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Abstract. Canonical orderings [STOC’88, FOCS’92] have been used as
a key tool in graph drawing, graph encoding and visibility representations
for the last decades. We study a far-reaching generalization of canonical
orderings to non-planar graphs that was published by Lee Mondshein in
a PhD-thesis at M.I.T. as early as 1971.

Mondshein proposed to order the vertices of a graph in a sequence such
that, for any i, the vertices from 1 to i induce essentially a 2-connected
graph while the remaining vertices from i + 1 to n induce a connected
graph. Mondshein’s sequence generalizes canonical orderings and became
later and independently known under the name non-separating ear de-
composition. Currently, the best known algorithm for computing this
sequence achieves a running time of O(nm); the main open problem in
Mondshein’s and follow-up work is to improve this running time to a
subquadratic time.

In this paper, we present the first algorithm that computes a Mond-
shein sequence in time and space O(m), improving the previous best
running time by a factor of n. In addition, we illustrate the impact of
this result by deducing linear-time algorithms for several other problems,
for which the previous best running times have been quadratic.

In particular, we show how to compute three independent spanning
trees in a 3-connected graph in linear time, improving a result of Cheriyan
and Maheshwari [J. Algorithms 9(4)]. Secondly, we improve the pre-
processing time for the output-sensitive data structure by Di Battista,
Tamassia and Vismara [Algorithmica 23(4)] that reports three inter-
nally disjoint paths between any given vertex pair from O(n2) to O(m).
Thirdly, we improve the computation of 3-partitioning of a 3-connected
graph to linear time. Finally, we show how a very simple linear-time
planarity test can be derived once a Mondshein sequence is computed.

1 Introduction

Canonical orderings are a fundamental tool used in graph drawing, graph encod-
ing and visibility representations; we refer to [1] for a wealth of applications. For
maximal planar graphs, canonical orderings were first introduced by de Frays-
seix, Pach and Pollack [6,7] in 1988. Kant then generalized canonical orderings
to arbitrary 3-connected planar graphs [12,13].

Surprisingly, the concept of canonical orderings can be traced back much fur-
ther, namely to a long-forgotten PhD-thesis at M.I.T. by Lee F. Mondshein [15]
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in 1971. In fact, Mondshein proposed a sequence that generalizes canonical or-
derings to non-planar graphs, hence making them applicable to arbitrary 3-
connected graphs. Mondshein’s sequence was, independently and in a different
notation, found later by Cheriyan and Maheshwari [4] under the name non-
separating ear decompositions.

Computationally, it is an intriguing question how fast a Mondshein sequence
can be computed. Mondshein himself gave an involved algorithm with running
time O(m2). Cheriyan showed that it is possible to achieve a running time of
O(nm) by using a theorem of Tutte that proves the existence of non-separating
cycles in 3-connected graphs [20]. Both works (see [15, p 1.2] and [4, p. 532])
state as main open problem, whether it is possible to compute a Mondshein
sequence in subquadratic time.

We present the first algorithm that computes a Mondshein sequence in time
and space O(m), hence solving the above 40-year-old problem. The interest in
such a computational result stems from the fact that 3-connected graphs play a
crucial role in algorithmic graph theory; we illustrate this in four direct applica-
tions by giving linear-time (and hence optimal) algorithms for several problems,
for two of which the previous best running times have been quadratic.

In particular, we show how to compute three independent spanning trees in
a 3-connected graph in linear time, improving a result of Cheriyan and Mahesh-
wari [4]. Second, we improve the preprocessing time from O(n2) to O(m) for
a data structure by Di Battista, Tamassia and Vismara [8] that reports three
internally disjoint paths in a 3-connected graph between any given vertex pair
in time O(�), where � is the total length of these paths. Finally, we illustrate the
usefulness of Mondshein’s sequence by giving a very simple linear-time planarity
test, once a Mondshein sequence is computed.

We start by giving an overview of Mondshein’s work and its connection to
canonical orderings and non-separating ear decompositions in Section 3. Sec-
tion 4 sketches the main ideas for our linear-time algorithm that computes a
Mondshein sequence. Section 5 covers four applications of this linear-time algo-
rithm.

2 Preliminaries

We use standard graph-theoretic terminology and assume that all graphs are
simple.

Definition 1 ([14,23]). An ear decomposition of a 2-connected graph G = (V, E)
is a sequence (P0, P1, . . . , Pk) of subgraphs of G that partition E such that P0
is a cycle and every Pi, 1 ≤ i ≤ k, is a path that intersects P0 ∪ · · · ∪ Pi−1 in
exactly its end points. Each Pi is called an ear. An ear is short if it is an edge
and long otherwise.

According to Whitney [23], every ear decomposition has exactly m − n + 1
ears. For any i, let Gi = P0 ∪ · · · ∪ Pi and Vi := V − V (Gi). We write Gi to
denote the graph induced by Vi. We observe that Gi does not necessarily contain
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all edges in E − E(Gi); in particular, there may be short ears in E − E(Gi) that
have both of their endpoints in Gi.

For a path P and two vertices x and y in P , let P [x, y] be the subpath in P
from x to y. A path with endpoints v and w is called a vw-path. A vertex x in a
vw-path P is an inner vertex of P if x /∈ {v, w}. For convenience, every vertex
in a cycle is an inner vertex of that cycle.

The set of inner vertices of an ear P is denoted as inner(P ). The inner vertex
sets of the ears in an ear decomposition of G play a special role, as they partition
V (G). Every vertex of G is contained in exactly one long ear as inner vertex.
This gives readily the following characterization of Vi.

Observation 2. For every i, Vi is the union of the inner vertices of all long
ears Pj with j > i.

We will compare vertices and edges of G by their first occurrence in a fixed
ear decomposition.

Definition 3. Let D = (P0, P1, . . . , Pm−n) be an ear decomposition of G. For
an edge e ∈ G, let birthD(e) be the index i such that Pi contains e. For a vertex
v ∈ G, let birthD(v) be the minimal i such that Pi contains v (thus, PbirthD(v) is
the ear containing v as an inner vertex). Whenever D is clear from the context,
we will omit D.

Clearly, for every vertex v, the ear Pbirth(v) is long, as it contains v as an inner
vertex.

3 Generalizing Canonical Orderings

We give a compact rephrasing of canonical orderings in terms of non-separating
ear decompositions. This will allow for an easier comparison of a canonical order-
ing and its generalization to non-planar graphs, as the latter is also based on ear
decompositions. We assume that the input graphs are 3-connected and, when
talking about canonical orderings, planar. It is well-known that maximal pla-
nar graphs, which were considered in [6], form a subclass of 3-connected graphs
(apart from the triangle-graph).

Definition 4. An ear decomposition is non-separating if, for 0 ≤ i ≤ m − n,
every inner vertex of Pi has a neighbor in Gi unless Gi = ∅.

The name non-separating refers to the following helpful property.

Lemma 5. In a non-separating ear decomposition D, Gi is connected for every
i.

Proof. Let u be an inner vertex of the last long ear in D. If Gi = ∅, the claim
is true. Otherwise, consider any vertex x in Gi. In order to show connectedness,
we exhibit a path from x to u in Gi. If x is an inner vertex of Pbirth(u), this path
is just the path Pbirth(u)[x, u]. Otherwise, birth(x) < birth(u). Then x has a
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neighbor in Gbirth(x), since D is non-separating, and, according to Observation 2,
this neighbor is an inner vertex of some ear Pj with j > birth(x). Applying
induction on j gives the desired path to u. �

A plane graph is a graph that is embedded into the plane. In particular, a
plane graph has a fixed outer face. We define canonical orderings as special
non-separating ear decompositions.

Definition 6 (canonical ordering). Let G be a 3-connected plane graph having
the edges tr and ru in its outer face. A canonical ordering with respect to tr
and ru is an ear decomposition D of G such that
1. tr ∈ P0,
2. Pbirth(u) is the last long ear, contains u as its only inner vertex and does not

contain ru, and
3. D is non-separating.

The original definition of canonical orderings by Kant [13] states several addi-
tional properties, all of which can be deduced from the ones given in Definition 6.
E.g., it is easy to see for every i that the outer face Ci of Gi forms a cycle con-
taining tr.

The fact that D is non-separating plays a key role for both canonical order-
ings and their generalization to non-planar graphs. E.g., for canonical orderings,
Lemma 5 implies that the plane graph G can be constructed from P0 by succes-
sively inserting the ears of D to only one dedicated face of the current embedding,
a routine that is heavily applied in graph drawing and embedding problems.

Our definition of canonical orderings uses planarity only in one place: tr ∪ ru
is assumed to be part of the outer face of G. Note that the essential art of this
assumption is that tr ∪ ru is part of some face of G, as we can always choose an
embedding for G having this face as outer face. By dropping this assumption,
our definition of canonical orderings can be readily generalized to non-planar
graphs: We merely require tr and ru to be edges in the graph.

This is in fact equivalent to the definition Mondshein used 1971 to define
a (2,1)-sequence [15, Def. 2.2.1], but which he gave in the notation of a spe-
cial vertex ordering. This vertex ordering actually refines the partial order
inner(P0), . . . , inner(Pm−n) by enforcing an order on the inner vertices of each
path according to their occurrence on that path (in any direction). For concise-
ness, we will instead stick to the following short ear-based definition, which is
similar to the one given in [4] but does not need additional degree-constraints.

Definition 7 ([15,4]). Let G be a graph with an edge ru. A Mondshein sequence
avoiding ru (see Figure 3a) is an ear decomposition D of G such that
1. r ∈ P0,
2. Pbirth(u) is the last long ear, contains u as its only inner vertex and does not

contain ru, and
3. D is non-separating.

An ear decomposition D that satisfies Conditions 1 and 2 is said to avoid
ru. Put simply, this forces ru to be “added last” in D, i.e., strictly after the
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last long ear Pbirth(u) has been added. Note that Definition 7 implies u /∈ P0, as
Pbirth(u) contains only one inner vertex. As a direct consequence of this and the
fact that D is non-separating, G must have minimum degree 3 in order to have
a Mondshein sequence. Mondshein proved that every 3-connected graph has a
Mondshein sequence. In fact, also the converse is true.

Theorem 8. [4,24] Let ru ∈ E(G). Then G is 3-connected if and only if G has
a Mondshein sequence avoiding ru.

We state two additional facts about Mondshein sequences. Since we replaced
the assumption that tr ∪ ru is in the outer face of G with the very small as-
sumption that ru is an edge of G (which does not assume anything about t at
all), it is natural to ask how we can extract t (and thus, a canonical ordering)
from a Mondshein sequence when G is plane. We choose t as any neighbor of r
in P0. Since P0 is non-separating and the non-separating cycles of a 3-connected
plane graph are precisely its faces [20], this satisfies Definition 6 and leads to the
following observation.

Observation 9. Let D be a Mondshein sequence avoiding ru of a planar graph
G and let t be a neighbor of r in P0. Then D is a canonical ordering of the
planar embedding of G whose outer face contains tr ∪ ru.

Once having a Mondshein sequence, we can aim for a slightly stronger struc-
ture. A chord of an ear Pi is an edge in G that joins two non-adjacent vertices
of Pi. Let a Mondshein sequence be induced if P0 is induced in G and every ear
Pi �= P0 has no chord in G, except possibly the chord joining the endpoints of
Pi. The following lemma shows that we can always expect Mondshein sequences
that are induced. We omit the proof.

Lemma 10. Every Mondshein sequence can be transformed to an induced Mond-
shein sequence in linear time.

4 Computing a Mondshein Sequence

Mondshein gave an involved algorithm [15] that computes his sequence in time
O(m2). Independently, Cheriyan and Maheshwari gave an algorithm that runs in
time O(nm) and which is based on a theorem of Tutte. At the heart of our linear-
time algorithm is the following classical construction sequence for 3-connected
graphs due to Barnette and Grünbaum [2] and Tutte [21, Thms. 12.64 and 12.65].

Definition 11. The following operations on simple graphs are BG-operations
(see Figure 1).
(a) vertex-vertex-addition: Add an edge between two distinct non-adjacent ver-

tices
(b) edge-vertex-addition: Subdivide an edge ab, a �= b, by a vertex v and add

the edge vw for a vertex w /∈ {a, b}
(c) edge-edge-addition: Subdivide two distinct edges by vertices v and w, respec-

tively, and add the edge vw
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(a) vertex-vertex-addition (b) edge-vertex-addition (c) edge-edge-addition

Fig. 1. BG-operations

Theorem 12 ([2,21]). A graph is 3-connected if and only if it can be constructed
from K4 using BG-operations.

Hence, applying an BG-operation on a 3-connected graphs preserves it to
be simple and 3-connected. Let a BG-sequence of a 3-connected graph G be a
sequence of BG-operations that constructs G from K4. It has been shown that
such a BG-sequence can be computed efficiently.

Theorem 13 ([17, Thms. 6.(2) and 52]). A BG-sequence of a 3-connected graph
can be computed in time O(m).

The outline of our algorithm is as follows. We start with a Mondshein sequence
of K4, which is easily obtained, and compute a BG-sequence of our 3-connected
input graph by using Theorem 13. The crucial part is now a careful analysis that
a Mondshein sequence of a 3-connected graph G can be modified to one of G′,
where G′ is obtained from G by applying a BG-operation.

This last step is the main technical contribution of this paper and depends
on the various positions in the sequence in which the vertices and edges that are
involved in the BG-operation can occur. We will prove that there is always a
modification that is local in the sense that the only long ears that are modified
are the ones containing a vertex that is involved in the BG-operation.

Lemma 14 (Path Replacement Lemma). Let G be a 3-connected graph with
an edge ru. Let D = (P0, P1, . . . , Pm−n) be a Mondshein sequence avoiding ru
of G. Let G′ be obtained from G by applying a single BG-operation Γ and let
ru′ be the edge of G′ corresponding to ru. Then a Mondshein sequence D′ of G′

avoiding ru′ can be computed from D using only constantly many constant-time
modifications.

However, the complete description of these modifications goes beyond the
scope of this extended abstract. We will therefore state precise modifications
only for the very first cases of vertex-vertex- and edge-vertex-additions and omit
everything else.

We need some notation for describing the modifications. Let vw be the edge
that was added by Γ such that, if applicable, v subdivides ab ∈ E(G) and
w subdivides cd ∈ E(G). Then the edge ru′ of G′ that corresponds to ru in
G is either ru, rv or rw. Whenever we consider the edge ab or cd, e.g. in a
statement about birth(ab), we assume that Γ subdivides ab, respectively, cd.
W.l.o.g., we further assume that birth(a) ≤ birth(b), birth(c) ≤ birth(d) and
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birth(d) ≤ birth(b). If not stated otherwise, the birth-operator refers always to
D in this section. Let S ⊆ {av, vb, vw, cw, wd} be the set of new edges in G′.

We state the detailed replacement scheme that plays a key-role in proving the
above Path Replacement Lemma.

Lemma 15. There is a Mondshein sequence D′ = (P ′
0, P ′

1, . . . , P ′
m−n+1) of G′

avoiding ru (respectively, rv or rw if Γ subdivides ru) that can be obtained from
D by performing the following four modifications:
M1) replacing the long ear Pbirth(b) with 1 ≤ i ≤ 3 consecutive long ears P ′

b1
,

P ′
b2

and P ′
b3
, each of which consists of edges in Pbirth(b) ∪ S (for notational

convenience, we assume that all three ears exist such that P ′
bj

:= P ′
bi

for
every j > i)

M2) if Pbirth(cd) is long and birth(d) < birth(b), replacing Pbirth(cd) with the
long ear P ′

cwd that is obtained from Pbirth(cd) by subdividing cd with w (in
particular, birth(cd) = birth(d) < birth(b) in this case)

M3) if Pbirth(ab) is short, deleting or replacing Pbirth(ab) with an edge in
{va, vb, vw}; if Pbirth(cd) is short, deleting or replacing Pbirth(cd) with an
edge in {wc, wd}

M4) possibly adding vw as new last ear.

In particular, D′ can be constructed from D as follows (Figure 2 determines the
new ears P ′

b1
–P ′

b3
in M1).

(1) Γ is a vertex-vertex-addition
Obtain D′ from D by adding the new ear vw at the end.

(2) Γ is an edge-vertex-addition
(a) birth(b) = birth(ab)

Let a′ and b′ be the endpoints of Pbirth(b) such that a′ is closer to a than
to b on Pbirth(b) (a′ may be a, but b′ �= b).
(i) w /∈ Gbirth(b) � birth(w) > birth(b)

Obtain D′ from D by subdividing ab ⊆ Pbirth(b) with v and adding
the new ear vw at the end.

(ii) w ∈ Gbirth(b) − Pbirth(b) � birth(w) < birth(b) and w /∈ {a′, b′}
Let Z be the path obtained from Pbirth(b) by replacing ab with
av ∪ vb. Let Z1 be the a′w-path in Z ∪ vw. Obtain D′ from D by
replacing Pbirth(b) with the two ears Z1 and Z[v, b′] in that order.

(iii) w ∈ Pbirth(b) � birth(w) = birth(b) or w ∈ {a′, b′}
Let Z be obtained from Pbirth(b) by replacing ab with av ∪ vb. Let
Z2 be the vw-path in Z (if birth(b) = 0, Z is a cycle and there
are two vw-paths; we then choose one that does not contain r as
an inner vertex). Let Z1 be obtained from Z by replacing Z2 with
the edge vw. Obtain D′ from D by replacing Pbirth(b) with the two
ears Z1 and Z2 in that order.

We omit a concise proof of the correctness of Lemma 15 and, thus, of the
Path Replacement Lemma 14. Applying Lemma 14 iteratively for each operation
in a BG-sequence gives immediately a linear-time algorithm for constructing
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Case (1) Case (2ai) Case (2aii) Case (2aiii)

Case (2bi) Case (2biiA) Case (2biiB) Case (2biiC)

Fig. 2. Cases (1) and first subcases of (2) of Lemma 15. Black vertices are endpoints
of ears that are contained in Gbirth(b). The dashed paths depict (parts of) the ears in
D′.

a Mondshein sequence, as each step can be computed in constant time. We
conclude the following theorem.

Theorem 16. Given an edge ru of a 3-connected graph G, a Mondshein se-
quence of G avoiding ru can be computed in time O(m).

We now discuss four applications where Theorem 16 leads immediately to
linear-time solutions. For three of these problems only quadratic algorithms have
been known.

5 Applications

Application 1: Independent Spanning Trees
Let k spanning trees of a graph be independent if they all have the same root
vertex r and, for every vertex x �= r, the paths from r to x in the k spanning trees
are internally disjoint (i.e., vertex-disjoint except for their endpoints). The fol-
lowing conjecture from 1988 due to Itai and Rodeh [11] has received considerable
attention in graph theory throughout the past decades.

Conjecture (Independent Spanning Tree Conjecture [11]). Every k-connected
graph contains k independent spanning trees.

The conjecture has been proven for k ≤ 2 [11], k = 3 [4,24] and k = 4 [5],
with running times O(m), O(n2) and O(n3), respectively, for computing the
corresponding independent spanning trees. For k ≥ 5, the conjecture is open.
For planar graphs, the conjecture has been proven by Huck [10].

We show how to compute three independent spanning trees in linear time,
using an idea of [4]. This improves the previous best running time by a factor
of n. It may seem tempting to compute the spanning trees directly and without



The Mondshein Sequence 975

using a Mondshein sequence, e.g. by local replacements in an induction over
BG-operations or inverse contractions. However, without additional structure it
can be proven that this is bound to fail.

Compute a Mondshein sequence avoiding ru, as described in Theorem 16.
Choose r as the common root vertex of the three spanning trees and let x �= r
be an arbitrary vertex.

First, we show how to obtain two internally disjoint paths from x to r that
are both contained in the subgraph Gbirth(x). An st-numbering π is an ordering
v1 < · · · < vn of the vertices of a graph such that s = v1, t = vn, and every other
vertex has both a higher-numbered and a lower-numbered neighbor. Let π be
consistent to a Mondshein sequence if π is an st-numbering for every graph Gi,
0 ≤ i ≤ m − n. Let t �= u be a neighbor of r in P0. A consistent tr-numbering
π can be easily computed in linear time [3]. According to π, we can start with
x and iteratively traverse to a higher-numbered and lower-numbered neighbor,
respectively, without leaving Gbirth(x). This gives two internally disjoint paths
from x to r and t; the path to t is then extended to the desired path ending at r
by appending the edge tr. The traversed edges of this procedure for every x �= r
give the first two independent spanning trees T1 and T2.

(a) A Mondshein sequence of a
non-planar 3-connected graph G.

(b) Three independent spanning trees
in G (vertex numbers depict a consis-
tent st-numbering).

Fig. 3.

We construct the third independent spanning tree. Since a Mondshein se-
quence is non-separating, we can start with any vertex x �= r, traverse to a
neighbor in Gbirth(x) and iterate this procedure until we end at u. The traversed
edges of this procedure for every x �= r form a tree that is rooted at u and that
can be extended to a spanning tree T3 that is rooted at r by adding the edge
ur. T3 is independent from T1 and T2, as, for every x �= r, the path from x to u
intersects Gbirth(x) only in x.
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Application 2: Output-Sensitive Reporting of Disjoint Paths
Given two vertices x and y of an arbitrary graph, a k-path query reports k
internally disjoint paths between x and y or outputs that these do not exist.
Di Battista, Tamassia and Vismara [8] give data structures that answer k-path
queries for k ≤ 3. A key feature of these data structures is that every k-path
query has an output-sensitive running time, i.e., a running time of O(�) if the
total length of the reported paths is � (and running time O(1) if the paths do
not exist). The preprocessing time of these data structures is O(m) for k ≤ 2
and O(n2) for k = 3.

For k = 3, Di Battista et al. show how the input graph can be restricted to be
3-connected using a standard decomposition. For every 3-connected graph we can
compute a Mondshein sequence, which allows us to compute three independent
spanning trees T1–T3 in a linear preprocessing time, as shown in Application 1.
If x or y is the root r of T1–T3, this gives a straight-forward output-sensitive
data structure that answers 3-path queries: we just store T1–T3 and extract one
path from each tree per query.

In order to extend these queries to k-path queries between arbitrary vertices
x and y, [8] gives a case distinction that shows that the desired paths can be
efficiently found in the union of the six paths in T1–T3 that join x with r and
y with r. This case distinction can be used for the desired output-sensitive re-
porting in time O(�) without changing the preprocessing. We conclude a linear
preprocessing time for all k-path queries with k ≤ 3.

Application 3: Planarity Testing
We give a conceptually very simple planarity test based on Mondshein’s sequence
for any 3-connected graph G in time O(n).

The 3-connectivity requirement is not really crucial, as the planarity of G can
be reduced to the planarity of all 3-connected components of G, which in turn are
computed as a side-product for the BG-sequence in Theorem 13; alternatively,
one can use standard algorithms [9,16] for reducing G to be 3-connected. We
compute an induced Mondshein sequence D avoiding an arbitrary edge ru in
time O(n). Let t be a neighbor of r in P0.

We start with a planar embedding M0 of P0 and assume with Observation 9
w.l.o.g. that the last vertex u will be embedded in the outer face. We will first
ignore short ears. Step by step, we attempt to augment Mi with the next long
ear Pj in D in order to construct a planar embedding Mj of Gj .

Once the current embedding Mi contains u, we have added all the vertices of G
and are done. Otherwise, u is contained in Gi, according to Definition 6.2. Then
Gi contains a path from each inner vertex of Pj to u, according to Lemma 5.
Since u is contained in the outer face of the final embedding, adding the long ear
Pj to Mi can preserve planarity only when it is embedded into the outer face
f of Mi. Thus, we only have to check that both endpoints of Pj are contained
in f (this is easy to test by maintaining the vertices of the current outer face).
If yes, we embed Pj into f . Otherwise, we output “not planar”; if desired, a
Kuratowski-subdivision can then be extracted in linear time.
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Until now we ignored short ears, but have already constructed a planar em-
bedding M ′ of a spanning subgraph of G. In order to test whether the addition
of the short ears to M ′ can make the embedding non-planar, we pass through
the construction of M ′ once more, this time adding short ears. Whenever a long
ear Pj is embedded, we test whether all short ears that join a vertex of inner(Pj)
with a vertex of Gj−1 can be embedded while preserving a planar embedding.
Note that if D is a canonical ordering of M , Gj−1 must be 2-connected and the
outer face of Gj−1 must be a cycle, according to [19, Corollary 1.3]. The last
fact allows for an easy test whether adding the short ears preserves a planar
embedding.

Application 4 (Bonus Application): The k-partitioning problem
At the time of submission, the author was pointed to the following problem.
Given vertices v1, . . . , vk of a graph G and natural numbers n1, . . . , nk with
n1 + · · · + nk = n, find a partition of V into sets V1, . . . , Vk with |Vi| = ni for
every i such that every set Vi induces a connected graph in G.

For general graphs, this problem is NP-hard even for k = 2. However, for
3-connected graphs, the 3-partitioning problem can be solved in linear time if
the input graph is planar . As suggested in [22], this problem (as well as a re-
lated extension) can be solved directly, once a non-separating ear decomposition
has been computed. For planar graphs, we can thus use the (well-established)
canonical ordering instead, which simplifies previous algorithms considerably.

More importantly, the fastest algorithm for the 3-partitioning problem in ar-
bitrary 3-connected graphs runs in time O(n2) [18]. Combining a Mondshein
sequence through with a simple assignment of the vertices on ears to V1, V2 and
V3 (as shown in [22]) gives the first O(m) algorithm for this problem.

Acknowledgments. I wish to thank Joseph Cheriyan for valuable hints and
helpfully providing a scan of his PhD-thesis, the anonymous person who drew
my attention to Lee F. Mondshein’s work, and the anonymous reviewer that
pointed me to the k-partitioning problem.
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