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Abstract. We provide an algorithm for computing a planar morph between any
two planar straight-line drawings of any n-vertex plane graph in O(n) morphing
steps, thus improving upon the previously best known O(n2) upper bound. Fur-
thermore, we prove that our algorithm is optimal, that is, we show that there exist
two planar straight-line drawings Γs and Γt of an n-vertex plane graph G such
that any planar morph between Γs and Γt requires Ω(n) morphing steps.

1 Introduction

A morph is a continuous transformation between two topologically equivalent geo-
metric objects. The study of morphs is relevant for several areas of computer science,
including computer graphics, animation, and modeling. Many of the geometric shapes
that are of interest in these contexts can be effectively described by two-dimensional
planar graph drawings. Hence, designing algorithms and establishing bounds for mor-
phing planar graph drawings is an important research challenge. We refer the reader
to [7–9, 12, 13] for extensive descriptions of the applications of graph drawing morphs.

It has long been known that there always exists a planar morph (that is, a morph that
preserves planarity at any time instant) transforming any planar straight-line drawing Γs

of a plane graph G into any other planar straight-line drawing Γt of G. The first proof
of such a result, published by Cairns in 1944 [5], was “existential”, i.e., no guarantee
was provided on the complexity of the trajectories of the vertices during the morph.
Almost 40 years later, Thomassen proved in [14] that a morph between Γs and Γt

always exists in which vertices follow trajectories of exponential complexity (in the
number of vertices of G). In other words, adopting a setting defined by Grünbaum and
Shepard [10] which is also the one we consider in this paper, Thomassen proved that a
sequence Γs = Γ1, Γ2, . . . , Γk = Γt of planar straight-line drawings of G exists such
that, for 1 ≤ i ≤ k − 1, the linear morph transforming Γi into Γi+1 is planar, where a
linear morph moves each vertex at constant speed along a straight-line trajectory.

A breakthrough was recently obtained by Alamdari et al. by proving that a planar
morph between any two planar straight-line drawings of the same n-vertex connected
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plane graph exists in which each vertex follows a trajectory of polynomial complex-
ity [1]. That is, Alamdari et al. showed an algorithm to perform the morph in O(n4)
morphing steps, where a morphing step is a linear morph. The O(n4) bound was shortly
afterwards improved to O(n2) by Angelini et al. [3].

In this paper, we provide an algorithm to compute a planar morph with O(n) mor-
phing steps between any two planar straight-line drawings Γs and Γt of any n-vertex
connected plane graph G. Also, we prove that our algorithm is optimal. That is, for
every n, there exist two drawings Γs and Γt of the same n-vertex plane graph (in fact a
path) such that any planar morph between Γs and Γt consists of Ω(n) morphing steps.
To the best of our knowledge, no super-constant lower bound was previously known.

The schema of our algorithm is the same as in [1, 3]. Namely, we morph Γs and
Γt into two drawings Γ x

s and Γ x
t in which a certain vertex v can be contracted onto

a neighbor x. Such contractions generate two straight-line planar drawings Γ ′
s and Γ ′

t

of a smaller plane graph G′. A morph between Γ ′
s and Γ ′

t is recursively computed and
suitably modified to produce a morph between Γs and Γt. The main ingredient for
our new bound is a drastically improved algorithm to morph Γs and Γt into Γ x

s and
Γ x
t . In fact, while the task of making v contractible onto x is accomplished with O(n)

morphing steps in [1, 3], we devise and use properties of monotone drawings, level
planar drawings, and hierarchical graphs to perform it with O(1) morphing steps.

The idea behind the lower bound is that linear morphs can poorly simulate rotations,
that is, a morphing step rotates an edge of an angle whose size is O(1). We then consider
two drawings Γs and Γt of an n-vertex path P , where Γs lies on a straight-line, whereas
Γt has a spiral-like shape, and we prove that in any planar morph between Γs and Γt

there is one edge of P whose total rotation describes an angle whose size is Ω(n).
Because of space limitations, some proofs are omitted and can be found in [2].

2 Preliminaries

Drawings and Embeddings. A planar straight-line drawing of a graph maps each
vertex to a distinct point in the plane and each edge to a straight-line segment between
its endpoints so that no two edges cross. A planar drawing partitions the plane into
topologically connected regions, called faces. The bounded faces are internal, while the
unbounded face is the outer face. A planar straight-line drawing is convex if each face
is delimited by a convex polygon. A planar drawing of a graph determines a circular
ordering of the edges incident to each vertex, called rotation system. Two drawings of
a graph are equivalent if they have the same rotation system and the same outer face.
A plane embedding is an equivalence class of planar drawings. A graph with a plane
embedding is called a plane graph. A plane graph is maximal if no edge can be added
to it while maintaining its planarity.

Subgraphs and Connectivity. A subgraph G′(V ′, E′) of a graph G(V,E) is a graph
such that V ′ ⊆ V and E′ ⊆ E; G′ is induced if, for every u, v ∈ V ′, (u, v) ∈ E′ if and
only if (u, v) ∈ E. If G is a plane graph, then a subgraph G′ of G is regarded as a plane
graph whose plane embedding is the one obtained from G by removing all the vertices
and edges not in G′.
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A graph G is k-connected if removing any k − 1 vertices leaves G connected; a
separating k-set is a set of k vertices whose removal disconnects G. A 3-cycle in a
plane graph G is separating if it contains vertices both in its interior and in its exterior.
Every separating 3-set in a maximal plane graph G induces a separating 3-cycle.

Monotonicity. An arc xy is a line segment directed from a point x to a point y; xy is
monotone with respect to an oriented straight line d if it has a positive projection on d,
i.e., for any two distinct points p and q in this order along xy from x to y, the projection
of p on d precedes the projection of q on d according to the orientation of d. A path
P = (u1, . . . , un) is d-monotone if the straight-line arc uiui+1 is monotone with
respect to d, for i = 1, . . . , n−1; a polygon Q is d-monotone if it contains two vertices
s and t such that the two paths between s and t that delimit Q are both d-monotone. A
path P (a polygon Q) is monotone if there exists an oriented straight line d such that P
(resp. Q) is d-monotone. We show two lemmata about monotone paths and polygons.

Lemma 1. Let Q be any convex polygon and let d be any oriented straight line not
perpendicular to any straight line through two vertices of Q. Then Q is d-monotone.

Lemma 2. Any simple polygon Q with at most 5 vertices is monotone.

Morphing. A linear morph between two straight-line planar drawings Γ1 and Γ2 of
a plane graph G is a continuous transformation from Γ1 to Γ2 such that each vertex
moves at constant speed along a straight line from its position in Γ1 to the one in Γ2. A
linear morph between Γ1 and Γ2 is denoted by 〈Γ1, Γ2〉. A linear morph is planar if no
crossing or overlap occurs between any two edges or vertices during the transformation.
A planar linear morph is also called a morphing step. In the remainder of the paper, we
will construct unidirectional linear morphs, that were defined in [4] as linear morphs in
which the straight-line trajectories of the vertices are parallel.

A morph 〈Γs, . . . , Γt〉 between two straight-line planar drawings Γs and Γt of a
plane graph G is a finite sequence of morphing steps that transforms Γs into Γt. A
unidirectional morph is such that each of its morphing steps is unidirectional.

Let Γ be a planar straight-line drawing of a plane graphG. The kernel of a vertex v of
G is the open convex region R such that placing v at any point of R while maintaining
the position of every other vertex unchanged yields a planar straight-line drawing of
G. If a neighbor x of v lies on the boundary of the kernel of v in Γ , we say that v
is x-contractible. The contraction of v onto x in Γ is the operation resulting in: (i) a
simple graph G′ = G/(v, x) obtained from G by removing v and by replacing each
edge (v, w), where w �= x, with an edge (x,w) (if it does not already belong to G);
and (ii) a planar straight-line drawing Γ ′ of G′ such that each vertex different from v
is mapped to the same point as in Γ . Also, the uncontraction of v from x into Γ is the
reverse operation of the contraction of v onto x in Γ , i.e., the operation that produces
a planar straight-line drawing Γ of G from a planar straight-line drawing Γ ′ of G′. A
vertex v in a plane graph G is quasi-contractible if (i) deg(v) ≤ 5 and (ii) for any two
neighbors u and w of v connected by an edge, cycle (u, v, w) delimits a face of G. We
have the following.

Lemma 3. (Angelini et al. [3]) Every plane graph contains a quasi-contractible vertex.



Morphing Planar Graph Drawings Optimally 129

In the remainder of the paper, even when not explicitly specified, we will only con-
sider and perform contractions of quasi-contractible vertices.

Let Γ1 and Γ2 be two straight-line planar drawings of the same plane graph G. We
define a pseudo-morph of Γ1 into Γ2 inductively, as follows:
(A) a unidirectional morph with m morphing steps of Γ1 into Γ2 is a pseudo-morph
with m steps of Γ1 into Γ2;
(B) a unidirectional morph with m1 morphing steps of Γ1 into a straight-line planar
drawing Γ x

1 of G, followed by a pseudo-morph with m2 steps of Γ x
1 into a straight-line

planar drawing Γ x
2 of G, followed by a unidirectional morph with m3 morphing steps

of Γ x
2 into Γ2 is a pseudo-morph of Γ1 into Γ2 with m1 +m2 +m3 steps; and

(C) let Γ ′
1 (Γ ′

2) be the straight-line planar drawing of the plane graph G′ obtained by
contracting a quasi-contractible vertex v of G onto x in Γ1 (in Γ2); the contraction of v
onto x, followed by a pseudo-morph with m steps of Γ ′

1 into Γ ′
2 and by the uncontrac-

tion of v from x into Γ2 is a pseudo-morph with m+ 2 steps of Γ1 into Γ2.
Pseudo-morphs have two useful and powerful features.
First, it is easy to design an inductive algorithm for constructing a pseudo-morph

between any two planar straight-line drawings Γ1 and Γ2 of the same n-vertex plane
graph G. Namely, consider any quasi-contractible vertex v of G and let x be any neigh-
bor of v. Morph unidirectionally Γ1 and Γ2 into two planar straight-line drawings Γ x

1

and Γ x
2 , respectively, in which v is x-contractible. Now contract v onto x in Γ x

1 and
in Γ x

2 obtaining two planar straight-line drawings Γ ′
1 and Γ ′

2, respectively, of the same
(n − 1)-vertex plane graph G′. Then, the algorithm is completed by inductively com-
puting a pseudo-morph of Γ ′

1 into Γ ′
2.

Second, computing a pseudo-morph between Γ1 and Γ2 leads to computing a planar
unidirectional morph between Γ1 and Γ2, as formalized in Lemma 4. We remark that,
although Lemma 4 has never been stated as below, its proof can be directly derived
from the results of [1, 3] and, mainly, of Barrera-Cruz et al. [4].

Lemma 4. Let Γs and Γt be two straight-line planar drawings of a plane graph G. Let
P be a pseudo-morph with m steps transforming Γs into Γt. It is possible to construct
a planar unidirectional morph M with m morphing steps transforming Γs into Γt.

Hierarchical Graphs and Level Planarity. A hierarchical graph is defined as a tuple
(G,d, L, γ) where: (i) G is a graph; (ii) d is an oriented straight line in the plane; (iii) L
is a set of parallel lines (sometimes called layers) that are orthogonal to d; the lines in L
are assumed to be ordered in the same order as they are intersected by d when traversing
such a line according to its orientation; and (iv) γ is a function that maps each vertex of
G to a line in L in such a way that, if an edge (u, v) belongs to G, then γ(u) �= γ(v). A
level drawing of (G,d, L, γ) (sometimes also called hierarchical drawing) maps each
vertex v of G to a point on the line γ(v) and each edge (u, v) of G such that line γ(u)
precedes line γ(v) in L to an arc uv monotone with respect to d. A hierarchical plane
graph is a hierarchical graph (G,d, L, γ) such that G is a plane graph and such that a
level planar drawingΓ of (G,d, L, γ) exists that “respects” the embedding of G (that is,
the rotation system and the outer face of G in Γ are the same as in the plane embedding
of G). Given a hierarchical plane graph (G,d, L, γ), an st-face of G is a face delimited
by two paths (s = u1, u2, . . . , uk = t) and (s = v1, v2, . . . , vl = t) such that γ(ui)
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precedes γ(ui+1) in L, for every 1 ≤ i ≤ k − 1, and such that γ(vi) precedes γ(vi+1)
in L, for every 1 ≤ i ≤ l − 1. We say that (G,d, L, γ) is a hierarchical plane st-graph
if every face of G is an st-face. Let Γ be any straight-line level planar drawing of a
hierarchical plane graph (G,d, L, γ) and let f be a face of G; then, it is easy to argue
that f is an st-face if and only if the polygon delimiting f in Γ is d-monotone.

In this paper we will use an algorithm by Hong and Nagamochi that constructs con-
vex straight-line level planar drawings of hierarchical plane st-graphs [11]. Here we
explicitly formulate a weaker version of their main theorem.1

Theorem 1. (Hong and Nagamochi [11]) Every 3-connected hierarchical plane st-
graph (G,d, L, γ) admits a convex straight-line level planar drawing.

Consider any straight-line level planar drawing Γ of a hierarchical plane graph
(G,d, L, γ). Since each edge (u, v) of G is represented in Γ by a d-monotone arc,
the fact that (u, v) intersects a line li ∈ L does not depend on the actual drawing Γ ,
but only on the fact that li lies between lines γ(u) and γ(v) in L. Assume that each line
li ∈ L is oriented so that d cuts li from the right to the left of li. We say that an edge
e precedes (follows) a vertex v on a line li in Γ if γ(v) = li, e intersects li in a point
pi(e), and pi(e) precedes (resp. follows) v on li when traversing such a line according
to its orientation. Also, we say that an edge e precedes (follows) an edge e′ on a line
li in Γ if e and e′ both intersect li at points pi(e) and pi(e

′), and pi(e) precedes (resp.
follows) pi(e′) on li when traversing such a line according to its orientation.

Now consider two straight-line level planar drawings Γ1 and Γ2 of a hierarchical
plane graph (G,d, L, γ). We say that Γ1 and Γ2 are left-to-right equivalent if, for any
line li ∈ L, for any vertex or edge x of G, and for any vertex or edge y of G, we have
that x precedes (follows) y on li in Γ1 if and only if x precedes (resp. follows) y on li
in Γ2. We are going to make use of the following lemma.

Lemma 5. Let Γ1 and Γ2 be two left-to-right equivalent straight-line level planar
drawings of the same hierarchical plane graph (G,d, L, γ). Then the linear morph
〈Γ1, Γ2〉 transforming Γ1 into Γ2 is planar and unidirectional.

3 A Morphing Algorithm

In this section we describe an algorithm to construct a planar unidirectional morph with
O(n) steps between any two straight-line planar drawings Γs and Γt of the same n-
vertex plane graph G. The algorithm relies on two subroutines, called FAST CONVEX-
IFIER and CONTRACTIBILITY CREATOR, which are described in Sections 3.1 and 3.2,
respectively. The algorithm is described in Section 3.3.

1 We make some remarks. First, the main result in [11] proves that a convex straight-line level
planar drawing of (G,d, L, γ) exists even if a convex polygon representing the cycle delim-
iting the outer face of G is arbitrarily prescribed. Second, the result holds for a super-class
of the 3-connected planar graphs, namely for all the graphs that admit a convex straight-line
drawing [6, 15]. Third, the result assumes that the lines in L are horizontal; however, a suitable
rotation of the coordinate axes shows how that assumption is not necessary. Fourth, looking
at the figures in [11] one might get the impression that the lines in L need to be equidistant;
however, this is nowhere used in their proof, hence the result holds for any set of parallel lines.
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Fig. 1. (a) Straight-line planar drawing Γ of G. (b) Straight-line level planar drawing Γ ′ of
(G′,d, L′, γ′). (c) Convex straight-line level planar drawing Γ ′

M of (G′,d, L′, γ′).

3.1 Fast Convexifier

Consider a straight-line planar drawing Γ of an n-vertex maximal plane graph G, for
some n ≥ 4. Let v be a quasi-contractible internal vertex of G and let Cv be the cycle
of G induced by the neighbors of v. See Fig. 1(a). In this section we show an algorithm,
that we call FAST CONVEXIFIER, morphing Γ into a straight-line planar drawing ΓM

of G in which Cv is convex with a single unidirectional morphing step.
Let G′ be the (n − 1)-vertex plane graph obtained by removing v and its incident

edges from G. Also, let Γ ′ be the straight-line planar drawing of G′ obtained by remov-
ing v and its incident edges from Γ . As v is quasi-contractible, we have the following.

Lemma 6. Graph G′ is 3-connected.

Consider the polygon Qv representing Cv in Γ and in Γ ′. By Lemma 2, Qv is d-
monotone, for some oriented straight line d. Slightly perturb the slope of d so that no
line through two vertices of G in Γ is perpendicular to d. If the perturbation is small
enough, then Qv is still d-monotone. Denote by u1, . . . , un−1 the vertices of G′ ordered
according to their projection on d. For 1 ≤ i ≤ n − 1, denote by li the line through
ui orthogonal to d. Let L′ = {l1, . . . , ln−1}; note that the lines in L′ are parallel and
distinct. Let γ′ be the function that maps ui to li, for 1 ≤ i ≤ n− 1. See Fig. 1(b).

Lemma 7. (G′,d, L′, γ′) is a hierarchical plane st-graph.

Proof: By construction, Γ ′ is a straight-line level planar drawing of (G′,d, L′, γ′),
hence (G′,d, L′, γ′) is a hierarchical plane graph. Further, every polygon delimiting a
face of G′ in Γ ′ is d-monotone. This is true for Qv by construction and for every other
polygon Qi delimiting a face of G′ in Γ ′ by Lemma 1, given that Qi is a triangle and
hence it is convex. Since every polygon delimiting a face of G′ in Γ ′ is d-monotone,
every face of G′ is an st-face, hence (G′,d, L′, γ′) is a hierarchical plane st-graph. �

By Lemmata 6 and 7, (G′,d, L′, γ′) is a 3-connected hierarchical plane st-graph.
By Theorem 1, a convex straight-line level planar drawing Γ ′

M of (G′,d, L′, γ′) exists.
Denote by QM

v the convex polygon representing Cv in Γ ′
M . See Fig. 1(c).

Denote by r and s the minimum and the maximum index such that ur and us belong
to Cv , respectively. Denote by l(v) the line through v orthogonal to d in Γ . If l(v)
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Fig. 2. Morphing Γ into a straight-line planar drawing ΓM of G in which the polygon QM
v rep-

resenting Cv is convex. The thick line parallel to li is l(v).

were contained in the half-plane delimited by lr and not containing ls, then v would
not lie inside Qv in Γ , as the projection of every vertex of Qv on d would follow the
projection of v on d. Analogously, l(v) is not contained in the half-plane delimited by
ls and not containing lr. It follows that l(v) is “in-between” lr and ls, that is, l(v) lies
in the strip defined by lr and ls. Construct a straight-line planar drawing ΓM of G from
Γ ′
M by placing v on any point at the intersection of l(v) and the interior of QM

v . Such an
intersection is always non-empty, given that lr and ls have non-empty intersection with
QM

v , given that l(v) is in-between lr and ls, and given that QM
v is a convex polygon.

Algorithm FAST CONVEXIFIER consists of a single linear morph 〈Γ, ΓM 〉 transform-
ing Γ into ΓM . See Fig. 2. Note that the polygon QM

v representing Cv in ΓM is convex.
Also, let γ be the function that maps v to l(v) and ui to li, for 1 ≤ i ≤ n − 1. We
have that Γ and ΓM are left-to-right equivalent straight-line level planar drawings of
(G,d, L′ ∪ {l(v)}, γ), hence, by Lemma 5, 〈Γ, ΓM 〉 is unidirectional and planar.

3.2 Contractibility Creator

We now describe algorithm CONTRACTIBILITY CREATOR, which receives a straight-
line planar drawing Γ of a plane graph G, a quasi-contractible vertex v of G, and a
neighbor x of v, and returns a planar unidirectional morph with O(1) morphing steps
transforming Γ into a straight-line planar drawing Γ ′ of G in which v is x-contractible.

Denote by u1, . . . , uk the clockwise order of the neighbors of v. If k = 1, then v is
x-contractible in Γ , hence algorithm CONTRACTIBILITY CREATOR returns Γ ′ = Γ .

If k ≥ 2, consider any pair of consecutive neighbors of v, say ui and ui+1 (where
uk+1 = u1). See Fig. 3(a). If edge (ui, ui+1) belongs to G, then cycle (ui, v, ui+1)
delimits a face of G, given that v is quasi-contractible. Otherwise, we aim at morphing
Γ into a straight-line planar drawing of G where a dummy edge (ui, ui+1) can be intro-
duced while maintaining planarity and while ensuring that cycle (ui, v, ui+1) delimits
a face of the augmented graph G∪{(ui, ui+1)}. (This insertion might not be performed
directly in Γ , see Fig. 3(b).) The required morphing is constructed as follows:

(Step 1) We add two dummy vertices r and r′, and six dummy edges (r, v), (r, ui),
(r, ui+1), (r′, ui), (r′, ui+1), and (r, r′) to Γ and G, obtaining a straight-line planar
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Fig. 3. (a) Drawing Γ of G. (b) Drawing (ui, ui+1) in Γ might cause a crossing. (c) Drawing Γ+

of G+. (d) Drawing Γ ∗ of G∗. (e) Drawing Γ ∗
M of G∗. (f) Drawing ΓM of G ∪ {(ui, ui+1)}.

drawing Γ+ of a plane graph G+, in such a way that Γ+ is planar and cycles (v, r, ui),
(v, r, ui+1), (r′, r, ui), and (r′, r, ui+1) delimit faces of G+. See Fig. 3(c). (Step 2)
We add dummy vertices and edges to Γ+ and G+, obtaining a straight-line planar
drawing Γ ∗ of a graph G∗, in such a way that Γ ∗ is planar, that G∗ is a maximal
planar graph, and that edges (ui, ui+1) and (r′, v) do not belong to G∗. Observe that r
is a quasi-contractible vertex of G∗. See Fig. 3(d). (Step 3) We apply algorithm FAST

CONVEXIFIER to morph Γ ∗ with one unidirectional morphing step into a straight-line
planar drawing Γ ∗

M of G∗ such that the polygon of the neighbors of r is convex. See
Fig. 3(e). (Step 4) We remove from Γ ∗

M all the dummy vertices and edges that belong
to G∗ and do not belong to G, and we add edge (ui, ui+1) to Γ ∗

M and G, obtaining a
straight-line planar drawing ΓM of graph G ∪ {(ui, ui+1)}. See Fig. 3(f).

If k = 2, then after the above described algorithm is performed, we have that v
is x-contractible in Γ ′ = ΓM , both if x = u1 or if x = u2, given that (v, u1, u2)
delimits a face of G ∪ {(u1, u2)}. If 3 ≤ k ≤ 5, then the above described algorithm
is repeated at most k times (namely once for each pair of consecutive neighbors of v
that are not adjacent in G), at each time inserting an edge between a distinct pair of
consecutive neighbors of v. Eventually, we obtain a straight-line planar drawing Φ of
plane graph G ∪ {(u1, u2), (u2, u3), (u3, u4), (u4, u5), (u5, u1)} in which v is quasi-
contractible. Then we add dummy vertices and edges to Φ, obtaining a straight-line
planar drawing Σ of a graph H , in such a way that H is a maximal planar graph and
that v is quasi-contractible in Σ. We apply algorithm FAST CONVEXIFIER to morph Σ
with one unidirectional morphing step into a straight-line planar drawing Ψ of H such
that the polygon of the neighbors of v is convex. Hence, v is contractible onto any of
its neighbors in Ψ . Then, we remove the edges of H not in G, obtaining a straight-line
planar drawing Γ ′ of G in which v is contractible onto any of its neighbors; hence, v is
x-contractible in Γ ′. Finally, observe that Γ ′ is obtained from Γ in at most k + 1 ≤ 6
unidirectional morphing steps.
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3.3 The Algorithm

We now describe an algorithm to construct a pseudo-morphP with O(n) steps between
any two straight-line planar drawings Γs and Γt of the same n-vertex plane graph G.

The algorithm works by induction on n. If n = 1, then P consists of a single uni-
directional morphing step transforming Γs into Γt. If n ≥ 2, then let v be a quasi-
contractible vertex of G, which exists by Lemma 3, and let x be any neighbor of v. Let
Ms and Mt be the planar unidirectional morphs with O(1) morphing steps produced
by algorithm CONTRACTIBILITY CREATOR transforming Γs and Γt into straight-line
planar drawings Γ x

s and Γ x
t of G, respectively, such that v is x-contractible both in Γ x

s

and in Γ x
t . Let G′ be the (n− 1)-vertex plane graph obtained by contracting v onto x in

G, and let Γ ′
s and Γ ′

t be the straight-line planar drawings of G′ obtained from Γ x
s and

Γ x
t , respectively, by contracting v onto x. Further, let P ′ be the inductively constructed

pseudo-morph between Γ ′
s and Γ ′

t . Then, pseudo-morph P is defined as unidirectional
morph Ms transforming Γs into Γ x

s , followed by the contraction of v onto x in Γ x
s ,

followed by the pseudo-morphP ′ between Γ ′
s and Γ ′

t , followed by the uncontraction of
v from x into Γ x

t , followed by the unidirectional morph M−1
t transforming Γ x

t into Γt.
Observe that P has a number of steps which is a constant plus the number of steps of
P ′. Hence, P consists of O(n) steps. A unidirectional planar morph M between Γs and
Γt can be constructed with a number of morphing steps equal to the number of steps of
P , by Lemma 4. This proves the following:

Theorem 2. Let Γs and Γt be any two straight-line planar drawings of the same n-
vertex plane graph G. There exists an algorithm to construct a planar unidirectional
morph with O(n) morphing steps transforming Γs into Γt.

4 A Lower Bound

In this section we show two straight-line planar drawings Γs and Γt of an n-vertex
path P = (v1, . . . , vn), and we prove that any planar morph M between Γs and Γt

requires Ω(n) morphing steps. In order to simplify the description, we consider each
edge ei = (vi, vi+1) as oriented from vi to vi+1, for i = 1, . . . , n− 1.

Drawing Γs (see Fig. 4(a)) is such that all the vertices of P lie on a horizontal straight
line with vi to the left of vi+1, for each i = 1, . . . , n − 1. Drawing Γt (see Fig. 4(b))
is such that: (a) for each i = 1, . . . , n − 1 with i mod 3 ≡ 1, ei is horizontal with vi
to the left of vi+1; (b) for each i = 1, . . . , n − 1 with i mod 3 ≡ 2, ei is parallel to
line y = tan(2π3 )x with vi to the right of vi+1; and (c) for each i = 1, . . . , n− 1 with
i mod 3 ≡ 0, ei is parallel to line y = tan(− 2π

3 )x with vi to the right of vi+1.
Let M = 〈Γs = Γ1, . . . , Γx = Γt〉 be any planar morph transforming Γs into Γt.
For i = 1, . . . , n and j = 1, . . . , x, we denote by vji the point where vertex vi is

placed in Γj and by eji the directed straight-line segment representing edge ei in Γj .
For 1 ≤ j ≤ x−1, we define the rotation ρji of ei around vi during the morphing step

〈Γj , Γj+1〉 as follows (see Figs. 5(a)–(b)). Translate ei at any time instant of 〈Γj , Γj+1〉
so that vi stays fixed at a point a during the entire morphing step. After this translation,
the morph between eji and ej+1

i is a rotation of ei around a (where ei might vary its
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Fig. 4. Drawings Γs (a) and Γt (b)
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Fig. 5. (a) Morph between eji and ej+1
i . (b) Translation of the positions of ei during 〈Γj , Γj+1〉,

resulting in ei spanning an angle ρji around vi. (c) Illustration for the proof of Lemma 8.

length during 〈Γj , Γj+1〉) spanning an angle ρji , where we assume ρji > 0 if the rotation
is counter-clockwise, and ρji < 0 otherwise. We have the following.

Lemma 8. For each j = 1, . . . , x− 1 and i = 1, . . . , n− 1, we have |ρji | < π.

Proof: Assume, for a contradiction, that |ρji | ≥ π, for some 1 ≤ j ≤ x−1 and 1 ≤ i ≤
n− 1. Also assume, w.l.o.g., that the morphing step 〈Γj , Γj+1〉 happens between time
instants t = 0 and t = 1. For any 0 ≤ t ≤ 1, denote by vi(t), vi+1(t), ei(t), and ρji (t)
the position of vi, the position of vi+1, the drawing of ei, and the rotation of ei around
vi at time instant t, respectively. Note that vi(0) = vji , vi+1(0) = vji+1, ei(0) = eji ,

ρji (0) = 0, and ρji (1) = ρji . Since a morph is a continuous transformation and since
|ρji | ≥ π, there exists a time instant tπ with 0 < tπ ≤ 1 such that |ρji (tπ)| = π.

We prove that there exists a time instant tr with 0 < tr ≤ tπ in which vi(t) and
vi+1(t) coincide, thus contradicting the assumption that morph 〈Γj , Γj+1〉 is planar.

Since |ρji (tπ)| = π, it follows that ei(tπ) is parallel to ei(0) and oriented in the
opposite way. This easily leads to conclude that tr exists if ei(tπ) and ei(0) are aligned.
Otherwise, the straight-line segments vi(0)vi(tπ) and vi+1(0)vi+1(tπ) meet in a point
p. Refer to Fig. 5(c). Let x1 = |pvi(0)|, x2 = |pvi+1(0)|, y1 = |pvi(tπ)|, and y2 =
|pvi+1(tπ)|. By the similarity of triangles (vi(0), p, vi+1(0)) and (vi(tπ), p, vi+1(tπ)),
we have x1

y1
= x2

y2
and hence x1

x1+y1
= x2

x2+y2
. Thus, vi( x1

x1+y1
tπ) and vi+1(

x1

x1+y1
tπ)

are coincident with p. This contradiction proves the lemma. �
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For j = 1, . . . , x− 1, we denote by Mj the subsequence 〈Γ1, . . . , Γj+1〉 of M ; also,
for i = 1, . . . , n − 1, we define the total rotation ρi(Mj) of edge ei around vi during
morph Mj as ρi(Mj) =

∑j
m=1 ρ

m
i .

We will show in Lemma 10 that there exists an edge ei, for some 1 ≤ i ≤ n − 1,
whose total rotation ρi(Mx−1) = ρi(M) is Ω(n). In order to do that, we first analyze
the relationship between the total rotation of two consecutive edges of P .

Lemma 9. For each j = 1, . . . , x − 1 and for each i = 1, . . . , n − 2, we have that
|ρi+1(Mj)− ρi(Mj)| < π.

Proof: Suppose, for a contradiction, that |ρi+1(Mj)− ρi(Mj)| ≥ π for some 1 ≤ j ≤
x − 1 and 1 ≤ i ≤ n − 2. Assume that j is minimal under this hypothesis. Since
each vertex moves continuously during Mj , there exists an intermediate drawing Γ ∗ of
P , occurring during morphing step 〈Γj , Γj+1〉, such that |ρi+1(M

∗) − ρi(M
∗)| = π,

where M∗ = 〈Γ1, . . . , Γj, Γ
∗〉 is the morph obtained by concatenating Mj−1 with the

morphing step transforming Γj into Γ ∗. Recall that in Γ1 edges ei and ei+1 lie on the
same straight line and have the same orientation. Then, since |ρi+1(M

∗)− ρi(M
∗)| =

π, in Γ ∗ edges ei and ei+1 are parallel and have opposite orientations. Also, since edges
ei and ei+1 share vertex vi+1, they lie on the same line. This implies that such edges
overlap, contradicting the hypothesis that M∗, Mj , and M are planar. �

We now prove the key lemma for the lower bound.

Lemma 10. There exists an index i such that |ρi(M)| ∈ Ω(n).

Proof: Refer to Fig. 4. For every 1 ≤ i ≤ n − 2, edges ei and ei+1 form an angle
of π radiants in Γs, while they form an angle of π

3 radiants in Γt. Hence, ρi+1(M) =
ρi(M) + 2π

3 + 2ziπ, for some zi ∈ Z. In order to prove the lemma, it suffices to prove
that zi = 0, for every i = 1, . . . , n − 2. Namely, in this case ρi+1(M) = ρi(M) + 2π

3
for every 1 ≤ i ≤ n − 2, and hence ρn−1(M) = ρ1(M) + 2π

3 (n − 2). This implies
|ρn−1(M) − ρ1(M)| ∈ Ω(n), and thus |ρ1(M)| ∈ Ω(n) or |ρn−1(M)| ∈ Ω(n).
Assume, for a contradiction, that zi �= 0, for some 1 ≤ i ≤ n − 2. If zi > 0, then
ρi+1(M) ≥ ρi(M) + 8π

3 ; further, if zi < 0, then ρi+1(M) ≤ ρi(M)− 4π
3 . Since each

of these inequalities contradicts Lemma 9, the lemma follows. �
We are now ready to state the main theorem of this section.

Theorem 3. There exists two straight-line planar drawings Γs and Γt of an n-vertex
path P such that any planar morph between Γs and Γt requires Ω(n) morphing steps.

Proof: The two drawings Γs and Γt of path P = (v1, . . . , vn) are those illustrated
in Fig. 4. By Lemma 10, there exists an edge ei of P , for some 1 ≤ i ≤ n − 1,
such that |∑x−1

j=1 ρji | ∈ Ω(n). Since, by Lemma 8, we have that |ρji | < π for each
j = 1, . . . , x− 1, it follows that x ∈ Ω(n). This concludes the proof of the theorem. �

5 Conclusions

In this paper we presented an algorithm to construct a planar morph between two pla-
nar straight-line drawings of the same n-vertex plane graph in O(n) morphing steps.



Morphing Planar Graph Drawings Optimally 137

We also proved that this bound is tight (note that our lower bound holds for any mor-
phing algorithm in which the vertex trajectories are polynomial functions of constant
degree).

In our opinion, the main challenge in this research area is the one of designing al-
gorithms to construct planar morphs between straight-line planar drawings with good
resolution and within polynomial area (or to prove that no such algorithm exists). In
fact, the algorithm we presented, as well as other algorithms known at the state of the
art [1, 3, 5, 14], construct intermediate drawings in which the ratio between the lengths
of the longest and of the shortest edge is exponential. Guaranteeing good resolution and
small area seems to be vital for making a morphing algorithm of practical utility.

Finally, we would like to mention an original problem that generalizes the one we
solved in this paper and that we repute very interesting. Let Γs and Γt be two straight-
line drawings of the same (possibly non-planar) topological graph G. Does a morphing
algorithm exist that morphs Γs into Γt and that preserves the topology of the draw-
ing at any time instant? A solution to this problem is not known even if we allow the
trajectories followed by the vertices to be of arbitrary complexity.
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