
Light Spanners

Michael Elkin1, Ofer Neiman1,�, and Shay Solomon2,��

1 Department of Computer Science, Ben-Gurion University of the Negev,
Beer-Sheva, Israel

elkinm,neimano@cs.bgu.ac.il
2 Department of Computer Science and Applied Mathematics,

The Weizmann Institute of Science, Rehovot 76100, Israel
shay.solomon@weizmann.ac.il

Abstract. A t-spanner of a weighted undirected graph G = (V,E), is
a subgraph H such that dH(u, v) ≤ t · dG(u, v) for all u, v ∈ V . The
sparseness of the spanner can be measured by its size (the number of
edges) and weight (the sum of all edge weights), both being important
measures of the spanner’s quality – in this work we focus on the latter.

Specifically, it is shown that for any parameters k ≥ 1 and ε > 0, any
weighted graph G on n vertices admits a (2k−1) ·(1+ε)-stretch spanner
of weight at most w(MST (G)) ·Oε(kn

1/k/ log k), where w(MST (G)) is
the weight of a minimum spanning tree of G. Our result is obtained via
a novel analysis of the classic greedy algorithm, and improves previous
work by a factor of O(log k).

1 Introduction

Given a weighted connected graph G = (V,E) with n vertices and m edges,
let dG be its shortest path metric. A t-spanner H = (V,E′) is a subgraph that
preserves all distances up to a multiplicative factor t. That is, for all u, v ∈ V ,
dH(u, v) ≤ t · dG(u, v). The parameter t is called the stretch. There are several
parameters that have been studied in the literature that govern the quality of H ,
two of the most notable ones are the size of the spanner (the number of edges)
and its total weight (the sum of weights of its edges).

There is a basic tradeoff between the stretch and the size of a spanner. For
any graph on n vertices, there exists a (2k − 1)-spanner with O(n1+1/k) edges
[ADD+93]. Furthermore, there is a simple greedy algorithm for constructing such
a spanner, which we shall refer to as the greedy spanner (see Algorithm 1). The
bound on the number of edges is known to be asymptotically tight for certain
small values of k, and for all k assuming Erdős’ girth conjecture.

In this paper we focus on the weight of a spanner. Light weight spanners
are particularly useful for efficient broadcast protocols in the message-passing
model of distributed computing [ABP90,ABP91], where efficiency is measured
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with respect to both the total communication cost (corresponding to the span-
ner’s weight) and the speed of message delivery at all destinations (correspond-
ing to the spanner’s stretch). Additional applications of light weight spanners
in distributed systems include network synchronization and computing global
functions [ABP90,ABP91,Pel00]. Light weight spanners were also found use-
ful for various data gathering and dissemination tasks in overlay networks
[BKR+02,KV02], in wireless and sensor networks [SS10], for network design
[MP98,SCRS01], and routing [WCT02].

While a minimum spanning tree (MST) has the lowest weight among all pos-
sible connected spanners, its stretch can be quite large. Nevertheless, when mea-
suring the weight of a spanner, we shall compare ourselves to the weight of an

MST: The lightness of the spanner H is defined as w(H)
w(MST ) (here w(H) is the to-

tal edge weight ofH). It was shown by [ADD+93] that the lightness of the greedy
spanner is at most O(n/k), and their result was improved by [CDNS92], who
showed that for any ε > 0 the greedy (2k − 1) · (1 + ε)-spanner has Oε(n

1+1/k)
edges and lightness O(k · n1/k/ε1+1/k). A particularly interesting special case
arises when k ≈ logn. Specifically, in this case the result of [CDNS92] provides
stretch and lightness both bounded by O(log n). Another notable point on the
tradeoff curve of [CDNS92] (obtained by setting ε = logn as well) is stretch
O(log2 n) and lightness O(1).

These results of [CDNS92] remained the state-of-the-art for more than twenty
years. In particular, prior to this work it was unknown if spanners with stretch
O(log n) and lightness o(log n), or vice versa, exist. In this paper we answer this
question in the affirmative, and show in fact something stronger – spanners with
stretch and lightness both bounded by o(log n) exist. We provide a novel analysis
of the classic greedy algorithm, which improves the tradeoff of [CDNS92] by a
factor of O(log k). Specifically, we prove the following theorem.

Theorem 1. For any weighted graph G = (V,E) and parameters k ≥ 1, ε > 0,
there exists a (2k − 1) · (1 + ε)-spanner H with O(n1+1/k) edges1 and lightness
O(n1/k · (1 + k/(ε1+1/k log k))).

By substituting k ≈ logn we obtain stretch logn and lightness
O(log n/ log logn) (for fixed small ε). We also allow ε to be some large value. In
particular, setting ε = logn/ log logn yields stretch log2 n/ log logn and light-
ness O(1). Also, by substituting k = logn/ log log logn we can have both stretch
and lightness bounded by O(log n/ log log logn).

Our result shows that the potentially natural tradeoff between stretch 2k− 1
and lightnessO(k·n1/k) is not the right one. This can also be seen as an indication
that the right tradeoff is stretch (2k − 1) and lightness O(n1/k). (Note that
lightness O(n1/k) is the weighted analogue of O(n1+1/k) edges, and so it is
asymptotically tight assuming Erdős’ girth conjecture.)

1 In fact for large ε a better bound can be obtained. Specifically, it is
O(n1+1/��(2k−1)·(1+ε)�/2�).
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1.1 Proof Overview

The main idea in the analysis of the greedy algorithm by [CDNS92], is to
partition the edges of the greedy spanner to scales according to their weight,
and bound the contribution of edges in each scale separately. For each scale
they create a graph from the edges selected by the greedy algorithm to the
spanner, and argue that such a graph has high girth2 and thus few edges.
The main drawback is that when analyzing larger weight edges, this argument
ignores the smaller weight edges that were already inserted into the spanner.

We show that one indeed can use information on lower weight edges when
analyzing the contribution of higher scales. We create a different graph from
edges added to the spanner, and argue that this graph has high girth. The new
ingredient in our analysis is that we add multiple edges per spanner edge, pro-
portionally to its weight. Specifically, these new edges form a matching between
certain neighbors of the original edge’s endpoints. Intuitively, a high weight edge
enforces strong restrictions on the length of cycles containing it, so it leaves a
lot of ”room” for low weight edges in its neighborhood. The structure of the
matching enables us to exploits this room, while maintaining high girth.

Unfortunately, with our current techniques we can only use edges of weight
at most k times smaller than the weight of edges in the scale which is now under
inspection. Hence this gives an improvement of O(log k) to the lightness of the
greedy spanner. We hope that a refinement of our method, perhaps choosing the
matching more carefully, will eventually lead to an optimal lightness of O(n1/k).

1.2 Related Work

A significant amount of research attention was devoted to constructing light
and sparse spanners for Euclidean and doubling metrics. A major result is
that for any constant-dimensional Euclidean metric and any ε > 0, there ex-
ists a (1 + ε)-spanner with lightness O(1) [DHN93]. Since then there has been
a flurry of work on improving the running time and other parameters. See, e.g.,
[CDNS92,ADM+95,DES08,ES13,CLNS13], and the references therein. An im-
portant question still left open is whether the O(1) lightness bound of [DHN93]
for constant-dimensional Euclidean metrics can be extended to doubling metrics.
Such a light spanner has implications for the running time of a PTAS for the
traveling salesperson problem (TSP). Recently, [GS14] showed such a spanner
exists for snowflakes3 of doubling metrics.

Light spanners with (1+ ε) stretch have been sought for other graph families
as well, with the application to TSP in mind. It has been conjectured that graphs
excluding a fixed minor have such spanners. Currently, some of the known results
are for planar graph [ADM+95], bounded-genus graphs [Gri00], unit disk graphs
[KPX08], and bounded pathwidth graphs [GH12].

2 The girth of a graph is the minimal number of edges in a cycle.
3 For 0 ≤ α ≤ 1, an α-snowflake of a metric is obtained by taking all distances to
power α.



Light Spanners 445

A lot of research focused on constructing sparse spanners efficiently, disregard-
ing their lightness. Cohen [Coh93] devised a randomized algorithm for construct-
ing ((2k−1)·(1+ε))-spanners with O(k·n1+1/k ·(1/ε)·logn) edges. Her algorithm
requires expected O(m · n1/k · k · (1/ε) · logn)) time. Baswana and Sen [BS03]
improved Cohen’s result, and devised an algorithm that constructs (2k − 1)-
spanners with expected O(k · n1+1/k) edges, in expected O(k ·m) time. Roditty
et al. [RTZ05] derandomized this algorithm, while maintaining the same pa-
rameters (including running time). Roditty and Zwick [RZ04] devised a deter-
ministic algorithm for constructing (2k − 1)-spanners with O(n1+1/k) edges in
O(k · n2+1/k) time.

2 Preliminaries

Let G = (V,E) be a graph on n vertices with weights w : E → R+, and let dG be
the shortest path metric induced by G. For simplicity of the presentation we shall
assume that the edge weights are positive integers. (The extension of our proof
to arbitrary weights is not difficult, requiring only a few minor adjustments.)
For a subgraph H = (V ′, E′) define w(H) = w(E′) =

∑
e∈E′ w(e). A subgraph

H = (V,E′) is called a t-spanner if for all u, v ∈ V , dH(u, v) ≤ t ·dG(u, v). Define

the lightness of H as w(H)
w(MST (G)) , where MST (G) is a minimum spanning tree of

G. The girth g of a graph is the minimal number of edges in a cycle of G. The
following standard Lemma is implicit in [Bol78].

Lemma 1. Let g > 1 be an integer. A graph on n vertices and girth g has at

most O
(
n1+ 1

�(g−1)/2�
)
edges.

2.1 Greedy Algorithm

The natural greedy algorithm for constructing a spanner is described in
Algorithm 1.

Algorithm 1. Greedy(G = (V,E), t)

1. H = (V, ∅).
2. for each edge {u, v} ∈ E, in non-decreasing order of weight, do
3. if dH(u, v) > t · w(u, v) then
4. Add the edge {u, v} to E(H).
5. end if
6. end for

Note that whenever an edge e ∈ E is inserted into E(H), it cannot close a
cycle with t + 1 or less edges, because the edges other than e of such a cycle
will form a path of length at most t · w(e) (all the existing edges are not longer
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than w(e)). This argument suggests that H (viewed as an unweighted graph)
has girth t+ 2 (when t is an integer), and thus by Lemma 1

|E(H)| ≤ O
(
n1+ 1

�(t+1)/2�
)

. (1)

We observe that the greedy algorithmmust select all edges of an MST (because
when inspected they connect different connected components in H). We will
assume without loss of generality that the graph G has a unique MST, since any
ties can be broken using lexicographic rules.

Observation 2. If Z is the MST of G, then Z ⊆ H. Furthermore, each edge
in the MST does not close a cycle in H when it is inspected.

3 Proof of Main Result

Let H be the greedy spanner with parameter t = (2k− 1) · (1 + ε). Let Z be the
MST of G, and order the vertices v1, v2, . . . , vn according to the order they are
visited in some preorder traversal of Z (with some fixed arbitrary root). Since
every edge of Z is visited at most twice in such a tour,

L :=

n∑

i=2

dZ(vi−1, vi) ≤ 2w(Z) .

Let I = �logk n	. For each i ∈ [I], define Ei = {e ∈ E(H) \ E(Z) | w(e) ∈
(ki−1, ki]·L/n}. We may assume the maximum weight of an edge inH is bounded
by w(Z) (in fact w(Z)/t, as heavier edges surely will not be selected for the
spanner), so each edge in H \ Z of weight greater than L/n is included in some
Ei. The main technical theorem is the following.

Theorem 2. For each i ∈ [I] and any ε > 0,

w(Ei) ≤ O(L · (n/ki−1)1/k/ε1+1/k) .

Given this, the proof of Theorem 1 quickly follows.

Proof (Proof of Theorem 1). Using that the stretch of the spanner is t ≥ 2k− 1,
by (1) we have |E(H)| ≤ O(n1+1/k). The total weight of edges in H that have
weight at most L/n can be bounded by L/n · |E(H)| ≤ L/n · O(n1+1/k) =
O(w(MST )·n1/k). The contribution of the other (non-MST) edges to the weight
of H , using Theorem 2, is at most

I∑

i=1

O(L · (n/ki−1)1/k/ε1+1/k) ≤ O(L · n1/k/ε1+1/k)

∞∑

i=0

e−(i lnk)/k

= O(L · n1/k/ε1+1/k) · 1

1− e−(lnk)/k

= O(w(MST )) · kn1/k/(ε1+1/k ln k) .
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3.1 Proof of Theorem 2

Overview: Fix some i ∈ [I]. We shall construct a certain graph K from the edges
of Ei, and argue that this graph has high girth, and therefore few edges. The
main difference from [CDNS92] is that our construction combines into one scale
edges whose weight may differ by a factor of k (in the construction of [CDNS92]
all edges in a given scale are of the same weight, up to a factor of 2). In order to
compensate for heavy edges, the weight of the edge determines how many edges
are added to K. Specifically, if the edge {u, v} ∈ Ei has weight w · ki−1 · L/n,
we shall add (at least) �w	 edges to K that form a matching between vertices in
some neighborhoods of u and v. In this way the weight of K dominates w(Ei).
To prove that K has high girth, we shall map a cycle in K to a closed tour in H
of proportional length. The argument uses the fact that the new edges are close
to the original edge, and that a potential cycle in K cannot exploit more than
one such new edge, since these edges form a matching.

Construction of the Graph K: Let P = (p0, . . . , pL) be the unweighted path on
L + 1 vertices, created from V by placing v1, . . . , vn in this order and adding
Steiner vertices so that all consecutive distances are 1, and for all 2 ≤ j ≤ n,
dP (vj−1, vj) = dZ(vj−1, vj). In particular, p0 = v1, pL = vn, and for every
1 ≤ j < j′ ≤ n,

dP (vj , vj′) =

j′∑

h=j+1

dZ(vh−1, vh) .

Note that dP (vj , vj′) ≥ dZ(vj , vj′) ≥ dG(vj , vj′ ), and all the inequalities may
be strict. In order to be able to map edges of K back to H , we shall also add
corresponding Steiner points to the spanner H : For every Steiner point ph that
lies on P between vj−1 and vj , add a Steiner point on the path in the MST Z
that connects vj−1 to vj at distance dP (vj−1, ph) from vj−1 (unless there is a
point there already). By Observation 2 all MST edges are indeed in H , and one
can simply subdivide the appropriate edge on the MST path. Note that distances
in H do not change, as the new Steiner points have degree 2. Denote by Ĥ the
modified spanner H , i.e., H with the Steiner points.

Let a = ki−1 ·L/n be a lower bound on the weight of edges in Ei. Divide P into
s = 8L/(εa) intervals I1, . . . , Is, each of length L/s = ε

8a (by appropriate scaling,
we assume all these are integers). For j ∈ [s], the interval Ij contains the points
p(j−1)L/s, . . . , pjL/s. In each interval Ij pick an arbitrary (interior) point rj as a
representative, and let R be the set of representatives. For each representative
rj and an integer b ≥ 0 we define its neighborhood Nb(j) = {rh : |j−h| ≤ b} to
be the set of (at most) 2b+ 1 representatives that are at most b intervals away
from Ij . (Note that the size of the neighborhood Nb(j) can be smaller than 2b+1
if rj is too close to one of the endpoints of the path P .) Define an unweighted
(multi) graph K = (R,F ) in the following manner. Let e = {u, v} ∈ Ei. Assume
that u ∈ Ih and v ∈ Ij for some h, j ∈ [s]. Let b = 
w(e)/a�, and let M be
an arbitrary maximal matching between Nb(h) and Nb(j). Add all the edges of
M to F , see Figure 1. For each of the edges {q, q′} ∈ M added to F , we say
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N2(h) N2(j) 

u v rh rj z 

Fig. 1. Construction of the graph K: The oval vertices are R, the representatives. The
edge {u, v} is an edge of weight 2a selected for the spanner, and u ∈ Ij , v ∈ Ih with
representatives rj , rh. The depicted edges, that form a maximal matching between the
neighborhoods of rj and rh, are added toK. (The vertex z in N2(h) does not participate
in the matching, because rj is too close to the left endpoint of the path P .)

that the edge {u, v} is its source when q ∈ Nb(h) and q′ ∈ Nb(j), and write
S(q, q′) = (u, v). We will soon show (in Proposition 2 below) that each edge in
K has a single source.

The following observation suggests that if all the edges of K were given weight
a, then its total weight is greater than or equal to the weight of the edges in Ei.

Observation 3. |F | · a ≥ w(Ei).

Proof. Note that always |Nb(j)| ≥ b + 1, which means that we add at least
b + 1 ≥ w(e)/a edges to K for each edge e ∈ Ei. Summing over all edges
concludes the proof.

Mapping from K to Ĥ: We shall map every edge {q, q′} ∈ F to a tour T (q, q′)
in the spanner Ĥ connecting q and q′. If S(q, q′) = (u, v), then T (q, q′) consists
of the following paths:

– A path in Z connecting q to u.
– The edge {u, v}.
– A path in Z connecting v to q′.

The following proposition asserts that the length of the tour is not longer than
the weight of the source edge, up to a 1 + ε/2 factor.

Proposition 1. If an edge {q, q′} ∈ F has a source S(q, q′) = (u, v) of weight
w, then T (q, q′) is a tour in Ĥ of length at most (1 + ε/2)w.

Proof. First observe that the distance in P between any two points in intervals
Ij and Ij+b is at most (b+1)L/s. Since dP ≥ dZ we also have that the distance
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in the MST Z between two such points is bounded by (b+1)L/s. (By definition,
this holds for Steiner points as well.) Denote the representatives of u, v as rj , rh,
respectively. For b = 
w/a�, the set Nb(j) contains representatives of at most b
intervals away from Ij . As u ∈ Ij we get that dZ(q, u) ≤ (b + 1)L/s. Similarly
dZ(q

′, v) ≤ (b + 1)L/s, thus the total length of the tour is at most w + 2(b +
1)L/s = w + 2(
w

a �+ 1) ε8a ≤ (1 + ε/2)w.

Our goal is to show that K is a simple graph of girth at least 2k + 1. As a
warmup, let us first show that K does not have parallel edges.

Proposition 2. The graph K does not have parallel edges.

Proof. Seeking contradiction, assume there is an edge {q, q′} ∈ F with two
different sources {u, v}, {u′, v′} ∈ Ei. Without loss of generality assume that
{u, v} is the heavier edge of the two, with weight w. Then {q, q′} is mapped to
two tours in Ĥ connecting q, q′, whose total length, using Proposition 1, is at
most w(2 + ε). Consider the tour T̂ = u → q → u′ → v′ → q′ → v in Ĥ which
has total length at most w(2 + ε)−w = w(1 + ε). Since the Steiner points have
degree 2, they can be removed from T̂ without increasing its length, and thus
there is in H a simple path T from u to v of length at most w(1 + ε).

We claim that T must exist at the time the edge {u, v} is inspected by the
greedy algorithm. The edge {u′, v′} exists because it is lighter. The MST edges
exist since by Observation 2 they must connect different components when in-
spected, while if some of them are inserted after {u, v}, at least one of them will
close the cycle T ∪ {u, v}. As w(1 + ε) ≤ w · (2k − 1)(1 + ε), we conclude that
the edge {u, v} should not have been added to H , which is a contradiction.

Showing that K has large girth will follow similar lines, but is slightly more
involved. The difficulty arises since we added multiple edges for each edge of H ,
thus a cycle in K may be mapped to a closed tour in H that uses the same
edge e ∈ E(H) more than once. In such a case, e may not be a part of any
simple cycle contained in the closed tour, and we will not be able to derive a
contradiction from the greedy choice of e to H . 4 To rule out such a possibility,
we use the fact that the multiple edges whose source is e form a matching, and
that the weights are different by a factor of at most k.

Lemma 4. The graph K = (R,F ) has girth 2k + 1.

Proof. It will be easier to prove a stronger statement, that for any j ∈ [s] and
any r, r′ ∈ Nk(j), every path in K between r and r′ contains at least 2k+1 edges.
Once this is proven, we may use this with r = r′ to conclude that girth(K) ≥
2k + 1.

Seeking contradiction, assume that there is a path Q in K from r to r′ that
contains at most 2k edges, and take the shortest such Q (over all possible choices
of j and r, r′). Let {q, z} ∈ F be the last edge added to Q, with source S(q, z) =

4 In fact, this is the only reason our method improves the lightness by a factor of log k
rather than the desired k.
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(x, y) (so that {x, y} ∈ Ei is the heaviest among all the sources of edges in Q).
We claim that no other edge in Q has {x, y} as a source. To see this, consider a
case in which such an edge {q′, z′} ∈ F is also in Q with S(q′, z′) = (x, y). We
may assume w.l.o.g that q /∈ {r, r′} (since the path Q contains at least 2 edges),
then by definition of the graph K, there exists some j′ ∈ [s] with q, q′ ∈ Nk(j

′)
(recall that the neighborhood length b always satisfies b ≤ k by definition of Ei).
But then the sub-path of Q from q to q′ is strictly shorter than Q, and connects
two points in the same k-neighborhood. Since the edges in K with {x, y} as a
source form a matching, we get that q 
= q′, and thus this path is not of length
0. This contradicts the minimality of Q. Next, we will show that {x, y} should
not have been chosen for H , because there is a short path connecting x to y.

By Proposition 1 every edge e ∈ Q whose source S(e) = e′ has weight w(e′),
is mapped to a tour T (e) of length at most (1 + ε/2)w(e′) in Ĥ . Since w(x, y) is
the maximum weight source of all edges in Q, we conclude that the total length
of tours connecting x to r and r′ to y is at most (2k− 1) · (1+ ε/2)w(x, y). Note
that r, r′ are representatives in Nk(j), which are at most 2k intervals apart. So
their distance in the MST Z is at most 2k · εa/8 ≤ k · εw(x, y)/4. The total
length of the tour x → r → r′ → y in Ĥ is at most

(2k − 1) · (1 + ε/2)w(x, y) + k · εw(x, y)/4 ≤ (2k − 1)(1 + ε) · w(x, y) .

When the algorithm considers the edge {x, y}, all the edges of the above tour
exist in Ĥ. (This follows since they are all MST edges or lighter than w(x, y),
similarly to the argument used in Proposition 2.) We conclude that there is a
path between x and y in H of length at most (2k − 1) · (1 + ε) · w(x, y), hence
{x, y} should not have been added to E(H), which yields a contradiction.

Proof (Proof of Theorem 2). Recall that the graph K has s vertices. By
Proposition 2 it is a simple graph, and Lemma 4 suggests it has girth at least 2k+
1, thus by using Lemma 1 it has at most O(s1+1/k) edges. Using Observation 3,

w(Ei) ≤ |F | · a
≤ O(s1+1/k) · (L/n · ki−1)

=

(
8 · n
εki−1

)1+1/k

· (O(L)/n · ki−1)

≤ O(L · (n/ki−1)1/k/ε1+1/k) .

4 Weighted Girth Conjecture

The girth of a graph is defined on unweighted graphs. Here we give an extension
of the definition that generalizes to weighted graphs as well, and propose a
conjecture on the extremal graph attaining a weighted girth.

Definition 1. Let G = (V,E) be a weighted graph with weights w : E → R+,
the weighted girth of G is the minimum over all cycles C of the weight of C
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divided by its heaviest edge, that is

min
C cycle in G

{
w(C)

maxe∈C w(e)

}

.

Note that this matches the standard definition of girth for unweighted graphs.

Recall that the lightness of G is w(G)
w(MST ) . For a given weighted girth value g and

cardinality n, we ask what is the graph on n vertices with weighted girth g that
maximizes the lightness?

Conjecture 1. For any integer g ≥ 3, among all graphs with n vertices and
weighted girth g, the maximal lightness is attained for an unweighted graph.

Recall that Erdős’ girth conjecture asserts that there exists an (unweighted)
graph with girth g > 2k and Ω(n1+1/k) edges, that is, its lightness is Ω(n1/k).
Observe that any graph of weighted girth larger than 2k + ε(2k − 1) can be
thought of as the output of Algorithm 1 with parameter t = (2k − 1) · (1 + ε).
In particular, Theorem 1 implies that its lightness is at most Oε(kn

1/k/ log k).
Thus (up to the term of ε(2k−1) in the girth), there exists an unweighted graph
which is at most O(k/ log k) = O(g/ log g) lighter than the heaviest weighted
graph.

The intuition behind this conjecture follows from our method of replacing
high weight edges by many low weight edges. We believe that such replacement
should hold when performed on all possible scales simultaneously. An immediate
corollary of Conjecture 1, is that the lightness of a greedy (2k− 1)-spanner of a
weighted graph on n vertices is bounded by O(n1/k). To see why this is true, note
that the spanner’s weighted girth must be strictly larger than 2k, and O(n1/k) is
a bound on the lightness of an unweighted graph on n vertices with girth 2k+1.
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