
Internal DLA: Efficient Simulation of a Physical

Growth Model

(Extended Abstract)

Karl Bringmann1, Fabian Kuhn2, Konstantinos Panagiotou3,
Ueli Peter4, and Henning Thomas4

1 Max Planck Institute for Informatics, Saarbrücken, Germany
2 Department of Computer Science, University of Freiburg, Germany

3 Department of Mathematics, LMU München, Germany
4 Institute of Theoretical Computer Science, ETH Zurich, Zürich, Switzerland

Abstract. The internal diffusion limited aggregation (IDLA) process
places n particles on the two dimensional integer grid. The first particle
is placed on the origin; every subsequent particle starts at the origin
and performs an unbiased random walk until it reaches an unoccupied
position.

In this work we study the computational complexity of determining
the subset that is generated after n particles have been placed. We de-
velop the first algorithm that provably outperforms the naive step-by-
step simulation of all particles. Particularly, our algorithm has a running
time of O(n log2 n) and a sublinear space requirement of O(n1/2 log n),
both in expectation and with high probability. In contrast to some
speedups proposed for similar models in the physics community, our
algorithm samples from the exact distribution.

To simulate a single particle fast we have to develop techniques for
combining multiple steps of a random walk to large jumps without hitting
a forbidden set of grid points. These techniques might be of independent
interest for speeding up other problems based on random walks.

1 Introduction

Internal diffusion limited aggregation (IDLA) is a random process that places n
particles on the two-dimensional integer grid Z

2. Let A(i) ⊂ Z
2 denote the set

of occupied grid points after placing i particles. The first particle is placed on
the origin, i.e., A(1) = {(0, 0)}. From there on, A(i+1) is constructed from A(i)
by adding the first grid point in Z

2 \A(i) that is reached by a random walk on
Z
2 starting at the origin.
Particle diffusion processes are of considerable significance in various branches

of science. In fact, the IDLA process was introduced by Meakin and Deutch [8],
who used it as a model to describe the dynamics of certain chemical and phys-
ical processes like corrosion or the melting of a solid around a source of heat.
Since then, the study of the typical properties of A(n), and most prominently

J. Esparza et al. (Eds.): ICALP 2014, Part I, LNCS 8572, pp. 247–258, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

248 K. Bringmann et al.

its “shape,” has been the topic of many works. In particular, numerical simula-
tions in [8] indicated that the surface of A(n) is typically extremely smooth such
that the fluctuations from a perfect circle are only of logarithmic order. Proving
this rigorously turned out to be a difficult and challenging mathematical prob-
lem, which was resolved only recently, after many attempts by several different
authors (see e.g. [3,7,2,1]), by Jerison, Levine and Sheffield [6].

In the present paper, we try to understand IDLA from a computational per-
spective by giving an efficient algorithm for determining the set A(n). This line
of research is driven by the pursuit to get efficient algorithmic tools for coping
with random walks and by the wish to speed up models from physics, so that one
may perform larger experiments. Moreover, understanding such models from a
computational perspective might add to their understanding in general.

Using the aforementioned results it is easy to see that a direct simulation
of every individual step for determining A(n) is likely to require a total time
of Ω(n2), i.e., time Ω(n) per particle. Indeed, since A(n) typically resembles a
perfect circle, it has a radius of order n1/2. Moreover, the random walk of a
particle can be viewed as a combination of two independent one-dimensional
random walks, one along the horizontal and one along the vertical axis. Thus,
if a particle is placed initially at the origin, one of these two random walks has
to travel a distance of order n1/2 in some direction in order to escape A(n). A
quadratic running time then follows immediately from the well-known fact that
a one-dimensional random walk of length � in expectation only deviates Θ(�1/2)
hops from its initial position.

The computational complexity of determining A(n) was studied by Moore and
Machta [9]. Among other results they showed that the simulation of IDLA (given
a string of random bits) is complete for the class CC (even in the case of one
particle), which is the subset of P characterized by circuits that are composed of
comparator gates only. Moreover in [4], Friedrich and Levine give an algorithm
that samples A(n). They do not provide an analysis of the complexity (and it
seems a quite difficult task to do so), but their experiments indicate that it scales
like O(n3/2), while they inherently use space Ω(n).

In this paper we develop a time and space-efficient algorithm for determining
the set A(n). We present the first algorithm that provably improves upon the
“naive” step-by-step simulation of the particles.

Theorem 1. IDLA can be simulated in O(n log2 n) time and O(n1/2 logn)
space, both in expectation and with high probability1.

Our algorithm simulates all particles consecutively. It crucially uses that the
shape of A(n) is almost a perfect circle, as discussed above. Let the in-circle be
the largest circle centred at the origin that contains only occupied grid points. As
long as the current particle n+1 is within the in-circle of A(n), the random walk
will typically stay in A(n) for many steps. Specifically, if the current distance of
the particle to the in-circle of A(n) is d, then typically in the next Θ(d2) random
walk steps the particle will stay in A(n). We want to utilize this fact by combining

1 With probability 1−O(n−c) for a constant c > 0 that can be made arbitrary large.

Internal DLA: Efficient Simulation of a Physical Growth Model 249

many steps to a single jump of the particle, without simulating all of these steps
explicitly. Building on this, we use drift analysis to show that typically O(log n)
such jumps are sufficient to simulate one particle. Intuitively, such a combination
of steps to a jump simply amounts to sampling the position of the particle after
T ≈ d2 steps, which can be done by sampling two binomial random variables
Bin(T, 12). However, there is an obstacle to this simple intuition: Within Θ(d2)
steps we leave A(n) with positive probability, so simply jumping to the outcome
of Θ(d2) steps necessarily introduces an error. As we want to design an exact
sampling algorithm, we have to overcome this hurdle.

We present a general framework that utilizes jumps to efficiently simulate
IDLA in Section 3. A particular jump procedure is discussed in Section 4.

2 Preliminaries

2.1 Notation

We denote by Bin(n, p) a binomial distribution with parameters n and p and by
logn the natural logarithm of n. For z = (x, y) ∈ Z

2 we let |z| = (x2 + y2)1/2 be
its 2-norm. For z ∈ Z

2 and r > 0 we define the ball with radius r around z as
Bz(r) :=

{
w ∈ Z

2 | |z − w| ≤ r
}
. We write Γ (z) for the set of grid neighbors of

z ∈ Z
2, and for an arbitrary set S ⊆ Z

2 we write ∂S for the set of all position
that can be reached from S, i.e.

∂S :=
{
z ∈ Z

2 \ S | Γ (z) ∩ S �= ∅} and S̄ := S ∪ ∂S.

Whenever it is clear from the context, which particle we are simulating, we
will write A for A(i). For an IDLA shape A let rI = rI(A) and rO = rO(A) be
its in- and outradius (rounded for technical reasons), i.e.,

rI :=
⌊

min
x∈Z2\A

|x|
⌋

and rO :=
⌊
max
x∈A

|x|
⌋
+ 1.

Moreover, we say that B0(rI) is the in- and B0(rO) the out-circle of A.

2.2 The Shape of IDLA

Recently, Jerison, Levine and Sheffield proved a long open conjecture which
stated that A(n) = B0(

√
n/π)±O(log n) with high probability.

Theorem 2 (Theorem 1 in [6]). For every γ > 0 exists a constant α =
α(γ) < ∞ such that for sufficiently large r

Pr
[
B0(r − α log r) ⊂ A(�πr2) ⊂ B0(r + α log r)

] ≥ 1− r−γ . (1)

Additionally using rO ≤ n, this theorem implies that rO − rI = O(log n), both
in expectation and with high probability.

250 K. Bringmann et al.

2.3 Random Walks on Z and Z
2

Let z = z0, z1, z2, . . . be a random walk starting in z ∈ Z
2. Here we always

consider the standard random walk on Z
2 that chooses each adjacent grid point

with probability 1/4. We write RWT (z) = zT for the outcome of a random
walk of length T starting in z and abbreviate RWT (0) = RWT . Note that
RWT (z) ∼ z +RWT .

We also reach each adjacent grid point with probability 1/4 by flipping two
coins c1, c2 ∈ {1,−1} and choosing the next position to be

z + c1 · (1/2, 1/2) + c2 · (−1/2, 1/2).

This yields the following reformulation of a 2-dimensional random walk as a lin-
ear combination of two independent 1-dimensional random walks. In particular,
the following lemma allows us to quickly sample from RWT (if one can sample
binomial random variables quickly, we refer to the full version of this paper for
a thorough discussion of this assumption).

Lemma 1. Let z ∈ Z
2 and T ∈ N. Let ST be the sum of T independent uniform

{1,−1} random variables, ST ∼ 2Bin(T, 1/2)− T , and let X,Y be independent
copies of ST . Then

RWT (z) ∼ z +X · (1/2, 1/2) + Y · (1/2,−1/2).

Note that our random walks are “bipartite” in the sense that in even timesteps
one can reach only the “even” positions of the grid {(x, y) ∈ Z

2 | x + y ≡
0 (mod 2)}, and similarly for odd timesteps. We write z≡T x if z can be reached
from x by a walk of length � ∈ N with � ≡ T (mod 2).

The outcome of a one-dimensional random walk of length T has standard
deviation Θ(

√
T). Intuitively, this implies that with at least constant probability

the two-dimensional random walkRWT is further than
√
T away from the origin.

Moreover, in any direction ξ the expected jump length is large.

Lemma 2. For any T ∈ N we have Pr[|RWT | ≥
√
T] ≥ Ω(1).

Moreover, let τ be a symmetric stopping time, i.e., for all z ∈ Z
2 we have

Pr[RWτ = z] = Pr[RWτ = z′] where z′ is obtained from z by rotating it by 90◦.
Then for any ξ ∈ R

2 with |ξ| = 1 we have

E[|ξ ·RWτ |] = Ω(Pr[|RWτ | ≥
√
T] ·

√
T).

2.4 Drift Analysis

Let Ω be some state space, Yk ∈ Ω (k ∈ N) a stochastic process and g : Ω → R≥0

a function on Yk. Let the hitting time τ be the smallest k such that g(Yk) = 0.
We say that g(Yk) has an additive drift of at least ε if for all 0 ≤ k < τ

E [g(Yk+1)− g(Yk) | Yk] < −ε. (2)

The following theorem bounds the expected hitting time by the inverse of the
additive drift.

Theorem 3 ([5]). In the situation of this section we have E[τ] ≤ g(Y0)
ε .

Internal DLA: Efficient Simulation of a Physical Growth Model 251

3 A General Framework

The main idea of our algorithms is to combine many steps of a particle’s random
walk to a jump as long as the current particle n+1 is in the in-circle of A = A(n).
In this section, we first formalize the notion of a jump. After that we provide a
framework that yields an IDLA simulation algorithm for any given jump proce-
dure. Throughout this paper a step refers to a single step in a particle’s random
walk and a jump refers to several steps at once.

3.1 The Concept of a Jump

Ideally, a jump does multiple steps of a random walk at once to save the effort
of simulating every single step. Jumps should be concatenable to form longer
portions of a random walk. More formally, let z = z0, z1, . . . be a random walk
starting in z and τ = τ(A, z) a stopping time of this random walk. Then z �→ zτ
defines a jump procedure, and the concatenation of two such jumps is again the
outcome of a random walk at a certain stopping time. This concatenation prop-
erty allows us to add up jumps until we finally hit the boundary ∂A. A jump
should make at least one single step of the random walk in order to have guaran-
teed progress, i.e., we require τ ≥ 1 (with probability 1). Moreover, in order to
have a correct simulation of IDLA, jumps must stop at the latest when the ran-
dom walk leaves A, since then the particle’s simulation is complete. Additionally,
all jump procedures considered in this paper are symmetric around z.

There are two important goals for the design of a jump procedure. First,
the (expected) runtime to compute the outcome of a jump should be as small
as possible. In particular, it should be faster than simulating the random walk
step-by-step. Second, intuitively a jump should be the combination of as many
single steps as possible. This can be formalized by requiring the expected jumping
distance to be large. The following definition captures this concept of a jump.

Definition 1. A jump procedure is a randomized algorithm J with input (an
IDLA structure) A ⊂ Z

2 and a point z ∈ A and output J(A, z) = zτ , where
z = z0, z1, . . . is a random walk and τ = τJ (A, z) is any stopping time. We
require the jump to make at least one single step of a random walk and to stop
at the latest when leaving A for the first time, i.e., Pr[1 ≤ τ ≤ τ∂A] = 1,where
τ∂A = min{t | zt ∈ ∂A} is the hitting time of ∂A. Additionally, J shall be
symmetric around z, i.e., Pr[J(A, z) = z + w] = Pr[J(A, z) = z − w] for all
w ∈ Z

2.
We say that J has runtime bound tJ = tJ(n) if J(A, z) can be computed in

time tJ in expectation and with high probability (over the randomness of A =
A(n) and {z} = A(n+ 1) \A(n) and the internal randomness of J). Moreover,
we define the expected jumping distance as

ΔJ(A, z) := min
|ξ|=1

E[|ξ · (J(A, z)− z)|].

When A is clear from the context we also write J(z) for J(A, z).

252 K. Bringmann et al.

3.2 From Jumps to IDLA

Any jump procedure can be iterated to find the point where the random walk
first leaves the IDLA structure A. Let z0 := (0, 0) and zi+1 := J(A, zi), for
every i = 0, 1, 2, . . . as long as zi is still in A. Moreover, let τ∗ = τ∗(J,A) :=
min{i | zi ∈ ∂A} and J∗ = J∗(A) := zτ∗. Note that since J is a randomized
algorithm, J∗ and τ∗ are random variables. Clearly, J∗ is distributed exactly as
the endpoint of an IDLA particle. This way, any jump procedure gives rise to a
simulation algorithm for IDLA.

The following theorem gives an upper bound on the running time of an IDLA
simulation with jump procedure J .

Theorem 4. Let J be a jump procedure with runtime bound tJ . Let ΔJ be its
expected jumping distance, cJ > 0 some constant, BI := B0(rI − cJ logn), set

δJ(A) := max
z∈BI

rO − |z|
ΔJ (A, z)

and assume that for some δ̄J = δ̄J(n) we have δJ(A) ≤ δ̄J in expectation and
with high probability (over the randomness of A = A(n)). Then we can construct
an algorithm for simulating IDLA with runtime

O(n · tJ · logn · (δ̄2J + logn))

and space usage2 O(n1/2 logn), both in expectation and with high probability.

To see that O(n1/2 logn) bits are sufficient (in expectation) to store A(n),
note that by Theorem 2 we have with high probability B0(

√
n − O(log n)) ⊆

A(n) ⊆ B0(
√
n+O(logn)), and B0(

√
n+O(logn))\B0(

√
n−O(log n)) contains

O(n1/2 logn) grid cells, for each of which we can store whether it is occupied in
1 bit.

In Section 4 we present a jump procedure with tJ = O(1) and δ̄2J = O(log n),
and thereby provide a proof for Theorem 1.

In order to run efficient IDLA simulations, we need a data structure that has
the following properties.

Lemma 3. We can construct a data structure for A that allows us to
– query rI and rO in O(1) time,
– check z ∈ A in O(1) time, and
– add z ∈ Z

2 to A.
Adding the n particles of an IDLA simulation one-by-one to this data structure
overall needs O(n) time and O(n1/2 logn) space, both in expectation and with
high probability.

In this extended abstract we omit the description of the data structure and the
proof of Lemma 3. In the following section, we analyse the expected number of
jumps that we need to simulate. Then, Theorem 4 is merely a consequence of
Theorem 2, Lemma 3 and Lemma 4 below, and we therefore omit its proof.

2 Not including the space used by the jump function.

Internal DLA: Efficient Simulation of a Physical Growth Model 253

3.3 Number of Jumps

To bound the expected runtime of the simulation of a particle using a jump
procedure J , we only have to bound the hitting time τ∗ of ∂A. The following
lemma provides such a bound.

Lemma 4. With the notation of Section 3.2 for any IDLA structure A and
k > 0 we have Pr[τ∗ ≥ k (δ2J(A) log n+ (rO − rI + logn)2)] ≤ exp(−Ω(k)).

In particular, we have E[τ∗] ≤ O
(
δ2J(A) log n+ (rO − rI + logn)2

)
.

Proof. Consider again the stochastic process z0 = (0, 0), and zk+1 = J(A, zk)
for k > 0. Set σ :=

√
2(rO − rI + cJ log n). We analyze this process in phases.

The process starts in phase 1 and changes to phase 2 the first time it reaches
a position zk �∈ BI . For the next σ2 jumps the process stays in phase 2. After
that it returns to phase 1, except if we are again outside BI , then we directly
start another phase 2. This repeats until we hit ∂A. For these phases we prove
the following.

(1) Starting phase 1 anywhere in BI , we stay in this phase for at most
O(δ2J (A) log n) jumps in expectation.

(2) Starting phase 2 anywhere outside BI , the probability of hitting ∂A before
the end of the phase is Ω(1).

Using Markov’s inequality, (1) implies that after at most O(δ2J (A) logn) jumps
we leave phase 1 with probability Ω(1). Together with (2) we obtain that, wher-
ever we start, within O(δ2J (A) log n + σ2) jumps we hit ∂A with probability
Ω(1). Hence, within O(k(δ2J (A) log n + σ2)) jumps we hit ∂A with probability
1−exp(−Ω(k)), yielding both expectation and concentration of the hitting time.

The proof of (2) follows by Lemma 2 and standard calculations and we there-
fore omit it in this extended abstract.

To show (1) we apply additive drift analysis to prove that the stochastic
process z0, z1, . . . , zτ (for z0 ∈ BI and τ := min {k | zk /∈ BI}) has an expected
hitting time as claimed. In order to apply Theorem 3 we need a suitable distance
function g : Z2 → R≥0. We let

g(z) :=

{
log(rO + 2− |z|), z ∈ BI

0, z ∈ Z
2 \BI

.

In the following we will show that g has an additive drift of minz∈BI

(ΔJ (A,z))2

2(rO+2−|z|)2
for all 0 ≤ k < τ , i.e., for any zk ∈ BI

E [g(zk+1)− g(zk) | zk] ≤ − min
z∈BI

(ΔJ (A, z))
2

2(rO + 2− |z|)2 . (3)

Applying Theorem 3 together with g(z) ≤ O(log n) then yields an expected
hitting time of Z2 \BI of O(δ2J (A) log n).

Whenever zk ∈ A we know that zk+1 ∈ Ā ⊆ B0(rO + 1). In this case we can
bound g(zk+1) ≤ log(rO+2−|zk+1|). To shorten notation we let L(x) := log(rO+

254 K. Bringmann et al.

2 − x) for any x ∈ R in the remainder of this proof. Hence, the expectation of
g(zk+1) conditioned on zk, zk ∈ BI , is at most3

∑

x∈Z2

Pr [zk+1 = x | zk] · L(|x|) ≤
∑

x∈Z2

Pr [zk+1 = x | zk] · L
(
x
zk
|zk|

)
,

since the length of the projection of x is bounded by |x| in any direction. Using
the transformation yx := x − zk and the symmetry of jump procedures we can
rewrite this as

∑

x∈Z2

Pr [zk+1 = x|zk] · L
(
|zk| − yx

zk
|zk|

)

=
1

2

∑

x∈Z2

Pr [zk+1 = x|zk] ·
(
L

(
|zk| − yx

zk
|zz|

)
+ L

(
|zk|+ yx

zk
|zk|

))
, (4)

where |yx zk
|zk| | ≤ rO + 1− |zk| for all x with Pr [zk+1 = x|zk] > 0.

Now we use the following estimate that holds for any a, b ∈ R with a > 0 and
|b| ≤ a:

log(a+ b) + log(a− b) ≤ 2 log(a)− b2

a2
. (5)

Combining (4) and (5) yields

E [g(zk+1)|zk] ≤ 1

2

∑

x∈Z2

Pr [zk+1 = x|zk] ·
(
2L(|zk|)− (yx · zk/|zk|)2

(rO + 2− |zk|)2
)

= g(zk)−
E
[
(yzk+1

· zk/|zk|)2
∣∣zk

]

2(rO + 2− |zk|)2 = g(zk)−
E

[
|(zk+1 − zk)

zk
|zk| |2

∣
∣∣zk

]

2(rO + 2− |zk|)2

≤ g(zk)−
E

[
|(zk+1 − zk)

zk
|zk| |

∣∣
∣zk

]2

2(rO + 2− |zk|)2 (6)

where the last inequality follows from Jensen’s inequality. Considering the def-
inition of the expected jumping distance ΔJ (Definition 1) with ξ = zk

|zk| we

obtain

E [g(zk+1)|zk] ≤ g(zk)− (ΔJ (A, zk))
2

2(rO + 2− |zk|)2
which proves the drift inequality (3) and, thus, the lemma. ��

4 Long Jumps

Consider a particle at position z ∈ BI = B0(rI − cJ log n) (for some sufficiently
large constant cJ > 0) and consider the ball S := Bz(σ) with midpoint z and

3 Here we define the corresponding summand to be 0 whenever the log is undefined.

Internal DLA: Efficient Simulation of a Physical Growth Model 255

radius σ := rI − |z|, so that S is contained in B0(rI) ⊆ A. Let z0, z1, . . . be a
random walk starting in z0 = z, let τ∂S := min{i | zi ∈ ∂S} be its hitting time
of the boundary of S, and similarly let τ∂A := min{i | zi ∈ ∂A}. Our procedure
will directly jump to Jlong(z) := zτ with

τ := min{τ∂S , T } and T :=
⌊ σ2

cJ ln(n/e)

⌋
.

Whenever z �∈ BI , we simply make one step of the random walk, i.e., τ := 1.
This way we make sure that τ ≥ 1 (for all z ∈ A). Note that here we use τ∂S
to ensure τ ≤ τ∂S ≤ τ∂A, meaning that we stop at the latest when leaving A.
Since τ is a stopping time and Jlong is symmetric, this is a valid jump procedure
according to Definition 1. It is not clear at first sight that Jlong can be sampled
efficiently for all z ∈ BI . However, we present an algorithm in the next section
and prove in Section 4.2 that its expected runtime is constant. Finally, we deter-
mine the expected jumping distance of Jlong in Section 4.3. Overall, we obtain
the following result, which together with Theorem 4 proves our main result.

Lemma 5. The jump procedure Jlong has runtime bound tJlong
= O(1) and

for any z ∈ BI an expected jumping distance of ΔJlong
(A, z) = Ω(

√
T) =

Ω
(

rI(A)−|z|√
log n

)
. Furthermore, it has a space usage of O(1) memory cells (in ex-

pectation and with high probability).

4.1 An Algorithm for Sampling Long Jumps

Observe that with high probability a random walk of length T starting in z does
not leave S. Hence, the minimum of τ∂S and T is typically obtained at T . We
will design an algorithm that samples the position of zT (restricted to a certain
subset) very efficiently. Additionally, we have to patch this approximate algo-
rithm by a second (slow) algorithm that is executed only with small probability
and that compensates for any mistakes we might make by sampling only zT .

First consider Algorithm 1, which does not yet correctly sample a jump ac-
cording to the distribution of Jlong(z). It simply draws a point z′ = RWT (z) (by
sampling from a binomial random variable, see Lemma 1) and rejects as long as
z′ �∈ 1

2S (where 1
2S is the ball with midpoint z and radius 1

2σ).

Algorithm 1. Algorithm Long-Jump-Incomplete
repeat

z′ := RWT (z)
until z′ ∈ 1

2
S

return z′.

For w ∈ Z
2 let PJ (w) := Pr[Jlong(z) = w] and denote the probability of

Algorithm 1 to return w by PAlg1(w). To patch Algorithm 1 we choose a fail-
ure probability pfail (to be fixed later). Then, with probability 1 − pfail we run

256 K. Bringmann et al.

Algorithm 1, but with probability pfail we patch the algorithm by exhaustively
computing the probabilities PJ(w) and PAlg1(w) for all w ∈ S̄ and returning

w ∈ S̄ with probability Prest(w), where

(1− pfail) · PAlg1(w) + pfail · Prest(w) = PJ(w). (7)

The above equation ensures that overall we draw w ∈ Z
2 according to the right

probability distribution PJ . The approach is summarized in Algorithm 2.

Algorithm 2. Algorithm Long-Jump-Complete

choose p uniformly at random from [0, 1].
if p < pfail then

calculate PJ (w) and PAlg1(w) for all w ∈ S̄
compute Prest(w) according to equation (7)
return w ∈ S̄ drawn according to the distribution Prest(w)

else
run Algorithm 1

end if

This algorithm is correct if pfail can be chosen in such a way that Prest is a
probability distribution. The following lemma states for which values of pfail this
is the case.

Lemma 6. The values Prest(w) for w ∈ S̄ form a probability distribution if we
choose pfail ≥ 28ecJ/2n−min{cJ/8,5cJ/16−1}.

In this extended abstract we omit the technical proof of Lemma 6. In the re-
mainder of this section we analyze the runtime of our algorithm and prove a
lower bound on the expected jump length.

4.2 Runtime of the Algorithm

In the fail compensation part of our algorithm we have to compute PAlg1 and
PJ exactly. In this section we discuss how to do this efficiently, which yields a
bound on the runtime of our algorithm.

Observe that for PRW(w) := Pr[RWT (z) = w] we have for all w ∈ 1
2S that

PAlg1(w) = PRW(w)/
∑

w∈ 1
2S

PRW(w).

This reduces the calculation of PAlg1 to the calculation of PRW(w) for all w ∈
1
2S. For w �≡T z we have PRW(w) = 0, so let w ≡T z. Then we can write
w = x · (1/2, 1/2)+ y · (1/2,−1/2) with x, y ∈ Z. With the notation of Lemma 1
we have

PRW(w) = Pr[X = x] · Pr[Y = y] = 2−T

(
T

T+x
2

)
· 2−T

(
T

T+y
2

)
.

Internal DLA: Efficient Simulation of a Physical Growth Model 257

Note that this probability has denominator 4T , so it can be stored using O(T)
bits. Moreover, as

(
T
i

)
can be computed in O(T) multiplications and divisions

of a O(T) bit number by a O(log T) bit number, we can calculate PRW(W)
in time O(T 2 logT). The total running time for calculating PAlg1 is therefore

O(σ2T 2 logT) and the occupied space is O(σ2T).
For computing PJ we use a simple iterative scheme. We recursively define Xt

w

for 0 ≤ t ≤ T and w ∈ S̄. For t = 0 we set

X0
w =

{
1 if w = z,

0 otherwise,

while for t > 0 we set

Xt
w =

{∑
v∈Γ (w)∩S

1
4X

t−1
v if w ∈ S,

Xt−1
w +

∑
v∈Γ (w)∩S

1
4X

t−1
v if w ∈ ∂S.

Observe thatXT
w is equal to PJ (w) for every w ∈ S̄, and each probabilityXt

w can
be stored using O(T) bits. The total running time to calculate PJ is therefore
O(σ2T 2) and the space usage is O(σ2T) bits.

As the ball S is completely filled with particles, we have n ≥ σ2. Using
T = Θ(σ2/ logn) we get a runtime of O(n3) and a space usage of O(n2) for
computing PJ and PAlg1.

Clearly, Algorithm 1 runs in expected constant time. Moreover, as the proba-
bility of RWT �∈ 1

2S is small (smaller than pfail, as chosen in the last section), it
even runs in O(1) time with high probability. In total, the expected runtime of
our algorithm for sampling long jumps is O(1 + pfail · n3), and the probability of
having runtime larger than O(1) is at most O(pfail). Hence, for sufficiently large
constant cJ , so that Lemma 6 allows us to choose pfail sufficiently small, we ob-
tain a runtime of tJlong

= O(1), both in expectation and with high probability.
This proves the first part of Lemma 5.

4.3 Expected Jumping Distance

In this section we analyze the expected jumping distanceΔJlong
(z) of long jumps,

proving the second part of Lemma 5. Recall that the expected jumping distance
at z ∈ BI is defined as

ΔJlong
(A, z) = min

|ξ|=1
E[|ξT (Jlong(A, z)− z)|].

Since the stopping time τ of Jlong is symmetric, we can use the second part of

Lemma 2 to obtain ΔJlong
(A, z) = Ω(Pr[|Jlong(A, z)− z| ≥ √

T] · √T). Observe

that we have Pr[|Jlong(A, z)−z| ≥ √
T] ≥ Pr[|RWT | ≥

√
T], where the inequality

comes from some walks in RWmin{τ∂S,T}(z) ending prematurely (if τ∂S ≤ T).

Together with the first part of Lemma 2, this shows ΔJlong
(A, z) ≥ Ω(

√
T) =

Ω((rI(A) − |z|)/√logn).

258 K. Bringmann et al.

References

1. Asselah, A., Gaudilliere, A.: From logarithmic to subdiffusive polynomial fluctua-
tions for internal DLA and related growth models, arXiv preprint arXiv:1009.2838
(2010)

2. Asselah, A., Gaudilliere, A.: Lower bounds on fluctuations for internal DLA.
Probability Theory and Related Fields, 1–15 (2011)

3. Diaconis, P., Fulton, W.: A growth model, a game, an algebra, Lagrange inversion,
and characteristic classes. Rend. Sem. Mat. Univ. Politec. Torino 49(1), 95–119
(1991)

4. Friedrich, T., Levine, L.: Fast simulation of large-scale growth models. In:
Goldberg, L.A., Jansen, K., Ravi, R., Rolim, J.D.P. (eds.) RANDOM 2011 and
APPROX 2011. LNCS, vol. 6845, pp. 555–566. Springer, Heidelberg (2011)

5. He, J., Yao, X.: A study of drift analysis for estimating computation time of
evolutionary algorithms. Natural Computing 3(1), 21–35 (2004)

6. Jerison, D., Levine, L., Sheffield, S.: Logarithmic fluctuations for internal DLA. J.
Amer. Math. Soc. 25(1), 271–301 (2012)

7. Lawler, G.F., Bramson, M., Griffeath, D.: Internal diffusion limited aggregation.
The Annals of Probability, 2117–2140 (1992)

8. Meakin, P., Deutch, J.M.: The formation of surfaces by diffusion limited annihila-
tion. The Journal of Chemical Physics 85, 2320 (1986)

9. Moore, C., Machta, J.: Internal diffusion-limited aggregation: Parallel algorithms
and complexity. Journal of Statistical Physics 99, 661–690 (2000)

	Internal DLA: Efficient Simulation of a PhysicalGrowth Model
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 The Shape of IDLA
	2.3 Random Walks on
	2.4 Drift Analysis

	3 A General Framework
	3.1 The Concept of a Jump
	3.2 From Jumps to IDLA
	3.3 Number of Jumps

	4 Long Jumps
	4.1 An Algorithm for Sampling Long Jumps
	4.2 Runtime of the Algorithm
	4.3 Expected Jumping Distance

	References

