On Learning, Lower Bounds and (un)Keeping
Promises

Ilya Volkovich*

Computer Science Department and Center for Computational Intractability,
Princeton University, Princeton NJ
ilyav@cs.princeton.edu

Abstract. We extend the line of research initiated by Fortnow and Kli-
vans [6] that studies the relationship between efficient learning algorithms
and circuit lower bounds. In [6], it was shown that if a Boolean circuit
class C has an efficient deterministic exact learning algorithm, (i.e. an
algorithm that uses membership and equivalence queries) then EXPNP ¢
P/poly[C]'. Recently, in [14] EXP"? was replaced by DTIME(n®™"). Yet
for the models of randomized exact learning or Valiant’s PAC learning,
the best result so far is a lower bound against BPEXP (the exponential-
time analogue of BPP). In this paper, we derive stronger lower bounds
as well as some other consequences from randomized exact learning and
PAC learning algorithms, answering an open question posed in [6] and
[14]. In particular, we show that

1. If a Boolean circuit class C has an efficient randomized exact
learning algorithm or an efficient PAC learning algorithm? then
BPTIME(n“™)/1 € P/poly[C].

2. If a Boolean circuit class C has an efficient randomized exact learn-
ing algorithm then no strong pseudo-random generators exist in

P/poly[C].

We note that in both cases the learning algorithms need not be proper®.
The extra bit of advice comes to accommodate the need to keep the
promise of bounded away probabilities of acceptance and rejection. The
exact same problem arises when trying to prove lower bounds for BPTIME
or MA [3,7,16,20]. It has been an open problem to remove this bit. We
suggest an approach to settle this problem in our case. Finally, we slightly
improve the result of [5] by showing a subclass of MAEXP that requires
super-polynomial circuits. Our results combine and extend some of the
techniques previously used in [6,14] and [20].

* Research partially supported by NSF Award CCF 0832797. Full version available at
http://eccc.hpi-web.de/report/2014/058/.

! P/poly[C] stands for the class of all languages that can be computed by polynomial-
size circuits from the class C.

2 In fact, our result hold even for a more general model of PAC learning with mem-
bership queries.

3 A learning algorithm is proper if it outputs a hypothesis from the class it learns.

J. Esparza et al. (Eds.): ICALP 2014, Part I, LNCS 8572, pp. 1027-[[03%] 2014.
(© Springer-Verlag Berlin Heidelberg 2014

1028 1. Volkovich

1 Introduction

Revealing a hidden function from a set of examples is a natural and basic prob-
lem. As in any other problem, identifying the obstacles along your trail is a
fundamental task in achieving your goal. In this paper, we continue to iden-
tify the obstacles to efficient learnability following the line of research initiated
by Fortnow and Klivans [6]. Several results [23,13,15,8] exhibit a two-way con-
nection between learning and cryptography: basing the hardness of learning on
cryptography and constructing cryptographic primitives based on hardness of
learning. In this paper we identify the obstacles in the form of circuit lower
bounds and relationships between complexity classes.

Angluin’s model of Exact Learning [2] consists of a (computationally bounded)
learner and a (all-powerful) teacher. The learner’s goal is to output a target
function f from a given function class C. To do so, the learner is allowed to query
the value f(Z) on any input Z (membership query). In addition, the learner is also
allowed to propose a hypothesis f and ask the teacher whether it is equivalent
to f (equivalence query). If this is indeed the case, the learner has achieved his
goal. Otherwise, the teacher presents the learner with a counterexample a for
which f(a) # f(a). We say that a function class C is ezactly learnable if there
exists a learner which given any f € C, in time polynomial in n and |f| (the size
of f in the representation scheme) outputs a hypothesis f such that f (z) = f (z)
for all Z, using membership and equivalence queries. In the randomized Exact
Learning model the learner is allowed to toss coins and, given any f € C, it
must output a correct hypothesis, with high probability. We say that a class C
is exactly learnable with high probability (w.h.p) if there exists a learner which
given any f € C, in time polynomial in n and |f| w.h.p outputs a hypothesis f
such that f(z) = f (z) for all Z, using membership and equivalence queries.

In Valiants PAC learning model [23], we (again) have a (computationally
bounded) learner that is given a set of samples of the form (z, f(Z)) from some
fixed function f € C, where Z is chosen according to some unknown distribution
D. Given € > 0 and 0 > 0, the learner’s goal is to output, with probability 1 — &
a hypothesis f such that f isa 1—4 close to f under D. We say that a function
class C is PAC learnable if there exists a learner which given any f € C, & > 0 and
0 > 0 in time polynomial in n,1/e,1/0, |f| outputs a hypothesis as required. In a
more general model, the learner is allowed membership queries (as in the exact
learning model). In this case, we say that C is PAC learnable with membership
queries.

A learning algorithm is said to be proper if it outputs a hypothesis from
the class it learns. It is known [1] that both randomized and exact learners
can be used to obtain a PAC learner with membership queries. Thus, hard-
ness results for the PAC learning model entail hardness results for the random-
ized exact learning model. In [6], Fortnow and Klivans have shown that if a
Boolean circuit class C has an efficient deterministic exact learning algorithm,
then EXPN? & P/poly[C]. Subsequently, Harkins and Hitchcock [10] removed the
NP oracle replacing EXPNP by EXP, using techniques from resource bounded

On Learning, Lower Bounds and (un)Keeping Promises 1029

measure. Further improvement was shown in [14] where EXPNP was replaced by
DTIME(nW(l)) using simpler, diagonalization type of techniques. However, given
an efficient randomized exact learning algorithm or a PAC learner, the above
techniques fail to produce a hard function. Indeed, the best known result so
far [6,14] is a lower bound against BPEXP (the exponential-time analogue of
BPP), therefore leaving an open question for improvement. In this paper we de-
rive stronger (matching) lower bounds as well as some other consequences from
randomized exact learning and PAC learning algorithms, answering the open
question.

1.1 Our Results

In this section we go briefly over our results comparing them with the previous
ones. We now present the first result of the paper, which gives lower bounds
against BPTIME(n“™)/1 and PromiseBPTIME(n“(1)) assuming an efficient ran-
domized exact learner or an efficient PAC learner with queries. We note that the
learning algorithm need not be proper. .

Theorem 1. Let C be a circuit class. If C is exactly learnable w.h.p or is PAC
learnable with membership queries, then BPTIME(n*(M))/1 ¢ P/poly[C] and
PromiseBPTIME(n~(1)) Z P/poly[C].

This matches the recent result of [14], where a lower bound against DTIME(n(1))
was produced assuming a deterministic efficient learner. In fact, the results of
[14] also imply fixed polynomial-size circuit lower bounds against P. That is, for
each k, P ¢ SIZE(n*)[C], where SIZE(n*)[C] stands for languages accepted by
size O(n*) circuits from the class C. We match this result as well.

Theorem 2. Let C be a circuit class. If C is exactly learnable w.h.p or is PAC
learnable with membership queries, then for any k > 1: BPP/1 € SIZE(n*)[C]
and PromiseBPP ¢ SIZE(n*)[C].

Next, we show that efficient randomized exact learner for a circuit class C
gives rise to a P/poly-natural property useful against P/poly[C]. Following the
celebrated result of Razborov & Rudich [19] (and its extensions) this implies
that no strong pseudo-random generators exist in P/poly[C]. For the case of
C = P/poly or even a smaller class of TC® of constant-depth threshold functions
such an outcome is very unlikely [18]. Again, the learning algorithm need not be
proper.

Theorem 3. Let C be a circuit class. If C is exactly learnable w.h.p then no
strong pseudo-random generators exist in P/poly|[C].

In a similar fashion to the previous lower bounds and hierarchy theorems for
the “bounded” probabilistic classes [3,7,16] and MA [20] we require an extra bit
of advice to keep the promise of bounded away probabilities. It has been an
open problem to remove this bit. We suggest an approach to settle this problem

1030 I. Volkovich

by trying to “unkeep” the promise using fixed oracles. More specifically, recall
that BPP = PPromiseBPP _ pCA 4 That is, a language L is in BPP iff it can
be decided by a P machine with an oracle to CA. Note, thought, that for some
queries the answer of the CA oracle can be arbitrary (e.g. for balanced circuits).
We eliminate the need of an advice bit for the cases when oracle is fixed.

Theorem 4. Let O be an oracle consistent with CA. That is, O accepts circuit
from CAygs and rejects circuit from CAno. Let C be a circuit class. If C is
exactly learnable w.h.p or is PAC learnable with membership queries, then for
any k > 1: PO ¢ SIZE(n*)[C].

In [20], Santhanam proved lowers bounds for MA/1 unconditionally. In fact,
our conditional results use several techniques from this paper (partially described
in Section 1.2). Applying the same idea unconditionally and recalling that MA =
NpPromiseBPP _ NPOA (see e.g. [9]) we obtain the following (unconditional) result:

Theorem 5. Let O be an oracle consistent with CA. That is, O accepts circuit
from CAygs and rejects circuit from CAno. Then for any k > 1: NPC z
SIZE(n*).

The smallest complexity class for which unconditional super-polynomial lower
bounds are known is MAEXP [5,17]. We show that this is still true for a subclass
of MAEXP, as MAEXP = NEXPPmiBPP Dye to space limitation the proof of
this theorem is omitted.

Theorem 6. There exists a language LA € PromiseBPP s.t. NEXPEA Z P/poly.

1.2 Our Techniques and Ideas

We now describe our main techniques and ideas.

Learning a “Conveniently Hard” Language. As in various previous pa-
pers dealing with conditional and unconditional lower bounds [11,12,6,20,14], we
require a “conveniently hard” language L. That is, a language L that possesses
some “nice” structural properies (downward self-reducibility, self-testability and
self-correctability) and yet can be used to compute a “hard” function (for a
formal definition see Definition 6). The “nice” properties of L make it easily
learnable given an efficient learner. More specifically, they allow answering the
learner’s queries efficiently. We now describe the idea in a nutshell. We combine
several techniques from [11,6,20,14] and extend them.

Given an efficient learner for a circuit class C, the idea is to learn a non-
uniform circuit C' € C for L and then use C' to compute the hard function within
L. This puts a hard function in BPP and, obviously, can be carried out only if L
is computable by a small-sized family of circuits in C. Similar idea appeared in

* CA (Circuit Approximation) is the natural PromiseBPP-complete problem CAy gs =
{C | Pracqoayn[C(a) =1] > 3/4 } and CAno = {C | Pracqo,y»[C(a) =1] < 1/4}.

On Learning, Lower Bounds and (un)Keeping Promises 1031

[11]. The other option is that L requires large circuits from C. At this point, the
approach taken in [6,14] is to combine both hardness results into a single lower
bound. This results in a lower bound against BPEXP. We take the approach
suggested in [20]: learn a padded version of L. Intuitively, padding allows us to
increase the input size and thus allowing more learning time, without actually
increasing the “real” size of the input. We try different amounts of padding until
the learner has “enough running time” to learn L. Note, that the learning algo-
rithm is guaranteed to succeed w.h.p only given enough running time/samples.
Consequently, when executed prior to reaching the “right” amount of padding
the acceptance/rejection probabilities of the algorithm can be arbitrarily close
to half. Yet in order to remain within the framework of BPP, the algorithm must
keep the promise of bounded away acceptance and rejection probabilities. The
solution of [7,16,20] was to add one bit of advice indicating whether or not we
have reached the necessarily amount of padding. To finish the argument, we show
that small circuits for a sufficiently padded version of L imply small circuits for
L itself.

(un)Keeping the Promise. For the sake of simplicity, we describe here the
intuition behind removing the advice from MA/1. We follow along the lines of
the previous section with one change: instead of using the learning algorithm to
a learn a non-uniform circuit C' for L, we “guess” it. Next, we need to verify that
C indeed computes L via a probabilistic procedure referred to as “self-testability”
(Property 2 Definition 6). This procedure can detect an error in C only if C'if “far
enough” from L. Thus, we are dealing with an oracle call to PromiseBPP, which
can replaced by an oracle call to CA. However, the answer of the oracle is unde-
fined for circuits that are “close” to L but not equal L. We suggest to circum-
vent this problem by replacing an oracle call to CA with a fixed oracle O that is
consistent with CA. Given a fixed oracle O every call has a defined answer. Re-
peating the previous reasoning we establish a hard language in N PO. Yet, for each
O it might be a different language. Our glint of hope comes come from the fol-
lowing relation, which follows from the definition of NPP™sBPP (see e.g. [4]):
MA = NPPromiseBPP 2 N NPP. If one could show that a hard
O is consistent with CA

language in each of the NP terms on the RHS implies a hard language in their
intersection, we would be done. We formalize this approach in Section 5.

1.3 Organization

We start by some basic definitions and notation in Section 2. In Section 3 we
give our main result showing that efficient randomized learning algorithms entail
circuit lower bounds, proving Theorems 1 and 2. In Section 4 we prove Theorem
3 show that for several circuit classes the very existence of efficient randomized
exact learning algorithm “bumps” into the natural barier of Razborov & Rudich.
In Section 5 we propose an approach for removing the extra bit of advice. Finally,
we discuss some open questions in Section 6.

1032 1. Volkovich

2 Preliminaries

Definition 1 (Functions, Circuits, Languages). In this paper we deal with
Boolean functions, that is f : {0,1}" — {0,1}. Let f,g : {0,1}" — {0,1}. We
define the relative distance A(f, g) 2 Pracioy[f(a) # g(a)]. Fore >0, we say
that f is e-close to g if A(f,g) < e, otherwise we say that f is e-far from g. Let
L C {0,1}" be a language. We denote by L|, the set of the strings of length n
in L. We say that L has circuits of size a(n) and denote it by L € SIZE(a(n))
if for every n > 1 L|, can be computed by a Boolean circuit of size O(a(n)).
A circuit class C is a subset of all Boolean circuits (e.g. circuits with AND,OR
and NOT gates, AC°, ACC, TC°,NC? etc.). We assume that the representation in
C is chosen in way that a size s circuit can be described using poly(s) bits. In
addition, given a circuit C € C of size s the circuit C|gz,=p is also in C and of
size at most s, when C|,,—p is the circuit resulting from C by fizing the variable
x; to the bit b € {0,1}. We denote by SIZE(a(n))[C] the set of languages having
circuits of size O(a(n)) from the class C.

A Promise Problem is a relaxation of a language. Formally:

Definition 2 (Promise Problems). IT = (Ilygs, IIno) is a promise problem
if Iygps N IIno = 0. We say that a language O is consistent with IT iff x €
IIyps = z€0 andz € IIno = x &€ O. The containment of O outside of
Iy gsWUIlno can be arbitrary.

Let IT be a promise problem and let M be a deterministic (resp. nondetermin-
istic) polynomial-time Turing machine with an oracle access to IT. Consider a
(oracle) language O consistent with I7. By definition (see e.g. [4]), M’s language
should not depend on the answers of the oracle when a query q € Iy psWUllno
is made. Consequently, P C PO (resp. NPT C NPO). It turns out that the
following holds as well, and in fact can be considered as an alternative definition
for classes of languages computed by Turing machines with oracles to promise
problems.

Definition 3 (Promise Problems as Oracles)
PT (resp. NPT) = N PO (resp. NP9)

O is consistent with IT

For more details and discussion see e.g. [4].

Definition 4 (Lower Bounds for Promise Problems). Let C be a circuit
class and f(n) be a function. Then II ¢ SIZE(f(n)) <= VYO consistent with
II: O ¢ SIZE(f(n)).

Definition 5 (Complexity Classes). A language L is in BPP if there exists
a polynomial-time machine M (x,r) such that: © € L = Pr.[M(x,r) =1] >
3/4,x ¢ L = Pr.[M(x,r) =1] <1/4. A language L € BPP/1 if in addition
the machine requires an auziliary advice bit b, for each input of length n. We
note that given the complement advice bit b,, the machine is not guaranteed to

On Learning, Lower Bounds and (un)Keeping Promises 1033

preform correctly. In particular, given b,, as the advice bit there is no promise for
bounded away acceptance and rejection probabilities. Other standard complexity
classes include: P,PSPACE, RP, NP, MA.

For the core of our proofs we require a conveniently hard language. Intu-
itively, it is language that has “nice” structural properies and yet can be used
to compute functions that require “large” circuits. It is not hard to see that
every conveniently hard language is computable in PSPACE. In [22] a conve-
niently hard PSPACE-complete language was constructed via arithmezation of
the proof that PSPACE = IP [21]. In their construction, all the “nice” structural
properties follow from the properties of low-degree polynomials and of TQBF.
The Embedded Hardness (Part 4) is due to the fact that given a circuit class C,
in DSPACE(poly(s)) one can diagonalize against all the circuits of size s from
C, thus obtaining a language that can not be computed by any size s circuit.
Formally:

Definition 6. We say that a language L is conveniently hard if it satisfies:

1. Downward Self-Reducibility: we say that a language L is downward-self-
reducible if there is a deterministic polynomial-time algorithm COMPUTE
such that for allm > 1: COMPUTE! -1 — L.

2. Self-Testability: we say that a language L is self-testable if there is a prob-
abilistic polynomial-time algorithm TEST such that for any Boolean function
f:{0,1}" = {0,1}:

— If f = L|,, then Pr[TEST/ =1] = 1.
— If A(f, L|n) > 1/n then Pr[TEST = 1] < 27107,

3. Self-Correctability: we say that a language L is self-correctable if there
is a probabilistic polynomial-time algorithm CORRECT such that, for any
Boolean function f : {0,1}" — {0,1} it holds that if A(f,L|,) < 1/n then
for all z € {0,1}": Pr[CORRECT/ (z) # L|,(z)] < 27107,

4. Embedded Hardness: we say that a language L has an Embedded Hard-
ness if for every circuit class C and k > 1: PL ¢ SIZE(n*)[C].

The following is immediate from the definition:

Observation 1. Let C' be an n-variate circuit of size s such that A(C, L) <
1/n. Then there exists an n-variate circuit C' of size poly(s,n) such that
A(C, L|,,) = 0. Moreover, C' can be obtained from C' in polynomial time w.h.p.

3 Lower Bounds from Randomized Learning Algorithms

In this section we prove Theorems 1 and 2. Let L be the conveniently hard
PSPACE-complete language of [22]. Following and extending definitions from
[20] we define padded versions of L. For simplicity, throughout the section we
fix a circuit class C. We will assume w.l.o.g that P C P/poly[C] (otherwise there
is nothing to prove). As L € PSPACE C EXP, by a translation argument there

exists d > 1 such that L € SIZE(?”d).

1034 1. Volkovich

Definition 7 (Padded Languages)

Forr > 1 let s(r) denote the size of the smallest circuit from C that computes L|,.
By the preceding discussion s(r) is well-defined and in particular s(r) = (9(2Td).
Let t(w) : N — N be a constructible function. We define the padded version of L:

1) m is power of 2.
1o) my Q)Té\x\ <m.
t0) 3)ze L.

4) s(r) < t(m).

Remark: Condition 4 can be restated as: there exists a circuit of size t(m)
that computes L|,. In addition, observe that for LQ(_) each input has a unique
interpretation.

The main property of the padded languages is that sufficiently small circuits

for L;(_) can be used to construct small circuits for L.

Lemma 1. Let k > 1 and t(w) = 2(w?). Suppose LQ(_) € SIZE(n*). Then
s(r) = O(r?F).

Proof. Forn > 1let C), be a circuit for L;(,) |n. Let 7 > 1. We will now construct
a circuit that computes L|.. Take m to be a minimal power of 2 such that
r < m and s(r) < t(m). As t(w) = 2(w?), we have that t(m) > a - m2*, for
some a > 0. Hence, it must be the case that m < 2-a~/2F . s(r)1/2k 1 2p,
Now, set n = r + m and consider the circuit C' resulting from C’, when we
hardwire the lower m bits of the input to 1. By definition, C' computes L|,
and there exists 8 > 0 such that C is of size at most §-n* = 8- (r + m)* <
B-(3r+2-a~ 2k . s(r)1/2k)k < B /o 6% -7k .\ /5(r). By recalling the definition
of 5(r) we get that s(r) <~ -r*../s(r) which implies s(r) = O(r?*).

We now give the main result of this section.

Proof (of Theorem 2). Let A be a PAC learner for C. Fix k. Consider two cases.

Case 1: L € P/poly[C]. We will show that PX C BPP and hence
BPP ¢ SIZE(n*)[C]. For this purpose will use A to learn circuits for L
and then apply Property 4 of Definition 6 as follows:

— Begin with a lookup table Cy = O for Li;. }

— For i > 2, invoke A with ¢ = 1/i% and § = 1/i to learn a circuit C; of size
s(i) for L.

— Given a membership query for L|; invoke COMPUTE using C;_1 ().

— Set C; 2 CORRECTY

Analysis. We claim that C; computes L|; with probability at least 1 — 2710%,
By induction on i. Basis i = 1 is clear. Now assume that hypothesis holds for i.
By definition, w.h.p A will output C;41 to be 1/i close to L|; using Property 1

On Learning, Lower Bounds and (un)Keeping Promises 1035

of Definition 6 to answer membership queries. By Property 3 C;11 will compute
L|;11 with probability at least 1 —27190+1) The total number of steps is poly(4)
while each has an exponential probability error. Hence, for each i: C; = L|; w.h.p.

Running Time. Given an input of size n we learn the corresponding circuits
of sizes s(1),...,s(n) which is poly(n) by assumption. In addition, all the algo-
rithms are polynomial-time.

Case 2: L ¢ P/poly[C]. Set t(w) = w?*. We show that Lj , € BPP/1 and

conclude that in this case Lj | ¢ SIZE(n*)[C]. We follow the learning scheme
described in the previous case to learn circuits for L with two changes: first,
since each input of L;(,) has a unique interpretation, we could use the advice bit
to determine whether s(r) < ¢(m). If the advice bit is 0, we reject. Otherwise,
we carry on with flow of the scheme barring a second change: invoke A to learn
circuits C' of size t(m) and use the resulting circuit C, to decide if 2 € L. Now,
suppose that Ly | € SIZE(n*). By Lemma 1 we get that s(r) = O(r?*), which
contradicts the fact that L ¢ P/poly|[C].

The proof of Theorem 1 is essentially the same. We leave it as an exer-
cise for the reader. To complete the picture, recall that a randomized exact
learner can be used to obtain a PAC learner with membership queries [1] and ob-
serve that BPTIME (¢(n)) /1 & SIZE (f(n)) implies that PromiseBPTIME (¢(n)) &
SIZE (f(n)) by adding the advice to the input.

4 Natural Property from Learning

We now describe the approach in more details. First, we recall some related
definitions from [19].

Definition 8. Let P be a property of Boolean functions. That is, a subset of all
Boolean functions. Let I', A be complexity classes. We say that P is I'-natural
with density d,, if there is a property P* C P such that the following holds: (i)
Constructivity: given a function f by its truth table, f € P* can be decided in
I'. (i) Largeness: for all n, P* contains at least a 6, fraction of all n-variate
Boolean functions. We say that P is useful against A if for every family of
Boolean functions {f,},~, € P there are infinitely many n-s such that f, ¢ A.

The main results of [19] (and its extensions) states as follows:

Lemma 2 ([19] and Extensions). Let C be a circuit class. If there exists a
P /poly-natural property with density 2=°™) that is useful against P/poly[C] then
no strong pseudo-random generators exist in P /poly[C].

We show that we can turn an efficient randomized exact learner A for a circuit
class C into a P/poly-natural property useful against C. First, we amplify the er-
ror probability and get a P/poly algorithm A/, which succeeds in learning all the

1036 I. Volkovich

function computable by size s circuits from C. Next, we define the property P as
the set of all functions on which A/, fails. For an appropriate choice of s the prop-
erty is useful against P/poly[C]. Moreover, observe that if A/, succeeds learning a
function f then f must have a small circuit. A simple counting argument shows
that the majority of Boolean functions require large circuits, thus A/ succeeds
only a small fraction of functions. Note that since the counting argument is valid
for any circuit class, the learning algorithm A need not be proper. Due to space
limitation we omit the formal proof of Theorem 3 from this version.

5 Towards Better Lower Bounds by Unkeeping Promises

The extra bit of advice in Theorems 1 and 2 as well as in the result of [20]
(lower bounds for MA/1) comes to accommodate the need to keep the promise
of bounded away probabilities of acceptance and rejection required for the
“bounded” probabilistic classes. As in other cases, removing this bit is an open
problem. In this section we suggest an approach how to settle this problem in
the case of conditional and unconditional lower bounds. As previously, we will
use the conveniently hard PSPACE-complete language L of [22].

We raise the question whether lower bounds are preserved under consistency.
More specifically, given a promise problem II our hope is that one could show
that the existence of hard language in each P° (or NPO) implies an existence
hard language in their intersection, when O runs over all the consistent with 1T
languages. We now give a formal treatment to this intuition.

Definition 9. LetC be a circuit class. We say that a promise problem II is deter-
ministically (resp. nondeterministically) compact w.r.t. C if: P7 (resp. NP™) C

SIZE(f(n))[C] = 30 consistent with II s.t. PO (resp. NP?) C SIZE(f(n)°M)
[C].

Note that the promise problems that are languages are trivially compact
for all circuit classes in both settings. We can extend the definition to classes
of promise problems requiring compactness for each problem in the class. We
now give the proofs starting with the conditional case. Recall that CA is
the natural PromiseBPP-complete problem of Circuit Approzimation defined
as CA 2 (CAyps, CAyo) where (CAygs = {C | A(C,0) >3/4},CAno =
{C 1 A(C,0) <1/4}).

Lemma 3. Let C be a circuit class. Suppose that PromiseBPP is deterministi-
cally compact w.r.t. C. If C is PAC learnable with membership queries, then for
any k > 1: BPP ¢ SIZE(n*)[C].

Proof. Fix k > 1 and assume for a contradiction that BPP C SIZE(n*)[C].
As PCA C BPP, from compactness there exists &’ > 1 and a language O
consistent with CA such that P C SIZE(n*")[C]. By Theorem 2 there exists
IT € PromiseBPP such that IT ¢ SIZE(n*)[C]. Since CA is a PromiseBPP-
complete language there exists a polynomial-time function ¢g : I — CA such

On Learning, Lower Bounds and (un)Keeping Promises 1037

that: ¢ € IIyps = g(x) € CAygs,z € lIno = g(z) € CAno. Let us

define O’ 2 {x | g(z) € O}. First, observe that O’ € P?. Next, we claim that
O’ is consistent with IT. That is: © € IIygs — g(z) € CAygs C 0 =
re 0 xe€llyo = g(z) € CAyo €O = z ¢ O'. Recalling Definition 4,
O’ ¢ SIZE(n*")[C] thus leading to a contradiction.

The unconditional case is slightly more involved. We refer the reader to the full
version of the paper.

6 Discussion and Open Questions

In this paper we show that efficient randomized learning algorithms imply circuit
lower bounds against BPTIME(n“(1))/1, and some other hardness results. This
(almost) solves the main open problem posed in [6] and [14], and matches the
corresponding result of [14] that deterministic learning algorithms imply circuit
lower bounds against DTIME(n*(})). We would like to point out that those con-
ditional lower bounds are nearly-optimal if we treat the learning algorithms as
black-boxes. More specifically, all the above results only assume an existence of
an efficient learning algorithm, which is invoked as a black-box regardless of the
class C it learns. Consequently, the obtained lowers bounds are of form “C is
learnable = I' € P/poly[C]” for every circuit class C and some complexity
class I'. Given that, we cannot expect to obtain conditional lower bounds of the
form: “P or BPP/1 ¢ P/poly[C]” since P C BPP/1 C P/poly (i.e. when C is the
class of all Boolean circuits with AND,OR and NOT gates). We refer to this
as the “black-box barrier”. This barrier can be seen as an analog of the rela-
tivization barrier for proving lower bounds. So, one open question is to derive
lower bounds of the form “P or BPP € P/poly[C]” from an efficient learning
algorithm for some specific families of circuit classes. In the light of the above,
such a conditional lower bound will have to exercise a non black-box technique.

The other open question is, naturally, to remove the extra bit of advice
appearing in both conditional and the unconditional bounds. We hope that the
approach described in Section 5 will be a step in the right direction.

Acknowledgment. The author would like to extend his gratitude to Dieter van
Melkebeek for sharing lots of his knowledge and commenting on the first version
of the paper. The author would also like to thank Eric Allender and Nader
Bshouty for answering his questions and many useful conversations. Finally,
the author would like to thank Akinori Kawachi, Igor Oliveira and anonymous
referees for their detailed comments and suggestions.

References

1. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Com-
put. 75(2), 87-106 (1987)
2. Angluin, D.: Queries and concept learning. Machine Learning 2, 319-342 (1988)

1038 1. Volkovich

3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Barak, B.: A probabilistic-time hierarchy theorem for slightly non-uniform algo-
rithms. In: Rolim, J.D.P., Vadhan, S.P. (eds.) RANDOM 2002. LNCS, vol. 2483,
pp. 194-208. Springer, Heidelberg (2002)

Buhrman, H., Fortnow, L.: One-sided versus two-sided error in probabilistic compu-
tation. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 100-109.
Springer, Heidelberg (1999)

Buhrman, H., Fortnow, L., Thierauf, T.: Nonrelativizing separations. In: Proceed-
ings of the 13th Annual IEEE Conference on Computational Complexity (CCC),
pp. 8-12 (1998)

Fortnow, L., Klivans, A.R.: Efficient learning algorithms yield circuit lower bounds.
J. Comput. Syst. Sci. 75(1), 27-36 (2009)

Fortnow, L., Santhanam, R.: Hierarchy theorems for probabilistic polynomial time.
In: FOCS, pp. 316-324 (2004)

Gentry, C., Halevi, S.: Fully homomorphic encryption without squashing using
depth-3 arithmetic circuits. In: Proceedings of the 52nd Annual FOCS, pp. 107-
109 (2011)

Goldreich, O., Zuckerman, D.: Another proof that bpp C ph (and more). In: Studies
in Complexity and Cryptography, pp. 40-53 (2011)

Harkins, R.C., Hitchcock, J.M.: Exact learning algorithms, betting games, and
circuit lower bounds. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011,
Part I. LNCS, vol. 6755, pp. 416-423. Springer, Heidelberg (2011)

Impagliazzo, R., Wigderson, A.: Randomness vs. time: De-randomization under a
uniform assumption. In: FOCS, pp. 734-743 (1998)

Kabanets, V., Impagliazzo, R.: Derandomizing polynomial identity tests means
proving circuit lower bounds. Computational Complexity 13(1-2), 1-46 (2004)
Kearns, M.J., Valiant, L.G.: Cryptographic limitations on learning boolean formu-
lae and finite automata. J. ACM 41(1), 67-95 (1994)

Klivans, A., Kothari, P., Oliveira, I.: Constructing hard functions from learning
algorithms. In: Proceedings of the 28th Annual IEEE Conference on Computational
Complexity (CCC), pp. 86-97 (2013)

Klivans, A.R., Sherstov, A.A.: Cryptographic hardness for learning intersections of
halfspaces. J. Comput. Syst. Sci. 75(1), 2-12 (2009)

van Melkebeek, D., Pervyshev, K.: A generic time hierarchy with one bit of advice.
Computational Complexity 16(2), 139-179 (2007)

Miltersen, P.B., Vinodchandran, N.V., Watanabe, O.: Super-polynomial versus
half-exponential circuit size in the exponential hierarchy. In: Asano, T., Imai, H.,
Lee, D.T., Nakano, S.-i., Tokuyama, T. (eds.) COCOON 1999. LNCS, vol. 1627,
pp. 210-220. Springer, Heidelberg (1999)

Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random
functions. J. ACM 51(2), 231-262 (2004)

Razboeov, A.A., Rudich, S.: Natural proofs. J. of Computer and System Sci-
ences 55(1), 24-35 (1997)

Santhanam, R.: Circuit lower bounds for merlin—arthur classes. SIAM J. Com-
put. 39(3), 1038-1061 (2009)

Shamir, A.: IP=PSPACE. In: Proceedings of the Thirty First Annual Symposium
on Foundations of Computer Science, pp. 11-15 (1990)

Trevisan, L., Vadhan, S.P.: Pseudorandomness and average-case complexity via
uniform reductions. Computational Complexity 16(4), 331-364 (2007)

Valiant, L.G.: A theory of the learnable. Communications of the ACM 27(11),
1134-1142 (1984)

	On Learning, Lower Bounds and (un)Keeping Promises

	1 Introduction
	1.1 Our Results
	1.2 Our Techniques and Ideas
	1.3 Organization

	2 Preliminaries
	3 Lower Bounds from Randomized Learning Algorithms
	4 Natural Property from Learning
	5 Towards Better Lower Bounds by Unkeeping Promises
	6 Discussion and Open Questions
	References

