
Short PCPs with Projection Queries

Eli Ben-Sasson� and Emanuele Viola��

Technion — Israel Institute of Technology and Northeastern University
eli@cs.technion.ac.il, viola@ccs.neu.edu

Abstract. We construct a PCP for NTIME(2n) with constant sound-
ness, 2npoly(n) proof length, and poly(n) queries where the verifier’s
computation is simple: the queries are a projection of the input ran-
domness, and the computation on the prover’s answers is a 3CNF. The
previous upper bound for these two computations was polynomial-size
circuits. Composing this verifier with a proof oracle increases the circuit-
depth of the latter by 2. Our PCP is a simple variant of the PCP by
Ben-Sasson, Goldreich, Harsha, Sudan, and Vadhan (CCC 2005). We
also give a more modular exposition of the latter, separating the combi-
natorial from the algebraic arguments.

If our PCP is taken as a black box, we obtain a more direct proof
of the result by Williams, later with Santhanam (CCC 2013) that de-
randomizing circuits on n bits from a class C in time 2n/nω(1) yields
that NEXP is not in a related circuit class C′. Our proof yields a tighter
connection: C is an And-Or of circuits from C′. Along the way we show
that the same lower bound follows if the satisfiability of the And of any
3 circuits from C′ can be solved in time 2n/nω(1).

1 Introduction

It has long been known that solving satisfiability of circuits, or derandomizing
probabilistic circuits implies new circuit lower bounds (for various exponential-
time classes), see e.g. [KL80,IKW02]. In [Wil10] Williams gives an interesting
instance of this phenomenon, where a non-trivial lower bound against a circuit
class C follows from a satisfiability or derandomization algorithm for circuits of
a related class C′ that runs in time 2n/nω(1), where n is the number of variables
of circuits in C′. It is an interesting question whether the approach based on
satisfiability or the one based on derandomization should be pursed to obtain
new circuit lower bounds.

The satisfiability approach – not the derandomization approach – has given
non-trivial lower bounds [Wil11]. Moreover this approach has been tightened,
by making C′ closer to C, in [SW13,JMV13,Oli13], making it plausible that
more lower bounds will be obtained. In fact, we will tighten it a bit more in

� The research leading to these results has received funding from the European Com-
munity’s Seventh Framework Programme (FP7/2007-2013) under grant agreement
number 240258.

�� Supported by NSF grants CCF-0845003, CCF-1319206

J. Esparza et al. (Eds.): ICALP 2014, Part I, LNCS 8572, pp. 163–173, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



164 E. Ben-Sasson and E. Viola

this work. However, it is not clear how much this approach can be pushed.
Do we believe that the satisfiability of (unrestricted) polynomial-size circuits
can be solved faster than brute-force search? Even for seemingly simple problems
such as MAX3SAT, no satisfiability algorithm better than brute-force search is
known, despite attempts since a decade ago [Wil05]. Note that the MAX3SAT
problem – given a 3CNF and an integer �, is there an assignment that satisfies
≥ � clauses? – corresponds to the restricted class of depth-2 circuits known as
MAJ ◦ AND3: a Majority on And’s on three variables. The lack of progress on
MAX3SAT is an obstacle for obtaining new lower bounds from satisfiability.

A priori, the approach based on derandomization should apply more broadly,
because most researchers indeed believe that derandomization is possible (and a
long line of research has shown that indeed derandomization is possible based on
lower bounds). Also, for several classes we have nontrivial derandomization algo-
rithms but not satisfiability ones. For example, for the class mentioned above of
MAJ ◦ AND3 circuits a derandomization is given in [LVW93,Vio07]. Even when
both types of algorithms are available, the speed of the derandomization one
often outperforms that of the satisfiability one. For example, the running time
for the derandomization of CNF, see [GMR13] for the latest, vastly outperforms
that of satisfiability algorithms, cf. [Her11]. For another example, consider the
class of poly-size, constant-depth circuits with Or, Not, and Parity gates (AC0

with parity gates). To our knowledge, the best satisfiability algorithm is the one
in [Wil11] which has running time 2n−nε

. By contrast, [FSUV13] derandomize
these circuits in time 2n−n/poly logn (building on available lower bounds).

One advantage of satisfiability over derandomization is that the corresponding
connection to lower bounds is simpler and incurs less overhead. To obtain lower
bounds from derandomization one relies on probabilistically checkable proofs
(PCP), specifically the somewhat intricate work by Ben-Sasson, Goldreich, Har-
sha, Sudan, and Vadhan [BGH+05]. The intricacy of this work reflects on two
aspects of the approach. First, to make it apply to restricted circuit classes such
as ACC0 or TC0, previous to this work one needed a roundabout argument,
provided by Santhanam and Williams [SW13], which actually relies on a subse-
quent PCP by Mie [Mie09] combining [BGH+05] with Dinur’s gap amplification
[Din07]. Second, the indirect aspect of the argument is reflected in the overhead
in the reduction. For example, to obtain a lower bound against circuits of depth
d, one needed a derandomization algorithm for circuits of depth cd for a constant
c > 1.

1.1 Our Results

In this work we provide a variant of the PCP [BGH+05] where the computa-
tion of the verifier is quite modest: Given randomness, the verifier computes
its queries just by taking projections of the randomness, and the computation
on the prover’s answers is a 3CNF. The previous upper bound for these two
computations was polynomial-size circuits.

Theorem 1 (Short PCPs with Projection Queries). Let M be an al-
gorithm running in time T = T (n) ≥ n on inputs of the form (x, y) where



Short PCPs with Projection Queries 165

|x| = n. Given x ∈ {0, 1}n one can output in time poly(n, log T ) circuits
Query : {0, 1}r → [2r]t for t = poly(r) and Dec : {0, 1}t → {0, 1} such that:

– Proof length. 2r ≤ T · poly logT ,
– Completeness. If there exists y such that M(x, y) accepts then there ex-

ists a map π : [2r] → {0, 1} such that for any z ∈ {0, 1}r we have
Dec(π(q1), . . . , π(qt)) = 1 where (q1, . . . , qt) = Query(z),

– Soundness. If no y causes M(x, y) to accept, then for every map π : [2r] →
{0, 1}, at most 1/n10 fraction of the z ∈ {0, 1}r have Dec(π(q1), . . . , π(qt)) =
1 where (q1, . . . , qt) = Query(z),

– Complexity. Query is a projection (a.k.a. 1-local), i.e., each output bit of
Query is one input bit, the negation of an input bit, or a constant; Dec is a
3CNF.

The polynomial in the soundness item in Theorem 1 can be traded with the
number t of queries.

There is a substantial literature that develops PCPs with optimized param-
eters. One focus of this literature has been to optimize the complexity of Dec.
However typically these works do not produce PCPs of length quasilinear in T ,
and the complexity of Query is not optimized. Both these aspects are critical for
our applications.

Remark 1 (Number of queries vs. Query complexity). Relaxing the complexity
of Query to be a poly(r)-computation allows to reduce the number of queries
made to the oracle to a constant, while obtaining constant soundness [Mie09].
It is an interesting open problem to find the lowest complexity obtainable for
Query in a PCP statement with proof length quasilinear in T , polylogarithmic
verifier running time, and where soundness, alphabet, and number of queries are
all constant. In particular, it is not clear to us if it is possible in such a case to
have Query be a projection.

Along the way we give a more accessible presentation of [BGH+05]. Our pre-
sentation is modular and separates the combinatorial steps (given in Theorem
5) from the algebraic ones.

Taking Theorem 1 as a black box, we eliminate the roundabout argument
mentioned before from the result in [SW13] that derandomizing TC0 circuits on
n bits in time 2n/nω(1) implies that NEXP is not in TC0. Also, Theorem 1 is a
small variant on [BGH+05], whereas as we mentioned [SW13] needs Mie’s PCP
[Mie09]. Finally, we also obtain the following alternative argument, which only
uses the PCP result in [BGH+05] as a black-box.

The Alternative Argument. Given as a black-box a PCP such as [BGH+05], i.e.,
with the parameters as in Theorem 1 but where the complexity is replaced by
polynomial-size circuits, we can construct a PCP where the verifier has low-
complexity but makes adaptive queries to the proof. Specifically, we will rely
on the prover to obtain the indices of our queries, and later query the prover at
those indices and also verify the prover’s computation, again with the help of the



166 E. Ben-Sasson and E. Viola

prover. This latter verification, as well as the computation Dec on the prover’s
answers, can be done by a 3CNF via a simple use of the Cook-Levin theorem –
cf. Lemma 1.

Again, this alternative argument is sufficient to recover the TC0 result in
[SW13]. However, with Theorem 1 we obtain better parameters. Indeed, we seek
very tight connections in the hope they will lead to progress on various challenges
in computational lower bounds such as those mapped in [Vio13].

The concurrent work [Wil14] shows that the ability to count the number
of satisfying assignments to circuits faster than brute-force search yields lower
bounds against related circuits. This connection is used to obtain some new
lower bounds. By our work the same lower bounds can be obtained from a
satisfiability algorithm (using Theorem 3) or even a derandomization algorithm
(using Theorem 2).

Next we state the tighter connections we obtain between derandomization
and lower bounds. First we make a definition.

Definition 1. Let Cn be a set of functions from {0, 1}n to {0, 1}. We say that
Cn is efficiently closed under projections if functions in Cn have a poly(n)-
size description and given (the description of) a function f ∈ Cn, indexes
i, j ≤ n, and a bit b, we can compute in time poly(n) the functions notf ,
f(x1, . . . , xi−1, b XOR xj , xi+1, . . . , xn), and f(x1, . . . , xi−1, b, xi+1, . . . , xn), all
of which are in Cn.

Most of the standard classes have this property. For the theorem, the two oc-
currences of “poly(n)” above can be relaxed. We also use the notation ∧poly(n)∨3

Cn+O(log n) to indicates the And of poly(n) Or of 3 functions from Cn+O(log n),
all on the same n input bits.

Theorem 2 (Derandomization Implies Lower Bounds, Tightly). Let Cn

be efficiently closed under projections.
If the acceptance probability of functions of the form h = ∧poly(n)∨3Cn+O(log n)

can be distinguished from being = 1 or ≤ 1/n10 in Time(2n/nω(1)), then there
is a function f in ENP such that fn 	∈ Cn.

One can place f in NEXP if we replace Cn+O(log n) with Cpoly(n) and reason
as in [IKW01,Wil13,Wil11].

The first step of our more modular exposition of [BGH+05] is a reduction
to 3SAT that builds on [JMV13] (cf. [BCGT13a]) but achieves incomparable
guarantees (Theorem 5). Using that, we can obtain the following connection
between satisfiability algorithms and lower bounds.

Theorem 3 (Satisfiability Implies Lower Bounds, Tightly). Let Cn be
efficiently closed under projections.

If the satisfiability of functions h = g1 ∧ g2 ∧ g3, where gi ∈ Cn+O(log n) is in

Time(2n/nω(1)), then there is a function f in ENP such that fn 	∈ Cn.

The overhead to go from a satisfiability algorithm to a lower bound is ev-
ident from the theorem. The loss in size is a multiplicative factor 3 + o(1).



Short PCPs with Projection Queries 167

Previous losses were polynomial [Wil10], or multiplicative by a larger constant
[JMV13]. The loss in depth is 2 for circuits with fan-in 2. For unbounded fan-in
(or even fan-in 3) circuits with And gates (or threshold) the depth loss is 1.
Previous losses were 2 [JMV13,Oli13].

Recall that the best lower bound for an explicit function on n bits is 3n−o(n)
(non-input) gates [Blu84] (cf. [DK11]). This seems to be the best known even
for functions in ENP (note the number of circuits of size 3n is superlinear, so
one cannot easily diagonalize against them in ENP ). By Theorem 3, to obtain a
function in ENP of circuit complexity 3n one would need to solve satisfiability of
a circuit with 3(3n) non-input gates and n inputs – ignoring lower-order terms.
The Cook-Levin theorem reduces this to a 3SAT instance on 9n + n = 10n
variables. So one would need to solve 3SAT in deterministic time cn for any
c < 21/10 = 1.07 . . . The current record is c = 1.33 . . . [MTY11], cf. [Her11].

1.2 Techniques

Ideas behind the proof of Theorem 1. We start with the PCP in [BGH+05] and
follow its proof closely. There are two computations of the verifier in this PCP
that we need to optimize. The first — Query — is taking the input randomness
to the queries, which we call preprocess. The second — Dec— is the computation
on the prover’s answers, which we call postprocess. We discuss them separately.

Postprocess: It is a common experience in theoretical computer science re-
search, to study at length an intricate proof in the reckless hope of optimizing
parameters, only to be surprised by the late realization that a trivial, sweep-
ing argument takes the complex proof as a black-box and gets a pretty good
parameter optimization, too.

Lemma 1 (Making Dec a 3CNF). Suppose Theorem 1 holds except that Dec
is an unrestricted circuit of size poly(r). Then Theorem 1 holds as stated.

Proof. By the Cook-Levin theorem we reduce Dec to a 3CNF with poly(r) vari-
ables and terms. The verifier will ask the prover for an additional poly(r) queries
to obtain the satisfying assignments for this 3CNF corresponding to the in-
put randomness. On input z, these queries are of the form (z, i), where i is an
O(log r)-bit index to a variable in the 3CNF. The proof contains the values of
the variables in the 3CNF that verify the computation on the outputs of the
queries that are made by the verifier on input z.

This general technique shows that we can always make the postprocess a
3CNF as long as we allow for poly(r) queries. Using it, there is no benefit in
reducing the number of queries to a constant.

Preprocess: This is in turn comprised of two parts, acting in parallel, known as
“algebraic constraint satisfaction” and “low-degree testing”, and in this work we
offer a clear separation between the two. In the first part we reduce the succinct
constraint satisfaction problem (CSP) associated with verifying the M accepts
x in T steps, to an algebraic CSP (ACSP) problem, one stated as a question
about equality of polynomials. We offer a definition of ACSP that is algebraically



168 E. Ben-Sasson and E. Viola

cleaner than [BS08] and following works (e.g., [BGH+05,BCGT13b]). In particu-
lar, previous definitions included degree bounds on the “assignment polynomial”
and involved a “zero-testing” problem. In contrast, we define a satisfying assign-
ment as one that causes a polynomial to vanish, and degree-bounds are dealt
with by the separate low-degree testing part, discussed later. We now elaborate
on how we obtain efficient preprocessing in each of the two parts.

In the ACSP part, our verifier simply selects a random field element α, gen-
erates poly(r) queries to the prover where the ith query is α + σi where σi is
fixed and independent of α. Each such query can be verified to be a projection.
To reach this simple form of preprocessing we use a modular reduction from the
combinatorial succinct CSP captured by Theorem 4 to the succinct ACSP. The
mid-point between the combinatorial and algebraic settings is given in Theo-
rem 5. In it we reach a 3CNF formula with ≈ T clauses where each clause (i.e.,
the three variables of the clause and their polarities) can be computed by a simple
XOR operation. Since XOR is addition in fields of characteristic 2, irrespective
of the basis chosen for them, we get a simpler ACSP than [BS08,BGH+05] albeit
one that has a super-constant number of variables.

Turning to the second part, low-degree testing, we use auxiliary information in
form of a PCP of Proximity (PCPP) [BSGH+06,DR06]. This part is essentially
from [BS08] and regrettably remains an intricate step of the proof. The answers
to queries of the verifier in [BS08] can be seen as arranged in the nodes of a
tree. The query at each node is indeed a projection. However, the verifier uses
part of its input randomness to select a path in this tree, reaching a leaf, then
possibly redirects the query to a node higher up in the tree. This computation is
more complicated than just a projection. Here we use the following simple, key
idea. The path from root to leaf is determined by only O(log r) of the verifier’s r
input bits. Additionally, the process of redirecting a query from a leaf to a node
elsewhere in the tree is also determined by only O(log r) input bits. Instead
of following the path, we let the verifier query every possible endpoint. This
multiplies the number of queries by a factor poly(r), which we can afford. We
delegate the task of picking the right query to the postprocess.

One more complication is that each of the two parts needs to be combined with
a randomness-efficient hitter to achieve constant soundness. Using e.g. Cayley
expanders built from small-bias sets, this step is again just a projection.

Ideas Behind the Proof of Theorem 3. A natural idea is to improve the previous
constant-locality result [JMV13] to locality 1. But this may not be possible.
Instead, we show how to reduce arbitrary computation to a polynomial number
of 3CNF formulae, each of which has locality 1. By enumerating over these 3CNF,
and running the satisfiability algorithm on each of them, we get the result. This
idea is similar to the one described above to make [BS08] a projection: after
reading a logarithmic number of bits, the rest of the computation becomes just
a projection.

Open Problems. Improve Theorem 2 to have the same overhead as Theorem 3.



Short PCPs with Projection Queries 169

Organization. In §2 we give a variant of the reduction of non-deterministic time
to 3SAT given in [JMV13]. Using that and Theorem 1 as a black-box, in §3 we
give the proofs of theorems 2 and 3. Due to space restrictions we refer to the full
version for the proof of our main Theorem 1.

2 A Combinatorial Reduction to 3SAT

Our starting point is the following result from [JMV13].

Theorem 4 ([JMV13]). Let M be an algorithm running in time T = T (n) ≥ n
on inputs of the form (x, y) where |x| = n. Given x ∈ {0, 1}n one can output
a circuit D : {0, 1}� → {0, 1}3v+3 in time poly(n, logT ) mapping an index to a
clause of a 3CNF φ in v-bit variables, for v = Θ(�), such that

1. φ is satisfiable iff there is y ∈ {0, 1}T such that M(x, y) accepts, and
2. For any r ≤ n we can have � = max(logT, n/r) + O(log n) + O(log logT )

and each output bit of D is a decision tree of depth O(log r).

Note that for T = 2n and r = O(1) this gives a 3CNF with Tpoly logT
clauses such that each clause can be computed from its index by a function with
constant locality.

We need an incomparable variant of the latter. We enlarge the locality to
O(log n), but at the same time there are only O(log n) input bits that affect
more than 1 bit. If we fix these bits, the rest of the computation is just a bit-
wise xor.

Theorem 5. Let M be an algorithm running in time T = T (n) ≥ n on inputs
of the form (x, y) where |x| = n. Let �1 = log T . For some �2 = O(log logT ) +
O(log n) the following is true. Given x ∈ {0, 1}n one can output in time
poly(n, logT ) six circuits (of size poly(n, log T )): Si : {0, 1}�2 → {0, 1}�1+�2 , bi :
{0, 1}�2 → {0, 1}, for i = 1, 2, 3, such that:

Let φx be the 3CNF with 2�1+�2 = Tpoly(n, logT ) clauses (and variables)
whose (α, β) ∈ {0, 1}�1 × {0, 1}�2 clause contains variables Vi = (α, β) ⊕ Si(β)
and corresponding sign bits bi = bi(β), where i = 1, 2, 3 and ⊕ is bit-wise xor.
Then φx is satisfiable iff there is y ∈ {0, 1}T such that M(x, y) accepts.

Note that in the case T = 2O(n) each output bit ofD depends only on |β|+1 =
O(log n) bits of the input.

The next proof heavily builds on previous works. We give a sketch that high-
lights the tiny changes from previous proofs, and to work out parameters. The
closest previous proof is [JMV13], to which we also refer for a discussion of other
related works.

Proof (Proof sketch). Without loss of generality the algorithm is implemented
by a random-access Turing machine running in time T ′ = Tpoly logn and only
using memory cells at indexes ≤ poly(T ) (see e.g. [NEU12] for details).

Consider a circuit-sat instance where the circuit first guesses a computation
trace consisting of T ′ configurations of size O(log T ) each; and then the circuit



170 E. Ben-Sasson and E. Viola

checks its validity and acceptance. The validity check consists of two separate
checks. The first is the check of the consistency of the transition function of the
machine, assuming that memory reads are correct. The second is the check of
the consistency of the memory reads and writes. The trace is valid if and only
if both checks pass. These two checks are implemented in a similar fashion; we
only describe the second.

Consider a matrix of r × T ′ configurations, where r = poly logT . We use
α to index a column in this matrix. (This actually gives |α| = �1 = logT ′ =
logT + O(log logT ), but the low-order summand can be swallowed in �2.) We
use β to index a row, and the gates within the subcircuits discussed next.

The first row is the computation trace mentioned above that the circuit
guessed. For every t = 1, . . . , T we have a poly(n, log T )-size subcircuit which
checks the pair of configurations (C,C′) at positions (1, t) and (r, t) in the ma-
trix, i.e., in the same column but at antipodal rows. This subcircuit verifies that
either C′ accesses the same memory cell of C and has the timestamp of C plus
one, or C′ accesses a memory cell with index greater than that of the cell accessed
by C, or – the wrap-around condition – it does nothing if C′ is the configuration
with timestamp 0. If all these checks pass then for every t the configuration at
position (t, r) is the one that comes next the configuration at position (t, 1) in
the order given by memory location accessed breaking ties by timestamp. The
subcircuit then verifies consistency of the memory read and write in C and C′.
In particular it verifies that cells read for the first time are blank, and that the
cells 1, . . . , n read for the first time contain the input x. Note that the latter is
possible because our circuits have size ≥ n and are built with knowledge of x.

Observe that these subcircuits operate independently on each column, and
are identical across columns. Their connections depend only on the row index
and an index to one of their gates. By including these two indexes inside β, these
connections can be computed in the required format.

It remains to discuss connections across columns, which are needed to move
configurations around to put them in the right order. For this we use routing
networks such as Beneš’, which are a simple composition of butterfly networks.
The index of a neighbor in column α is obtained by xoring α with a string (of
Hamming weight 1) which only depends on the row, which in turn is part of
β. This leads to the desired format for Vi. The implementation of the routing
network also needs a simple gadget to swap two configurations depending on a
nondeterministic bit. This gadget is the same for every column and row. From
this it follows that the Vi and bi are in the desired format.

3 Lower Bounds from Fast Algorithms

In this section we prove theorems 2 and 3. First we restate the theorem.

Theorem 3 (Satisfiability Implies Lower Bounds, Tightly). Let Cn be
efficiently closed under projections.

If the satisfiability of functions h = g1 ∧ g2 ∧ g3, where gi ∈ Cn+O(log n) is in

Time(2n/nω(1)), then there is a function f in ENP such that fn 	∈ Cn.



Short PCPs with Projection Queries 171

For the proof we use Theorem 5, and we enumerate over the β in its statement.
The key observation is that for any fixed β, the reduction is only computing xor
which can be hardwired with no loss in resources. This enumeration is feasi-
ble because |β| = O(log n). To get better constants we also work with unary
languages.

Proof (Proof of Theorem 3). Suppose that every function in ENP belongs to Cn

when restricted to inputs of length n. Let L be a unary language in NTime(2n)\
NTime(o(2n)) [Coo73,SFM78,Zák83]. Consider the ENP algorithm that on input
x′ ∈ {0, 1}O(logn) and i ≤ 2npoly(n) computes x = 1x

′
, the 3CNF φx correspond-

ing to L through Theorem 5, computes its first satisfying assignment if one exists,
and outputs its ith bit. By assumption, on inputs of length m = n+O(logn) this
function is in Cm. Also, by assumption, if we hardwire x′ the resulting function
still belongs to Cm. Call this function gx.

We contradict the assumption onL by showing how to decide it in Ntime(o(2n)).
LetD, Si, α, β, Vi and bi be as in Theorem 5. Consider the algorithm that on input
x = 1n guesses gx. Then it constructs the function g′x that operates as follows. The
input is that of D. Then it connects three copies of gx to the output variables Vi.
Further, the output of the ith copy is negated and then xored with bi. And finally
an And is taken. Call g′x this new function (which may not belong to anyCn). Note
that g′x(i) = 1 iff the ith clause is not satisfied (by satisfying assignment gx). So
by determining the satisfiability of g′x we can determine if x ∈ L or not.

The satisfiability algorithm enumerates over all poly(n) choices for β. For
each fixed β, the bi are determined, and the remaining computation to obtain
the Vi is an xor by Si(β). All this can be hardwired into g′x in time poly(m),
because Cm is efficiently closed under projections. For every i this gives a new
function gi ∈ Cm. There remains to solve the satisfiability of g1 ∧ g2 ∧ g3. The
latter can be done in time 2m/mω(1) by assumption. So overall the running time
is poly(n,m)2m/mω(1) = 2n/nω(1) = o(2n).

Theorem 2 (Derandomization Implies Lower Bounds, Tightly). Let Cn

be efficiently closed under projections.
If the acceptance probability of functions of the form h = ∧poly(n)∨3Cn+O(log n)

can be distinguished from being = 1 or ≤ 1/n10 in Time(2n/nω(1)), then there
is a function f in ENP such that fn 	∈ Cn.

Proof (Proof Sketch). Proceed as the proof of Theorem 3, but let φx be instead
of the 3CNF produced by Theorem 5 the constraint satisfaction problem corre-
sponding to our main theorem, 1. As before, we obtain a function g′x that on
input i determines if the ith constraint is satisfied. (To show that the complexity
of this function is as desired, we merge the Not gates of the 3CNF correspond-
ing to Dec with the circuits in Cn+O(log n), using the closure of the class.) Thus,
approximately determining how many constraints are satisfied amounts to ap-
proximately determinining the number of satisfying assignments to g′x.



172 E. Ben-Sasson and E. Viola

Acknowledgements. The first co-author is grateful to the SCIPR-lab
(www.scipr-lab.org) members — Alessandro Chiesa, Daniel Genkin, Lior Green-
blatt, Shaul Kfir, Michael Riabzev, Gil Timnat, Eran Tromer and Madars Virza
— for helpful discussions. The second co-author thanks Ramamohan Paturi for
a conversation on MAX3SAT.

References

AGHP92. Alon, N., Goldreich, O., H̊astad, J., Peralta, R.: Simple constructions
of almost k-wise independent random variables. Random Structures &
Algorithms 3(3), 289–304 (1992)

ASE92. Alon, N., Spencer, J.H., Erdős, P.: The Probabilistic Method. Wiley-
Interscience Series in Discrete Mathematics and Optimization. John
Wiley and Sons, Inc. (1992)

BCGT13a. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E.: Fast reductions from
RAMs to delegatable succinct constraint satisfaction problems. In: ACM
Innovations in Theoretical Computer Science Conf. (ITCS), pp. 401–414
(2013)

BCGT13b. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E.: On the concrete
efficiency of probabilistically-checkable proofs. In: ACM Symp. on the
Theory of Computing (STOC), pp. 585–594 (2013)

BGH+05. Ben-Sasson, E., Goldreich, O., Harsha, P., Sudan, M., Vadhan, S.P.:
Short PCPs verifiable in polylogarithmic time. In: IEEE Conf. on
Computational Complexity (CCC), pp. 120–134 (2005)

Blu84. Blum, N.: A boolean function requiring 3n network size. Theoretical
Computer Science 28, 337–345 (1984)

BS08. Ben-Sasson, E., Sudan, M.: Short PCPs with polylog query complexity.
SIAM J. on Computing 38(2), 551–607 (2008)

BSGH+06. Ben-Sasson, E., Goldreich, O., Harsha, P., Sudan, M., Vadhan, S.P.:
Robust PCPs of proximity, shorter PCPs, and applications to coding.
SIAM J. on Computing 36(4), 889–974 (2006)

Coo73. Cook, S.A.: A hierarchy for nondeterministic time complexity. J. of
Computer and System Sciences 7(4), 343–353 (1973)

Din07. Dinur, I.: The PCP theorem by gap amplification. J. of the ACM 54(3),
12 (2007)

DK11. Demenkov, E., Kulikov, A.S.: An elementary proof of a 3n− o(n) lower
bound on the circuit complexity of affine dispersers. In: Symp. on Math.
Foundations of Computer Science (MFCS), pp. 256–265 (2011)

DR06. Dinur, I., Reingold, O.: Assignment testers: Towards a combinatorial
proof of the PCP theorem. SIAM J. on Computing 36(4), 975–1024
(2006)

FSUV13. Fefferman, B., Shaltiel, R., Umans, C., Viola, E.: On beating the hybrid
argument. Theory of Computing 9, 809–843 (2013)

GMR13. Gopalan, P., Meka, R., Reingold, O.: DNF sparsification and a faster
deterministic counting algorithm. Computational Complexity 22(2),
275–310 (2013)

Her11. Hertli, T.: 3-SAT faster and simpler - unique-SAT bounds for PPSZ
hold in general. In: IEEE Symp. on Foundations of Computer Science
(FOCS), pp. 277–284 (2011)



Short PCPs with Projection Queries 173

IKW01. Impagliazzo, R., Kabanets, V., Wigderson, A.: In search of an easy
witness: Exponential time vs. probabilistic polynomial time. In: IEEE
Conf. on Computational Complexity (CCC) (2001)

IKW02. Impagliazzo, R., Kabanets, V., Wigderson, A.: In search of an easy
witness: exponential time vs. probabilistic polynomial time. J. of Com-
puter and System Sciences 65(4), 672–694 (2002)

JMV13. Jahanjou, H., Miles, E., Viola, E.: Local reductions (2013),
http://www.ccs.neu.edu/home/viola/

KL80. Karp, R.M., Lipton, R.J.: Some connections between nonuniform and
uniform complexity classes. In: ACM Symp. on the Theory of Computing
(STOC), pp. 302–309 (1980)

LVW93. Luby, M., Veličković, B., Wigderson, A.: Deterministic approximate
counting of depth-2 circuits. In: 2nd Israeli Symposium on Theoretical
Computer Science (ISTCS), pp. 18–24 (1993)

Mie09. Mie, T.: Short pcpps verifiable in polylogarithmic time with o(1) queries.
Ann. Math. Artif. Intell. 56(3-4), 313–338 (2009)

MTY11. Makino, K., Tamaki, S., Yamamoto, M.: Derandomizing HSSW algo-
rithm for 3-SAT. CoRR, abs/1102.3766 (2011)

NEU12. NEU. From RAM to SAT (2012),
http://www.ccs.neu.edu/home/viola/

NN90. Naor, J., Naor, M.: Small-bias probability spaces: efficient constructions
and applications. In: 22nd ACM Symp. on the Theory of Computing
(STOC), pp. 213–223. ACM (1990)

Oli13. Oliveira, I.C.: Algorithms versus circuit lower bounds. CoRR,
abs/1309.0249 (2013)

SFM78. Seiferas, J.I., Fischer, M.J., Meyer, A.R.: Separating nondeterministic
time complexity classes. J. of the ACM 25(1), 146–167 (1978)

SW13. Santhanam, R., Williams, R.: On medium-uniformity and circuit lower
bounds. In: IEEE Conf. on Computational Complexity (CCC) (2013)

Vio07. Viola, E.: Pseudorandom bits for constant-depth circuits with few arbi-
trary symmetric gates. SIAM J. on Computing 36(5), 1387–1403 (2007)

Vio13. Viola, E.: Challenges in computational lower bounds (2013),
http://www.ccs.neu.edu/home/viola/

Wil05. Williams, R.: A new algorithm for optimal 2-constraint satisfaction and
its implications. Theoretical Computer Science 348(2-3), 357–365 (2005)

Wil10. Williams, R.: Improving exhaustive search implies superpolynomial
lower bounds. In: 42nd ACM Symp. on the Theory of Computing
(STOC), pp. 231–240 (2010)

Wil11. Williams, R.: Non-uniform ACC circuit lower bounds. In: IEEE Conf.
on Computational Complexity (CCC), pp. 115–125 (2011)

Wil13. Williams, R.: Improving exhaustive search implies superpolynomial
lower bounds. SIAM J. on Computing 42(3), 1218–1244 (2013)

Wil14. Williams, R.: New algorithms and lower bounds for circuits with linear
threshold gates. In: ACM Symp. on the Theory of Computing, STOC
(2014)

Zák83. Zák, S.: A turing machine time hierarchy. Theoretical Computer Science
26, 327–333 (1983)

http://www.ccs.neu.edu/home/viola/
http://www.ccs.neu.edu/home/viola/
http://www.ccs.neu.edu/home/viola/

	Short PCPs with Projection Queries
	1 Introduction
	1.1 Our Results
	1.2 Techniques

	2 A Combinatorial Reduction to 3SAT
	3 Lower Bounds from Fast Algorithms
	References




