to
Vereschagin [32] and Mignotte, Shorey, and Tijdeman [21]. At order 5 decidabil-
ity is not known, even for simple LRS [22]. Decidability of Skolem’s Problem is
also listed as an open problem and discussed at length by Tao [30, Section 3.9].
The problem can furthermore be seen as a generalisation of the Orbit Problem,
studied by Kannan and Lipton [16, Section 5].

In contrast to the situation with Skolem’s Problem, Problem 2—hitting zero
infinitely often—was shown to be decidable for arbitrary LRS by Berstel and
Mignotte [4].

Problems 3 and 4 are respectively known as the Positivity and Ultimate
Positivity Problems. The problems are stated as open in [2,14,17], among oth-
ers, while in [27] the authors assert that the problems are “generally conjectured
[to be] decidable”. Decidability of Positivity entails decidability of Skolem’s Prob-
lem via a straightforward algebraic transformation of LRS (which however does
not preserve the order) [14].

Hitherto, all decidability results for Positivity and Ultimate Positivity have
been for low-order sequences. The paper [25] gives a detailed account of these
results, obtained over a period of time stretching back some 30 years, and proves
decidability of both problems for sequences of order at most 5. It is moreover
shown in [25] that obtaining decidability for either Positivity or Ultimate Pos-
itivity at order 6 would necessarily entail major breakthroughs in Diophantine
approximation.

The main result of this paper is that the Ultimate Positivity Problem for
simple LRS of arbitrary order is decidable. The restriction to simple LRS allows
us to circumvent the strong “mathematical hardness” result for sequences of
order 6 alluded to above. However, our decision procedure is non-constructive:
given an ultimately positive LRS ∈un≡∞n=0, the procedure does not compute a

332 J. Ouaknine and J. Worrell

threshold N such that un ⊆ 0 for all n ⊆ N . Indeed the ability to compute such
a threshold N would immediately yield an algorithm for the Positivity Problem
for simple LRS since the signs of u0, . . . , uN−1 can be checked directly. In turn
this would yield decidability of Skolem’s Problem for simple LRS. But Skolem’s
Problem is open for simple LRS of order 5, while (as discussed below) Positivity
for simple LRS is only known to be decidable up to order 9.

The non-constructive aspect of our results arises from our use of lower bounds
in Diophantine approximation concerning sums of S-units. These bounds were
proven in [11,31] using Schlickewei’s p-adic generalisation of Schmidt’s Subspace
Theorem (itself a far-reaching generalisation of the Thue-Siegel-Roth Theorem),
and therein applied to study the asymptotic growth of LRS in absolute value.
By contrast, in [24] we use Baker’s Theorem on linear forms in logarithms to
show decidability of Positivity for simple LRS of order at most 9. Unfortunately,
while Baker’s Theorem yields effective Diophantine-approximation lower bounds,
it appears only to be applicable to low-order LRS. In particular, the analytic
and geometric arguments that are used in [24] to bring Baker’s Theorem to bear
(and which give that work a substantially different flavour to the present paper)
do not apply beyond order 9.

Relying on complexity bounds for the decision problem for first-order formulas
over the field of real numbers, we show that our procedure for deciding Ultimate
Positivity requires polynomial space in general and polynomial time for LRS
of each fixed order. As a complexity lower bound, we give a polynomial-time
reduction of the decision problem for the universal theory of the reals to both
the Positivity and Ultimate Positivity Problems for simple LRS. The decision
problem for the universal theory of the reals is easily seen to be coNP-hard and,
from the work of Canny [8], is contained in PSPACE. Thus the complexity of the
Ultimate Positivity problem for simple LRS lies between coNP and PSPACE.
Hitherto the best lower bound known for either Positivity or Ultimate Positivity
was coNP-hardness [3].

Full proofs of all results can be found in the long version of this paper [23].

2 Background

Number Theory. A complex number α is algebraic if it is a root of a univariate
polynomial with integer coefficients. The defining polynomial of α, denoted
pΣ, is the unique integer polynomial of least degree, whose coefficients have no
common factor, that has α as a root. The degree of α is the degree of pΣ, and
the height of α is the maximum absolute value of the coefficients of pΣ. If pΣ is
monic then we say that α is an algebraic integer.

For computational purposes an algebraic number α can be represented by a
polynomial f that has α as a root, together with an approximation of α with
rational real and imaginary parts of sufficient accuracy to distinguish α from the
other roots of f [15]. We denote by ||α|| the length of this representation.1 It

1 In general we denote by ||X|| the length of the binary representation of a given
object X.

Ultimate Positivity is Decidable for Simple Linear Recurrence Sequences 333

can be shown that ||α|| is polynomial in the degree and logarithm of the height
of α. Given a univariate polynomial f , it is moreover known how to obtain
representations of each of its roots in time polynomial in ||f ||.

A number field K is a finite-dimensional extension of Q. The set of algebraic
integers in K forms a ring, denoted O. Given two ideals I, J in O, the product
IJ is the ideal generated by the elements ab, where a ⇔ I and b ⇔ J . An ideal P
of O is prime if ab ⇔ P implies a ⇔ P or b ⇔ P . The fundamental theorem of
ideal theory states that any non-zero ideal in O can be written as the product
of prime ideals, and the representation is unique if the order of the prime ideals
is ignored.

We will need the following classical result of Dirichlet [13].

Theorem 2.1 (Dirichlet). Let P be the set of primes and Pa,b the set of primes
congruent to a mod b, where gcd(a, b) = 1. Then

lim
n≥∞

|Pa,b ⊂ {1, . . . , n}|
|P ⊂ {1, . . . , n}| =

1

ϕ(b)
,

where ϕ denotes Euler’s totient function.

Linear Recurrence Sequences. Let u = ∈un≡∞n=0 be a sequence of rational num-
bers satisfying the recurrence relation un+k = a1un+k−1 + . . . + akun. We rep-
resent such an LRS as a 2k-tuple (a1, . . . , ak, u0, . . . , uk−1) of rational numbers
(encoded in binary). Given an arbitrary representation of u, we can compute the
coefficients of the unique minimal-order recurrence satisfied by u in polynomial
time by straightforward linear algebra. Henceforth we will always assume that an
LRS is presented in terms of its minimal-order recurrence. By the characteristic
polynomial of an LRS we mean the characteristic polynomial of the minimal-
order recurrence. The roots of this polynomial are called the characteristic
roots. The characteristic roots of maximum modulus are said to be dominant.

It is well-known (see, e.g., [2, Thm. 2]) that if an LRS u has no real positive
dominant characteristic root then there are infinitely many n such that un <
0 and infinitely many n such that un > 0. Clearly such an LRS cannot be
ultimately positive.

Since the characteristic polynomial of u has real coefficients, its set of roots
can be written in the form {ρ1, . . . , ρψ, γ1, γ1, . . . , γm, γm}, where each ρi ⇔ R.
If u is simple then there are non-zero real algebraic constants b1, . . . , bψ and
complex algebraic constants c1, . . . , cm such that, for all n ⊆ 0,

un =

ψ∑
i=1

biρ
n
i +

m∑
j=1

(
cjγ

n
j + cjγj

n
)
. (2)

Conversely, a sequence u that admits the representation (2) is a simple LRS
over R, with characteristic roots among ρ1, . . . , ρψ, γ1, γ1, . . . , γm, γm. Arbitrary
LRS admit a more general “exponential-polynomial” representation in which the
coefficients bi and cj are replaced by polynomials in n.

334 J. Ouaknine and J. Worrell

An LRS is said to be non-degenerate if it does not have two distinct char-
acteristic roots whose quotient is a root of unity. A non-degenerate LRS is either
identically zero or only has finitely many zeros. The study of arbitrary LRS can
effectively be reduced to that of non-degenerate LRS using the following result
from [10].

Proposition 2.2. Let ∈un≡∞n=0 be an LRS of order k over Q. There is a constant

M = 2O(k
∈
log k) such that each subsequence ∈uMn+l≡∞n=0 is non-degenerate for

0 ≥ l < M .

The constant M in Proposition 2.2 is the least common multiple of the orders
of all roots of unity appearing as quotients of characteristic roots of u. This
number can be computed in time polynomial in ||u|| since determining whether
an algebraic number α is a root of unity (and computing the order of the root)
can be done in polynomial time in ||α|| [15]. From the representation (2) we
see that if the original LRS is simple with characteristic roots λ1, . . . , λk, then
each subsequence ∈uMn+l≡∞n=0 is also simple, with characteristic roots among
λM
1 , . . . , λM

k .
The following is a celebrated result on LRS [18,19,28].

Theorem 2.3 (Skolem-Mahler-Lech). The set {n : un = 0} of zeros of an
LRS u comprises a finite set together with a finite number of arithmetic pro-
gressions. If u is non-degenerate and not identically zero, then its set of zeros is
finite.

Suppose that u and v are LRS of orders k and l respectively, then the point-
wise sum ∈un + vn≡∞n=0 is an LRS of order at most k + l, and the pointwise
product ∈unvn≡∞n=0 is an LRS of order at most kl. Given representations of u
and v we can compute representations of the sum and product in polynomial
time by straightforward linear algebra.

First-Order Theory of the Reals. Let x = x1, . . . , xm be a list of m real-valued
variables, and let σ(x) be a Boolean combination of atomic predicates of the form
g(x) ⇒ 0, where each g(x) is a polynomial with integer coefficients in the variables
x, and ⇒ is either > or =. We consider the problem of deciding the truth over the
field R of sentences ϕ in the form

Q1x1 . . . Qmxm σ(x) , (3)

where each Qi is one of the quantifiers ◦ or ≤. We write ||ϕ|| for the length of
the syntactic representation of ϕ.

The collection of true sentences of the form (3) is called the first-order the-
ory of the reals. Tarski famously showed that this theory admits quantifier
elimination and is therefore decidable. In this paper we rely on decision proce-
dures for two fragments of this theory. We use the result of Canny [8] that if
each Qi is a universal quantifier, then the truth of ϕ can be decided in space
polynomial in ||ϕ||. We also use the result of Renegar [26] that for each fixed
M ⇔ N, if the number of variables in ϕ is at most M , then the truth of ϕ can
be determined in time polynomial in ||ϕ||.

Ultimate Positivity is Decidable for Simple Linear Recurrence Sequences 335

Given a representation of an algebraic number α, as described in Section 2, both
the real and imaginary parts of α are straightforwardly definable by quantifier-free
formulas ϕ(x) of size polynomial in ||α||.

3 Multiplicative Relations

Throughout this section let λ = (λ1, . . . , λs) be a tuple of algebraic numbers,
each of height at most H and degree at most d. Assume that each λi is repre-
sented in the manner described in Section 2.

We define the group of multiplicative relations holding among the λi to be
the subgroup L(λ) of Zs defined by

L(λ) = {(v1, . . . , vs) ⇔ Z
s : λv1

1 . . . λvs
s = 1} .

Bounds on the complexity of computing a basis of L(λ), considered as a free
abelian group, can be obtained from the following result of Masser [20] which
gives an upper bound on the magnitude of the entries of the vectors in such a
basis.

Theorem 3.1 (Masser). The free abelian group L(λ) has a basis v1, . . . ,vl ⇔
Z
s for which

max
1⊆i⊆l, 1⊆j⊆s

|vi,j | = (d logH)O(s2) .

Corollary 3.2. A basis of L(λ) can be computed in space polynomial in ||λ||.
If s and d are fixed, such a basis can be computed in time polynomial in ||λ||.
Proof. Masser’s bound entails that there is a basis v1, . . . ,vl whose total bit
length is polynomial in s, log d and log logH , all of which are polynomial in
||λ||. Moreover the membership problem “λv1

1 . . . λvs
s = 1?” for a potential basis

vector v ⇔ Z
s is decidable in space polynomial in ||λ|| by reduction to the

decision problem for existential sentences over the reals.
A set of vectors v1, . . . ,vl in L(λ) is a basis if every vector v ⇔ L(λ) whose

entries satisfy the bound in Theorem 3.1 lies in the integer span of v1, . . . ,vl. For
each such vector v this can be checked by solving a system of linear equations
over the integers. Thus we can compute a basis of L(λ) in space polynomial in
||λ|| by brute-force search.

If s and d are fixed then the same brute-force search can be done in time
polynomial in ||λ||, noting that the number of possible bases is polynomial in ||λ||
and the membership problem “λv1

1 . . . λvs
s = 1?” is decidable in time polynomial

in ||λ|| by reduction to the decision problem for existential sentences over the
reals with a fixed number of variables. →∅

The following is an easy consequence of Corollary 3.2.

Corollary 3.3. Given M ⇔ N, a basis of L(λM
1 , . . . , λM

s) can be computed in
space polynomial in ||M || and ||λ||.

336 J. Ouaknine and J. Worrell

Next we relate the group L(λ) to the orbit {(λn
1 , . . . , λ

n
s) | n ⇔ N} of λ.

Recall from [9] the following classical theorem of Kronecker on inhomogeneous
Diophantine approximation.

Theorem 3.4 (Kronecker). Let θ1, . . . , θs and ψ1, . . . , ψs be real numbers.
Suppose moreover that for all integers u1, . . . , us, if u1θ1 + . . . + usθs ⇔ Z then
also u1ψ1 + . . . + usψs ⇔ Z, i.e., all integer relations among the θi also hold
among the ψi (modulo Z). Then for each ε > 0, there exist integers p1, . . . , ps
and a non-negative integer n such that |nθi − pi − ψi| ≥ ε.

Write T = {z ⇔ C : |z| = 1} and consider the s-dimensional torus T
s as

a group under coordinatewise multiplication. The following can be seen as a
multiplicative formulation of Kronecker’s Theorem.

Proposition 3.5. Let λ = (λ1, . . . , λs) ⇔ T
s and consider the group L(λ) of

multiplicative relations among the λi. Define a subgroup T (λ) of the torus Ts by

T (λ) = {(μ1, . . . , μs) ⇔ T
s | μv1

1 . . . μvs
s = 1 for all v ⇔ L(λ)} .

Then the orbit S = {(λn
1 , . . . , λ

n
s) | n ⇔ N} is a dense subset of T (λ).

Proof. For j = 1, . . . , s, let θj ⇔ R be such that λj = e2θiνj . Notice that multi-
plicative relations λv1

1 . . . λvs
s = 1 are in one-to-one correspondence with additive

relations θ1v1 + . . .+ θsvs ⇔ Z. Let (μ1, . . . , μs) be an arbitrary element of T (λ),
with μj = e2θiλj for some ψj ⇔ R. Then the hypotheses of Theorem 3.4 apply to
θ1, . . . , θs and ψ1, . . . , ψs. Thus given ε > 0, there exist n ⊆ 0 and p1, . . . , ps ⇔ Z

such that |nθj − pj − ψj | ≥ ε for j = 1, . . . , s. Whence for j = 1, . . . , s,

|λn
j − μj | = |e2θi(nνj−pj) − e2θiλj | ≥ |2π(nθj − pj − ψj)| ≥ 2πε .

It follows that (μ1, . . . , μs) lies in the closure of S. →∅

4 Algorithm for Ultimate Positivity

Let K be a number field of degree d over Q. Recall that there are d distinct
field monomorphisms σ1, . . . , σd : K ⊇ C (see, e.g., [13]). Given a finite set S
of prime ideals in the ring of integers O of K, we say that α ⇔ O is an S-unit
if the principal ideal (α) is a product of prime ideals in S. The following lower
bound on the magnitude of sums of S-units, whose key ingredient is Schlickewei’s
p-adic generalisation of Schmidt’s Subspace Theorem, was established in [11,31]
to analyse the growth of LRS.

Theorem 4.1 (Evertse, van der Poorten, Schlickewei). Let m be a positive
integer and S a finite set of prime ideals in O. Then for every ε > 0 there exists
a constant C, depending only on m, K, S, and ε with the following property:
for any set of S-units x1, . . . , xm ⇔ O such that

∑
i⊗I xi ↔= 0 for all non-empty

I ⊆ {1, . . . ,m}, it holds that

|x1 + . . . + xm| ⊆ CXY −ρ , (4)

where X = max{|xi| : 1 ≥ i ≥ m}, Y = max{|σj(xi)| : 1 ≥ i ≥ m, 1 ≥ j ≥ d}.

Ultimate Positivity is Decidable for Simple Linear Recurrence Sequences 337

We first consider how to decide Ultimate Positivity in the case of a non-
degenerate simple LRS u. As explained in Section 2, we can assume without
loss of generality that u has a positive real dominant root. Furthermore, by
considering the LRS ∈kn+1un≡∞n=0 for a suitable integer k ⊆ 1, we may assume
that the characteristic roots and coefficients in the closed-form solution (2) are
all algebraic integers.

Suppose that u has dominant characteristic roots ρ, γ1, γ1, . . . , γs, γs, where
ρ is real and positive. Then we can write u in the form

un = bρn + c1γ
n
1 + c1γ1

n + . . . + csγ
n
s + csγs

n + r(n) , (5)

where r(n) = o(ρn(1−ρ)) for some ε > 0. Now let λi = γi/ρ for i = 1, . . . , s. Then
we can write

un = ρnf(λn
1 , . . . , λ

n
s) + r(n) , (6)

where f : Ts ⊇ R is defined by f(z1, . . . , zs) = b+ c1z1 + c1z1 + . . .+ cszs + cszs.

Proposition 4.2. The LRS ∈un≡∞n=0 is ultimately positive if and only if f(z) ⊆
0 for all z ⇔ T (λ).

Proof. Consider the expression (5). Let K be the number field generated over Q
by the characteristic roots of u and let S be the set of prime ideal divisors of the
dominant characteristic roots ρ, γ1, γ1, . . . , γs, γs and the associated coefficients
b, c1, c1, . . . , cs, cs. (These coefficients lie in K by straightforward linear algebra.)
Then the term

bρn + c1γ
n
1 + c1γ1

n + . . . + csγ
n
s + csγs

n (7)

is a sum of S-units.
Applying Theorem 4.1 to the sum of S-units in (7), we have X = C1ρ

n for
some constant C1 > 0 and Y = C2ρ

n for some constant C2 > 0 (since an
embedding of K into C maps characteristic roots to characteristic roots). The
theorem tells us that for each ε > 0 there is a constant C > 0 such that

|bρn + c1γ
n
1 + c1γ1

n + . . . + csγ
n
s + csγs

n| ⊆ Cρn(1−ρ)

for all but finitely many values of n. (Since u is non-degenerate, it follows from
the Skolem-Mahler-Lech Theorem that each non-empty sub-sum of the left-hand
side vanishes for finitely many n.)

Now choose ε > 0 such that r(n) = o(ρn(1−ρ)) in (5). Then for all sufficiently
large n, un ⊆ 0 if and only if bρn + c1γ

n
1 + c1γ1

n + . . . + csγ
n
s + csγs

n > 0.
Equivalently, looking at (6), for all sufficiently large n we have un ⊆ 0 if and
only if f(λn

1 , . . . , λ
n
s) ⊆ 0. But the orbit {(λn

1 , . . . , λ
n
s) : n ⇔ N} is a dense subset

of T (λ) by Proposition 3.5. Thus un is ultimately positive if and only if f(z) ⊆ 0
for all z ⇔ T (λ). →∅

We can now state and prove our main result.

Theorem 4.3. The Ultimate Positivity Problem for simple LRS is decidable in
polynomial space in general, and in polynomial time for LRS of fixed order.

338 J. Ouaknine and J. Worrell

Proof. A decision procedure is given in the table below. Correctness follows from
the fact that u is ultimately positive if and only if each of the non-degenerate
subsequences v considered in Step 2 is ultimately positive. But ultimate posi-
tivity of these subsequences is determined in Step 2.4 using Proposition 4.2. It
remains to account for the complexity of each step.

As noted in Section 2, Step 1 requires time polynomial in ||u||.
For LRS of fixed order, there is an absolute bound on M in Step 2, while for

LRS of arbitrary order, M is exponentially bounded in ||u|| by Proposition 2.2.
We show that for each subsequence v, Steps 2.1–2.4 require polynomial time for
fixed-order LRS and polynomial space in general.

Using iterated squaring, the coefficients bi and cj in the expression (8) for
v are definable in terms of the characteristic roots of u and the corresponding
coefficients in the closed-form expression for u by a polynomial-size first-order
formula that uses only universal quantifiers. This accomplishes Step 2.1.

Combining Corollaries 3.2 and 3.3, Step 2.3 can be done in polynomial space
for arbitrary LRS and polynomial time for LRS of fixed order.

Step 2.4 uses a decision procedure for universal sentences over the reals, having
already noted that the coefficients bi and cj are first-order definable. By the
results described in Section 2 this can be done in polynomial space for arbitrary
LRS and polynomial time for LRS of fixed order. →∅

Decision procedure for ultimate positivity of a simple LRS u

1. Compute the characteristic roots {ρ1, . . . , ργ, γ1, γ1, . . . , γm, γm} of u.
Writing α ◦ β if α/β is a root of unity, let M = lcm{ord(α/β) :
α ◦ β are characteristic roots}. Moreover let {ρi : i ≥ I} ∨ {γj , γj : j ≥ J}
contain a unique representative from each equivalence class.

2. For l = 0, . . . ,M − 1, check ultimate positivity of the non-degenerate subse-
quence vn = uMn+l as follows:
2.1. Compute the coefficients bi and cj in the closed-form solution

vn =
∑
i∈I

biρ
Mn
i +

∑
j∈J

(
cjγ

Mn
j + cjγj

Mn
)
. (8)

2.2. If v ∈∧ 0 and there is no dominant real characteristic root in (8) then v is
not ultimately positive.

2.3. Let ρ1, γ1, γ1, . . . , γs, γs be dominant among the characteristic roots ap-
pearing in (8). Define λ1 = γ1/ρ1, . . . , λs = γs/ρ1 and compute a basis of
L(λM

1 , . . . , λM
s).

2.4. Define f : Ts ∅ R by f(z1, . . . , zs) = b1 + c1z1 + c1z1 + . . .+ cszs + cszs.
Then v is ultimately positive if and only if f(z) ≥ 0 for all z ≥ T (λM).

We note that a related proof strategy (passing from a finitely generated group
to its closure and appealing to the theory of the reals) was used in [5] in the
context of threshold problems for quantum automata.

Ultimate Positivity is Decidable for Simple Linear Recurrence Sequences 339

5 Complexity Lower Bound

In this section we give reductions of the decision problem for universal sentences
over the field of real numbers to the Positivity and Ultimate Positivity Problems
respectively. The former problem is easily seen to be coNP-hard and, through
the work of Canny [8], is known to be in PSPACE. Typically this PSPACE
upper bound is stated for the complement problem: the decision problem for
existential sentences over the field of reals.

It is known that the problem 4-FEAS of whether a degree-4 polynomial has a
real root is polynomial-time equivalent to the decision problem for the existential
theory of the reals [7]. Here we consider a related problem, 4-POS, which asks
whether a degree-4 polynomial f(x1, . . . , xn) with rational coefficients satisfies
f(x) ⊆ 0 for all x ⇔ [0, 1]n. Using the above-mentioned result on 4-FEAS in
tandem with bounds on magnitude of definable numbers in the existential theory
of the reals (see [23] for details) we can show:

Theorem 5.1. There is a polynomial-time reduction of the decision problem for
the universal theory of the reals to the problem 4-POS.

We now reduce 4-POS to the Positivity and Ultimate Positivity Problems.
The first step of the reduction is to compute a collection of s multiplicatively
independent algebraic numbers of absolute value 1.

By a classical result of Lagrange, a prime number is congruent to 1 modulo 4
if and only if it can be written as the sum of two squares [13]. By Theorem 2.1,
the class of such primes has asymptotic density 1/2 in the set of all primes, and
therefore, by the Prime Number Theorem, asymptotic density 1/(2 logn) in the
set of natural numbers. It follows that one can compute the first s such primes
p1, . . . , ps and their decomposition as sums of squares in time polynomial in s.
Writing pj = a2j + b2j , where aj , bj ⇔ Z, define λj =

aj+ibj
aj−ibj

for j = 1, . . . , s. Then

each λj is an algebraic number of degree 2 and absolute value 1.

Proposition 5.2. λ1, . . . , λs are multiplicatively independent.

Proof. Recall that the ring of Guassian integers Z(i) is a unique factorisation
domain and that a + ib ⇔ Z(i) is prime iff a2 + b2 is a rational prime [13]. Now
λn1
1 . . . λns

s = 1 if and only if

(a1 + ib1)n1 . . . (as + ibs)
ns = (a1 − ib1)n1 . . . (as − ibs)

ns

But each factor aj + ibj and aj − ibj is prime by construction. Thus by unique
factorisation we must have n1 = 0, . . . , ns = 0. →∅
Theorem 5.3. There are polynomial-time reductions from 4-POS to the Posi-
tivity and Ultimate Positivity Problems for LRS.

Proof. Suppose we are given an instance of 4-POS, consisting of a polynomial
f(x1, . . . , xs). Let λ1, . . . , λs be multiplicatively independent algebraic numbers,
constructed as in Proposition 5.2. For j = 1, . . . , s, the sequence ∈yj,n : n ⇔ N≡

340 J. Ouaknine and J. Worrell

defined by yj,n = 1
2 (λn

j +λj
n
) satisfies a second-order linear recurrence yj,n+2 =

(2aj/pj)yj,n+1 − yj,n with rational coefficients.
Recall, moreover, that given two simple LRS of respective orders l and m,

their sum is a simple LRS of order at most l +m, their product is a simple LRS
of order at most lm, and representations of both can be computed in polynomial
time in the size of the input LRS. Thus the sequence u = ∈un : n ⇔ N≡ given by
un = f(y21,n, . . . , y

2
s,n) is a simple LRS over the rationals. Since f has degree at

most 4, the order of u is at most 44 times the number of monomials in f and the
recurrence satisfied by u can be computed in time polynomial in ||f ||. (Observe
that if the degree of f were not fixed, then the above reasoning would yield an
upper bound on the order of u that is exponential in the degree of f .)

From Propositions 3.5 and 5.2 it follows that the orbit {(λn
1 , . . . , λ

n
s) : n ⇔ N}

is dense in the torus Ts. Thus the set {(y21,n, . . . , y
2
s,n) : n ⇔ N} is dense in [0, 1]s

and f assumes a strictly negative value on [0, 1]s if and only if un < 0 for some
(equivalently infinitely many) n. This completes the reduction. →∅

6 Conclusion

We have shown that the Ultimate Positivity Problem for simple LRS is decidable
in polynomial space and as hard as the decision problem for universal sentences
over the field of real numbers. A more careful accounting of the complexity
of our decision procedure places it in coNP with an oracle for the universal
theory of the reals. Thus a PSPACE-hardness result for Ultimate Positivity
would have non-trivial consequences for the complexity of decision problems for
first-order logic over the reals. On the other hand, the obstacle to improving
the polynomial-space upper bound is the complexity of computing a basis of the
group of multiplicative relations among the characteristic roots of the recurrence.

References

1. Amoroso, F., Viada, E.: Small points on subvarieties of a torus. Duke Mathematical
Journal 150(3) (2009)

2. Bell, J.P., Gerhold, S.: On the positivity set of a linear recurrence. Israel Jour.
Math. 57 (2007)

3. Bell, P., Delvenne, J.-C., Jungers, R., Blondel, V.: The continuous Skolem-Pisot
problem. Theor. Comput. Sci. 411(40-42), 3625–3634 (2010)

4. Berstel, J., Mignotte, M.: Deux propriétés décidables des suites récurrentes
linéaires. Bull. Soc. Math. France 104 (1976)

5. Blondel, V., Jeandel, E., Koiran, P., Portier, N.: Decidable and undecidable prob-
lems about quantum automata. SIAM J. Comput. 34(6), 1464–1473 (2005)

6. Blondel, V., Tsitsiklis, J.: A survey of computational complexity results in systems
and control. Automatica 36(9), 1249–1274 (2000)

7. Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and real computation.
Springer (1997)

8. Canny, J.: Some algebraic and geometric computations in PSPACE. In: Proceed-
ings of STOC 1988, pp. 460–467. ACM (1988)

Ultimate Positivity is Decidable for Simple Linear Recurrence Sequences 341

9. Cassels, J.: An introduction to Diophantine approximation. Camb. Univ. Pr. (1965)
10. Everest, G., van der Poorten, A., Shparlinski, I., Ward, T.: Recurrence Sequences.

American Mathematical Society (2003)
11. Evertse, J.-H.: On sums of S-units and linear recurrences. Compositio Mathemat-

ica 53(2), 225–244 (1984)
12. Evertse, J.-H., Schlickewei, H.P., Schmidt, W.M.: Linear equations in variables

which lie in a multiplicative group. Ann. Math. 155(3) (2002)
13. Fröhlich, A., Taylor, M.: Algebraic Number Theory. Camb. Univ. Press (1993)
14. Halava, V., Harju, T., Hirvensalo, M.: Positivity of second order linear recurrent

sequences. Discrete Applied Mathematics 154(3) (2006)
15. Halava, V., Harju, T., Hirvensalo, M., Karhumäki, J.: Skolem’s problem – on the

border between decidability and undecidability. Technical Report 683, Turku Cen-
tre for Computer Science (2005)

16. Kannan, R., Lipton, R.J.: Polynomial-time algorithm for the orbit problem. JACM
33(4) (1986)

17. Laohakosol, V., Tangsupphathawat, P.: Positivity of third order linear recurrence
sequences. Discrete Applied Mathematics 157(15) (2009)

18. Lech, C.: A note on recurring series. Ark. Mat. 2 (1953)
19. Mahler, K.: Eine arithmetische Eigenschaft der Taylor Koeffizienten rationaler

Funktionen. Proc. Akad. Wet. Amsterdam 38 (1935)
20. Masser, D.W.: Linear relations on algebraic groups. In: New Advances in Tran-

scendence Theory. Camb. Univ. Press (1988)
21. Mignotte, M., Shorey, T., Tijdeman, R.: The distance between terms of an algebraic

recurrence sequence. J. für die reine und angewandte Math. 349 (1984)
22. Ouaknine, J., Worrell, J.: Decision problems for linear recurrence sequences. In:

Finkel, A., Leroux, J., Potapov, I. (eds.) RP 2012. LNCS, vol. 7550, pp. 21–28.
Springer, Heidelberg (2012)

23. Ouaknine, J., Worrell, J.: Ultimate Positivity is decidable for simple linear recur-
rence sequences. CoRR, abs/1309.1914 (2013)

24. Ouaknine, J., Worrell, J.: On the Positivity Problem for simple linear recurrence
sequences. In: Esparza, J., Fraigniaud, P., Husfeldt, T. (eds.) ICALP 2014, Part
II. LNCS, vol. 8573, Springer, Heidelberg (2014); CoRR, abs/1309.1550

25. Ouaknine, J., Worrell, J.: Positivity problems for low-order linear recurrence se-
quences. In: Proceedings of SODA 2014. ACM-SIAM (2014)

26. Renegar, J.: On the computational complexity and geometry of the first-order
theory of the reals. J. Symb. Comp. (1992)

27. Rozenberg, G., Salomaa, A.: Cornerstones of Undecidability. Prentice Hall (1994)
28. Skolem, T.: Ein Verfahren zur Behandlung gewisser exponentialer Gleichungen. In:

Comptes rendus du congrès des mathématiciens scandinaves (1934)
29. Soittola, M.: On D0L synthesis problem. In: Lindenmayer, A., Rozenberg, G. (eds.)

Automata, Languages, Development. North-Holland (1976)
30. Tao, T.: Structure and randomness: pages from year one of a mathematical blog.

American Mathematical Society (2008)
31. van der Poorten, A., Schlickewei, H.: The growth conditions for recurrence se-

quences. Macquarie Math. Reports (82-0041) (1982)
32. Vereshchagin, N.K.: The problem of appearance of a zero in a linear recurrence

sequence. Mat. Zametki 38(2) (1985) (in Russian)

Going Higher in the First-Order
Quantifier Alternation Hierarchy on Words�

Thomas Place and Marc Zeitoun

LaBRI, Université de Bordeaux, France

Abstract. We investigate the quantifier alternation hierarchy in first-
order logic on finite words. Levels in this hierarchy are defined by count-
ing the number of quantifier alternations in formulas. We prove that one
can decide membership of a regular language to the levels BΣ2 (boolean
combination of formulas having only 1 alternation) and Σ3 (formulas hav-
ing only 2 alternations beginning with an existential block). Our proof
works by considering a deeper problem, called separation, which, once
solved for lower levels, allows us to solve membership for higher levels.

The connection between logic and automata theory is well known and has a
fruitful history in computer science. It was first observed when Büchi, Elgot and
Trakhtenbrot proved independently that the regular languages are exactly those
that can be defined using a monadic second-order logic (MSO) formula. Since
then, many efforts have been made to investigate and understand the expressive
power of relevant fragments of MSO. In this field, the yardstick result is often
to prove decidable characterizations, i.e., to design an algorithm which, given as
input a regular language, decides whether it can be defined in the fragment under
investigation. More than the algorithm itself, the main motivation is the insight
given by its proof. Indeed, in order to prove a decidable characterization, one has
to consider and understand all properties that can be expressed in the fragment.

The most prominent fragment of MSO is first-order logic (FO) equipped with
a predicate ”<” for the linear-order. The expressive power of FO is now well-
understood over words and a decidable characterization has been obtained. The
result, Schützenberger’s Theorem [19,9], states that a regular language is de-
finable in FO if and only if its syntactic monoid is aperiodic. The syntactic
monoid is a finite algebraic structure that can effectively be computed from any
representation of the language. Moreover, aperiodicity can be rephrased as an
equation that needs to be satisfied by all elements of the monoid. Therefore,
Schützenberger’s Theorem can indeed be used to decide definability in FO.

In this paper, we investigate an important hierarchy inside FO, obtained by
classifying formulas according to the number of quantifier alternations in their
prenex normal form. More precisely, an FO formula is Πi if its prenex normal form
has at most (i − 1) quantifier alternations and starts with a block of existential
quantifiers. The hierarchy also involves the classes BΠi of boolean combinations of
Πi formulas, and the classes Γi of languages that can be defined by both a Πi and
� Supported by ANR 2010 BLAN 0202 01 FREC.

J. Esparza et al. (Eds.): ICALP 2014, Part II, LNCS 8573, pp. 342–353, 2014.
c√ Springer-Verlag Berlin Heidelberg 2014

Going Higher in the First-Order Quantifier Alternation Hierarchy 343

the negation of a Πi formula. The quantifier alternation hierarchy was proved to
be strict [6,29]: Γi ∅ Πi ∅ BΠi ∅ Γi+1. In the literature, many efforts have been
made to find decidable characterizations of levels of this well-known hierarchy.

Despite these efforts, only the lower levels are known to be decidable. The class
BΠ1 consists exactly of all piecewise testable languages, i.e., such that member-
ship of a word only depends on its subwords up to a fixed size. These languages
were characterized by Simon [20] as those whose syntactic monoid is J -trivial.
A decidable characterization of Π2 (and hence of Γ2 as well) was proven in [3].
For Γ2, the literature is very rich [25]. For example, these are exactly the lan-
guages definable by the two variable restriction of FO [27]. These are also those
whose syntactic monoid is in the class DA [13]. For higher levels in the hierarchy,
getting decidable characterizations remained an important open problem. In par-
ticular, the case of BΠ2 has a very rich history and a series of combinatorial,
logical, and algebraic conjectures have been proposed over the years. We refer
to [11,2,10,12] for an exhaustive bibliography. So far, the only known effective re-
sult was partial, working only when the alphabet is of size 2 [24]. One of the main
motivations for investigating this class in formal language theory is its ties with
two other famous hierarchies defined in terms of regular expressions. In the first
one, the Straubing-Thérien hierarchy [22,26], level i corresponds exactly to the
class BΠi [28]. In the second one, the dot-depth hierarchy [7], level i corresponds
to adding a predicate for the successor relation in BΠi [28]. Proving decidability
for BΠ2 immediately proves decidability of level 2 in the Straubing-Thérien hi-
erarchy, but also in the dot-depth hierarchy using a reduction by Straubing [23].

In this paper, we prove decidability for BΠ2, Γ3 and Π3. These new results
are based on a deeper decision problem than decidable characterizations: the
separation problem. Fix a class Sep of languages. The Sep-separation problem
amounts to decide whether, given two input regular languages, there exists a
third language in Sep containing the first language while being disjoint from the
second one. This problem generalizes decidable characterizations. Indeed, since
regular languages are closed under complement, testing membership in Sep can
be achieved by testing whether the input is Sep-separable from its complement.
Historically, the separation problem was first investigated as a special case of a
deep problem in semigroup theory, see [1]. This line of research gave solutions to
the problem for several classes. However, the motivations are disconnected from
our own, and the proofs rely on deep, purely algebraic arguments. Recently,
a research effort has been made to investigate this problem from a different
perspective, with the aim of finding new and self-contained proofs relying on
elementary ideas and notions from language theory only [8,15,18,16]. This paper
is a continuation of this effort: we solve the separation problem for Π2, and use
our solution as a basis to obtain decidable characterizations for BΠ2, Γ3 and Π3.

Our solution works as follows: given two regular languages, one can easily con-
struct a monoid morphism ε : A∈ → M that recognizes both of them. We then
design an algorithm that computes, inside the monoid M , enough Π2-related
information to answer the Π2-separation question for any pair of languages that
are recognized by ε. It turns out that it is also possible (though much more

344 T. Place and M. Zeitoun

difficult) to use this information to obtain decidability of BΠ2, Γ3 and Π3. This
information amounts to the notion of Π2-chain, our main tool in the paper. A
Π2-chain is an ordered sequence s1, . . . , sn ∈ M that witnesses a property of ε
wrt. Π2. Let us give some intuition in the case n = 2 – which is enough to make
the link with Π2-separation. A sequence s1, s2 is a Π2-chain if any Π2 language
containing all words in ε−1(s1) intersects ε−1(s2). In terms of separation, this
means that ε−1(s1) is not separable from ε−1(s2) by a Π2 definable language.

This paper contains three main separate and difficult new results: (1) an al-
gorithm to compute Π2-chains – hence Π2-separability is decidable (2) decidabil-
ity of Π3 (decidability of Γ3 is an immediate consequence), and (3) decidability
of BΠ2. Computing Π2-chains is achieved using a fixpoint algorithm that starts
with trivial Π2-chains such as s, s, . . . , s, and iteratively computes more Π2-chains
until a fixpoint is reached. Note that its completeness proof relies on the Factoriza-
tion Forest Theorem of Simon [21]. This is not surprising, as the link between this
theorem and the quantifier alternation hierarchy was already observed in [13,4].

For Π3, we prove a decidable characterization via an equation on the syntactic
monoid of the language. This equation is parametrized by the set of Π2-chains of
length 2. In other words, we use Π2-chains to abstract an infinite set of equations
into a single one. The proof relies again on the Factorization Forest Theorem of
Simon [21] and is actually generic to all levels in the hierarchy. This means that
for any i, we define a notion of Πi-chain and characterize Πi+1 using an equation
parametrized by Πi-chains of length 2. However, decidability of Πi+1 depends on
our ability to compute the Πi-chains of length 2, which we can only do for i = 2.

Our decidable characterization of BΠ2 is the most difficult result of the paper.
As for Π3, it is presented by two equations parametrized by Π2-chains (of length
2 and 3). However, the characterization is this time specific to the case i = 2.
This is because most of our proof relies on a deep analysis of our algorithm
that computes Π2-chains, which only works for i = 2. The equations share
surprising similarities with the ones used in [5] to characterize a totally different
formalism: boolean combination of open sets of infinite trees. In [5] also, the
authors present their characterization as a set of equations parametrized by a
notion of “chain” for open sets of infinite trees (although their “chains” are not
explicitly identified as a separation relation). Since the formalisms are of different
nature, the way these chains and our Π2-chains are constructed are completely
independent, which means that the proofs are also mostly independent. However,
once the construction analysis of chains has been done, several combinatorial
arguments used to make the link with equations are analogous. In particular, we
reuse and adapt definitions from [5] to present these combinatorial arguments
in our proof. One could say that the proofs are both (very different) setups to
apply similar combinatorial arguments in the end.
Organization. We present definitions on languages and logic in Sections 1 and 2
respectively. Section 3 is devoted to the presentation of our main tool: Πi-chains.
In Section 4, we give our algorithm computing Π2-chains. The two remaining
sections present our decidable characterizations, for Π3 and Γ3 in Section 5 and
for BΠ2 in Section 6. Due to lack of space, proofs can be found in [17].

Going Higher in the First-Order Quantifier Alternation Hierarchy 345

1 Words and Algebra

Words and Languages. We fix a finite alphabet A and we denote by A∈ the set
of all words over A. If u, v are words, we denote by u · v or uv the word obtained
by concatenation of u and v. If u ∈ A∈ we denote by alph(u) its alphabet,
i.e., the smallest subset B of A such that u ∈ B∈. A language is a subset of
A∈. In this paper we consider regular languages: these are languages definable
by nondeterministic finite automata, or equivalently by finite monoids. In the
paper, we only work with the monoid representation of regular languages.

Monoids. A semigroup is a set S equipped with an associative multiplication
denoted by ’·’. A monoid M is a semigroup in which there exists a neutral
element denoted 1M . In the paper, we investigate classes of languages, such as
Πi, that are not closed under complement. For such classes, it is known that one
needs to use ordered monoids. An ordered monoid is a monoid endowed with
a partial order ’�’ which is compatible with multiplication: s � t and s′ � t′

imply ss′ � tt′. Given any finite semigroup S, it is well known that there is a
number α(S) (denoted by α when S is understood from the context) such that
for each element s of S, sω is an idempotent: sω = sω · sω.

Let L be a language and M be a monoid. We say that L is recognized by M
if there exists a monoid morphism ε : A∈ → M and an accepting set F ⊆ M
such that L = ε−1(F). It is well known that a language is regular if and only if
it can be recognized by a finite monoid.

Syntactic Ordered Monoid of a Language. The syntactic preorder �L of
a language L is defined as follows on pairs of words in A∈: w �L w′ if for
all u, v ∈ A∈, uwv ∈ L ⊂ uw′v ∈ L. Similarly, we define ⊆L, the syntactic
equivalence of L as follows: w ⊆L w′ if w �L w′ and w′ �L w. One can verify
that �L and ⊆L are compatible with multiplication. Therefore, the quotient
ML of A∈ by ⊆L is an ordered monoid for the partial order induced by the
preorder �L. It is well known that ML can be effectively computed from L.
Moreover, ML recognizes L. We call ML the syntactic ordered monoid of L and
the associated morphism the syntactic morphism.

Separation. Given three languages L, L0, L1, we say that L separates L0 from
L1 if L0 ⊆ L and L1 ≥ L = ⊇. Set X as a class of languages, we say that L0 is
X-separable from L1 if some language in X separates L0 from L1. Observe that
when X is not closed under complement, the definition is not symmetrical: L0
could be X-separable from L1 while L1 is not X-separable from L0.

When working on separation, we consider as input two regular languages
L0, L1. It will be convenient to have a single monoid recognizing both of them,
rather than having to deal with two objects. Let M0, M1 be monoids recogniz-
ing L0, L1 together with the morphisms ε0, ε1, respectively. Then, M0 × M1
equipped with the componentwise multiplication (s0, s1) · (t0, t1) = (s0t0, s1t1)
is a monoid that recognizes both L0 and L1 with the morphism ε : w ∩→
(ε0(w), ε1(w)). From now on, we work with such a single monoid recognizing
both languages.

346 T. Place and M. Zeitoun

Chains and Sets of Chains. Set M as a finite monoid. A chain for M is a
word over the alphabet M , i.e., an element of M∈. A remark about notation is
in order here. A word is usually denoted as the concatenation of its letters. Since
M is a monoid, this would be ambiguous here since st could either mean a word
with 2 letters s and t, or the product of s and t in M . To avoid confusion, we
will write (s1, . . . , sn) a chain of length n on the alphabet M .

In the paper, we will consider both sets of chains (denoted by T , S, . . .) and
sets of sets of chains (denoted by T,S, . . .). In particular, if T is a set of sets of
chains, we define ≤T, the downset of T, as the set:

≤T = {T | ←S ∈ T, T ⊆ S}.

We will often restrict ourselves to considering only chains of a given fixed length.
For n ∈ N, observe that Mn, the set of chains of length n, is a monoid when
equipped with the componentwise multiplication. Similarly the set 2Mn of sets
of chains of length n is a monoid for the operation: S · T = {s̄t̄ ∈ Mn | s̄ ∈
S t̄ ∈ T }.

2 First-Order Logic and Quantifier Alternation Hierarchy

We view words as logical structures made of a sequence of positions labeled
over A. We denote by < the linear order over the positions. We work with first-
order logic FO using unary predicates Pa for all a ∈ A that select positions
labeled with an a, as well as a binary predicate for the linear order <. The
quantifier rank of an FO formula is the length of its longest sequence of nested
quantifiers.

One can classify first-order formulas by counting the number of alternations
between ← and ∀ quantifiers in the prenex normal form of the formula. Set
i ∈ N, a formula is said to be Πi (resp. Δi) if its prenex normal form has i − 1
quantifier alternations (i.e., i blocks of quantifiers) and starts with an ← (resp.
∀) quantification. For example, a formula whose prenex normal form is

∀x1∀x2←x3∀x4 ρ(x1, x2, x3, x4) (with ρ quantifier-free)

is Δ3. Observe that a Δi formula is by definition the negation of a Πi for-
mula. Finally, a BΠi formula is a boolean combination of Πi formulas. For
X = FO, Πi, Δi or BΠi, we say that a language L is X-definable if it can
be defined by an X-formula. Finally, we say that a language is Γi-definable if
it can be defined by both a Πi and a Δi formula. It is known that this gives a
strict infinite hierarchy of classes of languages as represented in Figure 1.

Preorder for Πi. Let w, w′ ∈ A∈ and k, i ∈ N. We write w �k
i w′ if any Πi

formula of quantifier rank k satisfied by w is also satisfied by w′. Observe that
since a Δi formula is the negation of a Πi formula, we have w �k

i w′ iff any Δi

formula of quantifier rank k satisfied by w′ is also satisfied by w. One can verify
that �k

i is a preorder for all k, i. Moreover, by definition, a language L can be
defined by a Πi formula of rank k iff L is saturated by �k

i , i.e., for all w ∈ L
and all w′ such that w �k

i w′, we have w′ ∈ L.

Going Higher in the First-Order Quantifier Alternation Hierarchy 347

Δ1

Σ1

Π1

BΣ1 Δ2

Σ2

Π2

BΣ2 Δ3

Σ3

Π3

BΣ3 Δ4

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Fig. 1. Quantifier Alternation Hierarchy

3 Σi-Chains

We now introduce the main tool of this paper: Πi-chains. Fix a level i in the
quantifier alternation hierarchy and ε : A∈ → M a monoid morphism. A Πi-
chain for ε is a chain (s1, . . . , sn) ∈ M∈ such that for arbitrarily large k ∈ N,
there exist words w1 �k

i · · · �k
i wn mapped respectively to s1, . . . , sn by ε.

Intuitively, this contains information about the limits of the expressive power of
the logic Πi with respect to ε. For example, if (s1, s2) is a Πi-chain, then any
Πi language that contains all words of image s1 must also contain at least one
word of image s2.

In this section, we first give all definitions related to Πi-chains. We then
present an immediate application of this notion: solving the separation problem
for Πi can be reduced to computing the Πi-chains of length 2.

3.1 Definitions

Πi-Chains. Fix i a level in the hierarchy, k ∈ N and B ⊆ A. We define Ck
i [ε]

(resp. Ck
i [ε, B]) as the set of Πi[k]-chains for ε (resp. for (ε, B)) and Ci[ε] (resp.

Ci[ε, B]) as the set of Πi-chains for ε (resp. for (ε, B)). For i = 0, we set
Ci[ε] = Ck

i [ε] = M∈. Otherwise, let s̄ = (s1, . . . , sn) ∈ M∈. We let

– s̄ ∈ Ck
i [ε] if there exist w1, . . . , wn ∈ A∈ verifying w1 �k

i w2 �k
i · · · �k

i wn

and for all j, we have ε(wj) = sj . Moreover, s̄ ∈ Ck
i [ε, B] if the words wj

can be chosen so that they satisfy additionally alph(wj) = B for all j.
– s̄ ∈ Ci[ε] if for all k, we have s̄ ∈ Ck

i [ε]. That is, Ci[ε] =
⋂

k Ck
i [ε]. In the

same way, Ci[ε, B] =
⋂

k Ck
i [ε, B].

One can check that if i � 2, then Ck
i [ε] =

⋃
B⊆A Ck

i [ε, B], since the fragment
Πi can detect the alphabet (i.e., for i � 2, w �k

i w′ implies alph(w) = alph(w′)).
Similarly for i � 2, the set of Πi-chains for ε is Ci[ε] =

⋃
B⊆A Ci[ε, B]. Observe

that all these sets are closed under subwords. Therefore, by Higman’s lemma,
we get the following fact.

Fact 1. For all i, k ∈ N and B ⊆ A, Ci[ε, B] and Ck
i [ε, B] are regular languages.

Fact 1 is interesting but essentially useless in our argument, as Higman’s
lemma provides no way for actually computing a recognizing device for Ci[ε, B].

For any fixed n ∈ N, we let Ck
i,n[ε, B] be the set of Πi[k]-chains of length n

for ε, B, i.e., Ck
i,n[ε, B] = Ck

i [ε, B]≥Mn. We define Ci,n[ε, B], Ck
i,n[ε] and Ci,n[ε]

similarly. The following fact is immediate.

348 T. Place and M. Zeitoun

Fact 2. If B, C ⊆ A, then Ck
i,n[ε, B] · Ck

i,n[ε, C] ⊆ Ck
i,n[ε, B ∪ C]. In particu-

lar, Ck
i,n[ε] and Ci,n[ε] (resp. Ck

i,n[ε, B] and Ci,n[ε, B]) are submonoids (resp.
subsemigroups) of Mn.

This ends the definition of Πi-chains. However, in order to define our algorithm
for computing Π2-chains and state our decidable characterization of BΠ2, we will
need a slightly refined notion: compatible sets of chains .
Compatible Sets of Πi-Chains. In some cases, it will be useful to know that
several Πi-chains with the same first element can be ‘synchronized’. For example
take two Πi-chains (s, t1) and (s, t2) of length 2. By definition, for all k there
exist words w1, w′

1, w2, w′
2 whose images under ε are s, t1, s, t2 respectively, and

such that w1 �k
i w′

1 and w2 �k
i w′

2. In some cases (but not all), it will be possible
to choose w1 = w2 for all k. The goal of the notion of compatible sets of chains
is to record the cases in which this is true.

Fix i a level in the hierarchy, k ∈ N and B ⊆ A. We define two sets of sets
of chains: Ck

i [ε, B], the set of compatible sets of Πi[k]-chains for (ε, B), and
Ci[ε, B], the set of compatible sets of Πi-chains for (ε, B). Let T be a set of
chains, all having the same length n and the same first element s1.
– T ∈ Ck

i [ε, B] if there exists w ∈ A∈ such that alph(w) = B, ε(w) = s1, and
for all chains (s1, . . . , sn) ∈ T , there exist w2, . . . , wn ∈ A∈ verifying w �k

i

w2 �k
i · · · �k

i wn, and for all j = 2, . . . , n, ε(wj) = sj , and alph(wj) = B.
– T ∈ Ci[ε, B] if T ∈ Ck

i [ε, B] for all k.
As before we set Ck

i [ε] and Ci[ε] as the union of these sets for all B ⊆ A.
Moreover, we denote by Ck

i,n[ε, B],Ci,n[ε, B],Ck
i,n[ε] and Ci,n[ε] the restriction

of these sets to sets of chains of length n (i.e., subsets of 2Mn).
Fact 3. If B, C ⊆ A, then Ck

i,n[ε, B] · Ck
i,n[ε, C] ⊆ Ck

i,n[ε, B ∪ C]. In particu-
lar, Ck

i,n[ε] and Ci,n[ε] (resp. Ck
i,n[ε, B] and Ci,n[ε, B]) are submonoids (resp.

subsemigroups) of 2Mn .

3.2 Σi-Chains and Separation
We now state a reduction from the separation problem by Πi and by Δi-definable
languages to the computation of Πi-chains of length 2.
Theorem 4. Let L1, L2 be regular languages and ε : A∈ → M be a morphism
into a finite monoid recognizing both languages with accepting sets F1, F2 ⊆ M .
Set i ∈ N. Then the following properties hold:
1. L1 is Πi-separable from L2 iff for all s1, s2 ∈ F1, F2, (s1, s2) �∈ Ci[ε].
2. L1 is Δi-separable from L2 iff for all s1, s2 ∈ F1, F2, (s2, s1) �∈ Ci[ε].

The proof of Theorem 4, which is parametrized by Πi-chains, is standard
and identical to the corresponding theorems in previous separation papers, see
e.g., [18]. In Section 4, we present an algorithm computing Πi-chains of length 2
at level i = 2 of the alternation hierarchy (in fact, our algorithm needs to com-
pute the more general notion of sets of compatible Π2-chains). This makes The-
orem 4 effective for Π2 and Δ2.

Going Higher in the First-Order Quantifier Alternation Hierarchy 349

4 Computing Σ2-Chains

In this section, we give an algorithm for computing all Π2-chains and sets of
compatible Π2-chains of a given fixed length. We already know by Theorem 4
that achieving this for length 2 suffices to solve the separation problem for Π2
and Δ2. Moreover, we will see in Sections 5 and 6 that this algorithm can be
used to obtain decidable characterizations for Π3, Δ3, Γ3 and BΠ2. Note that
in this section, we only provide the algorithm and intuition on its correctness.

For the remainder of this section, we fix a morphism ε : A∈ → M into a finite
monoid M . For any fixed n ∈ N and B ⊆ A, we need to compute the following:

1. the sets C2,n[ε, B] of Π2-chains of length n for ε.
2. the sets C2,n[ε, B] of compatible subsets of C2,n[ε, B].

Our algorithm directly computes the second item, i.e., C2,n[ε, B]. More pre-
cisely, we compute the map B ∩→ C2,n[ε, B]. Observe that this is enough to
obtain the first item since by definition, s̄ ∈ C2,n[ε, B] iff {s̄} ∈ C2,n[ε, B]. Note
that going through compatible subsets is necessary for the technique to work,
even if we are only interested in computing the map B ∩→ C2,n[ε, B].

Outline. We begin by explaining what our algorithm does. For this outline,
assume n = 2. Observe that for all w ∈ A∈ such that alph(w) = B, we have{

(ε(w), ε(w))
} ∈ C2,n[ε, B]. The algorithm starts from these trivially compati-

ble sets, and then saturates them with two operations that preserve membership
in C2,n[ε, B]. Let us describe these two operations. The first one is multiplica-
tion: if S ∈ C2,n[ε, B] and T ∈ C2,n[ε, C] then S · T ∈ C2,n[ε, B ∪ C] by Fact 3.
The main idea behind the second operation is to exploit the following property
of Π2:

∀k ←� w �k
2 u, w �k

2 u′ and alph(w′) = alph(w) =⊂ w2γ �k
2 uγw′u′γ.

This is why compatible sets are needed: in order to use this property, we need
to have a single word w such that w �k

2 u and w �k
2 u′, which is information

that is not provided by Π2-chains. This yields an operation that states that
whenever S belongs to C2,n[ε, B], then so does Sω · T · Sω, where T is the set of
chains (1M , ε(w′)) with alph(w′) = B. Let us now formalize this procedure and
generalize it to arbitrary length.

Algorithm. As we explained, our algorithm works by fixpoint, starting from
trivial compatible sets. For all n ∈ N and B ⊆ A, we let In[B] be the set
In[B] =

{{(ε(w), . . . , ε(w))} | alph(w) = B
} ⊆ 2Mn . Our algorithm will start

from the function f0 : 2A → 22M
n

that maps any C ⊆ A to In[C].
Our algorithm is defined for any fixed length n � 1. We use a procedure Satn

taking as input a mapping f : 2A → 22M
n

and producing another such mapping.
The algorithm starts from f0 and iterates Satn until a fixpoint is reached.

When n � 2, the procedure Satn is parametrized by C2,n−1[ε, B], the sets of
Π2-chains of length n − 1, for B ⊆ A. This means that in order to use Satn, one
needs to have previously computed the Π2-chains of length n − 1 with Satn−1.

350 T. Place and M. Zeitoun

We now define the procedure Satn. If S is a set of chains of length n − 1
and s ∈ M , we write (s, S) for the set {(s, s1, . . . , sn−1) | (s1, . . . , sn−1) ∈ S},
which consists of chains of length n. Let f : 2A → 22M

n

be a mapping, written
f = (C ∩→ TC). For all B ⊆ A, we define a set Satn[B](f) in 2Mn . That is,
B ∩→ Satn[B](f) is again a mapping from 2A to 22M

n

. Observe that when n = 1,
there is no computation to do since for all B, C2,1[ε, B] = I1[B] by definition.
Therefore, we simply set Sat1[B](C ∩→ TC) = TB. When n � 2, we define
Satn[B](C ∩→ TC) as the set TB ∪ MB ∪ OB with

MB =
⋃

C∪D=B

(TC · TD) (1)

OB =
{T ω · (1M , C2,n−1[ε, B]) · T ω | T ∈ TB

}
(2)

This ends the description of the procedure Satn. We now formalize how to iter-
ate it. For any mapping f : 2A → 2Mn and any B ⊆ A , we set Sat0n[B](f) =
f(B). For all j � 1, we set Satj

n[B](f) = Satn[B](C ∩→ Satj−1
n [C](f)). By defi-

nition of Satn, for all j � 0 and B ⊆ A, we have Satj
n(f)[B] ⊆ Satj+1

n (f)[B] ⊆
2Mn . Therefore, there exists j such that Satj

n[B](f) = Satj+1
n [B](f). We de-

note by Sat∈
n[B](f) this set. This finishes the definition of the algorithm. Its

correctness and completeness are stated in the following proposition.

Proposition 5. Let n � 1, B ⊆ A and � � 3|M | · 2|A| · n · 222|M|n . Then

C2,n[ε, B] = Cγ
2,n[ε, B] = ≤ Sat∈

n[B](C ∩→ In[C]).

Proposition 5 states correctness of the algorithm (the set ≤ Sat∈
n[B](C ∩→ In[C])

only consists of compatible sets of Π2-chains) and completeness (this set contains
all such sets). It also establishes a bound �. This bound is a byproduct of the
proof of the algorithm. It is of particular interest for separation and Theorem 4.
Indeed, one can prove that for any two languages that are Π2-separable and
recognized by ε, the separator can be chosen with quantifier rank � (for n = 2).

We will see in Sections 5 and 6 how to use Proposition 5 to get decidable char-
acterizations of Π3, Δ3, Γ3 and BΠ2. We already state the following corollary
as a consequence of Theorem 4.

Corollary 6. Given as input two regular languages L1, L2 it is decidable to test
whether L1 can be Π2-separated (resp. Δ2-separated) from L2.

5 Decidable Characterizations of Σ3, Π3, Δ3

In this section we present our decidable characterizations for Γ3, Π3 and Δ3. We
actually give characterizations for all classes Γi, Πi and Δi in the quantifier al-
ternation hierarchy. The characterizations are all stated in terms of equations on
the syntactic monoid of the language. However, these equations are parametrized
by the Πi−1-chains of length 2. Therefore, getting decidable characterizations de-
pends on our ability to compute the set of Πi−1-chains of length 2, which we are
only able to do for i � 3. We begin by stating our characterization for Πi, and
the characterizations for Δi and Γi will then be simple corollaries.

Going Higher in the First-Order Quantifier Alternation Hierarchy 351

Theorem 7. Let L be a regular language and ε : A∈ → M be its syntactic mor-
phism. For all i � 1, L is definable in Πi iff M satisfies the following property:

sω � sωtsω for all (t, s) ∈ Ci−1[ε]. (3)

It follows from Theorem 7 that it suffices to compute the Πi−1-chains of length
2 in order to decide whether a language is definable in Πi. Also observe that when
i = 1, by definition we have (t, 1M) ∈ C0[ε] for all t ∈ M . Therefore, (3) can be
rephrased as 1M � t for all t ∈ M , which is the already known equation for Π1,
see [13]. Similarly, when i = 2, (3) can be rephrased as sω � sωtsω whenever t
is a ‘subword’ of s, which is the previously known equation for Π2 (see [13,4]).

The proof of Theorem 7 is done using Simon’s Factorization Forest Theorem
and is actually a generalization of a proof of [4] for the special case of Π2. Here,
we state characterizations of Δi and Γi as immediate corollaries. Recall that
a language is Δi-definable if its complement is Πi-definable, and that it is Γi-
definable if it is both Πi-definable and Δi-definable.

Corollary 8. Let L be a regular language and let ε : A∈ → M be its syntactic
morphism. For all i � 1, the following properties hold:

– L is definable in Δi iff M satisfies sω � sωtsω for all (t, s) ∈ Ci−1[ε].
– L is definable in Γi iff M satisfies sω = sωtsω for all (t, s) ∈ Ci−1[ε].

We finish the section by stating decidability for the case i = 3. Indeed by
Proposition 5, one can compute the Π2-chains of length 2 for any morphism.
Therefore, we get the following corollary.

Corollary 9. Definability of a regular language in Γ3, Π3 or Δ3 is decidable.

6 Decidable Characterization of BΣ2

In this section we present our decidable characterization for BΠ2. In this case,
unlike Theorem 7, the characterization is specific to the case i = 2 and does
not generalize as a non-effective characterization for all levels. The main reason
is that both the intuition and the proof of the characterization rests on a deep
analysis of our algorithm for computing Π2-chains, which is specific to level
i = 2. The characterization is stated as two equations that must be satisfied by
the syntactic morphism of the language. The first one is parametrized by Π2-
chains of length 3, and the second one by sets of compatible Π2-chains of length
2 through a more involved relation that we define below.

Alternation Schema. Let ε : A∈ → M be a monoid morphism and let B ⊆ A.
A B-schema for ε is a triple (s1, s2, s′

2) ∈ M3 such that there exist T ∈ C2[ε, B]
and r1, r′

1 ∈ M verifying s1 = r1r′
1, (r1, s2) ∈ C2[ε, B] · T ω and (r′

1, s′
2) ∈

T ω · C2[ε, B]. Intuitively, the purpose of B-schemas is to abstract a well-known
property of Π2 on elements of M : one can prove that if (s1, s2, s′

2) is a B-schema,
then for all k ∈ N, there exist w1, w2, w′

2 ∈ A∈, mapped respectively to s1, s2, s′
2

under ε, and such that for all u ∈ B∈, w1 �k
2 w2uw′

2.

352 T. Place and M. Zeitoun

Theorem 10. Let L be a regular language and ε : A∈ → M be its syntactic
morphism. Then L is definable in BΠ2 iff M satisfies the following properties:

sω
1 sω

3 = sω
1 s2sω

3
sω
3 sω

1 = sω
3 s2sω

1
for (s1, s2, s3) ∈ C2[ε] (4)

(s2t2)ωs1(t′
2s′

2)ω = (s2t2)ωs2t1s′
2(t′

2s′
2)ω

for (s1, s2, s′
2) and (t1, t2, t′

2) B-schemas for some B ⊆ A
(5)

The proof of Theorem 10 is far more involved than that of Theorem 7. How-
ever, a simple consequence is decidability of definability in BΠ2. Indeed, it suffices
to compute Π2-chains of length 3 and the B-schemas for all B ⊆ A to check va-
lidity of both equations. Computing this information is possible by Proposition 5,
and therefore, we get the following corollary.
Corollary 11. Definability of a regular language in BΠ2 is decidable.

7 Conclusion
We solved the separation problem for Π2 using the new notion of Π2-chains, and
we used our solution to prove decidable characterizations for BΠ2, Γ3, Π3 and Δ3.
The main open problem in this field remains to lift up these results to higher levels
in the hierarchy. In particular, we proved that for any natural i, generalizing our
separation solution to Πi (i.e., being able to compute the Πi-chains of length 2)
would yield a decidable characterization for Πi+1, Δi+1 and Γi+1.

Our algorithm for computing Π2-chains cannot be directly generalized for
higher levels. An obvious reason for this is the fact that it considers Π2-chains
parametrized by sub-alphabets. This parameter is designed to take care of the
alternation between levels 1 and 2, but is not adequate for higher levels. However,
this is unlikely to be the only problem. In particular, we do have an algorithm
that avoids using the alphabet, but it remains difficult to generalize. We leave
the presentation of this alternate algorithm for further work.

Another open question is to generalize our results to logical formulas that can
use a binary predicate +1 for the successor relation. In formal languages, this cor-
responds to the well-known dot-depth hierarchy [7]. It was proved in [23] and [14]
that decidability of BΠ2(<, +1) and Π3(<, +1) is a consequence of our results for
BΠ2(<) and Π3(<). However, while the reduction itself is simple, its proof rely
on deep algebraic arguments. We believe that our techniques can be generalized
to obtain direct proofs of the decidability of BΠ2(<, +1) and Π3(<, +1).

References
1. Almeida, J.: Some algorithmic problems for pseudovarieties. Publ. Math. Debre-

cen 54, 531–552 (1999); Proc. of Automata and Formal Languages, VIII
2. Almeida, J., Kĺıma, O.: New decidable upper bound of the 2nd level in the

Straubing-Thérien concatenation hierarchy of star-free languages. DMTCS (2010)
3. Arfi, M.: Polynomial operations on rational languages. In: Brandenburg, F.J.,

Wirsing, M., Vidal-Naquet, G. (eds.) STACS 1987. LNCS, vol. 247, pp. 198–206.
Springer, Heidelberg (1987)

4. Bojańczyk, M.: Factorization forests. In: Diekert, V., Nowotka, D. (eds.) DLT 2009.
LNCS, vol. 5583, pp. 1–17. Springer, Heidelberg (2009)

Going Higher in the First-Order Quantifier Alternation Hierarchy 353

5. Bojańczyk, M., Place, T.: Regular languages of infinite trees that are boolean combi-
nations of open sets. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.)
ICALP 2012, Part II. LNCS, vol. 7392, pp. 104–115. Springer, Heidelberg (2012)

6. Brzozowski, J., Knast, R.: The dot-depth hierarchy of star-free languages is infinite.
J. Comp. Syst. Sci. 16(1), 37–55 (1978)

7. Cohen, R.S., Brzozowski, J.: Dot-depth of star-free events. J. Comp. Syst. Sci. 5,
1–16 (1971)

8. Czerwiński, W., Martens, W., Masopust, T.: Efficient separability of regular lan-
guages by subsequences and suffixes. In: Fomin, F.V., Freivalds, R., Kwiatkowska,
M., Peleg, D. (eds.) ICALP 2013, Part II. LNCS, vol. 7966, pp. 150–161. Springer,
Heidelberg (2013)

9. McNaughton, R., Papert, S.: Counter-Free Automata. MIT Press (1971)
10. Pin, J.-É.: Bridges for concatenation hierarchies. In: Larsen, K.G., Skyum, S.,

Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 431–442. Springer, Heidelberg
(1998)

11. Pin, J.-É.: Theme and variations on the concatenation product. In: Winkler, F.
(ed.) CAI 2011. LNCS, vol. 6742, pp. 44–64. Springer, Heidelberg (2011)

12. Pin, J.-E., Straubing, H.: Monoids of upper triangular boolean matrices. In: Semi-
groups. Structure and Universal Algebraic Problems. Colloquia Mathematica Soci-
etatis Janos Bolyal, vol. 39, pp. 259–272. North-Holland (1985)

13. Pin, J.-E., Weil, P.: Polynomial closure and unambiguous product. Theory of Com-
puting Systems 30(4), 383–422 (1997)

14. Pin, J.-E., Weil, P.: The wreath product principle for ordered semigroups. Com-
munications in Algebra 30, 5677–5713 (2002)

15. Place, T., van Rooijen, L., Zeitoun, M.: Separating regular languages by piecewise
testable and unambiguous languages. In: Chatterjee, K., Sgall, J. (eds.) MFCS
2013. LNCS, vol. 8087, pp. 729–740. Springer, Heidelberg (2013)

16. Place, T., van Rooijen, L., Zeitoun, M.: Separating regular languages by locally
testable and locally threshold testable languages. In: FSTTCS 2013. LIPIcs (2013)

17. Place, T., Zeitoun, M.: Going higher in the first-order quantifier alternation hier-
archy on words. Arxiv (2014), http://arxiv.org/abs/1404.6832

18. Place, T., Zeitoun, M.: Separating regular languages with first-order logic. In: CSL-
LICS 2014 (2014)

19. Schützenberger, M.P.: On finite monoids having only trivial subgroups. Information
and Control 8, 190–194 (1965)

20. Simon, I.: Piecewise testable events. In: Brakhage, H. (ed.) GI-Fachtagung 1975.
LNCS, vol. 33, pp. 214–222. Springer, Heidelberg (1975)

21. Simon, I.: Factorization forests of finite height. TCS 72(1), 65–94 (1990)
22. Straubing, H.: A generalization of the Schützenberger product of finite monoids.

TCS (1981)
23. Straubing, H.: Finite semigroup varieties of the form V ∗ D. J. Pure App. Alge-

bra 36, 53–94 (1985)
24. Straubing, H.: Semigroups and languages of dot-depth two. TCS (1988)
25. Tesson, P., Therien, D.: Diamonds are forever: The variety DA. In: Semigroups,

Algorithms, Automata and Languages, pp. 475–500. World Scientific (2002)
26. Thérien, D.: Classification of finite monoids: the language approach. TCS (1981)
27. Thérien, D., Wilke, T.: Over words, two variables are as powerful as one quantifier

alternation. In: STOC 1998, pp. 234–240. ACM (1998)
28. Thomas, W.: Classifying regular events in symbolic logic. J. Comp. Syst. Sci. (1982)
29. Thomas, W.: A concatenation game and the dot-depth hierarchy. In: Börger, E. (ed.)

Computation Theory and Logic. LNCS, vol. 270, pp. 415–426. Springer, Heidelberg
(1987)

http://arxiv.org/abs/1404.6832

Hardness Results for Intersection

Non-Emptiness

Michael Wehar

Department of Computer Science and Engineering
University at Buffalo, Buffalo, USA

mwehar@buffalo.edu

Abstract. We carefully reexamine a construction of Karakostas, Lipton,
and Viglas (2003) to show that the intersection non-emptiness problem
for DFA’s (deterministic finite automata) characterizes the complexity
class NL. In particular, if restricted to a binary work tape alphabet, then
there exist constants c1 and c2 such that for every k intersection non-
emptiness for k DFA’s is solvable in c1k log(n) space, but is not solvable
in c2k log(n) space. We optimize the construction to show that for an
arbitrary number of DFA’s intersection non-emptiness is not solvable in
o(n

log(n) log(log(n))
) space. Furthermore, if there exists a function f(k) =

o(k) such that for every k intersection non-emptiness for k DFA’s is
solvable in nf(k) time, then P �= NL. If there does not exist a constant c
such that for every k intersection non-emptiness for k DFA’s is solvable
in nc time, then P does not contain any space complexity class larger
than NL.

1 Introduction

Let A denote a class of machines. The intersection non-emptiness problem for
A, denoted by IEA, consists of all finite lists of machines in A whose underlying
languages have a non-empty intersection. By fixing the number of machines in
the input to k, one obtains intersection non-emptiness for k machines which we
denote by k-IEA. Intersection non-emptiness problems can be motivated by the
following scenario. Consider that you are trying to construct an object x for a
particular application. You propose a finite list of conditions for x to satisfy such
that each condition can be decided by a machine in A. An algorithm that solves
intersection non-emptiness for A provides a method for checking if there exists
an object x satisfying the proposed conditions.

Let IED denote the intersection non-emptiness problem for DFA’s. One can
solve IED by checking reachability in a product machine. Given an input consist-
ing of k machines each of size at most m, the product machine has size at most
mk. Therefore, checking reachability takes at most mck time for some constant
c. IED is a well known PSPACE-complete problem [5]. In [6], it was shown that
one can pad strings in IED to obtain problems hard for smaller complexity classes
such as NSPACE(g(n) log(n)) where g is a slow growing log-space-constructible

J. Esparza et al. (Eds.): ICALP 2014, Part II, LNCS 8573, pp. 354–362, 2014.
c∗ Springer-Verlag Berlin Heidelberg 2014

Hardness Results for Intersection Non-Emptiness 355

function such as log∗(n). In [4], it was shown that improvements to the stan-
dard algorithm imply separation results. In particular, if there exists a function

f(k) = o(k) such that IED is solvable in m1 ·mf(k)
2 time where m1 is the size of

a designated largest machine and all other machines have size at most m2, then
NL ∈= P.

In this paper, we carefully reexamine and optimize the construction from [4]
in order to prove new results. We show that if restricted to a binary work tape
alphabet, then there exist constants c1 and c2 such that for every k, k-IED
≡ NSPACE(c1k log(n)) and k-IED /≡ NSPACE(c2k log(n)). Then, we introduce
an optimized construction to show that IED /≡ NSPACE(o(n

log(n) log(log(n)))).

Finally, we combine these results with a diagonalization argument to show that if
there exists a function f(k) = o(k) such that for every k, k-IED ≡ DTIME(nf(k)),
then P ∈= NL. If there does not exist a constant c such that for every k, k-IED
≡ DTIME(nc), then NSPACE(f(n)) ∅ P for all f(n) = ω(log(n)) such that f
is space-constructible.

2 Notation and Conventions

The input for IED is an encoding of a finite list of DFA’s. For each encoding,
n will denote the length and k will denote the number of machines that are
represented. For each natural number k, k-IED denotes a restriction of the IED
problem such that we only accept inputs that encode at most k machines.

Whenever we use the term Turing machine, we refer to a deterministic or
non-deterministic machine with a two-way read only input tape and a two-way
read/write work tape. For our purposes, we will only consider Turing machines
where the work tape alphabet is binary. A work tape over a binary alphabet
will be referred to as a binary work tape. A cell on a binary work tape will be
referred to as a bit cell.

For each k, there are acceptance problems for space and time bounded Turing
machines denoted by NS

k log and DT
nk , respectively. NS

k log refers to the problem
where we are given an encoding of a non-deterministic Turing machine M with
a binary work tape and an input s. We accept (M, s) if and only if M accepts s
using at most k log(n) work tape bit cells where n denotes the length of s. DT

nk

is defined similarly for nk deterministic time. We denote by NSPACE2(h(n))
the set of problems solvable by a non-deterministic Turing machine using at
most h(n) work tape bit cells. Such classes are used to measure the binary space
complexity of problems [2]. We associate NS

k log with NSPACE2(k log(n)) and

DT
nk with DTIME(nk).

3 Binary Space Complexity

We introduce a function SNL(k) that measures the actual space complexities of
the NS

k log problems. In particular, SNL(k) is defined as follows:

SNL(k) := min{ d ≡ N | NS
k log ≡ NSPACE2(d log(n)) }. (1)

356 M. Wehar

In this section, we sketch how one could apply standard techniques from
the space hierarchy theorem to prove that there exist constants c1 and c2 such
that for every k sufficiently large, NS

k log ≡ NSPACE2(c1k log(n)) and NS
k log

/≡ NSPACE2(c2k log(n)). Using the function SNL(k), we express this result as
SNL(k) = Θ(k).

Proposition 1. SNL(k) = O(k).

Sketch of proof. Using the simulation found in any common proof of the space
hierarchy theorem, one shows that NS

log ≡ NL. Further, one shows SNL(k) =

O(k) by using padding to reduce NS
k log to NS

log for every k. ⊆↔
Proposition 2. SNL(k) = Ω(k).

Sketch of proof. Using the standard diagonalization argument found in any com-
mon proof of the non-deterministic space hierarchy theorem, one shows SNL(k)
= Ω(k). Notice that in order to carry out the diagonalization one needs to show
there exists c such that for all k,

NSPACE2(k log(n)) ⇔ co -NSPACE2(ck log(n)). (2)

First, one applies the result NL = co -NL to show that there exists c such
that NS

log ≡ co -NSPACE2(c log(n)). Further, one shows (2) by using padding to

reduce NS
k log to NS

log for every k. ⊆↔
Corollary 3. SNL(k) = Θ(k).

4 Reductions

We introduce a function SIE(k) that measures the actual space complexities of
the k-IED problems. In particular, SIE(k) is defined as follows:

SIE(k) := min{ d ≡ N | k-IED ≡ NSPACE2(d log(n)) }. (3)

In this section, we carefully reexamine the construction from [4] to show that
there exist constants c1 and c2 such that for every k sufficiently large, k-IED ≡
NSPACE2(c1k log(n)) and k-IED /≡ NSPACE2(c2k log(n)). Using the function
SIE(k), we can express this result as SIE(k) = Θ(SNL(k)) = Θ(k).

Proposition 4. SIE(k) = O(k).

Sketch of proof. As was previously discussed, one can solve IED by checking
reachability in a product machine. A state of the product machine can be stored
as a string of k log(n) bits. Given such a state, we can non-deterministically
guess which state comes next. There exists a path from an initial state to a final
state if and only if there exists a path from an initial state to a final state of
length at most nk. Therefore, k-IED is solvable using at most ck log(n) bits for
some constant c. ⊆↔

Hardness Results for Intersection Non-Emptiness 357

Theorem 5. SIE(k) = Ω(SNL(k)).

Proof. We will describe a reduction from NS
k log to k-IED. Then, we will discuss

encoding details to show that this is a log-space reduction.
Let a k log(n) space bounded non-deterministic Turing machine M and an

input string s of length n be given. Our first task is to construct k DFA’s,
denoted by < Di >i≥[k], each of size at most p(n) for some fixed polynomial
p such that M accepts s if and only if

⋂
i≥[k] L(Di) is non-empty. The DFA’s

will read in a string that represents a computation of M on s and verify that
the computation is valid and accepting. The work tape of M will be split into
k sections each consisting of log(n) sequential bits of memory. The ith DFA,
Di, will keep track of the ith section and verify that it is managed correctly.
In addition, all of the DFA’s will keep track of the input and work tape head
positions. We will achieve a better simulation in Theorem 7 where we split up
the management of the tape head positions to separate DFA’s. The following
two concepts are essential to our construction.

A section i configuration of M is a tuple of the form

(state, input position, work position, ith section of work tape).

A forgetful configuration of M is a tuple of the form

(state, input position, work position).

We say that a section i configuration r extends a forgetful configuration a if r
agrees with a on state, input position, and work position. We say that a section
i configuration r1 transitions to a section i configuration r2 on input s if either
the work position for r1 is in the ith section and r2 correctly represents how the
tape positions and the ith section could change in one step of the computation
on s, or r1 is not in the ith section and r1 and r2 agree on the ith section of the
work tape.

The states of Di are identified with section i configurations. The alphabet
characters are identified with forgetful configurations. For Di, each alphabet
character a transitions from a state r1 to a state r2 if and only if r2 extends a
and r1 transitions to r2 on input s.

We assert without proof that for every string x, x represents a valid accepting
computation of M on s if and only if x ≡ ⋂

i≥[k] L(Di). Therefore, M accepts s

if and only if
⋂

i≥[k] L(Di) is non-empty.

We show that the Di’s have size at most p(n) for some fixed polynomial p.
Each Di consists of a start state, a list of final states, and a list of transitions
where each transition consists of two states and an alphabet character. Each
state is represented by a section i configuration and each alphabet character is
represented by a forgetful configuration. Let m denote the number of states in
M. Therefore, in total there are m·n·k log(n)·2log(n) section i configurations and
m · n · k log(n) forgetful configurations. Hence, there exists a fixed two variable
polynomial q such that each Di has at most q(n, k) states. Since k is fixed, one
can blow up the degree of q to get a polynomial p such that p doesn’t depend
on k and each Di has size at most p(n).

358 M. Wehar

It should be clear from the preceding that there is a fixed polynomial t(n)
such that for every k, NS

k log is t(n)-time reducible to k-IED. However, we want

to show that there is a constant c such that for every k, NS
k log is c log(n)-space

reducible to k-IED. We accomplish this by describing how to print the string
encoding of the Di’s to an auxiliary write only output tape using at most c log(n)
space for some constant c.

We will describe how to print the transitions for each Di and leave the re-
maining encoding details to the reader. We use a bit string i to represent the
current DFA and two bit strings j1 and j2 to represent section i configurations.
We iterate through every combination of i, j1, and j2. If Di has a transition
from j1 to j2, then we print (i, j1, a, j2) where a is the forgetful configuration
such that j2 extends a. We assert that checking whether to print (i, j1, a, j2)
requires no more than d log(k) + d log(n) bits for some constant d. Therefore, in
printing the encoding of the Di’s, we use no more than c log(k) + c log(n) bits
for some constant c. For each k, when n is sufficiently large, the log(k) term goes
away. It follows that for every k, NS

k log is c log(n)-space reducible to k-IED. ⊆↔
Corollary 6. SIE(k) = Θ(SNL(k)) = Θ(k).

Proof. By Corollary 3, we have SNL(k) = Θ(k). Applying Proposition 4 and
Theorem 5, we get that SIE(k) = Θ(SNL(k)) = Θ(k). ⊆↔
Theorem 7. IED /≡ NSPACE(o(n

log(n) log(log(n)))).

Proof. By the non-deterministic space hierarchy theorem, we may choose a prob-
lem Q such that Q ≡ NSPACE(n), but Q /≡ NSPACE(o(n)). Choose c ≡ N and
a non-deterministic Turing machine M that solves Q using at most cn bit cells.
We optimize the construction from the proof of Theorem 5 to show that if IED
≡ NSPACE(o(n

log(n) log(log(n)))), then Q ≡ NSPACE(o(n)). Since we know that

Q /≡ NSPACE(o(n)), it follows that IED /≡ NSPACE(o(n
log(n) log(log(n)))).

Let an input string s for M of length n be given. Our task is to construct
(c+ 1) ·n DFA’s each with at most d log(n) states for some constant d such that
M accepts s if and only if the DFA’s have a non-empty intersection. The DFA’s
will read in a bit string that represents a computation of M on s and verify that
the computation is valid and accepting. In this construction, we split up the
management of the tape head positions to separate DFA’s. There are n DFA’s,
denoted by < Ii >i≥[n], that manage the input tape and there are cn DFA’s,
denoted by < Wi >i≥[cn], that manage the work tape. The following concept is
essential to our construction.

An informative configuration of M is a tuple of the form

(state, input position, current input bit, work position, current work bit).

The DFA’s will read in a sequence of informative configurations that are encoded
as bit strings. In contrast to the previous construction, the DFA’s will have a
binary input alphabet.

Hardness Results for Intersection Non-Emptiness 359

Each DFA is assigned to manage a bit position of either the input tape or
work tape. Each Ii stores the ith input tape bit and operates as follows. It reads
each informative configuration and checks if it represents the input position i.
If it does not, then it ignores the informative configuration and moves on to the
next one. However, if it does represent the input position i, then it checks that
the stored bit matches the current input bit and uses the current work bit to
check that the input position and state validly transition to the next informative
configuration. Each Wi stores the ith work tape bit and operates as follows. It
reads each informative configuration and checks if it represents the work position
i. If it does not, then it ignores the informative configuration and moves on to
the next one. However, if it does represent position i, then it checks that the
stored bit matches the current work bit and uses the current input bit to modify
the stored bit and check that the work position and state validly transition
to the next informative configuration. It’s important to remark that DFA’s for
boundary positions such as I1, In, W1, and Wcn cannot allow the input position
or work position to go outside [n] or [cn], respectively.

We assert without proof that for every bit string x, x represents a valid accept-
ing computation of M on s if and only if x ≡ ⋂

i≥[n] L(Ii) and x ≡ ⋂
i≥[cn] L(Wi).

Therefore, M accepts s if and only if there exists a string x such that x ≡⋂
i≥[n] L(Ii) and x ≡ ⋂

i≥[cn] L(Wi).

A DFA with log(cn) states can be constructed to recognize a fixed binary
number i ≡ [cn]. Since a tape position i could only transition to i − 1, i, or
i + 1 in one step, it follows that a DFA with d log(n) states for some constant d
can be constructed to check the validity of transitioning to the next informative
configuration. Therefore, we can construct each DFA with at most d log(n) states
for some constant d.

We described how to construct (c + 1) · n DFA’s each with at most d log(n)
states for some constant d whose intersection is non-empty if and only if M
accepts s. Since the total length of the string encoding of < Ii >i≥[n] com-
bined with < Wi >i≥[cn] is at most n log(n) log(log(n)), it follows that IED ≡
NSPACE(o(n

log(n) log(log(n)))) implies Q ≡ NSPACE(o(n)). We obtain the desired

result because Q /≡ NSPACE(o(n)). ⊆↔

5 Space vs Time

We introduce functions RNL(k) and RIE(k) that measure the actual time com-
plexities of NS

k log and k-IED, respectively. In particular, RNL(k) and RIE(k) are
defined as follows:

RNL(k) := min{ d ≡ N | NS
k log ≡ DTIME(nd) } (4)

RIE(k) := min{ d ≡ N | k-IED ≡ DTIME(nd) }. (5)

In this section, we show that if there exists a function f(k) = o(k) such that
for every k, NS

k log ≡ DTIME(nf(k)), then P ∈= NL. Using the function RNL(k) we
can express this result as if RNL(k) = o(k), then P ∈= NL. Notice that by using

360 M. Wehar

the reduction from Theorem 5, we also have RIE(k) = Θ(RNL(k)). It follows
that if RIE(k) = o(k), then P ∈= NL.

Proposition 8. RIE(k) = Θ(RNL(k)).

Theorem 9. If RNL(k) = o(k), then NL ∈= P.

Proof. Suppose that NL = P. Since DT
n ≡ P, we have DT

n ≡ NL. Choose d ≡ N

such that DT
n ≡ NSPACE2(d log(n)). Further, by using padding to reduce DT

nk

to DT
n for every k, one can show that there exists d ∈ such that for all k, DT

nk

≡ NSPACE2(d ∈k log(n)). Choose such a constant d∈ satisfying for all k, DT
nk ≡

NSPACE2(d ∈k log(n)).
Suppose for sake of contradiction that RNL(k) = o(k). By Proposition 2, we

may choose c such that for all k sufficiently large

NS
k log /≡ NSPACE2(

⌊
k

c

⌋
log(n)). (6)

Since RNL(k) = o(k), for all k sufficiently large

RNL(k) <

⌊
k

cd ∈

⌋
. (7)

Choose m satisfying NS
m log /≡ NSPACE2(

⌊
m
c

⌋
log(n)) and RNL(m) <

⌊
m
cd ′

⌋
.

Therefore,

NS
m log ≡ DTIME(o(n⊂ m

cd ′ ≥)). (8)

Since DT
nk ≡ NSPACE2(d ∈k log(n)) for all k,

DT

n⊂ m
cd ′ ≥ ≡ NSPACE2(d∈

⌊ m

cd ∈

⌋
log(n)) ⇔ NSPACE2(

⌊m
c

⌋
log(n)). (9)

Since we can trivially reduce every problem in DTIME(o(n⊂ m
cd ′ ≥)) to DT

n⊂ m
cd ′ ≥ ,

NS
m log ≡ DTIME(o(n⊂ m

cd ′ ≥)) ⇔ NSPACE2(
⌊m
c

⌋
log(n)) (10)

which is a contradiction because NS
m log /≡ NSPACE2(

⌊
m
c

⌋
log(n)). ⊆↔

Corollary 10. If RIE(k) = o(k), then NL ∈= P.

Next, we show that if RNL(k) is unbounded, then P does not contain any
space complexity class larger than NL. Since RIE(k) = Θ(RNL(k)), it follows
that if RIE(k) is unbounded, then P does not contain any space complexity
class larger than NL.

For every function f , let NS
f denote the acceptance problem for f(n)-space

bounded non-deterministic Turing machines. NS
f is of particular interest to us

if it is non-deterministically solvable in f(n) space.

Hardness Results for Intersection Non-Emptiness 361

Theorem 11. If RNL(k) is unbounded, then NS
f /≡ P for all functions f(n) =

ω(log(n)).

Proof. We will prove the contrapositive. Suppose that NS
f ≡ P for some function

f(n) = ω(log(n)). By assumption, we may choose c ≡ N and a deterministic
Turing machine T such that T solves NS

f in at most O(nc) time. Let k ≡ N be

given. Choose a non-deterministic Turing machine M that solves NS
k log using at

most O(log(n)) bit cells. We can deterministically solve NS
k log in at most O(nc)

time by feeding T an encoding of M and the input string. Since k is arbitrary,
NS

k log is solvable in O(nc) time for every k. It follows that RNL(k) is bounded.
⊆↔

Corollary 12. If RNL(k) is unbounded, then NSPACE(f(n)) ∅ P for all f(n) =
ω(log(n)) such that f is space-constructible.

Proof. Suppose RNL(k) is unbounded. Let a function f(n) = ω(log(n)) such that
f is space-constructible be given. Apply the preceding theorem to get that NS

f /≡
P. Since f is space-constructible, one can use the simulation found in any com-
mon proof of the space hierarchy theorem to show that NS

f ≡ NSPACE(f(n)).

Since NS
f /≡ P and NS

f ≡ NSPACE(f(n)), it follows that NSPACE(f(n)) ∅ P.
⊆↔

Corollary 13. If RIE(k) is unbounded, then NSPACE(f(n)) ∅ P for all f(n) =
ω(log(n)) such that f is space-constructible.

6 Conclusion

In Section 4, we showed that SNL(k) = SIE(k) = Θ(k). Therefore, we think of
intersection non-emptiness for DFA’s as characterizing the complexity class NL.
Further, we showed that IED /≡ NSPACE(o(n

log(n) log(log(n)))). In Section 5, we

showed that if RIE(k) = o(k), then NL ∈= P and if RIE(k) is unbounded, then
NSPACE(f(n)) ∅ P for all f(n) = ω(log(n)) such that f is space-constructible.
Therefore, the asymptotic complexity of RIE(k) determines the relationship be-
tween space and time complexity classes.

There are several related problems that appear to be harder than k-IED,
but easier than NS

k log. For example, consider intersection non-emptiness for k
NFA’s, non-emptiness for k-turn 2DFA’s, and intersection non-emptiness for k
DFA’s and a one-counter automaton. We can use SNL(k) = SIE(k) and RNL(k)
= RIE(k) as squeeze theorems to show that all of these problems are of “equiva-
lent” difficulty. Also, one could define a function that maps the k-IED problems
to their actual circuit complexities. The asymptotic complexity of such a func-
tion could determine the relationship between NL vs NP and P/poly vs space
complexity classes [4].

Several related intersection non-emptiness problems have been studied. There
are two such problems that we would like to mention. In [10], intersection non-
emptiness for acyclic DFA’s, which are DFA’s without directed cycles, was shown

362 M. Wehar

to be NP-complete. We assert that one could modify the construction from the
proof of Theorem 5 to reduce the acceptance problem for n-time and k log(n)-
space bounded non-deterministic Turing machines to intersection non-emptiness
for k acyclic DFA’s. Also, in [11], intersection non-emptiness for tree automata
was shown to be EXPTIME-complete. In an upcoming paper, the author and
Joseph Swernofsky introduce time complexity lower bounds for intersection non-
emptiness for tree automata.

Acknowledgments. I greatly appreciate all of the help and suggestions that I
received. In particular, I would like to thank Christos Kapoutsis for suggestions
related to the constructions, Joseph Swernofsky for proof reading and many dis-
cussions, Richard Lipton and Kenneth Regan for calling attention to my results
in an article on their blog [8], and the many anonymous referees. I would espe-
cially like to thank all those at Carnegie Mellon University who offered their help
and support for my honors thesis on the same topic. In particular, I would like
to thank my thesis advisor, Klaus Sutner, and my thesis committee members,
Manuel Blum and Richard Statman.

References

1. Blondin, M., Krebs, A., McKenzie, P.: The complexity of intersecting finite au-
tomata having few final states. In: Computational Complexity, CC (to appear,
2014)

2. Goldreich, O.: Computational Complexity: A Conceptual Perspective. Cambridge
University Press, New York (2008)

3. Jones, N.D., Lien, Y.E., Laaser, W.T.: New problems complete for nondeterministic
log space. Mathematical Systems Theory 10 (1976)

4. Karakostas, G., Lipton, R.J., Viglas, A.: On the complexity of intersecting finite
state automata and NL versus NP. Theoretical Computer Science 302, 257–274
(2003)

5. Kozen, D.: Lower bounds for natural proof systems. In: Proc. 18th Symp. on the
Foundations of Computer Science, pp. 254–266 (1977)

6. Lange, K.-J., Rossmanith, P.: The emptiness problem for intersections of regu-
lar languages. In: Havel, I.M., Koubek, V. (eds.) MFCS 1992. LNCS, vol. 629,
pp. 346–354. Springer, Heidelberg (1992)

7. Lipton, R.J.: On the intersection of finite automata. Gödel’s Lost Letter and P=NP
(August 2009)

8. Lipton, R.J., Regan, K.W.: The power of guessing. Gödel’s Lost Letter and P=NP
(November 2012)

9. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM Journal
(1959)

10. Rampersad, N., Shallit, J.: Detecting patterns in finite regular and context-free
languages. Information Processing Letters 110 (2010)

11. Veanes, M.: On computational complexity of basic decision problems of finite tree
automata. UPMAIL Technical Report 133 (1997)

12. Wehar, M.: Intersection emptiness for finite automata. Honors thesis, Carnegie
Mellon University (2012)

Branching Bisimilarity Checking for PRS

Qiang Yin, Yuxi Fu, Chaodong He, Mingzhang Huang, and Xiuting Tao

BASICS, Department of Computer Science, Shanghai Jiao Tong University

Abstract. Recent studies reveal that branching bisimilarity is decidable
for both nBPP (normed Basic Parallel Processes) and nBPA (normed Ba-
sic Process Algebras). These results lead to the question if there are any
other models in the hierarchy of PRS (Process Rewrite Systems) whose
branching bisimilarity is decidable. It is shown in this paper that the
branching bisimilarity for both nOCN (normed One Counter Nets) and
nPA (normed Process Algebras) is undecidable. These results essentially
imply that the question has a negative answer.

1 Introduction

Verification on infinite-state systems has been intensively studied for the past
two decades [2,12]. One major concern in these studies is equivalence checking.
Given a specification S of an intended behaviour and a claimed implementation
I of S, one is supposed to demonstrate that I is correct with respect to S.
A standard interpretation of correctness is that an implementation should be
behaviourally equivalent to its specification. Among all the behavioural equalities
studied so far, bisimilarity stands out as the most abstract and the most tractable
one. Two well known bisimilarities are the strong bisimilarity and the weak
bisimilarity due to Park [16] and Milner [15]. Considerable amount of effort
has been made to investigate the decidability and the algorithmic aspect of the
two bisimilarities on various models of infinite state system [18]. These models
include pushdown automata, process algebras, Petri nets and their restricted
and extended variations. An instructive classification of the models in terms of
PRS (Process Rewrite Systems) is given by Mayr [13].

The strong bisimilarity checking problem has been well studied for PRS hi-
erarchy. Influential decidability results include for example [1,4,3,21,8]. On the
negative side, Jančar attained in [9] the undecidable result of strong bisimilarity
on nPN (normed Petri Nets). The proof makes use of a powerful technique now
known as Defender’s Forcing [11], which remains a predominant tool to establish
negative results about equivalence checking.

In the weak case the picture is less clear. It is widely believed that weak
bisimilarity is decidable for both nBPA (normed Basic Process Algebras) and
nBPP (normed Basic Parallel Processes). The problem has been open for a long
time. Srba [17] showed that weak bisimilarity on nPDA (normed Pushdown
Automata) is undecidable by a reduction from the halting problem of Minsky
Machine. The undecidability was soon extended to nOCN (normed One Counter
Nets), a submodel of both nPDA and nPN, by Mayr [14]. Srba also showed that

J. Esparza et al. (Eds.): ICALP 2014, Part II, LNCS 8573, pp. 363–374, 2014.
c∗ Springer-Verlag Berlin Heidelberg 2014

364 Q. Yin et al.

nBPA nBPP nPDA nPA nPN

Strong Bisimilarity �[1] �[3] �[21] �[8] ×[9]

Branching Bisimilarity �[7] �[5] ×[this paper] ×[this paper] ×[9]

Weak Bisimilarity ? ? ×[14] ×[this paper] ×[9]

Fig. 1. Decidability of Branching Bisimilarity for Normed PRS

the weak bisimilarity on PA (Process Algebras) is undecidable [19]. Later several
highly undecidable results were established by Jančar and Srba [20,10,11] for the
weak bisimilarity checking problem on PN, PDA and PA.

The decidability of the weak bisimilarity on nBPA and nBPP has been open for
well over twenty years. Encouraging progress has been made recently. Czerwiński,
Hofman and Lasota proved that branching bisimilarity, a standard refinement of
the weak bisimilarity, is decidable on nBPP [5]. The novelty of their approach is
the discovery of some kind of normal form for nBPP. Using a quite different tech-
nique Fu showed that the branching bisimilarity is also decidable on nBPA [7]. In
retrospect one cannot help thinking that more attention should have been paid
to the branching bisimilarity. Going back to the original motivation to equiva-
lence checking, one would agree that a specification S normally contains no silent
actions because silent actions are about how-to-do. Consequently all the silent
actions introduced in an implementation must be bisimulated vacuously by the
specification. It follows that S is weakly bisimilar to an implementation I if and
only if S is branching bisimilar to I. What this observation tells us is that as far
as verification is concerned the branching bisimilarity ought to play a role no less
than the weak bisimilarity.

The above discussion suggests to address the following question: Is there any
other model in the PRS hierarchy whose branching bisimilarity is decidable? The
purpose of this paper is to resolve this issue. Our contributions are as follows:

– We establish the fact that on both nOCN and nPA every relation between
the branching bisimilarity and the weak bisimilarity is undecidable. These
are improvement of Mayr’s result about the undecidability of the weak
bisimilarity on nOCN [14] and Srba’s result [19] about the undecidability of
the weak bisimilarity on PA. These new results together with the previous
(un)decidability results about the normed models in PRS are summarized in
Fig. 1, where a tick is for ‘decidable’ and a cross for ‘undecidable’.

– We showcase the subtlety of Defender’s Forcing technique usable in branch-
ing bisimulation game. It is pointed out that the technique must be of a
semantic nature for it to be applicable to the branching bisimilarity.

The two negative results imply that in the PRS hierarchy the branching bisimi-
larity on every normed model above either nBPA or nBPP is undecidable.

The rest of the paper is organized as follows. Section 2 introduces the nec-
essary preliminaries. Section 3 establishes the undecidability result for nOCN
and demonstrates Defender’s Forcing technique for branching bisimulation game.
Section 4 proves the undecidability result about nPA. Section 5 concludes.

Branching Bisimilarity Checking for PRS 365

2 Preliminaries

A process algebra P is a triple (C,A, Σ), where C is a finite set of process con-
stants, A is a finite set of actions ranged over by ε, and Σ is a finite set of transi-
tion rules. The processes defined by P are generated by the following grammar:

P ::= Ω | X | PP ′ | P ∈P ′.

The grammar equality is denoted by =. We assume that the sequential composi-
tion PP ′ is associative up to = and the parallel composition P ∈P ′ is associative
and commutative up to =. We also assume that ΩP = PΩ = Ω ∈P = P ∈ Ω = P .
There is a special symbol δ in A for silent transition. The set A \ {δ} is ranged

over by a, b, c, d. The transition rules in Σ are of the form X
Σ−≡ P . The following

labeled transition rules define the operational semantics of the processes.

X
Σ−≡ P ⊆ Σ

X
Σ−≡ P

P
Σ−≡ P ′

PQ
Σ−≡ P ′Q

P
Σ−≡ P ′

P ∈Q Σ−≡ P ′ ∈Q
Q

Σ−≡ Q′

P ∈Q Σ−≡ P ∈Q′

The operational semantics is structural, meaning that PQ
Σ−≡ P ′Q, P ∈Q Σ−≡

P ′ ∈Q and Q ∈P Σ−≡ Q ∈P ′ whenever P
Σ−≡ P ′. We write =↔ for the reflexive

transitive closure of
ψ−≡, and

̂Σ
=↔ for =↔ Σ−≡=↔ if ε ⇔= δ and for =↔ otherwise.

A one counter net M is a 4-tuple (Q, X,A, Σ), where Q is a finite set of states
ranged over by p, q, r, s, X represents a place, A is a finite set of actions as in a
process algebra, and Σ is a finite set of transition rules. A process defined by M
is of the form pXn, where n indicates the number of tokens in X . A transition

rule in Σ is of the form pX i Σ−≡ qXj with i < 2. The semantics is structural in

the sense that pX i+k Σ−≡ qXj+k whenever pX i Σ−≡ qXj . A process P defined

in P , respectively M, is normed if ⊂ε1, . . . , εn.P Σ1−≡ . . .
Σn−≡ Ω, respectively

⊂ε1, . . . , εn, p.(P Σ1−≡ . . .
Σn−≡ p)≥⇒ε,Q.¬(p

Σ−≡ Q). We say that P/M is normed
if only normed processes are definable in it. We write (n)PA for the (normed)
Process algebras and (n)OCN for the (normed) One Counter Nets.

In the presence of silent actions two well known process equalities are the
weak bisimilarity [15] and the branching bisimilarity [24].

Definition 1. A relation R is a weak bisimulation if the following are valid:

1. Whenever PRQ and P
Σ−≡ P ′, then Q

̂Σ
=↔ Q′ and P ′RQ′ for some Q′.

2. Whenever PRQ and Q
Σ−≡ Q′, then P

̂Σ
=↔ P ′ and P ′RQ′ for some P ′.

The weak bisimilarity ◦ is the largest weak bisimulation.

Definition 2. A relation R is a branching bisimulation if the following hold:

1. Whenever PRQ and P
Σ−≡ P ′, then either (i) Q =↔ Q′′ Σ−≡ Q′ and P ′RQ′

and PRQ′′ for some Q′, Q′′ or (ii) ε = δ and P ′RQ.

2. Whenever PRQ and Q
Σ−≡ Q′, then either (i) P =↔ P ′′ Σ−≡ P ′ and P ′RQ′

and P ′′RQ for some P ′, P ′′ or (ii) ε = δ and PRQ′.
The branching bisimilarity ≤ is the largest branching bisimulation.

366 Q. Yin et al.

The following lemma, first noticed by van Glabbeek and Weijland [24], plays
a fundamental role in the study of branching bisimilarity.

Lemma 1. If P =↔ P ′ =↔ P ′′ ≤ P then P ′ ≤ P .

Let ∅ be a process equivalence. A silent action P
ψ−≡ P ′ is state preserving

with regards to ∅, notation P ≡ P ′, if P ′ ∅ P ; it is change-of-state with regards
to ∅, notation P

θ−≡ P ′, if P ′ ⇔∅ P . The reflexive and transitive closure of ≡ is
denoted by ≡≥. Branching bisimilarity strictly refines weak bisimilarity in the
sense that only state preserving silent actions can be ignored; a change-of-state

must be explicitly bisimulated. Suppose that P ≤ Q and P
Σ−≡ P ′ is matched by

the transition sequence Q
ψ−≡ · · · ψ−≡ Qi

ψ−≡ · · · ψ−≡ Q′′ Σ−≡ Q′. By definition
one has P ≤ Q′′. It follows from Lemma 1 that P ≤ Qi, meaning that all silent
actions in Q =↔ Q′′ are necessarily state preserving. This property fails for the
weak bisimilarity as the following example demonstrates.

Example 1. Consider the transition system {P b−≡ Ω, P
ψ−≡ P ′ a−≡ Ω, P

a−≡
Ω; Q

b−≡ Ω, Q
ψ−≡ Q′ a−≡ Ω}. One has P ◦ Q. However P ⇔≤ Q since Q ⇔≤ Q′.

A game theoretic characterization of bisimilarity is by bisimulation game [22].
Suppose that a pair of processes P,Q, called a configuration, are defined in say a
process algebra (C,A, Σ). A branching bisimulation game for the configuration
(P,Q) is played between Attacker and Defender. The game is played in rounds.
A new configuration is chosen after each round. Every round consists of three
steps defined as follows, assuming (P0, P1) is the current configuration:

1. Attacker chooses i ⊆ {0, 1}, ε ⊆ A and some process P ′
i such that Pi

Σ−≡ P ′
i .

2. Defender may respond in either of the following manner:

– Choose some P ′
1−i, P

′′
1−i such that P1−i =↔ P ′′

1−i
Σ−≡ P ′

1−i.
– Do nothing in the case that ε = δ .

3. Attacker decides which of (Pi, P
′′
1−i), (P ′

i , P
′
1−i) is the new configuration if

Defender has played. Otherwise the new configuration must be (P ′
i , P1−i).

In a weak bisimulation game a round consists of two steps. The first step is
the same as above. In the second step Defender chooses some P ′

1−i and some

transition sequence P1−i

̂Σ
=↔ P ′

1−i. The game then continues with (P ′
i , P

′
1−i).

Defender wins a game if it never gets stuck; otherwise Attacker wins. We say
that Defender/Attacker has a winning strategy if it can always win no matter
how the opponent plays. The following lemma is well known, a clever use of
which often simplifies bisimulation argument considerably.

Lemma 2. Defender has a winning strategy in the branching, respectively weak,
bisimulation game starting from the configuration (P,Q) if and only if P ≤ Q,
respectively P ◦ Q.

Attacker has a winning strategy for the branching bisimulation game of the
pair P,Q defined in Example 1. It simply chooses P

a−≡ Ω. If Defender chooses
Q

ψ−≡ Q′ a−≡ Ω, Attacker chooses the configuration (P,Q′) and wins. Defender
can win the weak bisimulation game of (P,Q) though.

Branching Bisimilarity Checking for PRS 367

3 Defender’s Forcing with Delayed Justification

A powerful technique for proving lower bounds for bisimilarity checking problem
is Defender’s Forcing described by Jančar and Srba in [11]. The basic idea is to
force Attacker to make a particular choice in a bisimulation game by introducing
enough copycat rules. An application of the technique to weak bisimulation game
should be careful since both Attacker and Defender can take advantage of silent
transitions. The design of a branching bisimulation game is even more subtle. In
such a game a sequence of silent transitions used by Defender, except possibly
the last one, must all be state preserving. A useful technique, motivated by
Lemma 1, is to make use of generating processes. The process G defined by
the rules G

ψ−≡ GX and GX
ψ−≡ G is generating due to the fact that every

process that G may evolve into, say GXn, is branching bisimilar to G. The
presence of other transition rules for G and X would not change the fact that
G ≤ GXn for all n. This technique has already been used in the design of
weak bisimulation games [11,14]. The relations these games give rise to are not
branching bisimulation because a state-preserving transition may be simulated
by a change-of-state silent transition. In what follows we use a small example to
expose the subtlety of branching bisimulation game and the technique to apply
Defender’s Forcing in such a game.

Mayr proved in [14] a general result that the weak bisimilarity is undecidable
for any model that subsumes nOCN. The lower bound is achieved by reducing
from the halting problem of Minsky machine. A Minsky machine M with two
counters c1, c2 is a program of the form 1 : I1; 2 : I2; . . . ; m−1 : Im−1; m : halt,
where for each i ⊆ {1, . . . ,m− 1} the instruction Ii is in either of the following
forms, assuming j, k ⊆ {1, . . . ,m− 1} and e ⊆ {1, 2},

– ce := ce + 1 and then goto j.
– if ce = 0 then goto j; otherwise ce := ce − 1 and then goto k.

By encoding a pair of numbers (n1, n2) by Gödel number of the form 2n13n2 ,
Mayr implemented the increment and decrement operations on the counters by
multiplying and dividing by 2 and 3 respectively. The central part of Mayr’s proof
is to show that it is possible to encode these operations and test for divisibility
by constant into weak bisimulation games on nOCN. We shall show that Mayr’s
reduction can be strengthened to produce reductions to branching bisimulation
games on nOCN. For every instruction “i : Ii” of a Minsky machine M a pair
of states pi, p

′
i are introduced. Suppose “i : c2 := c2 + 1; goto j” is the i-th

instruction of M. The instruction is translated to the rules given in Fig. 2. The
model defined in Fig. 2 is open-ended. Transition rules associated to pj and p′j
are not given. We have however the following interesting property.

Lemma 3. Let n = 2n13n2 for some n1, n2. Defender of the branching bisimu-
lation game of (pjX

3n, p′jX
3n) has a winning strategy if and only if Defender of

the branching bisimulation game of (piX
n, p′iX

n) has a winning strategy.

Proof. The crucial point here is that the copycat rules pi
ψ−≡ G′ and p′i

ψ−≡ G′,
which syntactically identify what piX

n and p′iX
n may reach in one silent step,

368 Q. Yin et al.

pi
τ−◦ G′ p′i

τ−◦ G′

pi
a−◦ q1 G′ a−◦ q′1, G′ τ−◦ G′X, G′X τ−◦ G′

q1
a−◦ q2 q′1

a−◦ q′2
q1

t−◦ t3 q′1
t−◦ t1

q2
τ−◦ G q′2

τ−◦ G

G
τ−◦ GX, GX

τ−◦ G, G
a−◦ q3 q′2

a−◦ q′3
q3

a−◦ pj q′3
a−◦ p′j

q3
t−◦ t1 q′3

t−◦ t1

t3X
c−◦ t′′X, t′′X c−◦ t′X, t′X c−◦ t3 t1X

c−◦ t1

Fig. 2. Multiplication Operation on Counter in OCN

do not automatically create a Defender’s Forcing situation. The reason is that
although p′iX

n ≡ G′Xn, since p′iX
n ψ−≡ G′Xn is the only action of p′iX

n,

it might well be that piX
n θ−≡ G′Xn. For branching bisimulation syntactical

Defender’s Forcing is insufficient. One needs Defender’s Forcing that works at
semantic level. Let’s take a look at the development of the game in some detail.

1. If Attacker plays piX
n ψ−≡ G′Xn, Defender plays p′iX

n ψ−≡ G′Xn. By
Lemma 1 this response is equivalent to any other response from Defender.

2. If Attacker chooses the action piX
n a−≡ q1X

n, Defender responds with
p′iX

n ≡ G′Xn ≡≥ G′X3n a−≡ q′1X
3n, making use of Lemma 1. Attacker’s

optimal move is to choose (q1X
n, q′1X

3n) to be the next configuration.
3. Now Attacker would not do a t action since t3X

n ≤ t1X
3n. It chooses the

action a and the new configuration (q2X
n, q′2X

3n).
4. Then we come to another semantic Defender’s Forcing. If Attacker plays

q2X
n ψ−≡ GXn, Defender plays q′2X

n ψ−≡ GX3n; and vice versa.
5. If Attacker chooses the transition q′2X

3n a−≡ q′3X
3n, Defender’s response is

q2X
n ψ−≡ GXn =↔ GX3n a−≡ q3X

3n, exploiting again Lemma 1. Attacker’s
nontrivial choice of the new configuration is (q3X

3n, q′3X
3n).

6. Finally Attacker would not choose a t1 action since t1X
3n ≤ t1X

3n. So after
an a action, the configuration becomes (qjX

3n, q′jX
3n).

It is easy to see that the configuration (qjX
3n, q′jX

3n) is optimal for both At-

tacker and Defender. If qjX
3n ≤ q′jX

3n then Defender’s Forcing described above

is justified. If qjX
3n ⇔≤ q′jX

3n the forcing is ineffective since Attacker can choose

to play piX
n ψ−≡ G′Xn and wins. →∅

The main result of the section follows easily from Lemma 3 and its proof.

Theorem 1. On nOCN every relation R satisfying ≤ ⊇ R ⊇ ◦ is undecidable.

Proof. Dividing a number by a constant can be encoded in similar fashion. The
rest of Mayr’s reduction does not refer to any silent transitions. It follows that
we can construct a reduction witnessing that “M halts iff p1X ⇔≤ p′1X”. As
a matter of fact the reduction supports the stronger correspondence stated as
follows: “M halts iff p1X ⇔◦ p′1X”. →∅

Branching Bisimilarity Checking for PRS 369

4 Undecidability of nPA

Following [19], our main undecidability result is proved by reducing PCP (Post’s
Correspondence Problem) to the branching bisimilarity checking problem on
nPA. Suppose π is a finite set of symbols and π+ is the set of nonempty finite
strings over π. The size of π is at least two. PCP is defined as follows.

Post’s Correspondence Problem
Input: {(u1, v1), (u2, v2) . . . (un, vn) | ui, vi ⊆ π+}.

Problem: Are there i1, i2, . . . im ⊆ {1, 2, . . . , n} with m ≥ 1
such that ui1ui2 . . . uim = vi1vi2 . . . vim?

We will fix a PCP instance INST={(u1, v1), (u2, v2) . . . (un, vn) | ui, vi ⊆ π+}
in this section. Our task is to construct a normed process algebra G=(C,A, Σ)
containing two process constants X,Y that render true the following equivalence.

“INST has a solution” iff X ≤ Y iff X ◦ Y. (1)

We will prove (1) by validating the following statements:

– “If INST has a solution then X ≤ Y ”. This is Lemma 6 of Section 4.4.
– “If INST has no solution then X ⇔◦ Y ”. This is Lemma 7 of Section 4.4.

As X ≤ Y implies X ◦ Y , the main theorem of the paper follows from (1).

Theorem 2. On nPA every relation R satisfying ≤ ⊇ R ⊇ ◦ is undecidable.

In the rest of the section, we firstly define G, and then argue in several steps
how the game based on G works in Defender’s favour if INST has a solution.

4.1 The nPA Game

The construction of G = (C,A, Σ) from INST is based on Srba’s reduction [19].
Substantial amount of redesigning effort is necessary to make it work for the
branching bisimilarity on the normed PA. The set A of actions is defined by

A = ψ ∪N ∪π ∪ {δ},
where ψ = {φU , φV , φD, φI , φS , φZ}, N = {1, . . . , n} and π,n are from INST.
The set C of process constants is defined by

C = {X,Y, Z, I, S, C,C′, D,G,G′, Gu, Gv, G
′
v} ∪ U ∪ V ∪W ,

U = {Ui | i ⊆ N},
V = {Vi | i ⊆ N},
W = {W (α, i),W (α, 0) | α ⊆ (SF(ui) ∪ SF(vi)) and i ⊆ N},

where for each α ⊆ π≥, the notation SF(α) stands for the set of suffixes of α.
The set of transition rules is given in Fig. 3. It is clear from these rules that G
is indeed normed. In particular P =↔ Ω for all P ⊆ U ∪ V ∪W .

We write Pu, respectively Pv, for a sequential composition of members of U ,
respectively V . Similarly we write P, respectively Q, for a sequential composition
of members of U ∪ V , respectively U ∪ V ∪ W . If for example the sequence u is
empty, Pu is understood to denote Ω.

370 Q. Yin et al.

X
λU−◦ D ≥Gv, X

τ−◦ D; Y
τ−◦ D; D

τ−◦ D ≥Gu, D
λD−◦ C;

Gu
τ−◦ GuUi, Gu

λU−◦ GvUi; Gu
τ−◦ G′

v, G′
v

τ−◦ G′
vVi, G′

v
τ−◦ Z;

Gv
τ−◦ GvVi, Gv

τ−◦ ω, Gv
λV−◦ Z; Z

τ−◦ ω, Z
λZ−◦ ω;

C
λI−◦ I , C

λS−◦ S, C
τ−◦ C ≥G, C

τ−◦ C ≥Gv;

G
τ−◦ GUi, G

τ−◦ GVi, G
τ−◦ ω;

I
λI−◦ C′, I

i−◦ I ; S
λS−◦ C′, S

a−◦ S; C′ τ−◦ C′ ≥G′, C′ τ−◦ ω;

G′ τ−◦ G′Ui, G′ τ−◦ G′Vi, G′ τ−◦ G′W , G′ τ−◦ Gv, G′ τ−◦ Z;

Ui
τ−◦ W (ui, i), Vi

τ−◦ W (vi, i);

W (aλ, i)
a−◦ W (λ, i), W (aλ,0)

a−◦ W (λ, 0), W (λ, i)
i−◦ W (λ, 0),

W (aλ, i)
τ−◦ W (λ, i), W (aλ,0)

τ−◦ W (λ,0), W (λ, i)
τ−◦ W (λ, 0), W (ω, 0)

τ−◦ ω.

In the above rules, i ranges over {1, . . . , n}, a ranges over ρ, and W ranges over W.

Fig. 3. Transition Rules for the nPA Game

4.2 Defender’s Generator

To explain how the reduction works we start with the generators introduced by
the process algebra. A generator should be able to not only produce what is
necessary but also do away with what has been produced. The process D for
instance can induce circular silent transition sequence of the form

D
ψ−≡ D ∈Gu =↔ D ∈GuPu

ψ−≡ D ∈G′
vPu =↔ D ∈G′

vPvPu =↔ D.

By Lemma 1 all the processes appearing in the above sequence are branching
bisimilar. Notice that the only reason the process constant G′

v is introduced is
to make available the above circular sequence. The constant G′

v is necessary
because Gu cannot reach Gv via silent moves. Similar circular silent transition
sequences are also available for C and C′.

Lemma 4. Suppose P ⊆ {D,C,C′} and P =↔ P ∈Q. Then P ∈Q =↔ P .

Corollary 1. The following equalities are valid for all Pu,Pv,P,Q.

1. D ≤ D ∈GuPu ≤ D ∈G′
vPvPu ≤ D ∈ZPvPu ≤ D ∈PvPu ≤ D ∈WPvPu;

2. C ≤ C ∈GP ≤ C ∈P ≤ C ∈WP ≤ C ∈GvPv;
3. C′ ≤ C′ ∈G′Q ≤ C′ ∈GvQ ≤ C′ ∈ZQ ≤ C′ ∈Q.

It has been observed that generating transitions are the most tricky ones
in decidability proofs [23,5,7]. Here they are used to Defender’s advantage. A
generator can start everything all over again from scratch. This gives Defender
the ability to copy Attacker if the latter does not make a particular move.

The bisimulation game of (X,Y) is played in two phases. The generating
phase comes first. During this phase Defender tries to produce a pair Pu,Pv, via
Defender’s Forcing using the generators, that encode a solution to INST. Next
comes the checking phase in which Attacker tries to reject the pair Pu,Pv. In
the light of the delayed effect of Defender’s Forcing in branching bisimulation
games, we will look at the two phases in reverse order.

Branching Bisimilarity Checking for PRS 371

4.3 Checking Phase

The processes Ui, Vi play two roles. One is to announce ui, respectively vi; the
other is to reveal the index i. The first role can be suppressed by composing Ui,
respectively Vi, with S while the second can be discharged by composing with
I [19]. Since I, S are normed, Attacker can choose to remove I, respectively S. In

our game the removal can be done by playing I
νI−≡ C′, respectively S

νS−≡ C′.
According to (3) of Corollary 1 however Attacker would lose immediately if it

plays I
νI−≡ C′, respectively S

νS−≡ C′, in a branching bisimulation game starting
from (I ∈Q, I ∈Q′), respectively (S ∈Q, S ∈Q′). Notice that it is important for
a process constant W to ignore the string/index information by doing silent
transitions. Otherwise the interleaving between actions in π and actions in N
would defeat Defender’s attempt to prove string/index equality.

Lemma 5. Suppose U = Ui1Ui2 . . . Uil , V = Vj1Vj2 . . . Vjr and B ⊆ {Ω, Z,Gv}.
The following statements are valid, where ∅ ⊆ {≤,◦}.
1. I ∈BPU ∅ I ∈BPV if and only if ui1ui2 . . . uil = vj1vj2 . . . vjr .
2. S ∈BPU ∅ S ∈BPV if and only if i1i2 . . . il = j1j2 . . . jr.

Proof. Suppose I ∈BPU ≤ I ∈BPV and w.l.o.g. |ui1ui2 . . . uil | ≥ |vj1vj2 . . . vjr |.
An action sequence from I ∈BPU to I ∈U must be simulated essentially by an
action sequence from I ∈BPV to I ∈V. But then ui1ui2 . . . uil = vj1vj2 . . . vjr
can be derived from I ∈U ≤ I ∈V. The converse implication follows from the
discussion in the above. The second equivalence can be proved similarly. →∅

The following proposition, in which ∅ ⊆ {≤,◦}, says that the constant C can
be used to check both string equality and index equality by Attacker’s forcing.

Proposition 1. If U = Ui1Ui2 . . . Uil and V = Vj1Vj2 . . . Vjr , then for all P,
C ∈ZPU ∅ C ∈ZPV iff i1i2 . . . il = j1j2 . . . jr and ui1ui2 . . . uil = vj1vj2 . . . vjr .

Proof. In one direction we prove that C ∈ZPU ◦ C ∈ZPV implies i1i2 . . . il =
j1j2 . . . jr and ui1ui2 . . . uil = vj1vj2 . . . vjr . If i1i2 . . . il ⇔= j1j2 . . . jr, then At-

tacker chooses C ∈ZPU
νS−≡ S ∈ZPU. Defender cannot invoke the action Z

ψ−≡ Ω
for otherwise an φZ action cannot be performed before an φV action. The process
constant Z is introduced precisely for this blocking effect. Defender’s play must

be of the form C ∈ZPV =↔ C ∈Q ∈ZPV
νS−≡ S ∈Q ∈ZPV =↔ S ∈Q′ ∈ZPV. If

Q′ can perform any one of {φV , φZ} ∪ N , Attacker wins since S can do none of
those. If Q′ can do none of those actions, then S ≤ S ∈Q′. By Lemma 5 Attacker
has a winning strategy for the weak bisimulation game (S ∈ZPU, S ∈Q′ ∈ZPV).
If ui1ui2 . . . uil ⇔= vj1vj2 . . . vjr , the argument is similar.

Conversely we prove that i1i2 . . . il = j1j2 . . . jr ≥ ui1ui2 . . . uil = vj1vj2 . . . vjr
implies C ∈ZPU ≤ C ∈ZPV. This is done by showing that the relation{

(C ∈Q ∈ZPU, C ∈Q ∈ZPV)

∣∣∣∣ i1i2 . . . il = j1j2 . . . jr
ui1ui2 . . . uil = vj1vj2 . . . vjr .

}
∪ ≤

is a branching bisimulation. →∅

372 Q. Yin et al.

4.4 Generating Phase

Suppose that INST has a solution i1, i2, . . . , ik. Fix the following abbreviations:
U− = Ui2 . . . Uik , U = Ui1U

− and V = Vi1Vi2 . . . Vik . We will argue that Defender
has a winning strategy in the branching bisimulation game of (X,Y). Defender’s
basic idea is to produce the pair U,V by forcing. Its strategy and Attacker’s
counter strategy are described below.

(i) By Defender’s Forcing Attacker plays X
νU−≡ D ∈Gv. Defender proposes U

via the transitions Y
ψ−≡ D

ψ−≡ D ∈Gu =↔ D ∈GuU
− νU−≡ D ∈GvU. The

use of an explicit action φU guarantees that U is nonempty. Now Attacker
has a number of configurations to choose from. But by (1) of Corollary 1,
it all boils down to choosing (D ∈Gv, D ∈GvU).

(ii) Due to (1) of Corollary 1 Attacker would not remove Gv using either Gv
ψ−≡

Ω or Gv
νV−≡ Z. It can generate an element of V using Gv. It can do an action

induced by D or a descendant of D. Defender simply copycats Attacker’s
actions. The configuration stays in the form (D ∈Q ∈GvPv, D ∈Q ∈GvPvU).

(iii) To have any chance to win, Attacker must try the action φD. Defender does
the same action. The configuration becomes (C ∈Q ∈GvPv, C ∈Q ∈GvPvU).
At this point if Attacker plays a harmless action, Defender can copycat the
action; and the configuration stays in the same shape.

(iv) An important observation is that if Attacker plays C ∈Q ∈GvPv
Σ−≡ P1,

Defender can play C ∈Q ∈GvPvU =↔ C ∈Q =↔ C ∈Q ∈GvPv
Σ−≡ P1

and wins. Here C ∈Q ≤ C ∈Q ∈GvPv by (2) of Corollary 1. To see that
the assumptions i1i2 . . . il = j1j2 . . . jr and ui1ui2 . . . uil = vj1vj2 . . . vjr
imply C ∈Q ∈GvPvU ≤ C ∈Q, notice that C ∈Q ∈GvPvU =↔ C ∈Q =↔
C ∈Q ∈GvPvV and that C ∈Q ∈GvPvU ≤ C ∈Q ∈GvPvV is a corollary of
Proposition 1. Thus Attacker would choose C ∈Q ∈GvPvU to continue.

(v) Attacker would not play C ∈Q ∈GvPvU
ψ−≡ C ∈Q ∈PvU because it would

lose right away according to (2) of Corollary 1.
(vi) By Lemma 5 Attacker would not do a φI action or a φS action. It stands

the best chance to play C ∈Q ∈GvPvU
νV−≡ C ∈Q ∈ZPvU. The counter play

from Defender is C ∈Q ∈GvPv =↔ C ∈Q ∈GvPvV
νV−≡ C ∈Q ∈ZPvV.

The last configuration (C ∈Q ∈ZPvV, C ∈Q ∈ZPvU) is optimal for Attacker. By
Proposition 1 Defender has a winning strategy for the branching bisimulation
game of (C ∈Q ∈ZPvV, C ∈Q ∈ZPvU). Hence the following lemma.

Lemma 6. If INST has a solution then X ≤ Y .

The converse of Lemma 6 also holds. In fact a stronger result is obtainable. In
the weak bisimulation game of (X,Y), Attacker has a strategy to force the game
to reach a configuration that is essentially of the form (C ∈ZP′

v, C ∈ZPvPu),
where Pu ⇔= Ω. If there is no solution to INST, Proposition 1 implies C ∈ZP′

v ⇔◦
C ∈ZPvPu. It follows that Attacker has a winning strategy for the weak bisim-
ulation game of (X,Y).

Lemma 7. If INST has no solution then X ⇔◦ Y .

Branching Bisimilarity Checking for PRS 373

nBPA nBPP

nOCN

nOCA

nPA

nPDA nPN

Fig. 4. Decidability Border for Branching Bisimilarity on Normed PRS

5 Conclusion

Putting together the results derived in this paper, we see that there is a decidabil-
ity border in the normed PRS hierarchy, see Fig. 4. The branching bisimilarity

1. is undecidable on all normed models above either nBPA or nBPP, and
2. is decidable for both nBPP and nBPA [5,7].

We have confirmed that the first statement is valid for the weak bisimilarity,
which slightly strengthens the results obtained in [12]. In fact the statement is
valid for every relation between the branching bisimilarity and the weak bisim-
ilarity. It has been conjectured that the second statement is also true for the
weak bisimilarity. The answers however have remained a secret for us up to now.

Tighter complexity bounds, or even completeness characterizations, would be
very welcome. Another avenue for further study is based on the observation that
although the undecidability results of both the present paper and the paper of
Jančar and Srba [11] are about the same models, the degrees of undecidability
are most likely to be different. In [11] it is pointed out that by constraining the
silent actions of nPDA, say to Ω-popping or Ω-pushing silent moves, the degree
of undecidability of the weak bisimilarity goes from the analytic hierarchy down
to the arithmetic hierarchy. It is therefore a reasonable hope that the same
restriction may lead to decidable results for the branching bisimilarity on some
PRS models. Further studies are called for.

Complete proofs of the results stated in this extended abstract can be found
in the full paper [25].

Acknowledgement. We gratefully acknowledge the support of the National Sci-
ence Foundation of China (61033002, ANR 61261130589, 91318301). We thank
the anonymous referees and Patrick Totzke for their constructive suggestions.

References

1. Baeten, J.C.M., Bergstra, J.A., Klop, J.W.: Decidability of Bisimulation Equiv-
alence for Processes Generating Context-free Languages. In: de Bakker, J.W.,
Nijman, A.J., Treleaven, P.C. (eds.) PARLE 1987. LNCS, vol. 259, pp. 94–111.
Springer, Heidelberg (1987)

2. Burkart, O., Caucal, D., Moller, F., Steffen, B.: Verification on Infinite Structures.
In: Handbook of Process Algebra. Elsevier Science (2001)

3. Christensen, S., Hirshfeld, Y., Moller, F.: Bisimulation Equivalence is Decidable
for Basic Parallel Processes. In: Best, E. (ed.) CONCUR 1993. LNCS, vol. 715,
pp. 143–157. Springer, Heidelberg (1993)

374 Q. Yin et al.

4. Christensen, S., Hüttel, H., Stirling, C.: Bisimulation Equivalence is Decidable
for all Context-free Processes. In: Cleaveland, W.R. (ed.) CONCUR 1992. LNCS,
vol. 630, pp. 138–147. Springer, Heidelberg (1992)

5. Czerwiński, W., Hofman, P., Lasota, S.: Decidability of Branching Bisimulation on
Normed Commutative Context-free Processes. In: Katoen, J.-P., König, B. (eds.)
CONCUR 2011. LNCS, vol. 6901, pp. 528–542. Springer, Heidelberg (2011)

6. De Nicola, R., Montanari, U., Vaandrager, F.: Back and Forth Bisimulations. In:
Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 152–165.
Springer, Heidelberg (1990)

7. Fu, Y.: Checking Equality and Regularity for Normed BPA with Silent Moves. In:
Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part
II. LNCS, vol. 7966, pp. 238–249. Springer, Heidelberg (2013)

8. Hirshfeld, Y., Jerrum, M.: Bisimulation Equivanlence is Decidable for Normed
Process Algebra. In: Wiedermann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP
1999. LNCS, vol. 1644, pp. 412–421. Springer, Heidelberg (1999)

9. Jančar, P.: Undecidability of Bisimilarity for Petri Nets and Some Related Prob-
lems. Theoretical Computer Science 148, 281–301 (1995)

10. Jančar, P., Brics, J.S.: Highly Undecidable Questions for Process Algebras. In: Levy,
J.-J., Mayr, E.W., Mitchell, J.C. (eds.) TCS 2004. IFIP, vol. 155, pp. 507–520.
Springer, Boston (2004)

11. Jančar, P., Srba, J.: Undecidability of Bisimilarity by Defender’s Forcing. Journal
of the ACM 55, 1–26 (2008)

12. Kučera, A., Jančar, P.: Equivalence-Checking on Infinite-State Systems: Tech-
niques and Results. Theory and Practice of Logic Programming 6, 227–264 (2006)

13. Mayr, R.: Process Rewrite Systems. Information and Computation 156, 264–286
(2000)

14. Mayr, R.: Undecidability of Weak Bisimulation Equivalence for 1-Counter Pro-
cesses. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP
2003. LNCS, vol. 2719, pp. 570–583. Springer, Heidelberg (2003)

15. Milner, R.: Communication and Concurrency. Prentice Hall (1989)
16. Park, D.: Concurrency and Automata on Infinite Sequences. In: Deussen, P. (ed.)

GI-TCS 1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981)
17. Srba, J.: Undecidability of Weak Bisimilarity for Pushdown Processes. In: Brim,

L., Jančar, P., Křet́ınský, M., Kučera, A. (eds.) CONCUR 2002. LNCS, vol. 2421,
pp. 579–594. Springer, Heidelberg (2002)

18. Srba, J.: Roadmap of Infinite Results. EATCS 78, 163–175 (2002)
19. Srba, J.: Undecidability of Weak Bisimilarity for PA-Processes. In: Ito, M., Toyama,

M. (eds.) DLT 2002. LNCS, vol. 2450, pp. 197–208. Springer, Heidelberg (2003)
20. Srba, J.: Completeness Results for Undecidable Bisimilarity Problems. Electronic

Notes in Computer Science 98, 5–19 (2004)
21. Stirling, C.: Decidability of Bisimulation Equivalence for Normed Pushdown Pro-

cesses. Theoretical Computer Science 195, 113–131 (1998)
22. Stirling, C.: The Joys of Bisimulation. In: Brim, L., Gruska, J., Zlatuška, J. (eds.)

MFCS 1998. LNCS, vol. 1450, pp. 142–151. Springer, Heidelberg (1998)
23. Stirling, C.: Decidability of Weak Bisimilarity for a Subset of Basic Parallel Pro-

cesses. In: Honsell, F., Miculan, M. (eds.) FOSSACS 2001. LNCS, vol. 2030,
pp. 379–393. Springer, Heidelberg (2001)

24. van Glabbeek, R., Weijland, W.: Branching Time and Abstraction in Bisimulation
Semantics. Journal of ACM 43, 555–600 (1996)

25. Yin, Q., Fu, Y., He, C., Huang, M., Tao, X.: Branching Bisimilarity Checking for
PRS (2014), http://arxiv.org/abs/1402.0050

http://arxiv.org/abs/1402.0050

Labeling Schemes for Bounded Degree Graphs

David Adjiashvili1 and Noy Rotbart2

1 Institute for Operations Research, ETH Rämistrasse 101,8092 Zürich, Switzerland
addavid@ethz.ch

2 Department of Computer Science, University of Copenhagen
Universitetsparken 5, 2100 Copenhagen, Denmark

noyro@diku.dk

Abstract. We investigate adjacency labeling schemes for graphs of
bounded degree ω = O(1). In particular, we present an optimal (up to an
additive constant) log n+O(1) adjacency labeling scheme for bounded de-
gree trees. The latter scheme is derived from a labeling scheme for bounded
degreeouterplanar graphs.Our results complement a similarbound recently
obtained for bounded depth trees [Fraigniaud and Korman, SODA 2010],
and may provide new insights for closing the long standing gap for adja-
cency in trees [Alstrup and Rauhe, FOCS 2002]. We also provide improved
labeling schemes for bounded degree planar graphs. Finally, we use combi-
natorial number systems and present an improved adjacency labeling
schemes for graphs of bounded degree ω with (e+ 1)

◦
n < ω ≥ n/5.

1 Introduction

A labeling scheme is a method of distributing the information about the structure
of a graph among its vertices by assigning short labels, such that a selected
function on pairs of vertices can be computed using only their labels. The quality
of a labeling scheme is mostly measured by its size: that is, the maximum number
of bits used in a label. Additional important attributes of labeling schemes are
the running times of the label generation algorithm (encoder), and the decoding
algorithm (decoder), which replies to a query given a pair of labels.

Among all labeling schemes, that of adjacency is perhaps the most fundamen-
tal, as it directly comprises an implicit representation of the graph. For a graph
G and any two of its vertices u, v, the decoder of an adjacency labeling scheme is
required to deduce whether u and v are adjacent in G directly from their labels.
Adjacency queries for bounded degree graphs appear naturally in networks of
small dilation [4], peer-to-peer (P2P) [18] and wireless ad-hoc networks [22].

Our main contribution is an optimal (up to an additive constant) logn+O(1)
size adjacency labeling scheme for bounded-degree outerplanar graphs. As a
special case thereof, we obtain an optimal labeling scheme for bounded degree
trees. We summarize this result in the following theorem.

J. Esparza et al. (Eds.): ICALP 2014, Part II, LNCS 8573, pp. 375–386, 2014.
c∗ Springer-Verlag Berlin Heidelberg 2014

376 D. Adjiashvili and N. Rotbart

Theorem 1. For every fixed Σ ∈ 1, the class O(n,Σ) of bounded-degree out-
erplanar graphs admits an adjacency labeling scheme of size logn + O(1), with
encoding complexity O(n log n) and decoding complexity O(log logn).

Our labeling scheme utilizes a novel technique based on edge-universal graphs1

for bounded degree outerplanar graphs. Unlike other results in the field which
rely on a tight connection to induced-universal graphs2 [1,3,14,17], our technique
embeds the input graph into a small edge-universal graph. Moreover, to the best
of our knowledge, our labeling scheme is the first to use the total label size
to separate the different components of the label. In contrast, other labeling
schemes, such as [21,2], introduce an extra overhead to support such separation.

Kannan, Naor and Rudich [15] showed that if a graph class R admits an
adjacency labeling scheme with maximum label length g(n), then there exists an
induced-universal graph with 2g(n) vertices for R, efficiently constructible from
the labeling scheme. The opposite relation holds in a weaker sense. The existence
of an induced-universal graph with 2g(n) vertices for a family R of graphs implies
the existence of labeling scheme with size g(n). This transformation is however
not efficient, namely the resulting scheme has exponential running time. In light
of the existing linear size induced-universal graphs for bounded degree trees [9],
our contribution is in devising an efficient labeling scheme of optimal size.

As a corollary of Theorem 1, we also obtain an efficient (≡Σ/2⊆+ 1) logn size
labeling scheme for graphs with maximum degree Σ. For the case of bounded de-

gree planar graphs we construct a �Δ/2≥+1
2 logn size labeling scheme with average

label size of (1+o(1)) logn+O(log logn), improving the best known construction
for Σ ↔ 4. Finally, we observe that a simple application of combinatorial number
systems [16] gives an adjacency labeling scheme for all graphs with maximum
degree Σ(n), improving the known bounds for Σ(n) ⇔ [(e + 1)

⊂
n, n/5].

We summarize all known results for adjacency labeling schemes in Table 1,
and our contributions in Table 2. Our results for outerplanar graphs and general
graphs are presented in Section 2, and Section 3, respectively. Our planar graph
result and all technical proofs are deferred to the full version of the paper.

Table 1. Best known adjacency labeling schemes for graphs with at most n vertices

Family Upper bound Lower bound Encoding Decoding Ref.

Trees log n+O(log⊥ n) log n+λ(1) O(n log⊥ n) O(log⊥ n) [3]
Binary trees log n+O(1) log n+λ(1) O(n) O(1) [5]
Bd. depth ρ trees log n+O(1) log n+λ(1) O(n) O(1) [11]
Bd. deg. ω trees log n+O(log⊥ n) log n+λ(1) O(n log⊥ n) O(log⊥ n) [3]
Planar graphs 2 log n+O(log log n) log n+λ(1) O(n) O(1) [13]
Outerplanar graphs log n+O(log log n) log n+λ(1) O(n) O(1) [13]

Bd. deg. ω(n) graphs (∨Δ(n)
2

∈+ 1) log n+O(log⊥ n) Δ(n)
2

log n O(n) O(log⊥ n) [3]
Graphs ∨ 1

2
n∈ + ∧log n∅ ∨ 1

2
n∈ − 1 O(n) O(1) [19]

1 A graph G is edge-universal for a class R of graphs, if every graph in R appears as
a subgraph in G (not necessarily induced).

2 A graph G is induced-universal for a class R of graphs, if every graph in R appears
as an induced subgraph in G.

Labeling Schemes for Bounded Degree Graphs 377

Table 2. Our contribution for families of graphs with bounded degree ω

Family Upper bound Tight Encoding Decoding Ref.

Trees log n+O(1) yes O(n log n) O(log log n) Cor. 1
Outerplanar log n+O(1) yes O(n log n) O(log log n) Thm. 1
Planar (ω ≥ 4) 3

2
log n+O(log log n) no O(n log n) O(log log n)

Graphs, ω(n) log
(

n
∗Δ(n)/2∈

)
+ 2 log n no O(n2) O(ω(n) log n) Thm. 3

Graphs (unbounded) (∨Δ
2
∈+ 1) log n+O(1) no O(n log n) O(log log n) Cor. 2

1.1 Previous Work

Alstrup and Rauhe [3] proved that forests (and trees) in G(n) have an adja-
cency labeling scheme of logn + O(log∈ n).3 Their technique uses a recursive
decomposition of the tree which yields the same logn + O(log∈ n) label size for
bounded degree trees. Fraigniaud and Korman [11] showed that bounded depth
trees have a labeling scheme of size logn+O(1). Bonichon et al. [5] proved that
caterpillars and binary trees enjoy a labeling scheme of size log(n)+O(1) using a
method called “Traversal and Jumping”. In a follow up paper, Bonichon et al. [6]
claimed without proof that the aforementioned methods can be used to achieve
the same bound for bounded degree trees. Chung [9] showed the existence of an
induced-universal graph with O(n) vertices for bounded degree trees.

Graphs with maximum degree Σ have arboricity4 k(Σ) = ≡Σ/2⊆+1 [15] thus,
by the theorem of Nash-Williams [20], they can be decomposed into ≡Σ/2⊆ + 1
forests. Alstrup and Rauhe [3] combined this result with their labeling scheme
for forests to obtain a labeling scheme of size (≡Σ/2⊆ + 1) logn + O(log∈ n) for
bounded degree graphs.

Butler [7] constructed an induced-universal graph for graphs with maximum

degree Σ with O(n�Δ+1
2 ≥) vertices. The author notes that any induced-universal

graph must have at least cn⊆Δ/2⊗+1 vertices for some c depending only onΣ, which
implies that the bounds are optimal when Σ is even. For odd Σ, Esperet et al. [10]

showed a smaller induced-universal graph withO(n�Δ/2≥−1/Δ log2+2/Δ n) vertices.
It follows that there exists a labeling scheme for G(n,Σ) of size Δ

2 logn bits for

even Σ, and (≥Δ
2 ⇒ − 1/Σ) logn+log(log2+2/Δ n) bits for an odd Σ (but that is not

necessary efficient). We summarize the best known bounds for adjacency labeling
schemes in Table 1.

1.2 Preliminaries

For two integers 0 ↔ k1 ↔ k2 we denote [k1] = {1, · · · , k1} and [k1, k2] =
{k1, · · · , k2}. A binary string x is a member of the set {0, 1}∈, and we denote its
length by |x|. We denote the concatenation of two binary strings x, y by x ◦ y.

For a graph G we denote its set of vertices and edges by V (G) and E(G),
respectively. The family of all graphs is denoted G. For any graph family R, let

3 log⊥ n denotes the iterated logarithm of n.
4 The arboricity of a graph G is the minimum number of edge-disjoint acyclic sub-
graphs whose union is G.

378 D. Adjiashvili and N. Rotbart

R(n) ≤ R denote the subfamily containing the graphs of at most n vertices. The
collection of graphs with bounded degree Σ in R(n) is denoted R(n,Σ). The
collection of planar graphs, outerplanar graphs, and trees, in G(n) is denoted
P(n),O(n) and T (n), resp. Unless otherwise stated, we assume hereafter Σ to
be constant. To simplify the presentation we suppress all dependencies on Σ
in all our bounds and running time estimations. All these dependencies can be
computed and shown to be at most a multiplicative factor of O(Σ logΣ) times
the claimed bounds. We defer the exact details to the journal version of the
paper. Non constant bounds on the degree are denoted by Σ(n). We note that
all results work for disconnected graphs. We assume trees to be rooted, and
denote log2 n as logn. For a set of vertices S → V (G) we define G− S to be the
graph obtained from G by removing the vertices in S and all incident edges. The
set of edges in G = (V,E) incident to a vertex v ⇔ V is denoted Ev.

Let G = (V,E) ⇔ G(n), and let u, v ⇔ V . The boolean function adjacency(v, u),
define over vertices in G ⇔ G, returns true if and only if u and v are adjacent
in G. A label assignment for G ⇔ G is a mapping of each v ⇔ V (G) to a bit
string L(v), called the label of v. An adjacency labeling scheme for G consists
of an encoder and decoder. The encoder is an algorithm that receives G ⇔ G
as input and computes the label assignment eG. The decoder is an algorithm
that receives any two labels L(v),L(u) and computes the query d(L(v),L(u)),
such that d(L(v),L(u)) = adjacency(v, u). The size of the labeling scheme is the
maximum label length. Hereafter, we refer to adjacency labeling schemes simply
as labeling schemes. For the encoding and decoding algorithms, we assume a
ε(log n) word size RAM model (see [1] for additional details).

2 logn + O(1) Labeling Scheme for Bounded-Degree
Outerplanar Graphs

In this section we describe a labeling scheme for outerplanar. A graph is out-
erplanar if it admits a planar embedding with the property that all vertices
lie on the unbounded face. graphs with bounded degree Σ. Our method relies
on an embedding technique of Bhatt, Chung, Leighton and Rosenberg [4] for
bounded degree outerplanar graphs. In their paper, the authors were concerned
with edge-universal graphs for various families of bounded degree graphs. In
particular, they show that for every n ⇔ N there exists a graph Hn with O(n)
vertices and O(n) edges that contains every bounded degree outerplanar graph
G ⇔ O(n,Σ) as a subgraph (not necessarily induced).

2.1 Our Methods

Our main tool is an embedding technique due to Bhatt et al. [4] of outerplanar
graphs into Hn. On the one hand, the embedding is simple to compute. This
fact will lead to an efficient O(n logn) time encoder. On the other hand, the
embedding satisfies a useful locality property. This property allows our labels

Labeling Schemes for Bounded Degree Graphs 379

to contain both unique vertex identifiers of the graph Hn and edge identifiers,
without exceeding the desired label size logn + O(1).

To obtain the latter label size via an embedding into Hn we need to overcome
several difficulties. Although Hn has a linear number of edges, its maximum de-
gree is ε(logn), thus, unique edge identifiers require ε(log logn) bits, in general.
Since also |V (Hn)| = ε(n), it follows that a label cannot contain an arbitrary
combination of vertex identifiers in Vn and edge identifiers at the same time, as
it would lead to labels with size logn + ε(log logn). This difficulty is overcome
by exploiting the structure of Hn further and constructing unique vertex identi-
fiers in a particular way that allows reducing the encoding length. This solution
creates an additional difficulty of separating the different parts of the label in
the decoding phase. This difficulty is overcome by designing careful encoding
lengths that minimize the ambiguity, and storing an additional constant amount
of information to eliminate it altogether.

2.2 A Compact Edge-Universal Graph for Bounded-Degree
Outerplanar Graphs

We describe next the edge-universal graph Hn = (Vn, En) constructed by Bhatt
et al. [4] for O(n,Σ). We let k = min{s ⇔ N : 2s − 1 ∈ n} and set N = 2k − 1.
The construction uses two constants c = c(Σ), g = g(Σ), that depend only
on Σ.

The graph Hn is constructed from the complete binary tree T on N vertices
as follows. To obtain the vertex set Vn, split every vertex v ⇔ V (T) at level t in
T into Ωt = c log(N/2t) vertices w1(v), · · · , wγt(v). The latter set of vertices is
called the cluster of v. For w ⇔ Vn we denote by t(w) the level of w, that is the
level in the binary tree T of the cluster to which w belongs.

The edge set En is defined as follows. Two vertices wi(v), wj(u) ⇔ Vn are
adjacent if and only if the clusters they belong to in T are at distance at most
g in T. Note that w1w2 ⇔ En implies |t(w1) − t(w2)| ↔ g. This completes the
construction of the graph. One can easily check that |Vn| = O(n). |En| = O(n)
also holds, but we do not use this fact directly. The graph Hn is illustrated in
Figure 1. Our labeling scheme relies on the following result of Bhatt et al. [4].

Theorem 2 (Bhatt et al. [4]). Hn is edge-universal for the class of bounded
degree outerplanar graphs O(n,Σ).

2.3 Warm-Up: A logn + O(log logn) Labeling Scheme

We briefly describe a simple logn + O(log logn) labeling scheme. First, assign
unique identifiers Id to the vertices in Hn. Since |Vn| = O(n) we can assume that
|Id(v)| = logn + O(1) for every v ⇔ Vn. Next, for every v ⇔ Vn assign unique
identifiers to the edges incident to v. Since every vertex in Hn has O(log n)
neighbours, each edge can be encoded using log logn + O(1) bits.

To obtain labels for a given outerplanar graph G = (V,E), compute first an
embedding δ : V ∅ Vn of G into Hn. Next, define the label of vertex v ⇔ V to

380 D. Adjiashvili and N. Rotbart

......

t = 1

t = 2

t = 3

...
LCA ↔ g(Δ) }↔ g(Δ)

t = i

t = j...
Fig. 1. An illustration of the graph Hn

be the concatenation of Id(δ(v)) with the identifiers of all edges in En leading
to images under the embedding δ of neighbouring vertices, namely all δ(u)δ(v)
such that uv ⇔ E. Since the maximum degree in G is bounded by the constant
Σ, this results in a logn + O(log logn) label size. It is not difficult to see that
encoding and decoding can be performed efficiently (we elaborate on it later on).

2.4 The Encoder

To reduce the size of the labels to logn+O(1) we need to refine the latter scheme
significantly. As a first step we employ differential sizing, a technique first used
in the context of labeling schemes in [21]. In differential sizing some parts of the
label do not have a fixed number of allocated bits across all labels. Concretely,
we use differential sizing for both vertex and edge identifiers.

The resulting labels will have the desired length, but will also contain an
undesired ambiguity, that will prohibit correct decoding. We will then append a
short prefix to the label that will resolve this ambiguity.

Differential Sizing - The Suffix of a Label. Let us first formally define our
naming scheme for vertex and edge identifiers in Hn.

Definition 1. A naming of Hn is an injective function Id : Vn ∅ N and a
collection of injective functions EIdv : Ev ∅ N for every v ⇔ Vn. A naming is
coherent if for every v, v1, v2 ⇔ Vn

1. Id(v1) > Id(v2) implies that t(v1) > t(v2), or t(v1) = t(v2) and the cluster
of v2 appears to the left of the cluster of v1 in T.

2. EIdv (vv1) > EIdv (vv2) implies that Id(v1) > Id(v2).

We compute a coherent naming by assigning the identifiers 1 through |Vn| to
Vn level by level, traversing the clusters in any single level in T from left to right,

Labeling Schemes for Bounded Degree Graphs 381

and then naming the edges incident to v ⇔ Vn from 1 to |Ev| in a way that is
consistent with the vertex naming. For v, v∃ ⇔ V define π(v) := ≥log Id(v)⇒ and
ψv(vv∃) := ≥logEIdv (vv∃)⇒ and let

πt = max
v : t(v)∀t

π(v) and ψt = max
vv′ : t(v)∀t

ψv(vv∃)

be the maximal number of bits required to encode a vertex name and an edge
name for vertices with level at most t. The simple labels described in the begin-
ning of this section store logn + O(1) and log logn + O(1) bits for every vertex
name, and every edge name, respectively. In contrast, our label for a vertex in
level t stores πt bits for a vertex name, and ψt for edge names. In the following
lemma we prove that the new labels have the desired size.

Lemma 1. For every t ↔ logN it holds that πt ↔ t + ≥log(logN − t)⇒ + O(1),
ψt ↔ ≥log(logN − t)⇒ + O(1) and πt + Σψt = log n + O(1).

We henceforth denote the part of the label containing the vertex name and
all its edge identifiers as the suffix.

Resolving Ambiguity. Since the vertex name does not occupy a fixed number
of bits across all labels, it is a priori unclear which part of the label contains
it. To resolve this ambiguity we analyze the following function, which represents
the final length of our labels for vertices in level t (up to a fixed constant). Let
D = [≥logN⇒] and f : D ∅ N be defined as

f(t) = πt + Σψt = t + (Σ + 1)≥log(logN − t))⇒.
The following lemma states that all but a constant number (depending on Σ)
of values in D have at most two pre-images under f . This observation is useful,
since it implies that the knowledge of the level t(v) of the vertex v can resolve
all remaining ambiguities in its label, as the vertex name occupies exactly πt(v)

bits.

Lemma 2. Let r(Σ) = ≥8(Σ + 1) log(Σ + 1)⇒. For every t ⇔ [≥logN⇒ − r(Σ)]
the number of integers t∃ ⇔ D \ {t} that satisfy f(t) = f(t∃), is at most one.

Remark 1. It is natural to ask if having equal label lengths for vertices in different
levels can be avoided altogether (thus making Lemma 2 unnecessary). This seems
not to be the case for the following reason. The number of vertices in every
level is at least ε(logN), thus, with label size φ = o(log logN) one can not
uniquely represent all vertices in any level. Furthermore, the label length is also
restricted to logn + O(1), and the number of levels is ≥logN⇒. Thus, a function
assigning levels to label lengths would need to have domain [≥logN⇒] and range
[g(N), ≥logN⇒] for g(N) = ε(log logN), implying that it cannot be one-to-one.

Recall that the length of the suffix of vertex v ⇔ V is exactly πt(v)+Σψt(v). We
next show how the structural property proved here allows to construct a constant
size prefix, that will eliminate the ambiguity caused by differential sizing.

382 D. Adjiashvili and N. Rotbart

Constructing the Prefix. For a formal description of the prefix we need the
following definition. We let r(Σ) = ≥8(Σ + 1) log(Σ + 1)⇒, as in Lemma 2.

Definition 2. A vertex v ⇔ V is called shallow if its level t(v) is at most
≥logN⇒ − r(Σ). We call a shallow vertex early if t(v) is the smallest pre-image
of f(t(v)). A shallow vertex that is not early is called late.

A vertex v ⇔ V that is not shallow is called deep. A deep vertex is of type α ,
if its level satisfies t(v) = ≥logN⇒ − α .

It is easy to verify the following properties. Lemma 2 guarantees that if v is
shallow, then f(t(v)) has at most two pre-images under f . If v is shallow and
there is only one pre-image for f(t(v)), then v is early. Finally, observe that the
type of deep vertices ranges in the interval [1, r(Σ)].

We are now ready to define the prefix of a label L(v) for a vertex v ⇔ V . Every
prefix starts with a single bit D(v) that is set to 0 if v is shallow, and to 1 if v is
deep. The second bit R(v) in every prefix indicates whether a shallow vertex is
early, in which case it is set to 0, or late, in which case it is set to 1. The bit R(v)
is always set to 0 in labels of deep vertices. The next part Type(v) of the prefix
contains ≥log r(Σ)⇒ bits representing the type of the vertex v, in case v is deep.
If v is shallow this field is set to zero. This concludes the definition of the prefix.
Observe that the prefix contains O(logΣ) = O(1) bits. We stress that length sp
of the prefix is identical across all labels.

It is evident that the prefix of a label eliminates any remaining ambiguity.
This follows from the fact that the level t(v) of a vertex v ⇔ V can be computed
from the length of the suffix and the additional information stored in the prefix.
The level, in turn, allows to decompose the suffix into the vertex name and the
incident edge names, which can then be used for decoding. We elaborate on the
decoding algorithm later on.

The Final Labels. The final label is obtained by concatenating the suffix to
the prefix, namely L(v) is defined as follows.

L(v) = D(v) ◦R(v) ◦ Type(v)︸ ︷︷ ︸
prefix

◦ Id(δ(v)) ◦ EIdφ(v)(e1) ◦ · · · ◦ EIdφ(v)(eΔ)︸ ︷︷ ︸
suffix

.

Figure 2.4 illustrates the label structure as a function of the level of the vertex.
Note that |L(v)| = sp + f(t(v)), thus the level t(v) of v determines |L(v)|. Note
that Lemma 1 and the fact that the prefix has constant size guarantees that
|L(v)| = logn + O(1), as desired. We also pad each label with sufficiently many
0’s and a single ’1’, to arrive at a uniform length. The latter simple modification
allows the decoder to work without knowing n in advance (see [12] for details).

Although it is not necessary for the correctness of our labeling scheme, we
prove here uniqueness of the labels. In other words, we show that two different
vertices in G necessarily get different labels.

Lemma 3. For every two distinct u, v ⇔ V (G) it holds that L(u) ⊇= L(v).

Labeling Schemes for Bounded Degree Graphs 383

0 ≥logr(Δ)⇒+ 2 f (i) = f (j) logn + O(1)

↓ ↓ ↓ ↓

t = 1 α1 β1 β1· · ·
2 α2 β2 β2· · ·

i + 1 αi+1 βi+1 βi+1· · ·
i αi βi βi· · ·

j α j β j β j· · ·

logN αk βk βk· · ·

......

......

......

prefix suffix∪
Fig. 2. The composition of labels in our labeling scheme for vertices in different levels
t = 1, · · · , logN . The size of the prefix is seen to be constant in every level, while the
fields of lengths Λt and Σt, used to store vertex and edge identifiers, respectively, have
variable sizes. The levels i and j comprise a collision with respect to the function f ,
thus labels of vertices in these levels have the same length.

2.5 Decoding

Consider two labels L(u) and L(v) for vertices u, v ⇔ V . The decoder first ex-
tracts the levels t(u) and t(v) of u and v respectively, using the following simple
procedure, which we describe for v. If D(v) = 0, v is shallow. To this end, the
decoder computes all pre-images of the length of the suffix, |L(v)| − sp, under f .
Recall, that by Lemma 2, the number of pre-images is at most two. Let t1 ↔ t2
be the computed pre-images. Next, the decoder inspects the bit R(v). According
to the definition of the labels, t(v) = t1 if R(v) = 0, and t(v) = t2, otherwise.
Consider next the case D(v) = 1, namely that v is deep. In this case, the decoder
inspects Type(v). The level of v is t(v) = ≥logN⇒ − Type(v), by definition of a
type of a deep vertex. It is obvious by the definition of the labels that the de-
coder extracts t(v) correctly. Assume next that the decoder extracted t(u) and
t(v). The decoder can now extract Id(δ(u)) and Id(δ(v)), by inspecting the first
πt(u) and πt(v) bits of the suffix of L(u) and L(v), respectively. Next, the decoder
checks if δ(u)δ(v) ⊇⇔ En, in which case it reports false. Finally, if δ(u)δ(v) ⇔ En

the decoder scans all Σ blocks of ψt(u) bits each, succeeding Id(δ(u)) in the suffix
of L(u), checking if one of them contains the edge-identifier EIdφ(u)(δ(u)δ(v)).
If this identifier is found the decoder reports true. Otherwise, it reports false.
The correctness of the decoding is clear from the label definition and Lemma 2.

Lemma 4. The decoding of the labels can be performed in time O(log logn).

384 D. Adjiashvili and N. Rotbart

2.6 Computing the Embedding φ

All the labels can clearly be computed from the graph G, the embedding δ and
the graph Hn in time O(n log n). It is also straightforward to compute Hn in
O(n) time. It remains to discuss how to compute an embedding δ, for which we
provide a high-level overview. For a detailed description, see Bhatt et al. [4].

The algorithm uses a subroutine for computing bisectors of a graph. A bisector
of a graph G = (V,E) is a set S → V of vertices with the property that the
connected components of the graph G − S can be partitioned into two parts,
such that the sum of the vertices in each part is the same, and no edge connects
two vertices in different parts. If S is a bisector in G we say that S bisects V \S.

Given a k-coloring V = V1 ∩ · · · ∩ Vk of V (for some k ⇔ N), one can define
a k-bisector of G as a set S → V that bisects every color class, namely one that
bisects Vi \S for all i ⇔ [k]. An important property of outerplanar graphs is that
they admit O(log n) size k-bisectors, for every fixed k.

The algorithm works by assigning vertices in the graph G to clusters in T.
The root of T is assigned up to c logn vertices that form a bisector of G with
parts G1, G2. In the next iteration, vertices adjacent to vertices in the bisector
are given a new color. Next, two new 2-bisectors are found, one in each part
G1, G2, and they are assigned to the corresponding decedents of the root of T.

Let k(Σ) = logΣ + 1. In general, the vertices stored at a vertex of T at
level t correspond to a k(Σ)-bisector. The colors of this bisector correspond to
the neighbors of vertex-sets stored at k(Σ) − 1 nearest ancestors of the current
vertex in T. The last color is reserved to the remaining vertices. Also stored in
this vertex are all neighbors of the vertex-set stored in the ancestor of the current
vertex at distance exactly k(Σ), that were not yet assigned to some other cluster.
We refer the reader to [4] for an analysis of the sizes of clusters.

Let T (n) be the running time of the latter algorithm in a graph with n vertices.
T (n) clearly satisfies T (n) ↔ 2T (n/2) + O(h(n)), where h(n) is the complexity
of finding an O(1)-bisector of O(log n) size in an n-vertex graph. For outerplanar
graphs the latter can be done in linear time [8,4], thus the labels of our labeling
scheme can be computed in O(n log n) time.

2.7 Improvements and Special Cases

Several well-known techniques can be easily applied on top of our construction
to reduce the additive constant in the label size. First, since graphs of maximum
degree Σ have arboricity ≡Δ

2 ⊆+ 1, one can reduce the number of edge identifiers
stored in each label to the latter number (see Kannan et al. [15]). We later show
a simpler procedure that works for bounded degree graphs.

Finally, for bounded-degree trees T (n,Σ), it suffices to store a single edge
identifier (corresponding to the edge connecting a vertex to its parent in G). We
summarize this result in the following corollary of Theorem 1.

Corollary 1. For every fixed Σ ∈ 1, the class T (n,Σ) of bounded-degree trees
admits a labeling scheme of size log n+O(1), with encoding complexity O(n logn)
and decoding complexity O(log logn).

Labeling Schemes for Bounded Degree Graphs 385

3 Labeling Schemes for G(n,Δ) and G(n,Δ(n))

First we note that Theorem 1 implies almost directly a (≡Σ/2⊆ + 1) logn label-
ing scheme for graphs of fixed bounded degree Σ. The result follows from the
technique of Alstrup and Rauhe [3], Lemma 3 and the fact that any subtree of
a bounded degree graph has bounded degree.

Corollary 2. For every Σ ∈ 1, the class G(n,Σ) of bounded-degree graphs ad-
mits labeling schemes of size (≡Σ/2⊆+ 1) logn+O(1), with encoding complexity
O(n log n) and decoding complexity O(log logn).

From here on, we discuss labeling schemes for graphs of non-constant bounded
degree k = Σ(n). Adjacency relation between any two vertices may be reported
in only one of the labels representing them. For bounded degree graphs, the
method of Kannan et al. [15] of decomposition into forests can be replaced with
a simpler procedure, using Eulerian circuits, as we prove in the following.

Lemma 5. Let G = (V,E) be a graph with degree bounded by k. It is possible
to partition E into sets Sv, v ⇔ V , with the properties that all edges in Sv are
incident to v and |Sv| ↔ ≥k

2⇒ for all v ⇔ V . This partition implies a labeling

scheme with size (≥k
2 ⇒ + 1) logn for graphs with degree bounded by k.

The current best labeling schemes for graphs works in two modes, according to
the range of k. If k ↔ n/ logn, a k/2 logn labeling scheme can be achieved [15],
essentially by encoding an adjacency list. For larger k, labels defined through the
adjacency matrix of the graph have size n/2 + logn [19]. Our improved labels
use the well-known combinatorial number system (see e.g. [16]).

Lemma 6. Let L =
(
n
k

)
. There is a bijective mapping β : Sk ∅ [0, L−1] between

the set of strictly increasing sequences Sk of the form 0 ↔ t1 < t2 · · · < tk < n
and [0, L− 1] given by

β(t1, · · · , tk) =

k∑
i=1

(
ti
i

)
.

We use Lemma 6 to prove the following theorem.

Theorem 3. For 1 ↔ k ↔ n, there exist an adjacency labeling scheme for G(n, k)
with size: log

(
n

�k/2≥
)

+ ≥logn⇒ + ≥log k⇒.
The labeling scheme suggested implies a label size of approximately (k+ 2) logn
bits, when k is small and Δ(n) when k = Δ(n). The following lemma identifies
the range of k for which our labeling scheme improves on the best known bounds.

Lemma 7. For (e+1)
⊂
n ↔ k ↔ n

5 , and f(n, k) =
(

n
�k/2≥

)
+log k+logn it holds

that a) f(n, k) < n
2 ; and b) f(n, k) < ≥k/2⇒ + 2 log(n).

We conclude from Lemma 7 that our labeling scheme is preferable to [19] for
graphs of bounded degree k for (e + 1)

⊂
n ↔ k ↔ n

5 .

Acknowledgements. The authors thank Prof. Julia Lawall for her useful
comments.

386 D. Adjiashvili and N. Rotbart

References

1. Alstrup, S., Bille, P., Rauhe, T.: Labeling schemes for small distances in trees.
SIAM J. Disc. Math. 19(2), 448–462 (2005)

2. Alstrup, S., Gavoille, C., Kaplan, H., Rauhe,T.: Nearest common ancestors: A survey
and a new distributed algorithm. In: Proc. of the Fourteenth Annual ACM Sympo-
sium on Parallel Algorithms and Architectures, SPAA 2002, pp. 258–264 (2002)

3. Alstrup, S., Rauhe, T.: Small induced-universal graphs and compact implicit graph
representations. In: Proc. the 43rd Annual IEEE Symposium on Foundations of
Computer Science, pp. 53–62. IEEE (2002)

4. Bhatt, S., Chung, F.R.K., Leighton, T., Rosenberg, A.: Universal Graphs for
Bounded-DegreeTrees andPlanarGraphs. SIAMJ.Disc.Math. 2(2), 145–155 (1989)

5. Bonichon, N., Gavoille, C., Labourel, A.: Short labels by traversal and jumping. In:
Flocchini, P., G θasieniec, L. (eds.) SIROCCO 2006. LNCS, vol. 4056, pp. 143–156.
Springer, Heidelberg (2006)

6. Bonichon, N., Gavoille, C., Labourel, A.: Short labels by traversal and jumping.
Electr. Notes in Discrete Math. 28, 153–160 (2007)

7. Butler, S.: Induced-universal graphs for graphs with bounded maximum degree.
Graphs Combinator. 25(4), 461–468 (2009)

8. Chung, F.R.K.: Separator theorems and their applications. Forschungsinst. Für
Diskrete Mathematik (1989)

9. Chung, F.R.K.: Universal graphs and induced-universal graphs. J. Graph
Theor. 14(4), 443–454 (1990)

10. Esperet, L., Labourel, A., Ochem, P.: On induced-universal graphs for the class of
bounded-degree graphs. Inform. Process. Lett. 108(5), 255–260 (2008)

11. Fraigniaud, P., Korman, A.: Compact ancestry labeling schemes for xml trees. In:
Proc. of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2010, pp. 458–466 (2010)

12. Fraigniaud, P., Korman, A.: Compact ancestry labeling schemes for xml trees. In:
Proc. 21st ACM-SIAM Symp. on Discrete Algorithms, SODA 2010 (2010)

13. Gavoille, C., Labourel, A.: Shorter implicit representation for planar graphs and
bounded treewidth graphs. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007.
LNCS, vol. 4698, pp. 582–593. Springer, Heidelberg (2007)

14. Gavoille, C., Paul, C.: Distance labeling scheme and split decomposition. Discrete
Math. 273, 115–130 (2003)

15. Kannan, S., Naor, M., Rudich, S.: Implicit representation of graphs. In: Proc. of the
20th ACM Symposium on Theory of Computing, STOC 1988, pp. 334–343 (1988)

16. Knuth, D.: Combinatorial algorithms. The Art of Computer Programming, vol. 4a
(2011)

17. Korman, A., Peleg, D., Rodeh, Y.: Constructing labeling schemes through universal
matrices. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 409–418. Springer,
Heidelberg (2006)

18. Laoutaris, N., Rajaraman, R., Sundaram, R., Teng, S.H.: A bounded-degree net-
work formation game. arXiv preprint cs/0701071 (2007)

19. Moon, J.W.: On minimal n-universal graphs. In: Proc. of the Glasgow Math. Assoc.
vol. 7, pp. 32–33 (1965)

20. Nash-Williams, C.: Edge-disjoint spanning trees of finite graphs. J. London Math.
Soc. 1(1), 445–450 (1961)

21. Thorup, M., Zwick, U.: Compact routing schemes. In: SPAA 2001, New York, pp.
1–10 (2001)

22. Wang, Y., Li, X.Y.: Localized construction of bounded degree and planar spanner for
wireless ad hoc networks. Mobile Networks and Applications 11(2), 161–175 (2006)

Bounded-Angle Spanning Tree:

Modeling Networks with Angular Constraints∈

Rom Aschner and Matthew J. Katz

Department of Computer Science, Ben-Gurion University, Israel
{romas,matya}@cs.bgu.ac.il

Abstract. We introduce a new structure for a set of points in the plane
and an angle α, which is similar in flavor to a bounded-degree MST. We
name this structure α-MST. Let P be a set of points in the plane and
let 0 < α ◦ 2π be an angle. An α-ST of P is a spanning tree of the
complete Euclidean graph induced by P , with the additional property
that for each point p ≥ P , the smallest angle around p containing all the
edges adjacent to p is at most α. An α-MST of P is then an α-ST of P
of minimum weight. For α < π/3, an α-ST does not always exist, and,
for α ∨ π/3, it always exists [1,2,9]. In this paper, we study the problem
of computing an α-MST for several common values of α.

Motivated by wireless networks, we formulate the problem in terms
of directional antennas. With each point p ≥ P , we associate a wedge wp

of angle α and apex p. The goal is to assign an orientation and a radius
rp to each wedge wp, such that the resulting graph is connected and its
MST is an α-MST. (We draw an edge between p and q if p ≥ wq, q ≥ wp,
and |pq| ◦ rp, rq.) Unsurprisingly, the problem of computing an α-MST
is NP-hard, at least for α = π and α = 2π/3. We present constant-factor
approximation algorithms for α = π/2, 2π/3, π.

One of our major results is a surprising theorem for α = 2π/3, which,
besides being interesting from a geometric point of view, has important
applications. For example, the theorem guarantees that given any set
P of 3n points in the plane and any partitioning of the points into n
triplets, one can orient the wedges of each triplet independently, such
that the graph induced by P is connected. We apply the theorem to the
antenna conversion problem.

1 Introduction

Let P be a set of points in the plane and let 0 < α ≡ 2π be an angle. An α-ST
of P is a spanning tree of the complete Euclidean graph induced by P , with
the additional property that for each point p ⊆ P , the smallest angle around p

⊥ A version including the missing proofs can be found at http://arxiv.org/abs/

1402.6096 .
Work by R. Aschner was partially supported by the Lynn and William Frankel
Center for Computer Sciences. Work by M. Katz was partially supported by grant
1045/10 from the Israel Science Foundation. Work by M. Katz and R. Aschner was
partially supported by grant 2010074 from the United States – Israel Binational
Science Foundation.

J. Esparza et al. (Eds.): ICALP 2014, Part II, LNCS 8573, pp. 387–398, 2014.
c∗ Springer-Verlag Berlin Heidelberg 2014

http://arxiv.org/abs/1402.6096
http://arxiv.org/abs/1402.6096

388 R. Aschner and M.J. Katz

containing all the edges adjacent to p is at most α. An α-MST of P is then an
α-ST of P of minimum weight.

In this paper, we study the problem of computing an α-MST for several
common values of α. For α < π/3, an α-ST does not always exist (consider, e.g.,
an equilateral triangle). Moreover, it is well known that there always exists a
Euclidean MST of degree at most 5. Therefore, it is interesting to focus on the
range π/3 ≡ α < 8π/5.

Carmi et al. [9] showed that, for α = π/3, an α-ST always exists. A somewhat
simpler construction was subsequently proposed by Ackerman et al. [1]. Aich-
holzer et al. [2] have also obtained this result (together with additional related
results), independently. However, in all these papers, the goal is to construct an
α-ST (for α = π/3) and not an α-MST.

The problem of computing an α-MST is similar in flavor to the problem of
computing a Euclidean minimum weight degree-k spanning tree, which has been
studied extensively (see, e.g., [4, 10, 16, 17, 19]). A minimum weight degree-k
spanning tree is a minimum weight spanning tree, such that the degree of each
point is at most k, where the interesting values of k are 2,3, and 4. Notice that
for k = 2 we get the Euclidean traveling salesman path problem.

The problem of computing an α-ST is closely related to problems in which
one needs to compute a Hamiltonian path or cycle, with some restrictions on
the angles. Fekete and Woeginger [14] showed that every set of points has a
Hamiltonian path, such that all its angles are bounded by π/2. An alternative
construction was given later in [9]. Fekete and Woeginger also conjectured that
for every set of 2k ↔ 8 points there exists a Hamiltonian cycle, such that all
its angles are bounded by π/2. Recently, Dumitrescu et al. [12] showed how to
construct a Hamiltonian cycle whose angles are bounded by 2π/3. As for lower
bound, in [9] and, independently, in [12] it is shown that, for any ε > 0, there
exists a set of points, for which any Hamiltonian path has an angle greater
than π/2 − ε. The problem of finding Hamiltonian paths with large angles was
also considered in [14], where it is conjectured that every point set admits a
Hamiltonian path, whose angles are at least π/6; Bárány et al. [6] showed how
to construct a path, whose angles are at least π/9.

Unsurprisingly, the problem of computing an α-MST is NP-hard, at least for
α = π and α = 2π/3. For α = π, one can show this by a reduction from the
problem of finding a Hamiltonian path in grid graphs of degree at most 3, which
is known to be NP-hard [15]. The reduction is similar to the one described
for the problem of computing a minimum weight degree-3 spanning tree [20],
with a few simple adaptations. For α = 2π/3, one can show this by a straight-
forward reduction from Hamiltonian path in hexagonal grid graphs. Arkin et
al. [3] showed that the problem of finding a Hamiltonian cycle in hexagonal
grid graphs is NP-hard. However, with not too much effort, one can prove that
finding a Hamiltonian path in hexagonal grid graphs is NP-hard as well. The
NP-hardness proofs can be found in the full version.

Motivated by wireless networks, we formulate the problem of computing an α-
MST in terms of directional antennas. In the last few years, directional antennas

Bounded-Angle Spanning Tree 389

have received considerable attention (see, e.g., [7, 8, 18]), as they have some
noticeable advantages over omni-directional antennas. In particular, they require
less energy to reach a receiver at a given distance, and when broadcasting to this
receiver the affected region is much smaller, reducing the probability of causing
interference at friendly receivers or being subject to eves dropping by hostile
receivers. With each point p ⊆ P , we associate a wedge wp of angle α and apex
p. The goal now is to assign an orientation and a radius rp to each wedge wp,
such that the resulting graph is connected and its MST is an α-MST. (We draw
an edge between p and q if p ⊆ wq, q ⊆ wp, and |pq| ≡ rp, rq.)

An interesting related problem is the antenna conversion problem. The unit
disk graph of P , denoted udg(P), is the graph in which there is an edge between
p and q if |pq| ≡ 1. This is the communication graph induced by P , where each
point in P represents a transceiver equipped with an omni-directional antenna
of radius 1. We assume that udg(P) is connected. Suppose that one wishes
to replace the omni-directional antennas with directional antennas of angle α.
The goal now is to assign an orientation to each of the wedges wp and to fix
a common range δ = δ(α), such that the resulting (symmetric) communication
graph is a c-hop-spanner of udg(P), where c = c(α). Moreover, δ and c should
be small constants. Aschner et al. [5] considered this problem for α = π/2. Here
we solve it for α = 2π/3, using significantly smaller constants. Recently, it has
been brought to our attention that Dobrev et al. [11] have also been considering
the antenna conversion problem.

Our results. In Section 2 we focus on the case α = 2π/3. We begin by describing a
simple gadget: Given any set S of three points in the plane, we show how to orient
the wedges associated with the points of S, such that GS , the graph induced by
S, is connected, and, moreover, the union of the wedges of S covers the plane.
We then prove a surprising theorem, which, besides being interesting from a
geometric point of view, has far-reaching applications, such as the one mentioned
in the abstract. Informally, the theorem states that any two such gadgets are
connected. That is, let S1 and S2 be two triplets of points in the plane, and
assume that the wedges (associated with the points) of S1 and, independently,
of S2 are oriented according to the gadget construction instructions, then the
graph induced by S1 ⇔ S2 is connected. Proving this theorem turned out to
be a very challenging task, due to the huge number of possible configurations
that must be considered, and only after arriving at the current three-stage proof
structure (see Section 2.2), were we able to complete the proof.

In Section 3, we present constant-factor approximation algorithms for com-
puting an α-MST. In particular, we compute a 2-approximation for a π-MST,
a 6-approximation for a 2π/3-MST, and a 16-approximation for a π/2-MST.
These approximations are actually with respect to a Euclidean MST, which is a
lower bound for an α-MST, for any α. In Section 4, we present a solution to the
antenna conversion problem for α = 2π/3, based on the theorem above. Specif-
ically, we construct, in O(n log n) time, a 6-hop-spanner of udg(P), in which
each edge is of length at most 7. Finally, NP-hardness proofs for the problem of
computing an α-MST, for α = π and α = 2π/3, can be found in the full version.

390 R. Aschner and M.J. Katz

2 α = 2π
3

Notation. Let p be a point and let α be an angle. We denote the wedge of
angle α and apex p by wp. The left ray bounding wp (when looking from p into
wp) is denoted by

⊂
wp and the right ray by

≥
wp. The bisector of wp is denoted

by bis(wp). The orientations of
⊂
wp,

≥
wp, and bis(wp) are denoted by θ(

⊂
wp),

θ(
≥
wp), and θ(bis(wp)), respectively. The orientation of wp is the orientation of

its bisector and is denoted by θ(wp). We denote the ray emanating from p of
orientation θ(bis(wp)) + 180 by w̃p; its orientation is denoted by θ(w̃p).

Let S be a set of points, where each point p ⊆ S is associated with a wedge wp

of some orientation. The graph induced by S, denoted GS , is the graph in which
there is an edge between p, q ⊆ S if and only if p ⊆ wq and q ⊆ wp. If there is
an edge between p and q, we say that p and q are connected and denote this by
{p} ⇒ {q}. Similarly, if S1 and S2 are two such sets of points, and there exist a
point p in S1 and a point q in S2 such that p and q are connected, then we say
that S1 and S2 are connected and denote this by {S1} ⇒ {S2}. The notation
{p} ◦⇒ {q} means that p and q are not connected, and, similarly, {S1} ◦⇒ {S2}
means that there does not exist a point in S1 and a point in S2 such that these
points are connected.

2.1 The Basic Gadget

Claim. Let S = {a, b, c} be a set of three points in the plane, and set α = 2π/3.
Then, one can orient the wedges of S, such that GS , the induced graph of S,
contains a 2π/3-ST of S, and the wedges of S cover the plane.

Proof. Consider ≤abc, and assume w.l.o.g. that ∠b ≡ ∠c ≡ ∠a. Then, ∠b ≡ 60
and ∠c < 90. Draw ≤abc, such that bc is horizontal (with b to the left of c)
and a is not below the line containing bc. Orient the wedges of S as follows (see
Figure 1(a)): θ(wa) = 240, θ(wb) = 0, θ(wc) = 120.

It is easy to see that the non-directed edges (a, b) and (b, c) are in the induced
graph GS . Thus, GS contains a 2π/3-ST. As for the second requirement, notice
that wa contains the wedge wa

′ of orientation θ(wa) and apex b, and wc contains
the wedge wc

′ of orientation θ(wc) and apex b. But, clearly, wa
′⇔wb⇔wc

′ = R.

The gadget of Claim 2.1 has some noticeable properties:
Property 1. For any x ⊆ S, the orientations of the wedges of S are θ(wx) and
θ(wx) ± 120.
Property 2. For any x ⊆ S, the orientations of the rays bounding the wedges of S
are θ(wx)±60 and θ(wx)+180. Moreover, each of these three orientations appears
exactly twice, once as the orientation of a left ray bounding some wedge and once
as the orientation of a right ray bounding some other wedge (see Figure 1(b)).
Property 3. Consider any two wedges wx and wy and the four rays defining
them. Then, by Property 2, exactly two of these rays, ρ1 from wx and ρ2 from
wy, have the same orientation. Let l be a line intersecting both ρ1 and ρ2 and
perpendicular to ρ1 (and to ρ2). Then, wx ⇔wy covers the halfplane defined by
l that does not include the points x and y.

Finally, let Ri denote the range ((i−1)60, i60), for 1 ≡ i ≡ 6 (see Figure 1(c)).

Bounded-Angle Spanning Tree 391

a

cb

Rc

Ra Rb

(a)

a

cb

Rc

Ra Rb

(b)

R1

R2
R3

R4

R5

R6

(c)

Fig. 1. (a) The basic gadget of Claim 2.1. θ(wa) = 240, θ(wb) = 0, and θ(wc) = 120. A
point p is in region Ra if and only if p ≥ wa and p ∈≥ wb,wc, i.e., Ra = wa \ (wb ∧wc).
Regions Rb and Rc are defined analogously. (b) θ(

∅
wa) = θ(

→
wb) = θ(w̃c) = 300, θ(

→
wa) =

θ(w̃b) = θ(
∅
wc) = 180, and θ(w̃a) = θ(

∅
wb) = θ(

→
wc) = 60. (c) The six ranges R1, . . . , R6.

2.2 The Induced Graph of S1 ∪ S2 is Connected

In this section, we prove the following surprising theorem (Theorem 1), which,
as mentioned, has far-reaching applications. Let S1 = {a, b, c} and S2 be two
triplets of points in the plane, and assume that the wedges (associated with the
points) of S1 and, independently, of S2 are oriented according to the proof of
Claim 2.1. Then, the induced graph of S1 ⇔ S2 is connected.

In order to cope with the huge number of cases, we prove Theorem 1 in three
stages. In the first stage (Lemma 1), we prove the statement assuming that both
induced graphs of S1 and of S2 are cliques. In the second stage (Lemma 2),
we prove the statement assuming only one of the induced graphs is a clique,
using, of course, Lemma 1. Finally, in the third stage (Theorem 1), we prove the
statement without any additional assumptions, using Lemma 2.

Throughout this section, we assume (as in the proof of Claim 2.1) that, in
Δabc, ∠b ≡ ∠c ≡ ∠a, bc is horizontal, with b to the left of c, and a is not below
the line l containing bc (see Figure 1(a)).

The proofs of Lemma 1 and Lemma 2 can be found in the full version.

Lemma 1 (Two cliques). Let S1 = {a, b, c} and S2 be two sets of points and
let α = 2π/3. Assume that the wedges (associated with the points) of S1 and,
independently, of S2 are oriented according to the proof of Claim 2.1, and that
both induced graphs, GS1 and GS2 , are cliques. Then, the induced graph GS1≥S2

is connected.

Lemma 2 (One clique). Let S1 = {a, b, c} and S2 be two sets of points and let
α = 2π/3. Assume that the wedges of S1 and, independently, of S2 are oriented
according to the proof of Claim 2.1, and that the induced graph GS2 is a clique.
Then, the induced graph GS1≥S2 is connected.

Theorem 1. Let S1 = {a, b, c} and S2 be two sets of points and let α = 2π/3.
Assume that the wedges of S1 and, independently, of S2 are oriented according
to the proof of Claim 2.1. Then, the induced graph GS1≥S2 is connected.

Proof. If one (or both) of the induced graphs GS1 , GS2 is a clique, then, by
Lemma 2, we are done. Assume therefore that none of them is a clique. Let c′ be

392 R. Aschner and M.J. Katz

the intersection point of
⊂
wa and

⊂
wc, and consider the wedge wc′ of orientation

θ(wc′) = θ(wc) and apex c′. The graph induced by {a, b, c′} is a clique, and
therefore, by Lemma 2, {a, b, c′} ⇒ {S2}. If {a, b} ⇒ {S2}, then we are done,
so assume that {c′} ⇒ {S2}. Let x be a point of S2 such that {x} ⇒ {c′}, and
assume that {x} ◦⇒ {c} (otherwise we are done). Then, x lies above l and

⊂
wx

intersects cc′. We distinguish between three cases, as in the proof of Lemma 2: (i)≥
wx intersects bc′, (ii)

≥
wx intersects l to the left of b, and (iii)

≥
wx does not intersect

l. As mentioned in the proof of Lemma 2, our arguments there for Case (i) and
Cases (ii)(1) and (ii)(2) do not use the extra assumption that GS2 is a clique.
Therefore, we can reuse them here. It remains to show that {S1} ⇒ {S2} in
Cases (ii)(3) and (iii).

Case (ii)(3): wy covers exactly one point of S2, namely, c. We know that
either θ(wy) ⊆ R1 or θ(wy) ⊆ R3. In the latter case, wy must also cover b, which
is impossible. In the former case, if y is above l, then {y} ⇒ {c}, so y is necessarily
below l. Let z be the remaining point. Then, θ(wz) ⊆ R3. At this point, we would
like to show, as in the proof of Lemma 2, that {z} ⇒ {a, b}. However, we cannot
assume now that {y} ⇒ {z}. So, we first prove that {y} ⇒ {z}, by proving that
{x} ◦⇒ {y}, and then we proceed as in the proof of Lemma 2.

Thus, our goal now is to prove that {x} ◦⇒ {y}. Let p be the midpoint of bc,
and let a′ be the projection of a onto l. According to the construction in the
proof of Claim 2.1, a′ lies somewhere between p and c (not including c). Let o be
the intersection point of

⊂
wx and l. We know that o is somewhere between c′ and

c (not including c). Finally, let t be the intersection point of bis(wx) and l (see
Figure 2(a)). We show that t lies to the left of p and therefore also to the left of
a′. If t is to the left of b (or t = b), then this is clear. Assume therefore that t is
to the right of b, and consider the two triangles ≤xto and ≤xbt. Recall first that
x is above

⊂
wb and notice that it is below bis(wc) (since, if x were above bis(wc),

then {x} ⇒ {c}). Therefore ∠xbt > 60 and the projection of x onto l lies to the
left of p. Now, in ≤xto, ∠xot ≡ 60 and ∠txo = 60, and therefore |xt| ≡ |to|.
And, in ≤xbt, ∠bxt < 60 and ∠xbt > 60, and therefore |bt| < |xt|. Together, we
get that |bt| < |to| < |tc|, so t lies to the left of p and therefore to the left of a′.

Since the projection of x onto l lies to the left of p and so does t, we have
that a lies to the left of bis(wx). Now, if {x} ⇒ {y}, then y must lie to the
right of bis(wx) and therefore cover a, which is impossible. We conclude that
{x} ◦⇒ {y}, and therefore {y} ⇒ {z} (and {x} ⇒ {z}).

From this point, we continue as in the proof of Lemma 2. Notice that
⊂
wy

separates between a and c and between b and c, since θ(wy) ⊆ R1 and wy covers
only c. Since {y} ⇒ {z}, we know that z lies to the right of bis(wy). Clearly, a
and b lie to the left of

≥
wz (whose orientation is in R2), and to the right of

⊂
wz

(whose orientation is in R4). In other words, wz covers both a and b. Notice also
that z ◦⊆ Rc, since bis(wy) (whose orientation is in R1) intersects l to the right
of b, and z lies to the right of bis(wy). Therefore, either wa or wb (or both)
covers z. We conclude that {z} ⇒ {a, b}.

Case (iii):
≥
wx does not intersect l, implying that θ(

≥
wx) < 180. Notice that

in this case b ⊆ wx, so we assume that x /⊆ wb, implying that θ(
⊂
wx) > 240. It

Bounded-Angle Spanning Tree 393

follows that θ(wx) ⊆ R4, θ(
⊂
wx) ⊆ R5, θ(

≥
wx) ⊆ R3, and θ(w̃x) ⊆ R1. Notice also

that bis(wx), whose orientation is in R4, intersects l to the left of b.
Let y be the point of S2 such that θ(

⊂
wy) ⊆ R3 and θ(

≥
wy) ⊆ R1, and let z be

the point of S2 such that θ(
⊂
wz) ⊆ R1 and θ(

≥
wz) ⊆ R5. Notice that for

⊂
wx to

intersect l to the right of c′, x must lie above l(
⊂
wa), and, therefore, wx covers a.

We first show that if {x} ⇒ {z}, then {S1} ⇒ {S2}. Indeed, if {x} ⇒ {z},
then z must lie to the right of bis(wx). If z is above l, then {z} ⇒ {c}. Assume,
therefore, that z is below l. Notice that

⊂
wz intersects

⊂
wb at a point above x,

implying that
⊂
wz passes above a. Moreover,

≥
wz passes below a, since it is directed

downwards. It follows that wz covers a. But, z ⊆ wa, since z lies to the right of
bis(wx), which intersects l to the left of b. We conclude that {z} ⇒ {a}.

Next, we address the most difficult case, in which {x} ◦⇒ {z}. If {x} ◦⇒ {z},
then necessarily y is connected to both x and z. Notice that z must lie below

⊂
wx.

Also, if it is above l, then {z} ⇒ {c}. Assume, therefore, that z is below l. Since
wy’s rays are directed upwards and {y} ⇒ {z}, we know that y is below z and
therefore also below l. According to the construction in the proof of Claim 2.1,
either x or z lies on bis(wy), and the angle at this point in ≤xyz does not
exceed the angle at the other point. It follows that the point that lies on bis(wy)
is necessarily x. Since, if it were z, then ∠yzx ↔ 120, as it contains wz .

c

Rc

Ra Rb

a

b

x

c→ ot p a→

(a)

a

c
b

Rc

Ra Rb

x

y

m

m→

o→ o

(b)

a

c
b

(c)

Fig. 2. (a) t lies to the left of a∗. (b) x lies on bis(wy). (c) Each of the triplets induces
a connected graph and covers the plane, but the graph of their union is not connected.

The case where x lies on bis(wy) is also impossible, as we show below (see
Figure 2(b)). If y /⊆ wb, then {y} ⇒ {a}, since

⊂
wy is below l(

≥
wb) and

≥
wy is above

l(
⊂
wx). Assume, therefore, that y ⊆ wb but {y} ◦⇒ {b}. Let m be the intersection

point of
⊂
wy and bis(wx). Then, m is above l (since otherwise {y} ⇒ {b}). Notice

that ≤xmy is equilateral, and consider the bisector of ∠xmy. Let m′ be the
intersection point of this bisector and side xy. Then, mm′ is the perpendicular
bisector of xy.

Next, we show that m′ lies above l. Let o be the intersection point of xy
and l, and let o′ the intersection point of my and l. We show that |yo| < |xo|,
implying that m′ is somewhere between o and x and thus above l. Consider
≤yoo′. Since θ(

⊂
wy) ⊆ R3, we know that ∠yo′o < 60. But ∠oyo′ = 60, so we get

that |oy| < |oo′|. Now, consider ≤xbo. ∠xbo > 60 and ∠bxo < 60, and therefore
|ox| > |ob|. It follows that |oy| < |oo′| < |ob| < |ox|.

394 R. Aschner and M.J. Katz

Since all its corners lie above l, ≤mm′x is above l. Since {y} ⇒ {z} and z is
below l, we have that z ⊆ ≤yo′o ∅ ≤ymm′, and therefore z is closer to y than
to x – contradiction the construction of Claim 2.1.

Remark. Theorem 1 above proves that when the wedges of each of the triplets
are oriented, independently, according to the construction of Claim 2.1, then
there is always an edge between the two triplets. This is not necessarily true for
other constructions with similar properties. For example, the wedges of each of
the triplets in Figure 2(c) form a connected graph and cover the plane, but there
is no edge between the triplets.

3 Approximating the α-MST

Let P be a set of n points in the plane. In this section we consider the problem
of computing an α-MST of P , for α = π, 2π/3, π/2. For each of these angles, we
devise a constant-factor approximation algorithm. The approximation ratios are
actually with respect to the weight of a Euclidean MST, which is a lower bound
for the weight of an α-MST, for any α.

Consider the TSP tour Π = e0, e1, . . . , en−1 obtained by applying the stan-
dard 2-approximation algorithm for metric TSP. This algorithm first duplicates
the edges of a MST to obtain an Eulerian tour, and then transforms the Eulerian
tour into a TSP tour by introducing shortcuts. Thus, wt(Π) ≡ 2wt(MST). Each
of our approximation algorithms below begins by constructing Π . It then con-
structs, using Π , a connected α-graph, i.e., a graph in which, for each node p, the
angle spanned by the edges adjacent to p is at most α. Finally, it construct an
α-ST from the α-graph, whose weight is bounded by c ·wt(Π), for some constant
c = c(α), and thus is a 2c-approximation of an α-MST.

α = π. Observe that any graph of maximum degree two is a π-graph. In par-
ticular, Π is a π-graph, and, by removing an arbitrary edge, we obtain a π-ST
of weight at most 2wt(π-MST).

α = 2π/3. Assume, for convenience, that n = 3m, for some integer m. We
partition P into m triplets, by traversing Π from an arbitrary point p ⊆ P . That
is, each of the triplets consists of three consecutive points along Π . Orient the
wedges of each triplet, independently, according to Claim 2.1. By Theorem 1,
the graph induced by P , denoted here Gα (instead of GP), is connected. In
particular, for any two consecutive triplets t, t′ along Π , there exists an edge of
the graph between a point of t and a point of t′.

Next, we construct a 2π/3-ST, T , and show that wt(T) ≡ 6 · wt(2π/3-MST).
Initially, T has no edges. For each of the m triplets t, add to T any two edges
(of the at least two edges) of Gα connecting between pairs of points of t. We call
these edges inner-edges. Next, for each of the m pairs of consecutive triplets t, t′

along Π (except for the pair consisting of the ‘last’ triplet and the ‘first’ triplet),
add to T any edge (of the at least one edge) of Gα connecting between a point of
t and a point of t′. We call these edges connecting-edges. T is connected and has
2n/3 inner-edges and n/3 − 1 connecting-edges, thus the total number of edges
is n− 1, and T is a 2π/3-ST.

Bounded-Angle Spanning Tree 395

We now bound the weight of T . By the triangle inequality, the weight of
an edge (u, v) of T does not exceed the weight of the shorter path (in terms of
number of edges) in Π between u and v. We charge the weight of this path for the
edge (u, v). Each edge of Π between two points of the same triplet t is charged
at most four times. Twice for the two inner-edges chosen for t, and twice for the
two connecting-edges that connect t to its two adjacent triplets along Π . Each
edge of Π between two consecutive triplets t, t′ (except for the edge between the
last and first) is charged only once for the corresponding connecting-edge of T .
Thus, each edge of Π is charged at most four times, and wt(T) = Σe∈T |e| ≡
4Σe∈Π |e| = 4 · wt(Π) ≡ 8 · wt(MST) ≡ 8 · wt(2π/3-MST).

Next, we improve the approximation ratio. Observe, that there are three pos-
sible ways to partition Π into m triplets. In other words, the set of edges of Π
connecting between the triplets can be either E0, E1, or E2, where Ej = {ei ⊆
E : i = (j mod 3)}, for 0 ≡ j ≡ 2. By the pigeon hole principle, the weight of
one of these sets, say E2, is at least 1

3 ·wt(Π). We partition Π into triplets, such
that the set of edges connecting between the triples is E2. Now, each of the edges
of E2 (except en−1) is charged exactly once, and each of the edges of E0 ⇔ E1

is charged at most four times. Thus, wt(T) ≡ wt(E2) + 4(wt(E0) + wt(E1)) =
wt(Π) + 3(wt(E0) +wt(E1)) ≡ wt(Π) + 3 · 23wt(Π) = 3 ·wt(Π) ≡ 6 ·wt(MST) ≡
6 · wt(2π/3-MST).
α = π/2. Assume, for convenience, that n = 8m, for some integer m. Our
construction for α = π/2 is similar to the one for α = 2π/3, but slightly more
complicated. It is based on a basic gadget described by Aschner et al. [5] for a
set S of four points, indicating the locations of four π/2-wedges. This gadget
is presented as the proof for the claim that one can orient the wedges of S,
such that the induced graph is connected, and the wedges of S cover the plane.
Unfortunately, we cannot claim that two quadruplets, whose wedges are oriented
independently, are connected. However, if they are separable by a line, then they
are connected, see [5].

We use this latter claim in our construction. We partition the tour Π into
m sections, each consisting of 8 consecutive points along Π . Then, we partition
each of the sections into two quadruplets, a left quadruplet consisting of the 4
leftmost points of the section and a right quadruplet consisting of the 4 rightmost
points. (Notice that the points of a quadruplet are not necessarily consecutive
along Π .) Thus, in each section, the two quadruplets are separable by a (vertical)
line. Now, orient the wedges of each quadruplet, independently, such that their
induced graph is connected and the wedges cover the plane. Let Gα be the graph
induced by P . Observe that Gα is connected, since, for any two consecutive
sections, there exists two quadruplets, one from each section, that are separable
by a (vertical) line and thus connected.

Next, we construct the tree T from Gα. We distinguish between three types
of edges. The first type are the inner-edges, which connect between points of
the same quadruplet. For each quadruplet, we pick three such edges that make
the quadruplet connected. The second type are the q-connecting-edges, which
connect between quadruplets of the same section. For each section, we pick one
such edge. The third type are the s-connecting-edges, which connect between

396 R. Aschner and M.J. Katz

consecutive sections along Π . For each pair of consecutive sections along Π
(except for the pair consisting of the last and first sections), we pick one such
edge. Notice that T is a π/2-ST, since it is connected and it has n − 1 edges,
i.e., 3n/4 inner-edges, n/8 q-connecting-edges, and n/8 − 1 s-connecting-edges.

We compute the approximation ratio by charging the edges of Π . Each edge
of Π either connects between points of the same section, or between points of
consecutive sections. An edge of the former kind is charged at most nine times.
Since for a section, we have six inner-edges, one q-connecting-edge, and two
s-connecting-edges. An edge of the latter kind is charged only once.

As for α = 2π/3, we can choose the subset of edges of Π that connect between
consecutive sections, so that its weight is at least 1

8 · wt(Π). Let E7 denote this
subset. Then, wt(T) ≡ wt(E7) + 9 · wt(E \ E7) ≡ wt(Π) + 8 · wt(E \ E7) ≡
wt(Π) + 8 · 7

8wt(Π) = 8 · wt(Π) ≡ 16 · wt(MST) ≡ 16 · wt(π/2-MST).
The following theorem summarizes the results of this section.

Theorem 2. Let P be a set of points in the plane. Then, one can construct
(i) a π-ST of weight at most 2 · wt(π-MST), (ii) a 2π/3-ST of weight at most
6 · wt(2π/3-MST), and (iii) a π/2-ST of weight at most 16 · wt(π/2-MST).

Remark. As mentioned, the approximation ratios above are with respect to
wt(MST), which is a lower bound for wt(α-MST). It is possible that by com-
paring the weight of the constructed α-ST with that of an α-MST, one can get
better ratios, but it is not clear how to do so. Moreover, it is easy to see that,
for α ⊆ [60, 180), 2 is a lower bound on the ratio with respect to a MST, e.g.,

consider n points on a line. And, for α ⊆ [180, 240), 2+
⊆
3

3 ⊇ 1.244 is a lower
bound on the ratio, e.g., consider 3 points at the corners of an equilateral triangle
and a fourth point at the center of the circle passing through them. Finally, for
α ⊆ [60, 90), it is easy to give an example where wt(α-MST)/wt(MST) ≥ n− 1.
Therefore, any algorithm for an angle α in this range, should be analyzed with
respect to wt(α-MST).

4 Constant Range Hop-Spanner for α = 2π/3

In this section we apply Theorem 1 to obtain a solution to a problem that
arises in wireless communication networks. Let P be a set of n points in the
plane, where each point in P represents a transceiver equipped with an omni-
directional antenna. The coverage region of p’s antenna is modeled by a disk
centered at p, and assume that all disks are of radius 1. Then, the resulting
communication graph is the unit disk graph of P , denoted udg(P). (I.e, there is
an edge between points p and q if the distance between them is at most 1.) As
mentioned in the introduction, directional antennas have some advantages over
omni-directional antennas and are gaining popularity. The coverage region of a
directional antenna of angle α is modeled by a circular sector of angle α.

Assume that udg(P) is connected. Before stating our problem, we need the
following definition. A graph G = (P,E) is a c-hop-spanner of udg(P), for
some constant c, if for any two points p, q ⊆ P , the minimum number of hops
between p and q in G is at most c times this number in udg(P). That is, for
each edge e = (p, q) in udg(P), there exists a path in G between p and q

Bounded-Angle Spanning Tree 397

consisting of at most c edges. Assume now that one replaces each of the omni-
directional antennas by a directional antenna of angle 2π/3. We address the
following Antenna Conversion problem: Orient the directional antennas and fix
a range δ = O(1), such that the resulting (symmetric) communication graph is a
c-hop-spanner of udg(P), for some constant c. I.e., construct a 2π/3-graph, such
that the length of its edges is bounded by δ and it is a c-hop-spanner of udg(P).

We show how to construct such a graph with δ = 7 and c = 6, in O(n log n)
time. We first partition the points of P into connected components (of udg(P))
of size at most three. This is done greedily. Set Q = P . As long as Q ◦= ∅,
perform the following step, which finds the next component C. Pick any point
a ⊆ Q, add it to C (which is initially empty), and remove it from Q. Now, if
Q ◦= ∅ and there exists a point in Q whose distance from a is at most 1, then
pick any such point b ⊆ Q, add it to C, and remove it from Q. Finally, if Q ◦= ∅
and there exists a point in Q whose distance to either a or b (or both) is at most
1, then pick any such point c ⊆ Q, add it to C, and remove it from Q.

Claim. Let C be a connected component of size one or two. Then, each of the
neighbors of C in udg(P) belongs to a component of size three.

Proof. Assume that one of the neighbors of C belongs to a component C′ of
size one or two, i.e., there exists an edge of udg(P) between a point in C and
a point in C′. Moreover, assume, e.g., that C was found before C′. Then, in the
iteration in which C was found, we would have found a larger component, i.e.,
with at least one additional point.

Now, consider the connected components that were found. We first orient
the wedges of each connected component of size exactly three, independently,
according to the proof of Claim 2.1. Next, for each connected component C of
size one or two, let C′ be any connected component of size exactly three, such
that C has a neighbor in C′. Recall that the wedges of C′ cover the plane. We
orient each of the wedges of C (alternatively, the single wedge of C) towards the
wedge of C′ that covers it. Observe that if the length of the edges is not limited,
then the 2π/3-graph, Gα, that is induced by the wedges of P is connected.
Moreover, it is easy to verify that Gα is a c-hop-spanner, for c = 5. However,
our goal is to limit the length of the edges without increasing c by much.

Let C be a component of size one or two. Then, the edge of Gα connecting
between C and C′, where C′ is the component of size three to which C was
connected, is of length at most 4. Moreover, consider any two components of
size three C′ and C′′, such that C has a neighbor both in C′ and in C′′. Then,
the edge of Gα connecting between C′ and C′′ is of length at most 7. Finally,
the edge of Gα connecting between two neighboring components of size three is
of length at most 5. Therefore, one can drop all edges of length greater than 7
from Gα, without disconnecting it.

Finally, it is easy to see that the resulting graph is a 6-hop spanner.
The following theorem summarizes the result of this section. For the missing

details, see the full version.

Theorem 3. Let P be a set of points in the plane and assume that udg(P)
is connected. Let α = 2π/3. Then, one can construct, in O(n log n) time, a
6-hop-spanner of udg(P), in which each edge is of length at most 7.

398 R. Aschner and M.J. Katz

References
1. Ackerman, E., Gelander, T., Pinchasi, R.: Ice-creams and wedge graphs. Comput.

Geom.: Theory & Applications 46(3), 213–218 (2013)
2. Aichholzer, O., Hackl, T., Hoffmann, M., Huemer, C., Pór, A., Santos, F., Speck-

mann, B., Vogtenhuber, B.: Maximizing maximal angles for plane straight-line
graphs. Comput. Geom.: Theory & Applications 46(1), 17–28 (2013)

3. Arkin, E.M., Fekete, S.P., Islam, K., Meijer, H., Mitchell, J.S.B., Rodŕıguez, Y.N.,
Polishchuk, V., Rappaport, D., Xiao, H.: Not being (super) thin or solid is hard:
A study of grid Hamiltonicity. Comput. Geom.: Theory & Applications 42(6-7),
582–605 (2009)

4. Arora, S.: Polynomial time approximation schemes for Euclidean traveling sales-
man and other geometric problems. J. ACM 45(5), 753–782 (1998)

5. Aschner, R., Katz, M.J., Morgenstern, G.: Symmetric connectivity with directional
antennas. Comput. Geom.: Theory & Applications 46(9), 1017–1026 (2013)

6. Bárány, I., Pór, A., Valtr, P.: Paths with no small angles. SIAM Journal Discrete
Mathematics 23(4), 1655–1666 (2009)

7. Bose, P., Carmi, P., Damian, M., Flatland, R., Katz, M.J., Maheshwari, A.: Switch-
ing to directional antennas with constant increase in radius and hop distance. In:
Dehne, F., Iacono, J., Sack, J.-R. (eds.) WADS 2011. LNCS, vol. 6844, pp. 134–146.
Springer, Heidelberg (2011)

8. Caragiannis, I., Kaklamanis, C., Kranakis, E., Krizanc, D., Wiese, A.: Communi-
cation in wireless networks with directional antennas. In: 20th ACM Sympos. on
Parallelism in Algorithms and Architectures, pp. 344–351 (2008)

9. Carmi, P., Katz, M.J., Lotker, Z., Rosén, A.: Connectivity guarantees for wireless
networks with directional antennas. Comput. Geom.: Theory & Applications 44(9),
477–485 (2011)

10. Chan, T.M.: Euclidean bounded-degree spanning tree ratios. Discrete & Compu-
tational Geometry 32(2), 177–194 (2004)

11. Dobrev, S., Eftekhari, M., MacQuarrie, F., Manuch, J., Morales-Ponce, O.,
Narayanan, L., Opatrny, J., Stacho, L.: Connectivity with directional antennas in
the symmetric communication model. In: Mexican Conf. on Discrete Mathematics
and Computational Geometry (2013)

12. Dumitrescu, A., Pach, J., Tóth, G.: Drawing Hamiltonian cycles with no large
angles. Electronic Journal of Combinatorics 19(2), P31 (2012)

13. Efrat, A., Itai, A., Katz, M.J.: Geometry helps in bottleneck matching and related
problems. Algorithmica 31(1), 1–28 (2001)

14. Fekete, S.P., Woeginger, G.J.: Angle-restricted tours in the plane. Comput. Geom.:
Theory & Applications 8, 195–218 (1997)

15. Itai, A., Papadimitriou, C.H., Szwarcfiter, J.L.: Hamilton paths in grid graphs.
SIAM Journal on Computing 11(4), 676–686 (1982)

16. Jothi, R., Raghavachari, B.: Degree-bounded minimum spanning trees. Discrete
Applied Mathematics 157(5), 960–970 (2009)

17. Khuller, S., Raghavachari, B., Young, N.E.: Low-degree spanning trees of small
weight. SIAM Journal on Computing 25(2), 355–368 (1996)

18. Kranakis, E., Krizanc, D., Morales, O.: Maintaining connectivity in sensor networks
using directional antennae. In: Nikoletseas, S., Rolim, J.D.P. (eds.) Theoretical
Aspects of Distributed Computing in Sensor Networks, ch. 3, Springer

19. Mitchell, J.S.B.: Guillotine subdivisions approximate polygonal subdivisions: a sim-
ple polynomial-time approximation scheme for geometric TSP, k-MST, and related
problems. SIAM Journal on Computing 28(4), 1298–1309 (1999)

20. Papadimitriou, C.H., Vazirani, U.V.: On two geometric problems related to the
travelling salesman problem. Journal of Algorithms 5(2), 231–246 (1984)

Distributed Computing on Core-Periphery

Networks: Axiom-Based Design�

Chen Avin1,ΣΣ, Michael Borokhovich1, Zvi Lotker1, and David Peleg2

1 Ben-Gurion University of the Negev, Israel
{avin,borokhom,zvilo}@cse.bgu.ac.il

2 The Weizmann Institute, Israel
david.peleg@weizmann.ac.il

Abstract. Inspired by social networks and complex systems, we propose
a core-periphery network architecture that supports fast computation for
many distributed algorithms and is robust and efficient in number of links.
Rather than providing a concrete network model, we take an axiom-based
design approach. We provide three intuitive (and independent) algorith-
mic axioms and prove that any network that satisfies all axioms enjoys an
efficient algorithm for a range of tasks (e.g., MST, sparse matrix multipli-
cation, etc.). We also show the minimality of our axiom set: for networks
that satisfy any subset of the axioms, the same efficiency cannot be guar-
anteed for any deterministic algorithm.

1 Introduction

A fundamental goal in distributed computing is designing a network architecture
that allows fast running times for various distributed algorithms, but at the same
time is cost-efficient in terms of minimizing the number of communication links
between machines and the amount of memory used by each machine.

For illustration, let’s consider three basic networks topologies: a star, a clique
and a constant degree expander. The star graph has only a linear number of
links and can compute every computable function after only one round of com-
munication. But clearly, such an architecture has two major disadvantages: the
memory requirements of the central node do not scale, and the network is not
robust. The complete graph, on the other hand, is very robust and can sup-
port extremely fast performance for tasks such as information dissemination,
distributed sorting and minimum spanning tree, to name a few [1,2,3]. Also, in
a complete graph the amount of memory used by a single processor is minimal.
But obviously, the main drawback of that architecture is the high number of
links it uses. Constant degree expanders are a family of graphs that support ef-
ficient computation for many tasks. They also have linear number of links and
can effectively balance the workload between many machines. But the diameter
of these graphs is lower bounded by Ω(log n) which implies similar lower bound
for most of the interesting tasks one can consider.

� Supported in part by the Israel Science Foundation (grant 1549/13).
�� Part of this work was done while the author was visiting ICERM, Brown university.

J. Esparza et al. (Eds.): ICALP 2014, Part II, LNCS 8573, pp. 399–410, 2014.
c∗ Springer-Verlag Berlin Heidelberg 2014

400 C. Avin et al.

A natural question is therefore whether there are other candidate topologies
with guaranteed good performance. We are interested in the best compromise
solution: a network on which distributed algorithms have small running times,
memory requirements at each node are limited, the architecture is robust to link
and node failures, and the total number of links is minimized (preferably linear).

To try to answer this question we adopt in this paper an axiomatic approach
to the design of efficient networks. In contrast to the direct approach to network
design, which is based on providing a concrete type of networks (by determinis-
tic or random construction) and showing its efficiency, the axiomatic approach
attempts to abstract away the algorithmic requirements that are imposed on the
concrete model. This allows one to isolate and identify the basic requirements
that a network needs for a certain type of tasks. Moreover, while usually the per-
formance of distributed algorithms is dictated by specific structural properties
of a network (e.g., diameter, conductance, degree, etc.), the axioms proposed
in this work are expressed in terms of desired algorithmic properties that the
network should have.

The axioms1 proposed in the current work are motivated and inspired by the
core-periphery structure exhibited by many social networks and complex sys-
tems. A core-periphery network is a network structured of two distinct groups
of nodes, namely, a large, sparse, and weakly connected group identified as the
periphery, which is loosely organized around a small, cohesive and densely con-
nected group identified as the core. Such a dichotomic structure appears in many
areas of our life, and has been observed in many social organizations including
modern social networks [4]. It can also be found in urban and even global sys-
tems (e.g., in global economy, the wealthiest countries constitute the core which
is highly connected by trade and transportation routes) [5,6,7]. There are also
peer-to-peer networks that use a similar hierarchical structure, e.g., FastTrack
[8] and Skype [9], in which the supernodes can be viewed as the core and the
regular users as the periphery.

The main technical contribution of this paper is proposing a minimal set of
simple core-periphery-oriented axioms and demonstrating that networks satisfy-
ing these axioms achieve efficient running time for various distributed computing
tasks while being able to maintain linear number of edges and limited memory
use. We identify three basic, abstract and conceptually simple (parameterized)
properties, that turn out to be highly relevant to the effective interplay between
core and periphery. For each of these three properties, we propose a correspond-
ing axiom, which in our belief captures some intuitive aspect of the desired
behavior expected of a network based on a core-periphery structure. Let us
briefly describe our three properties, along with their “real life” interpretation,
technical formulation, and associated axioms.

The three axioms are: (i) clique-like structure of the core, (ii) fast convergecast
from periphery to the core and (iii) balanced boundary between the core and

1 One may ask whether the properties we define qualify as “axioms”. Our answer
is that the axiomatic lens helps us focus attention on the fundamental issues of
minimality, independence and necessity of our properties.

Distributed Computing on Core-Periphery Networks 401

Table 1. Summary of algorithms for core-periphery networks

Task Running time Lower bounds
on CP networks All Axioms Any 2 Axioms

MST * O(log2 n) Ω(1) Ω̃(4
√
n)

Matrix transposition O(k) Ω(k) Ω(n)

Vector by matrix multiplication O(k) Ω(k/ log n) Ω(n/ log n)

Matrix multiplication O(k2) Ω(k2) Ω(n/ log n)

Find my rank O(1) Ω(1) Ω(n)

Find median O(1) Ω(1) Ω(log n)

Find mode O(1) Ω(1) Ω(n/ log n)

Find number of distinct values O(1) Ω(1) Ω(n/ log n)

Top r ranked by areas O(r) Ω(r) Ω(r
√
n)

k - maximum number of nonzero entries in a row or column. * - randomized algorithm

periphery. The first property deals with the flow of information within the core.
It is guided by the key observation that to be influential, the core must be
able to accomplish fast information dissemination internally among its members.
The corresponding Axiom AE postulates that the core must be a Θ(1)-clique
emulator (to be defined formally later). Note that this requirement is stronger
than just requiring the core to possess a dense interconnection subgraph, since
the latter permits the existence of “bottlenecks”, whereas the requirement of the
axiom disallows such bottlenecks.

The second property focuses on the flow of information from the periphery to
the core and measures its efficiency. The core-periphery structure of the network
is said to be a γ-convergecaster if this data collection operation can be performed
in time γ. The corresponding Axiom AC postulates that information can flow
from the periphery nodes to the core efficiently (i.e., in constant time). Note
that one implication of this requirement is that the presence of periphery nodes
that are far away from the core, or bottleneck edges that bridge between many
periphery nodes and the core, is forbidden.

The third and last property concerns the “boundary” between the core and the
periphery and claim that core nodes are “effective ambassadors”. Ambassadors
serve as bidirectional channels through which information flows into the core and
influence flows from the core to the periphery. However, to be effective as an am-
bassador, the core node must maintain a balance between its interactions with
the “external” periphery and its interactions with the other core members, serv-
ing as its natural “support”; a core node which is significantly more connected
to the periphery than to the core becomes ineffective as a channel of influence.
In distributed computing terms, a core node that has many connections to the
periphery has to be able to distribute all the information it collected from them
to other core nodes. The corresponding Axiom AB states that the core must
have a Θ(1)-balanced boundary (to be defined formally later).

To support and justify our selection of axioms, we examine their usefulness
for effective distributed computations on core-periphery networks. We consider a
collection of different types of tasks, and show that they can be efficiently solved
on core-periphery networks, by providing a distributed algorithm for each task

402 C. Avin et al.

and bounding its running time. Moreover, for each task we argue the necessity of
all three axioms, by showing that if at least one of the axioms is not satisfied by
the network under consideration, then the same efficiency can not be guaranteed
by any algorithm for the given task.

Table 1 provides an overview of the main tasks we studied along with the upper
and lower bounds on the running time when the network satisfies our axioms and
a worst case lower bound on the time required when at least one of the axioms
is not satisfied. For each task we provide an algorithm and prove formally its
running time and the necessity of the axioms. As it turns out, some of the
necessity proofs make use of an interesting connection to known communication
complexity results.

The most technically challenging part of the paper is the distributed construc-
tion of a minimum-weight spanning tree (MST), a significant task in both the
distributed systems world (cf.[10,11,12]) and the social networks world [13,14,15].
Thus, the main algorithmic result of the current paper is proving that MST can
be computed efficiently (in O(log2 n) rounds) on core-periphery networks. To
position this result in context we recall that for the complete graph G = Kn,
an MST can be constructed distributedly in O(log logn) time [1]. For the wider
class of graphs of diameter at most 2, this task can still be performed in time
O(log n). In contrast, taking the next step, and considering graphs of diameter
3, drastically changes the picture, as there are examples of such graphs for which
any distributed MST construction requires Ω (4

∈
n) time [16].

The rest of the paper is organized as follows. Section 2 formally describes core-
periphery networks, the axioms and their basic structural implications. Section
3 provides an overview on the MST algorithm and Section 4 an overview on the
rest of the task we study. Due to lack of space we defer many of the technical
details and proofs to the report [17].

2 Axiomatic Design for Core-Periphery Networks

Preliminaries. Let G(V,E) denote our (simple, undirected) network, where V
is the set of nodes, |V | = n, and E is the set of edges, |E| = m. The network can
be thought of as representing a distributed system. We assume the synchronous
CONGEST model (cf. [12]), where communication proceeds in rounds and in
each round each node can send a message of at most O(log n) bits to each of its
neighbors. Initially each node has a unique ID of O(log n) bits.

For a node v, let N(v) denote its set of neighbors and d(v) = |N(v)| its
degree. For a set S ≡ V and a node v ⊆ S, let Nin(v, S) = N(v) ↔ S denote its
set of neighbors within S and denote the number of neighbors of v in the set
S by din(v, S) = |Nin(v, S)|. Analogously, let Nout(v, S) = N(v) ↔ V \ S denote
v’s set of neighbors outside the set S and let dout(v) = |Nout(v, S)|. For two
subsets S, T ⇔ V , let ∂(S, T) be the edge boundary (or cut) of S and T , namely
the set of edges with exactly one endpoint in S and one in T and |∂(S, T)| =∑

v∈S |Nout(v, S) ↔ T |. Let ∂(S) denote the special case where T = V \ S.

Distributed Computing on Core-Periphery Networks 403

Core-Periphery Networks. Given a network G(V,E), a ⊂C,P≥-partition is a
partition of the nodes of V into two sets, the core C and the periphery P . Denote
the sizes of the core and the periphery by nC and nP respectively. To represent
the partition along with the network itself, we denote the partitioned network
by G(V,E, C,P).

Intuitively, the core C consists of a relatively small group of strong and highly
connected machines designed to act as central servers, whereas the periphery P
consists of the remaining nodes, typically acting as clients. The periphery ma-
chines are expected to be weaker and less well connected than the core machines,
and they may perform much of their communication via the dense interconnec-
tion network of the core. In particular, a central component in many of our
algorithms for various coordination and computational tasks is based on assign-
ing each node v a representative core node r(v), essentially a neighbor acting as a
“channel” between v and the core. The representative chosen for each periphery
node is fixed.

For a partitioned network to be effective, the ⊂C,P≥ partition must possess
certain desirable properties. In particular, a partitioned network G(V,E, C,P) is
called a core-periphery network, or CP-network for short, if the ⊂C,P≥-partition
satisfies three properties, defined formally later on in the form of three axioms.

Core-periphery Properties and Axioms. We first define certain key param-
eterized properties of node groups in networks that are of particular relevance to
the relationships between core and periphery in our partitioned network archi-
tectures. We then state our axioms, which capture the expected behavior of those
properties in core-periphery networks, and demonstrate their independence and
necessity. Our three basic properties are:

α-Balanced Boundary. A subset of nodes S is said to have an α-balanced

boundary iff dout(v,S)
din(v,S)+1 = O(α) for every node v ⊆ S.

β-Clique Emulation. The task of clique emulation on an n-node graph G
involves delivering a distinct message Mv,w from v to w for every pair of nodes
v, w in V (G). An n-node graph G is a β-clique-emulator if it is possible to
perform clique emulation on G within β rounds (in the CONGEST model).

γ-convergecast. For S, T ⇔ V , the task of ⊂S, T ≥-convergecast on a graph G
involves delivering |S| distinct messages Mv, originated at the nodes v ⊆ S, to
some nodes in T (i.e., each message must reach at least one node in T). The sets
S, T ≡ V form a γ-convergecaster if it is possible to perform ⊂S, T ≥-convergecast
on G in γ rounds (in the CONGEST model).

Consider a partitioned network G(V,E, C,P). We propose the following set of
axioms concerning the core C and periphery P .

AB. Core Boundary. The core C has a Θ(1)-balanced boundary.

AE . Clique Emulation. The core C is a Θ(1)-clique emulator.

AC . Periphery-Core Convergecast. The periphery P and the core C form
a Θ(1)-convergecaster.

404 C. Avin et al.

(a)

(b) (c)

...

(I) (II)

Fig. 1. (I) An example for a 36-node CP-network that satisfies all three axioms. The 6
core nodes (in gray) are connected in clique. In this example every core node is also an
ambassadors with equal number of edges to the core and outside from the core. The core
and periphery form a convergecaster since the periphery can send all its information to
the core in one round. (II) Networks used in proofs: (a) The lollipop partitioned network
L25. (b) The sun partitioned network S16. (c) The dumbbell partitioned network D16 .

Let us briefly explain the axioms. Axiom AB talks about the boundary be-
tween the core and periphery. Think of core nodes with a high out-degree (i.e.,
with many links to the periphery) as “ambassadors” of the core to the periphery.
Axiom AB states that while not all nodes in the core must serve as ambassadors,
if a node is indeed an ambassador, then it must also have many links within the
core. Axiom AE talks about the flow of information within the core, and postu-
lates that the core must be dense, and in a sense behave almost like a complete
graph: “everyone must know everyone else”. The clique-emulation requirement
is actually stronger than just being a dense subgraph, since the latter permits
the existence of bottlenecks nodes, which a clique-emulator must avoid. Axiom
AC also concerns the boundary between the core and periphery, but in addition
it refers also to the structure of the periphery. It postulates that information
can flow efficiently from the periphery to the core. For example, it forbids the
presence of periphery nodes that are far away from the core, or bottleneck edges
that bridge between many periphery nodes and the core. Fig. 1 (I) provides an
example for CP-network satisfying the three axioms.

We next show that the axioms are independent. Later, we prove the necessity
of the axioms for the efficient performance of a variety of computational tasks.

Theorem 1. Axioms AB , AE, AC are independent, namely, assuming any two
of them does not imply the third.

We prove this theorem by considering three examples of partitioned networks,
described next, each of which satisfies two of the axiomes but not the third (hence
they are not CP-networks), implying independence.

The lollipop partitioned network Ln: (Fig. 1 (II)(a) The lollipop graph consists
of a

∈
n-node clique and an n−∈

n-node line attached to some node of the clique.

Distributed Computing on Core-Periphery Networks 405

Set the core C to be the clique and the periphery P to be the line. Observe that
Axioms AE and AB hold but AC is not satisfied since the long line will require
linear time for periphery to core convergcast.

The sun partitioned network Sn: (Fig. 1 (II)(b)) The sun graph consists of an
n/2-node cycle with an additional leaf node attached to each cycle node. Set the
core C to be the cycle and the periphery P to contain the n/2 leaves. Axioms AC

and AB hold but Axiom AE does not, since the distance between diametrically
opposing nodes in the cycle is n/4, preventing fast clique emulation.

The dumbbell partitioned network Dn: (Fig. 1 (II)(c)) The dumbbell graph is
composed of two stars, each consisting of a center node connected to n/2 − 1
leaves, whose centers are connected by an edge. Set the core C to be the two
centers, and the periphery P to contain all the leaves. Then Axioms AE and AC

hold while Axiom AB does not.

Structural Implications of the Axioms. The axioms imply a number of
simple properties of the network structure.

Theorem 2. If G(V,E, C,P) is a core-periphery network (i.e., it satisfies Ax-
ioms AB , AE and AC), then the following properties hold:

1. The size of the core satisfies Ω(
∈
n) ⇒ nC ⇒ O(

∈
m).

2. Every node v in the core satisfies dout(v, C) = O(nC) and din(v, C) = Ω(nC).
3. The number of outgoing edges from the core is |∂(C)| = Θ(n2

C).
4. The core is dense, i.e., the number of edges in it is

∑
v∈C din(v, C) = Θ(n2

C).

Proof. Axiom AE necessitates that the inner degree of each node v is din(v, C) =
Ω(nC) (or else it would not be possible to complete clique emulation in constant
time), implying the second part of claim 2. It follows that the number of edges
in the core is

∑
v∈C din(v, C) = Θ(n2

C), hence it is dense; claim 4 follows. Since
also

∑
v∈C din(v, C) ⇒ 2m, we must have the upper bound of claim 1, that is,

nC = O(
∈
m). Axiom AB yields that for every v, dout(v, C) = O(nC), so the first

part of claim 2 follows. Note that |∂(C)| =
∑

v∈C dout(v, C) = O(n2
C), so the upper

bound of claim 3 follows. To give a lower bound on nC, note that by Axiom AC

we have |∂(C)| = Ω(n − nC) (otherwise the information from the n − nC nodes
of P could not flow in O(1) time to C), so nC = Ω(

∈
n) and the lower bounds of

claims 1 and 3 follow. �

An interesting case for efficient networks is where the number of edges is linear
in the number of nodes. In this case we have the following corollary.

Corollary 1. In a core-periphery network where m = O(n), the following prop-
erties hold:

1. The size of the core satisfies nC = Θ(
∈
n)

2. The number of outgoing edges from the core is |∂(C)| = Θ(n).
3. The number of edges in the core is

∑
v∈C din(v, C) = Θ(n).

Now we show a key property relating our axioms to the network diameter.

406 C. Avin et al.

Claim 1. If the partitioned network G(V,E, C,P) satisfies Axioms AE and AC

then its diameter is Θ(1).

The following claim shows that the above conditions are necessary.

Claim 2. For X ⊆ {E,C}, there exists a family of n-node partitioned networks
GX(V,E, C,P) of diameter Ω(n) that satisfy all axioms except AX .

3 MST on a Core-Periphery Network

In this section we present a time-efficient randomized distributed algorithm for
computing a minimum-weight spanning tree (MST) on a core-periphery net-
work. In particular, we consider an n-node core periphery network G(V,E, C,P),
namely, a partitioned network satisfying all three axioms, and show that an MST
can be distributedly computed on such a network in O(log2 n) rounds with high
probability. Upon termination, each node knows which of its edges belong to the
MST. Formally, we state the following theorem.

Theorem 3. On a CP-network G(V,E, C,P), Algorithm CP-MST constructs
an MST in O(log2 n) rounds with high probability.

We also show that Axioms AB, AE , and AC are indeed necessary for our
distributed MST algorithm to be efficient.

Theorem 4. For each X ⊆ {B,E,C} there exists a family FX = {GX(V,E,
C,P)(n)} of partitioned networks that do not satisfy Axiom AX but satisfy the
other two axioms, and the time complexity of any distributed MST algorithm on
FX (as a function of the network size n) is Ω(nψX) for some constant αX > 0.

The formal proof of Theorem 4 can be found in [17], but the idea of the proof
is as following. For each case of Theorem 4 we show a graph in which, for a
certain weight assignment, there exist two nodes s and r such that in order to
decide which of the edges incident to r belong to the MST, it is required to know
the weights of all the edges incident to s. Thus, at least deg(s) (i.e., degree of s)
messages have to be delivered from s to r in order to complete the MST task,
which implies a lower bound on any distributed MST algorithm.

Now let us give a high level description of the algorithm. Our CP-MST algo-
rithm is based on Boruvka’s MST algorithm [18], and runs in O(log n) phases,
each consisting of several steps. The algorithm proceeds by maintaining a forest
of tree fragments (initially singletons), and merging fragments until the forest
converges to a single tree. Throughout the execution, each node has two officials,
namely, core nodes that represent it. In particular, recall that each node v is as-
signed a representative core neighbor r(v) passing information between v and
the core. In addition, v is also managed by the leader l(i) of its current fragment
i. An important distinction between these two roles is that the representative of
each node is fixed, while its fragment leader may change in each phase (as its
fragment grows). At the beginning of each phase, every node knows the IDs of

Distributed Computing on Core-Periphery Networks 407

its fragment and its leader. Then, every node finds its minimum weight outgoing
edge, i.e., the edge with the second endpoint belonging to the other fragment
and having the minimum weight. This information is delivered to the core by the
means of the representative nodes, which receive the information, aggregate it
(as much as possible) and forward it to the leaders of the appropriate fragments.
The leaders decide on the fragment merging and inform all the nodes about new
fragments IDs.

The correctness of the algorithm follows from emulating Boruvka’s algorithm
and the correctness of the fragments merging procedure, described in the techni-
cal report [17]. The main challenges in obtaining the proof were in bounding the
running time, which required careful analysis and observations. There are two
major sources of problems that can cause delays in the algorithm. The first in-
volves sending information between officials (representatives to leaders and vice
versa). Note that there are only O(

∈
m) officials, but they may need to send

information about m edges, which can lead to congestion. For example, if more
than α · ∈m messages need to be sent to an officials of degree

∈
m, then this

will take at least α rounds. We use randomization of leaders and the property
of clique emulation to avoid this situation and make sure that officials do not
have to send or receive more than O(

∈
m logm) messages in a phase. The sec-

ond source for delays is the fragments merging procedure. This further splits
into two types of problems. The first is that a chain of fragments that need to
be merged could be long, and in the basic distributed Boruvka’s algorithm will
take long time (up to n) to resolve. This problem is overcome by using a mod-
ified pointer jumping technique similar to [16]. The second problem is that the
number of fragments that need to be merged could be large, resulting in a large
number of merging messages that contain, for example, the new fragment ID.
This problem is overcome by using randomization and by reducing the number
of messages needed for resolving a merge. Full description of the algorithm along
with the proofs of correctness and running time can be found in [17].

4 Additional Algorithms in Core-Periphery Networks

In addition to MST, we have considered a number of other distributed problems
of different types, and developed algorithms for these problems that can be ef-
ficiently executed on core-periphery networks. In particular, we dealt with the
following set of tasks related to matrix operations. (M1) Sparse matrix transpo-
sition. (M2) Multiplication of a sparse matrix by a vector. (M3) Multiplication
of two sparse matrices.

We then considered problems related to calculating aggregate functions of
initial values initially stored one at each node in V . In particular, we developed
efficient algorithms for the following problems. (A1) Finding the rank of each
value, assuming the values are ordered. (As output, each node should know the
rank of the element it stores.) (A2) Finding the median of the values. (A3)
Finding the (statistical) mode, namely, the most frequent value. (A4) Finding
the number of distinct values stored in the network. Each of these problems

408 C. Avin et al.

requires Ω(Diam) rounds on general networks, whereas on a CP-network it can
be performed in O(1) rounds.

An additional interesting task is defined in a setting where the initial values
are split into disjoint groups, and requires finding the r largest values of each
group. This task can be used, for example, for finding the most popular headlines
in each area of news. Here, there is an O(r) round solution on a CP-network,
whereas in general networks the diameter is still a lower bound.

In all of these problems, we also establish the necessity of all 3 axioms, by
showing that there are network families satisfying 2 of the 3 axioms for which
the general lower bound holds. Due to space limitation, we discuss in this section
only one of these problems, namely, multiplication of a vector by a sparse matrix.
Our results for the other problems can be found in [17].

A few definitions are in place. Let A be a matrix in which each entry A(i, j) can
be represented by O(log n) bits (i.e., it fits in a single message in the CONGEST
model). Denote by Ai,≥ (respectively, A≥,i) the ith row (resp., column) of A.
Denote the ith entry of a vector s by s(i). We assume that the nodes in C have
IDs [1, . . . , nC] and this is known to all of them. A square n× n matrix A with
O(k) nonzero entries in each row and each column is hereafter referred to as an
O(k)-sparse matrix.

Let s be a vector of size n and A be a square n × n O(k)-sparse matrix.
Initially, each node in V holds one entry of s (along with the index of the entry)
and one row of A (along with the index of the row). The task is to distributively
calculate vector s∈ = sA and store its entries at the corresponding nodes in V ,
such that the node that initially stored s(i) will store s∈(i). We start with a claim
on the lower bound (the proof can be found in [17]).

Claim 3. The lower bound for any algorithm for multiplication of a vector by
a sparse matrix on any network is Ω(D), and on a CP-network is Ω(k/ logn).

Algorithm 1. The following algorithm solves the task in O(k) rounds on a
CP-network G(V,E, C,P).

1. Each u ⊆ V sends the entry of s it has (along with the index of the entry)
to its representative r(u) ⊆ C (recall that if u ⊆ C then r(u) = u).

2. C nodes redistribute the s entries among them so that the node with ID i
stores indices [1 + (n/nC)(i− 1), . . . , (n/nC)i] (assume n/nC is integer).

3. Each u ⊆ V sends the index of the row of A it has to r(u) ⊆ C.
4. Each representative requests the s(i) entries corresponding to rows Ai,≥ that

it represents from the C node storing it.
5. Each representative gets the required elements of s and sends them to the

nodes in P it represents.
6. Each u ⊆ V sends the products {A(i, j)s(i)}nj=1 to its representative.
7. Each representative sends each nonzero value A(i, j)s(i) it has (up to O(knC)

values) to the representative responsible for s(j), so it can calculate s∈(j).
8. Now, each node u ⊆ V that initially stored s(i), requests s∈(i) from its

representative. The representative gets the entry from the corresponding
node in C and sends it back to u.

Distributed Computing on Core-Periphery Networks 409

We state the following results regarding the running time of Algorithm 1.

Theorem 5. On a CP-network G(V,E, C,P), the multiplication of a O(k)-
sparse matrix by a vector can be completed in O(k) rounds w.h.p.

Before we start with the proof, we present the following theorem from [2].

Theorem 6 ([2]). Consider a fully connected system of nC nodes. Each node
is given up to Ms messages to send, and each node is the destination of at
most Mr messages. There exists algorithm that delivers all the messages to their

destinations in O
(

Ms+Mr

nC

)
rounds w.h.p.

This theorem will be extensively used by our algorithms since it gives running
time bound on messages delivery in a core that satisfies Axiom AE . The result of
the theorem holds with high probability which implies that it exploits a random-
ized algorithm. Nevertheless, our algorithms can be considered deterministic in
the sense that all the decisions they make are deterministic. The randomness of
the information delivery algorithm of Theorem 6 does not affect our algorithms
since the decisions when and what message will be sent along with the message
source and destination, are deterministically controlled by our algorithms.

Proof of Theorem 5. Consider Algorithm 1 and the CP-network G(V,E, C,P).
At Step 1, due to AB and AC , each representative will obtain O(nC) entries of s
in O(1) rounds. For Step 2, we use Theorem 6 with the parameters: Ms = O(nC)
and Mr = O(n/nC), and thus such a redistribution will take O((nC+n/nC)/nC) =
O(1) rounds. At Step 3, due to AB and AC each representative will obtain O(nC)
row indices of A in O(1) rounds.

For Step 4, we again use Theorem 6 with the parameters: Ms = O(nC) (indices
of rows each representative has), Mr = O(n/nC) (number of entries of s stored in
each node in C), and obtain the running time for this step: O((nC +n/nC)/nC) =
O(1) rounds. At Step 5, each representative gets the required elements of s which
takes running time is O(1) due to Theorem 6, and then sends them to the nodes
in P it represents which also takes O(1) due to AC . Step 6 takes O(k) rounds
since A has up to k nonzero entries in each row. Step 7 again uses Theorem 6
with parameters Ms = O(knC), Mr = O(n/nC), and thus the running time is
O(kn/n2

C) = O(k).
At Step 8, a single message is sent by each node to its representative (takes

O(1) due to AC), then the requests are delivered to the appropriate nodes in
C and the replies with the appropriate entries of s∈ are received back by the
representatives. All this takes O(1) rounds due to the Axiom AE and Theorem
6. Then the entries of s∈ are delivered to the nodes that have requested them.
Due to AC this will also take O(1) rounds. �

The following theorem shows the necessity of the axioms for achieving O(k)
running time. The proof of the theorem can be found in [17].

Theorem 7. For each X ⊆ {B,E,C} there exist a family FX = {GX(V,E,
C,P)(n)} of partitioned networks that do not satisfy AxiomAX but satisfy the other

410 C. Avin et al.

two axioms, and input matrices of size n×n and vectors of size n, for every n, such
that the time complexity of any algorithm for multiplying a vector by a matrix on
the networks of FX with the corresponding-size inputs is Ω(n/ logn).

References

1. Lotker, Z., Patt-Shamir, B., Pavlov, E., Peleg, D.: Minimum-weight spanning tree
construction in o(log log n) communication rounds. SIAM J. Computing 35(1),
120–131 (2005)

2. Lenzen, C., Wattenhofer, R.: Tight bounds for parallel randomized load balancing.
In: STOC, pp. 11–20 (2011)

3. Lenzen, C.: Optimal deterministic routing and sorting on the congested clique. In:
PODC, pp. 42–50 (2013)

4. Avin, C., Lotker, Z., Pignolet, Y.A., Turkel, I.: From caesar to twitter: An ax-
iomatic approach to elites of social networks. CoRR abs/1111.3374 (2012)

5. Fujita, M., Krugman, P.R., Venables, A.J.: The spatial economy: Cities, regions,
and international trade. MIT Press (2001)

6. Krugman, P.: Increasing Returns and Economic Geography. The Journal of Polit-
ical Economy 99(3), 483–499 (1991)

7. Holme, P.: Core-periphery organization of complex networks. Physical Review E 72,
46111 (2005)

8. Liang, J., Kumar, R., Ross, K.W.: The fasttrack overlay: A measurement study.
Computer Networks 50, 842 (2006)

9. Baset, S., Schulzrinne, H.: An analysis of the skype peer-to-peer internet telephony
protocol. In: INFOCOM, pp. 1–11 (2006)

10. Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations and Ad-
vanced Topics. McGraw-Hill (1998)

11. Lynch, N.: Distributed Algorithms. Morgan Kaufmann (1995)
12. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM (2000)
13. Adamic, L.: The small world web. Research and Advanced Technology for Digital

Libraries, 852–852 (1999)
14. Bonanno, G., Caldarelli, G., Lillo, F., Mantegna, R.: Topology of correlation-based

minimal spanning trees in real and model markets. Phys. Rev. E 68 (2003)
15. Chen, C., Morris, S.: Visualizing evolving networks: Minimum spanning trees versus

pathfinder networks. In: INFOVIS, pp. 67–74 (2003)
16. Lotker, Z., Patt-Shamir, B., Peleg, D.: Distributed MST for constant diameter

graphs. Distributed Computing 18(6), 453–460 (2006)
17. Avin, C., Borokhovich, M., Lotker, Z., Peleg, D.: Distributed computing on core-

periphery networks: Axiom-based design. CoRR abs/1404.6561 (2014)
18. Nesetril, J., Milkova, E., Nesetrilova, H.: Otakar boruvka on minimum spanning

tree problem translation of both the 1926 papers, comments, history. Discrete
Mathematics 233(1-3), 3–36 (2001)

Fault-Tolerant Rendezvous in Networks�

Jérémie Chalopin1,ΣΣ, Yoann Dieudonné2, Arnaud Labourel1,ΣΣ,
and Andrzej Pelc3,Σ Σ Σ

1 LIF, CNRS & Aix-Marseille University, Marseille, France
2 MIS, Université de Picardie Jules Verne, France

3 Département d’informatique, Université du Québec en Outaouais,
Gatineau, Québec, Canada

Abstract. Two mobile agents, starting from different nodes of an
unknown network, have to meet at the same node. Agents move in syn-
chronous rounds using a deterministic algorithm. Each agent has a differ-
ent label, which it can use in the execution of the algorithm, but it does
not know the label of the other agent. Agents do not know any bound on
the size of the network. In each round an agent decides if it remains idle
or if it wants to move to one of the adjacent nodes. Agents are subject
to delay faults: if an agent incurs a fault in a given round, it remains in
the current node, regardless of its decision. If it planned to move and
the fault happened, the agent is aware of it. We consider three scenarios
of fault distribution: random (independently in each round and for each
agent with constant probability 0 < p < 1), unbounded adversarial (the
adversary can delay an agent for an arbitrary finite number of consecu-
tive rounds) and bounded adversarial (the adversary can delay an agent
for at most c consecutive rounds, where c is unknown to the agents). The
quality measure of a rendezvous algorithm is its cost, which is the total
number of edge traversals.

For random faults, we show an algorithm with cost polynomial in the
size n of the network and polylogarithmic in the larger label L, which
achieves rendezvous with very high probability in arbitrary networks.
By contrast, for unbounded adversarial faults we show that rendezvous
is not feasible, even in the class of rings. Under this scenario we give
a rendezvous algorithm with cost O(nω), where ω is the smaller label,
working in arbitrary trees, and we show that λ(ω) is the lower bound
on rendezvous cost, even for the two-node tree. For bounded adversarial
faults, we give a rendezvous algorithm working for arbitrary networks,
with cost polynomial in n, and logarithmic in the bound c and in the
larger label L.

Keywords: rendezvous, deterministic algorithm, mobile agent, delay
fault.

� The full version of the paper is available at http://arxiv.org/abs/1402.2760
�� Partially supported by the ANR project MACARON (anr-13-js02-0002).

� � � Partially supported by NSERC discovery grant and by the Research Chair in Dis-
tributed Computing at the Université du Québec en Outaouais.

J. Esparza et al. (Eds.): ICALP 2014, Part II, LNCS 8573, pp. 411–422, 2014.
c∗ Springer-Verlag Berlin Heidelberg 2014

http://arxiv.org/abs/1402.2760

412 J. Chalopin et al.

1 Introduction

The Background. Two mobile entities, called agents, starting from different
nodes of a network, have to meet at the same node. This task is known as ren-
dezvous and has been extensively studied in the literature. Mobile entities may
represent software agents in computer networks, mobile robots, if the network
is composed of corridors in a mine, or people who want to meet in an unknown
city whose streets form a network. The reason to meet may be to exchange data
previously collected by the agents, or to coordinate a future network mainte-
nance task. In this paper we study a fault-tolerant version of the rendezvous
problem: agents have to meet in spite of delay faults that they can incur during
navigation. Such faults may be due to mechanical reasons in the case of robots
and to network congestion in the case of software agents.

The Model and the Problem. The network is modeled as an undirected con-
nected graph. We seek deterministic rendezvous algorithms that do not rely on the
knowledge of node identifiers, and can work in anonymous graphs as well (cf. [3]).
The importance of designing such algorithms is motivated by the fact that, even
when nodes are equipped with distinct identifiers, agents may be unable to per-
ceive them because of limited sensory capabilities (a robot may be unable to read
signs at corridor crossings), or nodes may refuse to reveal their identifiers to soft-
ware agents, e.g., due to security or privacy reasons. Note that, if nodes had distinct
identifiers visible to the agents, the agents might explore the graph and meet at the
node with smallest identifier, hence rendezvous would reduce to graph exploration.
On the other hand, we assume that edges incident to a node v have distinct labels
(visible to the agents) in {0, . . . , d−1}, where d is the degree of v. Thus every undi-
rected edge {u, v} has two labels, which are called its port numbers at u and at v.
Port numbering is local, i.e., there is no relation between port numbers at u and
at v. Note that in the absence of port numbers, edges incident to a node would be
undistinguishable for agents and thus rendezvous would be often impossible, as the
adversary could prevent an agent from taking some edge incident to the current
node. Security and privacy reasons for not revealing node identifiers to software
agents are irrelevant in the case of port numbers, and port numbers in the case of a
mine or labyrinth can be made implicit, e.g., by marking one edge at each crossing
(using a simple mark legible by the robot), considering it as corresponding to port
0 and all other port numbers increasing clockwise.

Agents start at different nodes of the graph and traverse its edges in syn-
chronous rounds. They cannot mark visited nodes or traversed edges in any
way. The adversary wakes up each of the agents in possibly different rounds.
Each agent starts executing the algorithm in the round of its wake-up. It has
a clock measuring rounds that starts at its wake-up round. In each round an
agent decides if it remains idle or if it chooses a port to move to one of the ad-
jacent nodes. Agents are subject to delay faults in rounds in which they decide
to move: if an agent incurs a fault in such a round, it remains at the current
node and is aware of the fault. We consider three scenarios of fault distribu-
tion: random (independently in each round and for each agent with constant

Fault-Tolerant Rendezvous in Networks 413

probability 0 < p < 1), unbounded adversarial (the adversary can delay an
agent for an arbitrary finite number of consecutive rounds) and bounded adver-
sarial (the adversary can delay an agent for at most c consecutive rounds, where
c is unknown to the agents). Agents do not know the topology of the graph or
any bound on its size. Each agent has a different positive integer label which
it knows and can use in the execution of the rendezvous algorithm, but it does
not know the label of the other agent nor its starting round. When an agent
enters a node, it learns its degree and the port of entry. When agents cross each
other on an edge, traversing it simultaneously in different directions, they do not
notice this fact. We assume that the memory of the agents is unlimited: from
the computational point of view they are modeled as Turing machines.

The quality measure of a rendezvous algorithm is its cost, which is the total
number of edge traversals. For each of the considered fault distributions we are
interested in deterministic algorithms working at low cost. For both scenarios
with adversarial faults we say that a deterministic rendezvous algorithm works
at a cost at most C for a given class of graphs if for any initial positions in a
graph of this class both agents meet after at most C traversals, regardless of the
faults imposed by the adversary obeying the given scenario. In the case of ran-
dom faults the algorithm is also deterministic, but, due to the stochastic nature
of faults, the estimate of its cost is with high probability.

Our Results. For random faults, we show an algorithm which achieves rendezvous
in arbitrary networks at cost polynomial in the size n of the network and polylog-
arithmic in the larger label L, with very high probability. More precisely, our al-
gorithm achieves rendezvous with probability 1, and its cost exceeds a polynomial
in n and logL with probability inverse exponential in n and logL. By contrast, for
unbounded adversarial faults, we show that rendezvous is not feasible, even in the
class of rings. Under this scenario we give a rendezvous algorithm with cost O(nΣ),
where Σ is the smaller label, working in arbitrary trees, and we show thatε(Σ) is the
lower bound on rendezvous cost, even for the two-node tree. For bounded adver-
sarial faults we give a rendezvous algorithm working for arbitrary networks, with
cost polynomial in n, and logarithmic in the bound c and in the larger label L.

Due to lack of space, all the proofs are omitted. The full version of the paper
with all the proofs is available on-line.

Related Work. The problem of rendezvous has been studied both under the
randomized and the deterministic scenarios. An extensive survey of randomized
rendezvous in various models can be found in [3], cf. also [1,2,4,8,24]. Determinis-
tic rendezvous in networks has been surveyed in [31]. Several authors considered
the geometric scenario (rendezvous in an interval of the real line, see, e.g., [8,9],
or in the plane, see, e.g., [5,6]). Gathering more than two agents has been studied,
e.g., in [22,24,29,34].

For the deterministic setting many authors studied the feasibility of synchronous
rendezvous, and the time required to achieve this task, when feasible. For instance,
deterministic rendezvous of agents equipped with tokens used to mark nodes was

414 J. Chalopin et al.

considered, e.g., in [28]. Deterministic rendezvous of two agents that cannot mark
nodes but have unique labels was discussed in [17,26,33]. Since this is our scenario,
these papers are the most relevant in our context. All of them are concerned with
the time of rendezvous in arbitrary graphs. In [17] the authors show a rendezvous
algorithm polynomial in the size of the graph, in the length of the shorter label and
in the delay between the starting times of the agents. In [26,33] rendezvous time is
polynomial in the first two of these parameters and independent of the delay.

Memory required by the agents to achieve deterministic rendezvous has been
studied in [23] for trees and in [12] for general graphs. Memory needed for ran-
domized rendezvous in the ring is discussed, e.g., in [27].

Apart from the synchronous model used in this paper, several authors investi-
gated asynchronous rendezvous in the plane [11,22] and in network environments
[7,13,16,20]. In the latter scenario the agent chooses the edge which it decides to
traverse but the adversary controls the speed of the agent. Under this assump-
tion rendezvous in a node cannot be guaranteed even in very simple graphs and
hence the rendezvous requirement is relaxed to permit meeting inside an edge.

Fault-tolerant aspects of the rendezvous problem have been investigated in
[10,14,15,19,21]. Faulty unmovable tokens were considered in the context of the task
of gathering many agents at one node. In [14,21] the authors considered gathering
in rings, and in [15] gathering was studied in arbitrary graphs, under the assump-
tion that an unmovable token is located in the starting node of each agent. Tokens
could disappear during the execution of the algorithm, but they could not reappear
again. Byzantine tokens which can appear and disappear arbitrarilyhave been con-
sidered in [18] for the related task of network exploration. A different fault scenario
for gathering many agents was investigated in [19]. The authors assumed that some
number of agents are Byzantine and they studied the problem of how many good
agents are needed to guarantee meeting of all of them despite the actions of Byzan-
tine agents. To the best of our knowledge rendezvous with delay faults considered
in the present paper has never been studied before.

2 Preliminaries

Throughout the paper, the number of nodes of a graph is called its size. In this
section we recall two procedures known from the literature, that will be used
as building blocks in some of our algorithms. The aim of the first procedure is
graph exploration, i.e., visiting all nodes and traversing all edges of the graph by
a single agent. The procedure, based on universal exploration sequences (UXS)
[25], is a corollary of the result of Reingold [32]. Given any positive integer
m, it allows the agent to traverse all edges of any graph of size at most m,
starting from any node of this graph, using P (m) edge traversals, where P is
some polynomial. (The original procedure of Reingold only visits all nodes, but it
can be transformed to traverse all edges by visiting all neighbors of each visited
node before going to the next node.) After entering a node of degree d by some
port p, the agent can compute the port q by which it has to exit; more precisely
q = (p + xi) mod d, where xi is the corresponding term of the UXS.

Fault-Tolerant Rendezvous in Networks 415

A trajectory is a sequence of nodes of a graph, in which each node is adjacent
to the preceding one. Given any starting node v, we denote by R(m, v) the
trajectory obtained by Reingold’s procedure followed by its reverse. (Hence the
trajectory starts and ends at node v.) The procedure can be applied in any graph
starting at any node, giving some trajectory. We say that the agent follows a
trajectory if it executes the above procedure used to construct it. This trajectory
will be called integral, if the corresponding route covers all edges of the graph.
By definition, the trajectory R(m, v) is integral if it is obtained by Reingold’s
procedure applied in any graph of size at most m starting at any node v.

The second auxiliary procedure is the Algorithm RV-asynch-poly from [20]
that guarantees rendezvous of two agents under the asynchronous scenario. Un-
like in the synchronous scenario used in the present paper, in the asynchronous
scenario each agent chooses consecutive ports that it wants to use but the adver-
sary controls the speed of the agent, changing it arbitrarily during navigation.
Rendezvous is guaranteed in the asynchronous scenario, if it occurs for any be-
havior of the adversary. Under this assumption rendezvous in a node cannot
be guaranteed even in very simple graphs and hence the rendezvous require-
ment is relaxed to permit the agents to meet inside an edge. Recall that in our
synchronous scenario, agents crossing each other on an edge traversing it simul-
taneously in different directions, not only do not meet but do not even notice
the fact of crossing.

Algorithm RV-asynch-poly works at cost polynomial in the size n of the
graph in which the agents operate and in the length of the smaller label. Let A
be a polynomial, such that if two agents with different labels Ω1 and Ω2 execute
Algorithm RV-asynch-poly in an n-node graph, then the agents meet in the
asynchronous model, after at most A(n,min(log Ω1, logΩ2)) steps.

3 Random Faults

In this section we consider the scenario when agents are subject to random and
independent faults. More precisely, for each agent and each round the probability
that the agent is delayed in this round is 0 < p < 1, where p is a constant, and
the events of delaying are independent for each round and each agent. Under
this scenario we construct a deterministic rendezvous algorithm that achieves
rendezvous in any connected graph with probability 1 and its cost exceeds a
polynomial in n and logL with probability inverse exponential in n and logL,
where n is the size of the graph and L is the larger label.

The intuition behind the algorithm is the following. Since the occurrence of
random faults represents a possible behavior of the asynchronous adversary in
Algorithm RV-asynch-poly from [20], an idea to get the guarantee of a meeting
with random faults at polynomial cost might be to only use this algorithm.
However, this meeting may occur either at a node or inside an edge, according
to the model from [20]. In the synchronous model with random faults considered
in this section, the second type of meeting is not considered as rendezvous, in fact
agents do not even notice it. Hence we must construct a deterministic mechanism

416 J. Chalopin et al.

which guarantees a legitimate meeting at a node, with high probability, soon
after an “illegitimate” meeting inside an edge. Constructing this mechanism and
proving its correctness is the main challenge of rendezvous with random faults.

Before describing the algorithm we define the following transformation of the
label Ω of an agent. Let δ(0) = (0011) and δ(1) = (1100). Let (c1 . . . ck) be the
binary representation of the label Ω. We define the modified label Ω∗ of the agent
as the concatenation of sequences δ(c1), . . . , δ(ck) and (10). Note that if labels
of two agents are different, then their transformed labels are different and none
of them is a prefix of the other.

We first describe the procedure Dance (Ω, x, y) executed by an agent with label
Ω located at node y at the start of the procedure. Node x is a node adjacent to y.
Procedure Dance (Ω, x, y)
Let Ω∗ = (b1, . . . , bm).
Stage 1.
Stay idle at y for 10 rounds.
Stage 2.
for i = 1 to m do

if bi = 0
then stay idle for two rounds
else go to x and in the next round return to y.

Stage 3.
Traverse the edge {x, y} 12 times (i.e., go back and forth 6 times on this edge). ∈

Note that procedure Dance (Ω, x, y) has cost O(log Ω).
We will also use procedure Asynch(Ω) executed by an agent with label Ω

starting at any node x0 of a graph. This procedure produces an infinite walk
(x0, x1, x2, . . .) in the graph resulting from applying Algorithm RV-asynch-poly

by a single agent with label Ω.
Using these procedures we now describe Algorithm RV-RF (for rendezvous with

random faults), that works for an agent with label Ω starting at an arbitrary node
of any connected graph.
Algorithm RV-RF

The algorithm works in two phases interleaved in a way depending on faults
occurring in the execution and repeated until rendezvous. The agent starts exe-
cuting the algorithm in phase Progress.
Phase Progress

This phase proceeds in stages. Let (x0, x1, x2, . . .) be the infinite walk pro-
duced by the agent starting at node x0 and applying Asynch(Ω). The ith stage of
phase Progress, for i ≡ 1, is the traversal of the edge {xi−1, xi} from xi−1 to xi,
followed by the execution of Dance (Ω, xi−1, xi). The agent executes consecutive
stages of phase Progress until a fault occurs.

If a fault occurs in the first round of the ith stage, then the agent repeats
the attempt of this traversal again, until success and then continues with Dance

(Ω, xi−1, xi). If a fault occurs in the tth round of the ith stage, for t > 1, i.e.,
during the execution of procedure Dance (Ω, xi−1, xi) in the ith stage, then this

Fault-Tolerant Rendezvous in Networks 417

execution is interrupted and phase Correction is launched starting at the node
where the agent was situated when the fault occurred.
Phase Correction

Let e denote the edge {xi−1, xi} and let w be the node at which the agent was
situated when the last fault occurred during the execution of Dance (Ω, xi−1, xi).
Hence w is either xi−1 or xi.
Stage 1. Stay idle at w for 20 rounds.
Stage 2. Traverse edge e 20 times.
Stage 3. If the agent is not at w, then go to w.

If a fault occurs during the execution of phase Correction, then the execution
of this phase is dropped and a new phase Correction is launched from the begin-
ning, starting at the node where the agent was situated when the fault occurred.
Upon completing an execution of the phase Correction without any fault the
agent is at node w. It resumes the execution of the tth round of the ith stage of
phase Progress. ∈

The following theorem shows the correctness and estimates the performance
of Algorithm RV-RF. More precisely, it shows that Algorithm RV-RF achieves
rendezvous at polynomial cost with very high probability, under the random
fault model.

Theorem 1. Consider two agents a and b, with different labels Ω1 and Ω2, re-
spectively, starting at arbitrary different nodes of an n-node graph, where n is
unknown to the agents. Suppose that delay faults occur randomly and indepen-
dently with constant probability 0 < p < 1 in each round and for each agent.
Algorithm RV-RF guarantees rendezvous of the agents with probability 1. More-
over, there exists a polynomial B such that rendezvous at some node occurs at
cost π = O(B(n,max(log Ω1, logΩ2))) with probability at least 1 − e−O(ψ).

The proof of this theorem relies on the following property: with very high
probability, each agent can execute sufficiently many times a block of at least 42
consecutive rounds without being subject to any fault. This permits the agents to
execute sufficiently many steps of phase Progress to achieve rendezvous because
an entire execution of phase Correction consists of at most 41 rounds.

4 Unbounded Adversarial Faults

In this section we consider the scenario when the adversary can delay each of
the agents for any finite number of consecutive rounds. Under this scenario the
time (number of rounds until rendezvous) depends entirely on the adversary, so
the only meaningful measure of efficiency of a rendezvous algorithm is its cost.
However, it turns out that, under this harsh fault scenario, even feasibility of
rendezvous is usually not guaranteed, even for quite simple graphs. Recall that
we do not assume knowledge of any upper bound on the size of the graph.

The following theorem establishes the impossibility of rendezvous with un-
bounded adversarial faults.

418 J. Chalopin et al.

Theorem 2. Rendezvous with unbounded adversarial faults is not feasible, even
in the class of rings.

In view of Theorem 2, it is natural to ask if rendezvous with unbounded adver-
sarial faults can be accomplished in the class of connected graphs not containing
cycles, i.e., in the class of trees, and if so, at what cost it can be done. The rest of
this section is devoted to a partial answer to this problem. Our goal is to present
an efficient rendezvous algorithm working for arbitrary trees. We will use the
following notion. Consider any tree T . A basic walk in T , starting from node v
is a traversal of all edges of the tree ending at the starting node v and defined
as follows. Node v is left by port 0; when the walk enters a node by port i, it
leaves it by port (i+1) mod d, where d is the degree of the node. Any basic walk
consists of 2(n − 1) edge traversals. An agent completing the basic walk knows
that this happened and learns the size n of the tree and the length 2(n− 1) of
the basic walk.

The following Algorithm Tree-RV-UF (for rendezvous in trees with unbounded
faults) works for an agent with label Ω, starting at an arbitrary node of any
tree T .
Algorithm Tree-RV-UF
Repeat 2Ω basic walks starting from the initial position and stop. ∈
Theorem 3. Algorithm Tree-RV-UF is a correct rendezvous algorithm with un-
bounded adversarial faults in arbitrary trees, and works at cost O(nΣ), where n
is the size of the tree and Σ is the smaller label.

We do not know if Algorithm Tree-RV-UF has optimal cost, i.e., if a lower
bound ε(nΣ) can be proved on the cost of any rendezvous algorithm with un-
bounded adversarial faults, working in arbitrary trees of size n. However, we
establish a weaker lower bound. It is clear that no algorithm can beat cost ψ(n)
for rendezvous in n-node trees, even without faults. Our next result shows that,
for unbounded adversarial faults, ε(Σ) is a lower bound on the cost of any ren-
dezvous algorithm, even for the simplest tree, that of two nodes.

Proposition 1. Let T be the two-node tree. Every rendezvous algorithm with
unbounded adversarial faults, working for the tree T , has cost ε(Σ), where Σ is
the smaller label.

5 Bounded Adversarial Faults

In this section we consider the scenario when the adversary can delay each of
the agents for at most c consecutive rounds, where c is a positive integer, called
the fault bound. First note that if c is known to the agents, then, given any syn-
chronous rendezvous algorithm working without faults for arbitrary networks, it
is possible to obtain an algorithm working for bounded adversarial faults and
for arbitrary networks, at the same cost. Let A be a synchronous rendezvous
algorithm for the scenario without faults, working for arbitrary networks. Con-
sider the following algorithm A(c) working for bounded adversarial faults with

Fault-Tolerant Rendezvous in Networks 419

parameter c. Each agent replaces each round r of algorithm A by a segment of
2c + 1 rounds. If in round r of algorithm A the agent was idle, this round is
replaced by 2c + 1 consecutive rounds in which the agent is idle. If in round r
the agent left the current node by port p, this round is replaced by a segment of
2c + 1 rounds in each of which the agent makes an attempt to leave the current
node v by port p until it succeeds, and in the remaining rounds of the segment
it stays idle at the node adjacent to v that it has just entered.

We associate the first segment of the later starting agent with the (unique)
segment of the earlier agent that it intersects in at least c + 1 rounds. Let it be
the ith segment of the earlier agent. We then associate the jth segment of the
later agent with the (j + i− 1)th segment of the earlier agent, for j > 1. Hence,
regardless of the delay between starting rounds of the agents, corresponding
segments intersect in at least c+1 rounds. If the agents met at node x in the jth
round of the later agent, according to algorithm A, then, according to algorithm
A(c), in the last c + 1 rounds of its jth segment the later agent is at x and in
the last c + 1 rounds of its (j + i− 1)th segment the earlier agent is at x. Since
these segments intersect in at least c + 1 rounds, there is a round in which both
agents are at node x according to algorithm A(c), regardless of the actions of
the adversary, permitted by the bounded adversarial fault scenario. This shows
that algorithm A(c) is correct. Notice that the cost of algorithm A(c) is the
same as that of algorithm A, because in each segment corresponding to an idle
round of algorithm A, an agent stays idle in algorithm A(c) and in each segment
corresponding to a round in which an agent traverses an edge in algorithm A,
the agent makes exactly one traversal in algorithm A(c).

In the rest of this section we concentrate on the more difficult situation when
the fault bound c is unknown to the agents. The following Algorithm Graph-RV-

BF (for rendezvous in graphs with bounded faults) works for an agent with label
Ω starting at an arbitrary node of any graph.

Algorithm Graph-RV-BF is divided into phases. The i-th phase is composed
of 2i stages, each lasting si = 2i+4 rounds. Hence the i-th phase lasts pi = 22i+4

rounds. The Ω-th stage of the i-th phase consists of two parts: the busy part of
bi = 3 · 2i rounds and the waiting part of wi = 13 · 2i rounds. During the busy
part of the Ω-th stage of phase i, the agent (with label Ω) tries to explore the
graph three times (each exploration attempt lasts at most ei = 2i rounds), using
a UXS. We say that the agent is active during the busy part of the Ω-th stage of
each phase i ≡ q = ⊆log(Ω + 1)↔. In order to explore the graph, the agent keeps
estimates of the values of c and P (n). (Recall that the latter is the length of a
UXS that allows to traverse all edges of any graph of size at most n, starting
from any node). The values of these estimates in phase i are called ci and ui,
respectively, and grow depending on the strategy of the adversary. For the first
phase q in which the agent is active, we set uq = 1 and cq = 2q. In phase i the
agent uses the UXS of length ui. Call this sequence S. The agent uses this UXS
proceeding by steps. Steps correspond to terms of the sequence S. During phase
i, the k-th step consists of si rounds during which the agent tries to move, using
port (p + S[k] mod d) (where d is the degree of the current node and p is the

420 J. Chalopin et al.

port by which the agent entered the current node), until it succeeds or until the
si rounds of the k-th step are over. If it succeeded to move, it waits until the si
rounds of the step are over. If the agent succeeds to perform all of its three UXS
explorations during a phase i, i.e., if it succeeds to move once in each step, then
we set ui+1 = 2ui and ci+1 = ci. Otherwise, we set ui+1 = ui and ci+1 = 2ci.
When the agent is not active, it waits at its current node. The agent executes
this algorithm until it meets the other agent.

Theorem 4. Algorithm Graph-RV-BF is a correct rendezvous algorithm with
bounded adversarial faults in arbitrary graphs, and works at cost polynomial in
the size n of the graph, and logarithmic in the fault bound c and in the larger
label L.

Notice that in the bounded fault scenario (as opposed to the unbounded fault
scenario) it makes sense to speak about the time of a rendezvous algorithm
execution (i.e., the number of rounds from the start of the earlier agent until
rendezvous), apart from its cost. Indeed, now the time can be controlled by the
algorithm. Our last result gives an estimate on the execution time of Algorithm
Graph-RV-BF.

Theorem 5. Algorithm Graph-RV-BF works in time polynomial in the size n of
the graph, in the fault bound c and in the larger label L.

Notice the difference between the estimates of cost and of time of Algorithm
Graph-RV-BF: while we showed that cost is polylogarithmic in L and c, for time
we were only able to show that it is polynomial in L and c. Indeed, Algorithm
Graph-RV-BF relies on a technique similar to “coding by silence” in the time-
slice algorithm for leader election [30]: “most of the time” both agents stay idle,
in order to guarantee that agents rarely move simultaneously. It remains open
whether there exists a rendezvous algorithm with bounded adversarial faults,
working for arbitrary graphs, whose both cost and time are polynomial in the
size n of the graph, and polylogarithmic in the fault bound c and in the smaller
label Σ.

6 Conclusion

We presented algorithms for rendezvous with delay faults under various distri-
butions of faults. Since we assumed no knowledge of any bound on the size of the
graph, for unbounded adversarial faults rendezvous is impossible, even for the
class of rings. Hence it is natural to ask how the situation changes if a polynomial
upper bound m on the size of the graph is known to the agents. In this case,
even under the harshest model of unbounded adversarial faults, a simple ren-
dezvous algorithm can be given. In fact this algorithm mimics the asynchronous
rendezvous algorithm (without faults) from [16]. An agent with label Ω, starting
at node v of a graph of size at most m, repeats (P (m) + 1)θ times the trajectory
R(m, v), which starts and ends at node v, and stops. Indeed, in this case, the

Fault-Tolerant Rendezvous in Networks 421

number of integral trajectories R(m, v) performed by the agent with larger label
is larger than the number of edge traversals by the other agent, and consequently,
if they have not met before, the larger agent must meet the smaller one after
the smaller agent stops, because the larger agent will still perform at least one
entire trajectory afterwards. The drawback of this algorithm is that, while its
cost is polynomial in m, it is exponential in the smaller label Σ. We know from
Theorem 1 that the cost of any rendezvous algorithm must be at least linear in
Σ, even for the two-node tree. Hence an interesting open problem is:

Does there exist a deterministic rendezvous algorithm, working in
arbitrary graphs for unbounded adversarial faults, with cost polynomial
in the size of the graph and in the smaller label, if a polynomial upper
bound on the size of the graph is known to the agents?

References

1. Alpern, S.: The rendezvous search problem. SIAM J. on Control and Optimiza-
tion 33, 673–683 (1995)

2. Alpern, S.: Rendezvous search on labelled networks. Naval Reaserch Logistics 49,
256–274 (2002)

3. Alpern, S., Gal, S.: The theory of search games and rendezvous. Int. Series in
Operations research and Management Science. Kluwer Academic Publisher (2002)

4. Anderson, E., Weber, R.: The rendezvous problem on discrete locations. Journal
of Applied Probability 28, 839–851 (1990)

5. Anderson, E., Fekete, S.: Asymmetric rendezvous on the plane. In: Proc. 14th
Annual ACM Symp. on Computational Geometry, pp. 365–373 (1998)

6. Anderson, E., Fekete, S.: Two-dimensional rendezvous search. Operations Re-
search 49, 107–118 (2001)

7. Bampas, E., Czyzowicz, J., G ρasieniec, L., Ilcinkas, D., Labourel, A.: Almost opti-
mal asynchronous rendezvous in infinite multidimensional grids. In: Lynch, N.A.,
Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 297–311. Springer,
Heidelberg (2010)

8. Baston, V., Gal, S.: Rendezvous on the line when the players’ initial distance is
given by an unknown probability distribution. SIAM J. on Control and Opt. 36,
1880–1889 (1998)

9. Baston, V., Gal, S.: Rendezvous search when marks are left at the starting points.
Naval Reaserch Logistics 48, 722–731 (2001)

10. Chalopin, J., Das, S., Widmayer, P.: Deterministic symmetric rendezvous in arbi-
trary graphs: Overcoming anonymity, failures and uncertainty. In: Alpern, S., et al.
(eds.) Search Theory: A Game Theoretic Perspective, pp. 175–195. Springer (2013)

11. Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by
mobile robots: Gathering. SIAM J. Comput. 41, 829–879 (2012)

12. Czyzowicz, J., Kosowski, A., Pelc, A.: How to meet when you forget: Log-space
rendezvous in arbitrary graphs. Distributed Computing 25, 165–178 (2012)

13. Czyzowicz, J., Labourel, A., Pelc, A.: How to meet asynchronously (almost) every-
where. ACM Transactions on Algorithms 8 (2012)

14. Das, S.: Mobile Agent Rendezvous in a Ring Using Faulty Tokens. In: Rao, S.,
Chatterjee, M., Jayanti, P., Murthy, C.S.R., Saha, S.K. (eds.) ICDCN 2008. LNCS,
vol. 4904, pp. 292–297. Springer, Heidelberg (2008)

422 J. Chalopin et al.

15. Das, S., Mihalák, M., Šrámek, R., Vicari, E., Widmayer, P.: Rendezvous of Mobile
Agents When Tokens Fail Anytime. In: Baker, T.P., Bui, A., Tixeuil, S. (eds.)
OPODIS 2008. LNCS, vol. 5401, pp. 463–480. Springer, Heidelberg (2008)

16. De Marco, G., Gargano, L., Kranakis, E., Krizanc, D., Pelc, A., Vaccaro, U.: Asyn-
chronous deterministic rendezvous in graphs. Theoretical Computer Science 355,
315–326 (2006)

17. Dessmark, A., Fraigniaud, P., Kowalski, D., Pelc, A.: Deterministic rendezvous in
graphs. Algorithmica 46, 69–96 (2006)

18. Dieudonné, Y., Pelc, A.: Deterministic network exploration by a single agent with
Byzantine tokens. Information Processing Letters 112, 467–470 (2012)

19. Dieudonné, Y., Pelc, A., Peleg, D.: Gathering despite mischief. In: Proc. 23rd An-
nual ACM-SIAM Symposium on Discrete Algorithms (SODA 2012), pp. 527–540
(2012)

20. Dieudonné, Y., Pelc, A., Villain, V.: How to meet asynchronously at polynomial
cost. In: Proc. 32nd Annual ACM Symposium on Principles of Distributed Com-
puting (PODC 2013), pp. 92–99 (2013)

21. Flocchini, P., An, H.-C., Krizanc, D., Luccio, F.L., Santoro, N., Sawchuk, C.: Mo-
bile Agents Rendezvous When Tokens Fail. In: Kralovic, R., Sýkora, O. (eds.)
SIROCCO 2004. LNCS, vol. 3104, pp. 161–172. Springer, Heidelberg (2004)

22. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous
robots with limited visibility. Theoretical Computer Science 337, 147–168 (2005)

23. Fraigniaud, P., Pelc, A.: Delays induce an exponential memory gap for rendezvous
in trees. ACM Transactions on Algorithms 9, article 17 (2013)

24. Israeli, A., Jalfon, M.: Token management schemes and random walks yield self
stabilizing mutual exclusion. In: Proc. 9th Annual ACM Symposium on Principles
of Distributed Computing (PODC 1990), pp. 119–131 (1990)

25. Koucký, M.: Universal traversal sequences with backtracking. Journal of Computer
and System Sciences 65, 717–726 (2002)

26. Kowalski, D.R., Malinowski, A.: How to Meet in Anonymous Network. In: Floc-
chini, P., G ρasieniec, L. (eds.) SIROCCO 2006. LNCS, vol. 4056, pp. 44–58. Springer,
Heidelberg (2006)

27. Kranakis, E., Krizanc, D., Morin, P.: Randomized Rendez-Vous with Limited Mem-
ory. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008.
LNCS, vol. 4957, pp. 605–616. Springer, Heidelberg (2008)

28. Kranakis, E., Krizanc, D., Santoro, N., Sawchuk, C.: Mobile agent rendezvous in
a ring. In: Proc. 23rd Int. Conference on Distributed Computing Systems (ICDCS
2003), pp. 592–599 (2003)

29. Lim, W., Alpern, S.: Minimax rendezvous on the line. SIAM J. on Control and
Optimization 34, 1650–1665 (1996)

30. Lynch, N.L.: Distributed algorithms, Morgan Kaufmann Publ. Inc., San Francisco
(1996)

31. Pelc, A.: Deterministic rendezvous in networks: A comprehensive survey. Net-
works 59, 331–347 (2012)

32. Reingold, O.: Undirected connectivity in log-space. Journal of the ACM 55 (2008)
33. Ta-Shma, A., Zwick, U.: Deterministic rendezvous, treasure hunts and strongly

universal exploration sequences. In: Proc. 18th ACM-SIAM Symposium on Discrete
Algorithms (SODA 2007), pp. 599–608 (2007)

34. Thomas, L.: Finding your kids when they are lost. Journal on Operational Res.
Soc. 43, 637–639 (1992)

Data Delivery by Energy-Constrained

Mobile Agents on a Line

Jérémie Chalopin1, Riko Jacob2, Matúš Mihalák2, and Peter Widmayer2

1 LIF, Aix-Marseille University & CNRS, Marseille, France
2 Institute of Theoretical Computer Science, ETH Zurich, Zürich, Switzerland

Abstract. We consider nmobile agents of limited energy that are placed
on a straight line and that need to collectively deliver a single piece of
data from a given source point s to a given target point t on the line.
Agents can move only as far as their batteries allow. They can hand
over the data when they meet. In this paper we show that deciding
whether the agents can deliver the data is (weakly) NP-complete, and
for instances where all input values are integers, we present a quasi-,
pseudo-polynomial time algorithm that runs in time O(Δ2 · n1+4 logΔ),
where Δ is the distance between s and t. This answers an open problem
stated by Anaya et al. (DISC 2012).

Keywords: Mobile agents and robots; data aggregation and delivery;
power-awareness; algorithms; complexity.

1 Introduction

The production of inexpensive, simple-built, mobile robots has led to new re-
search questions in how to employ and operate a swarm of such robots to achieve
desired goals. One of the fundamental goals of robotics is the delivery of data
from given sources to specified targets. An energy-efficient operation of mobile
robots becomes crucial when batteries of the robots are limited.

In this paper we study how to efficiently operate robots (called agents in this
paper) of limited batteries that need to collectively deliver one piece of data
along a line from a single source to a single target. Formally, our setting is given
by a source s and a target t placed along a line, and n autonomous mobile agents,
where agent i, i = 1, 2, . . . , n, has an initial position ai and an initial range Ri,
denoting the maximum length of a walk the agent can do. We ask whether the
agents can deliver a message from source s to target t. The message is picked up
by the first agent that reaches point s. An agent i with the message can pass on
the message to agent j, if i and j meet at the same point on the line. The message
is delivered if an agent with the message reaches target t. No agent i = 1, . . . , n
can travel more than its range Ri. We refer to this problem as DataDelivery.

Obviously, it makes no sense for an agent to carry the message more than
once. Then, even though the agents can in principle move simultaneously at a

J. Esparza et al. (Eds.): ICALP 2014, Part II, LNCS 8573, pp. 423–434, 2014.
c∗ Springer-Verlag Berlin Heidelberg 2014

424 J. Chalopin et al.

time, it is easy to observe that for the sake of completing the task only,1 the
agents can move in turns: in the first turn, the agent picking up the message at
s moves; then, the agent taking over from the first agent moves; then, the agent
taking over from the second agent moves, and so on. In this view, a solution to
DataDelivery can be given in form of a schedule that prescribes the subset
of the agents that move and the order in which they move. We call a schedule
which indeed delivers the message from s to t a feasible schedule.

Previously, this problem has been studied in edge-weighted graphs and with
multiple sources [5]. Besides other results, it has been shown that the prob-
lem is NP-complete (for general graphs), and a min{3, 1 + maxi,j

Ri

Rj
}-resource

augmented algorithm has been presented; here, a polynomial-time algorithm is
called a Σ-resource augmented, Σ > 1, if either the algorithm (correctly) answers
that there is no feasible schedule, or it finds a feasible schedule for the modi-
fied (augmented) powers R′

i := Σ · Ri. The complexity of the problem for the
case when the graph is a line has been left open (it has been raised as an open
question by Anaya et al. [3], but not studied).

In this paper, we close the open problem in that we show that DataDelivery
is weakly NP-complete (even if all input values are integers), and at the same time,
if all input values are integers, we present a quasi-, pseudo-polynomial time algo-
rithm running in time O

(
ε2 · n1+4 logΣ

)
and in time O

(
ε2 · n1+4 log(Rmax+1)

)
,

where ε is the distance between s and t, and Rmax := maxiRi.

Related Work

There are very few papers studying explicitly the algorithmic question of data-
aggregation-like problems by mobile agents with limited batteries. Besides the
already mentioned paper by Chalopin et al. [5], the work of Anaya et al. [3] comes
closest to our problem. Anaya et al. [3] study the convergecast problem: given a
set of mobile agents in an edge-weighted graph, each agent possessing a certain
piece of data, and having a uniform battery power B, the agents need to move,
not more than what the battery allows, such that at some point at least one
agent knows all data. Obviously, there are no fixed source and target nodes,
which constitutes a difference to our problem. However, the main difference is
that in [3], it is assumed that all agents have the same range. In this case, the
problem is polynomial on a line, but is NP-hard if the graph is a tree.

Our problem has a flavour of the well studied problem of data aggregation
in (wireless) sensor networks [8], where the general computational problem is to
schedule the communication between (mostly) stationary sensor nodes so that
all data collected by the individual sensors eventually arrive in a pre-specified
aggregation node. While in data aggregation, the data is being sent over com-
munication channels, in our setting, the agents physically deliver the data.

1 It is an interesting, more general, and thus an even more difficult algorihtmic ques-
tion to also minimize the time needed for the delivery; for this objective, parallel
simultaneous moving of the agents would be crucial.

Data Delivery by Energy-Constrained Mobile Agents on a Line 425

s t2 4 6 8 10 12 14 16

R1 = 3 R2 = 2 R3 = 3

R4 = 5

R5 = 16

R6 = 10

R7 = 20

18 20

Fig. 1. A solvable instance of DataDelivery on a line with agents a1, a2, . . . , a7 de-
picted by the small full disks, and annotated by their respective ranges R1, R2, . . . , R7

Power-aware computation with mobile agents is a relatively new research area,
and, consequently, there is little algorithm-theoretical research. As an exception,
Heo and Varshney [7] study self-deployment of agents in this context.

A related and intensively studied research question is that of minimizing the
total travelled distance by agents (which have unlimited battery) [1], [2], [4].

Further Terminology, Notation, and Model Refinement

We consider the positions of s, t and all n agents to be given by their distance
from s on the line. For simplicity, we identify the source s and the target t with
this distance, i.e., we set s = 0 and we interpret t > 0 as the distance of the
target from s. The position of agent i, i = 1, . . . , n, is given by its distance ai
from s. Sometimes, we will refer to agent i by its position, i.e., we say agent ai to
denote agent i. Recall that Ri is the range of agent i, and let Rmax = max{Ri |
1 ∈ i ∈ n}. Figure 1 gives a (solvable)2 instance of DataDelivery on a line.

We will assume, without loss of generality, that all ai are between s and t: if
there is an agent ai lying left of s, we can move it to s (and reduce its range
correspondingly), and similary, we can move any agent aj right of t to t (and
reduce its range correspondingly). Obviously, the original instance has a solution
if and only if the modified instance has one. In this adjusted problem instance,
we may assume that Ri < 2t for any agent i (as otherwise agent i with Ri ≡ 2t
can deliver the message on its own).

Furthermore, we can assume that there is no agent at s. If there should be
such an agent ai, we use s′ = s + Ri as the new starting position. Now, any
schedule from s to t can still be used (starting from the point in time when the
packet passed position s′) to deliver the data from s′ to t, the only agent no
longer available is ai who cannot be used beyond s′ anyway. Finally, we adjust
all agents to the left of s′ as described above. If this leads to an agent being
positioned at s′, we repeat the process.

2 The Quasi-, Pseudo-Polynomial Time Algorithm

In this section we present a dynamic-programming based algorithm for finding
a feasible schedule, if the ranges and the positions of the agents are integers.
We restrict ourselves to a specific class of feasible schedules: we call a feasible
schedule (ai1 , ai2 , . . . , aij , . . .) normalized, if

2 Asolutionistheschedule(a5,a1,a7,a2,a4,a3,a6).

426 J. Chalopin et al.

s p ta1a2 a3

t⊥
1

t⊥
2

t⊥
3

Fig. 2. Agents a1, a2, a3 ∈ Ap are p-crossing. The intervals (s′i, t
′
i) are lower bounds on

the growth of the intervals (si, ti): si ≥ s′i and ti ≥ t′i.

1. The positions where agents exchange the message are integers.
2. Every agent aij walks with the message as far towards t as its range allows,

with the exception when the agent reaches the initial position of the next
agent in the feasible schedule, i.e., agent aij+1 .

3. The length of the schedule is minimal, i.e., we cannot remove any agent from
the schedule and maintain its feasibility. This means, for example, that no
agent aij can reach (by exhausting its range) the point at which aij+2 picks
up the data from aij+1 (making aij+1 obsolete).

It is easy to see that in our “integer setting”, if there exists a feasible schedule,
there always exists a normalized feasible schedule, and thus our restriction to
these schedules is without loss of generality.

As every agent moves once to the left (to pick up the message – this move can
be of zero length), and then once to the right, we have that in every normalized
schedule every move of an agent to the right equals the advancement of the
message done by this agent.

In the following we prove a structural lemma about normalized schedules,
which will be a crucial ingredient in designing our algorithm. We will use the
following notation. For an integer position p between s and t we say that an
agent a (not necessarily from the schedule) is p-crossing if a lies at p or to the
right of p, and at the same time the range of a allows the agent to walk left of
p (to at least position p− 1). By Xp we denote the set of all p-crossing agents.
We denote by Ap ⊆ Xp the agents of the schedule that are p-crossing, and that
in the schedule never move left of p (i.e., they only move on the part of the line
that is to the right of p). Thus, Ap are agents that could possibly help advancing
the message in the part of the line to the left of p, but they do not (because they
are used right of p).

Lemma 1. Let p be a position (an integer) such that s < p < t. Then |Ap| ∈
2 · log t (for t ≡ 2), and |Ap| ∈ 2 · log(Rmax + 1).

Proof. Let a1, a2, . . . , aψ be the agents in Ap sorted in the order as they appear
in delivering the message from s to t. Each agent ai is responsible for advancing
the message on a certain interval Ii = [si, ti] between p and t (recall that none
of Ap moves left of p in the feasible schedule), where the order of the segments
appearing on the line is identical to the order of the agents in which they move.

Recall that in a normalized schedule, agent ai can stop before using all its
range if it reaches the position of the next agent in the schedule. Let t′i ≡ ti be
the point which ai reaches if it uses all its range (to walk from si). It follows that

Data Delivery by Energy-Constrained Mobile Agents on a Line 427

every two intervals I ′i := [si, t
′
i] and I ′i+2 := [si+2, t

′
i+2] are disjoint (otherwise

we can remove agent ai+1 from the schedule; a contradiction that the schedule
is minimal). Thus, si+2 ≡ t′i + 1. Furthermore, the position of ai+2 is (strictly)
to the right of t′i (as again we could remove agent ai+1 from the schedule).

Expressing t′i in the form p + εi, we show that εi grows exponentially with
i and thus there can be at most (roughly) log t many agents in Ap before t′i
reaches t. Figure 2 illustrates the discussion of the proof. We start with t′1:
Clearly, agent a1 can reach p− 1 and thus, when reaching p, it can move at least
to position p + 1: t′1 ≡ p + 1. We can continue with t′3: Since s3 ≡ t′1 + 1, we
get s3 ≡ p + 2; Furthermore, since agent a3 is strictly to the right of t′1, i.e.,
a3 ≡ t′1 + 1 ≡ p + 2, and a3 can reach p− 1, a3 has at t′1 + 1 enough energy to
move to the right to position (t′1 +1)+((t′1 + 1) − (p− 1)) ≡ (t′1 +1)+3 = t′1 +4
(i.e., t′3 ≡ p+ 5). Similarly, s5 ≡ t′3 + 1, agent a5 lies to the right of t′3, and agent
a5 has at t′3 + 1 enough energy to walk to (t′3 + 1) + 7 = t′3 + 8. In a similar spirit
(i.e., by an easy induction), it follows that t′2i−1 ≡ t′2i−3 + 2i, i = 2, 3, Thus,

t′ψ ≡ t′1+22+23+. . .+2≥ψ/2∈ ≡ (p+1)+(2≥ψ/2∈+1−4) = p+2≥ψ/2∈+1−3. By setting
t′ψ ∈ t, we get 2≥ψ/2∈+1 ∈ t + 3 − p ∈ t + 2, which implies Ω/2 ∈ log(t + 2) − 1,
which implies Ω/2 ∈ log t (for t ≡ 2), i.e., Ω ∈ 2 · log t (the first claim of the
lemma).

At the same time, since aψ is at least t′ψ−2 + 1, and the agent has energy to

reach p− 1, it follows that Rψ ≡ p + 2≥ψ/2∈ − 2 − (p− 1) = 2≥ψ/2∈ − 1. Since the
range of any agent is at most Rmax, we get Ω ∈ 2 · log(Rmax + 1). ↔⇔

We now present our quasi-, pseudo-polynomial time algorithm. For simplicity
of exposition, we will use the upper bound |Ap| ∈ 2 log t. We will further assume
that t ≡ 2 (to be able to apply Lemma 1): If t = 1, finding a solution is trivial,
we just try every agent and see whether it can deliver the message on its own.

The main idea of our dynamic-programming based algorithm is to scan the
line backwards from t to s and to gradually build a feasible schedule from the
last agent delivering the message to t to the first agent picking the message at
s and at every intermediate step p to remember the set Ap ⊆ Xp of p-crossing
agents that were used so far to the right of p, and thus are not available to be
used to the left of p.

Formally, we define a boolean table T [p,Ap] for every (integer) point p between
s and t (including s and t) and every set Ap ⊆ Xp of cardinality |Ap| ∈ 2 · log t.
We interpret the table as T [p,Ap] = true if and only if there is a feasible schedule
which advances the message from p to t, and among all p-crossing agents Xp it
uses only the agents in Ap.

We fill the table as follows. We initialize T [t, ⊂] = true. Then, for every p =
t−1, t−2, t−3 . . . , s we enumerate all sets Ap ⊆ Xp of cardinality |Ap| ∈ 2 · log t
and set T [p,Ap] = true, if and only if

≥p′ > p, ≥Ap⊥ ⊆ Xp⊥ , ≥ agent ap ⇒ Ap \Ap⊥ such that:

ap can bring the message from p to p′, (1)

Ap = {ap} ◦ (Ap⊥ ≤Xp), (2)

T [p′, Ap⊥] = true. (3)

428 J. Chalopin et al.

After filling the table, the algorithm checks, whether for some set As there
exists an entry T [s, As] = true, and if yes, it outputs a schedule of agents
ap1 , ap2 , ap3 , . . . , ap�

that are, according to our dynamic program, recursively
responsible for setting T [pi, Api] to be true (this can be done by standard book-
keeping techniques); Otherwise, the algorithm decides that the agents cannot
deliver the message from s to t.

Theorem 1. The presented algorithm solves any instance of DataDelivery
in time O

(
t2 · n1+4 log t

)
.

Proof. We will prove that there exists a solution to a given instance of DataDe-
livery if and only if the algorithm finds one.

If there is a solution to a given instance, i.e., a feasible schedule, then, by
our observations, there also exists a normalized schedule (ap1 , ap2 , . . . , ap�

) of
agents indexed with points on the line where they pick up the message, i.e.,
where agent api picks up the message at pi and advances it to pi+1 (where
we set pψ+1 := t, and where, naturally, p1 = s). Let S be the agents of this
solution, i.e., S = {ap1 , ap2 , . . . , ap�

}. At any of these points pi, i = 1, 2, . . . , Ω,
let Api ⊆ S ≤Xpi be the set of agents from the solution S that are pi-crossing.
Furthermore, set Aψ+1 = ⊂. Then, by Lemma 1, |Api | ∈ 2 · log t. Therefore, for
every such set Api , i = 1, 2, . . . , Ω+1, there will be an entry T [pi, Api] in our table.
Furthermore, it follows that Api = {api}◦ (Api+1 ≤Xpi), i = 1, . . . , Ω. Therefore,
according to the rules of our dynamic programming (Eqs. (1), (2), (3)), all entries
T [pi, Api], k = Ω, Ω−1, . . . , 3, 2, 1, will be set to true because of the previous entry
T [pi+1, Api+1]. Thus, our algorithm finds a solution (e.g., the one just derived
from the normalized feasible schedule).

Assume now that the algorithm finds a schedule ap1 , . . . , ap�
of agents, indexed

by the points pi at which the corresponding entry T [pi, Api] was set to true. By
the rules of filling the table, it follows that the agents can deliver the message
from s to t. What remains is to argue that no two agents api , api+Δ from the
returned schedule are the same agent. Assume, for the sake of contradiction, that
this is the case, i.e., a = api = api+Δ , and that ε is the smallest such number. By
Eq. (2), api+Δ ⇒ Api+Δ ; At the same time, since a ⇒ Xpi and because of Eq. (2),
a appears in all sets Api+Δ−1 , Api+Δ−2 , . . . , Api+1 , and especially in Api+1 . But
this contradicts the fact that a = api ⇒ Api \Api+1 .

The runtime of the algorithm follows from the size of the table T and the way
we fill in the table: For every p, we enumerate at most

∑2 log t
i=1

(
n
i

) ∈ O(n2 log t)
many sets Ap. To fill in an entry T [p,Ap] we try all possible values p′, Ap⊥ and
ap, and check whether conditions in Eqs. (1), (2), and (3) hold, which can be
done in time linear in size of Ap, Ap⊥ , and Xp (if we store the elements of the sets
sorted according to their position on the line). This results in total running time
of O

(
t2 · n1+4 log t

)
(with small constants hidden in the big-oh notation). ↔⇔

Using the upper bound |Ap| ∈ 2 · log(Rmax + 1), we can bound the running
time of the algorithm by O

(
t2 · n1+4 log(Rmax+1)

)
.

Data Delivery by Energy-Constrained Mobile Agents on a Line 429

3 NP-Completeness

We first create an auxiliary NP-hard problem Weighted-4-Partition, which
we then reduce to DataDelivery. Along the way, we use the NP-hard problem
4-Partition-from-4-sets, which has been shown NP-complete in [6] as a step
in proving the NP-hardness of 3-Partition.

4-Partition-from-4-sets

Input: Four sets of positive integers A′ = (a′i)1⊆i⊆q, B′ = (b′i)1⊆i⊆q, C′ =
(c′i)1⊆i⊆q, D′ = (d′i)1⊆i⊆q, and an integer S′.
Question: Does there exist three permutations δA, δB, δC of [1, q] such that for
every i, a′θA(i) + b′θB(i) + c′θC(i) + d′i = S′?

Weighted-4-Partition

Input: A set of positive integers E = (ei)1⊆i⊆4q and an integer S such that for
every partition of E into 4 sets A,B,C,D, each of size q,

∑
a⊗A a +

∑
b⊗B 2b +∑

c⊗C 4c +
∑

d⊗D 8d ∈ qS.
Question: Does there exist a partition of E into q sets E1, E2, . . . , Eq, each of
size 4, such that for every 1 ∈ i ∈ q, if Ei = {a, b, c, d} with a ∈ b ∈ c ∈ d,
a + 2b + 4c + 8d = S? We call such a partition a weighted partition.

Theorem 2. Weighted-4-Partition is NP-hard.

Proof. From an instance of 4-Partition-from-4-sets, we construct an in-
stance of Weighted-4-Partition as follows. Note that we can assume that∑

x⊥⊗A⊥∃B⊥∃C⊥∃D⊥ x′ = qS′, and that for every x′ ⇒ A′ ◦B′ ◦ C′ ◦D′, x′ ∈ S′.
For each i ⇒ [1, q], let ai = 8a′i, bi = 4b′i + 32S′, ci = 2c′i + 128S′ and

di = d′i + 512S′. Let A = {ai}1⊆i⊆q, B = {bi}1⊆i⊆q, C = {ci}1⊆i⊆q and D =
{di}1⊆i⊆q. Let E = A ◦ B ◦ C ◦D and let S = 4680S′. Note that →a ⇒ A, b ⇒
B, c ⇒ C, d ⇒ D, a < b < c < d. Consequently, for any partition of E into 4
sets A∀, B∀, C∀, D∀ of size q,

∑
a⊗A∗ a +

∑
b⊗B∗ 2b +

∑
c⊗C∗ 4c +

∑
d⊗D∗ 8d ∈∑

a⊗A a +
∑

b⊗B 2b+
∑

c⊗C 4c+
∑

d⊗D 8d =
∑

a⊥⊗A⊥ 8a′ +
∑

b⊥⊗B⊥(8b′ + 64S′) +∑
c⊥⊗C⊥(8c′+512S′)+

∑
d⊥⊗D⊥(8d′+4096S′) = 8

∑
x⊥⊗A⊥∃B⊥∃C⊥∃D⊥ x′+4672qS′ =

4680qS′ = qS.
Suppose that we are given a solution δA, δB, δC of 4-Partition-from-4-

sets such that for every i, a′θA(i) + b′θB(i) + c′θC(i) + d′i = S′. Then for every i,

aθA(i) + 2bθB(i) + 4cθC(i) + 8di = 8a′θA(i) + 8b′θB(i) + 64S′ + 8c′θB(i) + 512S′ +

8d′i + 4096S′ = 4672S′ + 8(a′θA(i) + b′θB(i) + c′θB(i) + d′i) = 4680S′ = S. Since

aθA(i) ∈ 8S′ < 32S′ ∈ bθB(i) ∈ 36S′ < 128S′ ∈ cθC(i) ∈ 130S′ < 512S′ ∈ di, we
have found a solution to Weighted-4-Partition, i.e., a weighted partition.

Conversely, suppose that there exists a partition E1, E2, . . . Eq that is a solu-
tion of the instance (E, S) of Weighted-4-Partition. For every 1 ∈ i ∈ q, let
Ei = {wi, xi, yi, zi} with wi ∈ xi ∈ yi ∈ zi.

Suppose first that there exists 1 ∈ i ∈ q such that Ei ≤ D = ⊂. Then,
wi ∈ xi ∈ yi ∈ zi ∈ 130S′, and thus wi +2xi+4yi+8zi ∈ 15 ·130S′ = 1930S′ <
4680S′, contradicting the fact that E1, E2, . . . Eq is a weighted partition of E.
Consequently, for every 1 ∈ i ∈ q, zi ⇒ D and thus, wi, xi, yi ⇒ A ◦B ◦ C.

430 J. Chalopin et al.

Suppose now that there exists 1 ∈ i ∈ q such that Ei ≤ C = ⊂. Then, wi ∈
xi ∈ yi ∈ 36S′ and zi ∈ 513S′. Thus, wi + 2xi + 4yi + 8zi ∈ 7 ·36S′ + 8 ·513S′ =
4356S′ < 4680S′, a contradiction. Consequently, for every 1 ∈ i ∈ q, yi ⇒ C and
thus, wi, xi ⇒ A ◦B.

Suppose now that there exists 1 ∈ i ∈ q such that Ei ≤ B = ⊂. Then,
wi ∈ xi ∈ 8S′, yi ∈ 130S′ and zi ∈ 513S′. Thus, wi + 2xi + 4yi + 8zi ∈
3 · 8S′ + 4 · 130S′ + 8 · 513S′ = 4648S′ < 4680S′, a contradiction. Therefore, for
every 1 ∈ i ∈ q, xi ⇒ B and thus, wi ⇒ A.

Consequently, each Ei contains one element of A, one element of B, one
element of C and one element of D. Without loss of generality (by reordering the
elements in D), assume that for every 1 ∈ i ∈ q, di ⇒ Ei. For every 1 ∈ i ∈ q,
let δA(i) = j iff aj ⇒ Ei, let δB(i) = j iff bj ⇒ Ei, and let δC(i) = j iff
cj ⇒ Ei. Consequently, for every i, aθA(i) + 2bθB(i) + 4cθC(i) + 8di = 4680S′, i.e.,
8a′θA(i) +8b′θB(i) +64S′ +8c′θB(i) +512S′+8d′i +4096S′ = 4680S′. Consequently,

4672S′+8(a′θA(i)+b′θB(i)+c′θB(i)+d′i) = 4680S′ and thus a′θA(i)+b′θB(i)+c′θB(i)+

d′i = S′. Consequently, δA, δB, δC is a solution of the instance (A′, B′, C′, D′, S′)
of 4-Partition-from-4-sets. ↔⇔

Given an instance of Weighted-4-Partition (E, S) given by a set E =
{e1, e2, . . . , e4q} and by a target value S, we construct an instance of DataDe-
livery as follows. There will be two types of agents: 4q “big” agents correspond-
ing to the elements of E, and q + 1 “small” agents.

Let M = maxi{ei}, and let r = max{15M − S, 32q−1
31 S}. There is a small

agent si starting at position xi = 16i−1
15 (S + 16r) for 0 ∈ i ∈ q. The range of

each small agent is r. Note that x0 = 0 and that xi+1 = 16(xi + r) + S. Note
also that all the positions and ranges are integers. We set s = 0, and t = xq + r.
For each 1 ∈ j ∈ 4q, there is a big agent bj starting at position t with a range
equal to t + ej .

Note that every big agent bj starts at t and its range enables it to reach any
point between s and t. Moreover, if bj collects the message at a point l ⇒ [s, t],
the furthest point where it can deliver the message is 2l + ej.

We claim that there exists a weighted partition of (E, S) if and only if the set
of agents A = {si}0⊆i⊆q ◦ {bj}1⊆j⊆4q can deliver the message from s to t. The
first direction is straightforward, and shown in Lemma 2. The other direction is
more complicated, and is shown after Lemma 2 in a series of claims.

Lemma 2. If there exists a weighted partition E1, E2, . . . , Eq of E, then there
is a feasible schedule for DataDelivery from s to t.

Proof. Suppose that we are given 4 integers a ∈ b ∈ c ∈ d such that a + 2b +
4c+8d = S. Consider four agents a′, b′, c′, d′ initially located on t with respective
ranges t+a, t+b, t+c, t+d. We claim that if some message is on xi +r for i < q,
then agents a′, b′, c′, d′ can move the message to xi+1 when they are activated in
the following order: d′, c′, b′, a′.

Data Delivery by Energy-Constrained Mobile Agents on a Line 431

Since xi+r < xq +r = t, d′ can move the message to 2(xi+r)+d. Since 2(xi+
r)+d < t, c′ can move the message to 4(xi+r)+2d+c. Since 4(xi+r)+2d+c < t,
b′ can move the message to 8(xi+r)+4d+2c+b. Since 8(xi+r)+4d+2c+b < t,
a′ can move the message to 16(xi + r)+8d+4c+2b+a = 16(xi + r)+S = xi+1.

Recall that every small agent si, 0 ∈ i ∈ q, can move the message from
from xi to xi + r. Thus, we can use alternatively an agent si and the agents
corresponding to Ei+1 to move the message from s = x0 = 0 to t = xq + r. ↔⇔

We now show the other direction. In the rest of the section, we assume that
there exists a feasible schedule for the created instance of DataDelivery, and
we show that there exists a weighted-partition of (E, S).

Up to rearranging the elements of E, assume that the big agents are activated
in the order b1, b2, . . . , b4q. For every 1 ∈ i ∈ q, let Bi = {b4i−3, b4i−2, b4i−1,
b4i} and let πi = 8e4i−3 + 4e4i−2 + 2e4i−1 + e4i − S. Note that for every i,
−S ∈ πi ∈ 15M − S.

Note that if we activate all agents from Bi consecutively (without activating
a small agent in between) and if b4i−3 collects the message in l ⇒ [s, t], b4i−3 can
deliver the message to 2l + e4i−3, b4i−2 can deliver the message to 4l + 2e4i−3 +
e4i−2, b4i−1 can deliver the message to 8l + 4e4i−3 + 2e4i−2 + e4i−3, and b4i can
deliver the message to 16l + 8e4i−3 + 4e4i−2 + 2e4i−1 + e4i = 16l + S + πi.

We denote by ui the furthest point where, in the considered feasible schedule,
b4i can deliver the message. We denote by yi the furthest point where si can
deliver the message.

In the next two lemmas, we show that we can assume that for each 0 ∈ i ∈ q,
si is activated after b4i and before b4i+1.

Lemma 3. For every 0 ∈ i ∈ q, yi ∈ xi + r. For every 1 ∈ i ∈ q, si cannot be
activated before b4i, and ui ∈ xi + r.

Proof. The first assertion of the lemma is trivial since si starts in xi and its
range is r.

We prove the second assertion by induction on i. Let i ≡ 0 and assume that
yi ∈ xi + r and that ui ∈ xi + r if i ≡ 1. Suppose that si+1 is activated before
b4i+4.

Since max{ui, yi} ∈ xi + r, and since e4i+1, e4i+2, e4i+3 ∈ M , b4i+1 cannot
deliver the message further than 2(xi + r)+M , b4i+2 cannot deliver the message
further than 4(xi + r) + 3M , and b4i+3 cannot deliver the message further than
8(xi + r) + 7M . Since si+1 cannot collect the message before xi+1 − r = 16(xi +
r) + S − r = 16xi + S + 15r, it is enough to show that 7r + S > 7M in order
to prove that si+1 cannot be activated before b4i+4. Since r ≡ 15M − S and
S ∈ 15M , 7r + S ≡ 7 · 15M − 6S ≡ 15M > 7M and si+1 cannot collect the
message before b4i+4 has been activated.

Note that b4i+4 cannot deliver the message further than ui+1 = 16(xi + r) +
15M = xi+1 + 15M − S ∈ xi+1 + r. ↔⇔
Lemma 4. There exists a feasible schedule for DataDelivery from s to t such
that for every 0 ∈ i ∈ q, si is activated before b4i+1 and yi ≡ xi +r− 2S

31 (32i−1).

For every 1 ∈ i ∈ q, ui ≡ xi − S
31 (32i − 1) ≡ xi − r.

432 J. Chalopin et al.

Proof. We prove the lemma by induction on i.
Note that since x0 = s, y0 = x0 + r (no matter when s0 is activated). Suppose

now that s0 is not activated first. If when s0 is activated, the message has
already reached x0 + r, then it means that there exists a feasible schedule for
DataDelivery from s to t for A′ = A \ {s0}. Suppose now that when s0
is activated, the message has not reached x0 + r and let i0 be the maximal
index i such that bi has been activated before s0. In this case, it means that
there exists a feasible schedule for DataDelivery from x0 + r > s to t for
A′ = A \ {s0, b1, b2, . . . , bi0}. In both cases, it means that there exists a feasible
schedule for DataDelivery from x0 + r > s to t for A′ = A \ {s0} and thus
there exists a feasible schedule for DataDelivery from s to t for A where s0 is
activated first.

Suppose now that si has been activated before b4i+1, and that yi ≡ xi + r −
2S
31 (32i − 1). Since si+1 cannot be activated before b4i+4 (Lemma 3), we can
assume that b4i+4 delivers the message to ui+1 ≡ 16yi + S + πi+1 ≡ 16(xi +
r) − 32S

31 (32i − 1) = xi+1 − S − 32S
31 (32i − 1) = xi+1 − S

31 (32i+1 − 1). Since

r ≡ S
31 (32i+1 − 1), ui+1 ≡ xi+1 − r.

Consequently, si+1 can always be activated after b4i+4. If si+1 is activated
before b4i+5, either ui+1 ≡ xi+1 and yi+1 = xi+1 + r ≡ xi+1 + r− 2S

31 (32i+1 − 1),

or ui+1 < xi+1 and yi+1 = 2ui+1 + r − xi+1 ≡ xi+1 + r − 2S
31 (32i+1 − 1).

Suppose that we activate b4i+5 before si+1, then b4i+5 can deliver the message
to a point z ≡ 2(xi+1 − r) + e4i+5 ≡ xi+1 + (xi+1 − 2r) = xi+1 + (16xi +
14r + S) > xi+1 + r. That is, at this moment, si+1 is useless. Consequently,
there exists a feasible schedule for DataDelivery from z to t for A′ = A \
{s0, . . . , si, si+1, b1, . . . , b4i+4, b4i+5}. This implies that there exists a schedule
for DataDelivery from 2ui+1 + r−xi+1 ≡ ui+1 to t for A′ ◦{b4i+5}, and thus,
there exists a schedule DataDelivery from ui+1 to t for A′◦{si+1, b4i+5} where
si+1 is activated first. ↔⇔

From Lemmas 3 and 4, there exists a feasible schedule for DataDelivery
from s to t where we activate alternatively a small agent and four big agents.
Consequently, we can assume that for every 1 ∈ i ∈ q, ui = 16yi−1 + S + πi and
that yi = 2ui + r − xi if ui < xi and yi = xi + r otherwise.

In the next lemma, we show that
∑q

i=1 πi ≡ 0 and that this inequality is strict
if at least one small agent has to go back to collect the message.

Lemma 5. For any two indices i < j such that yi = xi + r, ul < xl for every
i + 1 ∈ l ∈ j − 1 and uj ≡ xj, we have

∑j
l=i+1 πl ≡ 0. Moreover, this inequality

is strict if j > i + 1.

Proof. If j = i+ 1, ui+1 = 16(xi + r) +S + πi+1 = xi+1 + πi+1 and consequently,
πi+1 ≡ 0. In the following, we assume that j > i + 1.

For every i ∈ l ∈ j, let zl = xl + r − yl. Note that by Lemma 3, zl ≡ 0.
Moreover, zi = zj = 0 and for every i + 1 ∈ l ∈ j − 1, zl > 0.

For every integer i ∈ l ∈ j − 1, ul+1 = 16yl + S + πl+1. For i ∈ l ∈ j − 2,
ul+1 < xl+1 and thus, yl+1 = 2ul+1 + r − xl+1 = 32yl + 2S + 2πl+1 + r − xl+1.

Data Delivery by Energy-Constrained Mobile Agents on a Line 433

Consequently, zl+1 = xl+1 + r − yl+1 = 2xl+1 − (32yl + 2πl+1 + 2S) = 32(xl +
r) + 2S − (32yl + 2πl+1 + 2S) = 32(xl + r− yl)− 2πl+1 = 32zl − 2πl+1. Thus, for

every i + 1 ∈ l ∈ j − 1, zl = −2
∑l

t=i+1 32l−tπt.
Moreover, uj = 16yj−1 + S + πj = 16(xj−1 + r) − 16zj−1 + S + πj = xj −

16zj−1 + πj = xj + πj + 32
∑j−1

t=i+1 32j−1−tπt = xj +
∑j

t=i+1 32j−tπt.

Let S1 = uj − xj and S2 =
∑j−1

l=i+1 − zl
2 , i.e., S1 =

∑j
t=i+1 32j−tπt and S2 =∑j−1

l=i+1(
∑l

t=i+1 32l−tπt). Since uj ≡ xj , S1 ≡ 0, and since for every i + 1 ∈ l ∈
j− 1, zl > 0, it follows that S2 < 0. Consequently, S1− 31S2 > 0. We claim that∑j

t=i+1 πt = S1 − 31S2. We get

S1 − 31S2 = S1 − 31

j−1∑
l=i+1

l∑
t=i+1

32l−tπt = S1 − 31

j−1∑
t=i+1

j−1∑
l=t

32l−tπt

= S1 − 31

j−1∑
t=i+1

32j−t − 1

31
πt =

j∑
t=i+1

32j−tπt −
j−1∑

t=i+1

(32j−t − 1)πt

=

j∑
t=i+1

πt.

Consequently,
∑j

t=i+1 πt = S1 − 31S2 > 0. ↔⇔
Proposition 1. (E1, . . . , Eq) is a weighted-partition of (E, S) where for each
1 ∈ i ∈ q, Ei = {e4i−3, e4i−2, e4i−1, e4i}.
Proof. Since for every partition of E into 4 sets A,B,C,D of size q,

∑
a⊗A a +∑

b⊗B 2b+
∑

c⊗C 4c+
∑

d⊗D 8d ∈ qS,
∑q

i=1 πi =
∑q

i=1(8e4i−3+4e4i−2+2e4i−1+
e4i − S) ∈ 0.

Since we have a feasible schedule for DataDelivery from s = 0 to t = xq + r
where sq is activated after b4q, sq delivers the message to t = xq + r, and thus,
uq ≡ xq. By Lemma 5,

∑q
i=1 πi ≡ 0, and thus,

∑q
i=1 πi = 0.

Moreover, if there exists 1 ∈ i < q such that ui < xi, then yi < xi+r and from
Lemma 5,

∑q
i=1 πi > 0, which is impossible. Consequently, for each 1 ∈ i ∈ q,

ui ≡ xi and yi = xi+r. Since ui = 16yi−1+S+πi = 16(xi−1+r)+S+πi = xi+πi,
it implies that for each i, πi ≡ 0.

Since
∑q

i=1 πi = 0, we get that πi = 0 for every 1 ∈ i ∈ q, i.e., 8e4i−3 +
4e4i−2 + 2e4i−1 + e4i = S. Consequently (E1, E2, . . . , Eq) is a solution to the
instance (E, S) of the Weighted-4-Partition problem. ↔⇔

This ends the proof of the NP-hardness of DataDelivery. Note that one can
check quickly whether a given permutation ψ = (a1, . . . , an⊥) of a subset A′ of the
agents can solve an instance (A, s, t) of DataDelivery. Indeed, setting t0 = s,
agent ai+1 can reach ti if and only if ai+1−Ri+1 ∈ ti. Moreover, if ai+1 can reach
ti, the furthest point agent ai+1 can reach with the information is ai+1 + Rai+1

if ti ≡ ai+1 and 2ti + Rai − ai otherwise. Thus, one can iteratively compute the
tis until we find an index ti ≡ t, or until we find that ti < ai+1 − Ri+1 or that

434 J. Chalopin et al.

tn⊥ < t. This can be done by performing O(n) arithmetical operations and the
values we handle are smaller than 2t+Rmax: this can be done in polynomial time
and thus DataDelivery is in NP. Consequently, we get the following theorem.

Theorem 3. DataDelivery is NP-complete.

4 Conclusions and Open Problems

We have shown that DataDelivery on a line is NP-hard. This answers the
open problem raised by Anaya et al. [3]. It actually is a surprising result, be-
cause everyone we talked to about the problem believed it to be polynomial. We
accompanied the result with a quasi-, pseudo- polynomial time algorithm. It re-
mains an open problem, whether a pseudo-polynomial time algorithm exists. It
also is an interesting problem to provide good Σ-resource augmented algorithms.

Acknowledgements. We are grateful for the valuable comments of the anony-
mous reviewers. Jérémie Chalopin acknowledges a partial support by ANR project
MACARON (anr-13-js02-0002).

References

1. Albers, S., Henzinger, M.R.: Exploring unknown environments. SIAM Journal on
Computing 29(4), 1164–1188 (2000)

2. Alpern, S., Gal, S.: The theory of search games and rendezvous, vol. 55. Kluwer
Academic Pub. (2002)

3. Anaya, J., Chalopin, J., Czyzowicz, J., Labourel, A., Pelc, A., Vaxès, Y.: Collecting
information by power-aware mobile agents. In: Aguilera, M.K. (ed.) DISC 2012.
LNCS, vol. 7611, pp. 46–60. Springer, Heidelberg (2012)

4. Blum, A., Raghavan, P., Schieber, B.: Navigating in unfamiliar geometric terrain.
SIAM Journal on Computing 26(1), 110–137 (1997)

5. Chalopin, J., Das, S., Mihalák, M., Penna, P., Widmayer, P.: Data delivery by
energy-constrained mobile agents. In: Proc. 9th International Symposium on Al-
gorithms and Experiments for Sensor Systems, Wireless Networks and Distributed
Robotics (ALGOSENSORS), pp. 111–122 (2013)

6. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1979)

7. Heo, N., Varshney, P.K.: Energy-efficient deployment of intelligent mobile sensor
networks. IEEE Transactions on Systems, Man, and CyberNetics (Part A) 35(1),
78–92 (2005)

8. Rajagopalan, R., Varshney, P.K.: Data-aggregation techniques in sensor networks:
a survey. IEEE Communications Surveys & Tutorials 8(4), 48–63 (2006)

The Power of Two Choices

in Distributed Votingφ

Colin Cooper1, Robert Elsässer2, and Tomasz Radzik1

1 Department of Informatics, King’s College London, United Kingdom
{colin.cooper,tomasz.radzik}@kcl.ac.uk

2 Department of Computer Sciences, University of Salzburg, Austria
elsa@cosy.sbg.ac.at

Abstract. Distributed voting is a fundamental topic in distributed com-
puting. In pull voting, in each step every vertex chooses a neighbour uni-
formly at random, and adopts its opinion. The voting is completed when
all vertices hold the same opinion. On many graph classes including reg-
ular graphs, pull voting requires Ω(n) expected steps to complete, even
if initially there are only two distinct opinions.

In this paper we consider a related process which we call two-sample
voting: every vertex chooses two random neighbours in each step. If the
opinions of these neighbours coincide, then the vertex revises its opinion
according to the chosen sample. Otherwise, it keeps its own opinion. We
consider the performance of this process in the case where two different
opinions reside on vertices of some (arbitrary) sets A and B, respectively.
Here, |A|+ |B| = n is the number of vertices of the graph.

We show that there is a constant K such that if the initial imbalance
between the two opinions is ν0 = (|A| − |B|)/n ≥ K

√
(1/d) + (d/n),

then with high probability two sample voting completes in a random d
regular graph in O(log n) steps and the initial majority opinion wins.
We also show the same performance for any regular graph, if ν0 ≥ Kλ2,
where λ2 is the second largest eigenvalue of the transition matrix. In the
graphs we consider, standard pull voting requires Ω(n) steps, and the
minority can still win with probability |B|/n.

1 Introduction

Distributed voting has applications in various fields including consensus and
leader election in large networks [5,18], serialisation of read/write in replicated
data-bases [17], and the analysis of social behaviour in game theory [11]. Voting
algorithms are usually simple, fault-tolerant, and easy to implement [18,20].

� The full version of this paper is available at arxiv.org/abs/1404.7479. This work
was partially supported by EPSRC grant EP/J006300/1, “Random Walks on Com-
puter Networks”, the Austrian Science Fund (FWF) under contract P25214-N23
“Analysis of Epidemic Processes and Algorithms in Large Networks”, and the 2012
SAMSUNG Global Research Outreach (GRO) grant “Fast Low Cost Methods to
Learn Structure of Large Networks.”

J. Esparza et al. (Eds.): ICALP 2014, Part II, LNCS 8573, pp. 435–446, 2014.
c∗ Springer-Verlag Berlin Heidelberg 2014

436 C. Cooper, R. Elsässer, and T. Radzik

One straightforward form of distributed voting is pull voting. In the beginning
each vertex of a connected undirected graph G = (V,E) has an initial opinion.
The voting process proceeds synchronously in discrete time steps called rounds.
During each round, each vertex independently contacts a random neighbour and
adopts the opinion of that neighbour. The completion time T is the number
of rounds needed for a single opinion to emerge. We showed in [7] that with
high probability (w.h.p.) the completion time is O(n/(Σ(1−ε2)), where n is the
number of vertices, ε2 is the second largest eigenvalue of the transition matrix,
Σ =

∑
v∈V d2(v)/(d2n), d(v) is the degree of vertex v and d is the average degree.

In the two-party voter model, vertices initially hold one of two opinions A
and B. As usual, the pull voting is completed when all vertices have the same
opinion. Hassin and Peleg [18] and Nakata et al. [22] considered the discrete-
time two-party voter model on connected graphs, and discussed its application
to consensus problems in distributed systems. Both papers focus on analysing the
probability that all vertices will eventually adopt the opinion which is initially
held by a given group of vertices.

Let A and B denote also the sets of vertices with opinions A and B, respec-
tively; A ∪ B = V . Let d(X) be the sum of the degrees of the vertices in a set
X . We say that opinion A wins, if all vertices eventually adopt this opinion.
The central result of [18] and [22] is that the probability that opinion A wins is
PA = d(A)/2m, where m is the number of edges in G. Thus in the case of con-
nected regular graphs, the probability that A wins is proportional to the original
size of A, irrespective of the graph structure. Apart from the probability of win-
ning the vote, another quantity of interest is the time T taken for voting to com-
plete. In [18] it is proven that ET = O(n3 logn) for general connected n vertex
graphs. In the case of random d-regular graphs, w.h.p. ET ∼ 2n(d−1)/(d−2) [8].
It follows from the proof of this result that w.h.p. two-party voting needs Ω(n)
time to complete on random d-regular graphs.

The performance of the two-party pull-voting seems unsatisfactory in two
ways. Firstly, it is reasonable to require that a clear majority opinion wins with
high probability. However, even if initially only a single vertex v holds opinion
A, this opinion wins with probability PA = d(v)/2m. Secondly, the expected
completion time is at least δ(n) on many classes of graphs, including regular
expanders and complete graphs. This seems a long time to wait to resolve a
dispute between two opinions. A more reasonable waiting time would depend on
the graph diameter, which is O(log n) for many important graph classes.

To address these issues, we consider a modified version of pull voting in which
each vertex v randomly queries two neighbours at each step. If both neighbours
have the same opinion, the calling vertex v adopts this opinion. If the two opin-
ions differ, the calling vertex retains its current opinion in this round. To distin-
guish this process from the conventional pull voting, we use terms single-sample
voting and two-sample voting. The aim of the two-sample voting is to ensure
(w.h.p.) that voting finishes quickly and the initial majority opinion wins.

In [6] we analysed a different two-sample process called min-voting. Here,
initially each vertex holds a distinct opinion. In each step every vertex chooses

The Power of Two Choices in Distributed Voting 437

two random neighbours and takes the smaller opinion of the two. For graphs
with good expansion properties we proved that w.h.p. min-voting completes in
time O(log n). Thus min-voting is fast, but an adversary with rather limited
power could break the system by introducing small numbers into the network.

In this paper we analyse two-sample voting for two classes of d-regular graphs:
random graphs and expanders. Our results depend only on the initial imbalance
Σ0 = (|A| − |B|)/n. As an example, for random d-regular graphs there is a
constant K, independent of d, such that if

Σ0 ≥ K

√
d

n
+

1

d
,

w.h.p. two-sample voting is completed in O(log n) steps and the winner is the ini-
tial majority opinion A. Thus our two-sample voting achieves both, logarithmic
completion time and a high probability that the initial majority opinion wins.

It seems interesting to enquire further how the performance of pull voting
systems depends on the range of choices available in the design. We restrict
our discussion to two-party voting. The main issues seem to be the number of
neighbours k to contact at each step, and the rule used to reach a decision based
on the opinions obtained. In the case k = 1, this is single-sample pull voting,
as discussed above. For k = 2, a simple rule is to adopt the opinion if both
neighbours agree (the voting protocol analysed in this paper). For k ≥ 3 odd, a
comparable rule is to adopt the majority opinion. Interestingly, the number of
neighbours contacted at each step can substantially influence the performance
of the process in at least three ways: the time to completion, the nature of the
final outcome, and the robustness of the system against adversarial attacks.

We briefly compare the performance of such systems for two-party voting on
random d-regular graphs. Surprisingly, a clearly defined complexity hierarchy
emerges, which distinguishes between the cases k = 1, k = 2 and k ≥ 5 odd.

– k = 1. As previously mentioned, the expected time to completion in this
case is Ω(n) w.h.p. Let A be the size of the initial majority opinion. The
probability that opinion A wins is A/n. Thus if A = cn, opinion A wins with
probability c < 1, even if A is a clear majority.

– k = 2. This is the topic of this paper. We show that if the initial imbalance
between the opinions is not too small, then the time to completion is Ω(log n)
w.h.p., resulting in an exponential speed up over the case k = 1, and the
majority wins w.h.p. More details are given in the next section.

– k ≥ 5. It follows from the proof presented by Abdullah and Draief [1], that
for k odd and d ≥ k constant, if the initial allocation of the opinions is
chosen randomly, the initial imbalance is sufficiently large, and the selection
of k neighbours is done without replacement, then w.h.p. the majority wins,
and the voting completes in Ω(log logn) rounds.

The performance of two-party voting is well studied in the particular case of the
complete graphKn. Becchetti et al. [4] consider k = 3 and focus on the completion
time as a function of the number of opinions. The result for two opinions isO(log n)

438 C. Cooper, R. Elsässer, and T. Radzik

steps, provided that the initial imbalance is not too small. Cruise and Ganesh [10]
consider a more general but asynchronous model. Their work includes the case k =
2, and gives a Ω(log n) time bound. A variant of two-sample voting in Kn has been
considered by Doerr et al. [12], for the case of opinions drawn from {1, 2, . . . , n}.
In their model, whenever a vertex v contacts two vertices u and w, it adopts the
median of the opinions of v, u and w. Once the system is left with two opinions,
this protocol is equivalent to the two-sample voting considered in this paper. It is
shown in [12] that if initially there are s opinions, the median voting converges to
a so-called“stable consensus” in O(log s log logn + logn) steps.

An alternative approach to k-sample voting is to use a majority dynamic: in
each step, each vertex adopts the most popular opinion among all its neighbours.
Majority dynamics were studied by Mossel et al. in [21] who gave bounds for dif-
ferent scenarios. They consider a model where initially opinions from {1, 2, . . . , r}
are assigned to the vertices independently according to a probability distribution.
Then, the following deterministic process is considered, which is fully defined by
the initial distribution of opinions. For T time steps, each vertex adopts the
opinion held by the majority of its neighbours. After step T a fair and monotone
election function is applied to the opinions of the vertices, resulting in a winning
opinion. It is shown in [21] that (under certain assumptions) for the two-party
model this process results in the correct (initial majority) answer.

Recently, Abdullah and Draief [1] have considered two-party majority voting
on fixed degree sequence random graphs. The initial opinions are distributed
randomly according to a biassed distribution. They show that if the initial bias
toward one opinion is large enough, then w.h.p. this opinion is adopted by all
vertices within Ω(log logn) steps.

2 Our Results for Two-Sample Voting

Initially each vertex holds one of two opinions. For convenience, A and B denotes
these opinions, the two sets of vertices which have these opinions, and the sizes
of these sets, depending on the context. If opinion A is the majority, then the
imbalance Σ (the relative difference between the votes, or the advantage of the
A vote) is given by A − B = Σn. We show that for sufficiently large initial
imbalance, w.h.p. two-sample voting on d-regular random graphs and expanders
completes in logarithmic time and the initial majority opinion wins.

The results hold w.h.p., that is, with probability which tends to 1 with increasing
n, and depends on the selection of a graph (in the case of random graphs) as well
as on the voting process, which is itself probabilistic. A random d-regular graph is
sampled uniformly at random from the set of all (simple) d-regular graphs.

Theorem 1. Let G be a random n-vertex d-regular graph with opinions A and
B and with initial imbalance Σ0 = (A− B)/n. There is an absolute constant K
(independent of d) such that, provided

Σ0 ≥ K

√
d

n
+

1

d
, (1)

The Power of Two Choices in Distributed Voting 439

with high probability two-sample voting is completed in O(log n) steps and the
winner is the initial majority opinion A.

We give a similar result for expanders, that is, for a d-regular graph G with a
small second eigenvalue εG = max{ε2, |εn|}, where ε1 ≥ ε2 ≥ · · · ≥ εn are the
eigenvalues of the transition matrix P = (1/d)A of a random walk on G and A
is the adjacency matrix of G.

Theorem 2. Let G be an n-vertex d-regular graph with opinions A and B and
with the initial imbalance Σ0. There is an absolute constant K (independent of
d and εG) such that if Σ0 ≥ KεG, then with high probability two-sample voting
is completed in O(log n) steps and the winner is the opinion with the initial
majority.

Observe that for the above results to be non-trivial, we should consider K2 ≤
d ≤ n/K2 in Theorem 1 and εG ≤ 1/K in Theorem 2. These theorems say
that to guarantee (w.h.p.) that two-sample voting starting with small imbalance
Σ0 completes within O(log n) steps and the initial majority opinion wins, it
suffices to take a random d-regular graph with appropriately large degree d,
or an expander graph with appropriately small εG. We show that the initial
majority wins in O(log n) steps also in random regular graphs with small degree
and in expanders with εG not too small, if the initial minority is small enough.

Theorem 3. Let d > 10 and let G be a random d-regular n-vertex graph with
votes A and B. There is a constant c > 0 (independent of d) such that if the
initial minority is at most cn, then w.h.p. two-sample voting is completed in
O(log n) steps and the winner is the initial majority.

Theorem 4. Let G be a d-regular n-vertex graph with ε = εG = 3/5− π. If the
initial minority is at most (π/5)n, then w.h.p. two-sample voting is completed in
O(log n) steps and the winner is the initial majority.

The above theorems hold under following adversarial conditions. The adver-
sary has full knowledge of the graph, decides the initial distribution of the opin-
ions among the vertices, and can arbitrarily redistribute the opinions at the start
of each voting step. The adversary cannot change the number of opinions of each
type. However, one can trace our analysis to see that if we allow the adversary
to change the opinions of at most f = o(Σ0n) vertices at each step, then under
the conditions considered in Theorems 1-4, after O(log n) voting steps all but
O(f) vertices adopt the majority opinion (cf. [12]).

As described before, there seems to be a clearly defined hierarchy w.r.t. dis-
tributed voting in random regular graphs. If every node is only allowed to consult
one single neighbour (and adopt its opinion), then as shown in [7], Ω(n) steps are
required to converge to one opinion. If every node can consult two neighbours
(selecting them randomly with or without replacement) and adopt the opinion
of these two vertices if they are the same, then the running time is O(log n), so
exponentially faster. On the other hand, even if the adversary is not allowed to
re-distribute votes, δ(logd n) is a natural lower bound in any d-regular graph.

440 C. Cooper, R. Elsässer, and T. Radzik

This holds since there might be initially Ω(n) edges such that the end vertices
of all these edges have the same minority opinion B. The end vertices of such an
edge choose each other with probability Ω(1/d2), in which case they both keep
their opinion B. Thus, the protocol needs δ(logd n) steps in order to guaran-
tee that in none of these Ω(n) edges the end vertices choose each other all the
time. This lower bound holds also for k-sample voting for a constant k ≥ 3, if
the selection of k neighbours is done with replacement (if a B vertex v has a B
neighbour, then v does not change its opinion in the current step with probability
δ(1/dk)). If every node may contact at least five different neighbours (selection
without replacement) and adopts the majority opinion among them, then on
random regular graphs with randomly distributed opinions (biased toward A),
Ω(log logn) steps suffice until A wins (this follows from the analysis in [1]).

We should mention that the last result does not hold if the opinions are not
randomly distributed. An adversary could assign the minority opinion B to a
vertex v as well as all vertices which are at distance at most Diam/3 to v, where
Diam denotes the diameter of the graph. Clearly, the voting protocol would need
at least Diam/3 steps. Also, the result w.r.t. 5-sample voting [1] requires graphs
such that for each vertex, the neighbourhood of this vertex of depth O(log logn)
is (almost) a tree. It might therefore be difficult to extend that result beyond
the class of random graphs.

Concerning our results, the constant eigenvalue gap 1−εG (as in Theorem 4)
seems to be needed. For example, consider a hypercube, where d = logn and
1 − εG = o(1). If the adversary is allowed to rearrange the opinions in each
step, then we may have for δ(d2) steps configurations in which all vertices of
a subcube of dimension d − c have opinion B, where c is a constant. Such a
B-vertex converts to A with probability (c/d)2, so δ(d2) = δ(log2 n) steps are
needed for the protocol to finish.

3 Background Material and Outline of Proof

The analysis of two-sample voting is made in the following three phases, where
B is the minority vote.
Phase I: cn ≤ B ≤ n(1 − Σ0)/2.
Phase II: ψ ≤ B ≤ cn.
Phase III: 1 ≤ B ≤ ψ.

Let B(t) denote the set of vertices with opinion B and the size of this set in
step t. Whenever it is clear from the context, we write B instead of B(t). Phase
I reduces B(t) from B(0) = n(1−Σ0)/2 to B(T) ≤ cn, for some small constant c,
in a sequence of T = O(log(1/Σ0)) rounds. The reduction in B(t) in Phase II is
more dramatic. The ψ threshold between phases II and III is a function slowly
growing with n. In Phase III things can slow down again and the last few steps
can be viewed a biassed random walk.

The following Chernoff–Hoeffding inequalities are used throughout the proofs.
Let Z = Z1 + Z2 + · · ·ZN be the sum of the independent random variables
0 ≤ Zi ≤ 1, i = 1, 2, . . . , N , E(Z1 + Z2 + · · · + ZN) = Nμ, and 0 ≤ π ≤ 1. Then

The Power of Two Choices in Distributed Voting 441

Pr(Z ≤ (1 − π)Nμ) ≤ e−Σ2Nμ/3, and Pr(Z ≥ (1 + π)Nμ) ≤ e−Σ2Nμ/2. (2)

Our proofs for the case of random graphs are made using the configuration
model of d-regular n-vertex multigraphs. Let Cn,d be the space of d-regular n-
vertex configurations, and let C≥

n,d be the sub-space of Cn,d of the configurations
whose underlying graphs are simple. A configuration S is a matching of the nd
“configuration points” (each vertex is represented by d points). Every simple
graph maps to the same number of configurations, so C≥

n,d maps uniformly onto
Gn,d, the space of d-regular n-vertex graphs. We use the following result of [15]
for the size of |C≥|/|C|. See e.g. [9] for a proof.

Lemma 1. Let 1 ≤ d ≤ n/8. For a random configuration S ∈ Cn,d,

Pr(S ∈ C≥
n,d) ≥ e−20d2

. (3)

This lemma is used in the following way. Let Q be a property of d-regular
n vertex multigraphs. Then, denoting by G(S) the underlying multigraph of
configuration S,

PrG(G ∈ Q) = PrC(G(S) ∈ Q | S ∈ C≥) ≤ PrC(G(S) ∈ Q) · e20d2

. (4)

At any step t of the voting process, let φAB = φAB(t) be the number of A
vertices converting to B during this step. Similarly, let φBA be the number of
B vertices converting to A during step t. At each step we obtain a lower bound
on EφBA, an upper bound on EφAB, and use the concentration of these two
random variables given by (2) to get a w.h.p. value of φ = φBA − φAB, the
increase of the number of A vertices in this step.

For a vertex v and a set of vertices C, let dCv be the number of vertices in C
which are adjacent to v. For v ∈ A, let Xv = 1 if v chooses twice in B at step t,
and 0 otherwise. Thus

φAB = XA =
∑
v∈A

Xv

The Xv are independent {0, 1} random variables with the expected value de-
pending whether the neighbours are selected with or without replacement:

EXv(with replacement) =

(
dBv
d

)2

, EXv(no replacement) =
(dBv)(dBv − 1)

d(d− 1)
.

We give analysis for sampling with replacement. The case when sampling is
without replacement is similar because

EXv(no replacement) =
d

d− 1
EXv(with replacement),

so any inequalities for expected values in one model imply similar inequalities in
the other model.

We omit most of the proofs; see the full version on arXiv for details.

442 C. Cooper, R. Elsässer, and T. Radzik

4 Phase I of Analysis: cn ≤ B ≤ n(1 − λ0)/2

Lemma 2 below gives a sufficient condition for a fast reduction of the minority
B-vote from (1− Σ0)n/2 to cn. The condition in Lemma 2 says that the number
E(X,Y) of edges between any disjoint large subsets of vertices X and Y is close
to the value dXY/n expected in the random regular graph. This condition is
of the form as in the Expander Mixing Lemma (stated below as Lemma 3), so
Lemma 2 can be immediately applied to expanders (see Corollary 1). Lemma 2
can also be applied without a reference to the second eigenvalue (if the second
eigenvalue is not known or is not good enough) by directly checking that large
subsets of vertices are connected by many edges. We illustrate this by considering
random d-regular graphs (see Lemma 4 and Corollary 2).

The parameters c and α in the above lemma can be considered as some small
constants, but they can also depend on d (and decrease with increasing d).

Lemma 2. Let 0 < c ≤ 1/2, 0 < α ≤ c3/2/36, and α2c2n = δ(nΣ), for a
constant π > 0. Let G be a d-regular n-vertex connected graph such that∣∣∣∣E(X,Y) − dXY

n

∣∣∣∣ ≤ αd
√
XY , (5)

for each pair X and Y of disjoint subsets of vertices of sizes Y ≥ cn and X ≥
(2/3)αc3/2n. There exist absolute constants K and K ∈ (independent of d, c and
α) such that, if the initial advantage of the A-vote in G is

Σ0 ≥ Kα, (6)

then with probability at least 1−e−ψ(θ2c2n), the advantage of the A-vote increases
to 1−2c (the B-vote decreases to cn) within K ∈(log(1/Σ0)+log(1/c)) voting steps.

Proof (Sketch). Consider one voting step, when the vote imbalance Σ = (A−B)/n
is Kα ≤ Σ ≤ 1 − 2c, for some large constant K. Using (5), show that

EφBA =
∑
v∈B

(
dAv
d

)2

≥ 1

Bd2

(∑
v∈B

dAv

)2

≥ A2B

n2
(1 −Ω(β)) , (7)

where β ≡ βAB = αn/
√
AB. Then show that the expectation EφAB is

EφAB =
∑
v∈A

(
dBv
d

)2

≤ AB2

n2
(1 + Ω(β)) , (8)

by partitioning set A into sets Ci, for i = 1, 2, . . . , q = Ω(log(n/(βB2)):

Ci =

{
v ∈ A : (1 + 2i−1β)

dB

n
≤ dBv < (1 + 2iβ)

dB

n

}
.

The bounds (7) and (8), and the concentration bounds (2) imply

A(t + 1) ≥ A(t) +
A(t)B(t)(A(t) −B(t))

n2
−Ω(β(t)) · n, (9)

and analysing this recurrence leads to the bound on the number of steps. �

The Power of Two Choices in Distributed Voting 443

Lemma 3. (Expander Mixing Lemma [3]). Let G = (V,E) be a d-regular n-
vertex graph and denote ε = εG = max{|ε2|, |εn|}. Then for all S, T ⊆ V ,∣∣∣∣E(S, T) − dST

n

∣∣∣∣ ≤ εd
√
ST .

Lemmas 2 and 3 imply the following corollary.

Corollary 1. For any constant 0 < c < 1/2, there exist constants K1 and K2

(which depend on c) such that for any regular n-vertex graph G with the initial
advantage of the A-vote Σ0 ≥ K1εG, the minority vote B decreases to cn within
K2 log(1/Σ0) voting steps, with probability at least 1 − e−ψ(ν2

Gn).

Proof. Let K1 = max{K, 36/c3/2}, where constant K is from Lemma 2. If ε =
εG ≥ 1/K1, then the corollary is trivial. If ε ≤ 1/K1, then ε ≤ c3/2/36 and
we can apply Lemma 2 with c and α = ε. Now Lemmas 2 and 3 imply that if
Σ0 ≥ K1ε, then with probability at least 1 − e−ψ(ν2n), the size of the B-vote
decreases to cn within K ∈(log(1/Σ0) + log(1/c)) = K2(log(1/Σ0) voting steps.

Consider now random regular graphs. If d = O(1), then a random d-regular
graph has εG ≤ (2

√
d− 1 + π)/d, w.h.p., where π > 0 can be any small constant

[16]. Thus, for d = O(1) Corollary 1 applies. To apply Lemma 2 to random
regular graphs with some degree which may grow with the number of vertices,
we need to establish a suitable α for (5) without referring to εG. The bound we
show in the next lemma is stronger than a similar bound shown in [14], which
would lead to a weaker relation between Σ0 and d than in Theorem 1.

Lemma 4. For given set sizes X ≤ Y , in a random d-regular n-vertex graph
G = (E, V), with probability at least 1 − 2e−Y , for each pair of disjoint subset
of vertices X and Y of sizes X and Y ,

∣∣∣∣E(X ,Y) − dXY

n

∣∣∣∣ ≤ d
√
XY

√
1

d
24 log(ne/Y) +

d

Y
160. (10)

Corollary 2. For any constant 0 < c < 1/2, there exist constants K1 and K2

(which depend on c) such that for a random d-regular n-vertex graph with the
initial advantage of the A-vote

Σ0 ≥ K1

√
1

d
+

d

n
, (11)

the minority vote B decreases within K2 log(1/Σ0) steps to cn, with probability

at least 1 − e−ψ(n1/2).

5 Phase II of Analysis: ω ≤ B ≤ cn

The analysis of this middle phase needs the property that small sets of vertices do
not induce many edges, which holds for expanders and random regular graphs.
Lemma 5 shows that for a graph with such a property, if the minority vote is
still substantial, then one voting step reduces this minority by a constant factor

444 C. Cooper, R. Elsässer, and T. Radzik

with high probability. This implies that with high probability the minority vote
reduces from cn to ψ within O(log n) steps (Corollary 3).

Lemma 5. Let G be a d-regular n-vertex graph with A and B votes, A > B.
Let 0 < α ≤ 3/10 and Δ = Δ(α) = (1/2)(1 − 2α)(1 − 3α) > 0. If the set B is
such that every superset S ⊇ B of size at most (1 + 1/α)B spans at most αdS
edges (that is, |E(S)| ≤ αdS), then one voting step reduces B at least by a factor
1 − Δ, with probability at least 1 − e−λ̃B , for a constant Δ̃.

Corollary 3. Let G be a d-regular n-vertex graph, and let 0 < g < 1 be such
that for each subset of vertices S of size at most gn, |E(S)| ≤ (3/10)dS. Then
the minority vote B is reduced from (3/13)gn to at most ψ within O(log n) steps
with probability at least 1 − e−ψ(ρ).

Lemma 6. Let G be a d-regular n-vertex graph with ε = εG < 3/5. Then the
minority vote B reduces from (3/13)(3/5 − ε)n to ψ within O(log n) steps with
probability at least 1 − e−ψ(ρ).

Proof. This lemma follows from Corollary 3 applied with c = 1−(2/5)(1−ε)−1 >
0, after checking that |E(S)| ≤ (3/10)dS whenever S ≤ cn. It is shown in [19]
that the conductance of graph G = (V,E) defined as

ΘG = min
⊆⊗=S∃V

nE(S, S̄)

dSS̄
,

is at least 1 − ε. This implies that E(S, S̄) ≥ (1 − ε)dSS̄/n, so if S ≤ cn, then

|E(S)| =
1

2

(
dS − E(S, S̄)

) ≤ 1

2
dS

(
1 − (1 − ε)S̄/n

) ≤ 3

10
dS.

As mentioned before, for constant d a random d-regular graph has eigenvalue
εG ≈ 2/

√
d, w.h.p. Thus, for constant d, the result which we have obtained for

expanders (Lemma 6) applies to random regular graphs as well, provided that d
is sufficiently large to guarantee εG < 3/5. To consider random regular graphs
with degree which may grow with the number of vertices, we show the following
lemma. This is a stronger version of a result from [9] that w.h.p. for 3 ≤ d ≤ cn
no set of vertices of size |S| ≤ n/70 induces more than d|S|/12 edges.

Lemma 7. Let 600 ≤ d ≤ n/K for some large constant K, and let G = (V,E)
be a random d-regular n vertex graph. Let α = 1/12 and consider the event

Q = {∃S ⊆ V : |S| ≤ n/15 and S spans at least αd|S| edges } .
Then Pr(Q) ≤ n−α, for some constant ν > 0.

Lemma 8. Let d > 10 and G be a random d-regular n-vertex graph with votes
A and B. There is a constant c > 0 (independent of d) such that the minority
vote B reduces from cn to ψ within O(log n) steps with probability at least 1 −
e−ψ(ρ) − o(1/n).

Proof. For 11 ≤ d < 600 use Lemma 6: in this case, a random d-regular graph
has εG ≤ (2

√
d− 1 + π)/d < 3/5.

For 600 ≤ d ≤ n/K, Lemma 7 implies that with probability at least
1 − o(1/n), E(S) ≤ (1/12)dS < (3/10)dS, for each subset of vertices S of

The Power of Two Choices in Distributed Voting 445

size at most n/15. Thus, applying Corollary 3 with g = 1/15, we conclude that
the minority vote B is reduced from (3/13)gn = (1/65)n to at most ψ within
O(log n) steps with probability at least (1 − o(1/n))(1 − e−ψ(ρ)).

6 Phase III of Analysis: 1 ≤ B ≤ ω

Lemma 9. Let ψ = ψ(1) grow with n and ψ = o(n). Let G be a d-regular n-
vertex graph such that for each subset of vertices S of size at most (13/3)ψ,
|E(S)| ≤ (3/10)dS. Then the minority vote B is reduced from ψ to 0 within
O(ψ logψ) steps with probability at least 1 − e−ψ(ρ).

Corollary 4. Let ψ = ψ(1) grow with n and ψ = o(n). If G = (V,E) is a d-
regular expander with εG < 3/5 or it is a random d-regular graph with d > 10,
then voting reduces B from at most ψ to 0 in O(ψ logψ) steps with probability
at least 1 − e−ψ(ρ).

Proof. If G is a d-regular expander with εG ≤ 3/5, then the assumptions of
Lemma 9 are fulfilled for G, as shown in the proof of Lemma 6. If G is a random
d-regular graph with d = ψ(1), then the assumptions of Lemma 9 are also fulfilled
for G according to Lemma 7. If d > 10 but d = O(1), then G has eigenvalue
εG < 3/5, w.h.p. [16].

7 Putting the Phases Together

To conclude the proof of our main Theorems 1 and 2, it remains to check how
the three phases fit together. For expanders (Theorem 2), first use Corollary 1
with c = 1/10 to get constant K = K(c) such that if the initial imbalance of vote
is Σ0 ≥ KεG, then the minority vote reduces to n/10 within O(log(1/Σ0)) steps.
Then use Lemma 6 with ψ = logn/ log logn and assume that εG ≤ 1/6 to show
that the minority vote reduces from n/10 to ψ in O(log n) steps. Finally, apply
Corollary 4 with the same ψ to show that the minority vote decreases from ψ to
0 in O(log n) steps.

For random regular graphs, Lemma 8 gives a constant c < 1/2 which defines
the beginning of phase II. Then Corollary 2 can be used to find the constant
K = K(c) for Theorem 1. The transition from phase II to phase III is at the
same ψ = logn/ log logn as before.

According to our analysis, we can also derive the following corollary.

Corollary 5. Assume an adversary can change the opinion of at most f =
o(Σ0n) vertices during the execution of the algorithm. Then, under the assump-
tions of Theorems 1 and 2, w.h.p. all but O(f) vertices will adopt opinion A
within O(log n) steps.

References

1. Abdullah, M., Draief, M.: Consensus on the Initial Global Majority by Local Ma-
jority Polling for a Class of Sparse Graphs (2013), http://www.arXiv.org

2. Aldous, D., Fill, J.: Reversible Markov Chains and Random Walks on Graphs,
http://stat-www.berkeley.edu/pub/users/aldous/RWG/book.html

http://www.arXiv.org
http://stat-www.berkeley.edu/pub/users/aldous/RWG/book.html

446 C. Cooper, R. Elsässer, and T. Radzik

3. Alon, N., Chung, F.R.K.: Explicit construction of linear sized tolerant networks.
Discrete Math. 72, 15–19 (1989)

4. Becchetti, L., Clementi, A., Natale, E., Pasquale, F., Silvestri, R., Trevisan, L.:
Simple Dynamics for Majority Consensus (2013), http://www.arXiv.org

5. Brahma, S., Macharla, S., Pal, S.P., Singh, S.K.: Fair Leader Election by Random-
ized Voting. In: Ghosh, R.K., Mohanty, H. (eds.) ICDCIT 2004. LNCS, vol. 3347,
pp. 22–31. Springer, Heidelberg (2004)

6. Cooper, C., Elsässer, R., Ono, H., Radzik, T.: Coalescing Random Walks and
Voting on Graphs. In: PODC 2012, pp. 47–56 (2012)

7. Cooper, C., Elsässer, R., Ono, H., Radzik, T.: Coalescing Random Walks and
Voting on Connected Graphs. SIAM J. on Discrete Math. 27(4), 1748–1758 (2013)

8. Cooper, C., Frieze, A., Radzik, B.: Multiple Random Walks in Random Regular
Graphs. SIAM J. on Discrete Math. 23(4), 1738–1761 (2009)

9. Cooper, C., Frieze, A., Reed, B.: Random regular graphs of non-constant degree: con-
nectivity and Hamilton cycles. Combinatorics Prob. & Comp. 11, 249–262 (2002)

10. Cruise, J., Ganesh, A.: Probabilistic consensus via polling and majority rules.
arXiv:1311.4805

11. Deng, X., Papadimitriou, C.: On the Complexity of Cooperative Solution Concepts.
Mathematics of Operations Research 19(2), 257–266 (1994)

12. Doerr, B., Goldberg, L.A., Minder, L., Sauerwald, T., Scheideler, C.: Stabilizing
Consensus with the Power of Two Choices. In: SPAA 2011, pp. 149–158 (2011)

13. Donnelly, P., Welsh, D.: Finite particle systems and infection models. Math. Proc.
Camb. Phil. Soc. 94(1), 167–182 (1983)

14. Fountoulakis, N., Panagiotou, K.: Rumor Spreading on Random Regular Graphs
and Expanders. In: Serna, M., Shaltiel, R., Jansen, K., Rolim, J. (eds.) APPROX
2010. LNCS, vol. 6302, pp. 560–573. Springer, Heidelberg (2010)

15. Frieze, A., ffiLuczak, T.: On the independence and chromatik numbers of random
graphs. J. Combinatorial Theory, Ser. B 54, 123–132 (1992)

16. Friedman, J.: A proof of Alon’s second eigenvalue conjecture. In: STOC 2003, pp.
720–724 (2003)

17. Gifford, D.:WeightedVoting for ReplicatedData. In: SOSP1979, pp. 150–162 (1979)
18. Hassin, Y., Peleg, D.: Distributed probabilistic polling and applications to propor-

tionate agreement. Information & Computation 171(2), 248–268 (2001)
19. Jerrum, M., Sinclair, A.: Conductance and the rapid mixing property for Markov

chains: the approximation of permanent resolved. In: STOC1988, pp. 235–244 (1988)
20. Johnson, B.: Design and Analysis of Fault Tolerant Digital Systems. Addison-

Wesley (1989)
21. Mossel, E., Neeman, J., Tamuz, O.: Majority Dynamics and Aggregation of Infor-

mation in Social Networks, arXiv:1207.0893 (2012)
22. Nakata, T., Imahayashi, H., Yamashita, M.: Probabilistic local majority voting

for the agreement problem on finite graphs. In: Asano, T., Imai, H., Lee, D.T.,
Nakano, S.-i., Tokuyama, T. (eds.) COCOON 1999. LNCS, vol. 1627, pp. 330–338.
Springer, Heidelberg (1999)

23. Oliviera, R.I.: On the Coalescence Time of Reversible RandomWalks. Trans. Amer.
Math. Soc. 364, 2109–2128 (2012)

24. Wormald, N.C.: Models of random regular graphs. In: Lamb, J.D., Preece, D.A.
(eds.) Surveys in Combinatorics, pp. 239–298

http://www.arXiv.org

Jamming-Resistant Learning
in Wireless Networks�

Johannes Dams1, Martin Hoefer2, and Thomas Kesselheim3

1 Dept. of Computer Science, RWTH Aachen University, Germany
dams@cs.rwth-aachen.de

2 Max-Planck-Institut für Informatik and Saarland University, Germany
mhoefer@mpi-inf.mpg.de

3 Dept. of Computer Science, Cornell University, USA
kesselheim@cs.cornell.edu

Abstract. We consider capacity maximization in wireless networks un-
der adversarial interference conditions. There are n links, each consisting
of a sender and a receiver, which repeatedly try to perform a successful
transmission. In each time step, the success of attempted transmissions
depends on interference conditions, which are captured by an interference
model (e.g. the SINR model). Additionally, an adversarial jammer can
render a (1− δ)-fraction of time steps unsuccessful. For this scenario, we
analyze a framework for distributed no-regret learning algorithms. We
obtain an O (1/δ)-approximation for the problem of maximizing the num-
ber of successful transmissions. Our approach provides even a constant-
factor approximation when the jammer exactly blocks a (1− δ)-fraction
of time steps. In addition, we consider the parameters of the jammer be-
ing unknown to the algorithm, and we also consider a stochastic jammer,
for which we obtain a constant-factor approximation after a polynomial
number of time steps. We extend our results to more general settings, in
which links arrive and depart dynamically.

1 Introduction

One of the algorithmic challenges in this domain of wireless communication is
referred to as capacity maximization. The goal is to maximize the number of
simultaneous successful transmissions in a given network. More formally, the
wireless network is represented by a set of n communication requests (or links),
each consisting of a pair of sender and receiver. The resulting algorithmic prob-
lem is to find a maximum cardinality subset of successful links, where “success-
ful” is defined by the absence of conflicts at receivers in an interference model.
Most promimently traditional models like disk graphs or the recently popular
SINR model [16] are used in such analyses to capture the impact of simultaneous
� A full version of the paper is available online [6]. This work has been supported by
DFG through Cluster of Excellence “MMCI” at Saarland University, UMIC Research
Centre at RWTH Aachen University, grant Ho 3831/3-1 and by a fellowship within
the Postdoc-Programme of the German Academic Exchange Service (DAAD).

J. Esparza et al. (Eds.): ICALP 2014, Part II, LNCS 8573, pp. 447–458, 2014.
© Springer-Verlag Berlin Heidelberg 2014

448 J. Dams, M. Hoefer, and T. Kesselheim

transmission. For example in the SINR model “success” (or being conflict-free)
is defined by the sum of interference from other links being below a certain
threshold.

To this date, many algorithms for capacity maximization that provide prov-
able worst-case guarantees are centralized [10–13]. In contrast, wireless networks
are inherently decentralized and, hence, there is a need for algorithms with
senders making transmission decisions in a distributed way not knowing the
behavior of other links. Distributed algorithms often assume perfect, static con-
ditions including all links behaving as given by the algorithm. By contrast, the
environment can change rapidly, particularly in the presence of a co-existing
network or even maliciously behaving wireless transmitters. A common way to
take these effects into consideration is by modeling interference conditions as if
they were determined by an adversary, adapting to the algorithm’s efforts over
time. Thus algorithms need to be very robust.

In this paper, we address this issue and extend capacity maximization to this
scenario by studying distributed learning algorithms with adversarial jamming.
Links iteratively adapt their behavior to maximize the capacity of the single
time steps. We consider a very powerful adversary model of a (T √, 1−Π)-bounded
jammer [4]. Such an adversary is allowed to make all transmissions unsuccessful
during a (1 − Π)-fraction of any time window of T √ time steps. Beyond such a
worst-case scenario, we also address a stochastic jammer that blocks each time
step independently at random with a probability of (1 − Π).

We assume that links have no prior knowledge about the size or structure
of the network. Giving such information to links can be infeasible when con-
sidering, e.g., distributed large scale sensor networks or ad-hoc networks. The
only feedback they obtain is whether their respective own previous transmis-
sions were successful or not. Links must adjust their behavior over time and
decide about transmission attempts given only the previous feedback. Our al-
gorithms are based on no-regret learning techniques to exploit the non-jammed
time steps as efficiently as possible. A no-regret learning algorithm is an iterative
randomized procedure that repeatedly decides which of multiple possible actions
to take. After choosing an action, the algorithm receives a utility as feedback for
its choice. Based on this feedback, it adjusts its internal probability distribution
over choices, thereby obtaining a “no-regret” property over time. Each link can
run such an algorithm independently of other links – even without knowing the
number of links or the network structure. Our analysis shows how one can use
such algorithms and their no-regret property to obtain provable approximation
factors for capacity maximization under adversarial jamming. This can even be
achieved without knowing the bound on the jammer (i.e., T √ and Π).

We adapt no-regret learning algorithms to obtain a constant-factor approxi-
mation of the maximum possible number of successful transmissions if the ad-
versary jams exactly a (1 − Π)-fraction of the time. If the adversary jams less
time steps, our algorithms still guarantee an O(1/Π)-approximation. While our
algorithms need to know the parameters T √ and Π of the adversary, they are
oblivious to the number n of links and the exact topology of the network.

Jamming-Resistant Learning in Wireless Networks 449

More generally, we can even obtain the similar results if T √ or Π is unknown.
Based on these results, we show that for a stochastic jammer, the same results
hold with high probability after a polynomial number of time steps.

Our results are obtained using a proof template based on linear program-
ming. This way, we can significantly generalize previous approaches for online
learning in wireless networks. We identify and base our approach on several key
parameters of the sequences of transmission attempts resulting from our algo-
rithms. We then show how to adjust no-regret learning algorithms to compute
such sequences with suitable values for the key parameters. This approach turns
out to be very flexible. Besides adversarial and stochastic jamming, we can suc-
cessfully address even further generalizations of the scenario with little overhead
extending our results to incorporate natural aspects that have not been subject
to worst-case analysis in the literature so far, even without adversarial jamming.

For example, we consider a scenario where links can join and leave the net-
work, which introduces additional difficulties for the algorithms to adjust their
behavior to the network. In this case, our approximation guarantee increases
only by a factor of O(log n). By applying our analysis directly with the proof
template, we can easily combine this with all results on adversarial jamming
above if links remain in the network sufficiently long to guarantee the proper-
ties necessary for applying our template. The template can also be applied to
scenarios where a “link” consists of a single sender and multiple receivers. We
obtain the same results as before when a successful transmission means that for
a sender (a) at least one or (b) all receivers are conflict-free (i.e., receive the
respective transmission successfully). Due to spatial constraints details on this
issue and most proofs can only be found in the full version of this paper [6].

1.1 Related Work

Capacity maximization has been a central algorithmic research topic over the
last decade. Many papers consider graph-based interference models, mainly re-
stricted to simple models like disk graphs [9, 17, 22]. This neglects some of the
main characteristics of wireless networks, and recently the focus has shifted
to more realistic settings. Most prominently, Moscibroda and Wattenhofer [16]
popularized models based on the signal-to-interference-plus-noise-ratio (SINR).

Our work is closely related to results on learning and capacity maximization
in the SINR model with uniform powers (see e.g. [1,8,10,18]). In fact, we consider
a more general scenario including a variety of interference models that satisfy a
property called C-independence, which is similarly used in [2].

The effect of jammers on wireless networks was studied in [4, 19–21]. These
works focus on the simpler graph-based interference models. A recent approach
by Ogierman et al. [18] specializes in the SINR model with jammers. They tai-
lor the adversary to the SINR model rather specifically – the adversary has a
budget of power to influence ambient noise. In contrast, our work considers a
general class of interference models. The network model also differs. It is not
link-centered, but it consists of single nodes able to transmit and to receive mes-
sages from all other nodes. The number of successful transmissions is defined as

450 J. Dams, M. Hoefer, and T. Kesselheim

the number of receivers successfully decoding no matter from which sender the
transmission originates. They analyze the algorithm in terms of competitiveness
proving a constant competitive-factor under certain conditions.

While we obtain a similar approximation ratio for a link-centered scenario,
we are able to extend it in various directions. The regret-learning techniques
allow a very distributed approach with little feedback. We do not assume that a
specific algorithm is used but instead rely on the (external) no-regret property
of existing algorithms yielding some key properties to apply our proof template.
All algorithms that satisfy these conditions are suitable for application within
our framework.

In a recent paper [7], we study no-regret learning algorithms for multiple
channels. An adversary draws stochastic availabilities that are presented to the
links in the beginning of each round and links have to decide on which channel to
transmit or not to transmit at all. Having multiple channels and knowing which
channels are available before deciding whether to transmit gives the problem
quite a different flavor. While there are similarities in the analysis, we apply
more intricate no-sleeping-expert regret algorithms.

1.2 Formal Problem Description

Network Model and Adversary. We consider the network consisting of a
set V of n wireless links Γv = (sv, rv) for v → V composed of sender sv and
receiver rv. We assume the time steps to be synchronized and all links to use
the same channel, i.e., all transmission attempts increase the interference for
each other. An adversary is able to jam a restricted number of time slots. The
overall goal in capacity maximization is to maximize the total number of trans-
mission over time. Whenever some link v → V transmits successfully in some
time step, this counts as one successful transmission. Success is defined using
an interference model as specified below. We aim to maximize the sum of suc-
cessful transmissions over all links and all time steps. With full knowledge of
the jammer, an optimum solution is constructed by picking in each time step
a set of non-jammed links V √ ∈ V with maximum cardinality such that their
transmissions are simultaneously successful. Obviously, this approach requires
global knowledge, centralized control, and is known to be NP-hard. Instead, we
design distributed learning algorithms that provably approximate the optimum
number of successful transmissions.

Similarly as in previous work [4, 19, 20] we assume there is an adversary that
can render transmission attempts unsuccessful. The jammer is prevented from
blocking all time steps and making communication impossible as follows.

– A (global) (T √, 1 − Π)-bounded adversary can jam at most a (1 − Π)-fraction
of the time steps in any time window of length T √ or larger.

– We will also consider the special case of an (global) (T √, 1−Π)-exact adversary,
which exactly jams an (1 − Π)-fraction of any time window of length T √.

– As a third variant, we treat a (global) stochastic adversary, where we assume
any time step to be independently jammed with a probability 1 − Π.

Jamming-Resistant Learning in Wireless Networks 451

Whereas these adversaries jam the channel globally for all links, an individual
adversary can block each link individually. This leads to similar definitions of in-
dividual (T √, 1−Π)-bounded, individual (T √, 1−Π)-exact and individual stochastic
adversaries. They obey the same restrictions on the type and number of jammed
time slots for each link, but decide individually for each link if a slot is jammed.
Note that the random trials of the individual stochastic adversary can be corre-
lated between links but are assumed to be independent between time steps.

The stochastic adversary is obviously not adaptive. In all other cases, the ad-
versary can jam arbitrarily (subject to the given constraints). Thus, the adver-
sary can be a adaptive online adversary knowing the history of actions played
by the algorithm or a reactive one even knowing the actions chosen by the
algorithm beforehand.

When the (individual) adversary jams a time slot, every attempted transmis-
sion (of the jammed link) in this time slot becomes unsuccessful. Links receive as
information only success or failure of their own transmissions, i.e., they cannot
distinguish whether a transmission failed due to adversarial jamming or interfer-
ence from other transmissions. Thus, a protocol has to base the decisions about
transmission only on the feedback of success or failure of previous time steps.
The optimum differs in different time steps due to jamming and we will consider
the average optimum for comparison later.

Interference Model. We use a general framework based on edge-weighted
conflict graphs that encompasses a variety of interference models, including the
SINR model or models based on bounded-independence graphs like unit-disk
graphs [22]. A conflict graph is a directed graph G = (V, E) consisting of the
links as vertices and weights bv(w) for any edge (v, w) → E. Given a subset L of
links transmitting, we say that Γw → L is successful iff

∑
v∈L bv(w) ≤ 1 (i.e., the

sum of incoming edge weights from other transmitting links is bounded by 1).
Such a set of links is called feasible if all links in this set can successfully transmit
simultaneously. We use the notion of C-independence as a key parameter for the
connection between interference model and performance of the algorithm.

Definition 1. A conflict graph is called C-independent if for any feasible set L
there exists a subset L√ ∈ L with |L√| ⊂ 1/2 · |L| and ∑

v∈L′ bu(v) ≤ C for all
u → V , where |L| and |L√| denote the number of transmitting links in these sets.

C-independence generalizes the bounded-independence property popular in the
distributed computing literature. It has been observed, e.g., in [7,15] that success-
ful transmissions in the SINR model can easily be represented by this framework
using edge weights based on the notion of affectance [13].

If the gain matrix in the SINR model is based on metric distances and we use
uniform power for transmission, this results in a C-independent conflict graph
with constant C = O(1) (cf. [2, Lemma 11]).

While we assume such a constant C-independence for simplicity, our results
can be generalized straightforward to arbitrary conflict graphs losing a factor of
C in the approximation guarantee.

452 J. Dams, M. Hoefer, and T. Kesselheim

No-Regret Learning. Our algorithms for capacity maximization are based
on no-regret learning. Links decide independently in every round (or time slot)
whether to transmit or not using an appropriate learning algorithm. The algo-
rithms adjust their behavior based on the outcome of previous decisions. This
outcome is either a successful transmission or an unsuccessful one. The quality
of an outcome is measured by a suitable utility function u

(t)
i (a(t)

i) depending on
action a

(t)
i chosen by player i in round t and depending on actions chosen by

other players in t.
In our case, there are only two possible actions in each round – sending or

not sending. We use utility functions u
(t)
i defined in the subsequent sections that

strike a balance between interference minimization and throughput maximiza-
tion, where we also account for different forms of adversarial jamming. Given
this setup with appropriate utility functions, we assume links apply arbitrary no-
regret learning algorithms that minimize external regret. The (external) regret
for an algorithm or a sequence of chosen actions is defined as follows.

Definition 2. Let a
(1)
i , . . . , a

(T)
i be a sequence of action vectors. The exter-

nal regret of this sequence for link i is defined by maxa′
i
∈A

∑T
t=1 u

(t)
i (a√

i) −
∑T

t=1 u
(t)
i (a(t)

i), where A denotes the set of actions. An algorithm has the no-
external regret property if the external regret of the computed sequence of actions
grows in o(T).

Note that algorithms yielding the no-regret properties do not actually calculate
the regret. Here, the regret depicts the difference between the actual gained
utilities and the best action in hindsight (either transmitting or not) with fixed
actions of others and the jammer.

One algorithm achieving regret low enough to apply our results with high
probability after a polynomial number of time steps is given by Auer et al. [3](see
also [2]). This algorithm works by updating a probability distribution in a mul-
tiplicative weights fashion. It is applicable in the bandit model, where after each
round the weights are only updated for the action chosen by the algorithm.

2 General Approach

In this section, we present a general template to analyze capacity maximization
algorithms with adversarial jamming. Our approach here unifies and extends
previous analyses of simpler problem variants. We adapt no-regret learning algo-
rithms by defining appropriate utility functions and altering the number of time
steps between learning (i.e., updating the probabilities). This way we achieve
that certain key properties discussed below, on which our analysis relies, hold. A
central idea in our construction is to divide time into phases. Here, a phase refers
to a consecutive interval of k time steps (where k will be chosen appropriately in
the respective settings). Our algorithms are assumed to decide about an action
at the beginning of each phase. A link will either transmit in every time step
or not at all during a phase. This way, we adapt no-regret learning algorithms

Jamming-Resistant Learning in Wireless Networks 453

such that one round (update step) of the algorithm coincides with a phase and
not with a single time step. We denote by Rv the set of phases for link Γv and
in general we do not assume the phases of different links to be synchronized.

We label a phase as either successful or unsuccessful. It is successful if link Γv

attempts transmission throughout the phase and at least a fraction μ → (0, 1] of
time steps within the phase is successful. We adjust μ in specific settings below.
For the analysis of the computed sequence of actions, let qv denote the fraction
of phases in which Γv attempted transmission and wv the fraction of successful
phases.

As the first step, we identify a relation between attempted and successful
transmissions. This and the property later on are useful for our analysis and
capture the intuition of a good approximation algorithm. Being (ε, α)-successful
implies that an (2/ε)-fraction of phases with attempted transmissions in a com-
puted sequence of actions must be successful. Otherwise the algorithm would
have rather decided not to transmit. In subsequent sections, we will see that
the no-regret property can be used to yield this property. Our proofs rely on
parameter α, which denotes the regret averaged over the phases.
Definition 3. A sequence of action vectors is (ε, α)-successful if 2wv+ω

γ ⊂ qv.
The attempted transmissions allow to obtain a bound on the incoming edge
weights from other transmitting links. Mirroring the (ε, α)-successfulness, intu-
itively an algorithm only decides to send seldomly if there is interference. To
model this property, fv in the following definition is the fraction of unsuccessful
phases not restricted to those phases in which Γv transmits.
Definition 4. A sequence of action vectors is Δ-blocking if for every link with
qv ≤ 1

4Δ we have for the fraction of unsuccessful phases due to other links (in-
dependent of whether Γv transmits) fv ⊂ 1

4Δ and
∑

u∈V bu(v)qu ⊂ 1
8Δ .

Given these conditions, we can obtain a bound on the performance of the algo-
rithm for capacity maximization. We consider the approximation factor in terms
of the number of successful transmissions summed over all time steps and the
optimum also summed over all time steps.
Theorem 1. Suppose an algorithm computes a sequence of actions which is Δ-
blocking and (ε, α)-successful with α < 1

4n εΔ. Against an (individual) (T √, 1 − Π)-
bounded adversary the average throughput of the computed action sequence yields
an approximation factor of O

(
C

μ·γ·η
)
.

Proof. We will prove the theorem using a primal-dual approach. The following
primal linear program corresponds to the optimal scheduling (c.f. [14]).

Max.
∑

v∈V xv

s.t.
∑

v∈V bu(v)xv ≤ C ⊆u → V
xv ≤ 1 ⊆v → V
xv ⊂ 0 ⊆v → V

Let OP T √ denote the set L√ for L = OP T from the definition of C-independence.
For a global adversary we can choose xv to correspond to the single slot optimum

454 J. Dams, M. Hoefer, and T. Kesselheim

without jammer by setting xv = 1 if link Γv is transmitting in OP T √ and xv = 0
otherwise. Due to C-independence, this solution is feasible.

Let T be the set of all time steps. For an individual (T √, 1 − Π)-bounded ad-
versary, different time steps yield different optima denoted by OP T √

t . Therefore,
we define xv = | {t → T | Γv → OP T √

t } |/|T | as the fraction of time steps in which
Γv is in the optimum of all time steps. As every single OP T √

t is C-independent,
this average is also C-independent. This yields a feasible solution for the LP.

By primal-dual arguments we bound the value of the primal optimum.

Min.
∑

v∈V C · yv +
∑

v∈V zv

s.t.
∑

u∈V bu(v)yu + zv ⊂ 1 ⊆v → V
yv, zv ⊂ 0 ⊆v → V

To construct a feasible solution for the dual LP we set yv = 1
η ·8qv and zv = 1

η ·4qv.
If qv ⊂ 1

4Δ, this directly fulfills the constraints due to zv ⊂ 1. Otherwise, by Def-
inition 4 it holds that the interference from other links over all phases (including
phases in which Γv does not send) is at least 1

8Δ. This yields
∑

u∈V bu(v)qu ⊂ 1
8Δ

and plugging in fulfills the constraints.
For the objective functions by Definition 3 and get

∑
v∈V

|{t∈T |�v∈OP T ′
t}|

T ≤∑
v∈V C · 12

η · 1
γ (2wv + α).

Remember that a phase is of length k. As a successful phase has link Γv

being successful in at least μk time steps, we can conclude that wv and the
total number of successful steps are related by a factor of μ. This yields an
approximation factor of O(C/(Δεμ)) for α < 1

4n Δε with respect to the primal
optimum. ≥⊇

Note that for an (T √, 1− Π)-exact adversary for all T √ ≤ T , where T is the length
of the sequence of actions, the average optimum is in fact a factor Π worse than
the single-slot optimum without adversary. As mentioned in the proof above,
the guarantee also holds with respect to the single-slot optimum improving it
for global exact jammers by a factor of 1/Π.

Corollary 1. Consider an algorithm with conditions as in Theorem 1. Against
any global (T √, 1 − Π)-exact adversary with T √ ≤ T , the average throughput of the
computed action sequence yields an approximation factor of O (C · Π/(μ · ε · Δ)).

3 Bounded Adversary

(T √, 1 − Π)-bounded Adversary. In this section we construct no-regret algo-
rithms that provide constant and O(1/Π)-factors approximation for diminishing
regret against (T √, 1 − Π)-exact and bounded adversaries, respectively. While we
will first assume that the parameters T √ and Π are known to the links and can be
used by the algorithm, we will later relax this assumption. We will describe how
to embed any no-regret learning algorithm into our general approach from Sec-
tion 2. In particular, we define appropriate utility functions for feedback. Based

Jamming-Resistant Learning in Wireless Networks 455

on these, the no-regret property implies suitable bounds for ε, α and Δ. We can
allow different links to use different no-regret algorithms.

Each no-regret algorithm has two actions available (sending and not sending).
We set the length of a phase k = T √ and thus assume each algorithm sticks to
a chosen action for T √ time steps before changing its decision. We consider a
phase to be successful iff more than μ = 1

2Π time steps throughout the phase
are successful. After a phase the following utility function inspired by [1] is used
to give feedback to the no-regret algorithms to adjust the sending probabilities.
Let wR

u denote the fraction of successful transmissions during phase R.

u
(R)
i (si, s−i) =

⎧
⎨

⎩

1 if Γi transmits and wR
u ⊂ 1

2Π

−1 if Γi transmits and wR
u < 1

2Π

0 otherwise.

A no-regret algorithm embedded as described above will converge to an O(1/Π)-
approximation for both (T √, 1 − Π)-bounded and individually-(T √, 1−Π)-bounded
adversaries. We use Theorem 1 and establish the necessary properties in Lemma 1.

Theorem 2. Every sequence of action vectors with average regret per phase of
α ≤ 1

4n for all links yields an O (1/Π)-approximation against individual (T √, 1−Π)-
bounded adversaries.

Lemma 1 (cf. [2, 5]). Every no-regret algorithm with average regret per phase
α < 1

4 using the utility above computes an action sequence that is (1, α)-successful
and 1-blocking.

Combing these insights with μ = 1
2Π, Theorem 1 implies an approximation fac-

tor in O (C/Π) for (individual) (T √, 1 − Π)-bounded jammers. Additionally, the
following corollary follows from Corollary 1.

Corollary 2. Every sequence of action vectors with average regret per phase of
α ≤ 1

4n for all links yields an O(1)-approximation against global (T √, 1 − Π)-exact
adversaries.

Unknown T √. For the previous results it is necessary to know both T √ and
Π to design utility function and phase length. Ommitting this assumption, we
show how to use regret-learning to reach an O (1/Π)-approximation if the bound
on T √ is not known. Thus, we consider only Π to be known to the links. We use
the following utility function and learn in every time step by setting the phase
length to be k = 1.

u
(t)
i (si, s−i) =

⎧
⎨

⎩

1 if Γi transmits successfully
− δv

2−δv
if Γi transmits unsuccessfully

0 otherwise

Theorem 3. Every sequence of action vectors with average regret α ≤ 1
4n ·

δ2

2−δ for all links yields an O(1/Π2)-approximation against individual (T √, 1 −
Π)-bounded adversaries and an O(1/Π)-approximation against (T √, 1 − Π)-exact
adversaries.

456 J. Dams, M. Hoefer, and T. Kesselheim

In this setting, every no-regret algorithm computes sequences of action vectors
that is

(
δ
2 , α

)
-successful and Π-blocking. Together with μ = 1 from the utility

function, the theorem follows from Theorem 1 and Corollary 1.

Lemma 2. Every no-regret algorithm with average regret per time step α < 1
4 ·

δ2

2−δ using the given utility computes an action sequence that is
(

δ
2 , α

)
-successful

and Π-blocking.

Unknown Π. For asynchronous regret learning it seems to be necessary to
know Π, as guessing a larger Π can have the jammer tripping an algorithm into
experiencing much interference and crediting this to other links. As soon as
the guessed Π is at least twice the actual one, the no-regret algorithm can be
arbitrarily bad. The adversary can force the no-regret algorithm to consider
not-sending to be the best strategy in hindsight.

While the learning algorithms for known Π in Section 3 easily adjust to links
joining later, we here give a synchronized algorithm for unknown Π, in which all
links start the algorithm at the same time. The basic idea is to test different
values for Π in a coordinated fashion – half of all phases Π = 1

2 is assumed, in a
quarter of all phases Π = 1

4 and so on. This implies that the correct Π (up to a
factor of 2) is considered in a Π-fraction of all phases.

This way, in a Π-fraction of all phases our synchronized algorithm assumes
the jammer to be (T √, 1 − Π)-bounded. In the phases where the correct Π is tried,
the algorithm achieves a constant-factor approximation due to Theorem 2 or an
O (1/Π)-approximation due to Theorem 3 when T √ is not known. Note that the
running time increases by a factor of 1/Π over the asynchronous case, as we need
the regret to be sufficiently low in the phases with the correct assumption on Π.

Theorem 4. Consider any (T √, 1 − Π)-bounded adversary. Then there exists an
algorithm yielding an O(1/Π)-approximation without knowledge of Π, and an al-
gorithm yielding an O(1/Π2)-approximation without knowledge of Π and T √.

4 Stochastic Adversary

In this section we extend results for the bounded adversary to the stochastic ad-
versary. After a sufficient number of time steps an algorithm obtains very similar
guarantees against a stochastic adversary as against a corresponding (T √, 1 − Π)-
exact adversary considered before. We consider no-regret algorithms with utility
functions as discussed before and apply slight modifications as follows. For algo-
rithms where μ < Π and k > 1 we adjust the length of phases in order to bound
the number of phases caused to be unsuccessful by the adversary. This allows to
concentrate the behavior of the stochastic jammer to an “expected” exact jam-
mer. It also allows us to show that in the stochastic setting an algorithm loses at
most a constant factor in its Δ-blocking property after a sufficiently long time.
We observe that against the non-individual stochastic adversary, the optimum
is at most 9·δ

8 -th of a single-slot optimum. The respective proofs can be found
in the full version.

Let pz denote the probability that the adversary renders a phase unsuccessful.

Jamming-Resistant Learning in Wireless Networks 457

Lemma 3. Let μ < Π. Then for any k ⊂ 1 it holds pz ≤ exp
(−(μ/Π)2Πk/2

)
.

Lemma 4. Consider an algorithm that computes a sequence of actions which is
Δ-blocking against an (T √, 1 − Π)-exact adversary. After T ⊂ max{pz ,1−pz}

η2 · 82 · 3 ·
c · ln(n) + ln(n) phases, the computed sequence is η

2 -blocking against a stochastic
adversary with probability at least 1 − 1

nc .
Additionally to using Lemmas 3 and 4, we will also bound the number of time
steps till the jammer converges to an exact one to yield that the optimum against
the stochastic adversary is close to the one against an exact adversary.
Lemma 5. After T ⊂ 82

3δ · c · ln(n) time steps it holds with probability 1 − 1
nc

that the optimum against the stochastic adversary is at most 9
8 of the optimum

against an exact adversary.
In total, we obtain the corollary below matching the results in Section 3. It
follows from the previous lemmas with μ = Π/2 and Δ = 1. Setting k = 2

δ · ln(8)
yields the probability 1 − pz > 7/8 by Lemma 3. Together with Lemma 4 and 5
this yields the claim. We require that the jammer is close to expectation, and
the algorithms obtain low regret with high probability. For a suitable algorithm
that achieves this after a time polynomial in the number of links see, e.g., [3].
Corollary 3. With high probability, by setting k = 2

δ · ln(8) the algorithm in
Section 3 yields a O(1)-approximation after T → O (ln(n)) phases against an
(global) stochastic adversary.

5 Joining and Leaving Links

Our general approach in Section 2 does not require that links join at the same
time. Still, we have to assume all links stay within the network. Here, we re-
lax this assumption and consider links being able to leave the network ear-
lier. However, they are assumed to stay until they obtain an action sequence in
which their own regret is low. For this we prove convergence to an O(log(n)/Π)-
approximation against an (T √, 1 − Π)-bounded adversary.

More formally, each link comes with an interval of phases Rv in which it is
present in the network. In these phases it can transmit and observe the out-
come of his actions. Outside of its interval a link cannot transmit or learn. The
following theorem adjusts our general approach for this more general case.
Theorem 5. Consider an algorithm as in Theorem 1. Against an (individual)
(T √, 1 − Π)-bounded adversary the average throughput of the computed action
sequence yields an approximation factor of O

((
log n + log

(
1
η

))
C

μ·γ·η
)
.

For the proof we extend the primal-dual approach from Section 2 to a more
complex LP, which increases the approximation guarantee (details in the full
version). The theorem allows to transfer all guarantees for all the above settings
to the case where links are allowed to join and leave the network. This increases
the guarantees by a factor of O (log n + log 1/Δ). In particular, Theorem 5 also
implies that without adversaries, we can use no-regret learning techniques to
obtain an O(log n)-approximation guarantee.

458 J. Dams, M. Hoefer, and T. Kesselheim

References

1. Andrews, M., Dinitz, M.: Maximizing capacity in arbitrary wireless networks
in the SINR model: Complexity and game theory. In: Proc. 28th INFOCOM,
pp. 1332–1340 (2009)

2. Asgeirsson, E.I., Mitra, P.: On a game theoretic approach to capacity maximization
in wireless networks. In: Proc. 30th INFOCOM, pp. 3029–3037 (2011)

3. Auer, P., Cesa-Bianchi, N., Freund, Y., Schapire, R.E.: The nonstochastic multi-
armed bandit problem. SIAM Journal on Computing 32(1), 48–77 (2002)

4. Awerbuch, B., Richa, A.W., Scheideler, C.: A jamming-resistant mac protocol for
single-hop wireless networks. In: PODC, pp. 45–54 (2008)

5. Dams, J., Hoefer, M., Kesselheim, T.: Scheduling in wireless networks with
rayleigh-fading interference. In: Proc. 24th SPAA (2012)

6. Dams, J., Hoefer, M., Kesselheim, T.: Jamming-resistant learning in wireless net-
works (full version). CoRR abs/1307.5290 (2013)

7. Dams, J., Hoefer, M., Kesselheim, T.: Sleeping experts in wireless networks. In:
Proc. 27th DISC, pp. 344–357 (2013)

8. Dinitz, M.: Distributed algorithms for approximating wireless network capacity.
In: Proc. 29th INFOCOM, pp. 1397–1405 (2010)

9. Erlebach, T., Jansen, K., Seidel, E.: Polynomial-time approximation schemes for
geometric intersection graphs. SIAM J. Comput. 34(6), 1302–1323 (2005)

10. Goussevskaia, O., Halldórsson, M., Wattenhofer, R., Welzl, E.: Capacity of arbi-
trary wireless networks. In: Proc. 28th INFOCOM, pp. 1872–1880 (2009)

11. Goussevskaia, O., Oswald, Y.A., Wattenhofer, R.: Complexity in geometric SINR.
In: Proc. 8th MobiHoc, pp. 100–109 (2007)

12. Gupta, P., Kumar, P.R.: The capacity of wireless networks. IEEE Trans. Inf. The-
ory 46(2), 388–404 (2000)

13. Halldórsson, M.M., Wattenhofer, R.: Wireless communication is in APX. In: Al-
bers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.)
ICALP 2009, Part I. LNCS, vol. 5555, pp. 525–536. Springer, Heidelberg (2009)

14. Halldórsson, M.M., Mitra, P.: Wireless capacity and admission control in cognitive
radio. In: Proc. 31st INFOCOM, pp. 855–863 (2012)

15. Hoefer, M., Kesselheim, T., Vöcking, B.: Approximation algorithms for secondary
spectrum auctions. In: Proc. 23rd SPAA, pp. 177–186 (2011)

16. Moscibroda, T., Wattenhofer, R.: The complexity of connectivity in wireless net-
works. In: Proc. 25th INFOCOM, pp. 1–13 (2006)

17. Nieberg, T., Hurink, J., Kern, W.: Approximation schemes for wireless networks.
ACM Trans. Algorithms 4(4) (2008)

18. Ogierman, A., Richa, A., Scheideler, C., Schmid, S., Zhang, J.: Competitive
medium sharing under adversarial sinr (unpublished paper)

19. Richa, A.W., Scheideler, C., Schmid, S., Zhang, J.: A jamming-resistant mac pro-
tocol for multi-hop wireless networks. In: DISC, pp. 179–193 (2010)

20. Richa, A.W., Scheideler, C., Schmid, S., Zhang, J.: Competitive and fair medium
access despite reactive jamming. In: ICDCS, pp. 507–516 (2011)

21. Richa, A.W., Scheideler, C., Schmid, S., Zhang, J.: Competitive and fair through-
put for co-existing networks under adversarial interference. In: Proc. 31st PODC,
pp. 291–300 (2012)

22. Schneider, J., Wattenhofer, R.: An optimal maximal independent set algorithm for
bounded-independence graphs. Distributed Computing 22(5-6), 349–361 (2010)

Facility Location in Evolving Metrics�

David Eisenstat1, Claire Mathieu2, and Nicolas Schabanel3,4

1 Brown University, USA
http://www.davideisenstat.com/

2 CNRS, École normale supérieure UMR 8548, France
3 CNRS, Université Paris Diderot, France

http://www.liafa.univ-paris-diderot.fr/\simnschaban/
4 IXXI, École normale supérieure de Lyon, France

Abstract. Understanding the dynamics of evolving social or infrastruc-
ture networks is a challenge in applied areas such as epidemiology, viral
marketing, and urban planning. During the past decade, data has been
collected on such networks but has yet to be analyzed fully. We propose
to use information on the dynamics of the data to find stable partitions of
the network into groups. For that purpose, we introduce a time-dependent,
dynamic version of the facility location problem, which includes a switch-
ing cost when a client’s assignment changes from one facility to another.
This might provide a better representation of an evolving network, empha-
sizing the abrupt change of relationships between subjects rather than the
continuous evolution of the underlying network. We show for some realis-
tic examples that this model yields better hypotheses than its counterpart
without switching costs, where each snapshot can be optimized indepen-
dently. For our model, we present an O(log nT)-approximation algorithm
and a matching hardness result, where n is the number of clients and T
is the number of timesteps. We also give another algorithm with approx-
imation ratio O(log nT) for a variant model where the decision to open a
facility is made independently at each timestep.

1 Introduction

During the past decade, a massive amount of data has been collected on diverse
networks such as the web (pages and links), social networks (e.g., Facebook,
Twitter, and LinkedIn), and social encounters in hospitals, schools, companies,
and conferences [18,21]. These networks evolve over time, and their dynamics
have a considerable impact on their structure and effectiveness [19,14]. Under-
standing the dynamics of evolving networks is a central question in many applied
areas such as epidemiology, vaccination planning, anti-virus design, management
of human resources, and viral marketing. A relevant clustering of the data often
is needed to design informative representations of massive data sets. Algorith-
mic approaches have yielded useful insights on real networks such as the social
interaction networks of zebras [22].

ω This work was partially supported by the ANR-2010-BLAN-0204 Magnum and
ANR-12-BS02-005 RDAM grants.

J. Esparza et al. (Eds.): ICALP 2014, Part II, LNCS 8573, pp. 459–470, 2014.
c∗ Springer-Verlag Berlin Heidelberg 2014

http://www.davideisenstat.com/
http://www.liafa.univ-paris-diderot.fr/$\sim $nschaban/

460 D. Eisenstat, C. Mathieu, and N. Schabanel

The dynamics of real-life evolving networks, however, are not yet well under-
stood, partly because it is difficult to observe and analyze such large, sparsely
connected networks over time. Some basic mechanisms such as preferential at-
tachment and copy/paste have been observed, but more specific structures re-
main to be discovered. In this article, we propose a new formulation of the facility
location problem adapted to these evolving networks. We show that, in many
realistic situations, solutions that are stable over time match the ground truth
more closely than those obtained by independent optimization with respect to
each snapshot of the network.

The problem. We focus on a generalized facility location problem where clients
are moving in some metric space over time. We look for a set of open facilities
(also called centers) and a dynamic many-to-one assignment of clients to open
facilities that minimizes the sum of three costs, of which the first two are inherited
from the classical facility location problem. The distance cost is the sum over
each (client,timestep) pair of the distance from the client to its assigned facility at
that timestep. This cost tends to ensure that assigned facilities are representative
with respect to position. The opening cost is linear in the number of facilities.
This cost tends to ensure that only the most meaningful facilities are open. The
new cost, switching, is linear in the number of (client,timestep) pairs where the
client is assigned to a different facility at the next timestep. This cost tends to
ensure that clients switch facilities only in response to significant and lasting
changes in position. We argue that, in many realistic situations, the switching
cost makes solutions close to the ground truth relatively more attractive (see
Section 2.1).

Related work. The facility location problem has been studied extensively in
the offline, online, and incremental settings [12]. The offline setting was a
case study accompanying the development of approximation techniques: primal-
dual and dual fitting methods and local search, for example. A series of pa-
pers [20,16,13,2,5,3,15] obtained almost matching upper and lower bounds
on the polynomially achievable approximation ratio: Θ(log n) in general and
[1.463, 1.488] in the metric case, where the specified distances satisfy the trian-
gle inequality.

The online setting, where clients arrive over time and the algorithm gradu-
ally opens more and more facilities to serve them, was addressed first by [17],
which obtained the asymptotically tight bound Θ(log n/log logn) on the com-
petitive ratio of the best online algorithm. Subsequent work considered the
special case where the clients are drawn from some distribution [1] and other
special cases [11]. Since many clustering applications benefit from the flexibility
to change the solution over time, incremental settings also have been studied.
Such variants may allow better (i.e., constant) competitive ratios, e.g., the met-
ric case with streaming constraints [10] and the Euclidean metric setting where
facilities may be moved as new clients arrive [8]. We also mention the related
clustering problem in which clusters may be merged but not split [4].

Facility Location in Evolving Metrics 461

Our setting differs from previous dynamic settings because the distances be-
tween clients and facilities may vary over time and because it is desirable to
achieve a trade-off between the stability of the solution – the assignment should
be modified slowly – and its adaptability – the assignment should be modified
if the distances change significantly. Given the existence of experiments such
as [21], we assume access to the whole evolution of the network ahead of time.
We show that constructing an independent optimal solution for each snapshot
of the network yields results that, in a large variety of realistic situations, are
not only unstable (and thus arbitrarily bad according to our objective) but also
undesirable with respect to network dynamics analysis.

As far as we know, settings where the distances between locations vary over
time are still largely unexplored.

Our results. After defining the problem formally in Section 2.1 and giving ex-
amples showing the benefits that one can expect from solving this problem in
the context of metrics evolving over time, we give in Section 2.3 an O(log nT)-
approximation algorithm for this problem, where n is the number of clients and
T is the number of timesteps.

Theorem 1 (Fixed opening cost) For the dynamic facility location problem
with fixed opening cost, there exists a polynomial-time randomized algorithm that,
on all inputs, with probability at least 1/4, outputs a solution satisfying

cost � 8 log(2nT) · LP � 8 log(2nT) · OPT,

where OPT is the cost of an optimal solution and LP is the value of LP (1),
defined at the end of Section 2.1.

Through repetition, running the algorithm t times and taking the best of the t
solutions constructed, the probability 1/4 can be improved to 1 − (3/4)t. The
constant 8 can be improved as well.

We show in Section 2.4 that this approximation ratio is asymptotically opti-
mal, even for a very special case.

Theorem 2 (Hardness for Fixed Opening Cost) Unless P = NP , for the
dynamic facility location problem with fixed opening cost, there is no o(log T)-
approximation.

The lower bound holds even for the metric case with one client and two loca-
tions. This new problem differs significantly from the classic facility location
problem, which admits no o(log n)-approximation for nonmetric distances but
can be 1.488-approximated when the distances satisfy the triangle inequality [15].
In Section 3, we show how to extend our approximation algorithm to the setting
where facilities can be opened and closed at each timestep. The opening cost in
this setting is equal to f times the number of (facility,timestep) pairs such that
the facility is open at that timestep.

462 D. Eisenstat, C. Mathieu, and N. Schabanel

Theorem 3 (Hourly Opening Cost) For the dynamic facility location prob-
lem with hourly opening cost, there exists a polynomial-time randomized algorithm
that, on all inputs, with probability at least 1/4, outputs a solution satisfying

cost � 8 log(2nT) · LP � 8 log(2nT) · OPT,

where OPT is the cost of an optimal solution and LP is the value of LP (2),
defined at the end of Section 3.1.

Again, through repetition, running the algorithm t times and taking the best of
the t solutions constructed, the probability 1/4 can be improved to 1 − (3/4)t.
The constant 8 can be improved as well. This article concludes with several open
questions and possible extensions of this work.

2 Facility Location in Evolving Metrics

2.1 Definition

We denote by [n] = {1, . . . , n} the subset of integers from 1 to n inclusive.

Dynamic facility location problem with fixed opening cost. We are given a set F
of m facilities and a set C of n clients together with a finite sequence of distances
(dt)t∈[T] over F × C, a nonnegative facility opening cost f , and a nonnegative
client switching cost g. The goal is to output a subset A ∈ F of open facilities
and, for each timestep t ≡ [T], an assignment φt : C ⊆ A of clients to open
facilities so as to minimize

f · |A| +
⎛

t∈[T],j∈C

dt(φt(j), j) + g ·
⎛

t∈[T−1],j∈C

�{φt(j) ↔= φt+1(j)},

namely, the sum of the opening cost (f for each open facility), the distance cost
(the sum over each (client,timestep) pair from the client to its assigned facility
at that timestep), and the switching cost (g for each (client,timestep) pair where
the client is assigned to a different facility at the next timestep).

Examples. The two examples in Figure 1 show how facility location in the dy-
namic setting is quite different from facility location in the static setting and
yields more desirable partitions of the clients. In both examples, a facility can
be opened at every client (so that electing a facility consists of electing a repre-
sentative for every significantly different behavior).

In example 1(a), we see a classroom with students split into five groups and
a teacher moving from group to group in cyclic order. When the number of
students is large, static facility location isolates the five groups and moves the
teacher from one group to the next between snapshots. Dynamic facility location
isolates every group of students and puts the teacher in a sixth group.

In example 1(b), we see two groups of people passing through each other, on
a street for instance. Static facility location outputs first the two groups, then a

Facility Location in Evolving Metrics 463

Optimal Dynamic Facility Location Optimal Static Facility Location
(a) The classroom: one teacher cycling between 5 groups of students.

Optimal Dynamic Facility Location Optimal Static Facility Location

t = 1

t = 2

t = 3

(b) Two groups crossing.

Fig. 1. Dynamic versus static facility location

single group, then two groups again. Dynamic facility location, however, keeps
the same groups for the whole time period, with the same representatives.

Assuming in the first example that the distances between individuals are very
small and in the second that they are very large, the ratio of the (dynamic) cost
between the dynamic solution and the sequence of static solutions can be made
arbitrarily large, because the switching cost grows for the sequence of static
solutions as Ω(T) and Ω(n) respectively.

Fact 4. The (dynamic) cost of a sequence of optimal static facility location solu-
tions for each snapshot can be larger than the cost of an optimal dynamic facility
location solution by a factor Ω(T + n).

A linear relaxation. For an integer programming formulation, we define indicator
0-1 variables yi, x

t
ij , z

t
ij for t ≡ [T] and i ≡ F and j ≡ C. We let yi = 1 if and

only if facility i is open; xt
ij = 1 if and only if client j is assigned to facility i at

timestep t; and ztij = 1 if and only if client j is assigned to facility i at timestep t
but not at timestep t + 1. The dynamic facility location problem is equivalent
to finding an integer solution to the following linear programming relaxation.

464 D. Eisenstat, C. Mathieu, and N. Schabanel

⎝⎞⎞⎞⎞⎞⎞⎞⎞⎞⎞⎞⎧
⎞⎞⎞⎞⎞⎞⎞⎞⎞⎞⎞⎨

Minimize f ·
⎛
i∈F

yi +
⎛

t∈[T],i∈F,j∈C

xt
ij · dt(i, j) + g ·

⎛
t∈[T − 1], i∈F, j∈C

ztij

subject to (⇔t ≡ [T], i ≡ F, j ≡ C) xt
ij � yi

(⇔t ≡ [T], j ≡ C)
⎛
i∈F

xt
ij = 1

(⇔t ≡ [T − 1], i ≡ F, j ≡ C) ztij � xt
ij − xt+1

ij

(⇔t ≡ [T], i ≡ F, j ≡ C) yi, x
t
ij , z

t
ij � 0

(1)

2.2 Facts about Probability

We use the following two facts and some properties of exponential distributions.

Fact 5. Let X � 0 be a random variable and B be an event, not necessarily
independent. We have E[X | B] � E[X]/PrB.

Proof. Let B be the complement of B. We have

E[X | B] � E[X | B] + E[X | B] PrB/PrB = E[X]/PrB. ⊂≥

Fact 6 (Markov’s Inequality). Let X � 0 be a random variable. For every
x > 0, we have Pr{X > x} � E[X]/x.

A random variable X is exponentially distributed with rate λ if and only if,
for every x � 0, it satisfies Pr{X > x} = e−λx.

Fact 7. If X is exponentially distributed with rate λ, then, for every c > 0, the
distribution of X/c is exponential with rate cλ.

Fact 8. Let (Xi)i∈F be a sequence of independent random variables, where Xi

is exponentially distributed with rate λi. Then mini∈F Xi is exponentially dis-
tributed with rate

⎩
i∈F λi, and the argument of the minimum is i with proba-

bility λi/
⎩

k∈F λk.

Proof. Indeed, Pr{mini∈F Xi > x} =
∏

i∈F Pr{Xi > x} = e−
∑

i⊥F λix. As for
the second claim,

Pr{arg min
k∈F

Xk = i} =

∫ ≥

x=0

Pr{(⇔k ↔= i) Xk > x} · Pr{Xi ≡ [x, x + dx]}

=

∫ ≥

x=0

e−
∑

k ∗=i λkx · λie
−λixdx = λi

⎪⎛
k∈F

λk. ⊂≥

Facility Location in Evolving Metrics 465

2.3 Approximation Algorithm

In order to determine a solution, we need to (1) decide which facilities to open,
(2) decide when each client switches from one facility to another, and (3) decide
which facility to connect each client to between switches. After computing an
optimal (fractional) solution (x, y, z) to LP (1), Algorithm 1 proceeds as follows.
Decision (1) is made by sampling the facilities according to (yi)i approximately
O(log nT) times.As we will show, this ensures that every client selects a sampled
facility with high probability.

Regarding decision (2), since
⎩

i x
t
ij = 1, one can view (xt

ij)i as the desired
distribution for the facility assigned to client j at timestep t. The subroutine Al-
gorithm 2 partitions time, independently for each client j, into intervals during
which the distribution (xt

ij)i remains stable enough, i.e., the distributions (xt
ij)i

share a large enough common probability mass during each time interval of the
partition. The common probability mass of the distributions (xt

ij)i during a time
interval U is defined as the sum over all facilities i of the minimum probability
x̂U
ij = mint∈U xt

ij of assigning client j to i over U . The rule defining the partition
is that each interval (except the last one) is maximal subject to the constraint
that the common probability mass is at least 1/2. This ensures two key prop-
erties. First, the distributions (xt

ij)i for t ≡ U are close enough to each other
to be compatible and also, due to the first LP constraint, close enough to (yi)i
to match the sampling of the facilities. Second, the distributions are deemed to
have changed too much when the xt

ijs have had a combined decrease of at least
1/2, which implies by the third LP constraint that the corresponding ztijs sum
to at least 1/2, covering the cost of switching to another facility.

Decision (3) is made simply by assigning each client to the most likely of its
preferred facilities to be open.

We propose two versions of the algorithm. The first assigns clients to open
facilities via an optimal dynamic program, while the second uses the intuitive
strategy described in Algorithm 2. We analyze the latter, as its approximation
ratio is no worse than that of the former.

Theorem 1 states that Algorithm 1 outputs an O(log nT)-approximation with
positive constant probability. In the next section, we will show that this is asymp-
totically optimal (unless P = NP).

Proof (Theorem 1). Note that Algorithm 2 may produce an assignment that is
not feasible. We bound the expected cost without conditioning on feasibility,
bound the probability of feasibility, and finish by applying Fact 5 and Markov’s
inequality.

Algorithm 1. Fixed opening cost

• Solve the linear program LP (1) to obtain an optimal (fractional) solution (x, y, z).
• Choose the open facilities A randomly as follows. For each facility i, choose Yi having
exponential distribution with rate 2 log(2nT). Let A = {i ∈ F : Yi � yi}.
• With a dynamic program, determine how to assign optimally clients to facilities in A.
Alternatively, for the purposes of analysis, use Algorithm 2.

466 D. Eisenstat, C. Mathieu, and N. Schabanel

Algorithm 2. Intuition-driven assignment of clients to facilities

for each client j do
• Partition time greedily into ωj intervals [tjk, t

j
k+1) where ωj and (tjk)k∈[γj+1] are

defined as follows: tj1 = 1, and tjk+1 is defined inductively as the greatest t ∈ (tjk, T+1]

such that
∑
i∈F

(
min

t
j
k
�u<t

xu
ij

)
� 1/2. Let tjγj+1 = T + 1.

• For each time interval U = [tjk, t
j
k+1), assign client j to argument of mini∈F (Yi/x̂

U
ij),

where x̂U
ij = minu∈U xu

ij .
end for

The unconditional expected facility opening cost is

f ·
⎛
i∈F

(1 − e−2yi log(2nT)) � (2 log(2nT))f ·
⎛
i∈F

yi

by the well known inequality 1+x � ex. The right-hand side is 2 log(2nT) times
the corresponding term in the LP objective.

To analyze the unconditional expected distance cost, we define, for each
client j, all of its time intervals U , and all t ≡ U , a fictitious independent
event Bt

j such that PrBt
j =

⎩
k∈F x̂U

kj ≡ [1/2, 1] by the LP and the def-

inition of U .1 We use this fictitious event Bt
j to define a random variable

Itj ≡ F by letting Pr{Itj = i | Bt
j} = x̂U

ij/
⎩

k∈F x̂U
kj and Pr{Itj = i | Bt

j} =

(xt
ij − x̂U

ij)/
⎩

k∈F (xt
kj − x̂U

kj), where B
t

j is the complement of Bt
j . Note that

PrB
t

j =
⎩

k∈F (xt
kj − x̂U

kj) since
⎩

k∈F xt
kj = 1 by LP (1). The unconditional

distribution of Itj thus is described by Pr{Itj = i} = xt
ij , so the expected dis-

tance from j to Itj is E[dt(I
t
j , j)] =

⎩
i∈F xt

ij ·dt(i, j). Since arg mini∈F (Yi/x̂
U
ij) is

i with probability x̂U
ij/

⎩
k∈F x̂U

kj by Fact 8, the actual assignment of Algorithm 2

is made according to the conditional distribution of Itj given Bt
j , so by applying

Fact 5 and summing, the total unconditional expected distance cost is at most

2 ·
⎛

t∈[T],i∈F,j∈C

xt
ij · dt(i, j),

which is twice the corresponding term in the LP objective.
To bound the switching cost, which is deterministic, we prove that, for each

client j and all of its time intervals U except the last one,

⎛
t∈U,i∈F

ztij > 1/2.

1 More concretely, let Bt
j be an event corresponding to the outcome Heads of an

independent biased coin flip that results a priori in Heads with probability
∑

i∈F x̂U
ij .

This event represents our ability to sample from the common probability mass of
the distributions (xt

ij)i for t ∈ U .

Facility Location in Evolving Metrics 467

Each client switches only after its non-last intervals. Since each variable ztij
appears in exactly one sum, the total switching cost is bounded above by

2g ·
⎛

t∈[T−1],i∈F,j∈C

ztij ,

which is twice the corresponding term in the LP objective.
The z-variables measure decreases in the corresponding x-variables.

Specifically, for every t1 � t2, the LP inequalities telescope to yield
xt1
ij − xt2

ij �
⎩

u∈[t1,t2)
zuij . By letting t1 be the first time in U = [t1, t3) and

t2 be the argument of the minimum minu∈[t1,t3] x
u
ij , whose domain is U ⇒ {t3},

we sum to obtain the inequality

1/2 = 1 − 1/2 < 1 −
⎛
i∈F

min
u∈[t1,t3]

xu
ij =

⎛
i∈F

(xt1
ij − min

u∈[t1,t3]
xu
ij) �

⎛
u∈U,i∈F

zuij ,

where the first inequality is a consequence of defining U maximally.
As the next to last step, we bound the probability that every client is assigned

to an open facility. Recall that, at each timestep t, Algorithm 2 assigns each
client j to the argument i∈ of the minimum mini∈F (Yi/x̂

U
ij), where U ◦ t is the

corresponding interval for j. This facility is open if and only if Yi⊆ � yi⊆ . Since
x̂U
ij � xt

ij � yi,

Pr{Yi⊆ � yi⊆} � Pr{Yi⊆ � x̂U
i⊆j} = Pr{min

i∈F
(Yi/x̂

U
ij) � 1}.

The quantity mini∈F (Yi/x̂
U
ij) is exponentially distributed with

rate 2 log(2nT) ·⎩i∈F x̂U
ij � log(2nT) since

⎩
i∈F x̂U

ij � 1/2, so
Pr{Yi⊆ � yi⊆} � 1 − 1/(2nT). By a union bound over all clients and timesteps,
the probability of a feasible assignment is at least 1/2.

In conclusion, we observe that the unconditional expected cost is a 2 log(2nT)-
approximation of the LP objective, and the probability of a feasible assignment
is at least 1/2. By Fact 5, the conditional expected cost given feasibility is a
4 log(2nT)-approximation. By Markov’s inequality, with probability at least 1/2·
1/2 = 1/4, the output is a feasible 8 log(2nT)-approximation. ⊂≥

2.4 Hardness of Approximation

Proof (Theorem 2). We exhibit an objective-preserving reduction from the set
cover problem. Fix an instance of set cover with T elements and m sets. We
define the following instance of dynamic facility location. There is one timestep
t for each element of the set cover instance, one facility i for each set of the set
cover instance, and a single client. We set g = 0 (i.e., g is small enough with
respect to f and 1/n and 1/T). Assume that the only possible positions for the
client and facilities are two locations a and b at distance ≤ (i.e., large enough)
from each other (note that this metric satisfies the triangle inequality). At every
timestep t, the client’s position is location a. For each set i of the set cover

468 D. Eisenstat, C. Mathieu, and N. Schabanel

instance, the position of the corresponding facility is location a if set i contains
element t and location b otherwise.

Since the distance between the two locations is infinite, a solution for our in-
stance of dynamic facility location has finite cost if and only if, at every timestep,
some open facility has position a, i.e., the set of open facilities corresponds to
a cover. The cost of such a solution is f times the number of open facilities.
We conclude that the Ω(ln T)-inapproximability result for set cover with T ele-
ments [7] implies the same inapproximability result for our problem. ⊂≥

3 Hourly Opening Cost

3.1 Dynamic Facility Location with Hourly Opening Cost

We now focus on a variant of the problem studied in the previous section, where
each facility may be open or closed independently at each timestep and where
the opening cost f is paid for each (facility,timestep) pair where the facility is
open at that timestep. In other words, the cost of a facility is not its construction
cost but its rental cost.

Dynamic facility location problem with hourly opening cost. We are given a set
F of m facilities and a set C of n clients together with a finite sequence of
distances (dt)t∈[T] over F × C and two nonnegative values f and g. The goal
is to output a sequence of subsets At ∈ F of facilities and, for each timestep
t ≡ [T], an assignment φt : C ⊆ At of clients to facilities so as to minimize

f ·
⎛
t∈[T]

|At| +
⎛

t∈[T],j∈C

dt(φt(j), j) + g ·
⎛

t∈[T−1],j∈C

�{φt(j) ↔= φt+1(j)}.

Linear relaxation. LP (1) can easily be adapted to this variant, with new vari-
ables yti replacing yi. The interpretation of yti is that it equals 1 if and only if
facility i is open at timestep t.

⎝⎞⎞⎞⎞⎞⎞⎞⎞⎞⎞⎞⎧
⎞⎞⎞⎞⎞⎞⎞⎞⎞⎞⎞⎨

Minimize f
⎛

t∈[T],i∈A

yti +
⎛

t∈[T],i∈F,j∈C

xt
ij · dt(i, j) + g

⎛
t∈[T−1],i∈F,j∈C

ztij

subject to (⇔t ≡ [T], i ≡ F, j ≡ C) xt
ij � yti

(⇔t ≡ [T], j ≡ C)
⎛
i∈F

xt
ij = 1

(⇔t ≡ [T − 1], i ≡ F, j ≡ C) ztij � xt
ij − xt+1

ij

(⇔t ≡ [T], i ≡ F, j ≡ C) yti , x
t
ij , z

t
ij � 0

(2)

3.2 Approximation Algorithm

Our algorithm for hourly costs, Algorithm 3, is very similar to Algorithm 1, for
fixed costs. The key idea is to choose the random variables Yi only once to ensure

Facility Location in Evolving Metrics 469

Algorithm 3. Hourly opening cost

• Solve the linear program LP (2) to obtain an optimal (fractional) solution (x, y, z).
• For each timestep t, choose the open facilities At randomly as follows. Once, for
each facility i, choose Yi having exponential distribution with rate 2 log(2nT). Let
At = {i ∈ F : Yi � yt

i}.
• With a dynamic program, determine how optimally to assign clients to facilities in At.
Alternatively, for the purposes of analysis, use Algorithm 2 (as done in Algorithm 1).

that the set of open facilities is stable. The statements of correctness, Theorems 1
and 3, are proved by exactly the same arguments. The only difference is that,
in order for the facility i∈ = arg mini∈F Yi/x̂

U
ij to be open to client j throughout

its time interval U , we need Yi⊆ � yti⊆ for all t ≡ U . For each choice of j and U ,
this family of inequalities is satisfied with probability at least 1 − 1/(2nT), the
same bound as before, since the fact that xU

ij � xt
ij � yti for all t ≡ U and

all i ≡ F implies as before that Pr{(⇔t ≡ U) Yi⊆ � yti⊆} � Pr{Yi⊆ � x̂U
i⊆j} =

Pr{mini∈F Yi/x̂
U
ij � 1} � 1− 1/(2nT). The rest of the proof requires no change.

4 Conclusion and Open Questions

Algorithm 1 applies even if the distances between clients and facilities do not
satisfy the triangle inequality, and it extends directly to nonuniform opening
costs as well as arrival and departure dates for clients. It is striking that in-
stances with distances satisfying the triangle inequality are not easier in the
dynamic setting as opposed to the classic static setting (the approximation ra-
tio Θ(log nT) of Algorithm 1 is tight in both dynamic cases). Algorithm 3 also
extends directly to the setting of opening costs that are nonuniform in time.
The last section naturally raises the question of whether there exists an ω(1)-
hardness result /O(1)-approximation algorithm for the general hourly opening
cost case.

We believe that our dynamic setting should be helpful in designing better
static representations of dynamic graphs (e.g., two dimensional flowcharts of
clients navigating between facilities over time). Another natural extension of
our work is to study other objective functions for the distance cost, such as the
sum of the diameters of the reported clusters over all timesteps (i.e., the sum
of the distance of the farthest client assigned to each facility, see, e.g., [6] for a
static formulation). As it turns out, the optimal dynamic solutions with respect
to this objective tend to exhibit very intriguing behaviors, even in the simplest
case of clients moving along a fixed line [9].

References

1. Anagnostopoulos, A., Bent, R., Upfal, E., Van Hentenryck, P.: A simple and deter-
ministic competitive algorithm for online facility location. Information and Compu-
tation 194, 175–202 (2004)

470 D. Eisenstat, C. Mathieu, and N. Schabanel

2. Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local
search heuristics for k-median and facility location problems. SIAM J. on Comput-
ing 33(3), 544–562 (2004)

3. Byrka, J., Aardal, K.: An optimal bifactor approximation algorithm for the metric
uncapacitated facility location problem. SIAM J. on Computing 39(6), 2212–2231
(2010)

4. Charikar, M., Chekuri, C., Feder, T., Motwani, R.: Incremental clustering and
dynamic information retrieval. In: STOC, pp. 626–635 (1997)

5. Charikar, M., Guha, S.: Improved combinatorial algorithms for facility location
problems. SIAM J. on Computing 34(4), 803–824 (2005)

6. Charikar, M., Panigrahy, R.: Clustering to minimize the sum of cluster diameters.
In: STOC, pp. 1–10 (2001)

7. Dinur, I., Steurer, D.: Analytical approach to parallel repetition. In: STOC 2014,
arXiv:1305.1979 (2014)

8. Divéki, G., Imreh, C.: Online facility location with facility movements. Central
European J. of Operations Research 19(2), 191–200 (2010)

9. Fernandes, C.G., Oshiro, M.I., Schabanel, N.: Dynamic clustering of evolving net-
works: some results on the line. In: AlgoTel, 4 p. (2013), hal-00818985

10. Fotakis, D.: Incremental algorithms for facility location and k-median. Theoretical
Computer Science 361(2-3), 275–313 (2006)

11. Fotakis, D.: On the competitive ratio for online facility location. Algorith-
mica 50(1), 1–57 (2008)

12. Fotakis, D.: Online and incremental algorithms for facility location. SIGACT
News 42(1), 97–131 (2011)

13. Jain, K., Mahdian, M., Markakis, E., Saberi, A., Vazirani, V.: Greedy facility loca-
tion algorithms analyzed using dual fitting with factor-revealing lp. J. ACM 50(6),
795–824 (2003)

14. Kleinberg, J.M.: The small-world phenomenon and decentralized search. SIAM
News 37(3) (2004)

15. Li, S.: A 1.488 approximation algorithm for the uncapacitated facility location
problem. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS,
vol. 6756, pp. 77–88. Springer, Heidelberg (2011)

16. Mahdian, M., Ye, Y., Zhang, J.: Improved approximation algorithms for metric
facility location problems. In: Jansen, K., Leonardi, S., Vazirani, V.V. (eds.) AP-
PROX 2002. LNCS, vol. 2462, pp. 229–242. Springer, Heidelberg (2002)

17. Meyerson, A.: Online facility location. In: FOCS, vol. 42, pp. 426–431 (2001)
18. Newman, M.E.J.: The structure and function of complex networks. SIAM Re-

view 45(2), 167–256 (2003)
19. Pastor-Satorras, R., Vespignani, A.: Epidemic spreading in scale-free networks.

Physical Review Letters 86, 3200–3203 (2001)
20. Shmoys, D.B., Tardos, E., Aardal, K.I.: Approximation algorithms for facility lo-

cation problems. In: STOC, vol. 29, pp. 265–274 (1997)
21. Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto,

M., Van den Broeck, W., Régis, C., Lina, B., Vanhems, P.: High-resolution mea-
surements of face-to-face contact patterns in a primary school. PLoS ONE 6(8),
23176 (2011)

22. Tantipathananandh, C., Berger-Wolf, T.Y., Kempe, D.: A framework for commu-
nity identification in dynamic social networks. In: KDD, pp. 717–726 (2007)

http://hal.archives-ouvertes.fr/hal-00818985

Solving the ANTS Problem with Asynchronous
Finite State Machines

Yuval Emek1, Tobias Langner2, Jara Uitto2, and Roger Wattenhofer2

1 Technion, Israel
2 ETH Zürich, Switzerland

Abstract. Consider the Ants Nearby Treasure Search (ANTS) problem
introduced by Feinerman, Korman, Lotker, and Sereni (PODC 2012),
where n mobile agents, initially placed in a single cell of an infinite
grid, collaboratively search for an adversarially hidden treasure. In this
paper, the model of Feinerman et al. is adapted such that each agent is
controlled by an asynchronous (randomized) finite state machine: they
possess a constant-size memory and can locally communicate with each
other through constant-size messages. Despite the restriction to constant-
size memory, we show that their collaborative performance remains the
same by presenting a distributed algorithm that matches a lower bound
established by Feinerman et al. on the run-time of any ANTS algorithm.

1 Introduction

“They operate without any central control. Their collective behavior arises from
local interactions.” The last quote is arguably the mantra of distributed comput-
ing, however, in this case, “they” are not nodes in a distributed system; rather,
this quote is taken from a biology paper that studies social insect colonies [16].
Understanding the behavior of insect colonies from a distributed computing per-
spective will hopefully prove to be a big step for both disciplines.

In this paper, we study the process of food finding and gathering by ant
colonies from a distributed computing point of view. Inspired by the model of
Feinerman et al. [11], we consider a colony of n ants whose nest is located at the
origin of an infinite grid that collaboratively search for an adversarially hidden
food source. An ant can move between neighboring grid cells and can communi-
cate with the ants that share the same grid cell. However, the ant’s navigation
and communication capabilities are very limited since its actions are controlled
by a randomized finite state machine (FSM) operating in an asynchronous en-
vironment — refer to the model section for a formal definition. Nevertheless,
we design a distributed algorithm ensuring that the ants locate the food source
within O(D + D2/n) time units w.h.p., where D denotes the distance between
the food source and the nest.1 It is not difficult to show that a matching lower

1 We say that an event occurs with high probability, abbreviated by w.h.p., if the event
occurs with probability at least 1 − n−c, where c is an arbitrarily large constant.

J. Esparza et al. (Eds.): ICALP 2014, Part II, LNCS 8573, pp. 471–482, 2014.
c√ Springer-Verlag Berlin Heidelberg 2014

472 Y. Emek et al.

bound holds even under the assumptions that the ants have unbounded memory
(i.e., are controlled by a Turing machine) and know the parameter n.
Related Work. Feinerman et al. [10,11] introduce the aforementioned prob-
lem called ants nearby treasure search (ANTS) and study it, assuming that the
ants (a.k.a. agents) are controlled by a Turing machine (with or without space
bounds) and do not communicate with each other at all. They show that if the n
agents know a constant approximation of n, then they can find the food source
(a.k.a. treasure) in time O(D + D2/n). Moreover, Feinerman et al. observe a
matching lower bound and prove that this lower bound cannot be matched with-
out some knowledge of n. In contrast to the model studied in [10,11], the agents
in our model can communicate anywhere on the grid as long as they share the
same grid cell. However, due to their weak control unit (a FSM), their commu-
nication capabilities are very limited even when they do share the same grid
cell. Notice that the stronger computational model assumed by Feinerman et
al. enables an individual agent to perform tasks way beyond the capabilities of
a (single) agent in our setting, e.g., list the grid cells it has already visited or
perform spiral searches (that play a major role in their upper bound).

Distributed computing by finite state machines has been studied in several
different contexts including population protocols [4,5] and the recent work [9]
from which we borrowed the agents communication model. In that regard, the
line of work closest to our paper is probably the one studying graph exploration
by FSM controlled agents, see, e.g., [12].

Graph exploration in general is a fundamental problem in computer science.
In the typical case, the goal is for a single agent to visit all nodes in a given
graph [1,7,8,15,17]. It is well-known that random walks allow a single agent to
visit all nodes of a finite undirected graph in polynomial time [2]. Notice that
in an infinite grid, the expected time it takes for a random walk to reach any
designated cell is infinite.

Finding treasures in unknown locations has been previously studied, for ex-
ample, in the context of the classic cow-path problem. In the typical setup, the
goal is to locate a treasure on a line as quickly as possible and the performance
is measured as a function of the distance to the treasure. It has been shown that
there is a deterministic algorithm with a competitive ratio 9 and that a spiral
search algorithm is close to optimal in the 2-dimensional case [6]. The study of
the cow-path problem was extended to the case of multiple agents by López-
Ortiz and Sweet [14]. In their study, the agents are assumed to have unique
identifiers, whereas our agents cannot be distinguished from each other (at least
not at the beginning of the execution).
Model. We consider a variant of [11]’s ANTS problem, where a set of mobile
agents search the infinite grid for an adversarially hidden treasure. The agents
are controlled by asynchronous randomized finite state machines with a common
sense of direction and communicate only with agents sharing the same grid cell.

More formally, consider n mobile agents that explore Z
2. In the beginning of

the execution, all agents are positioned in a designated grid cell referred to as the
origin (say, the cell with coordinates (0, 0) → Z

2). We assume for simplicity that

Solving the ANTS Problem with Asynchronous Finite State Machines 473

the agents can distinguish between the origin and the other cells. We denote
the cells with either x or y-coordinate being 0 as north/east/south/west-axis,
depending on their location.

The main difference between our variation of the ANTS model and the original
one lies in the agents’ computation and communication capabilities. In both vari-
ants, all agents run the same (randomized) protocol, however, under the model
considered in the present paper, the agents are controlled by an asynchronous
randomized finite state machine (FSM). This means that the individual agent
has a constant memory and thus, in general, can store neither coordinates in Z

2

nor the number of agents. On the other hand, in contrast to the model consid-
ered in [11], our agents may communicate with each other. Specifically, under
our model, an agent a positioned in cell c → Z

2 can communicate with all other
agents positioned in cell c at the same time. This communication is quite lim-
ited though: agent a merely senses for each state q of the finite state machine,
whether there exists at least one agent a∈ ∈= a in cell c whose current state is
q. Notice that this communication scheme is a special case of the one-two-many
communication scheme introduced in [9] with bounding parameter b = 1.

The distance between two grid cells (x, y), (x∈, y∈) → Z
2 is defined with respect

to the Π1 norm (a.k.a. Manhattan distance), that is, |x − x∈| + |y − y∈|. Two
cells are called neighbors if the distance between them is 1. In each step of the
execution, agent a positioned in cell (x, y) → Z

2 can either move to one of the
four neighboring cells (x, y + 1), (x, y − 1), (x + 1, y), (x − 1, y), or stay put in
cell (x, y). The former four position transitions are denoted by the corresponding
cardinal directions N, S, E, W , whereas the latter (stationary) position transition
is denoted by P (standing for “stay put”). We point out that the agents have
a common sense of orientation, i.e., the cardinal directions are aligned with the
corresponding grid axes for every agent in every cell.

The agents operate in an asynchronous environment. Each agent’s execution
progresses in discrete (asynchronous) steps indexed by the non-negative integers
and we denote the time at which agent a completed step i > 0 by ta(i) >
0. Following the common practice, we assume that the time stamps ta(i) are
determined by the policy Γ of an adversary that knows the protocol but is
oblivious to its random bits, whereas the agents do not have any sense of time.

Formally, the agents’ protocol is captured by the 3-tuple ε = 〈Q, s0, α⊂, where
Q is the finite set of states; s0 → Q is the initial state; and

α : Q × 2Q ⊆ 2Q×{N,S,E,W,P }

is the transition function. At time 0, all agents are in state s0 and positioned in
the origin. Suppose that at time ta(i), agent a is in state q → Q and positioned
in cell c → Z

2. Then, the state q∈ → Q of a at time ta(i + 1) and its corresponding
position transition Δ → {N, S, E, W, P } are dictated based on the transition
function α by picking the pair (q∈, Δ) → α(q, Qa), uniformly at random from
α(q, Qa), where Qa ≥ Q contains state p → Q if and only if there exists some
(at least one) agent a∈ ∈= a such that a∈ is in state p and positioned in cell c at
time ta(i). (Step i is deterministic if |α(q, Qa)| = 1.) For simplicity, we assume

474 Y. Emek et al.

that while the state subset Qa (input to α) is determined based on the status
of cell c at time ta(i), the actual application of the transition function α occurs
instantaneously at the end of the step, i.e., agent a is considered to be in state
q and positioned in cell c throughout the time interval [ta(i), ta(i + 1)).

The goal of the agents is to locate an adversarially hidden treasure, i.e., to
bring at least one agent to the cell in which the treasure is positioned. The
distance of the treasure from the origin is denoted by D. As in [11], we measure
the performance of a protocol in terms of its run-time, where the time is scaled
so that ta(i+1)−ta(i) ⊇ 1 for every agent a and step i ∩ 0. Although we express
the run-time complexity in terms of the parameters n and D, we point out that
neither of these two parameters is known to the agents (who cannot even store
them in their very limited memory).

2 Parallel Rectangle Search

In this section, we introduce the collaborative search strategy RS (Rectangle-
Search) that depends on an emission scheme, which divides all participating
agents in the origin into teams of size ten and emits these teams continuously
from the origin until all search teams have been emitted. We delay the description
of our emission scheme until Section 3 and describe for now the general search
strategy (without a concrete emission scheme). We assume, for the sake of the
following informal explanation, an environment in which the agents operate in
synchronous rounds and then explain how we can lift this assumption.

The RS strategy consists of two stages. The first stage works as follows: When-
ever a team is emitted, one agent becomes an explorer and four agents become
guides, one for each cardinal direction. The remaining five agents become scouts,
whose function will be explained later. Now, each guide walks into its respec-
tive direction until it hits the first cell that is not occupied by another guide.
The explorer follows the north-guide and when they hit the non-occupied cell
(0, d) → Z

2 for some d > 0, the explorer starts a rectangle search by first walking
south-west towards the west-guide. When it hits a guide, the explorer changes
direction to south-east, then to north-east, and finally to north-west. This way,
it traverses all cells in distance d from the origin, referred to hereafter as level d,
(and also almost all cells in distance d + 1). When the explorer meets a guide on
its way, the guide enters a sleep state to be awoken again in the second stage.
The explorer also enters a sleep state after arriving again at the north-guide,
thereby completing the first stage of the rectangle search.

The second stage of RS is started when the last search team is emitted from the
origin. At this point in time, ρ(n) cells are occupied by sleeping guides/explorers
in all four cardinal directions. The last search team wakes up the innermost
sleeping search team upon which it resumes its job and walks outwards to explore
the next unexplored level in the same way as in the first stage. Each team
recursively wakes up the search team of the next level until all sleeping teams
have been woken up and resumed the search. A search in the second stage has
one important difference in comparison to a search in the first stage: When an

Solving the ANTS Problem with Asynchronous Finite State Machines 475

explorer meets a guide g during a search, instead of entering a sleep state, g moves
outwards to the next unexplored level, hopping over all the other stationary
guides on its way, and waits there for the next appearance of an explorer. When
the explorer has finished its rectangle by reaching the north-guide again, it moves
north (with the north-guide) to the first unexplored level and starts another
search there. Knowing that all other guides have reached their target positions
in the same level as well, a new search can begin.

Note that the (temporary) assumption of a synchronous environment is crucial
for the correctness of the algorithm described so far as we assume that whenever
an explorer crosses a coordinate axis, the respective cell contains a guide. In
an asynchronous setting, the guide might still be on its way to that particular
cell and hence, the explorer would continue walking diagonally ad infinitum. We
counter this problem by coupling the searches for different levels in such a way
that a search in level Π can never have progressed further than a search in level
Π∈ < Π. This implies that a search in level Π cannot start/finish earlier than a
search in level Π∈ < Π starts/finishes. This coupling is implemented by equipping
each explorer with a scout that essentially allows the explorer eω in level Π to
check whether the explorer eω−1 of the preceding level has already progressed
at least as far as eω and to move only then. On top of that, explorer eω only
leaves a coordinate axis after ensuring, again by means of its scout, that there is
already a guide present in level Π + 1. This additional check (together with a few
technicalities described later) suffices to ensure that the searches are “nested”
properly and the corresponding guides of each explorer are waiting in the right
positions along the coordinate axes when those are hit by the explorer.

As a (much desirable) byproduct of the aforementioned explorers’ logic, it is
guaranteed that during the execution of the RS strategy, every cell contains at
most one explorer of each possible state. To ensure that the same holds for the
guides, they are also equipped with scouts whose role is to check that during a
guide’s journey outwards, it does not move into a cell which is already occupied
by a guide, unless the latter is in a stationary state (waiting for its explorer).

2.1 The RS strategy

Emission scheme. Initially, all n agents are located at the origin. Until all
agents become involved in the RS strategy, an emission scheme is responsible
for emitting new teams (each consisting of ten agents) from the origin. The
emission of the teams is spaced apart in time in the sense that no two teams are
emitted at the exact same time. (Under a synchronous schedule, a spacing of 20
time units is guaranteed.) To formally express (and analyze) the emission rate,
we introduce the notion of an emission function fn : N0 ⊆ N0, where, until all
teams are emitted, fn(t) bounds from below the number of teams emitted up to
time t. For simplicity, we assume that there are enough agents to execute our
algorithms, i.e., that n ∩ 30.

Let k + 2, k → ρ(n), be the total number of emitted teams where we assume
k ∩ 2. The first and last emitted teams have a special role as signal teams in our
protocol. The k remaining teams s1, . . . , sk will be referred to as search teams.

476 Y. Emek et al.

Whenever a search team becomes ready, four of the ten agents become MGuides
— one for each cardinal direction — and walk outwards in their corresponding
directions, while the fifth one becomes a MExp and follows the north-MGuide (see
below for a detailed description of the agent types). Each MGuide and MExp is
accompanied by a Scout that will stick to this particular agent for the rest of
the execution.
Agent Types. In the remainder of the paper, we will refer to several different
types of agents. Since there is only a constant number of different types, these
can be modeled by having individual finite automata for the various types. We
essentially use six different types and explain their specific behavior in the fol-
lowing: Scout, Guide, MGuide (for moving guide), MExp (for moving explorer),
WExp (for waiting explorer), and Exp (for explorer). We will use the terms “out-
wards” and “inwards” in the context of agents of the two Guide-types (recall that
they are associated with a cardinal direction) to indicate the respective direction
away from or towards the origin. We subsume the types Exp/MExp/WExp and
Guide/MGuide under the name explorers and guides, resp. During the process
of the algorithm, each non-Scout agent will be accompanied by a Scout, whose
type is specific to the type of the agent it is accompanying — its owner. Since all
different Scout-types have very similar tasks, we first give a general description
of a Scout’s function and then explain its type-specific behavior together with
the owner’s behavior.
Scout. The function of each Scout-type is to control when its owner is allowed to
move further. It does so by moving to one of the four neighbor cells of the owner
– the scout position – and waiting for a certain condition (the presence/absence
of a certain type of agent) to become true in that cell. When the condition is
met, the Scout moves back to the cell containing its owner and notifies the owner.
When the owner moves to a new position, the Scout moves along. As Scouts only
play an auxiliary role in our protocol, we may refer to a cell as empty even if it
contains Scouts.
Guide. A Guide waits until a Exp performing a search (this can be encoded in the
state of the Exp) has entered its cell. When (i) the cell one coordinate inwards is
empty and (ii) its cell contains neither MGuide nor MExp, it becomes a MGuide.
MGuide. A MGuide moves outwards (at least one cell) until it hits a cell c that
contains no Guide. The north-MGuide moves north together with the MExp of
the same search team. It does so by verifying before each move (after the first)
that the MExp has caught up and is in the same cell. Otherwise, it waits for the
MExp to catch up. Upon arriving in c, the MGuide becomes a Guide, and waits
for an Exp to visit. A MGuide uses its Scout to prevent moving in a cell that
contains a MGuide, MExp or Exp.
MExp. A MExp repeatedly moves north together with the north-MGuide of the
same search team. More precisely, it only moves north when there is no MGuide
in its cell, implying that the MGuide is already one cell further and waits there
for the MExp to catch up. The MExp moves until it hits the first cell c that
contains neither a Guide that already has an Exp searching (this can be encoded

Solving the ANTS Problem with Asynchronous Finite State Machines 477

in the state of the Guide) nor an Exp. As soon as cell c contains a Guide (the
north-Guide of this explorer’s team), it becomes an Exp. A MExp uses its Scout to
prevent moving into a cell that contains another MExp while walking outwards.
WExp. A WExp waits until its cell is empty and then becomes a MExp.
Exp. An Exp does the bulk of the actual search process by moving along the
sides of a rectangle using Guides on its way to change direction. In the process,
it moves south-west, then south-east, north-east, and north-west, in this order.
Initially, an Exp performs one move west and then alternatingly south and west.

During a diagonal walk, an Exp uses its Scout to prevent it from overtaking
Exps closer to the origin during their search as follows. Consider an Exp e in the
north-west quarter-plane (walking south-west). The Scout is sent to the south-
neighbor cell, referred to as the scouting position, and notifies e, when no Exp
present there (which might immediately be the case). Only then, the Exp and the
Scout move one cell further where the Scout again enters the scouting position.

When the Exp meets a west/south/east-Guide in an axis cell c, it changes its
moving direction. Before leaving the axis, it waits until c does contain neither
Guide nor MGuide (thereby ensuring that there is a Guide one cell outwards).
Upon arrival back at the north Guide after the rectangle search is completed, it
becomes a WExp.

The Exp of the search team exploring level 1 counts its steps (the exploration
journey at this level contains exactly 8 cells) and uses the Scout to make sure
that the cells on the coordinate axes contain a Guide before entering them.
The signal teams. The first and last emitted teams, s0 and sk+1, resp., have
a special role and they do not actively participate in the exploration of the grid
(which is handled by s1, . . . , sk). Their job is solely to signal to the other teams
when the second stage of the protocol begins.

The first team s0 enters a special signal state and stays at the origin until the
last team sk+1 has been emitted. (Due to the design of our emission scheme in
Section 3, the agents in team sk+1 know that they belong to the last emitted team
and are able to notify the agents of s0 accordingly.) The aforementioned logic of
the agents in RS ensures that as long as there is an agent present in the origin,
the Guides and Exps of the innermost search team (and recursively all other
search teams) cannot move outwards. When s0 is notified by sk+1, the agents
in both teams switch to a designated idle state, ignored by all other agents. As
now the origin appears to be empty, the Guides and Exps of the innermost (and
eventually the other search teams) can move outwards to continue searching —
the second stage has begun.

2.2 Correctness

In this section we establish the correctness of the RS strategy by proving that
each cell is eventually explored and no agent is lost in the process. We say that
a cell in level Π is explored after it has been visited by an Exp exploring level
Π, where we recall that level Π → N0 consists of all cells in distance Π from the
origin. An Exp is said to start a (rectangle) search in level Π at time t if it moves

478 Y. Emek et al.

west from the cell (0, Π) (containing the north Guide) at time t and it finishes
a (rectangle) search in level Π at time t if it enters the cell (0, Π) from the east
at time t. The start time tS

ω , finish time tF
ω , and move time tM

ω are given by
the times at which an Exp starts a search in level Π, finishes a search in level Π,
and when the WExp in level Π becomes a MExp, resp. An Exp explores level Π at
time t, if tS

ω < t < tF
ω . The design of RS ensures that regardless of the emission

scheme used, the Guides in every cardinal direction occupy a contiguous segment
of cells. It also implies the following observation and lemma.

Observation 1. (Proof deferred to full version) For two levels Π∈ > Π, we have
tS
ω′ > tS

ω , tF
ω′ > tF

ω , and tM
ω′ > tM

ω .

Lemma 2. (Proof deferred to full version) Outside the origin, no two agents of
the same type occupy the same cell at the same time.

Each Exp relies on Guides to indicate when it has to change the search direction
in order to search a specific level. The next lemma gives a guarantee for this.

Lemma 3. Whenever an Exp enters a cell c on an axis, cell c contains a Guide.

The Canonical Paths. In what follows, we use paths in the infinite grid in their
usual graph-theoretic sense, viewing a path p as a (finite or infinite) sequence
of cells, where p(i) and p(i + 1) are grid neighbors for every i ∩ 1. Notice that
unless stated otherwise, the paths mentioned are not necessarily simple.

Let s1, . . . , sk be the search teams emitted from the origin (ignoring the two
signal teams s0 and sk+1) ordered by ascending emission time and consider
some agent a participating in one of the search teams s1, . . . , sk. Given some
adversarial policy Γ, let pγ

a be the path traversed by a during the execution of
the algorithm under Γ starting at the time at which a is emitted from the origin.
We extend the sequence defined by pγ

a , fixing pγ
a (0) = (0, 0). We shall refer to

pγ
a as the execution path of a (under Γ).

The logic of the guides directly implies that if agent a is a north/south/east/west
guide, then its execution path satisfies pγ

a (i) = (0, i)/(0, −i)/(i, 0)/(−i, 0) for ev-
ery adversarial policy Γ. In other words, the path traversed by a guide does not
depend on the adversarial policy. We argue that this is in fact the case for all agent
types, introducing the notion of a canonical path.

Lemma 4. (Proof deferred to full version) For every 1 ⊇ i ⊇ k and for each
agent role ρ (among the 10 different roles in a search team), there exists a canon-
ical path p∗

i,η such that if agent a is the ρ-agent in search team si, then pγ
a = p∗

i,η,
regardless of the adversarial policy Γ.

It will sometimes be convenient to use the notation p∗
a for the canonical path

p∗
i,η when agent a is the ρ-agent of search team si. The key to Lemma 4’s proof

is the observation that since MExps do not overtake each other, the explorers
maintain a cyclic order between them in terms of the levels they explore. The
exact same argument can be applied to the guides, concluding that the agents
of a search team “stick together” throughout the execution.

Solving the ANTS Problem with Asynchronous Finite State Machines 479

Corollary 5. The agents that were emitted from the origin as guides of search
team si serve as Guides in levels Π = z · k + i for z = 0, 1, . . .

Preventing Dead/live-locks. We now turn to prove that RS does not run
into deadlocks. Recall that during the execution of RS, agents often wait for
other agents to complete some task before they can proceed. In particular, we
say that agent a is delayed by agent a∈ at time t, denoted a ⊆t a∈, if at time t,
a is positioned in some cell c and resides in some state q and the RS strategy
dictates that a can neither leave cell c nor move to any state other than q until
a∈ performs some action in cell c that may take the form of entering cell c,
leaving cell c, or moving to some state within cell c. For example, a guide in
an axis cell c is delayed by its corresponding explorer until the latter reaches c.
Another example is an explorer which is delayed by its scout in some north-west
quarter-plane cell (x, y), while the latter is delayed until the explorer exploring
the previous level leaves cell (x, y − 1). To avoid the necessity to account for the
scouts, we extend the definition of delays in the context of the correctness proof,
allowing for agent a in cell c to be delayed by agent a∈ in a neighboring cell c∈ if
a is actually delayed by its scout in c who is delayed by a∈ in c∈.

Let Dt be the directed graph that corresponds to the binary relation ⊆t over
the set of agents. We prove that RS does not run into deadlocks by establishing
the following lemma.

Lemma 6. The directed graph Dt does not admit any (directed) cycle at all
times t.

Proof. Consider a snapshot of the agents’ states and positions at time t. Exam-
ining the RS strategy, one realizes that the outermost MExp and MGuides are
not delayed by any other agent and that the ith outermost MExp and MGuides
can only be delayed by the (i − 1)th outermost MExp and MGuides. The inner-
most Exp e is not delayed by any agent as long as it is not in an axis cell. In an
axis cell, e can only be delayed by the corresponding guide. An innermost guide
in cell c is delayed by its corresponding explorer until the latter reaches cell c
and since then, it can only be delayed by the corresponding innermost MGuide.
Non-innermost Exp and Guides in level Π can only be delayed by the Exp and
Guides in level Π − 1 or by the MExps and MGuides. The assertion follows. ≤←
The following corollary is derived due to Lemma 6 since there is a constant
number of state transitions an agent positioned in cell c can perform before it
leaves cell c.

Corollary 7. Agent a reaches cell p∗
a(i) within finite time for every i ∩ 1.

Since the canonical path p∗
a contains infinitely many different nodes for every

agent a, we can deduce from Corollary 7 that RS does not run into livelocks,
thus establishing the following theorem.

Theorem 8. The cell containing the treasure is explored in finite time.

480 Y. Emek et al.

2.3 Runtime Analysis

For the sake of a clearer run-time analysis, we analyze RS employing an ideal
emission scheme with emission function fn(t) = Ω(t), i.e., a new search team is
emitted from the origin every constant number of time units. We do not know
how to implement such a scheme, but in Section 3, we will describe an emission
scheme with an almost ideal emission function of fn(t) = Ω(t − log n) and in
Section 4, we will show how to compensate for the gap.

Our proof consists of two parts. First, we analyze the run-time of RS assuming
a “synchronous” adversarial policy Γs, where ta(i) = i for all a and i. Then, we
lift this assumption by showing that Γs is actually the worst case policy. We
start with the following lemmas.

Lemma 9. (Proof deferred to full version) Under Γs, we have tM
ω+1 − tM

ω ∩ 4
and tS

ω+1 − tS
ω ∩ 4.

Lemma 10. (Proof deferred to full version) Under Γs, the explorer of search
team si is not delayed after time tM

i .

Lemma 11. (Proof deferred to full version) Under Γs, we have tF
ω → O(Π+Π2/n)

for any level Π > 0.

We now turn to show that the run-time of RS under any adversarial policy Γ is
at most the run-time under Γs. By definition, policy Γs maximizes the length of
the time between consecutive completion times of the agents’ steps. Informally,
we have to prove that by speeding up some agents, the adversary cannot cause
larger delays later on.

To that end, consider two agents a and a∈ and recall that Lemma 4 guarantees
that they follow the canonical paths p∗

a and p∗
a′ , resp., regardless of the adversar-

ial policy. The agents can delay each other only when they are in the same cell,
so suppose that there exist two indices i and i∈ such that p∗

a(i) = p∗
a′(i∈) = c.

Given some adversarial policy Γ, let tγ
in(a) (resp., tγ

in(a∈)) be the time at which
agent a (resp., a∈) enters c in the step corresponding to p∗

a(i) (resp., p∗
a′(i∈)) under

Γ and let tγ
out(a) (resp., tγ

out(a∈)) be the time at which agent a (resp., a∈) exits
c for the first time following tγ

in(a) (resp., tγ
in(a∈)) under Γ. The key observation

now is that the adversarial policy does not affect the order in which a and a∈

enter/exit cell c.

Observation 12. For every two adversarial policies Γ1, Γ2, we have tγ1
in (a) <

tγ1
in (a∈) if and only if tγ2

in (a) < tγ2
in (a∈) and tγ1

out(a) < tγ1
out(a∈) if and only if

tγ2
out(a) < tγ2

out(a∈).

Therefore, the adversary may decide to modify its policy relatively to Γs by
speeding up some steps of some agents, but this modification cannot delay the
progression of the agents along their canonical paths. Corollary 13 now follows
from Lemma 11.

Corollary 13. Under any adversarial policy, tF
ω → O(Π + Π2/n) for any level

Π > 0.

Solving the ANTS Problem with Asynchronous Finite State Machines 481

3 An Almost Optimal Emission Scheme

We introduce the emission scheme PTA (ParallelTeamAssignment) that w.h.p.
guarantees an emission function of fn(t) = Ω(t− log n). In Section 4, we describe
the search strategy GS (GeometricSearch), that yields an optimal run-time of
O(D + D2/n) when combined with RS. The main goal of this section is to
establish the following theorem.

Theorem 14. Employing the PTA emission scheme, RS locates the treasure in
time O(D + D2/n + log n) w.h.p.

Our first goal is to describe the process FS (FastSpread), where n agents spread
out along the east ray R consisting of the cells (x, 0) for x → N>0 such that
each cell in some prefix of R is eventually assigned to a unique agent. The main
idea behind the implementation of FS is that on every step, agent a throws a
fair coin and moves outwards (towards east) if the coin shows heads and stays
put otherwise. If a senses that it is the only agent occupying cell c, then it
marks itself as ready and stops moving; cell c is also said to be ready following
this event. Furthermore, when a walks onto a ready cell, it moves outwards
deterministically.

To prevent any cell from becoming empty, the agents employ a mechanism
that ensures that at least one agent stays put in each cell. To implement this
mechanism, the agents decide in advance, i.e., in step i, if they want to move in
step i + 1 and report their decision to the other agents. In other words, an agent
a throws a coin in step i and enters a state H or T that correspond to throwing
heads or tails, resp. Then, a moves outwards in step i+1 if and only if it entered
state H in step i and if it senses at least one other agent in state T . Informally,
a only moves if at least one other agent has promised to stay put next time it
acts.

Next, we show that the protocol works correctly, i.e., no cell in the prefix
of R will become empty before getting ready. Suppose for contradiction that
there is a cell c, such that c becomes empty at time t. Let a be an agent and
i a step of a such that for all agents a∈ in cell c and all steps j, it holds that
ta′(j) ⊇ ta(i) < t. In other words, no agent in c changes its state during time
ta(i) < t∈ < t. According to the design of our protocol, a must sense some
other agent a∈ in state T precisely at time ta(i). Since a∈ does not wake up after
ta(i) and before t, it follows that a∈ resides in state T at time t, which is a
contradiction.

Lemma 15. (Proof deferred to full version) For every positive integer s ⊇ 16n,
the first s/16 cells of the ray R are ready after s + O(log n) time units w.h.p.

The last step of the protocol is to gather the teams and move to the origin.
This is performed by dedicating the agent of every tenth cell to a specific role.
More precisely, the cell in distance i · 10 + j for i → {0 ⊇ i ⊇ ∀n/10∪ − 1} and
j → {1, . . . , 10} is dedicated to j-th member of search team si where the different
values of j correspond to the ten different roles. After an Exp (corresponding to

482 Y. Emek et al.

j = 1) becomes ready, it walks outwards to gather the other ready agents of its
team, after which they all walk to the origin.

4 Optimal Rectangle Search

The goal of this section is to establish Theorem 16 by presenting the search
strategy HybridSearch that locates the treasure with optimal run-time of O(D +
D2/n). This is achieved by combining RS employing the PTA emission scheme
with the randomized search strategy GS that is optimal if the treasure is close
to the origin, or more precisely, if D ⊇ log n/2. GS assigns an agent randomly
to one of the four quarter-planes and then lets it walk to a random cell in that
quarter-plane in a geometrically distributed distance from the origin, hence the
name. HybridSearch initially splits the set of agents into half by tossing a fair coin
and then assigns the two halves to perform either GS or RS, thereby combining
the virtues of both strategies. A thorough treatment of HybridSearch is deferred
to the full version.

Theorem 16. HybridSearch locates the treasure in time O(D + D2/n) w.h.p.

References
1. Albers, S., Henzinger, M.: Exploring Unknown Environments. In: SICOMP (2000)
2. Aleliunas, R., Karp, R.M., Lipton, R.J., Lovasz, L., Rackoff, C.: Random Walks,

Universal Traversal Sequences, and the Complexity of Maze Problems. In: SFCS
(1979)

3. Alon, N., Avin, C., Koucky, M., Kozma, G., Lotker, Z., Tuttle, M.R.: Many Random
Walks are Faster Than One. In: SPAA (2008)

4. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in
Networks of Passively Mobile Finite-State Sensors. Distributed Computing (2006)

5. Aspnes, J., Ruppert, E.: An Introduction to Population Protocols. In: Middleware
for Network Eccentric and Mobile Applications

6. Baeza-Yates, R.A., Culberson, J.C., Rawlins, G.J.E.: Searching in the Plane. In-
formation and Computation (1993)

7. Deng, X., Papadimitriou, C.: Exploring an Unknown Graph. JGT (1999)
8. Diks, K., Fraigniaud, P., Kranakis, E., Pelc, A.: Tree Exploration with Little Mem-

ory. Journal of Algorithms (2004)
9. Emek, Y., Wattenhofer, R.: Stone Age Distributed Computing. In: PODC (2013)

10. Feinerman, O., Korman, A.: Memory Lower Bounds for Randomized Collaborative
Search and Implications for Biology. In: DISC (2012)

11. Feinerman, O., Korman, A., Lotker, Z., Sereni, J.S.: Collaborative Search on the
Plane Without Communication. In: PODC (2012)

12. Fraigniaud, P., Ilcinkas, D., Peer, G., Pelc, A., Peleg, D.: Graph Exploration by a
Finite Automaton. In: TCS (2005)

13. Förster, K.T., Wattenhofer, R.: Directed Graph Exploration. In: OPODIS (2012)
14. López-Ortiz, A., Sweet, G.: Parallel Searching on a Lattice. In: CCCG (2001)
15. Panaite, P., Pelc, A.: Exploring Unknown Undirected Graphs. In: SODA (1998)
16. Prabhakar, B., Dektar, K.N., Gordon, D.M.: The Regulation of Ant Colony For-

aging Activity Without Spatial Information. PLoS Computational Biology (2012)
17. Reingold, O.: Undirected Connectivity in Log-Space. JACM (2008)

Near-Optimal Distributed Approximation
of Minimum-Weight Connected Dominating Set

Mohsen Ghaffari

MIT, USA
ghaffari@mit.edu

Abstract. This paper1 presents a near-optimal distributed approximation algo-
rithm for the minimum-weight connected dominating set (MCDS) problem. We
use the standard distributed message passing model called the CONGEST model
in which in each round each node can send O(log n) bits to each neighbor. The
presented algorithm finds an O(log n) approximation in Õ(D +

√
n) rounds,

where D is the network diameter and n is the number of nodes. MCDS is a
classical NP-hard problem and the achieved approximation factor O(log n) is
known to be optimal up to a constant factor, unless P = NP. Furthermore, the
Õ(D+

√
n) round complexity is known to be optimal modulo logarithmic factors

(for any approximation), following [Das Sarma et al.—STOC’11].

1 Introduction and Related Work

Connected dominating set (CDS) is one of the classical structures studied in graph op-
timization problems which also has deep roots in networked computation. For instance,
CDSs have been used rather extensively in distributed algorithms for wireless networks
(see e.g. [2, 3, 5–10, 31, 39, 40]), typically as a global-connectivity backbone.

This paper investigates distributed algorithms for approximating minimum-weight
connected dominating set (MCDS) while taking congestion into account. We first take
a closer look at what each of these terms means.

1.1 A Closeup of MCDS, in Contrast with MST

Given a graph G = (V,E), a set S ∈ V is called a dominating set if each node
v /≡ S has a neighbor in S, and it is called a connected dominating set (CDS) if the
subgraph induced by S is connected. Figure 1 shows an example. In the minim-weight
CDS (MCDS) problem, each node has a weight and the objective is to find a CDS with
the minimum total weight.

The MCDS problem is often viewed as the node-weighted analogue of the minimum-
weight spanning tree (MST) problem. Here, we recap this connection. The natural in-
terpretation of the definition of CDS is that a CDS is a selection of nodes that provides
global-connectivity—that is, any two nodes of the graph are connected via a path that
its internal nodes are in the CDS. On the counterpart, a spanning tree is a (minimal) se-
lection of edges that provides global-connectivity. In both cases, the problem of interest
is to minimize the total weight needed for global-connectivity. In one case, each edge
has a weight and the problem becomes MST; in the other, each node has a weight and
the problem becomes MCDS.

1 A full version can be found in [20].

J. Esparza et al. (Eds.): ICALP 2014, Part II, LNCS 8573, pp. 483–494, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

484 M. Ghaffari

Fig. 1. The green nodes represent a connected dominating set (CDS) of the graph

Despite the seemingly analogous nature of the two problems, MCDS turns out to
be a significantly harder problem: The MST problem can be computed sequentially
in (almost) O(m) time, where m is the number of edges. On the other hand, MCDS
is NP-hard [19], and in fact, unless P = NP, no polynomial time algorithm can find
any approximation better than Σ(log n)-factor for it (see [1, 16, 37]). Furthermore, the
known sequential algorithms for O(log n) approximation of MCDS (see [22, 23]) have
unspecified polynomial time complexity, which are at least Σ(n3).

1.2 Congestion in Distributed Algorithms

Two central issues in distributed computing are locality and congestion [34]. Classi-
cally, locality has received more attention and most graph problems were studied in the
LOCAL model, where congestion is ignored and messages can have unbounded size.
The recent years have seen a surge in focus on understanding the effect of congestion in
graph problems (see e.g., [11–13,17,21,24,30,32,33]). The standard distributed model
that takes congestion into account is called CONGEST [34], where in each round, each
node can send B bits to each of its neighbors, and normally one assumes B = O(log n).
The pioneering problem in the study of the CONGEST model was MST: A beautiful
line of work shows that MST can be solved in O(D +

⊆
n log∗ n) rounds [18, 29]

and that this is (existentially) optimal modulo logarithmic factors [11, 15, 35], and a
similar lower bound also applies to many other distributed graph problems [11]. Since
then, achieving an Õ(D +

⊆
n) round complexity is viewed as sort of a golden stan-

dard for (non-local) problems in the CONGEST model. The area is quite active and
in the last couple of years, a few classical graph optimization problems (which are in
P) are shown to have approximation matching this standard or getting close to it: some
distance-related problems such as shortest-path approximations [30,32] or diameter and
girth approximations [24], and minimum-cut approximation [21].

1.3 Result

The contribution of this paper is to show that in the CONGEST model, MCDS can be
solved—that is, approximated optimally—in a time close to that of MST.

Theorem 1. There is a randomized distributed algorithm in the CONGEST model
that, with high probability, finds an O(log n) approximation of the minimum-
weight connected dominating set, using Õ(D +

⊆
n) rounds.

Near-Optimal Distributed Approximation of MCDS 485

This algorithm is (near) optimal in both round complexity and approximation factor:
Using techniques of [11], one can reduce the two-party set-disjointness communication
complexity problem on Σ(

⊆
n)-bit inputs to MCDS, proving that the round complexity

is optimal, up to logarithmic factors, for any approximation (see Appendix B in the
full version). As mentioned above, the O(log n) approximation factor is known to be
optimal up to a constant factor, unless P = NP, assuming that nodes can only perform
polynomial-time computations. Note that this assumption is usual, see e.g. [14, 25, 28].

1.4 Other Related Work

To the best of our knowledge, no efficient algorithm was known before for MCDS in
the CONGEST model. Notice that in the LOCAL model, MCDS boils down to a triv-
iality and is thus never addressed in the literature: it is folklore2 that in this model, D
rounds is both necessary and sufficient for any approximation of MCDS. However, a
special case of MCDS is interesting in the LOCAL model; the so-called “unweighted
case” where all nodes have equal weight. Although, the unweighted-case has a signif-
icantly different nature as it makes the problem “local”: Dubhashi et al. [14] present a
nice and simple O(log n) approximation for the unweighted-case algorithm which uses
O(log2 n) rounds of the LOCAL model. To our knowledge, the unweighted case has
not been addressed in the CONGEST model, but we briefly comment in Appendix A
of the full version that one can solve it in O(log2 n) rounds of the CONGEST model
as well, by combining the dominating set approximation of Jia et al. [25] with the lin-
ear skeleton of Pettie [36] and a simple trick for handling congestion. Another problem
which has a name resembling MCDS is the minimum-weight dominating set (MDS)
problem. However, MDS is also quite different from MCDS as the former is “local”,
even in the weighted case and the CONGEST model: an O(logn) factor approximation
can be found in O(log2 n) rounds [25, 28] (see also [27]).

2 Preliminaries

Distributed Model: As stated above, we use the CONGEST model: communication
between nodes happens in lock-step rounds where in each round, one B-bits message
can be sent on each direction of each edge, and we particularly focus on the standard
case of B = O(log n). The only global knowledge assumed is that nodes know an
upper bound N = poly(n) on n. We use the phrase with high probability (w.h.p.) to
indicate a probability being at least 1− 1

nβ , for a constant ε ↔ 2.

Notations and Basic Definitions: We work with an undirected graph G = (V,E),
n = |V |, and for each vertex v ≡ V , c(v) denotes the weight (i.e., cost) of node v.
Throughout the paper, we will use the words cost and weight interchangeably. For each
subset T ∈ V , we define cost(T) =

∑
v∈T c(v). We assume the weights are at most

polynomial in n, so each weight can fit in one message (such assumptions are usual,
e.g. [18]). We use notation OPT to denote the CDS with the minimum cost. Also, for

2 In a cycle with 2D nodes, nodes need to learn the weight of the node at the opposite side,
which is D hops away and requires D rounds.

486 M. Ghaffari

convenience and when it does not lead to any ambiguity, we sometimes use OPT to
refer to the cost of the optimal CDS.

Problem Statement: Initially, each node v knows only its own weight c(v). The objec-
tive is to find a set S in a distributed fashion—that is, each node v will need to output
whether v ≡ S or not—such that cost(S) = O(OPT · log n).
A Basic Tool (Thurimella’s Algorithm): A basic tool that we frequently use is a con-
nected component identification algorithm presented by Thurimella [38], which itself
is a simple application of the MST algorithm of Kutten and Peleg [29]. Given a sub-
graph H = (V,E≥) of the main network graph G = (V,E), this algorithm identifies
the connected components of H by giving a label Ω(v) to each v such that Ω(v) = Ω(u)
if an only if v and u are in the same connected component of H . This algorithm uses
O(D+

⊆
n log∗ n) rounds of the CONGEST model. It is easy to see that the same strat-

egy can be adapted to solve the following problems also in O(D +
⊆
n log∗ n) rounds.

Suppose each node v has an input x(v). For each node v, which is in a component C of
H , we can make Ω(v) be equal to: (A) the maximum value x(u) for nodes u ≡ C in the
connected component of v, or (B) the list of k = O(1) largest values x(u) for nodes
u ≡ C, or (C) the summation of values x(u) for nodes u ≡ C.

3 The Algorithm for MCDS

3.1 The Outline

The top-level view of the approach is as follows: We start by using the O(log2 n) rounds
algorithm of [25] to find a dominating set S with cost O(log n · OPT). The challenge
is in adding enough nodes to connect the dominating set, while spending extra cost of
O(log n · OPT). We achieve connectivity in O(logn) phases. In each phase, we add
some nodes to set S so that we reduce the number of connected components of S by a
constant factor, while spending a cost of O(OPT). After O(log n) phases, the number
of connected components goes down to 1, meaning that we have achieved connectivity.
Each phase uses Õ(D +

⊆
n) rounds of the CONGEST model. What remains is to

explain how a phase works.
The reader might recall that such “component-growing” approaches are typical in

the MST algorithms, e.g., [18, 29]. While in MST, the choice of the edge to be added
to each component is clear (the lightest outgoing edge), the choice of the nodes to be
added in MCDS is not clear (and in fact can be shown to be an NP-hard problem, itself).

The problem addressed in one phase can be formally recapped as follows (the reader
might find the illustration in Figure 2 helpful here): We are given a dominating subset
S ∈ V and the objective is to find a subset S≥ ∈ V \ S with cost(S≥) = O(OPT) such
that the following condition is satisfied. Let F be the set of subsets of S such that each
C ≡ F is a connected component of G[S]. Call a connected component C ≡ F satisfied
if in G[S ⇔ S≥], C is connected to at least one other component C≥ ≡ F . We want S≥ to
be such that at least half of the connected components of G[S] are satisfied. Note that if
this happens, then the number of connected components goes down by a 3/4 factor. To
refer to the nodes easier, we assume that all nodes that are in S at the start of the phase
are colored green and all the other nodes are white, initially. During the phase, some
white nodes will become gray meaning that they joined S≥.

Near-Optimal Distributed Approximation of MCDS 487

Fig. 2. An example scenario at the start of a phase. Green nodes indicate those in S and white
nodes are V \ S. Unrelated nodes and edges are discarded from the picture.

Before moving on to the algorithm, we emphasize two key points:

(1) It is critical to seek satisfying only a constant fraction of the components of G[S].
Using a simple reduction from the set cover problem, it can be shown that sat-
isfying all components might require a cost O(OPT logn) for a phase. Then, at
least in the straightforward analysis, the overall approximation factor would be-
come O(log2 n).

(2) In each phase, we freeze the set of components F of G[S]. That is, although we
continuously add nodes to the CDS and thus the components grow, we will not try
to satisfy the newly formed components. We keep track of whether a component
C ≡ F is satisfied and the satisfied ones become “inactive” for the rest of the phase,
meaning that we will not try to satisfy them again. However, satisfied components
will be used in satisfying the others.

3.2 A High-Level View of the Algorithm for One Phase

1 1

1 ݊
݊ ݊݊1

݊ 1 ݊
݊ 1

Fig. 3. The naive approach

Note that since S is a dominating set, C ≡ F is satisfied
iff there exist one or two nodes that connect C to another
component C≥ ≡ F . That is, either there is a node v such
that path C-v-C≥ connects component C to component C≥

or there are two adjacent nodes v and w such that path
C-v-w-C≥ does that. Having this in mind, and motivated by
the solution for the unweighted case [14], a naive approach
would be that, for each component C, we pick one or two
nodes—with smallest total weight—that connect C to an-
other component, and we do this for each component C independently. However, in the
weighted case, this naive idea would perform terribly. To see why, let us consider a sim-
ple example (see Figure 3): take a cycle with n − 1 nodes where every other node has
weight 1 and the others have weight

⊆
n, and then add one additional node at the center

with weight n, which is connected to all weight-1 nodes. Clearly, the set of weight-1
nodes gives us an optimal dominating set. However, naively connecting this dominating
set following the above approach would make us include at least half of the

⊆
n-weight

nodes, leading to overall weight of Σ(n
⊆
n). On the other hand, simply adding the

center node s to the dominating set would provide us with a CDS of weight O(n).

488 M. Ghaffari

a general star a basic star

Fig. 4. A basic-star. The opaque components indicate those that are already satisfied and thus
deactivated. Two legs of the general star (colored red, on the left) are discarded in the basic-star
(colored red, on the right), as each of them forms a useful star, meaning that the leg itself can
satisfy at least one active component.

Inspired by this simple example, we view stars as the key elements of optimization
(instead of 2 or 3 hop paths). We next define what we mean by a star and outline how
we use it. We note that the concept is also similar to the notion of spiders used in [26]
for the node-weighted Steiner trees problem.

Definition 1. (Stars) A star X is simply a set of white nodes with a center s ≡ X such
that each non-center node in the star is connected to the center s. Naturally, we say a
star X satisfies an active component C ≡ F if adding this star to S≥—that is, coloring
its nodes gray—would connect C to some other component and thus make it satisfied.
Let δ(X) be the set of unsatisfied components in F that would be satisfied by X . We
say a star is useless if δ(X) = ⊂. The cost of a star X is cost(X) =

∑
w∈X c(w) and

its efficiency is π(X) = |Φ(X)|
cost(X) . We say X is π≥-efficient if π(X) ↔ π≥.

In Figure 3, each white node is one star, the center has efficiency Σ(1) and every
other star has efficiency Σ(1/

⊆
n). Notice that in general, different stars might intersect

and even a white node v might be the center of up to 2Θ(n) different stars.

The General Plan (While Ignoring Some Difficulties): We greedily add stars to the
gray nodes. That is, we pick a star that has the maximum efficiency and color its nodes
gray. It can be shown that this greedy idea would satisfy half of components using cost
only O(OPT). However, clearly adding stars one by one would be too slow. Instead we
adopt a nice and natural technique due to Berger et al. [4] which by now has become
a standard trick for speeding up greedy approaches via parallelizing their steps. The
key point is, stars that have efficiency within a constant factor of the max-efficiency
are essentially as good as the max-efficient star and hence, we can add those as well.
The only catch is, one needs to make sure that adding many stars simultaneously does
not lead to (too much) double counting in the efficiency calculations. In other words, if
there are many stars that try to satisfy the same small set of components, even if each
of these stars is very efficient, adding all of them is not a good idea. The remedy is
to probabilistically add stars while the probabilities are chosen such that not too many
selected stars try to satisfy one component.

While this general outline roughly explains what we will do, the plan faces a num-
ber of critical issues. We next briefly hint at two of these challenges and present the
definitions that we use in handling them.

Near-Optimal Distributed Approximation of MCDS 489

Challenge 1: The first step in the above outline is to compute (or approximate) the
efficiency of the max-efficient star. Doing this for the general class of stars turns out
the be a hard problem in the CONGEST model. Note that for a white node v to find
(or approximate) the most-efficient star centered on it, v would need to know which
components are adjacent to each of its white neighbors. As each white node might be
adjacent to many components, this is like learning the 2-neighborhood of v and appears
to be intrinsically slow in the CONGEST model. Instead, we will focus on a special
form of stars, which we call basic-stars and explain next. Figure 4 shows an example.

Definition 2. (Basic-Stars) Call a white node u self-sufficient if u is adjacent to two
or more components, at least one of which is not satisfied. A star X is called basic if
for each non-center node w ≡ X , w is not self-sufficient. That is, the star X ≥ = {w} is
useless.

We argue later that, considering only the basic-stars will be sufficient for our pur-
poses (sacrificing only a constant factor in the approximation quality) and that we can
indeed evaluate the max-efficiency of the basic-stars.

Challenge 2: The other issue, which is a bit more subtle but in fact significantly more
problematic, is as follows: as we color some white nodes gray, some components grow
and thus, the efficiencies of the stars change. For instances, a useless star X = {v}
might now become useful–e.g., it gets connected to a satisfied component C≥ via a node
u that just got colored gray, and X can now satisfy an adjacent unsatisfied component C
by connecting it to C≥. Another example, which is rooted also in the congestion related
issues, is as follows: During our algorithm, to be able to cope with communication is-
sues, each white node v will work actively on only one max-efficient basic-star centered
on v. But, v might be the center of many such stars and even if one of them looses the
efficiency after this iteration, another max-efficient star which existed before might be
now considered actively by v.

We note that, if there were no such “new-stars” issues, we could use here standard
methods such as (a modification of) the LP relaxation based technique of Kuhn and
Wattenhofer [28]. However, these changes break that approach and it is not even clear
how to formulate the problem as an LP (or even a convex optimization problem, for that
matter).

If not controlled, these changes in the stars can slow down our plan significantly. For
example, if for a given almost-maximum efficiency π̃, in each iteration a small number
of π̃-efficient new basic-stars are considered actively, we will have to spend some time
on these stars but as the result, we would satisfy only very few components, which
would become prohibitively slow. To remedy this, when coloring stars gray, we will do
it for certain types of π̃-efficient basic-stars, which we define next, and after that, we do
some clean up work to remove the new π̃-efficient basic-stars that would be considered
actively later on.

Definition 3. (π∗-Augmented Basic-Stars) Aπ∗-efficient basic-starX centered on node
v ≡ X is called π∗-minimal if for any other star X ≥ ≥ X centered on v, we have,
π(X ≥) < π∗. For a π∗-minimal basic-star X centered on v, a good auxiliary-leg is a
white node u /≡ X that is adjacent to v and furthermore, the following conditions are

490 M. Ghaffari

satisfied: u is adjacent to only one component C ≡ F , component C is not satisfied and
it is not adjacent to X , and we have cost(u) ⇒ 2/π∗. A π∗-Augmented Basic-Star X ≥

is one that can be derived by (one-by-one) adding to π∗-minimal basic-star X all good
auxiliary-legs adjacent to its center.

8

2 5

19

13

Fig. 5. A 0.1-augmented basic-
star is indicated with the dashed
lines; the red part is a minimal
0.1-efficient basic-star and the
orange part is a good auxiliary
leg

An example is shown in Figure 5. The actual reason-
ing for why this definition is good is somewhat subtle
to be explained intuitively. A very rough version is as
follows: after coloring some π∗-augmented basic-stars
gray, by just handling the nodes which each have cost
at most 1/π∗ (in a step we call clean up), we will be
able to remove any new π∗-augmented basic-star. The
point should become clear after seeing the algorithm .

Observation 2. Each π∗-Augmented Basic-Star X has
efficiency π(X) ↔ ρ∗

2 . Furthermore, if a π∗-Augmented
Basic-Stars X contains a white node w, then all unsat-
isfied components adjacent to w get satisfied by X .

3.3 The Algorithm For One Phase

The objective of the algorithm is to satisfy at least half
of the components, using a cost O(OPT), and in O((D +

⊆
n log∗ n) log3 n) rounds.

Throughout the phase, each non-white node will keep track of whether its component
in F is satisfied or not. Let N = |F| and also, make all nodes know N by running
Thurimella’s connected component identification at the start of the phase and then glob-
ally gathering the number of components.

While at least ◦N/2≤ components in F remain unsatisfied, we repeat the following
iteration, which has 8 steps—S1 to S8—and each step uses O(D+

⊆
n log∗ n) rounds:

(S1) We first use Thurimella’s algorithm (see Section 2) to identify the connected com-
ponents of non-white nodes and also to find out whether each component is satis-
fied (i.e. if it contains a gray node). These take O(D +

⊆
n log∗ n) rounds. Each

non-white node broadcasts its component id and whether its component is satisfied
to all neighbors. We also find the total number of unsatisfied connected compo-
nents and if it is less than N/2, we call this phase finished and start the next phase.

(S2) We now find the globally-maximum efficiency π∗ of the basic-stars.

They key part is to compute the efficiency of the most-efficient basic-star centered
on each white node. After that, the global-maximum can be found in O(D) rounds
easily. We first use one round of message exchanges between the white nodes so
that each white node knows all the basic-stars it centers.

Each white node v does as follows: if v is adjacent to only one component
(satisfied or unsatisfied), it sends the id of this component, its satisfied/unsatisfied
status and vid to its neighbors. If v is adjacent to two or more components, but
all of them are satisfied, then v sends a message to its neighbors containing vid
and an indicator message “all-satisfied”. If v is adjacent to two or more com-
ponents, at least one of which is unsatisfied, then v does not send any message.

Near-Optimal Distributed Approximation of MCDS 491

This is because, by Definition 2, node v is self-sufficient and it thus can be only in
basic-stars centered on v. At the end of this round, each white node v has received
some messages from its white neighbors. These messages contain all the infor-
mation needed for forming all the basic-stars centered on v and calculating their
efficiency. Node v finds the most-efficient of these basic-stars. It is easy to see that
this can indeed be done in polynomial-time local computation. We emphasize that
the basic-stars found in this step are not important and the only thing that we want
is to find the globally-maximum efficiency π∗.

(S3) Let π̃ = 2∈log2 ρ∗⊆, i.e., π̃ is equal to π∗ rounded down to the closest power of 2.
We pick at most one π̃-augmented basic-star X i

v (see Definition 3) centered on
each white node v, where i is the iteration number.

We reuse the messages exchanged in the previous step. First, each white node
v finds a minimal π̃-efficient basic-star centered on v, if there is one. Call this
the core-star of v. Then, v adds to this core-star any good auxiliary-legs available
(one by one), to find its π∗-augmented basic-star X i

v. This is the only star centered
on v that will be considered for the rest of this iteration. Thus, at most one star X i

v

centered on each white node v remains active for the rest of iteration i. Note that
all active remaining stars are π̃/2-efficient.

For each active-remaining star X i
v and each unsatisfied component C it sat-

isfies, the center v elects one of the white nodes of the star to be responsible for
communicating with C. If C has at least one non-center neighbor in X i

v , then one
such non-center node u (selected arbitrarily) is called responsible for communi-
cating with C. Otherwise, the center v is responsible3 for communicating with C.

(S4) For each unsatisfied component C ≡ F , we find the number of active stars that
satisfy C. The objective is to find the maximum such number ψ∗

ρ̃, over all unsat-
isfied components. First, each white node v that centers an active star X i

v reports
this star to each non-center node u of it, by just sending vid, special message
active-star, and the id of the component C for which u is responsible for commu-
nicating with (if there is one). Then, for each white node w and each unsatisfied
component C that w is responsible for communicating with it in any star, node
u sends to one of the nodes of C the number of stars in which u is responsible
for communicating with C. These counts are summed up in each component C
via Thurimella’s algorithm, and it is called the active-degree of C. The maximum
active-degree is found globally and called ψ∗

ρ̃.

(S5) Next, some active stars propose to their adjacent unsatisfied components.We mark
each active star with probability 1

5Δ∗
ρ̃

, where the decision is made randomly by

the center of the star and sent to the other nodes of the star (if there is any).
Then, these marks are sent to the components that get satisfied by the marked
stars, as proposals, via the white nodes that are responsible for communicating
with the components. If v is self-sufficient, it would need to send at most one

3 Since any white node u that is not self-sufficient is adjacent to at most one unsatisfied compo-
nent, in any basic-star that contains u, node u can be responsible only for this one unsatisfied
adjacent component. On the other hand, if v is self-sufficient, it will be only in one star Xi

v .

492 M. Ghaffari

proposal to each adjacent component (it would be to those components for which
v is responsible for communicating with them in X i

v). However, if v is not self-
sufficient, then v might want to send many proposals to an unsatisfied component
adjacent to it (there is at most one such component). This is not feasible in the
CONGEST model. Instead, v selects at most 3 of these proposals (arbitrarily) and
just submits these 3 proposals.

(S6) Each component grants at most 3 of the proposals it receives. This is done via
Thurimella’s algorithm, where 3 proposals with largest center ids are granted.
Finally components report the granted proposals to the adjacent white nodes.

(S7) Each marked star collects how many of its proposals are granted. If at least 1/3 of
the proposals of this star were granted, then all nodes of this marked star become
gray. After that, we use Thurimella’s algorithm again to identify the green nodes
which their component (in F) is satisfied (by checking if their component has a
gray node).

(S8) Finally, we have a clean up step, which removes the newly-formed π̃-augmented
basic-stars that if not removed now, might be active in the next iterations. Tem-
porarily (just for this clean up step) color each white node blue if its cost is at most
1/π̃. For each unsatisfied component C ≡ F that can be satisfied using only blue
nodes, we find one or two blue nodes that connect C to some other component in
F and we color these blue nodes gray, thus making C satisfied. In the first round,
for each blue node v, if v is adjacent to only one component, it sends the id of this
component and its own id vid. If v is adjacent to two or more components, it just
sends its own id with an indicator symbol “two-or-more”. In the second round,
for each blue node u, if u is adjacent to an unsatisfied component C, node u cre-
ates a proposal for C as follows: if u is adjacent to at least one other component
C≥ ≡ F , then the proposal is simply the id of u. If u is not adjacent to any other
component C≥ but there is a blue neighbor w of u such that in the first round, w
sent the id of a component C≥≥ →= C or w sent the “two-or-more” indicator symbol,
then the proposal contains the ids of u and v. Otherwise, the proposal is empty.
Each unsatisfied component picks one (nonempty) proposal, if it receives any, and
grants it. The granted proposal is reported to all nodes adjacent to the component
and if the proposal of u is granted, it becomes gray and if this granted proposal
contained a blue neighbor w, then u informs w about the granted proposal which
means that w also becomes gray.

Due to the space limitations, the analysis are deferred to the full version.

Acknowledgment. We thank Fabian Kuhn for valuable discussions. We also thank
Stephan Holzer and Christoph Lenzen for helpful comments about the presentation.

This work was supported by Simons award for graduate students in theoretical Com-
puter Science (number 318723), AFOSR contract number FA9550-13-1-0042, NSF
award 0939370-CCF, NSF award CCF-1217506, and NSF award CCF-AF-0937274.

Near-Optimal Distributed Approximation of MCDS 493

References

1. Alon, N., Moshkovitz, D., Safra, S.: Algorithmic construction of sets for k-restrictions. ACM
Trans. Algorithms 2(2), 153–177 (2006)

2. Alzoubi, K.M., Wan, P.-J., Frieder, O.: Message-optimal connected dominating sets in mobile
ad hoc networks. In: the Proceedings of the Int’l Symp. on Mobile Ad Hoc Net. and Comput,
pp. 157–164 (2002)

3. Alzoubi, K.M., Wan, P.-J., Frieder, O.: New distributed algorithm for connected dominating
set in wireless ad hoc networks. In: Proceedings of the 35th Annual Hawaii International
Conference on System Sciences (HICSS), pp. 3849–3855. IEEE (2002)

4. Berger, B., Rompel, J., Shor, P.W.: Efficient NC algorithms for set cover with applications to
learning and geometry. In: Proc. of the Symp. on Found. of Comp. Sci. (FOCS), pp. 454–477
(1994)

5. Blum, J., Ding, M., Thaeler, A., Cheng, X.: Connected dominating set in sensor networks
and manets. In: Handbook of Combinatorial Optimization, pp. 329–369. Springer (2005)

6. Chen, Y.P., Liestman, A.L.: Approximating minimum size weakly-connected dominating
sets for clustering mobile ad hoc networks. In: Proceedings of the 3rd ACM International
Symposium on Mobile ad Hoc Networking & Computing, pp. 165–172. ACM (2002)

7. Cheng, X., Huang, X., Li, D., Wu, W., Du, D.-Z.: A polynomial-time approximation scheme
for the minimum-connected dominating set in ad hoc wireless networks. Networks 42(4),
202–208 (2003)

8. Cheng, X., Wang, F., Du., D.-Z.: Connected dominating set. In: Encyclopedia of Algorithms,
pp. 1–99. Springer (2008)

9. Dai, F., Wu, J.: An extended localized algorithm for connected dominating set formation in
ad hoc wireless networks. IEEE Transactions on Parallel and Distributed Systems 15(10),
908–920 (2004)

10. Das, B., Bharghavan, V.: Routing in ad-hoc networks using minimum connected dominating
sets. In: Proc. of the IEEE Int’l Conf. on Communications (ICC), vol. 1, pp. 376–380. IEEE
(1997)

11. Das Sarma, A., Holzer, S., Kor, L., Korman, A., Nanongkai, D., Pandurangan, G., Peleg, D.,
Wattenhofer, R.: Distributed verification and hardness of distributed approximation. In: Proc.
of the Symp. on Theory of Comp. (STOC), pp. 363–372 (2011)

12. Das Sarma, A., Nanongkai, D., Pandurangan, G.: Fast distributed random walks. In: The
Proc. of the Int’l Symp. on Princ. of Dist. Comp. (PODC), pp. 161–170 (2009)

13. Das Sarma, A., Nanongkai, D., Pandurangan, G., Tetali, P.: Efficient distributed random
walks with applications. In: The Proc. of the Int’l Symp. on Princ. of Dist. Comp. (PODC),
pp. 201–210 (2010)

14. Dubhashi, D., Mei, A., Panconesi, A., Radhakrishnan, J., Srinivasan, A.: Fast distributed al-
gorithms for (weakly) connected dominating sets and linear-size skeletons. In: Pro. of ACM-
SIAM Symp. on Disc. Alg. (SODA), pp. 717–724 (2003)

15. Elkin, M.: Unconditional lower bounds on the time-approximation tradeoffs for the dis-
tributed minimum spanning tree problem. In: Proc. of the Symp. on Theory of Comp.
(STOC), pp. 331–340 (2004)

16. Feige, U.: A threshold of lnn for approximating set cover (preliminary version). In: Proc. of
the Symp. on Theory of Comp. (STOC), pp. 314–318 (1996)

17. Frischknecht, S., Holzer, S., Wattenhofer, R.: Networks cannot compute their diameter in
sublinear time. In: Pro. of ACM-SIAM Symp. on Disc. Alg. (SODA), pp. 1150–1162 (2012)

18. Garay, J., Kutten, S., Peleg, D.: A sub-linear time distributed algorithm for minimum-weight
spanning trees. In: Proc. of the Symp. on Found. of Comp. Sci. FOCS (1993)

494 M. Ghaffari

19. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory of NP-
Completeness. W. H. Freeman & Co., New York (1990)

20. Ghaffari, M.: Near-optimal distributed approximation of minimum-weight connected domi-
nating set, http://people.csail.mit.edu/ghaffari/papers/CDS.pdf

21. Ghaffari, M., Kuhn, F.: Distributed minimum cut approximation. In: Proc. of the Int’l Symp.
on Dist. Comp. (DISC), pp. 1–15 (2013)

22. Guha, S., Khuller, S.: Approximation algorithms for connected dominating sets. Algorith-
mica 20(4), 374–387 (1998)

23. Guha, S., Khuller, S.: Improved methods for approximating node weighted steiner trees and
connected dominating sets. Information and computation 150(1), 57–74 (1999)

24. Holzer, S., Wattenhofer, R.: Optimal distributed all pairs shortest paths and applications. In:
The Proc. of the Int’l Symp. on Princ. of Dist. Comp. (PODC), pp. 355–364 (2012)

25. Jia, L., Rajaraman, R., Suel, T.: An efficient distributed algorithm for constructing small
dominating sets. In: The Proc. of the Int’l Symp. on Princ. of Dist. Comp. (PODC),
pp. 32–42 (2001)

26. Klein, P., Ravi, R.: A nearly best-possible approximation algorithm for node-weighted steiner
trees. Journal of Algorithms 19(1), 104–115 (1995)

27. Kuhn, F., Moscibroda, T., Wattenhofer, R.: What cannot be computed locally? In: The Proc.
of the Int’l Symp. on Princ. of Dist. Comp. (PODC), pp. 300–309 (2004)

28. Kuhn, F., Wattenhofer, R.: Constant-time distributed dominating set approximation. In: The
Proc. of the Int’l Symp. on Princ. of Dist. Comp. (PODC), pp. 25–32 (2003)

29. Kutten, S., Peleg, D.: Fast distributed construction of k-dominating sets and applications. In:
The Proc. of the Int’l Symp. on Princ. of Dist. Comp. (PODC), pp. 238–251 (1995)

30. Lenzen, C., Patt-Shamir, B.: Fast routing table construction using small messages: Extended
abstract. In: Proc. of the Symp. on Theory of Comp. (STOC), pp. 381–390 (2013)

31. Min, M., Du, H., Jia, X., Huang, C.X., Huang, S.C.-H., Wu, W.: Improving construction for
connected dominating set with steiner tree in wireless sensor networks. Journal of Global
Optimization 35(1), 111–119 (2006)

32. Nanongkai, D.: Distributed approximation algorithms for weighted shortest paths. In: Proc.
of the Symp. on Theory of Comp. (STOC) (to appear, 2014)

33. Nanongkai, D., Das Sarma, A., Pandurangan, G.: A tight unconditional lower bound on dis-
tributed randomwalk computation. In: The Proc. of the Int’l Symp. on Princ. of Dist. Comp.
(PODC), pp. 257–266 (2011)

34. Peleg, D.: Distributed Computing: A Locality-sensitive Approach. In: Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA (2000)

35. Peleg, D., Rubinovich, V.: A near-tight lower bound on the time complexity of distributed
MST construction. In: Proc. of the Symp. on Found. of Comp. Sci. (FOCS), p. 253 (1999)

36. Pettie, S.: Distributed algorithms for ultrasparse spanners and linear size skeletons. In: The
Proc. of the Int’l Symp. on Princ. of Dist. Comp. (PODC), pp. 253–262 (2008)

37. Raz, R., Safra, S.: A sub-constant error-probability low-degree test, and a sub-constant error-
probability PCP characterization of NP. In: Proc. of the Symp. on Theory of Comp. (STOC),
pp. 475–484 (1997)

38. Thurimella, R.: Sub-linear distributed algorithms for sparse certificates and biconnected com-
ponents. In: The Proc. of the Int’l Symp. on Princ. of Dist. Comp. (PODC), pp. 28–37 (1995)

39. Wan, P.-J., Alzoubi, K.M., Frieder, O.: Distributed construction of connected dominating set
in wireless ad hoc networks. In: The Proc. of IEEE Int’l Conf. on Computer Communications
(INFOCOM), vol. 3, pp. 1597–1604 (2002)

40. Wu, J., Gao, M., Stojmenovic, I.: On calculating power-aware connected dominating sets for
efficient routing in ad hoc wireless networks. In: IEEE’s International Conference on Parallel
Processing (ICPP), pp. 346–354 (2001)

http://people.csail.mit.edu/ghaffari/papers/CDS.pdf

Randomized Rumor Spreading

in Dynamic Graphs

George Giakkoupis1, Thomas Sauerwald2, and Alexandre Stauffer3

1 INRIA Rennes, France
2 Computer Laboratory, University of Cambridge, UK

3 Department of Mathematical Sciences, University of Bath, UK

Abstract. We consider the well-studied rumor spreading model in
which nodes contact a random neighbor in each round in order to push or
pull the rumor. Unlike most previous works which focus on static topolo-
gies, we look at a dynamic graph model where an adversary is allowed
to rewire the connections between vertices before each round, giving rise
to a sequence of graphs, G1, G2, . . . Our first result is a bound on the
rumor spreading time in terms of the conductance of those graphs. We
show that if the degree of each node does not change much during the
protocol (that is, by at most a constant factor), then the spread com-
pletes within t rounds for some t such that the sum of conductances of
the graphs G1 up to Gt is O(log n). This result holds even against an
adaptive adversary whose decisions in a round may depend on the set of
informed vertices before the round, and implies the known tight bound
with conductance for static graphs. Next we show that for the alterna-
tive expansion measure of vertex expansion, the situation is different.
An adaptive adversary can delay the spread of rumor significantly even
if graphs are regular and have high expansion, unlike in the static graph
case where high expansion is known to guarantee fast rumor spreading.
However, if the adversary is oblivious, i.e., the graph sequence is decided
before the protocol begins, then we show that a bound close to the one
for the static case holds for any sequence of regular graphs.

1 Introduction

Randomized rumor spreading is a popular epidemic protocol for disseminating
information in large distributed networks. The protocol proceeds in a sequence
of synchronous rounds. Initially, in round 0, an arbitrary node has a piece of
information, the rumor. This rumor is then spread iteratively to the other nodes:
In each round, every informed node (i.e., every node that learned the rumor
in a previous round) chooses a random neighbor to which it sends the rumor.
This is the so-called PUSH protocol. The PULL protocol is symmetric: In each
round, every uninformed node chooses a random neighbor, and if this neighbor
knows the rumor it transmits it to the uninformed node. Finally, the PUSH-PULL

protocol is the combination of both strategies: In each round, every node chooses
a random neighbor to send the rumor to, if the node is informed, or to request
the rumor from, otherwise.

J. Esparza et al. (Eds.): ICALP 2014, Part II, LNCS 8573, pp. 495–507, 2014.
c∗ Springer-Verlag Berlin Heidelberg 2014

496 G. Giakkoupis, T. Sauerwald, and A. Stauffer

Several aspects of rumor spreading have been analyzed, including its running
time (i.e., the number of rounds until all nodes get informed), the correspond-
ing number of messages, and the amount of randomness needed. The running
time is arguably the most fundamental and well-studied of those aspects. In
particular, it has been shown that just a logarithmic number of rounds suffice
to spread a rumor with high probability (w.h.p.) on several topologies, from ba-
sic communication networks, such as complete graphs, hypercubes and random
graphs [27,11,19], to more complex structures, such as preferential attachment
graphs or power-law random graphs modeling social networks [9,12]. Recently, a
number of studies have extended this line of work by establishing bounds on the
running time of rumor spreading in terms of expansion parameters of the un-
derlying graph, namely conductance [24,4,14,3] and vertex expansion [29,16,15].
This connection between rumor spreading and graph theory is also relevant for
understanding social and other real networks, as studies have indicated that such
networks have good expansion properties [23,5].

A limitation of the above results is that they require the graph to be fixed
throughout the execution of the rumor spreading protocol, whereas many of the
prevalent topologies, such as peer-to-peer or wireless networks, are inherently
dynamic. In particular, the structure of these networks may change more quickly
than a rumor spreads.

In this paper we analyze the running time of randomized rumor spreading
in a dynamic setting, given by a sequence of graphs G1, G2, . . . with the same
vertex set of size n, but possibly distinct edge sets. In this setting, at each round
t, a vertex contacts a random neighbor in graph Gt in order to push or pull
the rumor. We assume that the edge set for each round is determined by an
adversary. The adversary can be either adaptive, i.e., it decides the edge set for
each round at the beginning of the round, knowing the set of informed vertices
at the time, or oblivious, i.e., it fixes the complete sequence of graphs before
rumor spreading starts, knowing just the source of the rumor.

Our first result is an upper bound on the running time of PUSH-PULL in terms
of the conductances of graphs G1, G2, . . . Suppose that during the execution of
the protocol, we have for each node that the ratio of its maximum over minimum
degree is bounded by some ρ ∈ 1. We show that rumor spreading then completes
within t rounds for some t such that the sum of conductances of the graphs G1 up
to Gt is O(ρ logn). Moreover, this bound holds even if the adversary is adaptive.

Theorem 1. Let G1, G2, . . . be a sequence of graphs determined by an adaptive
adversary such that for each vertex u, its degree on each graph Gt is at least
δu > 0 and at most Δu. The degree bounds δu, Δu may be different for each u,
and are fixed (in advance) by the adversary. Let ρ = maxu(Δu/δu). Also for
each t ∈ 1, let φt be the conductance of graph Gt.

For any constant β > 0, there exists a constant b > 0 so that the following
bound holds for PUSH-PULL. Let τ be the first round for which

∑τ
t=1 φt ∈ bρ logn;

τ = ≡ if not such round exists. Then with probability 1− n−β, either τ = ≡ or
all nodes have been informed by the end of round τ .

Randomized Rumor Spreading in Dynamic Graphs 497

If all graphs G1, G2, . . . are the same and have conductance φ, then ρ = 1 and
the bound of Theorem 1 implies the optimal bound for static graphs established
in [14], stating that O(log(n)/φ) rounds suffice w.h.p. to spread a rumor on any
graph with conductance φ.

The dependence of the bound in Theorem 1 on ρ is not an artifact of our
analysis. For example, even an oblivious adversary can construct a sequence of
graphs in which every graph has constant conductance (but the degrees of nodes
change widely and thus ρ is large) so that PUSH-PULL needs a linear number of
rounds to inform all nodes (see Proposition 1, in Sect. 5).

We point out that Theorem 1 is shown for a more general setting, where
multiple edges and self-loops are allowed. Moreover, it holds even if we define
φt to be the conductance in Gt of the set of informed vertices before round t.
This can be much larger than the conductance of Gt, which is the minimum
conductance of any set of vertices in Gt.

For static graphs, conductance and vertex expansion yield very similar types
of bounds on the running time of rumor spreading. For dynamic graphs, how-
ever, the situation is different. In particular, we reveal a separation between
the adaptive and oblivious adversary models for the case of vertex expansion,
which is not observed for conductance: An adaptive adversary can construct a
sequence of regular graphs with constant vertex expansion so that PUSH-PULL

takes a polynomial number of rounds (see Proposition 2)—by Theorem 1, this
is not possible if conductance is considered in place of vertex expansion. For an
oblivious adversary, on the other hand, we show that a bound similar to the one
in Theorem 1 holds with vertex expansion, for any sequence of regular graphs.

Theorem 2. Let G1, G2, . . . be a sequence of d-regular graphs determined by an
oblivious adversary. For each t ∈ 1, let αt be the vertex expansion of Gt. Then,
for any constant β > 0, there exists a constant c > 0 so that, if there exists a
round t with

∑t
s=1 αs ∈ c·log4 n log2 d, then PUSH-PULL informs all nodes within

t rounds with probability at least 1 − n−β.

If all graphs G1, G2, . . . are the same and have vertex expansion α, then the
bound of Theorem 2 matches within a polylogarithmic factor the optimal bound
for static graphs from [15], which states that O(log(n) log(d)/α) rounds suffice
w.h.p. to spread a rumor on any graph (even non-regular) with vertex expansion
α and maximum degree d. Whether Theorem 2 extends also to non-regular graph
sequences is an interesting open problem.

Our proofs are non-trivial extensions of previous analyses for static graphs, in
particular from [14] and [29]. The dynamic setting, and also the adaptivity of the
adversary for the case of conductance, add new challenges to the problem. The
proof of Theorem 1 is based on a new martingale argument which exposes the
outcome of each round gradually, one vertex at a time. The proof of Theorem 2
has to overcome the problem that the standard symmetry argument relating
push and pull no longer holds, and this breaks key arguments used in exist-
ing proofs of bounds with vertex expansion. Moreover, tighter proofs from [16,15]

498 G. Giakkoupis, T. Sauerwald, and A. Stauffer

employ potential functions based on the boundary of the informed nodes, which
may largely fluctuate in the dynamic setting.

Related Work. There have been several studies on information spreading pro-
cesses in dynamic graphs. Perhaps the closest one to our work is a recent work
by Clementi et al. [6] about PUSH in a random edge-Markovian model, yielding a
dynamic variant of the Erdős-Rényi random graph. Motivated by the increasing
importance of wireless networks, works [20,26,22,25] analyzed the dynamics of
information dissemination among moving objects in d-dimensional grids. There
are also several analyses on the flooding process—a variant of rumor spreading
where every neighbor of an informed node becomes informed in a round [8,7,2].
We note that in all these works, the graph dynamics are governed by a random
process, whereas in our model the dynamics are controlled by an adversary.

Avin et al. [1] analyzed the cover time of random walks on dynamic graphs
specified by an oblivious adversary. They constructed graphs in which a simple
random walk has an exponential cover time, but also proved that a lazy random
walk has a polynomial cover time for any sequence of connected graphs.

Kuhn et al. [21] introduced the so-called k-token dissemination problem in a
synchronous setting with a dynamically changing network. They considered a
worst-case scenario, where the communication links are chosen by an adversary,
and nodes do not know who their neighbors are for the current round before
they send their messages. In contrast to our model, the connectivity (expansion)
assumptions are weaker and correspondingly the time complexity bounds are
much larger, i.e., at least polynomial in n [21,17,10,18,28]. Georgiou et al. [13]
considered the complexity of asynchronous gossip in a fault-prone distributed
setting. While their model is quite different from ours, they also exhibited a
separation between an adaptive and oblivious adversary.

2 Model

We consider the standard PUSH, PULL, and PUSH-PULL rumor spreading protocols.
We will denote by It the set of informed vertices after the first t rounds of the
protocol, and by Ut the set V \ It of uninformed vertices. In particular, I0 is the
singleton set containing just the source, which is an arbitrarily chosen node.

The dynamic graph model we consider is an infinite sequence of graphs
G1, G2, . . . on the same set of n vertices, but possibly with different edge sets.
In each round t of rumor spreading, if a vertex must choose a neighbor to push
the rumor to or pull the rumor from, then it chooses a random one among its
neighbors in graph Gt (if it has neighbors in Gt).

For each t ∈ 1, Gt = (V,Et), where V = {1, 2, . . . , n}, and the edge set Et

is determined by an adversary. We distinguish between two adversarial models,
adaptive and oblivious. An adaptive adversary decides the edge set Et knowing
the outcome of all rounds before round t; precisely, Et is a function of I0, . . . , It−1.
An oblivious adversary, on the other hand, has to specify the entire graph se-
quence in advance; precisely, Et is just a function of I0. An adversary can be

Randomized Rumor Spreading in Dynamic Graphs 499

either deterministic or randomized, where in the latter case the sequence of Et

is also a function of a random bit string.
We recall now the definitions of two standard graph expansion parameters we

use. For a graph G = (V,E), the conductance of a non-empty vertex set S ⊆ V
and the conductance of graph G are defined respectively as

φ(S) =
|E(S, V \ S)|

min{vol(S), vol(V \ S)} and φ(G) = min
S⊂V, S ≥=∈

φ(S),

where E(S, V \S) is the set of edges with one endpoint in each of the sets S and
V \ S; and vol(S) =

∑
u⊆S deg(u) is the volume of S, with deg(u) denoting the

degree of u. The vertex expansion of S and G are respectively

α(S) =
|∂S|

min{|S|, |V \ S|} and α(G) = min
S⊂V, S ≥=∈

α(S),

where ∂S := N(S) \ S is the set of vertices outside S that are adjacent to some
vertex in S. For any graph G, both φ(G) and α(G) are between 0 and 1, with
high values indicating that the graph is well connected. If G is disconnected then
φ(G) = α(G) = 0.

In the following, when we write vol(It), ∂It, φ(It), etc. (and similarly for Ut),
we will assume that these quantities refer to graph Gt+1 (and not to Gt), unless
mentioned otherwise. This is convenient since It is the set of informed vertices
at the beginning of round t + 1.

Theorem 1 holds even if the graph sequence consists of multigraphs, with
parallel edges and self-loops (as long as the degree of each vertex is at most
polynomially large in n). To compute the conductance of a multigraph, parallel
edges are counted with respect to their multiplicity and every self-loop counts as
a single edge. Further, when a vertex must pick a random neighbor, this is done
proportional to the multiplicity of a (parallel) edge or self-loop. If a self-loop is
chosen then no communication takes place.

3 Proof of the Bound with Conductance (Theorem 1)

We observe that it suffices to consider just deterministic adversaries, since in
case of a randomized adversary, we can just expose all its randomness (i.e., its
random bit string) before the protocol starts, and then proceed deterministically.

Not all vertices are guaranteed to get informed eventually, as the adversary
may permanently disconnect the network. However, it is not difficult to show
that one can always modify a (deterministic) adversary, in such a way that this
does not happen and it suffices to consider the modified adversary in the analysis.
Thus, we will assume that the expected number of rounds until all nodes are
informed is finite, i.e.,

E[min{t : It = V }] < ≡. (1)

500 G. Giakkoupis, T. Sauerwald, and A. Stauffer

For each round t ∈ 1, let Φt = φ1 + · · ·+φt be the sum of the conductances of
the graphs in the first t rounds. We must show that for τ = inf{t : Φt ∈ bρ logn},
we have w.h.p. that all nodes have been informed within τ rounds.

For each set S ↔ V of vertices, we define the min-volume of S as vol⊗(S) =∑
i⊆S δi. Thus vol⊗(S) is a lower bound for the volume of S on any of the graphs

Gt. Our proof is based on an analysis of the growth of vol⊗(It).
We will show the following lemma stating (a) if the min-volume of informed

vertices is smaller than a constant fraction of the total min-volume, then the
sum of conductances φt until the min-volume doubles is bounded in expectation
by O(ρ); and (b) if the min-volume of informed vertices is larger, then the sum
of φt until the min-volume of uninformed vertices halves is bounded by O(ρ).

Lemma 1. There is a fixed constant c > 0 such that for any round t ∈ 1,

(a) If vol⊗(It) ⇔ vol⊗(V)/3 and τt = min{k : vol⊗(Ik) ∈ 2 vol⊗(It)}, then E[Φτt−
Φt | It] ⇔ cρ.

(b) If vol⊗(It) > vol⊗(V)/3 and τt = min{k : vol⊗(Uk) ⇔ vol⊗(Ut)/2}, then
E[Φτt − Φt | It] ⇔ cρ.

From this result, the bound of Theorem 1 follows easily: From Lemma 1(a)
and Markov’s Inequality it follows that when vol⊗(It) ⇔ vol⊗(V)/3, we have
Pr[Φτt −Φt ⇔ 2cρ | It] ∈ 1/2, i.e., with probability at least 1/2, vol⊗(It) doubles
after Φt has increased by at most 2cρ. It follows then by Chernoff bounds that 1/3
of the total min-volume gets informed with probability at least 1−n−β/2, for any
fixed β, after a number t1 of rounds such that Φt1 = 2cρ · O(log(vol⊗(V)/3)) =
O(ρ log n), as log(vol⊗(V)) = O(log n). A similar argument using Lemma 1(b)
shows that if 1/3 of the total min-volume has been informed by some round
t, then an additional t2 rounds, such that Φt+t2 − Φt = O(ρ log n), suffice to
inform the remaining vertices with probability at least 1 − n−β/2. From these
two results and the union bound, Theorem 1 follows.

3.1 Proof of Lemma 1

Recall that during the spread, the degree of each vertex i ⊂ V is lower bounded
by δi > 0 and upper bounded by Δi, and Δi/δi ⇔ ρ. Let δ = maxi δi.

The proof distinguishes three cases, depending on the min-volume of in-
formed vertices initially: (i) vol⊗(It) < δ, (ii) δ ⇔ vol⊗(It) ⇔ vol⊗(V)/3, and
(iii) vol⊗(It) > vol⊗(V)/3. For cases (ii) and (iii) it suffices that we consider
only pull operations, while for case (i) we must consider both push and pull.
Due to space limitations we only give the proof for case (ii). In this case,
τt = min{k ∈ t : vol⊗(Ik) ∈ 2 vol⊗(It)}.

Claim 1. If δ ⇔ vol⊗(It) ⇔ vol⊗(V)/3 then E[Φτt − Φt | It] < 2ρ + 1.

Proof. We use a martingale argument that relates the min-volume of vertices
informed by pull transmissions to the number of edges between informed and

Randomized Rumor Spreading in Dynamic Graphs 501

uninformed vertices. In this argument, the outcome of each round is exposed
gradually, one vertex at a time.1

Assume It is fixed. We divide each round k > t into |∂Ik−1| steps (∂Ik−1 is the
set of uniformed vertices at the beginning of round k that have some informed
neighbor). Each of those |∂Ik−1| steps reveals the push and pull transmissions
of the rumor in round k to a single vertex i ⊂ ∂Ik−1. The order in which vertices
i ⊂ ∂Ik−1 are considered can be arbitrary. We look at the sequence of all those
steps, from round t + 1 until round τt. For each step s = 1, 2, . . . , let is be the
vertex considered in step s, let ks be the round in which step s takes place, ds be
the degree of is during round ks (i.e., is’s degree in Gks), and γs be the number
of informed neighbors of is in Gks at the beginning of round ks.

Below we first show that the sum of all γs until the step when the min-volume
of informed vertices has doubled is bounded in expectation by ρ(vol⊗(It) + δ).
Then we bound the corresponding increase in Φt in terms of the sum of γs, and
combine the two results to obtain the claim.

Let Xs be the indicator variable that is 1 if is pulls the rumor in step s,
and Xs = 0 otherwise. Further, let Zs be the indicator variable that is 1 if
is gets informed in step s, and 0 otherwise. Note that Zs ∈ Xs, since is may
get informed by a push transmission. Note also that the sequence Z1, . . . , Zs−1

completely determines the evolution of the set of informed vertices in the first
s − 1 steps, and thus determines is, ks, ds, and γs. In order for is to pull the
rumor in step s, it must choose one of its γs informed neighbors, among its ds
neighbors in total. It follows that

E[Xs | Z1 . . . Zs−1] = γs/ds. (2)

For each s ∈ 0, we define Ys =
∑

1∃j∃s (Xjdj − γj) . The sequence Y0, Y1, . . . is
a martingale with respect to Z1, Z2, . . . , because

E[Ys | Z1 . . . Zs−1] = Ys−1 + E[Xs | Z1 . . . Zs−1] · ds − γs
(2)
= Ys−1.

Let T be the number of steps after round t until the min-volume of informed
vertices doubles, i.e., T = min{s :

∑
1∃j∃sZjδij ∈ vol⊗(It)}. (Observe, kT = τt.)

Since T is a stopping time for Z1, Z2, . . . , and we have that E[T] < ≡ 2 and the
differences Ys−Ys−1 are bounded, it follows from the Optional Stopping Theorem
that E[YT] = E[Y0] = 0. Substituting the definition of YT and rearranging gives

E
[∑

1∃j∃T
γj

]
= E

[∑
1∃j∃T

Xjdj

]
. (3)

1 The reason we expose one vertex at a time (rather than all at once), is that by
stopping this process right after the min-volume of informed vertices has doubled,
we have the guarantee that the min-volume at that time is by at most δ − 1 <
vol∗(It) larger than 2 vol∗(It). (This is used in the line right above Eq.(4), in order
to obtain (4).) On the other hand, the min-volume right after the round during
which the min-volume doubles may be much larger than 2 vol∗(It).

2 This is immediate from Eq.(1).

502 G. Giakkoupis, T. Sauerwald, and A. Stauffer

We have
∑

1∃j∃T Xjdj ⇔ ρ
∑

1∃j∃T Zjδij , because Xj ⇔ Zj and dj ⇔ Δij ⇔
ρδij ; and from T ’s definition,

∑
1∃j∃T Zjδij < vol⊗(It) + δ. It follows

E
[∑

1∃j∃T
γj

]
< ρ(vol⊗(It) + δ). (4)

Next we bound Φτt−Φt in terms of
∑

1∃j∃T γj , and apply the above inequality
to bound E[Φτt − Φt]. For each round k with t < k ⇔ τt, the conductance φk of
Gk is bounded by the conductance of Ik−1 in Gk, and thus

φk ⇔
∑

s:ks=k γs

min{vol(Ik−1), vol(Uk−1)} ⇔
∑

s:ks=k γs

vol⊗(It)
,

where the second inequality holds because vol(Ik−1) ∈ vol⊗(Ik−1) ∈ vol⊗(It) and

vol(Uk−1) ∈ vol⊗(Uk−1) ∈ vol⊗(Uτt−1) = vol⊗(V) − vol⊗(Iτt−1)

> vol⊗(V) − 2 vol⊗(It) ∈ vol⊗(It),

as vol⊗(It) ⇔ vol⊗(V)/3. From the above bound on φk applied for t < k < τt, we
obtain

Φτt − Φt = (φt+1 + · · · + φτt−1) + φτt ⇔
∑

s:ks<τt
γs

vol⊗(It)
+ 1.

From T ’s definition, kT = τt, and thus the sum above is
∑

s:ks<τt
γs <

∑
s∃T γs.

Thus,

E[Φτt − Φt] <
E
[∑

s∃T γs

]
vol⊗(It)

+ 1
(4)
<

ρ(vol⊗(It) + δ)

vol⊗(It)
+ 1 ⇔ 2ρ + 1, (5)

as δ ⇔ vol⊗(It). This completes the proof of Claim 1. ≥⇒
The proof for the case of vol⊗(It) > vol⊗(V)/3 is similar, but considers the set

of uninformed vertices instead of the set of informed ones.

Claim 2. If vol⊗(It) > vol⊗(V)/3 then E[Φτt − Φt | It] < 2ρ + 1.

The analysis in the proof of Claim 1 does not carry over to the case of
vol⊗(It) < δ: The final inequality in (5) does not hold, as the ratio δ/ vol⊗(It)
may be very large. In fact any analysis that relies only on pull transmissions is
bound to fail, for otherwise Theorem 1 would hold even if only PULL were used,
which is easily seen to be wrong because of the star graph counter-example. To
show the next claim, we extend the approach of Claim 1 by taking into account
also push transmissions.

Claim 3. If vol⊗(It) < min{δ, vol⊗(V)/3} then E[Φτt − Φt | It] < 3ρ + 1.

4 Proof of the Bound with Vertex Expansion (Theorem 2)

Theorem 2 can be deduced easily from the following result, in which we assume a
uniform lower bound on the vertex expansion. (If d = O(log3 n) then Theorem 2
follows directly from Theorem 1 since α ⇔ d · Φ.)

Randomized Rumor Spreading in Dynamic Graphs 503

Theorem 3. Let t be any integer, and G1, G2, . . . , Gt be a sequence of d-regular
graphs with d = Ω(log3 n) determined by an oblivious adversary, so that for each
1 ⇔ s ⇔ t, Gs has vertex expansion at least α > 0. Then, for any constant β > 0,
there exists a constant c̃ > 0 such that, if t satisfies t · α ∈ c̃ · log3 n log2 d, then
PUSH-PULL informs all nodes within t rounds with probability at least 1 − n−β.

4.1 Proof of Theorem 3

The analysis of Theorem 3 is divided into three phases, according to the number
of informed nodes. Before we analyze the different phases, we provide some tools
we will use in the analysis. The proofs of all statements in this section are omitted
due to space limitations.

The next lemma establishes a (nearly) exponential growth of the number of
informed nodes until that number reaches d/ logn.

Lemma 2. Let u ⊂ V be arbitrary with I0 = {u} and let κ := log3(d/(2 logn))+
440. Then the following statements hold.

1. Pr
[
Iκ ∈ d

6 logn

]
∈ 1/2.

2. Pr
[
Iκ ⇔ 3220 · 106 · d] ∈ 1 − n−4, and more generally, for any round 1 ⇔

s ⇔ κ, Pr
[
Is ⇔ 2 · 106 · logn · 3s

] ∈ 1 − n−4.

The first statement of Lemma 2 motivates the following definition.

Definition 1 (Friend). Let U ↔ V be any subset. Then a node u is a friend of

U in round t if, for κ as in Lemma 2, Pr
[
|It+κ ◦ U | ∈ d

12 logn

∣∣∣ It = {u}
]
∈ 1/4.

A similar notion of a friend was defined in [29, Definition 3.1] for a static
graph; our definition depends on the sequence of graphs Gt+1, Gt+2, . . . , Gt+κ,
and so in particular, on the choice of t. Applying the first statement of Lemma 2,
we have that for every subset U ↔ V , every node u ⊂ V , and every round t,
node u is a friend of either U or V \ U in round t.

Next we consider the situation where It is of any size, and half of the nodes
in ∂It are friends of It. We shall prove that an almost constant fraction of nodes
in It gets informed after κ rounds. It should be noted that this is relatively
straightforward in the case of static graphs, as it follows from a standard sym-
metry argument relating PUSH and PULL (cf. [29, Lemma 3.1]). Here, however, the
analysis is considerably more involved, as we are dealing with dynamic graphs.

Lemma 3 (Key Lemma). Consider a round t with a fixed set of informed
nodes It, where 1 ⇔ |It| ⇔ n/2. Let S ↔ V \ It be a set of vertices which are
friends of It in round t + 1. Then, there is a constant 0 < C < 1 so that,

with probability at least 1/16, at least C · |S|
log2 n log d

nodes get informed after κ

additional rounds, for κ defined as in Lemma 2.

Next we analyze the growth of informed nodes in 3 phases: |It| ⊂ [1, d
6 log n],

|It| ⊂ [d
6 logn ,

d
α], and |It| ⊂ [dα ,

n
2]. In the following, κ is defined as in Lemma 2.

504 G. Giakkoupis, T. Sauerwald, and A. Stauffer

Lemma 4 (Phase 1). Assume that |I0| = 1. Then after t1 := κ rounds, we
have |It1 | ∈ d

6 logn with probability at least 1/2.

The above result for the first phase follows immediately from Lemma 2.

Lemma 5 (Phase 2). Let t1 be the first round for which |It1 | ∈ d
6 logn . Then,

for any constant β > 0, there exists a constant c > 0 so that, for t2 := t1 +
c log3 n log d

α · κ, we have |It2 | ∈ d
α with probability at least 1 − n−β.

The analysis of the second phase is more involved. We only consider every
(κ + 1)-th round and distinguish between two cases. If half of the nodes in ∂It
are friends of It, then Lemma 3 implies that a large fraction of these nodes
becomes informed after κ + 1 rounds. If half of the nodes in ∂It are friends of
V \ It, then, if such a node in ∂It pulls the rumor in round t + 1, then after
κ additional rounds d/(12 logn) nodes get informed in V \ It. Expressing the
progress of both cases via a submartingale and applying the Optional Stopping
Theorem completes the proof of Lemma 5.

Lemma 6 (Phase 3). Let t2 be the first round for which |It2 | ∈ d
α . Then, for

any constant β > 0, there exists a constant c > 0 so that for t3 := t2+c log
3 n log d
α ·

κ, we have |It3 | ∈ n
2 with probability at least 1 − n−β.

The analysis of the third phase is somewhat similar to the analysis of the
second phase. However, the case where half of the nodes in ∂It are friends of
V \ It requires a more careful analysis, since we have to analyze the propagation
of the rumor within V \ It from several nodes in ∂It in parallel.

From Lemmas 4–6 it follows that, with probability at least 1 − n−β, Phase 1
is completed after O(κ log n) = O(log n log d) rounds, and Phases 2 and 3 are

completed after O(log
3 n log2 d

α) rounds, thus proving the bound of Theorem 3.

5 Counter-Examples

High conductance is not sufficient to guarantee fast rumor spreading in our
dynamic graph model. Even an oblivious adversary can construct a sequence of
high-conductance graphs (in which the degrees of nodes change widely), so that
PUSH-PULL needs a linear number of rounds to inform all nodes.

Proposition 1. An oblivious adversary can construct a sequence of graphs
G1, G2, . . ., each of which has conductance 1, so that PUSH-PULL needs n − 1
rounds to complete.

Proof. Instead of analyzing the PUSH-PULL protocol we analyze a different pro-
cess in which at each round all neighbors of the set of informed nodes become
informed (i.e., It+1 = It ≤ ∂It). The strategy of the adversary is as follows. In
every round t, Gt is a star graph with n vertices. The source of the rumor is
a vertex of degree 1, and in each round except for the last one, the informed
nodes are vertices of degree 1. At first it may seem that the adversary has to

Randomized Rumor Spreading in Dynamic Graphs 505

be adaptive to employ this strategy. But, given that the source of the rumor
is known, then I0 is a deterministic set. Given G1 and I0, then I1 is again a
deterministic set, and so on. Therefore, the construction above for the sequence
G1, G2, . . . can be done in an oblivious manner. With this, our process satisfies
|It| = t+ 1, for every 0 ⇔ t ⇔ n− 1. Since the runtime of this process is at most
the runtime of the PUSH-PULL protocol, the claim of the proposition follows. ≥⇒

An adaptive adversary can significantly delay the spread of the rumor, even
if all graphs in the sequence are regular and have high vertex expansion. Thus
Theorem 2 does not hold when the adversary is adaptive rather than oblivious.

Proposition 2. An adaptive adversary can construct a sequence of regular iso-
morphic graphs G1, G2, . . ., each of which has constant vertex expansion, so that
PUSH-PULL needs Ω(

→
n) rounds with probability at least 1/2.

Proof. Let G be the Cartesian product of a clique of size
→
n with a 3-regular

expander graph of size
→
n. This graph has

→
n ·→n vertices and is regular, with

all vertices having degree
→
n− 1 + 3 =

→
n+ 2. Observe that G can be seen as a

collection of
→
n cliques of size

→
n, with every vertex in each clique connected to

3 vertices in other cliques. By [29, Lemma 4.2], G has constant vertex expansion.
Every graph in the sequence G1, G2, . . . will be isomorphic to G.

In each round t ∈ 1, the adversary permutes the vertices in a way so that there
is at most one clique that is not fully informed or fully uninformed (i.e., whose
number of informed nodes is in the interval [1,

→
n−1]). All other cliques contain

either
→
n informed nodes or none. Consider now a clique in which all

→
n nodes

are informed. The expected number of push transmissions that reach a node
outside the clique is bounded by

→
n · 3∀

n+2
⇔ 3. Similarly, the expected number

of pull transmissions coming from outside is bounded by 3 ·→n · 1∀
n+2

⇔ 3. Hence

every clique which is completely informed contributes at most 6 to the expected
number of newly informed node.

For the single clique which is not fully informed nor fully uninformed, its
contribution in expectation is at most 3

→
n newly informed nodes within the

same clique and at most 6 newly informed nodes outside the clique. Hence,

E [|It+1|] ⇔ |It| + (|It|/
→
n) · 6 + 3 · →n + 6 ⇔ |It| + 7 · →n,

as long as |It| ⇔ n/2. Therefore, E
[|It+∀

n/14−1|
] ⇔ 1+(

→
n/14−1) ·7→n < n/2.

Hence by Markov’s inequality, Pr
[|It+∀

n/14−1| ∈ 2E
[|It+∀

n/14−1|
]] ⇔ 1/2. ≥⇒

References

1. Avin, C., Koucký, M., Lotker, Z.: How to explore a fast-changing world (Cover time
of a simple random walk on evolving graphs). In: Aceto, L., Damg̊ard, I., Goldberg,
L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part
I. LNCS, vol. 5125, pp. 121–132. Springer, Heidelberg (2008)

2. Baumann, H., Crescenzi, P., Fraigniaud, P.: Parsimonious flooding in dynamic
graphs. Distributed Computing 24(1), 31–44 (2011)

506 G. Giakkoupis, T. Sauerwald, and A. Stauffer

3. Censor-Hillel, K., Shachnai, H.: Fast information spreading in graphs with large
weak conductance. SIAM J. Comput. 41(6), 1451–1465 (2012)

4. Chierichetti, F., Lattanzi, S., Panconesi, A.: Almost tight bounds for rumour
spreading with conductance. In: Proc. 42nd STOC, pp. 399–408 (2010)

5. Chierichetti, F., Lattanzi, S., Panconesi, A.: Rumor spreading in social networks.
Theor. Comput. Sci. 412(24), 2602–2610 (2011)

6. Clementi, A., Crescenzi, P., Doerr, C., Fraigniaud, P., Isopi, M., Panconesi, A.,
Pasquale, F., Silvestri, R.: Rumor spreading in random evolving graphs. In:
Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 325–336.
Springer, Heidelberg (2013)

7. Clementi, A.E.F., Monti, A., Pasquale, F., Silvestri, R.: Information spreading in
stationary markovian evolving graphs. IEEE Trans. Parallel Distrib. Syst. 22(9),
1425–1432 (2011)

8. Clementi, A.E.F., Silvestri, R., Trevisan, L.: Information spreading in dynamic
graphs. In: Proc. 31st PODC, pp. 37–46 (2012)

9. Doerr, B., Fouz, M., Friedrich, T.: Social networks spread rumors in sublogarithmic
time. In: Proc. 43rd STOC, pp. 21–30 (2011)

10. Dutta, C., Pandurangan, G., Rajaraman, R., Sun, Z., Viola, E.: On the complexity
of information spreading in dynamic networks. In: Proc. 24th SODA, pp. 717–736
(2013)

11. Feige, U., Peleg, D., Raghavan, P., Upfal, E.: Randomized broadcast in networks.
Random Struct. Algorithms 1(4), 447–460 (1990)

12. Fountoulakis, N., Panagiotou, K., Sauerwald, T.: Ultra-fast rumor spreading in
social networks. In: Proc. 23rd SODA, pp. 1642–1660 (2012)

13. Georgiou, C., Gilbert, S., Guerraoui, R., Kowalski, D.R.: Asynchronous gossip. J.
ACM 60(2), 11 (2013)

14. Giakkoupis, G.: Tight bounds for rumor spreading in graphs of a given conductance.
In: Proc. 28th STACS, pp. 57–68 (2011)

15. Giakkoupis, G.: Tight bounds for rumor spreading with vertex expansion. In: Proc.
25th SODA, pp. 801–815 (2014)

16. Giakkoupis, G., Sauerwald, T.: Rumor spreading and vertex expansion. In: Proc.
23rd SODA, pp. 1623–1641 (2012)

17. Haeupler, B., Karger, D.R.: Faster information dissemination in dynamic networks
via network coding. In: Proc. 30th PODC, pp. 381–390 (2011)

18. Haeupler, B., Kuhn, F.: Lower bounds on information dissemination in dynamic
networks. In: Proc. 26th DISC, pp. 166–180 (2012)

19. Karp, R., Schindelhauer, C., Shenker, S., Vöcking, B.: Randomized rumor spread-
ing. In: Proc. 41st FOCS, pp. 565–557 (2000)

20. Kesten, H., Sidoravicius, V.: The spread of a rumor or infection in a moving pop-
ulation. Annals of Probability 33, 2402–2462 (2005)

21. Kuhn, F., Lynch, N., Oshman, R.: Distributed computation in dynamic networks.
In: Proc. 42nd STOC, pp. 513–522 (2010)

22. Lam, H., Liu, Z., Mitzenmacher, M., Sun, X., Wang, Y.: Information dissemination
via random walks in d-dimensional space. In: Proc. 23rd SODA, pp. 1612–1622
(2012)

23. Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Statistical properties
of community structure in large social and information networks. In: Proc. 17th
WWW, pp. 695–704 (2008)

24. Mosk-Aoyama, D., Shah, D.: Fast distributed algorithms for computing separable
functions. IEEEToIT 54(7), 2997–3007 (2008)

Randomized Rumor Spreading in Dynamic Graphs 507

25. Peres, Y., Sinclair, A., Sousi, P., Stauffer, A.: Mobile geometric graphs: Detection,
coverage and percolation. In: Proc. 22nd SODA, pp. 412–428 (2011)

26. Pettarin, A., Pietracaprina, A., Pucci, G., Upfal, E.: Tight bounds on information
dissemination in sparse mobile networks. In: Proc. 30th PODC, pp. 355–362 (2011)

27. Pittel, B.: On spreading a rumor. SIAM J. Applied Math. 47(1), 213–223 (1987)
28. Sarma, A.D., Molla, A.R., Pandurangan, G.: Fast distributed computation in dy-

namic networks via random walks. In: Proc. 26th DISC, pp. 136–150 (2012)
29. Sauerwald, T., Stauffer, A.: Rumor spreading and vertex expansion on regular

graphs. In: Proc. 22nd SODA, pp. 462–475 (2011)

Online Independent Set Beyond the Worst-Case:
Secretaries, Prophets, and Periods�

Oliver Göbel1, Martin Hoefer2, Thomas Kesselheim3,
Thomas Schleiden1, and Berthold Vöcking1

1 Dept. of Computer Science, RWTH Aachen University, Germany
{goebel,voecking}@cs.rwth-aachen.de

2 Max-Planck-Institut für Informatik and Saarland University, Germany
mhoefer@mpi-inf.mpg.de

3 Dept. of Computer Science, Cornell University, Ithaca, NY, USA
kesselheim@cs.cornell.edu

Abstract. We investigate online algorithms for maximum (weight) in-
dependent set on graph classes with bounded inductive independence
number ρ like interval and disk graphs with applications to, e.g., task
scheduling, spectrum allocation and admission control. In the online set-
ting, nodes of an unknown graph arrive one by one over time. An online
algorithm has to decide whether an arriving node should be included
into the independent set.

Traditional (worst-case) competitive analysis yields only devastating
results. Hence, we conduct a stochastic analysis of the problem and intro-
duce a generic sampling approach that allows to devise online algorithms
for a variety of input models. It bridges between models of quite different
nature – it covers the secretary model, in which an adversarial graph is
presented in random order, and the prophet-inequality model, in which
a randomly generated graph is presented in adversarial order.

Our first result is an online algorithm for maximum independent set
with a competitive ratio of O(ρ2) in all considered models. It can be
extended to maximum-weight independent set by losing only a factor of
O(log n), with n denoting the (expected) number of nodes. This upper
bound is complemented by a lower bound of Ω(log n/ log2 log n) showing
that our sampling approach achieves nearly the optimal competitive ratio
in all considered models. In addition, we present various extensions, e.g.,
towards admission control in wireless networks under SINR constraints.

1 Introduction

Various scheduling and resource allocation problems can be formulated as inde-
pendent set problems for different graph classes, where nodes represent tasks or
� Full version appeared as [11]. Supported by DFG through Research Training Group

AlgoSyn and UMIC Research Center at RWTH Aachen University, Cluster of Ex-
cellence M2CI at Saarland University, grant Ho 3831/3-1, and by a fellowship within
the Postdoc-Programme of the German Academic Exchange Service (DAAD).

J. Esparza et al. (Eds.): ICALP 2014, Part II, LNCS 8573, pp. 508–519, 2014.
© Springer-Verlag Berlin Heidelberg 2014

Online Independent Set Beyond the Worst-Case 509

requests that are connected by an edge if they are in mutual conflict. An inde-
pendent set corresponds to a conflict-free subset of tasks or requests that can be
executed or served simultaneously. In the Max-IS problem, the objective is to
find an independent set of maximum cardinality. In the Max-Weight-IS problem,
the nodes come with weights and the objective is to find an independent set of
maximum total weight. Previous work on independent set problems is mostly
concerned with offline optimization where the complete input is known in ad-
vance. However, in many application contexts, such as online admission control,
requests arrive over time. An online algorithm has to make irrevocable deci-
sions about acceptance or rejection of arriving requests without knowing future
requests. This corresponds to online variants of independent set where nodes
arrive over time. Each node comes with information about its incident edges to
previously arrived nodes. The online algorithm has to decide which of the nodes
should be included into the independent set and which should be rejected.

Unfortunately, even for rather restrictive (but in the context of scheduling and
admission control highly relevant) graph classes like interval and disk graphs, the
classical worst-case competitive analysis of online algorithms for independent set
problems does not make much sense – we show a strong lower bound of Ω(n) in
the full version. The alternative is a stochastic analysis, but it is already chal-
lenging to choose the right stochastic input model. On the one hand, it should
allow online algorithms with meaningful performance guarantees and, on the
other hand, should be reasonable from a practical point of view. We approach
this challenge by studying not only one but a variety of stochastic input models.
In particular, we study two stochastic input models – one inspired by the classic
secretary problem with arrivals in random order, and one with arrivals in adver-
sarial order and stochastic predictions based on so-called prophet-inequalities.
Our study is complemented by a third model motivated by a practical admission
control problem. In each of these models, an input sequence is generated by a
different mix of stochastic and adversarial processes.

In our analysis we focus on graph classes of bounded inductive independence.
The inductive independence number ρ of a graph is the smallest number for
which there is an order → such that for any independent set S ∈ V and any
v ∈ V , we have |{u ∈ S | u ⊂ v and {u, v} ∈ E}| ⊆ ρ. The inductive indepen-
dence number is a useful concept and bounded in many prominent graph classes
(for a further discussion see full version). We casually refer to interval and disk
graphs, which have bounded inductive independence number 1 and 5. In disk
graphs, this bound is achieved by ordering the disks according to their geometric
diameter, beginning with the smallest disk. For any fixed disk, there can be at
most five disks of equal or larger size intersecting the fixed disk without being in
mutual conflict with each other. In the above mentioned online scenario, a node’s
position in the ordering with respect to its neighbors emerges as soon as the node
arrives. The reason for referring to intervals and disks is that interval graphs are
an established model for scheduling problems, where nodes are tasks with start
and finishing times. Disk graphs generalize interval graphs from one to two di-
mensions. They are frequently used to describe spectrum allocation problems

510 O. Göbel et al.

in wireless networks. In addition, we also study the independent set problem
with respect to more advanced interference models for wireless networks [17], in-
cluding models based on SINR (signal-to-interference-plus-noise ratio) that yield
small bounds for inductive independence.

1.1 Description of the Models

We study the following stochastic input models:

– Secretary Model: The adversary defines a node-weighted graph G = (V, E, w)
with n nodes. (For simplicity, we assume integer weights. In case of Max-IS,
all nodes have weight 1.) A priori, the algorithm knows n but neither G
nor the weights. The nodes of G are presented in random order where each
permutation of the nodes is assumed to occur equally likely.

– Prophet-Inequality Model: The adversary defines a graph G = (V, E), and
for each node a separate probability distribution on its weight. A priori, the
algorithm knows G and the probability distributions but not their outcomes.
The nodes of G are presented in adversarial order to the online algorithm
where the actual weight is revealed only when the node arrives.

– Period Model: Let G = (V, E, w) be an arbitrary node-weighted graph. Time
is partitioned into periods. For each period t = 1, 2, . . . and each node i ∈ V ,
the adversary defines a probability pt

i ∈ [0, 1] such that, for t ≥ 2, pt
i ∈

[pt−1
i /c, pt−1

i · c], where c ≥ 1 is assumed to be constant. Let Xt
i denote

independent binary variables with Pr [Xt
i = 1] = pt

i and Pr [Xt
i = 0] = 1−pt

i.
Let Vt = {i ∈ V | Xt

i = 1}. In every period t ≥ 2, the nodes in Vt are
presented in adversarial order to the online algorithm which aims at finding
an independent set among the nodes in Vt. The probabilities pt

i, the graph
G and the nodes’ arrival order in Vt are not assumed to be known a priori.

The first of these stochastic input models is inspired by the classical secre-
tary problem where n secretaries are presented in random order. The second
model is in spirit of problems with prophet-inequality, where candidates come
in adversarial order but each candidate has a publicly known distribution of his
weight. In the base case of either setting, one has to select one of n entities
that are presented online and have to be accepted or rejected immediately at
arrival. Each entity comes with a weight that is revealed upon arrival. The ob-
jective is to maximize the weight of the one accepted entity. In the secretary
problem, weights are determined adversarily, but the adversary cannot fix the
order of arrival. In the prophet-inequality model, weights are drawn at random
from publicly known distributions, but the adversary can fix distributions and
arrival order.

The third model is motivated by admission control protocols that have to de-
cide about requests using stochastic knowledge from previous “corresponding”
periods. For example, to make decisions in the time period on this week Friday
from 9am to 10am, an admission control algorithm might want to learn from
events in the same time window(s) of previous Friday(s). The graph G describes
a potentially very large universe of possible requests. It might represent disks of

Online Independent Set Beyond the Worst-Case 511

various sizes at different positions which are requested with certain probabilities.
An adversary fixes a distribution which generates requests by picking a set of
nodes from G at random. Distributions might change over time but the devia-
tion from period to period is bounded as specified by the global constant c ≥ 1.
The order in which the requests are presented in the period model is adversarial,
which assumes implicitly that the order in which requests arrive within a period
is unpredictable. We assume that the online algorithm has access to the distri-
bution in the prophet-inequality model. In the period model it can only observe
samples obtained from similar distributions.

We evaluate online algorithms in terms of the competitive ratio which is de-
fined as E [OPT] /E [ALG]. OPT denotes the maximum weight of an independent
set for the given instance, and ALG denotes the weight of the independent set
selected by the online algorithm. The expectation is with respect to the stochas-
tic input model and random coin flips of the algorithm. In case of the secretary
model, the weight of OPT is fixed so that the competitive ratio simplifies to
OPT/E [ALG]. In case of the period model, we study the competitive ratio with
respect to any fixed period t ≥ 2.

1.2 Our Contribution

The models described above are conceptually quite different. To cope with these
differences, we present a unifying graph sampling model, where the online algo-
rithm is initially equipped with a sample graph generated from a distribution
that is stochastically similar to the distribution of the input graph. In Section 2,
we introduce this model formally and show that it can be simulated by each
of the other input models. This approach enables us to devise online algorithms
achieving, up to small constant factors, the same competitive ratio for all models.

Based on the graph sampling model, we present an online algorithm for Max-
IS with competitive ratio O(ρ2) for graphs with inductive independence number ρ
in Section 3. As a consequence, we achieve competitive ratio O(1) for independent
set on interval and disk graphs in all considered input models. Our analytic
approach shows that we do not require specific stochastic assumptions in order
to break through the Ω(n) worst-case lower bound. Indeed, the same kind of
online algorithm performs well under a variety of stochastic assumptions.

In Section 4, we present upper and lower bounds for Max-Weight-IS. We
adapt the algorithm for Max-IS to Max-Weight-IS and obtain a competitive
ratio of O

(
ρ2 log n

)
in the graph sampling model (and, hence, all of the models),

where n denotes an upper bound on the (expected) number of nodes that are
presented to the algorithm (in the considered period). As a technical highlight,
we show that this bound is almost best possible for interval and disk graphs.
In particular, we prove a lower bound for Max-Weight-IS on interval graphs of
order Ω

(
log n/ log2 log n

)
in the secretary and the prophet-inequality models.

The same bound applies to the period and the unifying model, and it holds even
for randomized algorithms.

Motivated by admission control and scheduling applications, in Section 5 we
additionally study a variant in which nodes have different arrival and departure

512 O. Göbel et al.

times. The adversary is allowed to fix in advance the conflict graph and for each
node a time interval in which the node is present. Only the nodes being active at
the same time have to be independent. We show how to solve variants of Max-
(Weight-)IS with arrival and departure times by using the previous algorithms
as subroutines, losing only a factor O (log n) in the competitive ratio.

Finally, in Section 6 we show how to transfer our results to edge-weighted
conflict graphs. This way, more sophisticated wireless interference models can
be analyzed, for example, the commonly studied ones based on SINR constraints.
We present an O

(
ρ2 log2 n

)
-competitive algorithm for Max-IS in this case.

1.3 Related Work

In the 1970s, Frank [10] gave an algorithm for Max-IS on chordal graphs and,
thus, also on interval graphs. For disk graphs, the problem is NP-hard but admits
a PTAS [7]. These graph classes are extended to graphs with bounded inductive
independence number in [1,27]. Irani’s work [18] enables coloring these graphs
online with O(ρχ(G) log n) colors.

The use of disk graphs was often motivated by interference in wireless net-
works. Also a number of approximation algorithms using the more realistic SINR
model exist for different variants of maximizing the number of successful simul-
taneous transmissions [12,16,19]. Interestingly, Hoefer et al. [17] showed that
any of these problems can also be described as a maximum independent set
problem in an edge-weighted conflict graph. Moreover, the inductive indepen-
dence number of these graphs turns out to be bounded by a constant or O(log n)
(see also [15]). Besides, also the graphs arising from a number of further simple
interference models have a constant inductive independence number as well.

To bypass the trivial lower bound of Ω(n) in online worst-case optimization,
often restricted instances are considered. For example, for interval graphs of
value density bounded by k, Koren and Shasha [23] give an optimal (1 +

⊇
k)2-

competitive algorithm. In a similar spirit, Fanghänel et al. [8] use geometric
parameters to get tight bounds in SINR.

For the problem of selecting the highest ranked entity, which is pointless in
a worst-case setting, optimal algorithms have already been presented in [6] for
the secretary model and in [25] for the prophet-inequality settings. Both models
have strong connections to online auctions, where bidders arrive one by one, have
to be served, and incentive compatibility is desired, see [13,14]. Recently, they
have been analyzed with respect to non-trivial combinatorial optimization prob-
lems. The matroid independent set problem was considered in secretary [4] and
prophet-inequality models [22], similarly variants of matching and set packing
problems were studied in both models [24,20,2]. Our algorithm for unweighted
independent set is inspired by [24], which uses a greedy algorithm to guide the
online-computation of a weighted matching.

More general packing problems have been studied in the secretary model
as well, e.g. the knapsack problem by Babaioff et al. [3]. Allowing multiple con-
straints, the problem becomes solving linear packing problems online. Though in
[21,9,5,26] almost-optimal solutions to this kind of online problems are shown to

Online Independent Set Beyond the Worst-Case 513

exist when given capacities are large enough, even under this restricting assump-
tion the described algorithms are not applicable for independent set problems.

2 Graph Sampling Model

In this section, we present a technically motivated but rather intuitive stochastic
input model that bridges between the three input models from the introduction.
In our graph sampling model, the online algorithm is initially equipped with a
sample graph that is stochastically similar to an input graph presented subse-
quently in online fashion. In the following, we first describe the properties of
this model formally and then explain how it can be simulated by each of the
other three models. Thereby, competitive ratios achieved for the graph sampling
model hold for those models, too.

Let G = (V, E) be an arbitrary graph from the considered class. We derive two
induced subgraphs, the input graph G[V I] with weights wI and the sample graph
G[V S] with weights wS , where V I , V S ∈ V . The sets V I and V S are generated
implicitly by drawing non-negative weights wI(v) and wS(v) at random, for each
node v ∈ V . To ease notation, we assume that node weights are integral.

We set V I = {v ∈ V |wI(v) > 0} and V S = {v ∈ V |wS(v) > 0}. The weights
wI and wS need not to be drawn according to exactly identical distributions,
but they must satisfy the following assumptions.1

– Stochastic similarity: For every v ∈ V and every integer b > 0, it holds
Pr

[
wI(v) = b

] ⊆ cPr
[
wS(v) = b

]
and Pr

[
wS(v) = b

] ⊆ cPr
[
wI(v) = b

]

with c ≥ 1 denoting a fixed, constant term.
– Stochastic independence: For every v ∈ V , the weights wI(v) and wS(v) do

not depend on the weights wI and wS of other nodes.

We explicitly point out that for any node v ∈ V the weights wI(v) and wS(v)
might be correlated. These possible dependencies are crucial for the simulation
of the graph sampling model by the secretary model.

Let us now describe how the input is presented to the online algorithm. A
priori, the algorithm does not know G, the weights wI , wS , or even the proba-
bility distributions for the weights. As initial input, it receives the sample graph
G[V S] together with weights wS for the nodes in V S and the order → among
these. Nodes in V I arrive one by one in adversarial order. When a node v ∈ V I

arrives, the algorithm gets to know the weight wI(v) as well as the edges from v
to nodes in V S and to the nodes in V I that arrived before v and their relative
order with respect to →. If v is also contained in V S , it is revealed that these
1 We show competitive ratios that do not depend on the size of the graph G, but only

on the expected size of the graph G[V I] presented to the online algorithm. For this
reason, the model can be extended to infinite graphs representing, e.g., all possible
disks in Euclidean space. In such an extension, probability distributions might be
continuous rather than discrete. Only for notational simplicity, we focus on finite
graphs, integer weights, and discrete probability distributions.

514 O. Göbel et al.

are identical. Based on this information, the online algorithm has to irrevocably
decide whether v should be included into the independent set or rejected.

The competitive ratio of an algorithm in the graph sampling model is defined
as E

[
OPT(wI)

]
/E [ALG], where OPT(wI) is the maximum weight of an inde-

pendent set with respect to the weights wI . The next proposition shows that
an upper bound on the competitive ratio for the graph sampling model implies
upper bounds on the competitive ratios for the other stochastic input models.

Proposition 1. If there is an α-competitive algorithm for Max-IS (Max-Weight-
IS) in the graph sampling model, then there are O(α)-competitive algorithms for
Max-IS (Max-Weight-IS) in the prophet-inequality model, the period model, and
the secretary model.

Due to space limitations, parts of the proof of this proposition as well as the
other missing proofs are presented in the full version.

Proof (Sketch for Secretary Model). Let α = α(c) denote the competitive ra-
tio in the graph sampling model with c denoting the constant term from the
similarity condition. We draw a random number k from the Binomial distri-
bution B(n, 1

2) with n = |V | and set wI(v) = 0, wS(v) = w(v), for the first
k nodes, and wI(v) = w(v), wS(v) = 0, for the remaining nodes, where w(v)
denotes the adversarial weights from the secretary model. As nodes arrive in
random order and k is determined by the binomial distribution, this is stochas-
tically equivalent to choosing weight tuples (wI(v), wS(v)) independently, uni-
formly at random from {(0, w(v)), (w(v), 0)}, for all nodes v ∈ V . Thus, stochas-
tic independence and stochastic similarity (with c = 1) are satisfied. The on-
line algorithm is α(1)-competitive with respect to G[V I], that is, E [ALG] ≥
E

[
OPT(wI)

]
/α(1). Furthermore, by symmetry, E

[
OPT(wI)

]
= E

[
OPT(wS)

]
,

which implies OPT(w) = E
[
OPT(wI + wS)

] ⊆ E
[
OPT(wI)

]
+E

[
OPT(wS)

]
=

2E
[
OPT(wI)

]
. Consequently, E [ALG] ≥ E [OPT(w)] /2α(1) so that the com-

petitive ratio for the secretary model is upper-bounded by 2α(1). ∩≤
Proposition 1 allows to focus on the graph sampling model when proving

upper bounds on the competitive ratio. The following lemma shows that it is in-
deed sufficient to compare the independent set computed by the algorithm to the
maximum-weight independent set with respect to wS instead of wI . For the pur-
pose of upper bounding the competitive ratio within constant factors, it suffices
to upper-bound E

[
OPT(wS)

]
/E [ALG] instead of E

[
OPT(wI)

]
/E [ALG].

Lemma 1. E
[
OPT(wS)

] ≥ 1
cE

[
OPT(wI)

]
.

3 Unweighted Independent Set

We study Max-IS on graphs with bounded inductive independence number in the
graph sampling model. We consider the input model from Section 2 restricted to
{0, 1}-weights and assume that the underlying graph G = (V, E) has bounded

Online Independent Set Beyond the Worst-Case 515

Algorithm 1: Unweighted Online-Max-IS
Input: G[V S]
M1, M2, M3, M4 ← ∅;
forall the v ∈ V S in order according to ≺ do

if M1 ∪ {v} is independent then M1 ← M1 ∪ {v}
forall the v ∈ V I in order of arrival do

if ∅u ∈ M1, u ≺ v with {u, v} ∈ E then M2 ← M2 ∪ {v};
if v ∈ M2 then w/prob q := 1

2ρc
: M3 ← M3 ∪ {v};

if v ∈ M3 and ∅u ∈ M4 s.t. {v, u} ∈ E then M4 ← M4 ∪ {v}
return M4;

inductive independence number ρ ≥ 1. The restriction to {0, 1}-weights simplifies
the graph sampling model as follows. One picks two subsets V I and V S from V
at random. The induced graphs G[V I] and G[V S] are the input and the sample
graph, respectively. For a node v ∈ V , the events v ∈ V I and v ∈ V S might be
correlated. By stochastic independence, however, these events do not depend on
events for other nodes. Stochastic similarity yields for {0, 1}-weights

1
cPr

[
v ∈ V S

] ⊆ Pr
[
v ∈ V I

] ⊆ cPr
[
v ∈ V S

]
. (1)

Our online algorithm applies a greedy algorithm for independent set to the sample
graph G[V S] and employs the output of this algorithm to guide the online com-
putation on the input graph G[V I]. This technique is similar in spirit to the one
used for online matching in [24]. However, in our case a single node can introduce
arbitrarily many conflicts. Fortunately, applying a more global perspective allows
us to show that the overall number of nodes that have to be removed is bounded
nonetheless. In the offline setting, a greedy algorithm for independent set on graphs
with bounded inductive independence number starts with I = ← and considers all
nodes of V iteratively according to →. It adds a node to I when it is not in conflict
with other nodes already in I. This yields a ρ-approximation due to the bound on
the inductive independence number: Selecting a node not in the optimal solution
prevents at most ρ many neighbors from being selected to I, cf., e.g., [1,27].

In more detail, Algorithm 1 computes two sets M1 ∈ V S and M2 ∈ V I .
M1 is the output of the greedy algorithm applied to G[V S]. M2 is obtained by
going through the nodes in V I in adversarial order and checking for each v ∈ V I

whether it would have been taken by the greedy algorithm on G[V S ∀ {v}].
In our analysis, we show that the expected value of M2 is of the same order
as the expected value of M1 and, hence, an O(ρ)-approximation of OP T (wS).
By Lemma 1, this implies that M2 is an O(ρ)-approximation of E

[
OP T (wI)

]
.

Unfortunately, however, M2 is not an independent set. Feasibility is achieved by
two further steps: We first obtain a set M3 by randomly sparsifying M2, which
loses another factor of O (ρ) in the competitive ratio. The remaining conflicts
are resolved by moving to a set M4 (the output of the algorithm) only those
nodes that are not adjacent to nodes previously inserted into M4. A stochastic
analysis of the conflicts in M3 shows that this final resolution step loses only a
constant factor in the competitive ratio.

516 O. Göbel et al.

Theorem 1. Algorithm 1 is 4c3ρ2-competitive.

Proof (Sketch). The set M1 is determined by applying the greedy algorithm to
G[V S] and, hence, it is a ρ-approximation of OPT(wS). Combining this with
Lemma 1 gives E [|M1|] ≥ 1

cρE
[
OPT(wI)

]
. By applying stochastic similarity,

we obtain E [|M2|] ≥ 1
cE [|M1|]. Furthermore, sparsifying from M2 to M3 causes

losing the factor q = 1
2ρc , i.e., E [|M3|] = qE [|M2|]. Thus, we obtain E [|M3|] ≥

q
c2ρ E

[
OPT(wI)

]
.

It remains to analyze the final conflict resolution, where only nodes without
any conflict are selected in the final output set. The consequence of this approach
is that for each conflict which would appear in the offline setting, exactly the
node arriving first in the online setting is chosen by our algorithm. We define
C = {{u, v} ∈ E | u, v ∈ M3}. Note that the size of C is an upper bound to the
overall number of nodes that are lost in the conflict resolution.

We show that E [|C|] ⊆ E [|M3|] qρc. To this end, we define Cv = {u ∈
V | {u, v} ∈ E and v → u}. Using stochastic similarity one more time, we get
E [|Cv ∪ M3| | v ∈ M3] ⊆ qρc and derive E [|C|] ⊆ E [|M3|] qρc.

Since the output is the set M3 lowered by at most one node per existing
conflict, E [|M4|] ≥ E [|M3|] − E [|C|] holds. Combining this with the bound on
E [|C|] gives E [|M4|] ≥ (1 − qρc) q

c2ρE
[
OPT(wI)

]
= 1

4c3ρ2E
[
OPT(wI)

]
. ∩≤

4 Weighted Independent Set

In this section, we turn to the Max-Weight-IS problem. We construct an al-
gorithm by dividing nodes into roughly log n weight classes and running the
algorithm for the unweighted problem on a randomly selected class. While this
is a common approach in online maximization, we have to deal with techni-
cal difficulties here. Neither |V I | nor the maximum weight are known a priori,
and the sample is generated by a stochastically similar rather than by the same
distribution. For details see the full version.

Theorem 2. There is an O(α · log(n))-competitive algorithm for Max-Weight-
IS, where α = O(ρ2) is the competitive ratio of Algorithm 1 and n = E

[|V I |].
The approach of constructing weight classes is fairly generic. However, the

competitive ratio turns out to be almost optimal not only for the general problem
but even for all special cases mentioned in the introduction.

Theorem 3. For any algorithm for online maximum-weight independent set,
we have E [ALG] = Ω

(
log2 logn

log n

)
E [OPT], even in interval graphs, and even in

the secretary and prophet-inequality model.

Proof (Sketch). We use a fixed graph known to the algorithm in advance. The
node weights are drawn independently from probability distributions known in
advance. The precise outcome, however, is only revealed at time of arrival. The
times of arrival are in uniform random order. This way, we restrict the adversary
to become weaker than in both the secretary and the prophet-inequality models.

Online Independent Set Beyond the Worst-Case 517

We set d = Θ(log2 n/(log2 log n)) and construct the graph by nesting intervals
into each other, starting with an interval of length 1 and continuing by always
putting d intervals of length d−i next to each other into an interval of length
d−i+1. The resulting graph is a complete d-ary tree with additional “shortcuts”
on the paths from the root to the leaves skipping over some levels. The total
number of levels is h = Θ

(
logn

log logn

)
. For a node v on level i, we set the weight

w(v) at random to dh−i with probability p = 1
2h and 0 otherwise.

It is helpful to consider the paths from the root node to the leaves, which
include h nodes each. There are in total dh such paths. In every independent set,
there can be at most one node on any path. In case a node has non-zero weight,
its weight directly corresponds to the number of paths it lies on. Therefore, we
can equivalently express the weight of an independent set by the number of paths
that are covered, i.e., on which a non-zero node is selected.

The optimal online algorithm on this graph is the following HighStakes
policy. This algorithm accepts a node if and only if it has non-zero weight and
there is no more ancestor to come that could cover this node. In other words,
we reject a node of non-zero weight if there is a chance that an ancestor could
still be selected (because it has not arrived and none of its other descendants
have been selected so far). No online algorithm can be better than HighStakes.
We show this by proving inductively that at any point in time, no matter which
nodes have been selected so far, the conditional expectation is maximized by
continuing following the HighStakes policy.

HighStakes accepts the jth node on a path only if it has non-zero weight
and if the j−1 nodes on higher levels occur before this node in the random order.
The combined probability of this event is p

j . Therefore, the overall probability
that any node on a path of length h is accepted is at most

∑h
j=1

p
j = O(p log h).

The expected value of the solution computed by HighStakes is exactly the
expected number of paths that are covered. By the above considerations, we get
E [ALG] ⊆ dhO(p log h) = O

(
dh log2 logn

log n

)
.

On the other hand, we get a feasible offline solution by greedily accepting
vertices going down the tree. In this procedure a path of length h is only left
uncovered if all nodes on it have zero weight. This happens with probability
(1 − p)h = (1 − 1

2h)h ⊆ 1√
e

= Ω(1). Therefore, this solution has value E [OPT] =

Ω(dh). In total, E [ALG] = Ω
(

log2 logn
log n

)
E [OPT], showing the claim. ∩≤

5 Arrivals and Departures

Interval graphs are often motivated by problems in which two tasks cannot be
processed at the same time. Disk graphs in turn capture the requirement of
spatial separation. In this section, we introduce an approach to combine both
temporal and spatial separation. Again, we assume that requests are nodes in
a graph G = (V, E), which models the geometric properties. Furthermore, each
node v ∈ V in this graph has an arrival time arrival(v) ∈ R and a departure
time departure(v). We say that u ∈ V and v ∈ V are conflicting if {u, v} ∈ E

518 O. Göbel et al.

and [arrival(u), departure(u)] ∪ [arrival(v), departure(v)] �= ←. Still, we make no
assumption on the order in which requests in a period are presented to the online
algorithm. In particular, this includes the most natural case, in which requests
are ordered by arrival times.

Given an algorithm A that approximately solves the online (weighted) in-
dependent set problem on the graph G with competitive ratio γ, Algorithm
Split (see full version) achieves O(γ log n) as the overall competitive ratio, where
n = |V I |. In the previous sections, we devised such algorithms for the unweighted
problem with γ = O(ρ2) and the weighted variant with γ = O(ρ2 log n).
Theorem 4. The algorithm Split is O(γ log n)-competitive.

6 Edge-Weighted Conflict Graphs
To capture more realistic wireless interference models, such as, e.g., the ones
based on SINR, we extend our approach to edge-weighted conflict graphs, fol-
lowing [17]. We assume that between any pair of nodes u, v ∈ V , there exists
a (directed) weight w(u, v) ∈ [0, 1]. We define S ∈ V as independent set if∑

u∈S w(u, v) < 1 for all v ∈ S. Now the inductive independence number is the
smallest number ρ for which there is an ordering → such that for all independent
sets S, we have

∑
u∈S,u�v w(u, v) + w(v, u) ⊆ ρ for all v ∈ V .

The major challenge compared to the case of unweighted conflict graphs is that
conflicts become asymmetric. In unweighted graphs, node u has a conflict with
node v if and only if node v has a conflict with node u. In edge-weighted conflict
graphs, there might be many nodes u1, u2, . . . that can feasibly be placed into
the independent set when considering previously added nodes, but this might
violate feasibility of some other node v added before. Our solution to this issue
is as follows (see full version for details): After computing a set M3 in a similar
fashion as in Algorithm 1, we apply an additional randomized selection step to
build the final set M4, losing only a polylogarithmic factor in the competitive
ratio. The output set M4 of the algorithm is guaranteed to be feasible with high
probability. Therefore, one can guarantee feasibility without loss by adding an
arbitrary conflict-resolution filter at the end.
Theorem 5. There is an O(ρ2 log2 n)-competitive competitive algorithm for On-
line Max-IS in edge-weighted graphs.

References
1. Akcoglu, K., Aspnes, J., DasGupta, B., Kao, M.-Y.: Opportunity cost algorithms

for combinatorial auctions. CoRR, cs.CE/0010031 (2000)
2. Alaei, S., Hajiaghayi, M., Liaghat, V.: Online prophet-inequality matching with

applications to ad allocation. In: Proc. 13th EC, pp. 18–35 (2012)
3. Babaioff, M., Immorlica, N., Kempe, D., Kleinberg, R.D.: A knapsack secretary

problem with applications. In: Charikar, M., Jansen, K., Reingold, O., Rolim,
J.D.P. (eds.) RANDOM 2007 and APPROX 2007. LNCS, vol. 4627, pp. 16–28.
Springer, Heidelberg (2007)

4. Babaioff, M., Immorlica, N., Kleinberg, R.: Matroids, secretary problems, and on-
line mechanisms. In: Proc. 18th SODA, pp. 434–443 (2007)

Online Independent Set Beyond the Worst-Case 519

5. Devanur, N.R., Jain, K., Sivan, B., Wilkens, C.A.: Near optimal online algorithms
and fast approximation algorithms for resource allocation problems. In: Proc. 12th
EC, pp. 29–38 (2011)

6. Dynkin, E.B.: The optimum choice of the instant for stopping a markov process.
Sov. Math. Dokl 4, 627–629 (1963)

7. Erlebach, T., Jansen, K., Seidel, E.: Polynomial-time approximation schemes for
geometric intersection graphs. SIAM J. Comput. 34(6), 1302–1323 (2005)

8. Fanghänel, A., Geulen, S., Hoefer, M., Vöcking, B.: Online capacity maximization
in wireless networks. In: Proc. 22nd SPAA, pp. 92–99 (2010)

9. Feldman, J., Henzinger, M., Korula, N., Mirrokni, V.S., Stein, C.: Online stochastic
packing applied to display ad allocation. In: Proc. 18th ESA, pp. 182–194 (2010)

10. Frank, A.: Some polynomial algorithms for certain graphs and hypergraphs. In:
Proc. 5th British Combinatorial Conference, pp. 211–226 (1975)

11. Göbel, O., Hoefer, M., Kesselheim, T., Schleiden, T., Vöcking, B.: Online inde-
pendent set beyond the worst-case: Secretaries, prophets, and periods. CoRR,
abs/1307.3192 (2013)

12. Goussevskaia, O., Wattenhofer, R., Halldórsson, M.M., Welzl, E.: Capacity of ar-
bitrary wireless networks. In: Proc. 28th INFOCOM, pp. 1872–1880 (2009)

13. Hajiaghayi, M., Kleinberg, R., Parkes, D.C.: Adaptive limited-supply online auc-
tions. In: Proc. 5th EC, pp. 71–80 (2004)

14. Hajiaghayi, M., Kleinberg, R.D., Sandholm, T.: Automated online mechanism de-
sign and prophet inequalities. In: Proc. 22nd AAAI, pp. 58–65 (2007)

15. Halldórsson, M.M., Holzer, S., Mitra, P., Wattenhofer, R.: The power of non-
uniform wireless power. In: Proc. 24th SODA, pp. 1595–1606 (2013)

16. Halldórsson, M.M., Mitra, P.: Wireless capacity with oblivious power in general
metrics. In: Proc. 22nd SODA, pp. 1538–1548 (2011)

17. Hoefer, M., Kesselheim, T., Vöcking, B.: Approximation algorithms for secondary
spectrum auctions. In: Proc. 23rd SPAA, pp. 177–186 (2011)

18. Irani, S.: Coloring inductive graphs on-line. Algorithmica 11(1), 53–72 (1994)
19. Kesselheim, T.: A constant-factor approximation for wireless capacity maximiza-

tion with power control in the SINR model. In: Proc. SODA, pp. 1549–1559 (2011)
20. Kesselheim, T., Radke, K., Tönnis, A., Vöcking, B.: An optimal online algorithm for

weighted bipartite matching and extensions to combinatorial auctions. In: Bodlaen-
der, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 589–600. Springer,
Heidelberg (2013)

21. Kesselheim, T., Radke, K., Tönnis, A., Vöcking, B.: Primal beats dual on online
packing LPs in the random-order model. In: Proc. 46th STOC (2014)

22. Kleinberg, R., Weinberg, S.M.: Matroid prophet inequalities. In: Proc. 44th STOC,
pp. 123–136 (2012)

23. Koren, G., Shasha, D.: Dover: An optimal on-line scheduling algorithm for over-
loaded uniprocessor real-time systems. SIAM J. Comput. 24(2), 318–339 (1995)

24. Korula, N., Pál, M.: Algorithms for secretary problems on graphs and hypergraphs. In:
Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.)
ICALP 2009, Part II. LNCS, vol. 5556, pp. 508–520. Springer, Heidelberg (2009)

25. Krengel, U., Sucheston, L.: Semiamarts and finite values. Bull. Amer. Math.
Soc. 83, 745–747 (1977)

26. Molinaro, M., Ravi, R.: Geometry of online packing linear programs. In: Czumaj,
A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part I. LNCS,
vol. 7391, pp. 701–713. Springer, Heidelberg (2012)

27. Ye, Y., Borodin, A.: Elimination graphs. In: Albers, S., Marchetti-Spaccamela,
A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS,
vol. 5555, pp. 774–785. Springer, Heidelberg (2009)

Optimal Competitiveness for Symmetric

Rectilinear Steiner Arborescence
and Related Problems

Erez Kantor1,Σ and Shay Kutten2,ΣΣ

1 MIT CSAIL, Cambridge, MA
erezk@csail.mit.edu

2 Technion, Haifa 32000, Israel
kutten@ie.technion.ac.il

Abstract. We present optimal competitive algorithms for two interre-
lated known problems involving Steiner Arborescence. One is the contin-
uous problem of the Symmetric Rectilinear Steiner Arborescence
(SRSA), whose online version was studied by Berman and Coulston as a
symmetric version of the known Rectilinear Steiner Arborescence (RSA)
problem. A very related, but discrete problem (studied separately in the
past) is the online Multimedia Content Delivery (MCD) problem on
line networks, presented originally by Papadimitriou, Ramanathan, and
Rangan. An efficient content delivery was modeled as a low cost Steiner
arborescence in a grid of network×time they defined. We study here
the version studied by Charikar, Halperin, and Motwani (who used the
same problem definitions, but removed some constraints on the inputs).
The bounds on the competitive ratios introduced separately in the above
papers were similar for the two problems: O(logN) for the continuous
problem and O(log n) for the network problem, where N was the num-
ber of terminals to serve, and n was the size of the network. The lower
bounds were Ω(

√
logN) and Ω(

√
log n) correspondingly.

Berman andCoulston conjectured that both the upper boundand the
lower bound could be improved.Wedisprove this conjecture and close these
quadratic gaps for both problems. We present deterministic algorithms
that are competitive optimal: O(

√
logN) for SRSA and O(min{√log n,√

logN}) for MCD, matching the lower bounds for these two online
problems. We also present a Ω(3

√
log n) lower bound on the competitive-

ness of any randomized algorithm that solves the online MCD problem.

1 Introduction
We present optimal online algorithms for two known interrelated problems involv-
ing Steiner Arborescences. The continuous one is theSymmetricRectilinearSteiner
Arborescence (SRSA) problem [3,5]. The online Steiner arborescence problems are

� Supported in a part by AFOSR FA9550-13-1-0042 and by NSF grants Nos. CCF-
1217506, CCF-0939370 and CCF-AF-0937274.

�� Supported in part by the ISF and by the Technion Gordon Center.

J. Esparza et al. (Eds.): ICALP 2014, Part II, LNCS 8573, pp. 520–531, 2014.
c∗ Springer-Verlag Berlin Heidelberg 2014

Optimal Competitiveness for Symmetric Rectilinear Steiner Arborescence 521

useful in modeling the time dimension in a process. Intuitively (see, e.g. Papadim-
itriou at al., [11]), directed edges represent the passing of time. Since there is no way
to go back in time in such processes, all the directed edges are directed away from
the initial state of the problem, resulting in an arborescence. Additional examples
given in the literature included processes in constructing a Very Large Scale In-
tegrated electronic circuits (VLSI), optimization problems computed in iterations
(where it was not feasible to return to results of earlier iterations), dynamic pro-
gramming, and problems involving DNA, see, e.g. [3,5,8,2].

The SRSA Problem: A rectilinear line segment in the plane is either horizontal
or vertical. A rectilinear path contains only rectilinear line segments. This path is
also y-monotone if during the traversal, the y coordinates of the successive points
are never decreasing. The input is a set of requests R = {(x1, y1), ..., (xN , yN)}
called Steiner terminals (or points) in the positive quadrant of the plane. A
feasible solution to the problem is a set of rectilinear segments connecting all
the N terminals to the origin, where the path from the origin to each terminal
is a rectilinear y-monotone path. The goal is to find a feasible solution in which
the sum of lengths of all the segments is the minimum possible. If we also had
require the path connecting the origin to any point to be some shortest path
(both x-monotone and y-monotone), then the problem would have been referred
to as the Rectilinear Steiner Arborescence (RSA) problem [9,14,3,10,6].

Online Model: In the online version of SRSA [3], the given points are pre-
sented to the algorithm with nondecreasing y-coordinates. After receiving a new
given point (terminal), the on-line SRSA algorithm must extend the existing
arborescence solution to incorporate the new point. There are two limitations:
(1) a line, once drawn, cannot be deleted, and (2) lines can only be drawn in the
region between the previous given point y-coordinates and upwards.

A very related, but discrete problem is the online Multimedia Content Deliv-
ery (MCD) problem on line networks, presented originally by Papadimitriou,
Ramanathan, and Rangan [11]. (The formal definitions appear in Section 2). The
MCD problem considered a movie residing initially at some origin node and a
set of requests, each arriving at some node at some time. Serving a request at a
node v at time t meant delivering a movie copy to the requesting node v from
some node u which has a copy at time t; or delivering a copy to v at some time
t′ < t from u (which has a copy at time t′) and then storing the copy at v from
time t′ until time t.

There are two types of costs, the delivery cost associated with the cost of
sending a movie copy over the network edges and the storage cost associated
with the cost of storing a copies at the nodes. MCD captured the tradeoff
between the storage and the delivery costs. The goal is to serve all the requests
with minimal costs. An example of an algorithm would be to store, always, a
movie copy at the origin and serve every request by delivering a copy from the
origin at the time of the request. Such an algorithm would incur a high delivery
cost. Alternatively, a copy already delivered to some nodes, could be stored there,
and delivered later from there. This could reduce delivery costs, but incur storage
costs. Papadimitriou et al. defined a grid of network×time (detailed in Section

522 E. Kantor and S. Kutten

2), were a request at a node u at time t was translated into a grid point (u, t). A
copy stored at a node u they modeled as an edge along the “time dimension” in
the above grid (from grid point (u, t) to grid point (u, t+ 1)), while the delivery
they modeled as edges along the “network dimension”. A solution (an efficient
content delivery plan), was modeled as a low cost Steiner arborescence leading
from the origin (node 0 at time 0) to all the requests (the Steiner points). Since
time is irreversible, their Steiner tree was (semi) directed away from the origin.

Papadimitriou et al. assumed some constraints on the input. Those constraints
were lifted in the paper of Charikar, Halperin and Motwani [4]. The upper bound
(in Charikar et al.) on the competitive ratio was O(log n) for the network problem
(where n was the size of the network) and the lower bound was Σ(

∈
logn). The

bounds of Berman and Coulston for SRSA were very similar. The upper bound
was O(logN), where N was the number of terminals1. The lower bound was
Σ(

∈
logN). Clearly, these upper bounds were quadratic in the lower bounds.

Berman and Coulston conjectured that both the upper bound and the lower
bound could be improved.

Our Results. In this paper, we disprove the above conjecture and close these
quadratic gaps for both problems. We first present an O(

∈
logn) deterministic

competitive algorithm for MCD on the line. We then translate the online algo-
rithm to become a competitive optimal algorithm srsaon for SRSA. The com-
petitive ratio is O(

∈
logN). Finally, we translate srsaon back to solve the MCD

problem. This reverse translation improves the upper bound to O(min{∈logn,∈
logN}). That is, this final algorithm is competitive optimal for MCD even

in the case that the number of requests is small. Intuitively, the “reverse trans-
lation” gets rid of the dependance on the network size, using the fact that in
the definition of SRSA, there is no network. (This last trick may be a useful
twist on the common idea of a translation between continuous and discrete prob-
lems). We also present an Σ(3

∈
logn) lower bound on the competitiveness of any

randomized algorithm that solves the online MCD problem.

Some Additional Related Work. As pointed out in [4], MCD also motivated
as a variant of a problem that is useful for data structures for the maintenance
of kinematic structures, with numerous applications. Of course, Steiner trees,
in general, have many applications, see e.g. [7] for a rather early survey that
already included hundreds of items. SRSA is a variant of the Rectilinear Steiner
Arborescence (continuous) problem RSA. The offline version of RSA was studied
e.g. by Rao, Sadayappan, Hwang, and Shor [14]. RSA was attributed to [10,6]
who gave two different exponential time algorithms. PTAS for RSA and SRSA
were presented by [9] and [5], respectively. A generalization of the logarithmic
upper bound of online MCD to general networks appears in [1].

Paper Structure. Section 3 contains an optimal upper bound on the compet-
itive ratio for MCD as a function of the network size. In Section 4, the above is

1 In fact, the parameter they used was p, the normalized size of the network. For
simplicity, we present results for n, the size of the network. However, the same
results for p follow easily from Sections 4 and 5.

Optimal Competitiveness for Symmetric Rectilinear Steiner Arborescence 523

translated to a tight upper bound for SRSA. In Section 5, we use the solution of
SRSA in order to improve the solution of MCD (to be optimal also as a func-
tion of the number of terminals). Finally, Section 6 includes the lower bound for
randomized algorithms. Because of space considerations, most of the details in
the last three sections were moved and will appear in the full version.

2 Preliminaries

The SRSA problem and its online version was given in the introduction. This
section contains formal definitions and notations for the network×time grid, as
well as the MCD problem and its online version on that grid. Finally, it contains
the offline algorithm of [4] for MCD, which we use later as a tool.

TheNetwork×TimeGrid. A line network L(n) = (Vn, En) is a network whose
vertex set is Vn = {1, ..., n} and its edge set is En = {(i, i + 1) | i = 1, ..., n −
1}. Given a line network L(n) = (Vn, En), construct ”time-line” graph L(n) =
(Vn, En), intuitively, by “layering” multiple replicas of L(n), one per time unit,
where in addition, each node in each replica is connected to the same node in the
next replica . Formally, the node set Vn contains a node replica (sometimes called
just a replica) (v, t) of every v ≡ Vn, for every time step t ≡ N. That is, Vn =
{(v, t) | v ≡ Vn, t ≡ N}. The set of edges En = Hn ⊆ An contains horizontal edges
Hn = {((u, t), (v, t)) | (u, v) ≡ En, t ≡ N}, connecting network edges in every time
step (round), and directed vertical edges, called arcs, An = {((v, t), (v, t + 1)) |
v ≡ Vn, t ≡ N}, connecting different copies of Vn. When it is clear from the con-
text, we may omit n from Xn and write just X , for every X ≡ {V,E,V ,H,A}.
Notice thatL(n) can be viewed geometrically as a grid of n by ↔whose grid points
are the replicas. Let d((u, s), (v, t)) be the distance from (u, s) to (v, t). Formally,
d((u, s), (v, t)) = t− s + |v − u| (if s ⇔ t, otherwise, ↔).

MCD: We are given a line network L(n), an origin node v0 ≡ V , and a set of
requests R ⊂ V . A feasible solution is a subset of edges F ⊂ E such that for every
request r ≡ R, there exists a path in F from the origin (v0, 0) to r. A horizontal
edge ((v, t), (v + 1, t)) ≡ F ≥H stands for sending a copy of the movie (or copy,
for short) from node v to node v + 1, or from node v + 1 to node v at time t,
while a vertical (directed) edge ((v, t), (v, t + 1)) ≡ F ≥A stands for keeping the
movie in v’s cache at time step t for time t + 1. For convenience, the endpoints
VF of edges in F are also considered parts of the solution. For a given algorithm
A, let FA be the solution of A, and let cost(A,R), (the cost of algorithm A), be
|FA|. The goal is to find a minimum cost feasible solution. In our analysis, opt
is the set of edges in some optimal solution whose cost is |opt|.
Online Model. In the online versions of the problem, the algorithm receives as
input a sequence of events. One type of events is a request in the (ordered) set
R of requests R = {r1, r2, ..., rN} (like in SRSA). A second type of events is a
time event (this event does not exists in SRSA), where we assume a clock that
tells the algorithm that no additional requests for time t are about to arrive (or
that there are no requests for some time t at all). The algorithm then still has

524 E. Kantor and S. Kutten

the opportunity to complete its calculation for time t (e.g., add arcs from some
replica (v, t) to (v, t + 1)). Then time t + 1 arrives.

When handling an event ev, the algorithm only knows the following: (a) all
the previous requests r1, ..., ri; (b) time t; and (c) the solution arborescence Fev

it constructed so far (originally containing only the origin). In each event, the
algorithm may need to make decisions of two types, before seeing future events:

(1.MCD) If the event is the arrival of a request ri = (vi, ti), then from which
current (time ti) cache (a point already in the solution arborescence
Fev when ri arrives) to serve ri by adding horizontal edges to Fev.

(2.MCD) If this is the time event for time t, then at which nodes to store a copy for
time t+1, for future use: select some replica (or replicas) (v, t) already in
the solutionFev and add toFev an edge directed from (v, t) to (v, t+1).

Note that, at time t, the online algorithm cannot add nor delete any edge with
an endpoint that corresponds to previous times. Similarly to e.g. [1,11,13,12,4],
we assume that at least one copy must remain in the network at all times2.

A Tool: The Offline Algorithm Triangle of Charikar et al. Consider
a request set R = {r0 = (v0, 0), r1 = (v1, t1), ..., rN = (vN , tN)} such that
0 ⇔ t1 ⇔ t2 ⇔ ... ⇔ tN . When Algorithm Triangle starts, the solution includes
just r0 = (v0, 0) (intuitively, a “pseudo request”). Then, Triangle handles,
first, request r1, then request r2, etc... In handling a request ri, the algorithm
may add some (possibly “past”) edges to the solution. (It never deletes any edge
from the solution.) After handling ri, the solution is an arborescence rooted at r0
that spans the request replicas r1, ..., ri. For each such request ri ≡ R, Triangle
performs the following.

(T1) Choose a replica qti = (uti , s
t
i) s.t. qti is already in the solution and the dis-

tance from qti to ri is minimum (over the replicas already in the solution).
Call qti the serving replica of ri.

(T2) Define the radius εti of ri as εti = d(qti , ri). Also define the base3 Base(i)
of ri as the set of replicas at time ti of distance at most εti from ri. That
is, Base(i) = {q = (v, ti) ≡ V | d(ri, q) ⇔ εti }. Similarly, the edge base of
ri is BaseH(i) = {(r, q) ≡ H | r, q ≡ Base(i)}.

(T3) Deliver a copy to each replica in Base(i). That is, node uti stores a
copy from time sti to time ti. More formally, add the arcs of PA[(uti , s

t
i),

(uti , ti)] = {((uti , z), (uti , z + 1)) | sti ⇔ z < ti} to the solution.
(T4) Deliver a copy to all replicas in Base(i). That is, add all the edges of

BaseH(i) to the solution, except the ones that close circle4 (if such exists).

It is easy to verify [4] that the cost of Triangle for serving ri is at most
3εti . Denote by Ft = Ht ⊆ At the feasible solution of Triangle, where

2 Alternatively, the system (not the algorithm) can have the option to delete the movie
altogether, this decision must then be made known to the algorithm. At least one of
these natural assumptions is also necessary for having a competitive algorithm.

3 The word “base” comes from the notation used in [4] for Algorithm Triangle.
There, Base(i) is a base of the triangle.

4 For convenience of the analysis we want the solution to be a tree.

Optimal Competitiveness for Symmetric Rectilinear Steiner Arborescence 525

Ht ⊂ ⊆N
i=1BaseH(i) and At = ⊆N

i=1PA[(uti , s
t
i), (uti , ti)]. Note that Ft is an ar-

borescence rooted at (v0, 0) spanning the base replicas of Base = ⊆N
i=1Base(i).

Rewording the theorem of [4], somewhat,

Theorem 21. [4] Ft is a 3-approximate solution. Also,
∑N

i=1 ε
t
i ⇔ |opt|.

3 Optimal Online Algorithm for MCD

Algorithm LINEon. Like Algorithm Triangle, Algorithm Lineon handles
requests one by one, according to the order of arrival. However, in step (T3),
Triangle may perform an operation that no online algorithm can perform (if
sti < ti). Serving a request ri must be performed from some replica qon

i =
(uon

i , ti) ≡ V [ti] that holds a copy at time ti in the execution of the online
algorithm on R. Thus (in addition to selecting from which nodes to deliver
copies), algorithm Lineon at time ti − 1 had to also select the nodes that store
copies for the consecutive time ti (so that qon

i mentioned above would be one of
them). Let us start with some definitions.

General Definitions and Notations. Consider an interval J = {v, v +
1, ..., v+ε} ⊂ V and two integers s, t ≡ N, s.t. s ⇔ t. Let J [s, t] be the “rectangle
subgraph” of L(n) corresponding to vertex set J and time interval [s, t]. This rect-
angle consists of the replicas and edges of the nodes of J corresponding to time
interval [s, t]. For a given subsets V ′ ⊂ V , H′ ⊂ H and A′ ⊂ A, denote by (1)
V ′[s, t] replicas of V ′ corresponding to times s, ..., t. Define similarly (2) H′[s, t]
for horizontal edges of H′; and (3) A′[s, t] arcs of A′. (When s = t, we may
write X [t] = X [s, t], for X ≡ {J,V ′,H′}.) Consider also two nodes v, u ≡ V . Let
PH[(v, t), (u, t)] = PH[(u, t), (v, t)] be the set of horizontal edges of the shortest
path from (v, t) to (u, t).

Partitions of [1, n] into Intervals. Define m = n/Ω for some positive integer
Ω to be chosen later. For convenience, we assume that m = n/Ω is a power of 2.
(It is trivial to generalize it). Define logm + 1 levels of partitions of the interval
[1, n]. In level l, partition [1, n] into m/2l = n/Ω2l intervals, I l1, I l2,...,I lm/2l , each

of size Ω2l. I lj = {Ω(j − 1) · 2l + k | k = 1, ..., Ω2l}, for every 1 ⇔ j ⇔ m/2l and
every 0 ⇔ l ⇔ logm. Let I be the set of all such intervals. Let δ(I) be the level
of an interval I ≡ I, i.e., δ(I lj) = l. We say that I is a level δ(I) interval. Denote

by I l(v) (for every node v ≡ V and every level l = 0, ..., logm) the interval in
level l that contains v. That is, I l(v) = I lk, where k =

⌊
v

ψ2l

⌋
+ 1.

For a given interval I lj ≡ I, denote by NR(I lj), for 1 ⇔ j < m/2l (respectively,

NL(I lj), for 1 < j ⇔ m/2l) the neighbor interval of level l that is on the right

(resp., left) of I lj . That is, NL(I lj) = I lj−1 and NR(I lj) = I lj+1. Define that

NL(Ii1) = ⇒ and NR(Iim/2l) = ⇒. Let N(I) = NL(I) ⊆ I ⊆NR(I). We say that

N(I) is the neighborhood of I.

Active intervals. An interval I ≡ I is called active at time t, if Base ≥ I[t−
2θ(I), t] ◦= ⇒. Intuitively, Triangle kept a movie copy in, at least, one of the
nodes of I, at least once, and “not too long” before time t. We say that I

526 E. Kantor and S. Kutten

stays-active, intuitively, if I is not “just about to stop being active”, that is, if
Base ≥ I[t− 2θ(I) + 1, t] ◦= ⇒.

Denote by Ct+1 the set of replicas corresponding to the nodes that store copies
from time t to time t + 1 in a Lineon execution. Also, C0 = {r0 = (v0, 0)} (we
choose to store a copy in v0 always). To help us later in the analysis, we also added
an auxiliary set commit ⊂ {≤I, t→ | I ≡ I, t ≡ N}. Initially, commit ∅ ⇒. For
each time t = 0, 1, 2, ..., consider first the case that there exists at least one request
corresponding to time t, i.e., R[t] = {rj , ..., rk} ◦= ⇒. Then, for each request ri ≡
R[t], Lineon simulatesTriangle to find the radius εti and the set of base replicas
Base(i) of ri. Next, Lineon delivers a copy to every such base replica r ≡ Base(i)
(this is called the “delivery phase”). That is, for each i = j, ..., k do:

(D1) choose a closest (to ri) replica qon
i = (uon

i , t) of time t already in the solution;
(D2) add the path Hon(i) = PH[qon

i , ri] ⊆BaseH(i) to the solution.

Let Von(i) = {r | (r, q) ≡ Hon(i)}. (Note that rj is served from Ct, after that,
rj+1 is served from Ct⊆Von(j), etc.) Clearly, the delivery phase of time t ensures
that (at least) the nodes of Ct ⊆ Base[t] have copies at the end of that phase.
It is left to decide which of the above copies to store for time t + 1. That is
(the “storage phase”), Lineon chooses the set Ct+1 ⊂ Ct ⊆ Base[t]. Initially,
Ct+1 ∅ {(v0, t + 1)} (as we choose to store a copy at v0). Then, for each level
l = 0, ..., logm, in an increasing order, select as follows.

(S1) While there exists a level l interval I ≡ I that is (i) stays-active at t; but (ii)
no replica has been selected in I’s neighborhood (i.e., Ct+1≥N(I)[t+1] = ⇒),
then perform steps (S1.1-S1.3) below.

(S1.1) Add the tuple ≤I, t→ to the set commit (we say that I commits at time
t).

(S1.2) Select some replica (v, t) ≡ Base[t] ⊆ Ct such that v ≡ N(I) (by Obser-
vation 1 below, such a replica does exist).

(S1.3) Add (v, t + 1) to Ct+1 and add the arc ((v, t), (v, t + 1)) to the solution.

The pseudo code of Lineon and an example for an execution of Lineon are given
in the full version. The solution constructed by Lineon is denoted Fon = Hon⊆
Aon, where Hon = ⊆N

i=1Hon(i) represents the horizontal edges added in the
delivery phases and Aon = {((v, t), (v, t+1)) | (v, t+1) ≡ Ct+1 and t = 0, ..., tN}
represents the arcs added in the storage phase. Before the main analysis, we
make some easy-to-prove but crucial observations. For completeness, their proofs
appear in full version (however, they are pretty clear from step S1). Recall that
the notation of active (including stays-active) refer to the fact that the nodes of
some base replicas belong to some interval I in the (“recent”) past. Observations
1 and 2 state, intuitively, that Lineon leaves a copy in the neighborhood N(I)
of I as long as I is active.

Observation 1. (“Well defined”). If an interval I ≡ I is stays-active at
time t, then there exists a replica (v, t) ≡ Ct ⊆Base[t] such that v ≡ N(I).

Observation 2. (“An active interval has a nearby copy”). If an interval
I is active at time t, then, either (i) there is some base replica in I’s neighborhood

Optimal Competitiveness for Symmetric Rectilinear Steiner Arborescence 527

at t (Base≥N(I)[t] ◦= ⇒), or (ii) at least one of the nodes of N(I) stores a copy
for time t (N(I)[t] ≥ Ct ◦= ⇒).
Observation 3. (“Bound from above on |Aon|”). |Aon| ⇔ |commit|+ tN .

3.1 Analysis of LINEon

We, actually, prove that cost(Lineon
,R)

cost(Triangle,R)
= O(

∈
logn). This implies the de-

sired competitive ratio of O(
∈

logn) by Theorem 21. We first show, that the num-
ber of horizontal edges in Hon (“delivery cost”) is O (Ω · cost(Triangle,R)).
Then, we show, that the the number of arcs in Aon (“storage cost”) is O(log n

ψ ·
cost(Triangle,R)). Optimizing Ω, we get a competitiveness of O(

∈
logn).

Delivery Cost Analysis. For each request ri ≡ R, the delivery phase (step
(D2)) adds Hon(i) = PH[qon

i , ri] ⊆ BaseH(i) to the solution. Define the online
radius of ri as εoni = d(qon

i , ri). Since |BaseH(i)| ⇔ 2εti , it follows that,

|Hon| ⇔
N∑
i=1

(
εoni + 2εti

)
. (1)

It remains to bound εoni as a function of εti from above. Intuitively, εti includes
the distance from some base replica qi = (ui, si) ≡ Base to ri = (vi, ti). That
is, εti includes the distance from vi to ui and the time difference between si and
ti. Restating Observation 2 somewhat differently (Claim 4 below), we can use the
distance |vi−ui| ⇔ εti and the time difference ti− si ⇔ εti for bounding εoni . That
is, we show thatLineon has a copy at time ti (of ri) at a distance at most 4Ωεti from
ui (of qi). Since, |vi, ui| ⇔ εti , Lineon has a copy at distance at most (4Ω + 1)εti
from vi (of ri). Throughout, since lack of space some of the proofs are omitted.

Lemma 4. Consider some base replica (v, t) ≡ Base and some ε > 0, such that,
t+ε ⇔ tN . Then, there exists a replica (w, t+ε) ≡ Ct+ν such that |v−w| ⇔ 4Ωε.

Lemma 5. εoni ⇔ (4Ω + 1) · εti .
The following corollary follows from the above lemma, Ineq. (1) and Theorem 21.

Corollary 1. |Hon| ⇔ (4Ω + 3) · |opt|.

Storage Cost Analysis. By Observation 3, it remains to bound the size
of |commit| from above. Let commit(I, t) = 1 if ≤I, t→ ≡ commit (otherwise
0). Hence, |commit| =

∑
I≥I

∑∈
t=0 commit(I, t). We begin by bounding the

number of commitments in Lineon made by level l = 0 intervals.

Observation 6.
∑

I≥{J≥I|θ(J)=0} commit(I, t) ⇔ ∣∣Base
∣∣.

The following is our main lemma;

Lemma 7. |commit| ⇔ 3
∣∣At

∣∣ + 6 log n
ψ

∣∣Ht
∣∣ + |Base|.

528 E. Kantor and S. Kutten

Proof Sketch. The |Base| term in the statement of the lemma follows from
Observation 6 for level l = 0 intervals. The rest of the proof deals with commit-
ments in intervals I ≡ I whose level δ(I) > 0. We now group the commitments
of each such an interval into “bins”. Later, we shall “charge” the commitments
in each bin on certain costs of the offline algorithm Triangle.

Consider an input R and some interval I ≡ I of level δ(I) > 0. We say
that I is a committed-interval if I commits at least once in the execution of
Lineon on R. For each committed-interval I (of level δ(I) > 0), we define
(almost) non-overlapping “sessions” (one session may end at the same time
the next session starts; hence, two consecutive sessions may overlap on their
boundaries). The first session of I does not contain any commitments (and is
termed an uncommitted-session); it begins at time 0 and ends at the first time
that I contains some base replica. Every other session (of I) contains at least
one commitment (and is termed a committed-session).

Each commitment (in Lineon) of I belongs to some committed session. Given
a commitment ≤I, t→ ≡ commit that I makes at time t, let us identify ≤I, t→’s
session. Let t− < t be the last time (before t) there was a base replica in I.
Similarly, let t+ > t be the next time (after t) there will be a base replica in
I (if such a time does exist; otherwise, t+ = ↔). The session of commitment
≤I, t→ starts at t− and ends at t+. Similarly, when talking about the i’s session
of interval I, we say that the session starts at t−i (I) and ends at t+i (I). When I
is clear from the context, we may omit (I) and write t−i , t+i . A bin is a couple
(I, i) of a commitment-interval and the ith commitment-session of I. Clearly, we
assigned all the commitments (of level l > 0 intervals) into bins.

Observation 8. The bins do not overlap (except, perhaps, on their boundaries).

Let us now point at costs of algorithm Triangle on which we shall “charge”
the set of commitments commit(I, i) in bin (I, i). We now consider only a bin
(I, i) whose committed session is not the last. Note that the bin corresponds to
a rectangle of |I| by t+i − t−i replicas. Expand the bin by |I| replicas left and |I|
replicas right, if such exist (to I’s neighborhood N(I)). This yields the payer of
bin (I, i); that is the payer is a rectangle subgraph of |N(I)| by t+i − t−i replicas.
We point at specific costs Triangle had in this payer.

Recall that every session of I, except may the last, must ends with a base
replica in I. Let (v, t+i) ≡ Base≥I[t+i] be some base replica in I at the ending time
of the session. The solution of Triangle must contain a route (Triangle route)
that starts at the root and reaches (v, t+i) by the definition of a base replica. For
the charging, we use some (detailed below) of the edges in the intersection of
the Triangle route and the payer rectangle.

The easiest case (EB, for Entrance from Below) is that the Triangle route
enters the payer at the payer’s bottom (t−i) and stays in the payer until t+i . Then,
each time (t−i < t < t+i) there is a commitment in the bin, there is also an arc at
in the Triangle route (from time t to time t+ 1). We charge that commitment
on that arc at. Intuitively, the same arc at may be charged also for one bin on the
left of (I, i) and one bin on its right, since the payer rectangles are 3 times wider
than the bins. Note that arc at may also belong to additional O(log n) payers

Optimal Competitiveness for Symmetric Rectilinear Steiner Arborescence 529

(of bins of intervals that contain I or are contained in I). The crucial point is
that at is not charged for those additional bins. That is, we claim that there
are no commitments for those other bins. Intuitively, Lineon was designed such
that if I commits at time t, Lineon also stores a copy in I’s neighborhood for
time t+ 1. Hence, an interval J whose neighborhood contains the neighborhood
of I, does not need to commit (and the test fails in (S1) in Lineon). Thus, an
arc of the Triangle route is charged only by 3 commitments at most.

In the remaining case (SE, for Side Entrance), the Triangle route enters
the payer from either the left or the right side of the payer. (That is, Triangle
delivers a copy from some other node u outside I’s neighborhood, rather than
stores copies at I’s neighborhood from some earlier time. Therefore, the route
must “cross” either the left neighbor interval of I or the right neighbor interval
in that payer. Thus, there exists at least |I| = Ω2θ(I) horizontal edges in the
intersection between the payer (payer(I, i)), of (I, i) and the Triangle route.
On the other hand, the number of commitments in bin (I, i) is 2θ(I) at most.
(To commit, an interval must be active; to be active, it needs a base replica
in the last 2θ(i) times; a new base replica would end the session.) That is, we
charged the payer Ω times more horizontal edges than there are commitments in
the bin. On the other hand, each horizontal edge participates in O(log n) payers
(payers of 3 intervals at most in each level; and payers of 2 bins of each interval
at most, since two consecutive sessions may intersect only at their boundaries).
This leads to the term 6 logn

ψ before the |Ht| in the statement of the lemma.
For each interval I, it is left to account for commitments in I’s last session.

That is, we now handle the bin (I, i′) where I has i′ commitment-sessions. This
session may not end with a base replica in I, so we cannot apply the argument
above that Triangle must have a route reaching a replica in I at t+i′ . On the
other hand, the first session of I (the uncommitted-session) does end with a base
replica in I, but has no commitments. Intuitively, we use the payer of the first
session of I to pay for the commitments of the last session of I. Specifically, in
the first session, the Triangle route must enter the neighborhood of I from the
side; (Note that the Triangle route still starts outside I; this because the origin
v0 who holds a copy, is not in I’s neighborhood; otherwise, I would not have
been a committed interval.) Hence, we apply the argument of case SE above.
(End of Proof sketch.)

We now optimize a tradeoff between the storage coast and the delivery cost of
Lineon. On the one hand, Lemma 7 shows that a large Ω reduces the number of
commitments. By Observation 3, this means a large Ω reduces the storage cost of
Lineon. On the other hand, corollary 1 shows that a small Ω reduces the delivery
cost. To balance this tradeoff, we need to “manipulate” Lemma 7 somewhat,
since it uses variables that are different from those used in corollary 1. We use
the following observation (1) tN ⇔ |opt| ⇔ cost(Triangle,R); (2) |At| +
|Ht| = cost(Triangle,R); and (3) |Base| ⇔ cost(Triangle,R). Substituting
the above (1)–(3) in Observation 3 and Lemma 7,

|Aon| ⇔
(

5 +
3 logn

Ω

)
· cost(Triangle,R). (2)

530 E. Kantor and S. Kutten

To optimize the tradeoff, fix Ω =
∈

10 logn. Corollary 1, and inequality (2) imply
that cost(Lineon,R) = |Aon| + |Hon| ⇔ (8 +

∈
10 logn) · cost(Triangle,R).

Thus, by Theorem 21, the following holds.

Theorem 31. Lineon is O(
∈

log n)-competitive for MCD on the line network.

4 Optimal Online Algorithm for SRSA

Note that our solution for MCD (Section 3) does not yet solve SRSA. In MCD,
the X coordinate of every request (in the set R) is taken from a known set of
size n (the network nodes {1, 2, ..., n}). On the other hand, in SRSA, the X
coordinate of a point is arbitrary. Let us now transform, in three concenptual
stages Lineon into an optimal algorithm for the online problem of SRSA:

1. Given an instance of SRSA, assume temporarily (and remove the assump-
tion later) that the number N of points is known, as well as M , the maximum
X coordinate any request may have. Then, simulate a network where n ⊇ N
and n = O(

∈
logN), and the n nodes are spaced evenly on the interval be-

tween 0 and M . Transform each SRSA request to the nearest grid point.
Solve the resulting MCD problem.

2. Translate these results to results of the original SRSA instance.

3. Get rid of the assumptions.

The first stage is easy. It turns out that “getting rid of the assumptions” is
also relatively easy. To simulate the assumption that M is known, guess that
M is some Mj . Whenever a guess fails, (a request ri = (xi, ti) arrives, where
xi > Mj), continue with an increased guess Mj+1. A similar trick is used for
guessing N . In implementing this idea, our algorithm turned out paying a cost
of πMj (Mj for a failed guess), while an algorithm that knew M could pay M
only once. IF Mj+1 is “sufficiently” larger than Mj , then πMj = O(M). The
“sufficiently larger” part turned out somewhat trickier for guessing N than for
guessing M .

The second stage above (translate the results) proved to be more difficult, even
in the case that N and M are known (and even equal). Intuitively, following the
first stage, each request ri = (xi, ti) is in some grid square, where the corners of
the square are points of the simulated MCD problem. If we normalize M to be
N , then the left bottom left corner of that square is (�xi∪, �ti∪)). Had we wanted
an offline algorithm, we could have solved an instance of MCD, where the
points are (�x1∪, �t1∪), (�x2∪, �t2∪), (�x3∪, �t3∪), Then, translating the results
of MCD would have meant just augmenting with segments connecting each
(�xi∪, �ti∪) to (xi, ti). Unfortunately, this is not possible in an online algorithm,
since (xi, ti) is not yet known at (�ti∪). Similarly, we cannot use the upper left
corner of the square (for example) that way, since at time ∩ti⊕, the algorithm
may no longer be allowed to add segments reaching the earlier time ti. Because
of the lack of space, we moved the rest of this proof.

Theorem 41. Algorithm srsaon is optimal and is O(
∈

logN)-competitive.

Optimal Competitiveness for Symmetric Rectilinear Steiner Arborescence 531

5 Optimizing MCD for a Small Number of Requests
Algorithm Lineon was optimal only as the function of the network size (Theorem
31). Recall that our solution for SRSA was optimal as a function of the number
of requests. We transform that algorithm back to solve MCD, and obtain the
promised competitiveness, O(min{∈logn,

∈
logN}).

6 Randomized Lower Bound for Line Networks

Our lower bound on the competitive ratio of randomized algorithms then follows
from Yaos min-max principle [15] appears in the full version.

Theorem 61. The competitive ratio of any randomized online algorithm for
MCD on line networks Σ(3

∈
logn).

Acknowledgment. We would like to thank to Reuven Bar-Yehuda and Dror
Rawitz for insights and helpful dissections.

References

1. Bar-Yehuda, R., Kantor, E., Kutten, S., Rawitz, D.: Growing half-balls: Minimizing
storage and communication costs in cDNs. In: Czumaj, A., Mehlhorn, K., Pitts,
A., Wattenhofer, R. (eds.) ICALP 2012, Part II. LNCS, vol. 7392, pp. 416–427.
Springer, Heidelberg (2012)

2. Bein, W., Golin, M., Larmore, L., Zhang, Y.: The knuth-yao quadrangle-inequality
speedup is a consequence of total monotonicity. TOPLAS 6(1) (2009)

3. Berman, P., Coulston, C.: On-line algorrithms for steiner tree problems. In: STOC
1997, pp. 344–353 (1997)

4. Charikar, M., Halperin, D., Motwani, R.: The dynamic servers problem. In: SODA
1998, pp. 410–419 (1998)

5. Cheng,X.,Dasgupta,B., Lu,B.:Polynomial time approximation scheme for symmet-
ric rectilinear steiner arborescence problem. J. Global Optim. 21(4), 385–396 (2001)

6. Ladeira de Matos, R.R.: A rectilinear arborescence problem. Dissertation, Univer-
sity of Alabama (1979)

7. Richards, D.S., Hwang, F.K.: Steiner tree problems. Networks 22(1), 55–897 (1992)
8. Kahng, A., Robins, G.: On optimal interconnects for vlsi. Kluwer (1995)
9. Lu, B., Ruan, L.: Polynomial time approximation scheme for rectilinear steiner

arborescence problem. Combinatorial Optimization 4(3), 357–363 (2000)
10. Nastansky, L., Selkow, S.M., Stewart, N.F.: Cost minimum trees in directed acyclic

graphs. Z. Oper. Res. 18, 59–67 (1974)
11. Papadimitriou, C.H., Ramanathan, S., Rangan, P.V.: Information caching for de-

livery of personalized video programs for home entertainment channels. In: IEEE
International Conf. on Multimedia Computing and Systems, pp. 214–223 (1994)

12. Papadimitriou, C.H., Ramanathan, S., Rangan, P.V.: Optimal information deliv-
ery. In: 6th ISAAC, pp. 181–187 (1995)

13. Papadimitriou, C.H., Ramanathan, S., Rangan, P.V., Sampathkumar, S.: Multi-
media information caching for personalized video-on demand. Computer Commu-
nications 18(3), 204–216 (1995)

14. Rao, S., Sadayappan, P., Hwang, F., Shor, P.: The rectilinear steiner arborescence
problem. Algorithmica, 277–288 (1992)

15. Yao, A.C.-C.: Probabilistic computations: Toward a unified measure of complexity.
In: FOCS 1977, pp. 222–227 (1977)

Orienting Fully Dynamic Graphs

with Worst-Case Time Bounds�

Tsvi Kopelowitz1,ΣΣ, Robert Krauthgamer2, Σ Σ Σ, Ely Porat3,
and Shay Solomon4,†

1 University of Michigan, USA
kopelot@gmail.com

2 Weizmann Institute of Science, Israel
robert.krauthgamer@weizmann.ac.il

3 Bar-Ilan University, Israel
porately@cs.biu.ac.il

4 Weizmann Institute of Science, Israel
shay.solomon@weizmann.ac.il

Abstract. In edge orientations, the goal is usually to orient (direct) the
edges of an undirected network (modeled by a graph) such that all out-
degrees are bounded. When the network is fully dynamic, i.e., admits
edge insertions and deletions, we wish to maintain such an orientation
while keeping a tab on the update time. Low out-degree orientations
turned out to be a surprisingly useful tool for managing networks.

Brodal and Fagerberg (1999) initiated the study of the edge orienta-
tion problem in terms of the graph’s arboricity, which is very natural in
this context. Their solution achieves a constant out-degree and a loga-
rithmic amortized update time for all graphs with constant arboricity,
which include all planar and excluded-minor graphs. It remained an open
question – first proposed by Brodal and Fagerberg, later by Erickson and
others – to obtain similar bounds with worst-case update time.

We address this 15 year old question by providing a simple algo-
rithm with worst-case bounds that nearly match the previous amortized
bounds. Our algorithm is based on a new approach of maintaining a
combinatorial invariant, and achieves a logarithmic out-degree with log-
arithmic worst-case update times. This result has applications to various
dynamic network problems such as maintaining a maximal matching,
where we obtain logarithmic worst-case update time compared to a sim-
ilar amortized update time of Neiman and Solomon (2013).

1 Introduction

A very useful algorithmic tool for managing networks is to orient (direct) the
edges while providing a guaranteed upper bound on the out-degree of every vertex.

ω A full version appears at http://arxiv.org/abs/1312.1382
ωω This work is supported by NSF grants CCF-1217338 and CNS-1318294.

ω ω ω Work supported in part by a US-Israel BSF grant #2010418, an Israel Science
Foundation grant #897/13, and by the Citi Foundation.

† This work is supported by the Koshland Center for basic Research.

J. Esparza et al. (Eds.): ICALP 2014, Part II, LNCS 8573, pp. 532–543, 2014.
c∗ Springer-Verlag Berlin Heidelberg 2014

http://arxiv.org/abs/1312.1382

Orienting Fully Dynamic Graphs with Worst-Case Time Bounds 533

Formally, an orientation of an undirected graphG = (V,E) is called a c-orientation
if every vertex has out-degree at most c ∈ 1.

There are many examples where orientations are used in the design, main-
tenance and manipulation of networks, including both static and dynamic net-
works, and both centralized algorithms and distributed ones. One exciting
example of the power of graph orientations can be seen in the seminal paper
introducing “color-coding” [1], where orientations are used to develop more effi-
cient algorithms for finding simple cycles and paths. Another fundamental exam-
ple is in data structures for quickly answering adjacency queries [2,3,4], where a
c-orientation of a (dynamic) graph G is used to answer adjacency queries in O(c)
time using only linear space. These techniques [2,3,4] were further generalized
to answer short-path queries [5]. Additional examples for the algorithmic use of
low-degree orientations include load balancing [6], maximal matchings [7], count-
ing subgraphs in sparse graphs [8], prize-collecting TSPs and Steiner Trees [9],
reporting all maximal independent sets [10], answering dominance queries [10],
subgraph listing problems (listing triangles and 4-cliques) in planar graphs [2],
and computing the girth [5].

Efficient Data Communication. The efficiency of network communication can
often be improved significantly by assigning one endpoint of every edge as “re-
sponsible” for all data transfers occurring on that edge. Such a responsibility
assignment can be naturally obtained by orienting the graph’s edges and letting
each vertex be responsible only for its outgoing edges. Consider, for example,
the task of computing some aggregate function of dynamic data that resides
locally at a vertex and its neighbors – can this task be carried out without scan-
ning all the neighbors of that vertex? Given a c-orientation, whenever the local
data in a vertex u changes, u updates all its outgoing neighbors (neighbors of
u through edges oriented out of u). In contrast, u need not update any of its
(possibly many) incoming neighbors (neighbors of u through edges oriented into
u) about this change. When u wishes to compute the function, it only needs to
scan its outgoing neighbors in order to gather the full up-to-date data. Such re-
sponsibility assignment is particularly useful in dynamic networks, see [7] for an
example, and could be very effective also in many standard tasks in distributed,
self-stabilizing, peer-to-peer, or ad-hoc networks, such as reducing the message
complexity, or reducing local memory constraints (e.g., a router would only store
information about its c outgoing neighbors).

Dynamic Graphs. Our focus here is on maintaining low out-degree orientations of
fully dynamic graphs on n fixed vertices, where edge updates (insertions and dele-
tions) take place over time. The goal is to develop efficient and simple algorithms
that guarantee that the maximum out-degree in the (dynamic) orientation of the
graph is small. In particular, we are interested in obtaining non-trivial update
times that hold (1) in the worst-case, and (2) deterministically. Notice that in
order for an update algorithm to be efficient, the number of edge re-orientations
(done when performing an edge update) must be small, as this number is clearly
a lower bound for the algorithm’s update time.

534 T. Kopelowitz et al.

The out-degree bound achieved by our algorithms will be expressed in terms
of the sparsity of the graph, as measured by the arboricity of G (defined below),
which is a natural lower bound for the maximum out-degree of any orientation.

Arboricity. The arboricity of an undirected graph G = (V,E) is defined as

α(G) = maxU⊆V

⌈
|E(U)|
|U|−1

⌉
, where E(U) is the set of edges induced by U (which

we assume has size |U | ∈ 2). This is a concrete formalism for the notion of
everywhere-sparse graphs — every subgraph of G has arboricity at most α(G)
as well. Arboricity and its related sparseness measures of thickness, degeneracy
or density, which are all equal up to a constant factor, were studied extensively.
Most notable in this context is the family of graphs with constant arboricity,
which includes all excluded-minor graphs, and in particular planar graphs and
bounded-treewidth graphs.

A key property of bounded arboricity graphs that has been exploited in various
algorithmic applications is the following Nash-Williams Theorem.

Theorem 1 (Nash-Williams [11,12]). A graph G = (V,E) has arboricity
α(G) if and only if α(G) > 0 is the smallest number of sets E1, . . . , Eψ(G) that
E can be partitioned into, such that each subgraph (V,Ei) is a forest.

This theorem implies that the edges of an undirected graph G = (V,E) can
be oriented such that the out-degree of each vertex is at most α(G). To see this,
consider the guaranteed partition E1, . . . , Eψ(G). For each forest (V,Ei) and each
tree in that forest, designate one arbitrary vertex as the root of that tree, and
orient all edges towards that root. In each oriented forest the out-degree of
every vertex is at most 1, hence the union of the oriented forests has out-degree
bounded by α(G). There exists a polynomial-time algorithm that computes for
a (static) graph G the exact arboricity α(G) [13], and a linear-time algorithm
that computes a (2α(G) − 1)-orientation [14].

For every (static) graph G, the minimum-possible maximum out-degree is
closely related to α(G): the argument above provides an orientation with maxi-
mum out-degree at most α(G), but the maximum out-degree is also easily seen
to be at least α(G) − 1 (for every orientation).1 In other words, the arboricity
measure of sparsity is a natural baseline for low out-degree orientations.

1.1 Main Result

We obtain efficient algorithms for maintaining a low out-degree orientation of a
fully dynamic graph G such that the out-degree of each vertex is small and the
running time of all update operations is bounded in the worst-case. Specifically,
we present two algorithms. The first algorithm achieves (at any point in time)

1 To see this, let U ⊂ V be such that
⌈

|E(U)|
|U|−1

⌉
= α(G), hence |E(U)|

|U|−1
> α(G)− 1. For

every orientation, the maximum out-degree in G is at least the average out-degree
of vertices in U , which in turn is at least |E(U)|

|U| > |U|−1
|U| (α(G)− 1). The bound now

follows from both α(G) and the maximum out-degree being integers.

Orienting Fully Dynamic Graphs with Worst-Case Time Bounds 535

– a maximum out-degree Δ ≡ infθ>1{β · α(G) + ⊆logθ n↔}, and
– insertion and deletion update times O(Δ2) and O(Δ), respectively.

The second algorithm works with two parameters α̂ and β̂ > 1 both known
by the algorithm. The parameter α̂ is a set upper bound on α(G) while β̂ can
be chosen arbitrarily and only affects the complexities of the algorithm. This
algorithm achieves (at any point in time)

– a maximum out-degree Δ ≡ β̂ · α̂ + ⊆logθ̂ n↔, and

– insertion and deletion update times O(β̂ · α̂ ·Δ) and O(Δ), respectively.

Notice that the first algorithm does not need to know α(G) (hence its bounds
change with time together with the graph G), while the second algorithm as-
sumes knowledge of an upper bound on α(G). On the other hand, the second

algorithm has faster insertion time, because in the worst-case β̂ · α̂ ·Δ < Δ2.
All our algorithms are deterministic, and they change the orientation of at

most Δ+1 edges per edge update. Perhaps most importantly, they are relatively
simple (especially the first one) to describe and to analyze, which is a great virtue
for potential implementation, and also for further extensions and refinements.
We should nevertheless point out that the apparent simplicity relies heavily on a
fine selection of an effective combinatorial invariant; finding such invariants can
be very tricky, and it constitutes the main technical challenge in this work.

Notice that in our second algorithm if α̂ is constant we can set β̂ = 2 and all of
our bounds translate to O(log n). In other words, for fully dynamic graphs with a
constant upper bound on the arboricity we can maintain an O(log n)-orientation
with O(log n) worst-case update time. Previous work, which is discussed next,
only obtained efficient amortized update time bounds, in contrast to our bounds
which are all in the worst-case. Our results address an open question raised by
Brodal and Fagerberg [3] and restated by Erickson [15], of obtaining good worst-
case bounds (although the ultimate goal is obviously worst-case time O(1) for
all updates, if that is at all possible).

1.2 Comparison with Previous Work

The dynamic setting in our context was pioneered by Brodal and Fagerberg [3],
who showed that it is possible to maintain a 4α̂-orientation of a fully dynamic
graph G whose arboricity is always at most α̂. They proved that their algorithm is
O(1)-competitive against the number of re-orientations made by any algorithm,
regardless of that algorithm’s actual running time. They then provided a specific
strategy for re-orienting edges which shows that, for α̂ = O(1), their algorithm’s
insertion time is amortized O(1) while the deletion time is amortized O(log n).
Kowalik [4] showed that a different analysis of Brodal and Fagerberg’s algorithm
achieves insertion update time that is amortized O(log n) and the deletion time
that is worst-case O(1). Kowalik further showed it is possible to support inser-
tions in amortized O(1) time and deletions in worst-case O(1) time by using an
O(log n)-orientation. These algorithms have been used as black-box components

536 T. Kopelowitz et al.

in several applications of dynamic graphs. Recently Gupta et.al. [16] showed that
if only insertions are allowed then an amortized 2 edge reorientations suffice for
maintaining a maximum out-degree of O(α(G)).

Algorithms with amortized runtime bounds may be insufficient for many real-
time applications where infrequent costly operations might cause congestion in
the system at critical times. Exploring the boundaries between amortized and
worst-case bounds is also important from a theoretical point of view, and has
received a lot of research attention. The algorithms of Brodal and Fagerberg [3]
and Kowalik [4] both incur a linear worst-case update time, on which we show
an exponential improvement. As mentioned above, our results address an open
question raised by Brodal and Fagerberg [3] and restated by Erickson in [15].

1.3 Our Techniques

The algorithm of Brodal and Fagerberg [3] is very elegant, but it is not clear if it can
be deamortized as it is inherently amortized. The key technical idea we introduce
is to maintain a combinatorial invariant, which is very simple in its basic form: for
every vertex u ⇔ V , at least (roughly) α̂ outgoing edges are directed towards ver-
tices with almost as large out-degree, namely at least dout(u)− 1 (where dout(u) is
the out-degree of u). Such edges are called valid edges. We prove in Section 2 that
this combinatorial invariant immediately implies the claimed upper bound on Δ.

An overview of the algorithms that we use for, say, insertion, is as follows.
When a new edge (u, v) is added, we first orient it, say, from u to v guaranteeing
that the edge is valid. We now check if the invariant holds, but the only culprit
is u, whose out-degree has increased. If we know which of the edges leaving u
are the “special” valid edges needed to maintain the invariant, we scan them to
see if any of them are no longer valid (as a result of the insertion), and if there
is such an edge we flip its orientation, and continue recursively with the other
endpoint of the flipped edge. This process indeed works, but it causes difficulty
during an edge deletion — when one of the α̂ special valid edges leaving u is
deleted, a replacement may not even exist.

Here, our expedition splits into two different parts. We first show an extremely
simple (but less efficient) algorithm that maintains a stronger invariant in which
for every vertex u ⇔ V , all of its out-going edges are valid. This approach
immediately gives the claimed upper bound on Δ, with update time roughly
O((logn

log logn)2) for graphs with constant arboricity.
In the second part we refine the invariant using another idea of spectrum-

validity, which roughly speaking uses the following invariant: for every vertex

u ⇔ V and for every 1 ≡ i ≡ deg(u)
ψ̂ , at least i · α̂ of its outgoing edges are directed

towards vertices with degree at least dout(u) − i. This invariant is stronger than
the first invariant (which seemed algorithmically challenging) and weaker than
the second invariant (whose bounds were less efficient than desired as it needed
to guarantee validness for all edges). Furthermore, maintaining this invariant
is more involved algorithmically, and one interesting aspect of our algorithm is
that during an insertion process, it does not scan the roughly α̂ neighbors with
degree at least dout(u)−1, as one would expect, but rather some other neighbors

Orienting Fully Dynamic Graphs with Worst-Case Time Bounds 537

picked in a careful manner. Ultimately, this methodology yields the improved
time bounds claim in Section 1.1.

1.4 Selected Applications

We only mention two applications here by stating their theorems for graphs with
arboricity bounded by a constant. We discuss these applications and some other
ones with more detail in the full version.

Theorem 2 (Maximal matching in fully dynamic graphs). Let G =
(V,E) be an undirected fully dynamic graph with arboricity bounded by a con-
stant. Then one can deterministically maintain a maximal matching of G such
that the worst-case time per edge update is O(log n).

Theorem 3 (Adjacency queries in fully dynamic graphs). Let G = (V,E)
be an undirected fully dynamic graph with arboricity bounded by a constant.
Then one can deterministically answer adjacency queries on G in O(log log logn)
worst-case time where the deterministic worst-case time per edge update is
O(log n · log log logn).

1.5 Preliminaries

An orientation of the undirected edges of G assigns a direction to every edge e ⇔
E, thereby turning G into a digraph. We will use the notation u ⊂ v to indicate
that the edge e = (u, v) is oriented from u to v. Given such an orientation, let
N+(u) := {v ⇔ V : u ⊂ v} denote the set of outgoing neighbors of u, i.e., the
vertices connected to u via an edge leaving it, and let dout(u) := |N+(u)| denote
the number of outgoing edges of u in this orientation, i.e., the out-degree of u.
Similarly, let N−(u) := {v ⇔ V : v ⊂ u} denote the set of incoming neighbors
of u, and let din(u) := |N−(u)|. Finally, we denote by Δ := maxv≥V dout(v) the
maximum out-degree of a vertex in the graph (under the given orientation).

Our algorithms will make use of the following heap-like data structure (the
proof is left for the full version).

Lemma 1. Let X be a dynamic set, where each element xi ⇔ X has a key ki ⇔ N

that may change with time, and designate a fixed element x0 ⇔ X to be the center
of X (although its key k0 may change with time). Then there is a data structure
that maintains X using O(|X | + k0) words of space, and supports the following
operations with O(1) worst-case time bound (unless specified otherwise):
– ReportMax(X): return a pointer to an element from X with maximum key.
– Increment(X, x): given a pointer to x ⇔ X \ {x0}, increment the key of x.
– Decrement(X, x): given a pointer to x ⇔ X \ {x0}, decrement the key of x.
– Insert(X, xi, ki): insert a new element xi with key ki ≡ k0 + 1 into X.
– Delete(X, x): given a pointer to an element x ⇔ X \ {x0}, remove x from X.
– IncrementCenter(X): increment k0 in O(k0) worst-case time.
– DecrementCenter(X): decrement k0 (unless k0 = 1) in O(k0) worst-case

time.

538 T. Kopelowitz et al.

For each vertex w ⇔ V , consider the (dynamic) set Xw that contains w and
all its incoming neighbors, where the key of each element in X is given by its
out-degree. The center element of Xw will be w itself. Each vertex w will have
its own data structure (using Lemma 1) for maintaining Xw. In what follows,
we denote this data structure by Hw, and use it to find an incoming neighbor of
w with out-degree at least dout(w) + 2 (if one exists) in O(1) time.

Lemma 2. The total space used to store the data structures Hw for all w ⇔ V
is O(n + m) words, where m stands for the number of edges in the (current)
graph.

Proof. By Lemma 1, for each w ⇔ V the space usage is at most O(1 + din(w) +
dout(w)). Summing over all vertices w ⇔ V , the total space is

∑
w≥V O(1 +

din(w) + dout(w)) = O(n + m). ≥⇒

2 Invariants for Bounding the Largest Out-Degree

We assume throughout that the dynamic graph G has, at all times, arboricity
α(G) bounded by some parameter α̂, i.e., α(G) ≡ α̂. Let β̂ > 1 be a parameter
that may possibly depend on n and α̂ (it will be chosen later to optimize our

bounds), and define γ := β̂ · α̂.
An edge (u, v) ⇔ E oriented such that u ⊂ v is called valid if dout(u) ≡ dout(v)+

1, and is called violated otherwise. The following condition provides control (upper
bound) on Δ, as proved in Theorem 4. We refer to it as an invariant, because we
shall maintain the orientation so that the condition is satisfied at all times.

Invariant 3. For each vertex w, at least min{dout(w), γ} outgoing edges of w
are valid.

Theorem 4. If Invariant 3 holds, then Δ ≡ β̂ · α̂ + ⊆logθ̂ n↔.
Proof. Assume Invariant 3 holds, and suppose for contradiction there is a “source”
vertex s ⇔ V satisfying dout(s) > γ + ⊆logθ̂ n↔. Now consider the set Vi of vertices
reachable from s by directed paths of length at most i that use only valid edges.
Observe that for every 1 ≡ i ≡ ⊆logθ̂ n↔ and every vertex w ⇔ Vi,

dout(w) ∈ dout(s) − i > γ + ⊆logθ̂ n↔ − i ∈ γ,

implying that at least γ outgoing edges of w are valid.
We next prove by induction on i that |Vi| > β̂i for all 1 ≡ i ≡ ⊆logθ̂ n↔.

For the base case i = 1, notice that s has at least γ valid outgoing edges and
all of the corresponding outgoing neighbors of s belong to V1. Furthermore, s
belongs to V1 as well. Thus |V1| ∈ γ + 1 > γ ∈ β̂. For the inductive step,

suppose |Vi−1| > β̂i−1; observe that the total number of valid outgoing edges
from vertices in Vi−1 is at least γ|Vi−1|, and furthermore all these edges are
incident only to vertices in Vi. Since the graph’s arboricity is α(G) ≡ α̂, we can

bound |Vi| − 1 ∈ γ|Vi−1|/α(G) ∈ β̂|Vi−1| > β̂i, as claimed.

We conclude that |V∈logβ̂ n⊆| > β̂∈logβ̂ n⊆ ∈ n, yielding a contradiction. ≥⇒

Orienting Fully Dynamic Graphs with Worst-Case Time Bounds 539

Invariant 3 provides a relatively weak guarantee as if dout(w) > γ, then we
know only that γ outgoing edges of w are valid, and have no guarantee on the
out-degree of the other dout(w) − γ outgoing neighbors of w. Consequently, it is
nontrivial to maintain Invariant 3 efficiently, and in particular, if one of the γ
valid edges (outgoing from w) is deleted, the invariant might become violated,
and it is unclear how to restore it efficiently. We thus need another invariant,
namely, a stronger condition (so that a similar theorem still applies) that is also
easy to maintain. The next invariant is a natural candidate, as it is simple to
maintain (with reasonable efficiency).

Invariant 4. All edges in G are valid.

Theorem 5. If Invariant 4 holds, then Δ ≡ infθ>1 β · α(G) + ⊆logθ n↔.
The proof of Theorem 5 is similar to the proof of Theorem 4 and is left for

the full version.
We first present in Section 3 a very simple algorithm that maintains Invariant 4

with update times O(Δ2) and O(Δ) for insertion and deletion (of an edge),
respectively. This algorithm provides a strong basis for a more sophisticated
algorithm, developed in Section 4, which maintains an intermediate invariant
(stronger than Invariant 3 but weaker than Invariant 4) with update times O(γ ·
Δ) and O(Δ) for insertion and deletion, respectively.

3 Worst-Case Algorithm

We consider an infinite sequence of graphs G0, G1, . . . on a fixed vertex set V ,
where each graph Gi = (V,Ei) is obtained from the previous graph Gi−1 by
either adding or deleting a single edge. For simplicity, we assume that G0 has
no edges. Denote by αi = α(Gi) the arboricity of Gi. We will maintain Invari-
ant 4 while edges are inserted and deleted into and from the graph, which by
Theorem 5 implies that the maximum out-degree Δi in the orientation of Gi is
bounded by O(infθ>1{β · αi + logθ n}).

For the rest of this section we fix i and consider a graph Gi obtained from a
graph Gi−1 satisfying Invariant 4 by either adding or deleting edge e = (u, v).

3.1 Insertions

Suppose that edge (u, v) is added to Gi−1 thereby obtaining Gi. We begin by
orienting the edge from the endpoint with lower out-degree to the endpoint with
larger out-degree (breaking a tie in an arbitrary manner). So without loss of
generality we now have u ⊂ v. Notice that the only edges that may be violated
now are edges outgoing from u, as dout(u) is the only out-degree that has been
incremented. Furthermore, if some edge u ⊂ v⊗ is violated now, then removing
this edge will guarantee that there are no violated edges. However, the resulting
graph would be missing the edge (u, v⊗) just removed. So we recursively insert the
edge (u, v⊗), but orient it in the opposite direction (i.e., v⊗ ⊂ u). This means that

540 T. Kopelowitz et al.

we have actually flipped the orientation of (u, v⊗), reverting dout(u) to its value
before the entire insertion process took place. This recursive process continues
until all edges of the graph are valid. Moreover, at any given time there is at
most one “missing” edge, and the graph obtained at the end of the process has
no missing edges. Our choice to remove a violated edge outgoing from u (if such
an edge exists) guarantees that the number of recursive steps is at most Δ, as
we will show later. This insertion process is described in Algorithm 1.

Algorithm 1. Recursive-Insertion(G, (u, v))

/* Assume without loss of generality dout(u) ≤ dout(v) */

1. add (u, v) to G with orientation u → v
2. Insert(Xv , u, dout(u)− 1) /* this key will be incremented in line 10 if needed */
3. for v⊥ ∈ N+(u) do
4. if dout(u) > dout(v

⊥) + 1 then
5. remove (u, v⊥) from G /* now edge (u, v⊥) is missing */
6. Delete(Xv′ , u)
7. Recursive-Insertion(G, (v⊥, u)) /* recursively insert (u, v⊥), but oriented v⊥ → u

*/
8. return
9. for v⊥ ∈ N+(u) do
10. Increment(Xv′ , u)
11. IncrementCenter(Xu)

We remark that although in line 1 the out-degree of u is incremented by 1, we
do not update the new key of u in the appropriate structures (i.e., Hu and Hv′ for
all v⊗ ⇔ N+(u)), because if the condition in line 4 succeeds for some v⊗ ⇔ N+(u),
the out-degree of u will return to its original value, and we want to save the cost
of incrementing and then decrementing the key for u in all structures. However,
if that condition fails for all v⊗, we will perform the update in lines 9–11.

Correctness and Runtime Analysis. The following lemmas, provide the correct-
ness and runtime analysis of the insertion process. Due to space constraints, the
proofs are omitted here and appear in the full version. Notice that the proofs
mostly follow from the discussion above.

Lemma 5. At the end of the execution of Recursive-Insertion on an input graph
which has an orientation satisfying Invariant 4, Invariant 4 holds for the result-
ing graph and orientation.

Lemma 6. The total number of recursive calls (and hence re-orientations) of
Recursive-Insertion due to an insertion into G is at most Δ + 1, and the total
runtime is bounded by O(Δ2).

3.2 Deletions

Suppose that edge (u, v) is deleted from Gi−1 thereby obtaining Gi. Assume
without loss of generality that in the orientation of Gi−1 we had u ⊂ v.

Orienting Fully Dynamic Graphs with Worst-Case Time Bounds 541

We begin by removing (u, v) from our data structure. Notice that the only edges
that may be violated now are edges incoming into u. Furthermore, if there is
an edge v⊗ ⊂ u that is violated now, then adding to the graph another copy of
(u, v⊗) (producing a multi-graph) that is oriented in the opposite direction (i.e.,
u ⊂ v⊗) will guarantee that there are no violated edges. However, the result-
ing multi-graph has an extra edge that should be deleted. So we now recursively
delete the original copy of edge (u, v⊗) (not the copy that was just added, oriented
u ⊂ v⊗, which we keep). This means that we have actually flipped the orientation
of (u, v⊗), reverting dout(u) to its value before the entire deletion process took
place. This recursive process will continue until all edges of the graph are valid.
Moreover, there is at most one duplicated edge at any given time, and the graph
obtained at the end of the process has no duplicated edges. Our choice to add
a copy of a violated edge incoming to u (if such an edge exists) guarantees that
the number of recursive steps is at most Δ.

Due to space limitations, more details and correctness of the deletion process
are described in the full version. Overall, we prove the following theorem.

Theorem 6. There exists a deterministic algorithm for maintaining an orien-
tation of a fully dynamic graph on n vertices while supporting the following:
– The maximum out-degree is Δ ≡ infθ>1{β · α(G) + logθ n},
– The worst-case time to execute an edge insertion is O(Δ2),
– The worst-case time to execute an edge deletion is O(Δ), and
– The worst-case number of orientations performed per update is Δ + 1.

4 A More Efficient Algorithm

In this section we present a more efficient, though more involved, algorithm that
improves the insertion update time from O(Δ2) to O(γ ·Δ), without increasing

any of the other measures, at the cost of setting α̂ and β̂ in advance.

An Intermediate Invariant: So far we have introduced two invariants. On one
extreme, the stronger Invariant 4 guarantees that all edges are valid, and this
led to our simple algorithm in Section 3. On the other extreme, the weaker
Invariant 3 only guarantees that γ outgoing edges of each vertex are valid. On
an intuitive level, the benefit of having the weaker Invariant 3 being maintained
comes into play during the insertion process of edge (u, v) that is oriented as
u ⊂ v, where instead of scanning all of the outgoing edges of u looking for
a violated edge, it is enough to scan only γ edges. If such a guarantee could
be made to work, the insertion update time would be reduced to O(γ · Δ).
However, it is unclear how to efficiently maintain Invariant 3 as deletions take
place. Specifically, when one of the γ outgoing valid edges of a vertex is deleted,
it is possible that there is no other valid outgoing edge to replace it.

Our strategy is not to maintain Invariant 3 directly, but rather to define and
maintain an intermediate invariant (see Invariant 7), which is stronger than
Invariant 3 but still weak enough so that we only need to scan γ outgoing edges

542 T. Kopelowitz et al.

of u during the insertion process. The additional strength of the intermediate
invariant will assist us in efficiently supporting deletions. Before stating the
invariant, we define the following. For any i ∈ 1, an edge (u, v) oriented as u ⊂ v
is called i-valid if dout(v) ∈ dout(u) − i; if it is not i-valid then it is i-violated.
We also say that a vertex w is spectrum-valid if the set Ew of its outgoing edges

can be partitioned into q = qw = ⊆ |Ew|
ν ↔ sets E1

w, · · · , Eq
w such that for each

1 ≡ i ≡ q, the following holds: (1) |Ei
w| = γ (except for the residue set Eq

w which
contains the remaining |Ew| − (q − 1) · γ edges, i.e., |Eq

w| = |Ew| − (q − 1) · γ),
and (2) all edges in Ei

w are i-valid. If a vertex is not spectrum-valid then it is
spectrum-violated.

Invariant 7. Each vertex w is spectrum-valid.

We will call E1
w (Eq

w) the first (last) set of edges for w. To give some intuition
as to why Invariant 7 helps us support deletions efficiently, notice that once an
edge (u, v) that is oriented as u ⊂ v is deleted and needs to be replaced, it will
either be replaced by a flip of some violated incoming edge (which will become
valid after the flip), or it can be replaced by one of the edges from E2

u, as these
edges were previously 2-valid, and after the deletion they are all 1-valid. We
emphasize already here that during the insertion process we do not scan the γ
edges of the first set (i.e., those that are guaranteed to be 1-valid prior to the
insertion), but rather scan the γ (in fact, γ−1) edges of the last set (and possibly
of the set before last) that are only guaranteed to be q-valid.

In order to facilitate the use of Invariant 7, each vertex w will maintain its
outgoing edges in a doubly linked list Lw. We say that Lw is valid if for every
1 ≡ i ≡ q, the edges between location γ · (i− 1) + 1 and location (γ · i) in the list
are all i-valid. These locations for a given i are called the i-block of Lw. So, in
a valid Lw the first location must be 1-valid and belongs to the 1-block, the last
location must be q-valid and belongs to the q-block, etc. Note that for i = q the
number of locations (i.e., |Ew| − (q − 1) · γ) may be smaller than γ. If Lw is not
valid then it is violated.

We now provide an overview of the more efficient algorithms for insertion and
deletion. Due to space limitations, the full details are given in the full version.

Insertions: Suppose that edge (u, v) is added to Gi−1 thereby obtaining Gi. The
process of inserting the new edge is performed as in Section 3 with the following
modifications. Instead of scanning all outgoing edges of u in order to find a
violated edge, we only scan the last γ−1 edges in Lu; if there are less than γ−1
edges then we scan them all. If one of these edges, say (u, v⊗), is violated then we
remove (u, v⊗) from the graph, replace (u, v⊗) with (u, v) in Lu, and recursively
insert (u, v⊗) with the flipped orientation (just like in Section 3). If all of these
edges are valid, we move them together with the new edge (u, v) to front of Lu.

Deletions: Suppose that edge (u, v) is deleted from Gi−1 thereby obtaining Gi.
The process of deleting the edge is performed as in Section 3 with the following
modifications. If an edge incoming into u, say (u, v⊗), is violated and is flipped

Orienting Fully Dynamic Graphs with Worst-Case Time Bounds 543

(just like in Section 3), then we replace (u, v) with (u, v⊗) in Lu and continue
recursively to delete the original copy of (u, v⊗). If all incoming edges of u are
valid, we remove (u, v) from Lu.

Theorem 7. There exists a deterministic algorithm for maintaining an orien-
tation of a fully dynamic graph on n vertices that has arboricity at most α̂ (at
all times), while supporting the following:

– The maximum out-degree is Δ ≡ β̂ · α̂ + logθ̂ n,

– The worst-case time to execute an edge insertion is O(β̂ · α̂ ·Δ),
– The worst-case time to execute an edge deletion is O(Δ), and
– The worst-case number of orientations performed per update is Δ + 1.

Acknowledgments. The fourth-named author is grateful to Ofer Neiman for
helpful discussions.

References

1. Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42, 844–856 (1995)
2. Chrobak, M., Eppstein, D.: Planar orientations with low out-degree and com-

paction of adjacency matrices. Theor. Comput. Sci. 86, 243–266 (1991)
3. Brodal, G.S., Fagerberg, R.: Dynamic representation of sparse graphs. In: 6th Inter-

national Workshop on Algorithms and Data Structures, WADS, pp. 342–351 (1999)
4. Kowalik, L.: Adjacency queries in dynamic sparse graphs. Inf. Process. Lett. 102,

191–195 (2007)
5. Kowalik, L., Kurowski, M.: Oracles for bounded-length shortest paths in planar

graphs. ACM Transactions on Algorithms 2, 335–363 (2006)
6. Cain, J.A., Sanders, P., Wormald, N.: The random graph threshold for k-

orientiability and a fast algorithm for optimal multiple-choice allocation. In: 18th
Annual ACM-SIAMSymposium on Discrete Algorithms, pp. 469–476. SIAM (2007)

7. Neiman, O., Solomon, S.: Simple deterministic algorithms for fully dynamic max-
imal matching. In: Proc. of 45th STOC, pp. 745–754 (2013)

8. Dvořák, Z., Tůma, V.: A dynamic data structure for counting subgraphs in sparse
graphs. In: Dehne, F., Solis-Oba, R., Sack, J.-R. (eds.) WADS 2013. LNCS,
vol. 8037, pp. 304–315. Springer, Heidelberg (2013)

9. Eisenstat, D., Klein, P.N., Mathieu, C.: An efficient polynomial-time approximation
scheme for steiner forest in planar graphs. In: Proc. of SODA, pp. 626–638 (2012)

10. Eppstein, D.: All maximal independent sets and dynamic dominance for sparse
graphs. ACM Transactions on Algorithms 5 (2009)

11. Nash-Williams, C.S.J.A.: Edge-disjoint spanning trees in finite graphs. Journal of
the London Mathematical Society 36(1), 445–450 (1961)

12. Nash-Williams, C.S.J.A.: Decomposition of finite graphs into forests. Journal of
the London Mathematical Society 39(1), 12 (1964)

13. Gabow, H.N., Westermann, H.H.: Forests, frames, and games: Algorithms for ma-
troid sums and applications. Algorithmica 7, 465–497 (1992)

14. Arikati, S.R., Maheshwari, A., Zaroliagis, C.D.: Efficient computation of implicit
representations of sparse graphs. Discrete Appl. Math. 78, 1–16 (1997)

15. Erickson, J.: (2006), http://www.cs.uiuc.edu/ jeffe/teaching/datastructures/

2006/problems/Bill-arboricity.pdf (retrieved November 2013)
16. Gupta, A., Kumar, A., Stein, C.: Maintaining assignments online: Matching,

scheduling, and flows. In: Chekuri, C. (ed.) SODA, pp. 468–479. SIAM (2014)

http://www.cs.uiuc.edu/~jeffe/teaching/datastructures/2006/problems/Bill-arboricity.pdf
http://www.cs.uiuc.edu/~jeffe/teaching/datastructures/2006/problems/Bill-arboricity.pdf

Does Adding More Agents Make a Difference? A
Case Study of Cover Time for the Rotor-Router�

Adrian Kosowski1 and Dominik Pająk2

1 Inria Paris-Rocquencourt, France
adrian.kosowski@inria.fr

2 LaBRI, Inria Bordeaux Sud-Ouest, France
dominik.pajak@inria.fr

Abstract. We consider the problem of graph exploration by a team of k
agents, which follow the so-called rotor router mechanism. Agents move
in synchronous rounds, and each node successively propagates agents
which visit it along its outgoing arcs in round-robin fashion. It has re-
cently been established by Dereniowski et al. (STACS 2014) that the
rotor-router cover time of a graph G, i.e., the number of steps required
by the team of agents to visit all of the nodes of G, satisfies a lower bound
of Ω(mD/k) and an upper bound of O(mD/ log k) for any graph with m
edges and diameter D. In this paper, we consider the question of how the
cover time of the rotor-router depends on k for many important graph
classes. We determine the precise asymptotic value of the rotor-router
cover time for all values of k for degree-restricted expanders, random
graphs, and constant-dimensional tori. For hypercubes, we also resolve
the question precisely, except for values of k much larger than n. Our
results can be compared to those obtained by Elsässer and Sauerwald
(ICALP 2009) in an analogous study of the cover time of k independent
parallel random walks in a graph; for the rotor-router, we obtain tight
bounds in a slightly broader spectrum of cases. Our proofs take advantage
of a relation which we develop, linking the cover time of the rotor-router
to the mixing time of the random walk and the local divergence of a
discrete diffusion process on the considered graph.

1 Introduction

Graph exploration is a task in which a team of agents is initially placed on a subset
of nodes of the graph, and the agents are required tomove around the graph so that
eachnode is visitedby at least one agent.Explorationwithmultiplewalks is usually
studied in a scenario where k agents are placed on some set of starting nodes and
deployed in parallel, in synchronous steps. The principal parameter of interest is
the cover time of the process, i.e., the number of steps until each node of the graph
has been visited by at least one agent, for a worst case initial placement of agents in
the graph. The agents may be endowed with different capabilities, ranging from a
ω Research partially supported by ANR project DISPLEXITY and by NCN under
contract DEC-2011/02/A/ST6/00201.

J. Esparza et al. (Eds.): ICALP 2014, Part II, LNCS 8573, pp. 544–555, 2014.
c∗ Springer-Verlag Berlin Heidelberg 2014

A Case Study of Cover Time for the Rotor-Router 545

priory complete knowledgeof the graph topology, throughonline scenarios inwhich
they need to discover a map of the graph, to the most restrictive, where agents are
in some sense passive (oblivious), and their movement is governed by simple local
rules within the system.
In this context, a fundamental problem concerns the cover time of k inde-

pendent parallel random walks in a graph. Alon et al. [3], Efremenko and Rein-
gold [9], and Elsässer and Sauerwald [11] have considered the notion of the
speedup of the random walk for an undirected graph G, defined as the ratio
between the cover time of a k-agent walk in G for worst-case initial positions
of agents and that of a single-agent walk in G starting from a worst-case initial
position, as a function of k. A characterization of the speedup has been achieved
for many graph classes, although the question of the minimum and maximal
values of speedup attainable in general is still open. The smallest known value
of speedup for the random walk is Θ(log k), attained e.g. for the cycle, while the
largest known value is Θ(k), attained in a bounded range of values of k for many
graph classes, such as expanders, cliques, and stars.
Our focus in this paper is on the deterministic model of walks in graphs known

as the rotor-router. In the rotor-router model, introduced by Priezzhev et al. [16],
the behaviour of the agent is fully controlled by the the undirected graph in which
it operates. The edges outgoing from each node v are arranged in a fixed cyclic
order known as a port ordering, which does not change during the exploration.
Each node v maintains a pointer which indicates the edge to be traversed by
the agent during its next visit to v. If the agent has not visited node v yet, then
the pointer points to an arbitrary edge adjacent to v. The next time when the
agent enters node v, it is directed along the edge indicated by the pointer, which
is then advanced to the next edge in the cyclic order of the edges adjacent to
v. Each agent propagated by the rotor-router is a memoryless entity, but due to
the existence of pointers, the rotor-router system as a whole is not Markovian.
On the other hand, the system requires no special initialization, and its state at
any moment of time is a valid starting state for the process.

State-of-the-Art for the Rotor-Router. For the case of a single agent, it
is known that for any n-node graph of m edges and diameter D, the cover
time of the rotor-router in a worst-case initialization in the graph is precisely
Θ(mD) [19,4]. After Θ(mD) time, the trajectory of the agent stabilizes to a
periodic Eulerian traversal of the set of directed edges of the graph.
For k > 1 agents, no similar structural properties are observed, and in par-

ticular the rotor-router system may stabilize to a limit cycle of configurations
of length exponential in n [18]. Recently, Klasing et al. [14] have provided the
first evidence of speedup, showing that for the special case when G is a cycle,
a k-agent system explores an n-node cycle Θ(log k) times more quickly than a
single agent system for k < n1/11. A result for general graphs has been obtained
by Dereniowski et al. [7], who show that the cover time of a k-agent system is
always between Θ(mD/k) and Θ(mD/ log k), for any graph.
There exist interesting similarities between the behavior of the rotor-router

and the random walk. For a single agent, the (deterministic) cover time of the

546 A. Kosowski and D. Pająk

rotor-router and the (expected) cover time of the random walk prove to be sur-
prisingly convergent for many special graph classes, such as cycles and constant-
degree expanders (same order of cover time for a single agent), cliques and stars
(where the rotor-router is faster by a factor of Θ(log n)), or hypercubes (where
the rotor-router is slower by a factor ofΘ(log n)). A larger difference in cover time
is observed, e.g., for the 2-dimensional grid, where the cover time of the rotor-
router for a single agent is Θ(n3/2), as compared to the Θ(n log n log logn) cover
time for the random walk. For general graphs, the Θ(mD) bound on the cover
time of the rotor-router can be compared to the upper bound of O(mD logn) on
the cover time of the random walk, although the latter bound is far from tight
for many graph classes.

Our Results. In this paper, we ask about how the cover time of the k-agent
rotor router depends on the number of agents k for specific graph classes, and
investigate whether the similarities in terms of cover time of the rotor-router and
the random-walk extend beyond the single agent case. We determine the pre-
cise asymptotic value of the cover time for degree-restricted expanders, random
graphs, constant-dimensional tori, and hypercubes. Our results can be seen as
complementary to those of Elsässer and Sauerwald [11], who studied the cover
time of k multiple random walks in the same graph classes. We show that for all
of the considered graph classes (except cycles), the cover time of both the rotor-
router and the random walk admits a speedup of precisely Θ(k) for relatively
small values of k, but above a certain threshold, the speedup of the rotor-router
and random walk become divergent. (For cycles, both processes admit a speedup
of Θ(log k).) Our results are succinctly presented in Table 1.
We recall that for k = 1, the cover time of the rotor-router is Θ(mD), and

note that for sufficiently large k (k > nΔD for a graph of maximum degree Δ),
the cover time of the rotor-router is equal to precisely D, since the graph can
be flooded with agents starting from a fixed node initially having ΔD agents.
Above this threshold (k > nΔD), adding new agents to the system does not
speed up exploration. The results we obtain show that for complete graphs,
random graphs, and expanders, a cover time of Θ(D) is attained already for
much smaller teams of agents. These graphs also display dichotomous behaviour:
up to a certain threshold value of k1 = Θ(m), the cover time decreases linearly
with the number of agents, and above this threshold, the cover time remains
fixed at Θ(D). We show that the cycle also admits this type of single-threshold
behaviour, but with logarithmic speedup in the range of small k, with a cover
time of Θ(n2/ log k) for k < k1 = 2n, and a cover time of Θ(n) for k ∈ k1.
Interestingly, we prove that the d-dimensional torus for constant d (with

D = n1/d) admits precisely two threshold values of k (cf. Table 1). For k <

k1 = n1−1/d, the speedup is linear with k; for k1 ≡ k < k2 = 2n
1/d

, the
cover time further decreases with log(k/k1), and above k2, the cover time is
asymptotically fixed at Θ(n1/d). We remark that the for parallel random walks,
the situation appears to be similar, however the question of obtaining a com-
plete characterization remains open. For the hypercube, we also prove threshold

A Case Study of Cover Time for the Rotor-Router 547

Table 1. Cover time of the k-agent rotor-router system for different values of k in a
n-node graph with m edges and diameter D. The results for d-dimensional tori are
presented for d constant. The result for expanders concerns the case when the ratio
of the maximum degree and the minimum degree of the graph is O(1). The result for
random graphs holds in the Erdős-Renyi model with edge probability p > (1 + ε) logn

n
,

ε > 0, a.s.

Graph k Cover time Reference

General graph ≤ poly(n)
O
(

mD
log k

)
[7]

Ω
(
mD
k

)
[7]

Cycle
< 2n Θ

(
n2

log k

)
[14] (for k < n1/11); Thm. 4

≥ 2n Θ(n)

d-dim. torus
< n1−1/d Θ

(
n1+1/d

k

)
Thm. 3

∈ [n1−1/d, 2n
1/d

] Θ
(

n2/d

log(k/n1−1/d)

)
Thm. 3

> 2n
1/d

Θ(n1/d)

Hypercube

< n log n
log log n

Θ
(

n log2 n
k

)
Cor. 1

∈
[
n log n

log log n
, n2log

1−ε n
]
Θ(log n log log n) Thm. 5

(for any ε > 0)
> n2log

1−ε n O(log n log log n) Thm. 5
> nlog2 n Θ(log n)

Complete
< n2 Θ

(
n2

k

)
Thm. 2

≥ n2 Θ(1)

Expander
< n log n Θ

(
n log2 n

k

)
Thm. 2

≥ n log n Θ(log n)

Random graph
< n log n Θ

(
n log2 n

k

)
Thm. 2

≥ n log n Θ(log n)

behaviour for the speedup of the k-agent rotor-router, showing that there exist
at least three threshold values of k (linear speedup for small k, a flat period with
no speed-up for k slightly larger than n, a further period of slow growth, and
finally a flat period for extremely large k). We also completely characterize the
cover time of the hypercube for k up to a point beyond the first threshold.

Intuition of Approach: Exploration vs. Diffusion. In contrast to the case
of parallel random walks, in the rotor-router system multiple agents interact
with the same set of pointers at nodes, and the agents cannot be considered
independent. However, the link between the multi-agent rotor-router and the
parallel random walk processes becomes more apparent when the number of
agents is extremely large (k ⊆ n), so that multiple agents are located at each
node of the graph. Then, a fixed node v of degree d in the graph, which contains

548 A. Kosowski and D. Pająk

at(v) agents at a given moment of time t, will send them out along outgoing links
in the next step of the rotor-router process, propagating the pointer at each step,
so that each of its neighbours receives either ↔at(v)/d⇔ or ⊂at(v)/d≥ agents. In an
analogous parallel random walk process, the expected number of agents following
each of the outgoing links of a node v containing at(v) agents will be at(v)/d. In
fact, both the random walk and the rotor-router can be seen as different forms
of discretization of the continuous diffusion process, in which a node having real-
valued load at(v) sends out precisely at(v)/d load to each of its neighbours in the
given time step. Discrete diffusion processes appear in research areas including
statistical physics and distributed load balancing problems, and some studies of
rotor-router-type systems have also been devoted to their diffusive properties. It
is known, in particular, that, at any moment time, the difference of the number of
agents located at a node between the rotor-router system and that in continuous
diffusion is bounded by Θ(d log nμ−1) for d-regular graphs with eigenvalue gap
μ [17], given identical initialization. This difference can even be bounded by
constant for the case of lines [6] and grids [8]. Some other results in the area
can also be found in [13,1]. In this paper, we observe that, somewhat counter-
intuitively, the link between continuous diffusion and the rotor-router can also
be exploited for small values of k (k ⇒ n), for which agents as a rule occupy
distinct nodes (at(v) = 1), and rounding at(v)/d up or down to the nearest
integer makes a major difference.

Organization of Results. In Section 2, we provide a formalization of the
rotor-router model and some notation. In Section 3, we outline the technique
which we subsequently use to bound the cover time in different graph classes.
The main theorem of Section 4 captures the link between the cover time of the
k-rotor-router system, the mixing time MIX1/4 of the random walk process in the
graph, and a graph parameter known as its discrepancy Ψ [17,5], in its simplest
form. This result directly provides tight bounds on the cover time for most of the
considered graph classes, admitting small mixing time. The remaining cases of
tori, cycles, and hypercubes are considered in Sections 5, 6, and 7, respectively.

2 Preliminaries

We consider an undirected connected graph G = (V,E) with n nodes, m edges
and diameter D. We denote the neighborhood of a node v ◦ V by Γ (v). The
degree of a node v is denoted by deg(v), the maximum degree of the graph is
denoted by Δ, and the minimum degree by δ. The directed graph

−≤
G = (V,

−≤
E) is

the directed symmetric version of G, where the set of arcs
−≤
E = {(v, u) : {v, u} ◦

E}. We will denote arc (v, u) by v ≤ u.

Model Definition. We study the rotor-router model (on graph G) with k ∈ 1
indistinguishable agents, which run in steps, synchronized by a global clock.
In each step, each agent moves in discrete steps from node to node along the

A Case Study of Cover Time for the Rotor-Router 549

arcs of graph
−≤
G . A configuration at the current step is defined as a triple

((ρv)v∈V , (πv)v∈V , {r1, . . . , rk}), where ρv is a cyclic order of the arcs (in graph−≤
G) outgoing from node v, πv is an arc outgoing from node v, which is referred
to as the (current) port pointer at node v, and {r1, . . . , rk} is the (multi-)set of
nodes currently containing an agent. For each node v ◦ V , the cyclic order ρv of
the arcs outgoing from v is fixed at the beginning of exploration and does not
change in any way from step to step.
For an arc v ≤ u, let next(v ≤ u) denote the arc next after arc (v ≤ u) in the

cyclic order ρv. The exploration starts from some initial configuration and then
keeps running in all future rounds, without ever terminating. During the current
step, first each agent i is moved from node ri traversing the arc πri , and then the
port pointer πri at node ri is advanced to the next arc outgoing from ri (that
is, πri becomes (πri)). This is performed sequentially for all k agents. Note that
the order in which agents are released within the same step is irrelevant from
the perspective of the system, since agents are indistinguishable. For example, if
a node v contained two agents at the start of a step, then it will send one of the
agents along the arc πv, and the other along the arc (v, next(πv)). For simplicity
of notation only, we will assume that the ports outgoing from a node od degree
d are numbered with consecutive integers {0, . . . , d− 1}, that the function next
advances the pointer from port i to port (i+ 1) mod d, 0 ≡ i < d, and that the
pointers at all nodes of the graph all initially point towards port 0.

Notation. We will say that a node is visited by an agent in round t if the agent
is located at this node at the start of round t+ 1. By nt(v) we will denote the
total number of visits of agents to node v, counting from the initialization of the
system to the end of round t of the considered rotor-router process. In particular,
n0(v) refers to the number of agents at a node directly after initialization (at
the start of round 1). Henceforth, we will treat nt as a non-negative integer-
valued vector of dimension n. The worst-case cover time of the rotor-router for
an initialization on graph G with k agents (i.e., for an initialization satisfying
→n0→1 = k), will be denoted by Ck

rr(G).
We also introduce some auxiliary notation related to random walks and dif-

fusion on the graph. We will denote by Pt(v, u) the probability that a simple
random walk, starting at node v of the graph, is located at u after exactly t
steps of the walk, t ∈ 0. The transition matrix of the random walk will be
denoted by M. For a node u ◦ V , u will denote a vector of length n with
u(u) = 1 and all other entries 0. We recall that the cells of the t-th power
of this matrix satisfy the following relation: uᵀMtv = Pt(v, u) [2]. The mix-
ing time after which the random walk on the graph G reaches a total varia-
tion distance of at most 1/4 from its stationary distribution will be denoted by
MIX1/4(G) = maxv∈V min{t : →Pt(v, ·) − π→TV }, where π denotes the vector of
the stationary distribution of the random walk. By Pt(v, ·) we denote the vector
of probability distribution of the t-step random walk starting from v. For vector
Pt(v, ·)− π, the value →Pt(v, ·)− π→TV is the total variation distance defined as
follows: →Pt(v, ·)−π→TV = 1

2

⎛
u∈V |Pt(v, u)−πu|. This definition of mixing time

can be compared with the following definition of the mixing time used in [11].

550 A. Kosowski and D. Pająk

We will denote the mixing time defined according to this second definition by
MIX≥

1/2(G) = maxv∈V min
⎝
t : ∅u∈V

3πu

2 ∈ Pt(v, u) ∈ πu

2

⎞
. In our considerations

we will use a similar value t1/2(G), which satisfies slightly relaxed constraints:
t1/2(G) = maxv∈V min

⎝
t : ∅u∈V Pt(v, u) ∈ πu

2

⎞
, which denotes time after which

probability of being at any node is at least half of the stationary probability
regardless of the starting node of the random walk.
Clearly t1/2(G) ≡ MIX≥

1/2(G), and thus to upper bound t1/2(G), we can use
results from [11], where authors present upper bounds on the value ofMIX≥

1/2(G)
for some graph classes.

3 The Main Technique

To bound the cover time of the rotor-router, for any moment of time t, we will
estimate the difference between the number of visits of the rotor-router to a
node x ◦ V up to time t, and the corresponding expected number of visits of
parallel random walks, starting from the same initial placement of agents in the
graph, to the same node x. (The latter notion can be equivalently interpreted
as the total amount of load arriving in rounds 1 to t in a similarly initialized
continuous diffusion process in load balancing.) It turns out that the difference
(discrepancy) between these two processes is bounded. As soon as the expected
total number of visits of parallel random walks to x up to t has exceeded the
maximum possible discrepancy with respect to the rotor-router, we can be sure
that node x has been visited by the rotor-router at least once up to time t. This
is captured by the following lemma.

Lemma 1. Take any graph G. Let t≥ be such a time moment that

∅x∈V

⎧
t⊥⎨

τ=0

Mτn0

⎩
(x) > Ψt≥,

where
Ψt(G) = max

v∈V

t⎨
τ=0

⎨
(u1,u2)∈−∈

E

|Pτ (u1, v)− Pτ (u2, v)|.

Then, the cover time of the k-agent rotor-router with arbitrary initialization on
graph G satisfies Ck

rr(G) ≡ t≥.

Before proceeding to prove the lemma, we remark that Mτn0 is a vector de-
scribing the expected number of agents at nodes after τ steps of independent
random walks on G, and that the expression

(⎛t⊥

τ=0 M
τn0

)
(x) on the left-hand

side of the inequality is the before-mentioned expected total number of visits
of random walks to x up to time t starting from initial agent placement. The
expression Ψt≥ is a generalization of the so-called 1-discrepancy Ψ of the graph,
Ψ = limt∈+⊆ Ψt, introduced in [17]. The measure of 1-discrepancy is often ap-
plied when comparing a continuous and discrete process at a fixed moment of
time t [5,12], whereas herein we compare the total distance of two processes over
all steps up to time t.

A Case Study of Cover Time for the Rotor-Router 551

Proof. Consider the total number of of visits nt(u) at vertex u until step t by the
rotor-router. It may be expressed as the sum of the number of agents initially
located in u and the number of agents that entered to u from its neighbors
(cf. [19,14] for details of the argument):

nt(u) = n0(u) +
⎨

v∈Γ (u)

⎪
nt−1(v)− port(v, u)

deg(v)

⌉
, (1)

where port(v, u) ◦ {0, 1, . . .deg(v)−1} denotes the label of the port leading from
v to u.
We can rewrite Equation (1) as follows

nt(u) =
⎨

v∈Γ (u)

nt−1(v)

deg(v)
+ n0(u) + ξt(u), (2)

where ξt is an “error vector” defined as: ξt(u) =
⎛

v∈Γ (u) α
(v,u)
t , where

α
(v,u)
t =

(⌈
nt−1(v)−port(v,u)

deg(v)

⎡
− nt−1(v)

deg(v)

)
. Note that the values α(v,u)

t are de-

fined over directed arcs of the graph, (v, u) ◦ −≤
E , satisfying |α(v,u)

t | ≡ 1 and⎛
u∈Γ (v) α

(v,u)
t = 0. Consequently, we have

⎛
(v,u)∈−∈

E
α
(v,u)
t v = 0, and:

ξt =
⎛

(v,u)∈−∈
E
α
(v,u)
t u =

⎛
(v,u)∈−∈

E
α
(v,u)
t · (u− v) . Now, we rewrite (2) as fol-

lows:
nt = Mnt−1 + (n0 + ξt), (3)

where M is the transition matrix of the random walk on G. Expanding (3) we
have:

nt =

t⎨
τ=0

Mτn0 +

t⎨
τ=0

Mτ ξt−τ . (4)

We will now bound the absolute value of the maximum element of the vector⎛t
τ=0M

τξτ−t.
We have⎣⎣⎣⎣⎣

t⎨
τ=0

Mτξτ−t

⎣⎣⎣⎣⎣
⊆

=

⎣⎣⎣⎣⎣⎣
t⎨

τ=0

⎤
⎦Mτ ·

⎨
(v,u)∈−∈

E

α
(v,u)
t−τ · (u− v)



⎣⎣⎣⎣⎣⎣
⊆

≡

≡
⎣⎣⎣⎣⎣⎣

t⎨
τ=0

⎨
(v,u)∈−∈

E

α
(v,u)
t−τ Mτ · (u− v)

⎣⎣⎣⎣⎣⎣
⊆

Note that since |α(u,v)
t−τ | ≡ 1

⎣⎣⎣⎣⎣
t⎨

τ=0

Mτξτ−t

⎣⎣⎣⎣⎣
⊆

≡
⎣⎣⎣⎣⎣⎣

t⎨
τ=0

⎨
(v,u)∈−∈

E

|Mτ · (u− v)|
⎣⎣⎣⎣⎣⎣
⊆

. (5)

We rewrite the above in terms of probability distributions of of random walk on
G after τ steps:

552 A. Kosowski and D. Pająk

(Mτ · (u− v)) (w) = Pτ (u,w)− Pτ (v, w), (v, u) ◦ −≤
E . (6)

In this way, we obtain for any x ◦ V :∣∣∣∣∣
⎧
nt −

t⎨
τ=0

Mτn0

⎩
(x)

∣∣∣∣∣ =
∣∣∣∣∣
⎧

t⎨
τ=0

Mτξτ−t

⎩
(x)

∣∣∣∣∣ ≡

≡ max
w∈V

t⎨
τ=0

⎨
(v,u)∈−∈

E

|Pτ (u,w)− Pτ (v, w)| = Ψt(G).

Thus, at time t any node the total number of visits in multi-agent rotor-router
deviates from expected number of visits by multiple random walks by at most
Ψt(G). Since at time t≥ at any node the expected number of visits by random
walk is more than Ψt⊥(G) by assumption, all nodes have been visited at least
once by the rotor-router.

4 Graphs with Small Mixing Time

Theorem 1. The cover time Ck
rr(G) of a k-agent rotor-router with arbitrary

initialization on any graph G satisfies

Ck
rr(G) ≡ t1/2(G) +

2Δ

δ

n

k
Ψ(G).

In order to apply Theorem 1 to special graph classes, we provide convenient
bounds on the value of Ψ which hold for regular graphs. (All omitted proofs are
deferred to the Appendix.)

Proposition 1. For any d-regular graph G:

(i) Ψ(G) ≡ 4
⎛MIX1/4(G)

t=0 maxv∈V

⎛
{u1,u2}∈E |Pt(u1, v)− Pt(u2, v)|

(ii) Ψ(G) = O(dMIX1/4(G)).

By combining Theorem 1 and Proposition 1, we can obtain upper bounds on
the cover time of the rotor-router in regular graphs. At this point we provide
an auxiliary result, which allows us to extend all our considerations to almost-
regular graphs, as well as to show that our bounds on cover time hold regardless
of whether the considered graph has self-loops or not. The proof relies on a
variant of the delayed deployment technique for the rotor-router, introduced
in [14].

Proposition 2. Consider a graph G⊗ constructed from G by adding self-loops to
vertices, so that in the port ordering at any vertex there are at most x consecutive
self-loops. Then, Ck

rr(G
⊗)/(x+ 1) ≡ Ck

rr(G) ≡ Ck
rr(G

⊗).

Taking into account Theorem 1 and Propositions 1 and 2, we obtain an upper
bound of O(mD/k) on the cover time of the rotor-router in a wide class of
almost regular graphs with small mixing time. The complementary lower bound
Ck

rr(G) = Ω(mD/k) is due to [7]. These bounds hold for all k, until the trivial
bound Ck

rr(G) = Ω(D) is reached.

A Case Study of Cover Time for the Rotor-Router 553

Theorem 2. For any graph G such that t1/2(G) = O(D), MIX1/4(G) = O(D)
and Δ/δ = O(1) the cover time of the k-agent rotor-router in the worst-case
initialization of the system is:

Ck
rr(G) = Θ

(
max

{
mD

k
,D

})
.

Theorem 2 immediately implies the results stated in Table 1 for the case of
complete graphs, degree-constrained expanders, and Erdős-Renyi graphs with
edge probability p > (1 + ε) logn

n . For cliques it is easy to see that t1/2(G) =
O(1). For degree-constrained expanders, and Erdős-Renyi graphs bound on value
t1/2(G) can be found in [10] as t1/2(G) is upper bounded by the mixing time
used there.
The classes of tori, cycles, and hypercubes require more careful analysis; we

consider them in the following Sections.

5 The Torus

For the d-dimensional torus, Theorem 2 is not applicable, since the mixing time
of the torus is MIX1/4(G) = Θ(n2/d) [15], for constant d, whereas its diameter
is D = Θ(n1/d). In the range of k ≡ n1−1/d, we can apply Theorem 1, taking
advantage of a known tight bound on Ψ(G) = Θ(n1/d). In this way, we obtain:

Ck
rr(G) = O

(
n2/d + n1+1/d

k

)
= O

(
mD
k

)
. Moreover, the complementary lower

bound Ck
rr(G) = Ω(mD/k) holds for all graphs by [7]. This resolves the case of

k ≡ n1−1/d.
To bound the cover time for k > n1−1/d, in view of Proposition 2, we can

equivalently consider the torus with d self-loops added on each node. We will
now rely on Lemma 1, taking into account tighter bounds on Ψt(G) for small
values of t. The following bound can be shown by a straightforward Markovian
coupling argument.

Lemma 2. If G⊗ is a d-dimensional torus with d self-loops at each node, then
Ψt(G

⊗) ≡ 24d
⊇
t.

Introducing the above bound into Lemma 1 and taking into account properties of
the random walk in the torus, for k = k⊗n1−1/d (k⊗ > 1), we eventually obtain a

bound on cover time of the form O
(

D2

log k∗

)
, Somewhat surprisingly, this bound is

tight, and we propose an initialization of the rotor-router system which achieves
this bound precisely. (The proof of tightness relies on a bound on cover time for
the cycle, which is introduced in the following section.) In this way, we obtain a
complete characterization of the speed-up of the rotor-router on the torus.

Theorem 3. If G is a torus of constant dimension then cover time of k-agent
rotor-router is

(i) Ck
rr(G) = Θ

(
mD
k

)
, for k ≡ n1−1/d,

(ii) Ck
rr(G) = Θ

(
max{ D2

log k∗ , D}
)
, for k = k⊗n1−1/d, k > n1−1/d.

554 A. Kosowski and D. Pająk

6 The Cycle

The general case result from [7] allows us to upper-bound the cover time of the

k-rotor-router system on the cycle by O
(
max{ n2

log k , n}
)
, for any k ∈ 1. On the

other hand, the complementary lower bound of Ω
(

n2

log k

)
was only known to

hold for k < n1/11 [14]. In the following, we extend this lower bound to arbitrary
values of k. The proof relies on a modification of the approach used in the proof
of Lemma 1: whereas Lemma 1 can only be used to upper bound cover time, this
time we perform a different transformation of (4) for a specific initialization of
agents starting from a single node on the ring, for which we can show that the
“error term” associated with vector ξt−τ is negative. Intuitively, this behaviour
is due to an initialization of pointers which delays progress of the agents going
along the path to the most distant node of the ring. We eventually obtain the
following result.

Theorem 4. If G is a cycle of size n then cover time of k-agent rotor-router is

Ck
rr(G) = Θ

(
max

{
n2

log k
, n

})
.

7 The Hypercube

For the hypercube with n = 2d vertices, the value of Ψ(G) has been precisely
derived in [5]. The corresponding asymptotic formula is Ψ(G) = Θ(log2 n). Using
this result in combination with Theorem 1, we obtain the following corollary.

Corollary 1. If G is a hypercube with n vertices then Ck
rr(G) = Θ

(
n log2 n

k

)
=

Θ
(
mD
k

)
, for k ≡ n logn

log logn .

The behavior of the rotor-router on the hypercube for k > k1 = n logn
log logn is not

completely understood. For k = k1, the value of cover time is O(log n log logn).
Interestingly, we can show that there exists a flat “plateau” region above k1 in
which the asymptotic cover time of the hypercube is precisely Θ(log n log logn).
The proof proceeds along slightly more complex lines than the proof of The-
orem 4. We show that in the considered range of k, Θ(log n log logn) time is
required for k agents starting at one corner of the hypercube to reach the op-
posite corner, given an arrangement of ports at each node in which the pointer
first traverses all ports leading the agent towards the starting vertex.

Theorem 5. If G is a hypercube of size n = 2d then the cover time of k-agent
rotor-router with k ≡ n · 2log1−ε n agents is Ck

rr(G) > ε
10 logn log logn, where

ε ◦ (0, 1) is an arbitrary fixed constant.

We leave the question of the cover time of the rotor-router on the hypercube for
k > n · 2log1−ε n as open.

A Case Study of Cover Time for the Rotor-Router 555

Acknowledgment. The authors thank Petra Berenbrink, Ralf Klasing, and
Frederik Mallmann-Trenn for productive discussions on closely related topics.

References

1. Akbari, H., Berenbrink, P.: Parallel rotor walks on finite graphs and applications
in discrete load balancing. In: SPAA, pp. 186–195 (2013)

2. Aldous, D., Fill, J.: Reversible markov chains and random walks on graphs (2001),
http://stat-www.berkeley.edu/users/aldous/RWG/book.html

3. Alon, N., Avin, C., Koucký, M., Kozma, G., Lotker, Z., Tuttle, M.R.: Many random
walks are faster than one. Combinatorics, Probability & Computing 20(4), 481–502
(2011)

4. Bampas, E., Gąsieniec, L., Hanusse, N., Ilcinkas, D., Klasing, R., Kosowski, A.:
Euler tour lock-in problem in the rotor-router model. In: Keidar, I. (ed.) DISC
2009. LNCS, vol. 5805, pp. 423–435. Springer, Heidelberg (2009)

5. Berenbrink, P., Cooper, C., Friedetzky, T., Friedrich, T., Sauerwald, T.: Random-
ized diffusion for indivisible loads. In: Randall, D. (ed.) SODA, pp. 429–439. SIAM
(2011)

6. Cooper, J.N., Doerr, B., Spencer, J.H., Tardos, G.: Deterministic random walks on
the integers. Eur. J. Comb. 28(8), 2072–2090 (2007)

7. Dereniowski, D., Kosowski, A., Pajak, D., Uznanski, P.: Bounds on the cover time
of parallel rotor walks. In: Mayr, E.W., Portier, N. (eds.) STACS. LIPIcs, vol. 25,
pp. 263–275. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2014)

8. Doerr, B., Friedrich, T.: Deterministic random walks on the two-dimensional grid.
Combinatorics, Probability, and Computing 18(1-2), 123–144 (2009)

9. Efremenko, K., Reingold, O.: How well do random walks parallelize? In: Dinur,
I., Jansen, K., Naor, J., Rolim, J. (eds.) APPROX and RANDOM 2009. LNCS,
vol. 5687, pp. 476–489. Springer, Heidelberg (2009)

10. Elsässer, R., Sauerwald, T.: Tight bounds for the cover time of multiple ran-
dom walks. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S.,
Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 415–426. Springer,
Heidelberg (2009)

11. Elsässer, R., Sauerwald, T.: Tight bounds for the cover time of multiple random
walks. Theor. Comput. Sci. 412(24), 2623–2641 (2011)

12. Friedrich, T., Gairing, M., Sauerwald, T.: Quasirandom load balancing. SIAM J.
Comput. 41(4), 747–771 (2012)

13. Kijima, S., Koga, K., Makino, K.: Deterministic random walks on finite graphs. In:
Martinez, C., Hwang, H.-K. (eds.) ANALCO, pp. 18–27. SIAM (2012)

14. Klasing, R., Kosowski, A., Pajak, D., Sauerwald, T.: The multi-agent rotor-router
on the ring: a deterministic alternative to parallel random walks. In: PODC,
pp. 365–374 (2013)

15. Levin, D.A., Peres, Y., Wilmer, E.L.: Markov chains and mixing times. American
Mathematical Society (2006)

16. Priezzhev, V., Dhar, D., Dhar, A., Krishnamurthy, S.: Eulerian walkers as a model
of self-organized criticality. Phys. Rev. Lett. 77(25), 5079–5082 (1996)

17. Rabani, Y., Sinclair, A., Wanka, R.: Local divergence of markov chains and the
analysis of iterative load balancing schemes. In: FOCS, pp. 694–705. IEEE Com-
puter Society (1998)

18. Uznanski, P.: Personal communication (2014)
19. Yanovski, V., Wagner, I.A., Bruckstein, A.M.: A distributed ant algorithm for
efficiently patrolling a network. Algorithmica 37(3), 165–186 (2003)

http://stat-www.berkeley.edu/users/aldous/RWG/book.html

The Melbourne Shuffle:
Improving Oblivious Storage in the Cloud

Olga Ohrimenko1, Michael T. Goodrich2, Roberto Tamassia3, and Eli Upfal3

1 Microsoft Research Cambridge, UK
2 University of California, Irvine, USA

3 Brown University, USA

Abstract. We present a simple, efficient, and secure data-oblivious randomized
shuffle algorithm. This is the first secure data-oblivious shuffle that is not based on
sorting. Our method can be used to improve previous oblivious storage solutions
for network-based outsourcing of data.

1 Introduction
One of the unmistakable recent trends in networked computation and distributed infor-
mation management is that of cloud storage (e.g., see [14]), whereby users outsource
data to external servers that manage and provide access to their data. Such services re-
lieve users from the burden of backing up and having to maintain access to their data
across multiple computing platforms. However, in return, such services also introduce
privacy concerns since users no longer physically own the data. Thus, there is a need
for algorithmic solutions that preserve the desirable properties of cloud storage while
also providing privacy protection for user data.

Of course, users can encrypt data they outsource to the cloud, but this alone is not
sufficient to achieve privacy protection, because the data access patterns that users ex-
hibit can reveal information about the content of their data (e.g., see [13]). Therefore,
there has been considerable amount of recent research on algorithms for data-oblivious
algorithms and storage, which hide data access patterns for cloud-based network data
management solutions (e.g., see [8, 9, 10, 11, 12, 15, 19, 20, 21, 22, 23]). Such solu-
tions typically work by obfuscating a sequence of data accesses intended by a client
by simulating it with the one that appears indistinguishable from a random sequence
of data accesses. Often, such a simulation involves mixing the intended (real) accesses
with a sequence of random “dummy” accesses. In addition, so as to never access the
same address twice (which would reveal a correlation), such obscuring simulations also
involve continually moving items around in the server’s memory space. For this reason,
the “inner-loop” computation required by such simulations is a data-oblivious shuffling
operation, which moves a set of items to random locations in fashion that disallows the
server to correlate the previous locations of items with their new locations. This inner-
loop process requires putting items in new locations that are independent of their old
locations while hiding the correlations between the two.

The most common way this inner-loop shuffling is implemented is, however, com-
putationally expensive, since it involves assigning random (or pseudo-random) indices
to items and then performing a data-oblivious sorting of these index-item pairs. Exam-
ples of such oblivious sorting algorithms include Batcher’s sorting network [3], which

J. Esparza et al. (Eds.): ICALP 2014, Part II, LNCS 8573, pp. 556–567, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

The Melbourne Shuffle: Improving Oblivious Storage in the Cloud 557

requires O(n(log n)2) I/Os to sort data of size n, or the AKS [1] or Zig-zag sorting [7]
networks, which use O(n log n) I/Os, but with large constant factors that restrict their
practicality. These algorithms are used in oblivious storage solutions by having a client
use the server as an external memory, with the I/Os directing the client to issue com-
mands to move items from the server to the client’s private memory and from the client’s
private memory to the server. Though these solutions achieve a desired privacy level,
they are expensive in their (amortized) access overhead time and also in their monetary
cost when one considers a client outsourcing large volumes of data and accessing it
from a cloud server that charges per every data request.

In this paper, therefore, we are interested in algorithmic improvements for oblivious
storage solutions, in terms of their conceptual complexity, constant factors, and mon-
etary costs. For instance, since cloud-storage servers typically charge users for each
memory access but have fairly large bounds on the size of the messages for such I/Os,
we allow for messages to have modest sizes, such as O(

∈
n) for a storage of size n. This

necessarily also implies that the client has an equally modest-sized private memory, in
which to send and receive such messages (and also in which to perform internal swaps
of data items away from the prying eyes of the server). Our goal in this research is to
take advantage of such frameworks to replace data-oblivious sorting with simple oblivi-
ous data shuffling for the sake of providing simple, efficient, and cheap outsourced data
management. Our framework, therefore, involves designing (or modifying) oblivious
storage simulation algorithms where a client stores n items at the server and is allowed
to issue a sequence of I/Os, each of which is a batch of reads and writes for the server’s
memory, for reasonable assumptions on message size and private memory size.

Related Work. A shuffle is an algorithm for rearranging an array to achieve a random
permutation of its elements. Early shuffle methods were motivated by the problem of
shuffling a deck of cards. Classic card shuffle methods (e.g., [2]) are not data-oblivious,
however, as anyone observing card swaps or riffles (interleaving two subdecks) of such
methods can learn the final output permutation. Goodrich and Mitzenmacher [9] showed
that one can, in fact, shuffle a deck of n cards and guarantee that an observer cannot
find a particular card in the output permutation with probability better than O(1/n).
However, this algorithm is not an effective shuffle for our purposes, since the output
permutations produced by the algorithm are not all equally likely and there may be
dependencies between large groups of cards that could be leaked. Most other existing
efficient data-oblivious shuffling methods assign random values to the elements of the
array and use a data-oblivious algorithm to sort the array according to these values.

Our Oblivious Shuffling Results. Our Melbourne shuffle1 algorithm is instead the first
data-oblivious shuffle method that is not based on a data-oblivious sorting algorithm.
In Table 1, we compare the (optimized) Melbourne shuffle (Section 5), showing that it
outperforms sorting-based shuffle methods. We refer the reader for detailed algorithms
and the corresponding proofs of security to the full version of this paper in [17].

Improved Oblivious Storage. Oblivious storage and oblivious RAM (ORAM) simu-
lation solutions aim at minimizing the access overhead, which is the amortized number
of I/Os executed to perform a single storage access request while keeping reasonable

1 The name of our algorithm is inspired by a “shuffle” dance technique.

http://en.wikipedia.org/wiki/Melbourne_Shuffle

558 O. Ohrimenko et al.

Table 1. Comparison of data-oblivious sorting and shuffle algorithms over n items

R
an

do
m

iz
ed

Private
Memory

Message
Size

External
Memory

I/Os

Batcher’s network [3] O(1) O(1) O(n) O(n(log n)2)
Batcher’s network I O(

√
n) O(

√
n) O(n) O(

√
n(log n)2)

Batcher’s network II [8] O(
√
n) O(8

√
n) O(n) O(n7/8)

AKS [1], Zig-zag sort [7] O(1) O(1) O(n) O(n log n)
Randomized shellsort [6] � O(

√
n) O(

√
n) O(n) O(

√
n log n)

Melbourne shuffle � O(
√
n) O(

√
n) O(n) O(

√
n)

Melbourne shuffle (c ≥ 3) � O(c
√
n) O(c

√
n) O(n) O(c

c
√
nc−1)

assumptions about the size of private memory and of messages exchanged between
the client and the server. Goldreich and Ostrovsky [4, 5] give two oblivious storage
solutions for a client with O(1) private memory size: the square root method with
O(

∈
n) overhead and the hierarchical method with O((log n)3) overhead. The hier-

archical method was recently extended using techniques such as Bloom filters [22, 23]
and cuckoo hash tables [8, 12, 15, 18]. E.g., the logn-hierarchical solution of [12] uses
O(d

∈
n) temporary memory and achieves O(log n) access overhead, for d ≡ 2. In [15]

a similar method achieves O((log n)2/ log logn) overhead with O(1) private memory.
All the above oblivious storage solutions rely on a periodic data-oblivious shuffle of
the server storage, a task done using data-oblivious sorting. Thus, we can use our Mel-
bourne shuffle to implement the shuffle steps of these algorithms.

Other oblivious storage solutions in [19, 20, 21] allow the user to have o(n) pri-
vate memory and then by applying the same solution recursively on this private mem-
ory bring it to o(1) and adding a logn overhead. For example, Path ORAM [20] uses
O(log n) (stateful) private memory and has O((log n)2) access overhead.

As shown in Table 2, oblivious storage solutions based on our (optimized) Mel-
bourne shuffle (Section 5) are efficient and practical.

Table 2. Comparison of oblivious storage solutions for n items

Private
Memory

Message
Size

External
Memory

Access
Overhead

SquareRoot [5] O(1) O(1) O(n) O(
√
n)

Path ORAM [20] O(log n) O(log n) O(n) O((log n)2)
Bucket Hash Hierarchical [5] O(1) O(1) O(n log n) O((log n)3)
Cuckoo Hash Hierarchical [12] (d ≥ 2) O(d

√
n) O(d

√
n) O(n) O(log n)

SquareRoot with Melbourne shuffle O(
√
n) O(

√
n) O(n) O(1)

Hierarchical with Melbourne shuffle O(c
√
n) O(c

√
n) O(n) O(c log n)

(c ≥ 3) O(c
√
n log n)O(c

√
n log n) O(n) O(c)

2 Preliminaries
We analyze the security of cryptographic primitives and our protocol in terms of the
probability of success for an adversary in breaking them. Let k be a security parameter.
We say that a scheme is secure if for every probabilistic polynomial time (in k) (PPT)

The Melbourne Shuffle: Improving Oblivious Storage in the Cloud 559

adversary A, the probability of breaking the scheme is at most some negligible function
negl(k), i.e., a function such that negl(k) < 1/|poly(k)| for every polynomial poly(k).

We use a symmetric encryption scheme (Enckey,Deckey) where key ⊆ {0, 1}k. We
require this scheme to be secure against the chosen-ciphertext attack (CPA) for multiple
messages. Informally, in the Enc-IND-CPA security game, the adversary A picks two
sequences of plaintexts and gives them to the challenger, who encrypts one of them and
returns the sequence of ciphertexts, C, to the adversary. A is given full oracle access to
Enckey and limited oracle access to Deckey , where he cannot call Deckey on ciphertexts
in C. We say that (Enckey,Deckey) is secure if for every PPT adversary the probability
of guessing which plaintext sequence was used to produce C is at most 1/2 + negl(k).

Consider an array of n elements that we wish to randomly rearrange and let D =
[1, n] be the set of indices of A. We use a family of secure and efficiently computable
pseudo-random permutations (PRPs) Σseed : D ↔ D, keyed using a k-bit seed.

Given an array A of n (key,value) pairs (x, v) where x ⇔ [1, n], we denote the
permutation ε of A as B = ε(A), where ε = Σseed and B[x] = A[ε(x)], ⊂x ⇔ [1, n].
We will use the same notation when A and B are encrypted. We refer to the original
permutation of A, as permutation ε0. For A, sorted using x, ε0 is the identity.

We consider a cloud storage model where a client stores a dataset at a server while
keeping a small amount of data in private memory. For simplicity, we assume that the
dataset is an array of elements of equal size. The client encrypts each element and stores
the elements at the server according to a PRP. The encryption key and the seed of the
PRP are kept private by the client and are not revealed to the server.

The server supports a standard set of operations on an array S: getRange(S, loc, Ω)
returns the elements at locations in range loc, . . . , loc+Ω−1; putRange(S, loc, a) writes
the elements of array a to locations loc, . . . , loc+ |a| − 1; putRangeDist(S, ≥loc1, . . . ,
locc⇒ , ≥a1, . . . , ac⇒) is a generalization of putRange that can write several arrays to
non-sequential locations. We assume the server performs the above operations in time
proportional to the number of elements read or written, but each operation takes one I/O.

3 Oblivious Shuffle Model
In this section, we introduce a formal model for the oblivious shuffle of an array.

Definition 1 (Shuffle). A shuffle S is a pair of algorithms (Setup, Shuffle), as follows.
– (s, S) ⊆ Setup(1k) Given security parameter k, run the key generation algorithm

for a symmetric encryption scheme (Enc,Dec) and store the key in secret state s.
Also, allocate an auxiliary datastore S.

– (Enc(ε(A)), δ) ⊆ Shuffle(s, S,A, ε) Given secret state s, auxiliary data store S,
an array input A, and a permutation ε, return (1) the encryption of the permutation
of A according to ε; (2) a transcript δ of the operations that transform Enc(A)
to Enc(ε(A)) using auxiliary space S.

Transcript δ is a sequence of l (request, response) pairs ≥(r1, g1), . . . , (rl, gl)⇒ that
capture the evolution of the datastore via intermediate states S1, . . . , Sl+1. An invariant
on each intermediate state is to store an encryption of some permutation of A along
with any auxiliary data. For example S1 contains Enc(A) and Sl contains Enc(ε(A)).
Setting S1 ⊆ {Enc(A), S}, s0 ⊆ s, g0 ⊆ ◦ define the relationship between ri and gi:

≥ (si, ri) ⊆ GenRequest(si−1, gi−1), (Si+1, gi) ⊆ GenResponse(Si, ri) ⇒.

560 O. Ohrimenko et al.

Operations GenRequest and GenResponse generate a request ri and a corresponding
response gi and are defined as follows:

– (si, ri) ⊆ GenRequest(si−1, gi−1) Perform a computation based on a substruc-
ture of Si−1, gi−1, and generate next request to Si, ri.

– (Si+1, gi) ⊆ GenResponse(Si, ri) Generate the response to request ri on Si: Si+1

is the datastore Si updated according to ri and gi is the response to ri with respect
to Si. For example, if ri is a get request, then Si+1 = Si and gi is the requested
item. Also, if ri is a put request, then gi is empty.

The private state s is updated if needed after every request.

Fig. 1. Illustration of a shuffle S executed by the
client and the cloud storage server (Section 3)

In our cloud storage model, a shuf-
fle S is a distributed computation ex-
ecuted by the user and the server. The
user runs Setup to generate the en-
cryption key and requests the server
to allocate some space. He then runs
Shuffle by accessing S through the
server, that is, issuing requests to the
server using GenRequest. The set of
possible requests is defined by the stor-
age model supported by the server.
For every request ri, the server exe-
cutes GenResponse, locally updating S
for put requests and returning to the
user the queried items for get requests.
(See Figure 1 for an illustration.)

We capture the security of a shuffle
S against a curious server in the cloud storage model as a game, Shuffle-IND, between S
and a probabilistic polynomial-time bounded (PPT) adversary A. In this game, the in-
puts and outputs of S that are revealed to the server in the cloud storage model are also
revealed to A. However, the secret state s kept by the client, any updates to it and com-
putations inside of GenRequest are kept private, since in the cloud model they are also
hidden and happen on the user side.

The game starts with S running Setup once, allocating at the server space to be used
in subsequent computations. A then tries to “learn” how S performs the shuffle on a
sequence of m1 input arrays and permutations picked by A. Based on what A learns,
she picks two challenges (A0, π0) and (A1, π1) each consisting of a data array to be
permuted using a corresponding permutation. S secretly picks one pair and performs
the shuffle according to it. The adversary is then allowed to observe S shuffling an-
other sequence of m2 (input, permutation) pairs, also picked by A. Finally, A has to
guess which challenge pair (input, permutation) S picked to shuffle. Note that at any
time, A can ask S to perform a shuffle on any combination of A0 or A1 and permuta-
tions π0 or π1.

Definition 2 (Oblivious Shuffle). Let k be the security parameter and n be a poly-
nomial in k. S is an oblivious shuffle over n items if for every PPT adversary, the
probability of winning the Shuffle-IND game is at most 1/2 + negl(k).

The Melbourne Shuffle: Improving Oblivious Storage in the Cloud 561

4 The Melbourne Shuffle
In this section, we present a basic version of our Melbourne shuffle algorithm. An opti-
mized version is given in the next section.

Overview. We assume that each element in the input array, A, is a key-value pair
(x, v) for every x ⇔ D. The algorithm has two phases: distribution and clean-up. For
each phase, the data store S is split in several logical subparts: I , T and O. I is an
array containing n encrypted items of the input A permuted according to some permu-
tation ε0 (initially, ε0 is the identity). T is an encrypted temporary array used during
the shuffle; after the shuffle is done, O contains the output, i.e., re-encrypted items of I
permuted according to ε. If the shuffle needs to be executed again, the user sets I ⊆ O
and ε0 ⊆ ε. We further divide each subpart of S in buckets of equal size. The number
of buckets and how it effects the runtime of the algorithm will be determined later.

During the distribution phase items of every bucket of I along with some dummy
items are re-encrypted and distributed equally among buckets of T . Here, the distribu-
tion of item (x, v) is done according to its final location ε(x) in O. After the distribution
phase the intermediate array T contains real and dummy items. Moreover, the items ap-
pear in correct buckets but not in correct positions within each bucket. The clean-up
phase remedies this by reading one bucket at a time, removing dummy items, distribut-
ing the real items correctly within the bucket and writing the bucket to O.

The distribution phase alone cannot produce every possible permutation since the
number of items sent from a bucket of I to a bucket of T is limited. E.g., the identity
permutation cannot be achieved. To rectify this, we execute two shuffle passes. First, for
a permutation ε1 picked uniformly at random and then for the desired permutation ε.
Although this framework still allows failures, our algorithm can produce every permu-
tation, failing with very small probability independent of the desired permutation ε.

Algorithm. The complete shuffle algorithm shuffle(I, ε,O) is shown in Algorithm 1.
The algorithm makes two calls to shuffle pass first for a random permutation ε1 and
then for the desired permutation ε. We proceed with the description of shuffle pass
(I, T, ψ, O) where I and O are defined as in shuffle, T is a temporary array and ψ is
the desired permutation. We use the convention of giving arrays I , T and O as inputs
to the shuffle pass algorithm for the ease of explanation. In the cloud storage scenario
that we consider here, one simply specifies the location where these arrays are stored
remotely. Given an input array of size n, this method has messages and client’s private
memory of size O(

∈
n logn) and server memory of size O(n log n). These user and

server memory requirements are temporary and are reduced to O(1) and n, respectively,
when the shuffle is finished. As mentioned before, method shuffle pass is split into a
distribution phase and a clean-up phase.

Distribution Phase. The distribution phase of method shuffle pass , shown in Figure 2,
imitates throwing balls into bins by putting elements from every bucket of I to every
bucket of T according to the permutation ψ. In particular, a batch of p logn encrypted
elements from every bucket of I is put in every bucket of T (rev bucket[idT] in the
pseudo-code). Here, p is a constant and is determined in the analysis.

Each batch contains real and dummy elements. The first batch is filled in with real
elements (x, v) that would go to the first bucket in O according to ψ, i.e., the elements

562 O. Ohrimenko et al.

Algorithm 1. The complete Melbourne shuffle algorithm, shuffle(I, ε,O), where the
user can read and store in private memory M up to

∈
n× p logn elements, p ≡ e

I: array of n encrypted elements (x, v); π: permutation; O: permutation of I according to π,
where every element is re-encrypted.

1. Let π1 be a random permutation
2. Let T be an empty array of size n× p log n stored remotely
3. shuffle pass(I, T, π1, O)
4. I ← O
5. shuffle pass(I, T, π,O)

n

n
n

n

p logn

p logn

Fig. 2. Illustration of the distribution phase of shuffle pass. Shadowed regions represent dummy
values added to pad each batch to the size of p log n. The batches are encrypted, hence, one
cannot tell where and how many dummy values there are in each batch.

for which ≤ψ(x)/∈n→ = 0. Similarly for every other batch. Since a bucket of I contains
only

∈
n elements and we put

∈
n× p logn elements in total in all buckets in T , most

batches will have less than p logn elements. We pad such batches with dummy elements
to hide where and how many elements of I’s bucket are placed in T . Note that a batch
is re-encrypted before it is written to T , completely hiding the content and making it
impossible to recognize where dummy or real elements are. If according to ψ more than
p logn elements are mapped from a bucket of I to a bucket of T , the algorithm fails. We
later consider what happens in case of a failure. We note that all

∈
n× p logn elements

from batches of a single bucket can be written to T using a single call to putRangeDist.

Clean-up Phase. The distribution phase leaves T with two problems: first, though
the elements are in correct buckets according to ψ they are not in the correct locations
inside the buckets, and second, T contains dummy elements. To remedy these problems,
the clean-up phase, illustrated in Figure 3, proceeds by reading buckets of T of size∈
n× p logn and writing in their place buckets of size

∈
n.

When processing each bucket, the algorithm removes dummy elements, sorts the
remaining content of every bucket according to their final location in O. It is important
to note that each written bucket contains exactly

∈
n elements before it is being written

back. This follows from the fact that elements were distributed to buckets according

The Melbourne Shuffle: Improving Oblivious Storage in the Cloud 563

n
np logn

n
n

Fig. 3. An illustration of the clean-up phase of shuffle pass. Shadowed regions represent dummy
values that are removed during the clean-up phase.

to the permutation ψ and the algorithm failed in the distribution phase for those ψ that
would have resulted in more than

∈
n elements in each bucket.

Performance. The performance of the Melbourne shuffle is summarized below.

Theorem 1. Given an input array of size n, the Melbourne shuffle (Algorithm 1) ex-
ecutes O(

∈
n) operations, each exchanging a message of size O(

∈
n logn), between

a user with private memory of size O(
∈
n logn) and a server with storage of size

O(n log n). Also, the user and server perform O(n log n) work.

4.1 Security Analysis

In this section, we show that the Melbourne shuffle (Algorithm 1) is oblivious for every
permutation ε with high probability. For detailed proofs please refer to [17].

Definition 3. Let A be an array of n elements such that every x ⇔ [1, n] is at loca-
tion ε0(x) in A. Let B be an array that stores a permutation ε of elements in A, i.e.,
B = ε(A). Split A and B in

∈
n buckets of equal size and fix a constant p ≡ e. Let ε be

a permutation on n elements where every bucket of B contains at most p logn elements
of every bucket of A. We refer to the set of all such permutations as P (ε0).

Lemma 1. The size of set P (ε0) is (1− negl(n))× n!, for every permutation ε0.

Lemma 2. Let ε0 be the initial permutation of n elements in the input array I . Method
shuffle pass succeeds for all permutations ψ ⇔ P (ε0).

Lemma 3. Method shuffle(I, ε,O) (Algorithm 1) is a randomized shuffle algorithm
that succeeds with very high probability.

We show that method shuffle pass is oblivious by mapping it to the Oblivious Shuffle
Model in Section 3, extracting the corresponding transcript and showing that the tran-
script reveals no information about the underlying permutation if the encryption scheme
is CPA secure (see Section 2).

Method shuffle pass corresponds to GenRequest. Calls to getRange and putRange
trigger calls to GenResponse at the server. We do not describe GenResponse since it

564 O. Ohrimenko et al.

depends on the implementation of the storage provider. We are only interested in the fact
that it uses server’s state S to store and maintain arrays I, T and O. The transcript δ of
the shuffle execution is defined as follows. The request ri is either getRange(S, i, l) or
putRange(S, i, a). The response gi to getRange is an array a. The response to putRange
is empty. We first analyze the metadata (i.e., arguments not based on content) of every
request between the client and the server, and show that, unless the algorithm fails, they
depend on the size of the input only, and are independent from the input array and the
desired permutation. Hence, we obtain that the Melbourne shuffle is a data independent
shuffle algorithm. We finally show that if the content exchanged is encrypted, as it is in
method shuffle pass, the Melbourne shuffle (Algorithm 1) is oblivious.

Theorem 2. The Melbourne Shuffle (Algorithm 1) is a randomized shuffle algorithm
that succeeds with very high probability and is data-oblivious according to Definition 2.

5 The Optimized Melbourne Shuffle
In this section we present an optimized version of the Melbourne shuffle that has smaller
memory requirements and succeeds with higher probability than the basic version of the
previous section. The main difference with the basic version lies in the shuffle pass.

Algorithm. As in the basic version, the shuffle pass splits the input array I and the
output array O in consequent buckets of size

∈
n. For auxiliary storage we use two

temporary arrays T1 and T2 of size p1n and p2n, respectively, where p1, p2 > 1 are
constants to be determined in the analysis. We split T1 and T2 in buckets of size p1

∈
n

and p2
∈
n, respectively. The shuffle pass proceeds with two distribution phases, instead

of one for the basic version, followed by a single clean-up phase in the end.
The first distribution phase moves elements from I to T1, the second distribution

phase moves elements from T1 to T2. We abstract the layout of elements in each array
further by sequentially splitting buckets in chunks. The goal of the first distribution
phase is to place elements in correct chunks and place them in correct buckets within
the chunks in the second distribution phase. When a bucket is read, it is decrypted and
any elements that are written back are re-encrypted. In the following, we denote with ψ
the target distribution of the shuffle pass. For an array of size n, this algorithm assumes
messages and client private memory of size O(

∈
n) and server memory of size O(n).

Distribution Phase I. We view a sequence of 4
∈
n buckets in each array as a chunk.

Hence, I , T1, T2 and O each have 4
∈
n chunks. The goal of the first distribution phase

is to place elements of I in T1 in such a way that all elements that belong to the first
chunk of O according to ψ can be found in the first chunk of T1, similarly for the second
chunk, and so on. For an illustration of this phase refer to Figure 4.

Distribution Phase II. Observe that elements in T1 belong to the correct chunk but not
the correct bucket within the chunk. The second distribution phase remedies this, such
that by the end of this phase elements of chunks of T1 are in their correct buckets in T2.

Clean-up Phase. This phase is similar to the clean-up phase of the basic version. The
elements are in the correct buckets but not in the correct spots. We remedy this by
reading every bucket, removing dummy elements such that only

∈
n real elements are

left, sorting it according to ψ, re-encrypting the elements and writing them back.

The Melbourne Shuffle: Improving Oblivious Storage in the Cloud 565

n
n

p1 n4

n4

p1n
3/4

Fig. 4. Illustration of the arrangement of elements from the input I in the output T1 after the first
distribution phase of the Optimized Melbourne Shuffle (Section 5)

Performance. The performance and security properties of the optimized Melbourne
shuffle are summarized in the following theorems. For detailed proofs please refer to [17].

Theorem 3. Given an input array of size n, the optimized Melbourne shuffle exe-
cutes O(

∈
n) operations, each exchanging a message of size O(

∈
n) between a user

with private memory of size O(
∈
n) and a server with storage of size O(n). Also, the

user and the server perform O(n) work.

Theorem 4. The optimized Melbourne Shuffle is a randomized shuffle algorithm that
succeeds with very high probability and is data-oblivious according to Definition 2.

6 The Melbourne Shuffle with Small Messages
The Melbourne shuffle and its optimized version can be extended to work with mes-
sages and private memory of size c

∈
n log n (or c

∈
n for the optimized version), for c ≡ 3.

Theorem 5. Given an integer constant c ≡ 3 and an input array of size n, the optimized
Melbourne shuffle executes O(cn(c−1)/c) operations, each exchanging a message of
size O(c

∈
n) between a user with private memory of size O(c

∈
n) and a server with

storage of size O(n). Also, the user and server perform O(cn) work.

7 Oblivious Storage
In this section, we give an overview of a secure and efficient oblivious storage scheme
that uses the Melbourne shuffle. The oblivious storage (OS) we consider here follows
the framework proposed in [5] and the follow-up work of [11]. The goal of the oblivious
storage is to hide client’s access pattern to his remotely stored data from anyone observ-
ing it, including the storage provider. Informally, OS transforms a virtual sequence of
requests into a simulated one that appears to be data-independent. This is achieved by
a mixture of accesses that are the same for every access sequence (e.g., the Melbourne
shuffle) and of accesses that are randomized, and come from the same distribution,
hence they appear to be independent of the access sequence.

Our OS scheme consists of setup, access and rebuild phases. The setup phase ar-
ranges, encrypts and outsources the data to the remote storage server. The access phase
transforms a virtual request into a sequence of accesses to the remote storage. Once
these accesses are performed, the requested element is returned. After a batch of re-
quests, the data at the server is shuffled in order to be able to proceed with the access

566 O. Ohrimenko et al.

phase for the next batch. Performing the Melbourne shuffle between the batches of re-
quests gives us the following result:

Theorem 6. The randomized oblivious storage scheme based on the optimized Mel-
bourne shuffle has the following properties, where n is the size of the outsourced dataset:

– The private memory at the client and each message exchanged between the client
and server have size O(

∈
n).

– The memory at the server has size O(n).
– The access overhead to perform a storage request is O(1).

We apply recursion to the square root solution to support messages and private user
memory of size n1/c. This solution uses a cache of size n1/c, which fits into private
memory, and c − 1 levels of additional storage. Each level i is large enough to con-
tain n(i+1)/c real elements and ni/c fake elements. The cache and levels 1 to i− 1 have
a similar cache functionality for level i as the cache C in the square root solution, ex-
cept they can store together O(ni/c) previously accessed elements. Each level i < c−1
contains n(i+1)/c buckets of size O(logn) that allows one to store n(i+1)/c elements
in a hash table and avoid collisions with very high probability. Buckets with fewer than
logn elements are filled in with dummies. The last level, level c − 1, has n elements,
hence a permutation can be used to store and access the elements. After ni/c elements
are accessed, level i is rebuilt in O(ini/c logn) accesses using the optimized Melbourne
Shuffle for small messages (see Section 6). This cost can be amortized, or deamortized
using [10], to get O(c log n) access overhead per every element. We can increase mes-
sage size from O(c

∈
n) to O(c

∈
n logn) to achieve a constant overhead from the rebuild.

Theorem 7. The randomized oblivious storage scheme based on the Melbourne shuffle
with small messages has the following properties, where n is the size of the outsourced
dataset and c is a constant such that c ≡ 3:

– The private memory at the client and each message exchanged between the client
and server have size O(c

∈
n) (O(c

∈
n logn)).

– The memory at the server has size O(n).
– The access overhead to perform a storage request is O(c logn) (O(c)).

Acknowledgements. This research was supported in part by the National Science Foun-
dation under grants CNS–1011840, CNS–1012060, CNS–1228485, CNS–1228639, and
IIS–124758, by the National Institutes of Health under grant R01-CA180776, and by
the Office of Naval Research under grant N00014-08-1-1015. Olga Ohrimenko worked
on this project in part while at Brown University.

References
[1] Ajtai, M., Komlós, J., Szemerédi, E.: An O(n log n) sorting network. In: ACM Symp on

Theory of Computing (STOC), pp. 1–9 (1983)
[2] Aldous, D., Diaconis, P.: Shuffling cards and stopping times. The American Mathematical

Monthly 93(5), 333–348 (1986)
[3] Batcher, K.E.: Sorting networks and their applications. In: Proc. 1968 Spring Joint Com-

puter Conf., pp. 307–314. AFIPS Press (1968)
[4] Goldreich, O.: Towards a theory of software protection and simulation by oblivious RAMs.

In: ACM Symp. on Theory of Computing. pp. 182–194 (1987)

The Melbourne Shuffle: Improving Oblivious Storage in the Cloud 567

[5] Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious RAMs. J.
ACM 43(3), 431–473 (1996)

[6] Goodrich, M.T.: Randomized Shellsort: A simple oblivious sorting algorithm. In: Proc.
ACM-SIAM Sump. on Discrete Algorithms (SODA), pp. 1–16 (2010)

[7] Goodrich, M.T.: Zig-zag Sort: A Deterministic Data-Oblivious Sorting Algorithm Running
in O(n log n) Time. In: ACM Symp. on Theory of Computing (2014)

[8] Goodrich, M.T., Mitzenmacher, M.: Privacy-Preserving Access of Outsourced Data via
Oblivious RAM Simulation. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011,
Part II. LNCS, vol. 6756, pp. 576–587. Springer, Heidelberg (2011)

[9] Goodrich, M.T., Mitzenmacher, M.: Anonymous card shuffling and its applications to par-
allel mixnets. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012,
Part II. LNCS, vol. 7392, pp. 549–560. Springer, Heidelberg (2012)

[10] Goodrich, M.T., Mitzenmacher, M., Ohrimenko, O., Tamassia, R.: Oblivious RAM simu-
lation with efficient worst-case access overhead. In: Proc. ACM Workshop on Cloud Com-
puting Security (CCSW), pp. 95–100 (2011)

[11] Goodrich, M.T., Mitzenmacher, M., Ohrimenko, O., Tamassia, R.: Practical oblivious stor-
age. In: ACM Conf. on Data and Application Security and Privacy (CODASPY), pp. 13–24
(2012a)

[12] Goodrich, M.T., Mitzenmacher, M., Ohrimenko, O., Tamassia, R.: Privacy-preserving group
data access via stateless oblivious RAM simulation. In: ACM-SIAM Symposium on Dis-
crete Algorithms (SODA), pp. 157–167 (2012b)

[13] Islam, M.S., Kuzu, M., Kantarcioglu, M.: Access pattern disclosure on searchable encryp-
tion: Ramification, attack and mitigation. In: NDSS (2012)

[14] Kamara, S., Lauter, K.: Cryptographic cloud storage. In: Sion, R., Curtmola, R., Dietrich,
S., Kiayias, A., Miret, J.M., Sako, K., Sebé, F. (eds.) RLCPS, WECSR, and WLC 2010.
LNCS, vol. 6054, pp. 136–149. Springer, Heidelberg (2010)

[15] Kushilevitz, E., Lu, S., Ostrovsky, R.: On the (in)security of hash-based oblivious RAM and
a new balancing scheme. In: ACM-SIAM Symposium on Discrete Algorithms (SODA), pp.
143–156 (2012)

[16] Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms and
Probabilistic Analysis. Cambridge University Press (2005)

[17] Ohrimenko, O., Goodrich, M.T., Tamassia, R., Upfal, E.: The Melbourne shuffle: Improving
oblivious storage in the cloud. CoRR abs/1402.5524 (2014)

[18] Pinkas, B., Reinman, T.: Oblivious RAM revisited. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 502–519. Springer, Heidelberg (2010)

[19] Shi, E., Chan, T.-H.H., Stefanov, E., Li, M.: Oblivious RAM with o((logn)3) worst-case
cost. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 197–214.
Springer, Heidelberg (2011)

[20] Stefanov, E., van Dijk, M., Shi, E., Fletcher, C., Ren, L., Yu, X., Devadas, S.: Path ORAM:
An Extremely Simple Oblivious RAM Protocol. In: ACM Conf. on Computer and Commu-
nications Security, CCS (2013)

[21] Stefanov, E., Shi, E., Song, D.: Towards Practical Oblivious RAM. In: Proc. Network and
Distributed System Security Symposium (NDSS) (2012)

[22] Williams, P., Sion, R.: Single round access privacy on outsourced storage. In: ACM Conf.
on Computer and Communications Security, pp. 293–304 (2012)

[23] Williams, P., Sion, R., Carbunar, B.: Building castles out of mud: practical access pattern
privacy and correctness on untrusted storage. In: ACM Conference on Computer and Com-
munications Security (CCS), pp. 139–148 (2008)

Sending Secrets Swiftly:

Approximation Algorithms
for Generalized Multicast Problems

Afshin Nikzad1 and R. Ravi2

1 MS&E Department, Stanford University, USA
nikzad@stanford.edu

2 Tepper School of Business, Carnegie Mellon University, USA
ravi@cmu.edu

Abstract. We consider natural generalizations of the minimum broad-
cast time problem under the telephone model, where a rumor from a root
node must be sent via phone calls to the whole graph in the minimum
number of rounds; the telephone model implies that the set of edges in-
volved in communicating in a round form a matching. The extensions we
consider involve generalizing the number of calls that a vertexmay partici-
pate in (the capacitated version), allowing conference calls (the hyperedge
version) as well as a new multicommodity version we introduce where the
rumors are no longer from a single node but from different sources and in-
tended for specific destinations (the multicommodity version). Based on
the ideas from [6,7], we present a very simple greedy algorithm for the basic
multicast problem with logarithmic performance guarantee and adapt it
to the extensions to design typically polylogarithmic approximation algo-
rithms. For the multi-commodity version, we give the first approximation

algorithm with performance ratio 2O(log log k
√

log k) for k source-sink pairs.
We provide nearly matching lower bounds for the hypercasting problem.
For themulticommodity multicasting problem, we present improved guar-
antees for other variants involving asymmetric capacities, small number of
terminals and with larger additive guarantees.

Keywords: approximation algorithms, graph algorithms, b-matching,
LP rounding.

1 Introduction and Motivation

Rumor spreading in networks has been an area of much study involving the
gamut from finding the minimum possible number of messages to spread gossip
around the network [23,2,12] to finding graphs with minimum number of edges
that are able to spread rumors in the minimum possible time in the network [9].
An important NP-hard formulation asks to find a scheme that spreads a rumor
from a single root node to all other nodes under the popular “telephone” model
where every node can participate in a telephone call with at most one other
neighbor in each round, and the goal is to minimize the number of rounds. This

J. Esparza et al. (Eds.): ICALP 2014, Part II, LNCS 8573, pp. 568–607, 2014.
c∗ Springer-Verlag Berlin Heidelberg 2014

Approximation Algorithms for Generalized Multicast Problems 569

is the minimum broadcast time problem for which there has been active work
in designing approximation algorithms [14,20,10,7]. We study generalizations of
this problem that involve (i) sending the message to only a subset of receivers
(multicasting), (ii) capacity constraints on the number of calls in which a node
can participate (capacitated cases), (iii) allowing conference calls modeled by
hyperedges (hypercasting problem), and (iv) multiple sources of rumors with
different sets that are the targets for the different rumors (the multicommodity
case). Our paper initiates work on the capacitated, hypercasting and multicom-
modity extensions of the “rapid rumor ramification” problem [20], bringing it to
next range of generalizations of “sending secrets swiftly”.

Problem Definition

Definition 1. In the (minimum time) Multicast problem, we are given an
undirected graph G(V,E) which represents a telephone network on V , where two
adjacent nodes can place a telephone call to each other. We are given a source
vertex r and a set of terminals R ∈ V . The source vertex has a message and
it wants to inform all the terminals of the message. To do this, the vertices of
the graph can communicate in rounds: In each round, we pick a matching of G
and arrange a bidirected phone call between each vertex in the matching and its
matched pair. If any of the two vertices knows the message before the phone call,
the other one will also know it afterwards. The goal is to deliver the message to
all the terminals in the minimum number of rounds.

When R = V , the Multicast problem is known as the (minimum time) broadcast
problem which is one of the most basic and well-studied problems in this setting.
Applications of this problem arise commonly in multicasting in networks [21],
keeping the information consistent across copies of replicated databases by broad-
casting from the changed copy to the others [16,17], as well as in finding schemes
that ensure that maximum information delay in problems modeled by vector
clocks [15] is minimized.

In this paper, we investigate the Multicast Problem in the following three more
general settings: i. Allowing multiple source vertices, i.e. the multi-commodity
setting rather than the single-source setting. ii. Allowing conference calls (with
possibly more than two participants) rather than just having phone calls. iii. Im-
posing capacities for the vertices, i.e. allowing a vertex to be in a number of phone
calls in each round, which can not exceed its capacity. In all of these general-
izations, the objective function remains minimizing the total number of rounds
used in the solution.

The first generalization is having messages with arbitrary source and desti-
nation vertices, i.e. unlike the Multicast Problem, the messages do not need to
share the same source vertex.

Definition 2. In the Multicommodity Multicast Problem (MM), a graph
G(V,E) is given along with a set of pairs of nodes P = {(si, ti)|1 ≡ i ≡ k}, known
as demand pairs. Each vertex si has a message mi which needs be delivered to ti.
The vertices communicate similar to the Multicast problem, i.e. during a phone

570 A. Nikzad and R. Ravi

call, each vertex can pass (a copy of) all of the messages that it has to the other
vertex.

The second aspect in our model is having conference calls rather than having
only phone calls, i.e. calls involving (possibly) more that two, rather than only
two, persons. So, instead of a simple graph G, we are given a hypergraph the
edges of which represent the potential conference calls. We call this problem the
Hypercast Problem; we define this problem formally and study it extensively in
Section D.

Finally, we bring in the notion of capacity of a vertex to our model for the
Multicast Problem, and allow a vertex to be in possibly more than a single call in
each round; the maximum number of phone calls that a vertex can have in each
round is called the capacity of the vertex. The Capacitated Multicast Problem is
formally defined and studied in Section C.

In this paper, we develop a unified solution framework that can incorporate
each of the Hypercast, Multi-commodity Multicast, and Capacitated Multicast
aspects, leading to the first approximation algorithms for any combination of these
extensions such as the Capacitated Hypercast Problem, or Multi-commodity Hy-
percast Problem. In the rest of this paper, we let n = |V |, k = |R| and OPT be
the optimal number of rounds needed to solve the given Multicast instance, unless
it is specified otherwise.

2 Related Work

Finding optimal broadcast schedules for trees was one of the first theoretical
problems in this setting and was solved using Dynamic Programming [18]. For
general graphs, Kortsarz et. al. developed an additive approximation algorithm
which uses at most c ·OPT +O(

⊆
n) rounds for some constant c. Later, Ravi [20]

provided a O(log2 n
log logn)-approximation for the same problem using the result of

Raghavan [19] for randomized rounding of an LP formulation for the concurrent
multicommodity flow problem.

Guha et.al. [10] improved the approximation factor for Multicasting in general
graphs to O(log k) where k is the number of terminals. To the best of our knowl-
edge, the best approximation factor for the Multicast problem is O(log k

log log k) [7].

Both of [7,10] present a recursive algorithm which reduces the total number of
uninformed terminals in each step of the recursion, while using O(OPT) number
of rounds in that step. In [10], they reduce the number of uninformed terminals
by a constant factor in each step and so they obtain a O(log k)-approximation,
but in [7], the number of uninformed terminals is reduced by a factor of OPT
which gives a O(log k

log log k)-approximation due to the fact that OPT = Σ(log k).

3 Our Results

Our main contribution is developing a framework to design approximation algo-
rithms for various generalizations of the Multicast Problem. A summary of the
key results in this paper is listed below. For the complete list of our results, see
Tables 1 and 2 in Section 7.

Approximation Algorithms for Generalized Multicast Problems 571

1. In Section 5, we give a very simple O(log k)-approximation for the Multicast
Problem, which is based on the ideas of [6,7]. With a slight modification of
this algorithm in Section C, we adapt it to solve the Capacitated Multicast
Problem.

2. In Section 6, based on our simple algorithm for the Multicast Problem,

we design a 2O(log log k
√
log k)-approximation for the Multi-commodity Mul-

ticast Problem (note that the approximation factor is, while being super-
polylogarithmic, still smaller than any constant root of k).

3. In Section D, we develop our simple algorithm further and obtain a O(log k ·
logn · D)-approximation for the Hypercast Problem, where D is the maxi-
mum size of a hyperedge. Also, our hardness results for the Hypercast Prob-
lem show that the dependence on D is unavoidable (see Section I).

4. In Sections G and H, we explore the Multi-commodity Multicast problem fur-
ther and design two polylogarithmic approximation algorithms which carry
additional additive factors of

⊆
n and ε(G) (maximum degree).

While our algorithms for Multicast and Multi-commodity Multicast problems
are purely combinatorial, the algorithm for Hypercast involves solving a Linear
Program and randomized rounding of the LP solution.

Our results are not limited to this since our framework can handle more
general cases of the Multicast Problem, e.g. Capacitated Multi-commodity Hy-
percast Problem; all of them are summarized in Section 7.

4 Preliminaries

4.1 The Multicast Problem

In the context of any of the problems discussed in Section 1, sending vertex u
to vertex v means sending the information of u to v in a (potentially specified)
number of rounds. Given that P = {(si, ti)|1 ≡ i ≡ k} is the set of demand pairs
in any single-source or multi-commodity instance, let S = {s1, . . . , sk} be the
set of sources, T = {t1, . . . , tk} be the set of sinks, and R = S ↔ T be the set of
terminals. Also, let I(G,P) denote the Multicast (Hypercast) instance defined
by P on the graph (Hypergraph) G. We also use I when both G,P are clearly
known from the context.

4.2 Schedules

A schedule is a sequence of rounds. The length of a schedule S is denoted by
|S| and is the number of rounds it contains. A schedule for a (single-source or
multi-commodity) Multicast instance is non-lazy if, in any round of it, any two
idle and adjacent vertices have identical information in that round.

4.3 Graphs and Matchings

Suppose G is a simple graph and let n = |V (G)|. Let N(v) be the set of the
neighbors of a vertex v, and for any S ∈ V (G), let N(S) = ↔v≥SN(v). Denote

572 A. Nikzad and R. Ravi

the degree of the maximum-degree vertex in G by ε(G). For any X ∈ V (G),
let G[X] be the induced subgraph of G on X . For any family of subgraphs of G,
such as F , let V (F) denote the union of the vertices of the subgraphs in F and
E(F) denote the union of the edges of the subgraphs in F .

The distance between two vertices of G, such as u and v, is represented by
dG(u, v). If there is no path in G between u, v, then let dG(u, v) = ⇔. The diam-
eter of G, denoted by diam(G), is max

u,v≥V (G)
dG(u, v). Also, define diamP (G) =

max
(s,t)≥P

dG(s, t), where P is a set of pairs of vertices, e.g. the set of demand pairs.

Given a bipartite graph H [X,Y] with partitions X and Y , a b-matching in H
is a subset M of the edges of H such that each vertex of X is incident to exactly
one edge of M and each vertex of Y is incident to at most b edges of M .

4.4 Spiders

Spiders are subgraphs that have been useful in designing algorithms for the
Multicast and directed Broadcast problems in [10,5]. A spider S is a set of
(almost) vertex-disjoint paths all starting at the same vertex, e.g. v, and sharing
no vertex other than v. Define the center of S to be v. Also, let the degree of
S, denoted by deg(S), be the degree of v in S, and the length of S, denoted by
len(S), be maxu≥V (S) dS(u, v).

It’s very easy to verify the following lemma stated in [5].

Lemma 1. Using a non-lazy schedule, the center of a spider S can send (broad-
cast) a message to the rest of its vertices in deg(S) + len(S) − 1 rounds.

5 The Multicast Problem

In this section, we present a O(log k)-approximation for the Multicast problem,
which is obtained by simplifying the O(log k

log log k)-approximation given in [7]. Our
simple algorithm plays an important role in our framework. Later, this algorithm
will be developed further to design algorithms for the introduced generalizations
of the Multicast problem. For instance, with a slight modification, it turns into a
O(log k)-approximation for the Capacitated Multicast problem (see Section C).

5.1 Outline of the Algorithm

Our algorithm accepts a parameter L as a part of the input, which is our guess
for the optimal solution of the given multicast instance. Since n is an upper
bound on the length of the optimal schedule, we can easily try all the possible
values for L from 1 to n and run the algorithm once for each of these values.
Our algorithm is guaranteed to return a schedule of length O(L · log k) assuming
that L is the length of the optimal schedule. So, from now on in this section, we
think of L as the length of the optimal schedule W.L.O.G.

The algorithm is a recursive algorithm and has 4 phases. In Phase 1 of the
algorithm, we reduce the given instance to a smaller instance. In Phase 2, we

Approximation Algorithms for Generalized Multicast Problems 573

solve the smaller instance recursively, and finally in Phase 3 and 4, we inform
the rest of the vertices which didn’t receive the message in Phase 2. We explain
each of these phases briefly and after that, we’ll see the full description of the
algorithm.

Phase 1. This phase starts with finding a family of vertex disjoint paths P each
of length at most 4L such that the endpoints of the paths belong to R. We find
these paths greedily, i.e. we start with P = ⊂ and using BFS, we search for a
new path of length at most 4L between the terminals. We continue until we can
add no more such paths to P . Pick one endpoint from each path and designate
the picked set of vertices to be R∈.

Phase 2. Solve the multicast problem for the new set of terminals R∈ recursively
and run the obtained schedule. (So, all the vertices in R∈ will receive the message
by the end of this phase.)

Phase 3. Inform all the vertices belonging to V (P) in 4L rounds. This is possible
since in Phase 2, we have already informed at least one vertex of each path in P .

Phase 4. For each of the uninformed terminals, namely v ≥ R\V (P), find a
path Mv which connects v to one of the informed vertices (note that the set of
the informed vertices is currently V (P)). These paths are guaranteed to satisfy
the following properties:

1. The length of each path is at most 2L.
2. Only one vertex on each path belongs to V (P), which is an endpoint of the

path.
3. The paths won’t share any vertices except possibly in the endpoints belong-

ing to the set V (P). Moreover the degree of any node in V (P) due to these
paths is at most L.

In other words, M =
⎛

v≥R\V (P)

Mv is a union of vertex disjoint spiders of length

at most 2L and we will inform the vertices in R\V (P) using these spiders. (see
Figure 1)

Before presenting the algorithm formally, we describe Phase 4 in more details.

5.2 The Algorithm: Phase 4

Our goal in Phase 4, assuming that the vertices in V (P) have received the mes-
sage, is to inform the rest of the terminals in O(L) rounds. The only assumptions
we need here are that the choice of P is maximal in Phase 1 and V (P) is in-
formed.

To inform the rest of the terminals, we find a family of vertex-disjoint spi-
ders such that each of them has a length at most 2L and a center belonging to
V (P). Moreover, we need the spiders to contain all the terminals in R\V (P).
To construct the family of spiders, we start with finding the paths Mv for
all v ≥ R\V (P). In order to find the paths, we construct a bipartite graph

574 A. Nikzad and R. Ravi

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

��
��
��
��

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�
�
�
�
� �

�
�
�
��
��
��
��

�
�
�
�

�
�
�
�

P

R\V (P) spider 2spider 1

Fig. 1. Informing the vertices of R\V (P) using spiders

H [R\V (P), V (P)] with edges defined as follows: There is an edge in H between
two vertices x ≥ R\V (P) and y ≥ V (P) if there is path of length at most 2L
connecting x to y such that no other vertex of the path belongs to V (P) except
y. So, each edge in H is associated with a path in G (if there were many such
paths for x, y, then choose one of them arbitrarily). Now, find a b-matching in H
for the minimum possible integer b. Then, for all v ≥ R\V (P), define Mv to be
a path in G which is associated with the edge incident to v in the b-matching.

Let M be the subgraph of G defined as M =
⎛

v≥R\V (P)

Mv, then, the following

lemma holds for M .

Lemma 2. M is a union of vertex disjoint spiders each with length at most 2L
and degree at most L.

Proof. First, we show that M is a union of vertex disjoint spiders. To prove
this, note that for any two vertices u, v ≥ R\V (P), Mu and Mv can’t share any
vertex except possibly in the endpoints belonging to V (P), since if they do, it
contradicts the maximality of P , i.e. there would have been a path of length at
most 4L between u and v which could be added to P .

So, M is a union of vertex-disjoint spiders, namely the family M of spiders,
and since the length of each path Mv is at most 2L, then len(M) ≡ 2L. It only
remains to prove that deg(M) ≡ L. Consider the optimal multicast schedule
which uses exactly L rounds. Let E∈ be the subset of the edges of G which are
used in the optimal schedule and G∈ be the subgraph of G with E∈ as its edge set.
It’s easy to verify that G∈ is a tree of diameter at most 2L and maximum degree
at most L [20]. Now, for each v ≥ R\V (P), define M ∈

v to be the unique path in G∈

from v to f(v), where f(v) = arg minu≥V (P) dG⊥(v, u). Note that dG⊥(v, f(v)) ≡
2L since the diameter of G∈ is at most 2L, which implies (v, f(v)) ≥ E(H)
because of the existence of Mv.

Approximation Algorithms for Generalized Multicast Problems 575

Next, we prove that
⎛

v≥R\V (P)

(v, f(v)) is a L-matching in H , which shows

the existence of a b-matching in H with b ≡ L, and that’s all we need to show
that deg(M) ≡ L. To prove the claim, just note that the family of paths {M ∈

v :
v ≥ R\V (P)} in G∈ are edge-disjoint, which means there can’t be more than

ε(G∈) of these paths with the same endpoint, implying that
⎛

v≥R\V (P)

(v, f(v))

is a ε(G∈)-matching in H . The fact that ε(G∈) ≡ L finishes the proof.

From Lemmas 1 and 2 we conclude the following:

Lemma 3. Assuming that the vertices in V (P) have received the message, we
can find a schedule in polynomial time which informs the rest of the terminals
in 3L rounds.

5.3 The Algorithm

The whole algorithm for the Multicast problem is presented more formally below.

Algorithm Multicast
Input: A graph G and a set of terminals R
1. P , R∈ ⇒⊂
2. for all (u, v) ≥ R×R such that u ◦= v (≤ Phase 1 ≤)
3. do Find the shortest path in G[V (G)\V (P)] from u to v, namely Qu,v.
4. if the length of Qu,v is not more than 4L
5. then P⇒P ↔Qu,v

6. R∈⇒R∈ ↔ {u}
7. Inform R∈ recursively by calling Multicast(G,R∈). (≤ Phase 2 ≤)
8. Inform V (P) using the paths in P in at most 4L rounds. (≤ Phase 3 ≤)
9. Construct the bipartite graph H [R\V (P), V (P)].(≤ Beginning of Phase 4 ≤)
10. Find the smallest integer b such that H has a b-matching.
11. Use the family of spiders M associated with the b-matching and inform

R\V (P) in at most deg(M) + len(M) − 1 rounds.

Theorem 1. Algorithm Multicast is a 7 log k-approximation for the Multicast
problem.

Proof. The proof of correctness is trivial. We just analyze the approximation
factor of the algorithm here. Note that in each level of the recursion, the number
of terminals are at least halved, which means there will be at most log k levels.
Moreover, in each level we use at most 4L rounds in Line 9 and deg(M) +
len(M)− 1 rounds in Line 12. By lemma 3 we have deg(M) + len(M)− 1 ≡ 3L
implying that we use at most 7L rounds in each level of the recursion and 7L·log k
rounds in total.

6 The Multicommodity Multicast Problem

In this section, we present a 2
O
(

log log |R|·
⊆

log |R|
)

-approximation for the Multi-
commodity Multicast Problem; recall that R is the set of terminals.

576 A. Nikzad and R. Ravi

6.1 Preleminaries: Multicast Schedules

Any single-source Multicast schedule can be represented by a directed tree such
that there will be phone calls only on the tree edges. Given a multicast schedule,
this tree is defined by choosing, for every vertex other than the source, the unique
edge along which a message is conveyed to that vertex for the first time [20]. We
state this fact in the proposition below.

Proposition 1. Any single-source Multicast schedule can be represented by a
subgraph of G which is a tree.

Also, using Proposition 1, we can assume that the output of AlgorithmMulticast
is a tree:

Proposition 2. W.L.O.G. the output of Algorithm Multicast can be assumed
to be a tree, i.e. the set of edges used in the phone calls form a tree.

6.2 Sparsification

Before describing our algorithm, we need a key lemma related to graph spanners,
i.e. sparse subgraphs such that distances between adjacent nodes are preserved
within a logarithmic factor in the subgraph. To the best of our knowledge, this
result first appeared in [1] as Lemma 3.1. We only state and use a simple corollary
of this lemma, for which an independent proof is given also in Section H of this
paper.

Corollary 1. Given a simple n-vertex graph G, we can find a subgraph s(G) of
G in polynomial time, such that |E(s(G))| ≡ 2n logn and for each (u, v) ≥ E(G),
we have ds(G)(u, v) ≡ 8 logn · dG(u, v).

Algorithm Sparsify follows as a consequence of Corollary 1. It takes a simple
undirected graph H(V, P) as its input and computes s(H). We will use this
subroutine later in our main algorithm.

Algorithm Sparsify
Input: A vertex set V , and a set of pairs of V , called P
Output: A subset of P
1. Assuming that H(V, P) is a simple undirected graph, use Corollary 1 to

compute s(H).
2. Output E(s(H)).

6.3 The Algorithm

In the rest of this section, assume that we want to solve the instance I(G,P),
and L is an optimal solution for this instance. Similar to Algorithm Multicast ,
our algorithm for the MM Problem accepts a parameter L in the input, which
is our guess for the optimal solution.

Approximation Algorithms for Generalized Multicast Problems 577

The algorithm consists of 3 phases. In Phase 1, we (potentially) reduce the num-
ber of the demand pairs using Algorithm Sparsify , i.e. by calling Sparsify(R,P).
Assuming that a subset of P , namely P̂ , is the output, we will see that repeating
any feasible solution of I(G, P̂) for O(log n) times would give a feasible solution
for I(G,P).

In Phase 2, we try to satisfy a large fraction of the demand pairs greedily.
If it is done successfully, we repeat, otherwise, we go to Phase 3 and solve an
instance with a fewer number of terminals recursively. A key new idea to handle
the smaller instance is to use a fictitious multicast scheme to assign the terminal
pairs not satisfied in this phase to one of the terminals that are.

Before seeing the formal description of the algorithm, we explain Phases 2
and 3 more precisely.

Phase 2. In this phase, we find a maximal family of vertex-disjoint paths,
namely P , where each path in P has a length at most L and connects si to ti
for some pair (si, ti) in P . If |P| was large enough, then using these paths we
satisfy a large fraction of the demand pairs in L rounds, and repeat Phase 2.
Otherwise, we go to Phase 3.

More precisely, in the beginning of Phase 2, P is empty. We sort the pairs in
P in some arbitrary order, say (si, ti) for 1 ≡ i ≡ k, and visit the pairs in this
order. When visiting the i-th pair, we check if there exists a path of length at
most L between si and ti in G[V (G)\V (P)]. If there was such a path, we add it
to P . After visiting all of the k pairs in P , assume P ∈ = {(s∈1, t

∈
1), . . . , (s∈k⊥ , t∈k⊥})

is the subset of the pairs in P for which we were able to find the path of length
at most L. Now, two possible cases can happen based on the size of P . Define
Ω(x) = 2log x−√

log x for all positive x, then, if |P| > Ω(|R|) (sufficiently large,
and hence sufficiently good progress), remove P ∈ from P and repeat Phase 2.
Otherwise, go to Phase 3.

Phase 3. In this Phase, we construct a smaller instance on the set of terminals
R∈ = {s∈1, . . . , s∈k⊥}, solve it recursively, and then provide a solution for the original
problem using the solution of the smaller instance, as in our original framework
for multicasting. Intuitively, we send each vertex in R\R∈ to a vertex in R∈ in
a small number of rounds. By doing so, we create a new instance of the MM
problem, i.e. the old instance induced on the set R∈. We solve this new instance
recursively, and convert its solution to a solution for the old instance. Note that
since R∈ is “small”, the recursive problem is much smaller than the original one
and hence we have made progress, but at the expense of having to route all the
remaining demands of the recursively picked demand terminals. Formally, we
perform the following steps in Phase 3:

1. Construct a function f : R → R∈ and a schedule S such that S sends v to
f(v) for all v ≥ R, and also |S| ≡ L. Run the schedule S and send v to f(v)
for all v ≥ R.

2. Construct a new instance of the MM problem on G with the set of terminals
R∈ and the set of demand pairs P ∈ = {(f(u), f(v)) : ∅(u, v) ≥ P}. Solve this
instance recursively and run the obtained schedule.

578 A. Nikzad and R. Ravi

3. Run the schedule S in the reverse order to send f(v) to v simultaneously for
all v ≥ R.

�
�
�
�
��
��
��
��
��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��v

rB

R′

V (G)

f(v)

Fig. 2. The Multicast instance obtained from adding a dummy binary tree to the graph

Constructing S and f for Phase 3. To complete the above description for
Phase 3, we need to find the schedule S and the function f . To do so, we construct
and solve an auxiliary Multicast instance, the solution of which gives S and f .

In the beginning of Phase 3, construct an arbitrary binary tree B of height
O(log |R∈|) rooted at a dummy vertex rB , such that the only common vertices be-
tween B and G are the leaves of B, which coincide with the set R∈ (see Figure 2).

Using Algorithm Multicast , solve the Multicast instance with the root rB and
the set of terminals R\R∈. Let the schedule S be the solution to this instance,
which uses the tree TS (recall that by Proposition 2, the solution provided by
Algorithm Multicast is a tree). Then, define f as follows: If v ≥ R∈, let f(v) = v,
otherwise, consider the unique path in TS from v to rB . Define f(v) to be the
closest vertex to rB which is on this path and belongs to V (G) (see Figure 2).

Defining f and S completes the description of Phase 3. Now, we present our
algorithm more formally below.

Algorithm MM
Input: A graph G and a set of pairs P
1. if P = {} then return.
2. S ⇒ {s| ⊇t : (s, t) ≥ P}
3. T ⇒ {t| ⊇s : (s, t) ≥ P}
4. R ⇒ S ↔ T
5. if |P | > 2|R|. log |R| (≤ Phase 1 ≤)
6. then P = Sparsify(R,P)
7. for 1 to 8 log |R|
8. do MM (G,P)
9. return.
10. P , X ⇒⊂ (≤ Phase 2 ≤)
11. for i ⇒ 1 to |P |
12. do Find the shortest path in G[V (G)\V (P)] from si to ti, namely Qi.
13. if the length of Qi is not more than L

Approximation Algorithms for Generalized Multicast Problems 579

14. then P⇒P ↔ {Qi}
15. X⇒X ↔ {(si, ti)}
16. if |P| ≥ Ω(|R|)
17. then For all (si, ti) ≥ X simultaneously, send si to ti through the path

Qi.
18. P ⇒ P\X
19. Go to Line 10.
20. else Construct and solve the auxiliary Multicast instance to obtain S

and f . (≤ Phase 3 ≤)
21. Run the schedule S in the reverse order to send v to f(v) for all

v ≥ R.
22. Y ⇒{(f(u), f(v))|(u, v) ≥ P}
23. MM (G, Y)
24. Run the schedule S to send f(v) to v for all v ≥ R

Before analyzing the approximation ratio of the algorithm, we give the fol-
lowing lemma to bound the length of schedule S in terms of L and m, where
m = |R|.

Lemma 4. |S| ≡ 21 logm · L + 14 log2 m.

Proof. Note that S is found by Algorithm Multicast as a solution to the auxiliary
Multicast instance, and so by Theorem 1, |S| ≡ 7 logm ·Laux, where Laux is the
length of the optimal schedule for the auxiliary instance. Consequently, to prove
the claimed bound, it’s enough to prove that Laux ≡ 3L + 2 logm. So, we show
there exists a feasible schedule of length 3L + 2 logm for the auxiliary instance.
This schedule has 4 steps: 1. Use the dummy binary tree and send its root, i.e.
rB, to all of its leaves, i.e. the set R∈. 2. Use the path Qi and inform V (Qi)
simultaneously for all Qi ≥ P . 3. Run the schedule L. 4. Run the schedule L in
the reverse order.

The suggested schedule has a length at most 3L + 2 logm since Steps 1,2,3,4
have a length at most 2 logm,L,L, L respectively. In the rest of the proof, we
show the feasibility of this schedule. Note that after Step 1, the set of vertices
R∈ is informed since they are the leaves of the binary tree. After Step 2, the set
V (P) is informed since each path Qi ≥ P has an endpoint si ≥ R∈. For the sake
of contradiction, assume there is a terminal r ≥ R\R∈ which is not informed after
Step 4. This terminal has to be in at least one demand pair, namely the pair
(s, t). The schedule L sends s to t via a path in G, namely Q. The path Q must
share at least a vertex with P , due to the maximality of P . This fact, and the
fact that V (P) is informed by the end of Step 2, imply that t should be informed
after Step 3, and s should be informed after Step 4. Which is a contradiction
with r not being informed by the end of Step 4.

Theorem 2. Algorithm MM is a 2
O
(

log log |R|·
⊆

log |R|
)

-approximation for the
Multi-commodity Multicast Problem.

580 A. Nikzad and R. Ravi

Proof. Let T (m) denote the approximation factor of our algorithm. By induction

on m, we prove that T (m) ≡ 2Σ log logm.
√
logm, for any fixed δ > 6. To do so, we

provide an upperbound for T (m) as follows:

T (m) ⊆ 8 logm·
(

2m logm

ψ(m)
· L+7 logm · (6L+ 4 logm) + T (ψ(m)) · (43 logm · L+ 28 log2 m)

)

× 1

L

Before analyzing this recurrence relation, we show that its right-hand side
gives a valid upperbound on T (m): The last coefficient in the right-hand side,
i.e. 1

L , is due to the definition of approximation ratio of an algorithm. The first
coefficient, i.e. 8 logm, stands for Line 7 of the algorithm, as a result of the
(potential) sparsification. It remains to analyze the middle coefficient.

The summand 2m logm
ψ(m) ·L is an upperbound on the number of rounds used in

Phase 2 of the algorithm. The two other summands bound the number of rounds
used in Phase 3 of the algorithm. We justify the latter fact separately as follows.

The summand 7 logm · (6L + 4 logm) is an upperbound on the number of
rounds used in Lines 21 and 24 overall. Since only the schedule S is run in these
lines, we equivalently show that |S| ≡ 7 logm · (3L + 2 logm), which is done in
Lemma 4.

Finally, we verify that the summand T (Ω(m)) · (43 logm · L + 28 log2 m) is an
upperbound on the number of rounds used in Line 23 of the algorithm: Let LY

be the optimal number of rounds needed to solve I(G, Y). By the induction hy-
pothesis, the number of rounds used in Line 23 is at most T (Ω(m)) · LY . So, it’s
enough to show that LY ≡ 43 logm ·L+28 log2 m. We do this by giving a feasible
solution of length at most 43 logm · L + 28 log2 m for I(G, Y): Run the schedule
S, then run L, and finally run the schedule S in the reverse order. The claimed
upperbound for the length of this schedule simply follows from Lemma 4.

It only remains to analyze the recursive formula T (m) and prove the claimed
bound for it; we omit this part here, the complete proof appears in Section B.

7 Conclusion

Our main contribution is developing a unified recursive framework that we use
to design approximation algorithms for various extensions of the Multicast Prob-
lem. In particular, we consider three generalizations: i. allowing conference calls
involving possibly more than two participants; ii. allowing multiple source and
destination vertices; and iii. allowing capacities for vertices .

A comprehensive summary of all our results can be seen in Tables 1 and 2. A
descriptive summary of the tables also appears in Section A. For the cells in the
tables which are marked with [≤], the proofs have been omitted in this paper,
since they are very similar to the proofs that appear in the paper and can be
derived from them with slight modifications.

Designing a poly-logarithmic approximation algorithm for the multicommod-
ity multicast problem is the most important remaining open problem from our
work.

Approximation Algorithms for Generalized Multicast Problems 581

Table 1. This table summarizes our approximation ratios and additive approximations
for the Multicast Problem

Multicast Single-source Multi-commodity

Non-capacitated O(log k/ log log k) [7] 2O(log log k·√log k)

ω(3− λ) [5] O
(
log n · OPT +

√
n log2 n

⎧
O
⎪

log3 n
log log n

· (OPT +ρ(G))
⎨

Capacitated O(log k) 2O(log log k·√log k) [∗]

Table 2. This table summarizes our hardness results and approximation ratios for the
Hypercast Problem

Hypercast Single-source Multi-commodity

Non-capacitated O(log k · log n ·D) 2O(
√

log k(log log n+logD))

ω(D1/3) [∗]
Capacitated O(log k · log n ·D) 2O(

√
log k(log log n+logD))

[∗] [∗]

Acknowledgments. We would like to thank Takuro Fukunaga for discussions
in the early stages of this work. We also thank Subhash Khot for pointing out
the hardness result of [11] on finding large independent sets and Guy Kortsarz
for his comments about the choice of the presentation.

References

1. Awerbuch, B., Kutten, S., Peleg, D.: On buffer-economical store-and-forward dead-
lock prevention. IEEE Transactions on Communication 42, 2934–2937 (1994)

2. Baker, B., Shostak, R.: Gossips and telephones. Discrete Math 2, 191–193 (1972)
3. Censor-Hillel, K., Haeupler, B., Kelner, J., Maymounkov, P.: Global Computation

in a Poorly Connected World: Fast Rumor Spreading No Dependence on Conduc-
tance. In: STOC: ACM Symposium on Theory of Computing (2012)

4. Dvork, T.: Chromatic Index of Hypergraphs and Shannons Theorem. European
Journal of Combinatorics 21(5), 585–591 (2000)

5. Elkin, M., Kortsarz, M.G.: Combinatorial logarithmic approximation algorithm for
directed telephone broadcast problem. In: Proceedings of the Thiry-fourth Annual
ACM Symposium on Theory of Computing, STOC 2002 (2002)

6. Elkin, M., Kortsarz, G.: An approximation algorithm for the directed telephone
multicast problem. Algorithmica 45(4), 569–583 (2006)

7. Elkin, M., Kortsarz, G.: Sublogarithmic approximation for telephone multicast.
In: SODA 2003 Proceedings of the Fourteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, pp. 76–85 (2003)

8. Feige, U., Kilian, J.: Zero knowledge and the chromatic number. J. Comput. System
Sci. 57, 187–199 (1998)

9. Grigni, M., Peleg, D.: Tight bounds on minimum broadcast networks. SIAM J.
Discrete Math. 4, 207–222 (1991)

582 A. Nikzad and R. Ravi

10. Guha, S., Bar-noy, A., Naor, J., Schieber, B.: Multicasting in heterogeneous net-
works. In: STOC 1998 Proceedings of the Thirtieth Annual ACM Symposium on
Theory of Computing, pp. 448–453 (1998)

11. Guruswami, V., Sinop, A.K.: The complexity of finding independent sets in
bounded degree (hyper)graphs of low chromatic number. In: SODA 2011 Pro-
ceedings of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 1615–1626 (2011)

12. Hajnal, A., Milner, E.C., Szemeredi, E.: A cure for the telephone disease. Canad
Math. Bull 15, 447–450 (1976)

13. Haeupler, B.: Simple, Fast, and Deterministic Gossip and Rumor Spreading. In:
SODA: ACM-SIAM Symposium on Discrete Algorithms (2013)

14. Kortsarz, G., Peleg, D.: Approximation algorithms for minimum time broadcast.
SIAM Journal on Discrete Methods 8, 401–427 (1995)

15. Kossinets, G., Kleinberg, J., Watts, D.: The structure of information pathways in a
social communication network. In: Proceedings of the 14th SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 435–443 (2008)

16. Leighton, F.T., Lewin, D.M.: Global Hosting System, US Patent 6108703 (Issued
August 22, 2000)

17. Onus, M., Richa, A.W.: Minimum maximum-degree publish-subscribe overlay net-
work design. IEEE/ACM Transactions on Networking, TON (2011)

18. Proskurowski, A.: Minimum broadcast trees. IEEE Trans. Comput. C-30, 363
(1981)

19. Raghavan, P.: Probabilistic construction of deterministic algorithms: Approximat-
ing packing integer programs. In: 27th Annual Symposium on Foundations of Com-
puter Science (FOCS 1986), pp. 10–18 (1986)

20. Ravi, R.: Rapid rumor ramification: approximating the minimum broadcast time.
In: 35th Annual Symposium on Foundations of Computer Science, FOCS 1994
(1994)

21. Scheuermann, P., Wu, G.: Heuristic Algorithms for Broadcasting in Point-to-Point
Computer Networks. IEEE Transactions on Computers 33(9), 804–811 (1984)

22. Schrijver, A.: Combinatorial optimization: Polyhedra and Eficiency, ch. 21.
Springer (2003)

23. Tijdeman, R.: On a Telephone Problem. Nieuw Arch. Wisk. 19, 188–192 (1971)

A Roadmap for the Appendix

The main results that appear in the Appendix are listed below.

1. In Section C, we present a very simple O(log k)-approximation for the Ca-
pacitated Multicast Problem.

2. In Section D, we develop our simple algorithm further and obtain a O(log k ·
logn · D)-approximation for the Hypercast Problem, where D is the maxi-
mum size of a hyperedge. The dependence on D is natural due to our strong
hardness results for the Hypercast Problem (see Section I): we prove that
for any constant δ > 0, the Hypercast Problem is Σ(n1−Σ)-hard. But this
hardness result, as our algorithm also suggests, only holds for large values of
D ≥ Σ(n1−Σ). The more natural and interesting case though, is when D is
small, for which we provide a hardness ratio of Σ(D1/3) under Khot’s 2-to-1
conjecture.

Approximation Algorithms for Generalized Multicast Problems 583

3. By modifying our algorithm for the Multi-commodity Multicast problem,
we obtain two other algorithms for the same problem in Appendices
G and H, which respectively produce solutions of length at most

O
⎝
logn ·OPT +

⊆
n log2 n

⎞
and O

⎧
log3 n

log logn · (OPT + ε(G))
⎨

.

4. In Section H we show an (approximate) equivalence between the Multi-
commodity Multicast problem and the following Minimum Poise Subgraph
problem: find a subgraph H of G in which the Poise of H [20], namely, the
maximum pairwise distance in H between all pairs (si, ti) plus the maximum
degree in H , is minimized. We prove that any π-approximation algorithm

for either of these problems gives an O
⎧
π · log3 n

log logn

⎨
-approximation for the

other one.

Below, we briefly discuss these results an their connection to each other.
The algorithm for the Capacitated Multicast Problem is presented in Section

C. As it can be seen in the tables, the approximation ratio for the capacitated
problems almost always matches the ratio for the associated non-capacitated
version, which means our framework can handle capacities very well.

The algorithm for the Hypercast Problem appears in Section D. In the Hyper-
cast Problem, note that despite the strong Σ(n1−Σ) hardness result, which holds
only for the less interesting case of D ≥ Σ(n1−Σ), we develop a O(log k · log n ·D)-
approximation. It is not hard to see that this result is tight up to logarithmic
factors if D ≥ nΣ for some constant δ > 0 (the proof is very similar to the proof
for the Σ(n1−Σ)-hardness). For the general case when we have no restrictions on
D, we can also prove an Σ(D1/3)-hardness under Khot’s 2-to-1 conjecture. All
these hardness results appear in the Section I.

Although there is a significant gap between the existing hardness ratio and
the approximation ratio provided for the Multicommodity Multicast Problem,
we are able to tighten this gap when OPT ≥ Σ(

⊆
n). For this case, we have

a O(log2 n)-approximation as a consequence of an alternate algorithm that we
present in Section G, which uses at most O(log n · OPT +

⊆
n log2 n) rounds.

On the way to obtaining this additive approximation, we prove results for the
special case when the instance has a small number of terminals in Section F. For
given demand pairs P , this variant finds a schedule of length O(|P | + D) where
D denotes diamP (G).

To derive the result for small number of terminals, we develop and employ an
extension of our framework for asymmetric capacities in Section E. Note that
our results on this model also apply for the GOSSIP models recently studied in
the literature [3,13] to give relative approximation algorithms in contrast to the
more absolute guarantees provided in these papers in terms of the size of the
graph or its diameter.

We shed more light on the Multicommodity Multicast problem by showing
that it is (approximately) equivalent to a Minimum Poise Subgraph Problem, i.e.
the problem of finding a subgraph H of the graph G which minimizes ε(H) +
diamP (H). More precisely, we show that any π-approximation algorithm for

either of these problems gives an O
⎧
π · log3 n

log logn

⎨
-approximation for the other

584 A. Nikzad and R. Ravi

one. This equivalence is formally proved in Section H. As a consequence of this
equivalence, we obtain an algorithm which guarantees to produce a schedule

of length at most O
⎧

log3 n
log logn · (OPT + ε(G))

⎨
. Note that this gives a poly-

logarithmic approximation in the instances when OPT = Σ(ε(G)).

B Complete Proof of Theorem 2

Proof (of Theorem 2). Let T (m) denote the approximation factor of our algo-

rithm. By induction on m, we prove that T (m) ≡ 2Σ log logm.
√
logm, for any fixed

δ > 6. To do so, we provide an upperbound for T (m) as follows:

T (m) ⊆ 8 logm·
(

2m logm

ψ(m)
· L + 7 logm · (6L+ 4 logm) + T (ψ(m)) · (43 logm · L+ 28 log2 m)

)

×1

L

Before analyzing this recurrence relation, we show that its right-hand side
gives a valid upperbound on T (m): The last coefficient in the right-hand side,
i.e. 1

L , is due to the definition of approximation ratio of an algorithm. The first
coefficient, i.e. 8 logm, stands for Line 7 of the algorithm, as a result of the
(potential) sparsification. It remains to analyze the middle coefficient.

The summand 2m logm
ψ(m) ·L is an upperbound on the number of rounds used in

Phase 2 of the algorithm. The two other summands bound the number of rounds
used in Phase 3 of the algorithm. We justify the latter fact separately as follows.

The summand 7 logm · (6L + 4 logm) is an upperbound on the number of
rounds used in Lines 21 and 24 overall. Since only the schedule S is run in these
lines, we equivalently show that |S| ≡ 7 logm · (3L + 2 logm), which is done in
Lemma 4.

Finally, we verify that the summand T (Ω(m)) · (43 logm · L + 28 log2 m) is an
upperbound on the number of rounds used in Line 23 of the algorithm: Let LY

be the optimal number of rounds needed to solve I(G, Y). By the induction hy-
pothesis, the number of rounds used in Line 23 is at most T (Ω(m)) · LY . So, it’s
enough to show that LY ≡ 43 logm ·L+28 log2 m. We do this by giving a feasible
solution of length at most 43 logm · L + 28 log2 m for I(G, Y): Run the schedule
S, then run L, and finally run the schedule S in the reverse order. The claimed
upperbound for the length of this schedule simply follows from Lemma 4.

Now, we prove the claimed bound for T (m). First, we simplify the above
recurrence relation and write a slightly weaker version of it:

T (m) ≡ 16 log3 m · m

Ω(m)
+ 1128 log3 m · T (Ω(m)) (1)

Recall that Ω(m) = 2logm−√
logm. Use the induction hypothesis to bound the

right-hand side of (1) by

≡ 16 log3 m.(2
√
logm + 27+Σ log log ψ(m).

⊆
log ψ(m))

≡ 212+3 log logm+Σ log log ψ(m)·
⊆

log ψ(m)

Approximation Algorithms for Generalized Multicast Problems 585

where in the last inequality, we have used the fact that
⊆

logm ≡ 7+δ log log Ω(m).⎩
log Ω(m) for all m ≥ 1. So, the proof is complete if we show that

12 + 3 log logm + δ log log Ω(m) ·
⎩

log Ω(m) ≡ δ log logm.
⎩

logm

Observe that:

12+3 log logm+λ log log Λ(m)·
⎩

log Λ(m) ≤ λ log logm·
(

12

λ log logm
+

3

λ
+

⎩
log Λ(m)

)
(2)

Since we have
⎩

logm−⊆
logm ≡ ⊆

logm − 0.5 for all m ≥ 4, then we can
bound the right-hand side of (2) by

≡ δ log logm ·
(

12

δ log logm
+

3

δ
+
⎩

logm− 0.5

)
(3)

And since for any fixed δ > 6, there exists a fixed positive integer mΣ such that
12

Σ log logm + 3
Σ < 0.5 for all m ≥ mΣ, then we can bound (3) by δ log logm ·⊆logm,

which finishes the proof.

C The Capacitated Multicast Problem

In this section, we bring in the notion of capacity of a vertex to our model for
the Multicast Problem, and allow a vertex to be in possibly more than a single
call in each round; the maximum number of phone calls that a vertex can have
in each round is called the capacity of the vertex.

Definition 3. In the Capacitated Multicast Problem (CM) we are given
an instance of the Multicast problem along with an integer cv for each vertex
v ≥ V as its capacity. The only difference with the Multicast Problem is that
here, each vertex can be in up to cv phone calls in a round, i.e. in each round,
we can pick a subgraph H of G such that the degree of each vertex v in H is at
most cv, and arrange phone calls between the endpoints of all the edges in H.
Note that we can assume w.l.o.g. that the capacities cv are all at least one since
we can delete nodes that have zero capacity from the problem.

In this section, we present an O(log k)-approximation for the Capacitated
Multicast Problem.

C.1 Preliminaries

First, we need to define a new notion of b-matchings due to the presence of
capacities. Given that c is a capacity vector for the vertices of Y , i.e. a |Y |-
dimensional vector of positive integers such that cy denotes the capacity of the
vertex y ≥ Y , we define a c-matching in H to be a subset M of the edges of H
such that each vertex of X is incident to exactly one edge of M and each vertex
y ≥ Y is incident to at most cy edges of M .

586 A. Nikzad and R. Ravi

We also need to refine the definition of the degree of a spider. When we have
capacities cv on the vertices, we can state a lemma similar to Lemma 1. Define

the relative degree of a spider S, denoted by rdeg(S), to be ∪deg(S)
cv

∩ where v is
the center of the spider. Then we have:

Lemma 5. Using a non-lazy schedule, the center of a spider S can send (broad-
cast) a message to the rest of its vertices in rdeg(S) + len(S) − 1 rounds.

C.2 The Algorithm

Our algorithm is an adaptation of Algorithm Multicast and the only difference
between our algorithm and Algorithm Multicast is in Phase 4. Before proceeding
to more details about Phase 4, first verify that Phases 1-3 are still valid and can
be executed with the presence of capacities. Particularly in Phase 3, all we do
is using matchings for sending the message through the paths in P , and this is
possible since all the capacities are at least 1.

Our goal in Phase 4, assuming that the vertices in V (P) have received the
message, is to inform the rest of the terminals in O(L) rounds.

To do so, we find a family of vertex-disjoint spiders such that each of them
has a length at most 2L and a center belonging to V (P), moreover, we need
the spiders to contain all the terminals in R\V (P). Assuming that S is such
a family of spiders, by Lemma 5 we can inform the set R\V (P) in at most
rdeg(S) + len(S) − 1 rounds, where rdeg(S) = maxS≥S rdeg(S). We show we
can find a family S with rdeg(S) ≡ L and len(S) ≡ 2L, which implies the set
R\V (P) can be informed in at most 3L− 1 rounds in Phase 4. The other parts
of the analysis will be identical to the analysis of Algorithm Multicast . So, in
the rest of this section, we only show how to find the desired family of spiders.

Construct the bipartite graph H [R\V (P), V (P)] similar as before, but instead
of finding the smallest integer b such that H has a b-matching, find the smallest b
such that H has a (b ·c)-matching, where c is the capacity vector for the vertices
in V (P). Then, using the (b · c)-matching, construct the family of spiders M
identical to the way we construct them in subsection 5.2. Following the proof of
Lemma 2, it can be seen that len(M) ≡ 2L, and it only remains to show that
rdeg(M) ≡ L.

Consider the optimal multicast schedule which uses exactly L rounds. Let
E∈ be the subset of the edges of G which are used in the optimal schedule
and G∈ be the subgraph of G with E∈ as its edge set. Note that G∈ is not
necessarily a tree as in the previous section; however, the maximum degree of
any node v in E∈ is cv · L by the optimality of the schedule. Now, for each
v ≥ R\V (P), define M ∈

v to be an arbitrary shortest path in G∈ from v to f(v),
where f(v) = arg minu≥V (P) dG⊥(v, u).

We prove that
⎛

v≥R\V (P)

(v, f(v)) is an (L · c)-matching in H , which shows the

existence of a (b · c)-matching in H with b ≡ L, which implies rdeg(M) ≡ L. To
prove the claim, just note that the family of paths {M ∈

v : v ≥ R\V (P)} in G∈ are
edge-disjoint (otherwise, it contradicts the maximality of P). This means for any

Approximation Algorithms for Generalized Multicast Problems 587

v ≥ V (P), there are no more than cv · L of these paths with the same endpoint
v, since otherwise, the degree of v in G∈ is more than cv · L, a contradiction.

Consequently,
⎛

v≥R\V (P)

(v, f(v)) is an (L · c)-matching in H . This proves the

claim.

D The Hypercast Problem

In this section, we study the problem with conference calls, i.e. calls involving
(possibly) more that two, rather than only two, persons. We formally define the
Hypercast problem as follows.

Definition 4. In the Hypercast problem, we are given a hypergraph G(V,E)
where there can be a conference call between two or more nodes if G has a
hyperedge containing exactly these nodes. Similar to the Multicast problem, we
are also given a source vertex r and a set of terminals R. Our goal is to deliver a
message from the source vertex r to all the terminals in the minimum number of
rounds. To do this, the vertices of the graph can communicate in rounds: In each
round, we pick a matching of G, i.e. a set of vertex-disjoint edges, and for each
edge of the matching, we arrange a conference call containing all the vertices in
that edge. If any of the vertices in the conference call knows the message, the
others will also know it after the call.

In this section, we present an O(log k · logn ·D)-approximation for the hyper-
cast problem, where D denotes the maximum size of an edge in the hypergraph
G. Unlike the algorithm for Multicast Problem which was purely combinatorial,
this algorithm needs to set up a Linear Program for designing some parts of the
multicast schedule.

The dependence on D in the approximation factor is natural due to our strong
hardness results for the Hypercast Problem (see Section I): we prove that for
any constant δ > 0, the Hypercast Problem is Σ(n1−Σ)-hard. But this hardness
result, as our algorithm also suggests, only holds for large values of D ≥ Σ(n1−Σ).
The more natural and interesting case though, is when D is small, for which we
provide a hardness ratio of Σ(D1/3) under Khot’s 2-to-1 conjecture.

D.1 Preliminaries: Spiders and Hypergraphs

The set of vertices and (hyper)edges of a hypergraph G are respectively denoted
by V (G) and E(G). We say an edge e intersects a subset of vertices S ∈ V (G)
(or another edge e∈) if e contains at least one vertex of S (one vertex of e∈).
With abuse of notation, we denote this by e ⊕ S ◦= ⊂ (respectively e ⊕ e∈ ◦= ⊂).
A subset M ∈ E(G) is called a matching if any two edges in M have an empty
intersection.

A path P is a sequence of edges such as e0, . . . , em where ei ⊕ ej ◦= ⊂ iff
|i − j| ≡ 1. The length of P is denoted by len(P) and is equal to m. Having

588 A. Nikzad and R. Ravi

the definition of the length of a path, the notions of connectivity, distance and
diameter in a hypergraph are trivially adapted from simple graphs.

A spider S is a family of paths P1, . . . , Pk such that the first edge of all of
them is the same, and moreover, they will be a family of vertex-disjoint paths if
their first edge is deleted. The set of vertices in the first edge (or simply, the first
edge, when it’s clear from the context) is called the center of S. By adapting the
definition of length of a spider in simple graphs, we define len(S) = maxi len(Pi).

D.2 Outline of the Algorithm

Our algorithm is similar to Algorithm Multicast presented in Section 5; it is a
recursive algorithm with 4 phases. In Phase 1 of the algorithm, we reduce the
given instance to a smaller instance. In Phase 2, we solve the smaller instance
recursively and as the result, inform a subset of the terminals. And finally in
Phases 3 and 4, we inform the rest of the vertices that didn’t receive the message
in Phase 2. First we explain each of these phases briefly, and then present the
full description of the algorithm and its analysis.

Phase 1. This phase starts with finding a family of vertex disjoint paths P
each of length (number of the hyperedges) at most 4L such that the first and
last edge of each path intersects R. Similar to Algorithm Multicast , we find these
paths greedily, i.e. we start with P = ⊂ and using any shortest path algorithm
for hypergraphs, we search for a new path in G[V (G)\V (P)] which connects two
of the terminals. Moreover, length of the path must be at most 4L. We continue
until we can add no more such paths to P . Then, pick an arbitrary terminal
from the first edge of each path and let the obtained set of vertices be R∈.

Phase 2. Solve the multicast problem for the new set of terminals R∈ recursively
and run the obtained schedule. (So, all the vertices in R∈ will receive the message
by the end of this phase.)

Phase 3. Inform all the vertices belonging to V (P) in 4L rounds. This is possible
since in Phase 2, we have already informed at least one vertex of each path in P .

Phase 4. For each of the uninformed terminals, namely v ≥ R\V (P), find a
path Mv which connects v to one of the informed vertices (note that the set
of the informed vertices is currently V (P)). These paths will be guaranteed to
satisfy the following properties:

Approximation Algorithms for Generalized Multicast Problems 589

������������

��
��
��
��

��
��
��
��
��
��
��
�� }

��
��
��
��

��
��
��
��
��
��
��
��

��������

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

centers

P

spider 1 spider 2

Fig. 3. The gray vertices are in R\V (P). Despite this figure, centers of the spiders can
possibly intersect.

1. For each v ≥ R\V (P), the first edge of Mv contains v and the last edge
intersects V (P). Moreover, no other edge of Mv intersects V (P).

2. The length of each path is at most 2L.
3. The paths would be vertex disjoint if the last edge of each path is removed.

In other words, M =
⎛

v≥R\V (P)

Mv is a union of spiders of length at most 2L

and we will inform the vertices in R\V (P) using these spiders (see Figure 3).
However, this is not as simple as it is in Section 5, since unlike there, the centers
of spiders may intersect. So, bounding the degree and length of each of the
spiders is not enough to bound the total number of rounds needed for informing
R\V (P). We need the family of spiders to satisfy an additional constraint, which
we call z-disjointness. We define this concept and then describe Phase 4 for the
Algorithm. The other 3 Phases remain unchanged.

D.3 Disjoint and Fast Spiders

Definition 5. A family F of spiders is z-disjoint if they satisfy the following
conditions.

– If 2 edges which belong to 2 different spiders intersect, then both of them are
the centers (also called first edges earlier) of spiders.

– No vertex is in more than z of the centers.

The following lemma gives an upperbound on the broadcast time in a z-
disjoint family of spiders. Recall that for a family F of spiders, deg(F) =
maxS≥F deg(F) and len(F) = maxS≥F len(S).

Lemma 6. We are given a z-disjoint family of spiders F , such that for each
spider, at least one vertex in its center is informed. Assuming that D is the
maximum size of a hyperedge, we can find a broadcast schedule for F with a
length at most len(F) + 2zD in polynomial time.

590 A. Nikzad and R. Ravi

Proof. Let H be a hypergraph where V (H) is the set of the vertices which belong
to the center of at least one spider in F . Also, let E(H) be the set of the centers of
spiders in F , i.e. each of the centers is a hyperedge in H. We claim ψ∈(H) ≡ 2zD.
If we prove this claim and find such a coloring in polynomial time, we can easily
convert it to a broadcast schedule for F with a length at most len(F) + 2zD as
follows: Dedicate one round to each color, e.g. assume that rounds 1, . . . , ψ∈(G)
are respectively dedicated to the colors 1, . . . , ψ∈(G). Then for each color i, pick
the subset of the edges with color i as the matching used in round i. Having that
each hyperedge in H contains an informed vertex implies we can inform V (H) in
ψ∈(H) rounds. Also, we can inform the rest of the vertices in F in an additional
len(F) rounds, due to the disjointness of the spiders legs. This means the length
of the obtained broadcast schedule is at most ψ∈(H) + len(F). To complete the
proof, we show that ψ∈(H) ≡ 2zD and find a coloring with at most 2zD colors
in polynomial time.

Let the strong degree of a vertex v, denoted by d̄(v), be the summation, over
all u ◦= v, of the number of hyperedges that contain both v and u. Also, let
ε̄(H) = maxv≥V (H) d̄(v). It’s a well-known fact that ψ∈(H) ≡ 2ε̄(H), and in
fact, we can find such a coloring by a greedy algorithm in polynomial time [4].

Since H is loop-less, d̄(v) is at most the summation of the size of the hyper-
edges that contain v. Also, note that F is z-disjoint, which means v is in at
most z hyperedges in H. It implies ε̄(H) ≡ zD since the maximum size of a
hyperedge is at most D. Consequently, ψ∈(H) ≡ 2zD.

Recall that our goal in Phase 4 is informing the set of uninformed vertices,
R\V (P), using a family F of spiders. If we can find a z-disjoint family of spiders
F such that both z and len(F) are small, then by Lemma 6 we get a short
broadcast schedule for F , and consequently, a short schedule for the original
hypercast instance. The properties required for the family F are formally defined
below:

Definition 6. A family F of spiders is called fast if it satisfies the following
properties:

i. len(F) ≡ 2L.
ii. F is z-disjoint for z = O(L log n)
iii. The center of each spider in F has a non-empty intersection with V (P).
iv. Each vertex in R\V (P) belongs to exactly one of the spiders in F .

Lemma 7. If we can find a fast family of spiders for any given Hypercast in-
stance, then we can design an O(log k · logn ·D)-approximation for the Hypercast
problem.

Proof. Our recursive algorithm for the Hypercast problem reduces the number
of terminals by at least a factor of 2 in each level of the recursion. This is easily
observable by the definition of R∈ in Phase 2 of the Algorithm: from the two
terminals connected by a path in P , only one of them is in R∈. So, the depth of
the recursion is at most log k.

Approximation Algorithms for Generalized Multicast Problems 591

The proof is complete if we show that each level of the recursion takes at most
O(LD · logn) number of rounds. First, see that the cost of the optimal solution
does not increase when the number of terminals decreases in the next levels of
recursion. So, if we find a fast family F at each level of the recursion, then by
Lemma 6 we spend at most O(LD · logn) rounds in that level. This means the
length of the obtained schedule for the given Hypercast instance would be at
most O(LD · log k · logn).

So, by Lemma 7, all we need to do in Phase 4 is finding a fast family F and a
broadcast schedule for it. In the rest of this section, we describe an algorithm for
finding a fast family of spiders, given that P is maximal and V (P) is informed.

D.4 Finding a Fast Family of Spiders

The idea for finding the family of spiders is similar to Section 5, except that
instead of a bipartite graph, we construct a tripartite graph H [A,B,C], where
A = R\V (P), B has a vertex for every hyperedge which intersects both V (P)
and V (G)\V (P), and C = V (G). Note that B is in fact the set of potential
centers for the family of spiders F .

The edges of H , which lie only between the partitions A,B and B,C, are
defined as follows: There is an edge between the vertices v ≥ A and e ≥ B iff
there is a path in G[V (G)\V (P)] of length at most 2L, such that its first edge
contains v and its last edge intersects with the hyperedge e. Also, there is an
edge between the vertices e ≥ B and u ≥ C iff the hyperedge e contains the
vertex u.

The induced bipartite graph between the partitions A,B, denoted by H [A,B]
is used in a way similar to Section 5.2, i.e. any |A|-matching in H [A,B], e.g. M ,
represents a family of spiders, and more precisely, any connected component in
M , represents a spider. Observe that any connected component of M forms a
star. The vertex e in the center of the star, represents the center of the spider,
and the edges of the star, represent the legs of the spider, i.e. the paths which
are attached to the center of the spider. Recall that each edge of H [A,B] is
associated with a path in G. Any two legs, whether or not belonging to the same
spider, are vertex-disjoint, due to the maximality of P .

The family of spiders represented by M , namely F , is z-disjoint for z = |B|.
It is easy to verify that F is z-disjoint if each vertex in C is adjacent to at most
z of the centers of the stars in M .

For F to be a fast family, we only need to choose M in such a way that F
becomes z-disjoint for z = O(L logn), and this is where we use partition C of
H . To be more formal, for any subset S ∈ B, define the weight of S, denoted by
w(S), to be maxv≥C |S⊕N(v)|. Now, finding a fast family F can be reformulated
as finding a subset S ∈ B, such that N(S) = A and w(S) ≥ O(L logn). If we
find such a subset S, then we can easily find a fast family by choosing any |A|-
matching in H [A,S]. The family of spiders associated with the |A|-matching
would be w(S)-disjoint, and consequently, fast.

All that remains to do is finding such a subset S. First, we show that there
exists such S, and then we present an algorithm for finding it in Section D.5.

592 A. Nikzad and R. Ravi

Lemma 8. There exists a subset S ∈ B with N(S) = A and w(S) ≡ L.

Proof. Let L be an optimal schedule for the given Hypercast instance. Note that
|L| = L. Also, let J be a hypergraph where V (J) = V (G) and E(J) is the set
of the hyperedges used in L. Delete the isolated vertices of J . Then clearly, J is
connected and diam(J) ≡ 2L. So, for each vertex v ≥ R\V (P), J should contain
a path of length at most 2L connecting v to a vertex in V (P). If there are many
such paths, then select one of them arbitrarily and define g(v) to be the first
edge on this path (closest to v) which intersects both V (P) and R\V (P).

By the definition of partition B, it contains a vertex for each hyperedge g(v),

which we denote by g∈(v). We prove that S =
⎛

v≥R\V (P)

g∈(v) satisfies the re-

quirements of the lemma: For all v ≥ R\V (P), since there is an edge between v
and g(v) in H [A,B], then N(S) = A. Also, since each vertex u ≥ V (G) is in at
most L of the hyperedges of J , then |N(u) ⊕ S| ≡ L for all u ≥ C, which means
w(S) ≡ L.

D.5 An LP-Rounding Approach for Finding Fast Spiders

Given a tripartite graph H [A,B,C], we want to find a subset S ∈ B which
minimizes w(S) and satisfies N(S) = A. Here we present a 8 lnn-approximation
for this problem. This result, along with Lemma 8 implies that we can find a
subset S such that w(S) ≡ 8L lnn and N(S) = A.

To solve the above optimization problem, first we solve the fractional version
of it by writing a linear program and then, using randomized rounding, we round
the fractional solution of the linear program and obtain an integral one. To write
this LP, a variable xi is associated with each vertex i ≥ B.

min z

s.t.
⎪

i≥N(u)

xi ≥ 1, ∅u ≥ A (1)

z ≥
⎪

j≥N(v)

xj , ∅v ≥ C (2)

0 ≡ xi ≡ 1, ∅i ≥ B (3)

Note that there is a one-to-one correspondence between the integral solutions
of this LP and the subsets S such that N(S) = A. To see this, let x be an
integral solution, then the set S = {i : xi = 1} would be a feasible solution for
the original problem, because constraint (1) is enforcing N(S) = A. The reverse
direction can also be verified easily: if N(S) = A for a subset S, then x = �S , i.e.
the characteristic vector of S, is a feasible integral solution for the LP. Also, note
that constraint (2) is enforcing z = w(S). However, we can’t solve the integer
program in polynomial time, and so, we relax the program by adding constraint
(3) and use the optimal solution of the obtained LP as a lower bound on the
optimal integral solution.

Approximation Algorithms for Generalized Multicast Problems 593

Let x̄ be the optimal solution (assignment of values to the variables) for this
LP. Also, let the optimal objective values for the integer program and the (frac-
tional) LP be denoted by OPT,OPTf respectively. We round x̄ to obtain a
feasible integral solution x̊ with objective value at most 8 lnn · max{1, OPTf}.
This gives an (8 lnn)-approximation since OPTf ≡ OPT and 1 ≡ OPT . The
rounding procedure is described below.

The Rounding Procedure. For each j ≥ B, flip a coin 2 lnn times indepen-
dently where the coin comes up heads with probability x̄j . If heads were observed
at least once, then pick j to be in S. More formally, we create 2 lnn independent
random variables xj,i such that xj,i = 1 with probability x̄j and xj,i = 0 with

probability 1 − x̄j . We pick j to be in S iff
∑2 lnn

i=1 xj,i ≥ 1.

Lemma 9. The rounding procedure outputs a set S such that with probability
at least 1 − 2

n both of the following conditions are satisfied: N(S) = A, and
w(S) ≡ 8 lnn · max{1, OPTf}.
Proof. First we prove that the N(S) = A with high probability. For any u ≥ A,
we compute the probability that u is not covered, i.e. none of the neighbors of
u are in S:

Pr [u is not covered] =
∏

j≥N(u)

(1 − x̄j)
2 lnn ≡

∏
j≥N(u)

e−x̄j2 lnn ≡ 1

n2

An application of the union bound over the nodes implies that the probability
of one of the elements of A not being covered, i.e. N(S) ◦= A, is at most 1

n .
For the second condition, we claim that w(S) ≡ 8 lnn · max{1, OPTf} with

high probability. To prove this, we fix a vertex v ≥ C and compute an upper
bound on the probability of having |N(v) ⊕ S| > 8 lnn · max{1, OPTf}. Then,
we prove the main claim using a union bound over all v.

More formally, for any v ≥ C we prove that

Pr

⎡
⎣ ⎪
j≥N(v)

x̊j > 2π lnn · max{1, z̄}
⎤
⎦ ≡ 1

n2
(4)

where π = 4 is a fixed constant and z̄ = OPTf . First, observe that

Pr

⎡
⎣ ∑

j∈N(v)

x̊j > 2Σ lnn · z̄
⎤
⎦ ≤ Pr

⎡
⎣ ∑

j∈N(v)

x̊j > 2Σ lnn ·
∑

j∈N(v)

x̄j

⎤
⎦

≤ Pr

⎡
⎣ ∑

j∈N(v)

2 lnn∑
i=1

xj,i > Σ
∑

j∈N(v)

2 lnn∑
i=1

E [xj,i]

⎤
⎦ ≤

(
eα−1

Σα

)μ

(5)

where μ =
∑

j≥N(v)

∑2 lnn
i=1 E [xj,i]. Note that (5) is a direct consequence of the

Chernoff bound. Now we consider two cases: μ ≥ 2 lnn and μ < 2 lnn.

594 A. Nikzad and R. Ravi

In the first case, having μ ≥ 2 lnn implies
⎧

eα−1

θα

⎨μ

≡ 1
n2 , and this proves (4).

On the other hand, if μ < 2 lnn then we have

Pr

⎡
⎣ ⎪
j≥N(v)

x̊j > 2π lnn

⎤
⎦ ≡ Pr

⎡
⎣ ⎪
j≥N(v)

2 lnn⎪
i=1

xj,i >
2π lnn

μ
· μ

⎤
⎦ ≡

(
eν−1

φν

)μ

(6)

where φ = 2θ lnn
μ . Now, since μ < 2 lnn we have

(
eν−1

φν

)μ

≡
⎧ e

π

⎨2θ lnn

≡ 1

n2

This fact, and (6) together imply the correctness of (4) in the second case as
well. By a union bound over all v ≥ C we have

Pr [w(S) > 2π lnn · max{1, z̄}] ≡
⎪
v≥C

Pr

⎡
⎣ ⎪
j≥N(v)

x̊j > 2π lnn · max{1, z̄}
⎤
⎦ ≡ 1

n

which is due to (4). Consequently, the events w(S) > 8 lnn ·max{1, OPTf} and
N(S) ◦= A each happen with probability at most 1

n . This proves the lemma.

E Asymmetric Multicast Problem

In this section, we look at a variation of the Multicast Problem where the phone-
calls are not bidirected. They are directed in the sense that only one vertex will
be the sender, and the other one will be the receiver, i.e. a vertex u can call
another vertex v and send (any number of) messages to v, but then v can not
send any messages to u in the same phonecall. This variation is formally defined
below:

Definition 7. In the Asymmetric Multicast Problem, each vertex v has an out-
capacity c−v as well as an in-capacity c+v , which are respectively the number of
the vertices that v can send messages to, and receive messages from, in a single
round. The objective is identical to the objective of the Multicast Problem.

An asymmetric variation of the Multi-commodity Multicast Problem can also
be defined in a natural way, which we call the Asymmetric Multi-commodity
Multicast Problem (AMM). It is worth mentioning that a natural extension of
Algorithm MM can solve AMM as long as all the capacities are non-zero. We do
not state the algorithm, but the idea of the extension is very similar to the idea
we used for designing the algorithm for the Capacitated Multicast Problem.

Below, we prove a lemma for comparing the lengths of the optimum schedules
for an AMM instance and its corresponding MM instance. This Lemma will be
used later in Section F.

Approximation Algorithms for Generalized Multicast Problems 595

Lemma 10. Assume we are given an AMM instance IA with the set of demand
pairs P such that c−v = c+v = 1 for all v ≥ V (G). Define I(P,G) to be the corre-
sponding MM instance. Also, let LA, L respectively denote the length of optimal
schedules for IA, I. Then, we have L

3 ≡ LA ≡ 2L. Moreover, any schedule of
length l for I can be converted to a schedule of length 2l for IA in polynomial
time, and also, any schedule of length lA for IA can be converted to a schedule
of length 3lA for I in polynomial time.

Proof. First, observe that any schedule S for I can be easily turned into a
schedule SA for IA as follows. For each round in I, we have exactly two rounds
in IA: In each of these two rounds, we use the same matching which is used in
I, e.g. the matching M , except that the edges of M will be used in different
directions in each of these two rounds. Consequently, LA ≡ 2L.

To prove L
3 ≡ LA, we show that given any feasible schedule SA for the instance

IA, we can construct a schedule S for the instance I such that |S| ≡ 3|SA|. This
time, for each round in SA we will have 3 rounds in S.

To see this, first fix any arbitrary round in SA, and let M be the subset of the
(directed) edges used in that round. Note that M is a union of paths and cycles,
due to the fact that all the in-capacities and out-capacities are 1. Consequently,
we can decompose the edges of M into 3 matchings, M1,M2,M3, and use each
of these matchings in one of the 3 rounds in S. Clearly, |S| ≡ 3|SA|, and also,
all of the demand pairs that were satisfied in SA will also be satisfied in the
obtained schedule S.

F An Algorithm for Small Numbers of Terminals

Given a Multi-commodity Multicast instance, we present an algorithm which
finds a schedule of length O(|P | + D) where D denotes diamP (G). Instead of
solving this problem directly, we solve the Asymmetric MM instance where c+v =
c−v = 1 for all v ≥ V (G), and then by Lemma 10, we can convert this schedule to
a schedule for the original MM instance. So from now on, we think of the given
instance as the Asymmetric MM instance described above.

Before presenting our algorithm, we need a few definitions. Let m(u, v) denote
the message that vertex u wants to send to v, given that (u, v) ≥ P . Also, let
M = {m(u, v)|(u, v) ≥ P} be the set of all of the messages.

F.1 The Algorithm

Our algorithm has two Phases. In Phase 1, we find a path for each message
through which the message is sent. In Phase 2, a non-lazy schedule is used to
send all the messages through the paths that were found in Phase 1. A non-lazy
schedule in this context, is a schedule in which the messages are greedily sent to
the next vertex on their paths, i.e. a message does not wait on a vertex if it can
be sent to the next vertex on its path without violating the capacity constraints.

596 A. Nikzad and R. Ravi

Phase 1. For each message m(s, t) we find an s, t-shortest path. Moreover, these
paths are found in such a way that the intersection of any two of them is a path
itself (possibly empty). To find such a family of paths, we introduce the notion
of lightness and choose the lightest path among all the s, t-shortest paths.

Definition 8. Let ≺ be an arbitrary precedence relation defined on E(G). For
any path Q, let Q̄ be the sequence of the edges of Q sorted in a decreasing order
with respect to ≺. A path Q is lighter than Q∈ if Q̄ is lexicographically (dictionary
ordering) smaller than Q̄∈. We abuse the notation and denote this by Q ≺ Q∈.
Also, we extend this definition in the natural way to compare any two subsets of
the edges (not necessarily forming a path).

Definition 9. For any two vertices s, t, define the best s, t-path to be the lightest
path among all the shortest paths between s and t.

All we do in Phase 1, is finding the best s, t-path for each pair (s, t) ≥ P .
We finish the description of this Phase by showing how to find these paths in
polynomial time.

Lemma 11. For any two vertices s, t, the best s, t-path can be found in polyno-
mial time using Dijkstra’s Algorithm.

Proof. The proof has the same analysis as the analysis of Dijkstra’s Algorithm.
Define the weight of the i-th edge in the precedence relation to be 1+2−i−|E(G)|

and run Dijkstra’s Algorithm to find the shortest (s, t)-path with respect to these
weights, the obtained path would be the best (s, t)-path in G.

Phase 2. In Phase 2, we use an arbitrary non-lazy schedule which for all (s, t) ≥
P , sends m(s, t) from s to t through the best s, t-path that was found in Phase 1.

The Algorithm is now completed by describing Phase 2. The schedule pro-
duced in Phase 2 is clearly feasible. In the analysis of the algorithm, we bound
the length of this schedule by 2|P | + D. But before moving to the analysis, we
further exploit the structure of best paths.

F.2 On the Structure of Best Paths

Proposition 3. Assume A,B,C,D ∈ E(G) such that A ≺ B and C ≺ D.
Moreover, we have A ◦∈ C,C ◦∈ A,B ◦∈ D and D ◦∈ B. Then (A↔C) ≺ (B↔D).

Lemma 12. For any 4 (not necessarily disjoint) vertices s, s∈, t, t∈, the intersec-
tion of the best s, t-path and the best s∈, t∈-path is a path itself (possibly empty).

Proof. Let the best s, t-path and the best s∈, t∈-path be respectively denoted by
Ps,t and Ps⊥,t⊥ . For the sake of contradiction, assume the intersection of Ps,t and
Ps⊥,t⊥ is not a path, then, it is easy to verity that there exist two vertices a, b
satisfying the following properties:

Approximation Algorithms for Generalized Multicast Problems 597

1. a, b ≥ V (Ps,t) ⊕ V (Ps⊥,t⊥).
2. If we denote the path connecting a, b in Ps,t by Q, and denote the path con-

necting a, b in Ps⊥,t⊥ by Q∈, then Q and Q∈ are of the same length, E(Q), E(Q∈)
are non-empty, and E(Q) ◦∈ E(Q∈) and E(Q∈) ◦∈ E(Q).

Note that Q,Q∈ must be of the same length due to the fact that Ps,t, Ps⊥,t⊥ are

shortest paths. Let P̂s,t be the path from s to t which is similar to Ps,t except

that it uses Q∈ instead of Q for connecting a and b. Similarly, Let P̂s⊥,t⊥ be the
path from s∈ to t∈ which is similar to Ps⊥,t⊥ except that it uses Q instead of Q∈ for

connecting a and b. Observe that P̂s,t and P̂s⊥,t⊥ can not have repeated vertices,
again due to the fact that Ps,t, Ps⊥,t⊥ are shortest paths.

We claim that Ps,t ≺ P̂s,t and Ps⊥,t⊥ ≺ P̂s⊥,t⊥ . To verify this claim, first note

that E(Ps,t) ◦= E(P̂s,t) and E(Ps⊥,t⊥) ◦= E(P̂s⊥,t⊥), due to the fact that E(Q) ◦∈
E(Q∈) and E(Q∈) ◦∈ E(Q). Also, see that P̂s,t and P̂s⊥,t⊥ are both shortest, but

not the lightest shortest paths. This implies E(Ps,t) ≺ E(P̂s,t) and E(Ps⊥,t⊥) ≺
E(P̂s⊥,t⊥). Now, since the conditions stated in Proposition 3 apply, we can use
this proposition and imply

(E(Ps,t) ↔ E(Ps⊥,t⊥)) ≺ (E(P̂s,t) ↔ E(P̂s⊥,t⊥))

But this is a contradiction, since we have

(E(Ps,t) ↔ E(Ps⊥,t⊥)) = (E(P̂s,t) ↔ E(P̂s⊥,t⊥))

by the definition of P̂s,t and P̂s⊥,t⊥ .

Analysis of the Algorithm. We say a message m is out-waiting for another
message m∈ in round t, if the following conditions hold in that round:

i. m,m∈ have not reached their destinations and currently, they are on the
same vertex u.

ii. The next vertices that m,m∈ should be sent to, are respectively v, v∈, and
we have v ◦= v∈.

iii. In round t, we send m∈ to the next vertex by a phone-call from u to v∈.

Similarly, we say a message m is in-waiting for another message m∈ in round
t, if the following conditions hold in that round:

i. m,m∈ have not reached their destinations and currently, they are on two
different vertices, u, u∈ respectively.

ii. The vertex v is the next vertex that m,m∈ should be sent to.
iii. In round t, we send m∈ to the vertex v by a phone-call from u∈ to v.

The in-delay of a message m ≥ M in a given Multicast schedule α is defined
as the number of rounds in which m has been in-waiting for at least one other
message, and it is denoted by Ω+λ(m), or simply Ω+(m), whenever α is clear
from the context. Similarly, the out-delay of a message m in a given Multicast

598 A. Nikzad and R. Ravi

schedule α is defined as the number of rounds in which m has been out-waiting
for at least one other message, and is denoted by Ω−λ(m). The delay of a message
m, denoted by Ωλ(m), is simply equal to Ω+λ(m) + Ω−λ(m).

The length of any non-lazy schedule α is then clearly at most max(s,t)≥P dG
(s, t) + Ω(m(s, t)), or simply, D + Ω where Ω denotes max(s,t)≥P Ω(s, t).

To bound the length of the non-lazy schedule obtained in Phase 2 by 2|P |+D,
its enough to show that Ω ≡ 2|P |.
Lemma 13. For any message m we have Ω(m) ≡ 2|P |.

Proof. We prove the claim by showing that Ω+(m), Ω−(m) ≡ |P |. To do so, we
show that a message m would not be out-waiting for any other message m∈

in more than one round of the non-lazy schedule, which implies Ω−(m) ≡ |P |.
Similarly, we show that m would not be in-waiting for another message m∈ in
more than one round of the schedule, and imply that Ω+(m) ≡ |P |.

Assume m is out-waiting for m∈, and let Q,Q∈ respectively be the best paths
associated with m,m∈. Since m is out-waiting for m∈, then they are currently
on the same vertex, e.g. u, but the vertices right after u on Q,Q∈ are two dif-
ferent vertices, e.g. respectively v, v∈. Lemma 12 implies the uniqueness of u. In
other words, it says that for any fixed m,m∈, there is no more than one 5-tuple
(m,m∈, u, v, v∈) satisfying the properties above. Consequently, m would out-wait
for m∈ in at most one round, which means Ω−(m) ≡ |P |.

Now, assume m is in-waiting for m∈, and let Q,Q∈ respectively be the best
paths associated with m,m∈. Since m is in-waiting for m∈, then they are currently
on different vertices, e.g. u, u∈, but the vertices right after u, u∈ on Q,Q∈ are the
same, e.g. the vertex v. Again, Lemma 12 implies the uniqueness of the 5-tuple
(m,m∈, u, u∈, v). Consequently, m would in-wait for m∈ in at most one round,
which means Ω+(m) ≡ |P |.

Theorem 3. The length of the non-lazy schedule is at most 2|P | + D.

Proof. Recall that length of the schedule is bounded by Ω + D. By Lemma 13
we have Ω ≡ 2|P |, which implies length of the schedule is at most 2|P | + D.

G An Additive Approximation Algorithm

In this section, we provide an algorithm for the MM Problem which uses no
more than O(log n ·OPT +

⊆
n log2 n) rounds. Before presenting the algorithm,

we need the following definition.

Definition 10. During the running time of a broadcast schedule, a pair of ver-
tices (u, v) is called active if either (u, v) or (v, u) is an unsatisfied demand pair,
i.e. the message from the source node is not yet received by the sink node. A
subset of vertices X is called active, if there exist some active pair (u, v) such
that u ≥ X and v ◦≥ X. In particular, a terminal u is called active if there is
some vertex v such that (u, v) is active.

Approximation Algorithms for Generalized Multicast Problems 599

Our algorithm has 4 phases. In Phase 1, we select a set C of at most
⊆
n

vertices from G, which we call the set of centers. In Phase 2 we find a schedule
S with length O(

⊆
n) which sends each vertex v ≥ R\C to one of the centers,

namely f(v). Overall, our goal in Phases 1 and 2 is to send all the messages to
the set of centers. In Phase 3, we solve another MM instance defined on G, in
which the set of demand pairs is P ∈ = {(f(u), f(v))|(u, v) ≥ P}. In Phase 4,
we simply run the schedule S in the reverse order to complete the information
received by every f(v) to the corresponding v. We describe each of these phases
in more details, and then formally present the algorithm.

Phase 1. The goal in this phase is finding and running a schedule which we call
S0. First, find two families of vertex-disjoint connected subgraphs of G, namely
T and T ∈. The subgraphs in T , T ∈ are called the components of T , T ∈, or simply
components, whenever it’s clear from the context. These components will be
chosen in such a way that we can broadcast within each of them in at most

⊆
n

rounds, which also means this can be done simultaneously for all of them, since
they’re vertex disjoint.

To construct T , repeatedly find vertex-disjoint trees of size
⊆
n: Order the

vertices of G arbitrarily and visit the vertices in that order. When visiting a
vertex v, run DFS to find a tree of size

⊆
n rooted at v, which does share any

vertices with the trees (of size
⊆
n) that are found previously. After visiting all

the vertices of G, assume T = {T1, . . . , Tk} is the family of the trees we have
found and C = {r1, . . . , rk} is the set of their roots where ri is the root of Ti.

Find an arbitrary spanning tree in each component of G[V (G)\V (T)], and
let the obtained set of trees be T ∈ = {T ∈

1, . . . , T
∈
k⊥}. Clearly, any tree in T ∈ has

less than
⊆
n vertices since otherwise, another tree could have been added to T .

So, there exist a broadcast schedule of length at most
⊆
n to transmit messages

from the root to all nodes in each component in T , T ∈. By running this schedule
twice, first in the reverse order to the root and then regularly from the root, we
can inform all the vertices in a component about the information of the rest of
the vertices in that component. Moreover, this can be done simultaneously for
all of the components since they are vertex disjoint. Let S0 be the final schedule
accomplishing this. Run the schedule S0 in Phase 1.

Phase 2. This Phase is a preparation for Phase 3, where we solve a new MM
instance defined on the set C as the set of new terminals. In Phase 2, we construct
this instance by sending each active vertex v ◦≥ C to some vertex in C, namely
f(v). Note that this has already been done for all v ≥ V (T) in Phase 1, i.e. we
sent each vertex v ≥ V (T) to one of the centers.

To accomplish this for all v ◦≥ V (T) as well, we find a schedule S which
sends a vertex from each active components in T ∈ to another arbitrary vertex in
V (T). To find S, we find a b-matching in the bipartite graph G[V (T), V (T ∈)] in
polynomial time, which saturates exactly one vertex from each active component
T ∈
i , and minimizes b. Recall that b-matchings in bipartite graphs are like regular

matchings, except that the degrees on one side of the partition, i.e. V (T) in here,
can be as large as b.

600 A. Nikzad and R. Ravi

Before giving an algorithm for finding the b-matching, we show how to use it
to construct S. Assuming that a vertex v ≥ V (T ∈) is matched to m(v) in our
b-matching, the schedule S sends a message from each vertex v to m(v). This
clearly can be done in b rounds by decomposing the edges of the b-matching into
at most b disjoint matchings, so we have |S| ≡ b.

All we do in Phase 2, is run the schedule S and then S0. By doing so, we
send each active vertex v ≥ V (T ∈) to one of the centers, i.e. the vertex f(v). To
see why, note that in Phase 1, S0 already sent all the information from all the
nodes in V (T ∈) to all other nodes in the same component of T ∈, and hence in
particular to the node v in the component which has an edge of the b-matching
incident on it. In this phase, S sends all the messages from v to its matched
vertex m(v) in V (T), and S0 sends all the information from m(v) in V (T) to
one of the centers.

Finally, it remains to find the optimal b-matching in polynomial time.

Lemma 14. We can find the minimum integer b along with a b-matching in
G[V (T), V (T ∈)] in polynomial time which saturates one vertex from each active
component in V (T ∈).

Proof. Shrink each active component in V (T ∈) and replace it with a single node.
Also, remove all of the inactive components from the graph. Now, it’s enough
to find a minimum b-matching which saturates all of the shrunk nodes. This is
doable by the standard algorithms for finding minimum b-matchings in bipartite
graphs, e.g. see [22]. Note that since every shrunk node has at least one neighbor
in V (T) since the message from an active vertex in this node must transmit the
message to its made outside the shrunk node, the existence of such a b-matching
is guaranteed.

Phase 3. In this Phase, we reduce the original MM instance to a new instance
with a smaller number of terminals. Naturally, since v is sent to f(v) for every
active terminal v, we want to reduce this instance to a new instance I ∈ defined
on the new set of terminals R∈ = {f(v)|v ≥ R} along with the new set of demand
pairs P ∈ = {(f(u), f(v))|(u, v) ≥ P}.

To find a schedule for I ∈, we can use Theorem 3, which guarantees a schedule
of length O(|P ∈|+diamP ⊥(G)). But note that |P ∈| can be as large as Σ(n), which
makes this solution inefficient. To overcome this issue, we use an idea similar to
Phase 1 of Algorithm MM . We can sparsify the demand pairs P ∈ using Algorithm
Sparsify , and obtain a subset P̂ ∈ ∈ P ∈, which satisfies the properties below:

1. |P̂ ∈| ≡ 2|R∈| log |R∈|
2. Assuming that Ŝ ∈ is a feasible schedule for I(G, P̂ ∈), then repeating Ŝ ∈ for

8 log |R∈| times makes a feasible schedule for I(G,P ∈).

The process of finding the sparsified subset of demand pairs, P̂ ∈, is identical to
Algorithm MM . To summarize, all we need to do in Phase 3 is:

1. Construct the new set of demand pairs P ∈ = {(f(u), f(v))|(u, v) ≥ P}.
2. Find the sparsified subset of demand pairs P̂ ∈.

Approximation Algorithms for Generalized Multicast Problems 601

3. By applying Theorem 3 on P̂ ∈, find a schedule Ŝ ∈ for I(G, P̂ ∈).
4. Run the schedule Ŝ ∈ for 8 log |R∈| times to solve the instance I(G,P ∈).

Phase 4. At this point, we know that for any (u, v) ≥ P , vertex f(v) has received
the message pu, i.e. the message from vertex u. So, all we need to do to complete
the solution is to inform v of what f(v) knows. Note that by running Phase 1
and Phase 2, exactly the reverse happened, i.e. f(v) was informed of what v
knew. Consequently, all we need to do in Phase 4, is the same as we did in Phase
1 and Phase 2, but in the reverse order.

Theorem 4. The given algorithm produces a schedule of length O(log n ·OPT +⊆
n log2 n).

Proof. Let S⊗ be the optimal schedule, so we have |S⊗| = OPT . We provide
an upper bound, in terms of OPT , on the number of rounds used in each of
the four phases. In Phase 1, we only run the schedule S0, for which we showed
|S0| ≡ 2

⊆
n in the description of the phase.

In Phase 2, we run the schedule S and then S0, where we have |S| ≡ b. Recall
that b was the minimum integer for which there exists a b-matching saturating
exactly one vertex from each active component T ∈

i . Here we prove b ≡ OPT
which implies that |S| ≡ OPT . To see this, we should consider the optimal
multicast schedule, S⊗.

Let E⊗ ∈ E(G) be the subset of the edges used in S⊗. For any active com-
ponent T ∈

i ≥ T ∈, there must exist an edge (xi, yi) ≥ E⊗ such that xi ≥ V (T ∈
i)

and yi ≥ V (T). This holds since otherwise, in the schedule S⊗, the active com-
ponent T ∈

i would be disconnected from the rest of the vertices, contradicting the
feasibility of S⊗. Now, let

M =
{

(xi, yi)
∣∣ T ∈

i ≥ T ∈, T ∈
i is active

}

Clearly, M defines a b-matching in G[V (T ∈), V (T)], but for what value of b? In
other words, what is the maximum number of edges in M which share the same
endpoint in V (T)? To answer this question, note that M ∈ E⊗, and no vertex
in E⊗ has a degree more than OPT , due to the optimality of S⊗. This implies
b ≡ OPT , and so, |S| ≡ OPT . Recall that we run the schedule S and then S0

in Phase 2, which means we use at most OPT + 2
⊆
n rounds in this phase.

In Phase 3, we run the schedule Ŝ∈ for 8 log |R∈| times, so, the number of rounds
used in this phase is at most 8 log |R∈| · |Ŝ∈|, which we are going to compute in
terms of OPT . By applying Theorem 3 on P̂ ∈, we get

|Ŝ ∈| ≡ O(|P̂ ∈| + diamP̂ ⊥(G))

≡ O(2|R∈| log |R∈| + diamP̂ ⊥(G)) (7)

≡ O(
⊆
n logn + 4

⊆
n + OPT) (8)

602 A. Nikzad and R. Ravi

where (7) is due to the fact that |P̂ ∈| ≡ 2|R∈| log |R∈| as a result of the sparsi-
fication, and (8) holds since diamP̂ ⊥(G) ≡ 4

⊆
n + OPT . To see why, note that

dG(v, f(v)) ≡ 2
⊆
n for all v, which implies

dG(f(u), f(v)) ≡ dG(f(u), u) + dG(u, v) + dG(v, f(v))

≡ 4
⊆
n + dG(u, v)

≡ 4
⊆
n + OPT

Recall that the number of rounds used in Phase 3 is at most 8 log |R∈| · |Ŝ∈|.
If we plug in (8) we get

8 log |R∈| · |Ŝ∈| ≡ O(log n · (
⊆
n logn + OPT))

Consequently, we use at most O(log n ·OPT +
⊆
n log2 n) rounds in Phase 3.

In Phase 4, we clearly use as many rounds as we use in Phase 1 and Phase
2 overall, i.e. 4

⊆
n + OPT . By summing the upper bounds obtained on the

length of each phase, it implies that the total length of the produced schedule is
O(log n · OPT +

⊆
n log2 n).

H Equivalence with the Minimum Poise Subgraph
Problem

The main result of this section is an (approximate) equivalence between the Multi-
commodity Multicast Problem and the Minimum Poise Subgraph Problem.

Definition 11. In the Minimum Poise Subgraph Problem (MP), we are given
a connected graph G along with a subset of pairs of its vertices, P . The goal is
to find a subgraph H of G which minimizes ε(H) + diamP (H).

We denote the quantity ε(H) + diamP (H) as the Poise of the subgraph H
generalizing from the corresponding version for the broadcast problem in [20].
Recall that if two vertices u, v are not connected in H , then by convention,
dH(u, v) = ⇔. So the subgraphs H which do not connect a pair (u, v) ≥ P will
be automatically excluded from the solution domain.

Assume we are given an MM instance, I(G,P), defined on the graph G with
the set of demand pairs P . Also, let J denote the associated MP instance, i.e.
the MP instance defined on the graph G with the subset of pairs P .

Theorem 5. Given a feasible schedule for I, namely S, in polynomial time we
can obtain a feasible solution for J with poise at most O(|S|). In the other
direction, given a feasible solution for J with poise x, in polynomial time we can

obtain a feasible schedule for I with length at most O(x · log3 n
log log n).

We need the following Lemma for the proof of Theorem 5.

Lemma 15. There exist a collection of log |P | subgraphs of G, namely F , sat-
isfying the following properties.

Approximation Algorithms for Generalized Multicast Problems 603

i. Each element of F is a forest,
ii. For each pair in P , e.g. (si, ti), there exist a forest in F , which connects both

si and ti, and
iii. For each F ≥ F we have diam(F) ≡ diamP (G) · 4 log |P | and ε(F) ≡ OPT

where OPT is the length of the optimum schedule for I(G,P).

Proof. Let P = {P1, . . . , Pk} be the set of paths in the optimal schedule for
I(G,P), where Pi is the path through which the message from si is sent to ti.
For any Q ≥ P , let N(Q) denote the subset of the paths in P which have at
least one vertex in common with Q. Also, for any subset S of P , let N(S) =
{N(Q)|Q ≥ S}\S.

Now, we use the following algorithm to find the first forest in F . Later, we
find the subsequent forests using the same algorithm.

Algorithm Extract Forest
Input: A graph G and a a family of paths P
Output: A subgraph of G, which is a forest
1. H,X ⇒ β and P ∈ ⇒ P
2. repeat
3. Let Q ≥ P ∈

4. X ⇒ X ↔ {Q}
5. while |N(X)| ≥ |X |
6. do X ⇒ X ↔N(X)
7. H ⇒ H↔ X .
8. P ∈ ⇒ P ∈\(X ↔N(X))
9. until P ∈ = β
10. Let H be a subgraph of G, with V (H) = V (H) and E(H) = E(H)
11. Using BFS, find a spanning tree with an arbitrary root in each connected

component of H
12. Output the collection of all trees found in the previous step

Let the forest F be the output of Algorithm Extract Forest . First, we bound
the diameter of each connected component of F by 2 log |P| ·OPT . See that each
connected component of H , namely X , is made of a family of paths, namely X .
This family is formed by a consecutive execution of line 6 of the Algorithm
Extract Forest . So, we can decompose X into a number of families X1, . . . ,Xj ,
where for each i, Xi is the family of paths that was added to X in some iteration
of line 6. W.L.O.G we can assume that Xa is added sooner than Xb iff a < b.
Observe that after each iteration of line 6, the size of X is at least doubled,
which implies j ≡ log |P|.

Now, let u, v be two arbitrary vertices of X , such that u ≥ V (Xa) and
v ≥ V (Xb) for some a, b. To prove our bound on the diameter, we show that
dX(u, v) ≡ 2 log |P| · OPT , as follows: Let w be an arbitrary vertex in V (X1).
Note that there is path in X between u and w with length at most a · OPT .
Similarly, there is a path between v and w with length at most b · OPT . This
implies dX(u, v) ≡ (a + b) · OPT . Moreover, having a, b ≡ log |P| implies
dX(u, v) ≡ 2 log |P| · OPT . So, a BFS tree in X with an arbitrary root ver-
tex, has a diameter at most 4 log |P| · OPT .

604 A. Nikzad and R. Ravi

After we found the first forest, we update P by removing H from it. Then, by
running the above algorithm on the updated P , we find the second forest. We
continue this process until P becomes empty. To bound the number of forests,
we show that after extracting each forest, the size of P is reduced by at least a
factor of 2. This will finish the proof, since it just means P becomes empty after
finding at most log |P| forests.

To prove the claim, simply see that in line 8 of the Algorithm Extract Forest ,
whenever we remove a subset of paths from P ∈, we also add a subset of paths

with at least the same size to H, in line 7. It means |H| ≥ |P|
2 . Consequently,

the size of the updated P , i.e. P\H, is at most |P|/2. This finishes the proof.

Corollary 2. Given a simple n-vertex graph G, we can find a subgraph s(G) of
G in polynomial time, such that |E(s(G))| ≡ 2n logn and for each (u, v) ≥ E(G),
we have ds(G)(u, v) ≡ 8 logn.

Proof. We define an MM instance and then, we prove our claim by applying
Lemma 15 on it. Let I(G,P) be an MM instance where P = {(u, v)|(u, v) ≥
E(G)}. By applying Lemma 15 on I, we obtain a family of forests, namely F ,
which is satisfying the properties (ii) and (iii) of Lemma 15. This means that
for every (u, v) ≥ P , there exists a forest in F , namely F , such that dF (u, v) ≡
4 log |P |. So, if we define E(s(G)) to be E(F), then, diam(s(G)) ≡ 4 log |P | ≡
8 logn, and moreover, |E(s(G))| ≡ (log |P |).n ≡ 2n logn, which finishes the
proof.

Note that Algorithm Sparsify which was used in Section 6 is derived in the
proof of the above corollary.

Proof (of Theorem 5). First we prove the easy direction. Given a schedule S, we
find a subgraph with poise at most 2|S|. Let E⊗ ∈ E(G) be the subset of edges
used in S. Let H be the subgraph of G with E(H) = E⊗. Clearly, ε(H) ≡ |S|
and diamP (H) ≡ |S|. This proves the claim.

Now, given a subgraph H with poise x, we construct a schedule S with |S| ≡
O
⎧
x · log3 n

log logn

⎨
. Similar to Lemma 15, we show the existence a collection of

log |P | subgraphs of H , namely F , satisfying the following properties: i. Each
element of F is a forest, ii. For each pair in P , e.g. (si, ti), there exist a forest in
F , e.g. F , which connects si and ti, and iii. For each F ≥ F we have diam(F) ≡
diamP (H) · 4 log |P |.

Proof of this claim is very similar to the proof in Lemma 15. We can obtain the
family F by running Algorithm Extract Forest iteratively on the family of paths
P⊗, which is defined as follows: The family P⊗ contains an arbitrary shortest
path in H from u to v for all (u, v) ≥ P . It is easy to verify that the output will
satisfy the required properties for F , we do not repeat the proof here.

Given the family F , we construct the schedule S as follows: Order the elements
of F arbitrarily. Then, for each forest F in that order, broadcast within all
components of F simultaneously. Since for each (si, ti) ≥ P , there exists a forest
in F which connects si and ti, the schedule is clearly feasible. To provide an

Approximation Algorithms for Generalized Multicast Problems 605

upper bound on |S|, we show that we need at most O(x · log2 n
log logn) rounds for

each forest F . Then, given that |F| = O(log n), we would have |S| ≡ O(x log3 n).
To finish the proof, given a forest F , we prove that broadcasting within each

component of F can be done in O(x · log2 n
log logn) rounds. Note that this can be

done simultaneously for all components since they are clearly vertex-disjoint.
Ravi [20] has shown that the minimum broadcast time for a tree T is at most
log n

log logn · poise(T). Using dynamic programming, he also provides an Algorithm
to find such a broadcast schedule in polynomial time. It just remains to see that
each connected component in F is a tree, by the properties of F , and has a poise
at most ε(H) + diamP (G) · 4 log |P | = O(x log n).

Corollary 3 (of Theorem 5). Given an MM instance I(G,P), in polynomial
time we can find a feasible schedule for it with length at most

O
⎧

log3 n
log logn · (OPT + ε(G))

⎨
.

Proof. In polynomial time, we can find a subgraph H of G with poise at most
OPT + ε(G), i.e. a subgraph H satisfying ε(H) + diamP (H) ≡ OPT + ε(G).
To find such a subgraph, we just need to define H as the union of the (s, t)-
shortest paths for all (s, t) ≥ P . Then, clearly we would have ε(H) ≡ ε(G) and
diamP (H) ≡ OPT , which together imply the desired bound on the poise of H .

After we found H , all we need to do is applying Theorem 5 on H and ob-

tain a schedule of length O
⎧

log3 n
log logn · (ε(H) + diamP (H))

⎨
, which is at most

O
⎧

log3 n
log logn · (ε(G) + OPT)

⎨
.

I Hardness

Definition 12. In the Hyperedge-Coloring problem (HC), we are asked to color
the edges of a given hypergraph H with the minimum number of colors such that
no two intersecting edges have the same color.

Lemma 16. Assuming ZPP ◦= NP, and for any positive δ < 1, there are no
O(m1−Σ)-approximations for the HC problem, where m is the number of the
edges of the hypergraph.

Proof. We reduce the problem to the vertex-coloring problem. It is known that
the vertex-coloring problem is not approximable within a factor of O(|V (G)|1−Σ)
unless ZPP = NP [8]. Given a graph G as the input for the vertex-coloring
problem, we construct a hypergraph H such that V (H) = E(G), i.e. there is a
vertex ē in H for each edge e ≥ E(G). Also, for each vertex v ≥ V (G), there is
a hyperedge v̄ in H, where v̄ contains all the vertices ē such that v is one of the
endpoints of e in G, i.e. v̄ contains the set of vertices {ē|⊇u : e = (u, v)} .

It’s easy to verify that ψ∈(H) = ψ(G): Observe that any valid vertex-coloring
for G gives a valid edge-coloring for H, and vice versa. This can be done by
assigning the same colors to the vertex v ≥ V (G) and the edge v̄ ≥ E(H).
Now, see that the existence of a O(m1−Σ)-approximation algorithm for the HC

606 A. Nikzad and R. Ravi

problem, implies we can approximate ψ∈(H) within a factor of O(|E(H)|1−Σ),
and this means we can approximate ψ(G) within a factor of O(|V (G)|1−Σ) due
to the fact that |E(H)| = |V (G)|. Contradiction.

Theorem 6. Assuming P ◦= NP, and for any positive δ < 1, there are no
O(max{n,m}1−Σ)-approximations for the Hypercast problem, where n,m are re-
spectively the number of the vertices and edges of the hypergraph G given in the
Hypecast instance.

Proof. To prove the claim, given an instance of the HC problem with the hyper-
graph H , we reduce it to an instance of the Hypercast problem as follows. Let
G be a hypergraph which contains a copy of all the edges and vertices of H . We
will modify G step by step to obtain the desired Hypercast instance.

First, for each hyperedge e ≥ E(H), insert two distinct new vertices e− and
e+ in it. Then, add another new vertex r− to G, and also, add a hyperedge which
contains r− and all the vertices e−. Let r− be the source node in our Hypercast
instance and R = {e+|e ≥ E(H)} be the set of terminals. We claim that any
L-coloring of the hypergraph H corresponds to a solution of length L+ 1 for the
Hypercast instance, and vice versa.

Assume we are given an L-coloring for H , then, we construct a schedule of
length L + 1 as follows: In the first round of the schedule, use the only edge
containing r− to inform all the vertices e−. Then, use one round for each color-
class of the L-coloring, i.e. sort the colors in an arbitrary order and dedicate a
round to each color with respect to that ordering. Use each edge of H in the
round dedicated to its color. The obtained schedule has length L + 1 and is
obviously feasible since each terminal e+ ≥ R is informed by e− when the edge
containing them is used in the round dedicated to its color.

To show the other direction, given a schedule of length L+1 for the Hypercast
instance, we find an L-coloring for H . We can assume the first round is dedicated
to the only edge containing r− W.L.O.G. and that is because this edge intersects
with all the other edges and also is the only edge containing the source node.
Since each edge e ≥ E(G) contains a distinct terminal, then e should be used
in at least one of the rounds 2, . . . , L + 1. Pick one of the rounds in which e is
used arbitrarily and let it be the color of e. Clearly, the number of used colors
is L, and moreover, no two intersecting edges have the same color due to the
feasibility of the given schedule.

The above argument implies that any π-approximation for the Hypercast
problem gives an O(π)-approximation for the HC problem. Since there are no
O(|V (H)|1−Σ)-approximations for the HC problem, and since n,m ≥ O(|V (H)|),
then there are no O(max{n,m}1−Σ)-approximations for the Hypercast problem.

Under Khot’s 2-to-1 conjecture, we also provide a harness result in terms of D
for the Hypercast Problem. To prove this result, we need the following Theorem
of [11]:

Theorem 3.1. from [11] Assuming 2-to-1 conjecture, the following holds: Given
any integer k ≥ 7 and ε ≥ ε0(k), it is NP-hard (under randomized reductions)

Approximation Algorithms for Generalized Multicast Problems 607

to decide whether an unweighted graph G with maximum degree ε is k-colorable
or has largest independent set size at most O(n/ε1−c/k−1)

Proposition 4. Under Khot’s 2-to-1 conjecture, it is NP-hard to color a 7-
colorable graph with O(ε1/3) colors.

Theorem 7. Assuming P ◦= NP , there are no O(D1/3)-approximations for
the Hypercast problem, where D is the maximum size of a hyperedge in the
hypergraph G.

Proof. The proof is similar to the proof of Theorem 6. We use the exact same reduc-
tion to the vertex coloring problem, and then, instead of using the Σ(|V (G)|1−Σ)
hardness ratio of [8], we use Proposition 4.

For contradiction, assume we are given an algorithm for the Hypercast prob-
lem, namely Algorithm A, which has an approximation ratio of O(D1/3). Us-
ing this algorithm, we will design an algorithm which, for any ε, colors any
7-colorable graph with O(ε1/3) colors. This will be a contradiction with Propo-
sition 4.

Assuming that we are given a 7-colorable graph G as the input of the ver-
tex coloring problem, we reduce this instance to an instance of the Hypercast
Problem. This is done in exactly the similar way as it was done in Lemma 16 fol-
lowed by Theorem 6. Note that the size of the hyperedges in obtained Hypercast
instance would be bounded by ε, i.e. D = ε.

By the properties of our reduction, since ψ(G) ≡ 7, then the optimal schedule
for the produced Hypercast instance has length O(1), and so, Algorithm A gen-
erates a schedule of length at most O(ε1/3). Due to our reduction, this schedule
can be converted into a coloring of vertices for the graph G which uses no more
than O(ε1/3) colors. This is a contradiction with Proposition 4.

Bypassing Erdős’ Girth Conjecture: Hybrid

Stretch and Sourcewise Spanners�

Merav Parter

The Weizmann Institute of Science, Rehovot, Israel
merav.parter@weizmann.ac.il

Abstract. An (α, β)-spanner of an n-vertex graph G = (V,E) is a sub-
graph H of G satisfying that dist(u, v,H) ≤ α ·dist(u, v,G)+β for every
pair (u, v) ∈ V × V , where dist(u, v,G′) denotes the distance between u
and v in G′ ⊆ G. It is known that for every integer k ≥ 1, every graph G
has a polynomially constructible (2k − 1, 0)-spanner of size O(n1+1/k).
This size-stretch bound is essentially optimal by the girth conjecture.
Yet, it is important to note that any argument based on the girth only
applies to adjacent vertices. It is therefore intriguing to ask if one can
“bypass” the conjecture by settling for a multiplicative stretch of 2k− 1
only for neighboring vertex pairs, while maintaining a strictly better mul-
tiplicative stretch for the rest of the pairs. We answer this question in
the affirmative and introduce the notion of k-hybrid spanners, in which
non neighboring vertex pairs enjoy a multiplicative k stretch and the
neighboring vertex pairs enjoy a multiplicative (2k − 1) stretch (hence,
tight by the conjecture). We show that for every unweighted n-vertex
graph G, there is a (polynomially constructible) k-hybrid spanner with
O(k2 · n1+1/k) edges. This should be compared against the current best
(α, β) spanner construction of [5] that obtains (k, k − 1) stretch with
O(k · n1+1/k) edges. An alternative natural approach to bypass the
girth conjecture is to allow ourself to take care only of a subset of pairs
S × V for a given subset of vertices S ⊆ V referred to here as sources.
Spanners in which the distances in S×V are bounded are referred to as
sourcewise spanners. Several constructions for this variant are provided
(e.g., multiplicative sourcewise spanners, additive sourcewise spanners
and more).

1 Introduction

1.1 Motivation

Graph spanners are sparse subgraphs that faithfully preserve the pairwise dis-
tances of a given graph and provide the underlying graph structure in com-
munication networks, robotics, distributed systems and more [27]. The notion

ω Recipient of the Google European Fellowship in distributed computing; research sup-
ported in part by this Fellowship. Supported in part by the Israel Science Foundation
(grant 894/09), United States-Israel Binational Science Foundation (grant 2008348),
Israel Ministry of Science and Technology (infrastructures grant), and Citi Founda-
tion.

J. Esparza et al. (Eds.): ICALP 2014, Part II, LNCS 8573, pp. 608–619, 2014.
c∗ Springer-Verlag Berlin Heidelberg 2014

Bypassing Erdős’ Girth Conjecture 609

of graph spanners was introduced in [25,26] and have been studied extensively
since. Spanners have a wide range of applications from distance oracles [31,8],
labeling schemes [9] and routing [13] to solving linear systems [17] and spectral
sparsification [19].

Given an undirected unweighted n-vertex graph G = (V,E), a subgraph H of
G is said to be a k-spanner if for every pair of vertices (u, v) ∈ V ×V it holds that
dist(u, v,H) ≡ k ·dist(u, v,G). It is well known that one can efficiently construct
a (2k − 1)-spanner with O(n1+1/k) edges, even for weighted graphs [4,1]. This
size-stretch ratio is conjectured to be tight based on the girth1 conjecture of
Erdős [18], which says that there exist graphs with Σ(n1+1/k) edges and girth
2k + 1. If one removes an edge in such a graph, the distance between the edge
endpoints increases from 1 to 2k, implying that any ε-spanner for ε ≡ 2k − 1
has Σ(n1+1/k) edges. This conjecture has been resolved for the special cases of
k = 1, 2, 3, 5 [33].

Although the girth conjecture exactly characterizes the optimal tradeoff be-
tween sparseness and multiplicative stretch, it applies only to adjacent vertices
(i.e., removing an edge (u, v) from a large cycle causes distortion to the edge
endpoints). Indeed, Elkin and Peleg [15] showed that the girth bound (on multi-
plicative distortion) fails to hold even for vertices at distance 2. This limitation
of the girth argument motivated distinguishing between nearby vertex pairs and
“sufficiently distant” vertex pairs. This gave raise to the development of (ε, Ω)-
spanners which distort distances in G up to a multiplicative factor of ε and an
additive term Ω [15]. Formally, for an unweighted undirected graph G = (V,E),
a subgraph H of G is an (ε, Ω)-spanner iff dist(u, v,H) ≡ ε · dist(u, v,G) + Ω
for every u, v ∈ V . Note, that an (ε, Ω)-spanner makes an implicit distinction
between nearby vertex pairs and sufficiently distant vertex pairs. In particular,
for “sufficiently distant” vertex pairs the (ε, Ω)-spanner behaves similar to a
pure multiplicative spanner, whereas for the remaining vertex pairs, the span-
ner behaves similar to an additive spanner [21]. The setting of (ε, Ω)-spanners
has been widely studied for various distortion-sparseness tradeoffs [16,32,15,5].
For example, [15] gave a construction for (k − 1, 2k − O(1))-spanners with size
O(k ·n1+1/k), with a number of refinements for short distances, and showed that
for any k ⊆ 2 and δ > 0, there exist (1 + δ, Ω)-spanners with size O(Ω · n1+1/k),
where Ω depends on δ and k but independent on n, implying that the size can be
driven close to linear in n and the multiplicative stretch close to 1, at the cost
of a large additive term in the stretch. Thorup and Zwick designed (1 + δ, Ω)-
spanners with O(k ·n1+1/k) edges, with a multiplicative distortion that tends to
1 as the distance increases [32].

The best (ε, Ω) spanner construction is due to [5] which achieves stretch of
(k, k− 1) with O(k ·n1+1/k) edges, hence providing multiplicative stretch 2k− 1
for neighboring vertices (which is the best possible by Erdős’ conjecture) and a
multiplicative stretch at most 3k/2 for the remaining pairs.

Although (ε, Ω)-spanners make an (implicit) distinction between “close” and
“distant” vertex pairs, as the girth argument holds only for vertices at distance

1 The girth is the smallest cycle length.

610 M. Parter

1, it seems that a tighter bound on the behavior of spanners may be obtained. In
particular, it seems plausible that the multiplicative factor of k using O(n1+1/k)
edges, is not entirely unavoidable for non-neighboring vertex pairs, while providing
multiplicative stretch of 2k − 1 for the neighboring vertex pairs. The current pa-
per confirms this intuition by introducing the notion of k-hybrid spanners, namely,
subgraphsH ↔ G that obtain multiplicative stretch 2k−1 for neighboring vertices,
i.e., dist(u, v,H) ≡ (2k − 1) · dist(u, v,G) for every (u, v) ∈ E(G) and multiplica-
tive stretch k for the remaining vertex pairs, i.e., dist(u, v,H) ≡ k · dist(u, v,G)
for every (u, v) /∈ E(G). Hence, hybrid spanners seem to pinpoint the minimum
possible relaxation of the stretch requirement in spanners graphs so that the girth
conjecture lower bound can be bypassed. The presented k-hybrid spanner with
O(k2 ·n1+1/k) edges can be contrasted with several existing spanner constructions,
e.g, k-spanners withO(n1+2/(k+1)) edges (in which multiplicative stretch k is guar-
anteed also to neighboring pairs), theΣ(k−1 ·n1+1/k) lower-bound graph construc-
tion for (2k − 1)-additive spanners, and to the (k, k − 1) spanner construction of
[5] with O(k · n1+1/k) edges.

An alternative approach to bypass the conjecture is by focusing on a subset
of pairs in V × V . Following [10,28,12,20], we relax the requirement that small
stretch in the subgraph must be guaranteed for every vertex pair from V × V .
Instead, we require it to hold only for pairs of vertices from a subset of V × V .
Specifically, given a subset of vertices S ↔ V , referred to here as sources, our
spanner H aims to bound only the distances between pairs of vertices from S×V .
For any other pair outside S × V , the stretch in H can be arbitrary.

On the lower bound side, Woodruff [34] proved, independently of the Erdős’
conjecture, the existence of graphs for which any spanner of size Σ(k−1n1+1/k)
has an additive stretch of at least 2k−1. Although sourcewise additive spanners
have been studied by [28,12,20], currently there are no known lower bound con-
structions for this variant. We generalize Woodruff’s construction to the source-
wise setting, providing a graph construction whose size has a smooth dependence
with the number of sources.

1.2 Related Works

The notion of a sparse subgraph that preserves distances only for a subset of
the V ×V pairs has been initiated by Bollobás, Coopersmith and Elkin [9], who
studied pairwise preservers, where the input is a graph G = (V,E) along with
a subset of vertex pairs P ↔ V × V and the problem is to construct a sparse
subgraph H such that the u−v distance for each (u, v) ∈ P is exactly preserved,
i.e., dist(u, v,H) = dist(u, v,G) for every (u, v) ∈ P . They showed that one can
construct a pairwise preserver with O(min{|P| ·⇔n, n ·√|P|}) edges. At the end
of their paper, they raised the question of constructing sparser subgraphs where
distances between pairs in P are approximately preserved, or in other words, the
problem of constructing sparse P-spanners. Pettie [28] studied a certain type of
P-spanners, namely, additive sourcewise spanners. In this setting, one is given
an unweighted graph G = (V,E) and a subset of vertices S ↔ V , termed as
sources, whose size is conveniently parameterized to be |S| = nΣ, for π ∈ [0, 1],

Bypassing Erdős’ Girth Conjecture 611

and the goal is to construct a sparse spanner H that maintains an additive
approximation for the S × V distances. He showed a construction of O(log n)-
additive sourcewise spanners of size O(n1+Σ/2). Cygan et al. recently showed a
stretch-size bound for 2k-additive sourcewise spanners with O(n1+(Σk+1)/(2k+1))
edges. The specific case of k = 1 has been studied recently by [20], providing a

2-additive sourcewise spanner with Õ(n5/4+Σ/4) edges where π = log |S|/ logn.
Upper bounds for spanners with constant stretch are currently known for but

a few stretch values. A (1, 2) spanner with O(n3/2) edges is presented in [2], a
(1, 6) spanner with O(n4/3) edges is presented in [5], and a (1, 4) spanner with
O(n7/5) edges is presented in [11]. The latter two constructions use the path-
buying strategy, which is adopted in our additive sourcewise construction. Dor
et al. [14] considered additive emulators, which may contain additional (possibly
weighted) edges. They showed a construction of 4-additive emulator with O(n4/3)
edges. Finally, a well known application of ε-spanners is approximate distance
oracles [31,24,8,7,22]. The sourcewise variant, namely, sourcewise approximate
distance oracle was devised by [29]. For a given input graph G = (V,E) and
a source set S ↔ V , [29] provides a construction of a distance oracle of size
O(n1+Σ/k) where π = log |S|/ logn such that given a distance query (s, v) ∈ S×V
returns in O(k) time a (2k − 1) approximation to dist(s, v,G).

1.3 Contributions

In this paper we initiate the study of k-hybrid spanners which seems to pinpoint
the minimal condition for bypassing Erdős’ Girth Conjecture. In addition, we
also study the sourcewise variant of multiplicative spanners, additive spanners
and additive emulators. The main results are summarized below.

Theorem 1 (Hybrid spanners). For every integer k ⊆ 2 and unweighted
undirected n-vertex graph G = (V,E), there exists a (polynomially constructible)
subgraph of size O(k2 · n1+1/k) that provides multiplicative stretch 2k − 1 for
every pair of neighboring vertices u and v and a multiplicative stretch k for the
rest of the pairs. (By Erdős’ conjecture, providing a multiplicative stretch of k
for all the pairs requires Σ(n1+2/(k+1)) edges.)

Theorem 2 (Sourcewise spanners). For every integer k ⊆ 2, and an un-
weighted undirected n-vertex graph G = (V,E) and for every subset of sources
S ↔ V of size |S| = O(nΣ), there exists a (polynomially constructible) subgraph
of size O(k2 · n1+Σ/k) that provides multiplicative stretch 2k − 1 for every pair
of neighboring vertices (u, v) ∈ S × V and a multiplicative stretch of 2k − 2 for
the rest of the pairs in S × V . This subgraph is referred to here as sourcewise
spanner.

Theorem 3 (Lower bound for additive sourcewise spanners and emu-
lators). For every integer k ∈ [2, O(logn/ log logn)] and π ∈ [0, 1], there exists
an n-vertex graph G = (V,E) and a subset of sources S ↔ V of size |S| = O(nΣ)
such that any (2k − 1)-additive sourcewise spanner (i.e., subgraph that main-
tains a (2k − 1)-additive approximation for the S × V distances) has at least

612 M. Parter

Σ(k−1 ·n1+Σ/k) edges. The lower bound holds for additive emulators up to order
O(k). For 2-additive sourcewise emulators there is a matching upper bound.

Theorem 4 (Upper bound for additive sourcewise spanners). Let k ⊆
1 be an integer. (1) For every unweighted undirected n-vertex graph G = (V,E)
and for every subset of sources S ↔ V , |S| = O(nΣ), there exists a (polynomially

constructible) 2k-additive sourcewise spanner with Õ(k · n1+(Σ·k+1)/(2k+2)) edges.
(2) For |S| = Σ(n2/3), there exists a 4-additive sourcewise spanner withO(n1+Σ/2)
edges (by the lower bound of Thm. 3, any 3-additive sourcewise spanner requires
Σ(n1+Σ/2) edges).

The time complexities of all our upper bound constructions are obviously
polynomial; precise analysis is omitted from this extended abstract.

1.4 Preliminaries

We consider the following graph structures.

(ε, Ω)-spanners. For a graph G = (V,E), the subgraph H ↔ G is an (ε, Ω)-
spanner for G if for every (u, v) ∈ V × V ,

dist(u, v,H) ≡ ε · dist(u, v,G) + Ω . (1)

(ε, 0)-spanners (resp., (1, Ω)-spanners) are referred to here as ε-spanners (resp.,
Ω-additive spanners).

Hybrid Spanners. Given a graph G = (V,E), a subgraph H ↔ G is a k-hybrid
spanner iff for every (u, v) ∈ V × V it holds that

dist(u, v,H) ≡
{

(2k − 1) · dist(u, v,G), if (u, v) ∈ E(G);

k · dist(u, v,G), otherwise.
(2)

Sourcewise Spanners. Given an unweighted graph G = (V,E) and a subset of
vertices S ↔ V , a subgraph H ↔ G is an (ε, Ω, S)-spanner iff Eq. (1) is satisfied
for every (s, v) ∈ S × V . When Ω = 0 (resp., ε = 1), H is denoted by (ε, S)-
sourcewise spanner (resp., (Ω, S)-additive sourcewise spanner).

Emulators. Given an unweighted graphG = (V,E), a weighted graphH = (V, F)
is an (ε, Ω)-emulator of G iff dist(u, v,G) ≡ dist(u, v,H) ≡ ε ·dist(u, v,G)+Ω for
every (u, v) ∈ V ×V . (1, Ω)-emulators are referred to here as Ω-additive emulators.
For a given subset of sources S ↔ V , the graph H = (V, F) is a (Ω, S)-additive
sourcewise emulator if the S×V distances are bounded inH by an additive stretch
of Ω.

1.5 Notation

For a subgraph G′ = (V ′, E′) ↔ G (where V ′ ↔ V and E′ ↔ E) and a pair of
vertices u, v ∈ V ′, let dist(u, v,G′) denote the shortest-path distance in edges

Bypassing Erdős’ Girth Conjecture 613

between u and v in G′. Let ψ (v,G) = {u | (u, v) ∈ E(G)} be the set of
neighbors of v in G. For a subgraph G′ ↔ G, let |G′| = |E(G′)| denote the
number of edges in G′. For a path P = [v1, . . . , vk], let P [vi, vj] be the subpath
of P from vi to vj . For paths P1 and P2, let P1 ⊂P2 denote the path obtained by
concatenating P2 to P1. Let SP (s, vi, G

′) be the set of s−vi shortest-paths in G′.
When G′ is the input graph G, let φ(x, y) ∈ SP (x, y,G) denote some arbitrary
x − y shortest path in G, hence |φ(x, y)| = dist(x, y,G). For a subset V ′ ↔ V ,
let dist(u, V ′, G) = minu′≥V ′ dist(u, u′, G). Similarly, for subsets V1, V2 ↔ V ,
dist(V1, V2, G) = minv1≥V1,v2≥V2 dist(v1, v2, G). When the graph G is clear from
the context, we may omit it and simply write ψ (u), dist(u, v), dist(u, V ′) and
dist(V1, V2).

A clustering C = {C1, . . . , Cψ} is a collection of disjoint subsets of vertices,
i.e., Ci ↔ V for every Ci ∈ C and Ci ≥ Cj = ⇒ for every Ci, Cj ∈ C. Note
that a clustering is not necessarily a partition of V , i.e., it is not required that⋃

i Ci = V . A cluster C ∈ C is said to be connected in G if the induced graph G[C]
is connected. For clusters C and C′, let E(C,C′) = (C×C′)≥E(G) be the set of
edges between C and C′ in G. For notational simplicity, let E(v, C) = E({v}, C).
A vertex v is incident to a cluster C if E(v, C) ◦= ⇒. In a similar manner, two
clusters C and C′ are adjacent to each other if E(C,C′) ◦= ⇒.

Organization. We start with upper bounds. Sec. 2 describes the construction of
k-hybrid spanners. Sec. 3.1 presents the construction of (ε, S) sourcewise span-
ners. Then, Sec. 3.2 presents a lower bound construction for (Ω, S) sourcewise
additive spanners and emulators. Finally, Sec. 3.3 provides an upper bound for
(2k, S)-additive sourcewise spanners for general values of k. In addition, it pro-
vides a tight construction for (2, S)-additive sourcewise emulators.

2 Hybrid Spanners

In this section, we establish Thm. 1. For clarity of presentation, we describe
a randomized construction whose output spanner has O(k2 · n1+1/k) edges in
expectation. Using the techniques of [5], this construction can be derandomized
with the same bound on the number of edges.

The algorithm. We begin by describing a basic procedure Cluster, slightly adapted
from [5], that serves as a building block in our constructions. For an input un-
weighted graph G = (V,E), a stretch parameter k and a density parameter μ,
Algorithm Cluster iteratively constructs a sequence of k+1 clusterings C0, . . . , Ck
and a clustering graph Hk ↔ G. Each clustering Cθ consists of mθ = n1−θ ·μ

disjoint subsets of vertices, Cθ = {Cθ
1 , . . . , C

θ
mτ

}. Each cluster Cθ
j ∈ Cθ is con-

nected and has a cluster center zj satisfying that dist(u, zj, G) ≡ α for every
u ∈ Cθ

j . Denote the set of cluster centers of Cθ by Zθ . These cluster centers
correspond to a sequence of samples taken from V with decreasing densities
where V = Z0 ≤ Z1 ≤ . . . ≤ Zk. On a high level, at each iteration α , a clus-
tering of radius-α clusters is constructed and its shortest-path spanning for-
est (spanning all the vertices in the clusters), as well as an additional subset

614 M. Parter

of edges Qθ adjacent to unclustered vertices, are chosen to be added to the
spanner Hθ . We now describe the algorithm Cluster(G, k, μ) in detail. Assume
some ordering on the vertices V = {v1, . . . , vn}. Initially, the cluster centers are
Z0 = V = {v1, . . . , vn}, where each vertex forms its own cluster of radius 0,
hence C0 = {{v} | v ∈ V } and the spanner is initiated to H0 = ⇒. At iteration
α ⊆ 1, a clustering Cθ is defined based on the cluster centers Zθ−1 of the previous
iteration. Let Zθ ↔ Zθ−1 be a sample of mθ = O(n1−θ ·μ) vertices chosen uni-
formly at random from Zθ−1. The clustering Cθ is obtained by assigning every
vertex u that satisfies dist(u, Zθ , G) ≡ α to its closest cluster center z ∈ Zθ , i.e.,
such that dist(u, z,G) = dist(u, Zθ , G). If there are several cluster centers in Zθ

at distance dist(u, Zθ , G) from u, then the closest center with the minimal index
is chosen.

Formally, for a vertex v and subset of vertices B, let nearest(v,B) be the
closest vertex to v in B where ties are determined by the indices, i.e., letting
B′ = {v1, . . . , vψ} ↔ B be the set of closest vertices to v in B, namely, satisfying
that dist(v, v1) = ... = dist(v, vψ) = dist(v,B), then nearest(v,B) ∈ B′ and
has the minimal index in B′. Then v is assigned to the cluster of the center
nearest(v, Zθ). Add to Hθ the forest Fθ consisting of the radius-α spanning
tree of each C ∈ Cθ . Note that the definition of the clusters immediately implies
their connectivity. Next, an edge set Qθ adjacent to unclustered vertices is added
to Hθ as follows. Let βθ denote the set of vertices that occur in each of the
clusterings C0, . . . , Cθ−1 but do not occur in Cθ . (Observe that such a vertex

may re-appear again in some future clusterings.) Formally, let V̂θ =
⋃

C≥Cτ
C

be the set of vertices that occur in some cluster in the clustering Cθ . Then,

βθ =
(⋂θ−1

j=0 V̂j

)
\ V̂θ . Note that by this definition, each vertex belongs to at

most one set βθ . For every vertex v ∈ βθ and every cluster C ∈ Cθ−1 that is
adjacent to v, pick one vertex u ∈ C adjacent to v and add the edge (u, v) to Qθ .

(In other words, an edge (u, v) is not added to Qθ for v ∈ βθ if either u /∈ V̂θ−1

or an edge (u′, v) was added to Qθ where u′ and u are in the same cluster
C ∈ Cθ−1.) Then add Qθ to Hθ . This completes the description of Algorithm
Cluster; a pseudocode is given below.

Algorithm Cluster(G, k, μ).

(T1) Let H0 = ⇒ and Z0 = V . Select a sample Zθ uniformly at random from
Zθ−1 with probability n−μ for α = 1 to k (if μ = 1 and α = k, set Zk = ⇒).

(T2) For α = 1 to k, define the clustering Cθ by adding the α -radius neighbor-
hood for all cluster centers Zθ , i.e., every u ∈ V satisfying dist(u, Zθ) ≡ α
is connected to nearest(u, Zθ). Let Fθ denote the α -radius neighborhood
forest corresponding to Cθ .

(T3) For every vertex v ∈ βθ that was unclustered in the clustering Cθ for the
first time, let e(v, C) be an arbitrary edge from E(v, C) for every C ∈ Cθ−1.

(T4) Hθ = Hθ−1 → Fθ → {e(v, C) | v ∈ βθ , C ∈ Cθ−1}.

The first step of Algorithm ConsHybrid applies Algorithm Cluster(G, k, μ) for
μ = 1/k, resulting in the subgraph Hk. Note that by Thm. 3.1 of [5], Hk is
a (2k − 1) spanner. Hence, the stretch for neighboring vertices is (2k − 1) as

Bypassing Erdős’ Girth Conjecture 615

required. We now add two edge sets to Hk in order to provide a multiplicative
stretch k for the remaining pairs. Let

t = ∅k/2⊇ and t′ = k − 1 − t, (3)

Note that t′ = t when k is odd and t′ = t−1 when k is even, so in general t′ ≡ t.
The algorithm considers the collection of Zt′×Zt shortest paths P ={φ(zi, zj) |

zi ∈ Zt′ and zj ∈ Zt}. Starting with H = Hk, for each path φ(zi, zj) ∈ P , it
adds to H the Δt last edges of φ(zi, zj) (closest to zi), where

Δt = 7t + 8t2 . (4)

For every pair of clusters C1, C2, let φ(C1, C2) denote the shortest path in G
between some closest vertices u1 ∈ C1 and u2 ∈ C2 (i.e., dist(C1, C2, G) =
dist(u1, u2, G)). For every α from 0 to k − 1, and for every pair C1 ∈ Cθ and
C2 ∈ Ck−1−θ , the algorithm adds to H , the Δ last edges of φ(C1, C2), where
Δ = Δt for α ∈ {t′, t} and Δ = 2k− 1 otherwise. This completes the description of
Algorithm ConsHybrid, whose summary is given below.

Algorithm ConsHybrid.

(S1) Let Hk = Cluster(G, k, 1/k).
(S2) Let E2 be the edge set containing the last Δt edges of the path φ(zi, zj)

for every zi ∈ Zt′ and zj ∈ Zt.
(S3) Let E3 be the edges set containing, for every α ∈ {0, . . . , k − 1}, and for

every C1 ∈ Cθ and C2 ∈ Ck−1−θ , the last Δ edges of the path φ(C1, C2) where
Δ = Δt for α ∈ {t′, t} and Δ = 2k − 1 otherwise.

(S4) Let H ← Hk → E2 → E3.

In Section 2 of [23], we bound the size of H and the show correctness of Algorithm
ConsHybrid. It is important to compare the (k, k − 1) construction of [5] to
the current construction. [5] constructs a (k, k − 1) spanner with O(k · n1+1/k)
edges. In contrast, Algorithm ConsHybrid provides a strictly better stretch for
non-neighboring vertex pairs at the expense of having slightly more edges (e.g.,
O(k2 · n1+1/k) vs. O(k · n1+1/k) edges). Indeed, Algorithm ConsHybrid bares
some similarity to the (k, k− 1) construction of [5] (e.g., similar cluster growing
approach) but the analysis is different. The key difference between these two
constructions is that in [5] only edges (i.e., shortest-path of length 1) are added
between certain pairs of clusters. In contrast, in our construction, O(k2) edges
are taken from each shortest-path connecting the close-most vertices coming
from certain subset of clusters. This allows us to employ an inductive argument
on the desired purely multiplicative stretch, without introducing an additional
additive stretch term. Specifically, by adding paths of length Δt between center
pairs in Zt′ × Zt, a much better stretch guarantee can be provided for (non-
neighboring) Zt′ × Zt pairs: a multiplicative stretch k plus a negative additive
term. This additive term is then increased but in a controlled manner (due to
step (S3)), resulting in a zero additive term for any non-neighboring vertex pair
in V × V . Missing proofs for this section are deferred to the full version [23].

616 M. Parter

3 Sourcewise Spanners

In this section, we provide several constructions for sourcewise spanners and
emulators.

3.1 Upper Bound for Multiplicative Stretch

In this section, we establish Thm. 2. For simplicity, we describe a randomized
construction whose output spanner has O(k2 ·n1+Σ/k) edges in expectation. Using
[5], this construction can be derandomized with the same bound on the number
of edges. We now show the construction of (2k− 1, S) sourcewise spanner which
enjoys a “hybrid” stretch, though in a weaker sense than in Sec. 2. Specifically,
we show that the neighbors of S enjoy a multiplicative stretch 2k − 1 and the
remaining pairs enjoy a multiplicative stretch of 2k − 2.

The algorithm. The first phase of Algorithm ConsSWSpanner applies Algorithm
Cluster(G, k, μ) for μ = π/k, resulting in a sequence of k+1 clusterings C0, . . . , Ck
and a cluster graph Hk ↔ G. In the second phase of the algorithm, it considers
the collection of S×Zk−1 shortest paths P = {φ(sj , zi) | sj ∈ S and zi ∈ Zk−1}.
Starting with H = Hk, for each path φ(sj , zi) ∈ P , it adds to H the Δk last
edges of φ(sj , zi) (closest to zi). Set

Δk = 2k2 + 3k and μ = π/k . (5)

In Section 3.1 of [23], we provide a complete analysis for the algorithm and
establish Thm. 2.

3.2 Lower Bound for Additive Sourcewise Spanners and Emulators

We now turn to consider the lower bound side where we generalize the lower
bound construction for additive spanners by Woodruff [34] to the sourcewise
setting. In particular, we parameterize our bound for the S × V spanner in
terms of the cardinality of the source set S. The basic idea underlying Woodruff’s
construction is to form a dense graph G by gluing (carefully) together many small
complete bipartite graphs. For an additive stretch 2k − 1 ⊆ 1, the lower bound
graph G consists of k+1 vertex levels, each with O(n/k) vertices and Σ(n1+1/k)
edges connecting the vertices of every two adjacent levels. In particular this is
obtained by representing each vertex of level i as a coordinate in Z

k+1, namely,
v = (a1, . . . , ak, ak+1) and aj ∈ [1, O(n1/k)]. Woodruff showed that if one omits
in an additive spanner H ↔ G, an O(1/k) fraction of G edges, then there exists
an x− y path P in G of length k (i.e., x is on the first level and y is on the last
level) whose all edges are omitted in H , and any alternative x − y path in H
is “much” longer than P . To adapt this construction to the sourcewise setting,
some asymmetry in the structure of the k+1 levels should be introduced. In the
following construction, the vertices of the first level correspond to the source set
S, hence this level consists of O(nΣ) vertices, while the remaining levels are of size

Bypassing Erdős’ Girth Conjecture 617

O(n/k). This is achieved by breaking the symmetry between the first coordinate
a1 and the remaining k − 1 coordinates of each vertex v = (a1, . . . , ak, ak+1).
Indeed, this careful minor adaptation in the graph definition is sufficient to
generalize the bound, the analysis follows (almost) the exact same line as that
of [34]. We show the following.

Theorem 5. Let 1 ≡ k ≡ O(ln r/ ln ln r) for some integer r ⊆ 1. For every
π ∈ [0, 1], there exists an unweighted undirected graph G = (V,E) with |V | =
Θ(rΣ+kr) vertices and a source set S ↔ V of size Θ(rΣ) such that any (2k−1, S)-
additive sourcewise spanner H ↔ G has Σ(r1+

ε
k) edges. Similar bounds (up to

factor O(k)) are achieved for (2k − 1, S)-additive sourcewise emulators.

Note that Thm. 5 implies Thm. 3, since n = Θ(rΣ + kr) and hence r1+
ε
k =

Σ(k−1 · n1+ ε
k). Note that by setting π = 1, we get the exact same bounds as in

Woodruff’s construction.

The Construction. Let N1 = ∪rΣ/k∩ and N2 = ∪(r/Nk−1
1)∩. The graph G

consists of vertices composed of k + 1 vertex-levels and connected through a
series of k bipartite graphs. Each vertex v = (a1, a2, . . . , ak, ak+1) represents a
coordinate in Z

k+1 where ak+1 ∈ {1, . . . , k + 1} is the level of v. The range
of the other coordinates is as follows. For every 1 ≡ j ≡ k, aj ∈ Rj , where
R1 = {1, . . . , N1} if ak+1 = 1 and R1 = {1, . . . , N2} otherwise. For j ⊆ 2,
Rj = {1, . . . , N1}.
Edges in G join every level-i vertex (a1, . . . , ai−1, ai, ai+1, . . . , ak, i) to each of the
level-(i+ 1) vertices of the form (a1, . . . , ai−1, c, ai+1, . . . , ak, i+ 1) for every c ∈
{1, . . . , N2} if i = 1 and c ∈ {1, . . . , N1} for i ⊆ 2. Let Li = {(a1, . . . , ak, i) | aj ∈
Rj for 1 ≡ j ≡ k} be the set of vertices on the ith level and let ni = |Li|
denote their cardinality. Then since k = O(ln r/ ln ln r) it holds that n1 = Nk

1 ≡
(r

ε
k + 1)k ≡ e(k+1)/(rε/k) = Θ(rΣ). and for every i ∈ {2, . . . , k + 1},

ni = N2 ·Nk−1
1 ≡ (r/Nk

1 + 1)(r
ε
k + 1)k−1 ≡ 2r1−Σ/k · ek/(rε/k)

= r1−Σ/k · Θ(rΣ/k) = Θ(r) ,

Overall, the total number of vertices is |V (G)| = n1 + k · n2 = Θ(rΣ + k · r).
Let gi be the number of edges connecting the vertices of Li to the vertices

of Li+1. Then g1 = N2 · n1 and gi = N1 · ni for every i ∈ {2, . . . , k}, thus

g1 = g2 = . . . = gk. Hence |E(G)| =
∑k+1

i=1 gi = k · Nk
1 · N2 = Θ(k · r1+Σ/k).

Let the source set S be the vertex set of the first level, i.e., S = L1, hence
|S| = n1 = Θ(rΣ). In Section 3.2 of [23], we analyze this graph construction and
establish Thm. 3.

3.3 Upper Bound for Additive Sourcewise Spanners and Emulators

Additive sourcewise emulators. Recall that an emulator H = (V, F) for graph
G is a (possibly) weighted graph induced on the vertices of G, whose edges
are not necessarily contained in G. In Thm. 5, we showed that every (2, S)-
additive sourcewise emulator for a subset S ↔ V has Σ(n1+Σ/2) edges, where

618 M. Parter

π = log |S|/ logn. In Section 3.3 of [23], we show that this is essentially tight (up
to constants).

Theorem 6. For every unweighted n-vertex graph G = (V,E) and every sub-
set S ↔ V , there exists a (polynomially constructible) (2, S)-additive sourcewise
emulator H of size O(n1+Σ/2) where π = log |S|/ logn.

Additive sourcewise spanners. The construction of additive sourcewise spanners
combines the path-buying technique of [5,12,20] and the 4-additive spanner tech-
niques of [11].

Theorem 7. Let k ⊆ 1 be an integer. For every unweighted n-vertex graph
G = (V,E) and every subset S ↔ V , there exists a (polynomially constructible)

(2k, S)-additive sourcewise spanner H ↔ G of size Õ(k · n1+(kΣ+1)/(2k+2)) where
π = log |S|/ logn.

Finally, we provide an “almost” tight construction for (4, S)-sourcewise additive
spanners for a sufficiently large subset of sources S. We have the following.

Theorem 8. For every unweighted n-vertex graph G = (V,E) and a subset
of sources S ↔ V such that |S| = Σ(n2/3), there exists a (polynomially con-
structible) (4, S)-additive sourcewise spanner H ↔ G with O(n1+Σ/2) edges.

Acknowledgment. I am very grateful to my advisor, Prof. David Peleg, for
many helpful discussions and for reviewing this paper. I would also like to thank
Michael Dinitz and Eylon Yogev for useful comments and discussions.

References

1. Agarwal, R., Godfrey, P.B., Har-Peled, S.: Approximate distance queries and com-
pact routing in sparse graphs. In: Proc. INFOCOM (2011)

2. Aingworth, D., Chekuri, C., Indyk, P., Motwani, R.: Fast estimation of diame-
ter and shortest paths (without matrix multiplication). SIAM J. Comput. 28(4),
1167–1181 (1999)

3. Alon, N., Spencer, J.H.: The probabilistic method. Wiley, Chichester (1992)
4. Althöfer, I., Das, G., Dobkin, D., Joseph, D., Soares, J.: On sparse spanners of

weighted graphs. Networks 9(1), 81–100 (1993)
5. Baswana, S., Kavitha, T., Mehlhorn, K., Pettie, S.: Additive spanners and (α, β)-

spanners. ACM Trans. Algo. 7, A.5 (2010)
6. Baswana, S., Sen, S.: A simple Linear Time Randomized Algorithm for Computing

Sparse Spanners in Weighted Graphs. Random Structures and Algorithms 30(4),
532–563 (2007)

7. Baswana, S., Kavitha, T.: Faster algorithms for approximate distance oracles and
all-pairs small stretch paths. In: Proc. FOCS, pp. 591–602 (2006)

8. Baswana, S., Sen, S.: Approximate distance oracles for unweighted graphs in ex-
pected O(n2) time. ACM Transactions on Algorithms (TALG) 2(4), 557–577 (2006)

9. Bollobás, B., Coppersmith, D., Elkin, M.: Sparse distance preservers and additive
spanners. SIAM Journal on Discrete Mathematics 19(4), 1029–1055 (2005)

10. Coppersmith, D., Elkin, M.: Sparse sourcewise and pairwise distance preservers.
SIAM Journal on Discrete Mathematics 20(2), 463–501 (2006)

Bypassing Erdős’ Girth Conjecture 619

11. Chechik, S.: New Additive Spanners. In: Proc. SODA, vol. 29(5), pp. 498–512
(2013)

12. Cygan, M., Grandoni, F., Kavitha, T.: On Pairwise Spanners. In: Proc. STACS,
pp. 209–220 (2013)

13. Gavoille, C., Peleg, D.: Compact and localized distributed data structures. Dis-
tributed Computing 16(2), 111–120 (2003)

14. Dor, D., Halperin, S., Zwick, U.: All-pairs almost shortest paths. SIAM on Com-
puting 29(5), 1740–1759 (2000)

15. Elkin, M., Peleg, D.: (1 + ε, β)-Spanner Constructions for General Graphs. SIAM
Journal on Computing 33(3), 608–631 (2004)

16. Elkin, M.: Computing almost shortest paths. ACM Transactions on Algorithms
(TALG) 1(2), 283–323 (2005)

17. Elkin, M., Emek, Y., Spielman, D.A., Teng, S.H.: Lower stretch spanning trees. In:
Proc. STOC, pp. 494–503 (2005)

18. Erdős, P.: Extremal problems in graph theory. In: Proc. Symp. Theory of Graphs
and its Applications, pp. 29–36 (1963)

19. Kapralov, M., Panigrahy, R.: Spectral sparsification via random spanners. In: ITCS
(2012)

20. Kavitha, T., Varma, N.M.: Small Stretch Pairwise Spanners. In: Fomin, F.V.,
Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part I. LNCS,
vol. 7965, pp. 601–612. Springer, Heidelberg (2013)

21. Liestman, A.L., Shermer, T.C.: Additive graph spanners. Networks 23(4), 343–363
(1993)

22. Mendel, M., Naor, A.: Ramsey partitions and proximity data structures. In: FOCS,
vol. 23(4), pp. 109–118 (2006)

23. Parter, M.: Bypassing Erdős’ Girth Conjecture: Hybrid Stretch and Sourcewise
Spanners (2014), http://arxiv.org/abs/1404.6835

24. Pǎtraşcu, M., Roditty, L.: Distance oracles beyond the Thorup-Zwick bound. In:
FOCS, pp. 815–823 (2010)

25. Peleg, D., Schaffer, A.A.: Graph spanners. Journal of Graph Theory 12(1), 99–116
(1989)

26. Peleg, D., Ullman, J.D.: An optimal synchronizer for the hypercube. SIAM Journal
on Computing 18(4), 740–747 (1989)

27. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM (2000)
28. Pettie, S.: Low distortion spanners. ACM Transactions on Algorithms (TALG) 6(1)

(2009)
29. Roditty, L., Thorup, M., Zwick, U.: Deterministic constructions of approximate dis-

tance oracles and spanners. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi,
C., Yung,M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 261–272. Springer, Heidelberg
(2005)

30. Thorup, M.: Undirected single-source shortest paths with positive integer weights
in linear time. Journal of the ACM (JACM) 46(3), 362–394 (1999)

31. Thorup, M., Zwick, U.: Approximate distance oracles. Journal of the ACM
(JACM) 52(1), 1–24 (2005)

32. Thorup, M., Zwick, U.: Spanners and emulators with sublinear distance errors. In:
SODA, pp. 802–809 (2006)

33. Wenger, R.: Extremal graphs with no C4’s, C6’s, or C10’s. Journal of Combinatorial
Theory, 113–116 (1991)

34. Woodruff, D.P.: Lower bounds for additive spanners, emulators, and more. In: Proc.
47th Symp. on Foundations of Computer Science, pp. 389–398 (2006)

http://arxiv.org/abs/1404.6835

Author Index

Aaronson, Scott I-26
Abboud, Amir I-39
Abraham, Ittai I-52
Adjiashvili, David I-64, II-375
Afshani, Peyman I-77
Allamigeon, Xavier I-89
Ambainis, Andris I-26, I-101
Amir, Amihood I-114
Ancona, Davide II-62
Angelini, Patrizio I-126
Aschner, Rom II-387
Avin, Chen II-399

Balodis, Kaspars I-26
Basavaraju, Manu I-800
Baswana, Surender I-138
Bavarian, Mohammad I-26, I-101, I-150
Bell, Jason II-1
Benchimol, Pascal I-89
Ben-Sasson, Eli I-163, I-955
Bhattacharya, Sayan I-186
Biedl, Therese I-198
Björklund, Andreas I-211, I-223
Blais, Eric I-235
Blondin, Michael II-13
Bojańczyk, Mikoffllaj II-26, II-38, II-50
Bonsangue, Marcello II-62
Borello, Alex II-74
Borokhovich, Michael II-399
Bosio, Sandro I-64
Braverman, Mark I-502
Bredereck, Robert I-174
Briët, Jop I-259
Bringmann, Karl I-247
Brzozowski, Janusz II-1
Bulteau, Laurent I-174
Bundala, Daniel II-86

Cai, Jin-Yi I-271
Canonne, Clément I-283
Cerone, Andrea II-98
Cervelle, Julien II-74
Chailloux, André I-296
Chalopin, Jérémie II-411, II-423

Chan, Timothy M. I-77, I-114
Chatterjee, Krishnendu II-110, II-122
Chaturvedi, Namit II-134
Chechik, Shiri I-52
Chen, Jiehua I-174
Childs, Andrew M. I-308
Chistikov, Dmitry II-146
Cleve, Richard I-320
Cole, Richard I-332
Cooper, Colin II-435
Czumaj, Artur I-344

Da Lozzo, Giordano I-126
Dams, Johannes II-447
Dapić, Petar I-847
Datta, Samir I-356
de Boer, Frank II-62
Demaine, Erik D. I-368, I-380
Demaine, Martin L. I-368
de Oliveira, Rafael Mendes I-417
Derevenetc, Egor II-158
Di Battista, Giuseppe I-126
Dieudonné, Yoann II-411
Dobzinski, Shahar I-392
Dósa, György I-429
Doyen, Laurent II-110
Dregi, Markus Sortland I-405
Droste, Manfred II-171
Dvir, Zeev I-259, I-417

Eisenstat, David II-459
Elkin, Michael I-442
Elsässer, Robert II-435
Emek, Yuval I-453, II-183, II-471
Esfandiari, Hossein I-465

Feige, Uriel I-477
Fekete, Sándor P. I-368
Fiala, Jĭŕˇ I-489
Finkel, Alain II-13
Fomin, Fedor V. I-800
Fouque, Pierre-Alain I-991
Frati, Fabrizio I-126
Froese, Vincent I-174
Fu, Yuxi II-363

622 Author Index

Gafni, Eli I-1
Gao, Yihan I-101
Garg, Ankit I-502
Gaubert, Stéphane I-89
Gavinsky, Dmitry I-150, I-514
Gawrychowski, Paweffll I-525
Ghaffari, Mohsen II-483
Giakkoupis, George II-495
Gilbert, Anna C. I-538
Göbel, Oliver II-508
Gogacz, Tomasz II-50, II-293
Golovach, Petr I-800
Golovnev, Alexander I-551
Goncharov, Sergey II-196, II-256
Goodrich, Michael T. II-556
Gosset, David I-308
Gotsman, Alexey II-98
Guo, Heng I-271
Gupta, Anupam I-563

Hajiaghayi, MohammadTaghi I-465,
I-576

H̃astad, Johan I-235
He, Chaodong II-363
Hegde, Chinmay I-588
Herlihy, Maurice I-1
Hertli, Timon I-600
Hesse, William I-356
Heunen, Chris II-208
Hoefer, Martin II-447, II-508
Höhn, Wiebke I-625
Hsu, Justin I-612
Hu, Guangda I-259
Huang, Mingzhang II-363
Huang, Yamming I-380
Husfeldt, Thore I-211

Iacono, John I-637
Ibsen-Jensen, Rasmus II-122
Indyk, Piotr I-588
Ishai, Yuval I-650
Ito, Tsuyoshi I-150
Ivanyos, Gábor I-663

Jacob, Riko II-423
Jagadeesan, Radha II-220
Jakobsen, Sune K. I-676
Janc̆ar, Petr II-232
Jeż, Artur II-244
Jozeph, Shlomo I-477
Jung, Jean Christoph II-256

Kantor, Erez II-520
Karloff, Howard I-332
Katz, Matthew J. II-387
Kesselheim, Thomas II-447, II-508
Khan, Shahbaz I-138
Khani, Mohammad Reza I-465
Khot, Subhash I-689
Kiefer, Stefan II-268
Klauck, Hartmut I-919
Klav́ˇk, Pavel I-489
Kol, Gillat I-701
Kontogiannis, Spyros I-713
Kopelowitz, Tsvi II-532
Kopparty, Swastik I-726
Kosowski, Adrian II-544
Kozen, Dexter II-280
Kratochv́ˇl, Jan I-489
Krauthgamer, Robert II-532
Krawczyk, Tomasz I-738
Kuhn, Fabian I-247
Kulikov, Alexander S. I-551
Kulkarni, Janardhan I-186
Kulkarni, Raghav I-356, I-663
Kumar, Mrinal I-726, I-751
Kuncak, Viktor I-11
Kusumoto, Mitsuru I-763
Kutten, Shay II-520

Labourel, Arnaud II-411
Lampis, Michael I-775
Langner, Tobias II-471
Leme, Renato Paes I-392
Lewenstein, Moshe I-114
Lewenstein, Noa I-114
Li, Yi I-538
Liaghat, Vahid I-465, I-576
Liao, Chung-Shou I-380
Lokshtanov, Daniel I-405
Lotker, Zvi II-399
Lovett, Shachar I-514
Lu, Pinyan I-787
Lutz, Carsten II-256

Mahini, Hamid I-465
Majumdar, Rupak II-146
Makarychev, Konstantin I-812, I-823
Makarychev, Yury I-812
Mamouras, Konstantinos II-280
Manc̆inska, Laura I-835
Mao, Jieming I-101

Author Index 623

Marcinkowski, Jerzy II-293
Marković, Petar I-847
Martin, Barnaby I-847
Mathieu, Claire II-459
Mazza, Damiano II-305
McKenzie, Pierre II-13
Meka, Raghu I-859
Mertzios, George B. I-871
Mestre, Julián I-625
Meyer, Roland II-158
Michalewski, Henryk II-50
Mihajlin, Ivan I-551
Mihalák, Matús̆ II-423
Mirrokni, Vahab I-186
Misra, Pranabendu I-800
Mittal, Rajat I-320
Moran, Shay I-701
Moreira, Nelma II-1
Mozes, Shay I-525

Nedela, Roman I-489
Neiman, Ofer I-442
Nelson, Jelani I-883
Nguy˜̂en, Huy L. I-883
Niedermeier, Rolf I-174
Nikoletseas, Sotiris E. I-871
Nikzad, Afshin II-568

Ohrimenko, Olga II-556
Ostrovsky, Rafail I-895
Ouaknine, Joël II-86, II-318, II-330
Özkan, Özgür I-637

Pagh, Rasmus I-223
Paj ↪ak, Dominik II-544
Panagiotou, Konstantinos I-247
Panigrahi, Debmalya I-576, I-823
Parter, Merav II-608
Patitz, Matthew J. I-368
Patrignani, Maurizio I-126
Pattinson, Dirk II-196
Pelc, Andrzej II-411
Peleg, David II-399
Perevoshchikov, Vitaly II-171
Persiano, Giuseppe I-895
Peter, Ueli I-247
Place, Thomas II-342
Porat, Ely I-538, II-532
Prabhakaran, Manoj I-907
Prakash, Ved I-919

Qiao, Youming I-663

Räcke, Harald I-465
Radzik, Tomasz II-435
Ramanujan, M.S. I-800
Raptopoulos, Christoforos L. I-871
Ravi, R. II-568
Reidl, Felix I-931
Reingold, Omer I-859, I-943
Reis, Rogério II-1
Riely, James II-220
Ron-Zewi, Noga I-955
Roselli, Vincenzo I-126
Rosén, Adi I-453
Rossmanith, Peter I-931
Rot, Jurriaan II-62
Rotbart, Noy II-375
Roth, Aaron I-612
Rothblum, Guy N. I-859
Rothblum, Ron D. I-859, I-943
Roughgarden, Tim I-612
Rubinfeld, Ronitt I-283
Rutten, Jan II-62

Sadakane, Kunihiko I-380
Sahai, Amit I-907
Saks, Michael I-726
Santha, Miklos I-663
Saraf, Shubhangi I-259, I-751
Sauerwald, Thomas II-495
Saurabh, Saket I-800
Scarpa, Giannicola I-296
Schabanel, Nicolas II-459
Schleiden, Thomas II-508
Schmidt, Jens M. I-967
Schmidt, Ludwig I-588
Schröder, Lutz II-256
Schweller, Robert T. I-368
Seidel, Jochen II-183
Servedio, Rocco A. I-235
Sgall, Jĭŕˇ I-429
Shpilka, Amir I-417, I-701
Sikdar, Somnath I-931
Skrzypczak, Michaffll II-50
Solomon, Shay I-442, II-532
Spirakis, Paul G. I-871
Stauffer, Alexandre II-495
Strauss, Martin J. I-538
Sun, Xiaoming I-101
Sundaram, Aarthi I-663

624 Author Index

Talwar, Kunal I-563, I-979
Tamassia, Roberto II-556
Tan, Li-Yang I-235
Tao, Xiuting II-363
Thomas, Henning I-247
Tibouchi, Mehdi I-991
Tsakalidis, Konstantinos I-77
Tulsiani, Madhur I-689, I-955, I-1003
Tzameret, Iddo I-1015

Uitto, Jara II-471
Ullman, Jonathan I-612
Upfal, Eli II-556

van Bevern, René I-174
Vanier, Pascal II-74
Vidick, Thomas I-835
Villaamil, Fernando Sánchez I-931
Viola, Emanuele I-163
Visconti, Ivan I-895
Vöcking, Berthold I-344, II-508
Volkovich, Ilya I-1027

Wachter, Björn II-268
Wadia, Akshay I-907
Walczak, Bartosz I-738
Wang, Menghui I-787
Wang, Yaoyu I-1039
Wattenhofer, Roger II-183, II-471
Webb, Zak I-308
Wee, Hoeteck I-650
Wehar, Michael II-354
Weimann, Oren I-39, I-525

Weismantel, Robert I-64
Widmayer, Peter II-423
Wieder, Udi I-563, I-943, I-979
Wiese, Andreas I-625
Williams, Tyson I-271
Williams, Virginia Vassilevska I-39,

I-223
Wimmer, Karl I-1051
Winslow, Andrew I-368
Woeginger, Gerhard J. I-174
Wolf, Julia I-955
Woods, Damien I-368
Worah, Pratik I-689
Worrell, James II-318, II-330
Wright, John I-1003
Wu, Yi I-1051
Wulff-Nilsen, Christian I-1063

Yang, Hongseok II-98
Yehudayoff, Amir I-701
Yin, Qiang II-363
Yin, Yitong I-1039, I-1075
Yoshida, Yuichi I-763

Zaroliagis, Christos I-713
Zeitoun, Marc II-342
Zenklusen, Rico I-64
Zhang, Chihao I-787
Zhang, Peng I-1051
Zhou, Yuan I-1003
Zuo, Song I-101
Zwick, Uri I-223

	Preface
	Organization
	Table of Contents – Part II
	Table of Contents – Part I
	Symmetric Groups and Quotient Complexity
of Boolean Operations

	1 Motivation
	2 Preliminaries
	3 Connectedness
	4 Uniformly Minimal Semiautomata
	5 Symmetric Groups and Boolean Operations
	6 Conclusions
	References

	Handling Infinitely Branching WSTS
	1 Introduction
	2 WSTS
	3 Decidability for WSTS
	4 Handling Infinite Branching Finitely
	4.1 Downward Closed Sets and Ideals
	4.2 Completion of WSTS
	4.3 Post-effectiveness of Completions in Concrete Examples

	5 Decidability in Infinitely Branching Post-effective WSTS
	5.1 (Strong) Termination
	5.2 Boundedness
	5.3 (Strong) Control-State Maintainability
	5.4 Coverability

	6 Conclusion and Further Work
	References

	Transducers with Origin Information
	1 Regular String to String Transducers
	2 A Machine Independent Characterisation
	3 Learning
	4 Order-Preserving Transducers
	5 First-Order Definable Transducers
	6 Further Work

	References

	Weak MSO+U with Path Quantifiers
over Infinite Trees

	1 Notation and Some Applications
	2 Automata
	3 Profinite Trees and Automata on them
	3.1 Automaton Chains

	4 Emptinessof wmso+up Automata

	5 Conclusions
	References

	On the Decidability of MSO+U on Infinite Trees
	1 Introduction
	2 mso+u on 2

	2.1 Projective mso on 2≤ω, and its Reduction to mso+u on 2

	3 Undecidability of Projective mso on 2ω

	3.1 Modal Graphs
	3.2 Coding a Modal Graph in 2ω

	4 Conclusions
	References

	A Coalgebraic Foundation
for Coinductive Union Types

	1 Introduction
	2 Coalgebras
	3 A Semantic Approach to Coinductive Types
	4 Coinductive Union Types
	5 Approximating Coinductive Union Types
	6 Related Work
	7 Future Work
	References

	Turing Degrees of Limit Sets of Cellular Automata
	1 Introduction
	2 Preliminary Definitions
	3 Requirements of the Construction
	4 The Construction
	4.1 A Self-Vanishing Sparse Grid
	4.2 Backward Computation Inside the Grid
	4.3 The Computation Itself
	4.4 Limit Set of the Construction

	References

	On the Complexity of Temporal-Logic
Path Checking

	1 Introduction
	2 Preliminaries
	3 Reduction from Upward Layered CVP to LTL Path
Checking

	4 MTL Path Checking is Efficiently Parallelisable

	5 UTL

	6 Conclusion
	References

	Parameterised Linearisability
	1 Introduction
	2 Parameterised Libraries
	3 Histories and Parameterised Linearisability
	4 Lifting Linearisability to Libraries
	5 Instantiating Library Parameters and Contextuality
	6 Clients and Observational Refinement
	7 Related Work
	References

	Games with a Weak Adversary
	1 Introduction
	2 Definitions
	3 Three-Player Games with Player 1 Less Informed
	4 Three-Player Games with Player 1 Perfect
	5 Four-Player Games
	6 Applications
	References

	The Complexity of Ergodic Mean-payoff Games
	1 Introduction
	2 Definitions
	3 Complexity of Approximation for Almost-Sure Ergodic Games
	3.1 Strategy Complexity
	3.2 Approximation Complexity
	3.3 Strategy-Iteration Algorithm for Almost-Sure Ergodic CMPGs

	4 Analysis of the Value-Iteration Algorithm
	5 Exact Value Problem for Almost-Sure Ergodic Games
	References

	Toward a Structure Theory of Regular Infinitary
Trace Languages

	1 Introduction
	2 Preliminaries
	2.1 Finite and Infinite Traces
	2.2 Asynchronous Transition Systems
	2.3 Regular Infinitary Languages
	2.4 Secondaries and Frontiers

	3 A New Model of Asynchronous Automata
	3.1 Degrees of Synchronization
	3.2 Synchronization-aware Asynchronous B¨uchi Automata
	3.3 Synchronization-aware Asynchronous Muller Automata

	4 Characterization of Deterministic B¨uchi Recognizability
	5 Conclusion
	References

	Unary Pushdown Automata
and Straight-Line Programs

	1 Introduction
	2 Preliminaries
	3 Indicator Pairs and the Translation Theorem
	4 Decision Problems for UDPDA
	4.1 Compressed Membership and Equivalence
	4.2 Inclusion

	5 Universality of UNPDA
	6 Corollaries and Discussion
	References

	Robustness against Power is PSpace-complete
	1 Introduction
	2 Programming Model
	2.1 Power Semantics

	3 Robustness
	4 Normal-Form Computations
	5 From Normal-Form Computations to Emptiness
	5.1 Generating Normal-Form Computations
	5.2 Checking Cyclicity of the Happens-Before Relation

	References

	A Nivat Theorem for Weighted Timed Automata and Weighted Relative Distance
Logic
	1 Introduction
	2 Timed Automata
	3 Weighted Timed Automata
	4 Closure Properties
	5 A Nivat Theorem forWeighted Timed Automata
	6 Weighted Relative Distance Logic
	6.1 Relative Distance Logic
	6.2 Weighted Relative Distance Logic

	7 Conclusion and Future Work
	References

	Computability in Anonymous Networks: Revocable vs. Irrecovable Outputs
	1 Introduction
	1.1 Setting
	1.2 Our Contribution
	1.3 Related Work

	2 Notions of Correctness
	3 Distributed Oracles
	4 Problem Zoo

	5 Proof of Theorem 3
	References

	Coalgebraic Weak Bisimulation from Recursive
Equations over Monads

	1 Introduction
	2 Preliminaries
	3 Examples
	4 Weak Bisimulation, Coalgebraically
	5 Examples, Revisited
	6 Weak Bisimulation as Strong Bisimulation
	7 Conclusions and Related Work
	References

	Piecewise Boolean Algebras and Their Domains
	1 Introduction
	2 Piecewise Boolean Algebras
	3 Piecewise Boolean Domains
	4 Partition Lattices
	5 Piecewise Boolean Diagrams
	6 Orientation
	7 Future Work
	References

	Between Linearizability and Quiescent Consistency
	1 Introduction
	2 Linearizability
	3 Quiescent Consistency
	4 Quantitative Quiescent Consistency
	5 Conclusions
	References

	Bisimulation Equivalence
of First-Order Grammars

	1 Introduction
	2 Preliminaries and Result
	3 Proof of Theorem 1
	References

	Context Unification is in PSPACE
	1 Introduction
	2 Labelled Trees and Their Compression
	3 Context Unification
	4 Compression of Non-crossing Subpatterns
	5 Uncrossing
	6 Main Algorithm
	References

	Monodic Fragments of Probabilistic First-Order Logic
	1 Introduction
	2 Preliminaries
	3 Monodic ProbFO
	4 The Quasi-Model Machinery
	5 Recursive Enumerability and Axiomatization
	6 Decidability and Complexity
	7 Conclusion
	References

	Stability and Complexity of Minimising
Probabilistic Automata

	1 Introduction
	2 Preliminaries
	3 Stable WA Minimisation
	3.1 Brzozowski-like WA Minimisation
	3.2 Numerically Stable WA Minimisation
	3.3 Lossy WA Minimisation

	4 The Complexity of PA Minimisation
	4.1 NP-Hardness
	4.2 Reduction to the Existential Theory of the Reals

	5 Conclusions and Open Questions
	References

	Kleene Algebra with Equations
	1 Introduction
	2 Preliminaries and a Negative Result
	3 String Rewriting Systems
	4 Completeness: (Partial) Monoid Equations
	5 Completeness: Typed Monoid Equations
	6 Conclusion
	References

	All–Instances Termination of Chase
is Undecidable

	1 Introduction
	1.1 Our Contribution

	2 Techniques
	3 Proof of Theorem 1
	3.1 The Well of Positivity
	3.2 The Problem to be Reduced
	3.3 Encoding the Automaton as a Conway Function
	3.4 The Program TM

	3.5 The Case of All-Instances-All-Paths Standard Chase Termination

	4 Proof of Theorem 2
	4.1 Constructing the Arena: Chase of Exponential Depth
	4.2 Constructing the Arena: Chase of Double Exponential Size
	4.3 The Encoding Lemma and How it Implies Theorem 2

	References

	Non-uniform Polytime Computation in the Infinitary Affine Lambda-Calculus
	1 Introduction
	2 The Affine Lambda-Calculus
	3 The Parsimonious Stratified Calculus
	4 A Characterization of P/poly
	5 Affine Lambda-Terms and Boolean Circuits
	References

	On the Positivity Problem
for Simple Linear Recurrence Sequences

	1 Introduction
	2 Linear Recurrence Sequences
	3 Decidability and Complexity
	References

	Ultimate Positivity is Decidable for Simple
Linear Recurrence Sequences

	1 Introduction
	2 Background
	3 Multiplicative Relations
	4 Algorithm for Ultimate Positivity
	5 Complexity Lower Bound
	6 Conclusion
	References

	Going Higher in the First-Order Quantifier Alternation Hierarchy on Words
	1 Words and Algebra

	2 First-Order Logic and Quantifier Alternation Hierarchy
	3 Σi-Chains

	3.1 Definitions
	3.2 Σi-Chains and Separation

	4 Computing Σ2-Chains

	5 Decidable Characterizations of Σ3, Π3, Δ3

	6 Decidable Characterization of BΣ2

	7 Conclusion
	References

	Hardness Results for Intersection
Non-Emptiness

	1 Introduction
	2 Notation and Conventions
	3 Binary Space Complexity
	4 Reductions
	5 Space vs Time
	6 Conclusion
	References

	Branching Bisimilarity Checking for PRS
	1 Introduction
	2 Preliminaries
	3 Defender’s Forcing with Delayed Justification
	4 Undecidability of nPA
	4.1 The nPA Game
	4.2 Defender’s Generator
	4.3 Checking Phase
	4.4 Generating Phase

	5 Conclusion
	References

	Labeling Schemes for Bounded Degree Graphs
	1 Introduction
	1.1 Previous Work
	1.2 Preliminaries

	2 logn + O(1) Labeling Scheme for Bounded-Degree
Outerplanar Graphs

	2.1 Our Methods
	2.2 A Compact Edge-Universal Graph for Bounded-Degree Outerplanar Graphs
	2.3 Warm-Up: A log n + O(log log n) Labeling Scheme

	2.4 The Encoder
	2.5 Decoding
	2.6 Computing the Embedding φ

	2.7 Improvements and Special Cases

	3 Labeling Schemes for G(n,Δ) and G(n,Δ(n))

	References

	Bounded-Angle Spanning Tree:
Modeling Networks with Angular Constraints

	1 Introduction
	2 α = 2π/3

	2.1 The Basic Gadget
	2.2 The Induced Graph of S1 S2 is
Connected

	3 Approximating the α-MST

	4 Constant Range Hop-Spanner for α = 2π/3

	References

	Distributed Computing on Core-Periphery
Networks: Axiom-Based Design

	1 Introduction
	2 Axiomatic Design for Core-Periphery Networks
	3 MST on a Core-Periphery Network
	4 Additional Algorithms in Core-Periphery Networks
	References

	Fault-Tolerant Rendezvous in Networks
	1 Introduction
	2 Preliminaries
	3 Random Faults
	4 Unbounded Adversarial Faults
	5 Bounded Adversarial Faults
	6 Conclusion
	References

	Data Delivery by Energy-Constrained
Mobile Agents on a Line

	1 Introduction
	2 The Quasi-, Pseudo-Polynomial Time Algorithm
	3 NP-Completeness
	4 Conclusions and Open Problems
	References

	The Power of Two Choices
in Distributed Voting

	1 Introduction
	2 Our Results for Two-Sample Voting
	3 Background Material and Outline of Proof
	4 Phase I of Analysis: cn ≤ B ≤ n(1 − ν0)/2

	5 Phase II of Analysis: ω ≤ B ≤ cn

	6 Phase III of Analysis: 1 ≤ B ≤ ω

	7 Putting the Phases Together
	References

	Jamming-Resistant Learning in Wireless Networks
	1 Introduction
	1.1 Related Work
	1.2 Formal Problem Description

	2 General Approach
	3 Bounded Adversary
	4 Stochastic Adversary
	5 Joining and Leaving Links
	References

	Facility Location in Evolving Metrics
	1 Introduction
	2 Facility Location in Evolving Metrics
	2.1 Definition
	2.2 Facts about Probability
	2.3 Approximation Algorithm
	2.4 Hardness of Approximation

	3 Hourly Opening Cost
	3.1 Dynamic Facility Location with Hourly Opening Cost
	3.2 Approximation Algorithm

	4 Conclusion and Open Questions
	References

	Solving the ANTS Problem with Asynchronous Finite State Machines
	1 Introduction
	2 Parallel Rectangle Search
	2.1 The RS strategy

	2.2 Correctness
	2.3 Runtime Analysis

	3 An Almost Optimal Emission Scheme
	4 Optimal Rectangle Search
	References

	Near-Optimal Distributed Approximation of Minimum-Weight Connected Dominating Set
	1 Introduction and Related Work
	1.1 A Closeup of MCDS, in Contrast with MST

	1.2 Congestion in Distributed Algorithms
	1.3 Result
	1.4 Other Related Work

	2 Preliminaries
	3 The Algorithm for MCDS

	3.1 The Outline
	3.2 A High-Level View of the Algorithm for One Phase
	3.3 The Algorithm For One Phase

	References

	Randomized Rumor Spreading
in Dynamic Graphs

	1 Introduction
	2 Model
	3 Proof of the Bound with Conductance (Theorem 1)
	3.1 Proof of Lemma 1

	4 Proof of the Bound with Vertex Expansion (Theorem 2)
	4.1 Proof of Theorem 3

	5 Counter-Examples
	References

	Online Independent Set Beyond the Worst-Case: Secretaries, Prophets, and Periods
	1 Introduction
	1.1 Description of the Models
	1.2 Our Contribution
	1.3 Related Work

	2 Graph Sampling Model
	3 Unweighted Independent Set
	4 Weighted Independent Set
	5 Arrivals and Departures
	6 Edge-Weighted Conflict Graphs
	References

	Optimal Competitiveness for Symmetric
Rectilinear Steiner Arborescence
and Related Problems

	1 Introduction
	2 Preliminaries
	3 Optimal Online Algorithm for MCD
	3.1 Analysis of LINEon

	4 Optimal Online Algorithm for SRSA

	5 Optimizing MCD for a Small Number of Requests

	6 Randomized Lower Bound for Line Networks
	References

	Orienting Fully Dynamic Graphs
with Worst-Case Time Bounds

	1 Introduction
	1.1 Main Result
	1.2 Comparison with Previous Work
	1.3 Our Techniques
	1.4 Selected Applications
	1.5 Preliminaries

	2 Invariants for Bounding the Largest Out-Degree
	3 Worst-Case Algorithm
	3.1 Insertions
	3.2 Deletions

	4 A More Efficient Algorithm
	References

	Does Adding More Agents Make a Difference? A Case Study of Cover Time for the Rotor-Router
	1 Introduction
	2 Preliminaries
	3 The Main Technique
	4 Graphs with Small Mixing Time
	5 The Torus

	6 The Cycle

	7 The Hypercube
	References

	The Melbourne Shuffle: Improving Oblivious Storage in the Cloud
	1 Introduction
	2 Preliminaries
	3 Oblivious Shuffle Model
	4 The Melbourne Shuffle
	4.1 Security Analysis

	5 The Optimized Melbourne Shuffle
	6 The Melbourne Shuffle with Small Messages
	7 Oblivious Storage
	References

	Sending Secrets Swiftly:
Approximation Algorithms
for Generalized Multicast Problems

	1 Introduction and Motivation
	2 Related Work
	3 Our Results

	4 Preliminaries
	4.1 The Multicast Problem
	4.2 Schedules
	4.3 Graphs and Matchings
	4.4 Spiders

	5 The Multicast Problem
	5.1 Outline of the Algorithm
	5.2 The Algorithm: Phase 4
	5.3 The Algorithm

	6 The Multicommodity Multicast Problem
	6.1 Preleminaries: Multicast Schedules
	6.2 Sparsification
	6.3 The Algorithm

	7 Conclusion
	References

	Bypassing Erd˝os’ Girth Conjecture: Hybrid
Stretch and Sourcewise Spanners

	1 Introduction
	1.1 Motivation
	1.2 Related Works
	1.3 Contributions
	1.4 Preliminaries
	1.5 Notation

	2 Hybrid Spanners
	3 Sourcewise Spanners
	3.1 Upper Bound for Multiplicative Stretch
	3.2 Lower Bound for Additive Sourcewise Spanners and Emulators
	3.3 Upper Bound for Additive Sourcewise Spanners and Emulators

	References

	Author Index

