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Abstract. One of the first algorithmic results in graph drawing was
how to find a planar straight-line drawing such that vertices are at grid-
points with polynomial coordinates. But not until 2007 was it proved
that finding such a grid-drawing with optimal area is NP-hard, and the
result was only for disconnected graphs.

In this paper, we show that for graphs with bounded treewidth, we can
find area-optimal planar straight-line drawings in one of the following two
scenarios: (1) when faces have bounded degree and the planar embedding
is fixed, or (2) when we want all faces to be drawn convex. We also
give NP-hardness results to show that none of these restrictions can be
dropped. In particular, finding area-minimal drawings is NP-hard for
triangulated graphs minus one edge.

1 Introduction

A planar graph is a graph that can be drawn without crossing in the plane.
Naturally one wonders whether such a drawing must use curves, or whether
there exists a planar straight-line drawing, i.e., a drawing such that vertices
are at points, edges are straight-line segments between their endpoints, no edge
overlaps a non-incident vertex, and no two edges cross. It was proved multiple
times independently that every planar graph has such a drawing [4][12][14].

To increase readability of such a drawing, vertices should be not too close
to each other, but the drawing should fit on a small paper or screen. The first
objective can be achieved by demanding a grid drawing, where all vertices are
placed at points with integer coordinates. The second objective can be achieved
by minimizing the area of the smallest enclosing box of such a grid-drawing.
In 1990, it was shown independently by de Fraysseix, Pach and Pollack [6] and
Schnyder [11] that every planar graph has a grid-drawing of area O(n2).

Numerous papers have since worked on improving the constant factor in this
O(n2)-bound; see e.g. [2] and the references therein. However, very few attempts
have been made to find drawings with the optimal area. Indeed, it was not even
shown until 2007 that finding a grid-drawing with optimal area is NP-hard [8].
One of the very few algorithms that achieves optimal area is by Mondal et al. [9]
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for triangulated graphs of treewidth 3. The current paper arose out of an attempt
to generalize this results to graphs of larger (but bounded) treewidth. We show:

Minimizing the area of planar grid-drawings is polynomial-time solv-
able for any planar graph of bounded treewidth and bounded face degrees
for which the planar embedding is fixed.

We also prove NP-hardness as soon as any of the three conditions (bounded
treewidth, bounded face degree, fixed planar embedding) is dropped. We then
turn to convex drawings, where we additionally demand that every face (includ-
ing the outer-face) is drawn as a convex polygon, and show:

Minimizing the area of convex planar grid-drawings is polynomial-
time solvable for any planar graph of bounded treewidth.

We also prove NP-hardness of finding area-optimal convex drawings for graphs
where the treewidth is not constant. Due to space restrictions, many details
(especially for the NP-hardness reductions) have been omitted.

2 Background

We assume that G = (V,E) is a planar graph, i.e., it can be drawn in the
plane without crossing. Any planar drawing of G defines a rotation system, i.e.,
a clockwise order of edges around each vertex. This defines facial circuits, which
are boundary cycles of the maximal connected regions (faces) of the drawing.
The outer-face is the unbounded face. The drawing also assigns each angle (set
of two consecutive edges at a vertex) to a face. A planar embedding is a rotation
system, an angle-face assignment, and one angle fixed as being on the outer-face;
this determines a drawing of G up to deformations of the plane.

A graph is connected if there exists a path between any two vertices. For
a connected graph every face is bounded by one circuit and hence the angle-
face-assignment is unique. A graph is k-connected if it remains connected after
removing any k−1 vertices. Any 3-connected planar graph has a unique rotation
system (up to reversal of all orders). A planar graph is called triangulated if all
faces, including the outer-face, are triangles. Such a graph is always 3-connected.

A planar straight-line grid-drawing is a mapping Γ of the vertices of G to
distinct points with integer coordinates such that if we draw every edge as a
straight-line segment, then no edge overlaps a non-incident vertex, and no two
edges cross. The drawing is convex if all faces, including the outer-face, are drawn
as convex polygons. Angles of 180◦ are allowed (though the results of the paper
can easily be generalized to strictly convex drawings). The width, height and
area of Γ is the corresponding measure of the minimum axis-aligned box that
encloses all points that Γ maps to.

Definition 1. AreaMinimization is the following problem: Given a graph G
and an integer A, does G have a planar straight-line grid-drawing of area ≤ A?

PointSetEmbeddability is the following problem: Given a graph G and
a set S of points in R

2, is there a planar straight-line drawing of G where all
vertices are on points of S?
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For both problems, we also consider the Convex variant, where we require
the planar drawing to be convex.

Treewidth and Sc-decompositions: We will not define the treewidth tw(G)
of a graph G, since we do not use it directly. The pathwidth pw(G) of a graph
G is the smallest k such that G has a vertex order v1, . . . , vn where, for any
1 ≤ i < n, at most k vertices in v1, . . . , vi have a neighbour in vi+1, . . . , vn. Since
tw(G) ≤ pw(G), it suffices to prove NP-hardness for bounded pathwidth graphs.
A branch decomposition of a graph G is a rooted binary tree T with edges of G
in 1-1 correspondence with the leaves of T . It will be convenient to assume that
the root has only one child. For any arc a of T , the subgraph Ga rooted at a is
the graph formed by all edges at leaves that are below a in T . The separator σa

at a is the set of vertices with incident edges in both Ga and G−Ga. The width
of a branch decomposition is maxa∈T |σa|, and the branchwidth bw(G) of G is
the smallest width of a branch decomposition of G. Since tw(G) ∈ Θ(bw(G))
[10], it suffices to give algorithms for bounded branchwidth graphs.

Let G be a planar graph with a fixed rotation system. A noose is a sequence
v0, f0, v1, . . . , vk−1, fk−1 such that for any 0 ≤ i < k, vertices vi and vi+1 both
belong to face fi (addition modulo k), and no vertex repeats. (Faces may repeat.)
An sc-decomposition is a branch decomposition of G such that for any arc a of
the tree T , there exists a noose Na whose vertices are exactly the separator σa.
We can picture Na as a simple closed curve that intersects a planar drawing of
G only at vertices in σa, contains Ga on one side and G−Ga on the other side.
See Fig. 1. Any 2-connected planar graph G with a fixed planar embedding has
an sc-decomposition of width bw(G), and it can be found in polynomial time [3].

v
f

f ′

anchor-edge
of v at f

vl−1

vl

fl = outer-face

two segments along
anchor-edges at fl

Fig. 1. A noose (dashed) meets the separator vertices (white). Illustrating some con-
cepts for Section 3: Anchor-edges are thick, pole-edges are thick dotted, the noose-
polygon is thick dashed.

3 Area-Optimal Drawings

AreaMinimization is NP-hard even for graphs with a fixed planar embed-
ding and constant treewidth [8]. But it becomes polynomial if additionally face-
degrees are bounded:
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Theorem 1. Let G be a planar graph with a fixed planar embedding. If G has
bounded treewidth and bounded face-degrees, then AreaMinimization can be
solved in polynomial time.

Proof. It was shown in [1] that PointSetEmbeddability is polynomial-time
solvable for these graphs. For W = 1, . . . , �√A� and H = �A/W 	, solve Point-
SetEmbeddability for G, using the points of a W ×H-grid as S. There exists
a drawing of area at most A if and only if we succeed for some S. Clearly this
yields a polynomial-time algorithm since A ≤ n2.1

For convex drawings, the results for ConvexPointSetEmbeddability in
[1] are more restrictive than we need them to be. We show in the rest of this sec-
tion that ConvexPointSetEmbeddability is polynomial-time solvable for a
planar graphG of bounded treewidth. This was previously only known for graphs
with bounded treewidth, bounded vertex degrees, and where the planar embed-
ding is fixed [1]. So assume that we are given a set S of at least n points in the
plane. Fix an arbitrary planar embedding of G (we will later explore all possible
ones). The main idea is to do dynamic programming in an sc-decomposition of
width bw(G), where the dynamic programming function fixes the position of
separator-vertices, as well as their neighbours at the noose.

Formally, let a be an arc of the sc-decomposition tree T , and let v be a vertex of
σa. By assumption the noose Na contains f, v, f ′ as subsequence, for some faces
f, f ′. By definition of separator, v has incident edges in both Ga and G − Ga.
Since Na contains v only once, the incident edges of v hence form two intervals
(in the clockwise order around v): one with edges in Ga and one with edges in
G − Ga. We call the first and last edge of v in Ga the anchor-edges of v, and
the first and last edge of v in G−Ga the pole-edges of v. (Both terms are “with
respect to arc a”, but arc a will be clear from the context.) Each anchor-edge
and pole-edge belongs to either f or f ′. See also Fig. 1. An anchor/pole of arc
a is a vertex x such that (x, v) is an anchor-edge/pole-edge at some vertex v
in σa. Let Aa be the set of anchors and poles of a, and let G+

a be the graph
obtained from Ga by adding to it all pole-edges at vertices in σa. The dynamic
programming function searches for a drawing of G+

a , subject to a fixed mapping
Γa of the vertices of σa ∪ Aa to points in S.

From the locations of σa ∪ Aa, we can read a polygon that serves as curve
for the noose; we call this the noose-polygon Pa. Namely, consider the polygon
Γa(v0), . . . , Γa(vk−1), where v0, f0, v1, . . . , vk−1, fk−1 are the vertices and faces
of the noose Na. If Na does not include the outer-face, then Pa is this poly-
gon. If Na does include the outer-face, say at fl, then replace line segment
Γa(vl), Γa(vl+1) by two segments along the supporting lines of the anchor-edge
of vl and vl+1 at fl. See Fig. 1(right). In any convex drawing of G, the noose-
polygon Pa does not cross itself, since every edge of it either resides in an interior
face (a convex polygon) or is drawn along two supporting lines of edges on the

1 The precise run-time is O(n3Δ(t + 1) log(Δ(t + 1)) · |S|1.5Δ(t+1)), where Δ is the
maximum degree of a face and t is the treewidth.
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outer-face (a convex polygon). If all vertices of σa are collinear (e.g. if |σa| = 2),
then Pa may overlap itself; we do not consider this a crossing.

One final notation. In what follows, we consider a drawing Γ of a subgraph
G+

a of G. We say that an angle is drawn properly in Γ if either this angle is not
a facial angle of G, or if it belongs to an interior face of G and is drawn with at
most 180◦, or it belongs to the outer-face of G and is drawn with at least 180◦.
The function to be computed via dynamic programming is now as follows:

Definition 2. Let a be an arc of the rooted sc-decomposition. Let Γa be a map-
ping from σa ∪Aa to S. Define M(a, Γa) to be true if and only if:

1. The noose-polygon Pa defined by Γa has no crossings.
2. For any anchor α and any pole ρ of a, any curve from Γa(α) to Γa(ρ)

contains points of Pa. Put differently, the noose-polygon Pa forms a boundary
between the anchors and the poles.

3. There exists a planar drawing Γ of G+
a on S such that all angles are drawn

properly and Γ coincides with Γa on σa ∪ Aa.

Observe that computingM(a, Γa) for all values of a and Γa is sufficient to solve
ConvexPointSetEmbeddability for a graph with a fixed planar embedding.
For Gr = G at the unique arc r below the root, and so

∨
Γr

M(r, Γr) is true if
and only if G has a drawing on S for which all angles are drawn properly, i.e.,
G has a convex drawing on S. We explain how to compute M(a, Γa) by going
bottom-up in the tree T of the sc-decomposition.

M(a, Γa) at a leaf-arc: Assume first that a is an arc incident to a leaf, say
the leaf stores edge (v, w). Then G+

a consists of (v, w) as well as up to four
pole-edges. (The anchor-edges all coincide with (v, w).) Hence all vertices of G+

a

belong to σa ∪ Aa, so the mapping Γa determines the drawing of G+
a . Testing

whetherM(a, Γa) is true hence reduces to checking whether the angles are drawn
properly or not. Further, to respect the given planar embedding, the clockwise
order of pole-edges and (v, w) must be as induced by the rotation scheme. This
can all be tested in constant time for one fixed arc a and mapping Γa.

M(a, Γa) at a non-leaf arc: So assume now that arc a is not incident to a
leaf. Then the lower end of a is in turn incident to two other arcs a1 and a2. We
now show how to extract the value for M(a, Γa) from those of M(a1, Γa1) and
M(a2, Γa2) for some suitably chosen mappings Γa1 and Γa2 .

Recall that Γa determines the positions for all points in σa ∪ Aa. With this,
we can test the first two conditions of Definition 2 directly, and assume from
now on that they are satisfied. In particular, the noose-polygon Pa then has an
anchor-side, which is the connected component of R2 − Pa that contains the
anchors, and the pole-side, which is the connected component that contains the
poles. Define σ× := (σa1 ∪ σa2)− σa and A× := (Aa1 ∪Aa2)−Aa. If we fix any
mapping of σa ∪ σ× ∪Aa ∪A× to points in S, then this fixes (for i = 1, 2) also a
mapping of σai ∪Aai to points in S. One can easily show the following formula:

Lemma 1. M(a, Γa) is true if and only if the first two conditions of Definition 2
are true, and there exists a mapping Γ× from σ× ∪ A× to S such that
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– M(a1, Γa1) and M(a2, Γa2) are true, and
– the interior of the anchor-side of Pa1 has no points in common with the

interior of the anchor-side of Pa2 ,

where Γai is the mapping from σai ∪ Aai to S induced by Γa and Γ×.

The algorithm for computing M(a, Γa) is now the obvious: For any choice Γ×
of mapping σ×∪A× to points of S, compute the induced mappings Γai and look
up whether M(ai, Γai) is true, for i = 1, 2. Also compute Pai , and check whether
the anchor-sides are interior-disjoint. Set M(a, Γa) to be true if and only if we
succeed for some choice of Γ×.

Putting it All Together. So to solve ConvexPointSetEmbeddability for
a fixed planar embedding, we go bottom-up in the tree T of the sc-decomposition,
and at each arc a and each possible mapping Γa compute M(a, Γa) as explained
above. It remains to analyze the run-time. Computing M(a, Γa) for an arc a
incident to a leaf and a fixed Γa takes constant time. Doing so for all Γa takes
O(|S|5) time since there are five vertices to which we must assign points. To
compute M(a, Γa) for an arc a not incident to a leaf and a fixed assignment Γa,
we must try all possible mappings Γ× of points to σ× ∪ A×. For each of them,
we must compute the induced assignments Γa1 and Γa2 , look up M(a1, Γa1) and
M(a2, Γa1), and test whether the noose-polygons are interior-disjoint. This can
all be done in O(n log n) time with suitable data structures. Thus the time to
compute M(a, ·), for all possible choices of Γa and Γ× is

O
(
|S||σa∪Aa∪σ×∪A×|n logn

)
.

Because any separator-vertex contributes at most two anchors and two poles,
and any separator-vertex appears in at least two of σa, σa1 , σa2 , one can argue
that |σa ∪ Aa ∪ σ× ∪ A×| ≤ 15

2 bw(G). Hence the time to compute M(a, ·) is

O(|S|7.5bw(G)n logn), and doing so for all O(n) arcs of the sc-decomposition
adds another O(n)-factor. So we have:

Theorem 2. For any planar graph G and any set S of points in R
2, if the planar

embedding of G is fixed then we can solve ConvexPointSetEmbeddability
in O((|S|7.5bw(G)n2 logn) time.

Now we consider the case when the planar embedding is not fixed. If G is
3-connected, then simply try all possible outer-faces for an additional O(n) run-
time overhead. So assume from now on that G has cutting pairs.

A graph may have Ω(2n) rotation systems that all lead to a convex drawing,
so we cannot explore all of them explicitly. Tutte’s characterization [13] states
that if G has a convex drawing, then any cutting pair must be on the outer-face
and have exactly two cut-components (not counting a possible edge between
the cutting pair). Therefore rotation systems of convex drawings can differ only
by “flipping” (reversing the rotation sub-systems) of a leaf-component, i.e., a
3-connected component that is a leaf in the tree of 3-connected components. We
use a special branch-decomposition:
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Lemma 2. For any 2-connected graph G, there exists a branch decomposition
T of G of width bw(G) such that

– for any leaf-component C there exists an arc aC in T with GaC = C,
– for any planar embedding of G and any arc a in T , there exists a noose that

contains Ga on one side and G−Ga on the other. Furthermore, the (clockwise
or counter-clockwise) order of the vertices of the noose is the same regardless
of the planar embedding.

Previously, anchors and poles were vertices defined by the planar embedding.
Now we only know which two vertices v� and v�+1 are consecutive in the noose
at an arc a, but this is sufficient. Change the definition of Γa as follows: let Γ ′

a

be a mapping that assigns five points to each vertex v� ∈ σa. These five points
belong to v�, the (unknown) anchor at v� “towards” v�+1 (i.e., at the (unknown)
face which v� shares with v�+1,), the pole at v� twoards v�+1, and the anchor and
pole at v� “towards” v�−1. We allow Γ ′

a to repeat points, which avoids having
to explore explicitly whether these poles/anchors are distinct vertices. Notice
that Γ ′

a is sufficient to compute the noose-polygon, as long as we pass along
the information which consecutive vertices (if any) of the noose belong to the
outer-face. Also, Γ ′

a determines a drawing of G+
a , given one of Ga. Hence define

M ′(a, Γ ′
a) to be verbatim the same as M(a, Γa), except that we use Γ

′
a and allow

all possible planar embeddings in (3).
The computation of M ′(a, Γ ′

a) is nearly the same as the one of M(a, Γa),
except that in the base case we do not check whether the rotation system is
respected, and that at any arc of a leaf component we test both possible choices
of which face of the noose is the outer-face. Hence M ′(a, Γ ′

a) explores all possible
ways of flipping leaf components, and hence implicitly all planar embeddings
that could lead to a convex drawing. Thus the run-time is the same as for
the fixed planar embedding, except that we need an additional O(n) factor for
trying all possible outer-faces (this is needed only if the graph is 3-connected.)
Summarizing, we get:

Theorem 3. For any planar graph G and any set S of points in R
2, we can

solve ConvexPointSetEmbeddability in O((|S|7.5bw(G)n3 logn) time.

With the same approach as in Theorem 1 (try all choices of S as a W×H-grid
for W ·H ≤ A) we hence have:

Corollary 1. Let G be a planar graph. If G has bounded treewidth, then
ConvexAreaMinimization can be solved in polynomial time.

We can use this to give subexponental exact algorithms for area-optimal con-
vex drawings. We are not familiar with any previous results in this area. The
obvious brute-force approach (try for any assignment of grid points to the ver-
tices whether it works) yields an algorithm with run-time O∗((n2)n), where the
O∗(·) notation hides polynomial terms.

Corollary 2. There exists an algorithm to find a minimum-area convex grid-
drawing of a planar graph in O∗(2O(

√
n logn)) time.
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Proof. Any planar graph has branchwidth O(
√
n). By solving ConvexArea-

Minimization for values A = 1, 2, . . . , n2 we can hence find the minimum-area
convex grid-drawing in time O∗((n2)O(

√
n)) = O∗(2O(

√
n log n)) time.

4 NP-Hardness Results

We now give NP-hardness proofs that show that none of the conditions needed
for Theorem 1 and Corollary 1 can be dropped. Our reductions borrow many
ideas from [8] and [1].

4.1 Small Treewidth, Small Face-Degrees, Flexible Embedding

Recall thatAreaMinimization is polynomial-time solvable if the treewidth and
the face-degrees are bounded, and the planar embedding is fixed. We now show
that if we allow to choose the planar embedding, the problem becomes NP-hard.

The reduction is from the 3-Partition problem defined as follows: Given 3n
positive integers a1, . . . , a3n, where

∑3n
i=1 ai = n · B and 1

4B < ai <
1
2B for all

i, is there a partition of a1, . . . , a3n into n groups of 3 numbers each such that
each group sums to B? It is well-known that 3-Partition is strongly NP-hard [7].
Given an instance of 3-Partition, we first define a frame, shown for n = 3 and
B = 6 in Fig. 2. It consists of a W × 4-grid (for W ≥ n(B + 1) + 2 odd) with
n repetitions of a pattern that leaves a face with B + 3 points not used by the
frame. Above and below this strip are (W +1)/2 stacked cycles (not shown fully
in Fig. 2); all except the outer-most one are 4-cycles. Set A := W (2W + 4).

B points

3 points

Fig. 2. The frame of the NP-hardness construction. Shaded areas are triangulated; we
omit drawing edges in these areas for clarity.
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The frame is 3-connected (recall that shaded areas are triangulated) and has
a unique rotation system. Any k stacked cycles require a 2k × 2k-grid in any
planar drawing. Since the frame has two sets of (W + 1)/2 stacked cycles and a
2× 2-grid (shown bold) that are vertex-disjoint, one can argue that any drawing
of area A must have the outer-face shown in the figure and the drawing must be
(up to rotation) in a W × (2W + 4)-grid.

The graph in the middle strip has (once we add the gadgets for the ai’s)
exactly as many vertices as we can make grid points available to it. So not a
single grid point may be “wasted” by not having a vertex on it. One can argue
(details are omitted) that this forces the frame to be drawn exactly as shown.

“fat” vertex

xi

ai-path

Fig. 3. Encoding
a1=1, a2=4, a3=1

For each i = 1, . . . , 3n, define a path of length ai. Each
vertex on this path is connected to the “fat” vertex of the
frame; this is the unique vertex in the graph where the
rotation system can be changed. Also add one vertex xi

per index i, which is adjacent to all vertices of the ai-path.
See Fig. 3.

The frame left n faces with B + 3 points each. If the
3-partition instance has a solution, then for each group
ai1 , ai2 , ai3 that sums to B, we pick one of these faces, place
the ai-paths in the row with B points, and xi1 , xi2 , xi3 in
the row below. All edges can be drawn without crossing, and the face that results
has degree 17 (12 edges from the three gadgets, and 5 edges from the frame.)
Vice versa, if the graph can be drawn in area A, then the frame must be drawn
as shown, and so the ai-gadgets must be split up among the n faces with B + 3
points each. This gives a partition of the ai’s as desired.

Observe that the middle strip, including the ai-gadgets, could always be drawn
on 5 rows if we allowed an increase in width. It follows that the middle strip has
pathwidth at most 5 [5]. Each set of stacked cycles has pathwidth at most 4. By
combining their vertex orders, one can hence show that the graph has pathwidth
at most 7.

Theorem 4. AreaMinimization is NP-hard, even for a connected planar
graph with pathwidth at most 7, and even if we demand a planar drawing where
every face has at most degree 17.

4.2 3-Connected, and Convex Faces or Small Treewidth

Recall thatAreaMinimization is polynomial-time solvable if the treewidth and
the face-degrees are bounded, and the rotation system is fixed. We now show
NP-hardnes if the condition on treewidth is dropped. The same construction
also works for NP-hardness of ConvexAreaMinimization.

Let a1, . . . , a3n be an instance of 3-partition. Define � := max{12n2 + 3n,
�(B − 1)/2�}. We construct a graph that is 3-connected, hence has a unique
rotation system. All faces are triangles except one face of degree 4. Fig. 4 shows
the frame of the graph. The width and height of this drawing is W := 6�+2n+6,
and we set A := W 2. The frame has three connected components, the outer frame
as well as two blobs that consist of � stacked cycles with one vertex in the middle.
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3�+ 1 columnscolumns

� rows

3�+ 1 columns

� rows

2n+ 1

2�+ 1 columns

2�+ 1
rows

2� rows

B rows
� columns

Fig. 4. The NP-hardness reduction for inner triangulated graphs. The frame for n = 2
and B = 6. The picture uses � = 6 (while � = 56 would be correct). Shaded areas are
triangulated; we omit showing these edges for clarity.

Any drawing of area ≤ A = W 2 has at most (W − 1)2 grid points that are
not on the four extreme grid lines. G will have (W − 1)2 + 4 vertices, so in any
drawing with outer-face f it has (W − 1)2 + 4− deg(f) vertices that are not on
the outer-face, hence cannot be placed on extreme grid lines. It follows that if
there exists a drawing of G of area ≤ A, then it must be on a W ×W -grid, and
the outer-face of G must be the (unique) face that has degree 4. Furthermore,
in such a drawing not a single grid point not on an extreme grid-line may be
wasted. Using this, one can argue that the outer frame is drawn exactly as in
Fig. 4, up to reflection and rotation. In particular, we have n + 1 “teeth” that
stick into the middle region, each column of a tooth has 2� grid points left (i.e.,
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not used by the outer frame), and each column between two teeth has 2� + B
grid points left. The two blobs are too big to fit into the columns at the teeth,
and too big to both fit left of the teeth, so one must be left of the teeth and the
other right of the teeth.

Between the outer frame and the blobs we add � stacked cycles called layers;
the two blobs are inside all these cycles. Each layer must start in the far left
(to surround the left blob), go past all teeth to the right (to surround the right
blob), and then go back. The length of each layer is set so that it exactly fills
the grid points encountered along this path. The � layers hence use up all grid
points except for B grid points in each column between two teeth.

There are � ≥ 12n2 + 3n = (3n) · (4n + 1) layers. For i = 1, . . . , 3n, insert a
path of length ai in the face between layer i(4n) and layer i(4n)+1. These paths
can only be placed in the columns between teeth, so a drawing of area A gives
an assignments of the ai’s into groups that sum to B each, as desired.

Fig. 5. Triangulating between layers (red, dashed), and how to attach the ai-path

To make the graph inner triangulated, we connect two consecutive layers with
a zig-zag line, except for “collector-points” (thick and red in Fig. 5) that have
three or four neighbours on the previous layer, including the previous collector-
points. There are two ways to draw these connections; in one way the collector-
points are aligned vertically/horizontally, while in the other they are shifted
clockwise by one unit. We use this for 2n pairs of layers, and then for the next
2n pairs of layers use a symmetric construction that allows collector-points to be
aligned or to be shifted counter-clockwise by one unit. Finally, when adding the
ai-path, we attach it at the vertex diametrically opposite to the top collector-
point, and connect all vertices on the path to the two vertices before/after that
attachment-point. Over the course of the 4n layers between paths, we can shift
collector-points by up to ±2n units clockwise or counter-clockwise. With this, we
can bring the attachment-point of the ai-path to any of the n columns between
teeth, regardless of where the ai−1-path was. Hence for any solution of 3-partition
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we can draw G in a W × W -grid, and since faces are triangles or squares, the
drawing is convex. We conclude:

Theorem 5. AreaMinimization and ConvexAreaMinimization are NP-
hard, even for an internally triangulated 3-connected planar graph for which the
outer-face is a 4-cycle.

By omitting the triangulation edges in shaded areas of Fig. 4, and (roughly
speaking) replacing the triangulation between any second pair of layers by three
edges only, we can create a variant of this graph that has pathwidth at most 7
and for which any drawing of area A implies a solution to 3-partition.

Theorem 6. AreaMinimization is NP-hard, even for a 3-connected planar
graph of bounded pathwidth.

5 Conclusion

This paper revisited the problem of drawing planar graphs with optimal area.
We showed that finding a convex planar drawing with optimal area is possible in
polynomial time for all graphs with bounded treewidth, even if the planar em-
bedding is not fixed. Based on results for point-set embeddability, we also showed
that finding an area-optimal planar drawing is polynomial-time solvable if the
graph has bounded treewidth, bounded face-degrees, and the planar embedding
is fixed.

As for open problems, can one approximate the optimal area, or is the opti-
mization version of AreaMinimization APX-hard? For many other problems,
finding a poly-time algorithm for bounded-treewidth graphs was a first step to-
wards approximation algorithms. To do so, it would be helpful to find algorithms
that are fixed-parameter tractable in the treewidth, but ours is not. Is Convex-
AreaMinimization W [1]-hard with respect to the parameter treewidth?
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