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Abstract. Given an implicit n×n matrix A with oracle access xTAx for
any x ∈ R

n, we study the query complexity of randomized algorithms for
estimating the trace of the matrix. This problem has many applications
in quantum physics, machine learning, and pattern matching. Two met-
rics are commonly used for evaluating the estimators: i) variance; ii) a
high probability multiplicative-approximation guarantee. Almost all the
known estimators are of the form 1

k

∑k
i=1 x

T
i Axi for xi ∈ R

n being i.i.d.
for some special distribution.

Our main results are summarized as follows:

1. We give an exact characterization of the minimum variance unbiased
estimator in the broad class of linear nonadaptive estimators (which
subsumes all the existing known estimators).

2. We also consider the query complexity lower bounds for any (possi-
bly nonlinear and adaptive) estimators:

(a) We show that any estimator requires Ω(1/ε) queries to have a
guarantee of variance at most ε.

(b) We show that any estimator requires Ω( 1
ε2

log 1
δ
) to achieve a

(1± ε)-multiplicative approximation guarantee with probability
at least 1− δ.

Both above lower bounds are asymptotically tight.

As a corollary, we also resolve a conjecture in the seminal work of
Avron and Toledo (Journal of the ACM 2011) regarding the sample
complexity of the Gaussian Estimator.

1 Introduction

Given an n×nmatrixA = {Aij}1≤i≤n,1≤j≤n, we study the problem of estimating
its trace

trace(A) =

n∑

i=1

Aii
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with a randomized algorithm that can query fA(x) = xTAx for any x ∈ R
n. The

goal is to minimize the number of queries used to achieve certain type of accuracy
guarantee, such as the variance of the estimate or a multiplicative approximation
(which holds with high probability). Finding an estimator that achieves such an
accuracy guarantee with few queries has several applications. For example, this
problem is well studied in the subject of lattice quantum chromodynamics, since
such queries are physically feasible and can be used to efficiently estimate the
trace of a function of a large matrix f(A). Such an estimator can also be used
as a building block for many other applications including solving least-squares
problems [Hut89], computing the number of triangles in a graph [Avr10, Tso08],
and string pattern matching [ACD01, AGW13].

This problem has been well studied in the literature. All of the previously an-
alyzed estimators are of the form 1

k

∑k
i=1 x

T
i Axi for x1, x2, . . . , xk ∈ R

n; nearly
all take x1, x2, . . . , xk to be independent and identically distributed (i.i.d.) from
some well designed distribution. For example, in [Hut89], the author just takes
each query to be a random vector whose entries are i.i.d. Rademacher random
variables (i.e., each coordinate is a uniformly random sample from {−1, 1});
we call this the Rademacher estimator. There are also several other alternative
distributions on x1, x2, . . . , xk, such as drawing each query from a multivariate
normal distribution [SR97]; we call this the Gaussian estimator. Here, the coor-
dinates of each vectors are i.i.d. Gaussian random variables. The work of [IE04]
considers the case where only one query is allowed, but that query can be a unit
vector in C

n. Other estimators occur in [DS93, Wan94]. Recent work by [AT11],
the authors propose several new estimators such as the unit vector estimator,
normalized Rayleigh-quotient trace estimator, and the mixed unit vector esti-
mator. One estimator that does not use i.i.d. queries is due to [RKA13]; in
that work, the authors propose querying random standard basis vectors without
replacement.

To characterize the performance of an estimator, perhaps the most natural
metric is the variance of the estimator. It is known that the Gaussian estimator
has variance 2‖A‖2F and the random Rademacher vector estimator has variance

2(‖A‖2F − ∑n
i=1 A

2
ii), where ‖A‖F =

√
trace(ATA) is the Frobenius norm. In

recent work by Avron and Toledo [AT11], it is suggested that the notion of a
multiplicative approximation guarantee might be a better success metric of an
estimator than the variance. Formally, we say an estimator is an (ε, δ)-estimator
if it outputs an estimate in the interval ((1− ε)trace(A), (1 + ε)trace(A)) with
probability at least 1 − δ. It should be noted that some assumptions on the
matrices need to be made to have a valid (ε, δ)-estimator, as it is impossible to
achieve any multiplicative approximation when the matrix could have a trace of
0. A natural choice is to assume thatA comes from the class of symmetric positive
semidefinite (SPD) matrices. For a SPD matrix, the authors in [AT11] prove
that the Gaussian estimator with k = O( 1

ε2 log(
1
δ )) queries to the oracle is an

(ε, δ)-estimator. It was recently shown in [RKA13] that the random Rademacher
vector estimator is also an (ε, δ)-estimator with the same sample complexity.
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An open problem asked in [AT11] is the following: does the Gaussian estimator
require Ω( 1

ε2 log(
1
δ )) in order to be an (ε, δ)-estimator? The authors showed that

this number of queries suffices and conjectured that their analysis of the Gaussian
estimator is tight with supporting evidence from empirical experiments. The
paper gives some intuition on how to show an Ω( 1

ε2 ) lower bound. The authors
suggested that the difficulty of turning this argument into a formal proof is that
“current bounds [on the χ2 cumulative distribution function] are too complex to
provide a useful lower bound”. Regarding lower bounds for trace estimators, we
note the related work of [LNW14], which considers the problem of sketching the
nuclear norms of A using bilinear sketches (which can be viewed as nonadaptive
queries of the form xTAy). The problem is similar to estimating trace when the
underlying matrix is positive semidefinite.

All of the above mentioned estimators (with one exception in [RKA13]) use
independent identically distributed queries from some special distributions, and
the output is a linear combination of the query results. On the other hand, we
view an estimator as a randomized algorithm, so we can choose any distribution
over the queries, and the output can be any (possibly randomized) function of the
results of the queries. Given the success of the previously mentioned estimators,
it is natural to ask whether these extensions are helpful. For example, can we get
a significantly better estimator with a non i.i.d. distribution? Can we do better
with adaptive queries? Can we do better with a nonlinear combination of the
query results?

In this paper, we make progress on answering above questions and under-
standing the optimal query complexity for randomized trace estimators. Below
is an informal summary of our results.

1. Among all the linear nonadaptive trace estimators (which subsumes all the
existing trace estimators), we prove that the “random k orthogonal vector”
estimator is the minimum variance estimator. The distribution on the queries
is not i.i.d., and we are unable to find an occurrence of this estimator in the
literature regarding trace estimators.

2. We also prove two asymptotically optimal lower bounds for any (possibly
adaptive and possibly nonlinear) estimator.

(a) We show that every trace estimator requires Ω(1/ε) queries to have a
guarantee that the variance of the estimator is at most ε.

(b) We show that every (ε, δ)-estimator requires Ω( 1
ε2 log

1
δ ) queries.

As a simple corollary, our result also confirms the above mentioned conjecture
in [AT11] (as well as the tightness of the analysis of the Rademacher estimator
in [RKA13]). Notice our result is a much stronger statement: the original con-
jectured lower bound is only for an estimator that returns a linear combination
of i.i.d. Gaussian queries; we prove the lower bound holds for any estimator.
Our lower bound also suggests that adaptiveness as well as nonlinearity will not
help asymptotically as all these lower bounds are matched by the nonadaptive
Gaussian estimator. On the other hand, our upper bound suggests that the exact
minimum variance estimator might not use i.i.d. queries.
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1.1 Problem Definitions

Definition 1 (Estimator for the Trace). A trace estimator is a possibly
randomized algorithm that, given query access to an oracle fA(·) for an unknown
n× n matrix A, makes a sequence of k queries x1, x2, . . . , xk ∈ R

n to the oracle
and receives fA(x1), fA(x2), . . . , fA(xk). The output of the estimator is a real
number h(A) determined by the queries and the answers to the queries (and
possibly uses randomness).

Definition 2 (Nonadaptive Linear Unbiased Trace Estimator). We say
a trace estimator is nonadaptive if the distribution of xi is not dependent on
fA(x1), fA(x2), . . . , fA(xi−1). A trace estimator is linear if we sample from
a distribution over k queries as well as their weights: (x1, x2, . . . , xk), and
(w1, w2, . . . , wk), and output

∑
wifA(xi). In addition, a linear trace estimator

is unbiased if

E
w1,w2,...,wn,x1,x2,...,xn

[

n∑

i=1

wifA(xi)] = trace(A)

Without loss of generality, we can assume that all the queries in a linear
estimator are of unit length, where the actual lengths of the queries are absorbed
by the weights.

The most natural measure of quality of an estimator is its variance. There is a
large body of work on the existence of and finding a minimum variance unbiased
estimator. Such an estimator has a strong guarantee; it is the estimator for which
the variance is minimized for all possible values of the parameter to estimate.
In general, finding such an estimator is quite difficult. It is easy to see that the
variance depends on the scale of the matrix. To normalize, we assume that the
Frobenius norm of the matrix is fixed.

Definition 3. We define the variance of a trace estimator as the worst case of
variance over all matrices with Frobenius norm 1. To be specific, given a matrix
A let us define Var(A, h) = E[(h(A) − trace(A))2], then

Var(h) = sup
‖A‖2

F=1

Var(A, h).

If the variance of an estimator h is at most δ, we say that h is a δ-variance
estimator.

Given an unbiased estimator class, the minimum variance unbiased estimator
has the minimum variance among all the (unbiased) estimators in the class.

Another natural accuracy guarantee for a trace estimator is the notion of
(ε, δ)-estimator that is introduced in [AT11].

Definition 4 ((ε, δ)-estimator). A trace estimator h is said to be an (ε, δ)-
estimator of the trace if, for every matrix A, we have that |trace(A) − h(A)| ≤
ε · trace(A) with probability at least 1− δ.
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We stress that both Definitions 3 and 4 involve worst case estimates over
the choice of the matrix, and the randomness only comes from the internal
randomness of the estimator.

Definition 5 (Random Gaussian Matrix and Random Orthogonal
Matrix).

– We call a vector g ∈ R
n a random Gaussian vector if each coordinate is

sampled independently from N(0, 1).
– We call an n × n matrix G a random Gaussian matrix if its entries are

sampled independently from N(0, 1).
– We call an n× n matrix U a random orthogonal matrix if it is drawn from

the distribution whose probability measure is the Haar measure on the group
of orthogonal matrices; specifically, it is the unique probability measure that
is invariant under orthogonal transformations.

– We call k vectors x1, x2, . . . , xk ∈ R
n k random orthogonal unit vectors if

they are chosen as k row vectors of a random orthogonal matrix.

We note that one way to generate a random orthogonal matrix is to generate
a random Gaussian matrix and perform Gram-Schmidt orthonormalization on
its rows.

1.2 Main Results

Our main results are the following:

Theorem 1. Among all linear nonadaptive unbiased trace estimators, the min-
imum variance unbiased estimator that makes k queries is achieved by sampling
k random orthogonal unit vectors (see Definition 5) x1, x2, . . . , xk and outputting
n
k

∑
i fA(xi).

Theorem 2. Any trace estimator with variance ε requires Ω(1/ε) queries.

Theorem 3. Any (ε, δ)-estimator for the trace requires Ω( 1
ε2 log(

1
δ )) queries,

even if the unknown matrix is known to be positive semidefinite.

The bounds in Theorem 2 and 3 are tight: both bounds can be asymptotically
matched by the Gaussian estimator and the uniform Rademacher vector estima-
tor.

1.3 Proof Techniques Overview

All of our results crucially use a powerful yet simple trick, which we call sym-
metrization. The heart of this trick lies in the fact that the trace of a matrix is
unchanged under similarity transformations; trace(A) = trace(UTAU) for every
A and orthogonal U . If we have a nonadaptive estimator with query distribution
(x1, x2, . . . , xk) ∼ P and an orthogonal matrix U , using the queries distributed
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as (Ux1, Ux2, . . . , Uxk) should not be too different in terms of worst-case behav-
ior. (We have to be more careful with adaptive estimators, which we discuss in
Section 2.) Thus, applying symmetrization to a nonadaptive estimator yields a
nonadaptive estimator where it draws queries as in the original estimator, but
transforms the queries using a random orthogonal transformation. This “sym-
metrizes” the estimator. We prove that the performance of the estimator never
decreases when symmetrization is applied, so we can exclusively consider sym-
metrized estimators.

In order to characterize the minimum variance linear nonadaptive unbiased
estimator, we notice that after the symmetrization, the distribution over queries
for any such estimator is defined by a distribution over the pairwise angles of
the k queries. We then show that the queries should be taken to be orthogonal
with certainty in order to minimize variance.

As for the lower bounds for adaptive and nonlinear estimators, the sym-
metrization also plays an important role. Consider the problem of proving a
query lower bound for (ε, δ)-approximation: the most common approach of prov-
ing such a lower bound is to use Yao’s minimax principle. To apply this principle,
we would need to construct two distributions of matrices such that the distribu-
tions cannot be distinguished after making a number of queries, even though the
traces of the matrices are very different in the two distributions. There are sev-
eral technical difficulties in applying the minimax principle directly here. First of
all, the query space is Rn, so it is unclear whether one can assert that there exists
a sufficiently generalized minimax principle to handle this case. Second, even if
one can apply a suitable version of minimax principle, we do not have general
techniques of analyzing the distribution of k adaptive queries, especially when
the queries involve real numbers and thus the algorithm might have infinitely
many branches.

We overcome the above two barriers and avoid using a minimax principle
entirely by applying symmetrization. One nice property of the symmetrization
process is that a symmetrized estimator outputs the same distribution of results
on all matrices with the same diagonalization. In the proof we carefully construct
two distributions of matrices with the same diagonalization in each distribution,
while the traces are different for different distributions. Each distribution is
simply the “orbit” of a single diagonal matrix D; the support consists of all
matrices similar to D. Using the symmetrization, it suffices to show that we can
not distinguish these two distributions of matrices by k adaptive queries, as it is
equivalent to distinguish two diagonal matrices for symmetrized trace estimators.
The argument for achieving a lower bound for adaptive estimators is more subtle.
Roughly speaking, we show that due to the structure of symmetrized estimators,
we define a stronger query model such that adaptive estimators behave the same
as the nonadaptive estimators while we achieve the same lower bound, even with
the stronger query model.
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1.4 Organization

In section 2, we introduce the idea of symmetrization. We prove Theorem 1 in
section 3. Due to the space constraint, proofs of Theorem 2 and Theorem 3 are
omitted, and they are included in our full version.

2 Symmetrization of an Estimator

In this section, we introduce the idea of symmetrization of an estimator which is
a crucial element of all our remaining proofs. We first define the rotation of an
estimator, which we will denote hU for an n×n orthogonal matrix U . Intuitively,
the construction of hU is such that hU emulates the behavior of h on a rotated
version of the matrix A. More specifically, hU makes queries in the following
way:

– Letting q1 be a random variable whose distribution is the same as the first
query of h, the distribution of the first query of hU is the same as the random
variable Uq1.

– Given queries Uq1, Uq2, . . . , Uqj−1 made by hU so far with responses
t1, t2, . . . , tj−1, the distribution of the jth query of hU has the same dis-
tribution as Uqj , where qj is distributed the same as the jth query that h
makes, given queries q1, q2, . . . , qj−1 with responses t1, t2, . . . , tj−1.

In the case that h is a nonadaptive estimator, the queries of hU are just
Ux1, Ux2, . . . , Uxk, where x1, x2, . . . , xk is a set of queries from the distribution
of queries that h makes.

Lemma 1. For any estimator h and orthogonal matrix U ,

– Var(hU ) = Var(h).
– h is an (ε, δ)-approximation estimator if and only if hU is also an (ε, δ)-

estimator.

Proof. We know that given a matrix A, the behavior of hU is the same as h on
estimating UTAU . On the other hand, we know that trace(UTAU) = trace(A)
and ‖A‖F = ‖UTAU‖F . Therefore, the variance of hU on A is the same as the
variance of h on UTAU . Now suppose h is an (ε, δ)-estimator. We know that the
approximation guarantee of hU on A is the same as h on UTAU . Therefore, we
know that with probability at least (1− δ), the estimator hU ’s output is within

(
(1− ε)trace(UTAU), (1 + ε)trace(UTAU)

)
=((1− ε)trace(A), (1 + ε)trace(A)) .

Definition 6 (Averaging Estimators over a Distribution). Suppose we
have a collection of estimators H, for any probability distribution P on H, we
define hH,P as the following estimator:

1. Randomly sample an estimator h ∼ P .
2. Output according to the estimation of h.
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Lemma 2. Averaging a collection of estimators cannot increase variance or
weaken an (ε, δ)-guarantee. Specifically:

– If all the estimators H are unbiased and have variance at most c, then hH,P ’s
variance is also at most c.

– If all the estimators in H are (ε, δ)-estimators, then hH,P is also an (ε, δ)-
estimator.

Proof. For the first, we apply the law of total variance conditioned on the draw
of h ∼ P :

Var [hH,P ] = E
h∼P

[Var [h]] + Var
h∼P

[E[h]]

The second term above is 0, since all estimators in H are unbiased. Since
Var [h] ≤ c for every h ∈ H , Eh∼P [Var [h]] ≤ c as well.

For the second claim, assuming that

Pr[h(A) ∈ ((1− ε)trace(A), (1 + ε)trace(A))] ≥ 1− δ

for each h ∈ H , we have

Pr[hH,P (A) ∈ ((1− ε)trace(A), (1 + ε)trace(A))] ≥
inf
h∈H

Pr[h(A) ∈ ((1− ε)trace(A), (1 + ε)trace(A))] ≥ 1− δ.

Definition 7 (Symmetrization of a Trace Estimator). Given an estimator
h, we define the symmetrization hsym of h to be the estimator where we

1. sample a random orthogonal matrix U (see definition 5), and
2. use hU to estimate the trace.

We say an estimator is symmetric if it is equivalent to the symmetrization of
some estimator.

By Lemma 1 and Lemma 2, we know that hsym’s variance as well as its (ε, δ)-
approximation is always no worse than h. Therefore, without loss of generality,
we can always assume that the optimal estimator is symmetric.

One nice property of the symmetric estimator is that it has the same perfor-
mance on all matrices with the same diagonalization.

Lemma 3. Given a symmetrized estimator hsym, its variance and approxima-
tion guarantee is the same for any matrix A and UTAU for any orthogonal
matrix U .

Proof. Given any matrix A, we know that the variance of hsym is
EU1 [Var(h, U

T
1 AU1)] and the variance of hsym on the matrix UTAU is

EU1 [Var(h, (U1U)TAU1U)]. We know that U1U is also is a “uniformly” ran-
dom orthogonal matrix. Therefore, hsym has the same estimation variance on A
and UTAU .
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Similarly, for the approximation guarantee, suppose hsym is an (ε, δ)-estimator,
which means that

E
U1

[
Pr

(
h(UT

1 AU1) ∈ ((1− ε)trace(A), (1 + ε)trace(A))
)] ≥ 1− δ.

We know that for the matrix A′ = UAU , UT
1 A′U1 = UT

1 UTAUU1 has the same
distribution as UT

1 AU1. Therefore,

E
U1

[
Pr

(
h(UT

1 AU1) ∈ ((1− ε)trace(A), (1 + ε)trace(A))
)]

= E
U1

[
Pr

(
h(UT

1 A′U1) ∈ ((1− ε)trace(A′), (1 + ε)trace(A′))
)]

3 Optimal Linear Nonadaptive Estimator

Without loss of generality, we can assume that the optimal estimator is sym-
metric. For a symmetric nonadaptive estimator, we can think of x1, x2, . . . , xk

as generated by the following process.

– Sample a configuration θ = {θij}1≤i<j≤k from some distribution PΘ .
For each configuration θ, there is a corresponding weight vector wθ =
(wθ

1 , w
θ
2 , . . . , w

θ
k).

– Generate x1, x2, . . . , xk by drawing k random unit vectors conditioned on the
angle between xi, xj being θij for all i < j. (This can be done efficiently.)

– Output
∑k

i=1 w
θ
i fA(xi).

The proof of Theorem 1 consists of two steps. First we will show that we can
set all of the angles (deterministically) to be π

2 without increasing the variance,
so we can assume that the queries are orthogonal. In the second step, we will
then show that the optimal way of assigning weight is to (deterministically) set
each weight to be n

k .
We first prove that we can replace the queries x1, x2, . . . , xk by k random

orthogonal unit vectors without increasing the variance.

Lemma 4. Let y1, y2, . . . , yk be k randomly orthogonal unit vectors. We have
that

Var

(
k∑

i=1

wθ
i fA(yi)

)
≤ Var

(
k∑

i=1

wθ
i fA(xi)

)
(1)

Proof. It is easy to see that the marginal distribution on each xi is the same as
the marginal distribution on yi. Therefore, we have that

E
θ,y1,...,yk

[
k∑

i=1

wθ
i fA(yi)

]
= E

x1,...,xk,θ

[
k∑

i=1

wθ
i fA(xi)

]
= trace(A)

This implies that
∑k

i=1 w
θ
i fA(yi) is also an unbiased estimator.
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Since both estimators have the same expectation, in order to show (1), it
suffices to prove that

E
θ,x1,...,xn

⎡

⎣
(

k∑

i=1

wθ
i fA(xi)

)2
⎤

⎦ ≥ E
θ,y1,...,yn

⎡

⎣
(

k∑

i=1

wθ
i fA(yi)

)2
⎤

⎦ (2)

By the process of generating x1, x2, . . . , xk, we know that the marginal distri-
bution of xi is independent of θ and equal to the marginal distribution of yi.
Therefore, in order to prove (2), it suffices to prove that for any i and j, we have

E
θ,xi,xj

[wθ
iw

θ
j fA(xi)fA(xj)] ≥ E

θ
[wθ

iw
θ
j ] E

yi,yj

[fA(yi)fA(yj)] (3)

To compare Eθ,xi,xj [w
θ
iw

θ
j fA(xi)fA(xj)] and Eθ[w

θ
iw

θ
j ]Eyi,yj [fA(yi)fA(yj)],

we note that the marginal distribution on the pair (xi, xj) is equivalent to draw-
ing xi, xj from the following process:

1. Draw θ ∼ PΘ.
2. Set xi = yi and xj = yi cos θij + yj sin θij

It is easy to check that the joint distribution on xi and xj has the same distri-
bution as two random unit vectors with angle θij .

Therefore,

E
θ,xi,xj

[wθ
iw

θ
j fA(xi)fA(xj)]

= E
θ,yi,yj

[wθ
iw

θ
j y

T
i Ayi(cos θij · yi + sin θij · yj)TA(cos θij · yi + sin θij · yj)]

= E
θ
[wθ

iw
θ
j cos

2 θij ]E
yi

[yTi Ayi · yTi Ayi] +E
θ
[wθ

iw
θ
j sin

2 θij ] E
yi,yj

[yTi Ayiy
T
j Ayj ]

+ E
θ
[wθ

iw
θ
j sin θij cos θij ] E

yi,yj

[yTi Ayiy
T
i Ayj + yTi Ayiy

T
j Ayi] (4)

In order to simplify the above expression, we first claim that

E
yi,yj

[yTi Ayiy
T
i Ayj + yTi Ayiy

T
j Ayi] = 0.

To see this, note that yj is a random unit vector orthogonal to yi. Although
yi, yj are dependent, conditioned on any fixed realization of yi, the distribution
on yj is symmetric about 0; yj has the same distribution as −yj .

In addition, using Cauchy-Schwarz and the fact that yi and yj have the same
distribution, we have that

E
yi

[(yTi Ayi)
2] =

√
E
yi

[(yTi Ayi)
2]E

yj

[(yTj Ayj)
2] ≥ E

yi,yj

[yTj Ayj · yTi Ayi].

Therefore, we have that

(4) ≥ E
θ
[wθ

iw
θ
j cos

2 θ] E
yi,yj

[yTj Ayj · yTi Ayi] +E
θ
[wθ

iw
θ
j sin

2 θ] E
yi,yj

[yTi Ayiy
T
j Ayj ]

= E
θ
[wθ

iw
θ
j ] · E

yi,yj

[yTj Ayj · yTi Ayi]

which proves (3), completing the proof of Lemma 4.
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Now that we can assume that the queries are mutually orthogonal, we can
view this as an estimator with randomized weights wθ

i for θ ∼ PΘ. Below we will
use the random variable wi to denote wθ

i as θ is independent from y1, y2, . . . , yk.

Lemma 5. Let (y1, . . . , yk) be k random orthogonal unit vectors. Then the es-

timator h =
∑k

i=1 wifA(yi) has minimum variance when w1 = w2 = · · · = wk =
n/k.

Proof. First we must have E[
∑k

i=1 wi] = n to make the estimator unbiased, since
E[fA(yi)] =

1
n trace(A). Also,

E

⎡

⎣
(

k∑

i=1

wi

)2
⎤

⎦ = E

[
k∑

i=1

w2
i

]
+ 2 · E

⎡

⎣
∑

1≤i<j≤k

wiwj

⎤

⎦ ≥ n2

Minimizing the variance is equivalent to minimizing

E
w,y

⎡

⎣
(

k∑

i=1

wifA(yi)

)2
⎤

⎦

=

k∑

i=1

E[fA(yi)
2]E[w2

i ] + 2 ·
∑

1≤i<j≤k

E[fA(yi)fA(yj)] ·E[wiwj ]

= E

[
k∑

i=1

w2
i

]
E[f2

A(y1)] +

⎛

⎝E

⎡

⎣
(

k∑

i=1

wi

)2
⎤

⎦−E

[
k∑

i=1

w2
i

]⎞

⎠E[fA(y1)fA(y2)]

≥ n2

k
E[fA(y1)

2] +

(
n2 − n2

k

)
E[fA(y1)fA(y2)]

= E

⎡

⎣
(

k∑

i=1

n

k
fA(yi)

)2
⎤

⎦

Equality holds for w1 = · · · = wk = n/k, completing the proof.

Combining Lemma 4 and Lemma 5, the minimum variance linear nonadaptive
unbiased estimator making k queries is

∑k
i=1

n
k fA(yi), where y1, y2, . . . , yk is

a collection of random orthogonal unit vectors. This completes the proof of
Theorem 1.
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