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Abstract. In this paper, we prove superpolynomial lower bounds for
the class of homogeneous depth 4 arithmetic circuits. We give an explicit
polynomial in VNP of degree n in n2 variables such that any homogeneous
depth 4 arithmetic circuit computing it must have size nΩ(log log n).

Our results extend the works of Nisan-Wigderson [13] (which showed
superpolynomial lower bounds for homogeneous depth 3 circuits), Gupta-
Kamath-Kayal-Saptharishi and Kayal-Saha-Saptharishi [4, 7] (which
showed superpolynomial lower bounds for homogeneous depth 4 circuits
with bounded bottom fan-in), Kumar-Saraf [9] (which showed superpoly-
nomial lower bounds for homogeneous depth 4 circuits with bounded top
fan-in) andRaz-Yehudayoff and Fournier-Limaye-Malod-Srinivasan [3,14]
(which showed superpolynomial lower bounds for multilinear depth 4 cir-
cuits). Several of these results in fact showed exponential lower bounds.

The main ingredient in our proof is a new complexity measure of
bounded support shifted partial derivatives. This measure allows us to
prove exponential lower bounds for homogeneous depth 4 circuits where
all the monomials computed at the bottom layer have bounded sup-
port (but possibly unbounded degree/fan-in), strengthening the results
of Gupta et al and Kayal et al [4, 7]. This new lower bound combined
with a careful “random restriction” procedure (that transforms general
depth 4 homogeneous circuits to depth 4 circuits with bounded support)
gives us our final result.

1 Introduction

Proving lower bounds for explicit polynomials is one of the most important
open problems in the area of algebraic complexity theory. Valiant [17] defined
the classes VP and VNP as the algebraic analog of the classes P and NP, and
showed that proving superpolynomial lower bounds for the Permanent would
suffice in separating VP from VNP. Despite the amount of attention received by
the problem, we still do not know any superpolynomial (or even quadratic) lower
bounds for general arithmetic circuits. This absence of progress on the general
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problem has led to a lot of attention on the problem of proving lower bounds
for restricted classes of arithmetic circuits. The hope is that an understanding of
restricted classes might lead to a better understanding of the nature of the more
general problem, and the techniques developed in this process could possibly be
adapted to understand general circuits better. Among the many restricted classes
of arithmetic circuits that have been studied with this motivation, bounded depth
circuits have received a lot of attention.

In a striking result, Valiant et al [18] showed that any n variate polynomial of
degree poly(n) which can be computed by a polynomial sized arithmetic circuit of
arbitrary depth can also be computed by an arithmetic circuit of depth O(log2 n)
and size poly(n). Hence, proving superpolynomial lower bounds for circuits of
depth log2 n is as hard as proving lower bounds for general arithmetic circuits. In
a series of recent works, Agrawal-Vinay [1], Koiran [8] and Tavenas [16] showed
that the depth reduction techniques of Valiant et al [18] can in fact be extended
much further. They essentially showed that in order to prove superpolynomial
lower bounds for general arithmetic circuits, it suffices to prove strong enough
lower bounds for just homogeneous depth 4 circuits. In particular, to separate
VNP from VP, it would suffice to focus our attention on proving strong enough
lower bounds for homogeneous depth 4 circuits.

The first superpolynomial lower bounds for homogeneous circuits of depth 3
were proved by Nisan and Wigderson [13]. Their main technical tool was the
use of the dimension of partial derivatives of the underlying polynomials as
a complexity measure. For many years thereafter, progress on the question of
improved lower bounds stalled. In a recent breakthrough result on this problem,
Gupta, Kamath, Kayal and Saptharishi [4] proved the first superpolynomial
(2Ω(

√
n)) lower bounds for homogeneous depth 4 circuits when the fan-in of the

product gates at the bottom level is bounded (by
√
n). This result was all the

more remarkable in light of the results by Koiran [8] and Tavenas [16] which
showed that 2ω(

√
n logn) lower bounds for this model would suffice in separating

VP from VNP. The results of Gupta et al were further improved upon by Kayal
Saha and Sapthrashi [7] who showed 2Ω(

√
n logn) lower bounds for the model

of homogeneous depth 4 circuits when the fan-in of the product gates at the
bottom level is bounded (by

√
n). Thus even a slight asymptotic improvement

in the exponent of either of these bounds would imply lower bounds for general
arithmetic circuits!

The main tool used in both the papers [4] and [7] was the notion of the
dimension of shifted partial derivatives as a complexity measure, a refinement of
the Nisan-Wigderson complexity measure of dimension of partial derivatives.

In spite of all this exciting progress on homogeneous depth 4 circuits with
bounded bottom fanin (which suggests that possibly we might be within reach of
lower bounds for much more general classes of circuits) these results give almost
no non trivial (not even super linear) lower bounds for general homogeneous
depth 4 circuits (with no bound on bottom fanin). Indeed the only lower bounds
we know for general homogeneous depth 4 circuits are the slightly superlinear
lower bounds by Raz using the notion of elusive functions [15].
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Thus nontrivial lower bounds for the class of general depth 4 homogeneous
circuits seems like a natural and basic question left open by these works, and
strong enough lower bounds for this model seems to be an important barrier to
overcome before proving lower bounds for more general classes of circuits.

In this direction, building upon the work in [4, 7], Kumar and Saraf [9, 10]
proved superpolynomial lower bounds for depth 4 circuits with unbounded bot-
tom fan-in but bounded top fan-in. For the case of multilinear depth 4 circuits,
superpolynomial lower bounds were first proved by Raz and Yehudayoff [14].
These lower bounds were recently improved in a paper by Fournier, Limaye,
Malod and Srinivasan [3]. The main technical tool in the work of Fournier et al
was the use of the technique of random restrictions before using shifted partial
derivatives as a complexity measure. By setting a large collection of variables at
random to zero, all the product gates with high bottom fan-in got set to zero.
Thus the resulting circuit had bounded bottom fanin and then known techniques
of shifted partial derivatives could be applied. This idea of random restrictions
crucially uses the multilinearity of the circuits, since in multilinear circuits high
bottom fanin means many distinct variables feeding in to a gate, and thus if a
large collection of variables is set at random to zero, then with high probability
that gate is also set to zero.

Our Results: In this paper, we prove the first superpolynomial lower bounds
for general homogeneous depth 4 circuits with no restriction on the fan-in, either
top or bottom. The main ingredient in our proof is a new complexity measure
of bounded support shifted partial derivatives. This measure allows us to prove
exponential lower bounds for homogeneous depth 4 circuits where all the mono-
mials computed at the bottom layer have only few variables (but possibly large
degree/fan-in). This exponential lower bound combined with a careful “random
restriction” procedure that allows us to transform general depth 4 homogeneous
circuits to this form gives us our final result. We now formally state our results.

Our main theorem is stated below.

Theorem 1. There is an explicit family of homogeneous polynomials of degree
n in n2 variables in VNP which requires homogeneous ΣΠΣΠ circuits of size
nΩ(log logn) to compute it.

We prove our lower bound for the family of Nisan-Wigderson polynomials
NWd which is based upon the idea of Nisan-Wigderson designs. We give the
formal definition in Section 3.

As a first step in the proof of Theorem 1, we prove an exponential lower
bound on the top fan-in of any homogeneousΣΠΣΠ circuit where every product
gate at the bottom level has at most O(log n) distinct variables feeding into it.
Let homogeneous ΣΠΣΠ{s} circuits denote the class of homogeneous ΣΠΣΠ
circuits where every product gate at the bottom level has at most s distinct
variables feeding into it (i.e. has support at most s).

Theorem 2. There exists a constant β > 0, and an explicit family of homoge-
neous polynomials of degree n in n2 variables in VNP such that any homogeneous
ΣΠΣΠ{β log n} circuit computing it must have top fan-in at least 2Ω(n).



754 M. Kumar and S. Saraf

Observe that since homogeneous ΣΠΣΠ{s} circuits are a more general class
of circuits than homogeneous ΣΠΣΠ circuits with bottom fan-in at most s,
our result strengthens the results of of Gupta et al and Kayal et al [4, 7] when
s = O(log n).

We prove Theorem 1 by applying carefully chosen random restrictions to both
the polynomial family and to any arbitrary homogeneous ΣΠΣΠ circuit and
showing that with high probability the circuit simplifies into a homogeneous
ΣΠΣΠ circuit with bounded bottom support while the polynomial (even after
the restriction) is still rich enough for Theorem 2 to hold. Our results hold over
every field.

Recent Related Work: Recently, in an independent work, superpolynomial
lower bounds for depth 4 homogeneous circuits were also shown by Limaye,
Saha and Srinivasan [12]. They proved an nΩ(logn) lower bound on the size of
homogeneous depth 4 circuits computing the Determinant of an n × n matrix.
They also achieved a similar bound for the Iterated Matrix Multiplication poly-
nomial. Their proof uses a different variation of shifted partial derivatives as
their complexity measure- instead of bounding the support of the monomials
used in the shift, they use projections to a particular set of randomly chosen
monomials after shifting. Their proof doesn’t proceed via first proving lower
bounds for homogeneous depth 4 circuits with bounded bottom support, and
thus the proof of Theorem 2 that we give here is the only proof we know of this
result (which also works over all fields - see next paragraph).

In a subsequent independent work, Kayal, Limaye, Saha and Srinivasan
[6] showed exponential lower bounds for homogeneous depth 4 circuits over the
field of real numbers. This result combines the use of “bounded support shifts”
along with the use of random projections. This proof does proceed via first prov-
ing lower bounds for depth 4 circuits for bounded bottom support, and over the
field of real numbers they are able to prove exponential lower bounds for this
model as well.

Organization of the Paper: The rest of the paper is organized as follows. In
Section 2, we provide a high level overview of the proof. In Section 3, we introduce
some notations and preliminary notions used in the paper. In Section 4, we
sketch a proof of Theorem 2. In Section 5, we describe the effects of the random
restriction procedure on the circuit and the polynomial. In Section 6, we provide
a sketch of the proof of Theorem 1. In the absence of sufficient space, we skip
some of the details. We refer the interested reader to the full version of the paper
on ECCC [10].

2 Proof Overview

Our proof is divided into two parts. In the first part we show a 2Ω(n) lower bound
for homogeneous ΣΠΣΠ circuits whose bottom support is at most O(log n). To
the best of our knowledge, even when the bottom support is 1, none of the earlier
lower bound techniques sufficed for showing nontrivial lower bounds for this
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model. Thus a new complexity measure was needed. We consider the measure of
bounded support shifted partial derivatives, a refinement of the measure of shifted
partial derivatives used in several recent works [3, 4, 7, 9, 10]. For this measure,
we show that the complexity of the NWd polynomial (an explicit polynomial
in VNP) is high whereas any subexponential sized homogeneous depth 4 circuit
with bounded bottom support has a much smaller complexity measure. Thus
for any depth 4 circuit to compute the NWd polynomial, it must be large – we
show that it must have exponential top fan-in. Thus we get an exponential lower
bound for bounded bottom support homogeneous ΣΠΣΠ circuits. We believe
this result might be of independent interest.

In the second part we show how to “reduce” anyΣΠΣΠ circuit that is not too
large to a ΣΠΣΠ circuit with bounded bottom support. This reduction basically
follows from a random restriction procedure that sets some of the variables
feeding into the circuit to zero. At the same time we ensure that when this
random restriction procedure is applied to NWd, the polynomial does not get
affected very much, and still has large complexity.

We could have set variables to zero by picking the variables to set to zero
independently at random. The problem with this approach is that we do not
know how to analyze the effect of this simple randomized procedure on NWd

1.
Thus we define a slightly more refined random restriction procedure which keeps
the NWd polynomial hard and at the same time makes the ΣΠΣΠ circuit one
of bounded bottom support. We remark that it is the choice of these random
restrictions that lead to a lower bound of nΩ(log logn) as opposed to nΩ(logn).

3 Preliminaries and Notations

Arithmetic Circuits: An arithmetic circuit over a field F and a set of variables
x1, x2, . . . , xN is an directed acyclic graph whose internal nodes are labelled by
the field operations and the leaf nodes are labelled by the variables or field
elements. The nodes with fan-out zero are called the output gates and the nodes
with fan-in zero are called the leaves. In this paper, we always assume that there
is a unique output gate in the circuit. The size of the circuit is the number
of nodes in the underlying graph and the depth of the circuit is the length of
the longest path from the root to a leaf. We call a circuit homogeneous if the
polynomial computed at every node is a homogeneous polynomial. By a ΣΠΣΠ
circuit or a depth 4 circuit, we mean a circuit of depth 4 with the top layer and the
third layer only have sum gates and the second and the bottom layer have only
product gates. In this paper, we confine ourselves to working with homogeneous
depth 4 circuits. A homogeneous polynomial P of degree n in N variables, which
is computed by a homogeneous ΣΠΣΠ circuit can be written as

P (x1, x2, . . . , xN ) =

T∑

i=1

di∏

j=1

Qi,j(x1, x2, . . . , xN ) (1)

1 This strategy was shown to work with some change in parameters and a more careful
analysis in [6] and [11].
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Here, T is the top fan-in of the circuit. Since the circuit is homogeneous, we
know that for every i ∈ {1, 2, 3, . . . , T }, ∑di

j=1 deg(Qi,j) = n. By the support of
a monomial α, we refer to the set of variables which have a positive degree in α.
In this paper, we also study the class of homogeneous ΣΠΣΠ circuits such that
for every i, j, every monomial in Qi,j has bounded support. We now formally
define this class.

Homogeneous ΣΠΣΠ{s} Circuits: A homogeneous ΣΠΣΠ circuit in Equa-
tion 1, is said to be a ΣΠΣΠ{s} circuit if every product gate at the bottom
level has support at most s. Observe that there is no restriction on the bottom
fan-in except that implied by the restriction of homogeneity.

Shifted Partial Derivatives: In this paper we use a variant of the notion
of shifted partial derivatives which was introduced in [5] and has subsequently
been the complexity measure used to to prove lower bounds for various restricted
classes of depth four circuits and formulas(for example in [3, 4, 7, 9, 10]). For a
field F, an N variate polynomial P ∈ F[x1, . . . , xN ] and a positive integer r, we
denote by ∂rP , the set of all partial derivatives of order equal to r of P . For a
polynomial P and a monomial γ, we denote by ∂γ(P ) the partial derivative of
P with respect to γ. We now reproduce the formal definition from [4].

Definition 3 (Order-r �-Shifted Partial Derivatives). For an N variate
polynomial P ∈ F[x1, x2, . . . , xN ] and positive integers r, � ≥ 0, the space of
order-r �-shifted partial derivatives of P is defined as

〈∂rP 〉� def
= F-span{

∏

i∈[N ]

xi
ji · g :

∑

i∈[N ]

ji = �, g ∈ ∂rP} (2)

In this paper, we introduce the variation of bounded support shifted partial
derivatives as a complexity measure. The basic difference is that instead of shift-
ing the partial derivatives by all monomials of degree �, we shift the partial
derivatives only by only those monomials of degree � which have support(the
number of distinct variables which have non-zero degree in the monomial) ex-
actly equal to m. We now formally define the notion of support-m degree-�
shifted partial derivatives of order-r of a polynomial, which for the rest of the
paper, we refer by (m, �, r)-shifted partial derivatives.

Definition 4 ((m, �, r)-Shifted Partial Derivatives). For an N variate poly-
nomial P ∈ F[x1, x2, . . . , xN ] and positive integers r, �,m ≥ 0, the space of
support-m degree-� shifted partial derivatives of order-r of P is defined as

〈∂rP 〉(�,m)
def
=

F-span{
∏

i∈S

xi
ji · g : S ⊆ [N ], |S| = m,

∑

i∈S

ji = �, ji ≥ 1, g ∈ ∂rP}

The following property follows from the definition above.

Lemma 5. For any two multivariate polynomials P and Q in
F[x1, x2, . . . , xN ] and any positive integers r, �,m, and scalars α and β

Dim(〈∂r(αP + βQ)〉(�,m)) ≤ Dim(〈∂rP 〉(�,m)) + Dim(〈∂rQ〉(�,m))
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For any linear or affine space V over a field F, we use Dim(V ) to represent
the dimension of V over F. We use the dimension of the space 〈∂rP 〉(�,m) which
we denote by Dim(〈∂rP 〉(�,m)) as the measure of complexity of a polynomial.

Nisan-Wigderson Polynomials: We show our lower bounds for a family of
polynomials in VNP which were used for the first time in the context of lower
bounds in [7]. The construction is based upon the intuition that over any field,
any two distinct low degree polynomials do not agree at too many points. For
the rest of this paper, we assume n to be of the form 2k for some positive integer
k. Let Fn be a field of size n. For the set of N = n2 variables {xi,j : i, j ∈ [n]}
and d < n, we define the degree n homogeneous polynomial NWd as

NWd =
∑

f(z)∈Fn[z]
deg(f)≤d−1

∏

i∈[n]

xi,f(i)

From the definition, we can observe the following properties of NWd.

1. The number of monomials in NWd is exactly nd.
2. Each of the monomials in NWd is multilinear.

3. Each monomial corresponds to evaluations of a univariate polynomial of
degree at most d− 1 at all points of Fn. Thus, any two distinct monomials
agree in at most d− 1 variables in their support.

For any S ⊆ [n] and each f ∈ Fn[z], we define the monomialmS
f =

∏
i∈S xi,f(i)

and mf =
∏

i∈[n] xi,f(i) We also define the set MS to represent the set of mono-

mials {xi1,j1 · xi2,j2 · xi3,j3 · · ·xi|S|,j|S| : i1 < i2 . . . < i|S| ∈ S and ∀t ∈ [|S|], jt ∈
[n]}. Clearly, NWd =

∑
f(z)∈Fn[z]
deg(f)≤d−1

mf .

Monomial Ordering and Distance: We also use the notion of a monomial
being an extension of another as defined below.

Definition 6. A monomial θ is said to be an extension of a monomial θ̃, if θ
divides θ̃.

In this paper, we imagine our variables to be coming from a n × n matrix
{xi,j}i,j∈[n]. We also consider the following total order on the variables. xi1,j1 >
xi2,j2 if either i1 < i2 or i1 = i2 and j1 < j2. This total order induces a lex-
icographic order on the monomials. For a polynomial P , we use the notation
Lead-Mon(P ) to indicate the leading monomial of P under this monomial order-
ing.

We use the following notion of distance between two monomials which was
also used in [2].

Definition 7 (Monomial Distance). Let m1 and m2 be two monomials over
a set of variables. Let S1 and S2 be the multiset of variables in m1 and m2

respectively, then the distance Δ(m1,m2) between m1 and m2 is the min{|S1| −
|S1 ∩ S2|, |S2| − |S1 ∩ S2|} where the cardinalities are the order of the multisets.
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In this paper, we invoke this definition only for multilinear monomials of the
same degree. In this special case, we have the following crucial observation.

Observation 8. Let α and β be two multilinear monomials of the same de-
gree which are at a distance Δ from each other. If Supp(α) and Supp(β) are
the supports of α and β respectively, then |Supp(α)| − |Supp(α) ∩ Supp(β)| =
|Supp(β)| − |Supp(α) ∩ Supp(β)| = Δ.

4 Lower Bounds for ΣΠΣΠ{O(logn)} Circuits

In this section, we sketch the outline of the proof of Theorem 2. We refer the
interested reader to the full version of the paper [10] for the complete proof. We
show an exponential lower bound on the top fan-in for homogeneous ΣΠΣΠ
circuits such that every product gate at the bottom has a bounded number of
variables feeding into it. We use the dimension of the span of (m, �, r)-shifted
partial derivatives as the complexity measure. Our lower bound holds for the
NWd polynomial. The proof has two major components. In the first part, we
obtain an upper bounded on the complexity of the circuit. Then, we obtain a
lower bound on the complexity of the NWd polynomial. Comparing the two then
implies our lower bound. The bound holds for NWd for any d = δn, where δ is
a constant such that 0 < δ < 1.

4.1 Complexity of Homogeneous Depth 4 ΣΠΣΠ{s} Circuits

Let C be a homogeneousΣΠΣΠ{s} circuit computing the NWd polynomial. We
now state an upper bound on the complexity of a product gate in such a circuit.
The proof is fairly straightforward, and we refer the reader to [10] for details.
The bound on the complexity of the circuit follows from the subadditivity of the
complexity measure.

Lemma 9. Let Q =
∏n

i=1 Qi be a product gate at the second layer from the
top in a homogeneous ΣΠΣΠ{s} circuit computing a homogeneous degree n
polynomial in N variables. For any positive integers m, r, s, � satisfying m+rs ≤
N
2 and m+ rs ≤ �

2 ,

Dim(〈∂rQ〉(�,m)) ≤ poly(nrs)

(
n+ r

r

)(
N

m+ rs

)(
�+ n− r

m+ rs

)

For a homogeneous ΣΠΣΠ circuit where each of the bottom level product
gates is of support at most s, Lemma 9 immediately implies the following upper
bound on the complexity of the circuit due to subadditivity from Lemma 5.

Corollary 10. Let C =
∑T

j=1

∏n
i=1 Qi,j be a a homogeneous ΣΠΣΠ{s} circuit

computing a homogeneous degree n polynomial in N variables. For any m, r, s, �
satisfying m+ rs ≤ N

2 and m+ rs ≤ �
2 ,

Dim(〈∂rC〉(�,m)) ≤ T × poly(nrs)

(
n+ r

r

)(
N

m+ rs

)(
�+ n− r − 1

m+ rs− 1

)
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4.2 Lower Bound on the Complexity of the NWd Polynomial

We now outline the approach to obtain a lower bound on the complexity of
the NWd polynomial. For this, we first observe that distinct partial derivatives
of the NWd polynomial are far from each other in some sense and then show
that shifting such partial derivatives gives us a lot of distinct shifted partial
derivatives. Recall that we defined the set MS to represent the set {xi1,j1 ·
xi2,j2 · xi3,j3 · · ·xi|S|,j|S| : i1 < i2 . . . < i|S| ∈ S and ∀t ∈ [|S|], jt ∈ [n]}. We start
with the following observation.

Lemma 11. For any positive integer r such that n− r > d and r < d− 1, the
set {∂α(NWd) : α ∈ M[r]} consists of |M[r]| = nr nonzero distinct polynomials.

It can be observed that for any α �= β ∈ M[r], the leading monomials of
∂α(NWd) and ∂β(NWd) are multilinear monomials of at a distance at least
n−r−d from each other. We exploit this structure in order to show that shifting
the polynomials in the set {∂α(NWd) : α ∈ M[r]} by monomials of support m
and degree � results in many linearly independent shifted partial derivatives. We
crucially use the following simple lemma.

Lemma 12. Let α and β be two distinct multilinear monomials of equal degree
such that the distance between them is Δ. Let Sα and Sβ be the set of all mono-
mials obtained by shifting α and β respectively with monomials of degree � and
support exactly m over N variables. Then |Sα ∩ Sβ| ≤

(
N−Δ
m−Δ

)(
�−1
m−1

)
.

For any monomial α and positive integers �,m, we denote by S�,m(α) the set
of all shifts of ∂αNWd by monomials of degree � and support m. More formally,

S�,m(α) = {γ · ∂α(NWd) : γ =
∏

i∈U

xi
ji , U ⊆ [N ], |U | = m,

∑

i∈U

ji = �, ji ≥ 1}

also, let
LM�,m(α) = {Lead-Mon(f) : f ∈ S�,m(α)}

An application of Lemma 12 to the NWd polynomial gives us the following
lemma.

Lemma 13. For any positive integers r, m and � such that n − r > d and
r < d − 1, let α and β be two distinct monomials in M[r]. Then |S�,m(α) ∩
S�,m(β)| ≤ (N−(n−d−r)

m−(n−d−r)

)(
�−1
m−1

)
.

We now obtain a lower bound on the dimension of the span of (m, �, r)-shifted
partial derivatives of the NWd polynomial. For this, we use the following propo-
sition from [4], the proof of which is a simple application of Gaussian elimination.

Proposition 14 ( [4]). For any field F, let P ⊆ F[z] be any finite set of poly-
nomials. Then,

Dim(F-span(P)) = |{Lead-Mon(f) : f ∈ F-span(P)}|
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Therefore, in order to lower bound Dim(〈∂rNWd〉(�,m)), it would suffice to
get a lower bound on the size of the set

⋃
α LM�,m(α), where the union is over

all monomials α of degree equal to r. To achieve this, we first obtain a lower
bound on the size of the set

⋃
α∈M[r] LM�,m(α). The bound is formally given

by the lemma below. The proof follows via an application of the principle of
inclusion-exclusion. We refer the reader to the full version of this paper [10] for
more details.

Lemma 15. Let d = δn for any constant 0 < δ < 1. Let �,m, r be positive
integers such that n − r > d, r < d − 1, m ≤ N , m = θ(N) and for φ = N

m , r

satisfies r ≤ (n−d) logφ±O(φ (n−d−r)2

N )

logn+log φ . Then,

Dim(〈∂rNWd〉(�,m)) ≥ 0.5nr

(
N

m

)(
�− 1

m− 1

)

4.3 Top Fan-in Lower Bound

Comparing the bounds in complexity given by Lemma 15 and Corollary 10 gives
us a lower bound on the top fan-in of any homogeneous ΣΠΣΠ{β logn} (for
some constant β) that computes the NWd polynomial, where d = δn for some
constant δ between 0 and 1. We formally state the result below and refer the
reader to [10] for more details.

Theorem 16. Let d = δn for any constant 0 < δ < 1. There exists a constant
β such that all homogeneous ΣΠΣΠ{β logn} circuits which compute the NWd

polynomial have top fan-in at least 2Ω(n).

5 Random Restrictions

The strategy now, is to define an appropriate random restriction procedure and
show that with a non-zero probability, all the large support product gates in the
bottom level of the circuit get set to zero while the complexity of the polynomial
remains large enough. For the lack of space we refer the reader to the full version
of the paper [10] for details. The two main statements we need in order to com-
plete the proof are enumerated below. The lemma below summarizes that any
restriction Rε(NWd) of NWd obtained as the outcome of our random restriction
procedure still remains hard with respect to ΣΠΣΠ{O(logn)} circuits.

Lemma 17. Let d = δn for any constant δ such that 0 < δ < 1. Then, there
exist constants ε, β such that any homogeneous ΣΠΣΠ{β logn} circuit computing
the Rε(NWd) polynomial for any random restriction Rε has top fan-in is at
least 2Ω(n).

The proof of the lemma is essentially the same as the proof of Theorem 16 and
we skip the details to the full version of this paper.

The following lemma summarizes that under our random restriction proce-
dure, all the product gates with large support vanish with a high probability.
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Lemma 18 (Random restriction on ΣΠΣΠ circuit). Let ε > 0 and β > 0
be constants. Then there exists ρ > 0 such that if C is a ΣΠΣΠ circuit of size
at most nρ log logn, then with probability > 9/10, all the monomials computed at
the bottom layer which have support at least β logn have some variable set to 0
by Rε.

6 Lower Bounds for NWd

In this section, we state our main theorem and give a sketch of the proof. The
proof is very similar to proof of Theorem 16 and follows via comparing the
complexities of the polynomial and the circuit after random restrictions.

Theorem 19. Let d = δn for any constant δ such that 0 < δ < 1. Any homo-
geneous ΣΠΣΠ circuit computing the NWd must have size at least nΩ(log logn).

Proof. For every value of δ, such that 0 < δ < 1, choose the parameters ε =
ε̃, β = β̃ such that Lemma 17 is true for d̃ = δn. Now, let us choose a constant
ρ = ρ̃ such that Lemma 18 holds. Now, let C be a homogeneous ΣΠΣΠ circuit
computing the NWd̃ polynomial. If the number of bottom product gates of
C was at least nρ̃log logn, then C has large size and we are done. Else, let us
now apply a random restriction Rε to the circuit. By the choice of parameters,
Lemma 18 holds and so with probability 0.9 every bottom product gate in C
with support larger than β̃ logn is set to zero. After a restriction, the circuit
computes Rε̃(NWd̃). So, now we are in the case when we have a small support
homogeneous circuit of depth four computing some random restriction of the
NWd̃ polynomial and then, by Lemma 17 above, the top fan-in of Rε̃(C) must
be at least 2Ω(n). Hence, any homogeneous ΣΠΣΠ circuit computing NWd̃

must have size at least nΩ(log logn).
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