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Abstract. We study the strong spatial mixing (decay of correlation)
property of proper q-colorings of random graph G(n, d/n) with a fixed d.
The strong spatial mixing of coloring and related models have been ex-
tensively studied on graphs with bounded maximum degree. However, for
typical classes of graphs with bounded average degree, such as G(n, d/n),
an easy counterexample shows that colorings do not exhibit strong spatial
mixing with high probability. Nevertheless, we show that for q ≥ αd+ β
with α > 2 and sufficiently large β = O(1), with high probability proper
q-colorings of random graph G(n, d/n) exhibit strong spatial mixing with
respect to an arbitrarily fixed vertex. This is the first strong spatial mix-
ing result for colorings of graphs with unbounded maximum degree. Our
analysis of strong spatial mixing establishes a block-wise correlation de-
cay instead of the standard point-wise decay, which may be of interest
by itself, especially for graphs with unbounded degree.

1 Introduction

A proper q-coloring of a graph G is an assignment of q colors {1, 2, . . . , q} to
the vertices so that adjacent vertices receive different colors. Each coloring cor-
responds to a configuration in the q-state zero-temperature antiferromagnetic
Potts model. The uniform probability space, known as the Gibbs measure, of
proper q-colorings of the graph, receives extensive studies from both Theoretical
Computer Science and Statistical Physics.

An important question concerned with the Gibbs measure is about the mixing
rate of Glauber dynamics, usually formulated as: on graphs with maximum de-
gree d, assuming q ≥ αd+β, the lower bounds for α and β to guarantee rapidly
mixing of the Glauber dynamics over proper q-colorings. (See [9] for a survey.)

Recently, much attention has been focused on the spatial mixing (correlation
decay) aspect of the Gibbs measure, which is concerned with the case where
the site-to-boundary correlations in the Gibbs measure decay exponentially to
zero with distance. In Statistical Physics, spatial mixing implies the uniqueness
of infinite-volume Gibbs measure. The notion of strong spatial mixing was in-
troduced in Theoretical Computer Science by Weitz [18]. Here, the exponential
decay of site-to-boundary correlations is required to hold even conditioning on
an arbitrarily fixed boundary. Strong spatial mixing is interesting to Computer
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Science because it may imply efficient approximation algorithms for counting
and sampling. This implication was fully understood for two-state spin sys-
tems. For multi-state spin systems such as coloring, this algorithmic implica-
tion of strong spatial mixing is only known for special classes of graphs, such
as neighborhood-amenable (slow-growing) graphs [13]. Strong spatial mixing of
proper q-coloring has been proved for classes of degree-bounded graphs, includ-
ing regular trees [12], lattices graphs [13], and finally the general degree-bounded
triangle-free graphs [11], all with the same α > α∗ bound where α∗ = 1.763... is
the unique solution to xx = e.

All these temporal and spatial mixing results are established for graphs with
bounded maximum degree. It is then natural to ask what happens for classes of
graphs with bounded average degree. A natural model for the “typical” graphs
with bounded average degree d is the Erdös-Rényi random graph G(n, d/n). In
this model, the Gibbs measure of proper q-colorings becomes more complicated
because the maximum degree is unbounded and the decision of colorability is
nontrivial. Nevertheless, it was discovered in [5] that for G(n, d/n) the rapid
mixing of (block) Glauber dynamics over the proper q-colorings can be guaran-
teed by a q = O(log log n/ log log logn), much smaller than the maximum degree
of G(n, d/n). This upper bound on the number of colors was later reduced to a
constant q = poly(d) in [8] and independently in [15, 16], and very recently to a
linear q ≥ αd + β with α = 5.5 in [7].

On the spatial mixing side, the strong spatial mixing of the models which
are simpler than coloring has been studied on random graph G(n, d/n), or other
classes of graphs with bounded average degree. Recently in [17], such average-
degree based strong spatial mixing is established for the independent sets of
graphs with bounded connective constant. Since G(n, d/n) has connective con-
stant ≈ d with high probability, this result is naturally translated to G(n, d/n).

It is then an important open question to ask about the conditions for the
spatial mixing of colorings of graphs with bounded average degree. The following
simple example shows that this can be very hard to achieve: Consider a long
path of � vertices, each adjacent to q− 2 isolated vertices, where q is the number
of colors. When the path is sufficiently long, the connective constant of this
graph can be arbitrarily close to 1. However, colors of those isolated vertices can
be properly fixed to make the remaining path effectively a 2-coloring instance,
which certainly has long-range correlation, refuting the existence of strong spatial
mixing.

More devastatingly, it is easy to see that for any constant q, with high prob-
ability the random graph G(n, d/n) contains a path of length � = Θ(log n) in
which every vertex has degree q − 2. As in the above example, even in a weaker
sense of site-to-site correlation which was considered in [13], this forbids the
strong spatial mixing up to a distance Θ(log n). Meanwhile, it is well known
that the diameter of G(n, d/n) is O(log n) with high probability. So the strong
spatial mixing of colorings of random graph G(n, d/n) cannot hold except for a
narrow range of distances in Θ(log n).
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In this case, inspired by the studies of spatial mixing in rooted trees, where
only the decay of correlation to the root is considered, we propose to study the
strong spatial mixing with respect to a fixed vertex, instead of all vertices.

Assumption 1. We make following assumptions:

– d > 1 is fixed, and q ≥ αd + β for α > 2 and sufficiently large β = O(1)
(β ≥ 23 is fine);

– v ∈ V is arbitrarily fixed and G = (V,E) is a random graph drawn from
G(n, d/n), where n is sufficiently large.

Note that vertex v is fixed independently of the sampling of random graph.
With these assumptions we prove the following theorem.

Theorem 2. Let q, v and G satisfy Assumption 1, and t(n) = ω(1) an arbitrary
super-constant function. With high probability, G is q-colorable and the following
holds: for any region R ⊂ V containing v, whose vertex boundary is ∂R, for
any feasible colorings σ, τ ∈ [q]∂R partially specified on ∂R which differ only at
vertices that are at least t(n) distance away from v in G, for some constants
C1, C2 > 0 depending only on d and q, it holds that

|Pr[c(v) = x | σ]− Pr[c(v) = x | τ ]| ≤ C1 exp(−C2 · dist(v,Δ)),

for a uniform random proper q-coloring c of G and any x ∈ [q], where Δ ⊂ ∂R
is the vertex set on which σ and τ differ, and dist(v,Δ) denotes the shortest
distance in G between v and any vertex in Δ.

This is the first strong spatial mixing result for colorings of graphs with un-
bounded maximum degree. Our technique is developed upon the error function
method introduced in [11], which uses a cleverly designed error function to mea-
sure the discrepancy of marginal distributions, and the strong spatial mixing is
implied by an exponential decay of errors measured by this function.

In all existing techniques for strong spatial mixing of colorings, when the
degree of a vertex is unbounded, a multiplicative factor of ∞ is contributed to
the decay of correlation, which unavoidably ruins the decay. However, in the
real case for colorings of graphs with unbounded degree, a large-degree vertex
may at most locally “freeze” the coloring, rather than nullify the existing decay
of correlation. This limitation on the effect of large-degree vertex has not been
addressed by any existing techniques for spatial mixing.

We address this issue by considering a block-wise correlation decay, so that
within a block the coloring might be “frozen”, but between blocks, the decay
of correlation is as in that between vertices in the degree-bounded case. This
analysis of block-wise correlation decay can be seen as a spatial analog to the
block dynamics over colorings of random graphs, and is the first time that such
an idea is used in the analysis of spatial mixing.

Related Work. As one of the most important random CSP, the decision problem
of coloring sparse random graphs has been extensively studied, e.g. in [1, 3].
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Monte Carlo algorithms for sampling random coloring in sparse random graphs
were studied in [4,7,8,15,16], and in [6], a non-Monte-Carlo algorithm was given
for the same problem which uses less colors but has worse error dependency than
the Monte-Carlo algorithms. In [10,14] the correlation decay on computation tree
for coloring was studied which implies FPTAS for counting coloring.

2 Preliminaries

Graph coloring. Let G = (V,E) be an undirected graph. For each vertex v ∈ V ,
let dG(v) denote the degree of v. For any u, v ∈ V , let distG(u, v) denote the
distance between u and v in G; and for any vertex sets S, T ⊆ V , let distG(u, S) =
minv∈S distG(u, v) and distG(S, T ) = minu∈S,v∈T distG(u, v). The subscripts can
be omitted if graph G is assumed in context. For any vertex set S ⊂ V , we use
∂S = {v 	∈ S | uv ∈ E, u ∈ S} to denote the vertex boundary of S, and use
δS = {uv ∈ E | u ∈ S, v 	∈ S} to denote the edge boundary of S.

We consider the list-coloring problem, which is a generalization of q-coloring
problem. Let q > 0 be a finite integer, a pair (G,L) is called a list-coloring
instance if G = (V,E) is an undirected graph, and L = (L(v) : v ∈ V ) is a
sequence of lists where for each vertex v ∈ V , L(v) ⊆ [q] is a list of colors from
[q] = {1, 2, . . . , q} associated with vertex v. A σ ∈ [q]V is a proper coloring of
(G,L) if σ(v) ∈ L(v) for every vertex v ∈ V and no two adjacent vertices in
G are assigned with the same color by σ. A list-coloring instance (G,L) is said
to be feasible or colorable if there exists a proper coloring of (G,L). A coloring
can also be partially specified on a subset of vertices in G. For S ⊆ V , let
L(S) = {σ ∈ [q]S | ∀v ∈ V, σ(v) ∈ L(v)} denote the set of all possible colorings
(not necessarily proper) of the vertices in S. A coloring σ ∈ L(S) partially
specified on a subset S ⊆ V of vertices is said to be feasible if there is a proper
coloring τ of (G,L) such that σ and τ are consistent over set S. A coloring
σ ∈ L(S) partially specified on a subset S ⊆ V of vertices is said to be proper or
locally feasible if σ is a proper coloring of (G[S],LS) where G[S] is the subgraph
of G induced by S and LS = (L(v) : v ∈ S) denotes the sequence L of lists
restricted on set S of vertices. For any S ⊆ V , we use L∗(S) to denote the set
of proper colorings of S.

When L(v) = [q] for all vertices v ∈ V , a list-coloring instance (G,L) becomes
an instance for q-coloring, which we denote as (G, [q]).

Self-avoiding Walk (SAW) Tree. Given a graph G(V,E) and a vertex v ∈ V ,
a tree T rooted by v can be naturally constructed from all self-avoiding walks
starting from v so that each walk corresponds to a vertex in T , and each walk p
is the parent of walks (p, u) where u ∈ V is a vertex. We use TSAW(G, v) = T to
denote this tree constructed as above, and call it a self-avoiding walk tree (SAW)
of graph G.

Gibbs Measure and Strong Spatial Mixing. A feasible list-coloring instance (G,L)
gives rise to a natural probability distribution μ = μG,L, which is the uniform dis-
tribution over all proper list-colorings. This distribution μ is also called the Gibbs
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measure of list-colorings. We also a notation of PG,L(event(c)) = Pr[event(c)] to
evaluate probability of an event defined on a uniform random proper coloring c
of (G,L). Let B ⊂ V and Λ ⊂ V . For any feasible coloring σ ∈ L(Λ) partially
specified on vertex set Λ, we use μσ

B = μσ
G,L,B to denote the marginal distribu-

tion over colorings of vertices in B conditioning on that the coloring of vertices
in Λ is as specified by σ. And when B = {v}, we write μσ

v = μσ
G,L,v = μσ

G,L,{v}.
The list-coloring instance (G,L) in the subscripts can be omitted if it is assumed
in context. Formally, for a uniformly random proper coloring c of (G,L), we have

∀x ∈ L(v), μσ
v (x) = PG,L(c(v) = x | σ),

∀π ∈ L(B), μσ
B(π) = PG,L(c(B) = π | σ).

The notion strong spatial mixing is introduced in [18,19] for independent sets
and extended to colorings in [11, 13].

Definition 3 (Strong Spatial Mixing). The Gibbs measure on proper q-
colorings of a family G of finite graphs exhibits strong spatial mixing (SSM)
if there exist constants C1, C2 > 0 such that for any graph G(V,E) ∈ G, any
v ∈ V, Λ ⊆ V , and any two feasible q-colorings σ, τ ∈ [q]Λ, we have

‖μσ
v − μτ

v‖TV ≤ C1 exp(−C2dist(v,Δ)),

where Δ ⊆ Λ is the subset on which σ and τ differ, and ‖ · ‖TV is the total
variation distance.

When the exponential bound relies on dist(v, Λ) instead of dist(v,Δ), the defi-
nition becomes weak spatial mixing (WSM). The difference is SSM requires the
exponential correlation decay continues to hold even conditioning on the coloring
of a subset Λ \Δ of vertices being arbitrarily (but feasibly) specified.

Random graph model. The Erdös-Rényi random graph G(n, p) is the graph with
n vertices V and random edgesE where for each pair {u, v}, the edge uv is chosen
independently with probability p. We consider G(n, d/n) with fixed d > 1.

We say an event occurs with high probability (w.h.p.) if the probability of the
event is 1− o(1).

3 Correlation Decay along Self-avoiding Walks

In this section, we analyze the propagation of errors between marginal distribu-
tions measured by a special norm introduced in [11] in general degree-unbounded
graphs. Throughout this section, we assume (G,L) to be a list-coloring instance
with G = (V,E) and L = (L(v) : v ∈ V ) where each L(v) ⊆ [q].

The following error function is introduced in [11].

Definition 4 (Error Function). Let μ1 : Ω → [0, 1] and μ2 : Ω → [0, 1] be
two probability measures over the same sample space Ω. We define

E(μ1, μ2) = max
x,y∈Ω

(
log

(
μ1(x)

μ2(x)

)
− log

(
μ1(y)

μ2(y)

))
,

with the convention that 0/0 = 1 and ∞−∞ = 0.
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We assume (G,L) to be feasible so that for vertex set B ⊂ V and feasible
colorings σ, τ ∈ L(Λ) of vertex set Λ ⊂ V , the marginal probabilities μσ

B and μτ
B

are well-defined. The strong spatial mixing is proved by establishing a propaga-
tion of errors E(μσ

B, μ
τ
B). Note that unlike in bounded-degree graphs, in general

the value of E(μσ
B , μ

τ
B) can be infinite, which occurs when the possibility of a

particular coloring of B is changed by conditioning on σ and τ . This is avoided
when a vertex cut with certain “permissive” property separating B from the
boundary. The following proposition is proved in the full version.

Proposition 5. If there is a S ⊂ V \ (B ∪ Λ) such that |L(v)| > d(v) + 1 for
every v ∈ S and removing S disconnects B and Λ, then E(μσ

B , μ
τ
B) is finite for

any feasible colorings σ, τ ∈ L(Λ).

This motivates the following definition of permissive vertex and vertex set.

Definition 6. Given a list-coloring instance (G,L), a vertex v is said to be
permissive in (G,L) if for all neighbors u of v and u = v, it holds that |L(u)| >
d(u) + 1. A set S of vertices is said to be permissive if all vertices in S are
permissive.

Let T = TSAW(G, v) be the self-avoiding walk tree of graph G expanded from
vertex v. Recall that every vertex u in T can be naturally identified (many-to-
one) with the vertex in G at which the corresponding self-avoiding walk ends
(which we also denote by the same letter u).

Definition 7. Given a list-coloring instance (G,L), let v ∈ V , T = TSAW(G, v),
and S a set of vertices in T . Suppose that the root v has m children v1, v2, . . . , vm
in T and for i = 1, 2 . . . ,m, let Ti denote the subtree rooted by vi. The quantity
ET,L,S is recursively defined as follows

ET,L,S =

⎧⎪⎨
⎪⎩

m∑
i=1

δ (vi) · ETi,L,S if v 	∈ S,

3q if v ∈ S,

where δ(u) is a piecewise function defined as that for any vertex u in T ,

δ(u) =

{
1

|L(u)|)−dG(u)−1 if |L(u)| > dG(u) + 1,

1 otherwise,

where dG(v) is the degree in the original graph G instead of the degree in SAW-
tree T .

In particular, when (G,L) is a q-coloring instance (G, [q]), we denote this
quantity as ET,[q],S.

To state the main theorem of this section, we need one more definition.

Definition 8. Let G = (V,E), v ∈ V , Δ ⊂ V , and T = TSAW(G, v). A set S of
vertices in T is a cutset in T for v and Δ if: (1) no vertex in S is identified to
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v or any vertex u with dist(u,Δ) < 2 by TSAW(G, v); and (2) any self-avoiding
walk from v to a vertex in Δ must intersect S in T . A cutset S in T for v
and Δ is said to be permissive in (G,L) if every vertex in S is identified with a
permissive vertex in (G,L) by TSAW(G, v).

The following theorem is the main theorem of this section, which bounds the
error function E(μσ

v , μ
τ
v) by the ET,L,S defined in Definition 7 when there is a

good cutset in the SAW tree.

Theorem 9. Let (G,L) be a feasible list-coloring instance where G = (V,E)
and L = (L(v) ⊆ [q] : v ∈ V ). Let v ∈ V , Λ ⊂ V and Δ ⊆ Λ be arbitrary, and
T = TSAW(G, v). If there is a permissive cutset S in T for v and Δ, then for
any feasible colorings σ, τ ∈ L(Λ) which differ only on Δ, it holds that

E(μσ
v , μ

τ
v) ≤ ET,L,S .

This theorem is implied by the following weak spatial mixing version of the
theorem.

Lemma 10. Let (G,L) be a feasible list-coloring instance where G = (V,E)
and L = (L(v) ⊆ [q] : v ∈ V ). Let v ∈ V and Δ ⊆ Λ be arbitrary, and
T = TSAW(G, v). If there is a permissive cutset S in T for v and Δ, then for
any feasible colorings σ, τ ∈ L(Δ), it holds that

E(μσ
v , μ

τ
v) ≤ ET,L,S .

The implication from Lemma 10 to Theorem 9 is quite standard, whose proof
is in the full version. It now remains to prove Lemma 10.

3.1 The Block-Wise Correlation Decay

Now our task is to prove Lemma 10. This is done by establishing the decay of
E(μσ

B , μ
τ
B) along walks among blocks B with the following good property.

Definition 11. Given a list-coloring instance (G,L), a vertex set B ⊆ V is a
permissive block around v in (G,L) if v ∈ B and |L(u)| > dG(u) + 1 for every
vertex u in the vertex boundary ∂B.

For permissive blocks B, a coloring of B is globally feasible if and only if it is
locally feasible (i.e. proper on B).

Lemma 12. Let Δ ⊂ V and B ⊂ V a permissive block such that dist(B,Δ) ≥ 2.
Then for any feasible coloring σ ∈ L(Δ), for any coloring π ∈ L(B), it holds
that μσ

B(π) > 0 if and only if π is proper on B.

Proof. Let S = ∂B. Note that with dist(B,Δ) ≥ 2 and S must be a vertex cut
separating B and Δ. Then the lemma can be proved by the same argument as
in the proof of Proposition 5.
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Notations. We now define some notations which are used throughout this sec-
tion. Let B ⊂ V be a permissive block in a feasible list-coloring instance (G,L).
Let δB = {uw ∈ E | u ∈ B and w 	∈ B} be the edge boundary of B. We
enumerate these boundary edges as δB = {e1, e2, . . . , em}. For i = 1, 2, . . . ,m,
we assume ei = uivi where ui ∈ B and vi 	∈ B. Note that in this notation
more than one ui or vi may refer to the same vertex in G. Let GB = G[V \ B]
be the subgraph of G induced by vertex set V \ B. For a coloring π ∈ L(B)
and 1 ≤ i ≤ m, we denote πi = π(ui). For 1 ≤ i ≤ m and π, ρ ∈ L(B), let
Li,j,π,ρ = (L′(v) : v ∈ V \B) be obtained from L by removing the color πk from
the list L(vk) for all k < i and removing the color ρk from the list L(vk) for all
k > i (if any of these lists do not contain the respective color then no change is
made to them).

With this notation, the following lemma (proved in the full version) generalizes
a recursion introduced in [11] for bounded-degree graphs to general graphs.

Lemma 13. Let (G,L) be a feasible list-coloring instance, B ⊂ V a permissive
block with edge boundary δB = {e1, e2, . . . , em} where ei = uivi for each i =
1, 2, . . . ,m, and π, ρ ∈ L∗(B) any two proper colorings of B. For every 1 ≤ i ≤ m,

– if a vertex u 	∈ B is permissive in (G,L), then it is permissive in the new
instance (GB,Li,π,ρ);

– the new instance (GB ,Li,π,ρ) is feasible.

For any feasible coloring σ ∈ L(Δ) of a vertex set Δ ⊂ V with dist(B,Δ) ≥ 2,
we have

PG,L(c(B) = π | σ)
PG,L(c(B) = ρ | σ) =

m∏
i=1

1− PGB ,Li,π,ρ(c(vi) = πi | σ)
1− PGB ,Li,π,ρ(c(vi) = ρi | σ) .

The following marginal bounds are standard and are proved in full version.

Lemma 14. Given a feasible list-coloring instance (G,L), if vertex v has |L(v)|>
d(v) + 1 and v 	∈ Δ, then for any feasible coloring σ ∈ L(Δ) and any x ∈ L(v), we
have

PG,L(c(v) = x | σ) ≤ 1

|L(v)| − d(v)
.

If vertex v is permissive in (G,L) and dist(v,Δ) ≥ 2, then for any feasible
coloring σ ∈ L(Δ) and any x ∈ L(v), we have

PG,L(c(v) = x | σ) ≥ 1

|L(v)|2d(v) .

The recursion in Lemma 13 can imply the following bound for the block-
wise decay of error function E(μσ

v , μ
τ
v). The proof generalizes the analysis of the

point-wise decay in degree-bounded graphs in [11], and is put to the full version.

Lemma 15. Let (G,L) be a feasible list-coloring instance, v ∈ V and B ⊂ V
a permissive block around v with edge boundary δB = {e1, e2, . . . , em} where
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ei = uivi for each i = 1, 2, . . . ,m. Let Δ ⊂ V be a vertex set with dist(B,Δ) ≥ 2,
and σ, τ ∈ L(Δ) any two feasible colorings of Δ. Assume π, ρ ∈ L∗(B) to be two
proper colorings of B achieving the maximum in the error function:

E(μσ
B, μ

τ
B) = max

π,ρ∈L∗(B)

(
log

(
μσ
B(π)

μτ
B(π)

)
− log

(
μσ
B(ρ)

μτ
B(ρ)

))
.

It holds that

E(μσ
v , μ

τ
v) ≤

m∑
i=1

1

|L(vi)| − d(vi)− 1
· E(μσ

i , μ
τ
i ),

where μσ
i = μσ

GB ,Li,π,ρ,vi
and μτ

i = μτ
GB ,Li,π,ρ,vi

are the respective marginal dis-
tributions of coloring of vertex vi conditioning on σ and τ in the new list-coloring
instance (GB ,Li,π,ρ).

With the above block-wise decay, we are now ready to prove Lemma 10, which
implies Theorem 9.

Proof (Proof of Lemma 10). Given a feasible list-coloring instance (G,L) and a
vertex v, let T = TSAW(G, v) and S a permissive cutset in T separating v and
Δ. We consider the following procedure:

1. Let B be the minimal permissive block around v with edge boundary δB =
{e1, e2, . . . , em}, where ei = uivi for i = 1, 2, . . . ,m (note that more than
one ui or vi may refer to the same vertex). By Lemma 15, we have

E(μσ
v , μ

τ
v) ≤

m∑
i=1

1

|L(vi)| − d(vi)− 1
· E(μσ

i , μ
τ
i ), (1)

where μσ
i = μσ

GB ,Li,π,ρ,vi
and μτ

i = μτ
GB ,Li,π,ρ,vi

are the respective marginal

distributions at vi in the new list-coloring instance (GB,Li,π,ρ) for the π, ρ ∈
L∗(B) defined in Lemma 15. By Lemma 13, all these new list-coloring in-
stances are feasible.

2. We identify each vi with a distinct self-avoiding walk in G from v to vi
through only vertices in B and approaching vi via the edge ei = uivi. Such
self-avoiding walk must exist or otherwise B is not minimal. If there are
more than one such self-avoiding walk for a vi, choose an arbitrary one to
identify vi with. We use wi to denote this walk to vi.
Note that along every such self-avoiding walk wi from v to vi, all vertices u
except v and vi must have |L(u)| ≤ d(u) + 1 in (G,L) or otherwise B is not
minimal. Thus by Definition 7, in quantity ET,L,S , along every walk wi from
v to vi, at each intermediate vertex u 	∈ {v, vi}, only a factor of δ(u) = 1 is
multiplied in ET,L,S , so we have

ET,L,S ≥
m∑
i=1

1

|L(vi)| − d(vi)− 1
ETwi

,L,S, (2)

where Twi denotes the subtree of the SAW tree T rooted by the self-avoiding
walk wi.
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3. For each 1 ≤ i ≤ m, if the self-avoiding walk wi corresponds to a vertex in
the permissive cutset S in the SAW tree T , then vi itself must be permissive
in (G,L) and dist(vi, Δ) ≥ 2, both of which continue to hold in the new

instance (GB ,Li,π,ρ). By Lemma 14, we have μσ
i (x), μ

τ
i (x) ∈

[
1

q2q−2 ,
1
2

]
for

any x ∈ L(vi), thus

E (μσ
i , μ

τ
i ) ≤ 2 (ln q + q ln 2) ≤ 3q; (3)

and if otherwise, wi is not in S in the SAW tree T , we repeat from the first
step for vertex vi in the new instance (GB,Li,π,ρ).

We can then apply an induction to prove that E(μσ
v , μ

τ
v) ≤ ET,L,S , with (3) as

basis, and (1) and (2) as induction step. We only need to clarify that each appli-
cation of (1) creates new instances (GB ,Li,π,ρ), while ET,L,S is defined using only
the original instance (G,L). This will not cause any issue because by Lemma 13,
every new instance (GB,Li,π,ρ) created during this procedure must be feasible.
Moreover, the operation the new instance (GB ,Li,π,ρ) applying on (G,L) never
makes any vertex less permissive, and never increases the multiplicative factor

1
|L(vi)|−d(vi)−1 in the recursion.

4 Strong Spatial Mixing on Random Graphs

In this section, we prove Theorem 2, the strong spatial mixing of q-coloring of
random graph G(n, d/n) with respect to a fixed vertex. The theorem is proved
by applying Theorem 9 to random graph G(n, d/n). The following lemma states
the existing with high probability of a good permissive cutset in the self-avoiding
walk tree of a random graph G(n, d/n). The proof is in the full version.

Lemma 16. Let d > 1, q ≥ αd + β for α > 2 and β ≥ 23, and t(n) = ω(1)
an arbitrary super-constant function. Let v ∈ V be arbitrarily fixed and G =
(V,E) a random graph draw from G(n, d/n). The following event holds with
high probability: for any t(n) ≤ t ≤ lnn

ln d and any vertex set Δ ⊂ V satisfying
distG(v,Δ) > 2t, there exists a permissive cutset S in T = TSAW(G, v) for v and
Δ such that t ≤ distT (v, u) < 2t for all vertices u ∈ S.

We then observe that the quantity ET,L,S decays fast on average. The proof
is also in the full version.

Lemma 17. Let fq(x) be a piecewise function defined as

fq(x) =

{
1

q−x−1 if x ≤ q − 2,

1 otherwise.

Let X be a random variable distributed according to binomial distribution B(n, d
n )

where d = o(n). For q ≥ 2d+ 4, it holds that E [fq(X)] < 1
d .

We then prove a strong spatial mixing theorem with the norm of error function
E(μσ

v , μ
τ
v).
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Lemma 18. Let d > 1, q ≥ αd+ β for α > 2 and β ≥ 23, and t(n) = ω(1) an
arbitrary super-constant function. Let v ∈ V be arbitrarily fixed and G = (V,E) a
random graph draw from G(n, d/n). There exist constants C1, C2 > 0 depending
only on d and q such that with high probability G is q-colorable and

E(μσ
v , μ

τ
v) ≤ C1 exp(−C2dist(v,Δ))

for any feasible q-colorings σ, τ ∈ [q]Λ partially specified on a subset Λ ⊂ V of
vertices, such that σ and τ differ only on a subset Δ ⊆ Λ with dist(v,Δ) ≥ t(n).

Proof (Sketch of Proof). We only give a sketch of the proof. The detailed proof
is given in the full version.

Fix v ∈ V . Let T = TSAW(G, v) be the self-avoiding walk tree of G. Fix an
arbitrary t(n) ≤ t ≤ lnn

ln d . Consider Et = maxS ET,[q],S where the maximum is
taken over all vertex set S in T satisfying t ≤ distT (v, u) < 2t for all u ∈ S. By
enumerating all self-avoiding walks P = (v, v1, . . . , vk) from v to a vertex vk ∈ S,
we have

E [Et] ≤ 3q

2t−1∑
k=t

dk · E
[

k∏
i=1

fq(dG(vi))

∣∣∣∣ P = (v, v1, . . . , vk) is a path

]
,

where the function fq(x) is as defined in Lemma 17. We then calculate the expec-
tations. Fix a tuple P = (v, v1, . . . , vk). We construct an independent sequence

whose product dominates the
∏k

i=1 fq(dG(vi)).
Conditioning on P = (v, v1, . . . , vk) being a path in G. Let X1, X2, . . . , Xk

be such that each Xi is the number of edges between vi and vertices in V \
{v1, . . . , vk}; and let Y be the number of edges between vertices in {v1, . . . , vk}
except for the edges in the path P = (v, v1, . . . , vk). Then X1, X2, . . . , Xk, Y are
mutually independent binomial random variables, and for each vi in the path we
have dG(vi) = Xi + 2 + Yi for some Y1 + Y2 + · · ·+ Yk = 2Y .

Due to the property of function fq(x) we can bound that

k∏
i=1

fq(dG(vi)) =
k∏

i=1

fq(Xi + 2 + Yi) ≤ 4Y
k∏

i=1

fq−2(Xi).

Since X1, X2, . . . , Xk, Y are mutually independent conditioning on P is a path,

E

[
k∏

i=1

fq(dG(vi))

∣∣∣∣ P is a path

]
≤ E

[
4Y

k∏
i=1

fq−2(Xi)

]
≤ E

[
4Y

]
E [fq−2(X)]

k
,

where E [fq−2(X)] can be upper bounded by Lemma 17, and E
[
4Y

]
by the

binomial theorem. Then a calculation gives

E [Et] ≤ 3q

2t−1∑
k=t

E

[
k∏

i=1

fq(dG(vi))

∣∣∣∣ P is a path

]
≤ exp (−Ω(t)) .

By Markov’s inequality and union bound, with high probability we have Et ≤
exp (−Ω(t)) for all t(n) ≤ t ≤ lnn

ln d .
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By [1], w.h.p. G is q-colorable. By Lemma 16, w.h.p. we have good permissive
cutset S satisfying the conditions in Lemma 16, which by Theorem 9, implies
that E(μσ

v , μ
τ
v) ≤ ET,[q],S ≤ Et ≤ exp (−Ω(t)). By [2], w.h.p. the diameter of G

is in O( ln n
ln d ), thus we can choose t = Θ(dist(v,Δ)) with a t(n) ≤ t ≤ lnn

ln d , which
gives us E(μσ

v , μ
τ
v) ≤ exp (−Ω(dist(v,Δ))).

With Lemma 18, the proof of Theorem 2 is immediate, which is in the full
version.
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