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Abstract. We investigate a simple class of multi-prover interactive proof
systems (classical non-local games), called binary constraint system (BCS)
games, and characterize those that admit a perfect entangled strategy (i.e.,
a strategy with value 1 when the provers can use shared entanglement).
Our characterization is in terms of a system of matrix equations. One ap-
plication of this characterization is that, combined with a recent result
of Arkhipov, it leads to a simple algorithm for determining whether cer-
tain restricted BCS games have a perfect entangled strategy, and, for the
instances that do not, for bounding their value strictly below 1. An open
question is whether, for the case of general BCS games, making this deter-
mination is computationally decidable. Our characterization might play a
useful role in the resolution of this question.
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1 Introduction

Constraint systems and various two-player non-local games associated with them
have played an important role in computational complexity theory (probabilistic
interactive proof systems [7,5,12,4] and the hardness of approximation [12]) as
well as quantum information (pertaining to the power of entanglement [6,8,18,9]).

We investigate the computational complexity of determining the value of a
game given its description. Quantumly (when the players are allowed to pos-
sess any entangled state at the beginning), it is not even currently known that
the problem is computable. This is the current state of affairs even for gapped
versions of the problem, where ε > 0 and the goal is to distinguish between
these cases: (a) the existence of a perfect strategy (i.e., with value 1); and (b)
all strategies have value ≤ 1 − ε. We refer to [9] for a detailed introduction to
quantum non-local games and quantum strategies.

For a very special class of non-local games, called XOR games, a charac-
terization in terms of semidefinite programs exists that makes the problem of
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approximating their value tractable (see [9] and references therein). Also, an
XOR game has a perfect quantum strategy if and only if it has a perfect classi-
cal strategy—which can be characterized by a linear system of equations. Thus,
it is easy to determine whether or not an XOR game has a perfect entangled
strategy.

We consider a generalization of XOR games known as binary constraint system
(BCS) games. For such games, even determining the existence of a perfect strat-
egy is not currently known to be computable. We characterize perfect strategies
for BCS games in terms of solutions to certain systems of equations in which
the variables are binary observables (involutory matrices). The known entangled
strategies for BCS games have been based on such binary observables, and our
main result is to shows that any perfect strategy for any BCS game must be
based on such binary observables.

A parity BCS game is a BCS game where the constraints can be expressed
as parities of variables. Recently, Arkhipov [3] gave an elegant algorithm for de-
termining if a certain restricted type of parity BCS game (where every variable
appears in at most two constraints) has a perfect entangled strategy. Arkhipov’s
methodology uses our characterization in that it assumes that any perfect entan-
gled strategy is based on binary observables. The methodology in [3] apparently
does not generalize to unrestricted parity BCS games (without the above re-
striction). The problem determining whether a parity BCS game has a perfect
entangled strategy is not currently known to be computable.

We also give a method that upper bounds the value of BCS games strictly
below 1 in certain cases of interest (but we do not know how to do this in
general).

1.1 Binary Constraint System Games

A binary constraint system (BCS) consists of n binary variables, v1, v2, . . . , vn,
and m constraints, c1, c2, . . . , cm, where each cj is a binary-valued function of a
subset of the variables. For convenience, we may write the constraints as equa-
tions. An example of a BCS (with n = 9 and m = 6) is

v1 ⊕ v2 ⊕ v3 = 0 v1 ⊕ v4 ⊕ v7 = 0

v4 ⊕ v5 ⊕ v6 = 0 v2 ⊕ v5 ⊕ v8 = 0 (1)

v7 ⊕ v8 ⊕ v9 = 0 v3 ⊕ v6 ⊕ v9 = 1

(this BCS is related to the version of Bell’s theorem introduced by Mermin
[14], that is discussed further in the next section). If, as in this example, all
the constraints are functions of the parity of a subset of variables we call the
system a parity BCS. A BCS is satisfiable if there exists a truth assignment to
the variables that satisfies every constraint. The above example is easily seen to
be unsatisfiable (since summing all the equations modulo 2 yields 0 = 1).

We can associate a two-player non-local game with each BCS that proceeds
as follows. There are two cooperating players, Alice and Bob, who cannot com-
municate with each other once the protocol starts, and a verifier. The verifier
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randomly (uniformly) selects one constraint cs and one variable xt from cs. The
verifier sends s to Alice and t to Bob. Alice returns a truth assignment to all
variables in cs and Bob returns a truth assignment to variable xt. The verifier
accepts the answer if and only if:

1. Alice’s truth assignment satisfies the constraint cs;
2. Bob’s truth assignment for xt is consistent with Alice’s.

Strategies where Alice and Bob employ no entanglement are called classical.
Strategies where they employ entanglement are called quantum (or entangled).
A strategy is perfect if it always succeeds.

It is not too hard to see that there exists a perfect classical strategy for a BCS
game if and only if the underlying BCS is satisfiable. It is interesting that there
exist perfect entangled strategies for BCS games for some unsatisfiable BCSs.

1.2 Mermin’s Quantum Strategies

Mermin [14,15] made a remarkable discovery about sets of observables with cer-
tain properties that has consequences for quantum strategies for BCS games1

that are unsatisfiable—in particular the following two games. The left side of
Fig. 1 summarizes the BCS specified by the aforementioned system of equa-
tions (1). We refer to this BCS as the magic square. Similarly, the right side of
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Fig. 1. Structure of two BCSs: (a) magic square (left) and (b) magic pentagram (right).
Each straight line indicates a parity constraint on its variables of 0 for single lines, and
1 for double lines.

Fig. 1 summarizes another BCS consisting of ten variables and five constraints,
where each constraint is related to the parity of four variables. We refer to this
BCS as the magic pentagram.

1 Mermin’s original paper was written in the language of no-hidden-variables theorems,
along the lines of the Kochen Specker Theorem; however, it discusses implications
regarding Bell inequality violations, and these can be interpreted as non-local games
where quantum strategies exist that outperform classical strategies. The connection
is made more explicit by Aravind [1,2].
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To understand Mermin’s strategies, we first define a quantum satisfying as-
signment of a BCS as a relaxation of a classical satisfying assignment, in the
following manner. First translate each {0, 1}-variable vj into a {+1,−1}-variable
Vj = (−1)vj . Then the parity of any sequence of variables is their product—and,
in fact, every boolean function can be uniquely represented as a multilinear
polynomial over R (e.g., for the binary OR-function (in {+1,−1} domain), the
polynomial is (V1V2 + V1 + V2 − 1)/2). Now we can define a quantum satis-
fying assignment as an assignment of finite-dimensional Hermitian operators
A1, A2, . . . , An to the variables V1, V2, . . . , Vn (respectively) such that:

(a) Each Aj is a binary observable in that its eigenvalues are in {+1,−1} (i.e.,
A2

j = I).
(b) All pairs of observables, Ai, Aj , that appear within the same constraint are

commuting (i.e., they satisfy AiAj = AjAi).
(c) The observables satisfy each constraint cs : {+1,−1}k → {+1,−1} that

acts on variables Vi1 , . . . , Vik , in the sense that the multilinear polynomial
equation cs(Ai1 , . . . , Aik) = −I is satisfied (since cs is arbitrary, we can
assume right hand side of the polynomial to be −1).

This is a relaxation of the standard “classical” notion of a satisfying assign-
ment (which corresponds to the case of one-dimensional observables). Quantum
satisfying assignments for the two BCSs in Figure 1 are shown in Figure 2.
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Fig. 2. Quantum satisfying assignments for: (a) magic square (left) and (b) magic
pentagram (right). (X, Y , and Z are the usual 2×2 Pauli matrices, and juxtaposition
means tensor product.)

There is a construction (implicit in [14] and explicit in [2] for the magic square)
that converts these quantum satisfying assignments into perfect strategies—and
this is easily extendable to any quantum satisfying assignment of a BCS. For
completeness, we summarize the known construction. The entanglement is of
the form |ψ〉 = 1√

d

∑d
j=1 |j〉|j〉, where d is the dimension of the observables.

Alice associates observables A1, A2, . . . , An with the variables and Bob associates
their transposes AT

1 , A
T
2 , . . . , A

T
n (with respect to the computational basis) with

the variables. On input s, Alice measures her observables that correspond to
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the variables in constraint cs. At this point, it should be noted that this is
a well-defined measurement since condition (b) implies that these observables
are mutually commuting. Also, on input t, Bob measures his observable AT

t .
Condition (c) implies that Alice’s output satisfies the constraint. Finally, Alice
and Bob give consistent values for variable vt because 〈ψ|At ⊗ AT

t |ψ〉 = 〈ψ|At ·
At ⊗ I|ψ〉 = 〈ψ|ψ〉 = 1. The first equality follows from the fact that for the
maximally entangled |ψ〉, B ⊗AT |ψ〉 = B ·A⊗ I|ψ〉.

1.3 General BCS Games

A natural computational problem is: given a description of a BCS as input, deter-
mine whether or not it has a perfect entangled strategy. A more general problem
is to compute the maximum (or supremum) value of all entangled strategies.

For classical strategies, the problem of determining whether or not a perfect
strategy exists is the same as finding out whether the underlying constraint
system is feasible or not. It is NP-hard for general BCS games and in polynomial
time for parity BCS games (where the problem reduces to solving a system
of linear equations in modulo 2 arithmetic). For quantum strategies, we are
currently not aware of any algorithm that determines whether or not an arbitrary
parity BCS game has a perfect strategy (i.e., presently we do not even know that
the problem is decidable).

In Section 2, we prove a converse to the construction of entangled strategies
from quantum satisfying assignments in Section 1.2. Namely, we show that any
perfect quantum strategy that uses countable-dimensional entanglement implies
the existence of a quantum satisfying assignment.

It can be easily seen that not all BCS games have perfect quantum strategies,
by this example

v1 ⊕ v2 = 0 v1 ⊕ v2 = 1. (2)

First note that no generality is lost if we assume that Alice returns only a value
for v1 (since the value of v2 is then uniquely determined by the constraint).
The only case when they need to output different bits is when Alice is asked the
second constraint and Bob is asked the second variable. Labelling the constraints
as {0, 1} for Alice and variables as {0, 1} for Bob, it is not hard to see that such
a game is equivalent to the so-called CHSH game [8], which is known to admit
no perfect quantum strategy [18] (even though the quantum success probability
is higher than the classical success probability [8]). In Section 3, we show how
to derive upper bounds strictly below 1 on the entangled value of many parity
BCSs.

2 Characterization of Perfect Strategies by Observables

Theorem 1. For any binary constraint system, if there exists a perfect quantum
strategy for the corresponding BCS game that uses finite or countably-infinite
dimensional entanglement, then it has a quantum satisfying assignment.
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Proof. We start with an arbitrary binary constraint system that has variables
v1, v2, . . . , vn and constraints c1, c2, . . . , cm. Assume that there is a perfect en-
tangled protocol for this system that uses entanglement

|ψ〉 =
l∑

i=1

αi|φi〉|ψi〉, (3)

where {|φ1〉, . . . , |φl〉} and {|ψ1〉, . . . , |ψl〉} are orthonormal sets, α1, . . . , αl > 0,

and
∑l

i=1 |αi|2 = 1. Here l is the Schmidt rank of the shared state—which can
be set to ∞ to indicate a countably infinite set.

We consider two separate cases for Alice’s strategy. In the first case, she applies
an arbitrary projective measurement to the first register of |ψ〉. In the second
case, Alice can apply an arbitrary POVM measurement to the first register of
|ψ〉. For the definition and differences between these two measurements, we refer
the reader to [16].

We will prove that quantum satisfying assignment exists in the first case. Then
we will show that the second case can be reduced to first one, hence proving the
theorem.

Case 1: Projective Measurements for Alice. For each s ∈ {1, 2, . . . ,m},
let cs be a constraint consisting of rs variables. Therefore, the set of outcomes
for Alice is {0, 1}rs. These can be associated with orthogonal projectors Πs

a

(a ∈ {0, 1}rs). From these projectors, we can define the rs individual bits of the
outcome as the binary observables

A(j)
s =

∑

a∈{0,1}rs

(−1)ajΠs
a, (4)

for j ∈ {1, . . . , rs} (Here we adopt the notation that observable A
(j)
s corresponds

to the variable in position j of constraint s). It is easy to check that {A(j)
s :

j ∈ {1, . . . , rs}} is a set of commuting binary observables. We have defined a
binary observable for Alice for each variable in the context of each constraint
that includes it. For example, in the case of the magic square (Eqns. (1)), there

is a binary observable A
(1)
3 for v7 in the context of the third constraint and a

binary observable A
(3)
4 for v7 in the context of the fourth constraint. We have

not yet shown that A
(1)
3 = A

(3)
4 (constraint independent).

The measurements for Bob are (without loss of generality) binary observables
Bt for each variable vt (t ∈ {1, 2, . . . , n}).

We need to show that the observables for Alice are the same, regardless of
the constraint that they arise from (for example, for the magic square game,

A
(1)
3 = A

(3)
4 ). We shall use the following lemma.

Lemma 1. Let −I 
 C1, C2, B 
 I be Hermitian matrices on some Hilbert
space H. Let |ψ〉 ∈ H ⊗H be of the form

|ψ〉 =
l∑

i=1

αi|φi〉|ψi〉, (5)
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where {|φ1〉, |φ2〉, . . . , |φl〉} and {|ψ1〉, |ψ2〉, . . . , |ψl〉} are orthonormal bases for

H, α1, α2, . . . , αl > 0, and
∑l

i=1 |αi|2 = 1. Then, for the Hermitian matrices
{B,C1, C2}, if 〈ψ|B ⊗ C1|ψ〉 = 〈ψ|B ⊗ C2|ψ〉 = 1 then C1 = C2.

Proof (Lemma 1). Consider the vectors w = B ⊗ I|ψ〉, u1 = I ⊗ C1|ψ〉, and
u2 = I ⊗ C2|ψ〉. These are vectors with length at most 1 and we have w · u1 =
w · u2 = 1, which implies that u1 = w = u2. Therefore,

0 = I ⊗ C1|ψ〉 − I ⊗ C2|ψ〉 (6)

= (I ⊗ (C1 − C2))

(
l∑

i=1

αi|φi〉|ψi〉
)

(7)

=

l∑

i=1

αi|φi〉(C1 − C2)|ψi〉, (8)

which implies that (C1 − C2)|φi〉 = 0, for all i ∈ {1, 2, . . .}. This implies that
C1 = C2, which completes the proof of the lemma. ��

Returning to the proof of Theorem 1, let t ∈ {1, 2, . . . , n} and A
(j)
s and A

(j′)
s′

be any two observables of Alice corresponding to the same variable vt. Since
Alice’s binary observables associated with constraint cs are commuting, we can

assume that Alice begins her measurement process by measuring A
(j)
s , while Bob

measures Bt. Since these two measurements must yield the same outcome, we

have 〈ψ|A(j)
s ⊗ Bt|ψ〉 = 1. Similarly, 〈ψ|A(j′)

s′ ⊗ Bt|ψ〉 = 1. Therefore, applying

Lemma 1, we have A
(j)
s = A

(j′)
s′ , which establishes that Alice’s observables are

constraint independent.
In addition to consistency between Alice and Bob, Alice’s output bits must

satisfy the constraint cs (recall that cs can be expressed as a multilinear poly-
nomial over R). That is,

〈ψ|cs(A(1)
s , . . . , A(rs)

s )⊗ I|ψ〉 = −1. (9)

By invoking Lemma 1 again, with C1 = −cs(A
(1)
s , . . . , A

(rs)
s ), C2 = I, B = I, we

can deduce that cs(A
(1)
s , . . . , A

(rs)
s ) = −I.

At this point, it is convenient to rename Alice’s observables to At, for each
t ∈ {1, 2, . . . , n} (which we can do because we proved they are constraint inde-
pendent). The observables associated with each constraint commute and their
product has the required parity.

We will finally prove that a finite-dimensional set of observables must exist.
If l is finite then there is nothing to prove, so assume it is countably infinite.
Since, for all t ∈ {1, 2, . . . , n}, 〈ψ|At ⊗ Bt|ψ〉 = 〈ψ (At ⊗ I) | (I ⊗Bt)ψ〉 = 1, we
have At ⊗ I|ψ〉 = I ⊗Bt|ψ〉, so

∞∑

i=1

αi (At|φi〉) |ψi〉 =
∞∑

i=1

αi|φi〉 (Bt|ψi〉) . (10)
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Both sides of Eq. (10) are Schmidt decompositions of the same quantum state.
Now we can use the fact that the Schmidt decomposition is unique up to a
change of basis for the subspace associated with each distinct Schmidt co-
efficient. Consider any Schmidt coefficient with multiplicity d (each Schmidt
coefficient appears with finite multiplicity because

∑∞
i=1 |αi|2 = 1). Suppose,

without loss of generality, that α1 = α2 = · · · = αd = α. Then the span of
{At|φi〉 : i ∈ {1, 2, . . . , d}} equals the span of {|φi〉 : i ∈ {1, 2, . . . , d}}. In other
words, At leaves the subspace spanned by {|φi〉 : i ∈ {1, 2, . . . , d}} fixed. By sim-
ilar reasoning, Bt leaves the subspace spanned by {|ψi〉 : i ∈ {1, 2, . . . , d}} fixed.
Therefore, there exist bases in which At and Bt have block decompositions of
the form

At =

⎛

⎜
⎜
⎜
⎝

A′
t 0 0 . . .
0 A′′

t 0 . . .
0 0 A′′′

t . . .
...

...
...

. . .

⎞

⎟
⎟
⎟
⎠

Bt =

⎛

⎜
⎜
⎜
⎝

B′
t 0 0 . . .
0 B′′

t 0 . . .
0 0 B′′′

t . . .
...

...
...

. . .

⎞

⎟
⎟
⎟
⎠

(11)

with one block for the subspace of each Schmidt coefficient. We can take, say,
the d-dimensional observables from the first block {A′

t : t ∈ {1, 2, . . . , n}} as a
quantum satisfying assignment (which changes the effective entanglement to a
d-dimensional maximally entangled state).

Case 2: POVM Measurements for Alice. A POVM measurement can be
expressed as a projective measurement in a larger Hilbert space that includes
ancillary qubits, as shown in Figure 3. Again we can define binary observables
for jth variable in a constraint s as in Case 1.

A
(1)
s A

(2)
s

· · ·

A
(rs)
s

input
state

· · ·
· · ·

|0〉 · · ·
|0〉 · · ·
|0〉 · · ·

Fig. 3. Alice’s POVM measurement on receiving input s expressed in Stinespring form
(Case 2)

A(j)
s =

∑

a∈{0,1}rs

(−1)ajΠa, (12)

these observables act on the larger Hilbert space Hs ⊗ Hp. Here Hs (Hp) rep-
resents the Hilbert space for the entangled (private) qubits. Like before, the
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{A(j)
s : j ∈ {1, . . . , rs}} is a set of commuting binary observables. Since these ob-

servables commute, without loss of generality, any of the corresponding variables
can be measured first by Alice.

We will focus on the first measurement done by Alice given some constraint.
Let us suppress the superscript and subscript for brevity of notation. Say, Alice
uses observable A for the first measurement corresponding to variable t. This
defines a projective measurement (Π0 = A+I

2 , Π1 = I−A
2 ) on Hs ⊗Hp.

Suppose that the reduced entangled state on Alice’s side is ρ. Then Alice’s
strategy is to apply the channel which adds the ancilla qubits to ρ and then
applies the measurement (Π0, Π1). Using the Kraus operators of this channel,
we can come up with equivalent POVM elements E0, E1 acting on the Hilbert
space Hs. Here equivalent means, for all i ∈ {0, 1} and |φ〉 ∈ Hs,

〈φ, 00 . . . 0|Πi|φ, 00 . . . 0〉 = 〈φ|Ei|φ〉. (13)

Similarly, Bob has POVM elements (F0, F1) to measure variable t. Since their
strategy is perfect, they always answer with same bit when asked for the variable
t, which implies

〈ψ|E0 ⊗ F0|ψ〉+ 〈ψ|E1 ⊗ F1|ψ〉 = 1. (14)

This can be simplified to

〈ψ|(E0 − E1)⊗ (F0 − F1)|ψ〉 = 1. (15)

Now we use the following lemma to prove that (E0, E1) is actually a projective
measurement (similarly (F0, F1) is projective).

Lemma 2. Let |ψ〉 ∈ HA ⊗ HB be such that |ψ〉 =
∑n

i=1 αi|φi〉|ψi〉, where
α1, α2, . . . , αn > 0. If we have two POVM measurements, (E0, E1) on HA and
(F0, F1) on HB, such that

〈ψ|(E0 − E1)⊗ (F0 − F1)|ψ〉 = 1 (16)

then (E0, E1) and (F0, F1) are projective measurements.

Proof (Lemma 2). We will prove that (E0, E1) is a projective measurement. The
proof for (F0, F1) is the same.

Notice that E0 and E1 are simultaneously diagonalizable (they are both Her-
mitian and E0 + E1 = I). The dimension of the system is n which can be
set to ∞ to indicate that it is countably infinite. In the basis which diagonalizes
them,

E0 =

⎛

⎜
⎜
⎜
⎝

λ1

λ2

. . .

λn

⎞

⎟
⎟
⎟
⎠

and E1 =

⎛

⎜
⎜
⎜
⎝

1− λ1

1− λ2

. . .

1− λn

⎞

⎟
⎟
⎟
⎠

.

This implies that E0 and E1 can be thought of as a probability distribution on
2n projective measurements in the following way. For each S ⊆ [n], define the
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projectors ΠS
0 =

∑
i∈S |i〉〈i| and ΠS

1 = I−ΠS
0 , and pS =

∏

i∈S

λi

∏

i/∈S

(1−λi). Note

that
∑

S⊆[n]

pS = 1. It is straightforward to verify that

E0 =
∑

S⊆[n]

pSΠ
S
0 and E1 =

∑

S⊆[n]

pSΠ
S
1 . (17)

By Eqns. (16), (17), and linearity,

∑

S⊆[n]

pS 〈ψ|(ΠS
0 −ΠS

1 )⊗ (F0 − F1)|ψ〉 = 1. (18)

In the above equation, pS ’s sum up to 1, and the term multiplied to them is
at most 1. By an averaging argument, for all S with pS > 0,

〈ψ|(ΠS
0 −ΠS

1 )⊗ (F0 − F1)|ψ〉 = 1. (19)

Using Lemma 1, the (ΠS
0 − ΠS

1 ) have to be same for all S with pS > 0.
Hence, there can be at most one pS with non-zero probability. Hence (E0, E1)
is a projective measurement.

��

Now we know that (E0, E1) is a projective measurement. Also, using Eq. (13),
any eigenvector |φ〉 of Ei can be converted into an eigenvector |φ, 00 · · · 0〉 for
Πi with same eigenvalue. Then, in the basis where eigenvectors of the form
|φ, 00 · · · 0〉 are listed first,

Π0 =

⎛

⎜
⎜
⎜
⎝

E0 0 · · · 0
0
...
0

M0

⎞

⎟
⎟
⎟
⎠

and Π1 =

⎛

⎜
⎜
⎜
⎝

E1 0 · · · 0
0
...
0

M1

⎞

⎟
⎟
⎟
⎠

. (20)

It is given that the observablesΠ0−Π1 corresponding to different variables in
the same context commute. It follows that the observables E0−E1 corresponding
to different variables in the same context also commute. Hence the proof for
Case 2 follows from Case 1.

��

From the argument at the end of the first case, it follows that if we have a
perfect strategy using countably infinite entanglement then it can be converted
into a strategy having finite entanglement. The generic conversion (Sec. 1.2) of
quantum satisfying assignments to a quantum strategy uses maximally entangled
state. Hence Theorem 1 shows that if there is a perfect strategy for a BCS game
then there exist a perfect strategy which uses maximally entangled state.
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3 Proving Gaps on the Maximum Success Probability

Due to space constraints, the content of this section is omitted; however, it
is available in the full version of this paper [10], which can be accessed at
http://arxiv.org/abs/1209.2729.

The main result in this section is an upper bound below 1 on the entangled
value of some BCS games of interest, under the assumption that the entangle-
ment is a maximally mixed state (of arbitrarily high dimension).

4 Related Work

After the results of this article were made public, Arkhipov [3] studied the re-
stricted case of parity BCS games where every variable appears in at most two
constraints. He showed that these games have a perfect entangled strategy if and
only if a related dual graph of the game is non-planar. The result combines ele-
gant techniques with Kuratowski’s theorem and our characterization of perfect
strategies (in the sense that [3] makes use of our characterization).

More recently, Ji [13] showed that interesting examples like quantum chro-
matic number and Kochen-Specker sets can be described in the BCS game frame-
work. He used special gadgets, called commutativity gadgets, to show reductions
between various BCS’s which preserve satisfiability using quantum assignments.
Also, he showed that, for all k, there exists a parity BCS game which requires
at least k entangled qubits to play perfectly.

5 Open Questions

There are many questions left open by this work. We have a characterization
of perfect strategies for BCS games. It shows that there always exists a perfect
strategy using maximal entanglement if a perfect entangled strategy exist. Still,
given a game, deciding whether it has a perfect strategy is open.

There are questions pertaining to the optimal values of BCS games (the maxi-
mum success probability achievable), such as problem of computing these values,
or approximations of them. Another question is whether there always exists an
optimal strategy for a BCS game which uses maximally entangled states.

All of the above questions can be asked for general non-local games too. For the
case of XOR games, the optimal value is given by a semidefinite program [9,18].
This shows how to compute the optimal value of the game and that there always
exist an optimal strategy which uses maximally entangled states [9]. It is also
known for graph coloring games (like BCS games) that there always exists a
perfect strategy using maximal entanglement (if a perfect entangled strategy
exist) [11]. But whether this is true for general games that have perfect strategies
remains open.
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