
Vijay Atluri
Günther Pernul (Eds.)

 123

LN
CS

 8
56

6

28th Annual IFIP WG 11.3 Working Conference, DBSec 2014
Vienna, Austria, July 14–16, 2014
Proceedings

Data and Applications
Security and Privacy XXVIII

Lecture Notes in Computer Science 8566
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Vijay Atluri Günther Pernul (Eds.)

Data and Applications
Security and Privacy XXVIII

28th Annual IFIP WG 11.3 Working Conference, DBSec 2014
Vienna, Austria, July 14-16, 2014
Proceedings

13

Volume Editors

Vijay Atluri
Rutgers University
1 Washington Park, Newark, NJ 07102, USA
E-mail: atluri@rutgers.edu

Günther Pernul
Universität Regensburg
Universitätsstraße 31, 93053 Regensburg, Germany
E-mail: guenther.pernul@wiwi.uni-regensburg.de

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-662-43935-7 e-ISBN 978-3-662-43936-4
DOI 10.1007/978-3-662-43936-4
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014941798

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

© IFIP International Federation for Information Processing 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the papers presented at the 28th Annual IFIP WG 11.3
Working Conference on Data and Applications Security and Privacy (DBSEC)
held in Vienna, Austria, July 14–16, 2014. This year’s conference continued its
tradition of being a forum for disseminating original research results and prac-
tical experiences in data and applications security and privacy.

This year we had an excellent program that consisted of 8 regular research
paper sessions with 22 regular research papers, and 4 short papers, which were
selected from a total of 63 submissions after a rigorous reviewing process by the
Program Committee members and external reviewers. These sessions included
such topics as access control, privacy, networked and mobile environments, data
access, cloud databases and private retrieval. In addition, the program included
two keynote talks by Chris Clifton and Reinhard Posch.

The success of this conference was a result of the efforts of many people. We
would like to extend our appreciation to the Program Committee members and
external reviewers for their hard work. We would like to thank the general chairs,
Pierangela Samarati, and Edgar Weippl, for taking care of the organization as-
pects of the conference. We would also like to thank Yvonne Poul for serving
as the local arrangement chair and for promptly updating the conference web
page, and Giovanni Livraga for serving as the publication chair. Special thanks
go to Alfred Hofmann, Editorial Director of Springer, for agreeing to include
these conference proceedings in the Lecture Notes in Computer Science series.

Last but not least, my thanks go to all of the authors who submitted papers
and to all of the attendees. We hope you find the program stimulating and
beneficial for your research. Welcome and enjoy the conference.

July 2014 Vijay Atluri
Günther Pernul

Organization

Program Committee

Gail-Joon Ahn Arizona State University, USA
Claudio Agostino Ardagna Universita’ degli Studi di Milano, Italy
Vijay Atluri Rutgers University, USA
Joachim Biskup Technische Universität Dortmund, Germany
Marina Blanton University of Notre Dame, USA
David Chadwick University of Kent, UK
Soon Ae Chun CUNY, USA
Frédéric Cuppens Télécom Bretagne, France
Nora Cuppens-Boulahia Télécom Bretagne, France
Sabrina De Capitani Di

Vimercati Universita’ degli Studi di Milano, Italy
Mourad Debbabi Concordia University, Canada
Josep Domingo-Ferrer Universitat Rovira i Virgili, Spain
Eduardo B. Fernandez Florida Atlantic University, USA
Simone Fischer-Hübner Karlstad University, Sweden
Sara Foresti Universita’ degli Studi di Milano, Italy
Ehud Gudes Ben-Gurion University, Israel
Ragib Hasan University of Alabama at Birmingham, USA
Yuan Hong University at Albany, SUNY, USA
Sushil Jajodia George Mason University, USA
Sokratis Katsikas University of Piraeus, Greece
Adam J. Lee University of Pittsburgh, USA
Haibing Lu Santa Clara University, USA
Emil Lupu Imperial College, UK
Martin Olivier ICSA, University of Pretoria, South Africa
Sylvia Osborn The University of Western Ontario, Canada
Stefano Paraboschi Universita di Bergamo, Italy
Guenther Pernul
Indrajit Ray Colorado State University, USA
Indrakshi Ray Colorado State University, USA
Kui Ren State University of New York at Buffalo, USA
Kouichi Sakurai Kyushu University, Japan
Pierangela Samarati Universita’ degli Studi di Milano, Italy
Andreas Schaad SAP AG, Germany
Basit Shafiq Lahore University of Management Sciences,

Pakistan
Heechang Shin Iona College, USA
Shamik Sural IIT, Kharagpur, India

VIII Organization

Traian Marius Truta Northern Kentucky University, USA
Jaideep Vaidya Rutgers University, USA
Lingyu Wang Concordia University, Canada
Meng Yu Virginia Commonwealth University, USA
Zutao Zhu Google Inc., USA

Additional Reviewers

Alrabaee, Saed
Blanco-Justicia, Alberto
Boukhtouta, Amine
Centonze, Paolina
Gaspar, Jaime
Hahn, Florian
Hang, Isabelle
Haque, Md
Huo, Wei
Jarraya, Yosr
Jhanwar, Mahabir Prasad
Kawamoto, Junpei
Khalili, Mina
Khan, Rasib
Le, Meixing
Livraga, Giovanni
Madi, Leila
Matsumoto, Shinichi
Moataz, Tarik
Mueller, Tobias

Mukherjee, Subhojeet
Mulamba, Dieudonne
Ohtaki, Yasuhiro
Preda, Stere
Pujol, Marta
Ray, Sujoy
Romero, Cristina
Rufian-Torrell, Guillem
Sabaté-Pla, Albert
Servos, Daniel
Sgandurra, Daniele
Shirani, Paria
Soeanu, Andrei
Sun, Kun
Wang, Guan
Zang, Wanyu
Zawoad, Shams
Zhang, Lei
Zhang, Mengyuan
Zhang, Yihua

Abstracts of Invited Talks

Privacy without Encrypting: Protect Your Data

and Use It Too

Chris Clifton

Purdue University, West Lafayette, IN 47907, USA
clifton@cs.purdue.edu

http://www.cs.purdue.edu/people/clifton

There has been ongoing work in encrypted database as a means to protect pri-
vacy, but this comes at a high price. An alternative is separating sensitive and
identifying information, through models such as fragmentation[2], anatomiza-
tion[6], and slicing[3]. In our DBSec’11 paper, we presented a query processor
over such a data separation model, where the server cannot violate privacy con-
straints, but still does most of the work before sending final results to be joined by
the client (who is allowed access to private data.)[4] A follow-on paper extended
this to updates.[5] In DBSec’13 we showed how to ensure privacy constraints are
satisfied when storing transactional data under such a model.[1]

This talk will look at using such data: How do we learn (and what can’t
we learn) when data is stored under a data separation approach. This involves
both server-only approaches (what value can the server get in return for storing
privacy-protected data), and client/server cooperation (pushing as much work to
the server as possible, with the client doing only what is needed to ensure quality
results.) We will look at anonymization techniques that support learning while
providing privacy, as well as data mining techniques adapted to this model.

This talk presents work that was made possible by NPRP grant 02-256-1-046
from the Qatar National Research Fund. The statements made herein are solely
the responsibility of the author.

References

1. Al Bouna, B., Clifton, C., Malluhi, Q.: Using safety constraint for transactional
dataset anonymization. In: Wang, L., Shafiq, B. (eds.) DBSec 2013. LNCS, vol. 7964,
pp. 164–178. Springer, Heidelberg (2013)

2. Ciriani, V., Vimercati, S.D.C.D., Foresti, S., Jajodia, S., Paraboschi, S., Samarati,
P.: Combining fragmentation and encryption to protect privacy in data storage.
ACM Trans. Inf. Syst. Secur. 13, 22:1–22:33 (2010),
http://doi.acm.org/10.1145/1805974.1805978

3. Li, T., Li, N., Zhang, J., Molloy, I.: Slicing: A new approach for privacy preserving
data publishing. IEEE Transactions on Knowledge and Data Engineering 24(3),
561–574 (2012), http://doi.ieeecomputersociety.org/10.1109/TKDE.2010.236

XII C. Clifton

4. Nergiz, A.E., Clifton, C.: Query processing in private data outsourcing using
anonymization. In: Li, Y. (ed.) DBSec. LNCS, vol. 6818, pp. 138–153. Springer,
Heidelberg (2011)

5. Nergiz, A.E., Clifton, C., Malluhi, Q.: Updating outsourced anatomized private
databases. In: 16th International Conference on Extending Database Technology
(EDBT), Genoa, Italy, March 18-22, pp. 179–190 (2013),
http://doi.acm.org/10.1145/2452376.2452399

6. Xiao, X., Tao, Y.: Anatomy: Simple and effective privacy preservation. In: Proceed-
ings of 32nd International Conference on Very Large Data Bases (VLDB 2006),
Seoul, Korea, September 12-15 (2006),
http://www.vldb.org/conf/2006/p139-xiao.pdf

Getting Ready for the Next Privacy and

Security Challenges

Reinhard Posch

CIO, Federal Government Austria
reinhard.posch@cio.gv.at

Cloud, Bring your own Device, Big Data, what have you . . . unless people comply
with these Buzzwords they feel to be old-fashioned. Indeed these are often syn-
onyms for big money – but can we understand at all what security and privacy
means in this context.

Thanks to Edward Snowden basically everyone talks about privacy. However,
unfortunately the impact of the “Snowden effect” on security and privacy might
be equally sustainable as the oil crisis was on the global climate change.

Even if this sounds pessimistic the keynote will try to paint a view about
what it needs to advance privacy and security at this very point in time where
mobile devices, Cloud and collaboration is changing the IT-world dramatically
both in dimension and in concept. It is about Europe to take the situation and
advance and to sell its leadership in these areas. “eIDaS” the new identity and
signature regulation, the new data protection regulation and the NIS directive
might be helpful legal instruments helping for European ICT to grow from 28
Member States to a 500 Mio society. Large scale projects arching from examples
like STORK to implementation and procurement like Cloud for Europe have a
fair chance to be the cornerstones of this development.

Europe has for a long time made profit from its excellence in cryptography
and security in academia. Algorithms, concepts and protocols still need to bridge
the gap to practical use. While full holomorphic encryption is far from being
practical and needing big efforts in research, there are other advances that might
be of great help. Privacy preserving authentication and proxy reencryption are
just examples helping to close some gaps today in real life.

Given a holistic view of this domain it needs more than just a few algorithmic
advances. Pushing up dimension and complexity will not work unless we replace
trust by provable trustworthiness and complement this with enabling infrastruc-
tures. One such enabling infrastructure will be jurisdiction-aware communica-
tion. We must head versus infrastructures that are not limiting communication
but identifying jurisdictions data have passed. Then applications and users will
be empowered to decide in what environments and jurisdictions they will allow
data to flow into and to be received from.

Taking advantage from the momentum NSA and Snowden provide, we need
to create environments and infrastructures that allow sustainability and there
is ample of challenges ahead. Privacy preserving sharing and collaboration of is
one of these big next challenges already emerging.

Table of Contents

Integrity Assurance for Outsourced Databases without DBMS
Modification . 1

Wei Wei and Ting Yu

Specification and Deployment of Integrated Security Policies
for Outsourced Data . 17

Anis Bkakria, Frédéric Cuppens, Nora Cuppens-Boulahia, and
David Gross-Amblard

Optimizing Integrity Checks for Join Queries in the Cloud 33
Sabrina De Capitani di Vimercati, Sara Foresti, Sushil Jajodia,
Stefano Paraboschi, and Pierangela Samarati

Privacy-Enhancing Proxy Signatures from Non-interactive Anonymous
Credentials . 49

David Derler, Christian Hanser, and Daniel Slamanig

Privacy-Preserving Multiple Keyword Search on Outsourced Data
in the Clouds . 66

Tarik Moataz, Benjamin Justus, Indrakshi Ray,
Nora Cuppens-Boulahia, Frédéric Cuppens, and
Indrajit Ray

Secure and Privacy-Preserving Querying of Personal Health Records in
the Cloud . 82

Samira Barouti, Feras Aljumah, Dima Alhadidi, and Mourad Debbabi

Data Leakage Quantification . 98
Sokratis Vavilis, Milan Petković, and Nicola Zannone

Toward Software Diversity in Heterogeneous Networked Systems 114
Chu Huang, Sencun Zhu, and Robert Erbacher

FSquaDRA: Fast Detection of Repackaged Applications 130
Yury Zhauniarovich, Olga Gadyatskaya, Bruno Crispo,
Francesco La Spina, and Ermanno Moser

‘Who, When, and Where?’ Location Proof Assertion for Mobile
Devices . 146

Rasib Khan, Shams Zawoad, Md Munirul Haque, and Ragib Hasan

XVI Table of Contents

Design Patterns for Multiple Stakeholders in Social Computing 163
Pooya Mehregan and Philip W.L. Fong

Collaboratively Solving the Traveling Salesman Problem with Limited
Disclosure . 179

Yuan Hong, Jaideep Vaidya, Haibing Lu, and Lingyu Wang

ELITE: zEro Links Identity managemenT systEm . 195
Tarik Moataz, Nora Cuppens-Boulahia, Frédéric Cuppens,
Indrajit Ray, and Indrakshi Ray

Dynamic Workflow Adjustment with Security Constraints 211
Haibing Lu, Yuan Hong, Yanjiang Yang, Yi Fang, and Lian Duan

Consistent Query Plan Generation in Secure Cooperative Data
Access . 227

Meixing Le, Krishna Kant, and Sushil Jajodia

Hunting the Unknown: White-Box Database Leakage Detection 243
Elisa Costante, Jerry den Hartog, Milan Petković,
Sandro Etalle, and Mykola Pechenizkiy

Incremental Analysis of Evolving Administrative Role Based Access
Control Policies . 260

Silvio Ranise and Anh Truong

Mining Attribute-Based Access Control Policies from Logs 276
Zhongyuan Xu and Scott D. Stoller

Attribute-Aware Relationship-Based Access Control for Online Social
Networks . 292

Yuan Cheng, Jaehong Park, and Ravi Sandhu

Randomly Partitioned Encryption for Cloud Databases 307
Tahmineh Sanamrad, Lucas Braun, Donald Kossmann, and
Ramarathnam Venkatesan

Towards Secure Cloud Database with Fine-Grained Access Control 324
Michael G. Solomon, Vaidy Sunderam, and Li Xiong

Practical Private Information Retrieval from a Time-Varying,
Multi-attribute, and Multiple-Occurrence Database 339

Giovanni Di Crescenzo, Debra Cook, Allen McIntosh, and
Euthimios Panagos

LPM: Layered Policy Management for Software-Defined Networks 356
Wonkyu Han, Hongxin Hu, and Gail-Joon Ahn

On Minimizing the Size of Encrypted Databases . 364
Giovanni Di Crescenzo and David Shallcross

Table of Contents XVII

Efficient and Enhanced Solutions for Content Sharing in DRM
Systems . 373

Michal Davidson, Ehud Gudes, and Tamir Tassa

A Scalable and Efficient Privacy Preserving Global Itemset Support
Approximation Using Bloom Filters . 382

Vikas G. Ashok and Ravi Mukkamala

Author Index . 391

Integrity Assurance for Outsourced Databases
without DBMS Modification

Wei Wei1 and Ting Yu1,2

1 North Carolina State University, Raleigh NC 27606, USA
wwei5@ncsu.edu,yu@csc.ncsu.edu

2 Qatar Computing Research Institute, Tornado Tower, 18th floor, Doha, Qatar

Abstract. Database outsourcing has become increasingly popular as a
cost-effective solution to provide database services to clients. Previous work pro-
posed different approaches to ensuring data integrity, one of the most important
security concerns in database outsourcing. However, to the best of our knowledge,
existing approaches require modification of DBMSs to facilitate data authentica-
tion, which greatly hampers their adoption in practice. In this paper, we present
the design and implementation of an efficient and practical integrity assurance
scheme without requiring any modification to the DBMS at the server side. We
develop novel schemes to serialize Merkle B-tree based authentication structures
into a relational database that allows efficient data retrieval for integrity verifica-
tion. We design efficient algorithms to accelerate query processing with integrity
protection. We further build a proof-of-concept prototype and conduct extensive
experiments to evaluate the performance overhead of the proposed schemes. The
experimental results show that our scheme imposes a low overhead for queries
and a reasonable overhead for updates while ensuring integrity of an outsourced
database without special support from server-side DBMSs.

Keywords: Data Integrity, Database Outsourcing, Radix-Path Identifier.

1 Introduction

Database outsourcing has become increasingly popular as a cost-effective solution to
provide database services to clients. In this model, a data owner (DO) outsources data
to a third-party database service provider (DSP), which maintains the data in a DBMS
and answers queries from clients on behalf of the data owner. However, it introduces
one of the most important security concerns, data integrity. Usually, DSPs are not fully
trusted by data owners. Thus, data owners have to protect the integrity of their own data
when outsourcing data to DSPs. Specifically, when clients retrieve data from a DSP,
they should be able to verify that the returned data is what should be returned for their
requests on behalf of data owners, i.e., no data is maliciously modified by DSPs and
DSPs return all data clients request.

There are many techniques proposed to address integrity issues, including correct-
ness, completeness and freshness. These techniques can be divided into two categories.
Approaches belonging to the first category are based on authenticated data structures
(ADSs) such as Merkle hash tree (MHT) [4, 9, 12] and Signature Aggregation

V. Atluri and G. Pernul (Eds.): DBSec 2014, LNCS 8566, pp. 1–16, 2014.
c© IFIP International Federation for Information Processing 2014

2 W. Wei and T. Yu

[9, 14, 16, 18]. Existing ADS-based approaches require modifying a DBMS so that
it can generate a verification object (VO) when executing a query and return the VO
along with the actual result to clients, so that clients can verify the integrity of the query
result. Such modification is usually costly and hard to be deployed in a third-party ser-
vice provider, which hampers the adoption of database outsourcing [24]. The second
category uses a probabilistic approach [20, 24, 25], which injects some fake data into
outsourced databases. Although the probabilistic approach does not require the modifi-
cation of DBMSs, its integrity guarantee is significantly weaker than that of those based
on ADSs.

In this paper, we explore the feasibility of utilizing approaches of the first category to
provide integrity assurance without requiring any modification of DBMSs. In existing
approaches, DBMSs are modified to be ADS-aware. That is, they are enhanced with
special modules that efficiently manage ADSs and facilitate the generation of VOs.
Unfortunately, it is often hard to convince database service providers to make such
modifications to their DBMSs. In fact, up to today, to the best of our knowledge, no
existing cloud database services support integrity checking [19]. Thus, for clients who
care about query integrity, it is desirable to have integrity assurance techniques over
“vanilla” DBMSs (i.e., without any special features for outsourced data integrity). The
general approach is straightforward: the data owner would have to store authenticated
data structures along with their own data in relations, and retrieve appropriate integrity
verification data besides issuing queries. And all these have to be done through the
generic query interface (usually SQL) of the DBMS. Though the basic idea is simple,
the challenge is to make it practical: we need to design appropriate schemes to convert
ADSs into relations and form efficient queries to retrieve and update authentication
information, without imposing significant overhead.

In this paper, we present an efficient and practical scheme based on Merkle B-
tree, which provides strong integrity assurance without requiring special support from
database service providers. Our scheme serializes a Merkle B-tree based ADS into re-
lations in a way, such that the data in the ADS can be retrieved and updated directly and
efficiently using existing functionality provided by DBMSs, that is, SQL statements.
Our major contributions are summarized as follows:

– We propose a novel scheme called Radix-Path Identifier to identify each piece of
authentication data in a Merkle B-tree based ADS so that the MBT can be serial-
ized into and de-serialized from a database, and design an efficient and practical
mechanism to store all authentication data of a Merkle B-tree in a database, where
the authentication data in the MBT can be retrieved and updated efficiently.

– We explore the efficiency of different methods such as Multi-Join, Single-Join,
Zero-Join and Range-Condition, to retrieve authentication data from a serialized
MBT stored in a database, create appropriate indexes to accelerate the retrieval of
authentication data, and optimize the update process for authentication data.

– We build a proof-of-concept prototype and conduct extensive experiments to eval-
uate the performance overhead and efficiency of our proposed scheme. The results
show that our scheme imposes a low overhead for queries and a reasonable overhead
for updates while providing integrity assurance. Note that although we describe our

Integrity Assurance for Outsourced Databases without DBMS Modification 3

scheme based on relational DBMSs, it is not hard to see that our scheme can also be
applied to Non-SQL databases such as Bigtable [3], Hbase [1].

We note that many modern relational databases also have built-in support for XML.
One seemingly promising approach is to represent Merkle B-tree as XML, store the
XML representation into the DBMSs, and utilize their built-in XML support to retrieve
authentication data for integrity verification. However, as can be seen from the perfor-
mance result presented in Section 6, the XML-based solutions do not provide a good
performance compared with our scheme, which is mainly because the XML features
are not targeting at providing efficient operations of MHT-based integrity verification.

The rest of the paper is organized as follows. We discuss related work in Section 2. In
Section 3, we describe the data outsourcing model we target, state assumptions, attack
models and our goals. Section 4 explains the major design of our scheme in details,
and section 5 illustrate how our scheme provides integrity assurance for different data
operations such as select, update, insert and delete. Section 6 discusses the experimental
results. Finally, the paper concludes in Section 7.

2 Related Work

Researchers have investigated on data integrity issues for years in the area of database
outsourcing [5, 8, 9, 13, 16, 17, 20, 24, 25]. Pang et. al. [16] proposed a signature aggre-
gation based scheme that enables a user to verify the completeness of a query result
by assuming an order of the records according to one attribute. Devanbu et. al. [5] uses
Merkle hash tree based methods to verify the completeness of query results. But they
do not consider the freshness aspect of data integrity. Xie et al. [24] proposed a proba-
bilistic approach by inserting a small amount of fake records into outsourced databases
so that integrity can be effectively audited by analyzing the inserted records in the query
results, which only protects integrity probabilistically.

Li et. al. [9] first brought forward the freshness issue as an aspect of data integrity. It
verifies if data updates are correctly executed by DSPs so that queries will be executed
over the up-to-date data instead of old data. Xie et al. [25] analyzed different approaches
to ensuring query freshness. The aggregated signature based approaches [14,16] require
to modify signatures of all the records, which renders it impractical considering the
number of signatures.

Miklau et. al. [11] designed a scheme based on interval tree to guarantee data in-
tegrity when interacting with a vulnerable or untrusted database server. However, sev-
eral disadvantages are mentioned in Di’s work [6], which dealt with a similar issue
based on authenticated skip list [7]. Di Battista’s work [6] does not explain clearly how
authentication data is retrieved. It claims that only one query is required for integrity
verification while it also mentions that multiple queries are necessary to retrieve all
authentication data. Palazzi et. al. [15] proposed approaches to support range queries
based on multiple attributes with integrity guarantee, complementary to our work.

Compared with previous work, our scheme is able to provide integrity assurance
for database outsourcing, including all three aspects: correctness, completeness and
freshness. More importantly, one significant advantage of our scheme is that existing

4 W. Wei and T. Yu

approaches need to modify the implementation of DBMSs in order to maintain an ap-
propriate authenticated data structure and generate VOs. This requirement often make
these approaches hard to be deployed in real-world applications [24]. Our work provides
a strong integrity guarantee (instead of probabilistic guarantee [24]) without requiring
DBMSs to be modified to perform any special function beyond query processing.

3 System Model

3.1 Database Outsourcing Model

Figure 1 shows our database outsourcing model with integrity protection. There are
three types of entities: data owner, database service provider (DSP) and clients. A data
owner uploads a database with data and authentication data to a DSP, which provides
database functionality on behalf of the data owner. Clients send to the DSP queries to
retrieve data and a verification object (VO).

id col1 … coln

0 Alice … 1000

10 Ben … 2000

… … … …

70 Smith … 4500

Database Service
Provider (DSP)

Data OwnerClients
Upload Data and
Authentication Data

Send Queries for Data
and Verification Object

Update Data and
Authentication DataQuery Results Including Data

and Verification Object

Fig. 1. Non-Intrusive Database Outsourcing Model

In our outsourcing model, we assume that the DSP is oblivious to integrity pro-
tection. In fact, the DSP does not even know where and how to store authentication
data and when and how to return authentication data to clients for integrity verifica-
tion. Everything related to data integrity verification is done at the client side through
an integrity-aware DBMS driver and is transparent to applications running in the client
side, and data and authentication data updates are done by the data owner. In this way,
data owners can provide integrity assurance for their outsourced databases without any
special support from DSPs. Therefore, the adoption of database outsourcing with in-
tegrity assurance is completely decided by data owners themselves.

3.2 Assumptions and Attack Models

First, we assume that data owners and clients do not fully trust the services provided
by DSPs. Second, since our scheme relies on digital signatures to provide integrity
protection, we assume that the data owner has a pair of private and public keys for
signature generation and verification. The public key is known to all clients. Moreover,
like in many existing work [8, 9, 14, 18], we assume that the data owner is the only
entity who can update its data. In addition, we assume that communications between
DSPs and clients are through a secure channel (e.g., through SSL). Thus, DSPs and
clients can detect any tampered communication.

Integrity Assurance for Outsourced Databases without DBMS Modification 5

Regarding attack models, we focus ourselves on the malicious behavior from a DSP
since it is the only untrusted party in our target database outsourcing model. We do not
have any assumption about what kind of attacks or malicious behavior a DSP may take.
A DSP can behave arbitrarily to compromise data integrity. Typical malicious behaviors
include, but not limited to, modifying a data owner’s data without the data owner’s au-
thorization, returning partial data queried to clients and reporting non-existence of data
even if data does exist. Further, it could return stale data to clients instead of executing
queries over the latest data updated by the data owner [23].

3.3 Security Goals

We aim at providing integrity protection for all three aspects in data integrity: correct-
ness, completeness, and freshness. First, the correctness checks if all records returned
in a query result come from the original data set without being maliciously modified,
which is usually achieved using digital signatures that authenticate the authenticity of
records. Second, the completeness checks if all records satisfying conditions in a query
are completely returned to clients. Third, the freshness checks if all records in a query
result are the up-to-date data instead of some stale data.

Regarding freshness, we propose mechanisms for data owners to efficiently compute
signatures of updated data and guarantee the correctness of the signatures, which is the
key to provide freshness guarantee. The security guarantee we provide is as strong as
Merkle B-tree (MBT) [9]. In the paper, we do not focus on how the latest signatures are
propagated to clients for integrity verification purpose, as it can be easily achieved by
applying existing techniques [10, 25].

4 System Design

4.1 Running Example

We first present an example that will be referred to throughout the paper to illustrate our
schemes. Without loss of generality, we assume that a data owner has a database with a
table called “data”, as shown in the left side of Figure 2. The table has several columns.
The id column is a unique key or indexed. Besides, there are n columns {col1, ..., coln}
containing arbitrary data.

4.2 Authenticated Data Structure

Regarding Authenticated Data Structure (ADS), there are two options: signature ag-
gregation based ADS and Merkle hash tree based ADS. We observe that there are
several disadvantages of developing a scheme based on signature aggregation based
ADS. First, to minimize communication cost, signature aggregation operation needs to
be done dynamically in DBMSs, which unfortunately is not supported. Moreover, it is
unknown how to efficiently guarantee freshness using signature aggregation based ap-
proaches [9]. Additionally, techniques based on signature aggregation incur significant
computation cost in client side and much larger storage cost in the server side.

6 W. Wei and T. Yu

Thus, we choose to adapt MHT-based ADS, in particular, Merkle B-tree (MBT) [9].
MHT-based ADS can not only guarantee correctness and completeness, but also provide
efficient freshness protection since only one root hash needs to be maintained correctly.
Figure 2 shows a Merkle B-tree created based on the table introduced in Section 4.1.
The values in the id column are used as keys in the MBT. A hash hi is associated
with a pointer in an internal node or a record in a leaf node. For simplicity, the hashes
associated with pointers and records in nodes of the MBT are not shown in the figure.
The hash of a record in a leaf node is the hash value of the data record in the data table.
The hash associated with a pointer in an internal node is the hash of concatenating all
hashes in the node pointed by the pointer.

id col1 … coln

0 Alice … 1000

10 Ben … 2000

20 Cary … 1500

30 Lisa … 3000

40 Kate … 2300

50 Mike … 4000

60 Nancy … 2300

70 Smith … 4500

4020

10 30 60

0 10 3020 60 7040 50

50

Data Table Merkle B-tree

piki… …hi=H(h1|…|hf)

Fig. 2. Data table to Merkle B-tree

4020

10 30 60

0 10 3020 60 7040 50

50

000

00 01 10 11 20 21 22

0 1 2

010 100 110 200 210 220 221

Fig. 3. Radix-path identifier

4.3 Identify Authentication Data

The first thing is to identify pointers in internal nodes and records in leaf nodes of a
MBT since each pointer or record is associated with a piece of authentication data,
that is, a hash. And also we need to capture their parent-child and sibling relationships.
Besides, we need to preserve the ordering of pointers or records in a node of a MBT.

Existing Approaches. There are a few widely-used models such as adjacency list,
path enumeration, nested set and closure table to store tree-like hierarchical data into
a database [2, 21]. Each of them has its own advantages and disadvantages. For exam-
ple, with an adjacency list, it is easy to find the parent of a pointer or a record since
it captures the parent-child relationship directly. But to find its ancestor, we have to
traverse the parent-child relationship step by step, which could make the process of re-
trieving VO inefficient. The path enumeration model uses a string to store the path of
each pointer or record, which is used to track the parent-child relationship. Unlike the
adjacency list model, it is easy to find an ancestor of a pointer or record in a node. But
same as the adjacency list, path enumeration does not capture the order of pointers or
records in a node.

Radix-Path Identifier. To address the disadvantages of existing approaches, we pro-
pose a novel and efficient scheme called Radix-Path Identifier. The basic idea is to use
numbers based on a certain radix to identify each pointer or record in a MBT. Figure
3 shows all identifiers as base-4 numbers for pointers or records in the tree based on a
radix equal to 4. Given a MBT, the Radix-Path Identifier of a pointer or record depends
on its level and position in the MBT. To illustrate this scheme, suppose that the fanout of
a MBT is f . The radix base rb could be any number larger than or equal to f . l denotes

Integrity Assurance for Outsourced Databases without DBMS Modification 7

the level where a node resides in the MBT. The level of the root node is 0. i denotes the
index of a pointer or record in a node, ranging from 0 to f . The Radix-Path Identifier
rpid of a pointer or record can be computed using the following equation:

rpid =

{
i if l == 0,

rpidparent ∗ rb + i if l > 0.
(1)

id rpid hash level

-1 0 TvJtus 2

20 1 asdwS 2

40 2 DFsQ 2

-1 0 Kjdaw 1

10 1 Ujrw 1

-1 4 JHds 1

30 5 iueDs 1

-1 8 Jdiw. 1

50 9 .dkaw 1

id rpid hash level

60 10 Udew 1

0 0 nudg 0

10 4 Q9ej 0

20 16 wVi2 0

30 20 kidDs 0

40 32 Kdie* 0

50 36 8dFes 0

60 40 Iurw 0

70 41 KJdw 0

data_auth (max level - 2)

id rpid hash

-1 0 Kjdaw

10 1 Ujrw

-1 4 JHds

30 5 iueDs

-1 8 Jdiw.

50 9 .dkaw

60 10 Udew

id col1 … coln rpid hash

0 Alice … 1000 0 nudg

10 Ben … 2000 4 Q9ej

20 Cary … 1500 16 wVi2

30 Lisa … 3000 20 kidDs

40 Kate … 2300 32 Kdie*

50 Mike … 4000 36 8dFes

60 Nancy … 2300 40 Iurw

70 Smith … 4500 41 KJdw

id rpid hash

-1 0 TvJtus

20 1 asdwS

40 2 DFsQ

data_auth2 (Level 2) data_auth1 (Level 1) data (Level 0)
level table

2 data_auth2

1 data_auth1

0 data

data_mapping

(a) Single Authentication Table (SAT) (b) Level-based Authentication Table (LBAT)

Fig. 4. Authentication Data Organization

Note that rpidparent is the Radix-Path Identifier of its parent pointer in the tree.
Equation 1 captures not only the ordering among pointers or records in one node,
but also the parent-child and sibling relationships among nodes. The identifier of each
pointer or record in the root node is i. With identifiers in the root node, we can use
the second part of Equation 1 to compute identifiers of pointers or records in their child
nodes. In this way, all identifiers can be computed starting from the root node to the leaf
nodes. The proposed Radix-Path Identifier scheme has several important properties: 1)
Identifiers of pointers or records in a node are continuous, but not continuous between
that of those in two sibling nodes. For example, the base-4 numbers 20, 21, 22 are con-
tinuous and 200, 210 are not continuous, shown in Figure 3; 2) From an identifier of a
pointer or record in a node, we can easily find the identifier of its parent pointer based
on the fact that rpidparent equals to �rpid/rb�; 3) From the identifier of a pointer or
record in a node, we can easily calculate the min and max identifiers in the node, which
are (�rpid/rb�) ∗ rb and (�rpid/rb�) ∗ rb + (rb − 1); 4) From an identifier of a pointer
or record in a node, we can easily compute the index i of the pointer or record in the
node, which is rpid mod rb. These properties will be utilized for efficient VO retrieval
and authentication data updates.

4.4 Store Authentication Data

Once we identify each pointer or record in nodes of a MBT, the next step is how we
can store the authentication data associated with them into a database. In the following,
we propose two different designs - Single Authentication Table (SAT) and Level-based
Authentication Table (LBAT), and discuss their advantages and disadvantages.

SAT: Single Authentication Table. A straightforward way is to store all authentica-
tion data as data records called Authentication Data Record (ADR) into one table in a
database, where its corresponding data table is stored. Figure 4(a) shows all authentica-
tion data records in a single table for the data table described in the running example.

8 W. Wei and T. Yu

The name of the authentication table adds a suffix “ auth” to the original table name
“data”. The authentication table has 4 columns: id, rpid, hash and level. id column
stores values from id column of the data table, which are keys in the B+ tree except “-
1”. Note that since the number of keys is less than the number of pointers in the internal
nodes in a B+ tree node, we use “-1” as the id for the left-most pointers in the internal
nodes. rpid records identifiers for pointers or records in the B+ tree. hash column stores
the hash values of pointers or records in the B+ tree, which is essential for integrity
verification. level stores values indicating the level of a pointer or record in the B+ tree.
The level value is necessary for searching the rpid for a data record given an id of the
data record because the rpid values could be the same in different levels. The level of a
leaf node is 0, and the level of the root node is the maximum level.

Although SAT is simple and straightforward, it has several disadvantages, which
makes it an inefficient scheme. First, updates could be inefficient since one data record
update usually requires updating ADRs in different levels. With table level locks, it is
not allowed to concurrently execute ADR updates since all ADR updates have to be
executed over the only one table. Although concurrent updates can be enabled with
row level locks, it may consume much more database server resources, which may not
be desired. Second, it may require join queries to find the rpid of a data record since
the data table is separated from the authentication data table. Third, updates to a data
record and its ADR in the leaf level cannot be merged into a single query to improve
the performance since they go to different tables.

LBAT: Level-Based Authentication Table. To resolve the above issues, we propose a
Level-based Authentication Table (LBAT). In this scheme, instead of storing all ADRs
into one table, we store ADRs in different levels to different tables. We create one
table per level for an MBT except the leaf level (for reasons given below) along with
a mapping table to indicate which table corresponds to which level. For nodes in the
leaf level of the MBT, since each data record corresponds to an ADR in leaf nodes, we
extend the data table by adding two columns - rpid and hash to store ADRs instead of
creating a new table, which reduces the redundancy of id values as well as the update
cost to some extent. Figure 4(b) shows all tables created or extended to store ADRs
and the mapping table for the data table described in the running example. Tables for
different levels have different number of records. For the root level, it may only contain
a few records. Also, the number of records in the mapping table is equal to the number
of levels in the MBT. We name those tables by adding a suffix such as “ mapping”,
“ auth0”, etc, based on table types and levels.

The proposed LBAT scheme presents several advantages. First, since ADRs in dif-
ferent levels are stored in different authentication tables, it makes concurrent updates
possible with table level lock, which also allows to design efficient concurrent update
mechanisms. Second, since we store ADRs in the leaf level along with data, it makes it
straightforward to retrieve the rpid of a data record. Third, due to the same advantage, it
is easy to merge updates for a data records and its ADR in the leaf level for performance
improvement.

Integrity Assurance for Outsourced Databases without DBMS Modification 9

4.5 Extract Authentication Data

To extract the ADRs for the record based on LBAT, we make the best use of the proper-
ties of our Radix-Path Identifier. Once we receive all related ADRs, we can compute the
root hash since we can infer the tree structure from the rpid values, which conveniently
captures the relationship among pointers, records and nodes in the MBT.

Since the DSP is only assumed to provide standard DBMS functionalities, all the
above operations have to be realized by SQL queries issued by the client. We explore
four different ways - Multi-Join, Single-Join, Zero-Join and Range-Condition, to find
the authentication data records based on LBAT. We use specific examples to show how
they work. All examples are based on the data presented in the running example. Sup-
pose that we want to verify the integrity of the data record with the id 50. The ADRs
needs to be returned shown as the black parts in Figure 3, which is also highlighted
with a black background in Figure 4(b). Multi-join uses one query joining all related
tables to retrieve authentication data records, which returns a lot of redundant data, and
Single-Join uses multiple queries, each of which joins two tables to avoid returning re-
dundant data. Due to space limit, we only illustrate Zero-Join and Range-Condition in
details below. More details about Multi-join and Single-Join can be found at [22].

Zero-Join. In this scheme, we aim at minimizing the redundant data returned in Multi-
Join and avoid multiple join queries in Single-Join. In fact, what we actually need is
the rpid of the record 50. If we know its rpid, we can eliminate the “join” completely
from the SQL statements. The following shows the SQL statements we use to retrieve
the authentication data without joining any table.

-- find the rpid of the data record with the id 50
declare @rowrpid AS int;
set @rowrpid=(select top 1 rpid from data where id=50);
-- level 2, 1, 0 (from root level to leaf level)
select rpid,hash from data where rpid/4=@rowrpid/(4);
select rpid,hash from data_auth1 where rpid/4=@rowrpid/(4*4);
select rpid,hash from data_auth2 where rpid/4=@rowrpid/(4*4*4);

Compared with Single-Join, the major difference is that we declare a “rowrpid” vari-
able to store the rpid of the record, which is retrieved from the first query. After that,
we use the “rowrpid” for other queries to retrieve the authentication data for nodes in
different levels. Although it needs to execute one more query, it eliminates the “join”
clause completely.

Range-Condition. We observe that the execution of the above queries does not utilize
the indexes created on the rpid field in the authentication tables. Instead of doing an
index seek, each of them actually does an index scan, which is inefficient and incurs a
high computation cost in the server side. To utilize indexes, we propose a new method
called Range-Condition to retrieve authentication data for records. The following shows
the SQL statements we use to retrieve the authentication data for the record 50 using
Range-Condition.

-- find the rpid of the data record with the id 50
declare @rowrpid AS int;
set @rowrpid=(select top 1 rpid from data where id=50);
-- level 2, 1, 0 (from leaf level to root level)
select rpid,hash from data
where rpid>=(@rowrpid/(4))*4 and rpid<(@rowrpid/(4))*4+4;

10 W. Wei and T. Yu

select rpid,hash from data_auth1
where rpid>=(@rowrpid/(4*4))*4 and rpid<(@rowrpid/(4*4))*4+4;
select rpid,hash from data_auth2
where rpid>=(@rowrpid/(4*4*4))*4 and rpid<(@rowrpid/(4*4*4))*4+4;

As can be seen from the figure, the major difference from Zero-Join is the where
condition. Instead of using equality, the Range-Condition uses a range query selection
based on the rpid column. The range query retrieves the same set of ADRs as the equal-
ity condition used in Zero-Join. Thus, they both return the same set of authentication
data records, and Single-Join does that too. However, with the range query on the rpid
field, it can utilize indexes built on the rpid column, which minimizes the computation
cost in the server side.

5 Data Operations

In this section, we illustrate the details of handling basic queries such as select, update,
insert and delete with integrity protection efficiently based on our design using the
running example. Without loss of generality, we assume that clients always have the
latest root hash of the table for integrity verification, and we focus on how to retrieve
authentication data from DSPs. Due to space limit, we do not discuss insert and delete.
Please refer to [22] for implementation details and experimental results.

4020

10 30 60

10 3020 40 50

50

Query RangeLeft Boundary Right Boundary

Fig. 5. Range Query with Integrity Protection

4020

30

20

4020

30

20

VO for 20 VO update for 20

Fig. 6. Update with Integrity Protection

5.1 Select

As discussed in Section 4.5, we can retrieve authentication data for a Unique Select
query, which returns only one data record based on a unique key selection. Thus, we
focus on how to handle a Range Select query with integrity protection, which retrieves
records within a range.

The verification process for Range Select queries is different from Unique Select
queries. First, we need to find the two boundary keys for a range query. For example,
for a range query with a range from 15 to 45, we need to identify its two boundaries,
which are 10 and 50 in this case. Although DBMSs do not provide a function to return
the boundary records directly, we can use the following two queries to figure out what
the left and right boundaries are for a query range:

Integrity Assurance for Outsourced Databases without DBMS Modification 11

select top 1 id from data where id < 15 order by id desc
select top 1 id from data where id > 45 order by id asc

Then, to retrieve the authentication data for the range query, we only need to re-
trieve the authentication data for both boundaries, which is similar to the way we use
to retrieve authentication data object for a data record since the authentication data for
records within the range are not necessary and they will be computed by using the re-
turned records. Figure 5 shows the authentication data records and the data records that
need to be retrieved for the range query from 15 to 45.

To execute the range query with integrity protection, we need to rewrite the range
query by adding SQL statements of retrieving authentication data records. Then, we
execute all SQL statements in one database transaction. Once the result with authenti-
cation data is returned, we verify the integrity of the query result using the authentica-
tion data. If the verification succeeds, the data result is returned to the client as before;
otherwise, an integrity violation exception could be thrown to warn the client of the
integrity verification failure.

The overhead to provide data integrity for range queries consists of both compu-
tation and communication cost. The computation cost in the client side includes two
parts: rewriting range query and verifying data integrity. The computation cost in the
server side is the execution of additional queries for authentication data retrieval. The
communication cost between them includes the text data of additional queries and the
authentication data returned along with the data result.

This process can also handle Unique Select queries. However, it requires to retrieve
authentication data for both left boundary and right boundary, which may not be neces-
sary. If the key does not exist, we have to resort to the process of handling range queries,
where we can check left boundary and right boundary to make sure the record with the
key does not exist.

5.2 Update

Single Record Update. When a data record is updated, we need to update its authenti-
cation data (mainly hash values) accordingly. For updating a record, we assume that the
record to be updated already exists in the client side and the VO for the updated record
is cached in the client too. Otherwise, we retrieve the data record and its VO first, then
update it and its authentication data.

Figure 6 shows the VO in black for the record 20 in the left side and the hash values
in gray to be updated once the record is updated. Each data update requires an update
on all authentication data tables. It means if the MBT tree’s height is h, then the total
Number of update queries is h + 1. In this case, we need to actually update 4 records.
One of them is to update the data record and three of them is to update the authentication
data records. The generation of update queries for authentication data is simple since
we know the rpid of the data record to be updated, and then we can easily compute its
parent rpid and generate update queries.

Since the authentication data table for the leaf level of a MBT is combined with the
data table, we can combine two update queries into one to improve the performance.
Thus, in this case we only need 3 update queries instead of 4. All update queries are

12 W. Wei and T. Yu

executed within one transaction. So, consistency of data records and authentication data
is guaranteed by the ACID properties of DBMSs, and data integrity is also guaranteed
since the verification and the root hash update are done directly by the data owner.

Batch Update and Optimization. Suppose that we want to update x records at one
time. As the number of records to be updated increases, the total number of update
queries we need to generate to update both data and authentication data increases lin-
early. In this case, the total number of update queries is x ∗ h. We observe from those
update queries that several update queries try to update the same authentication data
record again and again due to the hierarchical structure of a B+ tree. We also notice that
each update SQL statement only updates the same authentication record in one table.
In fact, we just need to get the latest hash of the authentication data record, and do one
update. To do that, we need to track all update queries for each table, find the set of
queries to update one authentication data record in an authentication table, and remove
all of them except the latest one. In this way, the number of necessary update queries
could be much less than the number of update queries we generate before. The process,
called MergeUpdate, improves the performance of batch update to a great extent.

6 Experimental Evaluation

System Implementation. We have implemented the Merkle B-tree and the query rewrite
algorithms for clients, which is the core of generating select, update and insert SQL
statements to operate authentication data. We also built a tool to create authentication
tables and generate authentication data based on a data table in a database. Data own-
ers can run this tool on all data tables in a database before outsourcing the database
to a DSP. Once the authentication data is created for the database, they can upload the
database to the DSP. We have also implemented all four different ways - MultiJoin,
SingleJoin, ZeroJoin and RangeCondition - to retrieve authentication data for perfor-
mance overhead evaluation. Our implementation is based on .NET and SQL Server
2008. In addition, we implemented two XML-based schemes: OPEN-XML and DT-
XML, which utilize built-in XML functionality of SQL Server, for efficiency analysis
and comparison. In both OPEN-XML and DT-XML schemes, we use a hierarchical
XML structure to represent the authentication data of a Merkle B-tree and store the
XML string into a database. The OPEN-XML scheme uses OPENXML function pro-
vided in SQL Server to retrieve VO data from the XML string, and the DT-XML uses
XPath and nodes() methods to retrieve VO data from an indexed XML data field, where
the XML string is stored.

Experiment Setup. We use a synthetic database that consists of one table with 100, 000
records. Each record contains multiple columns, a primary key id, and is about 1KB
long. For simplicity, we assume that an authenticated index is built on id column. We
upload the database with authentication data to a third-party cloud service provider,
which deploys the SQL Server 2008 R2 as a database service, and run experiments
from a client through a home network with 30Mbps download and 4Mbps upload. To
evaluate the performance overhead of integrity verification and the efficiency of the
proposed mechanisms, we design a set of experiments using the synthetic database.

Integrity Assurance for Outsourced Databases without DBMS Modification 13

6.1 Performance Analysis

VO Size. Figure 7 shows how the VO size changes as the fanout of a MBT changes for
Unique Select and Range Select. The results clearly show that as the fanout increases,
the VO size increases, and the VO size of Range Select is almost twice of that of Unique
Select since the VO of Range Select includes the VO of two boundaries of the range.
Note that for Range Select, its VO size almost stays the same no matter how many
records are returned in a Range Select.

0
5

10
15
20
25
30
35

4 8 16 32 64 128 256

vo
 s

iz
e

(K
B

)

fanout
Unique Select Range Select

Fig. 7. VO size vs fanout

0

5000

10000

15000

20000

25000

10000 30000 50000 70000 90000 200000

ti
m

e
to

 r
et

ri
ev

e
V

O
 (

m
s)

of rows

Our Scheme OPEN-XML DT-XML

Fig. 8. VO retrieval time

0%

20%

40%

60%

80%

100%

120%

4 8 16 32 64 128 256

ov
er

he
ad

fanout
SingleJoin ZeroJoin RangeCondition

Fig. 9. Unique select overhead

VO Retrieval. Figure 8 shows the time to retrieve a VO for our scheme using Range-
Condition and two XML-based schemes when the number of rows in the data set
changes. As can be seen from the figure, when the data size is small, three schemes
show a similar time to retrieve the VO. However, as the data size increases, two XML-
based schemes show linear increases in terms of the VO retrieval time. When the data
size goes up to 200, 000 records, the XML-based schemes take more than 15 seconds
to retrieve a VO for one single record. In this case, our scheme is about 100 times faster
than the two XML-based schemes. The result indicates that a well-design scheme could
be much more efficient than a scheme using built-in XML functionality in DBMSs.

Unique Select. We conduct experiments to see how different fanouts of a MBT and dif-
ferent methods of retrieving VO could affect the performance of Unique Select queries,
where we vary the fanout of a MBT and compare the performance overhead caused
by different VO retrieval methods, shown in Figure 9. The results show that the over-
head of SingleJoin and ZeroJoin is much higher than that of RangeCondition. When
the fanout is 32, the overhead of SingJoin or ZeroJoin is about 50%, but the overhead
of RangeCondition is 4.6%. The communication cost for the three different methods is
almost same, and the major performance difference is caused by the computation cost
in the server side. As we can see from this figure, when the fanout increases from 4 to
32, the overhead of both SingleJoin and ZeroJoin drops, and when the fanout is larger
than 32, their overhead increases. It is because in general the VO size increases and
the number of queries to be executed to retrieve authentication data decreases as the
fanout increases, and when the fanout is less than 32 the computation cost dominates
the overhead and when the fanout is larger than 32 the communication cost dominates
the overhead. Based on the current experiment environment, the 32 fantout shows a bet-
ter performance compared with other fanouts. In the following experiments we use 32
as the default fanout unless specified otherwise.

14 W. Wei and T. Yu

Range Select. We also run experiments to explore how the overhead changes when the
number of records retrieved increases. Figure 10 shows the response time of retrieving
different number of records in range queries, where NoVeri denotes range queries with-
out integrity verification support, ZeroJoin and RangeCondition denote rang queries
with integrity verification but using VO retrieval method ZeroJoin and RangeCondi-
tion respectively. The results show two points: 1) the RangeCondition is much better
than ZeroJoin when the number of rows to be retrieved is small, which is because the
computation cost dominates the overhead caused by different VO retrieval methods; 2)
once the number of records to be retrieved is larger than a certain number, the response
time of all three is almost the same. In our algorithm, the overhead caused by differ-
ent VO retrieval methods does not change as the number of retrieved records increases.
Thus, as the number of retrieved records increases, the overhead becomes relatively
smaller and smaller. We also conduct experiments to show how the overhead changes
as the database size increases, where we run range queries to retrieve 512 rows from
databases with different number of data records. As shown in Figure 11, the overhead
is about 3% even if the number of data records goes up to 1.6 million.

0
100
200
300
400
500
600
700

1 2 4 8 16 32 64 128

re
sp

on
se

 t
im

e
(m

s)

of rows
NoVeri ZeroJoin RangeCondition

Fig. 10. Range select response
time

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

50 100 200 400 800 1600

re
sp

on
se

 ti
m

e
(s

)

of rows (k)

NoVeri Our Scheme

Fig. 11. Scalability of Range
Select

0%
20%
40%
60%
80%

100%
120%
140%
160%

1 4 16 64 256 1024

ov
er

he
ad

of rows
D-RC D-RC-MU C-RC C-RC-MU

Fig. 12. Direct and cached up-
date overhead comparison

Update.We evaluate the performance overhead caused by two different update cases -
Direct Update and Cached Update. For Direct Update, we first retrieve the data to be
updated and verify its data integrity, and then we generate update queries for both data
and authentication data and send them to the sever for execution. For Cached Update,
we assume that the data to be updated is already cached in the memory, we just need
to generate update queries and send them to the server for execution. Figure 12 shows
the overhead versus the number of rows to be updated. In the figure, ‘D’ denotes Direct
Update, C denotes Cached Update, “RC” denotes RangeCondition, and “MU” denotes
MergeUpdate, which indicates if a MergeUpdate process is used to reduce the number
of SQL statements generated for updating authentication data records. The results show
that when we directly update only a few records with integrity protection, the overhead
could go above 100%, but if we update cached records, the overhead is about 2.5%. In
this case, the additional round-trip time in Direct Update dominates the response time
of the whole update process. As the number of updated rows increases, the overhead
percentage of Direct Update decreases because the response time is dominated by the

Integrity Assurance for Outsourced Databases without DBMS Modification 15

update time in the server side. The major overhead for Cached Update comes from the
execution of update statements to update authentication data in the server side. The
results also show that the performance of C-RC-MU is comparable to the performance
of NoVeri without integrity protection, but without the MergeUpdate optimization, the
overhead of C-RC ranges from 3% to 30% shown in the figure.

7 Conclusion

In the paper, we present an efficient and practical Merkle B-tree based scheme that pro-
vides integrity assurance without modifying the implementation of existing DBMSs.
We have proposed a novel approach called Radix-Path Identifier, which makes it possi-
ble to serializes a Merkle B-tree into a database while enabling highly efficient authenti-
cation data retrieval and updates. We have explored the efficiency of different methods
such as MultiJoin, SingleJoin, ZeroJoin and RangeCondition, to retrieve authentica-
tion data from a serialized MBT stored in a database, implemented a proof-of-concept
prototype, and conducted extensive experimental evaluation. Our experimental results
show that our scheme imposes a small overhead for Select, Update and Append and a
reasonable overhead for Insert and Delete.

Acknowledgments. The authors would like to thank the anonymous reviewers for their
helpful suggestions. This work is partially supported by the U.S. Army Research Office
under grant W911NF-08-1-0105 managed by NCSU Secure Open Systems Initiative
(SOSI), by the NSF under grants CNS-0747247 and CCF-0914946, by NSFC under
Grants No. 61170280, and SPRPCAS under Grant No. XDA06010701, and by K.C.
Wong Education Foundation. The contents of this paper do not necessarily reflect the
position or the policies of the U.S. Government.

References

1. Hbase, http://hbase.apache.org/
2. Celko, J.: Joe Celko’s Trees and Hierarchies in SQL for Smarties. Morgan Kaufmann (2004)
3. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M., Chandra, T.,

Fikes, A., Gruber, R.E.: Bigtable: A distributed storage system for structured data. ACM
Trans. Comput. Syst. 26, 4:1–4:26 (2008)

4. Devanbu, P., Gertz, M., Martel, C., Stubblebine, S.G.: Authentic data publication over the
internet. J. Comput. Secur. 11, 291–314 (2003)

5. Devanbu, P.T., Gertz, M., Martel, C.U., Stubblebine, S.G.: Authentic third-party data publi-
cation. In: Thuraisingham, B., van de Riet, R., Dittrich, K.R., Tari, Z. (eds.) Data and Appli-
cation Security. IFIP, vol. 78, pp. 101–112. Springer, Heidelberg (2001)

6. Di Battista, G., Palazzi, B.: Authenticated relational tables and authenticated skip lists. In:
Barker, S., Ahn, G.-J. (eds.) Data and Applications Security 2007. LNCS, vol. 4602, pp.
31–46. Springer, Heidelberg (2007)

7. Goodrich, M.T., Tamassia, R.: Efficient authenticated dictionaries with skip lists and com-
mutative hashing. Technical report. Johns Hopkins Information Security Institute (2001)

8. Goodrich, M.T., Tamassia, R., Triandopoulos, N.: Super-efficient verification of dynamic
outsourced databases. In: Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 407–424.
Springer, Heidelberg (2008)

http://hbase.apache.org/

16 W. Wei and T. Yu

9. Li, F., Hadjieleftheriou, M., Kollios, G., Reyzin, L.: Dynamic authenticated index structures
for outsourced databases. In: Proceedings of the 2006 ACM SIGMOD International Confer-
ence on Management of Data, SIGMOD 2006, pp. 121–132. ACM, New York (2006)

10. Micali, S.: Efficient certificate revocation. Technical report, Cambridge, MA, USA (1996)
11. Miklau, G., Suciu, D.: Implementing a tamper-evident database system. In: Grumbach, S.,

Sui, L., Vianu, V. (eds.) ASIAN 2005. LNCS, vol. 3818, pp. 28–48. Springer, Heidelberg
(2005)

12. Mouratidis, K., Sacharidis, D., Pang, H.: Partially materialized digest scheme: an efficient
verification method for outsourced databases. The VLDB Journal 18, 363–381 (2009)

13. Mykletun, E., Narasimha, M., Tsudik, G.: Authentication and integrity in outsourced
databases. Trans. Storage 2, 107–138 (2006)

14. Narasimha, M., Tsudik, G.: Authentication of outsourced databases using signature aggrega-
tion and chaining. In: Li Lee, M., Tan, K.-L., Wuwongse, V. (eds.) DASFAA 2006. LNCS,
vol. 3882, pp. 420–436. Springer, Heidelberg (2006)

15. Palazzi, B., Pizzonia, M., Pucacco, S.: Query racing: fast completeness certification of query
results. In: Foresti, S., Jajodia, S. (eds.) Data and Applications Security and Privacy XXIV.
LNCS, vol. 6166, pp. 177–192. Springer, Heidelberg (2010)

16. Pang, H., Jain, A., Ramamritham, K., Tan, K.-L.: Verifying completeness of relational query
results in data publishing. In: Proceedings of the 2005 ACM SIGMOD International Confer-
ence on Management of Data, SIGMOD 2005, pp. 407–418. ACM, New York (2005)

17. Pang, H., Tan, K.-L.: Authenticating query results in edge computing. In: Proceedings of
the 20th International Conference on Data Engineering, ICDE 2004, pp. 560–571. IEEE
Computer Society, Washington, DC (2004)

18. Pang, H., Zhang, J., Mouratidis, K.: Scalable verification for outsourced dynamic databases.
Proc. VLDB Endow. 2, 802–813 (2009)

19. Pizzette, L., Cabot, T.: Database as a service: A marketplace assessment (2012)
20. Sion, R.: Query execution assurance for outsourced databases. In: Proceedings of the 31st

International Conference on Very Large Data Bases, VLDB 2005, pp. 601–612. VLDB En-
dowment (2005)

21. Tropashko, V.: Nested intervals tree encoding in sql. SIGMOD Rec. 34(2), 47–52 (2005)
22. Wei, W., Yu, T.: Practical Integrity Assurance for Big Data Processing Deployed over Open

Cloud. PhD thesis, North Carolina State University (2013)
23. Wei, W., Yu, T., Xue, R.: ibigtable: Practical data integrity for bigtable in public cloud. In:

Proceedings of the Second ACM Conference on Data and Application Security and Privacy,
CODASPY 2013. ACM (2013)

24. Xie, M., Wang, H., Yin, J., Meng, X.: Integrity auditing of outsourced data. In: Proceedings
of the 33rd International Conference on Very Large Data Bases, VLDB 2007, pp. 782–793.
VLDB Endowment (2007)

25. Xie, M., Wang, H., Yin, J., Meng, X.: Providing freshness guarantees for outsourced
databases. In: Proceedings of the 11th International Conference on Extending Database Tech-
nology: Advances in Database Technology, EDBT 2008, pp. 323–332. ACM, New York
(2008)

Specification and Deployment of Integrated

Security Policies for Outsourced Data

Anis Bkakria1, Frédéric Cuppens1, Nora Cuppens-Boulahia1,
and David Gross-Amblard2

1 Télécom Bretagne
{anis.bkakria,frederic.cuppens,nora.cuppens}@telecom-bretagne.eu

2 IRISA,Université de Rennes 1
david.gross_amblard@irisa.fr

Abstract. This paper presents a well-founded language allowing in one
hand data owners to easily specify their security and utility requirements
over the data to be outsourced and in an another hand to formalize the
set of security mechanisms that can be used for the protection of out-
sourced data. Based on the formalization of security and utility require-
ments and security mechanisms properties, we formally identify the best
mechanisms, and the best way to combine them to get the best trade-off
between utility and security.

Keywords: Security policy, data confidentiality, privacy-preserving,
data outsourcing, relational databases, temporal logics of knowledge.

1 Introduction

Because of the rapid evolution of communication technologies, data storage and
data processing, outsourcing data to a third-party has grown up over the last
few years. Information system architecture adopted by public and private com-
panies is changing for mainly two causes. First, it offers several advantages to
the client companies, especially for small ones with limited IT budget as it allows
them to reduce the cost of maintaining computing infrastructure and data-rich
applications. Second, data collected by companies generally contain sensitive
information which must be protected.

Data outsourcing gives rise to many security issues, e.g., confidentiality, in-
tegrity, authentication, copyright protection, privacy and anonymity, because
outsourced data contains often highly sensitive information which will be stored
and managed by third parties. These security issues are traditionally addressed
by using security and cryptography mechanisms such as encryption, anonymiza-
tion, watermarking, fragmentation, etc. In our work, we consider that the set
of security mechanisms that can be used for the protection of outsourced data
are represented as a toolbox giving security administrators the ability to en-
force their security requirements. We develop a logic-based language allowing
the security administrators to specify their security and utility requirements

V. Atluri and G. Pernul (Eds.): DBSec 2014, LNCS 8566, pp. 17–32, 2014.
c© IFIP International Federation for Information Processing 2014

18 A. Bkakria et al.

and automatically choose the best mechanisms, and the best way to combine
them in order to enforce defined security requirements.

As a case of study, we address the problem of secure data integration in
which two data owners storing two private tables having the same set of records
on different sets of attributes want to create a joint table containing involved
attributes of both private tables. The joint table must satisfy the set of security
and utility requirements defined by both data owners. To meet these goals, we
first develop a well-founded logic based language allowing to model the used
system, the security and utility requirements defined by both data owners, and
the security mechanisms that can be used to satisfy them. Second, we show how
to use those specifications to choose the best combination of security mechanisms
that can satisfy the selected security and utility requirements defined by both
data owners.

The reminder of this paper is organized as follows, Section 2 discusses related
work. Section 3 describes our approach. Section 4 presents our defined language
and the specification of the used system. Section 5 shows the modeling of the
policy to be applied over the outsourced information. Section 6 presents the
specification of the security mechanisms that can be used to satisfy a defined
policy. Section 7 shows how to choose the best combination of security mecha-
nisms that can satisfy a defined policy. Section 8 gives a demonstration of our
approach. Finally, Section 9 reports our conclusions.

2 Related Work

Many approaches to protect confidentiality and privacy of outsourced data are
based on encryption [5,9,10]. Hacigümüs et al. [9] have proposed the first ap-
proach aiming to query encrypted data. The proposed technique is based on
the definition of a number of buckets on the attribute domain which allows the
server-side evaluation of point queries. Hore et al. [10] improve the bucket-based
index methods by presenting an efficient method for partitioning the domain
of attributes. Many interesting techniques providing protection of outsourced
data are based on order preserving encryption OPE schemes [5]. OPE schemes
are symmetric-key deterministic encryption schemes which produce cipher-texts
that preserve the order of the plain-texts. However, in all mentioned approaches,
authors use only encryption to protect sensitive outsourced data which makes
query execution on the outsourced encrypted data much more difficult.

Few research efforts have investigated how to combine security mechanisms
to protect sensitive outsourced data. In [6], authors combine data fragmentation
together with encryption to ensure confidentiality of outsourced mono-relational
database. This approach was improved in [1] by combining the best features of
encryption and fragmentation to deal efficiently with multi-relation normalized
databases. Popa et al. [15] propose an interesting approach called CryptDB.
The proposed system relies on a trusted party containing a proxy server allow-
ing the interception of users queries which will be executed over the protected
databases. The proxy stores a set of encryption keys allowing to encrypt and

Specification and Deployment of Integrated Security Policies 19

decrypt data and queries. In order to allow the execution of different kind of
SQL queries, CryptDB system combines different encryption schemes. For range
query, it use an implementation of the Order Preserving Encryption (OPE) [5],
computations on numeric data are supported using homomorphic encryption
based on the Paillier cryptosystem [14] and matching keywords are supported
using searchable encryption [17]. The CryptDB approach offers a solution to the
encryption type selection problem by proposing an adaptive scheme that dy-
namically adjusts encryption strategies. The idea of this approach is to encrypt
each data item in many onions : onion for equal and order comparison, onion for
aggregate operations and onion for word search operations. In each onion, the
values is dressed in layers of increasingly stronger encryption, each of these layers
provides certain kind of functionality. This approach has two main drawbacks.
First, it will significantly increase the size of the encrypted database. Second, in
order to enable certain functionality, some encryption layers must be removed
by updating the database which can be, for big databases, very expensive in
terms of execution time.

Formal verification of security protocols [3,4] has been extensively used to
verify security properties such as secrecy [3] and strong secrecy [4]. A secu-
rity protocol involves two or more principal actors, these actors are classified
into honest actors aiming to securely exchange information and dishonest actors
(attackers) aiming to subvert the protocol. Therefore, dishonest actors are not
constrained to follow the protocol rules. Despite that formal verification-based
approaches are efficient in security properties verification, they cannot be used in
our case as we consider that the actors are honest-but-curious. They are honest
as they are constrained to follow the chosen combination of security mechanisms
and they are curious in that they will try to infer protected sensitive information
by analyzing the joined table.

3 Proposed Approach

In our approach, we strive to design a support tool allowing, for a given security
policy, selection of the best combination of mechanisms to enforce this security
policy. To achieve this goal, we suggest the following methodology :

– Using an Epistemic Linear Temporal Logic, we defined an expressive lan-
guage allowing to formally model a system composed of involved entities
and the data on which the security policy should be enforced, and formally
express the security policy defined by the security administrators.

– We conducted a formal study of the security mechanisms allowing the achieve-
ment of a chosen goal. This formal study enables us to extract the security
and utility properties that characterize each security mechanism. These prop-
erties are formally expressed using our language.

– Based on the system formalization, the security policy formalization and
the security mechanisms properties formalization, we formally identify the
relevant combination of mechanisms to efficiently enforce the defined security
policy.

20 A. Bkakria et al.

4 System Specification Using Epistemic LTL

In this section, we will define and use the language L to formalize our system.
In particular, we will define axioms which describe the basic knowledge of each
agent and the formalization of the chosen goal.

4.1 Syntax and Semantics

The first-order temporal epistemic language L is made up of a set of predicates
P , propositional connectives ∨, ∧, ¬, → and ↔, the quantifiers ∀, ∃. We take
the usual set of future connectives © (next), ♦ (Sometime, or eventually), �
(always) [8]. For knowledge we assume a set of agents Ag = {1, · · · ,m} and use
a set of unary modal connectives Kj, for j ∈ Ag, in which a formula Kjψ is to
be read as “agent j knows ψ”.

Definition 1. Let ϕ and ψ be propositions and Pi be a predicate of arity n in
P. The set of well-formed formulas of L is defined as follows:

φ ::=Pi(t1, · · · , tn)|Kiψ| ¬ϕ| ϕ ∨ ψ| ϕ ∧ ψ| © ϕ| ♦ϕ| �ϕ|ϕ → ψ| ϕ ↔ ψ | ∃xψ | ∀xψ

Definition 2. An interpretation of the language L is the triple K = (W , I, Φ)
consisting of a sequence of states W = {w0, w1, · · · }, a set of classical first-order
structures I that assigns for each states wi ∈ W a predicate Iwi(P) : |Iwi |n →
{True, False} for each n-places predicate P ∈ P and Φ a transition function
which defines transitions between states due to the application of mechanisms
(actions). Φ(wi,mk) = wj if the mechanism mk transits our system from states
wi to state wj.

Definition 3. Let W be a sequence of states, wi (i ≥ 0) denote a state of W
and v an assignment. The satisfaction relation |= for a formula ψ of L is defined
as follows:

– (wi,W) |= P (t1, · · · , tn) ⇐⇒ Iwi(P)(v(t1), · · · , v(tn)) = True
– (wi,W) |= ¬ψ ⇐⇒ (wi,W) �|= ψ
– (wi,W) |= ψ → ϕ ⇐⇒ (wi,W) �|= ψ or (wi,W) |= ϕ
– (wi,W) |= ψ ↔ ϕ ⇐⇒ (wi,W) |= (ψ → ϕ) ∧ (ϕ → ψ)
– (wi,W) |= ∀xψ ⇐⇒ (wi,W) |= ψ[x/c] for all c ∈ |Iwi |
– (wi,W) |= ψ ∧ ϕ ⇐⇒ (wi,W) |= ψ and (wi,W) |= ϕ
– (wi,W) |= ψ ∨ ϕ ⇐⇒ (wi,W) |= ψ or (wi,W) |= ϕ
– (wi,W) |= ©ψ ⇐⇒ (wi+1,W) |= ψ
– (wi,W) |= ♦ψ ⇐⇒ (wk,W) |= ψ for some k ≥ i
– (wi,W) |= �ψ ⇐⇒ (wk,W) |= ψ for all k ≥ i

In our approach, we choose to work with relational databases which are
composed of tables, attributes, records and values. We suppose that relational
databases schemes are known to all agents in the system. Epistemic operator
K is only used to represents the knowledge of relation between objects (at-
tribute and records) and values which represent an instantiations of these ob-
jects. These relations are represented using the three-places predicates valueOf ,

Specification and Deployment of Integrated Security Policies 21

valueOf(R,A, V) is to be read “the value of the attribute A in the record R is
V ”. In order to simplify our language L, we transform the epistemic operator K
using the two-places predicate knows as following:

Ki valueOf(R,A,V) → valueOf(R,A, V) ∧ knows(i, V) (1)

knows(i, v) is to be read “the agent i knows V ”.

4.2 Data Model

A system S = 〈O, T ,A,R,V〉 consists of a finite set of owners O, a finite set of
relational tables T , a finite set of attributes A, a finite set of records R and a
finite set of values V . We use the following syntactic conventions. Let O1, O2, · · ·
be variables over owners O, T1, T2, · · · be variables over relational tables T ,
A1, A2, · · · be variables over attributes A, R1, R2, · · · be variables over records
R and V1, V2, · · · be variables over the set of values V . We identify the following
predicates :

– belongs(O1, T1) is satisfied if the owner of the relational table T1 is O1.
– attribute of(T1, A1) is satisfied if A1 is an attribute of the relational table

T1.
– recordOf(T1, R1) is satisfied if R1 is a record of the relational table T1.
– valueOf(R1, A1, V1) is satisfied if V1 is the value of the attribute A1 in the

record R1.

We denote by Σ the set of formulas representing the formalization of our system
using previous predicates. We suppose that the set of formulas Σ are always true
in the system (e.g., the table T belongs to the owner O and will belong always
to the owner O). This can be formalized as follows:

∀f ∈ Σ. (w0,W) |= �f (2)

4.3 Specifying Basic Knowledge Axioms

In our system, we consider each data owner as an agent. An owner’s knowledge
is specified using the following axioms:

∀T1, O1, A1, R1, V1. [belongs(O1, T1) ∧ attribute of(T1, A1) ∧
recordOf(T1, R1) ∧ valueOf(R1, A1, V1) → knows(O1, V1)]

(3)

∀T1, O1, A1, R1, V1. [¬belongs(O1, T1) ∧ attribute of(T1, A1) ∧
recordOf(T1, R1) ∧ valueOf(R1, A1, V1) → ¬knows(O1, V1)]

(4)

∀O1, V1. knows(O1, V1) → © knows(O1, V1) (5)

22 A. Bkakria et al.

∀O, T1, R,A, V. attribute of(T1, A) ∧ recordOf(T1, R) ∧ valueOf(R,A,V)∧
knows(O, V) ↔ belongs(O, T1) ∨

(∃T2, T3.belongs(O, T2) ∧ joinOf(T1, T2, T3)

∧join involved(T1, A) ∧ ¬protected(T1, A,O)
) (6)

Axiom 3 means that an owner knows all information stored in tables that be-
long to him while axiom 4 means that an owner has no knowledge about the
information stored in tables that do not belong to him. Axiom 5 states that data
owners never forget information they know. Axiom 6 means that an owner O
knows the values assumed by an attribute A of the table T1 if and only if the
table T1 belongs to the owner O or there exists a table T3 representing the join
of a table T2 and the table T1 in which the attribute A is not protected.

4.4 Goal Representation

According to our scenario, the goal consists in joining two private relational
tables. This goal is specified using the axioms 7 and 8 in which we use the
following predicates:

– join(T1, T2) is satisfied if both owners of T1 and T2 want to join their private
tables T1 and T2.

– joinAttribute(T1, T2, A1) is satisfied if the tables T1 and T2 are joined over
the attribute A1.

– join involved(T1, A1) is satisfied if the attribute A1 of the table T1 is in-
volved in join operations. This predicate allows us to specify which are the
attributes concerned by the joint.

Axiom 7 states that if the data owners of two tables T1 and T2 want to integrate
their private data then eventually, there will exist a table Tj representing the
join of T1 and T2. Axiom 8 states that the set of attributes of the joined table
Tj is composed of the union of sets of join-involved attributes of private tables
T1 and T2.

∀T1, T2. join(T1, T2) → ♦
(∃T3 JoinOf(T1 , T2, T3)

)
(7)

∀T1, T2, Tj , A. JoinOf(T1 , T2, Tj) ∧ (
join involved(T1, A) ∨

join involved(T2, A)
) → attribute of(Tj , A)

(8)

5 Security Policy Specification

The policy to be deployed is composed of a set of abstract-level constraints.
Using these constraints, data owners will be able to model in a quite simple
and powerful way, their security and utility requirements. In this section, we
present different kinds of constraints: security constraint and utility constraint.
We present for each kind of constraint the abstract-level representation and their
corresponding transformation to the concrete level.

Specification and Deployment of Integrated Security Policies 23

5.1 Security Constraint

Confidentiality Constraint: Using confidentiality constraint, a data owner
will be able to require that the values assumed by some attributes are sensi-
tive and therefore must be protected. For this purpose, we define the two-places
predicate SAttributeOf . The formula SAttributeOf(t, a) means that “The at-
tribute a of the table t is a sensitive attribute”. A confidentiality constraint is
transformed to the concrete level using the following rule:

∀A, T. SAttributeOf(T,A) → � [∀O,R, V.recordOf(T, R) ∧
valueOf(R,A, V) ∧ ¬belongs(O, T) → ¬knows(O, V)]

(9)

Anonymization Constraints: Using this kind of constraints, a data owner will
be able to require the prevention of identity disclosure by protecting personal
identifiers. We define the one-place predicate withoutIDDisclosure. Thus, the
formula withoutIDDisclosure(t) is to be read “Prevent identity disclosure in
the table t”. An Anonymization constraint is transformed to the concrete level
using the following rule:

∀T. withoutIDDisclosure(T) → �
(∀A,O,R, V. IDAttributeOf(T,A)

∧ recordOf(T,R) ∧ valueOf(R,A, V) ∧ ¬belongs(O, T) → ¬knows(O, V)
) (10)

5.2 Utility Constraint

Confidentiality and privacy protection is offered at the expense of data utility.
Utility constraint gives the ability to a data owner to require that particular
properties on data must be respected. The violation of these properties makes
the data useless. As we work with relational databases, utility requirements are
properties allowing the data owner to execute certain kind of queries over the
protected data. These utility requirements can be classified into four classes.

Equality Check Requirements.With this kind of requirements, a data owner
wants to be able to perform equality checks, which means that he or she wants
to be able to perform selects with equality predicates, equality joins, etc.

Order Check Requirements. A data owner can use this kind of requirement
in order to perform order check, which means that he or she wants to have the
ability to execute range queries, order joins, ORDER BY, MIN, MAX, etc.

Computational Requirements. With this kind of requirements, a data owner
wants to have the ability to perform computation over encrypted data, which
means the ability to execute queries with SUM, AVG, etc.

Keyword Search Requirements. Using keyword search requirements, a data
owner wants to have the ability to perform keyword based search over the en-
crypted data (e.g, to check if a word exists in an encrypted text).

24 A. Bkakria et al.

To be able to express these different kinds of utility requirements, we define
the one place predicate utility requirement(). Then, an utility constraint defined
over the attribute A can be expressed by the axiom 11, which is to be read: “the
ability to perform the utility requirement U over the attribute A”.

utility requirement(U) ∧ provides(U,A) (11)

6 Security Mechanisms Specification

Security policies are enforced through the application of security mechanisms
which can be methods or approaches for supporting the requirements of the
security policies. Each security policy is specified using three groups of formulas:
preconditions formulas, effects formulas, and properties formulas.

Preconditions. For each security mechanism, preconditions are represented
by a set of formulas which are necessary conditions under which the security
mechanism can be applied. We define the two-places predicated is applicable.
The formula is applicable(M,O) is to be read “the mechanism M can be applied
over the object O”, O can be a table, an attribute, or a value. Preconditions of
a security mechanism M are specified using a formula of the following form:

� (is applicable(M,O) → ΔM) (12)

Where ΔM represents necessary conditions for the applicability of the mecha-
nism M . A formula of the form 12 is to be read “At any state of the system,
M can be applied if the preconditions ΔM hold”.

Effects. Effects of the application of a mechanism M that transits the system
from a state wi to a state wj are modifications applied to the system during
this transition. We use the two-places predicate apply(M,O) to say that the
mechanism M is applied over the object O. For a mechanism M , effects are
represented by a set of formulas ΣM such that:

Φ(wi, apply(M,O)) = wj → (wj |= ΣM) (13)

Axiom 13 states that if the application of the mechanism M over the object O
transits the system from a state wi to a state wj , therefore the set of effects ΣM

of the application of the mechanism M is satisfied on the state wj .

Properties. The set of security and utility properties P1, · · · , Pn that can be
derived from the effects of the mechanism application.

ΣM →
n∧

i=1

Pi (14)

In our approach, security policies are composed mainly of confidentiality con-
straints and anonymization constraints. In the next section, we specify using the
three previously presented groups of formulas (preconditions, effects, and prop-
erties) the set of security mechanisms that can be used to enforce the security
policy. We classify these security mechanisms into encryption-based mechanisms
and anonymization-based mechanisms.

Specification and Deployment of Integrated Security Policies 25

6.1 Encryption-Based Mechanism Specification

Encryption-based security mechanism can be classified using two main factors:
the security properties they offer and the level of security they provide (e.g, the
amount of information revealed about the encrypted data). Encryption-based
security mechanisms are to be applied over an attribute A if the following pre-
conditions hold: (1) the attribute A is considered sensitive, (2) the attribute A
is involved in the joint table. This can be specified as follows:

�
[
∀M,A. enc based mechanism(M) ∧ is applicable(M,A) →

∃T. SAttributeOf(T,A) ∧ join involved(T,A)
] (15)

The effects of the application of encryption-based mechanisms are specified using
the following axiom:

∀M,A, T,K. enc based mechanism(M) ∧ attribute of(T,A) ∧
enc key(K) ∧ apply(M,A)→ encrypted(T,A,K)

(16)

Once we have defined the above axiom describing the effects of encryption-based
mechanisms, we can specify the conditions under which an encryption-based
mechanism can protect the values of an attribute. Obliviously, the values of
an attribute over which an encryption-based mechanism is applied are protected
from unauthorized data owners if those data owners have no knowledge about the
used encrypted key (axiom 17). An attribute is protected from an unauthorized
data owner means that this data owner has no knowledge about the values of
the protected attribute (axiom 18).

∀A, T,K,O. enc key(K) ∧ encrypted(T,A,K) ∧ ¬knows(O,K)→
protected(T,A,O)

(17)

∀A, T,O,R, V. protected(T,A,O) ∧ recordOf(T,R)∧
valueOf(R,A, V) → ¬knows(O, V)

(18)

Encryption-based mechanisms can be classified using the security properties they
offer into four categories: deterministic encryption based mechanisms,
order-preserving encryption based mechanisms, homomorphic encryption based
mechanisms, and searchable encryption based mechanisms. For each of these four
categories, we formalize the security and utility properties that characterize them.

Deterministic Encryption Based Mechanisms: Deterministic encryption
based mechanisms allow logarithmic time equality check over encrypted data.
This means that it can perform select queries with equality predicates, equal-
ity joins, etc. Deterministic encryption based mechanisms cannot achieve the
classical notions of security of probabilistic encryption because it leaks which
encrypted values correspond to the same plaintext value. Therefore, each at-
tribute over which a deterministic encryption based mechanism is applied will
have the deterministic (det) security level (axiom 19).

26 A. Bkakria et al.

∀M,A. det enc mechanism(M) ∧ apply(M,A)→
provides(equality check,A) ∧ sec level(A, det)

(19)

Order-preserving Encryption Based Mechanisms: Order preserving
symmetric encryption (OPE) mechanisms are based on deterministic symmetric
encryption schemes which produce encrypted values that preserve numerical or-
dering of the plaintext values. OPE mechanisms are weaker than deterministic
encryption based mechanisms as they leak the order between plaintext values.
Based on this fact, each attribute over which an OPE mechanism is applied will
have the order-preserving (ope) security level (axiom 20).

∀M,A. ope mechanism(M) ∧ apply(M,A)→ sec level(A, ope) ∧
provides(equality check,A) ∧ provides(order check,A)

(20)

Homomorphic Encryption Based Mechanisms: Homomorphic encryption
mechanisms are based on secure probabilistic encryption schemes which enable to
perform computation over encrypted data. For efficiency, we suppose that we will
use mechanisms based on partially homomorphic encryption as fully homomor-
phic encryption schemes have a long way to go before they can be used in practice
[13]. In our approach, we will use mechanisms based on Paillier cryptosystem [14]
to support summation. Paillier cryptosystem provides indistinguishability under
an adaptive chosen-plaintext attack (IND-CPA). Therefore, each attribute over
which an Homomorphic encryption based mechanisms is applied will have the
probabilistic (prob) security level (axiom 21).

∀M,A. hom mechanism(M) ∧ apply(M,A)→
sec level(A, prob) ∧ provides(addition,A)

(21)

Searchable Encryption Based Mechanisms: Searchable encryption mecha-
nisms allow searching for keywords on an encrypted database without revealing
the keyword. Therefore, this kind of mechanisms can be used to perform opera-
tions such as SQL’s LIKE operator. We suppose that we will use the SEARCH
mechanism defined in [18] which is proved to be nearly as secure as a proba-
bilistic encryption. Based on this fact, each attribute over which the SEARCH
mechanism is applied will have the probabilistic (prob) security level. Properties
of the SEARCH-based mechanism is specified as follows:

∀A. searchable enc mechanism(SEARCH) ∧ apply(SEARCH,A)→
sec level(A, prob) ∧ provides(keywork search,A)

(22)

6.2 Anonymization-Based Mechanism Specification

The anonymization technique aims to prevent identity disclosure by protecting
personal identifier. To meet this requirement, we use the existing anonymization
approach k-anonymity [16] in which identifier attributes values are removed from

Specification and Deployment of Integrated Security Policies 27

the private table (axiom 25). However, a Quasi-identifier attribute value in the
released table may lead to infer the value of removed identifier attributes (axiom
23). Therefore, Quasi-identifier attributes values are generalized (axiom 26) in
such a way that removed identifier attributes values cannot be recovered.

∀O, T1, A1, V1, R. IDAttributeOf(T1, A1) ∧ recordOf(T1, R) ∧
valueOf(R,A1, V1) ∧ knows(O, V1)↔ belongs(T1, O) ∨[

∃T2, T3. belongs(O, T2) ∧ joinOf(T1, T2, T3) ∧
(
join involved(T1, A1)

∨ (∃A2. QIDAttributeOf(T1, A2) ∧ ¬ anonymized(T1, A2))
)] (23)

Anonymization mechanism is applied over a table T if and only if the table
T contains at least an identifier attribute or a quasi-identifier attribute. These
preconditions is specified as follows:

�
[
∀T. is applicable(kanonymity, T)→ ∃A.(IDAttributeOf(T,A) ∨

QIDAttributeOf(T,A)) ∧ ¬ encrypted(T,A)
] (24)

Effects of the application of Anonymization mechanism over a table T are spec-
ified using the following axioms:

∀A. IDAttributeOf(T,A)→ ¬ join involved(T,A) (25)

∀A.QIDAttributeOf(T,A) ∧ join involved(T,A)→ anonymized(T,A) (26)

The use of anonymization mechanisms such as k-anonymity offers the data
owner the ability to ensure the prevention of identities disclosure by protect-
ing personal identifiers at the same time supporting data analysis (e.g., data
mining). In terms of security, anonymization based mechanisms are weaker than
encryption based mechanisms as anonymized data can sometimes be re-identified
with particular individuals by using homogeneity Attack or Background Knowl-
edge Attack [12]. Based on this fact, each protected identifier attribute will have
the anonymization (anonym) security level. Properties of anonymization-based
mechanism is specified as follows:

∀M,T.anon mechanism(M) ∧ apply(M,T)→
provides(data analysis, T)∧

(
∀A,O.IDAttributeOf(T,A) ∧ ¬

belongs(T,O)→ protected(T,A,O) ∧ sec level(anonym,A)
) (27)

In order to compare different security levels provided by previously presented
security mechanisms, we define the transitive predicate more secure than. The
formula more secure than(l1, l2) is to be read: “the level l1 is more secure than
the level l2”. A mechanism M1 is more secure than a mechanism M2 if the
application ofM1 leaks less information about sensitive data than the application
of M2. Therefore, based on the amount of leaked information, we define a rule

28 A. Bkakria et al.

(axiom 28) stating that: probabilistic security level prob is more secure than
deterministic security level det, the deterministic security level det is more secure
than the order-preserving security level ope, and the order-preserving security
level ope is more secure than the anonymization security level anonym.

more secure than(prob, det) ∧more secure than(det, ope)

∧more secure than(ope, anonym)
(28)

7 Choosing the Right Mechanisms

The right mechanism or combination of mechanisms is the one that fits in the
best way the sets of security and utility constraints. As we have seen in the
previous section, each security mechanism offers a different level of protection
and a different kind of utility properties. The main challenge then is to choose
the best mechanisms allowing the satisfaction of the chosen goal while enforcing
the defined security policy. In our scenario, security issues come when data is
joined. Before applying the joint operation, security constraints are satisfied.
This hypothesis is also suitable in the general case of data outsourcing. As we
can consider that, since the data is not outsourced, there is no security issue to
worry about. Based on this, we defined several steps allowing the selection of
the mechanisms to be applied.

7.1 First Step: Satisfy the Chosen Goal

We look for the mechanisms that satisfy the chosen goal. For instance, in our
scenario, we look for the suitable join method that can join the data of the two
private tables. Formally speaking, a mechanism Mg satisfies a goal G if from the
specification of our system Σ and the effects of the mechanism ΣMg we are able
to deduce the set of formula representing the goal G (29).

Σ ∪ ΣMg � ΣG (29)

7.2 Second Step: Violated Security Constraints

After getting the set of mechanismsM that can be applied to achieve the chosen
goal, we start looking for the set of violated security and utility constraints for
each mechanism Mg ∈ M. A constraint C is violated while the chosen goal
G is satisfied if from the specification of our system Σ, the effects ΣMg of the
mechanism Mg and the set of formulas ΣC representing the constraint C we can
deduce a logic contradiction. This is can be formally represented as follows:

Σ ∪ ΣMG ∪ ΣC � ⊥ (30)

Obviously, our toolbox may contain several mechanisms that can satisfy the
chosen goal. In that case, we should be able to choose the best one.

Definition 4 (Best goal satisfier). Given the set of mechanismsM = {M1, · · ·
,Mn} that can be used to satisfy the defined goal G. Let Ci be the set of violated

Specification and Deployment of Integrated Security Policies 29

constraints while applying the mechanism Mi. A mechanism Mj is a best goal
satisfier if the following condition holds:

∀i ∈ {1, · · · , n}. |Cj | ≤ |Ci|, where |Ci| is the cardinality of Ci.

7.3 Third Step: Satisfying the Violated Constraints

Once we get the best goal satisfier Mbgs for a defined goal G and the corre-
sponding set of violated security and utility constraints C, the challenge then
is to, for each violated security constraint, looking for the properties that can
satisfy that constraint. Formally speaking, a set of l properties P = {P1, · · · , Pl}
satisfies a security constraint C in a state of the system if from: (1) the sets of
formulas ΣP1 , · · · , ΣPl

representing respectively the specification of the proper-
ties P1, · · · , Pl, (2) the set of formulas Σ representing the system specification,
and (3) the set of formulas ΣMbgs

representing the effects of Mbgs, we are able
to deduce the set of formulas ΣC representing the specification of the constraint
C. This is can be formalized as follows:

l∧
i=1

ΣPi ∪ Σ ∪ ΣMbgs
� ΣC (31)

Informally, 31 means that if the set of security properties P is provided, the
application of the Mbgs will not violate the security constraint C.

7.4 Fourth Step: Choosing the Best Security Mechanisms

The previous steps allow us to select the best goal satisfier Mbgs that can satisfy
the goal G, the corresponding set of violated security and utility constraints C,
and for each security constraint Ci ∈ C, we select the set of properties Pi that
can satisfy Ci when applying the Mbgs. Now, based on those properties, the main
goal is to select from our toolbox, the best combination of security mechanisms
that can usefully satisfy each violated constraint in C.
Definition 5 (Useful satisfaction). Given a violated security constraint C
defined over an object (table or attribute) Ob, the set of security properties P
that satisfy C, and the set of utility constraint UOb defined over the object Ob.
A combination of mechanisms MC usefully satisfy the constraint C if:

Σ ∪
{ ∧

M∈MC

apply(M,Ob)
}
|=

(∧
P∈P

P
∧

U∈UOb

provides(U,Ob)
)

(32)

Definition 6. Given a violated security constraint C, the set of properties P that
satisfy C, and a combination of mechanisms CM = {M1, · · · ,Mn} that usefully
satisfy C. The security level l provided by the combination of mechanisms CM
is the lowest level provided by the application of set of mechanisms M1, · · · ,Mn.

30 A. Bkakria et al.

Σ ∪
{
∀Ob.

n∧
i=1

apply(M,Ob)
}
|=(

∀l′. sec level(l, Ob) ∧ sec level(l′, Ob)→ more secure than(l′, l)
) (33)

Definition 7 (Best combination of mechanisms). Given a violated security
constraint C and the set of properties P that can satisfy C. Suppose that we find
several combinations of security mechanisms CM1, · · · , CMn that provide the
set of properties P. Suppose that the set of combinations of security mechanisms
CM1, · · · , CMn provides respectively the set of security levels l1, · · · , ln. The
combination of mechanisms CMi is the best combination of mechanisms if it
has the highest provided security level. For the combinations of mechanisms that
provide the same security level, we choose the one that involves the minimal
number of security mechanisms. This is can be specified as follows:

n∧
i=1

(
more secure than(li, lj) ∨ (li = lj ∧ |CMi| < |CMj |)

)
(34)

8 Best Mechanisms Selection

In this section, we demonstrate how to to select the best combination of mech-
anisms to satisfy defined security policies using different steps presented in the
previous section. Due to the lack of space, proofs of this demonstration which
can be found in [2] will be omitted here. Consider two data owners O1 and O2

which store respectively two private tables T1(SSN,Age,Adress,Balance) and
T2(SSN, Job, ZIP, Salary). They want to integrate data stored in both tables.
In one side, O1 defined a policy P1 composed of two security constraints SC1,1 =
{withoutIDDisclosure(T1)} and SC2,1 = {SAttributeOf(T1, Balance)} and
two utility constraints UC1,1 = {provides(equality, Balance)} and UC2,1 =
{provides(addition,Balance)}. O1 specifies that the attribute SSN is an iden-
tifier attribute and that the attributes Age and Address are quasi-identifier
attributes. In another side, O2 defines a policy P2 composed of the security
constraint SC1,2 = {withoutIDDisclosure(T2)}. O2 specifies that the attribute
SSN is an identifier attribute and that the attributes Job and Zip are quasi-
identifier attributes. Suppose that all attributes in T1 and T2 are involved in the
join and that our toolbox is composed of the set of security mechanisms pre-
sented in 6.1 and 6.2, and two other mechanisms, rel join and tds representing
respectively the relational join operation and the top-down specialization mech-
anism [7]. Axiom 36 in [2] specifies the effects Σrel join of the application of
rel join mechanism. Axiom 37 in [2] describes the effects Σtds of the appli-
cation of the mechanism tds. The first step to select the best combination of
mechanisms allowing to satisfy P1 and P2 while achieving the chosen goal con-
sists in selecting the set of mechanisms to achieve the chosen goal. According to

Specification and Deployment of Integrated Security Policies 31

29, the mechanism rel join and tds can be applied to satisfy the jointure of the
private tables T1 and T2 (See Proof 1 in [2]).

After we select the set of mechanisms to satisfy the goal, we choose the best
goal satisfier from this set of mechanisms. In this demonstration, according to
Definition 4, the tds mechanism represents the best goal satisfier to join the
private tables T1 and T2 as it violates only SC2,1 (See Proof 2 in [2]. The
next step consists in finding the set of security properties to satisfy the violated
security constraints that rose from the application of the best goal satisfier. When
provided for the attribute Balance, the protection property protected can satisfy
the confidentiality constraint SC2,1 even when the tds mechanism is applied (See
Proof 3 in [2]. Next, we choose from our toolbox the combination of mechanisms
that can usefully satisfy the security constraint SC2,1. Two combinations of
mechanisms can usefully satisfy the security constraint SC2,1: (1) combines an
order-preserving encryption based mechanism and an homomorphic encryption
based mechanism, and (2) combines a deterministic encryption based mechanism
and an homomorphic encryption based mechanism (See Proof 4 in [2]. The
final step consists in choosing the best combination of mechanisms that can
usefully satisfy the security constraint SC2,1 which is (2) (See Proof 5 in [2]. In
conclusion, we can say that the application of the combination of mechanisms
(2) before the application of tds mechanism allows us to enforce defined security
policies P1 and P2 while joining the two tables T1 and T2.

9 Conclusion

We defined a well-founded language to select, from a toolbox containing a set of
security mechanisms, the best combination of security mechanisms allowing the
enforcement security and utility requirements for outsourced data. Our approach
can be improved by detecting the incompatibilities and conflicts between security
mechanisms to be able to decide which mechanisms can be applied together
without losing provided utility requirements.

Acknowledgments. This work has received a French government support
granted to the CominLabs excellence laboratory and managed by the National
Research Agency in the ”Investing for the Future” program under reference
ANR-10-LABX-07-01, and to the Frag&Tag project and managed by the Dual
Innovation Support Scheme (RAPID) under convention No 132906023

References

1. Bkakria, A., Cuppens, F., Cuppens-Boulahia, N., Fernandez, J.M., Gross-Amblard,
D.: Preserving multi-relational outsourced databases confidentiality using fragmen-
tation and encryption. Journal of Wireless Mobile Networks, Ubiquitous Comput-
ing, and Dependable Applications (JoWUA) 4(2), 39–62 (2013)

2. Bkakria, A., Cuppens, F., Cuppens-Boulahia, N., Gross-Amblard, D.:
https://portail.telecom-bretagne.eu/publi/public/fic download.

jsp?id=30178

https://portail.telecom-bretagne.eu/publi/public/fic_download.jsp?id=30178
https://portail.telecom-bretagne.eu/publi/public/fic_download.jsp?id=30178

32 A. Bkakria et al.

3. Blanchet, B.: An efficient cryptographic protocol verifier based on prolog rules. In:
CSFW, pp. 82–96. IEEE Computer Society (2001)

4. Blanchet, B.: Automatic proof of strong secrecy for security protocols. In: IEEE
Symposium on Security and Privacy, pp. 86–100. IEEE Computer Society (2004)

5. Boldyreva, A., Chenette, N., Lee, Y., O’Neill, A.: Order-preserving symmetric en-
cryption. In: Joux [11], pp. 224–241

6. Ciriani, V., De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S.,
Samarati, P.: Fragmentation and encryption to enforce privacy in data storage.
In: Biskup, J., López, J. (eds.) ESORICS 2007. LNCS, vol. 4734, pp. 171–186.
Springer, Heidelberg (2007)

7. Fung, B.C.M., Wang, K., Yu, P.S.: Top-down specialization for information and
privacy preservation. In: Aberer, K., Franklin, M.J., Nishio, S. (eds.) ICDE, pp.
205–216. IEEE Computer Society (2005)

8. Gabbay, D., Pnueli, A., Shelah, S., Stavi, J.: On the temporal analysis of fairness.
In: Proceedings of the 7th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 1980, pp. 163–173. ACM, New York (1980)

9. Hacigümüs, H., Iyer, B.R., Li, C., Mehrotra, S.: Executing sql over encrypted data
in the database-service-provider model. In: SIGMOD Conference, pp. 216–227.
ACM (2002)

10. Hore, B., Mehrotra, S., Tsudik, G.: A privacy-preserving index for range queries.
In: Nascimento, M.A., Özsu, M.T., Kossmann, D., Miller, R.J., Blakeley, J.A.,
Schiefer, K.B. (eds.) VLDB, pp. 720–731. Morgan Kaufmann (2004)

11. Joux, A. (ed.): EUROCRYPT 2009. LNCS, vol. 5479. Springer, Heidelberg (2009)
12. Machanavajjhala, A., Gehrke, J., Kifer, D., Venkitasubramaniam, M.: l-diversity:

Privacy beyond k-anonymity. In: Liu, L., Reuter, A., Whang, K.Y., Zhang, J. (eds.)
ICDE, p. 24. IEEE Computer Society (2006)

13. Naehrig, M., Lauter, K., Vaikuntanathan, V.: Can homomorphic encryption be
practical? In: Cachin, C., Ristenpart, T. (eds.) CCSW, pp. 113–124. ACM (2011)

14. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

15. Popa, R.A., Redfield, C.M.S., Zeldovich, N., Balakrishnan, H.: Cryptdb: Protecting
confidentiality with encrypted query processing. In: SOSP (2011)

16. Samarati, P., Sweeney, L.: Generalizing data to provide anonymity when disclos-
ing information (abstract). In: Proceedings of the Seventeenth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, PODS 1998,
p. 188. ACM, New York (1998)

17. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: IEEE Symposium on Security and Privacy, pp. 44–55. IEEE Computer
Society (2000)

18. De Capitani di, Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.:
A data outsourcing architecture combining cryptography and access control. In:
Ning, P., Atluri, V. (eds.) CSAW, pp. 63–69. ACM (2007)

Optimizing Integrity Checks

for Join Queries in the Cloud

Sabrina De Capitani di Vimercati1, Sara Foresti1, Sushil Jajodia2,
Stefano Paraboschi3, and Pierangela Samarati1

1 Università degli Studi di Milano – 26013 Crema, Italy
{firstname.lastname}@unimi.it

2 George Mason University – Fairfax, VA 22030-4444
jajodia@gmu.edu

3 Università di Bergamo – 24044 Dalmine, Italy
parabosc@unibg.it

Abstract. The large adoption of the cloud paradigm is introducing
more and more scenarios where users can access data and services with
an unprecedented convenience, just relying on the storage and compu-
tational power offered by external providers. Also, users can enjoy a
diversity and variety of offers, with the possibility of choosing services
by different providers as they best suit their needs. With the growth of
the market, economic factors have become one of the crucial aspects in
the choice of services. However, security remains a major concern and
users will be free to actually benefit from the diversity and variety of
such offers only if they can also have proper security guarantees on the
services. In this paper, we build upon a recent proposal for assessing
integrity of computations performed by potentially untrusted providers
introducing some optimizations, thus limiting the overhead to be paid
for integrity guarantees, and making it suitable to more scenarios.

1 Introduction

The competitive pressures are driving the IT sector away from the classical model
that assumed the processing and storage of an organization data within the in-
ternal information system, toward the use of storage and processing capabilities
offered by providers, which can benefit from economies of scale deriving from
the large size of the infrastructure and service catalogue, together with possible
access to less expensive resources. Along this line, we can expect a continuous
increase in the differentiation of the market for cloud services. For instance, in
the area of cloud architectures, interest has emerged on hybrid clouds and on a
distinction between cloud storage and cloud computational services. Storage and
computational services respond in fact to separate requirements, with distinct
profiles. The first should offer reliability for data storage, typically correspond-
ing to providers with high reputation on the market. The second should offer
availability of – possibly cheap – computational power, which can be offered
by unknown providers. Reputation of the provider is, in this case, less critical,

V. Atluri and G. Pernul (Eds.): DBSec 2014, LNCS 8566, pp. 33–48, 2014.
c© IFIP International Federation for Information Processing 2014

34 S. De Capitani di Vimercati et al.

as it is relatively easy to move computation from one provider to another, and
the most important parameter becomes the price of the service. An obstacle
to a stronger differentiation in the market between storage and computational
resources is however represented by the security concerns of users, who can see
the involvement of multiple parties in the processing of their information as
increasing the risk of confidentiality and integrity violations.

In this paper, we present an approach for users to protect confidentiality of
processed data and to assess the integrity of computations performed by poten-
tially untrusted computational providers, operating over data stored at trusted
storage providers. Our approach builds upon a recent proposal [5], aimed at
controlling the behavior of a computational provider that joins data stored at
independent trusted storage servers. We address the problem of optimizing in-
tegrity controls so to decrease their performance and economic overheads mak-
ing them suitable to more scenarios and enabling their application with stronger
integrity guarantees. In particular, we introduce two optimization techniques.
The first technique (Sect. 3) exploits the execution of the join with a semi-join
strategy, hence possibly decreasing data communication and consequent perfor-
mance/economic costs, while leaving unaltered the offered guarantees. The sec-
ond technique (Sect. 4) limits the application of the integrity checks to a small
portion of the data, producing a considerable saving in terms of performance
and economic cost, though at the price of a reduced integrity guarantee. The
two optimizations are independent and orthogonal and can be used individually
or in combination (Sects. 5 and 6).

2 Scenario and Basic Concepts

We present the basic idea of the approach on which we build our optimization
techniques. The scenario is characterized by a client that wishes to evaluate a
query involving a join over two relations, Bl and Br, stored at storage servers Sl

and Sr, respectively, by using a computational server Cs. The storage servers are
assumed to be trustworthy while the computational server is not. The query is of
the form “select A from Bl join Br on Bl.I = Br.I where Cl and Cr and
Clr,” where A is a subset of attributes in Bl ∪Br; I is the set of join attributes;
and Cl, Cr, and Clr are Boolean formulas of conditions over attributes in Bl,
Br, and Bl ∪ Br, respectively. Typically, execution of such a query involves in
pushing down, to each of the storage servers, the evaluation of the condition (Cl

and Cr) on its own relation. We assume that, regardless of the degree of the
original schema, relations L and R resulting from the evaluation of Cl and Cr,
respectively, have schema (I, Attr), where I and Attr represent the set of join
attributes and all the other attributes, respectively, as a unit. Without security
concerns, relations L and R are then sent to the computational server, which
performs the join, evaluates condition Clr and returns the result to the client.
Since the computational server is not trusted, the proposal in [5]: i) provides data
confidentiality by encrypting on the fly the relations sent to the computational
server, with a key communicated by the client to the storage servers, ii) provides
integrity guarantees by using a combination of controls as follows:

Optimizing Integrity Checks for Join Queries in the Cloud 35

– markers: each of the storage servers inserts fake control tuples (markers),
not recognizable by the computational server, in the relation to be sent to
the computational server. Markers are inserted so to join (i.e., belong to
the result) and to not collide with real join attribute values (to not create
spurious joined tuples).

– twins: each of the storage servers duplicates (twins) some of the tuples in its
relation before sending it to the computational server. The creation of twins
is easily controlled by the client by specifying a percentage of tuples to be
twinned and a condition for twinning.

– salts/buckets: used in alternative or in combination to destroy recognizable
frequencies of combinations in one-to-many joins. Salts consist in salting the
encryption at side “many” of the join so that occurrences of a same value
become distinct; at the same time salted replicas are created at side “one”
of the join so to create the corresponding matching. Bucketization consists
in allowing multiple occurrences of the same (encrypted) value at the side
many of the join, but in such a way that all the values have the same number
of occurrences. Bucketization can help in reducing the number of salts to be
inserted, while possibly requiring insertion of dummy tuples (to fill otherwise
not complete buckets).

Join computation, illustrated in Fig. 1(a), works now as follows. Each storage
server receives in encrypted form its sub-query, together with the key to be used
to encrypt the sub-query result, and the needed information to regulate the use
of markers, twins, salts and buckets. It then executes the received sub-query (as
before), and applies over the resulting relation L (R, resp.) markers, twins, salts
and buckets as appropriate, producing a relation L∗ (R∗, resp.). Relation L∗

(R∗, resp.) is then encrypted producing relation L∗
k (R∗

k, resp) to be sent to the
computational server. Encrypted relation L∗

k (R∗
k, resp.) contains two encrypted

chunks for each tuple: L∗
k.Ik (R∗

k.Ik, resp.) for the join attribute, and L∗
k.Tuplek

(R∗
k.Tuplek, resp.) for all the other attributes (including the join attribute). The

computational server receives the encrypted relations from the storage servers
and performs the join returning the result J∗

k to the client. The client receives
the join result, decrypts it, checks whether the tuples have been correctly joined
(i.e., L∗.I obtained decrypting L∗

k.Tuplek is equal to R∗.I obtained decrypting
R∗

k.Tuplek), and discards possible tuples with dummy content. Then, it checks
integrity by analyzing markers and twins: an integrity violation is detected if
an expected marker is missing or a twinned tuple appears solo. Note that the
combined use of markers and twins offers strong protection guarantees. In fact,
when omitting a large number of tuples in query results, the probability that
the omission goes undetected increases with respect to twins, and decreases with
respect to markers (e.g., one marker is sufficient to detect that an empty result
is not correct), and vice versa. Figure 1(b) illustrates an example of relations L
and R and of their extensions obtained by assuming: the presences of one marker
(with value x for the join attribute), twinning tuples with join attribute equal
to b, and adopting 2 salts and buckets with 2 tuples each. Figure 1(c) reports

36 S. De Capitani di Vimercati et al.

(a)

L

I Attr

a Ann
b Beth
c Cloe

R

I Attr

a flu
a asthma
b ulcer
e hernia
e flu
e cancer

L∗
I Attr

a Ann

a′ Ann′
b Beth

b′ Beth′
c Cloe

c′ Cloe′
b̄ Beth

b̄′ Beth′
x marker1

R∗
I Attr

a flu
a asthma
b ulcer
b dummy1
e hernia
e flu

e′ cancer

e′ dummy2
b̄ ulcer
b̄ dummy1
x marker2
x dummy3

J∗
L∗.I L∗.Attr R∗.I R∗.Attr

a Ann a flu
a Ann a asthma
b Beth b ulcer
b Beth b dummy1
b̄ Beth b̄ ulcer
b̄ Beth b̄ dummy1
x marker1 x marker2
x marker1 x dummy3

(b) (c)

Fig. 1. Join computation as a regular join (a) and an example of relations L and R
and their extensions with markers, twins, salts and buckets (b) along with the join
computed over them (c)

the join result J∗ obtained by the client decrypting relation J∗
k received from

the computational server.

3 Semi-join

The first optimization we illustrate consists in performing the join according to
a semi-join strategy. Without security concerns, a semi-join simply implements
a join operation by first considering only the projection of the join attribute
over the stored relations. Only after the join is computed, the join attribute is
extended with the other attributes from the source relations to produce the final
result. In our distributed setting, semi-joins – while requiring additional data
flows – avoid communication of unnecessary tuples to the client and of non-join
attributes to the computational server, producing a saving of the total commu-
nication costs for selective joins and/or relations with tuples of considerable size
(see Sect. 6). Our approach for executing a semi-join in conjunction with the
security techniques illustrated in the previous section works as follows. The exe-
cution of the join at the computational server basically works as before: it again
receives from the storage servers encrypted relations on which markers, twins,

Optimizing Integrity Checks for Join Queries in the Cloud 37

Fig. 2. Join execution as a semi-join

salts and buckets have been applied; it computes the join between them; and it
sends the result to the client. However, in this case:

– the storage servers do not communicate to the computational server their
entire tuples (relation L) but rather much slimmer tuples (relation LI) with
only the join attribute and the tuple identifier (both in encrypted form). The
tuple identifier (T id) is needed to keep tuples with the same value for the
join attribute distinct.

– after checking/cleaning the result of the join (relation JI), the client asks
the storage servers to complete the tuples in the join with the attributes in
Attr in their relations (obtaining relations LJ and RJ), and combines their
results.

The join process is illustrated in Fig. 2, where the striped triangle corresponds
to the process in Fig. 1(a).

Note that, while entailing more flows (the previous process is a part of this),
the semi-join execution limits the transfer of non-join attributes, thus reducing the
amount of data transferred. Note also that while the storage servers and the client
are involved in the execution of some computation to combine tuples, this compu-
tation does not entail an actual join execution but rather a simple scan/merging of
ordered tuples that then requires limited cost.

Figure 3 illustrates an example of join computation over relations L and R in
Fig. 1(b) according to the semi-join strategy. The semi-join execution strategy
leaves unchanged the integrity guarantees offered by our protection techniques.
In fact, the join computed by the computational server relies on the same pro-
tection techniques used for the computation of a regular join, and the storage
servers are assumed to correctly evaluate the queries received from the client.
The probability ℘ that the computational server omits o tuples without being

38 S. De Capitani di Vimercati et al.

JI∗
k

Ik L.Tuplek R.Tuplek

α λ1 ρ1

α λ1 ρ2

β λ2 ρ3

β λ2 δ1
β̄ λ2 ρ3

β̄ λ2 δ1
χ μ1 μ2

χ μ1 δ3

JI∗

L∗.I L∗.T id R∗.I R∗.T id

a l1 a r1
a l1 a r2
b l2 b r3
b l2 b d1

b̄ l2 b̄ r3
b̄ l2 b̄ d1

x m1 x m2

x m1 x d3

JI
L.Tid R.Tid

l1 r1
l1 r2
l2 r3

RJ
Tid I Dis

r1 a flu
r2 a asthma
r3 b ulcer

LJ
Tid I Name

l1 a Ann
l2 b Beth

J
I Name Dis

a Ann flu
a Ann asthma
b Beth ulcer

L
Tid I Name

l1 a Ann
l2 b Beth
l3 c Cloe

LI
I Tid

a l1
b l2
c l3

LI∗

I T id

a l1
a′ l′1
b l2
b′ l′2
c l3
c′ l′3
b̄ l2
b̄′ l′2
x m1

LI∗k
Ik L.Tuplek

α λ1

α′ λ′
1

β λ2

β′ λ′
2

γ λ3

γ′ λ′
3

β̄ λ2

β̄′ λ′
2

χ μ1

RI∗
k

Ik R.Tuplek

α ρ1

α ρ2

β ρ3

β δ1
ε ρ4

ε ρ5

ε′ ρ6

ε′ δ2
β̄ ρ3

β̄ δ1
χ μ2

χ δ3

RI∗

I T id

a r1
a r2
b r3
b d1

e r4
e r5
e′ r6
e′ d2

b̄ r3
b̄ d1

x m2

x d3

RI
I Tid

a r1
a r2
b r3
e r4
e r5
e r6

R
Tid I Dis

r1 a flu
r2 a asthma
r3 b ulcer
r4 e hernia
r5 e flu
r6 e cancer

Fig. 3. An example of query evaluation process with twins on b, one marker, two salts,
and buckets of size two

detected is then the same of regular joins, that is, ℘ = (1− o
f)

m·(1−2 o
f +2(of)

2)t≈
e−2 t

f o, where f is the cardinality of relation J∗ with t twin pairs and m mark-
ers [5]. In fact, the probability that no marker is omitted is (1− o

f)
m, while the

probability that, for each twin pair, either both tuples are omitted or both are
preserved is (1−2 o

f +2(of)
2)t. This probabilistic analysis has also been confirmed

by experimental analysis [5].

4 Limiting Salts and Buckets to Twins and Markers

The overhead caused by the adoption of our protection techniques is mainly due
to salts and buckets [5], which are used to protect the frequency distribution
of the values of the join attribute in case of one-to-many joins. In the following
discussion, we refer to the execution of the join according to the process described
in Sect. 2. Let s be the number of salts and b be the size of buckets defined by the
client. Relation L∗ includes s copies of each original tuple in L and of each twin.
Relation R∗ instead includes b tuples for each marker (one marker and (b − 1)
dummy tuples) and between 0 and (b−1) dummy tuples for each value of the join
attribute appearing in R and in the twinned tuples. Hence, also the join result
J∗ will have b tuples for each marker and between 0 and (b−1) dummy tuples for
each original and twinned value of the join attribute. For instance, with respect
to the example in Fig. 1(b), the adoption of our protection techniques causes the
presence of six additional tuples in L∗ and R∗, and five additional tuples in J∗.

The second optimization we propose aims at limiting the overhead caused by
the adoption of salts and buckets by applying them only to twins and markers
rather than to the whole relations. Twins and markers (properly bucketized

Optimizing Integrity Checks for Join Queries in the Cloud 39

L∗
I Attr

a Ann
b Beth
c Cloe
b̄ Beth

b̄′ Beth′
x marker1

R∗
I Attr

a flu
a asthma
b ulcer
e hernia
e flu
e cancer
b̄ ulcer
b̄ dummy1
x marker2
x dummy2

J∗
L∗.I L∗.Attr R∗.I R∗.Attr

a Ann a flu
a Ann a asthma
b Beth b ulcer
b̄ Beth b̄ ulcer
b̄ Beth b̄ dummy1
x marker1 x marker2
x marker1 x dummy2

Fig. 4. An example of extensions of relations L and R in Fig. 1(b) and their join when
salts and buckets are limited to twins and markers

and salted) would form a Verification Object (VO) that can be attached to the
original (encrypted) relation. As an example, Fig. 4 illustrates the extended
version of relations L and R in Fig. 1(b) where salts and buckets operate only
on twins and markers. It is immediate to see that this optimization saves three
tuples in L∗, two in R∗, and one in J∗. The strategy of limiting salts and buckets
to twins and markers can be adopted in combination with both the regular and
the semi-join strategies, reducing the computational overhead in both cases.
While providing performance advantages, this strategy may reduce the integrity
guarantee provided to the client. Let us consider a relation J∗, with f original
tuples, t twin pairs, and m markers. We examine the probability ℘ that the
computational server omits o original tuples without being detected. We build
a probabilistic model considering the worst case scenario, assuming that the
computational server: i) is able to recognize the tuples in VO (only the tuples
in VO have a flat frequency distribution), ii) knows the number m of markers
in VO, iii) but cannot recognize which tuples in VO are twins and which are
markers, or which of the original tuples have been twinned. We also consider all
the tuples in a bucket as a single tuple. In fact, the computational server either
preserves or omits buckets of tuples in their entirety as omissions of subsets of
tuples in a bucket can always be detected. If the server omits o tuples out of
f , the probability for each twin to be omitted will be o

f . To go undetected, the
server should provide a configuration of VO consistent with the f − o returned
tuples. There is only one such configuration, which contains a number of tuples
between m and (m+t). The goal of the computational server is to maximize
the probability of being undetected. We can model the behavior of the server
considering two phases. In the first phase, the server determines the number of
tuples that should belong to VO after the omission. Since there is a uniform and
independent probability for the omission of twins, the number of expected tuples
in VO follows a binomial distribution. This means that the probability that VO
contains (m+t)−k tuples is ℘omit =

(
t
k

)
(1− o

f)
t−k(of)

k (e.g., the probability that

VO does not miss any tuple, k = 0, is ℘omit = (1 − o
f)

t). In the second phase,

the server tries to guess the correct configuration including (m + t) − k tuples.
The number of such configurations depends on the number of missing tuples: if
the server knows that k of the (m+t) tuples in VO are missing, the number of
possible configurations is

(
m+t
k

)
, and the probability ℘guess of guessing it right

40 S. De Capitani di Vimercati et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

p

o/f

m=*, keep all
m=1, keep m
m=2, keep m
m=5, keep m

m=10, keep m

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

p

o/f

m=*, keep all
m=2, keep 3
m=2, keep 2
m=5, keep 6
m=5, keep 5

(a) (b)

Fig. 5. Probability ℘ that the server omits a fraction o
f

of the tuples without being
detected, considering several strategies, assuming t = 1 (a) and t = 2 (b)

is the inverse of this quantity. For instance, if no tuple is omitted (k = 0), the
server is certain of guessing the right configuration, whereas if all the twins have
been omitted, the probability of randomly guessing the right configuration with
exactly m tuples is 1/

(
m+t
m

)
, that is, m! · t!/(m + t)!. The server can estimate

the probability of a correct guess for each strategy by multiplying the first term
with the second term, that is, ℘ = ℘omit · ℘guess. The server, to maximize
the chance of not being detected, will have to choose the strategy that exhibits
the greatest value. Since the second term exhibits an exponential growth with
the increase in k, the server will typically prefer the strategy where no tuple in
VO is omitted.

Figure 5 shows the result of the analysis for configurations with 1 or 2 twins
and a variable number of markers. For the configuration with 1 twin in Fig. 5(a),
we can see that the strategy that keeps all the elements in VO (independently
from the number of markers) is preferable for a large range of omissions. When
the number of markers increases, the cutoff between the selection of the strat-
egy that tries to guess the tuple to omit from VO moves progressively to the
right. A similar behavior characterizes the configuration with 2 twins described
in Fig. 5(b), which shows that there is a range of values for o

f where each con-
figuration is preferable, but as the number of markers increases, the “keep all”
strategy extends its benefit. The ability to avoid detection when omitting tuples
becomes negligible when we consider configurations with the number of twins
and markers that we expect to use in real systems.

As said above, it is convenient for the server to keep all the tuples in VO. In
this case, the omission goes undetected if the server does not omit any original
tuple that has been twinned. The probability ℘ for the server to go undetected

is then equal to ℘ = (1 − o
f)

t ≈ e−
t
f
·o. Figure 6 compares the results obtained

when salts and buckets protect the whole relations (“full salts and buckets” in
the figure) with the case where salts and buckets protect only VO (“VO-only
salts and buckets” in the figure), assuming t

f=15%. We note that limiting salts
and buckets to twins and markers offers roughly half the protection of applying
salts and buckets to the whole relation. Intuitively, the client can obtain the

Optimizing Integrity Checks for Join Queries in the Cloud 41

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

p

o

VO-only salts and buckets
full salts and buckets

Fig. 6. Probability of the omission of o tuples to go undetected when applying salts
and buckets on the whole relations and on twins and markers only

same protection guarantee by doubling the ratio t
f of twins. We note however

that, even limiting salts and buckets to VO, the probability that the server is
not detected when omitting more than 30 tuples is negligible and is independent
from the number f of tuples in the original relation. Since the computational
server cannot selectively omit tuples from the join result (i.e., it cannot recognize
tuples that have a twin), the advantage obtained from the omission of less than
30 tuples does not justify the risk of being detected in its omission.

5 Performance Analysis

We now evaluate the performance benefits obtained with the introduction of the
semi-join strategy and the use of salts and buckets only on twins and markers.
The performance costs depend on both the computational and communication
costs. The computational costs are however dominated by the communication
costs. In fact, the computational costs at the client and at the storage servers
can be considered limited with respect to the computational costs at the com-
putational server, which however can rely on a high amount of computational
resources and on traditional techniques for optimizing join evaluation. In the
following, we then focus our analysis first on the communication costs when
evaluating a join as a regular join (RegJ) [5] or as a semi-join (SemiJ), accord-
ing to the process described in Sect. 3. We then analyze the communication costs
obtained when limiting salts and buckets to twins and markers.

Semi-join vs Regular Join. This analysis focuses on the amount of data ex-
changed among the involved parties (i.e., number of tuples transferred multiplied
by their size). We first note that both the regular join and the semi-join require
a common phase (Phase 1) where there is an exchange of data (tuples) between
the storage servers and the computational server and between the computa-
tional server and the client. In this phase, regular join and semi-join differ in the
size of the tuples transferred among the parties. The semi-join then requires an
additional phase (Phase 2) where the client and the storage servers interact to
compute the final join result. We analyze each of these two phases in details.

42 S. De Capitani di Vimercati et al.

Phase 1 [Sl,Sr→ Cs; Cs→ Client]. As already discussed, the only difference
between SemiJ and RegJ is the size of the tuples communicated, while the
number of tuples in the join operands and in its result is the same for both
strategies. SemiJ requires the transmission of the join attribute and of the tuple
identifiers only, which are the two attributes forming the schema of relations LI
and RI. RegJ requires instead the transmission of all the attributes in L and R.
If the size of the tuples in L and R is higher than the size of the tuples in LI
and RI, SemiJ implies a lower communication cost than RegJ . Formally, the
amount of data transmitted during this phase is:
SemiJ : |L∗| · sizeL + |R∗| · sizeR + |J∗| · (sizeL + sizeR)
RegJ : |LI∗| · sizeIT + |RI∗| · sizeIT + |JI∗| · 2sizeIT
where sizeL is the size of the tuples in L, sizeR is the size of the tuples in R, sizeIT
is the sum sizeI + sizeTid, with sizeI the size of the join attribute I and sizeTid

the size of the tuple identifier T id. Since LI∗ (RI∗ and JI∗, resp.) has the same
number of tuples as L∗ (R∗ and J∗, resp.), the difference in the communication
cost is:

|L∗| · (sizeL − sizeIT) + |R∗| · (sizeR − sizeIT) + |J∗| · (sizeL + sizeR − 2sizeIT).

Phase 2 [Client →S l,Sr; Sl,Sr→ Client]. The number of tuples exchanged be-
tween the client and Sr is equal to the number of tuples resulting from the join
computed by the computational server in the previous phase, after the removal of
markers, twins, and dummies (i.e., |JI|=|RJ|). The number of tuples exchanged
between the client and S l depends on the type of join. In case of one-to-one joins,
the number of tuples coincides with the number of tuples transmitted from the
client to Sr (i.e., |JI|=|LI|). In case of one-to-many joins, the number of tuples
is lower since the same tuple in LI (L, resp.) may appear many times in the
join result JI (J , resp.). Assuming a uniform distribution of values, the number

of different values for the join attribute in RI is 2|RI|
nmax . Given the selectivity σ

of the join operation, the number of different values for the join attribute in JI

is σ · 2|RI|
nmax , which corresponds to the number of tuples exchanged between the

client and Sl. The size of the tuples transmitted from the client to each storage
server is sizeTid since the client transmits only the values of the tuple identifier
T id. The size of the tuples transmitted from the storage servers to the client is
equal to the size of the tuples in the original relations L and R (i.e., sizeL and
sizeR, resp.). Formally, the amount of data exchanged during this phase is:

one-to-one join: 2|JI| · sizeTid + |JI| · sizeL + |JI | · sizeR;
one-to-many join: (|JI|+ σ · 2|RI|

nmax) · sizeTid + σ · 2|RI|
nmax · sizeL + |JI| · sizeR.

By comparing the amount of data transmitted in Phase 2 with the additional
amount of data transmitted in Phase 1 caused by the regular join, we note that
the semi-join is convenient for relations with large tuples (i.e., sizeIT << sizeL
and sizeIT << sizeR), as also shown by our experimental analysis (Sect. 6). The
advantage of the semi-join with respect to the regular join appears also more
evident in case of one-to-many joins where a tuple in the left operand can appear

many times in the join result (i.e., |LJ | ≈ σ · 2|RI|
nmax << |JI |). In fact, with the

semi-join strategy the client receives each tuple in L that belongs to the final

Optimizing Integrity Checks for Join Queries in the Cloud 43

result only once, while it receives many copies of the same tuple when adopting
the regular join approach.

Limiting Salts and Buckets to Twins and Markers. The saving, in terms
of communication cost, provided applying salts and buckets to markers and twins
rather than to the whole relation can be computed by analyzing the difference
in the number of tuples in L∗, R∗, and J∗. We analyze each relation in detail.

– L∗. Since only twin tuples are salted, we save the salted copies of the tuples
in L, that is, (s− 1) · |L| tuples.

– R∗. Since buckets operate only on twins and markers, we save the dummy
tuples of the buckets formed with the tuples in R. Since for each value of
the join attribute, there is at most one bucket with dummy tuples with, on

average, b−1
2 dummy tuples, and there are 2|R|

nmax distinct values for the join

attribute (again assuming a uniform distribution of values), we save b−1
nmax ·|R|

tuples.
– J∗. The join result contains the subset of the tuples in R∗ that combine with

the tuples in L∗. The number of tuples saved in J∗ is then a fraction of the
number of tuples saved in R∗, that is, σ · b−1

nmax · |R|.

The overall advantage provided by limiting salts and buckets to twins and mark-
ers is: (s− 1) · |L| · sizeL + b−1

nmax · |R| · sizeR + σ · b−1
nmax · |R| · (sizeL + sizeR).

6 Experimental Results

To assess the performance advantage of the semi-join strategy with respect to
the regular join and of limiting salts and buckets to twins and markets, we
implemented a prototype enforcing our protection techniques, and run a set of
experiments. We used for the computational server a machine with 2 Intel Xeon
Quad 2.0GHz, 12GB RAM. The client machine and the storage servers were
standard PCs running an Intel Core 2 Duo CPU at 2.4 GHz, with 4GB RAM,
connected to the computational server through a WAN connection with a 4 Mbps
throughput. The values reported are the average over six runs.

Regular Join vs Semi-join. A first set of experiments was dedicated to the
comparison between the regular join and the semi-join. The experiments also
evaluated the impact of latency on the computation, comparing the response
times for queries over local networks (local client configuration) with those ob-
tained with a client residing on a PC at a distance of 1,000 Km connected through
a shared channel that in tests demonstrated to offer a sustained throughput near
to 80 Mbit/s (remote client configuration). The experiments used a synthetic
database with two tables, each with between 104 and 106 tuples, with size equal
to 30 and 2,000 bytes. We computed one-to-one joins between these tables, using
500 markers and 10% of twins. The results of these experiments are reported in
Fig. 7.

The results confirm that the use of semi-join (SemiJ in the figure) gives an
advantage with respect to regular join (RegJ in the figure) when the tuples

44 S. De Capitani di Vimercati et al.

 0

 50000

 100000

 150000

 200000

 10 100 250 500 1000

ti
m

e
 (

m
s
)

thousands of tuples

RegJ, remote client
SemiJ, remote client

RegJ, local client
SemiJ, local client

 0

 50000

 100000

 150000

 200000

 250000

 300000

 10 100 250 500 1000

ti
m

e
 (

m
s
)

thousands of tuples

RegJ, remote client
RegJ, local client

SemiJ, remote client
SemiJ, local client

(a) tuples of 30 bytes (b) tuples of 2,000 bytes

Fig. 7. Response time for regular join and semi-join

have a large size, whereas the advantage becomes negligible when executing a
join over compact tuples. This is consistent with the structure of the semi-join
computation, which increases the number of exchanges between the different
parties, but limits the number of transfers of non-join attributes. When the
tuples are large, the benefit from the reduced transfer of the additional attributes
compensates the increased number of operations, whereas for compact tuples
this benefit is limited. The experiments also show that the impact of latency is
modest, as the comparison between local client and remote client configurations
of the response times for the same query shows a limited advantage for the local
client scenario, consistent with the limited difference in available bandwidth.
The results obtained also confirm the scalability of the technique, which can be
applied over large tables (up to 2 GB in each table in our experiments) with
millions of tuples without a significant overhead.

Limiting Salts and Buckets to Twins and Markers. A second set of ex-
periments was dedicated to the analysis of the use of salts and buckets. The
experiments considered a one-to-many join, evaluated as a regular join, over
a synthetic database containing 1,000 tuples in both join operands. We tested
configurations with at most 50 occurrences of each value, and used a number of
salts s varying between 1 and 100 and buckets of size b=� 50s �. The experiments
evaluating the overhead of the protection techniques when salts and buckets are
used only on markers and twins show that the overhead due to salts and buckets
is proportional to the fraction of tuples that are twinned. For instance, if we add
a 10% of twins, the overhead for salts and buckets will be one tenth of what
we would have observed if applying the protection to all the tuples. Figure 8
compares the response time observed when executing the query without using
our protection techniques (“base” in the figure), when using 50 markers and 15%
of twins with salts and buckets on the whole table (“full salts and buckets” in
the figure), and a configuration with 50 markers and 30% of twins with salts
and buckets only on markers and twins (“VO-only salts and buckets” in the
figure). The experiments confirm that the increase in response time represents a
fraction t

f (with t the number of twins and f the cardinality of the join result)

Optimizing Integrity Checks for Join Queries in the Cloud 45

 10000

 100000

 0 20 40 60 80 100

ti
m

e
 (

m
s
)

number of salts

full salts and buckets
VO-only salts and bucket

base

Fig. 8. Response time without adopting protection techniques, with salts and buckets
on the whole relation, and with salts and buckets only on markers and twins

of the increase that would otherwise be observed using salts and buckets over all
the tuples. The figure also shows that the overhead due to the adoption of our
protection techniques is limited.

Economic Analysis. Besides the response time perceived by the user, the
choice between regular and semi-join needs to take into consideration also the
economic cost of each alternative. We focused on evaluating the economic ad-
vantage of the availability of the semi-join, besides regular join, strategy when
executing queries [10]. In fact, in many situations the semi-join approach can be
less expensive, since it entails smaller flows of information among the parties.

In our analysis, we assumed economic costs varying in line with available
solutions (e.g., Amazon S3 and EC2, Windows Azure, GoGrid), number of tuples
to reflect realistic query plans, and reasonable numbers for twins and markers. In
particular, we considered the following parameters: i) cost of transferring data
out of each storage server (from 0.00 to 0.30 USD per GB), of the computational
server (from 0.00 to 0.10 USD per GB), and of the client (from 0.00 to 1.00 USD
per GB); ii) cost of transferring data to the client (from 0.00 to 1.00 USD per
GB);1 iii) cost of CPU usage for each storage server (from 0.05 to 2.50 USD
per hour), for the computational server (from 0.00 to 0.85 USD per hour), and
for the client (from 1.00 to 4.00 USD per hour); iv) bandwidth of the channel
reaching the client (from 4 to 80 Mbit/s); v) size sizeIT = sizeI + sizeTid of
the join attribute and the tuple identifier (from 1 to 100 bytes); vi) number of
tuples in L (from 10 to 1,000) and the size of the other attributes sizeL − sizeIT
(from 1 to 300 bytes); vii) number of tuples in R (from 10 to 10,000) and the
size of the other attributes sizeR − sizeIT (from 1 to 200 bytes); viii) number
m of markers (from 0 to 50); ix) percentage t

f of twins (from 0 to 0.30); x)

number s of salts (from 1 to 100); xi) maximum number nmax of occurrences of
a value in R.I (from 1 to 100); xii) selectivity σ of the join operation (from 0.30
to 1.00). Similarly to what is usually done in finance and economics to compare

1 We did not consider the cost of input data for the storage and computational servers
since all the price lists we accessed let in-bound traffic be free.

46 S. De Capitani di Vimercati et al.

 0

 50

 100

 150

 200

 250

 300

 350

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

U
S

D

configurations

RegJ
min cost(RegJ,SemiJ)

 0

 500

 1000

 1500

 2000

 2500

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

U
S

D

configurations

RegJ
min cost(RegJ,SemiJ)

(a) (b)

Fig. 9. Total economic cost of executing 2,000 one-to-one (a) and 2,000 one-to-many
(b) join queries as a regular join or as the less expensive between regular and semi-join

alternative strategies in systems whose behavior is driven by a large number of
parameters assuming values following a probability distribution, we used a Monte
Carlo method to generate 2,000 simulations varying the parameters above and,
for each simulation, we evaluated the cost of executing a join operation as a
regular and as a semi-join.

We compared the cost of evaluating 2,000 one-to-one and 2,000 one-to-many
join queries with (and without resp.) the availability of the semi-join technique
for query evaluation. We assume that the query optimizer can assess which of the
two strategies (i.e., RegJ , SemiJ) is less expensive for each query. Figures 9(a)
and 9(b) illustrate the total costs as the number of query grows for the two sce-
narios, considering one-to-one and one-to-many queries, respectively. As visible
in the figure, if all the queries are evaluated adopting the regular join approach,
the total cost (continuous line) reaches higher values than with the availability
of the semi-join approach (dotted line). This trend is more visible for one-to-
many joins, where the total cost reached when all the queries are evaluated as
regular joins is 2,475 USD while with the availability of the semi-join approach
it remains at 1,321 USD, with a total saving of 1,160 USD (corresponding to
46,85%). In fact, out of the 2,000 one-to-many queries, 1784 were evaluated as
semi-joins, while for the remaining 216 the regular join solution was cheaper.
For one-to-one joins, as expected, the total saving is lower (24.77%) since half
of the 2,000 queries considered are cheaper when evaluated as regular joins.

7 Related Work

Our work falls in the area of security and privacy in emerging outsourcing and
cloud scenarios [2,7]. In this context, researchers have proposed solutions address-
ing a variety of issues, including data protection, access control, fault tolerance,
data and query integrity (e.g., [1,3,4,6,8,9,15]). In particular, current solutions
addressing the problem of verifying the integrity (i.e., completeness, correctness,
and freshness) of query results are based on the definition of a verification object

Optimizing Integrity Checks for Join Queries in the Cloud 47

returned with the query result. Different approaches differ in the definition of
the verification object and/or in the kind of guarantees offered, which can be
deterministic or probabilistic. For instance, some proposals are based on the def-
inition of an authenticated data structure (e.g., Merkle hash tree or a variation
of it [12,19] or of signature-based schemas [13,14]) that allow the verification
of the correctness and completeness of query results. These proposals provide
deterministic guarantees, that is, they can detect integrity violations with cer-
tainty but only for queries involving the attribute(s) on which the authenticated
data structure has been created. Some proposals have also addressed the prob-
lem of verifying the freshness of query results (e.g., [11,18]). The idea consists in
periodically updating a timestamp included in the authenticated data structure
or in periodically changing the data generated for integrity verification.

Probabilistic approaches can offer a more general control than deterministic
approaches but they can detect an integrity violation only with a given prob-
ability (e.g., [5,16,17]). Typically, there is a trade-off between the amount of
protection offered and the computational and communication overhead caused.
The proposal in [16] consists in replicating a given percentage of tuples and in
encrypting them with a key different from the key used for encrypting the orig-
inal data. Since the replicated tuples are not recognizable as such by the server,
the completeness of a query result is guaranteed by the presence of two instances
of the tuples that satisfy the query and are among the tuples that have been
replicated. The proposal in [17] consists in statically introducing a given number
of fake tuples in the data stored at the external server. Fake tuples are generated
so that some of them should be part of query results. Consequently, whenever
the expected fake tuples are not retrieved in the query result, the completeness
of the query result is compromised. In [5] we have introduced the idea of us-
ing markers, twins, salts and buckets for assessing the integrity of join queries.
This paper extends such a solution proposing two optimizations that limit the
overhead introduced by our protection techniques.

8 Conclusions

We presented two variations to markers, twins, salts and buckets proposed for
assessing query integrity, offering significant performance benefits. In particular,
we illustrated how markers, twins, salts and buckets can be easily adapted when
a join query is executed as a semi-join, and how salts and buckets can be limited
to twins and markers. The experimental evaluation clearly showed that these
two variations limit the computational and communication overhead due to the
integrity checks.

Acknowledgements. The authors would like to thank Michele Mangili for
support in the implementation of the system and in the experimental evalua-
tion. This work was supported in part by the EC within the 7FP under grant
agreement 312797 (ABC4EU) and by the Italian Ministry of Research within
PRIN project “GenData 2020” (2010RTFWBH). The work of Sushil Jajodia
was partially supported by NSF grant IIP-1266147.

48 S. De Capitani di Vimercati et al.

References

1. Basu, A., Vaidya, J., Kikuchi, H., Dimitrakos, T.: Privacy-preserving collaborative
filtering on the cloud and practical implementation experiences. In: Proc. of IEEE
Cloud, Santa Clara, CA (June-July 2013)

2. Damiani, E., De Capitani di Vimercati, S., Jajodia, S., Paraboschi, S., Samarati, P.:
Balancing confidentiality and efficiency in untrusted relational DBMSs. In: Proc.
of CCS, Washington, DC (October 2003)

3. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Livraga, G.: Enforcing
subscription-based authorization policies in cloud scenarios. In: Cuppens-Boulahia,
N., Cuppens, F., Garcia-Alfaro, J. (eds.) DBSec 2012. LNCS, vol. 7371, pp. 314–
329. Springer, Heidelberg (2012)

4. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.:
Encryption policies for regulating access to outsourced data. ACM TODS 35(2),
12:1–12:46 (2010)

5. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.:
Integrity for join queries in the cloud. IEEE TCC 1(2), 187–200 (2013)

6. De Capitani di Vimercati, S., Foresti, S., Samarati, P.: Managing and accessing
data in the cloud: Privacy risks and approaches. In: Proc. of CRiSIS, Cork, Ireland
(October 2012)

7. Hacigümüş, H., Iyer, B., Mehrotra, S., Li, C.: Executing SQL over encrypted data
in the database-service-provider model. In: Proc. of SIGMOD, Madison, WI (June
2002)

8. Jhawar, R., Piuri, V.: Fault tolerance and resilience in cloud computing environ-
ments. In: Vacca, J. (ed.) Computer and Information Security Handbook, 2nd edn.,
pp. 125–142. Morgan Kaufmann (2013)

9. Jhawar, R., Piuri, V., Santambrogio, M.: Fault tolerance management in cloud
computing: A system-level perspective. IEEE Systems Journal 7(2), 288–297 (2013)

10. Kossmann, D., Kraska, T., Loesing, S.: An evaluation of alternative architectures
for transaction processing in the cloud. In: Proc. of SIGMOD, Indianapolis, IN
(June 2010)

11. Li, F., Hadjieleftheriou, M., Kollios, G., Reyzin, L.: Dynamic authenticated index
structures for outsourced databases. In: Proc. of SIGMOD, Chicago, IL (June 2006)

12. Li, F., Hadjieleftheriou, M., Kollios, G., Reyzin, L.: Authenticated index structures
for aggregation queries. ACM TISSEC 13(4), 32:1–32:35 (2010)

13. Mykletun, E., Narasimha, M., Tsudik, G.: Authentication and integrity in out-
sourced databases. ACM TOS 2(2), 107–138 (2006)

14. Pang, H., Jain, A., Ramamritham, K., Tan, K.: Verifying completeness of relational
query results in data publishing. In: Proc. of SIGMOD, Baltimore, MA (June 2005)

15. Ren, K., Wang, C., Wang, Q.: Security challenges for the public cloud. IEEE In-
ternet Computing 16(1), 69–73 (2012)

16. Wang, H., Yin, J., Perng, C., Yu, P.: Dual encryption for query integrity assurance.
In: Proc. of CIKM, Napa Valley, CA (October 2008)

17. Xie, M., Wang, H., Yin, J., Meng, X.: Integrity auditing of outsourced data. In:
Proc. of VLDB, Vienna, Austria (September 2007)

18. Xie, M., Wang, H., Yin, J., Meng, X.: Providing freshness guarantees for outsourced
databases. In: Proc. of EDBT, Nantes, France (March 2008)

19. Yang, Z., Gao, S., Xu, J., Choi, B.: Authentication of range query results in MapRe-
duce environments. In: Proc. of CloudDB, Glasgow, UK (October 2011)

Privacy-Enhancing Proxy Signatures

from Non-interactive Anonymous Credentials�

David Derler, Christian Hanser, and Daniel Slamanig

Institute for Applied Information Processing and Communications (IAIK),
Graz University of Technology (TUG), Inffeldgasse 16a, 8010 Graz, Austria

{david.derler,christian.hanser,daniel.slamanig}@tugraz.at

Abstract. Proxy signatures enable an originator to delegate the signing
rights for a restricted set of messages to a proxy. The proxy is then able
to produce valid signatures only for messages from this delegated set
on behalf of the originator. Recently, two variants of privacy-enhancing
proxy signatures, namely blank signatures [25] and warrant-hiding proxy
signatures [26], have been introduced. In this context, privacy-enhancing
means that a verifier of a proxy signature does not learn anything about
the delegated message set beyond the message being presented for veri-
fication.

We observe that this principle bears similarities with functionality pro-
vided by anonymous credentials. Inspired by this observation, we examine
black-box constructions of the two aforementioned proxy signatures from
non-interactive anonymous credentials, i.e., anonymous credentials with
a non-interactive showing protocol, and show that the so obtained proxy
signatures are secure if the anonymous credential system is secure. More-
over, we present two concrete instantiations using well-known representa-
tives of anonymous credentials, namely Camenisch-Lysyanskaya (CL) and
Brands’ credentials.

While constructions of anonymous credentials from signature schemes
with particular properties, such as CL signatures or structure-preserving
signatures, as well as from special variants of signature schemes, such
as group signatures, sanitizable and indexed aggregate signatures, are
known, this is the first paper that provides constructions of special vari-
ants of signature schemes, i.e., privacy-enhancing proxy signatures, from
anonymous credentials.

Keywords: Proxy signatures, anonymous credentials, cryptographic
protocols, privacy, provable security.

1 Introduction

Proxy signatures allow an originator to delegate signing rights to a proxy, who
is then able to issue signatures on behalf of the originator (cf. [8] for various

� The authors have been supported by the European Commission through project
FP7-FutureID, grant agreement number 318424. An extended version of this paper
can be found at [19].

V. Atluri and G. Pernul (Eds.): DBSec 2014, LNCS 8566, pp. 49–65, 2014.
c© IFIP International Federation for Information Processing 2014

50 D. Derler, C. Hanser, and D. Slamanig

secure constructions). To restrict the delegation, Mambo et al. [27] introduced
the concept of a warrant, which basically encodes a policy describing the del-
egation of the originator and is signed by the originator using a conventional
digital signature scheme as part of the delegation. For instance, such a warrant
can be used to restrict the set of messages (message space) a proxy is allowed
to sign messages from. In all known constructions, however, the warrant is re-
vealed to every verifier, which could lead to privacy issues. When, for instance,
delegating the signing rights for a contract containing multiple choices for a
price to a proxy the whole price range would be revealed to any verifier. We call
proxy signatures privacy-preserving, if they address this issue and do not reveal
the warrant upon verification, while still allowing to check whether the message
signed by the proxy is covered by the warrant. We note that this concept must
not be confused with anonymous proxy signatures [23], which aim at hiding the
identity of the delegatee and all intermediate delegators. In this paper, we con-
sider two recently proposed instantiations of privacy-enhancing proxy signature
schemes, namely warrant-hiding proxy signatures [26] (WHPS) as well as blank
digital signatures [25] (BDS). Roughly speaking, WHPS allow to delegate the
signing rights for a set of messages M, e.g., M = {M1, . . . ,M4}, to a proxy.
Given a proxy signature anyone is able to verify the validity of such a signature
and the delegation while not learning anything about the remaining delegated
message space. Similarly, BDS allow for the delegation of the signing rights for
a template T containing fixed and exchangeable strings (called elements) to a
proxy, who is then able to sign a filled in version of such a template on behalf of
the originator. Thereby, fixed elements can not be changed by the proxy, while
exchangeable elements allow the proxy to choose one message out of a set of
predefined messages, e.g., T = (M1, {M21,M22 ,M23},M3) with M1 and M3 be-
ing fixed elements. Upon verification, again, anyone is able to verify the validity
of the signature and delegation while not learning anything about the unused
choices in the exchangeable elements.

We observe, that this principle bears similarities with functionality provided
by anonymous credentials. In an anonymous credential system, an organization
issues a credential on attributes (which can be viewed as messages in the dele-
gation) and the showing of a credential amounts to selectively opening some of
the attributes (messages), while only proving knowledge of the undisclosed at-
tributes. If the showing, thereby, is non-interactive and includes proving knowl-
edge of a secret key, it can be seen as issuing a digital signature. Loosely speaking,
for instance, in case of WHPS, one would use the messages in the warrant, i.e.,
M = {M1, . . . ,Mn}, and the public key of the proxy as attributes of the cre-
dential. A proxy signature then amounts to a non-interactive showing of the
chosen message and the proxy public key, while only proving knowledge of the
remaining message space and the proxy secret key (without revealing it).

1.1 Contribution

In this paper we provide black-box constructions of the two aforementioned
privacy-enhancing proxy signature schemes from non-interactive anonymous cre-

Privacy-Enhancing Proxy Signatures 51

dentials. Therefore, we provide an explicit encoding of message spaces to at-
tributes of the credential systems. We show that a secure credential system to-
gether with this encoding implies the security of the respective privacy-enhancing
proxy signature scheme. Furthermore, we present two instantiations based on
non-interactive versions of well known Brands’ [9] and CL [13] credentials, ob-
tained by applying the Fiat-Shamir heuristic [21] and being secure in the random
oracle model. Moreover, we compare the so obtained signature schemes to the
originally proposed BDS and WHPS constructions and discuss why they may
represent an alternative in specific scenarios. To the best of our knowledge, the
presented constructions constitute the first approach to construct special signa-
tures schemes from anonymous credentials, which may be of independent interest
and inspiring for the design of other signatures.

1.2 Related Work

In [5], Belenkiy et al. propose a model for practical non-interactive anony-
mous credentials being secure in the standard model, which uses Groth-Sahai
proofs [24]. In [6], Bellare and Fuchsbauer use similar building blocks, i.e., struc-
ture preserving signatures [2] and Groth-Sahai proofs, to construct what they
call policy based signatures. This approach basically allows for defining policies
enforcing certain properties on signed messages. Furthermore, Backes et al. [4]
propose a model for delegating the signing rights for messages being derivable
from an initial message by applying a particular functionality to the message.

In [22], Fuchsbauer and Pointcheval introduce a generalized model for anony-
mous proxy signatures and group signatures. The latter concept is conceptually
very similar to anonymous credentials and often anonymous credentials are built
from group signatures. Though, to the best of our knowledge, no formal implica-
tions regarding the security models of the aforementioned concepts exist. Quite
recently, two (black-box) constructions for anonymous credentials from aggre-
gate signatures [16], as well as sanitizable signatures [17] were proposed. In a
way, this is the opposite of what we are going to show in this paper.

2 Preliminaries

We use additive notation for groups G which are always of prime order p.

Bilinear Map: A bilinear map (pairing) is a map e : G1 × G2 → GT , with
G1,G2 and GT being cyclic groups of prime order p. Let P and P ′ generate G1

and G2. We require e to be efficiently computable and to satisfy:

Bilinearity: e(aP, bP ′) = e(P, P ′)ab = e(bP, aP ′) ∀a, b ∈ Zp

Non-degeneracy: e(P, P ′) �= 1GT , i.e., e(P, P
′) generates GT .

If G1 = G2, e is called symmetric and asymmetric otherwise.

Zero-Knowledge Proofs of Knowledge: We use the notation from [14] for
denoting the proof of knowledge (PoK) of a discrete logarithm x = logP Y to

52 D. Derler, C. Hanser, and D. Slamanig

the base P , i.e., PoK{(α) : Y = αP}, whereas Greek letters always denote
values whose knowledge will be proven. The non-interactive version of such a
proof can be obtained using the Fiat-Shamir [21] transform, which is then also
called a signature of knowledge (SoK) [18]. When such a proof includes proving
knowledge of a secret key, it is a secure digital signature in the random oracle
model. Such a signature is interpreted as the signature of the proxy in our setting
and is followingly denoted as π.

3 Anonymous Credentials

In an anonymous credential system there is an organization as well as different
users. Thereby, the organization issues credentials to users, who can then anony-
mously demonstrate possession of these credentials to verifiers. Such a system is
called multi-show when showings carried out by the same user cannot be linked
and one-show otherwise. A credential credi for user i issued by the organization
in such a system includes a set A = {(attr
, dom(attr
))}n
=1 of attribute labels
attr
 and corresponding domain dom(attr
) from which attribute labels can
take their values. When we speak of a set Ai for user i, we mean a subset of A
such that for every attr
 contained in the set, the second element of the tuple
takes some concrete value from dom(attr
). Whenever a user i demonstrates
possession of a credential for a subset A′

i of Ai, we write A′
i � Ai to denote that

the showing is compatible with Ai. This means that all selectively disclosed at-
tribute values have been issued for this credential and that all statements proven
about attribute values can be proven from the issued attribute values.

3.1 Abstract Model of Anonymous Credentials

Subsequently, we give an abstract definition of an anonymous credential system.

Setup(κ, t): Gets a security parameter κ and an upper bound t for |A| and returns
the global parameters pp.

OrgKeyGen(pp): Takes pp and produces an organization key pair (osk, opk).
UserKeyGen(pp, i): Takes pp and i ∈ N and produces a key pair (uski, upki) for

user i.
(Obtain(pp, opk, uski), Issue(pp, osk, upki,Ai)): These algorithms are run by user

i and the organization, who interact during execution. Obtain takes input
global parameters pp, the user’s secret key uski and the organization’s public
key opk. Issue takes input pp, the user’s public key upki, the organization’s
secret key osk and a set Ai of size n. At the end of this protocol, Obtain
outputs a credential credi for Ai for user i and the (updated) secret key usk′i.

(Show(pp, opk, uski, credi,Ai,A
′
i), Verify(pp, opk,A

′
i)): These algorithms are run

by user i and a verifier who interact during the execution. Show takes input
global parameters pp, the user’s secret key uski, the organization’s public key
opk, a credential credi with a corresponding set Ai of size n and a second set
A′

i � Ai of size n′ with n′ ≤ n. Verify takes input the public parameters pp,
the public key opk and a set A′

i. At the end of the protocol, Show outputs an

Privacy-Enhancing Proxy Signatures 53

(updated) credential cred′i and the (updated) user’s secret key usk′i. Verify
outputs true upon a valid showing and false otherwise.

We note that in some models the entire key generation is executed by the Setup
algorithm. However, we find it more natural to split these algorithms into three
algorithms. Furthermore, we note that if there are multiple organizations, then
OrgKeyGen is run by every single organization (on potentially distinct pp).

There are various definitions of security for anonymous credential systems
[3, 12, 16, 17], which differ in their details as they are sometimes tailored to
specific constructions. However, they are essentially only slightly different ways
of defining the properties unforgeability and anonymity in addition to the usual
correctness property. Correctness means that a showing of a credential w.r.t. a
set A′

i of attributes and values must always verify if the credential was issued
honestly w.r.t. Ai such that A′

i � Ai. Unforgeability means that an adversary
can not succeed in showing a credential which is accepted by a verifier, unless a
credential w.r.t. to the shown attributes has been issued to it. Anonymity means
that no adversary, even playing the role of the organization, should be able to
identify the user when showing a credential. Furthermore, different showings of
a user w.r.t. the same credential must be unlinkable in multi-show anonymous
credential systems. Finally, we require a property denoted as selective disclosure.
This is not covered by the security definition of [3], which we are going to use,
but is an informal requirement for all anonymous credential systems. There is
a simulation based notion capturing this fact [5], which, however, turns out to
be not useful for relating the security properties to our constructions. However,
we can assume that any reasonable anonymous credential system satisfies this
notion, i.e., even if the user is known, a showing transcript must not reveal any
information about attributes beyond the attributes revealed during showing [10].
This is underpinned by the fact that all known anonymous credential systems
employ (non-interactive) proofs of knowledge in their showing protocols and such
proofs by definition do not reveal anything beyond what is shown. For more
formal security definitions, we refer the reader to the extended version [19].

Non-interactive Anonymous Credential Systems: If interaction between
the user and the verifier when executing (Show,Verify) algorithms is not required,
we call an anonymous credential system non-interactive. These steps can, thus,
be executed in isolation and the output of the Show algorithm serves as input for
the Verify algorithm. In constructions of credential systems it is straightforward
to make the showing non-interactive and the output of the Show algorithm can,
thus, be considered as a signature of knowledge.

3.2 Two Concrete Anonymous Credential Systems

Camenisch-Lysyanskaya (CL) credentials [11, 13] are constructed from commit-
ment schemes and efficient protocols for proving the equality of two committed
values and a signature scheme with efficient protocols. Latter protocols are for ob-
taining a signature on a committed value (without revealing the value) and proving

54 D. Derler, C. Hanser, and D. Slamanig

the knowledge of it. The used signature schemes support re-randomization,mean-
ing that one can take a signature and compute another signature for the samemes-
sage without the signing key, such that the signatures are unlinkable. Thus, the
resulting credential systems aremulti-show. Brands’ credentials [9] are built from
blind signatures which do not support re-randomization and, therefore, represent
a one-show credential system.

The two aforementioned approaches are the basis for our instantiations of
privacy-enhancing proxy signatures from non-interactive anonymous credential
systems. Further details are given in the extended version [19].

3.3 Remarks on Anonymous Credentials in our Constructions

For our black-box constructions, we need to make some clarifications before
being able to use an arbitrary anonymous credential system.

First of all, in order to model the delegation, the designated proxy’s public key
always needs to be encoded within an attribute, being opened upon every non-
interactive Show. Therefore, we assume that the user’s public key (corresponding
to its secret signing key) fits to the system parameters of the anonymous creden-
tial scheme. If the proxy’s key does not fit to the system parameters of the used
scheme, one could include a hash value of the user’s public key as an attribute
and require the user to sign the output of the non-interactive Show algorithm
using the corresponding secret key (latter is not considered here). Moreover, in
the case of BDS also a second attribute containing the size of the template needs
to be included and always opened during showing. As already mentioned, we re-
quire the showing of the anonymous credential scheme to be non-interactive and
each non-interactive showing is required to include a proof of knowledge of the
secret key corresponding to the public key included in the first attribute. This
constitutes a signature of knowledge and is interpreted as the proxy’s signature.

Finally, we want to mention that the anonymity property of anonymous cre-
dential schemes is stronger than what is required for BDS or WHPS. While we
only require the hiding of attributes (selective disclosure) which have not been
opened, anonymous credentials also require unlinkability of issuing and showing,
which is not necessary for BDS and WHPS, but does not influence our construc-
tions. Similarly, we do not require the multi-show unlinkability, but it does not
really influence our constructions as well. One may explicitly enforce breaking
the unlinkability by requiring the credential issuer to additionally issue a con-
ventional digital signature on the credential and accepting the credential only
if the signature is valid. Conversely, the unlinkability may also be seen as an
additional feature for BDS and WHPS, respectively (cf. Section 7).

4 Privacy-Enhancing Proxy-Type Signatures

This section is intended to give a brief overview of the privacy-enhancing proxy
signature schemes. Section 4.1 discusses the Blank Digital Signature Scheme
(BDSS) proposed in [25], whereas Section 4.2 discusses the Warrant-Hiding
Proxy Signature Scheme (WHPSS) proposed in [26].

Privacy-Enhancing Proxy Signatures 55

4.1 Blank Digital Signatures

The BDSS allows an originator to delegate the signing rights for a certain tem-
plate to a proxy. Based on such a delegation, the proxy is able to issue a signature
on a so called instance of a template on behalf of the originator. A template T is
a sequence of non-empty sets of bitstrings Ti, where these sets are either called
fixed or exchangeable, depending on the cardinality of the respective set. More
precisely, exchangeable elements contain more than one bitstring, whereas fixed
elements contain exactly one bitstring. Such a template is formally defined as
Ti = {Mi1 ,Mi2 , . . . ,Mik}, T = (T1, T2, . . . , Tn).

The template length is defined as the sequence length n of the template,
while the template size |T | is defined as |T | =

∑n
i=1 |Ti|. An originator issues a

signature for a template, which also specifies the proxy. Based on this so-called
template signature, the designated proxy can take the fixed elements, choose
concrete values for each exchangeable element, and compute a so-called instance
signature for an instance M, which is formally defined as M = (Mi)

n
i=1. If M

is a correct instantiation of T , we write M� T .
Given an instance signature, anyone is able to verify its validity, i.e., verify

the delegation, whether M has been signed by the proxy and if M � T holds.
Thereby, the original template, that is, the unused values of the exchangeable
elements of the template, can not be determined (the so called privacy property).
Formally, a BDSS is defined as follows [25]:

KeyGen(κ, t): On input of a security parameter κ and an upper bound for the
template size t the public parameters pp are generated. We assume pp to be
an input to all subsequent algorithms.

Sign(T , dskO, dpkP): Given a template T , the secret signing key of the originator
dskO and the public verification key of the proxy dpkP, this algorithm outputs
a template signature σT and a secret template signing key for the proxy skTP .

VerifyT(T , σT , dpkO, dpkP, sk
T
P): Given a template T , a template signature σT ,

the public verification keys of originator and proxy (dpkO, dpkP) and the
template signing key of the proxy skTP , this algorithm checks whether σT is
a valid signature for T and returns true on success and false otherwise.

Inst(T , σT ,M, dskP, sk
T
P): On input a template T with corresponding signature

σT , an instance M� T , as well as the secret template signing key skTP and
the secret signing key of the proxy dskP, this algorithm outputs a signature
σM for M.

VerifyM(M, σM, dpkO, dpkP): Given an instance M, an instance signature σM
and the public verification keys of originator and proxy (dpkO, dpkP), this
algorithm verifies whether σM is a valid signature onM andM� T (for an
unknown T). On success, this algorithm outputs true and false otherwise.

The security of a BDSS is defined as follows [25]. Correctness states that for
all honestly generated parameters and keys it is required that for any template
T and honestly computed template signature σT and corresponding skTP , the
verification always succeeds and for the originator it is intractable to find a

56 D. Derler, C. Hanser, and D. Slamanig

template signature that is valid for different templates (in the sense of non-
repudiation of [29]). Furthermore, for any honestly computed instance signature
σM, the verification always succeeds. Unforgeability requires that without the
knowledge of dskO, dskP and skTP it is intractable to forge template or message
signatures. Immutability means that for a proxy (in possession of skTP , dskP, T
and σT) it is intractable to forge template signatures or instance signatures
which are not described in the respective template. Privacy captures that no
verifier (except for the originator and the proxy) can learn anything about T
besides what is revealed by instance signatures. More formal security definitions
are provided in the extended version [19].

4.2 Warrant-Hiding Proxy Signatures

A WHPSS allows an originator to delegate the signing rights for a message from
a well defined message spaceM (sometimes also denoted as ω) to a proxy. The
message space M is, thereby, a non-empty set of bitstrings (messages) Mi, i.e.,
M = {M1, . . . ,Mn}. A proxy is then able to choose one bitstring Mi from the
message spaceM and issue a proxy signature σP on behalf of the originator for
Mi. A verifier given Mi and σP can verify the validity of the signature and the
delegation, while the remaining message space (M\Mi) stays concealed.

One could argue that the functionality of WHPSS can be easily modeled by
the originator by separately signing each message in M and to let the proxy
then countersign a message of its choice. However, using this naive approach
would allow the proxy to repudiate that a particular message was contained in
the delegated message space. In contrast, one can open the warrant contained
in the WHPSS proxy signature in case of a dispute in front of a judge.

The security of a WHPSS is defined as follows [26]. Correctness requires that
for all honestly computed parameters and for all proxy signing keys obtained by
running the delegation algorithm, it holds that for all warrants and proxy signa-
tures for a message M the verification algorithm for proxy signatures accepts a
signature for M if M is in the warrant and rejects it otherwise. Furthermore, the
proxy-identification algorithm is required to return the correct proxy. Unforge-
ability states that, without the knowledge of the originator’s and the proxy’s
secret key, it is intractable to produce valid delegations and/or proxy signatures
which are either inside or outside the warrant. Privacy requires that any verifier
distinct form the originator and the proxy can not efficiently decide whether a
given message (except the ones being revealed by proxy signatures) lies within
the warrant when given a proxy signature. More formal definitions are provided
in the extended version [19].

5 From Anonymous Credentials to Proxy-Signatures

Subsequently, we show how privacy-enhancing proxy signatures can be built from
non-interactive anonymous credential systems. Therefore, we use the abstract
notion of an anonymous credential system introduced in Section 3 and map the

Privacy-Enhancing Proxy Signatures 57

algorithms to the corresponding algorithms of the respective proxy signature
scheme. Furthermore, we introduce an encoding to attributes in order to achieve
the same properties as the proxy signature schemes.

The basic idea behind using an anonymous credential system for modeling
privacy-enhancing proxy signatures is that we interpret the elements of a tem-
plate (or the warrant) together with the public key of the designated proxy and
the template length as attributes of a credential issued by an originator (or-
ganization). On verification, the proxy only reveals the attributes belonging to
the instantiation of the template (or reveals one attribute corresponding to a
message from the warrant) while hiding all others. We note that the organiza-
tion’s keypair (opk, osk) in the anonymous credential scheme is interpreted as the
keypair of the originator in the proxy signature schemes and the user’s keypair
(upki, uski) is the keypair of proxy i. We use this notation of the anonymous
credential model henceforth.

5.1 Mapping from Templates and Warrants to Attributes

In both proxy signature approaches, a finite sequence/set of strings needs to be
encoded as attributes of a credential, where in the case of BDSS this sequence
represents a template and in case of WHPSS the set represents a warrant. The
ideas behind the encoding are quite similar, although the BDSS case is a little
trickier. Before presenting the encodings, we require some operations on sets
and sequences. Firstly, we define an operator Expand(·, ·), which takes an integer
k and a set S = {s1, . . . , sn} as input and returns a sequence of tuples. This
operator assigns a unique position to each element of the set, e.g., by means of
their lexicographic order, and encodes the elements together with the integer k
in a sequence. More precisely, we define an output sequence a as:

a = ((s1, k), . . . , (sn, k)) := Expand(k, {s1, . . . , sn}).

Whenwe apply the concatenation operator || to two sequences, e.g., (x)ni=1||(y)mi=1,
the result is a sequence of the form (x1, . . . , xn, y1, . . . , ym). For the concatenation
of ≥ 2 sequences s1, . . . , s
 we write ||
i=1si. Moreover, we require an operator
Hash(·) which takes a sequence a of tuples as input and returns the sequence a′

of corresponding hash values obtained by applying a secure hash function H :
{0, 1}∗×{0, 1}∗ → Zp to each element in the sequence. The i-th element of such a
sequence a′ obtained from a is further referred to as hi := H(si, k). Note that we
useH to allow for messages/attribute values of arbitrary length.

BDSS: In the original construction of BDSS presented in [25], templates are
encoded as polynomials and each template element constitutes a root of the so
called encoding polynomial. With such an encoding polynomial at hand, one
can not derive anything about the order of the elements within the template
and, in further consequence, this property hides the structure of the template.
In contrast, anonymous credential systems typically assume an ordering of the
attributes within the credential (cf. Section 3.2), and, thus, would leak informa-
tion about the structure of a template. Let us, for instance, consider a template

58 D. Derler, C. Hanser, and D. Slamanig

T = (M1, {M21 ,M22 ,M23},M3, {M41 ,M42}). Here, each element Mi would be
encoded within one attribute in the credential. While the unused choices of the
exchangeable elements are hidden upon Show, information on the cardinality and
position of exchangeable elements can leak due to the order of the attributes.

Template Encoding: In order to map templates T and instancesM, as defined
in Section 4.1, the first processing step is to apply the following transformation:
T ← Hash(||ni=1Expand(i, Ti)).

Subsequently prefixing T with the (authentic) public key upki of the desig-
nated proxy and the template size |T | would already deliver a suitable encoding
for our constructions. However, as mentioned above, such an encoding can leak
information about the structure of the template. In order to prevent this kind of
leakage, we further apply a random permutation φ to the expanded and hashed
template, i.e., T ← (upki, |T |, φ(T)).

In doing so, the order of the attributes becomes independent of their position
in the template, and, thus, the template structure is hidden as in the original
BDSS construction. Subsequently, this mapping is denoted as EncBDS

T .
For example, T = {{”A”, ”B”}, ”declares to pay”, {”50$”, ”100$”}}, would

yield a permuted and hashed sequence (H(”100$.”, 3), H(”50$.”, 3), H(” dec-
lares to pay ”, 2), H(”A”, 1), H(”B”, 1)).

Instance encoding: The encoding of instances M corresponding to a given
template T does not substantially differ from the encoding of templates. Ad-
ditionally to the public key upki of the proxy and the template size |T |, the
following information is included: a sequence M′ containing tuples correspond-
ing to the chosen elements, each containing the element itself, its position in
the template and its position in the sequence T enc according to the permu-
tation φ. Furthermore, one includes a signature of knowledge (SoK) π, which
represents a proof of knowledge of uski and the non-revealed template elements:
Menc ← (upki, |T |,M′, π).

For our further explanations, this mapping is denoted as EncBDS
M . Observe that

given M′ in Menc, one can not directly use it in a verification, but for every
tuple (s, i, j) in M′ one has to compute hj = H(s, i), which then represents the
value of the j’th attribute. Subsequently, we assume that this step is implicitly
computed by a verifier whenever Menc is provided for verification.

Choosing ”B” and ”50$” in the example above, leads to an encoded message
Menc = (upki, |T |, ((”B”, 1, 5), (” declares to pay ”, 2, 3), (”50$”, 3, 2), π).

Note that the indices indicating the position in the template sequence accord-
ing to the permutation φ implicitly fix the indices for the sequence of unrevealed
values. A more detailed example of the encoding is given in [19].

We also emphasize that both, the encoding function EncBDS
T and the encoding

function EncBDS
M , take the secret random permutation φ (only known to the

originator and the proxy) as additional parameter.

Privacy-Enhancing Proxy Signatures 59

WHPSS: The mapping in terms of the WHPSS is a lot easier since, firstly,
no explicit order has to be enforced within the messages in the warrant and,
secondly, the order of the messages can not leak any useful information.

In order to encode a WHPSS message space for our setting, we redefine the
operator Expand(·) as a unary operator converting a set to a sequence by as-
signing a unique position to each element from the set. Furthermore, we also
redefine H as H : {0, 1}∗ → Zp. The encoding of a message spaceM then looks
as follows:Menc ← (upki,Hash(Expand(M))).

Similarly, a message chosen by the proxy is encoded by choosing a message
Mk ∈ M and computing a signature of knowledge (SoK) π of uski and the
remaining messages in the warrant: M ← (upki,Mk, k, π).

Observe, that Mk cannot be directly used as an attribute value, but needs to
be mapped to H(Mk). However, as above we assume that this step is implicitly
computed by the verifier whenever Mk is provided for verification. We refer to
the encoding defined above as EncWHPS

M and EncWHPS
M for our further explanations

and note a secret random permutation φ is not required.

5.2 Constructing BDS from Anonymous Credentials

We assume that a credential is issued on an encoded template T enc using the en-
coding defined above. Upon showing, the proxy chooses a concrete instantiation
Menc for a template by disclosing the elements corresponding to the instance
Menc, while providing a signature of knowledge for the elements remaining in
T enc. To be more precise, the proxy always discloses the attributes representing
the public key and containing the size of the template, as well as at least one
element for each position in the template, and provides a signature of knowledge
of the secret signing key and the unused choices for the exchangeable elements.
We assume that every user (proxy) i has run AC.UserKeyGen(pp, i) to obtain
(uski, upki) compatible with pp locally. Furthermore, the template secret key
skTP is the secret random permutation φ. Below, we provide the abstract defi-
nition of the construction, where AC denotes an anonymous credential system
with non-interactive showing.

KeyGen(κ, t): This algorithm computes the public parameters pp by running
AC.Setup(κ, t) and specifies the encodings EncBDS

T and EncBDS
M . Then, it runs

AC.OrgKeyGen(pp) to obtain (osk, opk) and outputs all these parameters.
The public parameters pp as well as a description of the encoding functions
are assumed to be available to all subsequent algorithms.

Sign(T , (opk, osk), upki): This algorithm chooses a random permutation φ and
computes T enc ← EncBDS

T (T , φ). Then, it locally runs (AC.Obtain(pp, opk,
upki)

1, AC.Issue(pp, osk, upki, T enc)) and the results, i.e., the credential credi

1 As we assume that the user’s key pair fits to the system parameters, we do not
require uski as an input to the AC.Obtain algorithm and so the credential is issued
using upki as public commitment to uski. This allows the originator to run both
algorithms locally.

60 D. Derler, C. Hanser, and D. Slamanig

as template signature and the template-specific secret key φ for the proxy,
are returned.

VerifyT(T , credi, opk, (upki, uski), φ): This algorithm computes T enc ← EncBDS
T

(T , φ) and checks the validity of the credential credi using uski and opk. On
success, this algorithm returns true, and false otherwise.

Inst(T , credi,M, (opk, upki, uski), φ): This algorithmcomputes an encodingMenc

of an instantiationMof the templateT usingφbycomputing aSoKπ including
a proof of the user’s secret key uski and the unused choices of the exchangeable
elements, i.e., AC.Show is executed. The instance signature (π, credi) and the
encoded messageMenc are returned.

VerifyM(Menc, (π, credi), opk, upki): This algorithm verifies whether π is a valid
signature of knowledge w.r.t. Menc and upki by executing AC.Verify. On
success, this algorithm returns true, and false otherwise.

5.3 Constructing WHPS from Anonymous Credentials

The construction of WHPS from anonymous credentials is very similar to the
BDS construction. Due to limited space the reader is referred to the extend
version of this paper [19] for a detailed discussion.

5.4 From AC Security to BDS and WHPS Security

In this section, we argue that if we have a secure non-interactive anonymous
credential system AC, the constructions of the BDS and WHPS schemes from AC
are also secure. Consequently, when building such schemes in the proposed way,
these schemes provide adequate security within their respective models.

We note that the anonymity property required from a credential system is
much stronger than what is required from BDS and WHPS. Basically, a goal
achieved by an anonymous credential system is the indistinguishability of show-
ings of different users, which have credentials to identical attributes, with respect
to any verifier (including the issuer). In contrast, the goal of the proxy signa-
ture schemes is to hide the non-shown ”attributes” from any external verifier,
whereas the issuer (the originator) knows all attributes. Consequently, we relate
the privacy of the schemes to the selective disclosure of the anonymous credential
system. The remaining properties of the schemes are related to the unforgeability
of the anonymous credential scheme. In the extended version of this paper [19],
we prove the following theorems:

Theorem 1. If AC represents a secure anonymous credential system and the
hash function used in the encodings EncBDS

T and EncBDS
M is secure, then the BDS

from Section 5.2 based on AC is secure.

Theorem 2. If AC represents a secure anonymous credential system and the
hash function used in the encoding EncWHPS

M is secure, then the WHPS scheme
from Section 5.3 based on AC is secure.

Privacy-Enhancing Proxy Signatures 61

6 Instantiations from CL and Brands’ Credentials

In this section, we provide two instantiations of BDS making use of CL [13]
and Brands’ [9] credentials, respectively. We omit the constructions of WHPS
as after having seen the construction for BDS, the construction of WHPS is
straightforward. In both presented schemes, we assume the keypair of the proxy
(upk, usk) to be compatible with the system parameters, i.e., usk is a scalar in
Zp and upk = usk · P , with P being a generator of the respective group.

Furthermore, with hide we denote the elements of T enc corresponding to the
elements in T without M, whereas with show we denote the elements of Menc

corresponding to elements in M.
In Scheme 1, we present our construction of BDS from CL credentials [13] in

detail. Our second instantiation builds up on Brands’ one-show credentials, fol-
lowing the certificates based on Chaum-Pedersen signatures approach proposed
in [9]. In Scheme 2, we present our construction in detail.

Setup(κ, t): Choose an appropriate group G of large prime order p such that a bilinear map

e : G×G → GT exists. Further, choose a generator P of G, as well as x, y
R← Zp. With t being

the maximal template size, select zi
R← Zp for 0 ≤ i ≤ t and compute X ← xP,Y ← yP, Zi ←

ziP . The algorithm outputs pp = (G,Gt, e, P, p, EncBDS
T , EncBDS

M), opk ← (X,Y, Z1, . . . , Zt) and
osk ← (x, y, z1, . . . , zt).

Sign(T , (opk, osk), upk): Choose α
R← Zp and compute R ← αP , Ai ← ziR,B ← yR,Bi ← yAi.

Further, choose a random permutation φ and compute T enc ← EncBDS
T (T , φ). Then, upk∗ ←

α · upk = α · usk · P . Compute C ← x · R + xy · upk∗ + xy · |T | · A0 +
∑

hi∈T ∗ xy · hiAi and

return the credential cred ← (R, {Ai}, B, {Bi}, C) and the template-specific proxy secret key
φ.

VerifyT(T , cred, opk, (upk, usk), φ): Compute T enc ← EncBDS
T (T , φ) and verify whether cred is a

valid signature under opk, i.e., e(R, Zi)
?
= e(P,Ai) ∧ e(R, Y)

?
= e(P, B) ∧ e(Ai, Y)

?
= e(P, Bi)

and e(X,R) · e(X,B)usk · e(X,B0)
|T | ∏

hi∈T enc e(X,Bi)
hi

?
= e(P,C) holds and return true

on success and false otherwise.
Inst(T , cred, M, (opk, upk, usk), φ): Using T enc and Menc, obtained by applying the encoding

functions w.r.t. φ and compute vx ← e(X,R), vxy ← e(X,B), v(xy,i) ← e(X,Bi), vs ←
e(P,C),

π ← SoK

⎧
⎨

⎩
({(μi)mi/∈M, χusk}) :

vs = vxv
χusk
xy v

|T |
(xy,0)

∏

μi∈hide

v
μi
(xy,i)

∏

hi∈show

v
hi
(xy,i)

∧ χusk · P = upk

⎫
⎬

⎭
,

Return the instance signature (π, cred) and the encoded message Menc.
VerifyM(Menc, (π, cred), opk, upk): Compute vx ← e(X,R), vxy ← e(X,B), v(xy,i) ← e(X,Bi)

and vs ← e(P, C), check whether e(R, Zi)
?
= e(P, Ai)∧e(R, Y)

?
= e(P, B)∧e(Ai, Y)

?
= e(P, Bi)

and verify the SoK π w.r.t. Menc, the public key upk and check whether |T | equals the number
of message elements in the proof. On success, return true and false otherwise.

Scheme 1. BDSS from CL credentials

7 Comparison and Discussion

In this section, we compare the instantiations of the proxy signature schemes
obtained from non-interactive anonymous credentials with the original instan-
tiations of BDS and WHPS from [25, 26]. Moreover, we discuss the pros and

62 D. Derler, C. Hanser, and D. Slamanig

Setup(κ, t): Let G be a group of prime order p which is generated by P . Choose y0, y1, . . . , yt+2
R←

Zp with t being the maximal template size and compute H0 ← y0P, P1 ← y1P, . . . , Pt+2 ←
yt+2P. The algorithm outputs pp ← (G, P, p, EncBDS

T , EncBDS
M), opk ← (H0, P1, . . . , Pt+2) and

osk ← (y0, . . . , yt+2).
Sign(T , (opk, osk), upk) The originator and the proxy jointly compute a signature on the template

T enc ← EncBDS
T (T , φ) as follows.

Originator Proxy

w0
R← Zp, A0 ← w0P α, α2, α3

R← Zp

H ← y1upk + |T |P2 +
∑|T |

i=1 hiPi+2

B0 ← w0(H0 + H)
A0,B0,H−−−−−−→ H′ ← α(H0 + H)

Z ← y0(H0 + H), Z′ ← αZ
A′

0 ← α2H0 + α3P + A0

B′
0 ← α2Z

′ + α3H
′ + αB0

c′0 ← H(H′||Z′||A′
0||B

′
0)

c0←−− c0 ← c′0 + α2 (mod p)

r0 ← c0 · y0 + w0 (mod p)
r0−−→ r0P − c0H0

?
= A0

r0(H0 + H) − c0Z
?
= B0

r′0 ← r0 + α3

Output the template signature cred ← (H′, Z′, A′
0, B

′
0, r

′
0, c

′
0) and the template-specific proxy

secret key (φ, α).

VerifyT(T , cred, opk, (upk, usk), (φ, α)): Compute T enc ← EncBDS
T (T , φ) and H ← uskP1 + |T |P2 +

∑|T |
i=1 hiPi+2 as well as H′ ← α(H0+H), and check whether the value H′ contained in cred is

equal to the the computed value for H′ . Check whether r′0(P +H′)− c′0(H0 +Z′)
?
= A′

0 +B′
0

holds and return true if all checks hold and false otherwise.
Inst(T , cred, M, (opk, upk, usk), (φ, α)): Compute T enc and Menc from T , M and φ as well as

π ← SoK

{
(
(μi)mi/∈M, α, χusk

)
:
H′ = α(H0 + χuskP1 + |T |P2 +

∑
μi∈hide μiPi+2+∑

hi∈show hiPi+2) ∧ χuskP = upk

}

and return the instance signature (π, cred) as well as the encoded message Menc.

VerifyM(Menc, (π, cred), opk, upk): Verify whether r′0(P + H′) − c′0(H0 + Z′)
?
= A′

0 + B′
0 holds,

verify the SoK π w.r.t. Menc and the public key upk and check whether |T | is equal to the
number of message elements in the proof. Return true if all checks hold and false otherwise.

Scheme 2. BDSS from Brands’ credentials

cons of the various approaches and provide an overview regarding computation,
bandwidth and parameter sizes in Table 1.

Firstly, we note that for most practical usecases it can be assumed that tem-
plate sizes are quite small. Consequently, under this assumption, the fact that
in some cases the asymptotic computation times and signature sizes are linear
in the size of the template does not have a notable influence on the overall per-
formance of the schemes obtained from anonymous credentials. Though, when
a usecase requires larger templates, the originally proposed schemes would be
preferable.

However, the credential based constructions are flexible regarding the under-
lying anonymous credential scheme, which, in turn, could be exploited to reach
additional properties. For instance, the unlinkability of multiple instances w.r.t.
the same template can be realized by using a multi-show anonymous credential
system. Furthermore, an anonymity feature, hiding the proxy’s identity, could
be obtained by skipping the proof part which links usk and upk (χusk ·P = upk).

Privacy-Enhancing Proxy Signatures 63

Table 1. BDSS/WHPSS efficiency comparison

Computational effort Signature size
Scheme Sign VerifyT Inst VerifyM Params Cert σP

BDSS O(|T |) O(|T |) O(|T |) O(|M|) O(|T |) O(1) O(1)
BDSSCL O(|T |) O(|T |) O(|T |) O(|T |) O(|T |) O(|T |) O(|T |)
BDSSBrands O(|T |) O(|T |) O(|T |) O(|T |) O(|T |) O(1) O(|T |)

Computational effort Signature size
Scheme D P PS PV ID Params Cert σP

WHPSSPolyCommit O(|M|) O(|M|) O(|M|) O(1) O(1) O(|M|) O(1) O(1)
WHPSSVectorCommit O(|M|) O(|M|) O(log(|M|)) O(log(|M|)) O(1) O(1) O(1) O(log(|M|))
WHPSSCL O(|M|) O(|M|) O(|M|) O(|M|) O(1) O(|M|) O(|M|) O(|M|)
WHPSSBrands O(|M|) O(|M|) O(|M|) O(|M|) O(1) O(|M|) O(1) O(|M|)

Moreover, and very important, due to multiple projects such as ABC4Trust [1]
building high-level interfaces for credential systems such as IBM’s idemix
[11, 13, 15] or Microsoft’s U-Prove [9, 28], there are quite some implementations
of anonymous credential systems available to date. These implementations di-
rectly yield a basis for practical implementations of the schemes presented in
this paper, which renders them very attractive from a practical point of view.

While the complexities of our instantiations are quite comparable to the origi-
nally proposed schemes, our proposed instantiations leave more freedom regard-
ing the choice of groups since there is no pairing friendly elliptic curve group
required in Brands’ credentials [9] and one could also easily use the RSA based
version of CL credentials [11]. This enables implementations on constrained de-
vices such as smart cards (cf. [7, 20]). In contrast, the originally proposed in-
stantiations of BDS as well as one of the instantiation of WHPS require pairing
friendly elliptic curve groups.

Finally, we mention that in this paper the first approach for building special
signature schemes from anonymous credentials is introduced, which might also
be inspiring for other constructions. For instance, one could make use of the
proposed encoding to encode finite sets of attribute values into credentials of an
anonymous credential systems.

References

1. ABC4Trust Project - Attribute-based Credentials for Trust, http://abc4trust.eu
2. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-

Preserving Signatures and Commitments to Group Elements. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010)

3. Akagi, N., Manabe, Y., Okamoto, T.: An Efficient Anonymous Credential System.
In: Tsudik, G. (ed.) FC 2008. LNCS, vol. 5143, pp. 272–286. Springer, Heidelberg
(2008)

4. Backes, M., Meiser, S., Schröder, D.: Delegatable Functional Signatures. IACR
ePrint 2013, 408 (2013)

5. Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: P-signatures and Nonin-
teractive Anonymous Credentials. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948,
pp. 356–374. Springer, Heidelberg (2008)

http://abc4trust.eu

64 D. Derler, C. Hanser, and D. Slamanig

6. Bellare, M., Fuchsbauer, G.: Policy-Based Signatures. In: Krawczyk, H. (ed.) PKC
2014. LNCS, vol. 8383, pp. 520–537. Springer, Heidelberg (2014)

7. Bichsel, P., Camenisch, J., Groß, T., Shoup, V.: Anonymous credentials on a stan-
dard java card. In: ACM CCS 2009, pp. 600–610. ACM (2009)

8. Boldyreva, A., Palacio, A., Warinschi, B.: Secure Proxy Signature Schemes for
Delegation of Signing Rights. J. Cryptology 25(1), 57–115 (2012)

9. Brands, S.: Rethinking Public-Key Infrastructures and Digital Certificates: Build-
ing in Privacy. MIT Press (2000)

10. Camenisch, J., Groß, T.: Efficient attributes for anonymous credentials. ACM
Trans. Inf. Syst. Secur. 15(1), 4 (2012)

11. Camenisch, J., Lysyanskaya, A.: A Signature Scheme with Efficient Protocols. In:
Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289.
Springer, Heidelberg (2003)

12. Camenisch, J., Lysyanskaya, A.: An Efficient System for Non-transferable Anony-
mous Credentials with Optional Anonymity Revocation. In: Pfitzmann, B. (ed.)
EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001)

13. Camenisch, J., Lysyanskaya, A.: Signature Schemes and Anonymous Credentials
from Bilinear Maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
56–72. Springer, Heidelberg (2004)

14. Camenisch, J., Stadler, M.: Efficient Group Signature Schemes for Large Groups
(Extended Abstract). In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294,
pp. 410–424. Springer, Heidelberg (1997)

15. Camenisch, J., Van Herreweghen, E.: Design and implementation of the idemix
anonymous credential system. In: ACM CCS 2002, pp. 21–30. ACM (2002)

16. Canard, S., Lescuyer, R.: Anonymous credentials from (indexed) aggregate signa-
tures. In: ACM DIM 2011, pp. 53–62. ACM (2011)

17. Canard, S., Lescuyer, R.: Protecting privacy by sanitizing personal data: a new
approach to anonymous credentials. In: ASIA CCS 2013, pp. 381–392. ACM (2013)

18. Chase, M., Lysyanskaya, A.: On Signatures of Knowledge. In: Dwork, C. (ed.)
CRYPTO 2006. LNCS, vol. 4117, pp. 78–96. Springer, Heidelberg (2006)

19. Derler, D., Hanser, C., Slamanig, D.: Privacy-Enhancing Proxy Signatures from
Non-Interactive Anonymous Credentials. IACR ePrint 2014, 285 (2014)

20. Derler, D., Potzmader, K., Winter, J., Dietrich, K.: Anonymous Ticketing for NFC-
Enabled Mobile Phones. In: Chen, L., Yung, M., Zhu, L. (eds.) INTRUST 2011.
LNCS, vol. 7222, pp. 66–83. Springer, Heidelberg (2012)

21. Fiat, A., Shamir, A.: How to Prove Yourself: Practical Solutions to Identification
and Signature Problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987)

22. Fuchsbauer, G., Pointcheval, D.: Anonymous consecutive delegation of signing
rights: Unifying group and proxy signatures. In: Cortier, V., Kirchner, C., Okada,
M., Sakurada, H. (eds.) Formal to Practical Security. LNCS, vol. 5458, pp. 95–115.
Springer, Heidelberg (2009)

23. Fuchsbauer, G., Pointcheval, D.: Anonymous Proxy Signatures. In: Ostrovsky, R.,
De Prisco, R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 201–217. Springer,
Heidelberg (2008)

24. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008)

25. Hanser, C., Slamanig, D.: Blank Digital Signatures. In: ACM ASIACCS 2013, pp.
95–106. ACM (2013), ext.: IACR ePrint 2013/130

Privacy-Enhancing Proxy Signatures 65

26. Hanser, C., Slamanig, D.: Warrant-Hiding Delegation-by-Certificate Proxy Sig-
nature Schemes. In: Paul, G., Vaudenay, S. (eds.) INDOCRYPT 2013. LNCS,
vol. 8250, pp. 60–77. Springer, Heidelberg (2013), Ext.: IACR ePrint 2013/544

27. Mambo, M., Usuda, K., Okamoto, E.: Proxy signatures for delegating signing op-
eration. In: ACM CCS 1996, pp. 48–57. ACM (1996)

28. Microsoft: U-Prove, http://research.microsoft.com/en-us/projects/u-prove
29. Stern, J., Pointcheval, D., Malone-Lee, J., Smart, N.P.: Flaws in Applying Proof

Methodologies to Signature Schemes. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 93–110. Springer, Heidelberg (2002)

http://research.microsoft.com/en-us/projects/u-prove

Privacy-Preserving Multiple Keyword Search

on Outsourced Data in the Clouds�

Tarik Moataz1,2, Benjamin Justus2, Indrakshi Ray1, Nora Cuppens-Boulahia2,
Frédéric Cuppens2, and Indrajit Ray1

1 Computer Science Department, Colorado State University, Fort Collins, USA
{tmoataz,indrajit,iray}@cs.colostate.edu

2 Institut Mines-Télécom, Télécom Bretagne, Cesson Sévigné, France
{benjamin.justus,nora.cuppens,frederic.cuppens}@telecom-bretagne.eu

Abstract. Honest but curious cloud servers can make inferences about
the stored encrypted documents and the profile of a user once it knows
the keywords queried by her and the keywords contained in the doc-
uments. We propose two progressively refined privacy-preserving con-
junctive symmetric searchable encryption (PCSSE) schemes that allow
cloud servers to perform conjunctive keyword searches on encrypted doc-
uments with different privacy assurances. Our scheme generates random-
ized search queries that prevent the server from detecting if the same set
of keywords are being searched by different queries. It is also able to hide
the number of keywords in a query as well as the number of keywords
contained in an encrypted document. Our searchable encryption scheme
is efficient and at the same time it is secure against the adaptive chosen
keywords attack.

1 Introduction

Data is often stored in an encrypted form in the clouds for security and privacy
reasons. If the volume of the stored data stored is large, it may be infeasible
for the client to download the encrypted data, decrypt them locally, and search
for the relevant documents. Consequently, researchers have proposed search-
able encryption schemes to perform searches on encrypted documents stored
in the clouds. Such schemes allow cloud servers to retrieve multiple encrypted
documents in response to a client’s queries which may be keywords search or
numerical range queries. Efficiency of such techniques, which impact the query
response time, is critical. Moreover, protecting the privacy of the client against
honest but curious servers is also important.

Researchers have proposed schemes that permit exact keyword search on en-
crypted documents [10,11] as well as conjunctive keyword search (please see
Section 2). However, existing conjunctive keyword search schemes do not pro-
vide adequate levels of privacy. Often times, the server is aware of the number

� This work was partially supported by the U.S. National Science Foundation under
Grant No. 0905232.

V. Atluri and G. Pernul (Eds.): DBSec 2014, LNCS 8566, pp. 66–81, 2014.
© IFIP International Federation for Information Processing 2014

Privacy-Preserving Multiple Keyword Search on Outsourced Data 67

of keywords contained in a document and the number of keywords in a query.
Moreover, in these schemes, search on identical set of keywords result in the same
encrypted query. An honest but curious cloud server may become aware of the
client’s search information and gain knowledge about her profile. Such informa-
tion when correlated with the additional knowledge possessed by the server may
constitute a serious privacy leakage. We propose a privacy-preserving approach
that protects against such information leakage without increasing the search and
storage complexities but at the cost of two rounds of protocol.

We motivate our approach by using a simple example based on exact key-
word search. Each document stored in the server is associated with a bit vector
whose size depends on the number of keywords in the dictionary. The index i on
the vector corresponds to the ith keyword in the dictionary. A value of “1” in
index position i signifies that the ith keyword is present in the document. The
search query is associated with a similar bit vector. An and operation of the bit
vectors corresponding to the document and the query reveals the existence or
non-existence of the keyword. Such a simple scheme, however, does not provide
adequate privacy protection. The server is now aware of the number of keywords
in the document and the query. Moreover, it can detect if the user is submitting
the same query multiple times. This, together with some background knowledge
possessed by the server, can cause serious privacy leakage. We propose a more
privacy preserving approach by introducing noise that serves to hide the number
and the content of keywords and also is able to randomize the queries. We call
this augmented approach Privacy-Preserving Symmetric Searchable Encryption
(PCSSE) scheme. We introduce in this article first a rudimentary scheme that
we refer to as PCSSE-1 that introduces the concept of noise insertion. However,
this scheme is vulnerable to two types of inference attacks. We address these
attacks in our second scheme that we refer to as PCSSE-2. One major techni-
cal challenge in implementing the PCSSE scheme is how to introduce the noise
such that both privacy and correctness of the queries are preserved. The loca-
tion of noises should be random or else an adaptive adversary can observe the
search history and infer the keyword information. The PCSSE-2 scheme is secure
against such an adaptive adversary based on the security of the pseudo-random
permutation primitives as well as the randomness of the noise generation.

Our approach preserves the privacy of the client. First, the server does not
have any information about the number of keywords contained in a document.
Second, the scheme hides the number of keywords contained in a query. Last but
not the least, PCSSE-2 provides query randomization that generates different
encrypted queries even when the client is searching for the same set of keywords.
This protects the client against revealing his search pattern to the server. Note
that, there are some techniques that have better search complexity and search
expressiveness, but they leak the search pattern information.

We have implemented a proof-of-concept for the PCSSE-2 scheme to evaluate
its performance. Our approach is efficient with respect to storage and network
communication costs. Specifically, the PCSSE-2 scheme has a storage complexity
linear in the size of documents and the size of the indexes on the server side. The

68 T. Moataz et al.

query phase of the scheme requires two rounds of client-server communication
and has a communication complexity linear in the dictionary size. Moreover, the
server-client communication during the query verification stage can be carried
out efficiently as well since the size of the query, represented in the form of a
binary vector, is at most 4 KB.

The rest of the paper is organized as follows. Section 2 discusses the state-of-
the-art on searchable encryption. Section 3 presents an overview of our approach
and contains the PCSSE algorithm and security definitions. PCSSE-1 construc-
tion is carried out in Section 4 while PCSSE-2 is detailed in Section 5. Section
6 evaluates the security and the performance of our scheme. Section 7 concludes
the paper.

2 Related Work

Song et al. [20] presented the first symmetric searchable encryption scheme.
Subsequently, many works have focused on enhancing the search and storage
complexities of the scheme, as well on the strength of the security models
[11,8,10,16,15]. The study of asymmetric searchable encryption started with the
work of Boneh et al. [4]. Some of the later works focused on providing techniques
that improve on the search complexity of Boneh’s scheme [1,3,9]. All these con-
structions deal with exact keyword search, and do not have the capability of
performing conjunctive keyword search.

The existing exact keyword searchable encryption schemes are not suitable
for a conjunctive search. They disclose sensitive meta-information, and at the
same time induce an exponential computation overhead on the server side. Golle
et al. [13] introduced the first conjunctive scheme in a symmetric setting. Golle’s
scheme associates a searchable index with each document. The server performs
a matching test on the document index with the client submitted query. Golle
presented two constructions: the security of the first construction is based on
the hardness of the Decisional Diffie-Hellman (DDH) problem. The first con-
struction has a search complexity linear in the number of stored documents.
The second construction has a search complexity linear in the number of dic-
tionary keywords. Both constructions use exponentiations and pairings in the
search phase and test phase. Parker et al. [18] presented a similar scheme which
handles the asymmetric setting. Ballard et al. [2] later enhanced the scheme’s
communication and search complexities on the server side. Ryu et al. [19] pre-
sented another symmetric solution which additionally reduces the complexity
of the encryption phase by diminishing the number of pairing operations. On
the other hand, some works deals with multiple keyword search in the cloud by
enabling some enhanced privacy preserving techniques [6,21]. Moreover, some
works introducing boolean search over encrypted data [17,7] still disclose too
many information to the outsourced servers. Specifically, these works fail to hide
the search pattern.

Boneh’s work [5] extended the search options in a public setting that allow
conjunctive subsets, ranges and exact keywords searches. Hwang et al. [14] pre-
sented an enhancement for the cipher-text size with a comparable computation

Privacy-Preserving Multiple Keyword Search on Outsourced Data 69

complexity. All the above conjunctive searchable encryption schemes leak the
following information: the number of keywords contained in each document, and
the number of keywords that are in the client’s query. These meta-information
leakage causes a breach of the client’s privacy. Recent work by Wang et al. [22]
allows clients to hide this information. Wang’s scheme however is not determin-
istic in the sense that there are false positives associated with each of the client’s
query. Furthermore in order to minimize the query’s false positive rate, the client
can store at most 16 keywords in each document, and cannot have more than 4
keywords in a given query.

3 Overview of the Approach

3.1 Problem Statement

Let D = {D1, ..., Dn} be a collection of documents, and W = {w1, ..., wl} be a
dictionary of keywords. The collection D is encrypted using a private-key CPA-
secure encryption scheme E . The encrypted collection E(D) is outsourced and
stored on external cloud servers. The dictionary W is a finite set whose size
depends on the underlying language.

Let {wk}k∈IC be a list of keywords contained in the dictionary W where
IC contains the keyword indexes. The search query contains a conjunction of
keywords, denoted by,

∧
k∈IC

wk. The objective of the conjunctive searchable
encryption is to retrieve the set of encrypted documents that contain the set
of keywords from the encrypted collection E(D) in an efficient manner, so as to
preserve the privacy of the client to the extent possible. In response to the query,
the server sends the set of encrypted documents to the client.

3.2 Notations

The notation x
R←− S means uniform sampling the string x from the set S.

In this paper, the strings x is a binary string (i.e. x
R←− {0, 1}∗). The size of

string x is denoted by |x|. Let x and y be two binary strings, then x ‖ y is the
concatenation of x and y. Let A be an array, A[i] is the value of the array at
ith index. The transpose of array A is represented by AT . If AL is an algorithm
then x← AL(...) represents the result of applying the algorithm AL with given
arguments. The parameter k is used to denote a security parameter.

LetD = {D1, ..., Dn} be a set of documents, andW = {w1, ..., wl} a dictionary
of keywords. Each document Di is associated a set of keywords. The set of
keywords in Di is represented by the set Mi = {ri,1, ri,2, . . . , ri,|Mi|}, where |Mi|
is the number of keywords in Di and each ri,j , where 1 ≤ j ≤ |Mi|, gives the
position of the keyword in the dictionary, that is, 1 ≤ ri,j ≤ l. Moreover, the set
of all keywords in all the n documents are given byM, whereM = {M1, ...,Mn}.
The set of keywords that a client searches for is given by IC , and the conjunction
of these keywords is denoted by C(W) =

∧
k∈IC

wk.

70 T. Moataz et al.

Definition 1 Hamming Weight: The Hamming weight H(x) of a binary vec-
tor x is defined to be the number of “1”s in the vector x.

Consider the inner scalar product φ on an inner product space: φ : {0, 1}n ×
{0, 1}n → [[0, n]]. The value φ(x, x) is a non-negative integer, and it coincides

with the Hamming weight of x. Note that, φ(x, y) =
n∑

k=1

xkyk, where x and y

are vectors of size n.
Our construction is based on several well known cryptographic primitives.

These include private-key CPA-secure encryption scheme (e.g. AES), pseudo-
random permutation. We refer the reader to [12] for details.

3.3 PCSSE Protocol

Our PCSSE protocol over a set of documents D and a dictionary space W con-
sists of applying five polynomial-time algorithms, namely, KeyGen, Enc, Query,
Response, Dec, each of which is briefly enumerated below.

Key Generation (K1,K2)← KeyGen(k): KeyGen takes the security param-
eter k as input and outputs two secret keys K1 and K2.

Encryption (L, C) ← Enc(K1,K2,D,M,W): Enc takes as inputs the secret
keys K1, K2, the collection of documents D, the set of keyword index M,
and the dictionary W . It outputs the encrypted collection of documents
C = {C1, ..., Cn} and the associated set of labels L = {L1, ..., Ln}.

Randomized Query Generation Q← Query(K2, C(W)): Query is a proba-
bilistic algorithm that takes as inputs the secret key K2 and the conjunction
of keywords C(W). It outputs a randomized query Q .

Query Response X ← Response(Q,L): Response is a deterministic algo-
rithm that takes as inputs the query Q and the set of labels L associated
with the encrypted documents. The output consists of a set of encrypted
documents X that match the query Q.

Decryption Di ← Dec(K1, Ci): Dec is a deterministic algorithm that takes
as inputs the key K1 and a ciphertext Ci and outputs the unencrypted
document Di.

Definition 2 Correctness: Let C(W) be a conjunctive keywords query, and C
the set of encrypted documents that match the conjunctive query C(W). Let Q
be the result of applying the probabilistic algorithm Query on C(W). We say that
PCSSE is correct if:

Response(Q,L) = C.

3.4 PCSSE Security Definition

In our PCSSE scheme, we are interested in the adaptive security model such as
the one introduced in [10], namely, secure against chosen keywords attack CKA-
2. In this security model, no pseudorandom polynomial-time adversary, who

Privacy-Preserving Multiple Keyword Search on Outsourced Data 71

is given encrypted labels, encrypted documents and encrypted search queries,
can learn any information about the content of the documents and the content
of search queries other than the search pattern and access pattern. The access
pattern contains information about the identifiers of encrypted documents that
match a search query. The search pattern contains the history of all the search
queries. We refer the reader to [10] for the formal definitions of search and access
patterns. The search pattern, access pattern, the number of documents and the
size of documents returned in a query response, are the possible information
leakages in an adaptive security model. Note that, the number of keywords in a
document is also a possible source of information leakage in existing symmetric
searchable encryption schemes; our PCSSE scheme keeps the number of keywords
secret (see section 5).

The important characteristic of randomized queries is that no polynomial
time adversary is able to discern whether a search query is repeated or not. This
is because the query submitted by a client is different each time, even when
searching for the same conjunction of keywords. We formally define the notion
of randomized query as follows:

Definition 3 Randomized query: Let {Qi}1≤i≤t be the t queries generated
with the Query(.) algorithm with the same key K2 and the conjunctive keyword
expression {C(Wi)}1≤i≤t. Let Qi and Qj two queries for the same conjunction of
keywords. We say that the scheme satisfies randomized query if no pseudorandom
polynomial time adversary can, with high probability, associate these queries to
the same conjunction.

As a consequence of using randomized queries, the information leakage is now
limited to the access pattern, the number and the size of encrypted documents.
However, we want to point out that as we will see later on in the security analysis
section, the access pattern is inherently related to the search pattern. In other
words, knowing the access pattern can infer as well some information about the
user search behavior.

Moreover, with randomized queries the number of keywords sent in each query
is completely hidden from the server. Following upon the definition 3, we classify
the information leakage into two categories. The leakage ρ1(L, C) represents a
statistical leakage known by the server before receiving any search queries. The
second leakage ρ2(Qi∈{1,··· ,t},L, C) deals with access patterns disclosed by the
search queries results. These are defined below.

Definition 4 Leakage ρ1(L, C): The leakage consists of the following informa-
tion: the number of encrypted documents, the size of each encrypted document,
and the identifier of each encrypted document stored on the server.

Definition 5 Leakage ρ2(Qi∈{1,··· ,t},L, C) (Access pattern): If each Qi is a
randomized query, the leakage caused after submitting Qi consists of the identi-
fiers of encrypted documents that match the queries Qi∈{1,··· ,t}.

In the following, we define security of our PCSSE scheme using a simulation
based definition.

72 T. Moataz et al.

Definition 6 Adaptive security against chosen keyword attack CKA2:
Let us consider the five algorithms that defines our PCSSE scheme, namely,
KeyGen, Enc, Query, Response, Dec as described in Section 3.3. We present
the following game based on two experiences RealA and IdealA,S where we
consider a stateful adversary A, a stateful simulator S, the leakages ρ1, ρ2, and
the security parameter k:

RealA(k): The challenger (user) runs the KeyGen(k) algorithm and
outputs the key (K1,K2). A sends the tuple (D,M,W) and receives
(L, C)← Enc(K1,K2,D,M,W) from the challenger. A makes a poly-
nomial number of adaptive queries {C(Wi)}1≤i≤t and sends them to
the challenger. The adversary receives the search queries generated by
the challenger such that Qi ← Query(K2, C(Wi)). A returns one if his
queries return the expected result, otherwise zero is returned.
IdealA,S(k): The adversary outputs the tuple (D,M,W) and sends it
to the simulator. Given the leakage ρ1, S will generate the labels as well
as the encrypted documents (L, C) and sends them to the adversary.
A makes a polynomial number of adaptive queries {C(Wi)}1≤i≤t and
sends them to the simulator. Given the leakage ρ2 (containing the access
pattern or previous queries), the simulator sends the appropriate search
queries to the adversary. Finally, A returns a zero or one depending
on whether or not the responses are accurate.

We say that PCSSE is adaptively secure against chosen keyword attack if
for all polynomial time adversary A, there exists a non-uniform polynomial-size
simulator S such that:

|Pr[RealA(k) = 1]− Pr[IdealA,S(k) = 1]| ≤ ε(k)

4 PCSSE-1 Construction

In this section, we present the construction of the first scheme PCSSE-1. This
scheme represents a fundamental basis for the second scheme where we intro-
duce globally all our techniques. PCSSE-1 suffers as will be described in the
subsequent section 5 from some notable attacks that will lead us to present the
enhancement version of it.

The scheme consists of two phases, namely, the setup phase and the search
phase. The setup phase is done once by the client when the encrypted documents
and the labels are uploaded on the server. In this phase, the client uses the
algorithms KeyGen and Enc to construct the labels and create the encrypted
documents. The search phase is performed every time a query is submitted. In
this phase, the client generates the randomized query using the algorithm Query
and the the server generates the response using the algorithm Response. Since
the PCSSE algorithm is a two-rounds protocol, the Response algorithm includes
one additional interaction with the user before outputting the results.

Privacy-Preserving Multiple Keyword Search on Outsourced Data 73

4.1 Setup Phase

The client uses the KeyGen(k) algorithm with the security parameter k to gen-
erate the keys K1,K2 such that Ki ∈ {0, 1}k.

In the following we will detail the Enc(.) algorithm. In order to encrypt doc-
ument Di and generate the label Li associated with Di, the client performs the
following steps.

[Step 1:] Create an array Li of size 3l where l is the size of the dictionary and
initialize it with all zeros.

[Step 2:] Choose randomly a subset P in [[1, 3l]] such that |P | = l. Apply the
permutation function π : {0, 1}k × {0, 1}l → P to the keyword index Mi =
{ri,1, ..., ri,|Mi|} associated with the documentDi to obtain a permuted index
set πK2(Mi) = {πK2(ri,1), ..., πK2(ri,|Mi|)}. For each πK2(ri,j) ∈ πK2(Mi),
where 1 ≤ j ≤ |Mi|, set Li[πK2(ri,j)] = 1.

[Step 3:] Choose randomly a subset R in [[1, 3l]]\P such that |R| = l. Sample

randomly two binary vectors ai and bi such that ai ‖ bi
R←− {0, 1}|R|. Fill

Li in such a way that Li restricted to the positions R is ai ‖ bi, and Li

restricted to the positions Z = [[1, 3l]]\{P
⋃
R} is ai ‖ bi.

[Step 4:] Client encrypts each document Di using a private-key CPA-secure
encryption scheme EK1 to produce the encrypted document EK1(Di). Client
sends the server the encrypted document along with the label, denoted by
(EK1(Di), Li). The user stores in his side h(ai), the hamming value of the
vector ai.

4.2 Search Phase

The search step includes both the Query(.) and the Response(.) algorithm.
Let C(W) =

∧
k∈IC

wk be the conjunction of keywords that the client searches
for, where IC is the set of keywords positions in the dictionary such IC =
{r1, ..., r|IC |}. The client performs the three steps of the Query(.) and sends
the randomized query to the server such that:

[Step 1:] Create an array Q of size 3l where l is the size of the dictionary and
initialize it with all zeros.

[Step 2:] Fill the array Q such that Q[πK2(rj)] = 1 for 1 ≤ j ≤ |IC |.
[Step 3:] Randomly sample two binary vectors c and d such that c ‖ d

R←−
{0, 1}|R|. Fill Q in such a way that Q restricted to the positions R is c ‖ d,
and Q restricted to the positions Z is c ‖ d. The user sends the query Q to
the server and retains the value h(d) + |IC |.

Once the server receives the query Q, it performs the following steps for the
Response algorithm:
[Step 1:] The server does the following computation: for each label Li such

that Tokeni = Q.LT
i , the server sends the Tokeni to the user.

[Step 2:] The user performs the following verification: if Tokeni = h(ai) +
h(d)+ |IC |, the user sends a bit bi equal to 1, otherwise the bit will be equal
to 0.

74 T. Moataz et al.

[Step 3:] If the server receives a bit bi equal to 1, the server sends the encrypted
document EK1(Di) to the user.

Finally the user invokes the algorithm Dec(·) in order to decrypt the received
documents.

Theorem 1. The PCSSE-1 construction is correct as per Definition 2.

5 PCSSE-2 Construction

PCSSE-1 as constructed in the previous section is vulnerable to two critical
attacks, referred to as Attack 1 and Attack 2, that can leak the position of the
noise and therefore the position of the keywords. We describe first the attacks
and then present PCSSE-2 that is going to address these deficiencies.

Attack 1 description. The positions of the noise defined by the set R and Z
represent a vital information that must be kept secret. Thus, in the PCSSE-1
construction, the hamming values of both binary vectors ai and d are not shared
with the server. Note that if the verification was done in the server side, it can
infer directly the value |Ic| (by knowing the values of h(ai), h(d) and Tokeni).
However, even if the critical part of the verification is done on the client side, the
server will finally know all the matching documents (by receiving a bit equal to 1
or 0 for each label). The server then has the knowledge of all labels matching the
corresponding query. Let us denote by (L1, · · · , Lq) the set of labels matching a
query Q. The server knows that all these labels have all the positions of searched
for keywords equal to 1. The idea is to reduce the number of ones caused by noise
insertions. In fact since the noise is randomly inserted in these fixed positions,
some labels will contains ‘0’ and other will contain ‘1’ in the same position. The
server then performs a binary ‘AND’ operation between all these labels such
that:

L = L1 ∧ L2 ∧ · · · ∧ Lq

The resulting L is a binary vector containing fewer 1 values. The most important
consequence is that the server now has the certainty that all positions that turn
from 1 to 0 are actually a noise position while some of the positions keeping a ’1’
value correspond to keywords’ positions. After executing a number of queries,
the server will build an exact knowledge of the noise and keywords’ positions.

Attack 2 description. The first attack is adaptive in the sense that the ad-
versary needs the result of the search to build an extra-knowledge of the labels’
construction. The second attack is more destructive in the sense that the ad-
versary can infer noise positions defined by the sets R and Z passively. In fact,
the determinism of noise position is the key of this adversary’s attack. Even if
the noise is randomly inserted independently for each label it does not change
anything to its fixed position which is similar to all labels. The noise vector ai is
inserted twice in the label Li. This redundancy is the origin of the problem (the

Privacy-Preserving Multiple Keyword Search on Outsourced Data 75

same for the vector bi and its complementary). As an instance, if the first bit of
ai is inserted in R[1], then the same bit will be inserted in Z[1], this applies to all
labels. Consequently, an attacker can follow this strategy: first select a random
bit in the first label and search for a position containing the same bit value.
Secondly, check the second label in both positions whether they have the same
bits. If so, go to the third label and continue the same test, if not, go back to the
first label and choose a different position and go through the process recursively.
The attack outputs the noise positions with high probability, which, in turn, re-
veals the keywords’ positions passively. Note that, this attack is computationally
expensive.

In the following we present PCSSE-2. We detail the noise insertion in the
setup phase and the search phase. We generate the keys with the KeyGen(k).

Setup Phase. Steps 1, 2 and 4 are similar to the PCSSE-1 construction. We will
detail here the new strategy of noise insertions. Subsequently, we use the term
translation by a nonnegative integer q applied to a set P . Here we give an example
showing this concept. Let us take the ordered set S = {2, 5, 10, 20, 35}. The trans-
lation by a scalar value 2 applied on S will output the new set {20, 35, 2, 5, 10}.
The translation will shift all elements by q modulus the size of the set.
1. Choose randomly a subset R in [[1, 3l]]\P such that |R| = l. The positions in

R are ordered. The same applies for Z.

2. Sample randomly two binary vectors ai and bi such that ai, bi
R←− {0, 1}l.

3. Choose randomly two nonnegative integers l1i and l2i smaller than l.
4. Apply respectively a translation to the positions in R and Z by l1i and l2i

and output the new ordered set of positions Ri and Zi.
5. Fill Li in such a way that Li restricted to the positions Ri is ai ‖ ai, and Li

restricted to the positions Zi is bi ‖ bi.
Figure 1 describes the process of translation applied to the first label.

Search Phase. For the Query(.) algorithm, Steps 1 and 2 are similar to those
of the PCSSE-1 construction. Here we detail the new strategy for the noise
insertion in the query:

1. Sample randomly two binary vectors c and d such that c, d
R←− {0, 1}l.

2. Choose randomly two nonnegative integers1 l1 and l2 smaller than l.
3. Apply respectively a translation to the positions in R and Z by l1 and l2

and output the new ordered set of positions R′ and Z ′.
4. Fill Q in such a way that Q restricted to the positions R′ is c ‖ c, and Q

restricted to the positions Z ′ is d ‖ d.
Once the server receives the query Q, it performs the following steps for the

Response algorithm:

[Step 1:] The server performs the following computation: for each label Li

such that: Tokeni = Q.LT
i , the server sends the (Token1, · · · , T okenn) to

the user.
1 These integers are different for each newly generated query.

76 T. Moataz et al.

Fig. 1. Translation process applied to a label where ai = (1, 0) and bi = (1, 1) and the
size of the dictionary l equal to 4

[Step 2:] The user performs the following verification: if Tokeni = h(ai) +
h(d) + |IC |, the user outputs a bit bi equal to 1, otherwise the bit will be
equal to 0. Finally the user outputs b = (b1, · · · , bn).

[Step 3:] The user randomly selects r (if available) bits equal to 0 from b and

turns them to 1. The user will then output the new version b̃.
[Step 4:] If the server receives a bit b̃i equal to 1, the server sends the encrypted

document EK1(Di) to the user.
Finally, the user invokes the algorithm Dec(·) in order to decrypt the received
documents. The choice of the value r can be limited such that the exact number
of matching labels plus r will not exceed a given value. This will give the user a
control on the communication complexity.

Theorem 2. The PCSSE-2 construction is correct as per Definition 2.

Discussion. The ideas introduced in PCSSE-2 solve both attacks described ear-
lier. Including false bits in the user answer, will prevent the server from com-
puting the exact value of L = L1 ∧ L2 ∧ · · · ∧ Lq after each query. In fact, this
idea will mislead the server by including some noisy labels that do not contain
the query. This solution will not create any false positive but will increase the
communication complexity (not the number of interactions).

The second countermeasure taken into account in the PCSSE-2 construction
phase keeps the position of noise fixed, but introduces a translation to change
the position of the noise vector and its redundant value or its complimentary
value for each label. This translation is done randomly for each label and is
independent from that done to another label. The position of a noise bit and its
complement in one label has no relation with the corresponding positions in the
second label. The same reasoning applies also to the query since we are changing
the scalars of the translations from a query to another.

Privacy-Preserving Multiple Keyword Search on Outsourced Data 77

6 Security Analysis and Evaluation

6.1 Security Analysis

The privacy guarantees of our PCSSE-2 scheme can be expressed in terms of the
following lemma and theorem. For lack of space, we omit the proofs but offer an
intuition instead.

Lemma 1. Let Qi be the outputs of the algorithm Query(K2, C(Wi)) for 1 ≤
i ≤ t. The PCSSE-2 primitive has randomized queries such that:

∀i, j ∈ [[1, t]] s.t. i �= j, Pr(Associate(Qi, Qj)) �
1(h(Qi∨Qj)

|IC |
) ,

where h(Qi) is the Hamming value of the query Qi with known number of con-
junction IC .

Theorem 3. Let E be a private-key CPA-secure encryption scheme, π a pseudo-
random permutation. Then the PCSSE-2 scheme is adaptively secure against
chosen keywords attack as defined in Definition 6 where ρ1 and ρ2 are the possible
leakages, and the queries are randomized in the sense of Definition 3.

Proof Sketch. The query randomization property is the key to the privacy of our
PCSSE-2 scheme. The randomized query gives an attacker negligible chances
of discerning the keywords searched by a client or whether the same/similar
keyword searches have been performed in the past. As a direct consequence of
this property, the adversary (server) cannot find out the number of keywords in
a given query. Since the label construction is similar to the query construction,
the adversary also cannot infer the number of keywords inside each document.

However, we also need to prove that the indexes and the encrypted documents
are indistinguishable from simulated ones based on the leakages previously de-
fined in section 3.4. Note that, the keywords positions are computed using a
pseudo-random permutation (PRP) with a key that is secret to the user. The
adversary, while in simulation, has to generate randomly a key and use it for the
PRP. Consequently the adversary’s generated keyword positions and the real
positions are indistinguishable. The index is constructed as well by inserting
random noise which makes every pair of indexes different even if they contain
the same keywords. Thus, an adversary’s simulated index and the real index are
indistinguishable. The same applies for the generated query since it follows the
same index construction. Moreover, the encrypted documents are indistinguish-
able from the real ones as well since the adversary has to simulate a random key
for this purpose. Lastly, during the search phase, the adversary has an additional
knowledge about the query results. However with a position of noise different
from every two indexes, and a user’s answer containing always extra documents,
the adversary cannot define the keywords positions. Thus our scheme is secure
against adaptive chosen keyword attacks.

78 T. Moataz et al.

6.2 Evaluation

In summary, Table 1 compares our PCSSE-2 scheme with other deterministic
conjunctive symmetric schemes with respect to computation complexity, and
query privacy properties. The notations n, m and |C| denote respectively the
number of documents, the number of keywords and the number of keywords
within a given conjunction. We use exp, pr to designate the operations expo-
nentiation and pairing2. p is a 128-bit prime. Finally we use IP, MCG and
PRF to designate the inner product, the multiplication in a cyclic group, and
a pseudo-random function respectively.

Table 1. Comparison of Conjunctive Symmetric Searchable Encryption Schemes

Server side
computa-
tion

Server side
storage

Client side
computa-
tion

Query
computa-
tion

Query size Randomized
Query

Hide the
number of
keywords

GSW-1
[13]

n exp + n
PRF

(m+1)pn+
|E(D)|

(m + 1)n
exp + nm
PRF

n exp +
(|C| + n)
PRF

(n + 1)p +
|C|

No No

GSW-2
[13]

(2|C|+ 1)n
pr

(2m +
1)pn +
|E(D)|

(2m + 1)n
exp + nm
PRF

3 exp+ |C|
PRF

3p + |C| No No

BKM [2] 2n
pr + n|C|
PRF

(m+1)pn+
|E(D)|

nm PRF
+(m + 1)n
MCG

|C| PRF 2p + |C| No No

ET [19] 2n pr (m+2)pn+
|E(D)|

(m + 1)n
exp + n
pr + mn
PRF

2 exp+ |C|
PRF

2p + |C| No No

PCSSE
(our ap-
proach)

n IP 3ln +
|E(D)|

nm PRF |C| PRF 3m Yes Yes

We run experiments to evaluate the performance of the search phase of PCSSE-
2 as this directly impacts the server’s real-time response capabilities. We ignore
the time required for query construction as this step can be carried out in con-
stant time; instead, we focus on the query verification that is carried out on the
server. Our experiments on the server query-verification stage investigates how
PCSSE-2 performs asymptotically taking into account the number of keywords
and the number of documents. In the experiment, we have considered up to
1000 file, not taking into account their types. A file can be a document, email,
without a specific file type, i.e. it can be a document, email, media etc.). For
each scenario, tests are performed on three different dictionary sizes: 1000, 5000,
and 10000 keywords. The PCSSE-2 primitive is scripted and tested inside the
open-source Scilab environment. The computations are performed on a dell lap-
top with 2.40GHz processors. The results are plotted in Fig. 2. The plot shows

2 Computing one pairing is equal to 6 to 20 exponentiation.

Privacy-Preserving Multiple Keyword Search on Outsourced Data 79

that the performance is linear with respect to the number of documents n. Fur-
thermore, the label size increase implies only a constant overhead added to the
search time. The search time per-document is roughly 30μs for labels containing
1000 keywords, and 200μs for labels containing 10000 keywords. The plot gives
us a clear idea how PCSSE-2 performs asymptotically.

Fig. 2. Performance Evaluation for the Search Phase

7 Conclusion

We have presented a new deterministic privacy-preserving conjunctive symmetric
searchable encryption scheme (PCSSE) that allows cloud servers to perform
efficient conjunctive keywords searches on encrypted documents while protecting
the privacy of clients by hiding the keywords in the query and also the keywords
contained in the document.

We plan to extend this work along two dimensions. First, we would extend
PCSSE scheme to include sub-match on keywords and also boolean expression
searches. Second, we would like to make the scheme more dynamic that will allow
efficient and privacy preserving queries even if the documents on the server side
are updated.

References

1. Abdalla, M., Bellare, M., Catalano, D., Kiltz, E., Kohno, T., Lange, T., Malone-Lee,
J., Neven, G., Paillier, P., Shi, H.: Searchable encryption revisited: Consistency prop-
erties, relation to anonymous IBE, and extensions. Journal of Cryptology 21(3), 350–
391 (2008)

80 T. Moataz et al.

2. Ballard, L., Kamara, S., Monrose, F.: Achieving efficient conjunctive keyword
searches over encrypted data. In: Qing, S., Mao, W., López, J., Wang, G. (eds.)
ICICS 2005. LNCS, vol. 3783, pp. 414–426. Springer, Heidelberg (2005)

3. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable
encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552.
Springer, Heidelberg (2007)

4. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption
with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)

5. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data.
In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidel-
berg (2007)

6. Cao, N., Wang, C., Li, M., Ren, K., Lou, W.: Privacy-preserving multi-keyword
ranked search over encrypted cloud data. In: Proceedings of the 30th IEEE Inter-
national Conference on Computer Communications, Joint Conference of the IEEE
Computer and Communications Societies, Shanghai, China, pp. 829–837 (April
2011)

7. Cash, D., Jarecki, S., Jutla, C., Krawczyk, H., Roşu, M.-C., Steiner, M.: Highly-
scalable searchable symmetric encryption with support for boolean queries. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 353–373.
Springer, Heidelberg (2013)

8. Chang, Y.-C., Mitzenmacher, M.: Privacy preserving keyword searches on remote
encrypted data. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005.
LNCS, vol. 3531, pp. 442–455. Springer, Heidelberg (2005)

9. Di Crescenzo, G., Saraswat, V.: Public key encryption with searchable keywords
based on jacobi symbols. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.) IN-
DOCRYPT 2007. LNCS, vol. 4859, pp. 282–296. Springer, Heidelberg (2007)

10. Curtmola, R., Garay, J.A., Kamara, S., Ostrovsky, R.: Searchable symmetric en-
cryption: improved definitions and efficient constructions. In: Proceedings of the
13th ACM Conference on Computer and Communications Security, Alexandria,
Virginia, USA, pp. 79–88 (November 2006)

11. Goh, E.J.: Secure indexes. IACR Cryptology ePrint Archive 2003, 216 (2003)
12. Goldreich, O.: Foundations of Cryptography. Basic Applications, vol. 2. Cambridge

University Press (2004)
13. Golle, P., Staddon, J., Waters, B.: Secure conjunctive keyword search over en-

crypted data. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS,
vol. 3089, pp. 31–45. Springer, Heidelberg (2004)

14. Hwang, Y.-H., Lee, P.J.: Public key encryption with conjunctive keyword search
and its extension to a multi-user system. In: Takagi, T., Okamoto, T., Okamoto, E.,
Okamoto, T. (eds.) Pairing 2007. LNCS, vol. 4575, pp. 2–22. Springer, Heidelberg
(2007)

15. Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryp-
tion. In: Proceedings of the 19th ACM Conference on Computer and Communica-
tions Security, Raleigh, North Carolina, USA, pp. 965–976 (October 2012)

16. van Liesdonk, P., Sedghi, S., Doumen, J., Hartel, P., Jonker, W.: Computationally
efficient searchable symmetric encryption. In: Jonker, W., Petković, M. (eds.) SDM
2010. LNCS, vol. 6358, pp. 87–100. Springer, Heidelberg (2010)

17. Moataz, T., Shikfa, A.: Boolean symmetric searchable encryption. In: Proceed-
ings of the 8th ACM Symposium on Information, Computer and Communications
Security, Hangzhou, China, pp. 265–276 (May 2013)

Privacy-Preserving Multiple Keyword Search on Outsourced Data 81

18. Park, D.J., Kim, K., Lee, P.J.: Public key encryption with conjunctive field keyword
search. In: Lim, C.H., Yung, M. (eds.) WISA 2004. LNCS, vol. 3325, pp. 73–86.
Springer, Heidelberg (2005)

19. Ryu, E.K., Takagi, T.: Efficient conjunctive keyword-searchable encryption. In:
Proceedings of the 21st International Conference on Advanced Information Net-
working and Applications, Niagara Falls, Canada, pp. 409–414 (May 2007)

20. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: Proceedings of the 21st IEEE Symposium on Security and Privacy, Berke-
ley, California, USA, pp. 44–55 (May 2000)

21. Sun, W., Wang, B., Cao, N., Li, M., Lou, W., Hou, Y.T., Li, H.: Privacy-preserving
multi-keyword text search in the cloud supporting similarity-based ranking. In:
Proceedings of the 8th ACM Symposium on Information, Computer and Commu-
nications Security, Hangzhou, China, pp. 71–82 (May 2013)

22. Wang, P., Wang, H., Pieprzyk, J.: An efficient scheme of common secure indices for
conjunctive keyword-based retrieval on encrypted data. In: Chung, K.-I., Sohn, K.,
Yung, M. (eds.) WISA 2008. LNCS, vol. 5379, pp. 145–159. Springer, Heidelberg
(2009)

Secure and Privacy-Preserving Querying

of Personal Health Records in the Cloud

Samira Barouti, Feras Aljumah, Dima Alhadidi, and Mourad Debbabi

Concordia Institute for Information Systems Engineering (CIISE)
Concordia University, Montreal, Canada

Abstract. Personal Health Records (PHR) are user-friendly, online so-
lutions that give patients a way of managing their own health informa-
tion. Many of the current PHR systems allow storage providers to access
patients’ data. Recently, architectures of storing PHRs in cloud have been
proposed. However, privacy remains a major issue for patients. Conse-
quently, it is a promising method to encrypt PHRs before outsourcing.
Encrypting PHRs prevents health organizations from analyzing medi-
cal data. In this paper, we propose a protocol that would allow health
organizations to produce statistical information about encrypted PHRs
stored in the cloud. The protocol depends on two threshold homomorphic
cryptosystems: Goldwasser-Micali (GM) and Paillier. It executes queries
on Kd-trees that are constructed from encrypted health records. It also
prevents patients from inferring what health organizations are concerned
about. We experimentally evaluate the performance of the proposed pro-
tocol and report on the results of implementation.

1 Introduction

Electronic health records are usually managed by different healthcare providers
including primary care physicians, therapists, hospitals and pharmacies. Conse-
quently, it is difficult to get a single patients history due to the fact that it is
spread between multiple providers. It has become a recent trend for patients to
take these matters into their own hands by managing their own records using
a Personal Health Record (PHR) system. PHRs systems allow patients to man-
age their medical data, giving them the ability to create, view, edit, or share
their medical records with other users in the system as well as with healthcare
providers [1]. In the past few years, many providers have created platforms to
manage PHRs with features including flexible access control, mobile access, and
complex automated diagnoses that analyze PHRs and alert patients when a pre-
ventive checkup is needed. These providers include Microsoft HealthVault [2]
and Dossia [3]. Due to the sensitivity nature of health data, security concerns
have prevented many patients from using PHR systems. Many of the providers
of the current PHR systems have the ability to access all patient records.

Recently, architectures for storing PHRs in the cloud have been proposed [1].
However, this does not solve the privacy problem and the latter remains an
issue for many patients. Since these records are stored on cloud servers, it means

V. Atluri and G. Pernul (Eds.): DBSec 2014, LNCS 8566, pp. 82–97, 2014.
c© IFIP International Federation for Information Processing 2014

Secure and Privacy-Preserving Querying of PHRs in the Cloud 83

that these servers have the ability to read any medical record in the system. In
addition, if an attacker is able to compromise a cloud server, then all the PHRs
would be exposed. For these reasons, researchers have begun searching for a way
to allow patients storing their medical records in the cloud using a Database-as-a-
Service (DaaS) model while preserving their privacy. DaaS is a category of cloud
computing services that enables IT providers to deliver database functionality
as a service. Encrypting PHRs before outsourcing appears to be a promising
solution in this domain. However, it prevents health organizations from analyzing
medical data for research purposes. To better understand what caused a disease,
health organizations and researchers need as much data as possible about the
infected patients.

In this paper, we propose a protocol that allows health organizations pro-
ducing statistical information about encrypted PHRs stored in the cloud. The
proposed protocol also does not enable patients to infer about what health or-
ganizations are concerned about; not to worry or panic patients targeted by the
queries. Intuitively, the proposed protocol works as follows: Patients are orga-
nized in small groups. The patients of a given group jointly generate public keys
for encryption. They later encrypt their PHRs using their public keys and send
the ciphertext to the cloud server. Encrypted records are stored in Kd-trees
constructed by the cloud server for each group. To execute SQL queries, Kd-
trees are traversed in the cloud server. Finally, the cloud server aggregates the
results and sends the final query result to the health organization. However, re-
alizing this seemingly simple system presents a number of significant challenges.
First, the search should be performed on encrypted records. To achieve this, our
proposed protocol depends on the homomorphic properties of two semantically-
secure encryption schemes. Using homomorphic schemes, specific operations can
be performed on the encrypted records directly without the need for decryption.
More specifically, query predicates are evaluated using the Goldwasser-Micali
(GM) cryptosystem [4] and Fischlins protocol [5] whereas query aggregate func-
tions are computed using Paillier cryptosystem [6]. Second, the engagement of
the patients in the protocol execution should be minimal. We achieve this by
using threshold cryptosystems such that the decryption process is performed by
a specific number of patients, namely the threshold k.

The contributions of our paper can be summarized as follows:

– We propose a protocol, which allows health organizations producing sta-
tistical information about PHRs stored in the cloud and encrypted using
semantically-secure encryption schemes. The main characteristics of the pro-
tocol are the following:
• It preserves the privacy of health organizations and patients.
• It supports aggregate queries such count, sum, max and min.

– We design and implement a prototype of the proposed protocol and we also
report on the experimental results.

The rest of the paper is organized as follows. Section 2 discusses the execution
environment. Section 3 briefly overviews the literature that the proposed solu-
tion depends on. Section 4 presents a protocol to find the maximum/minimum

84 S. Barouti et al.

value of encrypted inputs without resorting to deterministic encryption schemes.
In Section 5, the proposed protocol is presented. The security and complexity
analysis of the protocol as well as the experimental results are discussed in Sec-
tion 6. Section 7 presents the related work. Finally, concluding remarks as well
as a discussion of future work are presented in Section 8.

2 Execution Environment

In this section, we first identify the involved entities. Then, we present the as-
sumptions underlying the system design.

2.1 Entities

There are three main entities: (1) Patients who own health records and want to
store them on a cloud server while keeping them confidential from the cloud server
and health organizations. A commonway to protect health records stored on cloud
servers is through encryption, (2) Cloud server that stores the encrypted health
records of the patients and executes the queries of the health organization over the
encrypted records. The cloud server will assign an assisting server to each group.
The assisting server is a cloud computing instance, which will be responsible for
storing the encrypted records of the patients and executing the SQL queries of
the health organization, (3) Health organization that execute queries over the en-
crypted records of the patients and produce statistical information.

2.2 Assumptions

We assume that there is no fully trusted entity in the environment and all entities
are semi-honest. Semi-honest adversaries follow the protocol steps, but they try
to extract information about other entities’ input or output. This is a common
security assumption used in secure multiparty computation literature [7] and it
is realistic in our problem scenario since different organizations are collaborat-
ing for mutual benefits. Hence, it is reasonable to assume that parties will not

Fig. 1. System Architecture

Secure and Privacy-Preserving Querying of PHRs in the Cloud 85

deviate from the defined protocol. However, they may be curious to learn ad-
ditional information from the messages they receive during protocol execution.
The cloud server and the assisting servers are modeled as “honest but curious”
in the sense that they will execute requests correctly, but they are not reliable
to maintain data confidentiality. Regarding query privacy, we assume that the
shape of SQL queries submitted by health organizations is public whereas the
constants contained in the query predicates are private [8, 9]. We also assume
that there is no collusion between the different parties and that there are mech-
anisms that ensure integrity and availability of the remotely stored data. Our
scheme focuses only on confidentiality and privacy issues and does not provide
protection against attacks such as data tampering and denial of service.

3 Building Blocks

Homomorphic Encryption: It is a form of encryption where a specific alge-
braic operation performed on the plaintext is equivalent to another (possibly
different) algebraic operation performed on the ciphertext. The Paillier’s scheme
[6] is an additive homomorphic public key encryption. Using Paillier’s scheme,
given two ciphertexts E(x) and E(y), an encryption of their sum E(x+y) can be
efficiently computed by multiplying the ciphertexts modulo a public key N , i.e.,
E(x+ y) = E(x).E(y) mod N . The Goldwasser-Micali (GM) cryptosystem is a
semantically-secure scheme based on the quadratic residuosity problem. It has
XOR homomorphic properties, in the sense that E(b) . E(b′) = E(b⊕b′) mod N
where b and b′ are bits and N is the public key. Variations of the homomorphic
Paillier and GM cryptosystems are the distributed threshold decryption schemes
in which the decryption is performed by a group of participants, rather than one
party [10, 11]. In this case, each participant would obtain a share of the secret
key by executing the distributed key generation algorithm detailed in [12].

Private Comparison: Yao’s classical millionaires’ problem [13] involves two
millionaires who wish to know who is richer. However, they do not want to find
out inadvertently any additional information about each other’s wealth. More
formally, given two input values x and y, which are held as private inputs by
two parties respectively, the problem is to securely evaluate the Greater Than
(GT) condition x > y without exposing inputs. In this paper, we employ Fis-
chlin’s protocol [5] for the private comparison because it allows us to compare
two ciphertexts encrypted with the GM crytosystem using the same public key.
Fischlin’s protocol takes as input two ciphertexts encrypted using GM cryptosys-
tem and produces ciphertext sequences, namely Δ and c that are encrypted by
the same public key. The decryption of these sequences would reveal the result
of comparing the private inputs without revealing anything beyond the result
of the comparison. Fischlin’s protocol utilizes the XOR-homomorphic GM cryp-
tosystem to privately compute:

x > y ⇐⇒
∨n

i=1

(
xi ∧ ¬yi ∧

∧n
j=i+1(xj = yj)

)
⇐⇒

⊕n
i=1

(
xi ∧ ¬yi ∧

∧n
j=i+1 ¬(xi ⊕ yi)

)
where |x| = |y| = n.

86 S. Barouti et al.

Kd-trees: Kd-trees [14] are binary trees where the keys differs between levels.
Kd-trees are used extensively in searching multidimensional data, in particular
database records. The normal way of constructing a balanced Kd-tree is to sort
the records according to the i-th attribute and split them into left and right parts,
with respect to the median element. The process is then repeated recursively on
both parts taking into consideration the (i+ 1)th attribute.

4 Secure Maximum/Minimum Computation

As a major step in our proposed protocol, we need to execute the max/min ag-
gregate queries over encrypted records. In this section, we provide a cloud-based
solution that calculates the maximum/minimum of encrypted values owned by
some parties. Formally, given n inputs v1, . . . , vn owned by the parties P1, . . . , Pn

respectively, the cloud server wishes to securely compute max (v1, v2, . . . , vn) and
min(v1, v2, . . . , vn). We assume that the parties are not malicious and they cor-
rectly carry out the prescribed steps. The proposed cloud-based solution relies
on Fischlin’s protocol [5] and the threshold GM cryptosystem [10]. We explain
the technique to find the max but it can be easily modified to find the min.

Parties jointly generate the public key pk for k-out-of-n threshold GM cryp-
tosystem such that at least k patients are required to fully decrypt a cipher-
text [10]. Parties then encrypt their values and outsource them to the cloud
server. The cloud server initializes the current maximum to the encryption of
a small negative value with the threshold GM cryptosystem. Afterwards, the
cloud compares the current maximum with the encrypted value of the party Pi

using Fischlin’s protocol. The outputs of Fischlin’s protocol are sequences of λ
elements. To decide whether the encrypted value of Pi is greater than the current
maximum (If there exists a sequence of λ quadratic residues), the cloud server
contacts k other parties and sends the generated sequences for them. Each party
performs calculation on the sequences using her share of the factors of the pub-
lic key [10] using the threshold GM decryption. The results are then submitted
to the cloud server. Afterwards, the cloud server combines the results received
from k parties and decide if the encrypted value of Pi is greater than the current
maximum based on the quadratic residuosity of the combinations. If the output
indicates that the current maximum is greater, there is no need to update the
current maximum. Otherwise, the cloud server sets the current maximum to the
value of Pi and repeats the same process with Pi+1. After comparing the cur-
rent maximum with all the existing values, the cloud server sends the encrypted
maximum value to k members for decryption. This idea can be extended to en-
able a cloud server to sort the encrypted values without knowing the secret key
and the plaintexts. In this case, any comparison-based sorting algorithm can be
utilized and the comparison is performed on the encrypted values by exploiting
Fischlin’s protocol.

Secure and Privacy-Preserving Querying of PHRs in the Cloud 87

5 Secure Execution of Health Queries in Cloud

In this section, we present a protocol that enables health organizations to pro-
duce statistical information about encrypted personal health records stored
in the cloud server. The proposed protocol prevents patients from inferring
what health organizations are concerned about. The health organization’s in-
put is an aggregate SQL query that consists of exact-matching and interval-
matching predicates over multiple attributes combined with logical operators
(AND/OR/NOT). The cloud server’s input is the encrypted health records of
the patients. The naive approach to achieve these objectives is that the health
organization communicates with each patient and securely evaluates queries on
her record. This can be achieved by exploiting Fischlin’s protocol for private
comparison. However, this approach incurs excessive communication and com-
putation overhead on the health organization side that is linear to the number
of patients.

To reduce this overhead, patients are organized into smaller groups. The pa-
tients in each group jointly generate two public keys for Goldwasser-Micali [4]
and Paillier [6] encryption schemes. Then, they encrypt their records and out-
source them to the cloud server for storage. The cloud server assigns an assisting
server to each group. Assisting servers are responsible for securely executing
health organization’s queries on the database of each group to obtain partial
results. Assisting servers then collaborate to combine the partial results into the
query result and report it to the health organization. In the following, we elab-
orate the basic steps of our protocol that protects the data privacy of patients
and the query privacy of the health organization.

5.1 Key Generation and Tree Construction

Assuming the total number of N patients, the cloud server defines L = �
√
N�

groups. It then randomly maps and assigns each patient into exactly one group.
Let n = �NL � denotes the number of patients in each group. The cloud server as-
signs an assisting server to each group, which is responsible for executing health
organizations’ queries over the medical database of patients. Assisting servers
collaborate with each other to obtain the query result from the partial results
and send it to the health organization. In the i-th group, the patients execute the
distributed key generation algorithms for the threshold Paillier and the thresh-
old GM cryptosystems to obtain the public keys pk′i and pki for Paillier and
GM cryptosystems. We utilize the protocols explained in [10] and [15] for the
threshold GM and the threshold Paillier cryptosystems, respectively. These pro-
tocols depend on distributed RSA key-generation protocols [16, 12] without the
need to a trusted dealer. Following the execution of the key-generation proto-
cols, each patient obtains a single public key and a share of the secret key. The
threshold cryptosystems enable the patients to encrypt their record with a single
public key while at least a minimal number of patients are required to decrypt
a ciphertext.

88 S. Barouti et al.

Example 1. Consider health records with the attributes Age and Surgery, where
the value of Surgery specifies the type of the surgery that a patient undergoes
(e.g. 1: Transgender, 2: Plastic, 3:Vascular, 4: Urology). The total number of
patients is N = 10; therefore, these patients are organized in L = �

√
10� = 3

groups, namely, G1, G2 and G3. Assume that patients 1,9 and 10 are assigned
to G1; patients 2, 4, 5 and 8 to G2 and patients 3, 6 and 7 to G3, randomly.
Furthermore, the patients in the group Gi jointly generate the public key pki
and pk′i for the GM and the Paillier cryptosystems, respectively. The members of
Gi encrypt their records with pki and pk′i as presented in Fig. 2. The encrypted
tables are then outsourced to the cloud server.

To store the shares of a secret key, we assume the secret key is stored on
secure hardware such as FPGA [17]. These devices are designed in such a way
that after a patient places a key into the on-board key memory on the device,
it cannot be read externally. After the secret key of each patient and the group
public keys (for Paillier and GM cryptosystems) have been written, the FPGA
can be delivered to the cloud operator for installation.

Table 1. Health Records

Age Surgery
Patient 1 34 1
Patient 2 39 2
Patient 3 20 1
Patient 4 59 3
Patient 5 63 4
Patient 6 27 2
Patient 7 78 4
Patient 8 11 2
Patient 9 83 3
Patient 10 42 3

AgeGM SurgeryGM AgeP SurgeryP

Patient 1 Epk1(34) Epk1(1) Epk′
1
(34) Epk′

1
(1)

Patient 9 Epk1(83) Epk1(3) Epk′
1
(83) Epk′

1
(3)

Patient 10 Epk1(42) Epk1(3) Epk′
1
(42) Epk′

1
(3)

(a) G1 Data set

AgeGM SurgeryGM AgeP SurgeryP

Patient 2 Epk2(39) Epk2(2) Epk′
2
(39) Epk′

2
(2)

Patient 4 Epk2(59) Epk2(3) Epk′
2
(59) Epk′

2
(3)

Patient 5 Epk2(63) Epk2(4) Epk′
2
(63) Epk′

2
(4)

Patient 8 Epk2(11) Epk2(2) Epk′
2
(11) Epk′

2
(2)

(b) G2 Data set

AgeGM SurgeryGM AgeP SurgeryP

Patient 3 Epk3(20) Epk3(1) Epk′
3
(20) Epk′

3
(1)

Patient 6 Epk3(27) Epk3(2) Epk′
3
(27) Epk′

3
(2)

Patient 7 Epk3(78) Epk3(4) Epk′
3
(78) Epk′

3
(4)

(c) G3 Data set

Fig. 2. Outsourced Health Records in Groups

The patients encrypt each record using both Paillier and GM cryptosystems
by the group public keys. Therefore, the encrypted record of each patient has
two columns for each attribute in the database: one column that contains the
encryption of the attribute value using the group public key for the threshold
Paillier cryptosystem, and another column that stores the GM encryption of the
attribute value using the group public key for the threshold GM cryptosystem.
Finally, the cloud server assigns an assisting server to each group. Each assisting
server collects the encrypted health records and organizes them as a Kd-tree, as
described in Section 3.

Secure and Privacy-Preserving Querying of PHRs in the Cloud 89

Epk1 �42� Epk1 �3�

Epk1 �34� Epk1 �1� Epk1 �83� Epk1 �3�

Age

(a) G1 Kd-tree

Epk2�59� Epk2�3�

Epk2�39� Epk2�2�

Epk2�11� Epk2�2�

Epk2�63� Epk2�4�

Age

Surgery

(b) G2 Kd-tree

Epk3 �27� Epk3 �2�

Epk3 �20� Epk3 �1� Epk3 �78� Epk3 �4�

Surgery

(c) G3 Kd-tree

Fig. 3. Generated Kd-trees

Example 2. (Continued from Example 1) The generated Kd-trees for each group
are shown in Fig. 3. The partitioning attributes in each group may be different.

5.2 Query Sanitization and Token Generation

The health organization wishes to execute an SQL query such that the constants
in the predicates are not revealed to the patients and the cloud server. Therefore,
the health organization sanitizes the query by replacing the constants contained
in the predicates by their GM encryption using the public key of each group. Fur-
thermore, the health organization uses a token for each group that is encrypted
by the group’s public key. This token can be manipulated by assisting servers
to produce a noisy query result. Generating the token depends on the type of
the aggregate function. For count and sum, the health organization generates L
random numbers R1, R2, . . . , RL such that R = R1+R2+ . . .+RL. The random
share Ri will be the token that is sent to the assisting server of the i-th group.
For the max and min, the health organization generates a random number R
as the token for all groups. The health organization then encrypts the token of
each group by the Paillier cryptosystem using the group public key. The health
organization forwards the sanitized query together with the encrypted token to
assisting servers. Therefore, in this step the health organization should create L
sanitized queries and L encrypted tokens.

Example 3. Suppose that the health organization’s query is:

SELECT MAX(Age) FROM D WHERE Surgery = 1

The sanitized query that will be forwarded to the i-th group would be

SELECT MAX(Age) FROM D WHERE Surgery = Epki(1)

In addition, since the function is max, the health organization generates a ran-
dom number R and uses it as the token for all groups. The health organization
then encrypts the token using the Paillier encryption by the public key of each
group and forwards the encrypted token together with the sanitized query to
the corresponding assisting server.

90 S. Barouti et al.

5.3 Tree Traversal and Query Execution

To execute the health organization’s query, the assisting servers must traverse
the Kd-trees, constructed from the encrypted records of the patients. To do
so, the assisting servers follow the tree traversal algorithm. The search begins
from the root; the assisting server uses Fischlin’s protocol and the threshold
GM decryption to evaluate the query predicate on the root record. Based on the
result of the query evaluation, the search is continued on the left tree or the right
subtree or both. At the end of this step, the assisting servers will end up with
the records that satisfy the query predicate. The assisting servers then compute
the encrypted query result depending on the type of the aggregate function as
follows:

– count : The assisting server of the groupGi counts the number of records that
are reported as the query result and encrypts this value using the Paillier
cryptosystem with the group public key.

– sum: The assisting servers encrypt 0 (as the current sum) by the Paillier
encryption using the group public key. While traversing the tree, if at each
level the conditions in the query predicate are satisfied, the assisting server
projects the record over the Paillier-encrypted column targeted by the aggre-
gate function and multiplies it by the the current sum to update the query
result. At the end, the assisting server will end up with the sum that is en-
crypted with the group public key using the threshold Paillier cryptosystem.

– max, min: Initially, the assisting servers pick up a small negative number (or
a large positive in case of min) that denotes the current max/min value and
encrypts it by the GM and the Paillier cryptosystems using the group public
keys. GM-encrypted ciphertext is utilized for the comparison while Paillier-
encrypted ciphertext is used for generating noisy query result. During the
tree traversal if a record satisfies the query condition(s), the assisting server
projects the record over the columns that contain the GM- and the Paillier-
encryption of the record. It then executes Fischlin’s protocol using the en-
crypted current max/min value and the GM-encrypted value, to find out if
this record has greater (resp. smaller) value or not. If so, the assisting server
initializes the current max/min value to the GM- and the Paillier-encrypted
ciphertexts. Otherwise, the current max/min value remains unchanged. At
the end, the assisting servers end up with the query result encrypted with
the Paillier and GM cryptosystems. For the remaining step of the protocol,
the assisting servers only need the Paillier-encrypted ciphertext.

At the end of this step, the assisting servers obtain the partial query result (that
has been encrypted using the Paillier scheme by the public key of the group).

Example 4. (Continued from Example 3) Considering the Kd-trees presented in
Fig. 3 and the sanitized query

SELECT MAX(Age) FROM D WHERE Surgery = Epki(1)

All assisting servers receive an encrypted token Epk′
i
(R) from the health orga-

nization. The assisting server of the group Gi extracts Epki (1) from the query

Secure and Privacy-Preserving Querying of PHRs in the Cloud 91

and performs the point search on the Kd-tree constructed by the patients in
the group Gi. The assisting servers report the records that satisfy the predi-
cate Surgery = Epki(1) by executing Fischlin’s protocol and the threshold GM
cryptosystem. The record of Patient 1 in G1 and the record of Patient 3 in
G3 satisfy the predicate. Therefore, the output of the tree traversal for the
assisting servers of the groups G1, G2 and G3 will be {Epk1(34), Epk′

1
(34)},

{Epk2(−1000), Epk′
2
(−1000)} and {Epk3(20), Epk′

3
(20)}, respectively. The re-

sulted outputs will be projected over the column AgeP to obtain {Epk′
1
(34)},

{Epk′
2
(−1000)} and {Epk′

3
(20)} as the encrypted query result.

5.4 Query Result Decryption

So far, the assisting servers have obtained the encrypted partial query result,
which we will call group results from now on. Therefore, the assisting servers
must collaborate with each other to compute the final query result and submit
it to the health organization. The group results are encrypted with different keys.
Therefore, in order to compute the final query result, the group results must be
in plaintext. The assisting servers first obfuscate the group results because they
are not willing to reveal these results to each other. The obfuscation is performed
by the mean of multiplying the group result by the encrypted token, sent by the
health organization (both of them are ciphertexts generated by the same key
under the Paillier cryptosystem). The obfuscation allows the assisting servers to
collaborate with each other to calculate the noisy query result while hiding the
actual group result. In addition, since the noise is generated by the health orga-
nization, it allows the health organization to recover the actual query result from
the noisy query result. Afterwards, each assisting server decrypts the noisy group
result that is encrypted by the Paillier cryptosystem by contacting patients in
its group. The assisting servers then need to obtain the final noisy query result
by aggregating their group results. In this context, the assisting servers send the
noisy group results in plaintext to the cloud server. The cloud server then aggre-
gates the partial noisy query results to obtain the noisy query result. In the case
of count and sum, the cloud server adds up all the group results and submits
the summation to the health organization. In the case of max and min aggregate
functions, the cloud server executes the maximum/minimum algorithm on the
plaintexts and sends the resulted value to the health organization. Notice that
the noise generated for obfuscating the maximum/minimum of all groups is the
same, therefore it will not affect the algorithm correctness (i.e., if a < b then
a+ R < b + R). Finally, the health organization in its turn subtracts the noise
and obtains the query result.

Example 5. (Continued from Example 4) We have seen that the result of exe-
cuting the SQL query

SELECT MAX(Age) FROM D WHERE Surgery = 1

on the groups G1, G2 and G3 was {Epk′
1
(34)}, {Epk′

2
(−1000)} and {Epk′

3
(20)}

respectively. Moreover, the token sent by the health organization to the i-th
group is Epk′

i
(R). The assisting servers multiply the received token ER

pk′
i
by all

92 S. Barouti et al.

records in the encrypted query result to obtain the encrypted noisy query result,
i.e., {Epk′

1
(34 + R)}, {Epk′

2
(−1000 + R)} and {Epk′

3
(20 + R)}. The assisting

servers then decrypt these ciphertexts to obtain 34+R, −1000+R and 20+R.
They send their noisy plaintexts to the cloud server. The cloud server executes
the maximum algorithm on the 34 + R, −1000 + R and 20 + R and eventually
ends up with 34 +R as the maximum. The cloud server forwards 34 +R to the
health organization. The health organization subtracts the noise R to obtain 34
as the result of executing the SQL query on the medical database.

6 Security and Efficiency Analysis

6.1 Security Analysis

Assuming the semi-honest adversary model and no collusion between the pa-
tients, the security of the protocol depends on the steps where the parties ex-
change information and it is conducted as follows:

– Health organization-Cloud server : The health organization sends the san-
itized query and the token that are encrypted by the semantically-secure
encryption schemes using patients’ public keys. Therefore, the cloud server
is not able to decrypt it [4, 6].

– Patient-Cloud server. The patients sends their medical records, encrypted
using semantically-secure encryption schemes that are secure against semi-
honest adversary [4, 6].

– Cloud server-Patient. The cloud server communicates with the patients in
order to execute Fischlin’s protocol, that is proven to be secure in the pres-
ence of semi-honest adversaries [5, 10, 11].

– Assisting servers. The interactions between assisting servers are required to
aggregate the noisy group results and acquire the randomized final query
result. Since the query results have been randomized by a number that is
generated by the health organization, the assisting servers are not able to
extract the actual query results from the noisy results.

Moreover, the output of each subprotocol is the input to another subprototcol.
Therefore, according to the Composition Theorem [18], the entire protocol is se-
cure. The main concern with threshold cryptosystems comes from the collusion
attack. We address in the following the possible attacks resulted from the collu-
sion between the different parties. The threshold decryption will be compromised
if the number of colluding clients under the control of an adversary exceeds the
threshold k. Any collusion that contains less than k patients in each group can-
not learn any information about the ciphertext sequences Δ and c, generated
for comparison as well as constants in the query of the health organization. The
most serious collusion attacks are when: (i) the cloud server colludes with more
than k patients in each group to recover the encrypted database records, (ii) the
cloud server and at least k patients in any group collude to infer constants in the
query. In practice, we can increase the threshold k such that attackers will not be
able to compromise too many patients. Despite simplicity, this mechanism has

Secure and Privacy-Preserving Querying of PHRs in the Cloud 93

Table 2. Communication and Computation Cost

Health Organization Assisting Servers

Communication Computation Communication Computation

O(
√
N) O(k

√
N) O(kT (N)) O(kT (N))

two disadvantages: First, the number of the required online patients is increased.
Second, the communication cost on the assisting servers is increased because they
need to communicate with more parties for decryption. Therefore, there should
be a trade-off between availability/efficiency and security by choosing a proper
value for k.

It should be noted that the proposed protocol does not protect the privacy
of patients from being identified through the query result. There is a significant
body of works on distributed privacy preserving data mining (e.g. constructing
decision trees [19] and differential privacy [20–22]) that provide a rich and useful
set of tools to protect the record owner (i.e., patients) from being identified
through query results. They allow a trusted server to release obfuscated answers
to aggregate queries to avoid leaking information about any specific record in
the database. Such works have a different goal and model and can be added as a
front end in the proposed protocol to provide privacy-preserving answers to the
health organization’s queries.

6.2 Complexity Analysis

Let N denotes the number of patients in a PHR system. These patients are
organized into L groups and each group contains n = N

L patients. Recall that
the execution time of range queries, exact matching queries and partial matching
queries on a Kd-tree with

√
N records, will be O(N0.5−1/2d +m), O(logN) and

O(N0.5−s/2d +m), respectively [23] where d is the number of the attributes in
the table, s is the number of attributes in the query predicate and m denotes
the number of records, reported as the query result. The communication and the
computation cost of the protocol is summarized in Table 2 where T (N) indicates
the execution time of different types of queries (e.g., exact-matching, partial
matching and range matching). The most communication- and computation-
intensive operation on the assisting servers is the tree traversal.

6.3 Performance Evaluation

To evaluate the performance of the proposed protocol, we implement a proto-
type relying on some existing open source projects [24] in Java 1.6. The secret
keys p and q of the GM cryptosystem are 256-bit long. Moreover, we employ the
publicly available Breast Cancer dataset [25]. It has 286 records with 9 categori-
cal attributes. The patient’s and the server’s side experiments are conducted on
an Intel core i5 2.3GHz notebook with 4GB of RAM. The number of patients
in each group is fixed at L = 286 leading to approximately 81, 800 patients in

94 S. Barouti et al.

the PHR system. The shares of the secret key are stored on FPGAs. Decrypting
a ciphertext by the cloud server is performed by sending a ciphertext to the
FPGAs. Since the communication is intra-site, we ignore communication delays
in the performance evaluation.

To understand the source of the overhead, wemeasure the query execution time
for different types of aggregate SQL queries, but running with only one core en-
abled. The result is presented in Table 3 and Fig. 4. When k is small, the query
time is dominated by Fischlin’s protocol, which is independent from the thresh-
old k. Therefore, there is a small difference in the query time when k = 36 and
k = 71. However, as k increases the effect of the threshold decryption becomes
more visible and the execution time starts to grow. According to a similar anal-
ysis, for small values of k there is a small change in the execution time but as k
increases the query time becomes linear with k. Finally, we calculate the execution
time of an arbitrary SQL query k = n

4 = 71. In addition, the execution time of
a query heavily depends on the number of comparisons that are performed to tra-
verse the Kd-tree. Therefore, we consider three different scenarios: (1) the worst
case scenario is when evaluating predicates targeting a single attribute for inter-
val matching such that all the tree nodes are traversed, (2) the best case scenario
is when evaluating predicates targeting all attributes for exact matching, and (3)
the real-world scenario is when evaluating predicates targeting multiple attributes
for range and exact matching predicates. In the worst case, the time required to
evaluate the predicate is 110 seconds (approximately 2 minutes) for each group,
whereas in the best case it is 0.3 seconds. In the real-world scenario, we derive the
execution time of a SQL query that contains intervalmatching and exactmatching
predicates. For each type of predicate, we execute four SQL queries with different
number of attributes. The results are presented in Fig. 5. The results indicate that
as the number of attributes in the query increases, the execution time decreases
due to the smaller search space and the reduction of the number of comparisons.
Our experimental results indicate that the proposed protocol wouldworkwell with
medium size databases (with a total number of 100,000-400,000 patients) and the
queries that contain multiple attributes. These results are from a straightforward
implementation of the proposed protocol. Further optimizationsmay lead to a bet-
ter performance. It is worth tomention that health organizations do not frequently
conduct statistical studies on the medical databases (every month or when there
is a pandemic). Therefore, the performance of the protocol is acceptable for this
type of applications whose goal is to perform search while the absolute privacy of
the patients and the health organization is preserved.

Table 3. Assisting server latency for different types of SQL queries (k = n
4
= 71)

Query Query Time(ms)

Select by = 41.93

Select range 216.14

Select sum 33.02

Select max/min 217.32

Secure and Privacy-Preserving Querying of PHRs in the Cloud 95

10 20 30

Select min/max

Select sum

Select range

Select by =

Queries/sec

Fig. 4. Query Time

1 1.5 2 2.5 3 3.5 4

0

10

20

30

Number of attributes

Q
u
er
y
T
im

e
(s
ec
)

Exact matching
Interval matching

Fig. 5. SQL Query Time (Exact Matching
vs Interval Matching)

7 Related Work

Private database outsourcing deals with the problem of hiding database records
from an untrusted service provider. To ensure the security and privacy of the data
stored in the cloud, most existing approaches rely on encryption [26]. However,
using cryptography as a means to protect privacy causes new problems, such
as querying the encrypted data. Previous work in querying encrypted data is
divided into two categories, one that assumes the existence of a trusted server
[27], and another that assumes that the server is semi-trusted [28, 29].Hacigumus
et al. [28] suggested the addition of secure indexes in each tuple. Although these
techniques have been proposed to secure databases hosted in the cloud, they
cannot be adopted for this problem for several reasons. First, to evaluate the
query on the encrypted data, the health organization must encrypt the query
by the same scheme and the same key that are used by the patients and send it
to the cloud server. It then forwards the encrypted query to the patients, where
the query can be decrypted by the encryption key. Second, a common approach
in the existing research proposals is to send a set of encrypted records to the
client for filtration and further processing [28, 30]. Therefore, the cloud server
may reveal extra information beyond the query result to the client.

Thus, the proposed techniques for secure database outsourcing will not protect
the query privacy and the database privacy. Recently, CryptDB [31] has been
proposed to execute SQL queries over encrypted data. It depends on a fully
trusted component that maintains all the secret and public keys and transforms
the users’ SQL queries to ones that can be executed over encrypted records.
CryptDB has low overhead on query execution time; however, it requires a fully
trusted component which is the single point of attack.

8 Conclusion

In this paper, we have presented a protocol that allows executing various types
of SQL queries on PHRs stored in the cloud while preserving the privacy of the

96 S. Barouti et al.

patients and the health organization as well. The health records are encrypted
using probabilistic encryption schemes, which are semantically secure. The pro-
tocol supports aggregate, exact matching and range matching queries. It is based
on Fischlin’s protocol for private comparison and on two threshold cryptosys-
tems. The implementation result has indicated that the protocol works well with
medium size databases and the queries that contain multiple attributes. We have
shown that we can execute queries over encrypted data using probabilistic cryp-
tosystems. This opens the door for more research for efficiency in this domain.

References

1. Löhr, H., Sadeghi, A., Winandy, M.: Securing the e-health cloud. In: Proceedings
of the International Health Informatics Symposium, IHI 2010, pp. 220–229. ACM
(2010)

2. Microsoft health vault, http://www.healthvault.com/Personal/index.html (ac-
cessed March 2013)

3. Dossia personal health platform, http://www.dossia.org/ (accessed March 2013)

4. Goldwasser, S., Micali, S.: Probabilistic Encryption & How To Play Mental Poker
Keeping Secret All Partial Information. In: Proceedings of the 14th Annual ACM
Symposium on Theory of Computing, STOC 1982, pp. 365–377 (1982)

5. Fischlin, M.: A cost-effective pay-per-multiplication comparison method for mil-
lionaires. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 457–472.
Springer, Heidelberg (2001)

6. Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity
Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

7. Jiang, W., Clifton, C.: A Secure Distributed Framework for Achieving k-
Anonymity. The VLDB Journal 15(4), 316–333 (2006)

8. Olumofin, F., Goldberg, I.: Privacy-preserving queries over relational databases.
In: Atallah, M.J., Hopper, N.J. (eds.) PETS 2010. LNCS, vol. 6205, pp. 75–92.
Springer, Heidelberg (2010)

9. Barouti, S., Alhadidi, D., Debbabi, M.: Symmetrically-Private Database Search in
Cloud Computing. In: Proceedings of the 5th IEEE International Conference on
Cloud Computing Technology and Science, vol. 1, pp. 671–678 (December 2013)

10. Katz, J., Yung, M.: Threshold Cryptosystems Based on Factoring. In: Zheng,
Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 192–205. Springer, Heidelberg
(2002)

11. Barnett, A., Smart, N.P.: Mental Poker Revisited. In: Paterson, K.G. (ed.) Cryp-
tography and Coding 2003. LNCS, vol. 2898, pp. 370–383. Springer, Heidelberg
(2003)

12. Boneh, D., Franklin, M.: Efficient Generation of Shared RSA Keys. J. ACM 48(4),
702–722 (2001)

13. Yao, A.C.: Protocols for Secure Computations. In: Proceedings of the 23rd Annual
Symposium on Foundations of Computer Science, SFCS 1982, pp. 160–164. IEEE
Computer Society (1982)

14. Bentley, J.L.: Multidimensional binary search trees used for associative searching.
Commumications of the ACM 18(9), 509–517 (1975)

http://www.healthvault.com/Personal/index.html
http://www.dossia.org/

Secure and Privacy-Preserving Querying of PHRs in the Cloud 97

15. Nishide, T., Sakurai, K.: Distributed Paillier Cryptosystem without Trusted
Dealer. In: Chung, Y., Yung, M. (eds.) WISA 2010. LNCS, vol. 6513, pp. 44–60.
Springer, Heidelberg (2011)

16. Frankel, Y., MacKenzie, P.D., Yung, M.: Robust Efficient Distributed RSA-Key
Generation. In: Proceedings of the 13th Annual ACM Symposium on Theory of
Computing, STOC 1998, pp. 663–672. ACM (1998)

17. Eguro, K., Venkatesan, R.: FPGAs for Trusted Cloud Computing. In: FPL, pp.
63–70 (2012)

18. Goldreich, O.: Foundations of Cryptography, vol. 2. Cambridge University Press
(2001)

19. Lindell, Y., Pinkas, B.: Privacy Preserving Data Mining. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 36–54. Springer, Heidelberg (2000)

20. Dwork, C.: Differential Privacy: A Survey of Results. In: Agrawal, M., Du, D.-
Z., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer,
Heidelberg (2008)

21. McSherry, F.D.: Privacy Integrated Queries: An Extensible Platform for Privacy-
Preserving Data Analysis. In: Proceedings of the 2009 SIGMOD International Con-
ference on Management of Data, pp. 19–30. ACM (2009)

22. Roy, I., Setty, S.T.V., Kilzer, A., Shmatikov, V., Witchel, E.: Airavat: Security
and Privacy for MapReduce. In: Proceedings of the 7th USENIX Conference on
Networked Systems Design and Implementation, NSDI 2010, pp. 297–312. USENIX
Association (2010)

23. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geome-
try: Algorithms and Applications. Springer-Verlag TELOS (2008)

24. Geisler, M.J.B.: Cryptographic Protocols: Theory and Implementation. PhD thesis,
Aarhus Universitet, [Enhedsstruktur før 1.7. 2011] Aarhus University, Det Naturv-
idenskabelige Fakultet Faculty of Science, Datalogisk InstitutDepartment of Com-
puter Science (2010)

25. UCI Machine Learning Repository: Breast Cancer Data Set (April 2012),
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer

26. Sion, R.: Secure data outsourcing. In: Proceedings of the Conference on Very Large
Data Bases, VLDB 2007, pp. 1431–1432 (2007)

27. Iyer, B., Mehrotra, S., Mykletun, E., Tsudik, G., Wu, Y.: A framework for efficient
storage security in RDBMS. In: Bertino, E., Christodoulakis, S., Plexousakis, D.,
Christophides, V., Koubarakis, M., Böhm, K. (eds.) EDBT 2004. LNCS, vol. 2992,
pp. 147–164. Springer, Heidelberg (2004)

28. Hacıgümüş, H., Iyer, B., Mehrotra, S.: Efficient execution of aggregation queries
over encrypted relational databases. In: Lee, Y., Li, J., Whang, K.-Y., Lee, D.
(eds.) DASFAA 2004. LNCS, vol. 2973, pp. 125–136. Springer, Heidelberg (2004)

29. Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Order preserving encryption for
numeric data. In: Proceedings of the 2004 ACM SIGMOD International Conference
on Management of Data, SIGMOD 2004, pp. 563–574. ACM, New York (2004)

30. Hore, B., Mehrotra, S., Tsudik, G.: A privacy-preserving index for range queries.
In: Proceedings of the International Conference on Very Large Data Bases, VLDB
2004, vol. 30, pp. 720–731. VLDB Endowment (2004)

31. Popa, R.A., Redfield, C.M.S., Zeldovich, N., Balakrishnan, H.: CryptDB: Protect-
ing confidentiality with encrypted query processing. In: Proceedings of the ACM
Symposium on Operating Systems Principles, pp. 85–100 (2011)

http://archive.ics.uci.edu/ml/datasets/Breast+Cancer

Data Leakage Quantification�

Sokratis Vavilis1, Milan Petković1,2, and Nicola Zannone1

1 Eindhoven University of Technology, The Netherlands
{s.vavilis,m.petkovic,n.zannone}@tue.nl

2 Philips Research Europe, High Tech Campus, The Netherlands
milan.petkovic@philips.com

Abstract. The detection and handling of data leakages is becoming a critical is-
sue for organizations. To this end, data leakage solutions are usually employed by
organizations to monitor network traffic and the use of portable storage devices.
These solutions often produce a large number of alerts, whose analysis is time-
consuming and costly for organizations. To effectively handle leakage incidents,
organizations should be able to focus on the most severe incidents. Therefore,
alerts need to be prioritized with respect to their severity. This work presents
a novel approach for the quantification of data leakages based on their severity.
The approach quantifies leakages with respect to the amount and sensitivity of the
leaked information as well as the ability to identify the data subjects of the leaked
information. To specify and reason on data sensitivity in an application domain,
we propose a data model representing the knowledge in the domain. We validate
our approach by analyzing data leakages within a healthcare environment.

Keywords: Data Leakage Detection, Severity Metrics, Data Sensitivity Model.

1 Introduction

In the recent years the number of data breaches reported by public and private orga-
nizations has increased sharply. For instance, a study from Ponemon Institute in 2012
showed that 94% of US hospitals suffered serious data breaches [1]. The main cause is
that IT systems often implement inadequate measures that allow users to have access
on sensitive data, which they are not authorized to access. The problem is that it may
not be always possible to specify fine-grained access control policies to protect from
the disclosure of data. For example, access control policies in hospitals often do not
pose restrictions on the amount of health records that doctors can access. Moreover, ac-
cess to information should not be restricted under certain circumstances. For instance,
doctors should be able to access patient records to face an emergency. Typically, this is
addressed using the break-the-glass protocol [2], which allows users to bypass security
mechanisms, thus leading to potential data misuse.

Timely detection and management of data leakages is becoming a serious challenge
for organizations. According to the newly proposed EU data protection regulation, or-
ganizations are obliged to notify privacy authorities within 24 hours after the detection
of a data breach [3]. To detect data leakages, organizations usually deploy data leakage

� This work has been funded by the Dutch national program COMMIT under the THeCS project.

V. Atluri and G. Pernul (Eds.): DBSec 2014, LNCS 8566, pp. 98–113, 2014.
c© IFIP International Federation for Information Processing 2014

Data Leakage Quantification 99

detection (DLD) solutions. These solutions analyze the disclosed data and raise an alert
when a leakage is detected. However, the number of alerts can be huge in certain situa-
tions, making difficult their analysis and management. For example, in hospitals a DLD
solution might produce a large number of alerts due to the usage of the break-the-glass
protocol. Before taking any action (e.g., notifying authorities), organizations typically
evaluate a sample of the alerts manually. To effectively manage and mitigate the dam-
age due to security incidents, organizations should be able to focus on the most severe
incidents. To this end, data leakages should be quantified based on their severity.

Data leakage quantification, however, has not been properly addressed in the litera-
ture. Many proposals [4–6] are founded on quantitative information flow. In particular,
they quantify data leakages in terms of the number of “sensitive” bits which have been
disclosed. Thereby, they do not consider the semantics of the leaked information in
the assessment of data leakages. From our knowledge, only M-Score [7] assesses the
severity of data leakages on the basis of the semantics of the leaked information. In
particular, M-Score uses the amount and sensitivity of leaked information as well as
an identifiability factor to measure the severity of leakages. The amount and sensitivity
of leaked information characterize the “quantity” and “quality” aspects of the leakage.
These aspects are weighted with respect to the identifiability factor which represents the
ability to obtain the identity of the individuals to whom the leaked data refer. However,
M-Score requires defining the sensitivity for all pieces of information explicitly. Such a
task is time-consuming and error-prone. In addition, M-Score is not able to accurately
distinguish data leakages (see Section 7.2).

In this work we propose a novel approach to quantify data leakages on the basis of
the content of the leaked information. In particular, we make the following contribu-
tions: (i) a new metric that evaluates the severity of data leakages based on the amount
and sensitivity of the leaked data and an identifiability factor; (ii) a data model repre-
senting the knowledge of an application domain to specify and reason on the sensitivity
of the information in the domain. Our metric uses the same factors used by M-Score.
However, compared to M-Score, our metric provides a more accurate discrimination
of data leakages with respect to their severity. In addition, differently from M-Score,
our approach does not require specifying the sensitivity for every piece of informa-
tion characterizing the application domain explicitly. The data model makes it possible
to infer the sensitivity of every piece of information through a sensitivity propagation
mechanism based on a small initial sensitivity assignment.

We validate our approach by analyzing a sample scenario in the healthcare domain.
Healthcare is indeed an interesting domain to investigate as a large amount of sensitive
data, such as patient healthcare records, has to be protected. Based on a given sce-
nario, a group of security experts was asked to evaluate the severity of a number of data
leakages. The severity measurements calculated using our metric have been analyzed
against the evaluation provided by the security experts.

The remainder of the paper is organized as follows. The next section discusses related
work. Section 3 motivates the need of approaches for data leakage quantification using
a running example in the healthcare domain. Section 4 presents an overview of our
approach. Section 5 defines the data model along with the machinery to reason on data
sensitivity, and Section 6 describes how leaked information is mapped to the data model.

100 S. Vavilis, M. Petković, and N. Zannone

Section 7 presents our metric for data leakage quantification along with a comparison
with M-Score. A validation of the proposed metric is presented in Section 8. Finally,
Section 9 concludes the paper by providing directions for future work.

2 Related Work

Several works aiming at data leakage detection and protection can be found in the liter-
ature [8–10]. Data leakage detection (DLD) solutions differ in the approach and tech-
nologies used to detect leakages. They are usually rule-based [10], behavior-based [11]
or content-based [12–14]. Rule-based approaches set predefined policies (e.g., access
control policies, firewall rules) that are used to define which operations are allowed or
not. In behavior-based DLD solutions the permitted usage of data is defined by observ-
ing users’ behavior. For instance, network behavior monitoring technologies, such as
anomaly detection and extrusion detection systems [11], can be used to detect unusual
behavior. Content-based DLD solutions analyze the values of the disclosed data to de-
tect data leakages. Such approaches include the use of keywords, regular expressions,
text classification [14], and information retrieval [12, 13] to detect the presence of sen-
sitive data leaving the organization perimeter. However, most existing DLD solutions
only focus on detecting leakages and do not assess their severity.

A number of proposals for the quantification of data breaches exist in the literature
[15–17]. These proposals measure the impact of a security incident in financial terms.
For instance, security incidents are quantified on the basis of the damage on the reputa-
tion of the organization and the losses on the revenue. Another approach for measuring
the severity of security incidents is proposed in [2, 18]; this approach evaluates privacy
infringements by quantifying deviations from the intended usage of data.

Data leakage quantification is studied in the field of quantitative information flow
[4, 6]. These solutions measure the amount of information leaking from a high confi-
dentiality input to a low confidentiality output. Leakages are usually quantified in terms
of bits, using metric based on information theory and information entropy. Quantitative
information flow has also been applied to quantify leakages at network level [5]. In
particular, it has been used to measure the amount of leaked information (measured in
bytes) in the hypertext transfer protocol. The major drawback of quantitative informa-
tion flow methods is that they do not consider the semantics of the leaked information
to quantify data leakages. In particular, the sensitivity of leaked data is not considered
in the calculation of the severity of a leakage.

To the best of our knowledge, M-Score [7] is the only proposal that uses semantic
information to compute the severity of data leakages. In particular, M-Score measures
the severity of leakages in database environment on the basis of the amount and sen-
sitivity of the data leaked. However, M-Score is not able to accurately distinguish data
leakages. A detailed analysis of M-Score is presented in Section 7.1.

3 Running Example

Consider a local hospital where patients of a small region are treated. The hospital of-
fers treatment for various diseases, ranging from flu to serious cases such as heart attack

Data Leakage Quantification 101

and infectious diseases. Patient information is stored in a central database at the hos-
pital in the form of electronic health records (EHR). Typically, doctors and nurses can
only access EHR of the patients they treat. However, in emergency situations doctors
and nurses can bypass access control mechanisms by invoking the break-the-glass pro-
tocol. Therefore, they can have access to the EHRs of all patients. The hospital has
also administrative personnel for financial management and to make appointments with
patients. Moreover, the database is maintained by a database administrator.

To detect data leakages, the hospital employs a DLD solution. In a typical day hos-
pital employees access thousands of patient records. In addition, the number of invoca-
tions of the break-the-glass protocol can be huge [2]. Therefore, the DLD system can
generate hundreds of alerts, making difficult to evaluate their severity. In particular, the
evaluation of a large number of data leakages can be time-consuming for organizations.
Below we present three representative alerts of data leakages:

Alert 1. A query is made by a doctor requesting an unusual large number of patient
records. In particular, the names and addresses of 10000 patients were retrieved.

Alert 2. A query for patient data is made by a doctor after his regular working hours.
He retrieved 200 records containing the names and diseases of patients.

Alert 3. A query for data about patients affected by HIV is made by a medical re-
searcher of the hospital, specialized on cardiovascular diseases. He retrieved 500
anonymized records containing the sex, age and treatment provided to patients.

To assist organizations in the evaluation of data leakages, leakages should be ranked
on the basis of their severity. However, the quantification of data leakages is not a trivial
task as the leakages may differ on several aspects. The amount of leaked information
is a main aspect to discriminate data leakages. For instance, the leakage described in
Alert 1 contains thousands of patient records, while in Alert 2 only a relatively small
amount (200) of records is retrieved. Another difference is the information leaked it-
self. In particular, the sensitivity of the information (i.e., the impact that its disclosure
has on the patient) can be different. For instance, disease information (Alert 2) is more
sensitive than patient addresses (Alert 1). Finally, data leakages also differ on the extent
that an individual related to the data is identifiable. According to the EU Data Protec-
tion Directive (95/46/EC), personal data should be protected. However, the principles
defined in the directive do not apply to anonymous data. Therefore, the ability to iden-
tify the individuals related to the leaked data has an impact on the severity of a leakage.
For instance, in Alerts 1 and 2 the leaked data can be directly linked to patients’ iden-
tity, while in Alert 3 the data are anonymized. Therefore, the first two alerts should be
considered more severe than the third alert.

In order to obtain a ranking of alerts we need a method to quantify the severity of
data leakages. Such quantification should take into account the amount and sensitivity
of leaked information, and the extent to which the identity of the individuals related to
the leaked information can be ascertained.

4 Approach

DLD solutions are often deployed to detect data leakages. These solutions analyze the
data leaving the system and raise an alert when a data leakage is detected. However, the

102 S. Vavilis, M. Petković, and N. Zannone

Fig. 1. Data Leakage Quantification Process

number of alerts can be very large, making their analysis costly and time-consuming
for organizations. To enable organizations to focus on the most severe incidents, data
leakages have to be ranked based on their severity.

To address this issue, we propose a new data leakage quantification system (Fig. 1).
The system is connected to a DLD solution. In particular, it receives alerts of data
leakages and analyzes the disclosed data to estimate their severity. Since leakages can
originate from different sources, data can be structured or unstructured. For instance,
data originating from a database are structured, while data in an e-mail are usually
unstructured. In this work, we focus on structured data where portions of the database’s
tables are leaving the database as result of a user query. However, the system can be
extended using technologies like natural language processing and information retrieval,
to extract information from unstructured data.

The severity of data leakages depends both on the amount of the data leaked and on
the data themselves. Therefore, the quantification of data leakages should consider both
these factors. In particular, data leakage quantification should reflect the cost of data
disclosure according to the data subject/owner or to the organization hosting the data.
We represent such a cost in terms of the sensitivity of data. In particular, a sensitivity
value should be assigned to every piece of data that may be leaked.

Assigning a sensitivity value to all pieces of data, however, is time-consuming and
error prone. We employ a data model representing the knowledge of the application
domain to reason on data sensitivity. The data model makes it possible to specify the
sensitivity of some pieces of information and infer the sensitivity for the other pieces
of information based on this initial assignment (Section 5). To calculate the severity of
data leakages, leaked data are mapped to the data model. Intuitively, the attributes and
values in the leaked tables are mapped to the corresponding piece of information in the
data model (Section 6). The sensitivity of data along with a discrimination factor, which
determines to what extent data can be related to an individual, and the amount of leaked
data is used to quantify the severity of data leakages (Section 7).

Data leakages are ranked on the basis of their severity. Security experts thus can
evaluate data leakages focusing on the more severe incidents. Based on this analysis,
organizations can take the appropriate actions to prevent or mitigate the losses. If the
analysis reveals that a leakage is a false positive (i.e., wrongly recognized by the DLD
solution as a leakage), feedback explaining the assessment is sent to the DLD system to
reduce the number of false alerts in the future.

Data Leakage Quantification 103

Fig. 2. Data Model Example

5 Modeling and Reasoning on Data Sensitivity

To determine the sensitivity of data we employ a data model. It provides a description of
the data within an application domain along with the necessary semantic information.

Definition 1. A data model is a tuple DM = (T, I,HR, IR,SL,PL), where:

– T is a set of data types, and I is a set of data instances.
– HR⊂ T ×T ∪ I is a hierarchy relation representing a specialization relationship.
– IR⊂ I× I represents an inference relation on I.
– SL : T ∪ I→ Z≥0 is a labeling function that assigns a sensitivity value to data types

and instances.
– PL : I× I → [0,1] is a labeling function that defines the probability to infer knowl-

edge about a data instance having knowledge about another data instance.

Fig. 2 shows an example of data model for the healthcare domain. Data types are
nodes represented by rectangles, while data instances by ovals. Hierarchy relations are
represented with straight edges between two nodes. For instance, the hierarchy relation
between Viral diseases and Flu (denoted as (Viral,Flu)) nodes indicates that flu is a
viral disease. Inference relations are represented by dashed edges. For example, the
inference relation between Anti-RetroViral (ARV) and HIV indicates that a patient treated
with ARV medication is likely infected with the HIV virus.

Nodes can be annotated with a sensitivity label that indicates the sensitivity of the
data represented by the respective node. For instance, the sensitivity label of node HIV
is SL(HIV) = 100. Inference relations are annotated with probability labels to indicate
the probability of the inference. For instance, label PL(ARV,HIV) = 0.9 indicates that
a patient treated with ARV medication is very likely (90%) infected by HIV.

Both domain and security experts need to be involved in the construction of the data
model for a given domain. Domain experts should define data types and instances along

104 S. Vavilis, M. Petković, and N. Zannone

with the hierarchy relations between them. Moreover, they should determine the infer-
ence relations between instances with the respective probability labels. On the other
hand, security experts should annotate the data model with sensitivity labels.

The annotation of the data model with sensitivity labels, however, can be difficult
as the number of nodes can be large. Ideally, security experts should assign sensitivity
labels to few nodes and the system determines the sensitivity of the other nodes based on
this initial assignment. To this end, we introduce the notion of sensitivity propagation.

Definition 2. Let DM = (T, I,HR, IR,SL,PL) be a data model. Sensitivity propagation
is a function SP : T ∪ I → Z≥0 such that given a node x ∈ T ∪ I

SP(x) =

{
SL(x) i f SL(x) exists

SP(y) otherwise
(1)

with y ∈ T such that (y,x) ∈ HR.

Sensitivity propagation is used to assign a sensitivity value to the nodes in the data
model based on hierarchy relations. Intuitively, if a node does not have a sensitivity
label, then its sensitivity is inherited from the node higher in the hierarchy.

Example 1. In Fig. 2 the sensitivity label of Paracetamol is not defined. Therefore, this
node inherits the sensitivity value of the parent node (Medication), i.e., SP(Paracetamol)
= SP(Medication) = 40.

Although sensitivity propagation simplifies the task of assigning sensitivity values to
nodes, it may lead to an inaccurate assignment. For instance, a security expert might un-
derestimate the sensitivity of some pieces of information, which is propagated through
the data hierarchy. To this end, we use inference relations to validate the propagated
values and eventually adjust the sensitivity of the nodes to a higher value.

Definition 3. Let DM = (T, I,HR, IR,SL,PL) be a data model. Node sensitivity is a
function NS : T ∪ I → Z≥0 such that given a node x ∈ T ∪ I

NS(x) = max{SP(x), IS(x)} (2)

where SP(x) is the sensitivity derived through sensitivity propagation (Definition 2) and
the inferred sensitivity IS(x) is computed using function IS : T ∪ I → Z≥0:

IS(x) =

{
∑(x,y)∈IR PL(x,y)×NS(y) i f x ∈ I

0 i f x ∈ T
(3)

Intuitively, the sensitivity of data types is obtained through sensitivity propagation.
On the other hand, the sensitivity of data instances also depends on the sensitivity of
the information that can be inferred through the inference relations.

Example 2. Consider the sensitivity value of node Paracetamol calculated in Exam-
ple 1. The node has an inference relation with nodes HIV and Flu, which have sensitivity
100 and 60 respectively. The inferred sensitivity is 34. As this value is lower than the
sensitivity obtained through propagation, the node sensitivity for Paracetamol is 40.

Data Leakage Quantification 105

Note that the computation of inferred sensitivity can be problematic as inference
relations can form a cyclic graph. This issue can be addressed by representing inference
relations as Markov chains. For the lack of space, we omit details of such an approach.

6 Mapping Information on the Data Model

To quantify the severity of data leakages, the leaked data have to be mapped onto the
data model in order to determine their sensitivity. Recall that in this work we focus on
structured data leaving a database. Thus, the mapping consists in determining, for each
entry in the leaked table, the corresponding node in the data model. In this section we
first introduce the notation used to represent data; then, we present the mapping.

Let A be a set of attributes. Attributes can be divided in two types: quasi-identifiers
and sensitive attributes. Quasi-identifiers Q = {q1, . . . ,qk} ⊆ A can be used to reveal
the identity of an individual, possibly using an external data source (any subset of the
quasi-identifiers is a quasi-identifier itself). Sensitive attributes S = {s1, . . . ,sm} ⊆ A
are the attributes that need to be protected. Certain attributes may belong to both sets.
For instance, the sex of a person is a quasi-identifier, as it can be used to partly re-
veal an individual’s identity. Moreover, according to the EU Data Protection Directive
(Directive 95/46/EC) the sex of an individual is considered to be sensitive personal in-
formation. Note that the distinction between quasi-identifiers and sensitive attributes is
related to the purpose and context of use. One may consider all attributes in a table as
both quasi-identifiers and sensitive attributes.

A database table D(a1, . . . ,an) is a set of records over a set of attributes {a1, . . . ,an}⊆
A . We denote the records in D(a1, . . . ,an) as RD(a1,...,an). Given a record r ∈ RD(a1,...,an),
ai[r] represents the value of attribute ai in r. Attributes take values from a close set of
values defined by the domain. Given an attribute a ∈ A , Ca denotes the domain of a.

Example 3. Consider the scenario in Section 3. The database includes table D(Job, City,
Sex, Disease, Medication). Attributes Job and City are quasi-identifiers, while attributes
Disease and Medication are sensitive attributes. Attribute Sex belongs to both sets. Each
sensitive attribute takes values from a pre-specified domain. For instance, Disease can
take a value from {HIV, Heart Attack, Hypertension, Migraine, H1N1, Flu}, and Medica-
tion from {ARV, b-Blocker, Tamiflu, Statin, Antibiotics, Aspirin, Paracetamol, Vitamins}.
We assume that a doctor can prescribe antibiotics without referring explicitly to a par-
ticular medical product, allowing the patient and/or pharmacist to choose an antibiotic
from a list of equivalent medication.

In addition to the attributes and values contained in the leaked table, we also consider
pre-acquired knowledge as part on the leaked information. In particular, conditional
clauses such as WHERE clauses in SQL may leak information. For instance, consider
a user query requesting the medication prescribed to patients infected by HIV (i.e.,
WHERE Disease = ’HIV’). Although the leaked table only contains values concerning
attribute Medication, we also assume that value HIV is leaked.

The attributes of a table correspond to data types in the data model presented in
Section 5.1. Formally, A ⊆ T . The values of an attribute can correspond either to an

106 S. Vavilis, M. Petković, and N. Zannone

instance or a data type node, which is located in the subtree of the data model rooted in
the node corresponding to the attribute. Formally, {Ca}a∈A ⊆ T ∪ I.

To obtain the sensitivity of the leaked data, the values of the attributes in the leaked
table need to be mapped onto the data model. For the mapping, search methods can be
employed. However, the efficiency of the search methods depends on the size of the
data model. To facilitate the search process, the attributes in the leaked table can be
first mapped to the corresponding data type node in the data model. The value of the
attribute can be then mapped starting the search from the data type node corresponding
to the attribute and continuing downward the hierarchy defined by the data model.

Example 4. Consider table D(Job, City, Sex, Disease, Medication) in Example 3 and
the data model in Fig. 2. Suppose that a leaked record contains value Hypertension
for attribute Disease. First, Disease is mapped by searching from node Personal Data
downward the hierarchy until a data type node with the same name is found. Then, value
Hypertension is mapped by searching the corresponding node from node Disease.

7 Data Leakage Quantification

The estimation of the severity of data leakages requires metrics that assess the sensi-
tivity and the amount of the data leaked. In this section, we present an overview of
M-Score [7] and study its accuracy by applying it to some data leakages. Based on this
analysis, we present our proposal for data leakage quantification.

7.1 M-Score

M-Score has been proposed to estimate data misuse in a database environment. It is
based on the calculation of the severity of a (portion of) table, which may have been
leaked. M-Score evaluates the severity of a data leakage by evaluating three main as-
pects of the leaked data: the sensitivity, quantity and distinguishing factor (Section 3).
The sensitivity of data is defined through a sensitivity score function.

Definition 4. Let A be a set of attributes and Cai the domain of an attribute ai ∈A . The
sensitivity score function f : Cai → [0,1] assigns a sensitivity value to each value in Cai .

Given a record r ∈ RD(a1,...,an), the sensitivity score of a value ai[r] ∈Cai is denoted
by f (ai[r]). The sensitivity of a record is captured by the raw record score. In particular,
the calculation of the raw record score of a record r, denoted as RRSr, encompasses the
sensitive attributes of a table and their values in r.

Definition 5. Let D(a1, . . . ,an) be a table, S = {sl , . . . ,sm} ⊆ A the set of sensitive
attributes in D(a1, . . . ,an), and f the sensitivity score function. Given a record r ∈
RD(a1,...,an), the raw record score of r is

RRSr = min(1, ∑
si∈S

f (si[r])) (4)

Data Leakage Quantification 107

Intuitively, the raw record score of a record is obtained by summing the sensitivity score
of every piece of sensitive information in the record, with a maximum of 1.

The distinguishing factor of a record r with respect to a table, denoted as DFD(a1,...,an)
r ,

is the amount of efforts required to identify the individual which r refers to. The distin-
guishing factor of a record is calculated on the basis of quasi-identifier attributes.

Definition 6. Let D(a1, . . . ,an) be a table, Q = {ql, . . . ,qk} ⊆ A the set of quasi-
identifier attributes in D(a1, . . . ,an) and r ∈ RD(a1,...,an) a record in D(a1, . . . ,an). Given
{q1[r], . . . ,qk[r]} with qi[r]∈Cqi the set of quasi-identifier values in r, the distinguishing
factor of r with respect to D(a1, . . . ,an) is

DFD(a1,...,an)
r =

1
|R′| (5)

where R′ = {ri|∀qi ∈ Q qi[r] = qi[ri]}, i.e. the set of records in D(a1, . . . ,an) that have
{q1[r], . . . ,qk[r]} as quasi-identifier values and |R′| is the number of such records.

The final record score for a leaked table L(a1, . . . ,am), denoted as RSL, is calculated
based on the raw record score and distinguishing factor.

Definition 7. Let ST (a1, . . . ,an) be a source table and L(b1, . . . ,bm) a leaked table with
{b1, . . . ,bm} ⊆ {a1, . . . ,an}. Given the raw record score RRSr and distinguishing factor

DFST (a1,...,an)
r for every record r ∈ RL(b1,...,bm), the final record score of L(b1, . . . ,bm) is

RSL = max
r∈RL(b1,...,bm)

(RRSr×DFST (a1,...,an)
r) (6)

It is worth noting that the distinguishing factor is calculated with respect to the source
table. To capture the quantity aspect of the leakage, M-Score determines the severity of
leakages based on the final record score and the number of records disclosed.

Definition 8. Let L(a1, . . . ,an) be a leaked table. Given the final record score RSL of
L(b1, . . . ,bm), the M-Score of L(a1, . . . ,an) is

M-ScoreL = |RL(a1,...,an)| 1
x ×RSL (7)

where |RL(a1,...,an)| represents the number of records in L(a1, . . . ,an) and x ∈ Z>0 is a
weighting factor for the number of records.

7.2 Application of M-Score

In this section we study the accuracy of M-Score by applying it to a number of leak-
age examples. The examples are based on table D(Job, City, Sex, Disease, Medication)
presented in Section 6. In the examples we analyze the calculation of the severity of
leakages with respect to the sensitivity of the leaked data. Therefore, we assume that
the amount of records and distinguishing factor are the same for all leakages.

The sensitivity score function used to assess the severity of leakages is shown in Ta-
ble 1. The sensitivity score assigned to diseases is related to the impact the disclosure

108 S. Vavilis, M. Petković, and N. Zannone

Table 1. Sensitivity score function

Disease Medication
f (HIV) = 1 f (Migraine) = 0.3 f (ARV) = 1 f (Antibiotics) = 0.4
f (HeartAttack)= 0.7 f (Flu) = 0.1 f (b-Blocker) = 0.8 f (Aspirin) = 0.3
f (Hypertention) = 0.6 f (Statin) = 0.6 f (Paracetamol) = 0.1
f (H1N1) = 0.4 f (Tami f lu) = 0.5 f (Vitamins) = 0.1

of disease information has on the life of an individual. In particular, diseases whose
disclosure has a major impact on the life of the patient (e.g., HIV) are assigned a higher
sensitivity than diseases with less critical impact (e.g., Flu). The sensitivity of medica-
tion is related to its degree of specialization; medication can be general and specialized.
General medication is prescribed to treat mild symptoms of different diseases, such as
headache. This category includes medication such as Antibiotics, Aspirin and Paraceta-
mol. Specialized medication is prescribed to treat symptoms related to a particular dis-
ease. For instance, ARV is usually prescribed to patients infected with HIV. We assume
that specialized medication has higher sensitivity than general medication.

We apply M-Score to two cases. We focus on the impact of data sensitivity on the
severity of leakages. Thus, we consider the same number of leaked records and set
parameter x of M-Score equal to 1. At the end of this section, we discuss the impact of
the amount of records and x on the severity of data leakages.

Case 1: Consider the leakages in Tables 2a and 2b. In Case 1.1 the records contain gen-
eral medication prescribed to patients suffering from serious health issues. In Case 1.2
the records contain information about specialized medication prescribed to patients suf-
fering from serious health issues. We expect Case 1.2 to be more severe than Case 1.1
as it contains more sensitive information. However, M-Score calculates the same sever-
ity value (2.000) in both cases. The problem lies in the use of the min function in the
calculation of RRS. In particular, this measure has an upper bound equal to 1, which
leads to the same RRS for all records whose sensitivity is greater than 1.

Case 2: Consider the leakages in Tables 2c and 2d. In Case 2.1 the records contain
general medication. In contrast, the records in Case 2.2 contain information about spe-
cialized medication. In both cases we consider only a small percentage of records (1
record) about patients suffering from a serious health issue. Therefore, Case 2.2 should
be estimated more severe than Case 2.1, as it contain more sensitive information. In
contrast, M-Score calculates the same severity value (2.000) in both cases. The prob-
lem lies in the use of the max function in the calculation of RS. In particular, RS uses
the sensitivity value of the record that has the highest sensitivity. Since parameter x is
equal to 1, M-Score is the product of RS and the number of rows.

As shown above, M-Score may not be able to accurately estimate the severity of
leakages. In particular, M-Score is not able to discriminate data leakages that contain
at least one highly sensitive record (i.e., ∑si∈S f (si[r])≥ 1), regardless of the sensitivity
of the other records. This is due to the calculation of RRS and RS and, in particular, to
the use of the min and max functions respectively. The min function allows a maximum

Data Leakage Quantification 109

Table 2. M-Score evaluation

(a) Case 1.1

Job City Sex Disease Medication
Lawyer LA Male HIV Vitamins
Lawyer LA Male Heart Attack Aspirin
Lawyer LA Male Migraine Paracetamol
Lawyer LA Male Hypertension Aspirin

M-Score: 2.000

(b) Case 1.2

Job City Sex Disease Medication
Lawyer LA Male HIV ARV
Lawyer LA Male Hypertension Statin
Lawyer LA Male Heart Attack b-Blocker
Lawyer LA Male Migraine b-Blocker

M-Score: 2.000

(c) Case 2.1

Job City Sex Disease Medication
Lawyer LA Male HIV Vitamins
Lawyer LA Male Flu Paracetamol
Lawyer LA Male Flu Aspirin
Lawyer LA Male Migraine Aspirin

M-Score: 2.000

(d) Case 2.2

Job City Sex Disease Medication
Lawyer LA Male HIV ARV
Lawyer LA Male H1N1 Tamiflu
Lawyer LA Male H1N1 Antibiotics
Lawyer LA Male Flu Antibiotics

M-Score: 2.000

sensitivity score of 1 per record; the max function leads to consider only the record
with the highest RS when calculating M-Score. Thus, the discrimination of the severity
of leakages relies on the amount of records leaked. The importance of this factor is
expresses by parameter x of M-Score. For low values of x (i.e., x ≈ 1) considerable
importance is given to the amount of records. Thus, leakages with a larger number of
records result to have a higher severity. Otherwise, for x# 1, more importance is given
to sensitivity. Therefore, M-Score converges to the value of the record with highest RS.

7.3 L-Severity

This section presents L-Severity, a new metric for quantifying data leakages that ad-
dresses M-Score’s drawbacks. Similarly to M-Score, L-Severity assesses the severity of
data leakages based on the sensitivity, distinguishing factor and amount of leaked data.

Definition 9. Let ST(a1, . . . ,an) be a source table, L(b1, . . . ,bm) a leaked table with
{b1, . . . ,bm} ⊆ {a1, . . . ,an}, S = {sl , . . . ,sm} ⊆ A the set of sensitive attributes in
L(b1, . . . ,bm) and DM = (T, I,HR, IR,SL,PL) a data model. Given r ∈ RL(b1,...,bm) a

record in L(b1, . . . ,bm) and DFST (a1,...,an)
r , the record sensitivity of r is

RSENSr = DFST (a1,...,an)
r × ∑

si∈S

NS(si[r]) (8)

where NS is the node sensitivity of the node in the data model that corresponds to the
value si[r] of a sensitive attribute si.

In the calculation of record sensitivity we make use of the data model (Section 5). In
particular, we use NS to calculate the sensitivity of each sensitive attribute value in a
record. To calculate the severity of data leakages, we introduce L-Severity metric.

110 S. Vavilis, M. Petković, and N. Zannone

Table 3. Comparison between L-Severity and M-Score
Case L-Severity M-Score
Case 1.1 2.050 2.000
Case 1.2 2.900 2.000
Case 2.1 1.150 2.000
Case 2.2 2.100 2.000

Definition 10. Let ST (a1, . . . ,an) be a source table and L(b1, . . . ,bm) a leaked table
with {b1, . . . ,bm} ⊆ {a1, . . . ,an}. Given the record sensitivity RSENSr for each record
r ∈ RL(b1,...,bn), the leakage severity (L-Severity) of L(b1, . . . ,bm) is

L-SeverityL = ∑
r∈RL(b1,...,bm)

RSENSr (9)

To demonstrate L-Severity we applied it to the same cases used to evaluate M-Score
(Section 7.2). To make a fair comparison with M-Score we use the sensitivity score
function in Table 1 to determine the sensitivity of data. A summary of the severity
scores obtained by L-Severity and M-Score is shown in Table 3. Accordingly, the value
of L-Severity is 2.050 for Case 1.1 and 2.900 for Case 1.2. Hence, L-Severity is higher
for Case 1.2 than for Case 1.1. Similarly, the L-Severity value for Case 2.2 (2.100) is
higher that the value for Case 2.1 (1.150). Thus, L-Severity provides values that better
characterize the severity of leakages with respect to the intuition (Section 7.2).

8 Validation

In this section we validate L-Severity using a number of representative data leakages
in a healthcare environment. First, we discuss the construction of the data model using
existing ontologies. Then, we apply L-Severity to assess the severity of the data leakages
and validate the results against the evaluation provided by a group of security experts.

8.1 Determining Data Sensitivity

The data model presented in Section 5 provides a description of the data characteriz-
ing an application domain along with the necessary semantic information, such as the
sensitivity of the data. Ontologies [19] are often adopted to capture the knowledge of a
specific domain. The basic elements of ontologies are Classes, Individuals, Attributes
and Relationships. Classes are abstract groups of objects, while individuals represent
instances of classes. Attributes are used to represent properties and characteristics of
classes and individuals. Relationships represent ways in which classes and individuals
are related to one another. Ontologies can be used as a basis for the definition of a data
model. Table 4 shows the correspondence between the elements of the data model and
the elements of an ontology.

Several ontologies have been proposed for the healthcare domain [20–25]. In this work
we adopted and extended SNOMED-CT [22] as a basis for our data model. In particular,
we added an attribute to classes and individuals to represent sensitivity labels and an
attribute to relations for the specification of probability labels. SNOMED-CT uses several

Data Leakage Quantification 111

Table 4. Correspondence between the Data Model and Ontologies

Data Model Ontology
Data type Class
Data instance Individual
Hierarchy relation IS-A (is-a-subclass-of) relations
Inference relation Relations between individuals
Sensitivity label Attribute of classes and individuals
Probability label Attribute of relations between individuals

relations to relate individuals. For instance, relation ASSOCIATED WITH is used to relate
an individual of class Disease to an individual of class Substance. Relation CAUSATIVE
AGENT is used to relate an individual of class Disease to an individual of class Organism.
These relations can be seen as instances of our inference relation, as they make it possible
to obtain additional information based on the knowledge of a specific instance.

To define the sensitivity of data, we rely on HL7 Healthcare Privacy and Security
Classification System (HCS). HL7 HCS provides guidelines and a tagging system for
automated labeling and segmentation of protected health care information. Security
labels in HL7 HCS are a structured representation of the sensitivity of a piece of in-
formation. Relying on HL7 HCS for the definition of data sensitivity has the advantage
that the human intervention and judgment is limited and thus the overall outcome of the
approach is not affected by the consequent subjectivity. The tagging system provided by
HL7 HCS is based on SNOMED-CT (and other code systems). In particular, it provides
a partial classification of concepts and individuals in SNOMED-CT. We use this partial
classification as the initial assignment and derive the sensitivity for all other classes and
individuals using the approach described in Section 5. In particular, IS-A relations in
SNOMED-CT are used for sensitivity propagation, and the domain relations mentioned
above to compute inferred sensitivity.

8.2 Assessing Data Leakage Severity Validation

We evaluated the applicability of L-Severity in a real setting based on the scenario in
Section 3. We implemented the hospital database using GNU Health
(http://health.gnu.org), a healthcare management system used by several health-
care providers worldwide. The system was used to generate a number of data leakages,
which have been validated by our industry partner, Roessingh Hospital in the Nether-
lands.

The generated leakages were manually analyzed by a group of security experts to
evaluate the output of L-severity. In particular, we developed a questionnaire describing
these leakages; each leakage was described along with its key features. The security
experts were invited to answer the questionnaire and evaluate the severity of each data
leakage on the basis of the amount and sensitivity of the leaked information as well
as the ability to identify the patients to whom the leaked information refers. The secu-
rity experts assessed the severity of the leakages using a three-valued scale (i.e., low,
medium, high severity). Based on this assessment, we built a ground truth data set of
leakages along with their severity. For some leakages there was no clear majority in the
experts’ assessment; thus we considered two additional values namely, low/medium and

http://health.gnu.org

112 S. Vavilis, M. Petković, and N. Zannone

Fig. 3. Evaluation of L-Severity against experts’ assessment

medium/high. Low/medium is used to represent the experts’ assessment when it ranges
in low and medium severity. Similarly, medium/high is used to represent the experts’
assessment when it ranges in medium and high severity.

The severity of the same leakages was evaluated using L-Severity. The calculated
severity for the leakages is presented in Fig. 3 along with experts’ evaluation (in the
figure data leakages are identified by an ID). One can observe that the calculated sever-
ity matches experts’ assessment in nine out of ten cases. Specifically, in seven cases
there is a complete match, while in two cases there is a partial match. Therefore, in
most cases L-Severity evaluates the data leakages severity correctly. Only one case (#1)
presents a notable difference: L-Severity evaluates it to medium severity, whereas the
experts evaluated it high. This can be explained by the different weight given to differ-
ent aspects of the leakage. L-Severity returned medium severity because of the small
amount of records leaked. In contrast, the experts weighted more the sensitivity of the
leaked information. In cases #2 and #5, the difference between the L-Severity score
and experts’ assessment is negligible. In both cases L-Severity evaluates it to medium
severity, whereas the experts evaluated it low/medium. Therefore, the calculated sever-
ity matches the evaluation provided by some experts.

9 Conclusions

In this work we presented a novel approach for the quantification of data leakages with
respect to their severity. The assessment of the severity of data leakages considers the
amount and sensitivity of the leaked information together with the ability to identify the
individuals related to the leaked information. To specify and reason on data sensitivity,
we defined a data model representing the knowledge in a given domain. We validated
the approach by analyzing data leakages in a typical healthcare environment.

L-Severity as well as M-Score uses a distinguishing factor to determine the level of
data anonymization. This factor is based on the number of occurrences of quasi iden-
tifiers in the dataset. An interesting direction for future work is to integrate L-Severity
with other approaches to data anonymization like differential privacy. Moreover, the
alerts generated by a DLD solution may not correspond to data misuses, i.e. alerts may
turn out to be false positive. Therefore, the severity of a leakage may not correspond to
its risk level (risk is usually defined as the combination of the severity and probability

Data Leakage Quantification 113

of an event). An interesting direction for further investigation is the integration of our
approach with DLD solutions able to determine the probability that an alert is indeed a
data breach. This would allow a risk-based ranking of leakages.

References

1. Ponemon Institute: Third annual benchmark study on patient privacy & data security (2012)
2. Banescu, S., Zannone, N.: Measuring privacy compliance with process specifications. In:

International Workshop on Security Measurements and Metrics, pp. 41–50. IEEE (2011)
3. Information Age: New EU data laws to include 24hr breach notification (2012)
4. Backes, M., Kopf, B., Rybalchenko, A.: Automatic discovery and quantification of informa-

tion leaks. In: IEEE Symposium on Security and Privacy, pp. 141–153. IEEE (2009)
5. Borders, K., Prakash, A.: Quantifying information leaks in outbound web traffic. In: IEEE

Symposium on Security and Privacy, pp. 129–140. IEEE (2009)
6. Smith, G.: On the foundations of quantitative information flow. In: de Alfaro, L. (ed.) FOS-

SACS 2009. LNCS, vol. 5504, pp. 288–302. Springer, Heidelberg (2009)
7. Harel, A., Shabtai, A., Rokach, L., Elovici, Y.: M-score: A misuseability weight measure.

IEEE Transactions on Dependable and Secure Computing 9(3), 414–428 (2012)
8. Abbadi, I.M., Alawneh, M.: Preventing insider information leakage for enterprises. In: SE-

CURWARE, pp. 99–106. IEEE (2008)
9. Salem, M.B., Hershkop, S., Stolfo, S.J.: A survey of insider attack detection research. In:

Insider Attack and Cyber Security. Adv. Inf. Secur., vol. 39, pp. 69–90. Springer (2008)
10. Takebayashi, T., Tsuda, H., Hasebe, T., Masuoka, R.: Data loss prevention technologies.

Fujitsu Scientific and Technical Journal 46(1), 47–55 (2010)
11. Koch, R.: Towards next-generation intrusion detection. In: ICCC, pp. 1–18. IEEE (2011)
12. Gessiou, E., Vu, Q.H., Ioannidis, S.: IRILD: an Information Retrieval based method for In-

formation Leak Detection. In: EC2ND, pp. 33–40. IEEE (2011)
13. Gómez-Hidalgo, J., Martın-Abreu, J., Nieves, J., Santos, I., Brezo, F., Bringas, P.: Data leak

prevention through named entity recognition. In: SocialCom, pp. 1129–1134. IEEE (2010)
14. Hart, M., Manadhata, P., Johnson, R.: Text classification for data loss prevention. In: Fischer-

Hübner, S., Hopper, N. (eds.) PETS 2011. LNCS, vol. 6794, pp. 18–37. Springer, Heidelberg
(2011)

15. Farahmand, F., Navathe, S.B., Enslow, P.H., Sharp, G.P.: Managing vulnerabilities of infor-
mation systems to security incidents. In: ICEC, pp. 348–354. ACM (2003)

16. Garg, A., Curtis, J., Halper, H.: Quantifying the financial impact of it security breaches.
Information Management & Computer Security 11(2), 74–83 (2003)

17. Blakley, B., McDermott, E., Geer, D.: Information security is information risk management.
In: NSPW, pp. 97–104. ACM (2001)

18. Adriansyah, A., van Dongen, B.F., Zannone, N.: Privacy analysis of user behavior using
alignments. it - Information Technology 55(6), 255–260

19. Gruber, T.R.: Toward principles for the design of ontologies used for knowledge sharing?
International Journal of Human-Computer Studies 43(5), 907–928 (1995)

20. Doulaverakis, C., Nikolaidis, G., Kleontas, A., Kompatsiaris, I., et al.: GalenOWL: Ontology
based drug recommendations discovery. J. Biomedical Semantics 3, 14 (2012)

21. OpenGALEN, http://www.opengalen.org/ (accessed February 24, 2014)
22. SNOMED - CT, http://www.ihtsdo.org/snomed-ct/ (accessed February 24, 2014)
23. The Open Biological and Biomedical Ontologies Foundry, http://www.obofoundry.org/

(accessed February 24, 2014)
24. Open Clinical: Ontologies, http://www.openclinical.org/ontologies.html (ac-

cessed February 24, 2014)
25. The Gene ontology, http://www.geneontology.org/ (accessed February 24, 2014)

http://www.opengalen.org/
http://www.ihtsdo.org/snomed-ct/
http://www.obofoundry.org/
http://www.openclinical.org/ontologies.html
http://www.geneontology.org/

Toward Software Diversity in Heterogeneous

Networked Systems

Chu Huang1, Sencun Zhu1,2, and Robert Erbacher3

1 School of Information Science and Technology, Penn State University
2 Department of Computer Science and Engineering, Penn State University

cuh171@psu.edu, szhu@cse.psu.edu
3 U.S. Army Research Laboratory(ARL)

robert.f.erbacher.civ@mail.mil

Abstract. When there are either design or implementation flaws, a ho-
mogeneous architecture is likely to be disrupted entirely by a single attack
(e.g., a worm) that exploits its vulnerability. Following the survivability
through heterogeneity philosophy, we present a novel approach to improv-
ing survivability of networked systems by adopting the technique of soft-
ware diversity. Specifically, we design an efficient algorithm to select and
deploy a set of off-the-shelf software to hosts in a networked system, such
that the number and types of vulnerabilities presented on one host would
be different from that on its neighboring nodes. In this way, we are able to
contain a worm in an isolated “island”. This algorithm addresses software
assignment problem in more complex scenarios by taking into considera-
tion practical constraints, e.g., hosts may have diverse requirements based
on different system prerequisites. We evaluate the performance of our al-
gorithm through simulations on both simple and complex system models.
The results confirm the effectiveness and scalability of our algorithm.

1 Introduction

With the fast advancement of nowadays information technology, organizations
are becoming ever more dependent on interconnected systems for carrying on
everyday tasks. However, the pervasive interdependence of such infrastructure
increases the risk of being attacked and thus poses numerous challenges to sys-
tem security. One major problem for such networked environments is software
monoculture [1,2]–running on the risk of exposing a weakness that is common to
all of its components, it facilitates the spread of attacks and enables large-scale
exploitations that could easily result in overall crash. Considering the conse-
quences of software monoculture in intensively connected systems, there is an
urgent need to control the damage of automated attacks that takes advantage
of the connectivity of the networked system.

In contrast to homogeneous systems by software monoculture, heterogeneous
architectures are expected to have higher survivability [3–5]. This point is very
much like the maintenance of genetic and ecosystem diversity in biology.

V. Atluri and G. Pernul (Eds.): DBSec 2014, LNCS 8566, pp. 114–129, 2014.
c© IFIP International Federation for Information Processing 2014

Toward Software Diversity in Heterogeneous Networked Systems 115

The variability in the biological world allows at least a portion of species to sur-
vive an epidemic. Inspired by such phenomena of biodiversity, a good number
of techniques have been proposed to improve system resilience and survivability
under attacks. However, previous approaches cannot fully meet two highly de-
sired requirements: (R1) Resistance against automated attacks in a networked
environment; (R2) Practicability of the solutions under real-world constraints.
To see how existing approaches are limited in meeting these three requirements,
we classify them into three main categories: software diversity at the system
level, software diversity at network level and N-version programming 1) Diver-
sity at the system level is achieved mainly through randomization techniques,
which are limited to individual machines and it is not clear if and how they can
be extended to improve the survivability of the networked systems as a whole.
2) Diversification methods at the network level compensate the limitations of
the former approach, but it suffers from the problem of only considering assign-
ment of one piece of software. In the real world scenarios, however, a host (i.e.,
a commodity PC) typically is required to install with more than one software
(i.e., operating system, web browser, email client, office suite applications etc.)
to perform particular tasks. 3) N-version programming: achieves higher system
survivability depending on its underlying multiple-version software units that
tolerate software faults. This method has very high computational cost and is
not practical enough to be used routinely in real-world organizations. 4) Real
world deployment constraints have not been formally incorporated into system
design in prior research.

In this study we propose a software diversity-based approach to address the
problem of survivability in the complex networked systems under automated
attacks, with the goal to meet all the design requirements. First, by assigning
appropriate software to hosts considering the network connectivity, our approach
enhances the system’s resistance to automated attacks. Second, our algorithm
considers the real-world constraints on resource allocation, which makes it more
practical from implementation point of view. We also demonstrate via simula-
tions that the assignment solution generated by our algorithm is better than
previous assigning methods, and very close to the optimal solution. Through
experiments we found that the level of heterogeneity in our algorithm depends
on the ratio of the number of software installed to the total number of avail-
able software, and we also identified critical ratio points for different represen-
tative topologies. The capability and possibility of our algorithm in creating
moving target defense are also evaluated. Our findings may give some guidelines
for choosing appropriate system parameters for balancing the trade-off between
survivability and cost.

Take the graph in Fig. 1 as an example. There are 11 machines represented
by nodes and 5 distinct software products represented by different colors. We
expect diverse software products developed by different people will not have the
same vulnerability for the attacker to exploit [6], and an attack can propagate
from one node to another by exploring one kind of vulnerabilities residing in a
particular software product. By applying our algorithm on this graph, we find

116 C. Huang, S. Zhu, and R. Erbacher

that even in the worst-case scenario a successful attack can only compromise four
machines (in green) at most. This indicates that by optimally assigning software
to connected machines in a non-adjacent manner, our algorithm can effectively
reduce the epidemic effect of an attack.

Fig. 1. Network topology utilizing a diverse software distribution. Solid lines connect
nodes with the same color and indicate all possible worm-spreading paths; dashed lines
connect nodes of different colors and indicate all non-spreading connections.

2 Related Work

Software Diversity. The state-of-the-art approaches on software diversity are
classified into three main categories: diversity at the system level and the network
level, and N-version programming.

Software diversity at the system level has been researched to address space lay-
out randomization, instruction set randomization and data randomization. Ad-
dress space layout randomization (ASLR) [7] randomizes the memory address
of the program region and has already been implemented in major operating
systems [8]. The instruction set randomization (ISR) [9] obfuscates underlying
system’s instructions in order to defeat code-injection attacks. Data randomiza-
tion [10] is another randomized-based approach, which applies masks on data
in the memory, so that the attacker cannot determine memory regions that are
associated with particular objects. Diversity at the network level is achieved by
using different applications [4] [5], operating systems, and shuffling techniques
within a networked system [11]. N-version programming was introduced in the
1970s which depends on functionally equivalent versions of the same program
and monitors the behavior of the variants in order to detect divergence of the
results [12].

Graph Coloring. Graph coloring [13] is a famous problem in graph theory,
which ensures there is no two adjacent nodes sharing the same color. Its solu-
tions is a natural option in modeling a wide range of real-life problem for making

Toward Software Diversity in Heterogeneous Networked Systems 117

globally optional decision [14] [4]. In most cases, however, the basic graph color-
ing problem fails to model some real-life problems where additional constraints
have to be satisfied. Variants of the basic coloring problem have been intro-
duced and intensively studied which allow one to take into account certain local
constraints. List coloring [15], precoloring extension [16] and H-coloring [17] are
examples of local constraints. In some cases, these problem can be more difficult
algorithmically than traditional vertex coloring [16] [18]. Another widely studied
coloring problem is multicoloring problem [19] where more than one color have
to be assigned to each vertex. Despite the rich literature, none of the existing
coloring algorithms works under our constraints.

3 Problem Formulation

3.1 System Model

In this work, we use an undirected graph as the abstraction of a general finite
networked system. Formal definition of the graph is given as follows.

Definition 1. (Communication Graph) A communication graph is an undirected
graph G = (V,E), where V is a finite set of nodes which represents hosts and
devices comprising the networked system, and E as a set of edges represents the
communication links (e.g., physically directly connected or can communicate
through network e.g. using TCP/UDP) between two nodes.

Example networked systems include intranet, enterprise social networks,
tactical mobile ad hoc networks, wireless sensor networks of different network
topologies. We show an example of how to model a real-world network using com-
munication graph of nodes and edges (Fig. 2). In this example, we have three
servers reside in the DMZ, seven workstations and a database server located in
the internal network. The links shown between workstations and servers depict
direct communication between them. Corresponding communication graph of
the network can then be generated based on their connectivity.

Considering the characteristics of the system model, edges of the communica-
tion graph can be classified into two types of links: defective edge and immune
edge. Defective edge is a type of connection whose two endpoints have the same
type of software installed (hence potentially share the same types of vulnerabil-
ities. Note that our algorithm does not assume the knowledge of vulnerabilities.
We discuss this more in Section 6). Otherwise, an edge is an immune edge. In
this paper, based on the above definitions, we further define formally the concept
of common vulnerability graph.

Definition 2. (Common Vulnerability Graph): A common vulnerability graph
(CVG) S is a subgraph of a communication graph G, inside which all vertices
share a common software and are connected through defective edges, whereas
all its boundary edges are immune edges.

118 C. Huang, S. Zhu, and R. Erbacher

Fig. 2. Example of an enterprise network and its corresponding communication graph

3.2 Graph Multi-coloring Problem with Local Constraints

Using the model described earlier, we model the software assigning problem as a
graph multi-coloring problem, where each machine is represented by a vertex and
each distinct software product is represented by a color. In the multi-coloring
problem each node has a demand w(vi), which is the number of colors it requires.
We further define G = (V,E,W) to be a weighted communication graph with
a weight vector W which denotes the number of software required for vertices
V of the graph. A multi-coloring task of G is an assignment of colors to the
vertices such that each vertex vi is assigned with w(vi) colors in a way that two
connected node cannot be assigned same colors.

However, practical software assignment contains several implicit constraints
which basic multi-coloring problem fails to capture. For our work, we specifically
consider two types of constraints that give rise to different system requirements,
as defined below.

Definition 3. (Constraint): If a single host or a pair of hosts is restricted by some
pre-defined software assigning rules, we say that the host(s) is/are constrained.

- Host constraint : certain hosts must be installed with some specified types of
software to perform required functionality (e.g., to deploy a database server
it is required to assign DB2);

- Software constraint : certain combination of software must or must not be
assigned to specified hosts simultaneously (e.g., PHP, Apache, MySQL and
Linux need to be assigned together to implement LAMP on a single node).

We note that these practical requirements could lead to the potential danger
that nodes with the same software are neighbors, which violates the coloring
rule that adjacent vertices have different colors. To better sketch our problem,
we relax the requirement and re-define a less restrictive coloring rule that allows
neighboring vertices to receive the same colors. The only thing we require is that
the resulting CVG by that color has to be as small as possible. According to the

Toward Software Diversity in Heterogeneous Networked Systems 119

definition, a defective edge indicates that the exploitation of one type of vulnera-
bility on one host could lead to the compromise of its neighboring host following
this “path” while immune edge naturally stops propagation of such automated
attack. Thus we can use the size of CVG to indicate the infection range of an
automated attack (e.g., worm attack). If one can effectively limit the size of the
CVG, system survivability can then be improved. Throughout the present paper,
we denote the size of the largest size of the CVG as S, indicating the worst-case
infection scenario. The ideal case is when every node in the network is isolated as
a single CVG with size one (i.e. no defective edge). Hence, our ultimate research
question becomes: given a number of software products and certain constraints,
how to load every node with software in a way that the size of the largest CVG
is minimized? One important assumption here is that vulnerabilities are unique
for different software packages. Thus diverse software is vulnerable to different
exploits and will not be compromised by the same attack. This assumption is
confirmed by [6], in which it is found that more than 98.5% software have the
substitutes and majority of them do not have the same vulnerabilities.

We are looking for a coloring assignment that satisfies above requirements
and serves the goal of minimizing the largest CVG. Let Ch and Cs denote host
and software constraints respectively. Next, we give a formal description of our
software assignment problem.

Problem. Given a weighted communication graph G = (V,E,W) and a set of
colors C, for each vi ∈ V assigns a subset x(vi) ⊆ C, such that,

– vi gets w(vi) ∈W distinct colors, satisfying constraints Ch and Cs;
– for ∀c ∈ C, CVGs Si(c) ∩ Sj(c) = ∅, for any i �= j ;
– the size of the largest CVG is minimized.

The software assignment problem can be solved in either NP-time or P-time,
depending on the given constraints. Our problem without considering constraints
is a more general problem than ordinary vertex coloring, hence it is NP-hard in
those cases where vertex coloring is NP-hard. And polynomial-time algorithms
can be expected only in those cases where vertex coloring is polynomial-time
solvable. We can expect that in certain situations, the special case of coloring is
easier to solve than the general problem. Considering an extreme example when
there are sufficient constraints that pre-define all the colors of vertices in G. In
this situation, assignment solution can be obtained with O(1). For some cases,
however, not only our problem is NP-hard, but the case with constraint(s) is
hard as well. In an example where there is only one constraint that pre-assigns
a vertex v1 with color red, the graph G = (V,E,W) can then be updated to
G′ = (V,E,W ′) by doing w′(v1) = w(v1)− 1. The problem then becomes multi-
coloring on graph G′, which is still NP-hard. It is worthwhile to study some
restricted form of coloring with local constraints (e.g., give a bound on the
number of constrained vertices), in the hope of finding a polynomial time solvable
case. Since our problem can be NP-hard, optimal solutions may only be found
when graphs are relatively small. Heuristics are needed to study large graphs.
In the next section, we present a greedy algorithm to address the problem of
software assignment with arbitrary constraints.

120 C. Huang, S. Zhu, and R. Erbacher

4 Software Assignment Algorithm

In this section, we present our algorithm for software assignment, which will pro-
duce an assignment of colors to vertices in a graph, subject to a set of constraints
defined in the previous section.

4.1 Formulating Constraints

To incorporate host constraints to the algorithm, we introduce a collection of
tuples CSTRh = {(vi, ε)} where vi is a vertex in the communication graph
and ε is a (set of) color value(s) indicating that vertex vi is constrained by
color(s) in ε. For example, Ch = {(v1, {c1, c2}), (v3, {c5})}, means vertices v1
and v3 are fixed with colors c1 and c2, and color c5, respectively. Similarly, we
denote software constraint using CSTRs = (s, ε), where s is the indicator of co-
dependent colors and ε is a set of colors. When s equals 0, it states that the set of
colors in set ε must not be assigned together to any vertex. In contrast, 1 means
that colors in ε must be allocated simultaneously in order to perform certain
functionality. For example, assume for an assignment characterized by Cs =
{(0, {c1, c2, c4}), (1, {c1, c3})} on which c1, c2, c3 represent three distinct software
with equivalent functionality, one may prefer not to coloring the single vertex
with any combination of c1, c2 and c4, (i.e., assigning them simultaneously) while
colors c1 and c3 must be assigned together to this vertex.

4.2 Algorithm Description

The algorithm consists two phases: a labeling phase and a coloring phase. In
the labeling phase, each vertex is assigned a distinct number as its label and
ordered based on that label. Following the labeling phase, the second phase of
the algorithm colors vertices in the ordered list sequentially. It works by first
scanning the vertices in a graph and load each vertex as many colors as possible
while making sure not to create defective edges. It then visits all the vertices that
have not been completely colored in order. Upon visiting a particular vertex, the
algorithm assigns a color that leads to minimum CVG.

Phase 1–Labeling. We initialize a set UNCOLOR to contain all the ordered,
uncolored vertices and we assume that the available colors in the palette C
are suitably ordered as C = {c1, c2, · · · , ck}, where k = |C|. The main process
then assigns every vertex a unique number from 1 to n as its label, where n is
the total number of vertices in the network graph. Next, based on the numbers
assigned, we order the vertices in UNCOLOR so that vertices with smaller labels
are listed first. Several ordering heuristics are available to help accomplish the
task of labeling: random ordering, increasing degree ordering, and decreasing
degree ordering. Here we choose random ordering as the basis of our labelling.
The randomness is intentionally designed so that one can run our algorithm
once again to get a new color assignment solution by reordering the vertices.
Certainly, an important property would be that the qualities of the assignments

Toward Software Diversity in Heterogeneous Networked Systems 121

need to be stable. It means the largest CVGs resulted from different assignments
are about the same size. The effect of the ordering will be evaluated in Section
5.

Phase 2–Coloring. The coloring task of phase 2 is done by two procedures:
ColorVertexI and ColorVertexII. In the coloring phase, ColorVertexI first applies
host constraint and assigns pre-determined colors to certain vertices while satis-
fying the software constraint. After that, it then successively colors the ordered
vertices through the iterative processes. When a current color is determined,
the algorithm scans the vertices in UNCOLOR sequentially checking to see if
any of them can be colored according to the rules–1) no two adjacent vertices
share the same color; 2) software constraints are satisfied by assigning the color.
Meanwhile, ColorVertex I also checks the constraint sets to ensure that all the
pre-defined constraints are satisfied by assigning the colors. Noted that followed
by each coloring action, both the weight and UNCOLOR set need to be updated.
When a vertex vi is assigned the current color, the weight wi corresponding to it
will be decreased by 1 by doing wi = wi − 1. Those vertices with weight equals
to 0 will be removed from UNCOLOR (i.e., UNCOLOR = UNCOLOR - vi). If
the vertex violates any constraints or its weight is larger than 0, then this vertex
will remain in UNCOLOR for next iteration. The process of ColorVertexI stops
when either the UNCOLOR set is empty or no feasible colors can be assigned
to any vertices in UNCOLOR set.

Although ColorVertexI limits the number of defective edges to the minimum
extent, there is a high probability that not all vertices get colored due the rig-
orous coloring constraints of the algorithm. To further color those remaining
vertices, we propose ColorVertexII. As a supplement to ColorVertexI, ColorVer-
texII releases some of the hard requirements by allowing certain adjacent ver-
tices to share the same color. However, with the overall goal of increasing the
survivability of a networked system, such release should still follow certain prin-
ciples. To be specific, instead of targeting at controlling the number of defective
edges (keep it as 0), ColorVertexII shifts its focus to minimizing the size of the
maximal CVG. For better understanding, we use an example to illustrate our
point. Given two graphs in Fig. 3. The left graph has 3 defective edges ({v1, v7},
{v3, v7}, {v6, v7}) but none of them share a common vertex; the graph on the
right contains 3 defective edges ({v1, v4}, {v2, v4}, {v4, v8}) but all share a com-
mon vertex v4. Accordingly, the maximal infectable number in the left graph is 2
(assuming the attack starts from one node), whereas for the graph on the right,
this number is 4. Hence, if an attack takes place on both graphs, the potential
damage in the left graph is smaller than that in the other graph even though
the left graph has a larger number of defective edges.

After ColorVertexI, if UNCOLOR set is empty, it returns a perfect coloring
solution where no adjacent nodes share same colors. Otherwise, ColorVertexII
is called after ColorVertexI finishes. It tries every color one by one in the UN-
COLOR set and choose one with the least penalties. Since penalty occurs when
defective edges appear, least penalties means that with the color assigned to the

122 C. Huang, S. Zhu, and R. Erbacher

Algorithm 1. Color Assignment Algorithm
Input: (1) Graph G = (V,E,W); (2) Available colors are ordered and represented by integers

1, 2, · · · , k; (3) Ordering ω of vertices in V ; (4) Constraint sets Ch and Cs;
Output: A color assignment of k colors, 1 through k, to vertices of G represented by an array.
1: initialize array X
2: for l ← 1 to n − 1 do
3: pick unlabelled v ∈ V at random
4: label(v) ← l
5: end for
6: UNCOLOR ← V
7: UNCOLOR ← ApplyConstraint(G,Ch)
8: for i from the smallest to largest integer (color) do
9: for each vertex e in UNCOLOR do
10: ColorVertexI(G,Cs, i, e)
11: end for
12: end for
13: if (UNCOLOR == ∅) then exit
14: for each vertex e in UNCOLOR do
15: ColorVertexII(G,Cs, e)
16: end for
17: end if
18:
19: procedure ApplyConstraint(G,Ch)
20: for for each vertex j related by constraint ch(j) ∈ Ch do
21: color(X[j]) ← ch(j).ε
22: update wj and UNCOLOR
23: end for
24: return(UNCOLOR)
25: end procedure
26:
27: procedure ColorVertexI(G,Cs, i, e)
28: for each vertex r that directly connects to e do
29: check L(r) and Cs to see if i is a valid color for e
30: If so, color(X[e]) ← i
31: update we and UNCOLOR
32: end for
33: end procedure
34:
35: procedure ColorVertexII(G,Ch, e)
36: size = ∞
37: Select color icolor that results in the smallest CVG
38: color(X[e]) ← icolor
39: update we and UNCOLOR
40: end procedure

particular vertex, it forms up a smaller CVG compared to all other colors. This
process repeats until UNCOLOR set is empty.

4.3 Algorithm Complexity Analysis

Initially, n nodes in graph G are available for coloring. In ColorVertexI, as all
available colors (k) have to be tentatively assigned to every node, so there are
n ∗ k checks in this step. Suppose there are n remaining uncolored nodes in the
worst case, each node with wi colors needs to be assigned, in ColorVertexII we
need n ∗wi ∗ k rounds to pick the optimal color for each of them. To satisfy the
algorithm constraints, after each color allocation, ColorVertexII also needs to
check the size of the CVGs containing the current node in order to find the op-
timal color assignment with the minimal value. This makes the time complexity
of ColorVertexII O(n ∗ k + n ∗wavg ∗ ni ∗ k), where wavg is the average number
of weights for all of the nodes in the network, and O(n2 ∗ k) in the worst case

Toward Software Diversity in Heterogeneous Networked Systems 123

Fig. 3. Two random graphs with different software assignments

(the expanded vertex set size for each color in ColorVertexII is as large as the
entire graph when ni becomes n).

It is easy to show that if colors are fully available at each vertex during
the coloring phase of our algorithm, i.e., |L(vi)| = k, and the maximum degree
in the graph Δ = max0=i=Nd(vi), an optimal software assignment can eliminate
the existence of defective edges if the number of available colors for the to-be-
colored node k ≥ Δ + 1. This matches the well-known conclusion in graph
coloring that, the chromatic number of a graph is at most Δ + 1 [20]. It is
also practically useful to derive a theoretical lower bound of m = |C| on an
arbitrary graph for a software assignment solution. However, it is difficult to
analyze its lower bound when the system requirements and constraints vary
across the network without restricting the constraints. For the case where there
is no constraints, the lower bound of chromatic number had been discussed
and proved [21]. Another extreme case is when all vertices of graph have been
completely colored by pre-defined constrains. In this case, the chromatic number
is exactly the number of colors of the graph.

5 Evaluations

In this section, we present simulation results for evaluating the performance of
our method with respect to the above-mentioned requirements.

5.1 Simulation Setup

Recall that our model is built on top of undirected graph G as the abstraction
of networked systems (Section 2.1). To fully investigate the performance of our
algorithm in arbitrary systems, we use three representative topologies to char-
acterize the behaviors of different systems. Specifically, we consider three types
of graphs with different degree distributions: random graph, regular graph and
power-law graph. A regular graph does not have high connectivity in many cases
and thus long and circuitous routes are required to reach other nodes. Typical
examples of regular graphs includes lattice and ring lattice graph, which can be
used to characterize the behavior of each vertex that depends upon the behavior
of its nearest neighbors. In a random graph, each pair of vertices are connected

124 C. Huang, S. Zhu, and R. Erbacher

with the same probability and the degrees of each vertex are distributed accord-
ing to a binomial distribution. In a power-law graph, the degree distribution
satisfies a power law. It contains highly connected nodes (hubs) and is a good
model for the highly connected systems. Scale-free networks follow power-law
and many well-known networks such as WWW and social networks are believed
to be scale-free [22]. We believe these three types of graphs provide a reasonable
coverage range of realistic networked systems.

In this simulation, we generate graphs using igraph package in R with ap-
proximately the same average degree of 8. Given approximately the same degree
settings across tested graphs, we observe if network connectivity affects the de-
fense capability of our method. The default size for graphs in our experiment
is 1000. Since our proposed mechanism only targets on networked systems with
central authority (so that assigning software could be possible), the size of net-
work chosen for experiment is reasonable and adequate to illustrate the results
of our study. All simulation results here are presented as the average of 50 trials.

To evaluate our approach under various settings, we run the simulations with
different combinations of the number of colors and weights, which is denoted
as #color and #weight, respectively. The total #color in the “color pool”,
represents the unique number of software choices available for hosts to choose
from, and #weight represents the average number of distinct software finally
installed on each host. We further define r = #weight/#color. In our simulation
we set #color to 30 by default. We believe 30 is a reasonable number to illustrate
the properties of our algorithm (Section 6 will discuss how to reduce the number
of colors for a real system). In order to see how the number of average weight
impacts the performance metrics, #weight is set to be an integer value ranging
from 1 to 20. Intuitively, the larger r, the less heterogeneity of the system. We
avoid choosing values larger than 20 because when it exceeds 20, the whole
system becomes almost homogeneous.

5.2 Simulation Metrics

We adopt two metrics while evaluating the performance of our approach, includ-
ing 1) the maximal number of nodes that can be possibly compromised; 2) the
average size of isolated CVGs. For the first metric, we define S as the number of
nodes contained in the largest CVG, denoting the number of machines compro-
mised under the worst-case attacks. Nodes within the maximal CVGs are always
attackers’ first choice to penetrate into the network. In addition to that, we also
consider the average size of CVGs, which indicates the overall robustness of the
system. Although solely depending on the average size of CVGs may not directly
indicate the survivability of the system, when taking it into considerations to-
gether with S, it can somehow be used to present separate infections caused by
an attack. We use a symbol s to denote the average size of CVGs in the system.

Toward Software Diversity in Heterogeneous Networked Systems 125

5.3 Simulation Results

Impact of r. First, we use the power-law graph as an example to show how
r = #weight/#color impacts the heterogeneity of a system. Fig. 4 shows the
variation of the largest CVG size S in responding to the changes of #weight
and #color in a power-law graph.

We observe that given the same #color, when #weight increases, the CVG
size S becomes greater. In addition to the general distribution, we also notice
that all three lines with different #color generate relatively flat trends at the
beginning and are followed by a sharp increase when r reaches 0.4. Before this
critical point, S remains relatively small (i.e., when r < 0.4, S is less than 50).
However, after r exceeds 0.4, S begins to increase rapidly.

The simulation results indicate that the degree of heterogeneity our algorithm
can create actually depends on the value of r. In general greater r tends to
generate larger CVG, which in turn indicates a more homogeneous system. For
instance, when #weight equals to #color (r = 1), there is only one component
in the graph (the worst case). The results also suggest very limited decrease of
the CVG size when r is less than 0.4. Hence, for systems already with a r value
less than 0.4, there is little need to reduce the #weight (e.g., by decreasing the
number of software packages to be installed in each host) to prevent automated
attacks.

Fig. 4. S as a function of #weight and
#color

Fig. 5. Performance on three representa-
tive graphs

Impact of Network Topology. Next we conduct simulation to see how dif-
ferent network topologies might affect the CVG size (S) and the average size
of isolated CVGs (s). As can be seen from Fig. 5, although the same “flat to
sloping” trends are also observed in all three different topologies, we find that
the CVG size of a power-law graph actually starts to increase at a relatively
low r value (0.4) as compared to the cases of a random graph (when r = 0.5)
and a regular graph (when r = 0.6). The difference in “turning point” is due to
the distinct connectivity of each kind of topology. Given the existence of high
connectivity nodes in a power-law network, large CVGs tend to be more eas-
ily formed than in the other two types of graphs. In contrast, as characterized

126 C. Huang, S. Zhu, and R. Erbacher

by low connectivity and relatively high cliquishness [23], a regular graph only
generates large CVGs with larger r.

Besides the measurement on the CVG size, we also monitor the average size of
all CVGs s. Unlike our prior observations, we find that the distribution s with r
increases gently this time. Although there also appear to be some turning points
in all three distributions, even if r exceeds the threshold, s remains relatively
small values (when r reaches 0.6, s of three graphs is still smaller than 50) as
compared to the CVG sizes. The explanation of this phenomenon is that, when
a CVG is formed (after r exceeds the threshold), the sizes of CVGs become
polarized. That is, except the maximal ones which are very large, the other
CVGs are relatively small (sizes between 1 to 50).

The above results are useful as they suggest that organizations with limited
budget or software availability can still enhance their system heterogeneity by
changing the underlying topology if possible.

Fig. 6. Comparison with other algorithms

Comparison with Other Algorithms. We next compare our algorithm with
two related algorithms, randomized coloring and color flipping, as proposed in
a previous study [5]. In randomized coloring, each node picks a tentative color
uniformly at random from the color pool, whereas color flipping extends the
random coloring by allowing each node performs a local search amongst its
immediate neighbors to switch colors to decrease the number of locally defective
edges. Besides, we also compare our algorithm with the optimal solution based
on brute-force search. We compare these algorithms in terms of the CVG size
(S) as a function of r. Results are plotted in Fig. 6. As we can see from the
figure, our algorithm outperforms both randomized coloring and color flipping
methods by creating smaller CVGs given the same r.

Scalability and Computational Overhead. Finally, we repeat the experi-
ment on graphs of larger size and measure the computational overhead intro-
duced by our algorithm. Even though Fig. 7 shows the average time required by

Toward Software Diversity in Heterogeneous Networked Systems 127

this assignment algorithm grows exponentially with size of the network, it still
suggests our algorithm can be applied to large systems with thousands of nodes
with acceptable time overhead. As showed in Fig. 7, in a commodity PC, it takes
about 10 minutes to assign colors to 10 thousand nodes. The simulation result
confirms the practicability of our algorithm.

Fig. 7. Time overhead (in seconds)

6 Discussion and Future Work

Source of Diverse Software. In our problem setting, software diversity could
be caused by a number of factors. First, installing different types of software
on adjacent machines is itself a type of software diversity. One might doubt
that if enterprises are willing to invest amounts of resources (e.g., purchasing
licenses, training employees) to realize the mechanism. However, there is always a
trade-off between security and costs. We believe the insights from the simulation
results could help to ease the issue of finding the balance. Second, software of
the same type might be implemented independently. For example, a number of
web browsers are freely available, e.g., Firefox, IE, Chrome, so we may assume
their vulnerabilities are different [6], and consider them as different colors. Third,
with new compiler technique [24], each download of a piece of software could be a
variant version of the client software which may not share the same vulnerability.

Vulnerabilities in Software. Another thing needs to be clarified in the context
is that we do not actually need full knowledge of vulnerabilities (e.g., types and
the exact number) in the software to be assigned. Given a software assignment
solution, no matter how many vulnerabilities residing in a software product,
even if it has an unknown vulnerability, CVGs of the graph remain the same.
For the same reason, we can further shrink the size of “color pool” by considering
multiple software packages as one single software product that can be represented
by using a single color. For instance, all the standard software packages (including
network services) come with Windows 7 in a batch, so the entire package of the
standard Windows 7 distribution will only considered as one color. The edge

128 C. Huang, S. Zhu, and R. Erbacher

between two adjacent hosts is defective as long as they both install Windows 7.
For each (third-party) application installed later on, it may be considered as one
color if it provides some network services.

Severity Level of Vulnerability. In reality, vulnerabilities often have different
levels of severity. The risks of some vulnerabilities are minor while some may
be quite significant. For two CVGs of the same size, a more severe vulnerability
(e.g., gain complete control of a system) could result in a far more serious damage
compared to a mild vulnerability (e.g., allow an attacker to collect some types
of user information). As such, we may use different values to represent different
levels of damage that could be resulted from an attack, and our objective of
optimization will then become to minimize the overall damage by the attack.
In our future work we will devise a new algorithm by taking into account this
dimension.

7 Conclusions

In this work, we proposed a method for effectively containing automated at-
tacks via software diversity. By building up a heterogeneous networked system,
our defense mechanism increases the complexity of the networked system by
utilizing off-the-shelf diverse software. Given the practical problems of software
assignment, we presented a software assignment algorithm based on graph multi-
coloring with real world constraints and system prerequisites. We analyzed the
effectiveness of our methodology through extensive simulation study.

Acknowledgement. The work of Sencun Zhu was supported in part by NSF
grant CCF-1320605 and a Google gift. We also thank the reviewers for helpful
comments.

References

1. Lala, J.H., Schneider, F.B.: It monoculture security risks and defenses. IEEE Se-
curity & Privacy 7(1), 12–13 (2009)

2. Stamp, M.: Risks of monoculture. Communications of the ACM 47(3), 120 (2004)
3. Zhang, Y., Vin, H., Alvisi, L., Lee, W., Dao, S.K.: Heterogeneous networking: a

new survivability paradigm. In: Proceedings of the 2001 Workshop on New Security
Paradigms, pp. 33–39. ACM (2001)

4. Yang, Y., Zhu, S., Cao, G.: Improving sensor network immunity under worm at-
tacks: a software diversity approach. In: Proceedings of the 9th ACM International
Symposium on Mobile Ad Hoc Networking and Computing, pp. 149–158. ACM
(2008)

5. O’Donnell, A.J., Sethu, H.: On achieving software diversity for improved network
security using distributed coloring algorithms. In: Proceedings of the 11th ACM
Conference on Computer and Communications Security, pp. 121–131. ACM (2004)

6. Han, J., Gao, D., Deng, R.H.: On the effectiveness of software diversity: A system-
atic study on real-world vulnerabilities. In: Flegel, U., Bruschi, D. (eds.) DIMVA
2009. LNCS, vol. 5587, pp. 127–146. Springer, Heidelberg (2009)

Toward Software Diversity in Heterogeneous Networked Systems 129

7. Snow,K.Z.,Monrose, F., Davi, L., Dmitrienko,A., Liebchen, C., Sadeghi, A.R.: Just-
in-time code reuse: On the effectiveness of fine-grained address space layout random-
ization. In: 2013 IEEE Symposium on Security and Privacy (SP), pp. 574–588. IEEE
(2013)

8. Giuffrida, C., Kuijsten, A., Tanenbaum, A.S.: Enhanced operating system secu-
rity through efficient and fine-grained address space randomization. In: USENIX
Security Symposium (2012)

9. Davi, L.V., Dmitrienko, A., Nürnberger, S., Sadeghi, A.R.: Gadge me if you can:
secure and efficient ad-hoc instruction-level randomization for x86 and arm. In:
Proceedings of the 8th ACM SIGSAC Symposium on Information, Computer and
Communications Security, pp. 299–310. ACM (2013)

10. Philippaerts, P., Younan, Y., Muylle, S., Piessens, F., Lachmund, S., Walter, T.:
Code pointer masking: Hardening applications against code injection attacks. In:
Holz, T., Bos, H. (eds.) DIMVA 2011. LNCS, vol. 6739, pp. 194–213. Springer,
Heidelberg (2011)

11. Jafarian, J.H., Al-Shaer, E., Duan, Q.: Openflow random host mutation: trans-
parent moving target defense using software defined networking. In: Proceedings
of the First Workshop on Hot Topics in Software Defined Networks, pp. 127–132.
ACM (2012)

12. Salamat, B., Jackson, T., Gal, A., Franz, M.: Orchestra: intrusion detection using
parallel execution and monitoring of program variants in user-space. In: Proceed-
ings of the 4th ACM European Conference on Computer Systems, pp. 33–46. ACM
(2009)

13. Jensen, T.R., Toft, B.: Graph coloring problems, vol. 39. John Wiley & Sons (2011)
14. Chang, R.Y., Tao, Z., Zhang, J., Kuo, C.C.: A graph approach to dynamic frac-

tional frequency reuse (ffr) in multi-cell ofdma networks. In: IEEE International
Conference on Communications, ICC 2009, pp. 1–6. IEEE (2009)

15. Voigt, M.: List colourings of planar graphs. Discrete Mathematics 120(1), 215–219
(1993)

16. Hujter, M., Tuza, Z.: Precoloring extension. ii. Graph classes related to bipartite
graphs. Acta Mathematica Universitatis Comenianae 62(1), 1–11 (1993)

17. Bulatov, A.A.: H-coloring dichotomy revisited. Theoretical Computer Sci-
ence 349(1), 31–39 (2005)

18. Tuza, Z.: Graph colorings with local constraints-a survey. Discussiones Mathemat-
icae Graph Theory 17(2), 161–228 (1997)

19. Borodin, A., Ivan, I., Ye, Y., Zimny, B.: On sum coloring and sum multi-coloring
for restricted families of graphs. Theoretical Computer Science 418, 1–13 (2012)

20. Welsh, D.J., Powell, M.B.: An upper bound for the chromatic number of a graph
and its application to timetabling problems. The Computer Journal 10(1), 85–86
(1967)

21. Bollobás, B.: The chromatic number of random graphs. Combinatorica 8(1), 49–55
(1988)

22. Scale-free networks, https://en.wikipedia.org/wiki/Scale-free_network
23. Premo, L.: Local extinctions, connectedness, and cultural evolution in structured

populations. Advances in Complex Systems 15(01n02) (2012)
24. Jackson, T., Salamat, B., Homescu, A., Manivannan, K., Wagner, G., Gal, A.,

Brunthaler, S., Wimmer, C., Franz, M.: Compiler-generated software diversity. In:
Moving Target Defense, pp. 77–98. Springer (2011)

https://en.wikipedia.org/wiki/Scale-free_network

FSquaDRA: Fast Detection

of Repackaged Applications

Yury Zhauniarovich1, Olga Gadyatskaya1,2, Bruno Crispo1,
Francesco La Spina1, and Ermanno Moser1

1 Department of Information Engineering and Computer Science,
University of Trento, Trento, Italy

{zhauniarovich,gadyatskaya,crispo,laspina,moser}@disi.unitn.it
2 Interdisciplinary Center for Security, Reliability and Trust,
University of Luxembourg, Luxembourg City, Luxembourg

Abstract. The ease of Android applications repackaging and prolifer-
ation of application clones in Google Play and other markets call for
new effective techniques to detect repackaged code and combat distribu-
tion of cloned applications. Today all existing techniques for repackaging
detection are based on code similarity or feature (e.g., permission set)
similarity evaluation. We propose a new approach to detect repackag-
ing based on the resource files available in application packages. Our
tool called FSquaDRA performs a quick pairwise application compari-
son (full pairwise comparison for 55,000 applications in just 80 hours on
a laptop), as it measures how many identical resources are present inside
both packages under analysis. The intuition behind our approach is that
malicious repackaged applications still need to maintain the “look and
feel” of the originals by including the same images and other resource
files, even though they might have additional code included or some of
the original code removed.

To evaluate the reliability of our approach we perform a comparison
of the FSquaDRA similarity scores with the code-based similarity scores
of AndroGuard for a dataset of randomly selected application pairs, and
our results demonstrate strong positive correlation of the FSquaDRA
resource-based score with the code-based similarity score.

Keywords: Smartphones, Repackaging, Mobile applications.

1 Introduction

Mobile ecosystems today represent a huge and fast growing market. Success
stories of such companies as Rovio (with the Angry Birds game) attract to the
mobile business vast amounts of developers. Yet, the developers can suffer from
monetary and reputation losses when their applications are stolen and appear
on the markets repackaged.

The problem of application (app for short) stealing on Android stems from
the fact that at present it is not very difficult to repackage an Android app.

V. Atluri and G. Pernul (Eds.): DBSec 2014, LNCS 8566, pp. 130–145, 2014.
c© IFIP International Federation for Information Processing 2014

FSquaDRA: Fast Detection of Repackaged Applications 131

Applications are usually signed with a self-signed certificate. Thus, an adver-
sary can easily change the code and sign the app with his own certificate. At
present, neither the official Google Play market nor alternative markets do not
detect if an application has been repackaged. At the same time, there is a strong
aspiration from adversaries to steal applications. They can earn monetary prof-
its either by changing the revenue destination of advertisement libraries, or by
embedding malware, which can transform phones into controllable “zombies”.
Thus, to maintain the healthiness of the ecosystem there is a strong need to
detect the repackaged applications and prevent their distribution.

Currently the problem of Android app repackaging is widely explored and
several solutions to identify plagiarized applications were proposed, e.g.,
[9,7,6,10,16,12]. All these solutions are based on features extracted from the
app code. However, it is clear that the code itself is often impacted by the
repackaging process: the added malicious functionality (new advertisement li-
braries and/or malware code) modifies the code of the app. Additionally, the
usage of obfuscation libraries during repackaging can further modify the code
[11]. Moreover, adversaries can simply replicate some initial behaviour of an app
(so called app spoofing [14]). Obviously, the detection rates of repackaging for
a code similarity-based techniques decrease under the influence of these factors.
Notice that the availability of various tools like smali/backsmali [4] or apktool [3]
greatly alleviates the task of code changing and application repackaging.

Yet, it is not only the code that defines an app. Nowadays, smartphones have
powerful processors, advanced video and audio systems that are able to support
screens with very high resolutions and to produce sounds of high quality. These
factors lead to the constant demand of attractive apps. Therefore, to become
popular an app should not only include the code with interesting functionality,
but should also contain attractive layouts, images and other supplementary re-
sources, which become an integral part of the user experience. These resource
files (resources, for short) are delivered on the device packaged together with the
code, and are now an inseparable part of modern mobile apps.

This paper proposes an approach to detect repackaged apps based on com-
parison of the content of the resource files forming Android app packages. Our
approach relies on the observation that usually Android packages (apk files) in-
clude a significant number of resources, and that malicious repackagers aim to
change the applications in a way they resemble the originals as much as possi-
ble. Therefore, the code parts may change but the resource files (including icons,
images, music and video files, etc.) often remain the same.

To be practical, the approach of detecting repackaged applications based on
resource files comparison needs to be fast enough, considering the vast number
of Android apps (currently there are more then 700,000 apps only in the official
market). Thus, a simple pairwise comparison of all files inside two compared
apps is not quite scalable because the complexity is proportional to the product
of the number of files inside two packages multiplied by the average size of a file.
Luckily, during the process of app signing a hash of each file inside the apk is
computed and stored in the package. We leverage this information to compute

132 Y. Zhauniarovich et al.

the similarity of applications. Thus, our approach is fast enough to be used even
for comparing applications pairwise.

To our knowledge, we are the first who propose to detect Android repackaged
applications based on similarities in resource files, and not on the ones in the
code. This paper contains the following contributions:

– We propose a novel technique to detect repackaged Android applications
based on files included in the packages.

– Using the peculiarities of Android app signing process we develop a very
fast algorithm that can be used for pairwise comparison of apps. FSquaDRA
managed to compare on average 6700 app pairs per second on our dataset
using a commodity hardware. This number shows that our approach clearly
outperforms all available solutions based on pair-wise code comparison.

– Understanding the importance of Android app repackaging problem we re-
lease our tool as open-source1 to drive the research in this direction.

– We evaluate the practicality of our approach by comparing the resource-based
similarity score produced by FSquaDRA with the code-based similarity score
computed by the open-source AndroGuard tool [8,2]. Our experiments show
that the FSquaDRA similarity score is strongly correlated with the Andro-
Guard code similarity score.

– We evaluate the effectiveness of the FSquaDRA on a dataset with more than
55000 applications crawled on Google Play and 7 alternative markets, and
report repackaging rates for this dataset.

2 Our Approach

Android applications are spread across the devices in the form of Android pack-
ages (apk files) that contain code, manifest, libraries and resource files com-
pressed in a zip archive. Thus, each app includes not only the code, but also a
large set of supplementary files being an integral part of the Android package.
This is confirmed by our dataset that consists of 55000 apps. For this dataset on
average there are 315.56 files inside an Android package with maximum value of
11099 files and minimum of 4 (we present the details of our dataset later on).

Previously, to detect repackaged applications researchers considered predom-
inantly the code (classes.dex) and the manifest AndroidManifest.xml files.
We propose to use the full set of files inside apks to detect repackaging.

Our intuitions are as follows. An adversary, who clones an application, seeks
to resemble the original one as much as possible, thus, increasing the probability
of the clone installation. In Android apps code is loosely coupled with resources
giving the adversary a possibility to easily change the code. For example, the
legitimate Opera Mini application and its repackaged version containing mal-
ware [13] coincide in 230 out of 234 files inside those packages.

For the scope of this paper we consider two cases of repackaging: (malicious)
plagiarism, when two application packages include the same files but are signed

1 https://github.com/zyrikby/FSquaDRA

https://github.com/zyrikby/FSquaDRA

FSquaDRA: Fast Detection of Repackaged Applications 133

by different developers (with different certificates), and (benign) rebranding,
when two application packages include the same files and are signed by the
same certificate.

Using binary comparison of files, which constitute two Android applications,
it is possible to understand to what extent these two apps are similar. Unfortu-
nately, binary comparison is not a cheap operation. Moreover, a file in the first
app should be compared against each file in the second package. These overheads
may be considerably reduced using comparison of the file digests (hashes). Our
tool uses this technique to calculate the similarity between two applications. At
the same time, digest computation against the content of a file requires consid-
erable resources consumption and, thus, directly cannot be used in a tool that
has to process significant amount of apks. To overcome this limitation we use
the hashes calculated during the application signing process. Thus, the overhead
for hash computations does not affect our tool. To facilitate the understanding
of our algorithm we first describe the code signing process used in Android.

Android application signing background. An unsigned apk file contains a com-
piled code and a set of resources. In Android, all Java code is compiled into one
file called classes.dex. Moreover, some of the xml files can also be compiled
into a binary format. Besides compiled files, an Android package usually contains
non-compiled resource such as icons, drawables, text files, different binary files,
etc. This archive is then signed with the standard Java signing tool called jar-
signer. This tool creates a special directory inside the archive called META-INF,
where it stores the information related to the code signing process.

We are only interested in the first step of the signing process, which pro-
duces the main manifest file (MANIFEST.MF). During this step the jarsigner tool
calculates a digest of each file inside the unsigned apk and writes it into the
MANIFEST.MF file. On Android, the SHA1 algorithm is used to compute the
digest of file content.

The manifest file consists of the main attributes section and and a set of per-
entry attributes, one entry for each file contained in the unsigned apk file. These
per-entry attributes store information about the file name (relative path) and
the digest encoded using the base64 format. Therefore, after the first step of
application signing process a SHA1 digest of the content of each file is available
in the manifest file. These hash values are later used in our tool.

The algorithm and implementation details. Protocol 1 describes the algorithm
implemented in FSquaDRA for pairwise comparison of apps. In Line 2 of Pro-
tocol 1 we select all apk files located under the directory, the path to which is
specified by the variable path provided as an argument. After that, in Lines 6-10
FSquaDRA extracts the required information from the apk files. At first, our
tool gets the name of the file. Then it extracts the attributes of the apk us-
ing the getApkAttributesToMemory method. In particular, it iterates over the
entries in the MANIFEST.MF file and writes the results into a map, which key
corresponds to the relative path of a file inside the package and value is equal
to the SHA1 hash of the file. Additionally, during this step FSquaDRA extracts

134 Y. Zhauniarovich et al.

Protocol 1. The algorithm of application comparison
1: ApkAttrlist ← []
2: Apklist ← getApkFileList(path)
3: \\ Get application attributes
4: for all Ai ∈ Apklist do
5: ApkNamei ← getApkName(Ai)
6: Attri ← getApkAttributesToMemory(Ai)
7: Add (fileNamei, Attri) to ApkAttrlist
8: end forall
9: size ← length(ApkAttrlist)
10: \\ Pairwise comparison of applications
11: for (k = 0; k < size; k + +) do
12: hashesk ← getF ileHashesSet(Attrk)
13: certsk ← getCertHashes(Attrk)
14: for (l = k + 1; l < size; l + +) do
15: hashesl ← getF ileHashesSet(Attrl)
16: certsl ← getCertHashes(Attrl)
17: jSim ← getJaccardIndex(hashesk, hashesl)
18: sameCert ← certsTheSame(certsk , certsl)
19: OUT: ApkNamek, ApkNamel, sameCert, jSim
20: end for
21: end for

the developer certificates, which have been used for the application signing, and
stores into Attr object the digests computed over these certificates. This allows
us to reduce the memory consumption of FSquaDRA and speed up the certifi-
cate comparison process. The name of the app file along with the object Attri
containing all required application attributes are stored into the ApkAttrlist list.

Lines 15-25 show how the comparison of applications is performed. The sim-
ilarity score (the FSquaDRA similarity, or the fss score for short) corresponds
to the Jaccard similarity coefficient (expressed by Formula 1) computed over the
sets of file hashes extracted in Line 8.

jSim(Hk, Hl) =
|Hk ∩Hl|
|Hk ∪Hl|

(1)

We implemented our algorithm in Java. We did not parallelize it intentionally
(i.e., our tool runs in a single-thread program). This allows us to calculate the
net time required to run our comparisons and predict the execution time and
memory consumption. An increase of a dataset results in the linear growth of the
execution time for attributes extraction, while the pairwise comparison operation
cumulative time rises quadratically (in the number of apks under consideration).
In the current implementation the memory consumption grows linearly with the
number of applications. The code is availabe under the Apache-2.0 license2.

3 Evaluation

Our dataset consists of 55,779 Android applications. The dataset collection was
performed during June-July of 2013. During this period we explored 8 differ-
ent markets: the official Google Play3 market (13,223 apps; including 500 top

2 https://github.com/zyrikby/FSquaDRA
3 https://play.google.com/store/apps

https://github.com/zyrikby/FSquaDRA
https://play.google.com/store/apps

FSquaDRA: Fast Detection of Repackaged Applications 135

Fig. 1. Histogram of app repackaging rates detected with FSquaDRA (logarithmic
scale)

free apps for each category) and 7 third-party stores: androidbest4 (1662 apps),
androiddrawer5 (2857 apps), androidlife6 (1678 apps), anruan7 (4232 apps),
appsapk8 (2679 apps), pandaapp9 (14,143 apps), and SlideME10 (15,305). Our
dataset occupies 317.4 GB of disk space.

We have run FSquaDRA on the collected app dataset on a Mac Book Pro
laptop with 2.9 GHz Intel Core i7 Processor with 2 cores, and 8GB 1600 Mhz
DDR3 memory. FSquaDRA required 15.10 hours to load all apk attributes in
memory for our complete dataset, and 64.41 hours to compute the similarity
scores for all apk pairs (>109) in our dataset consuming less than 6GB of RAM.
On the dataset FSquaDRA performs on average 6700 app pair comparisons per
second. We consider these results quite encouraging, as pairwise app comparison
for code-based similarity metrics cannot be executed in comparable time.

Figure 1 presents a histogram of positive fss scores distribution for our
dataset of 55779 applications (in logarithmic scale). Notice that the app pairs
with fss>0 constitute approximately 5.41% of the total app pairs number for
our dataset. To simplify presentation we break down the fss values into 10 bins
in the range (0, 1]. In Fig. 1 we can see that the vast majority of the applica-
tion pairs with detected resource similarity have the fss score in the range (0,
0.1], and that for the fss score in the range (0.7, 1] there are more app pairs

4 http://androidbest.ru/
5 http://www.androiddrawer.com/
6 http://androidlife.ru/
7 http://www.anruan.com/
8 http://www.appsapk.com/
9 http://android.pandaapp.com/

10 http://slideme.org/

http://androidbest.ru/
http://www.androiddrawer.com/
http://androidlife.ru/
http://www.anruan.com/
http://www.appsapk.com/
http://android.pandaapp.com/
http://slideme.org/

136 Y. Zhauniarovich et al.

with the same certificate detected by FSquaDRA than app pairs with different
certificates. We provide more insight why this is the case in the sequel.

To evaluate the quality of our approach we would like to compare our results
with some state-of-art code similarity-based repackaging detection technique,
e.g., [16,15,7,10]. Unfortunately, these tools were not released publicly, and we
were not able to obtain them. Similar problem was also reported in [11], where
the authors used AndroGuard as a freely available tool for comparison of code
similarity in apks. Following this approach, we use AndroGuard to provide us a
metrics of code similarity for app pairs.

The main question we would like to investigate is whether the FSquaDRA
similarity metrics is correlated with the AndroGuard code similarity metrics.
This can be interpreted twofold:

– Problem of false positives. For apps that FSquaDRA classifies as similar,
are they similar also according to the AndroGuard classification (and vice-
versa)? If our tool classifies an app pair as similar, but there is no actual
code similarity, this pair can be interpreted as false positive. It is obvious that
it is impossible to completely avoid false positives for FSquaDRA because
common resources, such as, e.g., open source sound and image files, can
increase the FSquaDRA metrics, while the code would be different. So here
we are interested in strong correlation of the similarity metrics values.

– Problem of false negatives. For apps that FSquaDRA classifies as completely
different, are there many app pairs sharing code similarities according to
AndroGuard? Again, it is not possible to completely avoid false negatives
due to the different nature of code similarity and resource similarity, but we
would like to assert that the false negatives rate is not too high.

Notice that in this section we interpret the AndroGuard code similarity score
as the ground truth. We have performed manual inspection of some application
pairs to confirm the findings of FSquaDRA (reported further), but it is impos-
sible to inspect manually a substantial subset of our dataset. Therefore we have
to rely on the code similarity metrics as the ground for evaluating FSquaDRA
reliability.

The AndroGuard algorithm which computes the similarity score (ags for
short) of two apps is presented in [8]. The similarity score is based on the analy-
sis of Dalvik code of an app pair and detection of identical, similar and different
(new or deleted) methods in the apps. To perform this, the algorithm a) gener-
ates a signature for each method of each application, b) identifies all methods
that are identical in both apps, c) discovers all methods that are similar. A signa-
ture is generated based on the method control flow information, used API calls
and exceptions inside the method. If two signature hashes are identical then the
methods are considered identical. To compute the similarity between methods
Normalized Compression Distance (NCD) [5] is used.

AndroGuard however was found to be not very reliable, as its similarity met-
rics was discovered to be not commutative. That is, for two apks A and B, it
could be that ags*(A,B) �= ags*(B,A), where ags* is the value computed by
the AndroGuard tool directly. We have decided to still use the existing Andro-

FSquaDRA: Fast Detection of Repackaged Applications 137

Guard implementation, but to adjust the AndroGuard score. We have experi-
mented with a series of app pairs, and have established that the metrics ags=
(ags*(A,B) + ags*(B,A))/2 is more faithful than the original ags* similarity
score, and we have used this metrics for comparison with FSquaDRA results.

To compute a similarity value for two applications AndroGuard takes sig-
nificantly more time than FSquaDRA, and it was not possible to compute the
similarity metrics for the whole app corpus we have crawled. E.g., it takes approx-
imately 65 seconds on average to compare one pair of apps using AndroGuard
(the actual time of comparison depends a lot on the similarity of apps in the
pair; it takes significantly less time to compare very similar apps than completely
different ones). We cannot also rely on a straightforward random selection of app
pairs, because it is clear from Fig. 1 that, e.g., the share of app pairs with fss
similarity in the range (0, 0.2] is a lot larger than the share of app pairs in (0.8,
1.0], which is as interesting. Therefore, we have performed a random selection of
100 app pairs with same certificate and 100 app pairs with different certificates
from each bin with non-null fssmetrics, and we have computed the AndroGuard
similarity metrics for these pairs (2000 pairs total). This selection enables the
best selection of an app pairs corpus with different fss metrics, and without
strong predominance of some fss value range. To evaluate the false negative
rates we have randomly selected 100 apk pairs with same certificate and 100 apk
pairs with different certificates from the dataset with fss=0.

Table 1 presents summary statistics computed for the randomly selected app
pairs. Notice that for non-null fss values we compare separately app pairs with
same certificate and with the different ones, as these two groups are different
by nature. This observation is indeed reinforced by the data we have. Fig. 2(a)
presents a scatterplot of the fss and ags similarity metrics values for the selected
app pairs with different certificates (potentially plagiarised). We can see the
strong correlation of the values from the figure. This is confirmed by the data:
the standard Pearson’s product-moment correlation computed for data in this
figure is 0.791. Notice that any value ≥0.5 is commonly considered as strong
correlation. Testing for the null-hypothesis (that true correlation is non existent)
for this dataset gives that the 95% confidence interval is [0.767, 0.813]; and the
p-value≈10−16, so we can safely reject the null-hypothesis. The sample mean of
the difference (fss-ags) for each selected app pair with different certificates is
approximately equal to -0.047, with standard t-test rejecting the null-hypothesis
(the p-value≈10−12), and the 95% confidence interval for true mean [-0.052, -
0.029]. The standard deviation for the difference (fss-ags) is 0.186. We also
present a boxplot for this difference in Fig. 3(a).

These data confirm that FSquaDRA can be an effective tool to detect repack-
aged applications, as the fss similarity values for app pairs with different certifi-
cates are highly correlated with code-based similarity metrics of AndroGuard;
and the average difference in the similarity metrics produced by FSquaDRA and
by AndroGuard is not significant.

Fig. 2(b) presents a scatterplot of the fss and ags similarity metrics for
the randomly selected apk pairs signed with the same certificate (potentially

138 Y. Zhauniarovich et al.

rebranded). The standard Pearson’s product-moment correlation for this dataset
is approximately 0.58 (the null-hypothesis on correlation is rejected, with 95%
confidence interval for correlation [0.538, 0.62] , and p-value ≈10−16). This can
be still interpreted as a strong correlation, but it is less strong than for the
apk pairs with different certificate. The sample mean for the difference (fss-
ags) in this dataset is approximately equal to -0.27 (standard t-test reports 95%
confidence interval for true mean [-0.292, -0.259], and the null-hypothesis for
sample difference mean being zero is rejected with p-value≈10−16). This means
that on average for apks signed with the same certificate FSquaDRA tends to
estimate their similarity score noticeably lower than the code-based similarity
score computed by AndroGuard. These findings can be intuitively explained by
the fact that developers tend to reuse the code patterns across their products.
For app pairs signed with the same certificate it is clear that they can contain
similar code snippets with high probability. Therefore higher code similarity
score is expectable.

We can also see from Fig. 2(b) that there is a lot of app pairs with very high
AndroGuard similarity score, but varying FSquaDRA similarity score, which are
most probably the pairs impacting the correlation coefficient for this dataset. We
have manually inspected some of these pairs and have managed to find several
patterns, when such situations occur. One of the most common observed case is
when the same code is used for displaying different content. For instance, in our
dataset we found several applications, which were developed to display books.
For every book a single application has been developed. All these applications
use the same code but the resources (the book chapters) are different. Thus, our
tool shows low similarity score (because still some files, e.g., classes.dex, are
the same), while according to the code similarity score the applications in the
pair are the same. Similar behaviour we also witnessed with other categories of
applications, which display the same type of content, e.g., for wallpaper apps
and widgets. Another interesting example, which falls into this category, is when
the apps in the pair provide a UI customization functionality for the third appli-
cation. In this case, AndroGuard produces high similarity score for such pairs of
apps, while because of the difference of the UI components FSquaDRA reports
low similarity.

The lower correlation of the metrics can be also attributed to the usage of
the same ad libraries. This happens when the fraction of the code produced by
a developer significantly smaller than the ones brought by ad libraries. In this
case AndroGuard falsely detects applications as repackaged, while FSquaDRA
produces more credible results (because the applications are different).

Fig. 3(b) presents a boxplot for the sample difference (fss-ags). In comparison
with Fig. 3(a), we can notice that for apk pairs with the same signature the range
of the similarity scores difference is larger. Our data suggests that FSquaDRA
may not be as efficient for detecting repackaging in apps signed with the same
certificate (rebranded), as it is for the apps signed with different certificates
(plagiarized). Nevertheless, correlation of the FSquaDRA score with the code-
based similarity score of AndroGuard is still strong (>0.5).

FSquaDRA: Fast Detection of Repackaged Applications 139

(a) (b)

Fig. 2. Scatterplots of FSquaDRA similarity vs. AndroGuard similarity for the pairs:
a) signed with different certificates; b) signed with the same certificate. The red line
is the line of best fit, the blue curve is the LOWESS (locally weighted scatterplot
smoothing line).

Finally, let us consider the difference (fss-ags) for the randomly selected
app pairs with fss=0. The sample mean of (fss-ags), or, simply, of the ags
similarity score taken with the negative sign, for these app pairs is approximately
-0.041, with the 95% confidence interval for the true mean [-0.051, -0.0309], and
the standard deviation for this dataset is approximately equal to 0.0737. Thus,
FSquaDRA does not error a lot on average. From these statistics we can see
that for apk pairs not marked as similar by FSquaDRA AndroGuard does not
see significant code similarity either, even for applications signed with the same
certificate. Therefore we can conclude that if developers do not include any
similar resouces in apps, they also mostly do not reuse code (this is often the
case of apps produced by companies). We do not report the correlation coefficient
for this type of dataset, as the fss score equals to 0.

4 Cross-Market Repackaging

After asserting that FSquaDRA produces similarity metrics that is valuable
for detecting repackaged applications, being strongly correlated with the code
similarity metrics, we look into repackaging rates corresponding to the markets
under consideration, and investigate clusters of repackaged applications. Notice
that clearly any FSquaDRA score greater than 0 for a pair of apks can be
an indication that these apks are clones. However, to increase the certainty of
detecting clones we have chosen the fss value of 0.7 to be a reliable threshold
for repackaging. Based on our observations, we consider it a good starting point
for resource similarity score sufficient to reliably detect clones, and we leave the
task of identifying the threshold precisely for future work.

140 Y. Zhauniarovich et al.

Table 1. Summary statistics for comparison of the fss and ags metrics

Sample Statistics Value Details
App pairs with non-null fss Mean of difference fss - ags -0.04122781 Standard one sample t-test
with different certificates 95% confidence interval: [-0.05278174, -0.02967388]
in comparison with ags; p-value = 4.62e-12
1000 app pairs Standard deviation 0.1861895

for difference fss - ags
Median -0.04799

Correlation coefficient 0.7919082 Pearson’s product-moment correlation
of fss and ags values 95% confidence interval [0.7675988, 0.8139426]

p-value ≤ 2.2e-16
App pairs with non-null fss Mean of difference fss - ags -0.276119 Standard one sample t-test
with same certificates 95% confidence interval: [-0.2928976, -0.2593405]
in comparison with ags; p-value = 2.2e-16
1000 app pairs Standard deviation 0.2703832

for difference fss - ags
Median -0.25180

Correlation coefficient 0.580733 Pearson’s product-moment correlation
of fss and ags values 95% confidence interval [0.5381128, 0.6203911]

p-value ≤ 2.2e-16
App pairs with null fss Mean of difference fss - ags -0.04124 Standard one sample t-test
with mixed certificates 95% confidence interval: [-0.05152188, -0.03095351]
in comparison with ags; p-value = 1.777e-13
200 app pairs Standard deviation 0.07375432

for difference fss - ags
Median -0.01304

2200 app pairs, fss Mean of difference fss - ags -0.14800 Standard one sample t-test
including app pairs 95% confidence interval: [-0.1585031, -0.1374917]
with the same ags; p-value = 2.2e-16
and different Standard deviation 0.2512748
certificates, and with for difference fss - ags
fss=0 and Median -0.09894
fss>0 1st quartile -0.27380

3rd quartile 0.00000
Correlation coefficient 0.7149053 Pearson’s product-moment correlation
of fss and ags values 99% confidence interval [0.6869681, 0.7407324]

p-value ¡ 2.2e-16

(a) (b)

Fig. 3. Boxplot of the difference of FSquaDRA similarity with AndroGuard similarity
for app pairs with fss>0: a) signed with different certificates; b) sighed with the same
certificate

Cross-market comparison. Table 2 presents the repackaging rates of Google Play
applications cloned in other markets. Under the assumption that the Google Play
market is the source of original applications, this table reports how many cloned
pairs were detected with the fss score greater than 0.7, and the total number of
apk pairs with fss>0 for all markets of our study compared with Google Play
(the corresponding subset of our dataset). In this experiment we have compared
each crawled apk in Google Play with each apk crawled in the considered third

FSquaDRA: Fast Detection of Repackaged Applications 141

party markets. We also provide the processing time required for each market
comparison with Google Play. Notice that for all markets the number of app
pairs with the fss score greater than 0.7 is not very significant. To understand
better how the big is the subset of potentially repackaged applications we also
provide the total number of app pairs with fss>0 detected, and the number of
pairs with fss>0 and signed with different certificates.

From Table 2 we can observe that the markets with the highest repackaging
rates are androiddrawer (16.16% of app pairs have similarity of resources fss>0)
and Google Play (10.31% of app pairs have fss>0). We suspect that this is the
case because these markets are more popular sources of apps, in comparison with
others; and malicious repackagers that seek acquiring significant ad revenues
or big user base for their botnets may target more popular markets. Yet, this
intuition needs to be confirmed with more data, and there can be other plausible
explanations.

Table 2. Results of experiments, each market in comparison with Google Play

Market

Repackaging Rates Time
Same Different Total fss>0 Total fss>0 with Loading apk Processing

signature signature (% of total diff. cert. attributes
pairs # pairs pair #) (% of total in memory

(fss>0.7) (fss>0.7) pair #)

androidbest 27 10 714258 (3.25%) 713194 (3.24%) 14.16 min 12.274 min
androiddrawer 528 14 6108547 (16.16%) 6097437 (16.14%) 15.46 min 56.02 min
androidlife 41 44 1145396 (5.16%) 1143400 (5.15%) 14.24 min 15.67 min
anruan 106 97 3349271(5.985%) 3347895 (5.982%) 15.26 min 36.11 min
appsapk 422 86 2105334 (5.94%) 2094716 (5.91%) 15.66 min 22.52 min

Google Play 1897 1301 9019858 (10.31%) 8985401 (10.27%) 13.28 min 59.97 min
pandaapp 755 381 10741872 (5.74%) 10726743 (5.73%) 28.52 min 136.65 min
SlideME 475 579 9496874 (4.69%) 9481029 (4.68%) 25.96 min 97.07 min

Application clusters. Repackaged applications can form clusters (a set of repack-
aged apps stemming from some original application). We tried to elicit and
analyze strongly connected clusters containing applications with very similar
resources. The results produced by FSquaDRA can be interpreted as an undi-
rected labelled graph, where nodes correspond to the applications in our dataset
and edges represent similarity relationship between two applications, labelled
with the fss similarity score. Thus, to find the clusters of applications we used
the following algorithm. At first, we selected all pairs, which had shown the
FSquaDRAsimilarity value more than 0.7. After that in the resulting graph we
searched for connected components (i.e., set of connected nodes), which corre-
sponded to application clusters. We looked for clusters that have 3 and more
nodes. Using this approach we discovered 71 cluster, the largest of which in-
cluded 9 applications.

We have investigated manually some of the clusters, and we report on the
largest two of them (smaller clusters are not reported for the lack of space).
The largest cluster with 9 nodes contains applications from 3 different markets
(4 from Google Play, 4 from SlideME and 1 from appsapk), all signed with

142 Y. Zhauniarovich et al.

different certificates. The nodes are connected with 8 edges; similarity scores for
app pairs not connected by an edge vary in the range [0.61, 0.7). The cluster
with 8 applications contains packages distributed on 5 different markets (2 come
from Google Play, 3 from SlideME, 1 from anruan, and 2 from pandapp). These
8 applications are connected by 7 nodes, and the fss scores for the app pairs
not connected by an edge vary in [0.4, 0.6). In this cluster 3 applications (from
anruan and pandapp) were signed by the same certificate, and others were signed
with different certificates.

After we manually inspected all applications in these clusters, we discovered
that these apps were legitimate applications and not maliciously repackaged.
These “false positives” appeared because all apps in the cluster used the same
popular library ActionBarSherlock [1], which is supplied with lots of files. Addi-
tionally, the applications contained a very limited number of their own unique
files, and thus FSquaDRA falsely detected them as repackaged applications. We
performed also an analysis using AndroGuard and found out that the code files
were also very poisoned with this library. AndroGuard similarity scores for these
clusters were in the range [0.46, 0.96]. Therefore, in the shadow of the method-
ology selected for our analysis this is still a good result for our tool. However,
this example clearly shows that it is desirable to implement techniques for auto-
matic library resources detection and exclusion, similarly as it is done for code
in [7,15]. We leave this problem for the future work.

5 Related Work

Existing works in repackaging detection on Android mostly focus on code sim-
ilarity and do not consider the resource similarity, in contrast to FSquaDRA.
Unfortunately, it is impossible to compare our tool with others because existing
research tools, excluding AndroGuard, are not publicly available.

In [16] the authors search repackaged applications in third-party markets using
Google Play as a baseline. A tool called DroidMOSS uses fuzzy hashing of code
to calculate a fingerprint of the app and then computes the edit distance between
two fingerprints to compute the similarity score. The analysis performed in [16]
shows that 5-13% applications hosted in alternative markets are repackeged.
These conclusions agree with our findindings reported in Sec. 4.

In the paper [15] the authors further investigate the problem of repackaged
apps and concentrate on detection of piggybacked applications (repackaged apps
that carry a malicious payload). To find these apps the authors perform code de-
coupling into primary and non-primary modules, and compute a fingerprint for
each primary module, which contains the main functionality. After that while it-
erating over the fingerprints the linearithmic algorithm detects apps with similar
primary modules, which are considered as piggybacked candidates. Finally, pig-
gybacked apps are detected comparing the sets of non-primary modules of these
similar apps. The experiments show the presence of 1.3% piggybacked apps in
the dataset.

Paper [6] presents the DNADroid tool detecting cloned (plagiarized) appli-
cations. Using the semantic similarity of apps the tool detects potential clone

FSquaDRA: Fast Detection of Repackaged Applications 143

candidates. At the second step, the tool extracts Program Flow Graph of each
method in compared applications, and, based on the subgraph isomorphism
problem as a final criteria of method similarity, computes similarity score of
the apps. DNADroid managed to detect 191 cloned pairs (0% false positives was
reported). The authors also compared their tool with AndroGuard [2]. On 191
pairs AndroGuard failed for 24 pairs and produced very low similarity score for
10 pairs meaning that it missed 18% of the pairs found by DNADroid. Contin-
uing the work on DNADroid [6] Crussell et al. developed a new tool AnDarwin
[7], which extracts features from app code and compares them, instead of pair-
wise comparisons of code, allowing to perform large-scale analysis of Android
applications. On a dataset of 265,359 third-party apps collected from 17 mar-
kets DNADroid detected 4,295 cloned and 36,106 rebranded applications (cloned
apps with the same signature).

The authors in the work [12] concentrate on investigation which applications
are likely to suffer from being plagiarised, and how to detect plagiarised ap-
plications uploaded to a market. The authors analysed the meta-information of
158,000 applications. They detected that 29.4% of applciations are more likely to
be plagiarised, based on the assumption that it was more likely that a malicious
developer would use for plagiarising the applications, which alredy contained the
permissions needed to perform malicios actions.

The paper [10] presents another approach to detect code reuse among Android
apps. To discover the similarities between the code they use k -grams of Dalvik
opcode sequences as features. To obtain app representation they apply hashing
to the extracted features. The Juxtapp tool can detect (a) buggy and vulnerable
code reuse (b) known malware instances and (c) pirated applications. To assess
the Juxtapp efficiency the authors ran the experiment of pairwise comparison
on a set of 95.000 Android apps (an Amazon EC2 cluster with 25 slave nodes
was used) that lasted about 200 minutes. As for effectiveness, among the apps
from Android Market the authors identified 174 samples containing vulnerable
patterns in the in-app billing code and 239 apps containing those in the code
using Licence Verification Library. Moreover, they identified 34 new instances of
known malware in the alternative Anzhi market.

Recently, a framework for evaluating Android application repackaging detec-
tion algorithms has been proposed [11]. In the paper the authors classify cur-
rently available approaches for detection of repackaged applications and present a
framework that can be used to assess the effectiveness of this kind of algorithms.
The framework translates Dalvik bytecode into Java code, applies obfuscation
techniques and packs back the code into the Dalvik representation. To assess the
effectiveness of a tool is run over real and modified by the framework app. The
authors proposed to assess repackaging detection algorithms by broadness (i.e.,
how an algorithm can stand to obfuscation techniques applied separately) and
by depth (i.e., if an algorithm is resilient to techniques applied sequentially). As
the case study, the authors applied the framework to AndroGuard [2] – the only
publicly available tool for repackaging detection. The results show that Andro-
Guard can successfully combat with different obfuscation techniques and, thus,

144 Y. Zhauniarovich et al.

can be widely used to detect repackaged applications. Notice that FSquaDRA
will successfully pass the tests of [11], because it does not rely on code similarity.

6 Conclusions

In this paper we present an approach to detect Android application repackag-
ing based on the apk resource files, and an implementation of this approach in
the FSquaDRA tool. Leveraging hash files of resources already present in apks,
FSquaDRA is capable of fast pairwise apk comparison. It computes the Jaccard
similarity score for compared apks and classifies them as similar if substantial
number of resource files are the same in both packages.

We have evaluated practicality of FSquaDRA in two aspects: whether it
gives results similar to the code-based app repackaging detection techniques,
and whether it is fast enough to handle significant number of apks. Our results
are encouraging. The FSquaDRA resource similarity score is strongly correlated
with the AndroGuard code similarity score, especially for the apks signed with
different certificates, and thus, potentially, plagiarized. FSquaDRA is also has
good performance, as it was able to process a dataset of more than 55000 apks on
a laptop in less than 80 hours. Notice that our implementation was not optimized
for better performance, as it is single-threaded. Yet, the approach can be easily
parallelized using different parallelization algorithms for pairwise comparison.

The obvious limitation of the current tool is that an adversary who is familiar
with the approach can easily change all resource files in the package to make his
plagiarized application virtually undetectable by FSquaDRA. Resource similar-
ity metrics can be hardened against this by looking into files themselves rather
than just comparing the digests, but it will lead to performance losses (which
can become comparable with those of the code-based repackaging detection tech-
niques if implemented reasonably). The most promising, to our point of view,
is a hybrid approach, when repackaged applications are detected using both ap-
proaches, code and resource comparison. We believe this is a very interesting
research direction.

Another interesting future work direction is to look into the data produced by
FSquaDRA looking for patterns and interesting findings, such as the fact that on
average applications signed with the same certificate have higher code similarity
score than resource similarity score, while this difference is not so evident in the
apps signed with different certificates.

FSquaDRA opens an avenue of enhancement for app plagiarism detection
algorithms, and not only for Android. For other ecosystems, such as iOS or
Windows Phone, that request the developers to submit the full source code and
resources before publishing apps on the market our technique can be used to
improve the on-market plagiarism detection algorithms by complementing the
code similarity-based approaches.

Acknowledgements. This work has been partially supported by the FP7-ICT
SecCord Project 316622 funded by the EU, and the TENACE PRIN Project
(grant no. 20103P34XC) funded by the Italian MIUR.

FSquaDRA: Fast Detection of Repackaged Applications 145

References

1. ActionBarSherlock, http://actionbarsherlock.com/
2. AndroGuard: Reverse engineering, Malware and goodware analysis of Android ap-

plications, https://code.google.com/p/androguard/
3. Android-apktool: A tool for reverse engineering Android apk files, https://code.

google.com/p/android-apktool/

4. Smali: An assembler/disassembler for Android’s dex format,
https://code.google.com/p/smali/

5. Cilibrasi, R., Vitányi, P.M.B.: Clustering by compression. IEEE Transactions on
Information Theory 51, 1523–1545 (2005)

6. Crussell, J., Gibler, C., Chen, H.: Attack of the clones: Detecting cloned applica-
tions on android markets. In: Foresti, S., Yung, M., Martinelli, F. (eds.) ESORICS
2012. LNCS, vol. 7459, pp. 37–54. Springer, Heidelberg (2012)

7. Crussell, J., Gibler, C., Chen, H.: Scalable semantics-based detection of similar
android applications. In: Proc. of Esorics 2013 (2013)

8. Desnos, A.: Android: Static analysis using similarity distance. In: Proc. of HICSS
2012, pp. 5394–5403 (2012)

9. Gibler, C., Stevens, R., Crussell, J., Chen, H., Zang, H., Choi, H.: Adrob: examining
the landscape and impact of android application plagiarism. In: Proc. of MobiSys
2013, pp. 431–444 (2013)

10. Hanna, S., Huang, L., Wu, E., Li, S., Chen, C., Song, D.: Juxtapp: A scalable sys-
tem for detecting code reuse among android applications. In: Flegel, U., Markatos,
E., Robertson, W. (eds.) DIMVA 2012. LNCS, vol. 7591, pp. 62–81. Springer, Hei-
delberg (2013)

11. Huang, H., Zhu, S., Liu, P., Wu, D.: A framework for evaluating mobile app repack-
aging detection algorithms. In: Huth, M., Asokan, N., Čapkun, S., Flechais, I.,
Coles-Kemp, L. (eds.) TRUST 2013. LNCS, vol. 7904, pp. 169–186. Springer, Hei-
delberg (2013)

12. Potharaju, R., Newell, A., Nita-Rotaru, C., Zhang, X.: Plagiarizing smartphone
applications: attack strategies and defense techniques. In: Barthe, G., Livshits,
B., Scandariato, R. (eds.) ESSoS 2012. LNCS, vol. 7159, pp. 106–120. Springer,
Heidelberg (2012)

13. Protalinski, E.: Warning: New Android malware tricks users with real Opera Mini
(July 2012), http://www.zdnet.com/warning-new-android-malware-
tricks-users-with-real-opera-mini-7000001586/

14. Vidas, T., Christin, N.: Sweetening android lemon markets: measuring and com-
bating malware in application marketplaces. In: Proc. of CODASPY 2013, pp.
197–208 (2013)

15. Zhou, W., Zhou, Y., Grace, M., Jiang, X., Zou, S.: Fast, scalable detection of ”pig-
gybacked” mobile applications. In: Proc. of CODASPY 2013, pp. 185–196 (2013)

16. Zhou, W., Zhou, Y., Jiang, X., Ning, P.: Detecting repackaged smartphone ap-
plications in third-party android marketplaces. In: Proc. of CODASPY 2012, pp.
317–326 (2012)

http://actionbarsherlock.com/
https://code.google.com/p/androguard/
https://code.google.com/p/android-apktool/
https://code.google.com/p/android-apktool/
https://code.google.com/p/smali/
http://www.zdnet.com/warning-new-android-malware-tricks-users-with-real-opera-mini-7000001586/
http://www.zdnet.com/warning-new-android-malware-tricks-users-with-real-opera-mini-7000001586/

‘Who, When, and Where?’
Location Proof Assertion for Mobile Devices

Rasib Khan, Shams Zawoad, Md Munirul Haque, and Ragib Hasan

Department of Computer and Information Sciences
University of Alabama at Birmingham

{rasib,zawoad,mhaque,ragib}@cis.uab.edu

Abstract. In recent years, location of mobile devices has become an important
factor. Mobile device users can easily access various customized applications
from the service providers based on the current physical location information.
Nonetheless, it is a significant challenge in distributed architectures for users to
prove their presence at a particular location in a privacy-protected and secured
manner. So far, researchers have proposed multiple schemes to implement a se-
cure location proof collection mechanism. However, such location proof schemes
are subject to tampering and not resistant to collusion attacks. Additionally, the
location authority providing a location proof is assumed to be honest at all times.
In this paper, we present the fundamental requirements of any location proof gen-
eration scheme, and illustrate the potential attacks possible in such non-federated
environments. Based on our observations, we introduce a concept of witness
oriented endorsements, and describe a collusion-resistant protocol for asserted
location proofs. We provide an exhaustive security analysis of the proposed archi-
tecture, based on all possible collusion models among the user, location authority,
and witness. We also present a prototype implementation and extensive experi-
mental results to adjust different threshold values and illustrate the feasibility of
deploying the protocol in regular devices for practical use.

Keywords: Location Assertion, Location Proof, Proof Protocol, Security, Wit-
ness Endorsement.

1 Introduction

Location-based services for mobile devices have achieved great popularity in recent
times. Authentication, authorization, access control, accounting, and similar critical ac-
tions can be associated with the geographical locations of the devices. The location
information is then used by service providers to provide diverse location-based services
to the users [1]. However, unsecured location reporting mechanisms may have effects
on trivial cases, such as, in social-games like FourSquare [2], and may even be of na-
tional security, as that of spoofing Drones with false location data [3].

A location proof for a user is verified with respect to the identity of the user, the
location in question, and the time of visit. However, self-reported information regarding
location presence can be easily spoofed. Global Positioning System (GPS) coordinates,
cell triangulation in mobile phones, and IP address tracking are all susceptible to manip-
ulation for making false location claims [4]. Conversely, automated location reporting
violates users’ privacy and introduces centralization bottleneck in the architecture [5].

V. Atluri and G. Pernul (Eds.): DBSec 2014, LNCS 8566, pp. 146–162, 2014.
c© IFIP International Federation for Information Processing 2014

Location Proof Assertion for Mobile Devices 147

There have been numerous proposals for user initiated location proof generation
[1, 6–9]. The localization authority covering the area utilizes some secure distance-
bounding mechanism to ensure the user’s presence [10–12]. However, existing mech-
anisms overlook collusion attacks in their models. In a collusion attack, participating
entities go into a mutual agreement and agrees to create counterfeit location proofs.
Hence, the fake proofs resemble an actual proof and can be utilized by the user as a false
evidence of presence at that location. The related works thus far have not considered
any third-party endorsement for location proofs, which makes the schemes vulnerable
to collusion attacks [1, 4–15].

This paper presents a distributed witness-oriented architecture for generating secure
location proofs which is resistant to collusion attacks. The following scenario illustrates
the practicality of a secure location proof mechanism.

A pharmaceutical agent travels around different places hoping to get a sale for the
pharmaceutical company. Upon returning to office, he makes an expense claim for the
money paid at the hotel where he was staying during the traveling period. However, in
addition to the bill of receipt from the hotel, the company requires a proof of presence
that the sales agent was actually residing at that specific hotel. Thus, the agent provides
his secured proof of presence, which was collected from the hotel. The proof was also
securely asserted by the hotel manager, or any other witness available at the hotel.
The finance department of the company then validates the endorsed proof and pays the
incurred cost to the sales agent.

Contributions. The contributions of this paper are as follows:
1. We have introduced a novel solution for obtaining distributed secure location proofs

for mobile devices. The architecture allows generating witness-oriented asserted lo-
cation proofs in a distributed environment which incorporates an additional endorse-
ment by a third entity to ensure a collusion-resistant location proof.

2. We have presented an exhaustive security analysis of the proposed architecture
against a detailed combinatorial study for collusion models and different attacks
in the working protocol.

3. We have illustrated the feasibility of the proposed architecture for practical use using
a proof-of-concept implementation. The prototype is used in an extensive experimen-
tal process to identify attacks and adjust the threshold values for the protocol.

The rest of the paper is organized as follows. We discuss related work in Section 2.
Section 3 introduces the key terminologies and concepts in location proof systems. Sec-
tion 4, discusses the potential attacks and challenges in a location proof generation
scheme. We present our secure assertion oriented scheme in Section 5, and provide a se-
curity analysis in Section 6. The prototype implementation and simulation results have
been presented in Section 7. Section 8 describes our experimental process to set the
threshold values, and finally conclude in Section 9

2 Related Work

Location reporting mechanisms require a reliable and tamper proof architecture to pre-
serve the integrity of the data. Traditional GPS systems are effective in general purpose
location reporting [16]. However, it is not a suitable option in terms of security and in-
door tracking. Recent papers have proposed a combination of GPS signals with cellular

148 R. Khan et al.

tower triangulation and identifying the access network channel. Gabber et al. [17] uti-
lized multi-channel information to verify the location. Unfortunately, malicious entities
can bypass such combinatorial schemes [1, 8]. Additionally, GPS signatures [18] are
not useful since they are open to spoofing attacks [8].

Hardware oriented localization techniques [19–21] measure signal attenuation and
asynchronous measurement of round trip times to verify the presence of a certain user
device in the vicinity [10, 22–25]. However, location reporting using signal attenuation
can easily be manipulated by an attacker in close proximity of the devices. Furthermore,
all of these mechanisms suffer from channel noise, limitations with line-of-sight, and
complexity of deployment. In our design, we have considered a three-party interactive
solution. We have used timing thresholds between each pair of communicating parties
to ensure three-way proximity.

Collection of secure location proofs from a manager was discussed by Waters et al.
[9]. Another approach for creating secure location proofs has been described by Saroiu
et al. [1]. However, these schemes require highly coupled entities with a monolithically
centralized architecture. Trusted platform module and virtual machine based attesta-
tion for trusted sensor readings have been proposed by Saroiu et al. [26] and Gilbert
et al. [7] respectively. Luo et al. presented a method for obtaining privacy-preserved
location proofs using a random nonce between the user and the provider [8]. Khan et
al. presented a model for chaining location proofs in a chronological order for secure
provenance [27].

Limitations of Current Research: In a free-to-act environment, participating enti-
ties may go into a mutual agreement and collude to produce a fake proof of presence.
Furthermore, the person operating a mobile device may override certain operations on
the device and manipulate the proofs. Such collusions between the parties can provide
each other illegitimate benefits. Additionally, we consider the location authority to be
possibly malicious as well. Given the location authority manipulates the proofs, most
protocols that we have discussed so far will collapse. Furthermore, the flexibility and
distributed mode of operation supported by such an architecture should be able to sus-
tain the entropy, randomness, and falsified data generated by misbehaving entities in
the environment.

3 Modelling a Secure Location Assertion

In this section, we present the notions of witnesses and assertions, the terminologies,
and the models for creating and verifying secure location assertions.

3.1 Witnesses and Assertions

In everyday life, two parties considering each other as untrustworthy necessitates the
involvement of a witness. In addition to the two parties involved in the information
exchange, a witness provides a notarization of the statement. The notarized statement is
then redistributed among the two parties, which bears the endorsement by the witness
as an additional enforcement of the truth value of the content.

We utilize the same concept to create location proofs and have the proof asserted by
a co-located witness. In this context, a witness is a spatio-temporally co-located entity

Location Proof Assertion for Mobile Devices 149

with the user and the location authority. A witness will assert proofs only when willing
to do so, and will not assert otherwise. Devices willing to assert location proofs sends
a registration request to the available location authority. In a commercially deployed
scenario, the incentive of the witness can be based on awarded ‘points’ depending on
valid assertions. The ‘points’ would add to the trust value of a witness and may be re-
deemed for membership benefits from the service provider. The assertions may also be
used by the witness to prove co-location with the user. The witness can withdraw from
the witness-list at any time by sending a withdrawal request to the location authority.

3.2 Terminologies

We have introduced certain terminologies in the description of our models, and also in
designing the scheme for secure location proof assertion. A User U is a mobile entity
that visits a location. The user is identified with a mobile device, which is used to
determine his location and store the location proofs. A Site S is a physical region within
a finite area under the coverage of one location authority. A Location Authority L is a
stationery entity, which is responsible for providing location proofs for a particular site,
and owns a unique identifier. A Witness W is a mobile user who can assert a location
proof for the presence of another mobile device at a particular location. The presence
of the witness does not imply an eye-witness, but rather a spacio-temporal co-location
with the user at the site S. A Witness List WL provides the listing of all registered
witnesses under the coverage of the location authority at a given time. Witnesses are
registered against their cypto-ID. The witness list is preserved at the location authority
and is used to provide the proof of witness’s presence at the site. A Crypto-Id CID is
a cryptographic identity for the user and witnesses, used in all phases of the protocol,
ensuring privacy of the entities participating in the process. The users and witnesses
will have the cypto-ID tagged with their certificates. A Location Proof LP is a token
of evidence received by a user when visiting a specific site, and an Asserted Proof
AP is a location proof LP asserted by a valid witness using his crypto-ID. Finally, an
Auditor is an authority who is presented with an asserted location proof and confirms
the legitimacy of the user’s claim of presence at the particular site.

3.3 Threat Model

The two main targets considered in our threat model are the place and time of location
proofs corresponding to a user. An adversary should not be able to create a proof for a
location that the user has not visited, or a proof for a different time than the actual time
of visit. An additional target is the identity and location privacy of users and witnesses.
An attacker may create a dossier of users visiting a given location, and learn the location
history and identities of other users it has encountered in the past. Unlike previous works
[1, 8, 9], we assume the users, location authorities, or witness devices may be malicious
and can collude with one another. It is assumed that the user has full access to the storage
and computation of the device, can run an application on the device, and can delete,
modify, tamper, or insert any content in the data stored on the device. The location
authority or the user can create a puppet witness to produce false asserted proofs. We
assume that no entities share their private keys at any point, and a three-way collusion
scenario does not exist. We assume mobile devices are non-shareable private properties

150 R. Khan et al.

and the physical security of the phone depends on the user himself. Additionally, typical
attacks such as MAC address fingerprinting are prevented via known techniques such
as MAC address cloning [28]. According to the protocol, we assume the presence of at
least one witness at the given site who is willing to provide an assertion.

3.4 System Model

We assume the mobile devices carried by users are WiFi enabled. The devices have lo-
cal storage for storing the proofs. A device visiting a site can find the location authority
over the wireless network. It is assumed that the user, location authority, and witness
can access each others’ public key for a given Crypto-Id. The location authority period-
ically updates the available witness list. Witnesses are chosen at random for asserting
a location proof. Upon completion of a schematic communication between the entities,
the user is presented with a location proof and is stored on the user’s device. At a later
time, the user presents the location proof to an auditor.

4 Security and Challenges in Location Proofs

This section includes the fundamental security challenges which exist in any location
proof protocol. We present the previous studies and illustrate the possible attacks in
such distributed architectures for generating location proofs.

4.1 Challenges and Attacks

In our opinion, possibility of tampering with data in distributed flexible environments
has a higher probability compared to any centralized architectures. Hence, we aim at
making location assertions tamper-evident, assuming that all information are suscepti-
ble to tampering, as opposed to being tamper-proof. Therefore, we focus on ensuring
detection of different types of attacks while generating a proof of presence. We list the
potential attacks as follows.

False presence: A malicious user can create a fake location proof on his own, without
being physically present at the location. The fake proof is supposed to resemble an ac-
tual proof, which the user could have actually collected from a valid location authority.

False timestamping (backdating, future dating): In a backdating attack, the user and the
location authority colludes to create a proof for a past time. Conversely, in future dating,
the location authority and a user colludes to generate a proof with a future timestamp.

Implication: A location authority and/or a witnesses can falsely accuse a user of his
presence at a certain location. In this case, the malicious location authority and witness
colludes to generate a false proof of presence for the user.

False assertion: A user can collude with a witness, and generate a falsely asserted
location proof. The truth value in such a fake proof is reinstated with the assertion
received from the other user.

Denial of presence: A user can visit a location and at a later time, deny his presence at
that location. In such a case, the user actually denies the validity of a certain location
proof that has been been generated upon his presence at that particular location.

Location Proof Assertion for Mobile Devices 151

Proof switching: The user is expected to have full access to all storage facilities on
his mobile device. Hence, the user utilizes the legitimate proof and manipulates the
information to create a false proof for a different location.

Relay attack: A user can use a proxy to relay the requests and collect a location proof.
Alternatively, a location authority can maliciously relay assertion requests with the wit-
ness not being present at the site.

Sybil attack: A Sybil attack occurs when a single user generates multiple presence
and identities [29]. A user can launch a Sybil attack by generating multiple identities
representing a user and a witness and provide false endorsements for location proofs.

Denial of witness’s presence: At the time of proof verification, the user can claim the
absence of witnesses at the site or falsely claim an assertion to be counterfeit. The user
and the location authority may also collude and claim the non-availability of witnesses.

Privacy violation: An attacker may capture an asserted location proof generated for a
user, and discover the identity of the user and/or the witness.

5 A Secure Location Proof Assertion Scheme

In this section, we present the design, schematic definitions, architecture and the proto-
col for a secure location proof assertion scheme.

5.1 Schematic Description of Secure Location Proof Assertion

In this section, we define the schematic description of each message in all steps of the
protocol, in sequence of their occurrences. Initially, the user U, sends a proof request,
PReq, to the location authority, L.

pReq =< CIDU, tU > (1)
Here, in expression 1, CIDU is the cryptographic identity of the user U, and tU, is the

timestamp from the user U’s mobile device. To state that, user U has visited a site with
location authority identifier L, at time tL – the current time at the location authority L,
the location authority prepares a location statement LS as follows:

LS =< CIDU, L, tL > (2)
Hence, the location authority creates a location proof LP, to be sent to the user U,

using the location statement LS, formed in expression 2. Additionally, the location au-
thority L also forms the assertion request AReq for LP to be sent to witness W.

LP = AReq =< LS, SL(LS) > (3)
Here, in expression 3, SL(LS) represents the digital signature computed on location

statement LS, from expression 2, using the location authority’s private key. Thus, the
location proof LP is sent to user U, and an assertion request AReq is sent to the witness
W. Next. the asserted statement AS is created by a witness W to assert the AReq. The
assertion statement is prepared as follows:

AS =< CIDW, CIDU, L, h(LP), tW > (4)
In expression 4, CIDW and CIDU are the cryptographic identifiers for the witness W,

and the user U respectively. Additionally, tW is the signed asserted timestamp from the
witness’ mobile device. The witness includes h(LP), a cryptographic hash of the LP.
Subsequently, the witness W prepares an assertion A, as shown below.

152 R. Khan et al.

A =< AS, SW(AS) > (5)
The assertion in expression 5 includes an asserted statement AS from expression 4,

and SW(AS) is a signature computed by the asserting witness W on AS. Thus, an asserted
proof of presence at site S, created by the witness W, is a pair of values: the location
proof LP, and the assertion A. The asserted location proof, ALP is defined as thus:

ALP =< LP,A > (6)
The user U receives ALP as shown in expression 6, and issues a verification request

VReq to be sent to the witness W as follows:
V Req =< ALP,LP, h(ALP,LP), tu > (7)

In expression 7, the user U had already received the location proof LP (expression
3) and the asserted location proof ALP (expression 6). The user includes a signed times-
tamp tu for the current time on the user’s device, and h(ALP,LP), a cryptographic hash
function on both the location proof LP and the asserted proof ALP. The verification
response V, sent by the witness W is defined as:

V =< R, tWV > (8)
Here, R ∈ {YES, NO}, and tWV is the response timestamp for the witness verifica-

tion from the witness’ mobile device. The verification statement VS is thus defined as
follows:

V S =< V, SW(V) > (9)
In expression 9, V is the verification response from expression 8, and SW(V) is a

signature computed by the witness W on V. Finally, the acknowledgement ALPAck is
created by user U and sent to the location authority L as follows:

ALPAck =< SU(LP,AS), h(LP,AS), tt > (10)
The acknowledgement ALPAck shown in expression 10 includes SU(LP,AS), a cryp-

tographic signature from user U, on the location proof LP and the assertion statement
AS. This is then sent to the location authority L, to be stored, as a receipt for the asserted
location proof received by the user U.

5.2 Location Assertion Protocol Architecture

User Witness
Location
Authority

(a)

(c)

(d)

(e)

(f)

(g)

PReq

Localization

LP
AReq

ALP
ALP

(h)

(i)

VReq

VS

ALPAck

(b)

n
ty

Fig. 1. Sequence Diagram for the Location
Assertion Protocol

In our proposed architecture, we assume
that each entity is registered with a ser-
vice provider. Users, witnesses, and loca-
tion authorities register with the centralized
system, with a unique identification crite-
ria, such as the Social Security Number,
passport number, driving license, and trade
license. The entities will get a crypto-ID
tagged with a certificate containing the pub-
lic/private keypair. This is the only compo-
nent which requires a centralized mode of
operation. However, we claim that this is a
one-time procedure, and does not constitute
any obstruction as a bottleneck in rest of
the protocol. Secondly, there exists a mech-
anism to distribute the public certificates for all the entities. The user U, witness W, and

Location Proof Assertion for Mobile Devices 153

the location authority L, should be able to collect each other’s public-key certificates.
Finally, it is given that all communications between the user U, the location authority
L, and the witness W, take place over secure socket layer (SSL) connections and public
key encryption. The sequence of interaction for creating an asserted location proof is
illustrated in figure 1 and is described as below.
(a) Location authority discovery and proof request: Each location is identified by

a unique global identifier and are publicly available (via a lookup), or that the
location authorities periodically broadcast their information on the local network.
The user obtains the identity of the location authority and sends a location proof
request PReq to the location authority L, as shown in expression 1.

(b) Secure localization: Upon receiving the PReq message, the location authority runs
a secure localization step to determine whether the device is actually present there.

(c) Location proof generation: The location authority L generates the location proof
LP, as shown in expression 3, and sends it to the requesting user.

(d) Proof assertion request: The location authority L has a witness list WL consisting
of the available witnesses willing to serve for asserting location proofs. The loca-
tion authority L sends an assertion request AReq, as shown in expression 3, to a
randomly selected witness W from the witness list WL.

(e) Asserted message creation: The witness W receives the assertion request AReq
and verifies the location statement LS included within AReq. Upon a successful ver-
ification of all information, the asserted location proof ALP, as shown in expression
6, is sent to the location authority L.

(f) Assertion verification and relay: The location authority L receives and verifies
the asserted location proof ALP. The location authority L verifies the time lapse
between sending an assertion request AReq and receiving the asserted location
proof ALP, i.e., difference between tL available from ALP and the current time at
the location authority L. A maximum threshold for the time difference is enforced
to detect any proxy forwarding delay by the witness. Upon successful verification,
the location authority L relays the asserted location proof ALP to the user U.

(g) Verification request: Once the user U has received both the location proof LP and
the asserted location proof ALP, he sends the verification request VReq directly to
the witness, as shown in expression 7.

(h) Verification response: The witness W receives the verification request VReq and
validates the assertion provided earlier. The witness calculates the difference be-
tween the time tW, available in the assertion statement AS (expression 4), with the
current time on the witness device. An acceptable threshold for the time difference
ensures that the user is not a proxy relay attack. If successful, the witness W creates
a verification statement VS, as shown in expression 9, and sends it to the user U.

(i) Location proof receipt: Finally, user U receives the verification statement VS
from the witness W. The user U verifies the difference between the time in the
verification request tu, and the current time on the user’s device when it receives
the verification response. A maximum threshold for the delay ensures that the wit-
ness is not proxying the assertion and the verification requests. Once verified, the
user creates an acknowledgement ALPAck, as shown in expression 10, and sends it
to the location authority L. The user U then stores the asserted location proof ALP
on his device for the specific site S, and hence, completes the protocol.

154 R. Khan et al.

Subsequently, the location authority L stores the receipt for the location proof and
maintains a publicly visible list of these tickets. At every epoch, it publishes the current
state of this list along with a signature. The published list is used to prevent back-dating
and future-dating attacks.

6 Security Analysis
In this section, we present an analysis of the security properties of our schemes. We start
by enumerating the different types of attackers and combination of collusions among the
existing entities. Furthermore, we analyse how our scheme can protect against attacks,
which are possible in such colluded environments.

6.1 Collusion Patterns
Table 1. Collusion Models and Corresponding
Threats

Notation Attack

U L W No collusion.

Ū L W False proofs, reordering, denial of pres-
ence, proof switching, relay attack.

U L̄ W Denial of service, implication.

U L W̄ False endorsement, privacy.

U L̄W̄ Implication, relay attack, replay attack.

Ū L W̄ False endorsement, relay attack, Sybil
attack.

ŪL̄ W False proofs, relay attack, replay at-
tack.

ŪL̄W̄ False proofs.

We define the following symbols: hon-
est user U, malicious user Ū , honest lo-
cation authority L, malicious location
authority L̄, honest witness W, and a
malicious witness W̄ . The eight pos-
sible combinations for collusion pat-
terns and the corresponding attacks are
shown in table 1. The protocol ensures
mutual communication among all en-
tities. Thus, any collusions leading to
a fake proof generation can be easily
identified by the valid entity at spe-
cific stages of the protocol. A thorough
analysis on each collusion pattern is
presented in the following sub-section.

6.2 Threat Analysis

We have made a thorough security analysis of all the possible combinations of the user,
location authority, and the witness. Table 1 summarizes the different attack scenarios
and the corresponding threats.

[ULW] All honest entities do not imply a threat of generating false location proofs.

[ŪLW] A malicious user Ū can request false location proofs. However, if the location
authority L and witness W are honest, this attack does not succeed. An honest location
authority L will not sign a false location proof. Additionally, an honest witness W will
not endorse a location statement which is not accompanied by a proof from the location
authority L. In case of a relay attack, the proxy forwarding delay can be detected in step
(h) of the protocol, and thus can be rejected.

[UL̄W] The dishonest location authority L̄ will never have the final receipt from the
user U and thus cannot create a false proof. The honest witness W will also not assert a
location proof, unless it can detect user U’s presence. The malicious location authority
L̄ may provide a false timestamp. However, an honest witness will not endorse a proof
if the timestamp differs a lot from its own timestamp. Additionally, any illegitimate

Location Proof Assertion for Mobile Devices 155

information by the malicious location authority will force the user U, or the witness W
to forfeit the asserted location proof protocol.

[ULW̄] A malicious witness W̄ cannot do any harm, other than denial of service and
privacy violation of the user U. However, the cryptographic identity of the user CIDU

does not allow the malicious witness W̄ to reveal the user’s actual identity. Furthermore,
a falsely asserted location proof will be discarded by the location authority L, before the
location authority L relays the asserted location proof to the user U.

[UL̄W̄] A malicious location authority L̄ can collude with a dishonest witness W̄ and
create false location proofs for a user. However, if the user never participated in a proof
protocol with the location authority, such an attack will not work. The malicious loca-
tion authority L̄ can give a user a backdated or a future dated timestamp. Subsequently,
a colluding malicious witness W̄ can endorse such a false timestamped proof. However,
the user U finally verifies the location proof and the asserted location proof, and has the
option of discarding the protocol by not sending the final receipt for the asserted loca-
tion proof. A relay attack can also be identified by the user U between step (h) and step
(i). The malicious location authority L̄ also has the option for storing a previous proof,
endorsed by a valid witness W, and use it later to launch a replay attack. However, the
user U directly communicates with the witness during endorsement verification. Thus,
in case of any discrepancy with the timing threshold, the user U can discard the proof
completely.

[ŪLW̄] A malicious user Ū and a colluding witness W̄ cannot create falsely asserted
location proofs. The location authority L denies to cooperate with the dishonest user Ū
and the witness W̄ , based on the comparison of the timestamps tU and tW, or any invalid
information included in the process of asserting the location proof. A Sybil attack is also
possible in this case. However, the centralized registration system, a requirement of the
architecture, prevents a user Ū to create a witness profile W̄ on the same device. Addi-
tionally, the location authority warrants for witness devices which are already registered
at the location authority L. A relay attack with a proxy user Ū and a proxy witness W̄
is also detected by the location authority L in steps (b) and (f) respectively.

[ŪL̄W] A malicious user Ū and a dishonest location authority L̄ can collude to create
a false proof with backdated or future-dated timestamp. The falsely created asserted
location proof can be utilized to launch a relay and a replay attack. However, an honest
witness W will not endorse a false proof with an incorrect timestamp. In step (h), from
the time difference between tW and the current time on the device, the witness can
successfully identify a relay or a replay attack and will refrain from sending a positive
response to the user Ū in the verification phase.

[ŪL̄W̄] A three way collusion is not considered in our scheme. However, a backdated
attack can be detected by the auditor if checks the published accumulator by the location
authority for the epoch corresponding to the proof timestamp. The only attack that
is possible here is a post-dating attack, when the user Ū , location authority L̄, and
witness W̄ , collude to create a location proof with a future timestamp, and L̄ does not
publish it in the epoch report. However, we claim that any distributed security protocol
without centralized monitoring requires at least one entity which is valid. Hence, the
successful completion of any security protocol is protected against the legitimate entity,
who plays the role of the situational verifier. Nonetheless, an auditor may impose a

156 R. Khan et al.

stricter proof model involving asserted location proof statements from multiple closely
located location authorities to verify the actual presence.

7 System Evaluation

In this section we present the performance of the designed architecture illustrated utiliz-
ing a prototype implementation. Additionally, we present a comparative analysis of our
protocol against a similar protocol proposed by Luo et al. [8].

7.1 Protocol Implementation

To evaluate the feasibility and performance of the protocol, we developed the prototype
applications for location authority, user and witness. Applications for user and witness
were built on the Android platform. In our experiment, for simluating a user, we used
a HTC Evo 4G smart phone with Android 2.3.3 operating system. The witness was
simulated on a Motorola XT875 smart phone, with Android 4.0.3 operating system. The
location authority was implemented as a desktop application, using JDK 1.6, and ran
it on OSX 10.8.2, equipped with Intel Core i5 1.7 GHz processor and 4GB 1600 MHz
DDR3 RAM. For the testbed network, we used WiFi for communication among the
different entities in the protocol, and generated the asserted location proofs. We used the
RSA (2048 bit) for generating signatures and encryption of the packets. Additionally,
we used SHA-256 for generating the hash values. We assume that all the three entities
have access to each other’s public keys. Hence, the processing delay does not include
the time to access the key over the network.

7.2 Performance Analysis

We evaluated the performance of three important steps of the protocol from the user
application. We recorded the timestamps at different phases of the protocol for 100
complete execution cycles. Initially, we recorded the time lapsed after sending a proof
request PReq to the location authority L, and eventually receiving a location proof LP.
We denote this as LProof Received time. Subsequently, we recorded the time lapsed be-
tween sending the verification request VReq and receiving the verification statement VS
from the witness W, which is denoted here as VS Received time. Finally, we measured
the time required to complete the whole protocol. Figure 2a represents the time required
for each step in every iteration, and figure 3 illustrates the average time required for the
individual steps.

In our proposed scheme, the mean time for LProof Received and VS Received were
228 milliseconds and 362 milliseconds respectively. Although the computation needed
for generating the location proof LP and the verification statement VS is similar (generat-
ing the packet then signing it), the VS Received time is higher than the LProof Received
time. This behavior is natural, as the witness’s device has less computation power than
the location authority’s device.

In the protocol, the location authority L forwards the asserted location proof ALP
to the user U. In the end, the location authority L receives the acknowledgement AL-
PAck receipt from the user U. We measured the time required between these two steps.

Location Proof Assertion for Mobile Devices 157

0 20 40 60 80 100
Nth Attempt

0

200

400

600

800

1000

1200

1400

1600

T
im

e
 (

m
s
e
c
)

LProof Received

VS Received

Protocol Completed

(a) User Application

0 20 40 60 80 100
Nth Attempt

300

400

500

600

700

800

900

1000

T
im

e
 (

m
s
e
c
)

ALPAck Received

VReq Received

(b) Witness & Location Author-
ity

0 20 40 60 80 100
Nth Attempt

200

400

600

800

1000

1200

1400

1600

T
im

e
 (

m
s
e
c
)

ALP Protocol

PLP Protocol

(c) Comparison between ALP
& PLP

Fig. 2. Protocol Performance Evaluation

The time measurement is noted as ALPAck Received on figure 2b, which depicts this
processing delay for each iteration. Additionally, the average time required for ALPAck
Received is shown in figure 3.

The witness W, sends the asserted location proof ALP to the location authority L. The
witness then W waits for the verification request VReq from the user. The time required
between sending the asserted location proof ALP and receiving the verification request
VReq is important from the witness’s point of view. We measured the processing delays
between these two steps, which is denoted as VReq Received. Figure 2b illustrates the
time for each iteration on the witness’s device, with the average time shown in figure 3.

7.3 Performance Comparison

LPro
ofR

ece
ived

VS R
ece

ived

VReq R
ece

ived

ALPAck
 R

ece
ived

ALP Pro
to

ol

PLP Pro
to

co
l

0

200

400

600

800

1000

T
im

e
 (

m
s
e
c
)

Fig. 3. Average Time Required for Different
Steps of the Protocol

To perform a comparative analysis of
our proposed protocol (Asserted Loca-
tion Proof or ALP protocol), we selected
another secure location proof protocol,
namely ‘Proactive Location Proof’ or
PLP protocol, proposed by Luo et al. in
[8]. Both the protocols were compared
based on their time of completion for re-
ceiving the location proof. Figure 2c il-
lustrates the time required to complete
each protocol. The average processing
time for the ALP protocol is 877 millisec-
onds, whereas that of the PLP protocol is
496 milliseconds. Given the fact that we have more phases in our protocol including
numerous encryption and decryption operations, the ALP should be taking a longer pro-
cessing time. However, the comparison demonstrates that the processing time for ALP
is still comparable to rather simplistic models like PLP. Additionally, none of the other
protocols so far have neither considered collusion attacks nor the presence of malicious
location authority.

The results above show some overhead processing in our proposed protocol. How-
ever, it provides an extra level of security by getting the assertion from the witness,

158 R. Khan et al.

hence adding to the trust value of such location proofs. The completion time for the
protocol is still less than 1 second, which is a reasonable latency for practical usage.
Addition of the witness increases the attack surface for the protocol. Nonetheless, we
have proved in section 6 that our proposed protocol is resilient to all combinations of
collusion attacks.

8 Threshold Adjustment

We applied a practical approach to determine the thresholds in different phases of the
asserted location proof protocol. Resistance against relay attacks have been illustrated
using the following experimental setup, where we adjust the optimal values for the
threshold according to the requirements of the system.

8.1 Threshold Initialization

We need three threshold values to identify relay attacks in the protocol. At first, in
step (f) of our protocol, the location authority L verifies the time lapse between sending
AReq and receiving ALP, Δ(LAAReq−ALP), using the threshold TLW to identify a proxy
witness. In step (h), the witness measures the required time between sending ALP and
receiving VReq, Δ(WALP−V Req), and compares this time with the threshold TWU to
detect the presence of a proxy user. Finally, in step (i), the user measures the elapsed
time between sending VReq and receiving VS, Δ(UV Req−V S), and compares it with
the threshold TUW to identify the presence of a proxy witness. The initial threshold
value is set as the mean time of completion for the given phases of the scheme, which
was calculated from 100 experimental executions of the protocol. Subsequently, the
threshold was set at that value to detect the presence of proxy users or witnesses. The
mean values for Δ(LAAReq−ALP), Δ(WALP−V Req), and Δ(UV Req−V S) are thus set
to values for TLW, TWU, TUW at 240.754, 552.464, and 346.004 milliseconds respectively.

8.2 Variable-Distance Threshold Measurements

Table 2. Variable-Distance Measurements

Case Dist. (ft) Time (ms)
U - W 33 381.093
Δ(UV Req−V S) 62 383.232

80 383.232
100 453.131

W - LA 3 235.178
Δ(LAAReq−ALP)30 251.032

50 230.801
70 349.787

U - LA 36 487.437
Δ(WALP−V Req) 93 512.459

110 2120.656
132 1949.892

The next phase of the work included a
variable-distance setup for the protocol. The
recorded times were used to justify the val-
ues for TLW, TUW, and TWU. We placed
the user U, witness W, and the loca-
tion authority LA at varying distances and
recorded the time measurements for each
of Δ(UV Req−V S), Δ(LAAReq−ALP), and
Δ(WALP−V Req). The recorded times for
each of the values for varying distances are
shown in table 2.

The recorded times show that the time in-
tervals tend to increase as the distance be-
tween the entities are increased. Addition-
ally, we observed that the previously set val-
ues for the thresholds do not suffice the purpose of determining the proxy attacks in each

Location Proof Assertion for Mobile Devices 159

0 20 40 60 80 100
Nth Attempt

100

200

300

400

500

600

700

800

900

1000

T
im

e
 (

m
s
e
c
)

Trusted Witness

Proxy Witness

Average + 1.5Std

Average + Std

Average

(a) TLW

0 20 40 60 80 100
Nth Attempt

200

400

600

800

1000

1200

1400

1600

1800

T
im

e
 (

m
s
e
c
)

Trusted Witness

Proxy Witness

Average + 3Std

Average + Std

Average

(b) TUW

0 20 40 60 80 100
Nth Attempt

0

500

1000

1500

2000

2500

T
im

e
 (

m
s
e
c
)

Trusted User

Proxy User

Average + Std

Average

(c) TWU

Fig. 4. Threshold Identification

of the cases. Therefore, the next phase for adjusting the threshold included performing a
relay attack using a proxy witness and user. Subsequently, we utilized the measurements
from the relay attack to adjust our threshold values using a sliding threshold model.

8.3 Relay Attacks using Proxy

The value of the thresholds have been determined using relay attacks. We executed a
relay attack using a proxy to forward messages between two networks. In the first case,
we utilized a proxy to relay packets to a remote network to a witness which is not
not spatially co-located with user and location authority. We calculated the time lapse
between sending VReq and receiving VS for this attack scenario. The recorded TLW’s
and TUW’s for both trusted and proxy witnesses are shown in figure 4a and figure 4b
respectively. Next, we performed a similar experiment using a user proxy. The proxy
was present to relay the packets to the user on the remote network. The recorded TWU’s
for both the trusted and proxy users are shown in figure 4c.

8.4 Sliding Threshold Model

We utilized a sliding threshold model to determine optimal values for TLW, TUW, and
TWU. Initially, we started with a minimum value to specify the optimal threshold, and
observed the percentage of attacks successfully identified. Additionally, we also calcu-
lated the percentage of false alarms when the threshold is set at the given value.

For determining an optimal TUW, we set the initial threshold at [Mean (μ) + Stan-
dard Deviation (σ)]. The threshold for TUW was thus at 552.46 milliseconds, and the
corresponding attack identification and false alarm was found to be at 100% and 6%
respectively.

The threshold was set at different incremental values to reduce the false alarm rate
in the protocol. The next experimental threshold was set at [μ+ 1.3σ], where the attack
identification was still at 100%, while the false alarm had dropped to 14%. With a grad-
ual increase of the threshold, we saw no decrease in the percentage of attacks identified,
but the false alarm rate reduced to 5% by the time we reached [μ+ 2σ]. With TUW set
at [μ+ 3σ], the attack identification was still 100% but the false alarms has reduced to
only 1%. As we increased the threshold beyond [μ+ 3σ], we observed the false alarm

160 R. Khan et al.

rate reduced to the point where it was still 1%, and the percentage of attack identifica-
tion had started to drop. At this point, the sliding threshold was thus fixed at [μ+ 3σ]
for TUW. The values from our simulation has been summarized in table 3.

Table 3. Justification of Threshold Values

Threshold Step Value (%)Attack
Detection

(%)False
Alarm

TWU μ+ σ 552.46 100 6
μ+ 1.3σ 583.50 99 6
μ+ 1.5σ 604.20 93 6
μ+ 1.7σ 624.89 73 5

TLW μ+ σ 240.8 100 6
μ+ 1.3σ 255.14 100 4
μ+ 1.5σ 264.7 100 3
μ+ 1.8σ 279.04 100 3
μ+ 2σ 286.5 98 3

TUW μ+ σ 346 100 15
μ+ 1.5σ 363.5 100 10
μ+ 1.8σ 374 100 8
μ+ 2σ 381 100 5
μ+ 2.3σ 391.5 100 3
μ+ 2.5σ 398.5 100 2
μ+ 3σ 416.01 100 1
μ+ 3.5σ 433.51 100 1
μ+ 4.3σ 461.51 98 1

We applied the same sliding
threshold model to determine the
threshold values for TLW and TWU re-
spectively. Upon similar experimen-
tal evaluations as above, the optimal
threshold for TLW has thus been set
at [μ+ 1.5σ], with a value of 264.7
milliseconds. The corresponding at-
tack identification and false alarm
rates are 100% and 3% respectively.

Similarly, the optimal threshold
for TWU has been found to be at
[μ+ σ] with a value of 552.46 mil-
liseconds. The corresponding attack
identification and false alarm rates
are 100% and 6% respectively. The
results from the sliding threshold
model for TLW and TWU in presented
in table 3.

9 Conclusion

Collection and verification of location proofs have significant real-life applications in
location-based services. In this paper, we introduced a novel architecture for obtaining
secure asserted location proofs from a location authority and a spatio-temporally co-
located witness. Our design is set up on a tamper-evident platform, in contrast to a
tamper-proof concept. We illustrate how our proposed scheme provides defense against
all possible forms of attacks and collusion models within the entities. Currently, we
are developing an algorithm for multi-metric selection of witnesses from the list of
currently registered witnesses based on their trust values in the protocol. For further
research, we will extend the protocol and implement a granular concept of information
visibility to preserve user privacy. We are also working on secure location provenance
chains to allow auditors to validate the user’s order of presence at different locations.

Acknowledgement. This research was supported by a Google Faculty Research Award
and the Department of Homeland Security Grant #FA8750-12-2-0254.

References

1. Saroiu, S., Wolman, A.: Enabling new mobile applications with location proofs. In: Proc. of
HotMobile, pp. 1–6 (2009)

2. VanGrove, J.: Foursquare cracks down on cheaters (April 2010),
http://mashable.com/2010/04/07/foursquare-cheaters/

http://mashable.com/2010/04/07/foursquare-cheaters/

Location Proof Assertion for Mobile Devices 161

3. Maduako, I.: Wanna hack a drone? possible with geo-location spoofing! (July 26, 2012),
http://geoawesomeness.com/?p=893

4. Tippenhauer, N.O., Rasmussen, K.B., Popper, C., Capkun, S.: iPhone and iPod location
spoofing: Attacks on public WLAN-based positioning systems. SysSec Technical Report,
ETH Zurich (April 2008)

5. Blumberg, A.J., Eckersley, P.: On locational privacy, and how to avoid losing it forever (Au-
gust 2009), https://www.eff.org/wp/locational-privacy

6. Davis, B., Chen, H., Franklin, M.: Privacy-preserving alibi systems. In: Proc. of ASIACCS,
pp. 34–35. ACM (2012), http://doi.acm.org/10.1145/2414456.2414475

7. Gilbert, P., Cox, L.P., Jung, J., Wetherall, D.: Toward trustworthy mobile sensing. In: Proc.
of HotMobile, pp. 31–36. ACM (2010)

8. Luo, W., Hengartner, U.: Proving your location without giving up your privacy. In: Proc. of
HotMobile, pp. 7–12 (2010)

9. Waters, B.R., Felten, E.W.: Secure, private proofs of location. Technical report TR-667-03,
Princeton University (January 2003)

10. Brands, S., Chaum, D.: Distance bounding protocols. In: Helleseth, T. (ed.) EUROCRYPT
1993. LNCS, vol. 765, pp. 344–359. Springer, Heidelberg (1994)

11. Chiang, J.T., Haas, J.J., Hu, Y.-C.: Secure and precise location verification using distance
bounding and simultaneous multilateration. In: Proc. of WiSec, pp. 181–192. ACM (2009)

12. Rasmussen, K.B., Čapkun, S.: Realization of RF distance bounding. In: Proceedings of the
USENIX Security Symposium (2010)

13. Narayanan, A., Thiagarajan, N., Lakhani, M., Hamburg, M., Boneh, D.: Location privacy via
private proximity testing. In: Proc. of NDSS (2011)

14. Traynor, P., Schiffman, J., La Porta, T., McDaniel, P., Ghosh, A.: Constructing secure local-
ization systems with adjustable granularity using commodity hardware. In: Proc. of GLOBE-
COM 2010, pp. 1–6 (2010)

15. Brassil, J., Netravali, R., Haber, S., Manadhata, P., Rao, P.: Authenticating a mobile device’s
location using voice signatures. In: Proc. of WiMob, pp. 458–465. IEEE (October 2012)

16. Enge, P., Misra, P.: Special issue on global positioning system. Proceedings of the
IEEE 87(1), 3–15 (1999)

17. Gabber, E., Wool, A.: How to prove where you are: tracking the location of customer equip-
ment. In: Proc. of ACM CCS, pp. 142–149. ACM (1998)

18. Denning, D.E., MacDoran, P.F.: Location-based authentication: Grounding cyberspace for
better security. Computer Fraud & Security 1996(2), 12–16 (1996)

19. Capkun, S., Hubaux, J.: Secure positioning of wireless devices with application to sensor
networks. In: Proc. of INFOCOM, vol. 3, pp. 1917–1928. IEEE (2005)

20. Sastry, N., Shankar, U., Wagner, D.: Secure verification of location claims. In: Proceedings
of the 2nd ACM Workshop on Wireless Security (WiSe), pp. 1–10. ACM (2003)

21. Čapkun, S., Čagalj, M.: Integrity regions: authentication through presence in wireless net-
works. In: Proc. of ACM WiSe, pp. 1–10. ACM (2006)

22. Aruba Networks, Inc., Dedicated air monitors? you decide (2006),
http://www.arubanetworks.com/technology/tech-briefs/dedicated-
air-monitors/

23. Pandey, S., Anjum, F., Kim, B., Agrawal, P.: A low-cost robust localization scheme for wlan.
In: Proc. of WICON, p. 17. ACM (2006)

24. Tao, P., Rudys, A., Ladd, A.M., Wallach, D.S.: Wireless lan location-sensing for security
applications. Computing Reviews 45(8), 489–490 (2004)

http://geoawesomeness.com/?p=893
https://www.eff.org/wp/locational-privacy
http://doi.acm.org/10.1145/2414456.2414475
http://www.arubanetworks.com/technology/tech-briefs/dedicated-air-monitors/
http://www.arubanetworks.com/technology/tech-briefs/dedicated-air-monitors/

162 R. Khan et al.

25. Youssef, M., Youssef, A., Rieger, C., Shankar, U., Agrawala, A.: Pinpoint: An asynchronous
time-based location determination system. In: Proceedings of the 4th International Confer-
ence on Mobile Systems, Applications and Services, pp. 165–176. ACM (2006)

26. Saroiu, S., Wolman, A.: I am a sensor, and i approve this message. In: Proc. of HotMobile,
pp. 37–42 (2010)

27. Khan, R., Zawoad, S., Haque, M., Hasan, R.: OTIT: Towards secure provenance modeling
for location proofs. In: Proc. of ASIACCS. ACM (2014)

28. Martinovic, I., Zdarsky, F., Bachorek, A., Jung, C., Schmitt, J.: Phishing in the wireless:
Implementation and analysis. In: Proceedings of IFIP SEC, pp. 145–156 (2007)

29. Douceur, J.R.: The sybil attack. In: Druschel, P., Kaashoek, M.F., Rowstron, A. (eds.) IPTPS
2002. LNCS, vol. 2429, pp. 251–260. Springer, Heidelberg (2002)

Design Patterns for Multiple Stakeholders

in Social Computing

Pooya Mehregan and Philip W. L. Fong

Department of Computer Science
University of Calgary
Calgary, AB, Canada

{pmehrega,pwlfong}@ucalgary.ca

Abstract. In social computing, multiple users may have privacy stakes
in a content (e.g., a tagged photo). They may all want to have a say on
the choice of access control policy for protecting that content. The study
of protection schemes for multiple stakeholders in social computing has
captured the imagination of researchers, and general-purpose schemes for
reconciling the differences of privacy stakeholders have been proposed.

A challenge of existing multiple-stakeholder schemes is that they can
be very complex. In this work, we consider the possibility of simplification
in special cases. If we focus on specific instances of multiple stakehold-
ers, are there simpler design of access control schemes? We identify two
design patterns for handling a significant family of multiple-stakeholder
scenarios. We discuss efficient implementation techniques that solely rely
on standard SQL technology. We also identify scenarios in which general-
purpose multiple-stakeholder schemes are necessary. We believe that fu-
ture work on multiple stakeholders should focus on these scenarios.

Keywords: Social Computing, Privacy, Multiple Stakeholders, Discre-
tionary Access Control, Owner, Controller, Design Pattern.

1 Introduction

The advent of social computing has brought about fundamental changes in our
understanding of Discretionary Access Control (DAC). In traditional DAC, such
as the Graham-Denning model [6, 12], every object is associated with a distin-
guished user known as the owner of that object. Ownership in DAC is not
about property rights. Rather, the owner is the user who has full administrative
privileges over that object: i.e., that user is granted the privileges to adminis-
trate the access control policies of the resource. Every object has exactly one
owner, though ownership is transferrable. The owner may selectively delegate
some administrative privileges to other users known as the controllers of the
object. This classical picture requires revision in the face of the new privacy
needs of social computing.

In social computing, users often annotate contents that are originally con-
tributed by others (e.g., commenting, liking). At other times, contents come to

V. Atluri and G. Pernul (Eds.): DBSec 2014, LNCS 8566, pp. 163–178, 2014.
c© IFIP International Federation for Information Processing 2014

164 P. Mehregan and P.W.L. Fong

be associated with users other than the original contributors (e.g., photo tag-
ging). There are also scenarios in which multiple users co-contribute a piece of
information (e.g., friendship articulation). In all these scenarios, multiple users
have a privacy stake in a given content: they all have an interest in determining
the access control policy for the content. The classical picture of one owner del-
egating administrative duties to trusted controllers is no longer valid. Different
stakeholders of the same content now have diverse privacy preferences, and they
do not necessarily agree with one another. Yet, existing social computing sys-
tems still insist that the visibility of a content is controlled by a unique “owner”.
The privacy shortcomings of such a practice have been well-documented [19].

Squiccinarini et al. [15, 16] were the first to identify the need to take into
account the often diverse privacy preferences of all stakeholders when the access
control policy of a resource is to be selected. Subsequent works (e.g., [19, 21]),
especially the seminal contributions of Squiccinarini et al. [15–17] and Hu et
al. [7–9], have firmly established the necessity and feasibility of access control
schemes that reconcile the diverse protection needs of multiple stakeholders.
Such schemes have come to be called by different names, such as co-ownership
[15–17], collaborative privacy management/control [8, 15, 17], and multiparty ac-
cess control [7, 9]. For the sake of neutrality, we choose to call this phenomenon
multiple stakeholders. Many of the proposed schemes for multiple stakehold-
ers are very general, equipped with conflict resolution mechanisms that are not
easy to understand by a regular user.

In this paper, we raise the question of simplification: Are there cases in which
general-purpose multiple-stakeholder schemes are overkill? If we focus on spe-
cific instances of multiple stakeholders (e.g., liking, photo tagging, etc), can we
honor the diverse privacy preferences of the stakeholders through simple designs
of access control schemes? Our answers to these questions are univocally affir-
mative. Our goal is not to question the value of general-purpose schemes for
multiple stakeholders. (There are instances in which general-purpose schemes
are absolutely irreplaceable, as we shall see in §8.) Rather, our goal is to sharpen
future discussions of multiple stakeholders, and to put forward access control
schemes that can be used today, by social computing vendors such as Facebook
and Google+. Specifically, our contributions are the following:

1. We propose two design patterns [5] for addressing a large number of multiple-
stakeholder instances (§3, §4). Out of the five examples of multiple stake-
holders that are quoted in the literature, our design patterns can address the
privacy needs of three of them.

2. We identify previously unpublished privacy breaches in some of the above
instances of multiple stakeholders, and propose ways to prevent them (§5).

3. We propose an implementation strategy for the design patterns that rely
solely on standard SQL technology (§6), and demonstrate that the resulting
performance meets the responsiveness requirements of web applications (§7).

4. We carefully identify scenarios in which general-purpose schemes of multiple
stakeholders are needed (§8).

Design Patterns for Multiple Stakeholders in Social Computing 165

2 Related Work

The first work that identifies and addresses the problem of multiple stakeholders
is that of Squicciarini et al. [15, 16]). In their proposal, whenever the privacy
policy of a co-administrated object is to be decided, stakeholders are asked to
take part in an auction. Stakeholders earn credits by creating objects and shar-
ing their ownerships with other users. Using their credits, the stakeholders give
their highest bid for the privacy policy they want to be selected for the co-
administrated object. Then, the highest bid wins the auction and the privacy
policy associated with the winning bid is adopted. The stakeholders then get
taxed from their credits, with amounts depending on how dominant their roles
were in determining the outcome of auction (winning privacy policy). The auc-
tion is based on a mechanism called Clarke-Tax, which in turn is a special case of
Vickrey-Clarke-Groves (VCG). Inference techniques based on Folksonomies have
also been proposed to prevent repetition of auctions for similar objects which
are co-administrated by the same stakeholders. The biggest drawback for this
work is its low usability. Users will have difficulty figuring out how the auction
works and how to translate their privacy to a bid amount. The need for usabil-
ity is later addressed in a subsequent work of Squicciarini et al. [17], in which
majority-voting is used in place of complex auctions.

The work in [19] not only points out the problem of multiple stakeholders (that
some stakeholders do not have control over the objects for which they have a
privacy stake), but also demonstrates concretely its consequences. Specifically,
the authors demonstrated how inference attacks may result from not addressing
the privacy preferences of stakeholders. They also considered a simple solution
in which the conjunction of the stakeholders’ privacy preferences are taken as
the access control policy for the co-administrated object.

In [21], stakeholders collaborate in authoring a policy for a co-administrated
object. The policy can be edited by each of the stakeholders, with the following
restrictions. Every policy is divided into two parts: (a) the weak conditions
and (b) the strong conditions. Weak conditions are negotiable conditions of
access. Each stakeholder can freely modify the weak conditions, even if they
are contributed by other stakeholders. The strong conditions are non-negotiable
conditions of access. When a stakeholder contributes a strong condition, the
authorship is recorded. Only the author of a strong condition can revise it. Con-
flict resolution is performed manually. For example, when the strong conditions
become overly restrictive for a stakeholder, there is the option for revising the ob-
ject itself (e.g., blurring parts of a picture) in order to inspire other stakeholders
to relax their strong conditions.

In the seminal work of Hu and Ahn [7, 9], a comprehensive requirement analy-
sis for the problem of multiple stakeholders is given. Different types of controllers
(i.e., stakeholders) are distinguished: the owner is the user whose profile is host-
ing the co-administrated object; the contributor is the user who contributes
the co-owned object to the owner’s profile; stakeholders are users who have
been “tagged” in the co-administrated object; distributers are users who have
re-shared the co-administrated object on their profiles. Each stakeholder spec-

166 P. Mehregan and P.W.L. Fong

ifies for the co-administrated object her preferred privacy policies as well as a
sensitivity level. The latter is a normalized quantity representing the perceived
privacy sensitivity of the object. Obviously, the privacy policies specified by the
various controllers may not agree with one another. This is the first work that
draws connection between conflict resolution and policy composition. Voting
schemes have been proposed for resolving conflicts among the policies specified
by the controllers.

In [8], another scheme for conflict resolution has been proposed. The funda-
mental assumption is that there is a trade-off between the need for privacy and
the desire to share. The two are operationalized into two corresponding quanti-
ties: privacy risk and sharing loss. A quantitative scheme is devised to trade off
the two quantities.

In the works above, the various instances of the multiple-stakeholder problem
are treated in a uniform manner, hence a generic solution is proposed for all
the problem instances. This approach does not take into account the idiosyn-
crasies of different instances of multiple stakeholders, which occasionally admit
straightforward and efficient solutions. This is the topic to which we now turn.

3 Design Pattern: Simple Annotations

A design pattern is a reusable software design for a recurring software design
problem [5]. In this and the next section, we discuss respectively two design pat-
terns for two well-defined families of multiple-stakeholder scenarios. This section
presents a design pattern known as Simple Annotations.

3.1 Setting

Social computing systems support not only the sharing of contents, but also
further social interactions that are prompted by the initial sharing of contents.
Examples of such social interactions include commenting, liking, tagging and
resharing. We use the term annotations to refer to these secondary contents
that are associated with a shared content. Annotations that are not further
annotated are said to be simple. The more complex subject of higher order
annotations (i.e., annotations of annotations) is discussed in the next section.

The author of an annotation can be different from the author of the annotated
content. When an annotated content is displayed, the annotations are displayed
along with it. In mainstream social computing systems, the author of the an-
notated content is taken to be the DAC owner of the content-annotations
aggregate: i.e., the author of the annotated content is the one who can specify
the privacy setting of both the original content and its annotations.

3.2 Privacy Challenges

The problem of the mainstream design is that the authors of annotations also
have privacy stakes in the visibility of the content-annotations aggregate, and yet

Design Patterns for Multiple Stakeholders in Social Computing 167

they have absolutely no say in the visibility of the annotations that they authored.
In fact, we accept the following as a general design principle in the context of
multiple stakeholders.

Design Principle 1. Every stakeholder of a content shall have a say on the
access control policy that protects the content.

The users of Facebook came to notice this issue when the Ticker [10, 18, 20] (a
real-time news feed which appears at side of the Facebook page) started show-
ing the friends of users their activities such as what they have liked, commented
and shared. Facebook claims that, Ticker is not breaching users’ privacy since
no privacy setting has been changed and the information showed in Ticker is
already there and visible by those who can view it in the Ticker. That is, the
privacy settings of the annotated (i.e., liked, commented, or shared) contents al-
ready allow access to the the content-annotations aggregate. Below is Facebook’s
announcement regarding the privacy of News Feed and Ticker [4]:

“People included in the audience of the post can see your comment or
like in News Feed or ticker as well as other places around Facebook. You
can check who something is shared with by going to the post and hovering
over the audience icon.”

What Facebook fails to appreciate is that the privacy preferences of annotation
authors are not honoured. When a user likes a content, she has absolutely no
control over who may or may not be able to see that she likes the content. In the
following, we explain in concrete terms how the privacy of annotation authors
are breached in the cases of liking, tagging and (re)sharing.

Liking. In Facebook, users can “like” (also “+1” in Google+) a content to show
their support for, affirmation of, or interest in that content. When the content
is displayed, a total number of “likes” is also displayed, and the viewer of the
content may also follow a link to display the full list of users who have liked
the content. When the list is displayed, the following information of each liker
is displayed: (a) display name, (b) thumbnail picture, and (c) link to profile.

A user who expresses her affirmation of a content may want the “like” to
be displayed with discretion. For example, liking a political commentary may
lead to troubles in certain countries, and yet, expressing such affirmations is an
important democratic expression. Currently, there is no mechanism in Facebook
that would allow the liker to control the visibility of his or her likes.

Tagging. Users can tag one another in today’s social network systems. Facebook,
Google+ and Instagram all have this feature. Specifically, users can tag one
another in contents such as pictures, videos and textual information like statuses,
comments and captions, usually by means of a mention tag ‘@’ followed by the
display name of a user.

The tagging of photos has been a classical example for multiple stakeholders
in the literature [7–9, 15, 17, 19]. When a user uploads a photo in which other
users appear, the former is disclosing potentially sensitive information about the

168 P. Mehregan and P.W.L. Fong

latter. This by itself is a privacy issue, but this is not an instance of the multiple-
stakeholder problem. It becomes a multiple-stakeholder scenario when the latter
users are tagged by the former user — when the identities of these users are
explicitly associated with the photo. These tags will be displayed together with
the photo. It was not long ago that Facebook introduced a privacy setting that
requires users to ask for other users’ consent before they can get them tagged in
a content.

Sharing. Facebook users can reshare a content that is originally posted by an-
other user. There are two types of reshares in Facebook: (a) link reshares and
(b) content reshares.

In link reshares, a user u posts a URL l along with a caption. A viewer v of
the posting can reshare l (without the caption). There are two ways in which
user privacy can be breached. First, the original posting of l by u shows both the
total number of reshares, as well as a link that lists all the resharers. When this
link is followed, the identity of v will be disclosed. The situation is analogous to
that of liking. Second, the resharing of l by v is displayed with the phrase “via
u”, which discloses the identity of u. The situation is analogous to tagging.

In content reshares, a user u uploads some content c (e.g., photo) to Facebook.
A viewer v of c can reshare c. Again, there are two privacy concerns in play here.
First, the identity of v appears in a list associated with the posting of c by u.
As noted above, this is analogous to liking. Second, u is clearly a stakeholder for
the resharing of c by v. User u specifies a policy pu,c for controlling access to c,
and v specifies a policy pv,c for controlling access to the reshared c. A user w
can access the reshared c when pu,c ∧ pv,c is satisfied.

3.3 Solution: Separation of Protection

Previous works in multiple stakeholders take the content-annotations aggregate
as an indivisible entity, and thus attempt to address the multiple-stakeholder
problem at that level. Our use of the term “aggregate” to refer to a content and
its annotations is intended to make explicit the fact that we are not dealing with
an atomic entity, but rather a composite one. Recognizing this, we articulate the
following design principle.

Design Principle 2. If every component of an aggregate entity can have a dif-
ferent set of stakeholders, then each component should be protected separately by
a different access control policy.

The applicability of the above principle depends on the allocation of stakeholders.
Notice that a stakeholder of an annotated content also has a privacy stake in

its annotations, for the latter convey information about the former.

Design Principle 3. Every stakeholder of an annotated content is a stake-
holder of its annotations.

In short, an annotation inherits all the stakeholders of the content to which it
annotates. These stakeholders are called inherited stakeholders. Stakeholders
of a content that are not inherited are called principal stakeholders.

Design Patterns for Multiple Stakeholders in Social Computing 169

Consider, for instance, a hypothetical social computing system in which ev-
ery content has exactly one principal stakeholder, namely, the author of that
content. Applying Design Principle 3, a simply annotated content has exactly
one stakeholder (i.e., the content’s author), while a simple annotation has two
stakeholders (i.e., the annotated content’s author and the annotation’s author).
Since every component of a content-annotations aggregate has a different set
of stakeholders, Design Principle 2 mandates that each must be protected by a
separate policy.

How then are we to assign an access control policy to each component? Our
goal is to simplify the design of protection schemes for multiple stakeholders.
Consequently, we make two design choices that are aimed at producing simple
and yet effective protection. The first decision is to minimize the effort of policy
specification that needs to be performed by a user.

Design Decision 4. Every stakeholder u of content c has a preferred policy
pu,c that expresses the privacy preference of u for c. If u is a principal stakeholder
of c, then u will explicitly specify pu,c. Otherwise, u is an inherited stakeholder
of c, c is an annotation of some content c′, and u is also a stakeholder of c′:
then pu,c = pu,c′ .

In short, preferred policies are inherited by annotations. A second design choice
is to realize Design Principle 1 by simple conjunction of preferred policies.

Design Decision 5. Suppose Sc = {u1, . . . , uk} is the set of stakeholders for
content c, and their preferred policies for c are pu1,c, . . . , puk,c. Then the access
control policy pc for content r is

∧
u∈Sc

pu,c.

We use the following examples to illustrate how the design works out in practice.

Liking. The author of a content c that can be liked will specify a preferred policy
p1 for c. Because the content author is the sole and principal stakeholder of the
content, the visibility of c is controlled solely by p1. When another user “likes”
c, she will be given the opportunity to specify a preferred policy p2 for this like
entry. The access control policy for this like entry is p1 ∧ p2.

When c is displayed, the total number of likes will be displayed, together with
a link for displaying the “likers”. When that link is followed, not all likers are
displayed. The system will check the access control policy of each like entry, and
display only those that are accessible by the viewer.

Tagging. In the same vein, every tag is protected separately from the content
to which the tag belong. The content itself is protected solely by the preferred
policy of its author, who is the principal stakeholder of the content. The principal
stakeholder of a tag is the user identified by the tag. This user will specify a
preferred policy for the tag. The author of the original content is an inherited
stakeholder of the tag. Consequently, each tag is protected by the conjunction
of two preferred policies: (a) the preferred policy of the content, and (b) the
preferred policy of the user who is being tagged. When the content is displayed,
only a subset of its tags are displayed. Tags for which the access control policy is

170 P. Mehregan and P.W.L. Fong

not satisfied are not displayed. To simplify policy specification, a user may have
a default policy for controlling the visibility of tags that identify her.

Sharing. Recall the three kinds of privacy concerns surrounding link and content
resharing. First, the listing of resharers along with the original posting is anal-
ogous to liking, and thus can be handled by a scheme like the one we proposed
above for liking. Second, the “via” clause in a reshared link behaves like a tag,
and thus it can be handled by a scheme like the one we proposed above for tag-
ging. Third, a reshared content is protected in Facebook using exactly the same
design as outlined in Design Decisions 4 and 5, which speak to the robustness of
these two design decisions.

4 Design Pattern: Higher Order Annotations

The design pattern we present in this section handles higher order annota-
tions. That is, an annotation can be further annotated. The classical example
of such higher order annotations is commenting. A posting in a forum can be
annotated by comments, which in turn can be further commented on.

4.1 Replying Comments

In most of today’s social network systems and online communities, users are able
to leave comments on the contents created by themselves or other users. One
type of comments mimic the structure of emails. In this type of comments, a user
explicitly selects the content that her comment replies to (just like replying to an
email). This is a common practice in forums and online communities. Therefore,
comments of this type constitute a tree-like structure with the original content
as the root of the tree and different threads of comments become branches of
the tree. We call this type of comments replying comments because of their
resemblance to replying emails. Facebook has added replying comments in the
posts that have several hundreds of comments. However, the depth of the tree
of comments cannot grow more than two in this case.

Design Principles 1, 2 and 3, and Design Decisions 4 and 5 all apply to this
setting. Suppose c0, c1, . . . , ck is a thread of contents, such that c0 is a non-
annotation content (root), and ci is annotated by ci+1. Let ui be the author (and
thus principal stakeholder) of ci. Then the stakeholders of ck are u0, u1, . . . , uk.
Each ui must explicitly specify a preferred policy pi for ci. Preferred policies are
inherited, and thus the access control policy for ck is the conjunction

∧k
i=0 pi.

4.2 Appending Comments

Replying comments do not cover all types of commenting mechanisms in social
computing. A notable exception is the mechanism that we call appending com-
ments, which is widely deployed in many social network systems. A comment
that a user creates gets appended to the end of all the existing comments for the

Design Patterns for Multiple Stakeholders in Social Computing 171

original contents (hence appending comments). Unlike replying comments, this
type of comments has less structure than replying comments, and thus it makes
the allocation of stakeholders more ambiguous. In the worst case, a newly in-
troduced appending comment may be (implicitly) responding to all the existing
comments (and thus annotating all preceding comments as well as the original
content). Consequently, rather than a tree structure, the original content and
its appending comments form a sequence c0, c1, . . . , ck, where c0 is the original
content, and c1, . . . , ck are the appending comments.

Applying Design Principles 1, 2 and 3, and Design Decisions 4 and 5 to this
situation yields the following. Suppose ui is the author (and thus principal stake-
holder) of ci, and pi is the preferred policy explicitly specified by ui for ci. The
stakeholders of ci are u0, u1, . . . , ui. Therefore, the access control policy for ck
will be the conjunction

∧k
i=0 pi. Note the difference between this conjunction

and the one for replying comments. In the case of replying comments, the ac-
cess control policy of a comment is the conjunction of the preferred policies of
the ancestors of that comment. In the case of appending comments, the access
control policy of a comment is the conjunction of the preferred policies of all the
preceding comments.

4.3 Hybrid Solution for Comments

The scheme proposed above for appending comments has a drawback analogous
to a well-known problem in Low Watermark Model of Biba [2]. The accessibility
of comments becomes increasingly restrictive as users create more and more
comments: if a user is able to view a highly restrictive comment (restrictive in
terms of access control policy), then this user will not be able to leave a comment
with a less restrictive access control policy.

To overcome this drawback, we propose a hybrid solution, in which a user
may annotate a content by either appending comment or replying comment.
Comments are by default appending comments. The author of an appending
comment implicitly consents to adopting the most liberal preferred policy (i.e.,
everyone). Consequently, the access control policy of an appending comment will
be the same as the access control policy of the content to which the appending
comment is annotating. If a user wants to explicitly specify a preferred policy,
then the user may introduce a replying comment (she will need to point to a
specific comment to which she is replying). This preferred policy will not affect
the accessibility of the appending comments at a higher level. This prevents the
low-watermark effect of pure appending comments, but also provides flexibility
of protection offered by replying comments. It is easy to add this feature to an
existing social computing system that features appending comments.

5 Relationship Disclosure via Annotations

Annotations create a channel by which user relationships can be inferred. Face-
book (also Google+) discloses the “audience” of a content to its viewers.

172 P. Mehregan and P.W.L. Fong

The “audience” is essentially the access control policy of the content. Suppose
users u and v prefer to hide their friendship from other users. To that end, they
set the accessibility of their friend lists to “only me”. Suppose further that u
shares a content c with friends, and subsequently v likes c, but v sets the pre-
ferred policy of the like to “everyone”. Suppose now an observer w comes along.
User w is a friend of u, and thus w can view c. When w examines the audience
of c, w becomes aware that only friends of u can view c. User w then notices
that v likes c. Now w can infer that v is a friend of u. What u and v are not
aware is that simply by making c and its annotations visible could lead to the
disclosure of their relationships.

The above inference is possible because w can identify the audience of c. We
believe that Facebook (also Google+) discloses the audience of a content in order
to warn annotators of the visibility of the content. Our solution of protecting an
annotated content and its annotations separately (§3 and §4) removes the need
for disclosing the “audience” of a content. Without knowing the exact access
control policy, the attacker cannot infer relationships with certainty.

Suppose we are paranoid, and we worry that the observer w may be able to
guess that the access control policy of the above content is “friends” (maybe by
observing that other contents of u are usually protected by the “friends” pol-
icy). Then relationship disclosure will still be possible. We propose here another
solution which tackles this paranoia. Suppose pc is the access control policy of
a content c that is created by user u. Suppose pv,a is the preferred policy of an
annotation a of c, where a is contributed by v. Suppose pf is the access control
policy of the friend list of u. Then we set the access control policy pa of annota-
tion a to be pc ∧ pv,a ∧ pf . In general, relationship inference can be prevented if
the access control policy that protects an annotation (pa) is at least as restrictive
as the one protecting the relationship (pf).

6 Implementation Strategy

The two design patterns presented in §3 and §4 refrain from displaying all annota-
tions (as is done in existing social computing systems). Instead, each annotation
is guarded by a separate access control policy, and only the accessible annota-
tions are displayed. This last feature calls for special implementation techniques.

Open Accessibility Queries. A typical Policy Decision Point (PDP) must perform
what we call definite accessibility checks in order to test whether a given
requestor may access a given resource. To list the annotations that are accessible
by a requestor, a naive implementation will make a database query to collect
all annotations, and then procedurally iterate through the annotations, filtering
away the ones that fail the accessibility check. Such an implementation is likely
unacceptable in performance.

A more efficient implementation will push the work of accessibility filtering
to the database management system, which is equipped with highly efficient
indexing and query optimization technologies. In essence, we need to be able to

Design Patterns for Multiple Stakeholders in Social Computing 173

Table Columns Indexes

Friends

ID (int) Clustered: ID (Primary Key)
UserID1 (int) Non-Clustered: UserID1 and UserID2
UserID2 (int) Non-Clustered: UserID1 Include UserID2

Non-Clustered: UserID2 Include UserID1

Resources

ResourceID (int) Clustered: ResourceID (Primary Key)
PolicyID (int) Non-Clustered: ParentID and RootID Include ResourceID
OwnerID (int) Non-Clustered: OwnerID and ParentID
ParentID (int) Non-Clustered: ParentID
RootID (int) Non-Clustered: PolicyID and ParentID Include ReaourceID and OwnerID

Non-Clustered: RootID Include ResourceID

Users UserID (int) Clustered: UserID (Primary Key)

Fig. 1. Database tables and their columns and indexes

evaluate open accessibility queries: Given a requestor, find all the accessible
resources of a certain kind (e.g., annotations of a given content).

There are two variations to this query: one involving only simple annotations,
and the other involving higher order annotations. We present in the following
the high-level idea of how open accessibility queries can be answered in each
case, using solely standard SQL technologies.

Modelling a Social Network System. Figure 1 shows the relational database
tables that we use as basis for articulating our implementation strategy. Real
implementations will probably contain more details, but we believe our tables
capture the essence of a social network system. The Users table tracks user
identifiers. The Friends table captures friendship among users. The Resources
table captures resources, their preferred policies (enumerated type: only me,
friends, friends of friends, everyone), author, and, in the case of annotations, the
content to which this resource is annotating as well as the root of the annotation
tree.

Open Accessibility Queries via Views. To support open accessibility queries, a
view (V Access) can be created to relate users to resources that the former can
access (Fig. 2). Such a view allows us to query the set of resources that a given
user may access. The view is the union of four different views, one for each of the
four modes of access (i.e., only me, friends, friends of friends, everyone). Each of
the four views relates users to resources with policies granting the corresponding
mode of access.

Fig. 3 shows stored procedures for retrieving those annotations of a given
resource that are accessible to a given user: one procedure for simple annotations,
and another for higher order annotations. The reason for using stored procedures
instead of inline queries is to optimize the execution time.

7 Performance Evaluation

This section demonstrates that the performance of the implementation strategy
as proposed in the last section has reasonable performance.

174 P. Mehregan and P.W.L. Fong

CREATE VIEW View_Friends AS
SELECT f1.UserID1, f1.UserID2 FROM Friends AS f1
UNION ALL
SELECT f2.UserID2, f2.UserID1 FROM Friends AS f2

CREATE VIEW V_Owner_Acc AS
SELECT RootID, ParentID, ResourceID, OwnerID AS UserID
FROM Resources

CREATE VIEW V_Friends_Acc AS
SELECT r.RootID, r.ParentID, r.ResourceID, v.UserID2 AS UserID
FROM Resources AS r

JOIN View_Friends AS v ON r.OwnerID = v.UserID1
WHERE (r.PolicyID = 1) OR (r.PolicyID = 2)

CREATE VIEW V_FOF_Acc AS
SELECT r.RootID, r.ParentID, r.ResourceID, F2.UserID2 AS UserID
FROM Resources AS r

JOIN View_Friends AS F1 ON r.OwnerID = F1.UserID1
JOIN View_Friends AS F2 ON F1.UserID2 = F2.UserID1

WHERE (r.PolicyID = 2)

CREATE VIEW V_Everyone_Acc AS
SELECT r.RootID, r.ParentID, r.ResourceID, u.UserID
FROM Resources AS r

CROSS JOIN Users AS u
WHERE (r.PolicyID = 3)

CREATE VIEW V_Access AS
SELECT * FROM V_Owner_Acc UNION SELECT * FROM V_Friends_Acc

UNION SELECT * FROM V_FOF_Acc UNION SELECT * FROM V_Everyone_Acc

Fig. 2. View definitions for reverse accessibility check

7.1 Dataset

Social Network Data. We used an anonymized social network dataset (4,847,571
nodes and 68,993,773 edges) created from LiveJournal [1, 11] and hosted by
Stanford Large Network Dataset Collection. LiveJournal is a social network with
estimated 10 to 100 millions of users. Users can have blogs and add one another
as friends. Friendship in LiveJournal is directed. We therefore created a database
view to represent the symmetric closure of the friendship relation, thereby mak-
ing friendship symmetric as in Facebook.

Resources Data. We generate the resources that are being protected by access
control. Each resource has a privacy policy chosen uniformly at random from
{0, 1, 2, 3}, where 0, 1, 2 and 3 correspond to Only Me, Friends, Friends of
Friends and Everyone respectively. These are the default privacy policies avail-
able in Facebook. Each resource’s owner is selected uniformly at random from
the set of all users in the dataset. Each resource can be either a content or an
annotation. Denote by R the set of all resources, C the set of (non-annotation)
contents, and A the set of annotations. We have: R = C & A. We design two
separate configurations of experiments, one for simple annotations and another
for higher order annotations. As a result, the way we relate annotations to

Design Patterns for Multiple Stakeholders in Social Computing 175

CREATE PROCEDURE SP_Can_Access @UserID INT, @ResourceID INT AS
BEGIN
SELECT r.ResourceID FROM
(SELECT va.ResourceID FROM View_Access AS va

WHERE (va.UserID = @UserID) AND (va.ResourceID = @ResourceID))t
JOIN Resources AS r ON r.ParentID = t.ResourceID

JOIN View_Access AS va ON va.ResourceID = r.ResourceID
WHERE va.UserID = @UserID
END

CREATE PROCEDURE SP_Recursive_Can_Access @UserID INT, @ResourceID INT AS
BEGIN
WITH Recursive_Can_Access (ResourceID, Level) AS
(SELECT ResourceID, 0 AS LEVEL
FROM View_Access
WHERE ResourceID = @ResourceID AND UserID = @UserID
UNION ALL
SELECT va.ResourceID, LEVEL + 1
FROM View_Access AS va

JOIN Recursive_Can_Access AS r ON va.ParentID = r.ResourceID
WHERE va.UserID = @UserID AND va.RootID = @ResourceID)

SELECT ResourceID, LEVEL
FROM Recursive_Can_Access
END

Fig. 3. Procedures for retrieving simple and higher order annotations

contents differ for each configuration. Below we show how we relate annotations
to contents in each configuration.

The Simple Annotations Configuration. We randomly generate a function f :
A → C to assign annotations to contents. The generation of f is controlled by

a parameter ratio =
⌊
|A|
|C|

⌋
, which is the average number of annotations that

each content has. Function f maps each element in domain A to an element in
codomain C uniformly at random with probability 1

|C| .

The Higher Order Annotations Configuration. We randomly generate a function
f : A → R to map annotations to resources. We generation of f is again con-

trolled by the parameter ratio =
⌊
|A|
|C|

⌋
. The constraint which function f must

satisfy is that annotation assignment must result in a forest (disjoint union of
trees) over R (no circles).

7.2 Setup

The experiments are conducted both on a consumer-scale machine (aka local)
and the Microsoft cloud called Windows Azure (aka Azure). The results from
both environments are reported. We repeat the experiments in two character-
istically different computing environments to give an idea of the range of per-
formance that one can expect in reality. The consumer-scale machine is but a
notebook computer, and thus it represents the pessimistic lower bound of per-
formance. The Azure environment is likely more representative of the kind of
server-side capability that a social computing vendor possesses.

176 P. Mehregan and P.W.L. Fong

Fig. 4. Performance figures for the two experimental configurations, each repeated in
both the local and Azure environment

The local machine is equipped with Microsoft SQL Server (2005 and 2012) and
64-bit Windows 7 Professional (Service Pack 1), and has the following hardware
configuration: 2.4 GHz Intel Core 2 Duo Processor, 4 GB 1067 MHz DDR3
Memory, SATA disk. The database is later migrated to Windows Azure, and
experiments are conducted on the SQL server provided in Windows Azure. The
database is hosted on a Windows Azure server located in north central USA.
Most of the experiments on Azure are run around midnight when we conjecture
there is less load on the server.

7.3 Measurements

For each of the two configurations (simple annotations and higher order annota-
tions), we measure the execution time of submitting the corresponding query in
Fig. 3 to the SQL Server. The measurement is repeated for 1000 times, each with
randomly chosen arguments (repetitive arguments are avoided), and the average
execution time is computed. Each query receives two arguments: (a) a user of
the social network and (b) a content. The users are chosen in such a way that
they have access to the content itself according to that content’s access control
policy. The result set for these queries are the annotations of that content for
which the user is allowed to access.

7.4 Results and Interpretation

Fig. 4 shows the response time for retrieving accessible annotations. Note that,
when a consumer-scale machine (local) is used, the retrieval time is between
100−−350milliseconds.When a server-scalemachine (Azure) is used, the retrieval
time is no higher than 70 milliseconds.

According to [14, Chapter 5] and [13], the following response time limits must
be considered in interactive applications. (1) 0.1 second is the limit for the users
to feel that system works instantaneously and that they are directly performing

Design Patterns for Multiple Stakeholders in Social Computing 177

the manipulation (typing in a text box and viewing the text typed simultane-
ously). (2) 1.0 second is the limit for the users to keep their flow of thoughts
and they feel they are freely navigating (although they feel the delay, they also
feel the computer is working). (3) 10 seconds is the limit to keep users atten-
tion. Taking into consideration network latency (30 − 300 milliseconds for web
sites such as Facebook [3]), and using server-scale machines like Windows Azure,
response time remains in the acceptable range of 0.1 to 1.0 second.

8 Discussions and Future Work

Of the five classical examples of multiple stakeholders (i.e., tagging, commenting,
sharing, foreign contents, and friendship articulation), the design patterns pro-
posed in this work can address three of them with very simple designs of access
control. The core observation that we depend on is Design Principle 2, which
asserts that components of composite objects should be protected by separate
access control policies when the stakeholders of the components are different.

The above implies that there are two classes of multiple-stakeholder scenarios
that cannot be addressed in the manners suggested in this work.
1. Joint Assertions. Some contents are atomic: they are not made up of sep-

arately identifiable components. An example is the assertion of a relationship
between two parties. Such contents are created under the consent of multiple
parties (e.g., befriending requires the consent of the two friends), and thus
multiple stakeholders are involved.

2. Collaborative Authoring . Some contents, such as wiki pages, are com-
posite, but each must be taken as a whole. These contents are results of
collaboration among multiple authors, and yet authorship is attributed to
the entire product and cannot be attributed to the parts. Thus the finished
product affects the privacy of multiple stakeholders.

In these 2 cases, general-purpose schemes for multiple stakeholders
[7–9, 15–17, 21] are absolutely irreplaceable. Future work in the study of protec-
tion schemes for multiple stakeholders should focus on the above two classes of
scenarios.

Acknowledgments. This work is supported in part by an NSERC Discovery
Grant and a Canada Research Chair.

References

1. Backstrom, L., Huttenlocher, D., Kleinberg, J., Lan, X.: Group formation in large
social networks: Membership, growth, and evolution. In: Proceedings of KDD 2006,
Philadelphia, PA, USA, pp. 44–54. ACM (2006)

2. Biba, K.J.: Integrity considerations for secure computer systems. Technical Re-
port ESD-TR-76-372, Electronic Systems Division, Air Force Systems Command,
United States Air Force (April 1977)

178 P. Mehregan and P.W.L. Fong

3. CityCloud. Some interesting bits about latency (August 2012), https://www.

citycloud.com/city-cloud/some-interesting-bits-about-latency/

4. Facebook Help Center (August 2013),
https://www.facebook.com/help/www/255898821192992

5. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Addison Wesley
(1994)

6. Graham, G.S., Denning, P.J.: Protection: Principles and practice. In: Proceedings
of the 1972 AFIPS Spring Joint Computer Conference, Atlantic City, New Jersey,
USA, vol. 40, pp. 417–429 (May 1972)

7. Hu, H., Ahn, G.-J.: Multiparty authorization framework for data sharing in online
social networks. In: Li, Y. (ed.) DBSec 2011. LNCS, vol. 6818, pp. 29–43. Springer,
Heidelberg (2011)

8. Hu, H., Ahn, G.-J., Jorgensen, J.: Detecting and resolving privacy conflicts for
collaborative data sharing in online social networks. In: Proceedings of ACSAC
2011, Orlando, Florida, USA, pp. 103–112 (2011)

9. Hu, H., Ahn, G.-J., Jorgensen, J.: Multiparty access control for online social net-
works: Model and mechanisms. IEEE Transactions on Knowledge and Data Engi-
neering (2013)

10. Kumar, M.: How Facebook Ticker Exposing Your Information and Behavior With-
out Your Knowledge (October 2011), http://thehackernews.com/
2011/10/how-facebook-ticker-exposing-your.html

11. Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Community structure in
large networks: Natural cluster sizes and the absence of large well-defined clusters.
Internet Mathematics 6(1), 29–123 (2009)

12. Li, N., Tripunitara, M.V.: On safety in discretionary access control. In: Proceedings
of IEEE S&P 2005, Oakland, CA, USA, pp. 96–109 (May 2005)

13. Miller, R.B.: Response time in man-computer conversational transactions. In: Pro-
ceedings of the 1968 AFIPS Fall Joint Computer Conference, Part I, San Francisco,
CA, USA, vol. 33, pp. 267–277 (December 1968)

14. Nielsen, J.: Usability Engineering. Morgan Kaufmann (1993)
15. Squicciarini, A.C., Shehab, M., Paci, F.: Collective privacy management in social

networks. In: Proceedings of WWW 2009, Madrid, Spain, pp. 521–530 (2009)
16. Squicciarini, A.C., Shehab, M., Wede, J.: Privacy policies for shared content in

social network sites. The VLDB Journal 19(6), 777–796 (2010)
17. Squicciarini, A.C., Xu, H., Zhang, X.L.: CoPE: Enabling collaborative privacy

management in online social networks. Journal of the American Society for Infor-
mation Science 62(3), 521–534 (2011)

18. The Social CMO. New Facebook Ticker Is Invasion of Privacy (September 2011),
http://www.thesocialcmo.com/blog/2011/09/new-facebook-ticker-is-

invasion-of-privacy/

19. Thomas, K., Grier, C., Nicol, D.M.: Unfriendly: Multi-party privacy risks in social
networks. In: Atallah, M.J., Hopper, N.J. (eds.) PETS 2010. LNCS, vol. 6205, pp.
236–252. Springer, Heidelberg (2010)

20. Washbrook, C.: Facebook’s Ticker Privacy Scare, and What You Should Do About
It (September 2011), http://nakedsecurity.sophos.com/2011/09/
26/facebook-ticker-privacy-scare/

21. Wishart, R., Corapi, D., Marinovic, S., Sloman, M.: Collaborative privacy policy
authoring in a social networking context. In: Proceedings of IEEE POLICY 2010,
Fairfax, VA, USA, pp. 1–8 (2010)

https://www.citycloud.com/city-cloud/some-interesting-bits-about-latency/
https://www.citycloud.com/city-cloud/some-interesting-bits-about-latency/
https://www.facebook.com/help/www/255898821192992
http://thehackernews.com/2011/10/how-facebook-ticker-exposing-your.html
http://thehackernews.com/2011/10/how-facebook-ticker-exposing-your.html
http://www.thesocialcmo.com/blog/2011/09/new-facebook-ticker-is-invasion-of-privacy/
http://www.thesocialcmo.com/blog/2011/09/new-facebook-ticker-is-invasion-of-privacy/
http://nakedsecurity.sophos.com/2011/09/26/facebook-ticker-privacy-scare/
http://nakedsecurity.sophos.com/2011/09/26/facebook-ticker-privacy-scare/

Collaboratively Solving the Traveling Salesman Problem
with Limited Disclosure

Yuan Hong1, Jaideep Vaidya2, Haibing Lu3, and Lingyu Wang4

1 SUNY-Albany
hong@albany.edu
2 Rutgers University

jsvaidya@business.rutgers.edu
3 Santa Clara University

hlu@scu.edu
4 Concordia University
wang@concordia.ca

Abstract. With increasing resource constraints, optimization is necessary to
make the best use of scarce resources. Given the ubiquitous connectivity and
availability of information, collaborative optimization problems can be formu-
lated by different parties to jointly optimize their operations. However, this cannot
usually be done without restraint since privacy/security concerns often inhibit the
complete sharing of proprietary information. The field of privacy-preserving op-
timization studies how collaborative optimization can be performed with limited
disclosure. In this paper, we develop privacy-preserving solutions for collabora-
tively solving the traveling salesman problem (TSP), a fundamental combinato-
rial optimization problem with applications in diverse fields such as planning,
logistics and production. We propose a secure and efficient protocol for multiple
participants to formulate and solve such a problem without sharing any private
information. We formally prove the protocol security under the rigorous defini-
tion of secure multiparty computation (SMC), and demonstrate its effectiveness
with experimental results using real data.

Keywords: Privacy, Secure Multiparty Computation, Optimization.

1 Introduction

Collaboration amongst different parties occurs frequently in the modern business world.
Given the increasing resource constraints, it makes sense for different companies to
jointly optimize their operations in delivering, production planning, scheduling, inven-
tory control, etc. Indeed, joint optimization has led to significant savings when success-
fully carried out. However, such collaboration is normally the exception, rather than the
rule. The reason for this is the high degree of trust required, wherein proprietary data
has to be shared with an external party which can then carry out the optimization. To
deal with this, privacy-preserving solutions have been developed to enable collaborative
optimization for several specific problems [1–5]. In this paper, we focus on the traveling
salesman problem (TSP). TSP is a fundamental optimization problem, and can be used

V. Atluri and G. Pernul (Eds.): DBSec 2014, LNCS 8566, pp. 179–194, 2014.
c© IFIP International Federation for Information Processing 2014

180 Y. Hong et al.

in many applications such as logistics, planning, and production. We first show how a
simple two-party collaborative TSP can be formulated [1]:

Example 1. There are two shipping companies, denoted Alice and Bob, which offer
delivery services among seven cities, City 1, . . . , 7. Figure 1 shows the city connectivity
and corresponding delivery cost for both companies.

A client EC wants to decide which shipping company to employ in order to ship their
goods to a list of cities (e.g., 1, 2, 3, 5, and 6) with the lowest overall cost. However, EC

is reluctant to let either Alice or Bob know its list of cities before signing the contract,
and Alice and Bob also do not want to share all their delivery cost information with Ec

or other parties. How can EC make this decision under such privacy concerns?
The prior solution [1] is to let EC securely solve “Two” two-party TSPs with Alice

and Bob “respectively”, and then choose the lower cost obtained from Alice and Bob.

1 2

34

5

6

7

1 2 3 4 5 6 7

1 6 4 5 2 7 8

2 2 6 5 6 8

3 8 3 5 7

4 4 9 1

5 2 3

6 5

7

(a) Alice’s Service Network and Cost

1 2

34

5

6

7

1 2 3 4 5 6 7

1 6 8 5 6 11 6

2 4 3 2 4 9

3 4 4 5 8

4 2 8 4

5 1 3

6 7

7

(b) Bob’s Service Network and Cost

Fig. 1. Two-party Collaboration in [1]

While this enables EC to choose the lowest cost provider, it does not enable the
lowest cost overall, since it forces one company to be used to do all of the shipments.
In this paper, we tackle the privacy concerns in a multiparty TSP (rather than two-
party TSP [1]) in which the global minimum cost can be further reduced from all the
participants, detailed as below.

Cost Reduction. Assume that the optimal solutions derived for EC from Alice and Bob
in Figure 1 are 1) “Alice : 1→ 5→ 6→ 2→ 3→ 1” with total cost 2+2+6+2+4=16,
and 2) “Bob : 1 → 5 → 6 → 2 → 3 → 1” with total cost 6+1+4+4+8=23. Per
the work in [1], EC then employs Alice to deliver their goods to the destinations due
to 16 < 23. However, Bob indeed offers cheaper shipping rates among some cities,
e.g., 5 → 6 → 2. If EC can employ both shipping companies to deliver goods, even
though on the same route “1 → 5 → 6 → 2 → 3 → 1”, the global cost could be
2 + 1 + 4 + 2 + 4 = 13 < 16 < 23. As more shipping companies participate in the
collaboration, significant cost saving can be realized.

Practicability and Availability. In reality, many companies need to make decisions
for the delivery of considerable number of cities. From the economic perspective, they
normally do not always contract with only one shipping company for all of their destina-
tions. Then, the two-party TSP in [1] clearly cannot meet the practical cost-minimizing
demand of EC . Besides this, such TSP has many other drawbacks. Specifically, if nei-
ther Alice nor Bob is able to complete the delivery for EC by their own: e.g., Alice

Collaboratively Solving the TSP with Limited Disclosure 181

1 2
1 2 3 4 5 6 7

1 L L L L L L
2 2 6 5 6 8

34 3 8 3 5 7

4 4 9 1

5 2 35

6

7
5 2 3

6 5

7

6

(a) Alice’s Service Network and Cost

1 2
1 2 3 4 5 6 7

1 L 8 L 6 11 6

2 4 L 2 4 9
34 3 L 4 5 8

4 L L L

5 1 L5

6

7
5 1 L
6 7

7

6

(b) Bob’s Service Network and Cost

Fig. 2. Limited Shipping Service Network (“L” means unavailable service)

cannot deliver any shipping to City 1 while Bob cannot deliver shipping between City
1 and 2 (Figure 2), then the model in [1] cannot provide a solution.

To address the above limitations, we formulate and securely solve a novel cost-
reducible collaborative TSP, which enables the client to find the global minimum cost
from one or more shipping companies, and enables the shipping companies not to lose
their clients for their service limitation. Indeed, securely solving a fundamental opti-
mization problem like TSP gives great insights to all its the applications with limited
information disclosure. With similar settings, our problem formulation and solver can
be equally applicable to the proprietary information protection in many other real-world
applications such as arranging school bus routes for one or more outsourced companies
to pickup the children, scheduling service calls at cable firms, and manufacturing circuit
board by drilling holes with machines from different entities [6]. Therefore, the main
contributions of this paper are summarized as below:

– We propose a new efficient secure communication protocol to solve the novel cost-
reducible collaborative TSP under semi-honest adversarial model – all parties fol-
low the protocol but they are curious to derive private information from each other.

– We give end-to-end security proof for our secure communication protocol under
the rigorous definition of Secure Multiparty Computation (SMC) [7, 8], whereas
only the security of some building blocks was proven in the two-party TSP [1].

– We demonstrate the effectiveness of our approach with experiments on real data.

The remainder of this paper is organized as follows. We first briefly review the related
literature in Section 2. Then we define the problem in Section 3, and present the secure
communication protocol in Section 4. We give security and cost analysis in Section 5.
Section 6 demonstrates the experimental results. Finally, we conclude this paper and
discuss the future work in Section 7.

2 Related Work

We briefly review some of the relevant work on privacy-preserving collaborative (viz.
distributed) optimization. Li and Atallah [9] addressed the collaborative linear program-
ming problem between two parties where the objective function and constraints can be
arbitrarily partitioned, and proposed a secure simplex method for such problem based
on homomorphic encryption and scrambled circuit evaluation. Vaidya [10] proposed

182 Y. Hong et al.

a secure revised simplex approach with homomorphic encryption and secure compar-
ison, which is more efficient than Li and Atallah’s approach [9]. Catrina and Hoogh
[11] presented a solution to solve distributed linear programs based on secret sharing.
The protocols utilized a variant of the simplex algorithm and secure computation with
fixed-point rational numbers, optimized for such application.

Apart from a direct cryptographic protocol, another typical approach is to transform
the original problem into a different space, solve it in that transformed space, and then
reconstruct the solution. Du [12] and Vaidya [13] transformed the linear programming
problem by multiplying a monomial matrix to both the constraint matrix and the ob-
jective function, assuming that one party holds the objective function while the other
party holds the constraints. Bednarz et al. [14, 15] pointed out a potential attack to
the above transformation approach, which has been resolved in [3, 16]. In addition,
Mangasarian presented two transformation approaches for horizontally partitioned lin-
ear programs [17] and vertically partitioned linear programs [18] respectively. Li et al.
[19] extended the transformation approach [17] for horizontally partitioned linear pro-
grams with equality constraints to inequality constraints. Hong and Vaidya identified a
potential inference attack to Mangasarian and Li’s transformation based approach, and
revised the transformation with significantly enhanced security guarantee in [20].

There has also been work on creating privacy-preserving solutions for collaborative
combinatorial optimization problems (especially those that are NP-hard). Hong et al.
[4] presented a privacy-preserving approach for the well known graph coloring prob-
lem. The solution is based on tabu search. The work most relevant to our problem is that
of Sakuma et al [1] who proposed a genetic algorithm for securely solving two-party
distributed traveling salesman problem (TSP). They consider the case that one party
holds the cost vector/matrix while the other party holds the tour vector/matrix. The TSP
that is completely partitioned among multiple parties has been discussed but not solved
in [1]. In this paper, we consider a cost-reducible collaborative TSP amongst multiple
(more than two) parties, and securely solve it with simulated annealing based protocol,
which facilitates us to formally prove the security for the approach. Our approach falls
under the framework of secure multiparty computation [7, 8, 21, 22], wherein any func-
tion can be securely computed without revealing anything to each party except its input,
output, and anything that can be derived from them.

3 Problem Formulation

3.1 TSP and Simulated Annealing

TSP is a NP-hard optimization problem that is defined as follows[23]: given a set of
cities and the distances between every pair of cities, finding the shortest route that visits
all the cities exactly once and returns to the original city (minimizing overall distance).
Note that in a more general sense, distance between cities can be replaced with cost.

Simulated annealing is a generic probabilistic meta-heuristic that is widely used to
solve this NP-hard problem when the input is large [23]. Simulated annealing was in-
spired from thermodynamics, based on the behavior of metals cooling and annealing
[24]. The basic idea behind simulated annealing is to move from one state (solution)
to another state (a neighboring solution), until a good enough solution is found, or the

Collaboratively Solving the TSP with Limited Disclosure 183

given computation budget has been exhausted. Note that the move is probabilistic in
that we may move to a worse solution or choose to stay in the same state even if a better
solution has been found some of the times. In TSP, given the traveling route, denoted as
x, the objective function of simulated annealing is to minimize f(x) and the algorithm
iteratively moves from solutions to their neighboring solution. At each stage, the prob-
ability of making a transition from a solution to the neighboring solution is based on an
acceptance probability function for two solutions and a sensitivity parameter “Temper-
ature” T . The algorithm is briefly summarized as below:

1. initialize a solution x by randomly selecting a traveling route.
2. randomly pick a neighboring solution x′ of x by 2-Opt neighborhood [25], swap-

ping the visited order of two cities. For example, if x =“1→ 3 → 2 → 4”, then
x =“1→ 3→ 4→ 2” is its neighboring solution.

3. decide whether to move to the new solution with the probability computed from
f(x), f(x′) and the sensitivity parameter T . If yes, update the current solution.

4. repeat step 2,3 until achieving the iteration threshold or a satisfactory solution.

3.2 Cost-Reducible Collaborative TSP

In a TSP, G = (V,E) is a complete undirected graph where V and E represent the
set of cities and (cost) weighted edges respectively. Cost-reducible collaborative TSP
involving k shipping companies and one client, where all involved shipping companies
successively “Relay” the goods for client EC on the overall route for further cutting the
cost. Then, we define it as k-Relaying Traveling Salesman Problem (k-RTSP).

Definition 1 (k-RTSP). Assume n cities, and k shipping companies P1, . . . , Pk that
hold k different cost matrices/vectors y1, . . . , yk, and a client EC who needs to visit a
subset of cities once (finally returning to the original city, as in a Hamiltonian Cycle).
Then, k-RTSP is defined as: find the optimal traveling route and minimum total cost
for EC ’s cities, where every segment of the traveling route is served by the shipping
company quoting the cheapest rate among all k shipping companies.

k-RTSP’s optimal traveling route is jointly computed by k shipping companies and
the client. If k = 1, k-RTSP turns into a two-party TSP [1] since no relay is required.

Vectors in k-RTSP. Intuitively k shipping companies’ cost vectors can be written as:

Table 1. k Shipping Companies’ Cost Vectors

y1 = (y1
(1,2), . . . , y

1
(1,n), y

1
(2,3), . . . , y

1
(2,n), . . . , y

1
(n−1,n))

...
yk = (yk

(1,2), . . . , y
k
(1,n), y

k
(2,3), . . . , y

k
(2,n), . . . , y

k
(n−1,n))

As shown in Figure 2, if one shipping company does not serve delivery between two
cities, e.g., P1 does not deliver between City 1 and 2, we let y1(1,2) be a sufficiently large

184 Y. Hong et al.

number L. Similarly, client’s traveling route vector can be expressed as a boolean vector
x = (x(1,2), . . . , x(1,n), x(2,3), . . . , x(2,n), . . . , x(n−1,n)) where x(i,j) = 1 means eij is
included in EC ’s traveling route;otherwise 0.

Note that the length of vectors x and y1, . . . , yk is the total number of city pairs
d = n(n− 1)/2. For simplicity of notations, we use j = 1, . . . , d to indicate the index
of n(n− 1)/2 elements in each of the k + 1 vectors.

Cost Function and Solution. In k-RTSP, every x(i,j) = 1 in x (eij is included in the
route) is assigned to a shipping company with cheapest cost (we denote this process as
“Route Assignment”). Then x can be drilled down to k boolean vectors for k different
shipping companies, for example as below:

Table 2. Route Assignment for Traveling Route Vector

x = (0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0)

Alice x1 = (0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
Bob x2 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0)

Carol x3 = (0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

Denoting xij ∈ {0, 1} (i = 1, . . . , k and j = 1, . . . , d) as whether shipping com-
pany Pi delivers goods for the jth corresponding pair of cities or not, the length-d
vector x is then drilled down to k length-d vectors x1, . . . , xk in route assignment.
Thus, {x1, . . . , xk} is the solution of k-RTSP, which is finer-grained than x. More-
over, the cost function of k-RTSP can be derived as f(x1, . . . , xk) =

∑k
i=1 xi · yi =∑k

i=1(
∑d

j=1 xijyij).

4 Privacy-Preserving Algorithm

Simulated annealing is an efficient meta-heuristic for conventional TSP, thus we build
the secure solver for k-RTSP by securing the simulated annealing algorithm. First, we
consider the extension of the algorithm to solve k-RTSP (no security), all the parties
repeat the following procedures until they find a near-optimal solution:

Client EC proposes a solution x = {x1, . . . , xk} and its neighboring solution x′ =
{x′

1, . . . , x
′
k} to all the shipping companies P1, . . . , Pk, then P1, . . . , Pk jointly com-

pute the energy of two solutions f(x1, . . . , xk) and f(x′
1, . . . , x

′
k), and finally compute

the probability of moving from x to x′:

Prob = min{1, exp(−f(x′
1, . . . , x

′
k)− f(x1, . . . , xk)

T
)} (1)

If x′ outperforms x, solution will move from x to x′ with Prob = 1; if x′ is worse
than x, there still exists a probability to move from x to x′ (to avoid local optimum).

More importantly, all parties should jointly compute the result without revealing any
private information in every iteration. To achieve this, we present a secure communica-
tion protocol to solve k-RTSP without private information disclosure.

Collaboratively Solving the TSP with Limited Disclosure 185

4.1 Building Blocks

Simulated annealing iteratively computes the energy of various pairs of neighboring
solutions and decides whether to move or not. Thus, the secure communication pro-
tocol based on it also repeatedly calls some secure functions, which are considered as
Building Blocks of the protocol. We briefly describe them below:

Secure Scalar Product. The cost function of k-RTSP is given as f(x1, . . . , xk) =∑k
i=1 xi · yi where client EC holds the traveling route vectors x1, . . . , xk and shipping

companiesP1, . . . , Pk hold y1, . . . , yk respectively. Thus, we implement a secure scalar
product protocol based on Paillier’s Homomorphic Cryptosystem [26] to securely com-
pute the function (Algorithm 1). Notice that every party only holds a random number –
the sum of the random numbers is the scalar product which is also unknown to everyone
besides the private inputs.

Algorithm 1. Secure Scalar Product
Input: Traveling route vector x = {x1, . . . , xk}, cost vectors y1, . . . , yk
Output: f(x1, . . . , xk) =

∑k
i=1 xi · yi co-held by all k + 1 parties

1. Client EC creates a public/private key pair (pk, sk), and encrypts x1, . . . , xk to
Encpk(x1), . . . , Encpk(xk) with its pk

2. EC sends Encpk(x1), . . . , Encpk(xk) and pk to all k shipping companies P1, . . . , Pk

3. for each party Pi, i = 1, . . . , k do
4. Pi generates a random integer ri, encrypts it with the public key pk, computes the en-

crypted scalar product as: Encpk(xi)
yi ∗ Encpk(ri) = Encpk(xi · yi + ri) , and sends

it back to EC

5. EC decrypts Encpk(xi · yi + ri) with its private key sk and obtains a random share si =
xi · yi + ri
{Finally, EC privately holds random numbers ∀i ∈ [1, k], si = xi·yi+ri, and ∀i ∈ [1, k], Pi

privately holds random numbers −ri. The sum of all the shares f(x1, . . . , xk) =
∑k

i=1 xi·yi
is unknown to all parties.}

Secure Comparison. In simulated annealing, given temperature T , Equation 1 is used
to determine if solution x = {x1, . . . , xk} should be moved to x′ = {x′

1, . . . , x
′
k} or

not. In every iteration, min{1, exp(− f(x′
1,...,x

′
k)−f(x1,...,xk)

T)} should be compared with

a random number η ∈ [0, 1) [27]: if min{1, exp(− f(x′
1,...,x

′
k)−f(x1,...,xk)

T)} > η, then
move x = {x1, . . . , xk} to x′ = {x′

1, . . . , x
′
k}; otherwise, not.

We employ FairplayMP [28] to securely compare the outputs of two functions, thus
we need to compare: f(x1, . . . , xk) − f(x′

1, . . . , x
′
k) and T log η, where the inputs for

f(x1, . . . , xk) and f(x′
1, . . . , x

′
k) are the random shares held by all k + 1 parties (gen-

erated from Algorithm 1).
Note that, if f(x1, . . . , xk) − f(x′

1, . . . , x
′
k) > T log η, client EC moves x =

{x1, . . . , xk} to x′ = {x′
1, . . . , x

′
k} regardless of whether x′ is better than x or not;

else, the move does not occur. Note that if the temperature T is lowered, simulated an-
nealing algorithm only accepts moving from x to a worse solution x′ with closer energy
f(x′

1, . . . , x
′
k) and f(x1, . . . , xk). This guarantees the accuracy of the meta-heuristic.

186 Y. Hong et al.

In secure comparison, similarly, each party cannot learn any input from each other,
and only client EC knows the comparison result “>” or “≤”.

4.2 Two-Level Secure Simulated Annealing (TSSA)

Different from the traditional TSP, k-RTSP has two categories of neighboring solutions
since up to k possible costs are available for every pair of cities in G. First, like the well-
known TSP, we can find the 2-Opt [25] neighboring solution x′ by permuting the visited
order of two cities, e.g., x = 1 → 2 → 3 and x′ = 1 → 3 → 2. Second, for every
solution, e.g., x = 1 → 2 → 3, each route segment (1 → 2 and 2 → 3) can be poten-
tially assigned to Alice, Bob or Carol in “Route Assignment”. Then, x = 1 → 2 → 3
(with a particular route assignment) should have 32 − 1 = 8 neighboring solutions by
choosing different combinations of shipping companies, reflected in {x1, . . . , xk}. Ide-
ally, if y1, . . . , yk are known to client EC , EC can simply select the shipping company
with the lowest cost on each segment of the route. However, in secure k-RTSP model,
such information is masked and absolutely unknown to EC . Therefore, we have to run
meta-heuristics again to find the optimal route assignment for every solution (traveling
route) generated in neighboring route search.

In summary, while securely running the protocol, a top-level simulated annealing is
called to search traveling route vector x. For every new solution x, bottom-level simu-
lated annealing will be executed to search the neighborhoods in “Route Assignment”.
As soon as a near-optimal solution of “Route Assignment” for x is found, x and its
optimal route assignment will be updated as the current solution. After that, top-level
simulated annealing continues to repeatedly traverse x’s neighboring traveling route
vectors. Therefore, we denote this two level meta-heuristic based protocol as Two-level
Secure Simulated Annealing (TSSA).

4.3 Secure Communication Protocol

Our secure communication protocol (TSSA shown in Algorithm 2) ensures that any
party cannot learn any private information from each other. More specifically, at Line
1, the protocol is initialized; the loop for top-level simulated annealing is executed be-
tween Line 2-22; at Line 3-5, EC drills down current solution (x, derived from top-level
simulated annealing) and initializes the bottom-level simulated annealing, whose loop
executes between Line 6-13; in the bottom-level loop, current solution (bottom level)
is updated at Line 10-11, and the bottom-level cooling is implemented at Line 13; At
Line 19-20 in the top-level loop, current solution for TSSA is updated, and the top-level
cooling is implemented at Line 22. TSSA algorithm searches the optimal traveling route
vector where the embedded bottom-level simulated annealing is called to search the op-
timal route assignment for every solution. For any traveling route x and its neighboring
solution x′ obtained in the top-level simulated annealing, their corresponding optimal
route assignments are found by separate bottom-level simulated annealing respectively.
Thus, the current best route (with its optimal route assignment) moves toward the op-
timal traveling route (with the optimal route assignment) of k-RTSP. Here, it is worth
noting that:

Collaboratively Solving the TSP with Limited Disclosure 187

Algorithm 2. Two-level Secure Simulated Annealing
Input: Client EC’s initial traveling route x; Shipping companies cost vectors y1, . . . , yk; Initial

temperature T1, T2; Cooling coefficient ρ1, ρ2; η ∈ [0, 1)
Output: Near-optimal route best{x} and the route assignment best{x1, . . . , xk}

1. iter1 ← 0; best{x} ← x; best{x1, . . . , xk} ← {x1, . . . , xk}
{Top-level simulated annealing searches the optimal route with optimal route assignment}

2. while iter1 < max iter1 do
3. iter2 ← 0

{Bottom-level simulated annealing for the optimal route assignment of best{x}}
4. EC drills down best{x} with a random route assignment: {x1, . . . , xk}
5. best1{x1, . . . , xk} ← {x1, . . . , xk}
6. while iter2 < max iter2 and route assigned(best{x}) = 0 do
7. EC gets best1{x1, . . . , xk}’s random neighboring route assignment: {x′

1, . . . , x
′
k}

8. Call Algorithm 1 twice to securely compute f(x1, . . . , xk) =
∑k

i=1 xi · yi and
f(x′

1, . . . , x
′
k) =

∑k
i=1 x

′
i · yi among all k + 1 parties

9. Call secure comparison (FairplayMP [28]) to compare f(x1, . . . , xk)− f(x′
1, . . . , x

′
k)

and T2 log η among all k + 1 parties
10. if f(x1, . . . , xk)− f(x′

1, . . . , x
′
k) > T2 log η then

11. best1{x1, . . . , xk} ← {x′
1, . . . , x

′
k}

12. iter2 ++
13. T2 ← ρ2T2 (cooling down after several iterations)
14. route assigned(best{x}) = 1
15. EC gets a random neighboring route of best{x}: x′

{Bottom-level simulated annealing for the optimal route assignment of x′}
16. All k + 1 parties repeat Step 3-15 to obtain the near-optimal route assignment for x′:

best2{x1, . . . , xk} and route assigned(x′) = 1
17. Call Algorithm 1 twice to securely compute f(best1{x1, . . . , xk}) and

f(best2{x1, . . . , xk}) among all k + 1 parties
18. Call secure comparison (FairplayMP [28]) to compare f(best1{x1, . . . , xk}) -

f(best2{x1, . . . , xk}) and T1 log η among all k + 1 parties
19. if f(best1{x1, . . . , xk})− f(best2{x1, . . . , xk}) > T1 log η then
20. EC updates: best{x} ← x′; route assigned(best{x}) = 1; best{x1, . . . , xk} ←

best2{x1, . . . , xk}
21. iter1 ++
22. T1 ← ρ1T1 (cooling down after several iterations)
23. Return best{x} and best{x1, . . . , xk}

– To compute the energy of any solution, all parties securely compute the scalar prod-
uct using Algorithm 1, and each party holds a share of the result. To determine
whether move or not, all parties implement FairplayMP [28] to securely compare
the functions with their input shares. Finally, only client EC knows the comparison
result and whether move or not.

– For top and bottom-level simulated annealing, we use different sensitivity
parameters: initial temperature T1 and T2, cooling coefficient ρ1, ρ2 (note that the
temperature will be lowered after several iterations). We also setup different maxi-
mum number of iterations for top and bottom-level simulated annealing respectively
max iter1 and max iter2.

188 Y. Hong et al.

– In order to improve efficiency, we define an indicator route assigned(x) ∈ {0, 1}
to avoid running the route assignment for every route x twice in the protocol – as a
neighboring solution and the current solution respectively. If the optimal route as-
signment for x has been found in previous iterations, we let route assigned(x) =
1; Otherwise, 0. At Line 6, we examine the status of route assigned(x) before
going to the bottom-level simulated annealing.

– At Line 23, EC learns only the near-optimal route best{x} and its near-optimal
route assignment best{x1, . . . , xk} (as the output of the protocol). We do not allow
EC to learn the total optimal cost during executing the protocol (before all parties
contracting) because of some potential malicious inference attack slightly going be-
yond the semi-honest model: if the minimum cost is revealed to EC , then EC can
use any two cities as the input to get the minimum cost (viz. the cost between two
known cities, which is the corresponding shipping company’s proprietary informa-
tion). More severely, the minimum cost of every pair of cities and the corresponding
shipping company might be inferred by EC by repeating such malicious attack for
multiple times. Although the SMC/protocol security is not violated in the above
attacking scenario under semi-honest adversarial model, we still unreveal the total
optimal cost for mitigating such risk.

5 Security and Cost Analysis

A formal security proof can be provided under the framework of Secure Multiparty
Computation (SMC). Under the framework of SMC, a secure protocol reveals nothing
in semi-honest model if all the messages received by every party can be simulated in
polynomial time by knowing only the input and output of the SMC protocol [7, 8].

Theorem 1. TSSA protocol reveals only the near-optimal traveling route best{x} and
the route assignment best{x1, . . . , xk} to client EC in semi-honest model.

Proof. We first look at the steps that do not need communication between different par-
ties in the protocol. Notice that all the candidate solutions are proposed by EC in TSSA,
then most of the steps are locally implemented by EC , e.g., finding the neighboring so-
lution (either the traveling route or the route assignment), updating the current solution
based on the comparison, and reducing the temperature in simulated annealing. These
steps can be simulated by simply executing those steps.

In addition, we must simulate each party’s view (all the received messages in the
protocol) that requires communication in polynomial time. More specifically, client EC

and k shipping companies P1, . . . , Pk iteratively communicate with each other in Se-
cure Scalar Product (Algorithm 1) and Secure Comparison. We now examine the mes-
sages received by each party.

Client EC ’s view: First, while calling the secure scalar product computation every
time, EC receives k encrypted random shares. k random shares are the actual messages
received by EC in those steps. W.l.o.g., EC gets si = xi ·yi+ri from shipping company
Pi. All the random shares generated in all iterations can be simulated by generating a
random from the uniform probability distribution over F , assuming that si is scaled to

Collaboratively Solving the TSP with Limited Disclosure 189

fixed precision over a closed field, enabling such a selection. Thus, Prob[si = t] =
Prob[ri = t− si] =

1
F , and all the shares can be simulated in polynomial time.

Second, EC receives a series of comparison results from FairplayMP [28]. To sim-
ulate the sequence of comparison results (“>” or “≤”), the inverse step of the simu-
lated annealing can be utilized. Specifically, EC starts from the near-optimal traveling
route, and then finds the given neighboring solutions in sequence by running TSSA in-
versely (note that temperature increase can be imposed to tune the sensitivity of the
moving probability in the inverse optimization). While comparing f(x′

1, . . . , x
′
k) −

f(x1, . . . , xk) and T2 log η in the bottom-level simulated annealing, if the result is “>”,
the simulator outputs an “1”, otherwise “0”. Now we discuss how to simulate them in
polynomial time.

Recall that all the searched solutions are known to EC in sequence, but the energy of
any state (which is the sum of the local random shares) is unknown to EC since EC does
not know the cost vectors from every shipping company. Fortunately, since EC knows
its final traveling route best{x}, we can use the same simulator in [10] to simulate a cost
function in polynomial time. Then, the energy of two compared states (solutions) can be
polynomially simulated as well simply because both solutions are regarded as the input
for EC (EC proposes the candidate solutions). Consequently, we can simulate “1” or
“0” for two reasons: 1) the probability of generating each of them is deterministic with
Equation 1, and 2) another parameter η is uniformly distributed in [0, 1). Therefore, a
sequence of such comparison results in EC ’s view can be simulated in polynomial time.
Similarly, the sequence of comparison results for top-level simulated annealing can be
simulated with the same polynomial machine.

In summary, applying the Composition Theorem [8], client EC learns only the near-
optimal traveling route best{x} and the route assignment best{x1, . . . , xk}.

Shipping Company ∀i ∈ [1, k], Pi’s View: In the protocol, every shipping company
only receives the random shares in secure scalar product computation and EC ’s public
key pk. As analyzed above, the random shares can be simulated in polynomial time
using the same machine as EC ’s random share. Therefore, applying the Composition
Theorem [8], every shipping company only learns the public key pk in the protocol.
This completes the proof.

Besides the protocol security guaranteed by the SMC theory, it would be useful if we
can simultaneously resolve the inferences from the messages received before and after
the move. Coincidentally, simulated annealing provides excellent mechanism to nat-
urally mitigate such inference attack. Specifically, unlike many other meta-heuristics,
simulated annealing runs probabilistically and allows moving from the current solu-
tion to a worse neighboring solution. Due to the above uncertainty and the unrevealed
overall cost in any solution, it is difficult for EC to infer any private information, e.g.,
which solution outperforms its neighboring solution. Thus, the inference attack (which
actually does not compromise the SMC protocol security) could be mitigated.

Cost Analysis: Given a k-RTSP with n cities, the maximum number of iterations of
the top and bottom level simulated annealing is given as max iter1 and max iter2
respectively. For simplicity of notation, we denote them as O(m). We now discuss the
communication and computation cost required in the TSSA protocol.

190 Y. Hong et al.

Communication Cost. In TSSA protocol, only secure scalar product computation and
secure comparison request multiparty communication. First, while calling the secure
scalar product computation, it needs one round communication between EC and each
shipping company. Then, the communication cost of total secure scalar product com-
putation is O(2m2 ∗ k ∗ n(n − 1)/2) = O(m2n2k) messages of bit communication.
Second, the number of communication messages in every secure comparison is equal
to the number of computing parties [29]. Then, the communication cost of total secure
comparison is O(m(2m+1)k) = O(m2k) messages of bit communication. Moreover,
public key pk is delivered from EC to all k shipping companies (every party can use the
same public key in all iterations, thus pk can be considered as offline cost). Therefore,
the communication complexity of the protocol is O(m2n2k).

Computation Cost. First, EC locally finds the neighboring solution, moves the solution
and updates the temperature in both top and bottom-level simulated annealing. The
computation cost of the above process is ignorable compared to cryptographic work.
Second, if we estimate the runtime for a single secure scalar product computation and a
single secure comparison as ts and tc respectively, the total computation cost based on
cryptography can be written as (2m2 ∗ k) ∗ ts +m(2m+1) ∗ k ∗ tc ≈ 2m2k(ts + tc).

6 Experimental Validation

We first present the experimental setting and then discuss the results.

Datasets. We conduct experiments on four real datasets collected from National Im-
agery and Mapping Agency [6]. Each dataset is derived from a country (Canada, Japan,
Italy and China), where the cost of travel between cities is the Euclidean distance com-
puted from the coordinates. We randomly select six sets of cities from each of the four
datasets with the size (number of cities n) 200, 400, 600, 800, 1000 and 1200. This
matches the experimental setup in [1], which makes it comparable for the two-party
case. Note that we repeat every experiment 10 times by changing the initial city in ev-
ery test, and average all the results returned from all 10 experiments running on each of
the 4 different datasets.

Problem Setup. To formulate k-RTSP, we need to set the costs for the k parties. To do
this, we generate k − 1 noise values by sampling from the gaussian distribution with
mean 0 and an appropriate variance (1/3 of the cost). Then, we obtain k different costs
for every pair of cities (the original plus the k − 1 noise added values) and randomly
assign them to the k different parties, where k is selected as 2, 4, 6, 8, 10 and 12.

Meta-heuristics Setup. We initialize the temperature for two-level simulated annealing
and the cooling parameters as T1 = 1000, ρ1 = 50% and T2 = 1000, ρ2 = 20%. If no
better solution can be found in 50 iterations, we apply cooling. If no better solution can
be found in 20 times cooling, we terminate the meta-heuristics (note that the termination
criteria can be alternatively established as a maximum threshold for the total number of
iterations).

Cost Estimation of Large Scale Input. For small and medium scale input, we can
directly capture the computation cost. Since our protocol iteratively utilizes the cryp-
tographic building blocks, we can estimate the computation cost for large scale input.

Collaboratively Solving the TSP with Limited Disclosure 191

200 400 600 800 1000 1200

10
3

10
4

10
5

10
6

Number of Cities n

R
un

ti
m

e
(S

ec
)

PPLS
TSSA
PPGA

(a) Two-party (512-bit Key)

200 400 600 800 1000 1200
10

4

10
5

10
6

10
7

10
8

Number of Cities n

R
un

ti
m

e
(S

ec
)

PPLS
TSSA
PPGA

(b) Two-party (1024-bit Key)

2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

3
x 10

6

Number of Parties k

R
un

ti
m

e
(S

ec
)

512−bit
1024−bit

(c) Varying k (n=600)

200 400 600 800 1000 1200
0

0.5

1

1.5

2

2.5
x 10

7

Number of Cities n

R
un

ti
m

e
(S

ec
)

512−bit
1024−bit

(d) Varying n (k=6)

Fig. 3. Computation Cost Evaluation

The runtime can be obtained through multiplying the cost of running a unit building
block by the overall required count. We do this for the tests with runtime more than 104

seconds (approx. 3 hours).

6.1 Computation Cost Comparison (Two-party)

Under the same experimental setup for the two party TSP, we compare the computation
cost of our two-level secure simulated annealing (TSSA) with Sakuma and Kobayashi’s
two algorithms – Privacy-preserving local search (PPLS) and Privacy-preserving ge-
netic algorithm (PPGA) [1]. Since only two parties are involved, the bottom-level sim-
ulated annealing would not be triggered in TSSA.

We set the key length in Paillier’s Homomorphic cryptosystem [26] as 512 bits and
1024 bits, and the size of the circuit (number of gates) in FairplayMP [28] as 512 (a
benchmark setup). Figure 3(a) and 3(b) show the runtime of TSSA, PPLS and PPGA
for the key length of 512 bits and 1024 bits respectively. As expected, the computation
cost of TSSA lie between that of PPLS and PPGA. This is consistent with the fact
that 2-Opt local search performs efficiently yet produce the worst result [28, 30]. More
specifically, when the number of cities n increases from 200 to 1200, with 512-bit key,
TSSA consumes approximately 1.5 hour – 20 hours; with 1024-bit key, TSSA spends
approximately 20 hours – 5 days. The computation cost increases polynomially in both
scenarios.

192 Y. Hong et al.

6.2 Results of k-RTSP

In the multiparty case, we evaluate the performance of solving k-RTSP with TSSA in
two facts: the efficiency of the solver and the quality of k-RTSP’s optimal solution.
Efficiency can be reflected as the computation cost (viz. runtime) of the algorithm.
Figure 3(c) and 3(d) demonstrate the scalability of our TSSA algorithm. The runtime
grows polynomially as the number of shipping companies k or the number of cities
n increases. Since TSSA is provably secure for all k + 1 parties, the most expensive
runtime shown in the figure (1200 cities, key length of 1024-bit, k = 6) is still tolerable
(around 10 days).

On the other hand, we define two measures to evaluate the quality of k-RTSP’s opti-
mal solutions: “Cost Reduction Ratio” = 1 − c

cmax
and “Heuristic Error” = c

cmin
− 1.

Given a specific traveling route to visit all cities, cmax denotes the maximum possible
cost (the highest cost is chosen between every pair of consecutively visited cities on
the route), c is the optimal solution derived from TSSA algorithm and cmin denotes the
minimum possible cost (the lowest cost is chosen between every pair of consecutively
visited cities on the route).

Table 3. Quality of Near-optimal Solutions

(a) Cost Reduction Ratio

Inputs k = 2 k = 4 k = 6 k = 8 k = 10

n = 200 0.272 0.256 0.245 0.23 0.211
n = 400 0.301 0.292 0.285 0.269 0.241
n = 600 0.324 0.318 0.312 0.303 0.293
n = 800 0.339 0.335 0.328 0.32 0.317
n = 1000 0.352 0.344 0.339 0.336 0.332
n = 1200 0.361 0.353 0.348 0.344 0.339

(b) Heuristic Error

Inputs k = 2 k = 4 k = 6 k = 8 k = 10

n = 200 0.025 0.032 0.041 0.063 0.075
n = 400 0.038 0.047 0.054 0.073 0.084
n = 600 0.052 0.066 0.085 0.094 0.111
n = 800 0.081 0.085 0.116 0.128 0.137
n = 1000 0.127 0.142 0.154 0.164 0.183
n = 1200 0.161 0.171 0.18 0.192 0.199

TSSA protocol gives good results for k-RTSP if CostReRatio is high and Error
is low. To validate this on large-scale inputs, we simplify TSSA by running it without
cryptographic work, which does not distort the returned near-optimal solutions. Table
3 present the “Cost Reduction Ratio” and “Heuristic Error”, where k = 2, . . . , 10 and
n = 200, . . . , 1200. First, the cost reduction ratio increases with the increase of the
problem size. This fact is true because, when the client needs to visit more cities, the
maximum possible cost becomes extremely high, then great saving can be realized.
With the growth of k, maximum possible cost would be slightly higher for the same
k-RTSP, however the heuristic cannot always find the route assignment for every pair
of cities. Then, cost reduction ratio decreases as k goes large. Second, the heuristic
error represents the difference between the near-optimal solution obtained by TSSA
and the minimum possible cost. The data in Table 3(b) implies that the error grows
while enlarging either k or n. This is the nature of heuristics.

Finally, cost reduction ratio between 0.211 and 0.361 shows a considerable saving in
delivery, and the heuristic error (which primarily reflects the error produced in bottom-
level simulated annealing) between 0.25 and 0.199 shows the effectiveness of our TSSA
meta-heuristic algorithm.

Collaboratively Solving the TSP with Limited Disclosure 193

7 Conclusion and Future Work

In this paper, we formulate and study the privacy issues in the cost-reducible collab-
orative TSP where the global cost can be further reduced by allowing multiple com-
panies to collaboratively provide a shared solution. We then proposed an effective
privacy-preserving approach (TSSA protocol) to securely derive the near-optimal so-
lution within a reasonable time. We formally proved the security of the TSSA protocol
and validated the efficiency as well as the quality of the optimal solution with real
data. In the future, we will further mitigate the inference attack in addition to the SMC
protocol security by proposing schemes that require multiple parties to jointly propose
neighboring solutions (like [4]), and also improve the efficiency of the communication
protocol by either developing secure solvers based on the recent cryptographic tools
(e.g., Sharemind [31], PICCO [32]) or incorporating problem transformation into the
algorithm without compromising security. We also intend to generalize the simulated
annealing based communication protocol to solve more NP-hard problems with limited
information disclosure.

References

1. Sakuma, J., Kobayashi, S.: A genetic algorithm for privacy preserving combinatorial opti-
mization. In: GECCO, pp. 1372–1379 (2007)

2. Clifton, C., Iyer, A., Cho, R., Jiang, W., Kantarcioglu, M., Vaidya, J.: An approach to iden-
tifying beneficial collaboration securely in decentralized logistics systems. Management &
Service Operations Management 10(1) (2008)

3. Hong, Y., Vaidya, J., Lu, H.: Secure and efficient distributed linear programming. Journal of
Computer Security 20(5), 583–634 (2012)

4. Hong, Y., Vaidya, J., Lu, H., Shafiq, B.: Privacy-preserving tabu search for distributed graph
coloring. In: SocialCom/PASSAT, pp. 951–958 (2011)

5. Hong, Y., Vaidya, J., Wang, S.: A survey of privacy-aware supply chain collaboration: From
theory to applications. Journal of Information Systems (to appear, 2014)

6. http://www.math.uwaterloo.ca/tsp/
7. Yao, A.C.: How to generate and exchange secrets. In: Proceedings of the 27th IEEE Sym-

posium on Foundations of Computer Science, pp. 162–167. IEEE Computer Society, Los
Alamitos (1986)

8. Goldreich, O.: Encryption Schemes. In: The Foundations of Cryptography, vol. 2. Cambridge
University Press (2004)

9. Li, J., Atallah, M.J.: Secure and private collaborative linear programming. In: Proceedings
of the 2nd International Conference on Collaborative Computing: Networking, Applications
and Worksharing, November 17-20, pp. 1–8 (2006)

10. Vaidya, J.: A secure revised simplex algorithm for privacy-preserving linear programming.
In: AINA 2009: Proceedings of the 23rd IEEE International Conference on Advanced Infor-
mation Networking and Applications (2009)

11. Catrina, O., de Hoogh, S.: Secure multiparty linear programming using fixed-point arith-
metic. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS 2010. LNCS,
vol. 6345, pp. 134–150. Springer, Heidelberg (2010)

12. Du, W.: A Study of Several Specific Secure Two-party Computation Problems. PhD thesis,
Purdue University, West Lafayette, Indiana (2001)

13. Vaidya, J.: Privacy-preserving linear programming. In: SAC, pp. 2002–2007 (2009)

http://www.math.uwaterloo.ca/tsp/

194 Y. Hong et al.

14. Bednarz, A., Bean, N., Roughan, M.: Hiccups on the road to privacy-preserving linear pro-
gramming. In: Proceedings of the 8th ACM Workshop on Privacy in the Electronic Society,
WPES 2009, pp. 117–120. ACM, New York (2009)

15. Bednarz, A.: Methods for Two-party Privacy-preserving Linear Programming. PhD thesis,
The University of Adelaide, Adelaide, Australia (2012)

16. Hong, Y., Vaidya, J., Lu, H.: Efficient distributed linear programming with limited disclosure.
In: Li, Y. (ed.) DBSec 2011. LNCS, vol. 6818, pp. 170–185. Springer, Heidelberg (2011)

17. Mangasarian, O.L.: Privacy-preserving horizontally partitioned linear programs. Optimiza-
tion Letters 6(3), 431–436 (2012)

18. Mangasarian, O.L.: Privacy-preserving linear programming. Optimization Letters 5(1),
165–172 (2011)

19. Li, W., Li, H., Deng, C.: Privacy-preserving horizontally partitioned linear programs with
inequality constraints. Optimization Letters 7(1), 137–144 (2013)

20. Hong, Y., Vaidya, J.: An inference-proof approach to privacy-preserving horizontally parti-
tioned linear programs. Optimization Letters 8(1), 267–277 (2014)

21. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game - a completeness
theorem for protocols with honest majority. In: Proceedings of the 19th ACM Symposium
on the Theory of Computing, pp. 218–229. ACM, New York (1987)

22. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic
fault-tolerant distributed computation. In: Proceedings of the 20th Annual ACM Symposium
on Theory of Computing, pp. 1–10 (1998)

23. Papadimitriou, C.H., Steiglitz, K.: Combinatorial optimization: algorithms and complexity.
Prentice-Hall, Inc., Upper Saddle River (1982)

24. Kirkpatrick, S., Gelatt Jr., C.D., Vecchi, M.P.: Optimization by simulated annealing. Sci-
ence 220(4598), 671–680 (1983)

25. Croes, G.A.: A method for solving traveling salesman problems. Operations Research 6(6),
791–812 (1958)

26. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In:
Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg
(1999)

27. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of
state calculations by fast computing machines. The Journal of Chemical Physics 21, 1087
(1953)

28. Ben-David, A., Nisan, N., Pinkas, B.: Fairplaymp: a system for secure multi-party com-
putation. In: Proceedings of the 15th ACM Conference on Computer and Communications
Security, CCS 2008, pp. 257–266. ACM, New York (2008)

29. Ioannidis, I., Grama, A.: An efficient protocol for yao’s millionaires’ problem. In: Hawaii In-
ternational Conference on System Sciences (HICSS-36), Waikoloa Village, Hawaii, January
6-9, pp. 205–210 (2003)

30. Kim, B.-I., Shim, J.-I., Zhang, M.: Comparison of tsp algorithms. In: Project for Models in
Facilities Planning and Materials Handling (1998)

31. Bogdanov, D., Laur, S., Willemson, J.: Sharemind: A framework for fast privacy-
preserving computations. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS, vol. 5283,
pp. 192–206. Springer, Heidelberg (2008)

32. Zhang, Y., Steele, A., Blanton, M.: Picco: a general-purpose compiler for private distributed
computation. In: ACM Conference on Computer and Communications Security, pp. 813–826
(2013)

ELITE: zEro Links Identity managemenT

systEm�

Tarik Moataz1,2, Nora Cuppens-Boulahia2, Frédéric Cuppens2, Indrajit Ray1,
and Indrakshi Ray1

1 Dept. of Computer Science, Colorado State University, Fort Collins, CO 80523
{tmoataz,indrajit,iray}@cs.colostate.edu

2 Institut Mines-Télécom, Télécom Bretagne, Cesson Sévigné, France
{nora.cuppens,frederic.cuppens}@telecom-bretagne.eu

Abstract. Modern day biometric systems, such as those used by gov-
ernments to issue biometric-based identity cards, maintain a determinis-
tic link between the identity of the user and her biometric information.
However, such a link brings in serious privacy concerns for the individ-
ual. Sensitive information about the individual can be retrieved from the
database by using her biometric information. Individuals, for reasons of
privacy therefore, may not want such a link to be maintained. Deleting
the link, on the other hand, is not feasible because the information is used
for purposes of identification or issuing of identity cards. In this work, we
address this dilemma by hiding the biometrics information, and keeping
the association between biometric information and identity probabilistic.
We extend traditional Bloom filters to store the actual information and
propose the SOBER data structure for this purpose. Simultaneously,
we address the challenge of verifying an individual under the multitude
of traits assumption, so as to guarantee that impersonation is always
detected. We discuss real-world impersonation use cases, analyze the
privacy limits, and compare our scheme to existing solutions.

1 Introduction

Many nations are increasingly using biometric based systems for national
identity cards for their citizens. Examples of these are the proposed project
of Carte Nationale d’Identité Biométrique of the French government
(see http://www.service-public.fr/actualites/002101.html) and the
AADHAAR project undertaken by the Unique Identification Authority of India
(see http://uidai.gov.in). These governments are building large biometric
database systems to issue social security cards, health insurance cards etc. The
main objective is to efficiently provide citizen services via accurate identity verifi-
cation. For this purpose, these systems maintain a database of sensitive personal
information, called the identity database, a biometric database containing indi-
vidual’s biometric information, and a deterministic link between the identity

� This work was partially supported by the U.S. National Science Foundation under
Grant No. 0905232.

V. Atluri and G. Pernul (Eds.): DBSec 2014, LNCS 8566, pp. 195–210, 2014.
c© IFIP International Federation for Information Processing 2014

http://www.service-public.fr/actualites/002101.html
http://uidai.gov.in

196 T. Moataz et al.

of the individual in the identity database and her biometric information in the
biometric database. This link, which is a primary-key/foreign-key relationship
between the two databases, allows querying the identity database using the bio-
metric information from the biometric database. The link helps to ensure that
any improper access to the identity database via impersonation is detected and
potentially prevented.

Impersonation can happen at many stages of the biometric system operation.
We are interested in two specific situations, the so called “First application for
biometric card” scenario where the user is applying for the issue of a biometric
based identity card, and the “Renewal without a document or ID card loss”
scenario, where a user is applying for a replacement card.

First application for biometric card: During the first application, the applicant
goes through an eligibility determination step. If the user is eligible and
her biometric information does not exist in the biometric database, then the
application is accepted. If the individual provides an identity that already
exists in the identity database then it is a case of impersonation.

Renewal without a document: During the renewal phase, the applicant has to
go through the verification step in order to determine if he already exists
in the system. Renewal can take place if and only if the relevant biometric
information already exists in the biometric database. If the individual gives
a different identity that is not associated with his biometric information it
is a case of impersonation.

The deterministic link between biometric information and identity help detect
such impersonations. In almost all existing biometric information management
systems that we have studied however, this link is public and not protected. Con-
sequently, it brings forth serious privacy concerns for the individuals. Biometric
information is, surprisingly, easily available without consent. For example, fin-
gerprints can be easily picked up from different surfaces. An attacker who is
targeting a specific individual and has acquired by subterfuge that individual’s
biometric information and also has access to the identity database can then eas-
ily cause a privacy breach for the targeted individual. (Note that, by simply
accessing the identify database, the attacker cannot launch such a targeted at-
tack.) Consequently, individuals who are concerned about their privacy, may
want these deterministic links between the identity database and the biomet-
ric database removed. Unfortunately, since removing the link is not an option,
we investigate in this work if a probabilistic link between biometric information
and identity can maintain user privacy and at the same time preserve all the
functionalities of the system.

One possible solution to this problem is to keep the information in the bio-
metric database encrypted, so that the identity is linked to encrypted biometric
data. If the attacker cannot correlate the illegally obtained biometric informa-
tion with the encrypted information stored in the database, the attacker will
not be able to breach privacy of the individual. Several works aim to provide
biometric privacy employing variants of this theme [11,14,17], although they do
not address the same problem as ours. In fact, these techniques cannot be used

ELITE: zEro Links Identity managemenT systEm 197

as native constructions to solve our problem. Under these setups, proper identi-
fication would work only if an individual could be associated with one and only
one stored biometric information. Unfortunately, owing to the vagaries of bio-
metric capture devices, a physical biometric pattern can have several captured
versions – the so called multitude of traits issue. These versions are not totally
different and have considerable similarities. However, they are rarely exactly the
same. An identification based on two similar pieces of biometric information is
always possible with different levels of accuracy and efficiency. However, these
similarities quickly vanish when the biometric information is encrypted. This
is one of the reasons why biometric information is traditionally stored as plain-
text, although the work of Bringer et al. [5] proposes an error-tolerant searchable
encryption scheme that can be used to solve this problem [1] albeit at the ex-
pense of very high computational overhead making it impractical for large scale
deployment.

The Setbase approach proposed by Adi Shamir [18] was the first scheme to
address the problem of converting a deterministic association between biomet-
ric information and identity into a probabilistic one. This scheme stores the
biometric information as plaintext. The relation one to one is replaced by a
relation n to n where n is the size of a subset of identities set. The idea centers
around fixing a number m of subsets without fixing their size. This results in m
subsets of identities, and their associated subsets of biometrics. Consequently,
each identity is associated to many (the size of the subset) biometrics and, vice
versa, each biometric information is associated with many identities. This con-
cept makes the biometric-identity association private. The approach allows one
to detect impersonation with a certain probability but not as accurately as a de-
terministic one to one mapping. There have quite a few works that explored the
underlying principles of the Setbase approach and quantify various parameters
[12,13]. However, the Setbase approach has several issues that prevent it from
being adopted in practice. First of all, the association between a given subset
of identities and the corresponding subset of biometric information represents a
valuable information and should be kept secret. If there is an attacker (includ-
ing insiders) who knows that a given person is in a subset Si, it will enable the
attacker to usurp this identity if the attacker and the individual share the same
subset. For this reason, the association is encrypted using a probabilistic asym-
metric semantically secure scheme that hides the association. Moreover, keys
should be kept secret in order to protect the system while biometric information
is stored as plaintext without any transformation, encryption or obfuscation.
Finally, any deletion is impossible in the Setbase approach which makes the
scheme not deployable.

In this paper, we present a novel scheme called ELITE (acronym for zEro
Links Identity managemenT systEm) that allows a probabilistic link between
biometric information and identity. We describe an initial construction called
ELITE-1 that introduces the fundamental principles of the scheme. We then
refine this to propose ELITE-2 – the second and main construction. ELITE-1
assumes that the biometric information stored in the database and the biometric

198 T. Moataz et al.

information retrieved from the biometric capture device during the verification
are the same. We propose a novel probabilistic data structure called “Stored
Object Bloom Filter” (SOBER, for short) for storing identities, which is based on
the traditional Bloom Filters. We then adapt the Greedy algorithm proposed by
Azar et al. [2] in the context of the balls in bins problem, to insert identities in the
SOBER structure. We show how to determine if an individual is in the system
during one of the two phases discussed earlier. For the second construction, we
take into account the issue of multitude of traits. In ELITE-2, the storage and
the creation of biometric templates is based on the scheme of R. Capelli et al. [7].
ELITE-2 ensures that even if the captured biometric information is considered
different, we are able to store them in a secret way and at the same time preserve
the ELITE-1 functionalities. Our proposed scheme has many advantages over
the Setbase approach [18] namely, (i) creating a probabilistic link between the
biometrics and the identities while maintaining a high impersonation detection
rate, (ii) better control over the privacy and impersonation detection dilemma,
(iii) biometric information not stored in a plaintext, yet the multitude of traits
issue addressed, (iv) more efficient scheme with a constant search complexity
and reduced storage space while deletion can still be performed.

2 ELITE: zEro Links Identity managemenT systEm

In real world biometric system, there is always a phase during which the sys-
tem enrolls new individuals and issues their biometric ID cards or passports.
During this phase, a deterministic link between the identity and the biometric
information needs to be maintained. We assume that the enrollment phase is
not compromised and that this link is deleted directly after the issuance. The
ELITE scheme deals with issues related to storing the biometric information in
the database after the biometric ID card has been issued – the storage phase –
and verifying whether an individual is in the system or not – the search phase.

We extend the classical Bloom filter data structure [3] to develop the ELITE
solution. We call this data structure “Stored Object Bloom filtER (SOBER)”. It
enables the separation of the identity from the biometric information by making
the link between biometric information and identity probabilistic. The scheme
also hides the biometric information so that it is impossible to recover stored
information. ELITE-1 employs a multiple choice identity allocation algorithm,
Greedy [2] that has been proposed in the context of the balls in bins problem.
It allows the insertion of a number of identities in the SOBER data structure. In
the following, we first introduce the Stored Object Bloom Filter data structure,
present the Greedy algorithm, and then discuss the construction of the ELITE-
1 scheme. We present an example to discuss how our system works and then
analyze the privacy features of the scheme.

2.1 Preliminaries

Stored Object Bloom Filter - SOBER Bloom filters [3] are probabilistic data struc-
tures that permit testing membership of an element in a group. Bloom filter as

ELITE: zEro Links Identity managemenT systEm 199

a structure does not allow the storage of the element, but only the membership
verification of an element. The most important feature of a Bloom filter is that
the time complexity for membership verification is constant i.e. O(1). SOBER is
a 〈key − value〉 data structure that has similar construction as a normal Bloom
filter with the additional feature that the cells can contain extra information. In
the following, we first discuss the construction steps of SOBER, then describe how
to search for an element using this probabilistic data structure.

SOBER construction. Briefly, a classical Bloom Filter works as follows. Let us
consider a set of n elements S = {a1, ..., an} and r independent hash functions
hkj : {0, 1}∗ → [[0,m]] where m is the size of an array A. We initialize all cells of
A to zero. For each ai in S and j ∈ [[1, r]], we compute the value hkj (ai). The
output of each hash function represents the index to a cell in arrayA whose value
will be set to 1. This is shown on the left side in Figure 1. To test whether an
element a′ is a member of the set S, we have to only calculate hk1(a

′), ..., hkr (a
′).

If for each j ∈ [[1, r]],A(hkj (a
′)) = 1 then we can conclude that a′ ∈ S (with a

high probability), otherwise a′ �∈ S. Note that, in some membership verification
cases, we can have a false positive for elements whose identities were not stored
in the Bloom filter. However, the false positive rate can be arbitrarily reduced.

0 1 0 0 1 1 0 0

m = 8

hk1
(a) hk2

(a) hk3
(a)

r = 3

0 1 - {id1, id2} 0 0 1 - {id1} 1 - {id2} 0 0

Bloom Filter construction with m = 8
and r = 3

Corresponding Stored Object Bloom Filter with
id1, id2, and id3

Fig. 1. Relation between traditional Bloom Filter and SOBER

The proposed Stored Object Bloom Filter data structure can be seen as a
combination of the Bloom filter with Storage (BFS) [4] and the classical Bloom
filter. In BFS data structure, each cell contains a set of values depending on the
output of the hash functions while in the basic bloom filter a zero or one value is
stored (for fast membership detection). Each cell in the SOBER data structure
can be considered as a 〈key, value〉 cell, where key ∈ {0, 1} and the value is a
set of elements. This is illustrated on the right side in Figure 1.

Greedy algorithm for inserting identities into SOBER. The insertion of identities
in the SOBER data structures can be mapped to the classical balls in bins prob-
lem. In literature, there are many techniques that enable this kind of insertion,
such as, the uniform insertion with a single choice insertion and multiple choice
insertion. These schemes were constructed for different purposes but their main

200 T. Moataz et al.

objective is to decrease the maximum load for every bin, that is the number
of balls in any given bin. We are particularly interested in this article to the
second type of insertion, namely, the multiple choice insertion. Moreover, we
are interested in the special setting where the number of balls is larger than the
number of bins but with a constant ratio. The selection of a multiple choice
rather than the single choice scheme is mainly based on certain privacy issues
that we are going to explain later on. We use the “Greedy” algorithm proposed
in [2] for our purpose. Let l denote the number of balls and m the number of
bins. Greedy(U , d) is the balls in bins insertion algorithm that places the next
ball into the less loaded bin among d bins sampled uniformly at random from U .

2.2 ELITE-1 Scheme Construction

Storage phase Let us consider the set of n biometric information b = {b1, . . . , bn}
and the corresponding identity set id = {id1, . . . , idn}.

1. Create an empty SOBER data structure (all cells initialized with value 0)
with size equal to m and r independent hash functions hi : {0, 1}∗ → [[0,m]].

2. For 1 ≤ i ≤ n, hash the biometric information bi in the set by applying the
r hash functions and store a 1 in each location of SOBER corresponding to
the output of the hash function. If the cell location is already a 1, leave it
as 1.

3. Insert one identity value idi corresponding to bi uniformly at random in
one of the r cell locations identified by outputs of the hash functions when
applied to bi.

4. For 1 ≤ i ≤ n, insert l times the same identity idi associated with bi in l
positions in SOBER following the Greedy(U , d), regardless of whether the
cell position is 0 or 1. If idi is already in a cell of SOBER by virtue of step
3, do not duplicate idi in that cell but consider it one of the l insertions.

5. Create a look-up table L of n rows. Each row contains the identity idi and
the indexes of corresponding cells in SOBER where idi has been inserted
and the application of the hash functions on the corresponding biometric
information bi resulted in a 1 in the cell. (Note that at the end of the
previous step there can be some cells with a 0 but still containing idi. Those
cells will not be included in a row of L.)

The search phase begins by taking a biometric information bj of some individual
and hashing it r number of times. If each of those r cells in SOBER indexed
by the outputs of the hash functions contains a 1, then there is a match and we
proceed with the verification of the identity.

Search phase Given the biometric information bj and the identity idj :

1. Create an empty set I.
2. Apply the r hash functions hi(bj) for 1 ≤ i ≤ r, if hi(bj) = 1 insert the

associated identities in I.
3. If idj ∈ I, then the individual is in the system.

ELITE: zEro Links Identity managemenT systEm 201

2.3 Discussion

Let us consider a set of biometrics {b1, b2, b3, b4, b5} with corresponding identities
{id1, id2, id3, id4, id5}, a SOBER with size equal to 12, and 3 independent hash
functions. Assume that l is equal to 2. A possible construction is shown in
Tables 1(a) and 1(b). We take the case of the identity id5 and the corresponding
biometric b5 to discuss the construction of the lookup-table and SOBER. Let the
cells in SOBER identified by the application of the hash functions on b5 (step
2 of storage phase) be 6, 7 and 12. Thus those positions contain a 1. Step 3
of the algorithm then inserts id5 in position 12 (say). Let us now assume that
step 4 identifies positions 6 and 12 to be the ones where id5 should be inserted.
(It is just a coincidence that the hash functions on b5 also identified 6 and 12 as
among the positions that should contain 1.) We insert id5 in position 6. Since
id5 is already in position 12 by virtue of step 3, we do not duplicate but count it
as the second insertion. Note, that in this step we could have had an insertion
of id5 in a cell which contains a 0. The lookup table now contains the values 6,
12 as addresses in SOBER for id5.

Table 1. Possible construction of ELITE-1 system

(a) Look-up table of identities

Identity Address in SOBER

id1 9

id2 2

id3 2

id4 12

id5 6,12

(b) SOBER with r = 3 and m = 12. The cells
are numbered 1 through 12 left to right from
top to bottom.

0-{id3} 1 - {id3, id2} 0-{id3} 1-{id1}
0 1-{id5, id2} 1 - {id4} 0-{id2}

1 - {id1} 0-{id4} 0-{id1} 1 - {id5, id4}

Observations: In our approach, the system does not store the plain text of the
biometric information of registered users. The information stored in SOBER
will be used to verify the existence of the user’s biometric information. Further,
the look-up table of identities acts as a proof of whether the user is registered
in the system without leaking any information about his biometric information.
This look-up table also allows easy deletion of an identity from the information
base. Since ELITE-1 knows the positions of the cells in SOBER that contain the
identity, we can delete it without altering the other identities or any information
in the data structure. Finally, even if the system has knowledge of the type of
hash functions, it is very difficult to restore the real biometric information. This
is because even using brute force many biometrics can give the same result (the
result of a hash function is equal to 1 in the same identity position). We will see
in the privacy and computational analysis that the search is constant in time
owing to the Bloom feature of SOBER, and storage complexity is far below the
Setbase approach. This makes real world deployment practical.

202 T. Moataz et al.

Fraud determination: Based on the example, we now discuss the fraud use cases
presented earlier in Section 1. We address the first application use case first.
Suppose that there is an applicant who comes to an agency for the first applica-
tion. The first phase to perform is the verification of his biometric information.
This verification consists of a search step on the SOBER biometric base. Refer-
ring to the SOBER base given in Tables 1a and 1b, let b be the new biometric
information of this applicant id. We calculate the output of the three hash
functions hi(b). We can have the following results:

– If ∃i ∈ [[1, r]] such that hi(b) = 0 and id /∈ L then neither the biometric
information nor the identity exist in the system. In this case, the individual
is truly a new user.

– If h1(b) = 4, h2(b) = 2, h3(b) = 6 then the biometric information exists
in SOBER. If id ∈ I = {id1, id2, id3, id5} such that the given identity of
the applicant was on the identity base, the system then assumes that the
applicant has made an error to be addressed for a first application service.

– The biometric information exists in SOBER but the identity does not exist
in the look-up table L. This is an attempt of identity theft or impersonation.

For the second use case (renewal without document), the applicant wants to
renew his ID card when the biometric information already exists in the system.
Suppose that h1(b) = 4, h2(b) = 2, h3(b) = 6, id /∈ I = {id1, id2, id3, id5} and
id ∈ L. In this case, the applicant is not the person that he claims to be. So
this is an impersonation case. In fact, the system proves this by showing that
the biometric information provided by the individual exists in the SOBER, and
the identity is not in the set I. Note that for this specific example, it is easy
for the attacker to usurp the system since we deal with a small set of identities.
However this task is going to be more difficult in real world deployment since
this set will be much larger. The size of the identity set I has to be parametrized
by the administrator so that the privacy and the fraud detection can follow the
administrator’s expectation of the system.

2.4 Privacy Analysis

The construction phase reveals that the size of the identity set I is crucial for
privacy and for reliable impersonation detection. In the following section, we
present an analysis that aims to determine the appropriate values that will allow
us to create a reliable system. The analysis is dependent on four variables: m the
size of the SOBER structure (the number of cells, that is), k the number of hash
functions, n the number of identities and l the number of random insertions
into SOBER for each identity. We first define the degree of privacy and the
probability of fraud detection.

Definition 1. Let I be the set of retrieved identities during the search phase.
The degree of privacy pP for any individual is a ratio equal to: pP = 1

|I| , where

|I| denotes the size of the set I.

ELITE: zEro Links Identity managemenT systEm 203

Definition 2. Let I be the set of retrieved identities during the search phase.
The probability of fraud pF for the two use cases defined in Section 1 are as
follows:

pF =

⎧⎨⎩
1
|I| use case – first application for biometric card

|I|
n use case – renewal without a document

The above definitions capture the fact that the size of identity set I controls the
rate of fraud and at the same time the degree of privacy of individuals. In fact,
the probability to detect fraud in our first use case is equal to 1

|I| , where I is

the number of unique identities in the identity set I. On the other hand, for our
second use case, the probability pF that a attacker gives a different identity in

the same identity set I is equal to |I|
n . Moreover, if the size of the identity set

increases the privacy level of users also increases. Thus, a small privacy degree
pP reflects a high privacy level.

It is clear that there is a trade off between the privacy level that the system
offers, the reliability of fraud detection and the difficulty to mislead the system.
Indeed, if the set of unique identities gets larger, the attacker gets a higher chance
of cheating the system; on the other hand, if the set of unique identities gets
larger, users get better privacy. The degree of privacy is based on how evenly
we distribute the identities over all positions of the SOBER data structure. The
best scenario will be a case where every position stores exactly l·n

m identities.
However, a random insertion of identities cannot guarantee this result. Thus, we
have used the Greedy algorithm to decrease the maximum load of every position
in order to be as close to the ideal situation as we can. Moreover, decreasing
the maximum load will increase the minimum load (i.e. the minimum number
of identities in any cell). One may be led to believe that a deterministic identity
insertion will be better in our scenario. However, it is not the case from a
security perspective. This is because having a deterministic insertion algorithm
will leak information about the strategy of identity insertion. Consequently, for
any internal adversary the task of identity deletion will be straightforward.

Essentially, we want to have a SOBER data structure where empty positions
are very rare, almost non-existent. Empty positions refer to those positions
in the SOBER data structure that do not contain any identity. We employ
a classical problem known as the the occupancy problem [8], that gives us the
exact probability of finding an empty position. We will show that, using the
Greedy algorithm, we can control the minimum and maximum load of every cell
in SOBER data structure and consequently disperse the identities in a uniform
manner throughout the entire data structure.

Decreasing the false positive rate in SOBER: SOBER is a probabilistic data
structure that involves some false positives. Let pf denote the probability of
a false positive. We first determine the appropriate values to minimize the
false positive rate. Let us consider a SOBER with a size equal to m associated
with k hash functions. We have n entries. Each insertion in the SOBER will

204 T. Moataz et al.

imply insertion of l+ 1 same identity values uniformly at random. We consider
hash functions as random functions. We can show that for k = m

n ln(2), the
probability of false positives is the minimum and is equal to pf = 2−k.

Probability of an empty cell in the SOBER data structure: Let us assume that
insertion of identities are made uniformly at random with a single choice, i.e.
every identity has one random choice to get into a given cell. We have l · n
identities and m cells. We denote by Xn.l,m the number of empty cells after all
insertions. We can show that the probability that all cells contain at least one
identity is equal to: Pr(Xn.l,m = 0) =

∑n
i=0(−1)i

(
m
i

)
(1 − i

m)n.l. This formula

can be approximated [9] to: Pr(Xn.l,m = 0) ' e−λ, where λ = m.e−
n.l
m .

Minimum/Maximum load of any cell: The Greedy algorithm ensures with a

high probability [20] a maximum load equal to n·l
m +

√
n·l·ln(m)

m in the case

where n · l > m · ln(m). While the maximum load defines the upper bound of
the number of identities by cell, the minimum load is very important as well,
since it controls the minimum size of the set I in the worst case. The following
theorem gives the behavior of the minimum load of the Greedy(U , 2) algorithm.
We omit the proof for lack of space.

Theorem 1. Let n · l be the number of identities, m the size of the SOBER data
structure and d = 2 the parameter of the Greedy algorithm. Let p be a positive

real number. Then, we have with a probability at least equal to 1− n·k
ln(2) ·e−

l·ln(2)·p2
2k

the minimum load of any bin to be larger or equal to: (1−p)·l·ln(2)
k

A direct consequence of Theorem 1 is that the number of identities in the
worst case with a probability equal to 1− p(l, k, n, p) is equal:

|I| = (1− p) · l · ln(2)

where p(l, k, n, p) = n·k
ln(2) · e−

l·ln(2)·p2
2k . We can control the minimum load by

choosing a proper value of l for a fixed number of hash functions as well as a
fixed population. This implies that the administrator can control the privacy
of fraud pF as well as the degree of privacy pP . We should emphasize that the
bigger the set I the more private the individual’s biometric is but with lesser
fraud detection ratio. This latter ratio should be carefully selected by authorities
for a fair use of the system.

3 ELITE-2 Solution for Multitude of Traits Issue

The ELITE-1 scheme assumes that the user is associated with only one biomet-
ric information that has an exact match during the verification phase. This,
however, is not true in real life [10]. In fact, we should differentiate between
the biometric information as a physical characteristic of the individual, and the

ELITE: zEro Links Identity managemenT systEm 205

numerical biometric information after being captured by an image sensor. Note
that, a physical biometric information can also have several versions. However,
these versions are not totally different and have some similarities. So an identi-
fication of two similar biometrics can always be possible; only the accuracy and
the efficiency are the main issues. This identification is mainly based on how the
biometric information is digitized, and how robustly a biometric information can
be represented such that similar biometrics will match even if they are distorted.

In literature, there are several biometric indexing techniques that can be vari-
ously classified depending on the features used [18]. Examples are global features
such as the average of ridge-line frequency over the whole biometric information,
local ridge-line orientations, minutiae and other features obtained from the bio-
metric pattern. In the following, we are interested in the minutiae indexing
technique presented in [6,7]. This technique introduces a biometric information
indexing based on Minutiae Cylinder-Code, MCC. We provide in the following
the details of the MCC approach.

3.1 Minutiae Cylinder-Code Overview

The MCC representation is a fixed-radius approach relying on minutiae features
of the biometric information. MCC involves three dimensional representations of
minutiae into cylinders. Each physical biometric information β can be seen as a
set of minutiae that represents a template T of β such that T = {m1, · · · ,mn}.
Each minutia mi is defined by its location (xmi , ymi) and its orientation in the
space θmi . The MCC transformation associates each minutia with a local space
(cylinder) that encodes spacial and directional relationship with the neighboring
minutiae. Each cylinder is divided into multiple cells and each cell contains a
value depending on the neighboring minutiae. We will not go into the details of
MCC. We describe next the verification steps done using the locality-sensitive
hash functions [15].

We represent each biometric information as a set of binary vectors B. Each
binary vector bm corresponds to a MCC transformation of a given minutia m
in the template of the biometric information T such that, B = {bm | m ∈
T and MCC(m) = bm}.

For two biometrics β1 and β2 having respectively the templates T1 and T2,
we generate the binary vector sets for both templates B1 and B2. A similarity
measure between these two biometric information can be done using Hamming

distance [19] such that, hds(T1, T2) =
∑

b∈B2
maxbj∈B1

(1−(
dH (b,bj)

n)p)

|B1| where n

represents the size of each binary vector, p a parameter controlling the shape of
the similarity and dH the Hamming distance, with hds(·) near to 0 means no
similarity, and a hds(·) near to one means a maximum of similarity. We have
to point out that this similarity measure may not be the best choice for MCC
comparison, and there are many other more suited measures discussed in detail
in [6]. For the sake of simplicity we have chosen the Hamming distance similarity
measure.

206 T. Moataz et al.

At this point, we cannot directly integrate the MCC transformation in our
ELITE solution, since we cannot apply a Hamming computation over hashed
values of biometrics templates if we store them in our SOBER. In fact, using
MCC representation, we can avoid computing Hamming distance and replace it
by locality-sensitive hash function (LSH) [7]. LSH can be viewed as projecting
a n size vector into h size vector where h < n. The idea behind the use of LSH
is that similar n size vectors still remain similar by projecting them into h size
vectors.

The LSH approach consists of selecting k hash functions fH1 defined by ran-
domly choosing k arrival position subsets H1, H2,...,Hk. In order to compute
the projection of a vector, we apply the k-hash functions; the output of each
hash function is a binary vector with a size equal to h. Thus, using LSH, the
Hamming distance similarity can be estimated [16] such that :

hds(T1, T2) ∼=
∑

b∈B2
maxbj∈B1(C(b,bj))

p
h)

|B1|.k
p
h

(1)

where C(b,bj) =
∑l

i=1 δ[fHi(b) − fHi(bj)] and δ is a Dirac symbol equal to 1
in case of equality and zero in the other case. We refer the reader to [7] to the
experimental results on multiple well known biometrics databases.

Summing up, since we do not require computing Hamming distance for an
identification, the MCC representation and the multiple LSH solution can be
integrated to the ELITE scheme in order to handle identification under the
multitude of traits issue, while at the same time providing a probabilistic link
between individuals and their biometric information. In the following we describe
the solution ELITE-2.

3.2 ELITE-2 Construction

Let us consider a set ofnbiometrics considered asn templates,where each template
is a set ofminutiae, and the associated set ofn identities id = {id1, · · · , idn}. After
applying the MCC transformation, the result will be a set of n binary vectors such
thatB = {B1, · · · , Bn}. Let us consider s locality-sensitive hash functions (LSH)
defined by a random sampling of arrival spaces such that H1, · · · , Hs, the size of
each arrival space being equal to h. We should underline the fact that the size h
will determine later the size of the SOBER filters. In the following, we describe the
storage phase as well as the search (i.e. verification) phase.

Storage phase. First, we create s SOBERs with the same set of r independent
hash functions h1, · · · , hr, where each SOBER has a size equal to 2h. Each cell in
each SOBER will be divided into two lists. The first list will contain the identifier
couples of each minutia transformation – for example (1, 2) denotes the second
minutia of the first biometry (instead of containing one or zero value) – and the
second list contains the identities. Let us consider the MCC transformation of
the ith biometric information Bi = {bi,1, · · · , bi,t} and the associated identity
idi. For each bi,j ∈ Bi, the algorithm proceeds in these steps:

ELITE: zEro Links Identity managemenT systEm 207

1. For each 1 ≤ k ≤ s, apply the r independent hash functions h1, · · · , hr

such that {SOBERk[h1(fHk
(bi,j))] = (i, j), · · · , SOBERk[hr(fHk

(bi,j))] =
(i, j)},

2. For each 1 ≤ k ≤ s, insert the identity idi in l cell of each SOBERk following
the Greedy algorithm,

3. Insert only one value of idi in only one SOBER uniformly at random in the
positions where the r hash functions outputted has an outputted result.

4. Create a row in the look-up table L which contains the identity idi and
the corresponding positions in the random selected SOBER where idi be-
longs to cells where hash functions outputted a 1’s result for the biometric
information Bi.

We reiterate these steps for all binary vectors Bi. At the end we will output s
filled out SOBERS which represents the new biometric database.

Search phase. The input of this phase is a scanned physical biometric information
and an identity id. We want to verify whether the biometric information exists
or not in the biometric database. The first step is to transform the scanned
biometric information using the MCC representation. The output of the MCC
representation is a binary vector set B. In order to perform the verification we
follow these steps:

1. Create t empty collusion sets C1, · · · , Ct and t empty identity sets (I1, · · · , It),
2. For 1 ≤ k ≤ s, for 1 ≤ i ≤ t, compute the value h1(fHk

(bi)), · · · , hr(fHk
(bi))

and retrieve from
{SOBERk[h1(fHk

(bi,j))], · · · , SOBERk[hr(fHk
(bi,j))]} the couple (or cou-

ples) existing in all the corresponding positions as well as all the correspond-
ing identities. Store them respectively in Ci and Ii.

3. For 1 ≤ i ≤ t, rearrange the list Ci such that for each couple we give a
score that represents the number of images of the corresponding couple in
Ci, that is, the number of hash functions that collide between the new entry
and existing biometric information(s).

4. Based on C1, · · · , Ct, select the maximum number of occurrences that be-
longs to the same template, then calculate the similarity based on the equa-
tion 1. If the similarity is bigger than a minimum that the administrator
defines, the biometric information exists.

5. If id ∈ I = {I1, · · · , It}, conclude that the identity belongs to the system.

We should point out that the size of I is very important since it represents the
parameter of privacy that we have explained in previous section (see Definition
1). In addition, the size of the SOBER is 2h, which is equal to all the possibilities
of hash function space Hi. On the other hand, the number of entries for each
SOBER is equal to n×t where n is the number of biometrics and t the number of
minutiae in each biometric information. (In practice t ∼= 70 [7]). In order to have
the minimum false positives and decrease the collision in the same SOBER for

different binary vectors b, we should verify the following equation: r = 2h

n.t ln(2).

208 T. Moataz et al.

In addition, tuples stored in the SOBER cells do not disclose any information
about the identity. A number of these couples exist in the construction so as
to maintain a link between minutiae and not to individuals’ identity. This link
allows one to determine the number of collusions for each stored minutiae in
relation to others in the same template, as shown in the search phase.

From privacy perspective, the analysis can be done following the same steps
as ELITE-1. The only main difference is the number of SOBERs (the number
of minutiae associated with each biometric information is considered as a single
entry).

3.3 Complexity Analysis

The storage complexity of ELITE-1 is dependent on the number of instances of
identities, which is equal to l for each identity. If n represents the number of
identities, the storage complexity is equal to O(n · l). ELITE-2 represents a solu-
tion that can accommodate the multitude of traits issue, which ELITE-1 cannot,
while maintaining the advantage of the basic ELITE-1 scheme. ELITE-2 derives
its power from the constant search time of SOBER. However since the ELITE-2
construction requires the use of s bloom filters, the search time is equal to O(s).
On the other hand, the use of s Bloom filters increases the storage complexity
to O(s · n · l). (Here we do not take into account the constant factor of number
of minutiae, which is in the order of ∼ 70 minutiae per biometric information).
ELITE-2 takes into consideration the multitude of traits for deletion of biomet-
rics while keeping identities unlinked to their hidden biometrics. Table 2 presents
a functional and computational comparison between the Setbase approach and
the two ELITE solutions.

Table 2. Comparison between ELITE-(1,2) and Setbase approach

Scheme Search
complexity

Storage
complexity

Multitude
of traits

Hidden bio-
metric infor-
mation

Delete oper-
ation

ELITE-1 O(1) O(n.l) no yes yes

ELITE-2 O(s) O(s.n.l) yes yes yes

Setbase ap-
proach

O(n) O(n|B|) yes no no

ELITE-2 has many privacy advantages compared to the Setbase approach,
specially with regards to the flexibility it offers for the choice of the rate of im-
personation detection. In the Setbase approach, the rate is equal to m/n, where
m is the size of each subset and n the size of whole population. Since the number
of subsets are fixed, the m factor increases, which decreases linearly the detec-
tion rate. In ELITE-2, the randomization factor can be dynamically changed
depending on the authorities’ expectations. In ELITE-2, fixing the size of the

ELITE: zEro Links Identity managemenT systEm 209

SOBER is mandatory before inserting elements. This can be a shortcoming to
overcome if the distribution of population growth is not pre-determined (which
is typically the case). However, even if we made the assumption of an unknown
population growth, a good way to proceed is to divide each SOBER into chunks
(each chunk is a different SOBER with its own hash functions) that we fill up
depending on the population growth.

4 Conclusion

One of the biggest concerns of biometric based systems such as the ones used for
issuing biometric based identity cards is that the systems include a deterministic
link between the biometric information of an individual and her identity. Since
the system also contains sensitive private information, such deterministic links
can cause identity thefts for an individual when an attacker misuses a externally
obtained biometric information to impersonate a registered user. In this work,
we presented two constructions, ELITE-1 and ELITE-2, that render the associa-
tion between the biometric information and the identity probabilistic. ELITE-2
improves upon ELITE-1 to address the challenges posed by the multitude of
traits issue. We provide a theoretical analysis of the privacy guarantees of the
ELITE scheme. We discuss how real-world impersonations can be detected. Fi-
nally, we provide analytical results of the storage and search complexities of the
two schemes.

Future work involves a thorough new stateful algorithm that takes dynami-
cally into consideration the distribution of identities during the storage phase in
order to have more precise control over the probabilistic parameters. In addi-
tion, we plan to investigate how our scheme ELITE-1 can be applied to other
applications, such as, keeping the relationship between an individual and his
genetic information secret.

References

1. Adjedj, M., Bringer, J., Chabanne, H., Kindarji, B.: Biometric Identification over
Encrypted Data Made Feasible. In: Prakash, A., Sen Gupta, I. (eds.) ICISS 2009.
LNCS, vol. 5905, pp. 86–100. Springer, Heidelberg (2009)

2. Azar, Y., Broder, A.Z., Karlin, A.R., Upfal, E.: Balanced Allocations. In: Proceed-
ings of the 26th Annual ACM Symposium on Theory of Computing, pp. 593–602.
ACM, Chicago (1994)

3. Bloom, B.H.: Space/Time Trade-offs in Hash Coding with Allowable Errors. Com-
munications of the ACM 13(7), 422–426 (1970)

4. Boneh, D., Kushilevitz, E., Ostrovsky, R., Skeith III, W.E.: Public Key Encryption
That Allows PIR Queries. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622,
pp. 50–67. Springer, Heidelberg (2007)

5. Bringer, J., Chabanne, H., Kindarji, B.: Error-Tolerant Searchable Encryption.
In: Proceedings of IEEE International Conference on Communications, Dresden,
Germany, pp. 1–6 (June 2009)

210 T. Moataz et al.

6. Cappelli, R., Ferrara, M., Maltoni, D.: Minutia Cylinder-Code: A New Represen-
tation and Matching Technique for Fingerprint Recognition. IEEE Transaction on
Pattern Analysis and Machine Intelligence 32(12), 2128–2141 (2010)

7. Cappelli, R., Ferrara, M., Maltoni, D.: Fingerprint Indexing Based on Minu-
tia Cylinder-Code. IEEE Transaction on Pattern Analysis and Machine Intelli-
gence 33(5), 1051–1057 (2011)

8. Feller, W.: An Introduction to Probability Theory and Its Applications: Volume
One. John Wiley & Sons (1968)

9. Host, L.: Some Asymptotic Results For Occupancy Problems. The Annals of Prob-
ability 5(6), 1028–1035 (1977)

10. Jain, A.K., Bolle, R.M., Pankanti, S.: Biometrics: Personal Identification in Net-
worked Society. Springer (1999)

11. Jain, A.K., Nandakumar, K., Nagar, A.: Biometric Template Security. EURASIP
Journal on Advances in Signal Processing 2008 (2008)

12. Justus, B., Cuppens, F., Cuppens-Boulahia, N., Bringer, J., Chabanne, H., Cipiere,
O.: Define Privacy-preserving Setbase Drawer Size Standard: A ε-closeness Per-
spective. In: Proceedings of the 11th Annual International Conference on Privacy,
Security and Trust, Tarragona, Catalonia, Spain, pp. 362–365 (July 2013)

13. Justus, B., Cuppens, F., Cuppens-Boulahia, N., Bringer, J., Chabanne, H., Cipiere,
O.: Enhance Biometric Database Privacy: Defining Privacy-Preserving Drawer
Size Standard for the Setbase. In: Wang, L., Shafiq, B. (eds.) DBSec 2013. LNCS,
vol. 7964, pp. 274–281. Springer, Heidelberg (2013)

14. Kevenaar, T.A.M., Korte, U., Merkle, J., Niesing, M., Ihmor, H., Busch, C., Zhou,
X.: A Reference Framework for the Privacy Assessment of Keyless Biometric Tem-
plate Protection Systems. In: Proceedings of the Special Interest Group on Bio-
metrics and Electronic Signatures, Darmstadt, Germany, pp. 45–56 (September
2010)

15. Kushilevitz, E., Ostrovsky, R., Rabani, Y.: Efficient Search for Approximate Near-
est Neighbor in High Dimensional Spaces. In: Proceedings of the 30th Annual ACM
Symposium on the Theory of Computing, Dallas, Texas, USA, pp. 614–623 (May
1998)

16. Mimaroglu, S., Simovici, D.A.: Approximate Computation of Object Distances by
Locality-Sensitive Hashing. In: Proceedings of the 4th International Conference on
Data Mining, Las Vegas, Nevada, USA, pp. 714–718 (July 2008)

17. Schmidt, G.J., Soutar, C., Tomko, G.J.: Fingerprint Controlled Public Key Cryp-
tographic System. Patent #US5541994 A. Mytec Technologies Inc. (July 1996)

18. Shamir, A.: Adding Privacy to Biometric Databases: The Setbase Approach. Pre-
sentation at the 31st International Conference of Data Protection and Privacy
(2009), http://www.privacyconference2009.org/program/Presentaciones/
common/pdfs/adhi shamir madrid.pdf (last accessed September 23, 2013)

19. Steane, A.M.: Error Correcting Codes in Quantum Theory. Physical Review Let-
ters 77(5), 793 (1996)

20. Talwar, K., Wieder, U.: Balanced Allocations: The Weighted Case. In: Proceed-
ings of the Thirty-ninth Annual ACM Symposium on Theory of Computing, STOC
2007, pp. 256–265. ACM, New York (2007)

http://www.privacyconference2009.org/program/Presentaciones/common/pdfs/adhi_shamir_madrid.pdf
http://www.privacyconference2009.org/program/Presentaciones/common/pdfs/adhi_shamir_madrid.pdf

Dynamic Workflow Adjustment
with Security Constraints

Haibing Lu1, Yuan Hong2, Yanjiang Yang3, Yi Fang1, and Lian Duan4

1 Santa Clara University
{hlu,yfang}@scu.edu

2 University at Albany
hong@albany.edu

3 I2R Singapore
yyang@i2r.a-star.edu.sg

4 New Jersey Institute of Technology
lian.duan@njit.edu

Abstract. Dynamic workflow adjustment studies how to minimally adjust exist-
ing user-task assignments, when a sudden change occurs, e.g. absence of users,
so that all tasks are being attended and no constraint is violated. In particular,
we study two key questions: (i) Will the workflow still be satisfiable given a
change? (ii) If the answer is yes, how to find a satisfying assignment with the
minimum perturbation to the old system? We consider various types of changes,
including absence of a user, addition of a separation-of-duty constraint, addi-
tion of a binding-of-duty constraint, and revocation of a user-to-task authoriza-
tion, study their theoretical properties and formulate them into the well-studied
Boolean satisfiability problem, which enables a system engineer without much
technical background to solve problems by using standard satisfiability solvers.
A step further, towards more efficient solutions for our specific problems, we pro-
pose customized algorithms by adapting and tailoring the state-of-art algorithms
inside standard solvers. Our work would have implications for business process
management, staffing, and cost planning.

Keywords: workflow, security, dynamic, satisfiability.

1 Introduction

A workflow can be defined as a set of tasks and dependencies that control the coordina-
tion requirements among these tasks [2]. A workflow example is an information system
for an online pharmacy store, which involves a set of tasks, e.g. order entry, medication
assessment, billing, and shipping, a set of employees with different roles, e.g. phar-
macist and non-technical staff, and a set of constraints, e.g. non-technical staff cannot
perform medication assessment, and a person who does credit check cannot perform
billing due to the fraud concern.

The problem of allocating users to tasks to comply with a given authorization pol-
icy and also fulfil the workflow requirement, is important in access control and has
received considerable attention in the literature. However, there still lack studies from
the dynamic perspective, despite a few papers looking into this problem, e.g. [17,5].

V. Atluri and G. Pernul (Eds.): DBSec 2014, LNCS 8566, pp. 211–226, 2014.
c© IFIP International Federation for Information Processing 2014

212 H. Lu et al.

Indeed, many factors of a workflow are dynamically changing, e.g. a user is absent due
to sickness, the right of a user to access a certain task is temporarily revoked due to
frequent mistakes, and a user has to step way from a task due to an emerging conflict
of interest. A poorly designed workflow, although might be working at the current mo-
ment, is vulnerable to future changes and may cause huge troubles both financially and
operationally to an organization. So it is crucial to study the resilience and flexibility
of a workflow system with respect to various types of changes. It is also important to
investigate how much disruption to an existing system is necessary to make a satisfying
workflow assignment when a sudden change occurs.

In this paper, we formulate and study dynamic workflow adjustment with various
changes, which is to make a workflow assignment with the minimum perturbations to
the current workflow system, while complying with the authorization policy and all as-
sociated constraints. Specific types of dynamic changes considered include absence of
a user, addition of a separation-of-duty constraint, addition of a binding-of-duty con-
straint, and revocation of a user-to-task authorization. To tackle dynamic workflow ad-
justment with various changes, we provide Boolean satisfiability model formulations,
which enable a workflow engineer without much technical background to solve the
problems with standard solvers.

Due to the hardness nature of dynamic workflow adjustment, it is of practical im-
portance to have efficient and customized algorithms, rather than resorting to standard
solvers, which rarely take account of the characteristics of individual problems. A sig-
nificant difference of dynamic workflow adjustment from the conventional workflow
assignment problem is that a satisfying assignment for the system before the change
is already available, which should be taken advantage of, rather than designing a new
assignment from scratch like a standard solver does. More importantly, finding the sat-
isfying workflow assignment, closest to the old assignment, is our ultimate goal, as a
satisfying workflow assignment with much disruption to the old system is of no value in
practice. We are thus motivated to customize the state-of-art algorithms for the Boolean
satisfiability problem to our unique problems.

Our work would have practical implications on workflow planning, staffing, and cost
budgeting. By studying the resilience of a workflow system against different types of
changes, a system manager can plan ahead to minimize the expected loss. By studying
the minimum required perturbation to the old assignment to make a satisfying assign-
ment, the manager can have a better understanding of the strategic importance of a
specific position or an employee and thus make a better and more flexible workflow
system.

2 Problem Definitions

Many types of workflow assignment constraints have been studied in the literature, e.g.
[5,17,9,4]. Following their research, we consider skill constraints, separation-of-duty
constraints, binding-of-duty constraints, and performing constraints.

Skill constraints, also called static constraints, refer to that a task has to be per-
formed by persons with necessary skills or credentials. Skill constraints are typically
enforced by role-based access control (RBAC) [13] due to its various advantages, e.g.

Dynamic Workflow Adjustment with Security Constraints 213

low administrative cost and support of permission inheritance through role hierarchy.
The basic idea of RBAC is to associate roles with tasks and then assign roles to users,
so that a user is authorized to all tasks that are associated with the roles assigned to
him/her. For instance, a pharmacist role is associated with tasks of ordering entry, credit
check, fulfilling order, mediation assessment, shipping, and billing. So any employee
with the pharmacist role can perform all associated tasks. The literature of RBAC, e.g.
[10,11,16], typically denotes user-task assignments by UPA, user-role assignments by
UA, and role-task assignment by PA, in which UA and PA can deduce UPA. Since
this paper assumes roles are stable, to ease the modeling, we consider and denote user-
task assignments by A, which is a binary matrix, i.e. xij = 1 means user i is permitted
to perform task j; otherwise not. Note that in our paper, authorization is different from
actual assignment. Authorization of xij = 1 only means user i has necessary creden-
tials (or skills) to perform task j. For instance, a pharmacist is permitted to perform the
billing task, but may not be assigned to the billing task.

A separation-of-duty (SoD) constraint is to distribute responsibilities to prevent from
fraud and error. For instance, many companies require that a person can not perform
both purchasing and billing tasks to avoid embezzlement. The conventional perception
of a separation-of-duty constraint is a pair of conflicting tasks that no one can per-
form simultaneously. This paper considers a separation-of-duty constraint from a more
general perspective by including conflict-of-interest constraints, as they both advocate
decentralization of tasks. An example of conflict-of-interest constraint is that in order
to provide an objective review a funding proposal reviewer is not allowed to review the
proposal of the person whom he/she had worked with or supervised. So in our paper, a
separation-of-duty constraint is defined and denoted by sijkl , which states that if user i
performs task j, then user k is not allowed to perform task l. As such, the conventional
definition of a pair of conflicting tasks j and l can be described as

⋃
∀i sijil.

A binding-of-duty (BoD) constraint specifies the binding relation of tasks. For in-
stance, a person who changes a password must be the person who creates the password.
In our paper, it is defined and denoted by bijkl, stating that if user i performs task j,
then user k has to perform task l. Note that our definition is different from and more
general than the conventional definition of a BoD constraint, which refers to that bound
tasks have to be performed by the same subject. In some cases, a binding relation can
be associated with multiple subjects. For instance, a company may specify that the
manager who approves a project proposal must come from the same department as the
proposal submitter due to the same knowledge background. By our BoD definition, a
conventional BoD constraint on binding task j and l can be described as

⋃
∀i bijil.

A performing constraint specifies that every task needs to be performed by at least
one user; in other words, no unattended task. The constraint can be represented by∑

i xij ≥ 1, ∀j.
In this paper, we consider and study four types of changes that may interrupt a run-

ning workflow system. They are: (1) absence of a user, (2) addition of a SoD constraint,
(3) addition of a BoD constraint, and (4) revocation of an authorization.

A common obstruction to a workflow system is the change of users. Addition of a
user does not cause constraint conflicts, although the system engineer needs to assign
appropriate tasks to the new user, the study of which is out of the scope of this paper.

214 H. Lu et al.

When user i is absent, a performing constraint may be violated, e.g. task j becomes
unattended if user i was the only one performing the task. If another user is to replace
the absent user, other types of constraint conflicts, e.g. SoD and BoD, may occur. So to
prevent potential loss, a workflow designer has to plan ahead by investigating the work-
flow resilience to such a type of changes. Two questions are faced. First, will a workflow
still be satisfiable after a change occurs? Second, which might be more important, what
is the satisfying workflow assignment with the minimum disruption to the old system?
By satisfying, we mean the workflow assignment does not cause any constraint conflict.
The second question is more important because a satisfying workflow assignment with
much disruption to the old system is of no practical value. To answer the two questions,
we define the following problem.

Problem 1. Given users U , tasks T , user-task authorizations A, BoD constraints B,
SoD constraints S, existing satisfying user-task assignment X̃ , and a number δ, if user
i′ is absent, does there exist a satisfying workflow assignment X such that

∑
ij |xij −

x̃ij | ≤ δ?

δ is the threshold for the amount of disruption. When δ is greater than
∑

ij |x̃ij |, prob-
lem 1 is the formulation of the first question. Indeed, problem 1 is the representation
of the decision version of the second question. So by solving problem 1 multiple times
with different values of δ, one can find the answer for the second question.

A BoD constraint may be added or deleted, when a user’s responsibilities changed,
user relations evolved, task characteristics are updated, etc. Addition of a BoD con-
straint may cause the existing workflow assignment to be unsatisfying, while deletion of
a BoD constraint does not impact the satisfiability. Addition of a BoD constraint gives
rise to the same two questions. First, will the addition of a SoD constraint make the
workflow unsatisfiable? Second, how to find a satisfying workflow assignment with-
out the minimum disruption to the old system? The two questions are formulated as
problem 2.

Problem 2. Given users U , tasks T , user-task authorizations A, BoD constraints B,
SoD constraints S, and existing satisfying user-task assignments X̃ and a number δ, if
a BoD constraint bi′j′k′l′ is added, does there exist a satisfying workflow assignment X
such that

∑
ij |xij − x̃ij | ≤ δ?

Addition of a SoD constraint si′j′k′l′ may also cause constraint conflicts if x̃i′j′ = 1
and x̃k′l′ = 1 both hold in the old workflow system. Will the change cause the system to
a standstill? How much effort is required to make another satisfying workflow system?
The two questions can be answered by solving the following problem.

Problem 3. Given users U , tasks T , user-task authorizations A, BoD constraints B,
SoD constraints S, and existing satisfying user-task assignments X and a number δ, if
a SoD constraint si′j′k′l′ is added, does there exist a satisfying workflow assignment X
such that

∑
ij |xij − x̃ij | ≤ δ?

Authorization might be added or revoked in the middle of a process. As addition
of an authorization, e.g. a staff may be upgraded to the pharmacist role after getting
the licence, does not cause any type of constraint conflicts studied in this paper, so
in terms of change of authorization we only consider the revocation case. Revocation

Dynamic Workflow Adjustment with Security Constraints 215

of authorization may occur when a user becomes disqualified for certain tasks. For
instance, a pharmacist is permitted to process shipment. But if he frequently makes
mistakes, then his permission to that task may be suspended or revoked. The problem
is that when his assignment to the shipment task is canceled, we have to find another
person to replace that person, if that person is the only one assigned to that job in the
old workflow system. There might be multiple persons with the authorization to the
shipment task. But an assignment decision may cause other types of conflicts, e.g. SoD
and BoD. In that case, we may have to make more changes to resolve cascaded conflicts.
To investigate the satisfiability and resilience of the workflow to such a type of change,
we define the following problem.

Problem 4. Given users U , tasks T , user-task authorizations A, BoD constraints B,
SoD constraints S, existing satisfying user-task assignment X̃ , and a number δ, if au-
thorization ai′j′ is revoked, does there exist a satisfying workflow assignment X such
that

∑
ij |xij − x̃ij | ≤ δ?

3 Theoretical Study

Finding a satisfying workflow assignment without any constraint conflict from scratch
has been proven to be NP-hard [5]. The difference in our dynamic workflow adjustment
problems is that there was a satisfying workflow assignment available. Intuitively, it
should not be difficult to examine the workflow satisfiability under a change by tweak-
ing the previous workflow assignment. But it turns out a dynamic workflow adjustment
problem can be as difficult as the workflow design problem.

In this section, we will prove the dynamic workflow adjustment problem in the case
of one user being absent is NP-complete based on some known results.

Statement 1. The problem of determining when a planar map, i.e. it can be drawn on
the plane in such a way that its edges intersect only at their endpoints, is three-colorable
is NP-complete [15].

Statement 2. Every planar map is 4-colorable [1].

Theorem 1. Problem 1 is NP-complete.

A decision problem is NP-complete if it belongs to NP and also can be reduced to a
NP-complete problem.

Given a new workflow assignment, one can examine its difference from the old as-
signment and its satisfiability in polynomial time. So problem 1 belongs to NP.

Consider a special case of problem 1 with δ being a large number, so the decision
problem asks whether a workflow is satisfiable when a user is absent. The satisfiabil-
ity problem can be reduced to planar 3-colorability. Statements 1 and 2 show that any
planar graph has a 4-coloring solution, but hard to find a 3-coloring solution. An in-
stance of problem 1 can be represented by {U, T,A,C,B,X,Ui}, which denote users,
tasks, authorizations, conflict-of-interest constraints, binding-of-duty constraints, pre-
vious assignments and the user who is absent. A planar map can be represented by
regions {ri}. We denote col : ri → {1, 2, 3, 4} to be a 4-coloring solution, such that
col(ri) �= col(rj) if ri and rj are adjacent. For each planar map instance, we can con-
struct an equivalent instance of problem 1 as the follows:

216 H. Lu et al.

– For U , let it be {u1, u2, u3, u4};
– For T , create a task ti to correspond to each region Ri of the map;
– For A, users are allowed to execute all tasks;
– For C, include {s1i1j , s2i2j , s3i3j , s4i4j}, i.e. separation-of-duty constraint on ti

and tj , if ri and rj are adjacent;
– For B, let it be empty;
– For X , let xij be 1 if col(rj) = i so that X are feasible assignments to the above

constraints C;
– For ui, let it be any user.

When a user is absent, the constructed instance of problem 1 becomes equivalent to
finding a 3-coloring solution to a planar map. So problem 1 is NP-complete. �

4 Model Formulation

To tackle the dynamic workflow adjustment problems, one straightforward approach is
to formulate them with well-studied models and then take advantage of existing solvers,
which can save much effort for a system engineer. We find that the dynamic workflow
adjustment problems can be modeled as Boolean satisfiability problems, which are well
studied and have many good algorithms as well as available public/commercial software
packages. Boolean satisfiability problem, commonly abbreviated as SAT, is probably
one of the most studied problems in computer science, and has a range of applications
in electronic design automation and artificial intelligence. SAT is historically notable
as the first problem proven to be NP-complete. However, SAT is widely used because
conflict-driven clause learning (CDCL) SAT solvers [14] are so effective in practice.

The dynamic workflow adjustment problems can be formulated as Boolean satisfia-
bility problems, which enable one to adopt exiting SAT solvers. Before we provide their
SAT formulations, we firstly examine the constraints.

A BoD constraint bijkl requires user k to perform task l when user i performs task j.
In other words, if xij is TRUE, xkl has to be TRUE, which can be expressed by:

(¬xij

∨
xkl).

When xij is TRUE, ¬xij is FALSE. Then in order to make the clause to be TRUE, xkl

has to be TRUE.
A SoD constraint sijkl forbids user k from performing task l when user i performs

task j. In other words, one of xij and xkl has to be FALSE, which can be expressed by
the clause:

(¬xij

∨
¬xkl),

because in order to make the clause to be TRUE, the negation of one of xij and xkl has
to be TRUE.

A performing constraint requires that each task tj needs to be performed by at least
one person. In other words, one of xij has to be TRUE, which can be expressed by the
clause:

(
∨

i∈Aj

xij),

Dynamic Workflow Adjustment with Security Constraints 217

where Aj denotes the set of users with the authorization to task tj .
Before any change happens, the workflow is satisfied by the current user-task assign-

ments {X̃ij}, which means the following CNF expression is TRUE:

(
∧

∀sijkl

(¬X̃ij

∨
¬X̃kl))

∧
(
∧

∀bijkl

(¬X̃ij

∨
X̃kl))

∧
(
∧
∀j

(
∨

i∈Aj

X̃ij)).

Consider problem 1, which essentially tries to answer two questions: whether the
workflow is satisfiable when user i′ is absent? what is the satisfying assignment with
the minimum perturbation to the old assignment?

The first question can be formulated as the SAT problem of finding an assignment of
TRUE and FALSE values to variables {xij} to satisfy the CNF expression:

E1 = (
∧

∀sijkl |i�=i′

(¬xij

∨
¬xkl))

∧
(

∧
∀bijkl|i�=i′

(¬xij

∨
xkl))

∧
(
∧
∀j

(
∨

i∈Aj|i�=i′

xij)),

which contains the clause representation of all workflow assignment constraints.
The second question can be described as the weighted MAX-SAT problem with the

CNF expression:

E2 = E1

∧
(

∧
∀i|i�=i′

((xij

∨
¬xij)

∧
(x̃ij

∨
¬xij)

∧
(xij

∨
¬x̃ij)

∧
(x̃ij

∨
¬x̃ij))).

Clauses (xij

∨
¬xij)

∧
(x̃ij

∨
¬xij)

∧
(xij

∨
¬x̃ij)

∧
(x̃ij

∨
¬x̃ij) are used to eval-

uate the equality of xij and x̃ij , as the clauses are TRUE if and only if the value of xij

is the same as x̃ij . We let the weights on all clauses in E1 be a sufficiently large number
and the weights on the other clauses be 1. So to maximize such a weighted MAX-
SAT problem, clauses in E1 must be satisfied, as they carry significantly large weights.
As such, we guarantee that the optimal solution to the weighted MAX-SAT problem
corresponds to a satisfying workflow assignment. Therefore, the constructed weighted
MAX-SAT problem is equivalent to the original minimal perturbation problem.

Consider problem 2, addition of a BoD constraint si′j′k′l′ . Whether the workflow is
satisfiable after the change can be formulated as a SAT problem with the expression:

E3 = E1

∧
(¬xij

∨
xkl).

The problem of finding a satisfying assignment with the minimum perturbation after
the BoD constraint change can be formulated as a MAX-SAT problem of the CNF
expression:

E4 = E3

∧
(
∧

∀i|i=i′

((Xi

∨
¬Xi)

∧
(X̃i

∨
¬Xi)

∧
(Xi

∨
¬X̃i)

∧
(X̃i

∨
¬X̃i)))

with the weights on clauses of E3 being a significantly large number and the weights
on the other clauses being 1.

Consider problem 3, addition of a SoD constraint si′j′k′l′ . Whether the workflow is
satisfiable after the change can be formulated as a SAT problem with the expression:

E5 = E1

∧
(¬xi′j′

∨
¬xk′l′).

218 H. Lu et al.

The problem of finding a satisfying assignment with the minimum perturbation after
the SoD constraint change can be formulated as a MAX-SAT problem of the CNF
expression:

E6 =E5

∧
(¬xi′j′

∨
¬xk′l′)

∧
(

∧
∀i|i�=i′

((Xi

∨
¬Xi)

∧
(X̃i

∨
¬Xi)

∧
(Xi

∨
¬X̃i)

∧
(X̃i

∨
¬X̃i)))

with the weights on clauses of E5 being a significantly large number and the weights
on the other clauses being 1.

Consider problem 4, revocation of authorization ai′j′ . Whether the workflow is sat-
isfiable after the change can be formulated as a SAT problem with the CNF expression:

E7 = (
∧

∀sijkl

(¬X̃ij

∨
¬X̃kl))

∧
(
∧

∀bijkl

(¬X̃ij

∨
X̃kl))

∧
(
∧
∀j
(
∨

i∈A′
j

X̃ij)).

The problem of finding a satisfying assignment with the minimum perturbation after
the SoD constraint change can be formulated as a MAX-SAT problem of the CNF
expression:

E8 = E7

∧
(

∧
∀i|i�=i′

((xi

∨
¬xi)

∧
(X̃i

∨
¬xi)

∧
(xi

∨
¬x̃i)

∧
(x̃i

∨
¬x̃i)))

with the weights on clauses of E7 and (¬xi′j′
∨
¬xk′l′) being a significantly large

number and the weights on the other clauses being 1.

5 Customized Algorithms

Resorting to existing optimization and SAT solvers is a common approach for the ac-
cess control community to tackle encountered problems, e.g. [10,5,17]. However, a dis-
advantage of solvers is that they are designed as a universal platform for all feeded
problems and thus disregard the properties of individual problems that could be used to
design more efficient algorithms.

Unlike designing a workflow assignment from scratch, the dynamic workflow adjust-
ment problems have an important piece of information available, the previous satisfying
assignment. To make a satisfying workflow assignment, an intuitive way is to tweak the
previous conflicting assignment instead of trying to make up the whole assignment from
empty as a solver would do. In this section, we will present customized algorithms for
the dynamic workflow adjustment problems. As they are based on the start-of-art algo-
rithms for the SAT problem, so we firstly give a brief introduction on them.

5.1 State-of-Art SAT Algorithms

The state-of-art SAT algorithms are DPLL [7] and CDCL (a modern variant of DPLL)
[14,12]. Both CDCL and DPLL algorithms are complete, backtracking-based, tree search
algorithms for deciding the satisfiability of a CNF expression. At each step, the algo-
rithms choose a variable, assign a value to it, simplify the formula and then check if the

Dynamic Workflow Adjustment with Security Constraints 219

simplified formula is satisfiable. If it is true, the original formula is satisfiable. Other-
wise, assume the opposite value to the variable. If it is not satisfiable either, the algorithm
backtracks to a higher level. The difference between CDCL and DPLL is that the DPLL
algorithm backtracks to the next higher level, which is referred to as chronical backtrack-
ing, while the CDCL algorithm may go up more levels by using clause learning, which
is referred to as non-chronical backtracking.

Both algorithms speed up the backtracking by the eager use of the unit propagation
rule at each step.

Unit propagation. If a clause is a unit clause, i.e. it contains only a single unassigned
literal, this clause can only be satisfied by assigning the necessary value to make this
literal true. Thus, no choice is necessary. In practice, it would lead to deterministic
cascades of units and could avoid a large part of the naive search space. For exam-
ple, consider the expression of (x1

∨
x2)

∧
(¬x2

∨
x3). If the literal x1 has assumed

FALSE, then (x1

∨
x2) becomes a unit clause and x2 has to assume TRUE to make

the clause TRUE. As a cascade effect, (¬x2

∨
x3) becomes a unit clause and x3 has to

assume TRUE to make the clause TRUE.

5.2 Basic Algorithm

Instead of designing an algorithm for each presented problem, we introduce and study
a basic problem, sharing the commonality with all dynamic workflow adjustment prob-
lems, and its algorithm can be applied to all problems with simple problem-specific
configurations. The basic problem is defined as follows.

Problem 5. Given a list of perturbations PList to a previously satisfying workflow as-
signment X̃ , which leads to performing constraint conflicts only and no other types of
constraint conflicts, does there exist a satisfying workflow assignmentX with

∑
ij |xij−

x̃ij | ≤ δ and without changing any given perturbation in PList?

Note that problem 5 limits existing conflicts to performing constraint conflicts only. So
to resolve such a problem, at the beginning we only need to focus on how to find users
to cover the unattended tasks. For each unattended task, there might be multiple users
with rights to access. If we randomly pick and assign a user to an unattended task, other
types of constraint conflicts, e.g. SoD and BoD, might be triggered. If one tries to fix a
cascaded constraint conflict, more constraint conflicts could be generated. In the worse
cases, we may end up in an infinite loop. So to effectively solve the problem, we need
a strategy on how to make perturbations at each step.

Inspired by the DBLL and CDCL algorithms, we present a complete, backtracking-
based, tree search algorithm, stated in Algorithm 1. The basic idea is that at each step
we pick an unattend task and then select an authorized user to cover it. If the selected
perturbation causes SoD and BoD constraint conflicts, we make further perturbations to
resolve those conflicts, as the unit propagation does in the CDCL and DPLL algorithms.
In particular, if user i is assigned to the unattended task j and a SoD constraint sijil is
violated because user i was assigned to task l, we perturb both xil and xkl from 1
to 0. If a BoD constraint bijil is violated because user i was not assigned to task l,
then we perturb both xil and xkl from 0 to 1 as well. The algorithm is written in a

220 H. Lu et al.

Algorithm 1. BasicPerturb(X, A, B, S, PList, δ, DLevel)
1: if DLevel==0 then
2: return UNSATISFIABLE
3: end if
4: NewPerturbations←PickPerturbation(X, A, B, C, PList);
5: if NewPerturbation==∅ then
 No satisfying assignment
6: DLevel←DLeve-1;
7: Backtrack();
 Chronological Backtracking
8: else
9: NewPerturbations←Propagate(X, A, B, C, PList, NewPerturbations);

10: if IsConflict()==TRUE then
11: NeighborSearch();
 Search neighboring nodes
12: else if IsSatisfied()==TRUE then
13: return SATISFIABLE
14: else
15: DLevel←DLevel+1;
16: PList←PList

⋃
NewPerturbations;

17: Perturb(X, A, B, C, PList, DLevel);
18: end if
19: end if

recursive form as the BasicPerturb() function and stated in Algorithm 1. The arguments
of the BasicPerturb() function are X , the original user-task assignments, A, the user-
task authorizations, B, BoD constraints, S, SoD constraints, PList, the given list of
perturbations, δ, the maximal amount of allowed perturbations, and DLevel, the level
of searching. The algorithm description is as follows.

– Lines 1-3 state that if DLevel becomes 0, the problem is determined unsatisfiable.
The value of DLevel indicates the searching level and is set to 1 when the algo-
rithm starts. So if DLevel becomes 0, it means the whole searching space has been
traversed and no satisfying solution has been found.

– At line 4, the PickPerturbation() function is to select an unattend task first and
then assign an authorized user to it. Note that if the selected user causes unsolv-
able conflicts, we will keep trying to find another authorized user to the unattend
task without considering other unattended tasks. If no feasible user exists, then the
whole search at the current level fails and has to move back to the next parent node.
The selection of a task and a user is called branching. There are many branching
heuristics. Our general rule is to select the task with more restrictions (e.g., more
associated constraints, less authorized users) and the user with more freedom (e.g,
less assignments, more authorizations). Branching rules indeed play an important
role in a search tree algorithm. We will have a more detailed discussion later.

– Lines 5-8 state that the algorithm backtracks, if no satisfying assignment can be
found. Again, note that at each level only one task is selected. If we failed in find-
ing a user for it, we do not consider other unattend task at this level, because the
search at the current level is doomed to fail. In such a case, the search moves back
to the next parent node. Note that this papers only uses the chronological back-
tracking strategy, which is also used in the DBLL algorithm. A non-chronological

Dynamic Workflow Adjustment with Security Constraints 221

backtracking strategy, which allows to jump to a higher level by learning the tra-
versed route and has been used in the modern SAT solvers, might be used to reduce
the searching time. Non-chronological backtracking may be beneficial to our prob-
lems. But we leave the study in the future work.

– At line 9, the Propagate() function propagates the picked perturbation. As PickPer-
turbation() is to fix a performing constraint conflict, i.e. assigning an authorized
user to an unperformed task, such a perturbation decision may cause BoD and SoD
constraint conflicts. In such cases, the algorithm makes more perturbations to fix
the cascaded BoD and SoD constraint conflicts. If a BoD (or SoD) constraint bijkl
(or sijkl)is violated, the assignments of xij = 1 and xkl = 1 are canceled. Note that
the Propagate() function does not resolve further cascaded performing constraint
conflicts. The Propagate function is similar to the unit propagation procedure used
in the SAT solvers.

– At lines 10-12, the IsConflict() function checks whether the new perturbations cause
a conflict. In particular, we check two types of conflicts. One is the number of the
total perturbations made so far. If it exceeds the maximum accepted number δ, then
the search along this route has failed. The other one is that whether any new per-
turbation changes a previous perturbation decision. If so, then the search has failed
also, because a loop has occurred. When either case happens, NeighborSearch() is
called to find another authorized user to the picked unattended task.

– At lines 13-14, the IsSatisfied() function checks whether the new perturbations
make a satisfying workflow management system.

– Lines 16-18 are executed when the evaluation of the IsSatisfied() function is FALSE.
PList is updated by including new perturbations and then the search continues.

5.3 Problem-Specific Configurations

All studied dynamic workflow adjustment problems can adopt algorithm 1 with some
problem-specific configurations. To demonstrate how it works, we will run it on a toy
online pharmacy example. There are 7 task, T1 - T7: order entry, credit check, fulfil or-
der, medication assessment, shipping, billing, and update legers respectively. There are
four roles: P (pharmacist), T (technical staff), N (non-technical staff), and A (accoun-
tant). The task-role relation and personnel assignments are written in Table 1. There
are 4 employees: David, Sam, John, and Eva. There are a SoD constraint on T2 and
T6, a SoD constraint on T3 and T6, and a BoD constraint on T6 and T7. All these are
depicted in Figure 1.

T1 T2 T3 T6 T5 T4 T7

SoD

SoD BoD

Fig. 1. An Order Fulfillment Process Diagram for an Online Pharmacy

222 H. Lu et al.

Absence of User. For problem 1, we can directly apply algorithm 1 by setting the start-
ing perturbation list PList as {∀j,Xij : 1 → 0}, where i is the absent user. PList is
a set of assignment deletion and does not cause any other types of constraint conflicts,
except performing constraint conflicts. So PList satisfies the algorithmic requirement.
For illustration, suppose Eva is absent and the maximum accepted number of pertur-
bations is 3. An algorithm execution example is shown in Figure 2. At level 1, the
assignment of T6 and T7 are empty, because Eva is absent and she is the only user who
was performing them. At level 2, we pick the unattended task T7 first and then assign
John it. As a result, T6 has to be assigned to John due to the BoD constraint on T6
and T7. As it propagates, the assignment of John to T3 is deleted, because of the SoD
constraint on T6 and T3. At this point, other than performing constraint conflicts, there
is no other type of constraint conflict. So it proceeds to level 3. By selecting T3 and
assigning Sam to it, we find a satisfying workflow assignment, as all tasks are attended
by at least one authorized employee, no constraint conflict exists, and the number of
total perturbations is 3.

Table 1. Task-Role Relation and Personnel Assignment

T1 T2 T3 T4 T5 T6 T7
Associated P P P P P P P
Roles T T T T T T

N A N N A
A A A

Assignment David Sam John John David Eva Eva
(N) (T) (P) (P) (N) (A) (A)

Fig. 2. Absence of Eva Fig. 3. Addition of a BoD Constraint (T2, T3)

Addition of BoD Constraint. Algorithm 1 can also be applied to the case when a BoD
constraint is added. A BoD constraint bijkl requires xkl = 1 if xij = 1. bijkl causes
a conflict when xij = 1 and Xkl = 0 in the old system. To resolve a BoD constraint
conflict, a simple way is to delete both assignments. It may lead to performing constraint
conflicts. If so, we can simply call algorithm 1 by making PList as {xij : 1→ 0, xkl :
1→ 0}, which only causes performing constraint conflicts.

Dynamic Workflow Adjustment with Security Constraints 223

Suppose a BoD constraint on T2 and T3 is added to Figure 1. An algorithm execution
example is shown in Figure 3. At level 1, the assignments of T2 and T3 are set as empty.
At level 2, select T2 and assign Sam to T2, as Sam has authorization to T2. Due to
the BoD constraint on T2 and T3, Sam is assigned to T3 as well, which constitutes a
satisfying workflow system. Note that a branching rule indeed is very important for the
algorithm efficiency. As if we assign other authorized user to T2, it may cause conflicts
and then have to return to make another selection. We will discuss branching rules and
how to use them to improve algorithm efficiency later.

Addition of SoD Constraint. Algorithm 1 can also apply to the case when a SoD
constraint is added with some simple configurations. A SoD constraint sijkl requires
xij = 1 and xkl = 1 cannot both hold. So addition of sijkl may cause a SoD constraint
conflict if Xij = 1 and Xkl = 1 both hold in the old system. To resolve the conflict, we
simply delete assignments of xij = 1 and xkl = 1, and then directly adopt algorithm 1
by making PList as {xij : 1→ 0, Xkl : 1→ 0}.

To illustrate it, suppose a SoD constraint on T3 and T4 is added to Figure 1 and the
maximum accepted number of perturbations is 3. An algorithm execution example is
shown in Figure 4. At level 1, the assignments of T3 and T4 are set as empty. At level
2, John is assigned to the unattended task T4. At level 3, Eva is assigned to T3 first. As
a result, the assignment of Eva to T6 is deleted because of the SoD constraint on T3
and T6, and then the assignment of Eva to T7 is deleted because of the BoD constraint.
Since the number of the currently total perturbations exceeds 3, the assignment of Eva
to T3 fails and the searching goes back. Alternatively, Sam is assigned to T3, which
constitutes a satisfying workflow system.

Fig. 4. Addition of a SoD Constraint (T3, T4)

Revocation of Authorization. Problem 4 can directly adopt algorithm 1 by making
PList as xij : 1→ 0, when the authorization of aij = 1 is revoked, which only causes
performing constraint conflicts.

To illustrate it, suppose John is forbidden from accessing T3, due to his frequent mis-
takes on fulling orders, despite his role allows him to access T3. Again, we assume the
maximum accepted number of perturbations is 3. An algorithm execution example is
shown in Figure 5. At level 1, the assignment of T3 is set as empty due to the authoriza-
tion revocation. At level 2, Eva is picked and assigned to T3. As a result, the assignment

224 H. Lu et al.

Fig. 5. Revocation of John - T3

of Eva to T6 becomes illegal and is deleted due to the SoD constraint on T3 and T6.
Furthermore, the assignment of Eva to T7 has to be deleted due to the BoD constraint
on T6 and T7. Then the execution proceeds to level 3. As T6 and T7 are unattended,
Sam is selected and assigned to T7. As a result, Sam is assigned to T6 due to the BoD
constraint on T6 and T7, and then the assignment of Sam to T2 has to be deleted due
to the SoD constraint on T2 and T7. At this point, the number of total perturbation has
exceeds 3. So the assignment of Sam to T2 fails. Since the assignment of Eva to T7
was changed at the upper level and is tabued at the current level, so there is no feasible
assignment for T7. Then the search moves back. Then, Sam is selected and assigned to
T3, which constitutes a satisfying workflow system.

5.4 Branching Heuristics

Branching plays an important role in a search tree algorithm. Indeed, CDCL and DPDL
usually refer to a set of algorithms with different branching heuristics. A good branch-
ing rule may find a satisfying solution quickly. For instance, consider the example of
Figure 5. If we assign Sam to T3 in the first place, then we obtain a satisfying work-
flow assignment immediately without wasting time on searching other branches. By
playing with some synthetic data sets, we find that that in order to find a satisfying
solution quickly, a good branching strategy should prioritize an unattended task with
more restrictions and a user with more freedom. In particular, we sum up the following
experiences.

– Pick a task with less authorized users. The motivation is to narrow search space. If
there are a few authorized users, then we only need to consider those few options.
For instance, considering Figure 2, when Eva is absent and leaves T6 and T7 unat-
tend, we pick T7 over T6. As there are fewer assignment options available for T7, it
will be quick for us to reach a conclusion whether the current branch is satisfiable.

– Pick a task with more associated constraints. The motivation is also to narrow
search space. If we pick a task with more associated constraints, when a user is
assigned to the picked task, those associated constraints may be triggered and thus
many other personnel assignments are determined through propagation. So we can
quickly conclude whether this rout is satisfying.

Dynamic Workflow Adjustment with Security Constraints 225

– Pick a user with less assignments. The motivation is to increase the chance of con-
stituting a satisfying solution. By picking a user with less assignments, it would be
less likely that the assignment causes conflicts later.

– Pick a user with less associated constraints. The motivation is the same as above.
By picking a user with less associated constraints, we can assign that person more
freely and expect less conflicts later.

Note that algorithm 1 can also be applied to the complex cases that many types
of changes occur the same time. As Algorithm 1 requires the beginning perturbation
list PList causes performing constraint conflicts only, so we only need to resolve other
types of constraint conflicts firstly, e.g. for addition of sijkl (or bijkl) delete assignments
of xij = 1 and xkl = 1.

6 Related Work

The work most related to ours is Basin et al. [5], which studies the optimal workflow
adjustment problem. One main difference is that we study the optimal workflow ad-
justment problem with respect to each specific type of changes, e.g. SoD and BoD,
and consider the minimum perturbation to the old workflow system as the objective.
Another difference is in the approach to solve the problem. We not only provide SAT
model formulations for the studied problems, but also present customized algorithms
by modifying the state-of-art SAT algorithms, which should have more practical im-
portance than model formulations, in particular given that the workflow adjustment
problems are NP-hard in nature. Another work that is related to ours is the workflow re-
siliency problem introduced by Wang and Li [17]. They study whether a workflow can
be executed successfully if a given number of users is unavailable. Their problem can be
viewed as a special case of our dynamic adjustment problem, as they consider only one
specific type of changes and have no constraint on the amount of perturbations. In [6],
Crampton was the first to study the decision problem whether an allocation of users to
tasks exists for a given workflow such that an authorization policy is satisfied . In [17],
Wang and Li call it the workflow satisfiability problem and prove it is NP-complete for
their authorization model. Some papers, e.g. [3], consider the different delegation mod-
els for workflows, which allow the assignment of access rights available to a user to
another user. Some papers study the characteristics of SoD and BoD and their impacts
the design of an access control system, e.g. [8].

7 Conclusion

In this paper, we formulated and studied the optimal dynamic workflow adjustment
problems with respect to various type of changes, including absence of a user, addition
of a SoD constraint, addition of a BoD constraint, and revocation of an authorization.
We provide SAT model formulations to the studied problems. In addition, we provide
customized algorithms inspired by the state-of-art SAT algorithms.

226 H. Lu et al.

References

1. Appel, K., Haken, W.: Every planar map is four colorable. Illinois Journal of Mathemat-
ics 21(3), 429–567 (1977)

2. Atluri, V., Chun, S.A., Mazzoleni, P.: A chinese wall security model for decentralized work-
flow systems. In: Proceedings of the 8th ACM Conference on Computer and Communica-
tions Security, CCS 2001, pp. 48–57. ACM, New York (2001)

3. Atluri, V., Warner, J.: Supporting conditional delegation in secure workflow management
systems. In: Proceedings of the Tenth ACM Symposium on Access Control Models and
Technologies, SACMAT 2005, pp. 49–58. ACM, New York (2005)

4. Bai, X., Gopal, R., Nunez, M., Zhdanov, D.: On the prevention of fraud and privacy exposure
in process information flow. INFORMS J. on Computing 24(3), 416–432 (2012)

5. Basin, D., Burri, S.J., Karjoth, G.: Optimal workflow-aware authorizations. In: Proceedings
of the 17th ACM Symposium on Access Control Models and Technologies, SACMAT 2012,
pp. 93–102. ACM, New York (2012)

6. Crampton, J.: A reference monitor for workflow systems with constrained task execution. In:
Proceedings of the Tenth ACM Symposium on Access Control Models and Technologies,
SACMAT 2005, pp. 38–47. ACM, New York (2005)

7. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Commun.
ACM 5(7), 394–397 (1962)

8. Li, N., Tripunitara, M.V., Bizri, Z.: On mutually exclusive roles and separation-of-duty. ACM
Trans. Inf. Syst. Secur. 10(2) (May 2007)

9. Li, N., Tripunitara, M.V., Wang, Q.: Resiliency policies in access control. In: Proceedings
of the 13th ACM Conference on Computer and Communications Security, CCS 2006, pp.
113–123. ACM, New York (2006)

10. Lu, H., Vaidya, J., Atluri, V.: Optimal boolean matrix decomposition: Application to role en-
gineering. In: IEEE 24th International Conference on Data Engineering, pp. 297–306 (2008)

11. Lu, H., Vaidya, J., Atluri, V., Hong, Y.: Constraint-aware role mining via extended boolean
matrix decomposition. IEEE Transactions on Dependable and Secure Computing 9(5),
655–669 (2012)

12. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering an
efficient sat solver. In: Proceedings of the 38th Annual Design Automation Conference, DAC
2001, pp. 530–535. ACM (2001)

13. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access control models.
Computer 29(2), 38–47 (1996)

14. Silva, J.A.P.M., Sakallah, K.A.: Grasp: a new search algorithm for satisfiability. In: Proceed-
ings of the 1996 IEEE/ACM International Conference on Computer-Aided Design, ICCAD
1996, pp. 220–227. IEEE Computer Society (1996)

15. Stockmeyer, L.: Planar 3-colorability is polynomial complete. SIGACT News 5(3), 19–25
(1973)

16. Vaidya, J., Atluri, V., Guo, Q., Lu, H.: Edge-rmp: Minimizing administrative assignments for
role-based access control. Journal of Computer Security 17(2), 211–235 (2009)

17. Wang, Q., Li, N.: Satisfiability and resiliency in workflow authorization systems. ACM
Trans. Inf. Syst. Secur. 13(4), 40:1–40:35 (2010)

Consistent Query Plan Generation

in Secure Cooperative Data Access

Meixing Le1, Krishna Kant2, and Sushil Jajodia3

1 Cisco Corp.
meile@cisco.com
2 Temple Univ.

kkant@temple.edu
3 Geoerge Mason Univ.

jajodia@gmu.edu

Abstract. In this paper, we consider restricted data sharing between a
set of parties that wish to provide some set of online services requiring
such data sharing. We assume that each party stores its data in private
relational databases, and is given a set of mutually agreed set of autho-
rization rules that may involve joins over relations owned by one or more
parties. Although the query planning problem in such an environment
is similar to the one for distributed databases, the access restrictions
introduce significant additional complexity that we address in this pa-
per. We examine the problem of efficiently enforcing rules and generating
query execution plans in this environment. Because of the exponential
complexity of optimal query planning, our query planning algorithm is
heuristics based but produces excellent, if not optimal, results in most
of the practical cases.

Keywords: Rule enforcement, Consistent query planning, Cooperative
data access.

1 Introduction

Providing rich services to clients with minimal manual intervention or paper doc-
uments requires the enterprises involved in the service path to collaborate and
share data in an orderly manner. For instance, to enable automated shipping of
merchandise and status checking, the e-commerce vendor and shipping company
should be able to exchange relevant information, perhaps by enabling queries
to retrieve data from each other’s databases. Similarly, in order to provide in-
tegrated payment and payment status services to the client, the e-commerce
vendor needs to share data with the credit card companies or other vendors that
specialize in payment processing. There may even be a need for some data shar-
ing between the payment processing and shipping companies so that the issue
of payment for shipping can be smoothly handled.

Traditionally, such cross enterprise data access has been implemented in ad
hoc ways. In particular, incoming queries may not be allowed to directly access

V. Atluri and G. Pernul (Eds.): DBSec 2014, LNCS 8566, pp. 227–242, 2014.
c© IFIP International Federation for Information Processing 2014

228 M. Le, K. Kant, and S. Jajodia

the databases maintained by a company, and instead handled via some interme-
diate module. This has the advantage of isolation but could be quite inefficient.
More significantly, cross-enterprise data access is typically driven by bilateral
agreements between the two parties that no other party knows anything about.
While attractive from isolation perspective, such bilateral agreements introduce
a high degree of cost, complexity, and inefficiency into the processes. In partic-
ular, bilateral agreements may require more data to be exposed to other parties
so that it is possible to answer complex queries that require composition of data
from multiple parties. Bilateral agreements also rule out possibilities of sharing
computation results between parties. For instance, if the e-commerce company
needs to get information involving join of data over three parties (e.g., the e-
commerce company itself, a warehouse, and a shipping company), under bilateral
agreements, we have to bring the relevant data from the other two parties to
the e-commerce company first and then do joins. With multiparty interactions
enabled, such data may already be available. The purpose of this paper is to
explore the general multi-party collaboration model and to develop algorithms
for safely implementing the authorization rules so that only desired data can be
accessed by authorized parties.

We assume that the multi-party data sharing is driven by twin consideration
of business need and privacy; therefore, the rules are expected to grant sufficient
privileges for answering the agreed upon set of queries but no more. We assume
that the collaborating parties generally trust one another and play by the rules.
Typically, this would be enforced through legal and financial provisions in the
agreements, but there may still be a need to take the “trust-but-verify” approach.
The verification issue is beyond the scope of this paper and will be addressed
in future work. The purpose of this paper is to focus on efficient mechanisms
for executing queries in what amounts to a distributed database with access
restrictions. To the best of our knowledge this is the first work of its kind, even
though query planning in distributed databases has been considered extensively.

Although the enterprise data may appear in a variety of forms, this paper
focuses on the relational model, with authorization rules specifying access to
certain attributes over individual relations and their meaningful joins (e.g., join
over key attributes). For simplicity and schema level treatment, we do not con-
sider tuple selections as part of the rules in this paper. The problem then is to
find ways of enforcing the rules and constructing efficient query plans.

Since each party is likely to frame rules from its own perspective, the rules
taken together may suffer from inconsistency, unenforceability, and other issues.
The consistency problem refers to the fact that if a party is provided access to
two relations, say R and S, it is very difficult to prevent it from joining these
relations, but the rule may deny access to R �� S. Our previous research has
addressed this issue [12] and here we simply assume that the rules are upwards
closed, i.e., access to R and S will automatically enable access to R �� S. The
enforceability problem can be illustrated as follows: If a party P is given access
to R �� S but it and no other party has access to both R and S, it is not possible
to actually compute R �� S. We have examined this problem in [13]. In some

Consistent Query Plan Generation in Secure Cooperative Data Access 229

cases, enforceability requires introducing a trusted third party [14] that is given
sufficient access rights to perform the operation in question (e.g., R �� S in our
example). Third parties bring in their own security risks, and we do not consider
them in this paper. We instead focus on generating efficient query plans in an
environment without any trusted third parties, and do so in two steps:

1) We examine each authorization rule and check whether the rule can be
totally enforced (or implemented) among the collaborating parties. Since this
issue has been addressed in [13], we do not focus on this step here.

2) We build a safe and efficient query plan based on the available rule en-
forcement steps. We discuss the complexity of finding optimal answer in our
scenario, and how it differs from classical query processing. We then propose
an efficient algorithm that derives query plans based on a greedy heuristic. We
prove that our algorithms are both correct and complete, and experimentally
show the quality of the results.

The rest of the paper is organized as follows. Following the related work
in Section 2, the problem is defined formally in Section 3. Section 4 analyzes
the complexity of query planning. Section 5 then describes the algorithm for
generating query plans.

2 Related Work

The problem of collaborative data access has been considered in the past, and
this has inspired our multi-party collaboration approach. In particular, De-
Capitani, et.al. [7] consider such a model and discuss an algorithm to check
if a query with a given query plan tree can be safely executed. However, this
work does not address the problem of how the given rules are implemented and
how the query plan trees are generated. The same authors have also proposed a
possible architecture for the collaborative data access in [8] but this work does
not address query planning. As we shall show shortly, regular query optimizers
cannot be used here since they do not comprehend access restrictions and may
fail to generate some possible query plans.

There are also existing works on distributed query processing under protec-
tion requirements [4,15] which consider a limited access pattern called binding
pattern. It is assumed that the accessible data is based on some input data. For
instance, a party can provide names and ID’s of some individuals, it may be al-
lowed to access their medical records. This is a completely different model from
ours. There are also many classical works on query processing in centralized and
distributed systems [3,11,5], but they do not deal with constraints from the data
owners, which differs from our work.

Answering queries that takes advantage of materialized views is another well
investigated research direction. Some of these works focus on query optimiza-
tion [9] which use materialized views to further optimize existing query plans. In
our case, we need to generate a query plan from scratch. Some works use views
for maintaining physical data independence and for data integration [16]. They
assume the scenario where data is organized in different formats and comes from

230 M. Le, K. Kant, and S. Jajodia

different sources, and accessing data via views may not provide the complete in-
formation to answer the queries. Using authorization views for fine-grained access
control is discussed in [17], and [19] analyzed the query containment problem un-
der such access control model. Similarly, conjunctive queries are used to evaluate
the query equivalence and information containment, and the work [10] presented
several theoretical results. Compared to these works, our data model is homoge-
neous across the parties, and our authorization model not only puts constraints
based on relational views but also the interactions among collaborating parties.
Consequently, generating a query plan in our scenario is even more complicated.
Some results from these works can be complementary to our work and can be
used to further optimize the query plans generated by our approach. However,
this is out of the scope of this paper.

In addition, there are services such as Sovereign joins [2] to provide third party
join services; we can think this as one possible third party model in our scenario.
There is also some research [1,6,18] about how to secure the data for out-sourced
database services. These methods are also useful for enforcing the authorization
rules, but we consider the scenario without any involvement of third parties.

3 Problem and Definitions

We consider a group of collaborating parties each with its own relational database
but with collectively known key attributes and authorizations that allow for use-
ful joins among the tables. We assume that the join schema is also collectively
known, and we only consider select-project-join (SPJ) queries. To enable work-
ing at the schema level, selections are treated like projections (i.e., attributes
mentioned in selection predicates are assumed to be accessible). We also allow
an incoming query to be answered by any party that has the required authoriza-
tions. The basic query planning problem is as follows: Given a set of authorization
rules R on n cooperating parties, and a query q authorized by R, find an efficient
query execution plan for q that is consistent with the rules R.

3.1 A Running Example

In the following, we use a running e-commerce scenario with four parties: (a)
E-commerce, denoted as E, is a company that sells products online, (b) Cus-
tomer Service, denoted C, that provides customer service functions (potentially
for more than one Company), (c) Shipping, denoted S, provides shipping services
(again, potentially to multiple companies), and finally (d) Warehouse, denoted
W , is the party that provides storage services. To keep the example simple, we
assume that each party owns but one table described as follows. In reality, each
party may have several tables that are available for collaborative access, in ad-
dition to those that are entirely private and thus not relevant for collaborative
query processing.

Consistent Query Plan Generation in Secure Cooperative Data Access 231

1. E-commerce (order id, product id, total) as E
2. Customer Service (order id, issue, agent) as C
3. Shipping (order id, addr, delivery type) as S

4. Warehouse (product id, location) as W

The relations are self-explanatory, with underlined attributes indicating the
key attributes. In the following, we use oid to denote order id for short, pid for
product id, and delivery for delivery type. The possible join schema is given in
figure 1. Relations E, C, S can join over their common attribute oid; relation E
can join with W over the attribute pid. The relations are in BCNF, and the only
FD (Functional Dependency) in each relation is the underlined key attribute
determining the non-key attributes. To keep our discussion simple, we do not
consider foreign keys in this paper. Foreign keys are unlikely to be used for
linking data across organizational boundaries; nevertheless, our model can be
easily extended to consider foreign key constraints.

3.2 Definitions and Authorization Model

An authorization rule rt is a triple [At, Jt, Pt], where Jt is called the join path
of the rule, At is the authorized attribute set, and Pt is the party authorized to
access the data.

C (oid, issue, agent)

S (oid, addr, delivery)

E (oid, pid, total)

W (pid, location)

oid

oid

oi
d

pi
d

Fig. 1. The given join schema for the example

Definition 1. A join path Jt is the result of a series of joins over the relations
JRt = {R1, R2...Rn} with specified equi-join predicates (Al1, Ar1), (Al2, Ar2)...
(Aln, Arn) among them, where (Ali, Ari) are the lists of join attributes from two
relations. The length of a join path is the cardinality of JRt.

The authorized attributes is given by At part of the rule rt, which we assume
to include all key attributes as well. Table 1 shows all the rules in our example
system. (The last column specifies the party to which the authorization is given.)
Since our analysis does not deal with selections directly, all attributes appearing
in selection predicates are treated as projection attributes. Thus, a query q can
be represented by a pair [Aq, Jq], where Aq is the set of attributes appearing in
the Selection and Projection predicates. For instance, the SQL query “q: Select
oid, total, addr From E Join S OnE.oid = S.oidWhere delivery = ‘ground’” can
be represented as the pair [Aq, Jq], where Aq is the set {oid, total, addr, delivery};
Jq is the join path E ��oid S. We say Ji ∼= Jj (join path equivalence) if any tuple
in Ji appears in Jj and vice versa. Then, a query q is authorized if there exists
a rule rt such that Jt ∼= Jq and Aq ⊆ At. In other words, the rule and the
authorized query must have the equivalent join paths.

232 M. Le, K. Kant, and S. Jajodia

Table 1. Auth. rules for running Example

Authorized attribute set Auth. Join Path To
1 {pid, location} W PW

2 {oid, pid} E PW

3 {oid, pid, location} E ��pid W PW

4 {oid, pid, total} E PE

5 {oid, pid, total, issue} E ��oid C PE

6 {oid, pid, total, issue, addr} S ��oid E ��oid C PE

7 {oid, pid, location, total, addr} S ��oid E ��pid W PE

8 {oid, pid, issue, agent, total,
addr, delivery}

S ��oid E ��oid

C ��pid W
PE

9 {oid, addr, delivery} S PS

10 {oid, pid, total} E PS

11 {oid, pid, total, addr, delivery} E ��oid S PS

12 {oid, pid, total, location} E ��pid W PS

13 {oid, location, pid, total, addr,
delivery}

S ��oid E ��pid W PS

14 {oid, pid} E PC

15 {oid, issue, agent} C PC

16 {oid, pid, issue, agent} E ��oid C PC

17 {oid, pid, issue, agent, total,
addr, location}

S ��oid C ��oid

E ��pid W
PC

To answer a query that is
authorized by the rules, we
still need a query execu-
tion plan (or “query plan”
for short) where each of the
steps corresponds to an au-
thorized and realizable opera-
tion. In our model, the query
execution plan pl can also
be represented with a triple
[Apl, Jpl, Ppl] just like a rule.
Here, the join path not only
for local joins but also counts
the data transmitted between
the parties as we will discuss
later. For this plan to be valid,
it is necessary that Jpl ∼= Jq
and Aq ⊆ Apl. We introduce
the notion of consistent query
plan next, and only consistent plans are considered safe to answer the queries.

The desired query plan can be represented hierarchically where at each level, a
number of sub-plans are combined to get the next higher level plan. The access
plans for basic relations owned by the parties form the bottom level in this
structure. For instance, there is a query plan to retrieve all the information of
rule r3 in Table 1, and such a plan contains a join over two subplans based on
rules r1 and r2 respectively. The subplan for r1 is to access table W on PW . The
subplan for r2 is an access plan reading table S at PS , and another operation
transmitting the data from PS to PW . The example plan authorized by r3 has
the Jpl = E ��pid W , and Apl = {oid, pid, location}. We say a rule rt authorizes
()) a plan pl, if Jpl ∼= Jt, Ppl = Pt, and Apl ⊆ At.

Definition 2. An operation in a query plan is consistent with the given rules
R, if for the operation, there exist rules that authorize access to the input tuples
of the operation and to the resulting output tuples.

For the three types of operations in our scenario, we give the corresponding
conditions for consistent operation.

1. For a projection (π) to be consistent with the rule set R, there must be a
rule rp that authorizes ()) the input information.

2. Join (��) is a binary operation where two input subplans pli1 and pli2 produce
the resulting plan plo = pli1 �� pli2. For a join operation to be consistent
with R, all the three plans need to be authorized by rules. Since join is
performed at a single party, and rules are upwards closed, if the input plans
are authorized by rules, the join operation is consistent.

3. Data transmission (→) involves an input plan pli on a party Pi and an output
plan plo for a party Po �= Pi. If there are rules ri, ro ∈ R with equivalent

Consistent Query Plan Generation in Secure Cooperative Data Access 233

join paths (i.e., Ji ∼= Jo), and ri) pli, ro) plo, then the data transmission
operation is consistent with R.1

For our example, rule r8 authorizes PE to get information on the join path
(S �� E �� C �� W). Also note that although the attribute set of rule r11 is
contained in that of rule r8, there is no rule for PE to get these attributes on
the join path of (E �� S). Therefore, party S, the owner of rule r11 cannot send
these attributed to PE .

Definition 3. A query execution plan pl is consistent with the rules R, if for
each step of the operation in the plan is consistent with the given rule set R.

3.3 Inadequacy of Classical Query Planning

Generating a consistent plan that answers an authorized query in our scenario
is much more complex than the well studied problem of query planning for dis-
tributed databases (without any access restrictions). We illustrate this by an ex-
ample. Suppose that there are two collaborating parties PR and PS with database
schemas R(A,B,C), and S(A,D,E) respectively (A is the key attribute for both
relations). The party PR has an authorization rule rR = {A,B,C,D}, R �� S (in
addition to access to its own data). The party PS has two authorization rules:
rS1 = {A,B}, R and rS2 = {A,B,C,D,E}, R �� S. Let us now consider how to
generate a consistent plan to answer a query for {A,B,C,D,E} over the join
path of R �� S.

In classical query planning, we will generate a query plan tree and try to assign
the appropriate operations to different parties. There is no constraint of data
access in classical case. Therefore, either party PR or PS can retrieve the other
relation and do the join to answer the query. From performance considerations,
semi-joins [11] are usually used in the distributed query processing. However, in
our case, even a semi-join is not enough to generate the consistent query plan
for the query. It is clear that neither PR and PS can obtain the desired result
with just one join. If we use the semi-join method, the only possibility is that PR

sends {A} to PS ; PS does the join and ships {A,D}, R �� S back to PR, which
then computes {A,B,C,D}, R �� S by doing another join. This, in turn is passed
back to party PS , which then obtains the desired result. In contrast, if we use
regular join, then party PS can have at best the attributes {A,B,D,E}, R �� S
through one join operation.

To generate the consistent plan for answering the query, it is required that we
do the semi-join first, and party PR again sends the {A,B,C}, R �� S to party
PS . Another join operation at party PS could then give the required query re-
sults. Figure 2 illustrates the situation. Each box is a rule, and the authorization
rule that authorizes the query is in dashed box. The numbers on the arrows in-
dicate the ordered steps for the consistent query plan. It is clear that generating

1 If Pi is sending information with attributes not in Ao, Pi should do a projection
operation πAo(pli) first.

234 M. Le, K. Kant, and S. Jajodia

a consistent query plan under the data access constraints can be lot more com-
plicated than for distributed query planning. In the following section, we show
the complication of query processing in cooperative data access environment.

4 Complexity of Query Planning

A, B, C, D, E

R S

A, B

SR
A, D, E

PS

PR

R

A, B, C

A, B, C, D

R S

[2]

(A,D,E), R S
[3]

(A,B,C,D), R S

[4]

[5]

(A,B,C), R S

[1]
(A), R

Fig. 2. Illustration of Query Planning

From performance perspec-
tive, we always want consis-
tent and optimal query plans
with minimal costs. Unfor-
tunately, finding the optimal
query plan is NP -hard in
such a cooperative data access
scenario.

Theorem 1. Finding the optimal query plan to answer an authorized query is
NP -hard.

Proof. The optimization of set covering problem is known to be NP-hard. In the
set covering problem, there is a set of elements U = {A1, A2, ..., An}, and there
is also a set of subsets S = {S1, S2, ...Sm} where Si is a set of elements from U
and is assigned a cost. The task is to find a subset of S, say C, that has minimal
total cost and covers all the attributes in set U . We can convert this set covering
problem into the cooperative query planning problem and thereby prove that
the optimal query planning problem is also NP-hard.

Consider 2 basic relations R and S which can join together over a key attribute
A0, distinct from the element set U that we will also use as attributes in our
construction. We assign all the attributes in U to relation R, which will have
the schema {A0, A1, A2, ..., An}. For each Si in S, we make an authorization rule
{A0, Si} on relation S. Thus, for m+ 1 parties, P0, P1 . . . Pn have the following
authorization rules:

1. Party P0 owns R and has a rule r0 that authorizes the desired query for
retrieving the entire set U over the join path J = R �� (��ni=1 Si). Note that
P0 cannot unilaterally obtain the join path J .

2. Each of the other parties Pi, i = 1 . . . n, has a rule ri on the relation S with
attributes Si

⋃
{A0}.

Note that P0 cannot locally do the join R �� S, but other parties can enforce
their rules ri locally, and their costs are known. Therefore, for P0 to answer the
query, it needs a plan bringing attributes from other parties and merging them
at P0 (multi-way join on attribute A0) to answer the query. The optimal plan
needs to choose the rules with minimal costs, and the union of their attribute
sets must cover the query attribute set. If the optimal query plan can be found
in polynomial time, the set covering problem also has a polynomial solution,
which proves the assertion. *+

Consistent Query Plan Generation in Secure Cooperative Data Access 235

4.1 Query Plan Cost Model

It is reasonable to assume that the number of tuples in the relations are known.
Assuming we have the historical statistic information of the tables, so we can
estimate the join results accurately. The notion of join selectivity [11], a number
between 0 and 1.0 provides an estimate for the size of the joined relation. We
assumed that the join selectivity between the relations are known so that the
number of tuples in a join path can be estimated.

The cost of a query plan mainly includes two parts: 1) cost of the join op-
erations, and 2) cost of data transmission among the parties. We assume joins
are done by nested loop and indices on join attributes are available. Let Size()
denote the number of tuples in the relation, and Pages() is the number of pages
in the relation. Consider two relations R and S, of which R is the smaller one,
i.e., Size(R) < Size(S). Let α denote the output cost of generating each tuple
in the results, and let P(X,Y) denote the known join selectivity. Let β denote the
per I/O cost. Assuming the cost of finding matching tuples in S is 1. Then the
cost of a join operation between R and S can be estimated as:

α(Size(R) ∗ Size(S) ∗ P(R,S)) + β(Pages(R) + Size(R) ∗ 1)
The costs of data transmission is only decided by the size of the data being

shipped. Let γ denote the per tuple cost for data transmission. Then the cost of
moving R �� S from a party to another is given by: γ(Size(R)∗Size(S)∗P(R,S))

It is worth noticing that our algorithm does not tie to any specified cost model,
this is one easy cost model that we can adopt.

4.2 Enumerating All Query Plans

Unlike classical query planning, we face a number of hurdles, as illustrated next.
To generate a consistent plan for a query, we first need a plan that enforces
the query join path. This can be further joined with other plans to get all the
requested attributes. Obviously, in order to consider a join path of length n,
one needs to consider all top level join subpaths of with lengths k and n − k
for suitable values of k. Unfortunately, this is insufficient. Since a longer join
path will generally produce relations with fewer tuples, it is often desirable to
consider joins of overlapping relations in cooperative data access environment.
For instance, generating a join path of R �� S �� T may be better done as
(R �� S) �� (S �� T) instead of, say, (R �� S) �� (T). It all depends on the
authorization rules setting in the environment as well as the sizes of relations
and costs of operations.

An added difficulty is that we can’t just pick the subpaths based on the join
cost – we also need to pay attention to the attributes we are able to access by
doing the join. For instance, if the goal is to answer {A,B,C,D} on join path
R �� S �� T , we may have two ways of getting it: (a) A subplan pl1 that yields
that attribute set {A,B}, and (b) A higher cost subplan pl2 that yields the
attribute set {A,C,D}. Since we need more work to get missing attributes, at
this stage we can’t even pick one of these, and instead must keep both. Thus, in
general, we need to maintain many “partial” plans. For each such partial plan,

236 M. Le, K. Kant, and S. Jajodia

we then need to consider the problem of retrieving the missing attributes. This,
in turn, requires checking all possible combinations of relevant rules, followed by
a recursive procedure to find enforcement plan for the chosen relevant rules. It
is clear that the exhaustive enumerate to find the globally optimal answer can
be extremely expensive.

E

PA

O,P,T,I,A

E C

O,P,T,I,A,D,Y

S E C

O,P,T,D,Y

E S

O,P

C

O,I

S

O,D

O,I,A,D,Y

C S

E

O,P,I

E C

O,P,I,Y

S E C

O.P,Y

E S

O,P

C

O,I

S

O,Y

O,I,Y

C S

PT

E

O,P,A

E C

O,P,A,Y

S E C

O.P,Y

E S

O,P

C

O,A

S

O,D

O,A,D

C S

E

O,T,I

E C

O,T,I,D

S E C

O.T,D

E S

O,T

C

O,I

S

O,D

O,I,D

C S

PB PC

r1 r2 r3

r4 r5 r6

r7

r8 r9 r10

r11 r12 r13

r14

r15 r16 r17

r18 r19 r20

r21

r22 r23 r24

r25 r26 r27

r28

Attribute names: O oid; P pid; T total; I issue; A agent; D addr; Y delivery

Fig. 3. A simple worst case example

We illustrate the complexity of exhaustive enumeration via the case of join
path length of 3 for our running example. In figure 3, there are four parties
PA, PT , PB, PC and they all have rules on equivalent join paths. The attribute
names are simplified to save space. In the example, an incoming query asks for
all the attributes {O,P, T, I, A,D, Y } on (S �� E �� C) and only r7 (dashed box)
can authorize the query.

Although there are many ways to enforce the query join path S �� E �� C,
none of them can totally enforce all the query attributes. The possible ways to
enforce the join path locally on Pt is 3∗(1+2) = 9 (each join path of length 2 can
join with other two rules of length 2 and one rule of length 1). Considering other
3 parties, we have (3 ∗ 4 ∗ (1 + 2 ∗ 4)) ∗ 4 = 432 (considering join across parties)
different ways of enforcing the join path, and these plans result in 10 different
missing attribute sets (although there are many enforcement plans, many of
their enforced attribute sets are overlapped). For each of them, we need to check
the ways to get missing attributes. For example, if the missing attribute set
is {total, agent, delivery}. Then, there are 12 relevant rules having the missing
attributes, and the possible combinations to consider are 212-1.

5 Consistent Query Planning

Due to the difficulties in enumerating all possible ways of answering a query, we
consider using a greedy algorithm.

5.1 Greedy Query Planning Algorithm

To find an efficient consistent query plan, we always choose the optimal query
plan to enforce the join path first, and then apply greedy set covering mechanism
on the missing attributes (the attributes cannot be enforced with the join path

Consistent Query Plan Generation in Secure Cooperative Data Access 237

enforcement plan) to find required relevant rules (rules authorize subplans for
the complete query plan). The optimal enforcement plan for a join path on a
specified party can be pre-determined by extending the rule enforcement check-
ing algorithm in a dynamic programming way [13]. As discussed, the selected
plan usually results in a missing attribute set. To get these attributes, we explore
the graph structure to decompose the target rule rt (the rule authorizes the in-
coming query q) into a set of relevant rules that can provide these attributes.
We record the required operations among these rules, and then recursively find
ways to enforce these rules to generate a query plan.

As the join path enforcement plan enforces Jt, it can be extended to get
missing attributes that appear in the relevant rules of basic relations on all Jt-
cooperative parties (cooperative parities which have authorization rules on
join path Jt). This can be done through semi-join operations. In such cases, the
party Pt can send only the join attributes to its Jt-cooperative party, and the
receiving party does a local join to get these attributes and send it back. Pt then
performs another join to add these attributes to the query plan. The remaining
missing attributes can always be found in the relevant rules on Jt-cooperative
parties. However, these relevant rules are defined on join paths instead of basic
relations. Similar to the above case, the missing attributes carried by these rel-
evant rules can be brought to the final plan by performing semi-join operations.

The next step is to determine these relevant rules (rules can provide missing
attributes and the join paths include a subset of relations of Jt). Here, we always
pick the relevant rule that covers the most attributes in the missing attribute set
until all the missing attributes are covered by the picked rules. This is a greedy
approach, and is similar in spirit to the approximate algorithms used for the set
covering problem. The relevant rules effectively allow us to decompose the rule
(i.e., express in terms of) rules with smaller join paths. The missing attributes
are also reduced in the process by considering the rules involving basic relations.
During the decomposition, the algorithm associates the set of attributes with the
decomposed rule that are the missing attributes expected to be delivered by this
rule. We record the operations between the existing plan and these decomposed
ones. If they are on the same party, a join operation between them is recorded.
Otherwise, a semi-join operation is recorded. Since each decomposed rule can
be further decomposed, the algorithm uses a queue to process the rules until all
the rules are on basic relations. This decomposition process gives the hierarchal
relationships among rules that indicate how required attributes can be added to
the final plan. After this step, the query plan is going to use all the attributes
that available locally (all the picked relevant rules on the same party Pt), and
it removes these duplicate attributes (non-key attributes) from remote parties
(via projections).

The decomposition process gives a set of rules, but we also need the subplans to
enforce the join paths of these rules so as to generate a complete plan. To achieve
that, we inspect the join paths of these decomposed rules from bottom-up. We use
another priority queue to keep all the join paths from the decomposed relevant
rules, and the shortest join path is always processed first. This allows the use of

238 M. Le, K. Kant, and S. Jajodia

results from the enforcement plans of sub join paths as much as possible. The al-
gorithm uses the best enforcement plan for each join path as discussed. When an
enforcement plan of a join path is retrieved, the algorithm combines previously
recorded operations to generate the subplan for the decomposed rule on such join
path. Finally, the algorithm finds the plans for each join paths in the queue, and
generates the final query plan with a series of ordered operations starting from the
basic relations. The entire process is summarized in Algorithm 4.

5.2 Properties of the Algorithm

Require: The structure of rule set R, Incoming query q
Ensure: Generate a plan answering q.
1. if There is a rule rt, Jt

∼= Jq and Aq ⊆ At then
2. Missing attribute set Am ← Aq

3. Initialize queue Q, and priority queue P
4. Enqueue rt to Q with Am

5. while Queue Q is not empty do
6. Dequeue rule rt and the associated Am

7. for Each Jt-cooperative party do
8. Finds the attribute set Ab from basic relations
9. Am ← Am \ Ab

10. Record connections between rb and rt
11. while Am = ∅ do
12. for Each relevant rule rs on Pco do
13. Find the rule with max Am

⋂
As

14. Enqueue the rule rs with π(Am)
15. Enqueue the join path Js to priority queue P
16. Record connections between rs and rt
17. Am = Am \ As

18. while The priority queue P is not empty do
19. Dequeue the rule rs with join path Js

20. Add the path to enforce Js to plan
21. for Each Js-cooperative party do
22. if The party has recorded Ab on Js then
23. Add (�� / →) operations between rb and rs
24. for Each decomposed rule rd from rs do
25. Add (�� / →) operations between rd and rs
26. else
27. The query q cannot be answered

Fig. 4. Query Planning Algorithm

In this section we
show that the query
planning algorithm is
correct.

Theorem 2. A query
plan generated by
Query Planning Al-
gorithm is consistent
with the set of rules
R.

The proof is omit-
ted as it’s straightfor-
ward according to our
definition of query
plan consistency.

5.3 Preliminary
Performance
Evaluation of the
Algorithm

Finding a globally op-
timal query plan is not only NP-hard for the situation we are considering, it is
also extremely difficult to systematically and efficiently enumerate all possible
cases with large number of parties and rules. In view of this and the space limita-
tions of the paper, we only illustrate comparative performance for the following
three situations, all relating to our running e-commerce example.

Here we assume that the selected join path enforcement plan carries the max-
imal attributes along with it. Since we do not have any assumptions on the sizes
of the relations and join selectivities between them, we cannot calculate the ex-
act costs of the plans to compare the them. For simplicity, we use the number of
joins as the metric to evaluate the efficiency of the plans. This would be a good
representation of actual cost if all the relations have roughly the same size.

Consistent Query Plan Generation in Secure Cooperative Data Access 239

Example 1. Consider the situation in figure 3 and given the same query dis-
cussed before which only rule r7 can authorize, the optimal plan should be as
follows: join the three rules on basic relations which are r1, r2, r3 at Pt to en-
force the join path of S �� E �� C with attribute set {oid, pid, issue, addr}.
Then Pt sends the oid on the join path of S �� E �� C to other three parties
PA, PB , PC , and does semi-joins with each of the party to obtain the missing
attributes {total, agent, delivery} one from each party. Finally, Pt does a local
join with this information got from remote parties and such a plan answering
the query. The related rules for the consistent query plan are marked using bold
boxes in the figure. In this case study, our greedy algorithm generates the same
optimal plan. The optimal way to enforce join path S �� E �� C is the local
enforcement at Pt, and our plan also gets the missing attributes via semi-join
operations. Note that manually finding the optimal plan is easy only under the
assumption that all the relations are of the same size.

oid, issue, pid, location total,
assistant, addr,delivery

S C E W

oid, pid,location
total, addr, delivery

S E W

oid, pid, issue,
agent

C E

oid,issue,
agent

E

oid, pid

S
oid, addr,
delivery

E

oid, pid

C

PE PS PCPw

oid, pid, location
total, addr

S E W

W

pid, location

oid,
pid,total
location

E W
oid, pid
location

E W
oid, pid,

total,issue

E C

r1 r2

r3 r5

r7

r8

r9

r12

r13

r14

r16

r15

oid, pid, issue, agent,
total, addr, location

C S E W
r17

E

oid, pid, total

r4

Fig. 5. Simplified relevance graph

Example 2. Con-
sider a query with
the join path S ��
C �� E �� W ,
and an attribute set
that includes every
attribute of rule r8
except delivery. Fig-
ure 5 illustrates the
rules corresponding to
our running example.
Unrelated rules are
removed, and rules on
the graph are applied in the generated query plan. For such a query, our algo-
rithm first finds the optimal way to enforce the join path, which can be repre-
sented as

[((r1 �� r2 → PS) �� r9)→ PE] �� [r14 �� r15 → PE] (1)

This plan results in a missing attribute set {total, agent}. Next, the algorithm
adds a local join with rule r4 to retrieve total, and a semi-join with rule r16 to
obtain the attribute agent because PE and PC are J8-cooperative parties (J8
is equivalent to J17). Here, r16 is enforced during the join path enforcement.
In figure 5, the solid lined between rules indicates the steps for enforcing the
query join path, and the dashed lines are the operations for retrieving missing
attributes. The dashed box shows the rule r8 which authorizes the query. In fact,
there are only two ways to enforce the query join path in this example. The other
way is to perform r9 �� r10 first and then join with r12 at party PS . By doing that,
the plan can carry the attribute total and only has agent as missing attribute.
However, if we compare the two plans, the difference is that our plan gets the
attribute total via a join among relation E and join path S �� C �� E �� W , and
the latter plan performs the join among E and S at party PS . Since the longer

240 M. Le, K. Kant, and S. Jajodia

join path usually has fewer tuples, the former plan is better. As for the missing
attribute agent, it can only be retrieved from party PS , and getting it from r16
is better than r15. Therefore, the query plan generated by our algorithm is again
the optimal plan.

E

PA

E C

oid,pid,total,issue,
agent, addr

S E C

oid,pid

C S

E

oid,pid,
total,issue,

agent

E C

oid,pid,
total

C

oid,issue,
agent

PT

C
oid,

agent

S

oid,
addr

oid,addr,
agent

C S PB

r1

r2 r3

r4

r5 r6

r7

r8 r9

r10
oid,addr,

agent

oid,pid,
total,issue,

agent

Fig. 6. A simple non-optimal example

Example 3. Here we consider a sit-
uation where the algorithm does not
produce an optimal plan. Consider a
query which is the same as rule r4. As
shown in figure 6, the bold boxes are
used in enforcing the query join path
S �� E �� C by our algorithm, which
is

[(r8 �� r9 → PT) �� r1] (2)

The other way to enforce it is to enforce rule r7 at party PA first, and send
the results to party PT to enforce R2 and join with R3. That is

[(r8 �� r9 → PT) �� (r5 �� r6 → PT)] (3)

As the latter plan requires one more join and data transmission operation,
our plan to enforce the query join path appears better. However, the latter plan
has no missing attribute, and our plan needs to enforce rule r7 again to retrieve
attributes {total, issue} which includes more operations. Therefore, our plan is
not optimal in this case. However, compared to the optimal plan, our generated
plan only has one extra step involving r1 joining with r3, which means that the
cost difference between the two plans is likely not significant.

Due to the space limitations, we have listed only 3 detailed case studies here. In
addition, we have evaluated other example queries based on our running example
given in Table 1. Table 2 lists seven other examples. The second column shows
the queries in “attribute set, join path” format, and the third column shows
the consistent query plans generated by our algorithm. The symbols π, �� and
→ correspond to the projection, join and data transmission operations. The last
column shows whether the generated query plan is optimal, and it turns out that
the plan is indeed optimal in all seven cases. This is typical of the behavior we
have seen so far, although because of the complexities generating optimal query
plans we have so far been unable to generate and test cases in large numbers.
We, however, believe that the algorithm does produce optimal or near optimal
solution in nearly all practical situations.

Complexity of the Algorithm. Assuming Nq rules are locally relevant to the
query q, the number of relevant rules on Jt-cooperative parties is Nr, and C is a
constant to record operations. The overall worst case complexity of our greedy
algorithm is O(Nq ∗N2

r ∗ C), which is O(N3)(N is the total number of rules).

Consistent Query Plan Generation in Secure Cooperative Data Access 241

Table 2. Illustration of quality of some generated query plans

Example Query Gerenated Query Plan Optimal?
1 {oid, pid, location}, E ��
W

r1 �� r2 on PW Yes

2 {oid, pid, total, issue},
E �� C

(π(oid)r14 �� π(oid, issue)r15 → PE) �� r4 Yes

3 {oid, pid, total, addr},
E �� S

π(oid, addr)r9 �� π(oid, pid, total)r10 Yes

4 {oid, pid, total, deliv-
ery}, S �� E �� W

(π(pid)r1 �� r2 → PS) �� π(oid, delivery)r9 ��
π(oid, total)r10

Yes

5 {oid, pid, total, addr},
S �� E �� W

((π(pid)r1 �� r2 → PS) �� π(oid, addr)r9 → PE) ��
π(oid, total)r4

Yes

6 {oid, pid, total, addr},
S �� C �� E �� W

((π(pid)r1 �� r2 → PS) �� π(oid, addr)r9 → PE) ��
(π(oid)r14 �� π(oid, issue)r15 → PE)π(oid, total)r4

Yes

7 {oid, pid, agent}, S ��
C �� E �� W

((π(pid)r1 �� r2 → PS) �� π(oid)r9 → PE) ��
(π(oid)r14 �� π(oid, agent)r15 → PE) → PC

Yes

6 Conclusions and Future Work

In previous research work, a flexible data authorization model has been proposed
to meet the security requirements for collaborative computing among different
data owners in a collaborative environment. A regular query optimizer cannot
give consistent query plans under the constraints of these rules. In this paper, we
propose an algorithm to generate corresponding efficient consistent query plans
for answerable queries.

For the future work, we will study the problem of making the unenforceable
rules to be enforceable. We can consider using a trusted third party to enforce
the rules, and we may also augment the given set of rules. Trusted third parties
can be also used to improve the consistent query planning. To evaluate of our
approaches comprehensively, we will study the cooperative relationships among
enterprises in various real world scenarios, and test our mechanism under these
cases. In addition, we will investigate the problem where data are horizontally
fragmented and distributed among different parties, which adds selection to the
picture. In fact, extension of the model to include limited forms of selection is
one area that we wish to pursue in the future. We also plan to extend our model
to more general applications that involve non-numeric data (e.g., textual or im-
age data) where the regular join operation may be not be the most interesting
operation. Finally, we wish to examine the issue of verifying whether the collab-
orative parties are really following the rules as advertised or may be behaving
in undesirable ways.

References

1. Aggarwal, G., Bawa, M., Ganesan, P., Garcia-Molina, H., Kenthapadi, K., Mot-
wani, R., Srivastava, U., Thomas, D., Xu, Y.: Two can keep A secret: A distributed
architecture for secure database services. In: CIDR, pp. 186–199 (2005)

2. Agrawal, R., Asonov, D., Kantarcioglu, M., Li, Y.: Sovereign joins. In: Proceedings
of the 22nd International Conference on Data Engineering, ICDE 2006, Atlanta,
GA, USA, April 3-8, p. 26. IEEE Computer Society (2006)

242 M. Le, K. Kant, and S. Jajodia

3. Bernstein, P.A., Goodman, N., Wong, E., Reeve, C.L., Rothnie Jr., J.B.: Query
processing in a system for distributed databases (SDD-1). ACM Transactions on
Database Systems 6(4), 602–625 (1981)

4. Cal̀ı, A., Martinenghi, D.: Querying data under access limitations. In: Proceedings
of the 24th International Conference on Data Engineering, ICDE 2008, Cancún,
México, April 7-12, pp. 50–59. IEEE (2008)

5. Chaudhuri, S.: An overview of query optimization in relational systems. In: Pro-
ceedings of the 7th ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, pp. 34–43 (1998)

6. Ciriani, V., De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S.,
Samarati, P.: Keep a few: Outsourcing data while maintaining confidentiality. In:
Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS, vol. 5789, pp. 440–455. Springer,
Heidelberg (2009)

7. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.:
Controlled information sharing in collaborative distributed query processing. In:
ICDCS 2008, Beijing, China (June 2008)

8. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.:
Authorization enforcement in distributed query evaluation. Journal of Computer
Security 19(4), 751–794 (2011)

9. Goldstein, J., Larson, P.: Optimizing queries using materialized views: a practi-
cal, scalable solution. In: Proceedings of the 2001 ACM SIGMOD International
Conference on Management of Data, pp. 331–342 (2001)

10. Halevy, A.Y.: Answering queries using views: A survey. VLDB Journal 10(4),
270–294 (2001)

11. Kossmann, D.: The state of the art in distributed query processing. ACM Computer
Survey 32(4), 422–469 (2000)

12. Le, M., Kant, K., Jajodia, S.: Access rule consistency in cooperative data access
environment. In: 8th International Conference on Collaborative Computing: Net-
working, Applications and Worksharing (CollaborateCom2012), pp. 11–20 (Octo-
ber 2012)

13. Le, M., Kant, K., Jajodia, S.: Consistency and enforcement of access rules in co-
operative data sharing environment. In: Computers and Security (November 2013)

14. Le, M., Kant, K., Jajodia, S.: Rule enforcement with third parties in secure coop-
erative data access. In: Wang, L., Shafiq, B. (eds.) DBSec 2013. LNCS, vol. 7964,
pp. 282–288. Springer, Heidelberg (2013)

15. Li, C.: Computing complete answers to queries in the presence of limited access
patterns. VLDB Journal 12(3), 211–227 (2003)

16. Pottinger, R., Halevy, A.Y.: Minicon: A scalable algorithm for answering queries
using views. VLDB J. 10(2-3), 182–198 (2001)

17. Rizvi, S., Mendelzon, A., Sudarshan, S., Roy, P.: Extending query rewriting tech-
niques for fine-grained access control. In: Proceedings of the 2004 ACM SIGMOD
International Conference on Management of Data, SIGMOD 2004 (2004)

18. Sion, R.: Query execution assurance for outsourced databases. In: VLDB, pp.
601–612. ACM (2005)

19. Zhang, Z., Mendelzon, A.O.: Authorization Views and Conditional Query Contain-
ment. In: Eiter, T., Libkin, L. (eds.) ICDT 2005. LNCS, vol. 3363, pp. 259–273.
Springer, Heidelberg (2005)

Hunting the Unknown

White-Box Database Leakage Detection

Elisa Costante1, Jerry den Hartog1, Milan Petković1,2, Sandro Etalle1,3,
and Mykola Pechenizkiy1

1 Eindhoven University of Technology, The Netherlands
{e.costante,j.d.hartog,m.petkovic,s.etalle,m.pechenizkiy}@tue.nl

2 Philips Research Europe, High Tech Campus, The Netherlands
3 University of Twente, The Netherlands

Abstract. Data leakage causes significant losses and privacy breaches
worldwide. In this paper we present a white-box data leakage detection
system to spot anomalies in database transactions. We argue that our
approach represents a major leap forward w.r.t. previous work because:
i) it significantly decreases the False Positive Rate (FPR) while keeping
the Detection Rate (DR) high; on our experimental dataset, consisting of
millions of real enterprise transactions, we measure a FPR that is orders
of magnitude lower than in state-of-the-art comparable approaches; and
ii) the white-box approach allows the creation of self-explanatory and
easy to update profiles able to explain why a given query is anomalous,
which further boosts the practical applicability of the system.

Keywords: Leakage Detection, Privacy, Data Security, Anomaly
Detection.

1 Introduction

Data is valuable; databases, storing customer and confidential business data, rep-
resent a core asset for any organization. This makes data leakage, i.e. the unau-
thorized/unwanted transmission of data and information [1], a major threat. The
harm caused by a data leakage includes economic loss, damage to the reputation
and decrease of the customers’ trust. In case the leakage involves personal or
sensitive information, legal liability for not complying with data protection laws
also comes into play. To reduce these enormous costs and comply with legislation,
timely detection of data leakage is essential.

Insiders threats, e.g. malevolent or simply careless employees, are amongst the
top sources of data leakage: because of their right to access internal resources,
such as databases, insiders can cause significant damages [2]. According to [3],
data leaked from database accounts for most of the records disclosed in 2012.

Access Control (AC) mechanisms [4] aim to guarantee that only users that
have the rights can access certain data and as such form a first line of defense
against data leakage. However, AC has some limitations. For example, AC rules

V. Atluri and G. Pernul (Eds.): DBSec 2014, LNCS 8566, pp. 243–259, 2014.
c© IFIP International Federation for Information Processing 2014

244 E. Costante et al.

might be not expressive enough and, especially in dynamic context, might re-
quire frequent and costly updates. In addition, AC might reduce data availability
which is critical in emergency situations (e.g. in healthcare domains) or produc-
tivity (e.g. time loss to ask for permission to access certain documents). As a
result, organisations often apply relaxed AC policies by giving users access to
more information than they actually need [5], which obviously also reduces the
AC effectiveness against data leakage. Beside AC, tools and methodologies exist
for data leakage detection and prevention [6], which mainly differ in the location
where they operate (e.g. network, workstation or database). In this paper we act
at a database level: in this way we can detect leakages at a very early stage, i.e.
when sensitive data is leaving its primary source.

Academic solutions to database leakage detection typically work by monitor-
ing database traffic in terms of SQL queries. Existing solutions can be divided
into signature-based and behavioural-based systems [7]. Generally, in signature-
based systems a blacklist defines the set of dangerous or denied access patterns.
On the other hand, behavioural-based systems automatically learn permitted
access patterns by observing ‘normal’ activities and mark every anomaly as po-
tential threat. The main problem of signature-based approaches is that they
can only detect well-known attacks, whereas behavioural-based approaches have
the great potential of detecting unknown database attacks. In addition, by au-
tomatically generating fine-grained profiles, behavioural-based solutions require
less human-effort thus offering the best possible detection at the lowest cost.
These advantages make behavioural-based approaches widely adopted in litera-
ture [8–15]. However, these approaches have also drawbacks. The first problem is
the high False Positive Rate (FPR) they usually generate. Since each false alert
has to be analyzed by the security officer to establish whether it indicates a real
threat or not, false positives have a high operational cost. In network anomaly
detection [16, 17] (a different yet similar field), a system starts to be “usable in
practice” when it shows a FPR in the order of 0,01%, a rate by far not attained
by present database anomaly detection systems. The second drawback is that
current solutions provide little or no support for alert handling. Usually, when
an alert is raised, it prompts an investigation process carried out by the security
officer. It is important to support the security officer in making a correct and effi-
cient decision by providing as much useful information as possible on the nature
of the alert. In this respect, signature-based systems have an ‘unfair’ advantage:
when they raise an alert, they can say exactly which signature is violated and
why this violation may constitute a problem. On the other hand, behaviour-
based solutions usually accompany a raised alert with a deviation degree or an
anomaly score which is virtually useless to the officer as it does not clearly state
“what is going on”. Explaining the reason of an alert is generally more difficult
for anomaly detection systems because of their black-box nature, i.e. the under-
lying engine (be it a neural network or a machine learning classifier) is difficult
to understand and update, properties which are particularly important to reduce
the number of false positives and to understand the meaning of an alert.

Hunting the Unknown 245

Fig. 1. Framework Overview

To enable practical detection of unknown database leakage threats we intro-
duce what, to the best of our knowledge, is the first white-box behavioural-based
database leakage detection system. As opposed to existing black-box solutions,
which only flag a transaction as anomalous or not, the white-box approach en-
ables the extrapolation of the root cause of an alarm. Our system creates self-
explanatory and easy to update histogram-based profiles of database usage by
observing SQL queries and raises an alarm when a query does not match the
profiles. Finally, the system provides a feedback mechanism enabling the officer
to mark an alarm as false positive, so that the system can be updated accord-
ingly to avoid the repetition of the same mistake. Thanks to this new approach,
our system strongly mitigates the aforementioned problems, namely:
– the white-box approach makes profiles and detection rules self-explanatory,

so that users can easily modify them to improve the system accuracy;
– when an alarm is raised, the system explicitly indicates the alarm’s root

cause, facilitating the user in handling the alarms;
– the feedback mechanism permits to progressively reduce the FPR.

To validate the proposed solution, we carried out two sets of experiments, the
first one using a database consisting of more than two million real transactions
taken from a company database and the second one taken from a simulated
scenario. In these experiments we benchmarked the systems against the ones
presented in [9] and [10]. According to these tests, our system achieves a very
high Detection Rate (DR) with a FPR which is one or two orders of magnitude
lower (i.e. better) than the approaches used for comparison.

2 The Framework

The solution we present in this paper targets two core objectives, namely i) max-
imizing the DR of known and unknown threats; and ii) minimizing the FPR,
i.e. the number of normal transactions erroneously marked as anomalous. To
meet these objectives it is necessary to have a rich feature space, i.e. a set of
features describing database transactions able to capture database usage at a

246 E. Costante et al.

fine-grain, so that even small deviations from usual behaviour can be detected.
Figure 1 shows the five main phases of our framework. The first phase, the
Data Collection and Feature Extraction, captures users (SQL) transactions (se-
lect/insert/update) and extracts the feature space. The output of this phase is
the training set, used during Profiling phase to construct normal behaviour pro-
files. Once profiles are ready the security officer can use the Tuning to inspect
them and verify whether they are complete, and optionally decide to extend the
profiling period. The tuning generates a detection engine which is used during
Detection to flag each new incoming query as normal or anomalous. In case of an
anomalous query, an alert which clearly states why the detector considers it as
an anomaly is raised. Finally, when an alarm is raised, the Feedback mechanism
allows the security officer to flag it as false positive, which cause an immediate
update of profiles and detection engine so that the same mistake is not repeated.

2.1 Data Collection and Feature Extraction

Definition 1 (Feature Space). The feature space F = 〈f1, f2, ..., fn〉 is the
list of query characteristics, including its syntax, result and context (features),
used to represent a query.

The feature space determines the level of details of the profiles we build,
and the kind of attacks that can be detected. Table 1 describes our feature
space; features can be divided into three groups: syntax-centric, context-centric,
and result-centric. Each type of feature helps in detecting specific threats. For
example, syntax-centric features, by profiling the kind of queries users usually
make, enable the detection of leakages caused by e.g. privileges misuses. By using
context-centric features it is possible to detect misuses related to database usage
at unusual location or time. Finally, result-centric features represent the only way
to spot leakages caused by the access to illegitimate data values (see Table 1). To
construct the feature space it is necessary to monitor user’s activities in terms
of SQL queries. Several ways to capture users’ queries are discussed in [18]. To
learn representative profiles it is important that during data collection all queries
normally submitted to the database are captured to form a training set w.r.t.
our definitions.

Definition 2 (Query). A query Q is a list of n-query values, with one query
value Q(fi) for each feature fi.

Definition 3 (Feature Values). Each feature fi has a type and an associated
finite set of values Vi = {vi,1, . . . , vi,mi} that the feature can take.

Definition 4 (Training Set). The set of queries collected during the moni-
toring period, comprises our training set T = {Qt

1, Q
t
2, ..., Q

t
k}, containing the k

queries which will be used to build normal profiles.

2.2 Profiling

Profiles should be able to completely describe normal database usage, i.e. which
queries are submitted, when, at which location, what results are retrieved and

Hunting the Unknown 247

Table 1. Feature classification and feature utility in detecting specific threats

Feature Detected Threats

Syntax
Centric

Query (command,
tables, columns)

These features help in detecting leakages due to users accessing information out of
their working scope (e.g. due to excessive privileges granted or misuse of privileges).

Where Clause
(length, special

chars, columns and
tables)

SQL Injection and XSS attacks usually act on the syntax of a query to inject mali-
cious (SQL) statements which can be used to extract sensitive information from the
database. Dangerous injected statements usually contain specific keywords that can
be monitored to help the detection.

Context
Centric

Response Code Specific codes are given for specific database events, e.g. failing login attempts. Multi-
ple failures might indicate a password guess attack, which might start a data leakage.

Client/DBMS
USERID/ROLE

Identifying which end-user and with which role or which client application is respon-
sible of anomalous activities is helpful for accountability reasons.

Timestamp, IP
Address

Access from unusual location or at unusual time might indicate the credentials have
been stolen e.g. someone is carrying on a masquerade attack.

Result
Centric

N. of Records and
Bytes

Retrieving a large quantity of data (e.g. copying customer list) might indicate a data
leakage/misuse is taking place.

Result Set The results returned by a query helps in detecting misuses where the query syntax
is legitimate (e.g. a doctor can access the table disease and patient) but the data
retrieved are not (e.g. the doctor access records of patients she does not treat).

so on. Normal usage may be related to different entities, e.g., the user or the
role submitting the query. Thus different profiles may be needed for different
‘entities’. The first step in the profiling process is choosing the entity for which
profiles are built.

Definition 5 (Profiling Feature). The profiling feature f̄ ∈ F represents the
entity we want to profile. We use x̄ for the value of x for the profiling feature,
e.g. ī is the index of the profiling feature, f̄ = fī, V̄ = Vī is the set of profiling
values, m̄ = mī is the size of this set, etc.

Definition 6 (Histogram). A threshold t is a number ∈ [0, 1] or a label in
{anomalous , normal}. We define anomalous < 0 and 1 < normal . A bin is a
frequency freq ∈ N together with a threshold t. A histogram hi for feature fi
has a size |hi| representing the number of queries it contains, and assigns a bin
bin(v, hi) to each value v ∈ Vi that fi can take. Given a value v ∈ Vi and a
histogram hi we write:
– freq(v, hi) for the frequency in bin(v, hi);
– t(v, hi) for the threshold in bin(v, hi);

– prob(v, hi) for
freq(v,hi)

|hi| , the probability of v in hi.

To build the histograms the training set T is first divided into m̄ subsets
S1, S2, ..., Sm̄. In each subset Sj , the queries have the same value on the profiling
feature (namely vī,j). For example, if we choose the userid as profiling feature
f̄ and in the training set f̄ only takes 2 different values e.g., v̄1 = rob and
v̄2 = sally, then the training set will be divided into m̄ = 2 subsets, containing
respectively the queries executed by rob and sally. At this point the creation of
the profiles can start. Note that when building the profiles (and during detec-

248 E. Costante et al.

tion), we make a restriction in assuming that features are independent of each
other (the implications of this assumption are discussed in Section 4).

Definition 7 (Profile). A profile H is a list of histograms for each feature
except f̄ . The profile set P gives a profile for each profiling value v̄ ∈ V̄ . We
write H v̄ to refer to the profile for the profiling value v̄ (e.g. Hrob or Hsally).
We write hv̄

i to refer to the histogram for feature fi in the profile H v̄.

Note that different features are of different data types (nominal, numeric,
time and set) and could have wide ranges. To create meaningful profiles we
need to create group (or bins) of query values, e.g. ‘Timestamp’ can be grouped
according to the work shift. A key challenge in the creation of the histograms
is the definition of an optimal size of its bins –bin width– which depends on
the feature data type. For nominal features, we can simply take a bin for each
different value encountered. This approach does not work for numeric features
as it would lead to an explosion in number of bins. Instead ranges of values are
used. The size of the ranges has to be a right balance between narrow (many
bins with low frequency, risk of increasing false positives) and wide (few bins
with high frequency, risk of missing anomalous queries). For time features, bins
can be defined as e.g. hours, days or work shift according to the domain. With
a set feature, e.g. the tables used in a query, one could consider two different
approaches to define the bins; i) create a different bin for each set; or ii) create
a different bin for each element of the set. In the first approach we care about
the exact combination of values. In the second only about which values occur.
In addition, in the second approach a single query could count towards multiple
bins. In this paper we apply the second approach (we omit a deeper discussion
of the differences between the two approaches for reason of space).

To finalize the profiling we normalize the histograms into a probability dis-
tribution. The transformation is done by dividing the frequency of each bin by
the size of the histogram which (right after training) is equal to the size of the

related subset Sj, thus giving prob(vi,j , hi) =
freq(vi,j)

|Sj | . Normalization is useful to

deal with different size of different subsets, e.g. a user more active than another.
Once the histograms have been built, they will represent the normal behaviour:

during detection if all the values of a query fall in bins with high frequency, the
query will be considered normal, while it will be considered anomalous if at least
one value falls in a bin with low or zero frequency.

This way of profiling allows great flexibility. First of all, by setting the
profiling feature it is possible to create different profiles, e.g. a profile per userid
and a profile per role to check whether users’ activities match with their corre-
spondent role. Furthermore, the usage of histograms allows ‘online learning’: the
profile is built one instance at a time which means it is not necessary to retrain
the complete model (as it happens e.g. with clustering) in case a new transaction
has to be added to the system.

Hunting the Unknown 249

2.3 Tuning

In existing solutions the training set is usually assumed to be attack-free and
exhaustive, i.e. it is representative w.r.t. normal behaviour. Drawbacks of these
assumptions are: i) if an attacker is already active during the data collection,
the attack-free assumption can lead to failing to detect some leakages and mis-
uses; and ii) the exhaustive assumption can contribute to the explosion of false
positives in case normal behaviour is not fully represented. To detach from these
assumptions, we provide a tuning mechanism to allow a security expert to inspect
and adapt normal profiles.

During the tuning, the expert can set a global threshold, representing the
minimum probability each bin of the training set must satisfy to be considered
normal. The global threshold is used to globally label all bins of all histograms of
all profiles: if the bin probability is lower than the threshold, the bin is marked as
anomalous, it is marked as normal otherwise. The global threshold can be seen
as a measure of the level of tolerance towards rare values: a threshold of zero
means that every query in the training set is considered legitimate (attack-free
assumption), while a threshold higher than zero means that rare values (i.e. value
which probability is below threshold) are considered anomalous, hence they will
cause an alarm. A zero threshold also means that all the alarms generated during
detection are caused by new values, thus a high number of false positives in this
setting implies the training does not exhaustively represent normal behaviour.

To allow profile manipulation, after setting the global threshold, it is possible
to manually flag each bin as normal or anomalous. For example, if the delete
command is always anomalous then it can be flagged as such. In this way the
expert can have a general rule of thumb (the global threshold) for initially uni-
formly labeling all the bins, and the fine-grain mechanism to add exceptions to
the general rule. The set of profiles with labeled bins forms the detection engine.

2.4 Detection and Feedback Loop

After training, the detection engine analyzes incoming queries w.r.t. normal be-
haviour profiles to determine whether they are anomalous or not.

Definition 8 (Anomalous Query). Consider a query Q by entity v̄ = Q(f̄).
Writing vi = Q(fi) for the value Q assumes for feature fi and hv̄

i for the
histogram for fi in profile H v̄ we define: i) R(Q) = {fi : prob(vi, h

v̄
i) <=

t(vi, h
v̄
i))}, the root cause set containing the features which values are anoma-

lous; ii) Anomalous(Q) = true ⇐⇒ R(Q) �= ∅, which says whether a query
is anomalous or not; iii)AnomalyScore(Q) =

∏
fi∈R(Q)

1
prob(vi,hv̄

i)
, a score which

quantifies how likely anomalous Q is (but not how harmful it is).

In case Q is anomalous an alarm is raised, as shown in Figure 2. Alarms are
listed together with the related profile (sally in the example), the anomaly score,
the root cause set and the anomalous query text. The anomaly score is bigger
than zero for anomalous queries (rarer values contribute more to the score).

250 E. Costante et al.

Fig. 2. Detection Results: how alarms can be presented to the security officer

The root cause set contains the features which values have no correspondent
bin, or fall in one labeled as anomalous, thus causing the alarm. Knowing the
root causes of an anomaly helps the security officer in handling the alarm. For a
query to be anomalous, it is sufficient that a single feature has a value falling in an
anomalous/not existent bin. Of course, several features can cause the anomaly,
in which case the anomaly score will be higher and the root cause list wider.
When a value has no correspondent bin, i.e. a previously unseen value, we use a
minimum probability (rather than zero) to avoid division by zero.

When an alarm is raised the security officer has to handle it. Consider the
first alarm shown on the left side of Figure 2, caused by sally using the columns
disease and nationality, and submitting the query at 2:24 am. When the officer
selects the alarm, the values of the query (circles) are represented w.r.t. the
related profile (histograms) as shown on the right side of the figure. A circle
over a bin (bar) means that the query value for that feature falls in that bin.
The officer can provide feedback about every alarm, i.e. she can mark each root
cause as true positive or false positive. A true positive means that a specific
value represent an actual anomaly and that the officer wants to be warned every
time it occurs. A false positive instead means that one of the causes of an alarm
is benign and it should not cause an alarm any longer. Circles can be green
(for normal values), yellow (for values which have still to be evaluated by the
officer), and red (for values which have been previously marked as true positive,
e.g. nationality). For example, assuming that sally is entitled to use the column
disease, the officer will mark such value as a false positive, which will cause a
refinement of our profiles: the profile sally will be updated by adding a new bin
with the value disease to the corresponding histogram; the bin frequency will
be incremented of a unit, and the threshold will be set to normal. This implies
that if sally uses the column disease again, no alarm will be raised. In addition,
the other alarms related to sally will be updated accordingly, meaning that if an
alarm is caused by the use of disease, e.g. the second alarm in Figure 2, it will
be deleted from the list. In this way a single officer’s feedback can result in the
deletion of multiple alarms, hence reducing the officer’s working load.

Hunting the Unknown 251

3 Evaluation

In this section, we validate our system by addressing the following questions:
– How effective is our framework. To this end, we made an experimental eval-

uation of its Detection Rate (DR) and its False Positive Rate (FPR).
– How does it compare with existing solutions, in particular with Kamra et

al. [9] and Wu et al. [10]. To help the comparison we use Receiver Operating
Characteristics (ROC) curves [19] and Area Under the Curve (AUC) values.

– What is the added value of the feedback mechanism? We test this by mea-
suring the impact a feedback operation has in reducing the FPR.

3.1 Methodology

We implemented our framework as a RapidMiner (http://rapidminer.com/)
extension, and made experiments with two different datasets, one with 2 Gb of
real enterprise transactions, the other one with simulated queries. Both datasets
were divided into a Training Set (∼ 70% of the dataset) used to learn the pro-
files, and a Testing Set (the remaining ∼ 30%) used as input for the detection
engine. To measure the FPR we assume both datasets are attack-free (the global
threshold is set to zero), which is a common practice in this domain. In this way
every alarm raised on the Testing Set can be considered a false positive. Beside
the training and the testing set we also have distinct Attack Sets containing ma-
licious query specifically crafted for each dataset. In these settings, we measure
FPR and DR as:
– FPR=(#alarms raised on the testing set)/(cardinality of the testing set)
– DR = (#alarms raised on the attack set)/(cardinality of the attack set)

The Enterprise Dataset (ED) is taken from the log of an operational database
of a large IT company, with about 100 users, owning 4 different roles. We col-
lected a total of 2,349,198 transactions (1,644,437 in the Training Set and 704,761
in the Testing Set), and extracted the features listed in Table 2. Note that the
Result Set (RS) and the client application role are not available for this dataset.
In addition, we have an Attack Set composed of 107 malicious queries devised
and executed by the security administrator of the database, logged in as one of
the profiled users. These queries represent real threats to the enterprise since
they access sensitive information normal employees do not normally access (e.g.
other employees’ password or user ids).

The Simulated Dataset (SD) was constructed using the healthcare manage-
ment system GnuHealth (http://health.gnu.org). We simulated normal be-
haviour (validated by domain experts) consisting of an admin and different users
of a hospital, where doctors and nurses take care of patients suffering from dif-
ferent diseases. The Simulated Dataset contains a total of 30,492 queries (21,344
in the Training Set and 9,148 in the Testing Set); in addition, we simulated two
attacks:
– Attack 1 : the admin looks at parts of the database (e.g. the table patient)

which she should have no interest in (277 malicious queries);

http://rapidminer.com/
http://health.gnu.org

252 E. Costante et al.

Table 2. Features extracted during the experiments

Feature Type White-Box
without RS

White-Box
with RS

Kamra et al.
(c-quiplet)

Kamra et al.
(m-quiplet)

Kamra et al.
(f-quiplet)

Wu et
al.

Syntax
Centric

QUERY COMMAND nominal v v v v v v

QUERY LENGTH numeric v v

QUERY COL SET set v v v

QUERY COL NUM numeric v v v v v

QUERY TABLE SET set v v v v v*

QUERY TABLE NUM numeric v v v

QUERY SELECT ALL nominal v v

WHERE TABLE SET set v v v v v*

WHERE TABLE NUM numeric v v v

WHERE COL SET set v v v

WHERE COL NUM numeric v v v v

WHERE LENGTH numeric v v

WHERE SPEC CHAR numeric v v

Context
Centric

OS USERNAME nominal v v

CLIENT APP UID nominal v v v** v** v** v**

CLIENT APP ROLE nominal v v v** v** v** v**

RESPONSE CODE nominal v v

TIMESTAMP time v v v

IP ADDRESS nominal v v v

Result
Centric

BYTES NUM numeric v

ROWS NUM numeric v

DISEASE nominal v

PATIENT ID nominal v

v - feature used by the approach

v* - the tables in the from and in the where clause are grouped in a single feature

v** - role and userid are mutually exclusively used as labels

– Attack 2 : a general practitioner, who only treats patients with generic disease
(e.g. flu, cough) accesses data of patients with HIV (26 malicious queries).
Note that queries in Attack 2 have been specifically crafted to be detected
based on RS features only.

To compare our framework to competing proposals from literature, we repro-
duced the systems of [9, 10] and we measured their FPR and DR on both
datasets. Both approaches apply Näıve Bayes to learn the userid (or user role)
class: an alarm is raised if the class predicted by the classifier differs from the ac-
tual one. The main difference between the two solutions is given by the features
used to learn the classifier: Kamra et al. adopt a pure syntax-centric approach
while Wu et al. add context-centric features. The Kamra et al. solution has three
variants – c-quiplet, m-quiplet and f-quiplet – which differs in how fine grained
their feature space is. When comparing the results, it is important to note that
our approach differs from [9, 10] not only in the algorithm, but also in the fol-
lowing aspects. First, we consider more features: Table 2 shows the feature space
used in our solution and those used by the other two approaches. Secondly, we
can take into account the RS; this is however only present in the Simulated
Dataset, and for this dataset we made two separate measurements: one with the
the RS and the other without. Finally, our system is devised from scratch to
include a feedback loop. However, to guarantee fairness, the feedback has not
been used when comparing our results with those of [9, 10].

Generally, a detector performs well if it shows both a low FPR (costs) and a
high DR (benefits). FPR and DR depend on the true and false alarms raised by a

Hunting the Unknown 253

detector. Recall that an alarm is raised if anomaly score > 0 in our solution, and
if prediction ! = actual class for the solutions in [9, 10]. To plot ROC curves we
measure FPR and DR for varying values of a decision threshold t. The threshold
t is used to vary the output of the detectors as follows: for our solution an alarm
will be raised if anomaly score > t, while for [9, 10] an alarm will be generated
if prediction ! = actual class and the prediction probability > t. To compare
different detectors we plot their ROC curves in a single graph: the best detector
is the one which ROC curve passes closer to the upper left point (0,1) (zero costs,
maximum benefits). In case ROCs intersect, it might be difficult to visually spot
which method performs better, thus we reduce ROC curves into a single scalar
value: the AUC. Note that outside the ROC context we assume the use of the
default value for t which is 0 for all the considered approaches and which leads
to the best FPR-DR tradeoff.

3.2 Results

Table 3 presents the performance of different solutions over the EnterpriseDataset,
with userid as profiling feature. The results show that, while theDR is high (100%)
for every solution, the White-Box approach has the lowest FPR (1.65%), which is
7 times better than the best results amongst the comparing approaches (Kamra et
al., m-quiplet, FPR of 12.24%). Our solution is also the one with the best FPR-DR
tradeoff, as shown by the ROC curves in Figure 3 and by the highest AUC value
(0.987). This means we can provide the best benefit at the lowest cost, hence we
consistently reduce the officer’s work load.

On the Simulated Dataset, we could test the performance of our solution also
in presence of RS. Results over this dataset, with userid as profiling feature, are
shown in Table 4 and confirm the outstanding FPR of the White-Box solution
which is orders of magnitude lower than the one of compared approaches (1.09%
without RS and 1.41% with RS, versus 44.00% of Wu et al., the next in order
with the lowest FPR). Interestingly, the addition of the RS features results in a
slight increase of FPR, but it does allow us to detect Attack 2, which was devised
explicitly to be detectable only in presence of RS information (therefore Attack
2 should not be detected by syntax-based approaches). With these settings, it
is not surprising that the White-Box solution without RS has DR2 = 0.0%: it
misses the potential of detecting Attack 2. What is surprising is that DR2 is
different from zero for the competing approaches: in principle, neither of them
– being syntax-based – should be able to detect this (note that a random guess
detector also has a DR different from zero). On the other hand, when we add
RS features we obtain the highest DR (80.77%). Note that although we fail to
detect all malicious queries in Attack 2, we actually manage to detect the attack
and to warn the security officer that a specific user is acting strangely. Finally,
the White-Box solution with RS is the one offering the best FPR-DR tradeoff as
shown by the ROC in Figure 4 (DR1 and DR2 are combined to plot the ROC).

Table 5 shows the results of our test when the user role is chosen as profiling
feature. The results refer to the Simulated Dataset only as role information is
not available in the Enterprise Dataset. The table shows that FPR is generally

254 E. Costante et al.

Table 3. Results for Enterprise
Dataset (userid profiles)

FPR DR AUC

White-Box
(without RS)

1.65% 100% 0.987

White-Box
(with RS)

na na na

Kamra et al.
(c-quiplet)

15.00% 100% 0.927

Kamra et al.
(m-quiplet)

12.24% 100% 0.951

Kamra et al.
(f-quiplet)

12.67% 100% 0.981

Wu et al.
(standard)

13.03% 100% 0.957 Fig. 3. ROC curves comparison - Enterprise Dataset
(userid profiles)

Table 4. Results for Simulated
Dataset (userid profiles)

FPR DR1 DR2 AUC

White-Box
(without RS)

1.09% 100% 0.00% 0.948

White-Box
(with RS)

1.41% 100% 80.77% 0.980

Kamra et al.
(c-quiplet)

72.18% 98.92% 53.85% 0.584

Kamra et al.
(m-quiplet)

71.03% 100% 76.92% 0.406

Kamra et al.
(f-quiplet)

69.58% 100% 73.08% 0.422

Wu et al.
(standard)

44.00% 100% 42.31% 0.824

Fig. 4. ROC curves comparison - Simulated Dataset
(userid profiles)

Table 5. Results for Simulated
Dataset (role profiles)

FPR DR1 DR2 AUC

White-Box
(without RS)

0.38% 100% 0.00% 0.954

White-Box
(with RS)

0.91% 100% 80.77% 0.984

Kamra et al.
(c-quiplet)

40.04% 100% 3.85% 0.687

Kamra et al.
(m-quiplet)

50.73% 100% 0.00% 0.517

Kamra et al.
(f-quiplet)

50.87% 100% 0.00% 0.518

Wu et al.
(standard)

29.34% 100% 0.00% 0.823

Wu et al.
(hierarchical)

27.68% 100% 0.00% 0.839

Fig. 5. ROC curves comparison - Simulated Dataset
(role profiles)

Hunting the Unknown 255

Table 6. Feedback Impact on FPR (userid profiles)

Feedback
Operation

Enterprise DS Simulated DS

FPR (%) FP (#) FPR (%) FP (#)

White-Box
(without RS)

0 1.65% 11596 1.09% 100

1 1.17% 8234 1.08% 99

4 0.05% 327 1.04% 95

7 0.05% 318 1.01% 92

White-Box
(with RS)

0 na na 1.41% 129

1 na na 1.40% 128

4 na na 1.13% 104

7 na na 1.09% 98

lower, while DR is either less than or equal to the results obtained when userid
is chosen as profiling feature (see Table 4). This is because, especially in large
enterprises, userid profiles are more specific than user role profiles. The better
FPR is due to the fact that the engine is less sensitive to small variations; the
“lower” DR to the fact that profiles are less specific. As shown in the table, the
White-Box solution (with and without RS) has the same DR for both userid
and role profiles. In the case of Attack 1 this is due to the fact that we have only
one user with role admin, which makes role and user profiles identical. In the
case of Attack 2 the same DR means that none of the other doctors ever looked
at disease HIV, thus if any doctor looks at it, an alarm will be raised. Note
that if we add a doctor who treats patients with HIV to the normal behaviour
scenarios, DR2 would likely decrease. In overall, as shown by the ROC curves
in Figure 5, the White-Box solution with RS performs better than the others
(AUC=0.984), with a small cost in terms of FPR (0.91%).

Impact of the Feedback Loop. A novel component of our framework is
a feedback loop mechanism that allows to iteratively decreasing the FPR. All
the results shown in the previous section did not take advantage of this feedback
mechanisms to ensure a more fair comparison with the other systems in the liter-
ature [9, 10]. Table 6 shows how the feedback loop mechanism actually improves
the FPR. The table refers to userid profiles, and shows that in the enterprise
dataset, only 7 feedback operations are enough to drop the FPR from 1.65% to
0.05% (from 11596 to 318 alarms). On the simulated dataset, 7 feedback opera-
tions reduce the FPR from 1.09% to 1.01% and from 1.41% to 1.09% respectively
in the solution without and with RS. Note that – as expected – the impact of
a single feedback operation is higher when multiple false alarms are caused by
the same feature value, e.g. in the enterprise dataset a single feedback opera-
tion eliminated 3362 false alarms. It is worth mentioning that a single feedback
operation consists of only few mouse clicks: those necessary to mark an alarm
as false positive. Finally, note that none of the existing solutions offer a built-in
feedback mechanism, mainly because it would require a complete re-training of
the detection engine, which is not necessary in our framework.

256 E. Costante et al.

4 Discussion, Limitations and Future Work

As our experimental validation has shown, our framework boosts the practi-
cal applicability of anomaly-based database leakage detection by presenting the
highest DR with a FPR which is orders of magnitude lower when compared
to existing solutions. In addition, the FPR can be further reduced by applying
the feedback loop to eliminate false positives. Finally, the white-box nature of
our solution clearly states the causes of an anomaly, hence helping the officer
in handling the alerts. We believe the good results achieved mainly depend on
our fine-grained profiles, which allow creating a more faithful model of usage
behaviour. On the other hand, we think there are several reasons why the other
approaches (we compared to) present a high FPR. First of all, the other solutions
use Näıve Bayes which inherently depends on the user’s ids (or role) distribution
of activities: their performance are usually better with training sets in which ac-
tions are evenly distributed amongst users. However, relying on this assumption
is a strong limitation in database leakage detection where query data flows are
generally not uniformly distributed. Secondly, these solutions have a limited fea-
ture space which does not allow to creating fine-grained profiles. However, since
Näıve Bayes is not designed to take advantage of each feature in a specific way
as we do, we expect that a larger feature space would not significantly improve
performance of the other approaches (initial tests seem to confirm this).

Although the general good results, our solution still has some limitations
we need to address. The major limitation is due to the feature independency as-
sumption used to build profiles. This assumption implies that anomalous queries
for which each individual feature by itself is normal cannot be detected. For ex-
ample, it might be normal that sally delete on column age and select on column
disease, however the fact that she delete on column disease might represent a
misuse that is currently undetected. To address this problem, we aim at applying
data mining techniques (rule-mining in particular) to find combination of fea-
tures that discriminate anomalies from normal behaviour. The second limitation
is related to the detection per single query. In the current implementation, each
query is individually analyzed and labeled by the detection engine. In this way,
attacks that are split over multiple queries (or multiple sessions) might not be
detected. Extending our solution to detect anomalies which involve groups of
queries is another interesting path we intend to follow. Finally, several improve-
ments can be made to the feedback mechanism e.g., by adding a signature-based
approach to let the officer define fine-grained exception rules.

5 Related Work

Database Leakage Detection Solutions. Available database leakages de-
tection solutions mainly differ for the type of features (syntax-centric, context-
centric,or result-centric) used for representing normal behaviour.

The works presented in [8–10] are syntax-centric. In [8] the authors build
normal behaviour profiles based on the assumption that SQL commands and

Hunting the Unknown 257

their order in each database transaction are relevant. During detection, if an
attacker executes valid queries but in an incorrect order, an alert is raised. In [9]
normal profiles are built using a Näıve Bayes classifier. The system learns to
predict the userid or the role based on the SQL command and on the tables and
columns in the query. When a new query arrives, in case the userid (or the role)
predicted by the classifier mismatch the actual value, an alarm is raised. In [10]
the approach is very similar to the one in [9], with an extended feature space.

Pure syntax-centric approaches have to deal with some structural limitations.
For example, they fail to detect situations where the type of query submitted
is normal but the data retrieved is anomalous. These considerations are at the
basis of the solution proposed in [12], that suggests to profile normal behaviour
based on the data users retrieve. A mixed approach combining result-centric and
context-centric is used in [13] where a mining algorithm is used to define asso-
ciation rules between context and result set. In this way the same request may
be legitimate if performed within one context but abnormal within another. Fi-
nally, in [14] syntax-centric and result-centric approaches are combined. Normal
profiles are represented in terms of statistical distribution: if a new query does
not match the original probability distribution, it will be considered anomalous.

Anomaly Detection Techniques. Behaviour-based solutions detect potential
database leakages by identifying deviations from normal behaviour, a problem
generally known as anomaly detection. Anomaly detection techniques can be
divided into supervised, semi-supervised, and unsupervised [20]. In supervised
approaches, it is assumed that the training set contains queries labeled either
as normal or as anomalous. In the semisupervised approach the assumption is
that the training set contains only labels for normal transactions. Finally, in the
unsupervised approach no labels are needed: the dataset is sought for intrinsic
similarities that can be modeled so that outliers can easily pop out.

In the context of database leakage detection a labeled dataset is very hard
to obtain, thus unsupervised techniques are those used the most in this field.
Examples of unsupervised techniques include clustering, association rules, and
statistical methods. Clustering techniques group similar instances of the train-
ing set according to a distance or similarity function. Any sample that does not
belong to any cluster is considered an anomaly. A major drawback of clustering
techniques is that the number of clusters has to be defined a-priori. In addition,
a complete re-training is necessary if a new sample has to be added to the model.
Association rules have the main advantage of being self-explanatory, thus cre-
ating a white-box system. However, they have a high computational cost and
high memory consumption [21]. Finally, statistical methods are based on the
probabilistic model generated from the training set: if the probability of the new
data instance to be generated by such probabilistic model is very low, then the
instance is considered an outlier. Statistical methods includes Hidden Markov
Models (HMM) and histogram analysis. HMMs are very good to model tempo-
ral relationships, however, the high computational and memory cost, together
with the high number of parameters that need to be set can discourage their

258 E. Costante et al.

usage [7, 21]. Histogram-based are the simplest nonparametric statistical tech-
niques. The profiles of normal data are based on the construction of a histogram
of frequencies for each feature of the feature space. This technique is computa-
tionally inexpensive, and generates a self-explanatory model. Its simplicity and
intrinsic white-box structure, together with the support to the online learning –
no need of retraining when a model update is required– make this solution the
best candidate when a model easy to understand and to update is required.

6 Conclusions

In this paper, we presented a white-box behaviour-based database leakage de-
tection system. Our experimental validation shows that our approach provides
high DR for different kinds of attacks, both syntax and result set related, by
keeping a low FPR. Especially, the FPR is orders of magnitude lower than that
of comparable solutions (1.65% over the Enterprise Dataset), thus boosting the
practical applicability of our solution. The number of false positives can be fur-
ther reduced thanks to the feedback loop. Furthermore, the white-box nature of
the solution creates self-explanatory profiles and allows the extraction of the root
causes of an alarm. As future work we aim at enhancing our system to cope with
current limitations and to extend the validation process to other (real) datasets.

Acknowledgment. This work has been partially funded by the Dutch program
COMMIT under the THeCS project.

References

1. Gordon, P.: Data Leakage - Threats and Mitigation. Technical report, SANS In-
stitute (2007)

2. Software Engineering Institute: 2011 CyberSecurity Watch Survey. Technical re-
port, Software Engineering Institute, Carnegie Mellon University (2011)

3. Verizon: The 2013 Data Breach Investigations Report. Technical report (2013)
4. Samarati, P., de Vimercati, S.: Access control: Policies, models, and mechanisms.

Foundations of Security Analysis and Design (2001)
5. Caputo, D., Maloof, M., Stephens, G.: Detecting insider theft of trade secrets. In:

S&P. IEEE (2009)
6. Shabtai, A., Elovici, Y., Rokach, L.: A survey of data leakage detection and pre-

vention solutions. Springer (2012)
7. Patcha, A., Park, J.: An overview of anomaly detection techniques: Existing solu-

tions and latest technological trends. Computer Networks (2007)
8. Fonseca, J., Vieira, M., Madeira, H.: Integrated intrusion detection in databases.

In: Bondavalli, A., Brasileiro, F., Rajsbaum, S. (eds.) LADC 2007. LNCS, vol. 4746,
pp. 198–211. Springer, Heidelberg (2007)

9. Kamra, A., Terzi, E., Bertino, E.: Detecting anomalous access patterns in relational
databases. The VLDB Journal (2007)

10. Wu, G.Z., Osborn, S.L., Jin, X.: Database intrusion detection using role profiling
with role hierarchy. In: Jonker, W., Petković, M. (eds.) SDM 2009. LNCS, vol. 5776,
pp. 33–48. Springer, Heidelberg (2009)

Hunting the Unknown 259

11. Bockermann, C., Apel, M., Meier, M.: Learning SQL for database intrusion detec-
tion using context-sensitive modelling (Extended abstract). In: Flegel, U., Bruschi,
D. (eds.) DIMVA 2009. LNCS, vol. 5587, pp. 196–205. Springer, Heidelberg (2009)

12. Mathew, S., Petropoulos, M., Ngo, H.Q., Upadhyaya, S.: A data-centric approach
to insider attack detection in database systems. In: Jha, S., Sommer, R., Kreibich,
C. (eds.) RAID 2010. LNCS, vol. 6307, pp. 382–401. Springer, Heidelberg (2010)

13. Gafny, M., Shabtai, A., Rokach, L., Elovici, Y.: Applying unsupervised context-
based analysis for detecting unauthorized data disclosure. In: CCS. ACM (2011)

14. Santos, R.J., Bernardino, J., Vieira, M., Rasteiro, D.M.L.: Securing Data Ware-
houses from Web-Based Intrusions. In: Wang, X.S., Cruz, I., Delis, A., Huang, G.
(eds.) WISE 2012. LNCS, vol. 7651, pp. 681–688. Springer, Heidelberg (2012)

15. Chung, C.Y., Gertz, M., Levitt, K.: Demids: A misuse detection system for
database systems. In: Integrity and Internal Control Information Systems (2000)

16. Bolzoni, D., Etalle, S., Hartel, P.H.: Panacea: Automating attack classification
for anomaly-based network intrusion detection systems. In: Kirda, E., Jha, S.,
Balzarotti, D. (eds.) RAID 2009. LNCS, vol. 5758, pp. 1–20. Springer, Heidelberg
(2009)

17. Hadžiosmanović, D., Simionato, L., Bolzoni, D., Zambon, E., Etalle, S.: N-Gram
against the Machine: On the Feasibility of the N-Gram Network Analysis for Bi-
nary Protocols. In: Balzarotti, D., Stolfo, S.J., Cova, M. (eds.) RAID 2012. LNCS,
vol. 7462, pp. 354–373. Springer, Heidelberg (2012)

18. Jin, X., Osborn, S.L.: Architecture for data collection in database intrusion detec-
tion systems. In: Jonker, W., Petković, M. (eds.) SDM 2007. LNCS, vol. 4721, pp.
96–107. Springer, Heidelberg (2007)

19. Fawcett, T.: An introduction to ROC analysis. Pattern Recognition Letters (2006)
20. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection. ACM Computing

Surveys (2009)
21. Mazhelis, O.: One-class classifiers: a review and analysis of suitability in the context

of mobile-masquerader detection. South African Computer Journal (2006)

Incremental Analysis of Evolving Administrative

Role Based Access Control Policies

Silvio Ranise1 and Anh Truong1,2

1 Security and Trust Unit, FBK-Irst, Trento, Italia
2 DISI, Università degli Studi di Trento, Italia

Abstract. We consider the safety problem for Administrative Role-
Based Access Control (ARBAC) policies, i.e. detecting whether sequences
of administrative actions can result in policies by which a user can acquire
permissions that may compromise some security goals. In particular, we
are interested in sequences of safety problems generated by modifica-
tions (namely, adding/deleting an element to/from the set of possible
actions) to an ARBAC policy accommodating the evolving needs of an
organization. or resulting from fixing some safety issues. Since problems
in such sequences share almost all administrative actions, we propose an
incremental technique that avoids the re-computation of the solution to
the current problem by re-using much of the work done on the previ-
ous problem in a sequence. An experimental evaluation shows the better
performances of an implementation of our technique with respect to the
only available approach to solve safety problems for evolving ARBAC
policies proposed by Gofman, Luo, and Yang.

1 Introduction

Today, the administration of access control policies is key to the security of
many IT systems that need to evolve in rapidly changing environments and
dynamically finding the best trade-off among a variety of needs. Permissions
to perform administrative actions must be restricted since security officers can
only be partially trusted. In fact, some of them may collude to—inadvertently
or maliciously—modify the policies so that untrusted users can get security-
sensitive permissions. A way to restrict administrative permissions is to specify
a set of administrative actions, each one identifying conditions about which
administrators can modify certain policies. Despite this restriction, taking into
consideration the effect of all possible sequences of administrative actions turns
out to be a difficult task because of the huge number of ways in which actions can
be interleaved and the resulting explosion in the generated policies. Thus, push-
button analysis techniques are needed to identify safety issues, i.e. administrative
actions generating policies by which a user can acquire permissions that may
compromise some security goals. This is known as the safety problem, which
amounts to establish whether there exists a (finite) sequence of administrative
actions, selected from a set of available ones, that applied to a given initial policy,
yields a policy in which a user gets certain permissions.

V. Atluri and G. Pernul (Eds.): DBSec 2014, LNCS 8566, pp. 260–275, 2014.
c© IFIP International Federation for Information Processing 2014

Incremental Analysis of Evolving ARBAC Policies 261

To further complicate the problem, administrative actions tend to evolve over
time in order to correct potential security issues revealed after solving safety
problems or to accommodate the changing needs of an organization. After each
change, administrators may wish to solve safety problems to check if a security
issue has been fixed or if the change introduced a new security issue. Since typi-
cal changes have the form of sequences of simple operations that add/delete an
action to/from the available set of administrative actions, the available technique
for safety analysis is invoked on “similar” problems—i.e. safety problems that
share almost all administrative actions. It would be thus good to compute the
result for the new problem instance by re-using as much as possible the com-
putations performed for the previous problem instance and possibly performing
only those computations needed to take into account the change in the set of
administrative actions. This is an example of incremental computation [15].

In this paper, we propose an incremental technique capable of solving se-
quences of safety problems for Role-Based Access Control (RBAC) policies [20];
the administrative actions we consider are those of the Administrative RBAC
model (ARBAC) [19]. We derive an incremental version of our procedure for
analyzing single instances of the ARBAC safety; see, e.g., [18]. This amounts
to computing a symbolic representation of the set of RBAC policies from which
the goal is reachable, called the set of backward reachable states. We do this
by re-using the set of backward reachable states computed to solve a “similar”
instance of the ARBAC safety problem. In some situations, this is easy: consider
adding a new administrative action when the answer to the previous instance of
the problem was “reachable.” The answer to the new instance of the problem is
obviously again “reachable” since the administrative actions used in the previous
instance to show reachability can still be used to solve the new instance, that
simply contains one more action. In other situations, finding an answer to a simi-
lar safety problem is more complex: consider adding a new administrative action
when the answer to the previous instance of the problem was “unreachable.” The
answer to the new instance of the problem requires additional computations in
order to understand if the set of backward reachable states has been enlarged
and the new action may turn the answer from “unreachable” to “reachable” or
not. As we will see, our procedure tries to recognize situations in which it is
easy to infer an answer from previous computations while deferring additional
computations when this cannot be avoided.

As observed in [15], the theoretical criteria commonly used to evaluate the
performances of non-incremental procedures can be unsatisfactory when consid-
ering incremental changes. (Recall that solving single instances of ARBAC safety
problems is PSPACE-complete; see, e.g., [21].) Additionally, “from a practical
standpoint incremental algorithms that do not have “good” theoretical perfor-
mance [...] can give satisfactory performance in practice” [15]. For these reasons,
we have performed an experimental evaluation of an implementation of our in-
cremental procedure on randomly generated safety problems. We have compared
our procedure with those in [8,9]: the results clearly show the advantages of our
approach.

262 S. Ranise and A. Truong

Related work. Deriving incremental versions of batch algorithms is a much stud-
ied topic in several fields of Computer Science; we point the reader to [15] for a
general overview on incremental computation.

There is a long line of works on the safety analysis of access control policies
started with the seminal work in [11]. The idea underlying such works is to
reduce safety analysis to graph manipulation [13,3,22] or fix-point computation
performed either by Logic Programming—as in [14]—or model checking—as
in [14,23,4,2,5,12,6,18]!. All these works do not consider incremental analysis.

The first work to propose the analysis of evolving ARBAC policies is [8,9].
Besides arguing the importance of incremental analysis, [8,9] propose incremental
versions of the algorithms for analyzing ARBAC policies of [23]. This work is
our main source of inspiration: we share the same motivations and take a similar
approach by proposing an incremental version of our technique for the automated
analysis of ARBAC policies [18]. The main difference is in the underlying model
checking procedure: we use an implicit (symbolic) representation of the set of
RBAC policies obtained by applying administrative actions whereas [8,9] use
the explicit-state model checking technique of [23]. More recently, [10] presents
a symbolic analysis procedure—based on a sophisticated Logic Programming
technique, called abduction—for rule-based administrative policies, which are
also capable of expressing changes to the policy rules. A comparison with our
approach or that of [8,9] is complex because of the differences in expressive power.
On the one hand, the rule-based administrative policies of [10] can express only
a sub-set of the ARBAC policies since they do not support, e.g., negations in the
conditions to apply an action. On the other hand, they can express modifications
of RBAC policies that cannot be expressed by ARBAC policies (the interested
reader is pointed to [10] for details). For this reason, we compare our technique
with those of [8,9] only (see Section 5 below).
Plan of the paper. Section 2 introduces the background on the safety of ARBAC
policies. Section 3 summarizes our symbolic procedure to solve safety problems,
that is made incremental in Section 4. Our implementation and its experimental
evaluation are discussed in Section 5. The paper concludes in Section 6.

2 RBAC and ARBAC

In Role-Based Access Control (RBAC) [20], access decisions are based on the
roles that individual users have as part of an organization. Permissions are
grouped by role name and correspond to various uses of a resource. Roles can
have overlapping responsibilities and privileges, i.e. users belonging to different
roles may have common permissions. For the purpose of safety analysis, without
loss of generality (see, e.g., [21]), we ignore role hierarchies (a remark on this
assumption is at the end of this section). Let U be a set of users, R a set of roles,
and P a set of permissions. Users are associated to roles by a binary relation
UA ⊆ U ×R and roles are associated to permissions by another binary relation
PA ⊆ R × P . A user u is a member of role r when (u, r) ∈ UA. A user u has
permission p if there exists a role r ∈ R such that (r, p) ∈ PA and u is a member
of r. A RBAC policy is a tuple (U,R, P,UA,PA).

Incremental Analysis of Evolving ARBAC Policies 263

Administrative RBAC (ARBAC) [19] controls how RBAC policies may evolve
through administrative actions that assign or revoke user memberships into roles.
Usually (see, e.g., [23]), administrators may only update the relation UA while
PA is fixed. Thus, a RBAC policy is a tuple (U,R,UA) or simply UA when U
and R are clear from the context. This simplification is assumed in several works
in the literature and we also adopt it in this paper (a remark on the significance
of this assumption is at the end of this section).

The set of possible administrative actions is defined by rules specifying the
which roles an administrator should or should not have—this is also called the ad-
ministrative domain of the rule—and which roles a user should have to get a role
assigned or revoked. An administrative domain is specified by a pre-condition,
i.e. a finite set of expressions of the forms r or r (for r ∈ R). A user u ∈ U
satisfies a pre-condition C if, for each ∈ C, u is a member of r when is r
or u is not a member of r when is r for r ∈ R. Permission to assign users to
roles is specified by a ternary relation can assign containing tuples of the form
(Ca, C, r) where Ca and C are pre-conditions, and r a role. Permission to revoke
users from roles is specified by a binary relation can revoke containing tuples of
the form (Ca, r) where Ca is a pre-condition and r a role. In both cases, we say
that Ca is the administrative pre-condition, C is a (simple) pre-condition, r is
the target role, and a user ua satisfying Ca is the administrator. When there exist
users satisfying the administrative and the simple (if the case) pre-conditions of
an administrative action, the action is enabled. The relation can revoke is only
binary because simple pre-conditions are useless when revoking roles [23].

The semantics of the administrative actions in the set ψ of rules obtained by
the disjoint union of rules in can assign and can revoke is given by the binary
relation →ψ defined as follows: UA →ψ UA′ iff there exist users ua and u in U
such that either (i) there exists (Ca, C, r) ∈ can assign , ua satisfies Ca, u satisfies
C (i.e. (Ca, C, r) is enabled), and UA′ = UA∪{(u, r)} or (ii) there exists (Ca, r) ∈
can revoke, ua satisfies Ca (i.e. (Ca, r) is enabled), and UA′ = UA \ {(u, r)}. A
run of the administrative actions in ψ := (can assign , can revoke) is a sequence
UA0,UA1, ...,UAn, ... such that UAi →ψ UAi+1 for i ≥ 0.
The safety problem for ARBAC policies. A pair (ug, Rg) is called a (RBAC) goal
for ug ∈ U and Rg a finite set of roles. The cardinality |Rg| of Rg is the size of
the goal. Given an initial RBAC policy UA0, a goal (ug, Rg), and administrative
actions ψ = (can assign , can revoke); (an instance of) the user-role reachability
problem, identified by the tuple 〈UA, ψ, (ug, Rg)〉, consists of checking if there
exists a finite sequence UA0,UA1, ...,UAn (for n ≥ 0) where (i) UAi →ψ UAi+1

for each i = 0, ..., n− 1 and (ii) ug is a member of each role of Rg in UAn.
Sometimes, to simplify the solution of user-role reachability problems, separate

administration has been assumed (see, e.g., [23]), which amounts to requiring
that administrative and regular roles are disjoint. This permits to consider just
one user, omit administrative users and roles so that the tuples in can assign
are pairs composed of a simple pre-condition and a target role and the pairs in
can revoke reduce to target roles only. Although our approach does not need
such an assumption, we make use of it in the examples to simplify the technical

264 S. Ranise and A. Truong

development and in the experiments of Section 5 to streamline the comparison
with the approach in [8,9].
Remark. In [19], modifications to role hierarchies are allowed. Since they closely
reflect the structure of the organizations in which the policies are used, we believe
that their modifications should be rare as they imply substantial changes to the
organizations themselves. Thus, we decided to disregard administrative actions
modifying the role hierarchy of RBAC policies.

In [19], it is also possible to modify the permission-role assignment relation
PA by administrative actions similar to those in ψ for UA (obtained by simply
replacing users with permissions). There exists a reduction [21] for the prob-
lem of checking if a user can be assigned a given set of permissions—called the
user-permission reachability problem—into a (finite) set of independent user-role
and permission-role reachability problems. A permission-role reachability prob-
lem consists of answering questions of the form: can a set of permissions be
assigned to a given set of roles by applying a finite sequence of actions modi-
fying the relation PA? Given the similarities between the actions modifying PA
and UA, analysis techniques for the user-role reachability problem can be easily
adapted to the permission-role reachability problem [21]. As a consequence, the
incremental analysis techniques described in the following can be extended to
take care of administrative actions modifying also PA.

3 Solving User-Role Reachability Problems

Our approach [4,2,5,18] to solve single instances of user-role reachability prob-
lems is based on a symbolically representing user-role reachability problems and
then invoking a symbolic model checking procedure. More precisely, we represent
RBAC policies, administrative actions, and goals by formulae of first-order logic.
Then, we use simple logical manipulations and theorem proving techniques to
iteratively compute the symbolic representation of sets of backward reachable
states. Technically, we use the definitions and results in [17].

We assume a class L of first-order formulae and define an L-based symbolic
transition system S (L-STS, for short) to be a triple 〈V, In,Tr〉 where V is the
(finite) set of system variables of S, In is an assertion of L describing all the initial
states of S and Tr is a (finite) set of assertions of L. The assertion In contains
some or all the system variables V ; we also write In(V) to emphasize this. Each
member tr of Tr is an assertion of L containing some or all the system variables
in V and the primed system variables in V ′ = {v′|v ∈ V } where v′ indicates
the values of v after the execution of the transition; we also write tr(V, V ′) to
emphasize this.

We take L to be the Bernays-Shönfinkel-Ramsey (BSR) [16] fragment of
first-order logic; sometimes called Effectively-Propositional Logic (EPR), see,
e.g., [17]. An assertion of BSR has the form ∃X.∀Y.ϕ(X,Y) where X and Y are
(disjoint) sets of variables and ϕ is a quantifier-free formula—called the matrix—
containing equality, predicates, and constants but no functions. The translation
procedure 1 shows how to obtain a symbolic representation of a user-role reach-
ability problem. The idea is to consider the roles in R as unary predicates,

Incremental Analysis of Evolving ARBAC Policies 265

Procedure 1. The translation procedure TR

Require: P = 〈〈U,R,UA〉, ψ, (ug , Rg)〉 is a user-role reachability problem
Ensure: S = 〈V, In,Tr〉 is a L-based STS and G is an assertion of LG

1. V ← R { Roles are considered as unary predicates }
2. In ← ∀x.∧r∈R(r(x) ⇔

∨
(u,r)∈UA x = u)

3. Tr ← {[α]|α ∈ ψ}
4. G ← ∃x.x = ug ∧∧

rg∈Rg
rg(x)

[α] :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∃a, x.∀y.
⎛
⎝

∧
r∈Ca

r(a) ∧∧
r∈Ca

¬r(a)∧∧
r∈C r(x) ∧∧

r∈C ¬r(x)∧
rt

′(y) ⇔ (y = x ∨ rt(y)) ∧ Id(R \ {rt})

⎞
⎠ if α = (Ca, C, rt)

∃a, x.∀y.
⎛
⎝

∧
r∈Ca

r(a) ∧∧
r∈Ca

¬r(a)∧
rt(x)∧
rt

′(y) ⇔ (y �= x ∧ rt(y)) ∧ Id(R \ {rt})

⎞
⎠ if α = (Ca, rt)

so that r(u) can be interpreted as (u, r) ∈ UA. The auxiliary translation func-
tion [·] maps rules in can assign or can revoke to BSR formulae, where Id(R∗)
abbreviates

∧
r∈R∗ r′(y) ⇔ r(y). Intuitively, Id(R∗) means that all the roles in

R∗ = R \ {rt} are left unchanged by the administrative action with target role
rt. The BSR formula In does not contain existential quantifiers and it is called
a universal BSR formula. Dually, the BSR formula G, representing the goal of
the user-role reachability problem, does not contain universal quantifiers and it
is called an existential BSR formula.

Example 1. We illustrate how TR works by means of an example taken from [23].
For simplicity, we assume separate administration (recall the definition at the
end of Section 2). Let U = {u1}, R = {r1, ..., r8}, initially UA := {(u1, r1), (u1,
r4), (u1, r7)}, rules ({r1}, r2), ({r2}, r3), ({r3, r4}, r5), ({r5}, r6), ({r2}, r7), and
({r7}, r8) are in can assign , rules (r1), (r2), (r3), (r5), (r6), and (r7) are in
can revoke, and the goal be (u1, {r6}).

TR works by first introducing the unary predicates r1, ..., r8 in V . Then, it
forms the following universal formula In from UA:

∀x.
(
(r1(x)⇔ x = u1) ∧ (r4(x)⇔ x = u1) ∧ (r7(x)⇔ x = u1)∧
¬r2(x) ∧ ¬r3(x) ∧ ¬r5(x) ∧ ¬r6(x) ∧ ¬r8(x)

)
.

The translation of ({r5}, r6) in can assign is ∃x.∀y.(r5(x) ∧ (r6
′(y) ⇔ (y = x∨

r6(y)))∧Id(R\{r6})), that of (r1) in can revoke is ∃x.∀y.(r1(x)∧(r1′(y)⇔ (y �=
x∧ r1(y))) ∧ Id(R \ {r1})), and that of the goal is G := ∃x.(r6(x) ∧ x = u1). *+

Given the translation procedure 1, we can now explain how solving the reacha-
bility problem for BSR-based STS is equivalent to solving user-role reachability
problems. First, define a state of a BSR-based STS S = 〈V, In,Tr〉 to be a map-
ping from the set V to a user-role assignment relation such that (u, r) ∈ UA when
r(u) holds. Then, define a run of S as a (possibly infinite) sequence s0, s1, ... of
states such that s0 satisfies (in the sense of first-order logic) In and for every

266 S. Ranise and A. Truong

Procedure 2. The backward reachability procedure BR

Input: S = 〈V, In,Tr〉 is a L-based STS and G is an assertion of L
Output: answer to the reachability problem for S and G
1. P ← G; B ← false;
2. while (P ∧ ¬B is satisfiable) do
3. if (In ∧ P is satisfiable) then
4. return reachable

5. end if
6. B ← P ∨ B;
7. P ← Pre(Tr , P);
8. end while
9. return unreachable

i = 0, 1, ..., we have that si, si+1 satisfy tr for some tr in Tr . Let s0, ..., sn, ...
be a run of S, we say that sn is reachable from s0 for n ≥ 1. The reachability
problem for a STS S and a goal assertion G of BSR amounts to establish if there
exists a run s0, ..., sn, ... of S such that sn satisfies (in the sense of first-order
logic) G. By definition of states of a BSR-STS, it is easy to transform sequences
of states to sequences of RBAC policies. Thus, the answer to a user-role reacha-
bility problem P is the same to that of the reachability problem for a BSR-STS
S and goal G when (S,G) = TR(P).

We are now left with the problem of solving reachability problems for BSR-
STSs. We use the approach in [17], summarized in Procedure 2. BR tries to
compute an assertion of L, stored in B, characterizing all states from which
those satisfying G are reachable by executing finitely many transitions in Tr .
If the loop terminates at iteration n, then B stores such an assertion since it
contains the disjunction of the n pre-images of G (stored in P). The pre-image of
an assertion K of L containing the system variables in V relative to a transition
tr in Tr is defined as follows:

Pre(tr ,K) := ∃V ′.(tr(V, V ′) ∧K(V ′))

andcharacterizes the set of states fromwhich those satisfying assertionK are reach-
able. By abuse of notation, wewritePre(Tr ,K) instead ofPre(

∨
tr∈Tr tr ,K). Sim-

ple logical manipulations show that Pre is monotonic in its first argument, i.e. if
Tr1 ⊆ Tr2 then Pre(Tr1,K)⇒ Pre(Tr2,K) is valid.

Let us consider the n-iteration of the loop in BR, P stores Pren(Tr , G) and
B stores

∨n
i=0 Pre

i(Tr , G), where Pre0(Tr , G) := G and Prek+1(Tr , G) :=

Pre(Tr ,Prek(Tr , G)) for k = 0, ..., n − 1. Upon termination of BR, the asser-
tion in B is the set of backward reachable states (from G). The formulae checked
for satisfiability at lines 2 and 3 are

Pren(Tr , G) ∧ ¬
n−1∨
i=0

Prei(Tr , G) (1)

In ∧ Pren(Tr , G) , (2)

Incremental Analysis of Evolving ARBAC Policies 267

respectively. Checking the satisfiability of (1) is the fix-point test since it is equiv-

alent (by refutation) to verifying the validity of Pren(Tr , G)⇒
∨n−1

i=0 Prei(Tr , G)

while the converse, i.e. the validity of
∨n−1

i=0 Prei(Tr , G) ⇒ Pren(Tr , G) holds
by definition of pre-image. The un-satisfiability of (2) at every iteration i ≤ n
implies the un-satisfiability of In ∧

∨n
i=0 Pre

i(Tr , G). This means that checking
that none of the states characterized by the assertion in B are allowed as initial
states of S is equivalent to verify that there is no state satisfying G that is also
reachable from an initial state and G is unreachable (cf. line 9 of Procedure 2).

Theorem 1 ([17]). BR is a decision procedure for the reachability problem of
BSR-STSs.

The main argument underlying the proof of this result is two-fold. First, the sat-
isfiability checks at line 2 and 3 of Procedure 2 are decidable. To see this, observe
that formulae (1) and (2) can be rewritten to logically equivalent BSR formu-
lae, whose satisfiability is well-known to be decidable (see, e.g., [16]). Efficient
theorem proving techniques (see, e.g., [17])—available in Satisfiability Modulo
Theories (SMT) solvers—can be used in practice to tackle such satisfiability
checks. Second, the procedure always terminates by using a standard technique
for proving termination (see [17] for details).

Let Solve(P) = BR(TR(P)) for a user-role reachability problem P .

Corollary 1. Solve decides the user-role reachability problem.

This follows from Theorem 1 and the fact that r(u) is interpreted as (u, r) ∈ UA.

Example 2. Let us consider again the user-role reachability problem in Exam-
ple 1. The BSR formula representing the (fix-point) set of backward reachable
states obtained by invoking BR is

∃x.
(
(r6(x) ∧ x = u1) ∨ (r5(x) ∧ x = u1) ∨ (r3(x) ∧ ¬r4(x) ∧ x = u1)∨
(r2(x) ∧ ¬r4(x) ∧ x = u1) ∨ (r1(x) ∧ ¬r4(x) ∧ x = u1)

)
(3)

It is not difficult to verify that the initial RBAC policy UA (see again Example 1)
is not in the set of states represented by (3), by checking that the conjunction
of In—representing UA and (3) is unsatisfiable (recall that this check can be
done automatically because of the decidability of BSR formulae). We are thus
entitled to conclude that the goal (u1, {r6}) is unreachable. *+

Remark. By properties stated and proved in [17] (from which Corollary 1 de-
rives), we observe that Solve is capable of solving user-role reachability prob-
lem for a finite but unknown number of users. This means that our technique
for safety analysis is capable of coping with dynamic situations in which users
may join or leave the organization in which the RBAC policies are administered.
This dramatically enlarges the scope of applicability of the analysis and thus
the usefulness of its results. For lack of space, we cannot discuss the reasons of
this; the interested reader is pointed to [17]. The incremental version of Solve
developed below inherits this feature.

268 S. Ranise and A. Truong

4 Incremental Analysis of Evolving ARBAC Policies

An evolving ARBAC policy is a pair (ψ;ω) where ψ is the “original” set of
rules and ω is a finite sequence of operations of the form add(α) or delete(α).
Applying add(α) (delete(α), respectively) to ψ generates a new set of rules ψ∪{α}
(ψ\{α}, respectively). The sequence P0, ..., Pn of user-role reachability problems
induced by an evolving ARBAC policy (ψ; op1, ..., opn) and an initial user-role
reachability problem P = 〈UA, ψ, (ug, Rg)〉 is such that P0 = P and Pi =
〈UA, ψi, (ug, Rg)〉 where ψi is obtained from ψi−1 by applying the operation opi

for i = 1, ..., n. We now derive an incremental version of the procedure Solve

capable of re-using the set of backward reachable states computed to solve Pi−1

to infer an answer for Pi.
The following two observations are the basis of our approach. First, under

certain conditions, it is possible to derive the answer to Pi from that of Pi−1

without invoking the symbolic reachability procedure BR (Procedure 2). Second,
it is possible to design an “incremental” version of BR, denoted iBR, capable of re-
using a symbolic representation of the set of backward reachable states computed
in a previous invocation. While such a procedure—called, iBR—will be described
in Section 4.1, for the time being, it is sufficient to know that it takes as input
a BSR-STS S = 〈V, In,Tr〉 and a goal formula G together with the reference
B to a formula representing the set of backward reachable states computed in a
previous invocation of iBR. It then returns either (unreachable, ε), with ε being
the empty sequence, iff G is unreachable from In by applying a finite sequence
of transitions in Tr or (reachable, σ) with σ being a non-empty sequence of
transitions in Tr leading from In to G. The pre-condition of iBR is that

there exist n ≥ 0 and T̂r ⊆ Tr such that B refers to
∨n

i=0 Pre
i(T̂r , G) . (4)

We emphasize that, when invoking iBR(S,G,B), the parameters S and G are
passed by value whereas B by reference so that, upon returning, B refers to
the newly computed set of backward reachable states. We assume that after an
invocation to iBR, (4) holds again, i.e. (4) is an invariant of iBR. If n = 0, then
the formula above reduces to false and iBR(S,G, false) is equivalent to BR(S,G),
except for the capability of returning the sequence of transitions leading from
an initial state to one satisfying the goal G together with reachable.

We are now ready to describe the incremental version SolveEvolving of
Solve, shown in Procedure 3. The original user-role reachability problem 〈UA,ψ,
(ug, Rg)〉 is translated (by invoking TR, c.f. Procedure 1), solved from scratch (the
third parameter of iBR refers to false meaning that there is no previous knowl-
edge about the set of backward reachable states), and the user is notified of the
result via notify (line 1). Such a procedure simply prints out a message re-
porting if the user-role reachability problem under consideration (identified with
original or the operation op that has been applied) is reachable or unreachable
and, in the first case, also shows the sequence σ of administrative actions leading
from the initial RBAC policy to one satisfying the goal. Afterwards (lines 2-25),
the processing of the sequence ω of operations for adding or deleting administra-
tive actions is started until none is left. At each iteration, an operation op in ω is

Incremental Analysis of Evolving ARBAC Policies 269

Procedure 3. SolveEvolving

Input: Original user-role reachability problem 〈UA,ψ, (ug, Rg)〉 and
sequence ω of operations

1. (S,G) ← TR(〈UA,ψ, (ug, Rg)〉); (res , σ) ← iBR(S,G, false); notify(original, res , σ);

2. while (ω �= ε) do
3. op ← first(ω); ω ← rest(ω);
4. if (res = reachable) then
5. if (op = add(α)) then
6. S ← S ⊕ [α];
7. else if (op = delete(α)) then
8. S ← S � [α]; B ← Filter(B,α);
9. if (α ∈ σ) then

10. (res , σ) ← iBR(S,G,B);
11. end if
12. end if
13. else if (res = unreachable) then
14. if (op = add(α)) then
15. S ← S ⊕ [α];

16. Let rt be the target role of α and F ←
{∃x.rt(x) if α ∈ can assign
∃x.¬rt(x) if α ∈ can revoke

17. if (F ⇒ B is valid) and (Pre([α], B) ⇒ B is invalid) then
18. (res , σ) ← iBR(S,G,B);
19. end if
20. else if (op = delete(α)) then
21. S ← S � [α]; B ← Filter(B,α);
22. end if
23. end if
24. notify(op, res , σ);
25. end while

considered (line 3) and one among the following four cases (lines 5-6, 7-12, 14-19,
or 20-22) is executed depending on the answer res to the previous problem and
the type of the operation op. In each, the translation of a rule α is added (line 6
or 15) to or deleted (line 8 or 21) from S, where S⊕ [α] = 〈V, In,Tr ∪{[α]}〉 and
S- [α] = 〈V, In,Tr \ {[α]}〉 when S = 〈V, In,Tr〉. Let P0, ..., Pn be the sequence
of user-role reachability problems induced by the evolving ARBAC policy (ψ;ω),
it is easy to see that (S,G) = TR(Pi) at iteration i = 0, ..., n of the loop when
executing SolveEvolving(P, ω). We now describe each case in detail.

Let P = 〈UA,ψ, (ug, Rg)〉 and S = TR(P) = 〈V, In, T r〉 be the user-role
reachability problem and the content of the variable S at the previous iteration
of the loop, respectively, together with res and σ be the values stored in the
variables res and σ, respectively, at the previous iteration of the loop.

(lines 5-6) res is reachable and op is add(α): indeed, the goal (ug, Rg) is still
reachable since all the actions in σ are in ψ ∪ {[α]}, i.e. are still available in
the new user-role reachability problem. So, there is no need to invoke iBR and

270 S. Ranise and A. Truong

SolveEvolving can notify the user that the answer is again (res , σ) (line 24). It
is easy to see that the invariant (4) of iBR still holds at the end of the current
iteration of the loop.

(lines 7-11) res is reachable and op is delete(α): after removing α from S, we
invoke the function Filter so that B now contains the formula

m∨
j=0

Prej(Tr \ {[α]}, G) (5)

describing the sub-set of backward reachable states of those computed by the
last invocation of iBR not taking into account the action α being deleted (for
some m ≥ 0). I.e. (5) is the post-condition of the function Filter, whose effi-
cient implementation will be described in Section 4.1. Since (5) holds after the
invocation of Filter, it is easy to see that also the invariant (4) of iBR holds at
the end of the current iteration of the loop. Then, we consider two cases. If the
deleted action α is not in the sequence σ of administrative actions leading from
the initial policy to one satisfying the goal, then SolveEvolving can immedi-
ately notify the user that the answer is again (res , σ) (line 24). Otherwise (i.e.
α is in σ), we invoke iBR on the new reachability problem S - [α] and the user
is notified of the newly computed values of res and σ (line 24).

(lines 14-19) res is unreachable and op is add(α): we consider depending on
the fact that the set B of backward reachable states is affected or not by the
addition of the administrative action α. To verify this, we first build the formula
F (line 16) which is satisfied by any set of states in which the target role rt of α is
assigned (if α ∈ can assign) or not (if α ∈ can revoke) to some user. Then, it is
checked whether F is contained in B (F ⇒ B is valid or, by refutation, F ∧¬B
is unsatisfiable) but the set of states described by the pre-image of B with
respect to [α] is not included in B (Pre([α], B)⇒ B is invalid or, by refutation,
Pre([α], B)∧¬B is satisfiable). Notice that both checks are decidable because of
the decidability of the satisfiability of BSR formulae. If α ∈ can assign and the
check fails, then B is unaffected by the addition of α since either the target role
rt is assigned to no user in B or the pre-image of B with respect to [α] is already
in the fix-point; similarly, when α ∈ can revoke. If the check succeeds, iBR is
invoked on the updated set S ⊕ [α] of transition formulae and the goal G while
considering the previously computed set B of backward reachable states. In both
cases, it is not difficult to see that that the invariant (4) of iBR is maintained at
the end of the current iteration.

Example 3. Let P be the user-role reachability problem in Example 1. Recall
that the set of backward reachable states is represented by (3) in Example 2.
Now, consider the following three problems all derived from P by adding action
− ({r3}, r7): F = ∃x.r7(x), F ⇒ (3) is invalid, SolveEvolving can notify that
the answer is unreachable;
− ({r1}, r3): F = ∃x.r3(x), F ⇒ (3) is valid, Pre([({r1}, r3)], (3)) is ∃x.(r1(x) ∧
¬r4(x)∧x = u1), which is the last disjunct in (3) and thus Pre([({r1}, r3)], (3))⇒
(3) is trivially valid, SolveEvolving can notify that the answer is unreachable;

Incremental Analysis of Evolving ARBAC Policies 271

− ({r1}, r5): F = ∃x.r5(x), F ⇒ (3) is valid, Pre([({r1}, r5)], (3)) is ∃x.(r1(x)∧
x = u1) that is not in (3), and thus Pre([({r1}, r5)], (3)) ⇒ (3) is invalid, and
we need to invoke iBR on the new reachability problem. *+
(lines 20-22) res is unreachable and op is delete(α): indeed, the goal (ug, Rg)
is still unreachable since, at the previous iteration of the loop, we had that
In ∧

∨n
i=0 Pre

i(Tr , G) was unsatisfiable as res is unreachable. Now, observe
that

∨m
j=0 Pre

j(Tr \{[α]}, G)⇒
∨n

i=0 Pre
i(Tr , G) is valid since Pre is monotonic

with respect to its first argument (as stated in Section 3). From these, by simple
Boolean reasoning, we can conclude that In ∧

∨m
j=1 Pre

j(Tr \ {[α]}, G) is also
unsatisfiable. Because of the post-condition (5) of Filter, it is easy to see that
the invariant (4) of iBR is maintained.

Example 4. Let P be again the user-role reachability problem in Example 1.
Consider removing action ({r2}, r3) from P . It is easy to see that the goal is still
unreachable. By invoking the function Filter, variable B refers to the formula

∃x.
(
(r6(x) ∧ x = u1) ∨ (r5(x) ∧ x = u1) ∨ (r3(x) ∧ ¬r4(x) ∧ x = u1)

)
, (6)

which is obtained by deleting the pre-image of the goal w.r.t. ({r2}, r3), namely
∃x.(r2(x) ∧ ¬r4(x) ∧ x = u1) and ∃x.(r1(x) ∧ ¬r4(x) ∧ x = u1). SolveEvolving
can consider new operations with the new set of backward reachable states. *+

4.1 iBR and Filter

Procedures iBR and Filter use a decorated version of formulae. Let ε denote the
empty sequence and σ be a (finite, possibly empty) sequence of administrative
actions, i.e. either σ = ε or there exists l ≥ 1 such that σ = α1; . . . ;αl for αi

an administrative action with i = 1, ..., l. If K is a BSR formula, then Kσ is a
decorated BSR formula for σ a sequence of administrative actions. The logical
reading of the decorated BSR formulae Kσ is simply the BSR formula K; for
instance, Kσ1

1 ⇒ Kσ2
2 is equivalent to K1 ⇒ K2. We will also use Boolean

combinations of standard and decorated BSR formulae, its logical meaning is
simply obtained by forgetting the decorations; for example, the meaning of K1∧
Kσ

2 is simply K1 ∧K2 with σ a sequence of administrative actions.
We derive the incremental version iBR of BR by performing the following two

modifications on the code of Procedure 1. First, we replace line 1 with
if (B = false) then P ← Gε; else P ← B; end if

i.e. variable P contains the goal G decorated by the empty sequence ε when there
is no information about previous reachability problems; otherwise, P contains
the set of states computed in a previous invocation of iBR (recall that B is a
parameter passed by reference). The second modification concerns the compu-
tation of pre-images: Pre([α],Kσ) is the BSR formula Pre([α],K) decorated by
the sequence α;σ of administrative actions. It is thus not difficult to see that
variables P and B contain decorated BSR formulae of the form

m∨
i=0

Kσi

i (7)

272 S. Ranise and A. Truong

for some m ≥ 0, Ki is a decorated BSR formula for i = 0, ...,m (as before, the
formula reduces to false when m = 0). The last modification to the code of
Procedure 1 refers to the conditional at lines 3-5. Recalling (7), we can assume
that the decorated version of (2) has the form In∧(7). Such a formula is satisfiable
iff there exists i∗ ∈ {0, ...,m} such that In ∧ Kσi

i is so. Thus, we replace lines
3-5 with the following

for i = 0 to m do
if (In ∧Kσi

i is satisfiable) then (reachable, σi) end if
end for

which allows iBR to return the sequence of administrative actions making a goal
reachable, by simply reading the decoration σi of a disjunct Kσi

i of the decorated
BSR formula stored in P . The fact that (4) is an invariant of iBR can be shown
by a case-analysis on the result returned by the previous invocation of iBR.

Filter also exploits decorated BSR formulae. Let (7) be the formula in B
and α an administrative action, Filter(B,α) returns the decorated BSR formula∨

j∈J K
σj

j for J = {j ∈ {0, ...,m}|α �∈ σj}. It is easy to verify that the post-
condition (5) holds.

5 Implementation and Experiments

We have used Python to implement SolveEvolving in a system called iASASP.
The tool is an evolution of asasp [1,18], which can be seen as an implementation of
Solve (introduced immediately before Corollary 1, towards the end of Section 3).
The implementation of iBR is done by invoking the model checker mcmt [7] to
re-use its capability of saving the symbolic representation of the set of backward
reachable states to a file and consider it for later invocations. Below,we describe an
experimental evaluation comparing iASASP with an implementation of the ap-
proach in [8,9] on a set of randomly generated benchmark problems. We consider
four versions of the technique in [8,9]: IncFwd1 , IncFwd2 , and LazyInc are based
on the forward reachability algorithm of [23] and assume separate administration
whereas IncFwdWSA is an incremental forward algorithm for user-role reachabil-
ity problems not assuming separate administration. The reader interested in the
description of these algorithms is pointed to [8,9]; for this paper, it is sufficient to
know that these algorithms incorporate ideas (of increasing degree of sophistica-
tion) to permit the re-use of previously computed sets of reachable states.

We consider six sets of benchmarks whose characteristics are shown in tables
T1, T2, and T3 of Figure 1. The user-role reachability problems in B1, ..., B4

assume separate administration whereas those in B5 and B6 do not (first column
of T1). The initial user-role reachability problems in B1, ..., B4 share the same
(empty) initial RBAC policy and the same set ψ1 of administrative actions
(second column of T1 under ‘Initial problem’). The problems in B5 and B6 have
two distinct (non-empty) initial RBAC policies (UA1 and UA2, respectively)
and share the same set ψ2 of administrative actions. The answer to the initial
user-role reachability problem is shown in column ‘Answer’ of T1 and the time t1
taken by our tool and that t2 taken by the tool of [8,9] are in column ‘Time’ with

Incremental Analysis of Evolving ARBAC Policies 273

Separate Initial Problem Number of
T1 Administration Answer Time |ω| instances

B1 Yes 〈∅, ψ1, g1〉 Reach. 43.28/78.16 1 32

B2 Yes 〈∅, ψ1, g2〉 Unreach. 41.15/80.22 1 32

B3 Yes 〈∅, ψ1, g1〉 Reach. 43.28/78.16 3, 5, 7, 10, 15, 20 15

B4 Yes 〈∅, ψ1, g2〉 Unreach. 41.15/80.22 3, 5, 7, 10, 15, 20 15

B5 No 〈UA1, ψ2, g3〉 Reach. 45.19/83.65 1 32

B6 No 〈UA2, ψ2, g4〉 Unreach. 61.42/116.73 1 32

T2 |can assign | |can revoke | Total

ψ1 313 64 377

ψ2 296 55 351

T3 g1 g2 g3 g4

Size 5 2 3 1

Fig. 1. Characteristics of the 6 benchmark sets

the format t1/t2 (both in seconds). The actions in ψ1 are randomly generated
following the approach in [23] while the actions in ψ2 are those of the university
ARBAC policy in [23]. The number of elements in can assign and can revoke
(with their sum) are show in T2. The problems in B1 and B3 (B2 and B4,
respectively) share the same goal g1 (g2, respectively). The size of the goals
(i.e. the number of roles) in the problems are in T3. As shown in column ‘|ω|’
of T1, the length of the sequences ω of “add” and “delete” actions in B1, B2,
B5, and B6 is 1; this means that the tools need to solve just one user-role
reachability problem besides the initial one for instances in these benchmark
sets. The length of the sequences ω of “add” and “delete” actions in B3 and
B4 is = 3, 5, 7, 10, 15, 20; this means that the tools need to solve user-role
reachability problems besides the initial one. For problems in B1, B2, B5, and
B6, we consider 32 distinct instances of sequences of actions of length 1 while for
those in B3 and B4, we consider 15 distinct instances of sequences of actions of
increasing length = 3, 5, 7, 10, 15, 20 (see column ‘Number of instances’ of T1).

All the experiments were performed on an Intel QuadCore (3.6 GHz) CPU
with 16 GB Ram running Ubuntu 11.10. The timings of the tools on the prob-
lems in the six benchmarks are reported in Figure 2; they are in seconds, are
obtained by averaging the times taken over the number of instances indicated in
the last column of T1 (cf. Figure 1), and measure the performance of processing
the sequence ω of operations being considered, not including the time used to
solve the initial user-role reachability problem since we want to compare the
performances of the two approaches in handling changes to the set of adminis-
trative operations, not in solving single instance problems. However, notice how
iASASP is better than the tool of [8,9] on the initial (single instance) problems
in the benchmarks B1, ..., B6 by considering the column ‘Time’ in Table T1 of
Figure 1. Any operation can affect the reachability of the goal in the benchmarks
that we consider. The table on the upper-left corner and the two plots refer to
benchmark sets B1, B2, B3, and B4 under separation administration whereas
the table on the upper-right corner to B5 and B6 that do not assume separate
administration. In almost cases, iASASP performs and scales better than the

274 S. Ranise and A. Truong

Operation in ω
Time

IncFwd1 IncFwd2 LazyInc iASASP

add can assign 0 10.31 0 0.01
delete can assign 69.72 11.14 11.14 1.75

B1 add can revoke 0 1.07 0 0.01
delete can revoke 12.15 1.72 1.72 0.47

add can assign 132.93 68.79 68.79 5.23
delete can assign 0 12.09 0 0.01

B2 add can revoke 19.67 1.25 1.25 0.69
delete can revoke 0 6.44 0 0.01

Operation in ω
Time

IncFwdWSA iASASP

add can assign 10.07 0.03
delete can assign 8.62 4.84

B5 add can revoke 5.14 0.03
delete can revoke 2.35 1.31

add can assign 32.27 5.35
delete can assign 6.76 0.03

B6 add can revoke 11.2 1.05
delete can revoke 0.46 0.03

Fig. 2. Comparison of our approach with that of [8,9] on the six benchmark sets

techniques of [8,9] as shown by the two plots in Figure 2. iASASP performs
better than the best version (IncLazy) of the techniques in [8,9] and clearly out-
performs the worse version (IncFwd1). For instance in B4, iASASP processes
sequences of length 20 of operations in around 50 seconds whereas IncLazy takes
more than 150 seconds, IncFwd2 around 300 seconds, and IncFwd1 takes more
than 600 seconds. The better performances of our approach are due to the sophis-
ticated techniques put in place in SolveEvolving to detect when the addition
or deletion of an administrative action does not change the answer to the new
instance of the reachability problem.

6 Conclusion

The paper discusses an algorithm for the automated analysis of evolving AR-
BAC policies. The idea is to re-use the previously computed sets of backward
reachable states in order to infer the answer to “similar” user-role reachabil-
ity problems. An experimental evaluation shows that our incremental procedure
performs better than the state-of-the-art techniques in [8,9]. As future work, we
plan to extend our experiments on problems under non-separate administration
and to compare iASASP also with the backward reachability algorithm in [9].

Acknowledgments. We thank the authors of [8,9] for making the code of their
tool available to us and the help in using it. We also thank the anonymous
reviewers for their constructive criticisms.

References

1. Alberti, F., Armando, A., Ranise, S.: ASASP: Automated Symbolic Analysis of
Security Policies. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011.
LNCS, vol. 6803, pp. 26–33. Springer, Heidelberg (2011)

Incremental Analysis of Evolving ARBAC Policies 275

2. Alberti, F., Armando, A., Ranise, S.: Efficient Symbolic Automated Analysis of
Administrative Role Based Access Control Policies. In: ASIACCS. ACM Pr. (2011)

3. Ammann, P., Lipton, R., Sandhu, R.: The expressive power of multi-parent creation
in monotonic access control models. JCS 4(2&3), 149–196 (1996)

4. Armando, A., Ranise, S.: Automated Symbolic Analysis of ARBAC-Policies. In:
Cuellar, J., Lopez, J., Barthe, G., Pretschner, A. (eds.) STM 2010. LNCS, vol. 6710,
pp. 17–34. Springer, Heidelberg (2011)

5. Armando, A., Ranise, S.: Scalable Automated Symbolic Analysis of ARBAC Poli-
cies by SMT Solving. JCS 20(4), 309–352 (2012)

6. Ferrara, A.L., Madhusudan, P., Parlato, G.: Policy Analysis for Self-administrated
Role-Based Access Control. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013
(ETAPS 2013). LNCS, vol. 7795, pp. 432–447. Springer, Heidelberg (2013)

7. Ghilardi, S., Ranise, S.: MCMT: A Model Checker Modulo Theories. In: Giesl, J.,
Hähnle, R. (eds.) IJCAR 2010. LNCS, vol. 6173, pp. 22–29. Springer, Heidelberg
(2010)

8. Gofman, M., Yang, P.: Efficient Policy Analysis for Evolving Administrative Role
Based Access Control. Int. J. of Software and Informatics (to appear, 2014)

9. Gofman, M.I., Luo, R., Yang, P.: User-role reachability analysis of evolving admin-
istrative role based access control. In: Gritzalis, D., Preneel, B., Theoharidou, M.
(eds.) ESORICS 2010. LNCS, vol. 6345, pp. 455–471. Springer, Heidelberg (2010)

10. Gupta, P., Stoller, S.D., Xu, Z.: Abductive analysis of administrative policies in
rule-based access control. In: Jajodia, S., Mazumdar, C. (eds.) ICISS 2011. LNCS,
vol. 7093, pp. 116–130. Springer, Heidelberg (2011)

11. Harrison, M.A., Ruzzo, W.L., Ullman, J.D.: Protection in Operating Systems.
Communications of ACM 19(8), 461–471 (1976)

12. Jayaraman, K., Ganesh, V., Tripunitara, M., Rinard, M., Chapin, S.: Automatic
Error Finding for Access-Control Policies. In: CCS. ACM (2011)

13. Koch, M., Mancini, L.V., Parisi-Presicce, F.: Decidability of Safety in Graph-Based
Models for Access Control. In: Gollmann, D., Karjoth, G., Waidner, M. (eds.)
ESORICS 2002. LNCS, vol. 2502, pp. 229–244. Springer, Heidelberg (2002)

14. Li, N., Tripunitara, M.V.: Security analysis in role-based access control. ACM
TISSEC 9(4), 391–420 (2006)

15. Ramalingam, G., Reps, T.: A Categorized Bibliography on Incremental Computa-
tion. In: Proc. of POPL, pp. 502–510. ACM (1993)

16. Ramsey, F.P.: On a Problem of Formal Logic. Proceedings of the London Mathe-
matical Society s2-30(1), 264–286 (1930)

17. Ranise, S.: Symbolic Backward Reachability with Effectively Propositional Logic—
Applications to Security Policy Analysis. FMSD 42(1), 24–45 (2013)

18. Ranise, S., Truong, A., Armando, A.: Boosting Model Checking to Analyse Large
ARBAC Policies. In: Jøsang, A., Samarati, P., Petrocchi, M. (eds.) STM 2012.
LNCS, vol. 7783, pp. 273–288. Springer, Heidelberg (2013)

19. Sandhu, R., Bhamidipati, V., Munawer, Q.: The ARBAC97 model for role-based
control administration of roles. ACM TISSEC 1(2), 105–135 (1999)

20. Sandhu, R., Coyne, E., Feinstein, H., Youmann, C.: Role-Based Access Control
Models. IEEE Computer 2(29), 38–47 (1996)

21. Sasturkar, A., Yang, P., Stoller, S.D., Ramakrishnan, C.R.: Policy Analysis for
Administrative Role Based Access Control. TCS 412(44), 6208–6234 (2011)

22. Soshi, M., Maekawa, M., Okamoto, E.: The Dynamic-Typed Access Matrix Model
and Decidability of the Safety Problem. IEICE-TF (1), 1–14 (2004)

23. Stoller, S.D., Yang, P., Ramakrishnan, C.R., Gofman, M.I.: Efficient policy analysis
for administrative role based access control. In: CCS. ACM Press (2007)

Mining Attribute-Based

Access Control Policies from Logs�

Zhongyuan Xu and Scott D. Stoller

Department of Computer Science, Stony Brook University, USA

Abstract. Attribute-based access control (ABAC) provides a high level
of flexibility that promotes security and information sharing. ABAC pol-
icy mining algorithms have potential to significantly reduce the cost
of migration to ABAC, by partially automating the development of an
ABAC policy from information about the existing access-control policy
and attribute data. This paper presents an algorithm for mining ABAC
policies from operation logs and attribute data. To the best of our knowl-
edge, it is the first algorithm for this problem.

1 Introduction

ABAC is becoming increasingly important as security policies become more dy-
namic and more complex. In industry, more and more products support ABAC,
using a standardized ABAC language such as XACML or a vendor-specific
ABAC language. In government, the Federal Chief Information Officer Council
called out ABAC as a recommended access control model [1, 4]. ABAC allows “an
unprecedented amount of flexibility and security while promoting information
sharing between diverse and often disparate organizations” [4]. ABAC overcomes
some of the problems associated with RBAC, notably role explosion [4].

ABAC promises long-term cost savings through reduced management effort,
but manual development of an initial policy can be difficult and expensive [4].
Policy mining algorithms promise to drastically reduce the cost of migrating to
ABAC, by partially automating the process.

Role mining, i.e., mining of RBAC policies, is an active research area and a
currently relatively small (about $70 million) but rapidly growing commercial
market segment [3]. In contrast, there is, so far, relatively little work on ABAC
policy mining. We recently developed an algorithm to mine an ABAC policy
from an ACL policy or RBAC policy [10].

However, an ACL policy or RBAC policy might not be available, e.g., if the
current access control policy is encoded in a program or is not enforced by a com-
puterized access control mechanism. An alternative source of information about
the current access control policy is operation logs, or “logs” for short. Many
software systems produce logs, e.g., for auditing, accounting, and accountability

� This material is based upon work supported in part by NSF under Grant CNS-
0831298.

V. Atluri and G. Pernul (Eds.): DBSec 2014, LNCS 8566, pp. 276–291, 2014.
c© IFIP International Federation for Information Processing 2014

Mining Attribute-Based Access Control Policies from Logs 277

purposes. Molloy, Park, and Chari proposed the idea of mining policies from logs
and developed algorithms for mining RBAC policies from logs [6].

The main challenge is that logs generally provide incomplete information
about entitlements (i.e., granted permissions). Specifically, logs provide only a
lower bound on the entitlements. Therefore, the generated policy should be al-
lowed to include over-assignments, i.e., entitlements not reflected in the logs.

This paper presents an algorithm for mining ABAC policies from logs and
attribute data. To the best of our knowledge, it is the first algorithm for this
problem. It is based on our algorithm for mining ABAC policies from ACLs [10].
At a high level, the algorithm works as follows. It iterates over tuples in the
user-permission relation extracted from the log, uses selected tuples as seeds for
constructing candidate rules, and attempts to generalize each candidate rule to
cover additional tuples in the user-permission relation by replacing conjuncts in
attribute expressions with constraints. After constructing candidate rules that
together cover the entire user-permission relation, it attempts to improve the
policy by merging and simplifying candidate rules. Finally, it selects the highest-
quality candidate rules for inclusion in the generated policy.

Several changes are needed to our algorithm for mining ABAC policies from
ACLs to adapt it to mining from logs. When the algorithm generalizes, merges,
or simplifies rules, it discards candidate rules that are invalid, i.e., that produce
over-assignments. We modify those parts of the algorithm to consider those
candidate rules, because, as discussed above, over-assignments must be permit-
ted. To evaluate those candidate rules, we introduce generalized notions of rule
quality and policy quality that quantify a trade-off between the number of over-
assignments and other aspects of quality. We consider a metric that includes the
normalized number of over-assignments in a weighted sum, a frequency-sensitive
variant that assigns higher quality to rules that cover more frequently used en-
titlements, along the lines of [6], and a metric based on a theory quality metric
in inductive logic programming [7, 8].

ABAC policy mining is similar to inductive logic programming (ILP), which
learns logic-programming rules from facts. Mining ABAC policies from logs and
attribute data is similar to ILP algorithms for learning from positive examples,
because those algorithms allow the learned rules to imply more than the given
facts (i.e., in our terminology, to have over-assignments). We implemented a
translation from ABAC policy mining to Progol [8], a well-known ILP system.

We evaluated our algorithm and the ILP-based approach on some relatively
small but non-trivial handwritten case studies and on synthetic ABAC policies.
The results demonstrate our algorithm’s effectiveness even when the log reflects
only a fraction of the entitlements. Although the original (desired) ABAC policy
is not reconstructed perfectly from the log, the mined policy is sufficiently similar
to it that the mined policy would be very useful as a starting point for policy
administrators tasked with developing that ABAC policy.

278 Z. Xu and S.D. Stoller

2 ABAC Policy Language

This section presents the ABAC policy language used in our work. It is adopted
from [10]. We consider a specific ABAC policy language, but our approach is
general and can be adapted to other ABAC policy languages. Our ABAC pol-
icy language contains the common ABAC policy language constructs, except
arithmetic inequalities and negation, which are left for future work.

Given a set U of users and a set Au of user attributes, user attribute data is
represented by a function du such that du(u, a) is the value of attribute a for user
u. There is a distinguished user attribute uid that has a unique value for each
user. Similarly, given a set R of resources and a set Ar of resource attributes,
resource attribute data is represented by a function dr such that dr(r, a) is the
value of attribute a for resource r. There is a distinguished resource attribute
rid that has a unique value for each resource. We assume the set Au of user
attributes can be partitioned into a set Au,1 of single-valued user attributes which
have atomic values, and a set Au,m of multi-valued user attributes whose values
are sets of atomic values. Similarly, we assume the set Ar of resource attributes
can be partitioned into a set Ar,1 of single-valued resource attributes and a set
of Ar,m of multi-valued resource attributes. We assume there is a distinguished
atomic value ⊥ used to indicate that an attribute’s value is unknown.

A user-attribute expression (UAE) is a function e such that, for each user
attribute a, e(a) is either the special value ., indicating that e imposes no
constraint on the value of a, or a set (interpreted as a disjunction) of possible
values of a excluding ⊥. We refer to e(a) as the conjunct for a. A UAE e uses
attribute a if e(a) �= .. Let attr(e) denote the set of attributes used by e.

A user u satisfies a UAE e, denoted u |= e, iff (∀a ∈ Au,1. e(a) = . ∨ ∃v ∈
e(a). du(u, a) = v) and (∀a ∈ Au,m. e(a) = . ∨ ∃v ∈ e(a). du(u, a) ⊇ v). For
multi-valued attributes, we use the condition du(u, a) ⊇ v instead of du(u, a) = v
because elements of a multi-valued user attribute typically represent some type
of capabilities of a user, so using ⊇ expresses that the user has the specified
capabilities and possibly more. For example, suppose Au,1 = {dept, position}
and Au,m = {courses}. The function e1 with e1(dept) = {CS} and e1(position) =
{grad, ugrad} and e1(courses) = {{CS101,CS102}} is a user-attribute expression
satisfied by users in the CS department who are either graduate or undergraduate
students and whose courses include CS101 and CS102.

In examples, we may write attribute expressions with a logic-based syntax,
for readability. For example, the above expression e1 may be written as dept =
CS∧position ∈ {ugrad, grad}∧ courses ⊇ {CS101,CS102}. For an example that
uses ⊇∈, the expression e2 that is the same as e1 except with e2(courses) =
{{CS101}, {CS102}} may be written as dept = CS ∧ position ∈ {ugrad, grad} ∧
courses ⊇∈ {{CS101}, {CS102}}, and is satisfied by graduate or undergraduate
students in the CS department whose courses include either CS101 or CS102.

The meaning of a user-attribute expression e, denoted [[e]]U , is the set of users
in U that satisfy it. User attribute data is an implicit argument to [[e]]U . We say
that e characterizes the set [[e]]U .

Mining Attribute-Based Access Control Policies from Logs 279

A resource-attribute expression (RAE) is defined similarly, except using the set
Ar of resource attributes instead of the set Au of user attributes. The semantics
of RAEs is defined similarly to the semantics of UAEs, except simply using
equality, not ⊇, in the condition for multi-valued attributes in the definition
of “satisfies”, because we do not interpret elements of multi-valued resource
attributes specially (e.g., as capabilities).

Constraints express relationships between users and resources. An atomic con-
straint is a formula f of the form au,m ⊇ ar,m, au,m 0 ar,1, or au,1 = ar,1, where
au,1 ∈ Au,1, au,m ∈ Au,m, ar,1 ∈ Ar,1, and ar,m ∈ Ar,m. The first two forms
express that user attributes contain specified values. This is a common type of
constraint, because user attributes typically represent some type of capabilities
of a user. Let uAttr(f) and rAttr(f) refer to the user attribute and resource
attribute, respectively, used in f . User u and resource r satisfy an atomic con-
straint f , denoted 〈u, r〉 |= f , if du(u, uAttr(f)) �= ⊥ and dr(u, rAttr(f)) �= ⊥
and formula f holds when the values du(u, uAttr(f)) and dr(u, rAttr(f)) are
substituted in it.

A constraint is a set (interpreted as a conjunction) of atomic constraints.
User u and resource r satisfy a constraint c, denoted 〈u, r〉 |= c, if they satisfy
every atomic constraint in c. In examples, we write constraints as conjunctions
instead of sets. For example, the constraint “specialties ⊇ topics ∧ teams 0
treatingTeam” is satisfied by user u and resource r if the user’s specialties include
all of the topics associated with the resource, and the set of teams associated
with the user contains the treatingTeam associated with the resource.

A user-permission tuple is a tuple 〈u, r, o〉 containing a user, a resource, and
an operation. This tuple means that user u has permission to perform operation
o on resource r. A user-permission relation is a set of such tuples.

A rule is a tuple 〈eu, er, O, c〉, where eu is a user-attribute expression, er is a
resource-attribute expression,O is a set of operations, and c is a constraint. For a
rule ρ = 〈eu, er, O, c〉, let uae(ρ) = eu, rae(ρ) = er, ops(ρ) = O, and con(ρ) = c.
For example, the rule 〈true, type=task ∧ proprietary=false, {read, request},
projects 0 project ∧ expertise ⊇ expertise〉 used in our project management case
study can be interpreted as “A user working on a project can read and request
to work on a non-proprietary task whose required areas of expertise are among
his/her areas of expertise.” User u, resource r, and operation o satisfy a rule ρ,
denoted 〈u, r, o〉 |= ρ, if u |= uae(ρ) ∧ r |= rae(ρ) ∧ o ∈ ops(ρ) ∧ 〈u, r〉 |= con(ρ).

An ABAC policy is a tuple 〈U,R,Op, Au, Ar, du, dr,Rules〉, where U , R, Au,
Ar, du, and dr are as described above, Op is a set of operations, and Rules is a
set of rules.

The user-permission relation induced by a rule ρ is [[ρ]] = {〈u, r, o〉 ∈ U ×R×
Op | 〈u, r, o〉 |= ρ}. Note that U , R, du, and dr are implicit arguments to [[ρ]].

The user-permission relation induced by a policy π with the above form is
[[π]] =

⋃
ρ∈Rules [[ρ]].

280 Z. Xu and S.D. Stoller

3 Problem Definition

An operation log entry e is a tuple 〈u, r, o, t〉 where u ∈ U is a user, r ∈ R is
a resource, o ∈ Op is an operation, and t is a timestamp. An operation log is
a sequence of operation log entries. The user-permission relation induced by an
operation log L is UP(L) = {〈u, r, o〉 | ∃t. 〈u, r, o, t〉 ∈ L}.

The input to the ABAC-from-logs policy mining problem is a tuple I =
〈U,R,Op, Au, Ar, du, dr, L〉, where U is a set of users, R is a set of resources,
Op is a set of operations, Au is a set of user attributes, Ar is a set of resource
attributes, du is user attribute data, dr is resource attribute data, and L is an
operation log, such that the users, resources, and operations that appear in L
are subsets of U , R, and Op, respectively. The goal of the problem is to find a set
of rules Rules such that the ABAC policy π = 〈U,R,Op, Au, Ar, du, dr,Rules〉
maximizes a suitable policy quality metric.

The policy quality metric should reflect the size and meaning of the pol-
icy. Size is measured by weighted structural complexity (WSC) [5], and smaller
policies are considered to have higher quality. This is consistent with usability
studies of access control rules, which conclude that more concise policies are
more manageable. Informally, the WSC of an ABAC policy is a weighted sum
of the number of elements in the policy. Specifically, the WSC of an attribute
expression is the number of atomic values that appear in it, the WSC of an
operation set is the number of operations in it, the WSC of a constraint is the
number of atomic constraints in it, and the WSC of a rule is a weighted sum
of the WSCs of its components, namely, WSC(〈eu, er, O, c〉) = w1WSC(eu) +
w2WSC(er)+w3WSC(O)+w4WSC(c), where the wi are user-specified weights.
The WSC of a set of rules is the sum of the WSCs of its members.

The meaning [[π]] of the ABAC policy is taken into account by consider-
ing the differences from UP(L), which consist of over-assignments and under-
assignments. The over-assignments are [[π]] \UP(L). The under-assignments are
UP(L)\ [[π]]. Since logs provide only a lower-bound on the actual user-permission
relation (a.k.a entitlements), it is necessary to allow some over-assignments, but
not too many. Allowing under-assignments is beneficial if the logs might contain
noise, in the form of log entries representing uses of permissions that should not
be granted, because it reduces the amount of such noise that gets propagated
into the policy; consideration of noise is left for future work. We define a policy
quality metric that is a weighted sum of these aspects:

Qpol(π, L) = WSC(π) + wo | [[π]] \UP(L)| / |U | (1)

where the policy over-assignment weight wo is a user-specified weight for over-
assignments, and for a set S of user-permission tuples, the frequency-weighted
size of S with respect to log L is |S|L =

∑
〈u,r,o〉∈S freq(〈u, r, o〉, L), where the

relative frequency of a user-permission tuple in a log is given by the frequency
function freq(〈u, r, o〉, L) = |{e ∈ L | userPerm(e) = 〈u, r, o〉}| / |L|, where the
user-permission part of a log entry is given by userPerm(〈u, r, o, t〉) = 〈u, r, o〉.

For simplicity, our presentation of the problem and algorithm assume that at-
tribute data does not change during the time covered by the log. Accommodating

Mining Attribute-Based Access Control Policies from Logs 281

changes to attribute data is not difficult. It mainly requires re-defining the notions
of policy quality and rule quality (introduced in Section 4) to be based on the set
of log entries covered by a rule, denoted [[ρ]]LE, rather than [[ρ]]. The definition of
[[ρ]]LE is similar to the definition of [[ρ]], except that, when determining whether a
log entry is in [[ρ]]LE, the attribute data in effect at the time of the log entry is used.

4 Algorithm

Our algorithm is based on the algorithm for mining ABAC policies from ACLs
and attribute data in [10]. Our algorithm does not take the order of log entries
into account, so the log can be summarized by the user-permission relation UP0

induced by the log and the frequency function freq, described in the penultimate
paragraph of Section 3.

Top-level pseudocode appears in Figure 1. We refer to tuples selected in the
first statement of the first while loop as seeds. The top-level pseudocode is ex-
plained by embedded comments. It calls several functions, described next. Func-
tion names hyperlink to pseudocode for the function, if it is included in the
paper, otherwise to the description of the function.

The function addCandRule(su, sr, so, cc, uncovUP ,Rules) in Figure 2 first
calls computeUAE to compute a user-attribute expression eu that character-
izes su, and computeRAE to compute a resource-attribute expression er that
characterizes sr. It then calls generalizeRule(ρ, cc, uncovUP ,Rules) to general-
ize rule ρ = 〈eu, er, so, ∅〉 to ρ′ and adds ρ′ to candidate rule set Rules. The
details of the functions called by addCandRule are described next.

The function computeUAE(s, U) computes a user-attribute expression eu that
characterizes the set s of users. Preference is given to attribute expressions that
do not use uid, since attribute-based policies are generally preferable to identity-
based policies, even when they have higher WSC, because attribute-based gen-
eralize better. Similarly, computeRAE(s,R) computes a resource-attribute ex-
pression that characterizes the set s of resources. Pseudocode for computeUAE
and computeRAE are omitted. The function candidateConstraint(r, u) returns
a set containing all of the atomic constraints that hold between resource r and
user u. Pseudocode for candidateConstraint is straightforward and omitted.

The function generalizeRule(ρ, cc, uncovUP ,Rules) in Figure 3 attempts to
generalize rule ρ by adding some of the atomic constraints in cc to ρ and eliminat-
ing the conjuncts of the user attribute expression and/or the resource attribute
expression corresponding to the attributes used in those constraints, i.e., map-
ping those attributes to .. We call a rule obtained in this way a generalization
of ρ. Such a rule is more general than ρ in the sense that it refers to relation-
ships instead of specific values. Also, the user-permission relation induced by a
generalization of ρ is a superset of the user-permission relation induced by ρ.
generalizeRule(ρ, cc, uncovUP ,Rules) returns the generalization ρ′ of ρ with the
best quality according to a given rule quality metric. Note that ρ′ may cover
tuples that are already covered (i.e., are in UP); in other words, our algorithm
can generate policies containing rules whose meanings overlap.

282 Z. Xu and S.D. Stoller

A rule quality metric is a function Qrul(ρ,UP) that maps a rule ρ to a totally-
ordered set, with the ordering chosen so that larger values indicate high quality.
The second argument UP is a set of user-permission tuples. Our rule quality
metric assigns higher quality to rules that cover more currently uncovered user-
permission tuples and have smaller size, with an additional term that imposes
a penalty for over-assignments, measured as a fraction of the number of user-
permission tuples covered by the rule, and with a weight specified by a parameter
w′

o, called the rule over-assignment weight.

Qrul(ρ,UP) =
| [[ρ]] ∩ UP |

|ρ| × (1− w′
o × |overAssign(ρ)|

| [[ρ]] |).

In generalizeRule, uncovUP is the second argument to Qrul, so [[ρ]] ∩ UP is the
set of user-permission tuples in UP0 that are covered by ρ and not covered by
rules already in the policy. The loop over i near the end of the pseudocode for
generalizeRule considers all possibilities for the first atomic constraint in cc that
gets added to the constraint of ρ. The function calls itself recursively to determine
the subsequent atomic constraints in c that get added to the constraint.

We also developed a frequency-sensitive variant of this rule quality metric. Let
Qfreq

rul denote the frequency-weighted variant of Qrul, obtained by weighting each
user-permission tuple by its relative frequency (i.e., fraction of occurrences) in
the log, similar to the definition of λ-distance in [6]. Specifically, the definition

of Qfreq
rul is obtained from the definition of Qrul by replacing | [[ρ]] ∩ UP | with

| [[ρ]] ∩ UP |L (recall that | · |L is defined in Section 3).
We also developed a rule quality metric QILP

rul based closely on the theory
quality metric for inductive logic programming described in [7]. Details of the
definition are omitted to save space.

The function mergeRules(Rules) in Figure 3 attempts to improve the qual-
ity of Rules by removing redundant rules and merging pairs of rules. A rule ρ
in Rules is redundant if Rules contains another rule ρ′ such that every user-
permission tuple in UP0 that is in [[ρ]] is also in [[ρ′]]. Informally, rules ρ1 and ρ2
are merged by taking, for each attribute, the union of the conjuncts in ρ1 and
ρ2 for that attribute. If adding the resulting rule ρmrg to the policy and remov-
ing rules (including ρ1 and ρ2) that become redundant improves policy quality
and does not introduce over-assignments where none existed before, then ρmrg is
added to Rules, and the redundant rules are removed from Rules . As optimiza-
tions (in the implementation, not reflected in the pseudocode), meanings of rules
are cached, and policy quality is computed incrementally. mergeRules(Rules) up-
dates its argument Rules in place, and it returns a Boolean indicating whether
any rules were merged.

The function simplifyRules(Rules) attempts to simplify all of the rules in
Rules. It updates its argument Rules in place, replacing rules in Rules with
simplified versions when simplification succeeds. It returns a Boolean indicating
whether any rules were simplified. It attempts to simplify each rule in several
ways, including elimination of subsumed sets in conjuncts for multi-valued at-
tributes, elimination of conjuncts, elimination of constraints, elimination of el-
ements of sets in conjuncts for multi-valued user attributes, and elimination of

Mining Attribute-Based Access Control Policies from Logs 283

// Rules is the set of candidate rules
Rules = ∅
// uncovUP contains user-permission tuples
// in UP0 that are not covered by Rules
uncovUP = UP0.copy()
while ¬uncovUP .isEmpty()

// Select an uncovered tuple as a “seed”.
〈u, r, o〉 = some tuple in uncovUP
cc = candidateConstraint(r, u)
// su contains users with permission 〈r, o〉
// and that have the same candidate
// constraint for r as u
su = {u′ ∈ U | 〈u′, r, o〉 ∈ UP0

∧ candidateConstraint(r, u′) = cc}
addCandRule(su, {r}, {o}, cc, uncovUP ,Rules)
// so is set of operations that u can apply to r
so = {o′ ∈ Op | 〈u, r, o′〉 ∈ UP0}
addCandRule({u}, {r}, so, cc, uncovUP ,Rules)

end while

// Repeatedly merge and simplify
// rules, until this has no effect
mergeRules(Rules)
while simplifyRules(Rules)

&& mergeRules(Rules)
skip

end while
// Select high quality rules into Rules ′.
Rules ′ = ∅
Repeatedly move highest-quality rule
from Rules to Rules ′ until∑

ρ∈Rules′ [[ρ]] ⊇ UP0, using

UP0 \ [[Rules ′]] as second argument to
Qrul, and discarding a rule if it does
not cover any tuples in UP0 currently
uncovered by Rules ′.
return Rules ′

Fig. 1. Policy mining algorithm. The pseudocode starts in column 1 and continues in
column 2.

function addCandRule(su, sr, so, cc, uncovUP ,Rules)
// Construct a rule ρ that covers user-perm. tuples {〈u, r, o〉 | u ∈ su ∧ r ∈ sr ∧ o ∈ so}.
eu = computeUAE(su, U); er = computeRAE(sr, R); ρ = 〈eu, er, so, ∅〉
ρ′ = generalizeRule(ρ, cc, uncovUP ,Rules); Rules.add(ρ′); uncovUP .removeAll([[ρ′]])

Fig. 2. Compute a candidate rule ρ′ and add ρ′ to candidate rule set Rules

overlap between rules. The detailed definition is similar to the one in [10] and is
omitted to save space.

4.1 Example

We illustrate the algorithm on a small fragment of our university case study (cf.
Section 5.1). The fragment contains a single rule ρ0 = 〈true, type ∈ {gradebook},
{addScore, readScore}, crsTaught 0 crs〉 and all of the attribute data from the full
case study, except attribute data for gradebooks for courses other than cs601. We
consider an operation log L containing three entries: {〈csFac2, cs601gradebook,
addScore, t1〉, 〈csFac2, cs601gradebook, readScore, t2〉, 〈csStu3, cs601gradebook,
addScore, t3〉}. User csFac2 is a faculty in the computer science department who
is teaching cs601; attributes are position = faculty, dept = cs, and crsTaught =
{cs601}. csStu3 is a CS student who is a TA of cs601; attributes are position =
student, dept = cs, and crsTaught = {cs601}. cs601gradebook is a resource with
attributes type = gradebook, dept = cs, and crs = cs601.

Our algorithmselects user-permission tuple 〈csFac2, cs601gradebook, addScore〉
as the first seed, and calls function candidateConstraint to compute the set of
atomic constraints that hold between csFac2 and cs601gradebook; the result is

284 Z. Xu and S.D. Stoller

function generalizeRule(ρ, cc, uncovUP ,
Rules)

// ρbest is best generalization of ρ
ρbest = ρ
// gen[i][j] is a generalization of ρ using
// cc′[i]
gen = new Rule[cc.length][3]
for i = 1 to cc.length

f = cc[i]
// generalize by adding f and eliminating
// conjuncts for both attributes used in f .
gen [i][1] = 〈uae(ρ)[uAttr(f) �→ �],

rae(ρ)[rAttr(f) �→ �],
ops(ρ), con(ρ) ∪ {f}〉

// generalize by adding f and eliminating
// conjunct for user attribute used in f
gen [i][2] = 〈uae(ρ)[uAttr(f) �→ �], rae(ρ),

ops(ρ), con(ρ) ∪ {f}〉
// generalize by adding f and eliminating
// conjunct for resource attrib. used in f .
gen [i][3] = 〈uae(ρ), rae(ρ)[rAttr(f) �→ �],

ops(ρ), con(ρ) ∪ {f}〉
end for
for i = 1 to cc.length and j = 1 to 3

// try to further generalize gen [i]
ρ′′ = generalizeRule(gen [i][j], cc[i+1 ..],

uncovUP ,Rules)
if Qrul(ρ

′′, uncovUP) > Qrul(ρbest,
uncovUP)

ρbest = ρ′′

end if
end for
return ρbest

function mergeRules(Rules)
// Remove redundant rules
redun = {ρ ∈ Rules | ∃ ρ′ ∈ Rules \ {ρ}.

[[ρ]] ∩UP0 ⊆ [[ρ′]] ∩ UP0}
Rules .removeAll(redun)
// Merge rules
workSet = {(ρ1, ρ2) | ρ1 ∈ Rules ∧ ρ2 ∈ Rules

∧ ρ1 �= ρ2 ∧ con(ρ1) = con(ρ2)}
while not(workSet.empty())

(ρ1, ρ2) = workSet .remove()
ρmrg = 〈uae(ρ1) ∪ uae(ρ2),

rae(ρ1) ∪ rae(ρ2),
ops(ρ1) ∪ ops(ρ2), con(ρ1)〉

// Find rules that become redundant
// if merged rule ρmrg is added
redun = {ρ ∈ Rules | [[ρ]] ⊆ [[ρmrg]]}
// Add the merged rule and remove redun-
// dant rules if this improves policy quality
// and does not introduce over-assignments.
// where none existed before.
if Qpol(Rules ∪ {ρmrg} \ redun) < Qpol(Rules)

∧ (noOA(ρ1) ∧ noOA(ρ2) ⇒ noOA(ρmrg))
Rules.removeAll(redun)
workSet .removeAll({(ρ1, ρ2) ∈ workSet |

ρ1 ∈ redun ∨ ρ2 ∈ redun})
workSet .addAll({(ρmrg, ρ) | ρ ∈ Rules

∧ con(ρ) = con(ρmrg)})
Rules.add(ρmrg)

end if
end while
return true if any rules were merged

Fig. 3. Left: Generalize rule ρ by adding some formulas from cc to its constraint and
eliminating conjuncts for attributes used in those formulas. f [x �→ y] denotes a copy of
function f modified so that f(x) = y. a[i..] denotes the suffix of array a starting at index
i. Right: Merge pairs of rules in Rules , when possible, to reduce the WSC of Rules. (a, b)
denotes an unordered pair with components a and b. The union e = e1∪e2 of attribute
expressions e1 and e2 over the same set A of attributes is defined by: for all attributes a
in A, if e1(a) = � or e2(a) = � then e(a) = � otherwise e(a) = e1(a)∪ e2(a). noOA(ρ)
holds if ρ has no over-assignments, i.e., [[ρ]] ⊆ UP0.

cc = {dept = dept, crsTaught 0 crs}. addCandRule is called twice to compute
candidate rules. The first call to addCandRule calls computeUAE to compute a
UAE eu that characterizes the set su containing users with permission
〈addScore, cs601gradebook〉 and with the same candidate constraint as csFac2 for
cs601gradebook; the result is eu = (position ∈ {faculty, student} ∧ dept ∈ {cs} ∧
crsTaught ⊇ {{cs601}}). addCandRule also calls computeRAE to compute a
resource-attribute expression that characterizes {cs601gradebook}; the result is
er = (crs ∈ {cs601} ∧ dept ∈ {cs} ∧ type ∈ {gradebook}). The set of operations

Mining Attribute-Based Access Control Policies from Logs 285

considered in this call to addCandRule is simply so = {addScore}. addCandRule
then calls generalizeRule, which generates a candidate rule ρ1 which initially has
eu, er and so in the first three components, and then atomic constraints in cc are
added to ρ1, and conjuncts in eu and er for attributes used in cc are
eliminated; the result is ρ1 = 〈position ∈ {faculty, student}, type ∈ {gradebook},
{addScore}, dept = dept ∧ crsTaught 0 crs〉, which also covers the third log en-
try. Similarly, the second call to addCandRule generates a candidate rule ρ2 =
〈position ∈ {faculty}, type ∈ {gradebook}, {addScore, readScore}, dept = dept ∧
crsTaught 0 crs〉, which also covers the second log entry.

All of UP(L) is covered, so our algorithm calls mergeRules, which attempts to
mergeρ1 andρ2 into ruleρ3= 〈position ∈ {faculty, student}, type ∈ {gradebook},
{addScore, readScore}, dept = dept ∧ crsTaught 0 crs〉. ρ3 is discarded because it
introduces an over-assignmentwhile ρ1 and ρ2 do not.Next, simplifyRules is called,
which first simplifies ρ1 and ρ2 to ρ′1 and ρ′2, respectively, and then eliminates ρ′1
because it covers a subset of the tuples covered by ρ′2. The final result is ρ

′
2, which

is identical to the rule ρ0 in the original policy.

5 Evaluation Methodology

We evaluate our policy mining algorithms on synthetic operation logs generated
from ABAC policies (some handwritten and some synthetic) and probability
distributions characterizing the frequency of actions. This allows us to evaluate
the effectiveness of our algorithm by comparing the mined policies with the
original ABAC policies. We are eager to also evaluate our algorithm on actual
operation logs and actual attribute data, when we are able to obtain them.

5.1 ABAC Policies

Case Studies. We developed four case studies for use in evaluation of our al-
gorithm, described briefly here. Details of the case studies, including all policy
rules, various size metrics (number of users, number of resources, etc.), and some
illustrative attribute data, appear in [10].

Our university case study is a policy that controls access by students, in-
structors, teaching assistants, registrar officers, department chairs, and admis-
sions officers to applications (for admission), gradebooks, transcripts, and course
schedules. Our health care case study is a policy that controls access by nurses,
doctors, patients, and agents (e.g., a patient’s spouse) to electronic health records
(HRs) and HR items (i.e., entries in health records). Our project management
case study is a policy that controls access by department managers, project
leaders, employees, contractors, auditors, accountants, and planners to budgets,
schedules, and tasks associated with projects. Our online video case study is a
policy that controls access to videos by users of an online video service.

The number of rules in the case studies is relatively small (10 ± 1 for the
first three case studies, and 6 for online video), but they express non-trivial
policies and exercise all the features of our policy language, including use of set

286 Z. Xu and S.D. Stoller

membership and superset relations in attribute expressions and constraints. The
manually written attribute dataset for each case study contains a small number
of instances of each type of user and resource.

For the first three case studies, we generated a series of synthetic attribute
datasets, parameterized by a number N , which is the number of departments for
the university and project management case studies, and the number of wards for
the health care case study. The generated attribute data for users and resources
associated with each department or ward are similar to but more numerous than
the attribute data in the manually written datasets. We did not bother creating
synthetic data for the online video case study, because the rules are simpler.

Synthetic Policies. We generated synthetic policies using the algorithm proposed
by Xu and Stoller [10]. Briefly, the policy synthesis algorithm first generates the
rules and then uses the rules to guide generation of the attribute data; this
allows control of the number of granted permissions. The algorithm takes Nrule,
the desired number of rules, as an input. The numbers of users and resources
are proportional to the number of rules. Generation of rules and attribute data
is based on several probability distributions, which are based loosely on the case
studies or assumed to have a simple functional form (e.g., uniform distribution).

5.2 Log Generation

The inputs to the algorithm are an ABAC policy π, the desired completeness of
the log, and several probability distributions. The completeness of a log, relative
to an ABAC policy, is the fraction of user-permission tuples in the meaning of
the policy that appear in at least one entry in the log. A straightforward log
generation algorithm would generate each log entry by first selecting an ABAC
rule, according to a probability distribution on rules, and then selecting a user-
permission tuple that satisfies the rule, according to probability distributions on
users, resources, and operations. This process would be repeated until the speci-
fied completeness is reached. This algorithm is inefficient when high completeness
is desired. Therefore, we adopt a different approach that takes advantage of the
fact that our policy mining algorithm is insensitive to the order of log entries and
depends only on the frequency of each user-permission tuple in the log. In par-
ticular, instead of generating logs (which would contain many entries for popular
user-permission tuples), our algorithm directly generates a log summary, which
is a set of user-permission tuples with associated frequencies (equivalently, a set
of user-permission tuples and a frequency function).

Probability Distributions. An important characteristic of the probability distri-
butions used in synthetic log and log summary generation is the ratio between
the most frequent (i.e., most likely) and least frequent items of each type (rule,
user, etc.). For case studies with manually written attribute data, we manually
created probability distributions in which this ratio ranges from about 3 to 6. For
case studies with synthetic data and synthetic policies, we generated probability
distributions in which this ratio is 25 for rules, 25 for resources, 3 for users, and

Mining Attribute-Based Access Control Policies from Logs 287

3 for operations (the ratio for operations has little impact, because it is relevant
only when multiple operations appear in the same rule, which is uncommon).

5.3 Metrics

For each case study and each associated attribute dataset (manually written or
synthetic), we generate a synthetic operation log using the algorithm in Section
5.2 and then run our ABAC policy mining algorithms. We evaluate the effective-
ness of each algorithm by comparing the generated ABAC policy to the original
ABAC policy, using the metrics described below.

Syntactic Similarity. Jaccard similarity of sets is J(S1, S2) = |S1 ∩ S2| /
|S1 ∪ S2|. Syntactic similarity of UAEs is defined by Su

syn(e, e
′) = |Au|−1

∑
a∈Au

J(e(a), e′(a)). Syntactic similarity of RAEs is defined by Sr
syn(e, e

′) = |Ar|−1∑
a∈Ar

J(e(a), e′(a)). The syntactic similarity of rules 〈eu, er, O, c〉 and 〈e′u, e′r,
O′, c′〉 is the average of the similarities of their components, specifically, the av-
erage of Su

syn(eu, e
′
u), S

r
syn(er, e

′
r), J(O,O′), and J(c, c′). The syntactic similarity

of rule sets Rules and Rules ′ is the average, over rules ρ in Rules, of the syntactic
similarity between ρ and the most similar rule in Rules ′. The syntactic similar-
ity of policies π and π′ is the maximum of the syntactic similarities of the sets of
rules in the policies, considered in both orders (this makes the relation symmetric).
Syntactic similarity ranges from 0 (completely different) to 1 (identical).

Semantic Similarity. Semantic similarity measures the similarity of the entitle-
ments granted by two policies. The semantic similarity of policies π and π′ is
defined by J([[π]] , [[π′]]). Semantic similarity ranges from 0 (completely different)
to 1 (identical).

Fractions of Under-Assignments and Over-Assignments. To characterize the se-
mantic differences between an original ABAC policy π0 and a mined policy π in
a way that distinguishes under-assignments and over-assignments, we compute
the fraction of over-assignments and the fraction of under-assignments, defined
by | [[π]] \ [[π0]] | / | [[π]] | and | [[π0]] \ [[π]] | / | [[π]] |, respectively.

6 Experimental Results

This section presents experimental results using an implementation of our algo-
rithm in Java. The implementation, case studies, and synthetic policies used in
the experiments are available at http://www.cs.stonybrook.edu/~stoller/.

Over-Assignment Weight. The optimal choice for the over-assignment weights
wo and w′

o in the policy quality and rule quality metrics, respectively, depends on
the log completeness. When log completeness is higher, fewer over-assignments
are desired, and larger over-assignments weights give better results. In experi-
ments, we take wo = 50c− 15 and w′

o = wo/10, where c is log completeness. In a

http://www.cs.stonybrook.edu/~stoller/

288 Z. Xu and S.D. Stoller

production setting, the exact log completeness would be unknown, but a rough
estimate suffices, because our algorithm’s results are robust to error in this esti-
mate. For example, for case studies with manually written attribute data, when
the actual log completeness is 80%, and the estimated completeness used to
compute wo varies from 70% to 90%, the semantic similarity of the original and
mined policies varies by 0.04, 0.02, and 0 for university, healthcare, and project
management, respectively.

Experimental Results. Figure 4 shows results from our algorithm. In each graph,
curves are shown for the university, healthcare, and project management case
studies with synthetic attribute data with N equal to 6, 10, and 10, respectively
(average over results for 10 synthetic datasets, with 1 synthetic log per synthetic
dataset), the online video case study with manually written attribute data (av-
erage over results for 10 synthetic logs), and synthetic policies with Nrule = 20
(average over results for 10 synthetic policies, with 1 synthetic log per policy).
Error bars show standard deviation. Running time is at most 12 sec for each
problem instance in our experiments.

For log completeness 100%, all four case study policies are reconstructed ex-
actly, and the semantics of synthetic policies is reconstructed almost exactly:
the semantic similarity is 0.98. This is a non-trivial result, especially for the case
studies: an algorithm could easily generate a policy with over-assignments or gen-
erate more complex rules. As expected, the results get worse as log completeness
decreases. When evaluating the results, it is important to consider what levels of
log completeness are likely to be encountered in practice. One datapoint comes
from Molloy et al.’s work on role mining from real logs [6]. For the experiments in
[6, Tables 4 and 6], the actual policy is not known, but their algorithm produces
policies with 0.52% or fewer over-assignments relative to UP(L), and they inter-
pret this as a good result, suggesting that they consider the log completeness to
be near 99%. Based on this, we consider our experiments with log completeness
below 90% to be severe stress tests, and results for log completeness 90% and
higher to be more representative of typical results in practice.

Syntactic similarity for all four case studies is above 0.87 for log completeness
60% or higher, and is above 0.93 for log completeness 80% or higher. Syntactic
similarity is lower for synthetic policies, but this is actually a good result. The
synthetic policies tend to be unnecessarily complicated, and the mined policies
are better in the sense that they have lower WSC. For example, for 100% log
completeness, the mined policies have 0.98 semantic similarity to the synthetic
policies (i.e., the meaning is almost the same), but the mined policies are simpler,
with WSC 17% less than the original synthetic policies.

Semantic similarity is above 0.7 for log completeness 60% or higher, and above
0.89 for log completeness 80% or higher, for synthetic policies and for case studies
other than healthcare. The semantic similarity is lower for healthcare, because
the over-assignment weight given by the above formula is not optimal for this
policy. In fact, if the optimal value of wo is used for each log completeness, the
semantic similarity for healthcare is always above 0.99. Better automated tuning
of wo is a direction for future work.

Mining Attribute-Based Access Control Policies from Logs 289

0.7

0.75

0.8

0.85

0.9

0.95

1

0.60 0.70 0.80 0.90 1.00

Syntactic Similarity of Original and Mined Policies

healthcare
university
project mgmt
synthetic
online video

0.4

0.5

0.6

0.7

0.8

0.9

1

0.60 0.70 0.80 0.90 1.00

Semantic Similarity of Original and Mined Policies

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.60 0.70 0.80 0.90 1.00

Fraction of Over-Assignments

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.60 0.70 0.80 0.90 1.00

Fraction of Under-Assignments

Fig. 4. Top: Syntactic similarity and semantic similarity of original and mined ABAC
policies, as a function of log completeness. Bottom: Fractions of over-assignments and
under-assignments in mined ABAC policy, as a function of log completeness. The legend
(omitted from some graphs to save space) is the same for all four graphs.

The fractions of over-assignments and under-assignments are below 0.24 and
0.05, respectively, when log completeness is 80% or higher, for synthetic policies
and for case studies other than healthcare. The fractions are higher for health-
care, because wo is not well chosen, as discussed above.

Comparison of Rule Quality Metrics. The above experiments use the first rule
quality metric, Qrul, in Section 4. We also performed experiments using Qfreq

rul and
QILP

rul on case studies with manually written attribute data and synthetic policies.

We found that there is no clear winner between Qrul and Qfreq
rul (sometimes one

is better, sometimes the other is better), and QILP
rul gives worse results overall.

Comparison with Inductive Logic Programming. To translate ABAC policy min-
ing from logs to Progol [8], we used the translation of ABAC policy mining from
ACLs to Progol in [10, Sections 5.5, 16], except negative examples corresponding
to absent user-permission tuples are omitted from the generated program, and
the statement set(posonly)? is included, telling Progol to use its algorithm for
learning from positive examples. For the four case studies with manually writ-
ten attribute data (in contrast, Figure 4 uses synthetic attribute for three of the
case studies), for log completeness 100%, semantic similarity of the original and
Progol-mined policies ranges from 0.37 for project management and healthcare
to 0.93 for online video, while our algorithm exactly reconstructs all four policies.

290 Z. Xu and S.D. Stoller

7 Related Work

We are not aware of prior work on ABAC mining from logs. The closest topics
of related work are ABAC mining from ACLs and role mining from logs.

7.1 ABAC Policy Mining from ACLs

Our policy mining algorithm is based on our algorithm for ABAC policy mining
from ACLs [10]. The main differences are described in Section 1.

Ni et al. investigated the use of machine learning algorithms for security policy
mining [9]. In the most closely related part of their work, a supervised machine
learning algorithm is used to learn classifiers (analogous to attribute expressions)
that associate users with roles, given as input the users, the roles, user attribute
data, and the user-role assignment. Perhaps the largest difference between their
work and ABAC policy mining is that their approach needs to be given the roles
and the role-permission or user-role assignment as training data; in contrast,
ABAC policy mining algorithms do not require any part of the desired high-
level policy to be given as input. Also, their work does not consider anything
analogous to constraints.

Association rule mining is another possible basis for ABAC policy mining.
However, association rule mining algorithms are not well suited to ABAC policy
mining, because they are designed to find rules that are probabilistic in nature
and are supported by statistically strong evidence. They are not designed to
produce a set of rules that completely cover the input data and are minimum-
sized among such sets of rules. Consequently, unlike our algorithm, they do not
give preference to smaller rules or rules with less overlap.

7.2 Role Mining from Logs

Gal-Oz et al. [2] assume that logs record sets of permissions exercised together
in one high-level operation. Their role mining algorithm introduces roles whose
sets of assigned permissions are the sets of permissions in the log. Their algo-
rithm introduces over-assignments by removing roles with few users or whose
permission set occurs few times in the log and re-assigning their members to
roles with more permissions. Their algorithm does not use attribute data.

Molloy et al. apply a machine learning algorithm that uses a statistical ap-
proach, based upon a generative model, to find the policy that is most likely
to generate the behavior (usage of permissions) observed in the logs [6]. They
give an algorithm, based on Rosen-Zvi et al.’s algorithm for learning Author-
Topic Models (ATMs), to mine meaningful roles from logs and attribute data,
i.e., roles such that the user-role assignment is statistically correlated with user
attributes. Their approach can be adapted to ABAC policy mining from logs,
but its scalability in this context is questionable, because the adapted algorithm
would enumerate and then rank all tuples containing a UAE, RAE and con-
straint (i.e., all tuples with the components of a candidate rule other than the

Mining Attribute-Based Access Control Policies from Logs 291

operation set), and the number of such tuples is very large. In contrast, our
algorithm never enumerates such candidates.

Zhang et al. use machine learning algorithms to improve the quality of a
given role hierarchy based on users’ access patterns as reflected in operation logs
[12, 11]. These papers do not consider improvement or mining of ABAC policies.

References

1. Federal Chief Information Officer Council: Federal Identity Credential and Access
Management (FICAM) Roadmap and Implementation Guidance, ver. 2.0 (2011)

2. Gal-Oz, N., Gonen, Y., Yahalom, R., Gudes, E., Rozenberg, B., Shmueli, E.: Min-
ing roles from web application usage patterns. In: Furnell, S., Lambrinoudakis, C.,
Pernul, G. (eds.) TrustBus 2011. LNCS, vol. 6863, pp. 125–137. Springer, Heidel-
berg (2011)

3. Hachana, S., Cuppens-Boulahia, N., Cuppens, F.: Role mining to assist authoriza-
tion governance: How far have we gone? International Journal of Secure Software
Engineering 3(4), 45–64 (2012)

4. Hu, V.C., Ferraiolo, D., Kuhn, R., Friedman, A.R., Lang, A.J., Cogdell, M.M.,
Schnitzer, A., Sandlin, K., Miller, R., Scarfone, K.: Guide to Attribute Based Ac-
cess Control (ABAC) Definition and Considerations (Final Draft). NIST Special
Publication 800-162, National Institute of Standards and Technology (September
2013)

5. Molloy, I., Chen, H., Li, T., Wang, Q., Li, N., Bertino, E., Calo, S.B., Lobo, J.:
Mining roles with multiple objectives. ACM Trans. Inf. Syst. Secur. 13(4) (2010)

6. Molloy, I., Park, Y., Chari, S.: Generative models for access control policies: appli-
cations to role mining over logs with attribution. In: Proc. 17th ACM Symposium
on Access Control Models and Technologies (SACMAT). ACM (2012)

7. Muggleton, S.H.: Inverse entailment and progol. New Generation Computing 13,
245–286 (1995)

8. Muggleton, S.H., Firth, J.: CProgol4.4: a tutorial introduction. In: Dzeroski, S.,
Lavrac, N. (eds.) Relational Data Mining, pp. 160–188. Springer (2001)

9. Ni, Q., Lobo, J., Calo, S., Rohatgi, P., Bertino, E.: Automating role-based pro-
visioning by learning from examples. In: Proc. 14th ACM Symposium on Access
Control Models and Technologies (SACMAT), pp. 75–84. ACM (2009)

10. Xu, Z., Stoller, S.D.: Mining attribute-based access control policies. Computing
Research Repository (CoRR) abs/1306.2401 (June 2013), http://arxiv.org/
abs/1306.2401 (revised January 2014)

11. Zhang, W., Chen, Y., Gunter, C.A., Liebovitz, D., Malin, B.: Evolving role defini-
tions through permission invocation patterns. In: Proc. 18th ACM Symposium on
Access Control Models and Technologies (SACMAT), pp. 37–48. ACM (2013)

12. Zhang, W., Gunter, C.A., Liebovitz, D., Tian, J., Malin, B.: Role prediction using
electronic medical record system audits. In: AMIA Annual Symposium Proceed-
ings, pp. 858–867. American Medical Informatics Association (2011)

http://arxiv.org/abs/1306.2401
http://arxiv.org/abs/1306.2401

Attribute-Aware Relationship-Based Access

Control for Online Social Networks�

Yuan Cheng, Jaehong Park, and Ravi Sandhu

Institute for Cyber Security
University of Texas at San Antonio

yuan@ycheng.org, {jae.park,ravi.sandhu}@utsa.edu

Abstract. Relationship-based access control (ReBAC) has been adopted
as themost prominent approach for access control in online social networks
(OSNs), where authorization policies are typically specified in terms of re-
lationships of certain types and/or depth between the access requester and
the target. However, using relationships alone is often not sufficient to en-
force various security and privacy requirements that meet the expectation
from today’s OSNusers. In this work, we integrate attribute-based policies
into relationship-based access control. The proposed attribute-aware Re-
BAC enhances access control capability and allows finer-grained controls
that are not available in ReBAC. The policy specification language for the
user-to-user relationship-based access control (UURAC) model proposed
in [6] is extended to enable such attribute-aware access control. We also
present an enhanced path-checking algorithm to determine the existence
of the required attributes and relationships in order to grant access.

Keywords: Access Control, Attribute, Social Networks.

1 Introduction

Authorization decisions in traditional access control models (e.g., discretionary
access control, mandatory access control, role-based access control, etc.) are
primarily based on identities, group or role memberships, and security labels, etc.
However, they fail to cope with the scalability and dynamicity of online social
networks (OSNs). In OSNs, it is not practical for users to specify all the users who
can access their information in a traditional way. Instead, Relationship-based
Access Control (ReBAC) [7,9] has emerged as the most prevalent access control
mechanism for OSNs. With ReBAC, resource owners can specify access control
of their information based on their relationships with others, without knowing
the user name space of the entire network or all their possible direct or indirect
contacts. Accordingly, relationship-based access control has been recognized as a
key requirement for security and privacy in OSNs [10], and has been commonly
adopted in real world OSN systems since it keeps the balance between ease-of-use
and flexibility.

� This work is partially supported by grant CNS-1111925 from the US National Science
Foundation.

V. Atluri and G. Pernul (Eds.): DBSec 2014, LNCS 8566, pp. 292–306, 2014.
c© IFIP International Federation for Information Processing 2014

Attribute-Aware Relationship-Based Access Control for OSNs 293

Despite its popularity in both theory and practice, current ReBAC is still
far from perfect. Most ReBAC systems merely focus on type, depth or strength
of the relationships, lacking support for some topology-based and history-based
access control policies that are of rich social significance. For example, they can-
not express policies such as “at least five common friends” or “friendship request
pending” that require global or contextual information of the social graph. In ad-
dition to relationships, attributes of users (such as age, location, identity) also
need to be taken into account when determining access. Without introducing
attributes, policies like “a common friend named Tom” cannot be described in
current ReBAC languages. We suggest that combining these attributes of users
and relationships with ReBAC would provide users more versatile and flexible
access control on their data.

In this work, we discuss the benefits of incorporating attribute-based access
control (ABAC) into an existing ReBAC model. We formalize a new policy
specification based on the previous UURAC policy language [6], addressing the
access requirements in terms of the attributes of users, relationships and so-
cial graphs. Several examples are provided to show the usage of the proposed
attribute-aware ReBAC policy language. The path-checking algorithm for find-
ing a qualified path in [6] is also extended to simultaneously check whether the
attribute-based requirements are satisfied. We briefly compare the complexity of
the algorithm with the original UURAC algorithm, and discuss the changes.

2 Background and Motivation

In this section, we review existing ReBAC literature followed by discussion on
potential benefits of adding attribute-based policies to ReBAC.

2.1 ReBAC

Access control based on interpersonal relationships has become the de facto
standard solution for OSNs in practice. This is called relationship-based access
control (ReBAC) [10]. A number of ReBAC solutions have been proposed in the
literature. From these solutions, we can identify at least three decision factors of
relationship type, relationship depth, and relationship strength (e.g., trust) that
are used in ReBAC.

Some solutions proposed to associate trust with ReBAC, allowing people to
specify the strength of their connections by assigning trust values to relation-
ships. Carminati et al. proposed a series of ReBAC models for OSNs, where trust
level, type and depth of the user-to-user relationships are identified as decision
factors for authorization [3,4]. In their work, trust values of multiple relationships
of the same type on a path can be calculated to form an indirect trust between
users that are not directly connected. In [2], Carminati et al. introduced a se-
mantic web based ReBAC solution, which defines authorization, administration
and filtering policies to control the access. Another semantic web-based approach
proposed by Masoumzadeh et al. allows both users and the system to express
policies based on access control ontologies [15].

294 Y. Cheng, J. Park, and R. Sandhu

Fong et al. presented a Facebook-like access control model, featuring four
types of policies that cover four different aspects of access in OSNs [8]. The four
policies can regulate user search, traversal of the social graph, communication
between users, and normal access to objects owned by users. The model mimics
the privacy setting used in Facebook at the time of the paper was written. As
such it lacks support for multiple types and depth of relationships. Fong et al.
also built a formal ReBAC model for social computing applications on top of a
modal logic language specification [7]. This model enables support for multiple
types and direction of relationships. The model has been subsequently extended
for improved flexibility and efficiency [1, 9].

Cheng et al. proposed a user-to-user relationship-based access control (UU-
RAC) model with a regular expression-based policy specification language [6].
User-to-resource and resource-to-resource relationships are added to the model
in their subsequent work on the URRAC model [5]. Both models are founded on
the characteristics identified in Activity Control (ACON) [16, 17].

2.2 Beyond Relationships

ReBAC takes advantage of the structure of OSN systems and offers users a simple
and effective way for configuring their access control policies. However, ReBAC
suffers from two shortcomings. First, most of the ReBAC models rely on the
type, depth, or strength of relationships, but cannot exploit more complicated
topological information contained in the social graph. For example, many Re-
BAC proposals can determine whether there exists a qualified relationship path
on the graph, but their policy languages cannot express requirements on multiple
occurrences of such paths. Second, ReBAC generally lacks support for various
contextual information of users and relationships available in OSNs. Such con-
textual information also called attributes can be utilized for finer-grained access
control. In addition to the normal relationship information, some of the attribute
examples are user’s name, age, role, location, trust in other users, duration of
relationships, and so on. Let us consider two examples of attribute-based policies
that are applied on ReBAC.

Common Friends. The very nature of OSNs encourages new connections. To
help users expand their connections, OSNs normally suggest some new connec-
tion candidates to a user based on number of common friends they share, for
example. This is typically used as a tool for social promotion, but it can be
applied to access control as well. Alice can allow a user who is not currently
her friend but shares a certain number of common friends with her to access
some of her contents. She can also specify that Bob must be a common friend of
her and an access requester in order for the requester to get access. In regular
ReBAC system, these policies cannot be expressed as they only check the exis-
tence of certain relationships but do not count the number of such relationships.
Also, due to lack of support for node attributes, ReBAC policies are not able to
distinguish particular users on the relationship paths.

Attribute-Aware Relationship-Based Access Control for OSNs 295

Transitive Trust. Consider a scenario where relationships are associated with
an attribute of trust value, which denotes the strength of connection between
two users. Since each user only knows a few direct friends, it is expected that
more users are likely to be connected indirectly through their existing connec-
tions. Trust values between direct connections are used to compute the transitive
trust, indicating the strength of such indirect relationships. A line of research has
been addressing the area of trust in OSNs [11, 12, 14], where trust is combined
with relationship type and depth as parameters to determine access. However,
many limitations can be found in these works. Some only consider a single re-
lationship type, others consider the case of multiple types but lack support for
trust comparison and calculation between different types or paths. If we treat
trust as an attribute of relationships, it can be mixed with other attributes of
users and thus enable finer-grained access control policies, despite the multiple
relationship types or paths.

3 Preliminaries

The UURAC model introduced by Cheng et al. [6] captures user-to-user relation-
ships in OSNs for authorization purpose, and defines a regular expression-based
policy specification language. We briefly summarize UURAC model as our pro-
posed model is based on it.

3.1 Basic Notations

In UURAC, Σ = {σ1, σ2, . . ., σn, σ
−1
1 , σ−1

2 , . . . , σ−1
n } denotes the set of rela-

tionship types. Given a relationship type σi ∈ Σ, the inverse of the relationship
is σ−1

i ∈ Σ. An action has an active form and a passive form, denoted action
and action−1, respectively. If Alice pokes Bob, the action is poke from Alice’s
viewpoint, whereas it is poke−1 from Bob’s viewpoint.

3.2 UURAC Model Components

The UURACmodel components are illustrated in Figure 1.Accessing user (ua)
represents an acting user who requests an access to a target and carries access-
ing user policies (AUP) which controls the accessing user’s access to targets.
Each action represents an operation initiated by an accessing user against a
target. An action is denoted as action for the accessing user but action−1 for
the target. The targets can be either target user (ut) (e.g., a user pokes another
user) or target resource (rt). There is also a controlling user (uc) who con-
trols an access to a resource that has user-to-resource (U2R) relationship with
her such as the owner of the resource. An access to a target user is controlled
based on the target user policies (TUP) that are configured using user-to-user
(U2U) relationships between the target user and the access requesters, while an
access to a target resource is controlled based on target resource policies

296 Y. Cheng, J. Park, and R. Sandhu

Fig. 1. Model components Fig. 2. A sample social graph

(TRP) that are configured using U2U relationships between the controlling user
and the access requester.

An access request 〈ua, act, target〉 denotes the initiation of an access, where
act ∈ Act specifies the type of access requested by the accessing user on the
target. If ua requests to interact with another user, target is ut ∈ U . If ua tries
to access a resource owned by another user uc, target is resource rt ∈ R where
R is a finite set of resources in OSN.

A policy defines the rules that determine how authorization is regulated. Poli-
cies can be either system-specified or user-specified. System-specified policies
(SP) are system-wide rules enforced by the OSN system while user-specified
policies are applied to specific users or resources. User-specified policies include
AUP, TUP , and TRP .

3.3 Social Graph

As shown in Figure 2, OSN is abstracted as a directed labeled simple graph,
where each node indicates a user and each edge corresponds to a U2U relation-
ship. The social graph of an OSN is modeled as a triple G = 〈U,E,Σ〉 where
– U is a finite set of registered users in the system, represented as nodes on the

graph,
– Σ = {σ1, σ2, . . . , σn, σ

−1
1 , σ−1

2 , . . . , σ−1
n } denotes a finite set of relationship types,

where each type specifier σ denotes a relationship type supported in the system,
and

– E ⊆ U ×U ×Σ, denoting social graph edges, is a set of existing user relationships.

For every σi ∈ Σ, there is σ−1
i ∈ Σ representing the inverse of relationship

type σi. We require that the original relationship and its inverse twin always
exist on the social graph simultaneously. Given a user u ∈ U , a user v ∈ U and
a relationship type σ ∈ Σ, a relationship (u, v, σ) expresses that there exists a

Attribute-Aware Relationship-Based Access Control for OSNs 297

relationship of type σ starting from user u and terminating at v. It always has
an equivalent form (v, u, σ−1).

4 UURACA Model

In this section, we extend the UURAC model to facilitate attribute-aware Re-
BAC policy specification and enforcement.1

4.1 Attributes in OSNs

OSNs maintain a massive amount of data about attributes of users and resources.
Users keep profile information as required by the OSNs, such as name, age, gen-
der, etc. When a piece of resource is uploaded to the OSN, the resource provider
is also able to attach some metadata about the resource. We can define policies
based on this attribute information associated with users and resources. How-
ever, the majority of ReBAC systems have focussed on some particular aspects
of relationships, such as type, depth, and strength. This makes ReBAC relatively
simple and efficient, but also limits the use of ReBAC in terms of control ca-
pability. In recent years, studies on attribute-based access control (ABAC) have
shown that various contextual information of user, resource, and computing envi-
ronment could be utilized for highly flexible and finer-grained controls [13,18,19].
However, current ABAC solutions are not likely to be readily usable on top of
a ReBAC in OSNs. While typical ABAC models only consider the attributes of
accessing user, target resource and sometimes computing environment, attribute-
aware ReBAC needs to specify which attributes and whose attributes (i.e., user
attributes, relationship attributes) on the relationship path between accessing
users and target/controlling users should be examined.

For attribute-aware ReBAC, we identify three types of attributes: node
(user/resource) attribute, edge (relationship) attribute and count attribute, as
follows.

Node Attributes. Users and resources are represented as nodes on the social
graph. Users carry attributes that define their identities and characteristics, such
as name, age, gender, etc. Resource attributes may include title, owner, date,
etc.

Edge Attributes. Each edge is associated with attributes that describe the
characteristics of the edge. Such attributes may include relationship weights,
types, and so on.

Both edge attributes and node attributes can apply to a single object or mul-
tiple objects. An example of attributes for multiple edges is the transitive trust
between two nodes that are not directly connected. For instance, trust values
of two or more edges need to be considered to calculate overall trust between

1 We reiterate that in UURAC only user-to-user relationships are considered so re-
sources can only occur as the target of a relationship path. The relationship path
itself can only include users.

298 Y. Cheng, J. Park, and R. Sandhu

accessing user and target/controlling user. Attributes describing multiple nodes
are more commonly seen in OSNs, such as average age, common location, or
common alma mater between people. Relevant node and edge attributes can be
also assembled to enable policy combinations. For instance, Alice may specify
a policy saying that “only users who have more than 0.5 trust with Bob can
access.”

Count Attribute. Count attribute neither describes nor is associated with any
node or edge. It depicts the occurrence requirement for the attribute-based path
specification, specifying the lower bound of the occurrences of such path.

4.2 Attribute-Based Policy Formulation

Attribute-based policy specifies access control requirements that are related to
the attributes of users and their relationships. Here, we formally define the basic
attribute-based policy language.

– N and E are nodes and edges, respectively;
– NAk(1 ≤ k ≤ K) and EAl(1 ≤ l ≤ L) are the pre-defined attributes for nodes and

edges, respectively, where K is the number of node attributes and L is the number
of edge attributes;

– ATTR(n) and ATTR(e) are attribute assignments for node n and edge e, respec-
tively, where ATTR(n) ∈ NA1×NA2×· · ·×NAK , and ATTR(e) ∈ EA1×EA2×
· · · ×EAL. Each attribute has only single value for its domain.

On the relationship path between two users in OSNs, there may exist many
other users connected with different relationships. Each user or relationship car-
ries attributes, which can be utilized for specifying access control rules. In some
cases, the attributes of all users or relationships on the path need to be consid-
ered. Sometimes, attributes of only certain users or relationships are used. As
shown in Table 1, we use the universal quantifier ∀ and the existential quantifier
∃ to denote “all” and “at least one” user(s) or relationship(s), respectively. The
notation [] is used to represent ranges on the relationship path while { } denotes
a set of users/relationships located at a specific distance on the path between
accessing user and target/controlling user. In order to express a range or exact

Table 1. Attribute quantifiers

∀ [+m, -n] All entities from the mth to the nth last, m+n ≤ h where m and
n are non-negative integers and h is a hopcount limit

∀ [+m, +n] All entities from the mth to the nth, m ≤ n ≤ h

∀ [-m, -n] All entities from the mth last to the nth last, h ≥ m ≥ n
∃ [+m, -n] One entity from the mth to the nth last, m+ n ≤ h

∃ [+m, +n] One entity from the mth to the nth, m ≤ n ≤ h

∃ [-m, -n] One entity from the mth last to the nth last, h ≥ m ≥ n

∀ {2{±N}} All entities in this set

∃ {2{±N}} One entity in this set

Attribute-Aware Relationship-Based Access Control for OSNs 299

position on the path, we use plus and minus signs to indicate the forward (from
the start) and backward directions (from the end), followed by a number that
denotes the position from the front or the back. Note that indicator for users
starts from 0 while indicator for relationships begins from 1. For example, for
users, +0 means the starting user and -1 represents the second last user on the
path; while for relationships, +1 indicates the first relationship on the path and
-2 means the second last. The plus-minus sign in the last two rows denotes the
forward or backward direction rather than its normal mathematical meaning.

An attribute-base policy rule is composed of a quantifier specifying the quan-
tity of certain node/edge attributes, a boolean function of these node/edge at-
tributes f(ATTR(N), ATTR(E)), and a count attribute predicate count ≥ i, as
follows.

〈quantifier, f(ATTR(N),ATTR(E)), count ≥ i〉

Note that the quantifier is applied to a node/edge function, but not to the
count attribute predicate. For instance, R1 specifies a rule saying that “there
must be at least five common connections between the requester and the owner,
whose occupation is student”. In R2 and R3, the count attribute predicate is
not used and this is shown as ‘ ’, which indicates count ≥ 1 in default. Here, the
policy contains a rule indicating that “a user who is connected through adults
whose addresses are ‘Texas’ can access”. R3 requires that on a path between the
accessing user and target/controlling user, users in three specific distances must
be adults.

– R1 : 〈∃[+1,−1], occupation(u) = “student”, count ≥ 5〉
– R2 : 〈∀[+1,−1], (age(u) ≥ 18) ∧ (address(u) = “Texas”), 〉
– R3 : 〈∀{+1,+2,−1}, (age(u) ≥ 18), 〉

4.3 Policy Specifications

Attribute-based policies are applied on certain relationship paths between access-
ing user and target/controlling user. For this, we extend the regular expression-
based policy specification language proposed in [6]. Table 2 defines a list of
notations used in the policy specification language.

Attribute-aware UURAC policies include two parts: a requested action, and
a graph rule that conditions the access based on the social graph. As shown in
Table 3, we identify several different types of policies. Actions are denoted in the
passive form act−1 in target user policy and target resource policy, since target
user/resource is always the recipient of the action. Target resource policy has an
extra parameter uc, indicating the controlling user of the resource. The differen-
tiation of active and passive form of an action does not apply to system-specified
policies, as these policies are not associated with any particular entity in action.
However, when specifying a system policy for a resource, we can optionally refine
the resource in terms of resource type (r.typename, r.typevalue).

Table 4 defines the syntax for the graph rules using Backus-Naur Form (BNF).
Each graph rule specifies a startingnode and a pathrule. Starting node denotes

300 Y. Cheng, J. Park, and R. Sandhu

the user where the policy evaluation starts. A path rule represents a collection of
path specs. Each path specification consists of a pair (path, hopcount) that spec-
ifies the relationship path pattern between two users and the maximum number
of edges on the path, which need to be satisfied in order to get access. Multiple
path specifications can be connected with conjunctive “∧” and disjunctive “∨”
connectives. “¬” over path specifications denotes absence of the specified pair of
relationship pattern and hopcount limit. The pattern of relationship path path
represents a sequence of type specifiers from the starting node to the evaluating
node.

Unlike in UURAC, we add a new term AttPolicy to the grammar to facilitate
attribute-based policies. It can be found either after the whole path specification
(path, hopcount) or a segment of the path pattern path. The one that applies
to (path, hopcount) is called global attribute-based policy. When it follows a
segment of path, it is a local attribute-based policy that only applicable for this
segment. For simplicity, the examples hereafter only use global attribute-based
policies.

We now show how attribute-based rules can be applied to some examples
within UURACA.
Example 1: Node attribute and count attribute policy. Alice wants to reveal
her profile to users who share at least five common student friends. She can
specify the following policy for her friends of friends:

– P1: 〈profile access, (ua, ((ff, 2): ∃[+1,−1], occupation(u) = “student”, count ≥
5))〉

If she wants to allow someone who shares a common friend Bob with her to see
her profile, the policy can be represented as follows:

– P2: 〈profile access, (ua, ((ff, 2): ∃[+1,−1], name(u) = “Bob”,))〉
For P1, the system needs to find paths that match (ff, 2) and check the occupa-
tion attribute of users on the paths. If there exist at least five such paths, ua is
allowed to see the profile information of the target. For P2, once a (ff, 2) path

Table 2. Policy specification notations

Concatenation (·) Joins multiple characters σ ∈ Σ or Σ itself end-to-end,
denoting a series of occurrences of relationship types.

Asterisk (*) Represents the union of the concatenation of σ with itself
zero or more times.

Plus (+) Denotes concatenating σ one or more times.
Question Mark (?) Represents occurrences of σ zero or one time.
Disjunctive Connective (∨) Indicates the disjunction of multiple path specs.
Conjunctive Connective (∧) Denotes the conjunction of multiple path specs.
Negation (¬) Implies the absence of the specified pair of relationship

type sequence and hopcount.
Colon(:) Separates relationship pattern and attribute-based poli-

cies

Attribute-Aware Relationship-Based Access Control for OSNs 301

Table 3. Access control policy representations

Accessing User Policy 〈act, graphrule〉
Target User Policy 〈act−1, graphrule〉
Target Resource Policy 〈act−1, uc, graphrule〉
System Policy for User 〈act, graphrule〉
System Policy for Resource 〈act, (r.typename,r.typevalue), graphrule〉

Table 4. Grammar for graph rules

GraphRule → “(”StartingNode“, ”PathRule“)”
PathRule → AttPathSpecExp |AttPathSpecExp Connective PathRule
AttPathSpecExp→ PathSpecExp |PathSpecExp“ : ”AttPolicy
Connective → ∨ |∧
PathSpecExp→ PathSpec |“¬”PathSpec
PathSpec → “(”AttPath“, ”HopCount“) ”|“(”EmptySet“, ”HopCount“)”
HopCount → Number
AttPath → Path |Path“ : ”AttPolicy
Path → TypeSeq |TypeSeq Path
EmptySet→ ∅
TypeSeq → AttTypeExp |AttTypeExp“·”TypeSeq
AttTypeExp→ TypeExp |TypeExp“ : ”AttPolicy
TypeExp→ TypeSpecifier |TypeSpecifier Wildcard
AttPolicy → use dedicated parser to process
StartingNode → ua|ut|uc

TypeSpecifier → σ1|σ2| . . . |σn|σ−1
1 |σ−1

2 | . . . |σ−1
n |Σ

Wildcard → “ ∗ ”|“?”|“ + ”
Number → [0− 9]+

is found and the name of the user on the path equals to Bob, the system would
grant access.

Example 2: Edge attribute policy. Alice grants users to access Photo1 if the
user is within 3 hops away and can reach her on a path with a minimum 0.5 trust
value of friend relationships on each hop. Such policy is specified as follows:

– P3: 〈read,Photo1, (ua, ((f∗, 3) : ∀[+1,−1], trust(r) ≥ 0.5,))〉

The system will check each edge on the path to ensure its trust value meets the
requirement, before granting access.
Example 3: Capturing a UURAC policy. The following policy only contains
relationship-based requirements (f∗, 3), where node/edge attributes and count
attribute are both empty:

– P4: 〈poke, (ua, (f∗, 3) : ∃[+0,−0], ,))〉

The UURACA model is seamlessly compatible with the UURAC model. The
example 3 shows how UURAC policy can be captured in UURACA.

302 Y. Cheng, J. Park, and R. Sandhu

Algorithm 1. AccessEvaluation(ua, act, target)
1. (Policy Collecting Phase)
2. if target = ut then
3. AUP ← ua’s policy for act, TUP ← ut’s policy for act−1, SP ← system’s policy for act
4. else
5. uc ← owner(rt), AUP ← ua’s policy for act, TRP ← uc’s policy for act−1 on rt, SP ←

system’s policy for act, r.type
6. (Policy Evaluation Phase)
7. for all policy in AUP , TUP/TRP and SP do
8. Extract graph rules (start, path rule) from policy
9. for all graph rule extracted do
10. Determine the starting node, specified by start, where the path evaluation starts
11. Determine the evaluating node which is the other user involved in access
12. Extract path rules path rule from graph rule
13. Extract each path spec path, hopcount and/or attribute rule attpolicy from path rules
14. Simultaneously path-check each path spec and evaluate the corresponding attribute rule

using Algorithm 2
15. Evaluate a combined result based on conjunctive or disjunctive connectives between path

specs
16. Compose the final result from the result of each policy

5 Algorithm

This section addresses the access evaluation of UURACA. UURAC [6] provides
a path-checking algorithm to find a qualified path between the access requester
and the target (or the resource owner) that meets the ReBAC requirements.
To enforce attribute-based policies, the access evaluation should incorporate
attribute-based policies during path-checking. One may run attribute checking
on the result paths found by the UURAC algorithm. However, this is likely to
be inefficient. In this paper, we present a modified path-checking algorithm to
incorporate an attribute-based policy evaluation on the fly during path finding
process.

Access Evaluation Procedure. Access requests can be evaluated as described
in Algorithm 1. For an access request (ua, act, target), the system fetches ua’s
policy about act, target’s act−1 policy and the system-specified policy for act.
The decision module extracts path specification (path, hopcount) and attribute-
based rules attpolicy from these policies. It runs the path-checking algorithm to
determine the result for each policy. During path-checking, the decision module
also needs to keep track of all of the involved attributes and make sure they
satisfy the attribute-based policies. Finally, the results of all chosen policies in
evaluation are composed into a single result. The existence of multi-user policies
may raise policy conflicts. To resolve this, we can adopt the conflict resolution
policy proposed in [5], which is based on a disjunctive, conjunctive, or prioritized
strategy.

Attribute-Aware Relationship-Based Access Control for OSNs 303

Algorithm 2. DFSPathChecker(G, path, hopcount, s, t, globalattpol)
1. DFA ← REtoDFA(path); currentPath ← NIL; d ← 0
2. stateHistory ← DFA starts at the initial state
3. Extract the quantifier symbol and interval/set information from globalattpol
4. Get the required rules for attributes of edges and nodes f(ATTR(E), ATTR(N))
5. Fetch the requirements of count attribute “count ≥ i”. If it is omitted, “count ≥ 1”.
6. Assign temporary space for attributes according to the size of the interval/set and the hopcount

limit
7. Initialize counter count ← 0
8. if hopcount = 0 then
9. return DFST(s)

Algorithm 3. DFST (u)
1. if d + 1 > hopcount then
2. return FALSE
3. else
4. for all (v, σ) where (u, v, σ) in G do
5. switch
6. case 1 v ∈ currentPath
7. break
8. case 2 v /∈ currentPath and v = t and DFA with transition σ is at accepting state
9. if v and (u, v, σ) is within the range specified by quantifier then
10. attrList ← attrList.(ATTR(v), ATTR(u, v, σ))
11. if f(ATTR(v), ATTR(u, v, σ)) = TRUE then
12. count ← count + 1
13. if count ≥ i then
14. d ← d+ 1; currentPath ← currentPath.(u, v, σ)
15. currentState ← DFA takes transition σ
16. stateHistory ← stateHistory.(currentState)
17. return TRUE
18. else
19. attrList ← attrList\(ATTR(v), ATTR(u, v, σ))
20. else
21. d ← d+ 1; currentPath ← currentPath.(u, v, σ)
22. currentState ← DFA takes transition σ
23. stateHistory ← stateHistory.(currentState)
24. return TRUE
25. break
26. case 3 v /∈ currentPath and v = t and transition σ is valid for DFA but DFA with

transition σ is not at accepting state
27. break
28. case 4 v /∈ currentPath and v = t and transition σ is invalid for DFA
29. break
30. case 5 v /∈ currentPath and v = t and transition σ is invalid for DFA
31. break
32. case 6 v /∈ currentPath and v = t and transition σ is valid for DFA
33. d ← d+ 1; currentPath ← currentPath.(u, v, σ)
34. currentState ← DFA takes transition σ
35. stateHistory ← stateHistory.(currentState)
36. if (DFST(v)) then
37. return TRUE
38. else
39. d ← d− 1; currentPath ← currentPath\(u, v, σ)
40. attrList ← attrList\(ATTR(v), ATTR(u, v, σ)
41. previousState ← last element in stateHistory
42. DFA backs off the last taken transition σ to previousState
43. stateHistory ← stateHistory\(previousState)
44. return FALSE

304 Y. Cheng, J. Park, and R. Sandhu

Attribute-Aware Path Checking Algorithm. The path-checking algorithm,
as shown in Algorithm 2, uses a depth-first search (DFS) strategy to traverse
the social graph G from a starting node s. The mission is to find relationship
paths between the starting node s and the evaluating node t, that satisfy the
policy. The pair of path pattern path and hopcount limit hopcount specifies the
relationship-based requirements, whereas globalattpol indicates the attribute-
based rules.

Let us consider the example policy P1 in Section 4.3: 〈profile access,
(ua, ((ff, 2): ∃[+1,−1], occupation(u) = “student”, count ≥ 5))〉. The grammar
extracts the starting node ua and splits the relationship-based rules (ff, 2) and
the attribute-based rules “∃[+1,−1], occupation(u) = “student”, count ≥ 5”.
Algorithm 2 then constructs a DFA (deterministic finite automata) from the
regular expression ff . This is done by the function REtoDFA(). Variables
currentPath and stateHistory are initialized to NIL and the initial DFA state,
respectively. The attribute-based rule is divided into three parts: “∃[+1,−1]”,
“occupation(u) = ‘student’ ” and “count ≥ 5”. “∃[+1,−1]” quantifies the whole
path between the access requester and the target (or the resource owner) to which
the following node attribute function applies. “occupation(u) = ‘student’ ” is a
function of node attributes that checks the occupation of the users on the path.
The count attribute predicate “count ≥ 5” specifies the required number of qual-
ified relationship paths. To store the attribute values of nodes and edges during
traversal in this example, we need space for attributes of 1 node and 2 edges. In
general, if the interval is [+a,−b] and the hopcount limit is c, we need to assign
space for attributes of (c - a - b + 1) nodes and (c - a - b) edges.

After setting the hopcount indicator d to 0, Algorithm 2 launches the DFS
traversal function DFST (), shown in Algorithm 3, from the starting node. Given
the node u, the algorithm first makes sure taking one step forward does not
violate the hopcount limit. Otherwise, it has to exit and return to the previous
node. If further traversal is allowed, the algorithm starts to pick an edge (u, v, σ)
from the collection of all incident edges leaving u one by one. According to the
path pattern ff in the example, at the first step, the algorithm specifically looks
for an unvisited edge of type f terminating at a node other than the evaluating
node (case 6). If such edge is found, let’s say (ua, u1, f), the algorithm increments
d by 1, adds the edge to currentPath, moves the DFA from the initial state by
taking transition f and updates the DFA state history accordingly. It also adds
the corresponding attributes of edge (ua, u1, f) and node u1 to the attribute
list attrList for later evaluation, since u1 is 1 hop away from ua and thus is
within the range [+1, -1]. The algorithm then continues to run DFST () on the
new node u1. From node u1, it repeats the previous process again by checking
the hopcount limit and picking new incident edges. Since the hopcount limit is
2, the algorithm has to find an unvisited edge of type f that terminates at t
(case 2). Once the edge (u1, t, f) is discovered, the algorithm goes on to find
the corresponding attributes for evaluation. [+1, -1] indicates that we also need
to check the attributes of the second last node on the path, which is u1. Since
we already added u1’s attributes to the list, the algorithm simply runs attribute

Attribute-Aware Relationship-Based Access Control for OSNs 305

function f(ATTR(u1)) to see if it satisfies the requirements. If yes, we then check
the count attribute, which is count in this case. The policy says it requires five
qualified paths, thus the algorithm has to increment the counter and return to
the previous node to search for another 4 paths. If (ua, u1, f)(u1, t, f) is the fifth
path we found, DFST (u1) should return true and all its previous DFST () calls
as well. Eventually, it makes Algorithm 2 to return true, indicating we found the
necessary amount of paths that satisfy the policy. If the node/edge attributes do
not match the requirements, the algorithm removes the attributes from the list
(line 18-19) and try the next edge. After finishing edge searching at this level
and returning to the previous DFST () call (line 38-43), it has to drop the edge
and reset all variables to the previous values. Algorithm 2 returns false after all
incident edges leaving ua have been unsuccessfully searched.

The proof of correctness of this algorithm is fundamentally the same as the
algorithm for UURAC [6]. The new algorithm neither brings in more edges to
be considered nor increases the depth of recursive traversal to be taken. Hence,
its complexity is still bounded between O(dminHopcount) and O(dmaxHopcount),
where dmin and dmax stand for the minimum and maximum out-degree of
node, andHopcount denotes the hopcount limit. Attribute-base check introduces
additional overhead when the algorithm finds a possible qualified path. The
overhead costs are proportional to the amount of attributes as well as the type of
attribute functions considered in the policy, which is not related to the structure
of the social graph.

6 Conclusion

This paper presents an extended UURAC model for OSNs that utilizes both
relationship-based and attribute-based policies for determining access. Attribute
information of users and their relationships are as important as the social graph
in OSNs with respect to access control. We formalized the attribute-based poli-
cies and extended the grammar for policy specifications. The policy language
supports expressing requirements on attributes of some or all of the users and
relationships on the path. While it could be possible to further extend the pro-
posed model for even finer-grained attribute-based controls, the proposed model
provides a solid foundational mechanism for ReBAC that also allows attribute-
based access control.

References

1. Bruns, G., Fong, P.W., Siahaan, I., Huth, M.: Relationship-based access control:
its expression and enforcement through hybrid logic. In: Proceedings of the Second
CODASPY, pp. 117–124. ACM (2012)

2. Carminati, B., Ferrari, E., Heatherly, R., Kantarcioglu, M., Thuraisingham, B.: A
semantic web based framework for social network access control. In: Proceedings
of the 14th SACMAT, pp. 177–186. ACM (2009)

306 Y. Cheng, J. Park, and R. Sandhu

3. Carminati, B., Ferrari, E., Perego, A.: Rule-based access control for social net-
works. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM 2006 Workshops. LNCS,
vol. 4278, pp. 1734–1744. Springer, Heidelberg (2006)

4. Carminati, B., Ferrari, E., Perego, A.: Enforcing access control in web-based social
networks. ACM TISSEC 13(1), 6 (2009)

5. Cheng, Y., Park, J., Sandhu, R.: Relationship-based access control for online social
networks: beyond user-to-user relationships. In: PASSAT 2012, pp. 646–655. IEEE
(2012)

6. Cheng, Y., Park, J., Sandhu, R.: A user-to-user relationship-based access control
model for online social networks. In: Cuppens-Boulahia, N., Cuppens, F., Garcia-
Alfaro, J. (eds.) DBSec 2012. LNCS, vol. 7371, pp. 8–24. Springer, Heidelberg
(2012)

7. Fong, P.W.: Relationship-based access control: protection model and policy lan-
guage. In: Proceedings of the First CODASPY, pp. 191–202. ACM (2011)

8. Fong, P.W.L., Anwar, M., Zhao, Z.: A privacy preservation model for facebook-
style social network systems. In: Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS,
vol. 5789, pp. 303–320. Springer, Heidelberg (2009)

9. Fong, P.W., Siahaan, I.: Relationship-based access control policies and their policy
languages. In: Proceedings of the 16th SACMAT, pp. 51–60. ACM (2011)

10. Gates, C.: Access control requirements for Web 2.0 security and privacy. IEEE
Web 2.0 (2007)

11. Golbeck, J., Hendler, J.: Inferring binary trust relationships in web-based social
networks. ACM Transactions on Internet Technology (TOIT) 6(4), 497–529 (2006)

12. Golbeck, J.A.: Computing and Applying Trust in Web-based Social Networks. PhD
thesis, University of Maryland at College Park, College Park, MD, USA (2005)

13. Jin, X., Krishnan, R., Sandhu, R.: A unified attribute-based access control model
covering DAC, MAC and RBAC. In: Cuppens-Boulahia, N., Cuppens, F., Garcia-
Alfaro, J. (eds.) DBSec 2012. LNCS, vol. 7371, pp. 41–55. Springer, Heidelberg
(2012)

14. Kruk, S.R., Grzonkowski, S., Gzella, A., Woroniecki, T., Choi, H.-C.: D-FOAF: Dis-
tributed identity management with access rights delegation. In: Mizoguchi, R., Shi,
Z.-Z., Giunchiglia, F. (eds.) ASWC 2006. LNCS, vol. 4185, pp. 140–154. Springer,
Heidelberg (2006)

15. Masoumzadeh, A., Joshi, J.: OSNAC: an ontology-based access control model for
social networking systems. In: SocialCom 2010, pp. 751–759. IEEE (2010)

16. Park, J., Sandhu, R., Cheng, Y.: ACON: activity-centric access control for social
computing. In: 2011 Sixth International Conference on Availability, Reliability and
Security (ARES), pp. 242–247. IEEE (2011)

17. Park, J., Sandhu, R., Cheng, Y.: A user-activity-centric framework for access con-
trol in online social networks. IEEE Internet Computing 15(5), 62–65 (2011)

18. Shen, H., Hong, F.: An attribute-based access control model for web services. In:
PDCAT 2006, pp. 74–79. IEEE (2006)

19. Yuan, E., Tong, J.: Attributed based access control (ABAC) for web services. In:
Proceedings of the IEEE ICWS, pp. 561–569. IEEE (2005)

Randomly Partitioned Encryption for Cloud Databases

Tahmineh Sanamrad1, Lucas Braun1, Donald Kossmann1,
and Ramarathnam Venkatesan2

1 Systems Group, Computer Science Departement, ETH Zurich, Switzerland
{sanamrat,braunl,donaldk}@inf.ethz.ch

2 Microsoft Research, Redmond CA, USA
venkie@microsoft.com

Abstract. With the current advances in Cloud Computing, outsourcing data has
never been so tempting. Along with outsourcing a database comes the privacy
versus performance discussion. Order-Preserving Encryption (OPE) is one of
the most attractive techniques for database encryption since it allows to execute
range and rank queries efficiently without decrypting the data. On the other hand,
people are reluctant to use OPE-based techniques in practice because of their
vulnerability against adversaries with knowledge of the domain, its frequency
distribution and query logs. This paper formally defines three real world driven
attacks, called Domain Attack, Frequency Attack and Query Log Attack, typi-
cally launched by an honest-but-curious database or systems administrator. We
also introduce measures to capture the probability distribution of the adversary’s
advantage under each attacker model. Most importantly, we present a novel tech-
nique called Randomly Partitioned Encryption (RPE) to minimize the adversary’s
advantage. Finally, we show that RPE not only withstands real world database
adversaries, but also shows good performance that is close to state-of-art OPE
schemes for both, read- and write-intensive workloads.

Keywords: Database Encryption, Efficient Query Processing, Domain Attack,
Frequency Attack, Query Log Attack, Randomly Partitioned Encryption.

1 Introduction

Believing the trade press, cloud computing is the next big thing. Cloud computing
promises reduced cost, flexibility, improved time to market, higher availability, and
more focus on the core business of an organization. Virtually all players of the IT indus-
try are jumping on the cloud computing band wagon. The only issue that seems to be
able to stop cloud computing are security concerns [8]. The events that motivated this
work were privacy violations in a private cloud by honest-but-curious adversaries.1

Encryption is a possible way to protect data against such attackers. The spectrum of
available encryption schemes ranges from strong semantically secure (but typically in-
efficient) encryption schemes to weak (but efficient) encryption schemes. The problem
that Randomly Partitioned Encryption tries to solve is to combine the advantages of low-
security/high-performance schemes like OPE [1] with high-security/low-performance

1 Adversaries that do not actively manipulate data, but try to infer information as defined in [19].

V. Atluri and G. Pernul (Eds.): DBSec 2014, LNCS 8566, pp. 307–323, 2014.
c© IFIP International Federation for Information Processing 2014

308 T. Sanamrad et al.

schemes like Probabilistic AES (AES in CBC mode [19]), in order to achieve good se-
curity and reasonable performance. Performance refers to the average query response
times of the TPC-H benchmark, while security, in this paper, is the ability to resist the
following attacks (thoroughly defined in section 3):

• Domain Attack: The Adversary has knowledge of the plaintext domain.
• Frequency Attack: The Adversary has knowledge of the plaintext domain and its

frequency distribution.
• Query Log Attack: The Adversary has knowledge of the plaintext domain and has

access to the database query logs.

1.1 Background and State of the Art

The main idea of RPE is to randomly partition the domain and apply an order preserv-
ing encryption scheme to each partition. This makes RPE a partially order-preserving
encryption as each partition is ordered, but the total order is hidden. In the following,
we try to summarize the state of the art in the context of existing OPE schemes and
argue why they cannot withstand Domain, Frequency and Query Log Attack. A more
detailed overview of related work can be found in section 9.

Order-Preserving Encryption (OPE). An order-preserving symmetric encryption
(OPE) scheme is a deterministic symmetric encryption scheme whose encryption al-
gorithm produces ciphertexts that preserve numerical ordering of the plaintexts. This
property makes OPE very attractive for database applications, since it allows efficient
range and rank query processing on encrypted data. However, the order relationship be-
tween plaintext and ciphertext remains intact after encryption, making it an easy target
for a Domain Attack. Moreover, being deterministic, makes OPE particularly vulnera-
ble against Frequency Attacks. OPE was first proposed in the database community by
Agrawal et al. [1], and treated cryptographically for the first time by Boldyreva et al.
in [7], followed by [6], [20], [23], [33] in search for an “ideal object”. However, the
problem of dealing with Domain and Frequency Attacks remains.

Probabilistic Order-Preserving Encryption (Prob-OPE). A probabilistic order-
preserving encryption scheme is a probabilistic symmetric encryption scheme whose
algorithm not only produces ciphertexts that preserve numerical ordering of the plain-
texts, but also generates different ciphertexts for the same plaintext. This property
flattens out the original frequency distribution of the plaintext values, therefore resist-
ing any statistical analysis. Examples are [11], [18], [31], [35]. However, probabilistic
schemes still leak total order and are exposed to Domain Attacks.

Partially Order Preserving Encryption (POP). A partially order-preserving encryp-
tion scheme is a symmetric encryption scheme whose algorithm partitions the domain.
Within each partition the order is preserved but across the partitions the order is dis-
torted. There are several ways how to partition the domain: [17], [26] partition the
domain into several bins. These solutions are secure against Domain Attacks, but vul-
nerable against Frequency and Query Log Attacks because the queries leak the bin
boundaries. RPE on the other hand, partitions the data in a fine-grained manner and
proposes a security-tunable method to rewrite queries.

Randomly Partitioned Encryption for Cloud Databases 309

1.2 Contributions and Main Results

To the best of our knowledge, this paper is the first that formally defines Domain Attack,
Frequency Attack and Query Log Attack. Moreover, we introduce three novel encryption
methods and analyze their security under these attacks. We start with a scheme that
protects against the Domain Attack which we call Deterministic Randomly Partitioned
Encryption (Det-RPE). We then make this scheme probabilistic (Prob-RPE) in order
to address the Frequency Attack and finally introduce a new query-rewrite mechanism
called Fixed-Range Query Rewrite (FR) to additionally protect RPE from Query Log
Attacks. FR can be applied to both, Det-RPE and Prob-RPE, yielding two additional
encryption schemes called Det-RPE-FR, resp. Prob-RPE-FR.

What is more, we assess the security and performance of these three encryption
methods and compare them to relevant related work. Table 1 shows a summary of this
assessment. The first three columns depict security and have a tick if a method is secure
against a certain attack (a tick in brackets means that the security depends on a tun-
ing parameter). The last column shows a very rough performance measure that states
whether or not range queries can be answered within 30 minutes in the 10-GB TPC-H
dataset. As we can see, the three RPE variants are Pareto-optimal as they have unique
privacy/performance characteristics that differentiate them from existing solutions.

Table 1. Qualitative Security & Performance Analysis of selected Database Encryption Schemes

Adversary Model Domain Attack Frequency Attack Query Log Attack Performance
OPE [1], [6], [7], [20], [23], [33], [34] ✕ ✕ ✕ ✓

Modular OPE [6] ✓ ✕ ✕ ✓

Probabilistic OPE [11], [18], [35] ✕ ✓ ✕ ✓
Partially OPE [17], [26] [✓] ✕ ✕ ✕

AES-CBC [19] ✓ ✓ ✓ ✕

Det-RPE ✓ ✕ ✕ ✓

Prob-RPE ✓ ✓ ✕ ✓
Det-RPE-FR ✓ ✕ [✓] ✓

Prob-RPE-FR ✓ ✓ [✓] ✓

One important feature of our methods is their composability. RPE schemes can be
composed with any order-preserving encryption scheme approved by the security com-
munity, thereby inheriting their latest breakthroughs. Additionally, by adding a layer
of randomness on top of a chosen underlying OPE scheme, RPE schemes amend the
weaknesses of OPE schemes.

1.3 Overview

The remainder of this paper is organized as follows: Section 2 presents our assumed
client-server architecture. Section 3 formally defines the newly introduced adversary
models. Section 4 starts with describing the basic idea of Randomly Partitioned Encryp-
tion, then formally defines Det-RPE and analyses the security of Det-RPE and other OPE
schemes under Domain Attack. Section 5 formally defines Probabilistic RPE and anal-
yses its security under Frequency Attack. In Section 6, the Fixed Range Query Rewrite
mechanism is explained and its security is analyzed under Query Log Attack. Section 7
and 8 describe implementation details and how they influence performance of the TPCH
benchmark. Section 9 discusses related work in detail and section 10 briefly concludes.

310 T. Sanamrad et al.

2 Client-Server Architecture

Figure 1a shows the traditional client-server architecture of running applications on top
of a database system. The application or end user issues SQL statements to the database
server. The database server executes these SQL statements and returns the results.

Client Client

SQL

DB

(a) Traditional

Client Client

SQL

Encrypted
DB

SQL‘
Encry. Layer

tru
st

ed

un
tru

st
ed

(b) Encryption Layer

Fig. 1. Client-Server Database Architecture

Figure 1b shows the extended archi-
tecture assumed in this paper. This ar-
chitecture has also been assumed by all
related work on client-side database se-
curity; e.g. in [3], [9], [24], [27]. In
this architecture, the application remains
unchanged and issues the same (un-
encrypted) SQL statements as in the
traditional system of Figure 1a. The con-
fidentiality is implemented as part of
an Encryption Layer. The Encryption
Layer has two significant methods: First,
rewriting the queries and updates that are to be submitted to the encrypted database.
Second, decrypting and post-processing the query results returned from the encrypted
database. Thus, the Encryption Layer encapsulates encryption/decryption and makes
security issues transparent to the application developer and end user.

The Encryption Layer is assumed to be thin and trusted. Thin means that not much
computational power is needed to implement the Encryption Layer; the heavy weight-
lifting of executing joins, aggregates, etc. is expected to be carried out in the database.
It should be possible to deploy the Encryption Layer on a smart phone or laptop. The
goal is to omit any administration requirements for the Encryption Layer.

3 Adversary Models

A couple of concrete usecases from the financial industry have given birth to new adver-
sary models for cloud databases. These models have not been cryptographically treated so
far. In this section we formally introduce the new adversary models and security metrics.

Notation. LetX be the set of plaintext values in a domain, andY be the set of ciphertext
values. The size of X is denoted as X = |X |; the same applies for the size of Y , Y =
|Y|. Plaintext elements are denoted as x and ciphertext elements as y. Additionally, we
define the Key space to be Keys and K is denoted as an element from the key space. K
is a function that randomly selects an element from Keys, denoted as K

$← Keys. The
$ sign on top of the← shows that the selection was random. Let Enc be the encryption
function having a key,K , and a plaintext value, x, as its input parameters; thus, we have:
y = Enc(K,x). Symmetrically,Dec will be the decryption function, taking y and K as
input, yielding: x = Dec(K, y). Let Rankx be the rank of x in X . Symmetrically, we
have Ranky which denotes the rank of y in Y . Let rank be the function that returns the
rank of an element in its corresponding space. The frequency distribution ofX and Y is
denoted as FX andFY respectively. Let freq be the function that returns the frequency
of an element in its corresponding space.

Randomly Partitioned Encryption for Cloud Databases 311

3.1 Domain Attack

Domain Attack is launched by an adversary, AD that has a-priori knowledge of the
plaintext domain. In our motivating usecase from the financial industry, the database
administrator had a list of all customers and needed to retrieve other relevant account
information for selected customers.

Rank One-Wayness. In order to measure the success probability ofAD , in breaking an
encryption scheme, ES, we introduce a new notion called Rank One-Wayness (ROW).
The ROW advantage is defined to be the probability of Experiment 1 returning 1.

AdvROW
ES (AD) = Pr[ExpROW

ES (AD) = 1)] (1)

Experiment 1 . ExpROW
ES (AD)

1: K
$← Keys; x

$← X
2: y ← Enc(K,x)
3: Ranky ← rank(y)

4: x′ $← AD(X , Ranky)
5: if x = x′ then return 1
6: else return 0

To further clarify Experiment 1, let us consider the following example. Let X =
{′Beatles′,′ Metallica′,′ U2′} and ES = OPE. Assume the ciphertext space to be
Y = {143, 465, 706}. We start the experiment by choosing a random element from X ,
for instance ′Metallica′ and encrypt it. We provideAD with X and Rank465 = 2.AD

has to return an element from X which he thinks corresponds to the second element of
Y . The probability thatAD guesses ′Metallica′ correctly is called the ROW advantage.

3.2 Frequency Attack

A Frequency Attack is an attack that is launched by an adversary,ADF that has a-priori
knowledge of the plaintext values as well as their frequency distribution.

Frequency One-Wayness. In order to measure the success probability of ADF in
breaking an encryption scheme, ES , we introduce a new notion called Frequency One-
Wayness (FOW). The FOW advantage is defined to be the probability of Experiment 2
returning 1.

AdvFOW
ES (ADF) = Pr[ExpFOW

ES (ADF) = 1] (2)

Again we illustrate this with an example. Let X = {′Beatles′,′ Beatles′,′ U2′}
and ES = OPE. The ciphertext space will be Y = {143, 143, 706}. We start the
experiment by choosing a random element from X , for instance ′Beatles′ and encrypt
it. We giveADF ,X ,FX = {2, 1} and freq143 = 2.ADF has to return an element from
X which he thinks corresponds to the element of Y that appears twice. The probability
that ADF guesses correctly is called the FOW advantage.

312 T. Sanamrad et al.

Experiment 2 . ExpFOW
ES (ADF)

1: K
$← Keys; x

$← X
2: y ← Enc(K,x)
3: Freqy ← freq(y)

4: x′ $← ADF (X ,Fx, F reqy)
5: if x = x′ then return 1
6: else return 0

3.3 Query Log Attack

A Query Log Attack is launched by an adversary,AQ, that in addition to domain knowl-
edge, has access to the database query logs, QDB . In our concrete usecase, since the
adversary is the database administrator, access to query logs is granted to him. Depend-
ing on the encryption scheme, the query logs may reveal more information about the
underlying data than what the encryption scheme was initially intended to leak. Thus,
it is crucial to add query log analysis to the list of possible cryptanalysis on database
encryption schemes. In general, the query logs leak (1) content, (2) origin (e.g. an IP
address of the client submitting the query), (3) frequencies, and (4) time stamp of the
query. In this paper we will focus on the Query Content. How to perform query anal-
ysis and what an adversary can obtain from it, depends on the underlying encryption
scheme.

We define the success probability of AQ as his advantage to break the Rank One-
Wayness of the underlying encryption scheme, ES . Similar to Experiment 1, the adver-
sary, AQ, is given the plaintext domain, X , a ciphertext rank, Ranky, and additionally
the database query logs, QDB . In the end, AQ is asked to return the underlying plain-
text, x. The ROW advantage of AQ is formulated as:

AdvROW
ES (AQ) = Pr[ExpQLA

ES (AQ) = 1] (3)

Experiment 3 . ExpROW
ES (AQ)

1: K
$← Keys; x

$← X
2: y ← Enc(K,x)
3: Ranky ← rank(y)

4: x′ $← AQ(X , Ranky, QDB)
 note the additional argument QDB

5: if x = x′ then return 1
6: else return 0

4 Deterministic RPE

This section presents the deterministic Randomly Partitioned Encryption scheme (Det-
RPE). The key idea of RPE is to take an existing weak encryption method such as OPE
as in [1], [6], [7], [20], [34] as a building block and to enhance its security by applying
it separately on different random partitions of the data called Runs. In contrast to other

Randomly Partitioned Encryption for Cloud Databases 313

partially order preserving encryption schemes, such as [26], [17] where they bin the
plaintext domain in random-length (or fixed ranged) partitions, RPE creates partially
ordered partitions called Runs by randomly assigning each domain value to a Run;
thereby creating more uncertainty.

x

Enc

y

τ

(a) OPE

x

Enc1
τ1

ChooseRun

Enc2

y

τ2 Enc3
τ3 Enc4

τ4

(b) RPE

Fig. 2. RPE Principle

Figure 2a shows the workings of a
traditional OPE encryption function. It
receives a plaintext, x, and produces a
ciphertext, y, and τ is the set of input
parameters that Enc takes (e.g. a secret
key). Figure 2b shows how RPE com-
poses this traditional scheme to become
more secure and have a number of addi-
tional operational advantages (e.g., sup-
port for updates). Instead of a single Enc
function per domain, RPE makes use of
U encryption functions per domain, Enc1, Enc2, . . . , EncU , where U is the number of
Runs. These U functions possibly all have the same structure (e.g. order-preserving
using MOPE [6]) and just differ in the secret key they use. Given a plaintext, x,
ChooseRun generates a number between 1 and U and encrypts x using the correspond-
ing Enc function, i.e. y = EncChooseRun(x)(x).

Depending on the ChooseRun function and the structure of the Enc function, the
composed encryption scheme of Figure 2b can have different properties. The perfor-
mance overhead of RPE (as compared to no encryption) depends on the number of
runs, U ; In the extreme case of U = 1, RPE is the same as Enc which is typically a
weak, yet high performance encryption scheme. In the other extreme, U = ∞, RPE
is the same as random which corresponds to a strong yet low performance encryption
scheme.

Table 2. Det-RPE Example: U = 2

Clear Text Run 1 Run 2 Code (〈 run, y 〉)

Beatles 1 〈2, 1〉
Beatles 1 〈2, 1〉
Beatles 1 〈2, 1〉
Elton John 1 〈1, 1〉
Madonna 2 〈2, 2〉
Madonna 2 〈2, 2〉
Metallica 3 〈2, 3〉
Nelly Furtado 2 〈1, 2〉
Tina Turner 3 〈1, 3〉

Deterministic RPE (abbreviated as Det-
RPE) is a deterministic encryption scheme
because a deterministic ChooseRun and a
deterministic Enc function are used. Deter-
minism of the ChooseRun function can be
achieved by making its output depend on the
plaintext, x, i.e. by using a pseudo-random
function. Our Det-RPE construction has to
generate two sets of keys, one set for the runs
and the other for the ChooseRun function.
The encryption function of Det-RPE then composes the ChooseRun function with the
encryption function of a typical OPE scheme. Det-RPE can be composed with any OPE
scheme from [1, 6, 7, 20, 33, 34].

Construction 1. Let OPE = (K, Enc,Dec) be a deterministic order-preserving en-
cryption scheme. We define a deterministic RPE scheme,Det-RPE(KdRPE , EncdRPE ,
DecdRPE), as follows:

• KdRPE runsK independently for each run and returnsU keys, namely (K1, ...,KU).
Also, it runs K independently to generate Kmap for the ChooseRun function.

314 T. Sanamrad et al.

• EncdRPE takes Ku and x, as input where u = ChooseRun(Kmap, x). Then it
returns u and y = Enc(Ku, x), i.e. (u, y).

• DecdRPE takes (u, y) as input and returns x = Dec(Ku, y).

Table 2 gives an example of a set of customer names encrypted with Det-RPE with
U = 2 using an OPE scheme where U denotes the set of runs and |U| = U .

4.1 Analysis of Domain Attack

An ordinary OPE scheme such as in [1], [6], [7], [20], [23], [33], [34] allows the do-
main adversary,AD, to efficiently break the encryption by solely using sorting. In other
words: AdvROW

OPE (AD) = 1. On the other hand, a Modular OPE scheme, as proposed in
[6], is resilient against a Domain Attack as shown in Lemma 1.

Lemma 1. ROW-advantage of AD on Modular OPE is:

AdvROW
MOPE(AD) = Pr[ExpROW

MOPE(A) = 1] =
1

X
(4)

Proof. In order to win Experiment 1 on MOPE, the adversary needs to know the mod-
ular offset. Since offset is chosen randomly from X , the adversary will win the game
with a probability of 1

X .

Nevertheless, MOPE is vulnerable to the Known Plaintext Attacks, where the ad-
versary additionally has one or more plaintext-ciphertext pairs. In that case, MOPE
collapses into OPE.

The Probabilistic OPE schemes such as in [11], [18], [35] have the following ROW
advantage against a Domain Attack:

Lemma 2. (proof in [25]) ROW-advantage of AD on Prob-OPE is:

AdvROW
Prob-OPE(AD) = Pr[ExpROW

Prob-OPE(AD) = 1] =

(
Ranky−1
Rankx−1

)(
Y−Ranky

X−Rankx

)(
Y−1
X−1

) (5)

RPE amends all variants of OPE schemes to a great extent by randomly partitioning
the domain into Runs, thereby breaking the total order into U partial orders. According
to [5, 13], the problem of finding the right total order out of U partial orders is classified
as inapproximable.

Lemma 3. (proof in [25]) ROW-advantage of AD on Det-RPE is defined as:

AdvROW
Det-RPE(AD) = Pr[ExpROW

Det-RPE(AD) = 1] =

(
Rankx−1

Rank(y,r)−1

)(X−Rankx
X
U −Rank(y,r)

)(
X
X
U

) (6)

Randomly Partitioned Encryption for Cloud Databases 315

The probability distribution conforms to a negative hypergeometric probability dis-
tribution which applies to sampling without replacement from a finite population, in our
case the domain, X . As random selections are made from the population, each subse-
quent draw decreases the population causing the probability of success to change with
each draw. The detailed proofs of Lemma 2 and 3 are quite involved and can be found
in our technical report [25].

An important observation to make from Equations 5 and 6 is that the ROW advantage
not only depends on the domain size but also on the rank of the plaintext in the domain.
Consequently, extreme values of the domain (e.g. “AAA” or “ZZZ”) are breaking the
uniformity of the probability distribution. In order to fix this problem, Det-RPE can be
composed with Modular OPE [6] to form a ring structure to hide these extreme values.

In Figure 3 the ROW advantage is plotted for each encryption scheme. As a baseline
we plot the advantage of an adversary that outputs a random x regardless of the domain.
This is considered to be “ideal” and is exactly what Modular OPE [6] achieves. We see
that Det-RPE helps an OPE scheme (in that case ROPE from [7]) with high ROW
advantage to get close to the “ideal” threshold by increasing the number of runs.

The equations presented in this section can be tuned to meet the user’s negligibility
requirement. For example, in Equation 6, depending on the domain size, the number
of runs can be tuned to meet the security/performance requirements of the system. The
higher the number of runs, the closer one gets to the “ideal” threshold, but also the
bigger is the performance overhead.

Fig. 3. ROW advantage under Domain At-
tack

Table 3. Prob-RPE with U = 2

Customer Name Run 1 Run 2 Prob-Code (〈 run, y 〉)

Beatles 1 〈2, 1〉
Beatles 2 〈2, 2〉
Beatles 1 〈1, 1〉
Elton John 3 〈2, 3〉
Madonna 2 〈1, 2〉
Madonna 4 〈2, 4〉
Metallica 3 〈1, 3〉
Nelly Furtado 4 〈1, 4〉
Tina Turner 5 〈2, 5〉

5 Probabilistic RPE

In this section we present the probabilistic variant of Randomly Partitioned Encryption
(Prob-RPE). RPE is made probabilistic in two ways: (a) by using a probabilistic order
preserving encryption scheme within each run, such as proposed in [35] and (b) by
assigning the same plaintext value to different runs to guarantee database dynamism
and improve security.

In Probabilistic RPE, ChooseRun is defined as a random function. For each plaintext
element, x, ChooseRun randomly selects a run, u. Afterwards, x is to be encrypted in u.
Table 3 gives an example of such a Prob-RPE encryption scheme where the same value
can even have multiple codes within a single run. For instance, Beatles has two codes
in Run 2 and one code in Run 1, in other words Beatles = {〈2, 1〉, 〈2, 2〉, 〈1, 1〉}.

316 T. Sanamrad et al.

We formally construct Prob-RPE as follows:

Construction 2. Let Prob-OPE(Kp, Encp,Decp) be a probabilistic order-preserving
encryption scheme from [35]. We define a probabilistic RPE scheme,
Prob-RPE(KpRPE , EncpRPE ,DecpRPE), as follows:

• KpRPE runsKp independently for each run and returnsU keys, namely (K1, ...,KU).
• EncpRPE takes Ku and x, as input where u = ChooseRun(). Then it returns u

and y = Encp(Ku, x), i.e. (u, y).
• DecpRPE takes (u, y) as input and returns x = Decp(Ku, y).

The query rewrite mechanisms for RPE have been thoroughly explained in [25]. To
give an intuition on how queries are rewritten using RPE, consider a query that asks
for all customers with name LIKE ‘‘M%’’ in the example of Table 3 for Prob-RPE.
This query must be rewritten to:

SELECT * FROM Customer
WHERE (run = 1 AND (1 < y < 4))

OR (run = 2 AND (3 < y < 5))

5.1 Analysis of Frequency Attack

A known weakness of a deterministic encryption scheme is its inability to hide the orig-
inal frequency distribution of the plaintext domain, specially if the plaintext domain has
a skewed frequency distribution. Since OPE, Modular OPE and Det-RPE are all de-
terministic encryption schemes, the FOW-advantage introduced in Section 3.2 of ADF

depends on the plaintext frequency distribution, namely FX . In other words, if the orig-
inal frequency distribution is uniform then the adversary’s advantage is also uniform,
i.e. best security. Nevertheless, if the original frequency distribution is skewed, then the
adversary’s advantage is different and depends on the number of elements having the
same frequency.

Corollary 1. Let y = Enc(K,x) and G = {w|w ∈ X ∧ freqX (w) = freqY(y)}
be the set of distinct plaintext values having the same frequency as y. Then, the FOW-
advantage of theADF adversary on a deterministic encryption scheme is defined as his
winning probability in Experiment 2:

AdvFOW
DET (ADF) = Pr[ExpFOW

DET (A) = 1] =
1

|G| (7)

Remark 1. A deterministic encryption scheme is optimally safe against a Frequency
Attack if and only if FX is uniform. A uniform FX implies a maximum |G| where |G| =
X , i.e. |G| equals the domain size.

Remark 2. Probabilistic OPE and Prob-RPE as described in this section, take care of
a skewed probability distribution by each time creating a new ciphertext for a plaintext
value. This way the skewed frequency distribution of the plaintext domain is mapped to
a uniform frequency distribution in the ciphertext space i.e. the FOW advantage under
frequency attack is optimal which is 1

X .

Randomly Partitioned Encryption for Cloud Databases 317

6 Fixed Range Query Rewrite

In Section 3.3, we have introduced an attack that is based on the information that an
attacker can extract from the query logs. The query logs are said to be dangerous, when
they carry more information about the underlying encryption scheme than the encrypted
data in the database.

To see what type of queries can be dangerous for each of the encryption schemes
presented in this paper, we introduce the concept of a Query Simulator. A Query Sim-
ulator generates queries by looking at the encrypted data. Thus, if we are dealing with
a query which can be simulated just by looking at the encrypted data, that query is
called simulatable. Otherwise, the query is dangerous and can be exploited to break
the guarantees of the underlying encryption scheme. Typically, in both, probabilistic
and partially order preserving schemes, such as in [17], [26], [35] to support efficient
query processing, the queries reveal essential information about the certain initial val-
ues. Therefore, RPE conceals the total order which can be reconstructed by query log
analysis. Table 4 presents a summary of the simulatable SQL operators in combination
with the encryption schemes presented in this paper.

Table 4. SQL Operator Simulatability for different Encryption Schemes

SQL-Operator OPE MOPE [6] Prob-OPE [18], [35] POP [17], [26] Det-RPE Prob-RPE *-RPE-FR
WHERE (=, !=)/IN ✓ ✓ ✕ ✕ ✓ ✕ ✓

WHERE (<,>)/LIKE(Prefix%) ✓ ✓ ✕ ✕ ✕ ✕ ✓

Equi-Join ✓ ✓ ✕ ✕ ✓ ✓ ✓

TOP N ✓ ✕ ✕ ✕ ✓ ✕ ✓
ORDER BY (sort) ✓ ✓ ✓ ✕ ✓ ✓ ✓

MIN/MAX ✓ ✕ ✕ ✕ ✓ ✕ ✓

Table 4 shows that all SQL Operators are simulatable for OPE. Nevertheless, OPE
is not safe against Query Log Attack because the adversary has domain knowledge and
can therefore launch a Domain Attack. Probabilistic OPE and Partially OPE schemes
seem at first sight to be more secure, but on the other hand queries are not simulatable
in those schemes, i.e. query log attack breaks them.

Our approach, RPE, is most of the time simulatable except for range queries. Thus,
there are two solutions to this problem: (1) Suppress the range queries, (2) Using Fixed
Range Query Rewrite mechanisms. In this section we will elaborate the second option.

Table 5. Two fixed ranges of size 3, r = 3

Fixed Range Customer Names Run 1 Run 2 Code (〈 run, y 〉)

fr1

Beatles 3 〈2, 3〉
Elton John 1 〈1, 1〉
Madonna 5 〈2, 5〉

fr2

Metallica 9 〈2, 9〉
Nelly Furtado 6 〈1, 6〉
Tina Turner 7 〈1, 7〉

The idea of Fixed Range Query
Rewrite is to divide the ciphertext
space, Y into k disjoint fixed-sized
sub-ranges of size r, fri where i =
1, ..., k and |fri| = r. Whenever
a range query is asked, the smallest
units that are returned are those fixed
ranges that contain the user’s results.

As an example, consider Table 5 where deterministic RPE has been used for encryp-
tion. The client submits the query: SELECT name FROM customer WHERE name >
’Lady Gaga’. Using Det-RPE the query should be rewritten to:
SELECT name FROM customer WHERE (run = 1 AND 3 < code < 10) OR (run
= 2 AND 3 < code < 10).

318 T. Sanamrad et al.

However, since this query is revealing some information about the partition rela-
tionships, we will use fixed range query rewrite mechanisms. Thus, the original query
will be rewritten as follows to cover both fixed ranges, fr1 and fr2 that contain the
result: SELECT name FROM customer WHERE (run = 1 AND 0 < code
< 10) OR (run = 2 AND 0 < code < 10).

This is the whole table in this example. The result includes two additional false
positives, namely, “Beatles” and “Elton John” that will be filtered out during the post-
processing. Obviously, using Fixed Ranged Query Rewrite returns a super-set of the
result that needs to be post-filtered and leads to performance loss. On the other hand,
the security guarantees and analysis will deviate from what we have discussed earlier
in Section 4.

6.1 Analysis of Query Log Attack

According to Table 4, OPE schemes are safe against query analysis, however Modular
OPE cannot safely handle min/max and rank queries. Probabilistic OPE cannot handle
range queries without revealing the borders, so using Fixed Ranged Query Rewrite pro-
tects the encryption scheme from query log analysis. In case of RPE, range queries are
problematic because they help to reconstruct the total order, which is exactly what RPE
is trying to hide. Hence, Fixed Ranged Query Rewrite helps again to limit the ROW ad-
vantage under query log attack. Assuming we have a uniform code distribution within
a range in all runs, Equation 6 changes into:

AdvROW
Det-RPE-FR(AQ) = Pr[ExpROW

Det-RPE-FR(AQ) = 1] =

(Rankfr
x −1

Rankfr
(y,r)

−1

)(r−Rankfr
x

r
u−Rankfr

(y,r)

)
(
r
r
U

)
(8)

Informally speaking, the randomness is no more distributed throughout the domain,
but is only available within the fixed range. From Equation 8 we reach the following
conclusions:

• If U = r then we have a uniform probability distribution. This means although
no range query is possible within a fixed range (like having AES in each range).
Among different fixed ranges, range queries are possible.

• Getting better security is achievable by both increasing the range size and the num-
ber of runs. However they both come at the cost of performance.

• Range size is the main parameter whereas the domain size does not play a role
anymore.

7 Database Functionality

After the security assessment of RPE, we also want to compare its supported function-
ality to the state-of-the-art. Table 6 summarizes which SQL operators can be efficiently
implemented for which encryption technique. We can see that the RPE variants sup-
port most of the desired SQL operators, which allows them to be used in practice while

Randomly Partitioned Encryption for Cloud Databases 319

semantically secure encryption schemes (like e.g. AES in CBC mode or fully homo-
morphic encryption schemes[12] become inefficient as soon as we want to ask range,
in, order-by or group-by queries. RPE also allows indexes to be build on top of
it as usual. For a full description on query rewrite and referential integrity, we refer the
curious reader to our Technical Report [15].

Table 6. Supported SQL Operators: State of the Art vs. RPE

SQL-Operator OPE MOPE[6] POP[17, 26] Det-RPE Prob-RPE FHE [12] AES-CBC [19]
DISTINCT ✓ ✓ ✕ ✓ ✕ ✕ ✕

WHERE (=, !=) ✓ ✓ ✓ ✓ ✓ ✕ ✕

WHERE (<,>) ✓ ✓ ✓ ✓ ✓ ✕ ✕

LIKE(Prefix%) ✓ ✓ ✓ ✓ ✓ ✕ ✕
LIKE(%Suffix) ✕ ✕ ✕ ✕ ✕ ✕ ✕

IN ✓ ✓ ✓ ✓ ✓ ✕ ✕

Equi-Join ✓ ✓ ✓ ✓ ✓ ✕ ✕
Non Equi-Join ✓ ✓ ✓ ✓ ✓ ✕ ✕

TOP N ✓ ✕ ✕ ✓ ✕ ✕ ✕

ORDER BY ✓ ✓ ✕ ✓ ✓ ✕ ✕

SUM ✕ ✕ ✕ ✓ ✓ ✓ ✕
MIN/MAX ✓ ✕ ✕ ✕ ✕ ✕ ✕

GROUP BY ✓ ✓ ✕ ✓ ✕ ✕ ✕

8 Performance Analysis and Experimental Results

In order to measure to what extent missing SQL operator influence query performance,
we implemented the TPC-H benchmark on the architecture shown in figure 1. We have
executed a number of experiments with different varying parameters, e.g. the number
of runs or the number of codes per value in a single run for Prob-RPE. We measured
total response time, post-processing time, network cost and query compilation time. For
space reasons we only present the most important results and reference to our technical
report [25] for the complete numbers and explanations.

All experiments were conducted on two separate machines for client and server. The
client was written in Java, ran on a machine with 24 GB of memory and communicated
to the database server using JDBC. The server machine had 132 GB of memory available
and hosted a MySQL 5.6 database. Both machines had 8 cores and ran a Debian-based
Linux distribution. We measured end-to-end response time for all queries in separation,
thereby using a scaling factor of 10 (which means that the size of the plaintext data set
is 10 GB). Metrics used in aggregate functions (e.g., volume of orders) and surrogates
(e.g., order numbers) were left unencrypted while all other (sensitive) attributes, such
as names, dates, etc. were encrypted. Whenever SQL operators on encrypted data were
not supported, the entire data was shipped and then aggregated and filtered during the
post-processing step at the encryption layer. Wherever the TPC-H benchmark defines
an index on an attribute a, we created the same index on the encrypted value of a as
well as a composite index on (a run, a).

Figure 4 shows the response time for different encryption functions compared to
Plain, which is the response time for query processing on unencrypted data. Det-OPE
is a deterministic OPE scheme as proposed by [7] and was used as a gold standard to
compare against two different RPE variants that both used fixed-range query rewrite.
The deterministic RPE version is denoted by Det-RPE-FR, while Prob-RPE-FR stands

320 T. Sanamrad et al.

0.6

0.8

1

2

3

4

5
6
7

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 RF1RF2

A
v
er

ag
e

re
sp

o
n
se

 t
im

e
(r

el
at

iv
e

to
 P

la
in

)

Query Number

Det-OPE
Det-RPE-FR

Prob-RPE-FR

Fig. 4. TPC-H response times of different encryption functions relative to Plain, scaling factor 10

for the probabilistic version. We can see that for a majority of queries and RPE vari-
ants, response time is at most three times higher than Plain and twice as high as Det-
OPE. Sometimes, it is even smaller than the baselines because the partitioning (together
with the composite indexes) allows for parallelized query processing, which was em-
ployed in the presence of Top-N queries. As expected, Prob-RPE-FR can add significant
overhead. However, we believe this overhead to be reasonable as the security gain is
substantial as shown in the previous sections. We also measured the performance of
deterministic AES-ECB [19], but did not include the results in the graph because most
queries did not finish withing 30 minutes and therefore had an overhead ranging from
about 20x to 200x. AES-CBC [19], a representative of semantically secure encryption
schemes, would perform even worse.

0.8

1

2

3

 1 2 4 8 16

A
v
er

ag
e

re
sp

o
n
se

 t
im

e
(r

el
at

iv
e

to
 P

la
in

)

Number of Runs

Q1 Q2 Q3 Q4 Q5 Q6

Fig. 5. Response Time of TPC-H Queries 1 to 6 for Det-
RPE-FR, vary U from 1 to 16

The number of runs, U , is an
important parameter of all RPE
schemes. Figure 5 shows how
the running time of Det-RPE-
FR increases with the number
of runs for the first six TPCH
queries and relative to Plain. We
chose these queries because they
cover a wide spectrum of differ-
ent operators (range predicates,
aggregates, Top N, sub-selects,
etc.). Overall, it can be seen that
the curves are fairly flat. Only
for Q6, there is a significant (but
still linear) increase in the re-
sponse time with a growing number of runs. Q2 and Q3 are Top N queries and are
therefore executed with a degree of parallelism equal to U , which result in a decreasing
response time. Q1, Q4 and Q5 have a similar behavior like most TPCH-queries: their
curves stay fairly flat. This shows that partitioning does generally not hurt RPE.

Randomly Partitioned Encryption for Cloud Databases 321

9 Related Work

To fill the gap between no security/high performance and high security/low perfor-
mance, there have been a number of proposals for encryption techniques that support
query processing without decrypting the data. Examples are [2], [9], [14]. However,
these approaches return a superset of the desired result and lose a lot of time into de-
crypting and filtering out the false positives.

On the other hand, the goal of fully homomorphic encryption (FHE) [30], [10], [12],
[22], [28] is to strongly encrypt the data and process it directly without decryption.
[32] shows, at a conceptual level, how FHE can be used in databases. However, when
taken to practice, databases explode in size because of the huge keys required by FHE.
Therefore, the practicality of FHE in databases is an open question and no performance
evaluation has been published so far.

Another important class of encryption techniques for databases are variants of order-
preserving encryption (OPE), first introduced by Agrawal et al. [1]. Examples include
Random (Modular) OPE [6], [7], Mutable OPE [23], Indistinguishability-based OPE
[20], Generalized OPE [33], [34], Structure Preserving Database Encryption [11],
Probabilistic OPE [35], OPE with Splitting and Scaling [31], Multivalued OPE [18],
Multivalued partial OPE [17], and Chaotic OPE [26]. RPE is based on Random OPE
and Modular Random OPE from [6], [7], but very different from all the other OPE
derivatives in the sense that it either solves a different problem (i.e. addresses different
attacks) or uses different techniques. Systems that exploit OPE are CryptDB [24] and
Monomi [29]. RPE can be integrated into these systems to make them more secure.

Secure hardware has recently been exploited in the TrustedDB [4] and Cipherbase
[3] projects. They are an interesting approach, but how to reach good performance,
especially for analytical workloads, is still open. Again, RPE can be plugged-in into
these systems in order to allow for faster, but still secure query processing.

Most commercial database products support strong encryption using AES [19], e.g.
Oracle [21] and Microsoft SQL Server [16]. Unfortunately, they only support encryp-
tion for data at rest at the disk level, which means that these approaches do not address
attacks issued by a curious database administrator or any other party that can access to
the data in memory.

10 Conclusion

This paper presented different variants of Randomly Partitioned Encryption, a set of
novel methods for encrypting cloud databases, thereby addressing real world attacker
scenarios like Domain, Frequency and Query Log attacks. To the best of our knowl-
edge, this is the first time that these attacks were formally defined and their success
probability with respect to both, existing order-preserving encryption schemes, and the
proposed RPE variants, analyzed. Moreover, the paper showed that the additional per-
formance cost introduced by these new encryption schemes is reasonably small and
gave a detailed overview of similar and related work in the literature.

322 T. Sanamrad et al.

References

[1] Agrawal, R., et al.: Order preserving encryption for numeric data. In: Proceedings of the
2004 ACM SIGMOD International Conference on Management of Data, pp. 563–574.
ACM (2004)

[2] Agrawal, R., et al.: Privacy-preserving data mining. ACM Sigmod Record 29(2), 439–450
(2000)

[3] Arasu, A., et al.: Orthogonal Security with Cipherbase. In: CIDR. Citeseer (2013)
[4] Bajaj, S., et al.: TrustedDB: a trusted hardware based database with privacy and data con-

fidentiality. In: Proceedings of the 2011 ACM SIGMOD International Conference on Man-
agement of Data, pp. 205–216. ACM (2011)

[5] Berger, B., et al.: Approximation alogorithms for the maximum acyclic subgraph problem.
In: Proceedings of the First Annual ACM-SIAM Symposium on Discrete Algorithms, pp.
236–243. Society for Industrial and Applied Mathematics (1990)

[6] Boldyreva, A., Chenette, N., O’Neill, A.: Order-preserving encryption revisited: Improved
security analysis and alternative solutions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 578–595. Springer, Heidelberg (2011)

[7] Boldyreva, A., Chenette, N., Lee, Y., O’Neill, A.: Order-preserving symmetric encryption.
In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 224–241. Springer, Heidelberg
(2009)

[8] Chow, R., et al.: Controlling data in the cloud: outsourcing computation without outsourc-
ing control. In: Proceedings of the 2009 ACM Workshop on Cloud Computing Security,
pp. 85–90. ACM (2009)

[9] Damiani, E., et al.: Balancing confidentiality and efficiency in untrusted relational DBMSs.
In: Proceedings of the 10th ACM Conference on Computer and Communications Security,
pp. 93–102. ACM (2003)

[10] ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete loga-
rithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 10–18.
Springer, Heidelberg (1985)

[11] Elovici, Y., Waisenberg, R., Shmueli, E., Gudes, E.: A structure preserving database encryp-
tion scheme. In: Jonker, W., Petković, M. (eds.) SDM 2004. LNCS, vol. 3178, pp. 28–40.
Springer, Heidelberg (2004)

[12] Gentry, C.: A fully homomorphic encryption scheme. PhD thesis. Stanford University
(2009)

[13] Guruswami, V., et al.: Beating the random ordering is hard: Inapproximability of maximum
acyclic subgraph. In: IEEE 49th Annual IEEE Symposium on Foundations of Computer
Science, pp. 573–582. IEEE (2008)

[14] Hacigümüş, H., et al.: Executing SQL over encrypted data in the database-service-provider
model. In: Proceedings of the 2002 ACM SIGMOD International Conference on Manage-
ment of Data, pp. 216–227. ACM (2002)

[15] Hildenbrand, S., et al.: Query processing on encrypted data in the cloud. Tech. rep. 735.
Department of Computer Science, ETH Zurich (2011)

[16] Hsueh, S.: Database encryption in SQL server 2008 enterprise edition. Microsoft, SQL
Server Technical Article (2008)

[17] Kadhem, H., et al.: A Secure and Efficient Order Preserving Encryption Scheme for Rela-
tional Databases. In: KMIS, pp. 25–35 (2010)

[18] Kadhem, H., et al.: MV-OPES: Multivalued-order preserving encryption scheme: A novel
scheme for encrypting integer value to many different values. IEICE Transactions on Infor-
mation and Systems 93(9), 2520–2533 (2010)

Randomly Partitioned Encryption for Cloud Databases 323

[19] Katz, J., et al.: Introduction to modern cryptography: principles and protocols. CRC Press
(2007)

[20] Malkin, T., et al.: Order-Preserving Encryption Secure Beyond One-Wayness. Tech. rep.
Citeseer (2013)

[21] Nanda, A.: Transparent Data Encryption. Oracle Magazine (2005)
[22] Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In:

Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg
(1999)

[23] Popa, R.A., et al.: An ideal-security protocol for order-preserving encoding. In: 2013 IEEE
Symposium on Security and Privacy (SP), pp. 463–477. IEEE (2013)

[24] Popa, R.A., et al.: Cryptdb: protecting confidentiality with encrypted query processing. In:
Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles, pp.
85–100. ACM (2011)

[25] Sanamrad, T., et al.: POP: a new encryption scheme for dynamic databases. Tech. rep. 782.
Department of Computer Science, ETH Zurich (2013)

[26] Seungmin, L., et al.: Chaotic order preserving encryption for efficient and secure queries on
databases. IEICE Transactions on Information and Systems 92(11), 2207–2217 (2009)

[27] Sion, R.: Secure data outsourcing. In: Proceedings of the 33rd International Conference on
Very Large Data Bases, pp. 1431–1432. VLDB Endowment (2007)

[28] Smart, N.P., Vercauteren, F.: Fully homomorphic encryption with relatively small key and
ciphertext sizes. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp.
420–443. Springer, Heidelberg (2010)

[29] Tu, S., et al.: Processing analytical queries over encrypted data. In: Proceedings of the
39th International Conference on Very Large Data Bases, pp. 289–300. VLDB Endowment
(2013)

[30] van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic encryption
over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 24–43.
Springer, Heidelberg (2010)

[31] Wang, H., et al.: Efficient secure query evaluation over encrypted XML databases. In: Pro-
ceedings of the 32nd International Conference on Very Large Data Bases, pp. 127–138.
VLDB Endowment (2006)

[32] Wang, S., et al.: Is Homomorphic Encryption the Holy Grail for Database Queries on En-
crypted Data? Technical report, Department of Computer Science, UCSB (2012)

[33] Wozniak, S., et al.: Beyond the ideal object: towards disclosure-resilient order-preserving
encryption schemes. In: Proceedings of the 2013 ACM Workshop on Cloud Computing
Security Workshop, pp. 89–100. ACM (2013)

[34] Xiao, L., et al.: A Note for the Ideal Order-Preserving Encryption Object and Generalized
Order-Preserving Encryption. In: IACR Cryptology ePrint Archive 2012, p. 350 (2012)

[35] Yang, Z., Zhong, S., Wright, R.N.: Privacy-preserving queries on encrypted data. In: Goll-
mann, D., Meier, J., Sabelfeld, A. (eds.) ESORICS 2006. LNCS, vol. 4189, pp. 479–495.
Springer, Heidelberg (2006)

Towards Secure Cloud Database

with Fine-Grained Access Control

Michael G. Solomon, Vaidy Sunderam�, and Li Xiong��

Department of Mathematics & Computer Science
Emory University

Atlanta, Georgia 30322, USA
{msolo01,vss,lxiong}@emory.edu

Abstract. Outsourcing data to cloud environments can offer ease of ac-
cess, provisioning, and cost benefits, but makes the data more vulnerable
to disclosure. Loss of complete control over the data can be offset through
encryption, but this approach requires an omniscient third party key
authority to handle key management, increasing overhead complexity.
We present the ZeroVis framework that provides confidentiality for data
stored in a cloud environment without requiring a third party key man-
ager. It combines fine-grained access control with the ability to search
over encrypted data to allow existing applications to migrate to cloud en-
vironments with very minimal software changes, while maintaining data
provider control over who can consume that data.

Keywords: Confidentiality, Searchable Encryption, Ciphertext Policy,
Fine-grained Access Control, Cloud.

1 Introduction

An agreement with a Cloud Service Provider (CSP) [13] to store data in a public,
community, or hybrid cloud environment can provide the benefits of outsourced
maintenance and capability to alter capacity based on demand [3]. However, the
cost of outsourcing data storage is diminished control over data security [25, 16].
CSP environments are untrusted [10] in which local levels of control cannot
be attained [17, 16]. Traditional access control methods are often insufficient for
CSP [17, 19] hosted databases. Lacking sufficient confidentiality controls not only
exposes the data to additional vulnerabilities, but is also possibly a violation of
laws, regulations, or contract terms [22].

The primary challenge is to extend confidentiality assurances into untrusted
domains [19]. Since different data consumers have different privileges, data ac-
cess must be individualized and restricted to authorized consumers. And to be
functionally effective, the protected data must be searchable without incurring

� Research supported in part by NSF grant OCI-1124418 and AFOSR DDDAS grant
FA9550-12-1-0240.

�� Research supported in part by NSF grant CNS-1117763 and AFOSR DDDAS grant
FA9550-12-1-0240.

V. Atluri and G. Pernul (Eds.): DBSec 2014, LNCS 8566, pp. 324–338, 2014.
c© IFIP International Federation for Information Processing 2014

Towards Secure Cloud Database with Fine-Grained Access Control 325

excessive overhead or exposing any of the protected data to any entities in the
untrusted environment [5].

A common method to protect data in any untrusted environment is to encrypt
data before sending it outside the trusted domain [9]. In multi-user database
scenarios, solutions using most traditional encryption implementations are sub-
optimal, requiring an additional key-management layer thereby degrading per-
formance and scalability [32, 20, 8].

Traditional data encryption techniques require a single key, or a pair of keys,
to encrypt and decrypt each data item. The most fine-grained approach to using
encryption for data stored in a database requires a separate key for each cell
(each column within a row), and a trusted key authority to store keys and man-
age access to them based on pre-determined access criteria. The opposite extreme
approach would be to use a single key or key pair to encrypt and decrypt all
protected cells in the database, an approach similar to various transparent data
encryption schemes [11, 7]. This approach makes it easier to manage keys but in-
troduces a single point of compromise. A balance between the two extremes is to
define partitions of encrypted data (the set of encrypted cells in a database that
share the same encryption/decryption key), and are often implemented as roles
[30]. While this approach is a good compromise between minimum and maxi-
mum granularity, the common use of key access managers does still grant access
control authority to the key access manager, instead of giving the authority to
the data provider.

Table 1. Data Access Example: Research teams and contexts of interest

Team Treatment Research Context Description

A Z51.11 Cancer Effectiveness of different treatment

B E66.09 Nutritional health Impact of obesity on heart disease

C Z51.11 Tobacco use AND Heart
disease

Impact of lifestyle and heart disease
on cancer treatment effectiveness

D Modified Diet Nutrition Measurable benefits of various diets

Running Example. Difficulties with balancing data protection and ease of access
are common in medical data collection. Consider the following scenario. Four
research teams, A, B, C, and D, need patient data. Table 1 shows four research
teams, along with the specific treatments they are studying and the general con-
text of their work. The primary challenge to be addressed is to obtain current
data that is pertinent to their research, while complying with HIPAA rules and
patient constraints. Patient constraints allow a patient to control who can ac-
cess her data, such as researchers, medical service providers, and next of kin to
access her data. A patient can submit her data with constraints, such as “allow
authorized cancer researchers to access my data”.

Contributions. We propose a framework that addresses the need of confidential-
ity in an untrusted environment along with maintaining data provider control

326 M.G. Solomon, V. Sunderam, and L. Xiong

over data consumer access without an omniscient key manager. Our framework,
termed ZeroVis1, combines the ability to search across encrypted data [24] with
fine-grained access control [1] to provide confidentiality protection, searchabil-
ity for efficient access, and data owner initiated access control, all in an un-
trusted storage environment. Our framework will provide a one-to-many (one
data provider to many data consumers) data confidentiality layer that can be
accessed by existing legacy applications to allow current host-bound applications
to migrate to a cloud storage environment and maintain confidentiality.

Our framework does not require a trusted third party to manage encryption
keys for data providers and consumers. Nor does it require specific permission
for each new data consumer (e.g. research team). In essence, each data provider
(patient) specifies an access policy (based on attributes rather than identities)
for her data that determines who can access protected portions of her data. Tra-
ditional key management schemes require a key manager to associate authorized
data providers and authorized data consumers with keys (a many-to-many re-
lationship). Our framework assumes the existence of an attribute manager that
maintains valid attributes for authorized data consumers (instead of many keys),
regardless how many partitions they can access.

Given our running example, assume that a patient received treatment at an
oncologist’s office. The patient specified that the data to describe and record the
visit is saved with the following access policy:
“treatment=‘Z51.11’ AND (context=cancer OR context=tobacco use)” (i.e. only
data consumers that possess the treatment attribute with a value of Z51.112 and
the context attribute with either the values of cancer or tobacco can access her
data.)

Our framework proposes the use of CP-ABE (Ciphertext Policy Attribute
Based Encryption) [1] to control access to data based on the data consumer’s
attributes. Only consumers who possess attributes that satisfy the ciphertext’s
access policy can decrypt. In the running example, all research teams can re-
trieve any encrypted database row. However, only A and C can decrypt the data
since their attributes (treatment and context) satisfy the CP-ABE access policy.
Our framework also utilizes layered encryption in combination with CP-ABE to
support efficient query processing on encrypted data. In this paper we present
an implementation of our framework and a performance study with different
database sizes the demonstrate the feasibility of our proposed approach.

2 Related Work

The ZeroVis framework most closely relates to searchable encryption and dis-
tributed/federated encryption key management. Broadcast encryption [12] was
first proposed as a solution to the problem of sending secure transmissions from

1 Like flying an instrument approach with limited or no visibility - only pilots with
proper equipment, clearance, and the current local frequencies can land.

2 Z51.11 is the ICD10 code for “Encounter for antineoplastic chemotherapy”, which
also corresponds to the ICD9 code V58.11.

Towards Secure Cloud Database with Fine-Grained Access Control 327

one site to an arbitrary number of recipients. This scheme is similar to ours,
but differs in its reliance on a known hierarchical distribution pattern and set of
privileged users. Later work based on [12] increases scalability [23] [18] and even
integrate Attribute Based Encryption techniques for greater utility [31].

Attribute Based Encryption (ABE) [14] addressed the problem of encrypt-
ing data for an arbitrary number of recipients. Unlike broadcast encryption,
ABE keys are derived instead of simply shared. Goyal proposed an extension
to Identity Based Encryption (IBE) [2] that uses attributes and access policies,
not distinct identities, to encrypt and decrypt data. The two primary forms of
ABE are Ciphertext Policy ABE (CP-ABE) and Key Policy ABE (KP-ABE).
KP-ABE embeds the access policy in the user’s private key [14], while CP-ABE
embeds the access policy in the ciphertext [1]. KP-ABE gives control over who
can decrypt data to the key generator, while CP-ABE ensures that the encryptor
(data owner) retains control over who can decrypt her data [1]. ABE solves the
problem of providing access to private data for specified recipient without tradi-
tional key management issues, and is proposed in several outsourcing secure data
schemes [27, 15, 28], but the technique alone does not map well to encrypting
data for storage in a database due to its lack of a mechanism to efficiently search
encrypted data. Li et. al. [21] uses both CP-ABE and KP-ABE schemes to store
personal health record (PHR) data in a semi-trusted environment. Their pro-
posed framework extends the basic ABE notion to include Multi-Authority ABE
(MA-ABE) [4] to allow different attribute authorities with different data needs to
collectively generate users’ secret keys based on distinct sets of user attributes.
This approach of securing PHR data focuses primarily on storing documents
and does not address the problem of efficiently searching across many PHR data
items.

CryptDB [24] is research software that addresses the performance limitations
of accessing encrypted data stored in a database. Multiple copies of each en-
crypted column are stored, using different encryption algorithms, to support
many requirements of common application queries. Although CryptDB does
solve the access performance issue, it relies on distinct keys that are bound
to user identities. Further, CryptDB focuses primarily on transaction related
queries. The Monomi [26] project uses many of CryptDB’s techniques to address
analytical queries, extending the CryptDB concept by splitting query process-
ing between the server and the client. While more scalable than CryptDB for
analytical queries, it still does not provide a scalable method for one-to-many
encryption.

Verifiable Attribute-based Keyword Search over Outsourced Encrypted Data
(VABKS) [29] uses ABE to provide access control and solves the problem of
searching across encrypted data in the cloud by adding encrypted keyword in-
dexes to the ABE payload. While VABKS does provide searchability for ABE
encrypted data, the technique is document-centric, requiring a defined list of
searchable keywords for each ABE item, limiting its usefulness for searching
across many database items.

328 M.G. Solomon, V. Sunderam, and L. Xiong

Our approach builds on selected concepts from each of the above, and adds
data provider controlled access control to better address efficient encrypted data
access and overcome difficulties associated with distributed access control.

3 Problem Definition and Building Blocks

Consider a database D, with tables T1 .. Ti. Each Table contains rows R1 ..
Rj , each with columns C1 .. Ck. Clients access the database contents as data
providers (DP), data consumers (DC), or as both roles. Data providers store
data in the database (INSERT, UPDATE), and data consumers retrieve data
from the database (SELECT). In a database that uses client-based encryption
to protect stored data, clients access data in one or more columns (C1, C2,
..., Ck) from one or more rows (R1, R2, ..., Rj) from one or more tables (T1,
T2, ..., Ti). Data providers encrypt data before storing it in the database and
data consumers must decrypt data after retrieving it from the database. In this
model, the database only stores encrypted versions of protected cells and never
sees the plaintext version of the data. The primary problem with this approach
is in the difficulty of generating and managing the keys to encrypt and decrypt
data. Data providers and data consumers must share keys to access data, and
the number of keys grows with a higher level of desired fine-grained access (i.e.
a need for more encryption partitions.)

We built the ZeroVis framework on two primary building blocks, Ciphertex
Policy Attribute Based Encryption (CP-ABE), and CryptDB. Each component
brings desirable features to ZeroVis, but neither one solves our problem alone.

Ciphertex Policy Attribute Based Encryption. A CP-ABE scheme provides fine-
grained access control over data [1]. CP-ABE associates a user with a set of
descriptive attributes to generate the user’s secret key, SK. Data are encrypted
under an access policy such that only users whose attributes match the access
policy can decrypt the data. To encrypt a message M using CP-ABE, the en-
cryptor provides an access policy which is expressed as a boolean expression
containing selected attributes and values for M. Figure 1 shows the access pol-
icy presented earlier in a tree structure. The message is then encrypted based
on the access structure, T. Decryptors generate SK based on their attributes.
A decryptor is only able to decrypt ciphertext, CT, when her SK satisfies the
access policy used to encrypt the message. Unauthorized users cannot decrypt
CT even if they collude and combine their disjoint attributes.

CP-ABE defines the following four essential functions:

1. Setup(): Input security parameter, output public parameter (PK), for en-
cryption, and master key (MK), to generate user secret keys.

2. Encrypt: Input message M, access structure T, public parameter PK, output
ciphertext CT.

3. KenGen: Input set of user’s attributes SX and MK, output secret key SK
for SX.

Towards Secure Cloud Database with Fine-Grained Access Control 329

Fig. 1. CP-ABE Access Tree)

4. Decrypt: Input CT, SK. If SK satisfies access structure in CT, return M,
else return NULL.

CP-ABE works well for encrypting individual shared data where the file’s
name or identifier is known, but there is no provision for searching ciphertext,
thereby making CP-ABE alone insufficient for database queries.

CryptDB. CryptDB is a DBMS that provides confidentiality for data stored on
an untrusted database server [24]. The system provides near-transparent confi-
dentiality by intercepting database queries and rewriting them in such a way as
to execute over encrypted data. Decryption for consumption never occurs on the
server, only at the trusted proxy. CryptDB also incorporates an encryption strat-
egy that can adjust the encryption level of each column based on user queries. At
runtime, the CryptDB proxy analyzes each query and determines the encryption
needs based on the query components. The proxy will either then map each query
component to an encrypted data item or request an encryption layer adjustment.
All data is initially stored by CryptDB encrypted into several layers, with each
layer encrypted with one of six encryption methods. The resulting value is called
“encryption onion”. CryptDB will only “peel” an onion layer (decrypt the outer
layer) if a query requires an inner layer to successfully complete. This dynamic
ability to alter encryption layers gives CryptDB the flexibility to maintain con-
fidentiality while still responding to query requirements. The database server
peels onion layers with user defined functions, and will never remove the inner-
most layer that would expose the original plaintext. Although CryptDB does
provide the ability to select and search encrypted data on an untrusted sever,
it still requires user-based encryption keys. CryptDB must rely on an external
authority to enforce key management, including authorizing multiple consumers
to decrypt a provider’s data.

4 ZeroVis Framework

4.1 Framework Overview

To overcome the problems described in the previous section, our approach inte-
grates CP-ABE with the ability to search across encrypted data, e.g. as provided

330 M.G. Solomon, V. Sunderam, and L. Xiong

Fig. 2. ZeroVisibility Cloud Framework

in CryptDB, to synthesize a solution that supports single data provider encryp-
tion accessible by multiple data consumers for data stored in an untrusted envi-
ronment, along with the ability to efficiently retrieve the data without decrypting
in the cloud.

Figure 2 shows the ZeroVis framework. The core of our framework is the Ze-
roVis proxy which is responsible for encrypting data and queries and decrypting
query results. The data provider submits data along with access policies through
ZeroVis Proxy which encrypts the data via CP-ABE and searchable encryption
and stores the encrypted data through an unmodified DBMS. A data consumer
submits a query along with a pre-generated secret key, SK, (generated from
the data consumer’s attributes) through the ZeroVis proxy which encrypts the
query. The DBMS returns encrypted results of the query to the ZeroVis proxy,
which decrypts the results and returns the plaintext to the data consumer.

One additional requirement of a complete framework in a production envi-
ronment is an Attribute Authority (AA). The AA is responsible for authorizing
users, and managing attributes associated with those users. The framework de-
pends on the AA to supply authenticated attributes for each authenticated user,
and to prevent unauthorized users from submitting queries through the frame-
work. Users can submit queries directly to the untrusted DBMS, but without
the necessary master key from the AA, decryption attempts are unsuccessful.

4.2 Data Insertion and Encryption

To encrypt data, the DP provides the trusted proxy with the plaintext data and
an access policy. Figure 3 shows the data flow with an example INSERT query.
The trusted proxy encrypts the plaintext data, translates the query components
into their encrypted counterparts (for query elements that are stored encrypted
in the DBMS), and submits the encrypted payload, along with the embedded
access policy, to the DBMS. Notice in Figure 3 there are 2 ciphertext values.
The first represents existing CryptDB encryption and the second depicts the
new CP-ABE CT added by ZeroVis.

Towards Secure Cloud Database with Fine-Grained Access Control 331

Fig. 3. Submitting Data (INSERT)

4.3 Data Retrieval and Decryption

To decrypt data, a DC must first generate a secret key, SK, based on her at-
tributes. In most implementations, a trusted AA will generate a key for each
identity upon new user registration. The DC provides a set of descriptive at-
tributes, SX, such as treatment and context interest areas (for our running ex-
ample). Attributes can describe an entity’s state, status, or authorized interest
areas. The AA generates SK based on the supplied SX and returns SK to the
DC on demand. For example, a research team member may possess attributes
“treatment=Z51.11, context=cancer”.

Fig. 4. Retrieving Data (SELECT request)

The DC then presents SK (generated by the AA) to the trusted proxy when
attempting to access encrypted data. The trusted proxy translates the supplied
query elements into their encrypted counterparts (for query elements that are
stored encrypted in the DBMS), and submits the query, depicted in figure 3. The
proxy then translates the returned data from the encrypted state, CT, as stored
in the DBMS, depicted in figure 4, into plaintext state, M, for the application.
The CP-ABE decryption algorithm will only return plaintext message, M, when
the supplied SK satisfies the data’s embedded access policy that was provided

332 M.G. Solomon, V. Sunderam, and L. Xiong

Fig. 5. Retrieving Data (SELECT response)

by the DP. If the supplied key does not satisfy the access policy the proxy simply
returns a null value.

The process of modifying data (UPDATE) is essentially a combination of
a data retrieval operation followed by a data submission operation. While the
process of updating data is straightforward, the implementation of the framework
would need to ensure updates are well-behaved and do not allow unauthorized
data or policy modifications. Users updating data must possess SK to retrieve
data and an access policy to encrypt changes. Traditional access controls would
be necessary to limit data and policy updates to authorized users.

4.4 Implementation

Our test implementation of ZeroVis was built on the architecture described
above. The data consumer issues queries to the ZeroVis proxy. The ZeroVis
proxy re-writes each query and submits it to the mySQL database server. We
built the ZeroVis proxy by modifying the CryptDB proxy, which was built by
modifying mysql-proxy. Both CryptDB and ZeroVis can be implemented using
other proxy software and any DBMS the chosen proxy supports. Both the Ze-
roVis proxy and the MySQL database server run on computers running Linux.
ZeroVis supports both interactive clients through a shell prompt and existing
applications through a connection to the proxy. Both client types require that
users register with an AA.

We implemented the ZeroVis framework by integrating CP-ABE into CryptDB
proxy.CryptDBprovides query re-writing andcapability to searchacross encrypted
data. The addition of CP-ABE as a new encryptionmethod within CryptDB gives
the framework one-to-many encryption capability. The first change to CryptDB
was to create a new column for each protected column. CryptDB normally creates
2 or 3 columns to store encrypted data using different methods to support different
types of queries. The new column for each plaintext column stores the CP-ABE
CT.We added a new encryption layer, ABE, to each onion definition, added a new
ABE security level, and added a new class to handle CP-ABE encryption and de-
cryption operations. The new class uses cpabe-toolkit functions to encrypt and

Towards Secure Cloud Database with Fine-Grained Access Control 333

decrypt data. We modified the CryptDB proxy query re-writing code to replace
requested columnswithCP-ABEcolumns.We retain the CryptDBobfuscated col-
umnnames in the queries to allow the database to select data using searchable data.
The database then returns only CP-ABE encrypted data. The proxy attempts to
decrypt each column and returns successfully decrypted data to the client.

With the new functionality in place to handle CP-ABE, we extended the
proxy to fetch the user’s CP-ABE SK, based on the MySQL database user id.
The private key will be provided by the AA in more robust implementations. Ad-
ditional modifications to the proxy also fetch and store the current user’s default
access policy for CP-ABE encryption operations. The ZeroVis system currently
creates CP-ABE CT for every encrypted column. The CP-ABE encryption uses
the current user’s access policy. Decryption uses the current user’s SK, previ-
ously generated using the CP-ABE keygen() function. Future work will extend
the supported SQL syntax to allow users to optionally provide access policies
with every query.

5 Performance Results

Experiment Setup. Our performance assessment is based on a straightforward
CP-ABE addition to CryptDB as described above. Our goal was to determine the
additional overhead CP-ABE added to the existing CryptDB implementation.
We created multiple copies of test databases, all based on subsets of the TPC-
C[6] benchmark database. Test databases of different sizes were built by altering
the number of rows in the item, warehouse, and district tables, all based on
cardinality relationships defined in the TPC-C specification. The resulting 5
test databases DB-a, DB-b, DB-c, DB-d, DB-e have row cardinality of 1912,
2975, 7156, 18622, 35756 respectively, which are approximately increasing in a
logarithmic scale. We created sets of queries, both single row and multiple row
returned sets, to assess the general performance of the ZeroVis framework. The
queries were simple, single table INSERT statements to load varying size subsets
of the TPC-C database, and single table SELECT statements to retrieve 1 row
(150 SELECTs) and sets (150 SELECTs) from the item, stock, and customer
tables. The SELECT queries to retrieve sets of rows were randomly generated to
select a range from the domain of each table. The test sever had an Intel Core 2
2.0 GHz(x2) processor with 3GB RAM running Ubuntu 13.10. The client/proxy
computer had an Intel Core i7 2.4 GHz(x8) processor with 16GB RAM running
Ubuntu 13.10. The two computers were connected via a 100Mbit/s Ethernet
connection.

Results. Adding CP-ABE results in an additional encryption operation for each
protected column, adding substantial observed space and computation time over-
head. CryptDB, without CP-ABE, is approximately 26% slower (throughput
loss) than native MySQL [24] when running the TPC-C benchmark. Encryption
and decryption times are linearly related to the number of leaf nodes in the
CP-ABE access policy. According to Bethenourt et al, [1], their implementation

334 M.G. Solomon, V. Sunderam, and L. Xiong

of CP-ABE took approximately 0.5 seconds to encrypt a payload with 20 policy
leaf nodes, while only taking 0.04 seconds to decrypt. One reason why the en-
cryption operation is so much slower is that it includes parsing and processing
the provided policy. The decrypt operation does not directly interact with at-
tributes. Generating the key, based on supplied attributes, is a separate function
that must be completed prior to any decryption attempt.

Fig. 6. Resulting DB Sizes for test DBs (of logarithmically increasing row cardinality)

Fig. 7. Database load time

Figure 6 shows the resulting database size (in MB) of the 5 test databases
with varying row cardinality (approximately increasing in a logarithmic scale)
for CryptDB (without CP-ABE) and ZeroVis (with CP-ABE) respectively. As
the figure illustrates, the overhead incurred by ZeroVis increases linearly with
the row cardinality. The current implementation stores a complete CP-ABE ci-
phertext payload for every protected database column, which includes the access
policy and the encrypted data. Our future work will explore reducing redundancy
through consolidating CP-ABE access policies which we expect will significantly
decrease the overhead.

Figure 7 shows the load time for each database instance. The ZeroVis
computational overhead is a result of the additional CP-ABE calculations. As
mentioned above, the current test ZeroVis implementation constructs the ac-
cess policy tree for each column, even if all columns share the same policy. It is

Towards Secure Cloud Database with Fine-Grained Access Control 335

expected that reducing CP-ABE access policy redundancy will also reduce com-
putational overhead for future ZeroVis framework versions and result in ZeroVis
performing more closely to CryptDB.

Fig. 8. Database Query time

Figure 8 shows times for queries that return single rows, and sets of rows
(range queries). We submitted 300 SELECT queries for each database instance,
150 distinct queries and 150 range queries. The queries were scaled to consider
the range of data stored in each database (randomly generated to exercise the
full range of data in each table). Queries use both indexed and non-indexed
criteria. The disparity between CryptDB and ZeroVis performance for range
queries is due to ZeroVis’ current larger data storage requirements. Additional
tests with the proxy and sever running on a single machine showed that net-
work costs were not responsible for the higher overhead of ZeroVis. The queries
in our test returned most of the columns from each table, requiring CP-ABE
decryption operations for each column. While decrypting multiple columns is
normal expected behavior, the redundancy of storing and transporting multiple
copies of the access policy for each column increases the workload.We believe
reducing redundant CP-ABE operations and normalizing the access policy stor-
age technique will reduce ZeroVis’ computational overhead and additional costs
of the framework, resulting in performance closer to CryptDB than the current
ZeroVis implementation.

6 Conclusions and Future Work

In this paper we showed how combining CP-ABE with encrypted data searching
solves the problem of storing and retrieving confidential data from an untrusted
environment, while giving the data provider control over who accesses her data.
While other frameworks provide some of these capabilities, ours is the only one
to our knowledge that accomplishes this without relying on traditional key man-
agement techniques. Our framework is the first to specifically address the need
for one-to-many encryption in a database environment, which requires support
for efficient queries across encrypted data.

336 M.G. Solomon, V. Sunderam, and L. Xiong

This paper describes the initial ZeroVis framework implementation. Future
framework changes are necessary to create a more production viable frame-
work.A specific requirement for a trusted AA needs to be included. Although we
only generally described the need for the AA,the AA will be an integral com-
ponent of a completed framework. It will be responsible for authorizing users,
securely storing their attributes, and providing the ZeroVis proxy with sufficient
authentication information and attributes to properly handle encryption and
decryption operations for authorized users. The AA will act as the layer of pro-
tection that stops attackers from arbitrarily providing unauthorized attributes
to the CP-ABE encryption/decryption functions. The AA will also manage the
master key required for encryption/decryption operations.

Additional work is necessary to reduce the storage and computational over-
head of CP-ABE. Others have already studied this problem, including Constant-
size CP-ABE (CP-ABE) [31] and techniques discussed in [18] and [1]. We will
also explore normalizing the CP-ABE ciphertext,which is currently a concatena-
tion of the access policy and the encrypted payload. The access policy comprises
over 90% of the ciphertext size. Denormalizing the CP-ABE ciphertext will re-
duce the storage (and network transmission) requirements for multiple columns
that share the same access policy.

References

[1] Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: IEEE Symposium on Security and Privacy, pp. 321–334. IEEE Computer
Society (2007)

[2] Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kil-
ian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

[3] Carroll, M., van der Merwe, A., Kotze, P.: Secure cloud computing: Benefits, risks
and controls. In: Information Security South Africa (ISSA), pp. 1–9 (August 2011)

[4] Chase, M., Chow, S.S.M.: Improving privacy and security in multi-authority
attribute-based encryption. In: Proceedings of the 16th ACM Conference on Com-
puter and Communications Security, CCS 2009, pp. 121–130. ACM, New York
(2009)

[5] Chow, R., Golle, P., Jakobsson, M., Shi, E., Staddon, J., Masuoka, R., Molina,
J.: Controlling data in the cloud: Outsourcing computation without outsourcing
control. In: Proceedings of the 2009 ACMWorkshop on Cloud Computing Security,
CCSW 2009, pp. 85–90. ACM, New York (2009)

[6] Transaction Processing Performance Council. Tpc benchmark c, standard specifi-
cation version 5 (2001)

[7] Deshmukh, Pasha A., Qureshi, et al.: Transparent data encryption–solution for
security of database contents. arXiv preprint arXiv:1303.0418 (2013)

[8] De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati,
P.: Over-encryption: Management of access control evolution on outsourced data.
In: Proceedings of the 33rd International Conference on Very Large Data Bases,
VLDB 2007, pp. 123–134. VLDB Endowment (2007)

[9] Elmasri, R.A., Navathe, S.B.: Fundamentals of Database Systems [With Access
Code]. Addison Wesley Publishing Company Incorporated (2011)

Towards Secure Cloud Database with Fine-Grained Access Control 337

[10] Farcasescu, M.R.: Trust model engines in cloud computing. In: 2012 14th Interna-
tional Symposium on Symbolic and Numeric Algorithms for Scientific Computing
(SYNASC), pp. 465–470 (September 2012)

[11] Ferretti, L., Colajanni, M., Marchetti, M., Scaruffi, A.E.: Transparent access on
encrypted data distributed over multiple cloud infrastructures. In: The Fourth In-
ternational Conference on Cloud Computing, GRIDs, and Virtualization, CLOUD
COMPUTING 2013, pp. 201–207 (2013)

[12] Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.) CRYPTO 1993.
LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994)

[13] Gowrigolla, B., Sivaji, S., Masillamani, M.R.: Design and auditing of cloud com-
puting security. In: 2010 5th International Conference on Information and Au-
tomation for Sustainability (ICIAFs), pp. 292–297 (December 2010)

[14] Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Proceedings of the 13th ACM Con-
ference on Computer and Communications Security, CCS 2006, pp. 89–98. ACM,
New York (2006)

[15] Ibraimi, L., Petkovic, M., Nikova, S., Hartel, P., Jonker, W.: Ciphertext-policy
attribute-based threshold decryption with flexible delegation and revocation of
user attributes. Univeristy of Twente, Tech. Rep. (2009)

[16] Jansen, W., Grance, T., et al.: Guidelines on security and privacy in public cloud
computing. NIST Special Publication 800:144 (2011)

[17] Khan, K.M., Malluhi, Q.: Establishing trust in cloud computing. IT Profes-
sional 12(5), 20–27 (2010)

[18] Kim, J., Susilo, W., Au, M.H., Seberry, J.: Efficient semi-static secure broadcast
encryption scheme. In: Cao, Z., Zhang, F. (eds.) Pairing 2013. LNCS, vol. 8365,
pp. 62–76. Springer, Heidelberg (2014)

[19] Kulkarni, G., Chavan, N., Chandorkar, R., Waghmare, R., Palwe, R.: Cloud se-
curity challenges. In: 2012 7th International Conference on Telecommunication
Systems, Services, and Applications (TSSA), pp. 88–91 (October 2012)

[20] Lee, W.-B., Lee, C.-D.: A cryptographic key management solution for hipaa
privacy/security regulations. IEEE Transactions on Information Technology in
Biomedicine 12(1), 34–41 (2008)

[21] Li, M., Yu, S., Zheng, Y., Ren, K., Lou, W.: Scalable and secure sharing of per-
sonal health records in cloud computing using attribute-based encryption. IEEE
Transactions on Parallel and Distributed Systems 24(1), 131–143 (2013)

[22] Mather, T., Kumaraswamy, S., Latif, S.: Cloud Security and Privacy: An Enter-
prise Perspective on Risks and Compliance. Theory in practice. O’Reilly Media
(2009)

[23] Phan, D.-H., Pointcheval, D., Shahandashti, S.F., Strefler, M.: Adaptive cca broad-
cast encryption with constant-size secret keys and ciphertexts. International Jour-
nal of Information Security 12(4), 251–265 (2013)

[24] Popa, R.A., Redfield, C.M.S., Zeldovich, N., Balakrishnan, H.: Cryptdb: Pro-
tecting confidentiality with encrypted query processing. In: Proceedings of the
Twenty-Third ACM Symposium on Operating Systems Principles, SOSP 2011,
pp. 85–100. ACM, New York (2011)

[25] Shen, Z., Tong, Q.: The security of cloud computing system enabled by trusted
computing technology. In: 2010 2nd International Conference on Signal Processing
Systems (ICSPS), vol. 2, pp. V2–11–V2–15 (July 2010)

[26] Tu, S., Frans Kaashoek, M., Madden, S., Zeldovich, N.: Processing analytical
queries over encrypted data. Proc. VLDB Endow. 6(5), 289–300 (2013)

338 M.G. Solomon, V. Sunderam, and L. Xiong

[27] Yu, S., Wang, C., Ren, K., Lou, W.: Achieving secure, scalable, and fine-grained
data access control in cloud computing. In: 2010 Proceedings IEEE INFOCOM,
pp. 1–9 (March 2010)

[28] Yu, S., Wang, C., Ren, K., Lou, W.: Attribute based data sharing with attribute
revocation. In: Proceedings of the 5th ACM Symposium on Information, Computer
and Communications Security, ASIACCS 2010, pp. 261–270. ACM, New York
(2010)

[29] Zheng, Q., Xu, S., Ateniese, G.: Vabks: Verifiable attribute-based keyword search
over outsourced encrypted data. Cryptology ePrint Archive, Report 2013/462
(2013), http://eprint.iacr.org/

[30] Zhou, L., Varadharajan, V., Hitchens, M.: Enforcing role-based access control for
secure data storage in the cloud. The Computer Journal 54(10), 1675–1687 (2011)

[31] Zhou, Z., Huang, D.: On efficient ciphertext-policy attribute based encryption
and broadcast encryption: Extended abstract. In: Proceedings of the 17th ACM
Conference on Computer and Communications Security, CCS 2010, pp. 753–755.
ACM, New York (2010)

[32] Zou, X., Dai, Y.-S., Bertino, E.: A practical and flexible key management mecha-
nism for trusted collaborative computing. In: The 27th Conference on Computer
Communications, INFOCOM 2008., pp. 538–546. IEEE (April 2008)

http://eprint.iacr.org/

Practical Private Information Retrieval
from a Time-Varying, Multi-attribute,

and Multiple-Occurrence Database

Giovanni Di Crescenzo, Debra Cook, Allen McIntosh, and Euthimios Panagos

Applied Communication Sciences, NJ, USA
{gdicrescenzo,dcook,amcintosh,epanagos}@appcomsci.com

Abstract. We study the problem of privately performing database queries (i.e.,
keyword searches and conjunctions over them), where a server provides its own
database for client query-based access. We propose a cryptographic model for
the study of such protocols, by expanding previous well-studied models of key-
word search and private information retrieval to incorporate a more practical data
model: a time-varying, multi-attribute and multiple-occurrence database table.

Our first result is a 2-party private database retrieval protocol. Like all previ-
ous work in private information retrieval and keyword search, this protocol still
satisfies server time complexity linear in the database size.

Our main result is a private database retrieval protocol in a 3-party model
where encrypted data is outsourced to a third party (i.e., a cloud server), sat-
isfying highly desirable privacy and efficiency properties; most notably: (1) no
unintended information is leaked to clients or servers, and only minimal ‘access
pattern’ information is leaked to the third party; (2) for each query, all parties run
in time only logarithmic in the number of database records; (3) the protocol’s run-
time is practical for real-life applications, as shown in our implementation where
we achieve response time that is only a small constant slower than commercial
non-private protocols like MySQL.

1 Introduction

As reinforced by current technology trends (e.g., ‘Big Data’, ‘Cloud-based Data Re-
trieval’), in today’s computer system there is critical need to efficiently store, access
and manage massive amounts of data. While data management and storage systems
evolve to take these new trends into account, privacy considerations, already of great
interest, become even more important. To partially address privacy needs, database-
management systems can use private database retrieval protocols, where clients submit
queries and receive matching records in a way so that clients do not learn anything
new about the database records (other than the content of the matching records), and
database servers do not learn which queries are submitted. The research literature has
attempted to address these issues, by studying private database retrieval protocols in
limited database models and with limited efficiency properties. In this paper we address
some of these limitations, by using a practical database model, and proposing a partici-
pant and privacy model in which data is outsourced to a third party (in encrypted form)
and practical private database retrieval protocols are possible.

V. Atluri and G. Pernul (Eds.): DBSec 2014, LNCS 8566, pp. 339–355, 2014.
c© IFIP International Federation for Information Processing 2014

340 G. Di Crescenzo et al.

Our Contribution. Continuing the well-studied areas of private information retrieval
(PIR) [4,17] and keyword search (KS) [3,2,9], we propose a more practical database
model, capturing record payloads, multiple attributes, possibly equal attribute values
across different database records, and multiple answers to a given query and inser-
tion/deletion of database records. In this model, we define suitable correctness, privacy
and efficiency requirements, by showing previously not discussed technical reasons as
to why we cannot use the exact same requirements from the PIR and KS areas.

We then design a first database retrieval protocol that satisfies the desired privacy
properties (i.e., the server learns no information about the query value other than the
number of matching records, and the client learns no information about the database
other than matching database records) in our novel and practical database model (i.e.,
a time-varying, multi-attribute and multiple-occurrence table). This protocol is based
on oblivious pseudo-random function evaluation protocols and PIR protocols and still
has server time complexity linear in the database size (a source of great inefficiency in
previous PIR and KS protocols), a drawback dealt with in our next result.

After expanding the participant model with a third party (i.e., a cloud server, as in the
database-as-a-service model [13]), we design a second protocol, only based on pseudo-
random functions (implemented as block ciphers), where both server and third party run
queries in logarithmic time and the following privacy properties hold: the server learns
nothing about the query value, the client learns nothing about the database in addition
to the payloads associated with the matching records, and the third party learns nothing
about the query value or the database content, other than the repeating of queries from
the client and repeated access to the encrypted data structures received by the server
at initialization. Thus, we solve the long-standing problem of achieving efficient server
runtime at the (arguably small) cost of a ‘third-party’-server and some ‘access-pattern’
type leakage to this third party. We stress that this protocol has efficient running time not
only in an asymptotic sense, but in a sense that makes it ready for real-life applications
(where such form of leakage to the third party is tolerable), answering another long-
standing question in the PIR area. In our implementation, we reached our main design
goal of achieving response time to be only a small constant slower than commercial
non-private protocols like MySQL. Solving a number of technical challenges posed
by the new data model (including a reduction step via a novel multiplicity database)
using simple and practical techniques was critical to achieve this goal. The privacy loss
traded for such a practicality property is rather minimal, as neither the client nor the
server learn anything new, and the third party does not learn anything about the plain
database content or the plain queries made, but just an ‘unlabeled histogram’ describing
the relative occurrences of (encrypted) matching records and (encrypted) query values
within the protocol. (Techniques from [14] can be used to mitigate privacy loss from
such leakage as well.) In all our protocols, we only consider privacy against a semi-
honest adversary, as there are known techniques, based on the general paradigm of [11],
to compile such protocols and achieve privacy against malicious adversaries. Almost all
formal definitions and proofs are omitted due to space restriction.

Related Work. Our work revisits and extends work in the PIR and KS areas, which have
received a large amount of attention in the cryptography literature. (See, e.g., [18].) Both
areas consider rather theoretical data models, as we now discuss. In PIR, a database is

Practical Private Information Retrieval 341

modeled as a string of n bits, and the query value is an index i ∈ {1, . . . , n}. In KS,
the data models differ depending on the specific paper we consider; the closest data
model to ours is the one from [9], where a database is a set of records with per-record
payloads, but has a single attribute, admits a single matching record per query and
no record insertions/deletions. The inefficiency of the server runtime in PIR and KS
protocols has been well documented (see, e.g., [20]). Some results attempted to use a
third party and make the PIR query subprotocol more efficient but require a practically
inefficient preprocessing phase [7].

In both PIR and KS, the database owner is the server that hosts the plain data. In
some related research areas, such as oblivious RAM (starting with [12]), and searchable
symmetric encryption (starting with [19]), the database owner is the client that uses the
server to host a carefully prepared and encrypted version of the data. In public-key
encryption with keyword search (starting with [2]) the data is provided in encrypted
form by multiple independent servers to a third party that helps satisfying a client’s
query. Because of these critical differences, results in the cited areas do not solve the
problem addressed by PIR and KS and use substantially different techniques, which are
not directly comparable to ours.

In the project supporting this paper, other performing teams like ours came up with
different and interesting solutions to similar problems. The closest published work from
any of these teams that we are aware of consists of [15]. Among the many differences,
the cited paper uses random oracles and public-key cryptography operations, which
we do not use since random oracles have been proved to likely not exist and public-
key cryptography operations are known to be less efficient than symmetric-key ones.
Finally, our database retrieval protocols well combine with database policy compliance
protocols from [6] that allow a server to authorize (or not) queries by a client according
to a specific policy, while maintaining privacy of queries and policy.

2 Models and Requirements

Data and Query Models. We model a database as an n-row, m-column matrix D =
(A1, . . . , Am), where each column is associated with an attribute, denoted as Aj , for
j = 1, . . . ,m. The first m − 1 columns are keyword attributes, and the last column
P = Am, is a payload attribute. A database entry is denoted as keyword Aj(i) or, in
the case j = m, as payload p(i) = Am(i). The database schema is the collection of
parameters n,m and of the description of each domain associated with each of the m
attributes, and to which database entries belong. The database schema is assumed to
be publicly known to all parties. A database row is also called record, and is assumed
to have the same length r (if data is not already in this form, techniques from [8]
are used to efficiently achieve this property), where r is constant with respect to n.
We consider a database update as an addition, deletion, or change of a single record,
and refer to the current database (resp., current database schema), as the database
(resp., database schema) obtained after any previously occurred updates. A query q is
modeled to refer to one or more database attributes and to contain one or more query
values from the relative attribute domains. We will mainly consider KS queries, such
as: “SELECT ∗ FROMmainWHEREattribute name = v,” where v is the query value.

342 G. Di Crescenzo et al.

A valid response to such a query consists of all payloads p(i), for i ∈ {1, . . . , n}, such
that Aj(i) = v, if attribute name = Aj , for some j ∈ {1, . . . ,m − 1}. We say that
the records in a valid response match the query. We will also discuss extensions of our
techniques to other query types, such as conjunctions (via logical AND gates) of KS
queries. The number of records containing the same query value v at attribute Aj is
also called the j-multiplicity of v in the database, and is briefly denoted as mj(v). KS
queries are always made to a specific attribute Aj , for some j ∈ {1, . . . ,m − 1}, and
therefore in their discussion the index j is omitted to simplify notation and discussion.

Participant Models. We consider the following efficient (i.e., running in probabilistic
polynomial-time in a common security parameter 1σ) participants. The client is the
party, denoted as C, that is interested in retrieving data from the database. The server is
the party, denoted as S, holding the database (in the clear), and is interested in allowing
clients to retrieve data. The third party, denoted as TP , helps the client to carry out the
database retrieval functionality and the server to satisfy efficiency requirements during
the associated protocol. By 2-party model we denote the participant model that includes
C, S and no third party. By 3-party model we denote the participant model that includes
C, S, and TP . (See Figure 1,2 for a comparison of the two participant models.)

 Query value v, attribute index j

C S

Query / Answer subprotocol

Input from C: (v,j). Input from S: DB

Database DB = (A1,…,Am)

 C’s output: DB payloads Am(i) for
all i=1,…, mj(v) such that Aj(i) = v

Fig. 1. Structure of our 2-party DR protocol

Encrypted DB

C S

Query value v, attribute index j Database DB = (A1,…,Am)

TP

Query / Answer subprotocol
Input from C: (v,j)

Input from TP: encrypted DB

 C’s output: DB payloads Am(i) for
all i=1,…, mj(v) such that Aj(i) = v

Fig. 2. Structure of our 3-party DR protocol

Database Retrieval Protocols. In the above data, query, and participant models, we
consider a database retrieval (briefly, DR) protocol as an evolution of the KS protocol,
as defined in [9] (in turn, an evolution of the PIR protocol, as defined in [17]), with the
following three main model and functionality extensions, which are consistent with the
functioning of typically deployed databases: (1) databases contain multiple attributes
(or columns with keywords); (2) each database attribute can have multiple occurrences
of the same keyword; and (3) database entries may change as a result of record addition
and deletion. Specifically, we define a DR protocol as a triple (Init,Query,Update) of
subprotocols, as follows. The initialization subprotocol Init is used to set up data struc-
tures and cryptographic keys before C’s queries are executed. The query subprotocol
Query allows C to make a single query to retrieve (possibly multiple) matching database
records. The record update subprotocolUpdate allows S to periodically update the data
structures and cryptographic keys set during the Init subprotocol, as a result of a record

Practical Private Information Retrieval 343

addition or deletion. As a first attempt, we target DR protocols that satisfy the following
(informal) list of requirements:

1. Correctness: the DR protocol allows a client to obtain all payloads from the current
database associated with records that match its issued query;

2. Privacy: the DR protocol preserves privacy of database content and query values,
ideally only revealing what is leaked by system parameters known to all parties and
by the intended functionality output (i.e., all payloads in matching records to C);

3. Efficiency: the protocol should have low time, communication and round complex-
ity; ideally, a constant number of messages per query, and time and communication
sublinear in the number n of database records.

It turns out that, as written, these requirement cannot be exactly satisfied, and the miss-
ing properties are different depending on whether we consider the 2-party or the 3-party
model. Thus, we continue with formal definitions common to both models, and then de-
fer different formal definitions of privacy and efficiency to later sections.

Preliminary Requirement Notations: Let σ be a security parameter. A function is neg-
ligible if for all sufficiently large natural numbers σ ∈ N , it is < 1/p(σ), for any
polynomial p. A DR protocol execution is a sequence of executions of subprotocols
(Init, qu1, . . . , quq), where qui ∈ {Query,Update}, for i = 1, . . . , q, for some q poly-
nomial in σ, and all subprotocols are run on inputs provided by the involved parties
(i.e., a database from S, query values from C, and database updates from S). We only
consider stateless Query subprotocols, in that they can depend on the outputs of Init
and Update subprotocols but not on the output of previous Query subprotocols.

Correctness: for any DR protocol execution, and any inputs provided by the partici-
pants, in any execution of a Query subprotocol, the probability that C obtains all records
in the current database that match C’s query value input to this subprotocol, is 1.

Background Primitives. A random function R is a function that is chosen with dis-
tribution uniform across all possible functions with some pre-defined input and output
domains. A keyed function F (k, ·) is a pseudo-random function (PRF, first defined in
[10]) if, after key k is randomly chosen, no efficient algorithm allowed to query an
oracle function O can distinguish whether O is F (k, ·) or O is a random function R
(over the same input and output domain), with probability greater than 1/2 plus a neg-
ligible quantity. An oblivious pseudo-random function evaluation protocol (oPRFeval,
first defined in [9]) is a protocol between two parties A, having as input a string k, and
B, having as input a key x for a PRF F . The protocol’s outcome is a private function
evaluation of the value F (k, x), returned to B (thus, without revealing any information
about x to B, or any information about k to A). oPRFeval protocols were constructed in
[9,16] using number-theoretic hardness assumptions.

A single-database private information retrieval protocol (PIR, first defined in [17])
is a protocol between two parties A, having as input a value i ∈ {1, . . . , n}, and
B, having as input a database represented as a sequence of equal-length values x =
(x[1], . . . , x[n]) The protocol consists in a private retrieval of the value x[i], returned to
A (thus, without revealing any information about i to B or about x[1], . . . , x[i−1], x[i+
1], . . . , x[n] to A). A semi-private PIR protocol is a protocol where privacy only con-
sists of preventing to reveal any information about i to B. Several PIR and semi-private

344 G. Di Crescenzo et al.

PIR protocols have been presented in the cryptographic literature, starting with [17],
using number-theoretic hardness assumptions.

3 Two-Party Database Retrieval

We define privacy and efficiency requirements in the 2-party model in Section 3.1 and
describe our first DR protocol (for KS queries in the 2-party model) in Section 3.2.

3.1 Privacy and Efficiency in the 2-Party Model

Informally, our privacy and efficiency requirements are modified with respect to our first
attempt in Section 2, so that a 2-party DR protocol can leak the number of matching
records to S, has communication complexity sublinear in n if the number of matching
records is also sublinear in n, and allows S to run in time linear in the number n of
database records. A formal treatment follows.

Privacy: Informally speaking, we require the subprotocols in a DR protocol execution
do not leak information beyond the following:

1. Init: the database schema, as part of overall system parameters, will be known to
all participants;

2. Query, based on query value v, attribute index j, and the current database: the pair
(j,mj(v)) will be known by S and all payloads {p(i) : i = i(1), . . . , i(mj(v))}
such that Aj(i(1)) = · · · = Aj(i((mj(v)))) = v will be obtained by C, as a
consequence of the correctness requirement;

3. Update: on input a record addition or deletion to the current database, the current
database (after the update) will be known by S, as a consequence of the correctness
requirement, and the current database schema (after the update), as part of overall
system parameters, will be known by all participants.

Given this characterization of the intended leakage, a formal privacy definition can be
derived using known definition techniques from simulation-based security and compos-
able security frameworks often used in the cryptography literature.

Consistently with the literature on secure function evaluation, PIR and KS proto-
cols, it might have seemed reasonable to just require that no new information about the
query value is revealed to S, as we hoped to achieve in our first attempt in Section 2. It
turns out that this level of privacy cannot be obtained, as we now explain. Let us con-
sider a specific execution of subprotocol Query within a DR protocol execution. Since
more than one record may match C’s query value v, by the correctness property, at the
end of this execution of subprotocol Query, C must be able to compute all payloads
p(i(1)), . . . , p(i(mj(v))) corresponding to records matching v, where mj(v) denotes
the multiplicity of v in the j-th database attribute Aj . Moreover, since the executions of
the Init,Update protocols only leak the database schema to C, and since subprotocol
Query is stateless, all previous subprotocol executions in the DR protocol execution,
do not help in computing all matching records to this specific execution of subproto-
col Query. In other words, C must be able to compute all matching records from the
communication received during this specific execution of subprotocolQuery. By a stan-
dard application of Shannon’s source coding theorem (see, e.g., [5]), this implies that

Practical Private Information Retrieval 345

the communication exchanged in this execution is an upper bound to the entropy H of
payloads p(i(1)), . . . , p(i(mj(v))) (over the probability distribution of the source that
generates the database payloads). Thus, we obtain the following

Proposition 1. For any v, let cc(v) denote the number of bits exchanged in an execution
of subprotocol Query on input query value v and attribute index j. It holds that cc(v) ≥
H(p(i(1)), . . . , p(i(mj(v)))).

In Proposition 1, the entropy term is maximized when database payloads are randomly
and independently distributed, in which case the communication exchanged in each ex-
ecution of subprotocolQuery leaks an upper bound on the value mj(v), i.e., the number
of matching records, to both C and S. Accordingly, we target the design of protocols
that may leak mj(v) also to S during each execution of subprotocol Query on input
query value v and attribute index j (as formulated in the above privacy requirement).

Efficiency: A DR protocol’s round complexity (resp., communication complexity) is the
max number of messages (resp., the max length of all messages), as a function of the
system parameters n,m, σ, required by any of the Init,Query,Update subprotocols,
for any inputs to them. A DR protocol’s S-time complexity for subprotocol π is the
max running time (as a function of the system parameters n,m, σ) required by S in
subprotocol π ∈ {Init,Query,Update}, over all possible inputs to it. Asymptotic re-
quirements consistent with the literature on PIR and KS protocols include the follow-
ing: (1) the communication complexity of each execution of protocolQuery is sublinear
in n; (2) the S-time complexity in each execution of protocol Query is sublinear in n.
Requirement (1) is achieved by PIR and KS protocols in the literature when up to a
single record is sent as a reply to each query. However, in our DR protocols, a query
could be matched by a possibly linear number of records; accordingly, we only require
the communication complexity to be sublinear whenever so is the number of matching
records. Requirement (2), when coupled with the privacy requirement that an execution
of the Init protocol only leaks minimal information to C, is known to be unachievable in
the 2-party model (or otherwise privacy of the query value v would not hold against the
server), as discussed in many papers including [17,9].

3.2 Our Protocol

Our 2-party DR protocol for KS queries follows the general structure outlined in Fig-
ure 1 and satisfies the following

Theorem 1. Under the existence of oPRFeval protocols [9] and (single-database) PIR
protocols [17], there exists (constructively) a DR protocolπ1 = (Init1,Query1,Update1)
for KS queries in the 2-party model, satisfying:

1. correctness
2. privacy against C (i.e., it only leaks the matching records to C);
3. privacy against S (i.e., it only leaks the queried attribute and the number of match-

ing records to S);
4. communication complexity of Query1 is o(n) if so is the number of matching

records;

346 G. Di Crescenzo et al.

5. round complexity of Query1 is O(log n);
6. the S-time complexity in Query1 (resp. Init1) (resp., Update1) is O(n) (resp., is
O(n)) (resp., is O(log n)).

The protocol π1 claimed in Theorem 1 is presented in two steps: first, we describe a DR
protocol π0 = (Init0,Query0) in the restricted data model where all keywords in each
database attribute are distinct, and no record additions or deletions happen, and then we
describe the DR protocol π1 that builds on π0 to remove these restrictions.

The DR Protocol π0. Informally speaking, this protocol is a combination of a KS pro-
tocol, denoted as Protocol 2 in [9] (in turn building on a semi-private KS protocol from
[3]), and an oPRFeval protocol for computing a pseudo-random function f , as follows.

Init0. On input database D = (A1, . . . , Am), S returns a pseudo-random version of the
database, denoted as prD = (prA1, . . . , prAm−1, Am), and computed by replacing
keyword entries Aj(i) with pseudo-random values prAj(i) = fk(Aj(i)) for all j =
1, . . . ,m− 1 and i = 1, . . . , n, where k is a random key. (That is, keyword entries are
replaced by pseudo-random versions of them, but payloads in Am remain unchanged).

Query0. On input query value v and attribute index j from C, and key k and database
prD from S, the following steps are run:
1. C and S run an oPRFeval protocol to return fk(v) to C;
2. C sends j to S
3. C and S run the semi-private KS protocol from [3], where C uses fk(v) as query

value and S provides (prAj , Am) as a 2-column database. At the end of the proto-
col, C can compute the record Am(i) such that prAj(i) = fk(v), if any.

Here, the semi-private KS protocol from [3] consists of using a PIR protocol, such as
the one from [17], to probe a conventional search data structure built by S on top of the
pseudo-database keywords in a way that is oblivious to S.

Protocol π0 can be shown to be a DR protocol in the following restricted data model:
(1) no database records are added or deleted; (2) for each j = 1, . . . ,m−1 the database
entries Aj(1), . . . , Aj(n) relative to the j-th attribute are all distinct. We remove these
two restrictions by combining the following ideas: S can transform the original database
into one where each column Aj has distinct keywords (or payload), by computing a
padded database, where keywords are padded with a multiplicity counter; S can com-
pute a preliminary multiplicity database to let C obtain the multiplicity of its query
value from S using protocol π0; given the multiplicity of the query value, C can request
the matching records by making one query for each matching record to the padded
database, using again protocol π0; updating the padded and multiplicity databases and
associated data structures can be done efficiently by careful choices of padding and data
structures. We stress that revealing the multiplicity value to C does not provide any
more information than sending the matching records (which C is entitled to receive). A
more formal description follows.

The DR Protocol π1. Based on the above DR protocol π0 = (Init0,Query0), we define
protocol π1 = (Init1,Query1,Update1) as follows.

Init1. On input database D = (A1, . . . , Am), S builds an associated padded database
pD = (pA1, . . . , pAm), as follows. The payload pAm is equal to Am. Then, for
each j = 1, . . . ,m − 1, and each i = 1, . . . , n, the keyword pAj(i) is defined as

Practical Private Information Retrieval 347

(Aj(i),mc(i, j)) where mc(i, j) is the multiplicity counter from {1, . . . , n} such that
Aj(i) is the mc(i, j)-th occurrence of value Aj(i) within array (Aj(1), . . . , Aj(n));
Then S builds an associated multiplicity database mD = (mA1, . . . ,mAm), as fol-
lows. For each j = 1, . . . ,m − 1, and each i = 1, . . . , n, the keyword mAj(i) is
defined exactly as pAj(i). The payload mAm(i) is denoted as m′

j(v), where m′
j(v) is

defined as mj(v) when mc(i, j) = 1 and a null string ⊥ of the same length otherwise.
Finally, S runs Init0 to compute pseudo-random versions prpD and prmD of databases
pD and mD, respectively, and to send the schema for databases mD and pD to C.

Query1. On input query value v and attribute index j for C, and key k and databases
prpD, prmD for S, the following steps are run:
1. C and S run subprotocol Query0 on input database prmD from S, and query value

(v, 1) and attribute index j from C. Let p(i) be the payload obtained by C at the
end of this protocol, for some i ∈ {1, . . . , n}. If p(i) =⊥ then the protocol stops.
Otherwise C sets the value mj(v) = p(i).

2. For t = 1, . . . ,mj(v), C and S run subprotocol Query0 on input database prpD
from S, and query value (v, t) and attribute index j from C.

Update1. In subprotocol Update1, we consider record addition and record deletion op-
erations, and on each of them, we need to efficiently update any values changing as a
result of these operations; specifically:

1. the data structures required in π0;
2. the multiplicity value m′

j(v) used in mD;
3. the multiplicity counters mc(i, j) in the padding structures used in pD and mD;
4. the database schema for both pD and mD; and
5. the pseudo-random databases prpD and prmD.

First, with respect to (1), we observe that the data structures used in π0 are those
from [3] and are conventional data structures with the only requirement of performing
search in logarithmic time. Our added requirement of having efficient insertion and
deletion does not require a modification of the data structures, since many of the data
structures used in [3] (e.g., binary search trees) can be used to perform logarithmic-
time search, insertion and deletion. Then, the values in (2), (4), and (5) can be updated
in time constant with respect to n, as follows. As for (2), updating the multiplicity value
m′

j(v) only requires to change one payload entry mAm(i) in the multiplicity database
mD, regardless of the multiplicity of v, and can be done in O(log n). As for (4), S can
just update the database schema for both pD and mD and send those to C. As for (5),
S can again use key k to recompute new fk(pDj(i)) and fk(mDj(i)) values.

With respect to values in (3), we now describe how to update the multiplicity counters
mc(i, j) after a record update. In the addition case, a record would also be added in the
databases pD and mD, and the multiplicity counter mc(i, j) in the added record is set
to mj(v) + 1. In the deletion case, a record would also be deleted in the databases pD
and mD, and we cannot stop there as this would likely create a discontinuity in the
sequence of multiplicity counters mc(i, j) (e.g., when mj(v) ≥ 3, deleting the record
with multiplicity counter 2 would leave only records with counters 1 and 3). Instead,
S resets the multiplicity counter of i-th record such that mc(i, j) = mj(v) as equal to

348 G. Di Crescenzo et al.

the multiplicity counter of the just deleted record, thus keeping no discontinuity in the
sequence of multiplicity counters.

4 Three-Party Database Retrieval

We define privacy and efficiency requirements in the 3-party model in Section 4.1 and
describe our second DR protocol (for KS queries in the 3-party model) in Section 4.2.

4.1 Privacy and Efficiency in the 3-Party Model

Informally, our privacy and efficiency requirements are modified with respect to our first
attempt in Section 2, so that a 3-party DR protocol can leak the number of matching
records as well as ‘access-pattern’ leakage, to TP , and has communication complexity
sublinear in n if the number of matching records is also sublinear in n. (In particular,
we keep the requirement that S and TP have to run in time sublinear in the number n
of database records.) A formal treatment follows.

Privacy: The privacy leakage we allow in the 3-party model has two differences with
respect to the 2-party model: the number of matching records is now leaked to TP
instead of S; moreover, the following additional leakage to TP is allowed: repeated (or
not) occurrences of the same query made by C, and repeated (or not) accesses to the
same initialization information sent by S to TP at the end of the initialization protocol.
Informally speaking, we require the subprotocols in a DR protocol execution in the
3-party model to not leak any information beyond the following:

1. Init: the database schema, as part of overall system parameters, will be known to
all participants and an additional string eds (for encrypted data structures) will be
known to TP ; here, eds is encrypted under one or more keys unknown to TP and
its length is known from quantities in the database schema;

2. Query, based on query value v, attribute index j, and the current database: all pay-
loads {p(i) : i = i(1), .., i(mj(v))} such that Aj(i(1)) = ·· = Aj(i((mj(v)))) =
v will be obtained by C, as a consequence of the correctness requirement; the pair
(j,mj(v))), all bits in eds read by TP according to the instructions in the Query
protocol, and which previous executions of Query used the same query value v,
will be known to TP ;

3. Update: on input a record addition or deletion to the current database, the current
database (after the update) will be known to S, as a consequence of the correctness
requirement, and the current database schema (after the update), as part of overall
system parameters, will be known by all participants; all bits in eds read and/or
modified by TP according to the instructions in the Update protocol will be known
to TP , who will also determine up to one record previously or currently present in
the database containing the same query value as the one in the added/deleted record.

Given this characterization of the intended leakage, a formal privacy definition can be
derived using known definition techniques from simulation-based security and compos-
able security frameworks often used in the cryptography literature.

Using a direct extension of Proposition 1 to the 3-party model, we can prove an ana-
logue result with respect to leaking mj(v) to the coalition of S and TP . Thus, different

Practical Private Information Retrieval 349

3-party DR protocols could leak mj(v) only to S, or only to TP , or somehow split this
leakage between S and TP . Having to choose between one of these options, we made
the practical consideration that privacy against S (i.e., the data owner) is typically of
greater interest than privacy against TP (i.e., the cloud server helping C retrieve data
from S) in many applications, and therefore we focused in this paper on seeking pro-
tocols that leak mj(v) to TP and nothing at all to S. The other definitional choice of
leaking repetition patterns (even though not actual data) to TP is not due to a theoreti-
cal limitation, but seems a rather small privacy price to pay towards achieving the very
efficient S and TP time-complexity requirements discussed below.

Efficiency: The definition of a 3-party DR protocol’s round complexity, communica-
tion complexity and S-time-complexity are naturally extended from those of 2-party DR
protocols. We also define the TP -time-complexity by naturally adapting the server time-
complexity definition. As for 2-party protocols, we require that 3-party DR protocols
have communication complexity to be sublinear whenever so is the number of matching
records. Contrarily to 2-party protocols, we do require that the S-time complexity and
the TP -time complexity in each execution of protocol Query is sublinear in n, when-
ever is the number of matching records is sublinear in n (and achieving this property
is one of the major goals in the constructions in this paper). We also target a practical
response time efficiency requirement: the response time within a Query execution is
only a small constant c worse than the response time within the same subprotocol for a
non-private protocol such as MySQL.

4.2 Our Protocol

Our 3-party DR protocol for KS queries follows the general structure outlined in
Figure 2 and satisfies the following

Theorem 2. Under the existence of a PRF, there exists (constructively) a DR protocol
π2 = (Init2,Query2,Update2) for KS queries in the 3-party model, satisfying:

1. correctness
2. privacy against C (i.e., it only leaks the matching records to C);
3. privacy against S (i.e., it does not leak anything to S);
4. privacy against TP (i.e., it only leaks number of matching records, the repetition

of query values and the repeated access to initialization encrypted data structures);
5. communication complexity of Query2 (resp. Init2) (resp., Update2) is o(n) if so

is the number of matching records (resp., is O(n)) (resp., is O(log n));
6. S-time complexity in Query2 (resp. Init2) (resp., Update2) is O(1) (resp., is
O(n)) (resp., is O(log n));

7. TP -time complexity in Query2 (resp. Init2) (resp.,Update2) is o(n) if the number
of matching records is o(n/logn) (resp., is O(n)) (resp., is O(log n));

8. round complexity of Query2 is O(1).

Informally, our protocol π2 is obtained by performing several improvements in the 3-
party model to protocol π1 (which was designed in the 2-party model). As done for π1,
we first construct a DR protocol π′

0 = (Init′0,Query
′
0) in a restricted data model, and

350 G. Di Crescenzo et al.

then a DR protocol π2 that uses π′
0 and the ideas of multiplicity database and padded

database to obtain a DR protocol in our more general data model.

The DR Protocol π′
0. Informally speaking, this protocol is a simplified construction of

π0, taking advantage of the 3-party model.

Init′0. On input database D = (A1, . . . , Am), where A1, . . . , Am−1 contain keywords
and Am contains a payload, S first computes a shuffled version sD of database D;
that is, sD = (sA1, . . . , sAm), where sAj(ρ(i)) = Aj(i) for j = 1, . . . ,m and
i = 1, . . . , n, where ρ is a random permutation over {1, . . . , n}. Then, similarly as
in Init0, S computes a pseudo-random version of the database sD, denoted as prsD =
(prsA1, . . . , prsAm), and computed by replacing keyword entries sAj(i) with pseudo-
random entries prsAj(i) = fk(sAj(i)) for all j = 1, . . . ,m and i = 1, . . . , n, where k
is a random key and f is a pseudo-random permutation (here, using a permutation in-
stead of a function will later facilitate C’s decryption of any received payloads). More-
over, S generates a search data structure (i.e., a binary search tree iT reej) over the
keywords prsAj(1), . . . , prsAj(n) in prsD, for j = 1, . . . ,m − 1. Then, S sends
(iT ree1, . . . , iT reem−1), prsD to TP and the key k to C, in addition to sending the
database schema to both parties.

Query′0. In this protocol, C takes as input key k, a query value v and attribute index j, S
takes as input key k and database D, and TP takes as input (iT ree1, . . . , iT reem−1),
prsD. On these inputs, the protocol goes as follows:
1. C computes fk(v) and sends (fk(v), j) to TP
2. TP searches for fk(v) in the search data structure iT reej
3. If TP finds i such that fk(v) = prsAj(i), then

TP sends the associated (encrypted) payload prsAm(i) to C
C computes the (plain) payload as f−1

k (prsAm(i))
We note that Query′0 significantly simplifies Query0 in that C can directly compute
fk(v), without need to run an oPRFeval protocol, and TP can directly search for fk(v)
in the data structure iT reej, without need to run a semi-private PIR protocol.

Protocol π′
0 can be shown to be a DR protocol in the 3-party model and in the

following restricted data model: (1) the database entries do not change; (2) for each
j ∈ {1, . . . ,m} the database entries Aj(1), . . . , Aj(n) relative to the j-th attribute are
all distinct. We remove these two restrictions exactly as done in Section 3: we generate
π2 from π′

0 using a padded database, a multiplicity database, and composing mj(v)+1
times protocol π′

0. A more formal description is included for completeness.

The DR Protocol π2. Based on π′
0 = (Init′0,Query

′
0,Update

′
0), we define protocol

π2 = (Init2,Query2,Update2) as follows.

Init2. On input database D = (A1, . . . , Am), S first runs Init′0, thus sending prsD
and (iT ree1, . . . , iT reem−1) to TP and k to C, and D’s schema to both C and TP .
Then S builds an associated padded database pD = (pA1, . . . , pAm), and an associated
multiplicity databasemD = (mA1, . . . ,mAm), exactly as done in Init1. Finally,S runs
Init′0 to compute pseudo-random and shuffled versions prspD and prsmD of databases
pD and mD, respectively, and to send the schema for databases mD and pD to C.

Query2. On input query value v and attribute index j for C, and key k and databases
prspD, prsmD for S, the following steps are run:

Practical Private Information Retrieval 351

1. C and TP run subprotocol Query′0 on input database prsmD from TP , and query
value (v, 1) and attribute index j from C. Let p(i) be the payload obtained by C
at the end of this protocol, for some i ∈ {1, . . . , n}. If p(i) =⊥ then the protocol
stops. Otherwise C sets the value mj(v) = p(i).

2. For t = 1, . . . ,mj(v), C and TP run subprotocolQuery′0 on input database prspD
fromTP , and query value (v, t) and attribute index j fromC, who thus obtains pay-
loads p(i(1)), . . . , p(i(mj(v))), i(1), . . . , i(mj(v)) ∈ {1, . . . , n}, from prspD;

3. For t = 1, . . . ,mj(v), C computes the t-th original payload fromD as f−1
k (p(i(t))),

where k is the key obtained during the execution of Init′0.

Update2. We consider record addition and record deletion operations, and on each of
them, we need to efficiently update any changed values; specifically:

1. the data structures required in π′
0;

2. the multiplicity value m′
j(v) used in mD;

3. the multiplicity counters mc(i, j) in the padding structures used in pD and mD;
4. the database schema for pD and mD;
5. the data structures (iT ree1, . . . , iT reem−1); and
6. the pseudo-random and shuffled databases prsmD and prspD.

The updates for values in (1)-(4) are done as in Update1. The updates to the data struc-
ture iT ree are conventional data structure updates in the presence of one insertion or
one deletion. As for (6), S can again use key k to recompute new fk(pDj(i)) and
fk(mDj(i)) values. Several approaches would work to update the permutation ρ; here
is an example: upon a record insertion, the newly inserted record is considered the
(n+ 1)-th record in D and ρ(n+ 1) is defined as = n+ 1; upon a deletion of the i-th
record, the value ρ(n) is defined as = i.

5 Extension: Conjunction Formulae

We extend the KS protocols from Sections 3, 4 to the conjunction formulae over KS
queries; that is, the AND of c KS queries, for some c ≥ 1.

A first approach would be to process, in parallel, an individual KS query for each
term in the conjunction, and then having TP compute the intersection across the match-
ing sets. This approach is clearly undesirable both for privacy and efficiency reasons.
With respect to privacy, such a protocol would reveal to C the multiplicity of the query
value in each conjunct, which is not necessarily computable from the number of records
matching all conjuncts. With respect to efficiency, it is not hard to find examples of
conjunctive queries for which at least one conjunct is matched by a linear number of
records, but the number of records matching all conjuncts is sublinear in n. On such
queries, the communication complexity would be linear even though the information to
which C is entitled by the DR protocol functionality is sublinear.

To avoid both problems, we designed the following ‘combined-index’ approach. In
the initialization subprotocol, a specific combined index on the tuple of attribute values
can be created by concatenating the attribute names and query values, thus allowing the
conjunction to be treated as a single keyword query. For example, a conjunctive query of
A1 = a1 and A2 = a2 becomes a single KS query A1A2 = a1a2. The combined index
for A1A2 is treated exactly as indices for single attributes. The initialization, insertion

352 G. Di Crescenzo et al.

and deletion subprotocols are the same as those for KS queries, working on the cartesian
product of the domain. C runs the KS query algorithm using the combined attribute
values. Good properties of the method include: support of conjunctive queries with an
arbitrary number of conjuncts; it is only necessary to create a single combined index
for each set of attribute values as opposed to each permutation of the attribute values
(i.e. only an index for A1A2 is necessary, not one for A1A2 and one for A2A1); and
querying on the single index is faster than querying on multiple indices and determining
the intersection of the results. The unattractive property is that it requires one index for
each supported conjunctions, resulting in an exponential (in c) number of indices if
all possible conjunctions have to be supported. Still, many practical formulae can be
addressed, as the scenario where the number of attributes is constant with respect to n
is the most typical, and storage is an inexpensive resource nowadays.

6 Performance Evaluation

We present performance results for KS queries and boolean formulae over KS queries
for a small number of queries executed using our 3-party protocol π2 (implemented
with an additional SSL/TLS layer). MySQL was used for obtaining baseline results in
a non-private setting using the same schema and records as for π2.

Setup. We used 5 different database sizes: 10K, 100K, 1M, 10M, and 100M records.
All records were stored in a single database table containing the following columns:

Column Type Format Population Approach
FirstName VARCHAR 16 Bytes Randomly chosen, average 1K multiplicity
LastName VARCHAR 16 Bytes Randomly chosen, average 1K multiplicity
Gender ENUM Male or Female Randomly chosen
Number INTEGER 8 Bytes Randomly chosen and distinct
DoB DATE YYYY-MM-DD Randomly chosen in [1940-01-01, 1990-12-31]
Notes1 TEXT 64 Bytes Random sentences from ebooks in [1]
Notes2 TEXT 256 Bytes Random sentences from ebooks in [1]

The S and TP processes and an instance of MySQL server version 5.5.28 were
running on a Dell PowerEdge R710 server with two Intel Xeon X5650 2.66Ghz pro-
cessors, 48GB of memory, 64-bit Ubuntu 12.04.1 operating system, and connected to
a Dell PowerVault MD1200 disk array with 12 2TB 7.2K RPM SAS drives in RAID6
configuration. Database clients were running on a Dell PowerEdge R810 server with
two Intel Xeon E7-4870 2.40GHz processors, 64 GB of memory, 64-bit Red Hat Enter-
prise Linux Server release 6.3 operating system, and connected to the Dell PowerEdge
R710 server via switched Gigabit Ethernet. Regular TCP/IP connections were used for
MySQL. We built MySQL indices on FirstName, LastName, Gender, and Number. We
built keyword indices for our protocol π2 on FirstName, LastName, Number, and a
combined index on FirstName, Gender. The following query templates were used for
executing database queries. Each query was executed five times using different values,
and the average query response was used.

Q1: SELECT * FROM main WHERE Number = value
Q2: SELECT * FROM main WHERE FirstName = value AND Gender = value

Practical Private Information Retrieval 353

Q3: SELECT * FROM main WHERE FirstName = value AND LastName = value
Q4: SELECT * FROM main WHERE FirstName = value OR LastName = value

We implemented a B+-tree as the search data structure (used as attribute index) due to
its sub-linear search performance for disk-resident data. We note that for query Q3, we
did not build a combined index, but, for sake of performance comparisons, we imple-
mented an alternative conjunction protocol (a work in progress, omitted here) with yet
unclear privacy properties. Also, for Q4, we implemented a disjunction protocol where
the parties simply run the query protocol for both queries at the disjuncts (also a work
in progress, since disjunction protocols with improved privacy may be desirable).

Results. Figures 3, 4 show the performance results for our protocol π2 and MySQL,
respectively. For all database sizes, Q1-Q4 matched 1, 500, 1000 and 2000 records,
respectively. We observe that the database size has minimal impact on query response
time. This was expected since the same number of records were matched by each query.

Fig. 3. Our 3-party query performance Fig. 4. MySQL query performance

Our protocol π2’s performance (∼2ms) is better than MySQL (∼5ms) for Q1 de-
spite the additional overhead of SSL/TLS communications, because of the minimalistic
approach used by our implementation, in terms of simpler query execution and data
structures, compared to traditional database management systems. When the number
of matched records increases, MySQL outperforms our protocol by a factor of around
8.6, 119.1, and 14.4 for Q2, Q3, and Q4, respectively. Unlike MySQL, where once the
first match is found in the B+-tree data structure used for the queried column then a
simple forward scan of the tree leaf pages is needed for locating all matches, our proto-
col performs a separate scan of the search data structure (a B+-tree) for each matched
value. Because these scans are for ciphertext values, it is highly unlikely that any two
scans will traverse the same path from the root of the B+-tree down to the same leaf
page. Thus, the number of I/O operations required for fetching B+-tree leaf pages into
the in-memory cache for locating matched records is proportional to the number of
matched records. Our protocol’s response times in Q3 are more than 17 times slower
than response times in Q2 despite the fact that they have the same structure and, in addi-
tion, Q3 matched twice as many records as Q2. Furthermore, Q3 is 5 times slower than
Q4 although Q4 resulted in twice as many matched records. The main reasons for this

354 G. Di Crescenzo et al.

are the inefficiency of the protocol used for Q3 as well as the fact that Q2 was answered
using a combined index, while Q3 and Q4 required scanning of two B+-tree indices.

Acknowledgements. This work was supported by the Intelligence Advanced Research
Projects Activity (IARPA) via Department of Interior National Business Center (DoI/
NBC) contract number D13PC00003. The U.S. Government is authorized to reproduce
and distribute reprints for Governmental purposes notwithstanding any copyright an-
notation hereon. Disclaimer: The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily representing the official poli-
cies or endorsements, either expressed or implied, of IARPA, DoI/NBC, or the U.S.
Government.

References

1. Project gutenberg, http://www.gutenberg.org
2. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption with key-

word search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027,
pp. 506–522. Springer, Heidelberg (2004)

3. Chor, B., Gilboa, N., Naor, M.: Private information retrieval by keywords. IACR Cryptology
ePrint Archive (1998)

4. Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval. J.
ACM 45(6), 965–981 (1998)

5. Cover, T.M., Thomas, J.A.: Elements of information theory, 2nd edn. Wiley (2006)
6. Di Crescenzo, G., Feigenbaum, J., Gupta, D., Panagos, E., Perry, J., Wright, R.N.: Practical

and privacy-preserving policy compliance for outsourced data. In: WAHC (2014)
7. Di Crescenzo, G., Ishai, Y., Ostrovsky, R.: Universal service-providers for private informa-

tion retrieval. J. Cryptology 14(1), 37–74 (2001)
8. Di Crescenzo, G., Shallcross, D.: On minimizing the size of encrypted databases. In: Atluri,

V., Pernul, G. (eds.) DBSec 2014. LNCS, vol. 8566, pp. 361–368. Springer, Heidelberg
(2014)

9. Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and oblivious pseudo-
random functions. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 303–324. Springer,
Heidelberg (2005)

10. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J. ACM 33(4),
792–807 (1986)

11. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness
theorem for protocols with honest majority. In: STOC, pp. 218–229 (1987)

12. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious RAMs. J.
ACM 43(3), 431–473 (1996)

13. Hacigümüs, H., Iyer, B.R., Li, C., Mehrotra, S.: Executing SQL over encrypted data in the
database-service-provider model. In: SIGMOD Conference, pp. 216–227 (2002)

14. Islam, M.S., Kuzu, M., Kantarcioglu, M.: Access pattern disclosure on searchable encryp-
tion: Ramification, attack and mitigation. In: NDSS (2012)

15. Jarecki, S., Jutla, C.S., Krawczyk, H., Rosu, M.-C., Steiner, M.: Outsourced symmetric pri-
vate information retrieval. In: ACM Conference on Computer and Communications Security,
pp. 875–888 (2013)

16. Jarecki, S., Liu, X.: Efficient oblivious pseudorandom function with applications to adaptive
OT and secure computation of set intersection. In: Reingold, O. (ed.) TCC 2009. LNCS,
vol. 5444, pp. 577–594. Springer, Heidelberg (2009)

http://www.gutenberg.org

Practical Private Information Retrieval 355

17. Kushilevitz, E., Ostrovsky, R.: Replication is not needed: Single database, computationally-
private information retrieval. In: FOCS, pp. 364–373 (1997)

18. Ostrovsky, R., Skeith III, W.E.: A survey of single-database private information retrieval:
Techniques and applications. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450,
pp. 393–411. Springer, Heidelberg (2007)

19. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted data. In:
IEEE Symposium on Security and Privacy, pp. 44–55 (2000)

20. Wang, S., Ding, X., Deng, R.H., Bao, F.: Private information retrieval using trusted hard-
ware. In: Gollmann, D., Meier, J., Sabelfeld, A. (eds.) ESORICS 2006. LNCS, vol. 4189,
pp. 49–64. Springer, Heidelberg (2006)

LPM: Layered Policy Management
for Software-Defined Networks �

Wonkyu Han1, Hongxin Hu2 and Gail-Joon Ahn1

1 Arizona State University, Tempe, AZ 85287, USA
{whan7,gahn}@asu.edu

2 Clemson University, Clemson, SC 29634, USA
hhu@desu.edu

Abstract. Software-Defined Networking (SDN) as an emerging paradigm in net-
working divides the network architecture into three distinct layers such as appli-
cation, control, and data layers. The multi-layered network architecture in SDN
tremendously helps manage and control network traffic flows but each layer heav-
ily relies on complex network policies. Managing and enforcing these network
policies require dedicated cautions since combining multiple network modules in
an SDN application not only becomes a non-trivial job, but also requires consid-
erable efforts to identify dependencies within a module and between modules. In
addition, multi-tenant SDN applications make network management tasks more
difficult since there may exist unexpected interferences between traffic flows. In
order to accommodate such complex network dynamics in SDN, we propose a
novel policy management framework for SDN, called layered policy manage-
ment (LPM). We also articulate challenges for each layer in terms of policy man-
agement and describe appropriate resolution strategies. In addition, we present a
proof-of-concept implementation and demonstrate the feasibility of our approach
with an SDN-based simulated network.

Keywords: Policy Management, Software-Defined Networking, Security.

1 Introduction

Traditional network environments are ill-suited to meet the requirements of today’s en-
terprises, carriers, and end users. Software-Defined Networking (SDN) was recently
introduced as a new network paradigm which is able to provide unprecedented pro-
grammability, automation, and network control by decoupling the control and data lay-
ers, and logically centralizing network intelligence and state [6]. A typical architecture
of SDN consists of three distinct layers such as application, control, and data layers.
Network applications in the application layer can communicate with an SDN controller
via an open interface and define network-wide policies based on a global view of the
network provided by the controller. The SDN controller, which resides in the control
layer, manages network services, and provides an abstract view of the network to the
application layer. At the same time, the controller translates policies defined by appli-
cations into actual rules for processing packets, which are identifiable by the data layer.

� This work was partially supported by the grant from Department of Energy (DE-SC0004308).

V. Atluri and G. Pernul (Eds.): DBSec 2014, LNCS 8566, pp. 356–363, 2014.
c© IFIP International Federation for Information Processing 2014

LPM: Layered Policy Management for Software-Defined Networks 357

The multi-layered SDN architecture significantly helps manage and process network
traffic flows. However, each layer of SDN architecture heavily relies on complicated
network policies and managing those policies in SDN requires not only dedicated cau-
tions but also considerable efforts. Our study reveals that such a multi-layered architec-
ture brings great challenges in policy management for SDN as follows:

– Policy management in SDN application layer: An SDN application could employ
multiple modules, such as Firewall (FW), Load-Balance (LB), Route, and Monitor,
to process the same flow by composing rules produced by those modules [9]. How-
ever, such a task is not trivial since rules may overlap each other within a module
(intra-module dependency) or between modules (inter-module dependency).

– Policy management in SDN control layer: In SDN control layer, there may exist
multiple SDN applications running on top of a controller and they might jointly
process the same traffic flow. In such a situation, flow rules from different appli-
cations that process the same flow may also overlap each other (inter-application
dependency) and even lead to policy conflicts [10].

– Policy management in SDN data layer: In SDN data layer, different flows may go
through the same switches and rules defining different flows in the same flow table
may also overlap each other (intra-table dependency). In such a case, an unintended
modification of a flow path could happen.

To address the above-mentioned challenges, we propose a novel framework for man-
aging policies with respect to three layers in SDN architecture. In SDN application
layer, we adopt a policy segmentation mechanism to compute and eliminate intra-
module and inter-module dependencies, and enable a secure and efficient policy com-
position. In SDN control layer, our framework identifies inter-application dependencies
and provides two kinds of resolution strategies. In addition, we propose a flow isola-
tion mechanism to resolve intra-table dependencies in SDN data layer. We also provide
a prototype implementation of our framework in an open SDN controller and evalu-
ate our approach using a real-world network configuration and an emulated OpenFlow
network.

This paper is organized as follows. Section 2 overviews our framework and presents
policy management challenges and corresponding resolution strategies based on three
layers of SDN architecture. In Section 3, we describe our implementation details and
evaluation results followed by the related work discussed in Section 4. Section 5 con-
cludes this paper.

2 Layered Policy Management (LPM) Framework

2.1 Overview

Our LPM framework enables a layered policy management with respect to three layers
of SDN architecture as illustrated in Figure 1.

In SDN application layer, a main challenge comes from policy composition in an
SDN application, where intra-module and inter-module dependencies should be ad-
dressed. Partially or entirely overlapped rules in a module make nontrivial intra-module

358 W. Han, H. Hu, and G.-J. Ahn

App 1

MonitorRoute LBFW

Traffic Flow 1

Security Module Non-Security Module

App 2

MonitorRoute LBFW

Traffic Flow 2

Security Module Non-Security Module

App 3

Data layer

Application
layer

Control
layer

Fig. 1. Multi-layered SDN policy management: (i) application layer; (ii) control layer; and (iii)
data layer

dependencies and make the process of policy composition more difficult. In addition,
inter-module dependencies between security and non-security modules may cause se-
curity challenges due to inappropriate composition sequence and dynamic packet mod-
ification. Our framework addresses insecure and inefficient policy composition issues
in an SDN application and adopts a policy segmentation mechanism to address those
issues.

In SDN control layer, multiple applications in an SDN controller processing the same
flow may cause inter-application dependencies. As shown in Figure 1, App 2 and App
3 intend to process the same flow Flow 2, thereby the policies produced by two ap-
plications may conflict with each other. Our framework also leverages the policy seg-
mentation mechanism to eliminate the conflicts and applies two resolution strategies
by allowing them to jointly process the same flow or assigning dependent applications
with different priorities to break inter-application dependencies.

In SDN data layer, each physical switch stores a number of flow rules with corre-
sponding priorities into its flow table. A rule defining one flow, such as Flow 1 in
Figure 1, with a lower priority might be affected by another rule for another flow, such
as Flow 2 in Figure 1, with a higher priority, causing intra-table dependency. Since
intra-table dependency might change the behaviors of associated flows, our framework
provides a flow isolation mechanism to address such an issue.

2.2 Policy Management in SDN Application Layer

Considerations and Challenges. While an SDN application with multiple modules
processes a network traffic flow, a fundamental consideration is to address intra-module
and inter-module dependencies in policy composition. To illustrate these issues, we
adopt two kinds of policy composition operators introduced in [9]. “Parallel” operator
(|) means the union of two modules and generates a set of packet processing rules which
should be applied to the same flow simultaneously. “Sequential” operator (#) stands
for the serialization of modules so that the matching rules would be performed one by
one on the same flow. We next investigate several policy management challenges in
SDN application layer.

LPM: Layered Policy Management for Software-Defined Networks 359

Firewall Policy
r1: src = 10.0.x.x, dst = 1.2.3.x → deny
r2: dst = 1.2.3.4 → allow
r3: src = 10.0.0.x, dst = 1.2.3.x → deny

Load-balance Policy
r4: src = 10.0.1.1, dst = 1.2.x.x → src = 10.2.2.2

Route Policy
r5: src = 10.0.0.x, dst = 1.2.3.4 → fwd(1)
r6: src = 10.2.2.2, dst = 1.2.x.x → fwd(2)
r7: src = 10.2.2.2, dst = 1.2.3.x → fwd(3)

Monitor Policy
r8: src = 10.0.1.1, dst = 1.2.10.11 → count
r9: src = 10.1.x.x, dst = 1.2.3.4 → count

Fig. 2. Sample policies defined by four different network modules

(1) Intra-module and inter-module dependency: Assume that there exist four different
modules in an SDN application, such as Firewall (FW), Load-Balance (LB), Route,
and Monitor, and all rules in each module have been sorted by their priorities as
depicted in Figure 2. In FW policy, r1, r2, and r3 are mutually dependent, and r2
and r3 are partially overlapped by r1, representing intra-module dependencies. In
addition, the rule r1 in FW policy is dependent with both r4 in LB policy and r5
in Route policy, representing inter-module dependencies. Furthermore, since r2 in
FW policy is dependent with r9 in Monitor policy, FW module is dependent with all
other modules which implies that determining inter-module dependencies requires
considerable efforts.

(2) Insecure and inefficient policy composition: Suppose that two modules in an SDN
application are sequentially composed, represented as LB # FW . In this case,
r4 in LB policy modifies packets’ source IP address to 10.2.2.2 and could enable
malicious packets to bypass the firewall since r1 in FW policy cannot block these
packets. Hence, we could notice that an inaccurate sequence during the composi-
tion may cause security breaches in SDN applications. In addition, a programmer
may want to compose two modules in parallel, such as FW | Route. We could
observe that all rules in FW policy are dependent with r5 in Route policy. Since
r1 has the highest priority, r1 and r5 can be jointly combined and the following
rule can be obtained: src = 10.0.0.x, dst = 1.2.3.4 −→ deny, fwd(1). Indeed, r5
is not necessary to be composed with FW rules, since the FW rule r1 ultimately
blocks packets matching the rule pattern. Therefore, we could also observe that it
is obviously inefficient to always compose the multiple policies as Pyretic [9] does.

As discussed above, there exist a few challenges in the application layer. First, since
the security policies are generally considered more important than the policies produced
by non-security modules, distinguishing security modules from non-security modules
is vital in composing secure policies. In addition, commodity SDN switches typically
support only a few thousands of rules [12], hence we should also strive to provide
mechanisms with respect to an efficient policy composition.

Resolution Strategy. Our resolution approach globally examines all modules along
with their rules to identify overlapping rules and generate disjointed matching space
for removing intra-module and inter-module dependencies. To eliminate these depen-

360 W. Han, H. Hu, and G.-J. Ahn

dencies, we first sort the rules in each module by their priorities and insert all modules
into a global segmentation table. Derived from the approach discussed in [8], our policy
segmentation mechanism generates a set of disjointed matching space, called segment.
For example, r1 and r2 in FW policy are partially dependent with each other. Thus, we
obtain three disjointed segments: sa = r1 − r2, sb = r2 − r1, and sc = r1 ∩ r2. Each
segment maintains overlapping rules, which indicate the existence of intra-module or
inter-module dependencies.

Regarding intra-module dependencies, not all overlapping rules from the same mod-
ule in a segment are effective, since only one of those rules with the highest priority will
be applicable to process matching packets. Therefore, to remove intra-module depen-
dencies, we only need to consider the effective rule for policy composition. However,
inter-module dependencies between security and non-security modules may cause in-
secure and inefficient policy composition as discussed above. To address such an issue,
we distinguish security modules from non-security modules using a separator (:), which
indicates that its left-hand side refers security modules with higher priorities while non-
security modules are located on the right-hand side with lower priorities. At the same
time, to achieve an efficient policy composition, our resolution only enables to com-
posing allow rules from security modules with other rules from non-security modules
since it is unnecessary to perform policy composition once a rule from security mod-
ules denies the matching space. For instance, the composition sequence,LB # FW , is
not valid in our scheme since the separator (:) would distinguish security modules and
non-security modules, i.e., FW : LB. In addition, our mechanism does not compose
r1 in FW policy with r4 in LB policy. Because r1 is a deny rule, our mechanism simply
generates a deny flow entry without considering overlapping rules from non-security
modules.

2.3 Policy Management in SDN Control Layer

Inter-application Dependency. The root cause for inter-application dependencies is
that multiple SDN applications may attempt to enforce their policies over the same net-
work flow. Suppose that APP 2 in Figure 1 composes LB, Route and Monitor modules
sequentially, LB # Route # Monitor. However, APP 3 composes the same mod-
ules in the opposite order, Monitor # Route# LB. Incoming packets matching the
source IP address 10.0.1.1 and the destination IP address 1.2.10.11 will be managed
by two different applications, since both r4 in LB policy and r8 in Monitor policy can
handle these packets. The APP 2 first applies r4 in LB policy to modify the source IP
address of matched packets to 10.2.2.2 and then applies r6 in Route policy to forward
them to port 2. Note that there is no matching rule in Monitor policy. On the other hand,
the APP 3 first enforces r8 in Monitor policy to count the packets of the same flow and
then drops the matched packets because there is no matching rule in Route policy.

Resolution Strategy. In our resolution approach, we consider two situations: (i) dif-
ferent applications are allowed to jointly manage the same flow and (ii) applications
are mutually exclusive. For the former case, we may allow inter-application depen-
dencies and apply composition operators to combine multiple policies from different

LPM: Layered Policy Management for Software-Defined Networks 361

applications. With respect to the latter case, we eliminate inter-application dependen-
cies by assigning different priorities to conflicting applications. Then, the application
with the highest priority overrides the applications with the lower priorities when the
flows are processed. For example, an application that employs security modules may
have a higher priority to take the precedence over other normal applications. Differ-
ent conflict resolution strategies proposed by our previous work [8] are also applied to
resolve inter-application dependencies caused by conflicting applications.

2.4 Policy Management in SDN Data Layer

Intra-table Dependency. The flow paths of distinct flows managed by different SDN
applications may overlap each other in the flow tables, introducing intra-table depen-
dencies. For example, suppose that there exist two traffic flows processed by different
applications as shown in Figure 1. One application, App 1, generates a policy for a
flow Flow 1, which matches packets whose source and destination IP addresses are
10.2.2.2 and 1.2.3.4 respectively and forwards the packets to the port 2. On the other
hand, another application App 2 manages a different flow Flow 2, but the generated
policy modifies the source IP address of matched packets to 10.2.2.2 and forwards the
packets to the port 2. Even though incoming packets of two flows might be different,
outgoing packets for those flows may overlap with each other. Thus, this situation may
cause a potential loss of flow control for an application if there exists an intra-table
dependency between the flow paths.

Resolution Strategy. Our resolution approach for this layer is to remove intra-table
dependencies through flow isolation. Inspired by the approach discussed in [7], which
leverages tags to differentiate packets belonging to different versions of policies for
enabling consistent network updates, we also utilize tags to eliminate the dependencies
in a flow table. Using this strategy, a new flow policy is preprocessed by adding a tag
to distinguish the matching pattern with other policies. The rule of the flow policy in
the ingress switch will take additional action on the packets to label them with the same
tag. When the packets leave the network, the corresponding rule of the flow policy in
the egress switch will remove the tag from the packets.

3 Implementation and Evaluation

We have implemented our framework on top of an open SDN controller, Floodlight [1].
Our proof-of-concept implementation captures every flow rule created by applications
and produces a set of segments, which are able to remove intra-module and inter-module
dependencies. Also, our resolution strategy component obtains a global view of network
from the Floodlight controller and utilizes various resolution strategies for SDN control
layer and data layer.

Our experiments were performed with Floodlight v0.90 and Mininet v2.1.0 [3].
We obtained a real-world network configuration from Stanford backbone network [2],
which has 26 switches with corresponding ACL rules. We removed redundant ACL
rules, converted them to a FW policy, and in turn obtained 1, 206 FW rules in total.

362 W. Han, H. Hu, and G.-J. Ahn

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Segment computing time (t, milli seconds)

P
(x

 <
 t)

Empirical CDF

(a) Segment generation time (CDF)

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

Number of rules per flow

E
la

ps
ed

 T
im

e
(m

ill
i s

ec
on

ds
)

Assign priorities (layer 2)
Update VLAN field (layer 3)

(b) Elapsed time for resolution strategies

Fig. 3. Experimental results of our approach

At the same time, we generated 8, 908 Floodlight-recognizable flow rules by parsing
original network rules in Stanford network configuration. Because these real network
rules perform both routing and load-balancing tasks, we assume that these rules are
generated by two modules, Route and LB modules.

To measure overheads caused by our policy segmentation mechanism, we installed
all network rules into the simulated network and measured the update operation of pol-
icy segmentation. Our experiments show that 456 segments out of 688 FW rules were
produced by the policy segmentation mechanism and 8, 273 segments out of 8, 908 net-
work rules were generated. As shown in Figure 3(a), 75% of updates were completed
within 0.2 milliseconds and most of cases (98%) were computed in less than 0.5 mil-
liseconds.

We also evaluated the performance of two resolution strategies: (i) assigning priori-
ties to eliminate inter-application dependencies in the SDN control layer and (ii) updat-
ing VLAN fields (flow-tagging) to eliminate intra-table dependencies in the SDN data
layer. Both resolution strategies update a set of flow rules which define corresponding
flows. First, we measured elapsed time for assigning priorities of rules. As shown in
Figure 3(b), the elapsed time grows in accordance with the increased number of rules
per each flow. Similarly, we checked the elapsed time for updating VLAN fields for iso-
lating conflicting flows. The elapsed time increases with the increased number of rules
per each flow, as expected. However, it generally took more time, since our mechanism
needs to figure out ingress and egress switches in examining flows, adding and striping
VLAN tags from the packets.

4 Related Work

Modular network programming has recently received considerable attention in SDN
community. For instance, Pyretic [9] enables a program to combine different policies
generated by different modules together using policy composition operators. However,
due to the lack of policy dependency detection mechanism in Pyretic, it is obviously
inefficient to always compose the multiple policies and install them into the network
switches. FRESCO [11] deals with security application development framework us-
ing modular programming for SDN, but it cannot directly handle dependencies be-
tween modules in SDN applications either. Several policy composition mechanisms

LPM: Layered Policy Management for Software-Defined Networks 363

such as [4,5] support pair-wise composition for access control policies and could be
potentially utilized to deal with intra-module dependencies in SDN. In contrast, our
framework addresses various dependencies including intra-module, inter-module, inter-
application, and intra-table dependencies in SDN.

5 Conclusion

We have articulated numerous problematic issues and security challenges in SDN policy
management and proposed a novel framework to facilitate a layered policy management
approach with respect to three layers in the SDN architecture. Our experimental results
with the proof-of-concept prototype showed that our resolution is efficient and only
introduces manageable performance overheads to the networks. For the future work, we
will extend our framework to support dynamic policy updates. In addition, we would
expand our solution to support comprehensive SDN policy management considering
heterogeneous and distributed controllers.

References

1. Floodlight: Open SDN Controller, http://www.projectfloodlight.org
2. Header Space Library, https://bitbucket.org/peymank/hassel-public
3. Mininet: An Instant Virtual Network on Your Laptop, http://mininet.org
4. Bandara, A.K., Lupu, E.C., Russo, A.: Using event calculus to formalise policy specifica-

tion and analysis. In: Proceedings of the 4th IEEE International Workshop on Policies for
Distributed Systems and Networks, pp. 26–39. IEEE (2003)

5. Bonatti, P., De Capitani di Vimercati, S., Samarati, P.: An algebra for composing access
control policies. ACM Transactions on Information and System Security (TISSEC) 5(1),
1–35 (2002)

6. ONF Market Education Committee, et al.: Software-defined networking: The new norm for
networks. ONF White Paper. Open Networking Foundation, Palo Alto (2012)

7. Fayazbakhsh, S.K., Chiang, L., Sekar, V., Yu, M., Mogul, J.C.: Enforcing network-wide
policies in the presence of dynamic middlebox actions using flowtags. In: 11th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 2014), pp. 543–546.
USENIX Association (2014)

8. Hu, H., Ahn, G.-J., Kulkarni, K.: Detecting and resolving firewall policy anomalies. IEEE
Transactions on Dependable and Secure Computing 9(3), 318–331 (2012)

9. Monsanto, C., Reich, J., Foster, N., Rexford, J., Walker, D.: Composing software-defined
networks. In: Proceedings of the 10th USENIX Conference on Networked Systems Design
and Implementation, pp. 1–14. USENIX Association (2013)

10. Porras, P., Shin, S., Yegneswaran, V., Fong, M., Tyson, M., Gu, G.: A security enforcement
kernel for openflow networks. In: Proceedings of the First Workshop on Hot Topics in Soft-
ware Defined Networks, pp. 121–126. ACM (2012)

11. Shin, S., Porras, P., Yegneswaran, V., Fong, M., Gu, G., Tyson, M.: Fresco: Modular com-
posable security services for software-defined networks. In: Proceedings of Network and
Distributed Security Symposium (2013)

12. Stephens, B., Cox, A., Felter, W., Dixon, C., Carter, J.: Past: Scalable ethernet for data cen-
ters. In: Proceedings of the 8th International Conference on Emerging Networking Experi-
ments and Technologies (CoNEXT 2012), pp. 49–60. ACM (2012)

http://www.projectfloodlight.org
https://bitbucket.org/peymank/hassel-public
http://mininet.org

On Minimizing the Size of Encrypted Databases

Giovanni Di Crescenzo and David Shallcross

Applied Communication Sciences, Basking Ridge, NJ, USA
{gdicrescenzo,dshallcross}@appcomsci.com

Abstract. Motivated by applications to maintaining confidentiality and efficiency
of encrypted data access in cloud computing, we uncovered an inherent confiden-
tiality weakness in databases outsourced to cloud servers, even when encrypted.
To address this weakness, we formulated a new privacy notion for outsourced
databases and (variants of) a classical record length optimization problem, whose
solutions achieve the new privacy notion. Our algorithmic investigation resulted
in a number of exact and approximate algorithms, for arbitrary input distribu-
tions, and in the presence of record additions and deletions. Previous work only
analyzed an unconstrained variant of our optimization problem for specific input
distributions, with no attention to running time or database updates.

1 Introduction

As the cloud computing paradigm is entering many of today’s distributed computing
applications, the research community is investigating a host of associated problems in
many areas, including privacy, security, and algorithmic efficiency. One central cloud
computing capability consists of outsourcing data to servers in the cloud, in a way
that delegates the management of the data to the cloud servers while allowing efficient
data access from authorized clients. In a typical instantiation of this capability, the data
owner publishes a searchable database in the cloud and clients make their ordinary
database queries directly to the cloud server. Because of confidentiality requirements
on the data, and of the often unknown location of cloud servers as well as unknown
entities who closely manage them, the data owner typically chooses to publish an en-
crypted version of the database, which can be later queried using privacy-preserving
database retrieval protocols, and subject to compliance to specific query-based access
policies. Unfortunately, encryption alone does not suffice to protect data confidentiality
in these contexts, as encryption is known to hide all partial information but the length of
the encrypted data. Accordingly, a cloud server with side channel information about the
length of individual database records can derive confidential information about the con-
tent of the encrypted database. (As an example from the finance industry, if stock fund
prospectuses are longer than single stock prospectuses, a cloud server can detect the
relative density of stock funds and/or single stocks in the database, even if encrypted).

Our Contribution. Our approach to overcome these shortcomings consists of a suitable
combination of padding short database records and splitting long database records so to
normalize all records to have the same length, while still guaranteeing efficient access
to them from clients. This approach calls for a new privacy model and a new optimiza-
tion problem. In our privacy model, we require that the outsourced encrypted database

V. Atluri and G. Pernul (Eds.): DBSec 2014, LNCS 8566, pp. 364–372, 2014.
c© IFIP International Federation for Information Processing 2014

On Minimizing the Size of Encrypted Databases 365

at most leaks a symmetric function of the original record lengths. Our optimization
problem (a variant of a classical record length problem, studied in the statistical and
computer memory management literature) is defined as follows: an encrypted database
with a large number n of records of different sizes s1, . . . , sn ≤ smax, needs to be
normalized, via padding (e.g., adding a fixed string of a determined length) or splitting
(e.g., dividing the record into 2 or more pieces and possibly padding again on the last
piece) into a database with a potentially larger number n′ of records, all having the
same size σ. Padding obviously increases the database size, but so does splitting, as
each record contains an a-bit searchable header, which has to be replicated on all pieces
resulting from the record split. We want to find the (exactly or approximately) optimal
σ so that the total size of the database (increased due to padding and splitting) is mini-
mized under a constraint that bounds the increase in the maximum (or average) search
time for a given record. For a cleaner problem formulation, applicable to any possible
search strategy, we model this constraint by imposing an upper bound on the number of
pieces derived from a split of any given record (or of all records, respectively).

Our exact algorithms perform O(n · smax) or O(n+ smax log smax) arithmetic op-
erations (for both the unconstrained and the two constrained versions of our problem),
which is super-polynomial in the input length (being linear in smax). Our approxima-
tion algorithms can find c-approximate, for c ∼ 2, solutions with O(n) arithmetic op-
erations (for both the unconstrained and the two constrained versions of our problem),
and a (1 + ε)-approximate solution with O(n ∗ polylog(smax)) arithmetic operations
(for both the unconstrained and one constrained version of our problem). The latter al-
gorithm can be shown to maintain a (1 + ε)-approximated solution by only requiring
O(1) amortized arithmetic operations over a sequence of record additions and deletions,
for any ε > 0 and under very general parameter settings. (Descriptions of this result and
our formal privacy model, and almost all proofs are omitted due to space restrictions.)

Related Work. In the model of databases outsourced to cloud servers, there is a signifi-
cant amount of work on data encryption (seemingly originated in [7]), and some amount
of work on privacy-preserving database retrieval protocols (see, e.g., [1]), and query-
based access policy compliance (see, e.g. [2]). Minimizing the record length is an old
problem considered in contexts like statistics and memory management, and that does
not appear to have been investigated with an algorithmic viewpoint. An unconstrained
version of our problem was introduced by [10], who showed that when record lengths
follow some classes of continuous probability distributions, the optimal choice of tar-
get record length is a quantity close to our result for arbitrary distributions. In [9], the
author analyzed this problem in terms of the characteristic function of the distribution
of the record length, and gave solutions for the cases of the uniform, exponential, and
geometric distributions. In [4] and [3], the authors considered several different target
record sizes, and presented solutions based on dynamic programming and non-linear
optimization techniques. In [8], the author considers a similar problem in an extended
model (somehow merging multiple records into one), which does not preserve some
of the database search functionalities. None of these works focused on minimizing the
running time required to produce a solution for an arbitrary distribution of a discrete set
of record lengths. We are also not aware of any work considering constrained versions
of this problem or the case of dynamic databases.

366 G. Di Crescenzo and D. Shallcross

2 Definitions, Privacy and Algorithmic Models

Preliminary Definitions. A database is an indexed sequence of records that can be
modified, added, and removed over time. We denote as n the current number of records
in the database. For i ∈ {1, . . . , n}, the i-th database record can be seen as composed
of two parts: the header, whose size a ≥ 1 is constant across all records, and the
payload, whose size si ≥ 1 is variable. We denote as smax the maximum integer among
s1, . . . , sn. We define a fixed record length database as a database where all record
lengths are equal.

Privacy Model. We consider the following Private Database Outsourcing (PDO) prob-
lem: a data owner, on input a database, wants to outsource some version of the database
to a cloud server so that the server only learns minimal information about the database
content, and yet can engage in database retrieval protocols with one or more clients, as
well as policy compliance protocols ensuring that clients’ queries are authorized. In this
paper we only deal with the database outsourcing part of the PDO problem, but note
that our approach integrates well with privacy-preserving database retrieval solutions
(e.g., from [1]) and privacy-preserving policy compliance solutions (e.g., from [2]). En-
cryption is a natural candidate tool to keep the outsourced database private from the
server, who can still later run database retrieval and policy compliance protocols using
techniques based on computing over encrypted data. Although in the cryptographic lit-
erature leakage of the length of an encrypted plaintext is usually considered a very min-
imal privacy violation (both the formal definitions of encryption [6] and of 2-party and
multi-party private function evaluation protocols [11,5] admit leakage of plaintext/input
lengths), leaking the lengths s1, . . . , sn of all database records may well be an unaccept-
able privacy loss. We then ask the natural privacy question of what could/should be kept
private in any solution to the PDO problem. In a similar question on the encryption of
multiple different-length messages, solutions used in practice include either (a) padding
each message to its next block length, which leaks a close upper bound of all length
values; or (b) padding all messages to a common block length, which, although not the
most efficient solution, has more satisfactory privacy as it only leaks an upper bound of
all length values. Both (a) and (b) leak the exact number of encrypted messages.

(Informal) Privacy requirement: In formulating our privacy model, we attempt to cap-
ture the satisfactory privacy properties of the solution approach in (b), and at the same
time generalize it to allow for a richer set of solutions to the PDO problem. Specifically,
we require any solution to the PDO problem to leak at most:
1. the output of a function that is symmetric1 over the record lengths s1, . . . , sn;
2. an upper bound on the number n of database records.

A formal description of this requirement can be provided in the simulation-based pri-
vacy framework and is omitted due to space restrictions.

Algorithmic Model. To transform any database into a fixed record length one, we only
use two types of operations: (1) padding a payload; i.e., concatenating the payload with
a predefined string (e.g., a 1 followed by an all 0’s string), and (2) σ-splitting a record
into multiple smaller records, where each new record has a copy of the same a-bit

1 A function f is symmetric if it satisfies f(x1, . . . , xn) = f(xρ(1), . . . , xρ(n)) for any input
(x1, . . . , xn) and any permutation ρ over {1, . . . , n}.

On Minimizing the Size of Encrypted Databases 367

header and a distinct σ-bit piece of the original record’s payload, where the last record
may be padded so to have a σ-bit payload as well. Note that while the total length of
the i-th record is a+ si in the original database, this length becomes a+ σ in the fixed
record length database, for some σ that can be chosen from a set of allowed values P .
In particular, we can consider, without loss of generality, P = {1, . . . , smax}, in which
case for any σ ∈ P , any above defined database can be transformed into a fixed record
length database via the following sequence of padding and σ-splitting operations, as
follows: each record with payload shorter than σ can be padded and each si-bit record
with payload longer than σ can be split into �si/σ� records, the last one being padded.
Then, we can compute the size of the fixed record length database as function

f(σ) =
∑
i∈[n]

⌈si
σ

⌉
(σ + a), (1)

where the input σ is taken from the set P which will usually be {1, . . . , smax} or a
subset of that, although in our analysis we will often abuse notation to consider σ taken
from the set of real numbers. We then define our problem of interest as the problem of
minimizing the Encrypted Database Size (EDS), as captured by the function f defined
in Formula 1, and coming into two main variants, depending on the constraints that we
pose on the number of splitting operations. In the first variant, denoted as maxEDS,
there is a maximum number of pieces into which we may split any record payload. In
the second variant, denoted as avgEDS, there is a maximum total number of pieces into
which we may split all of the record payloads. Formal definition follows.

Definition 1. [EDS] Given n+1 positive integers a, s1, . . . , sn, find the integer σ from
set P = {1, . . . , smax} that minimizes f(σ).

Definition 2. [maxEDS] Given n + 2 positive integers a, s1, . . . , sn, cmax, find the
integer σ from set P = {1, . . . , smax} that minimizes f(σ) subject to the constraints
�si/σ� ≤ cmax, for i = 1, . . . , n.

Definition 3. [avgEDS] Given n+ 2 positive integers a, s1, . . . , sn and cavg, find the
integer σ from set P = {1, . . . , smax} that minimizes f(σ) subject to the constraint∑n

i=1�si/σ� ≤ cavg .

We investigate algorithms that solve these problems either exactly (i.e., returning any σ∗

that minimizes f(σ)), or δ-approximately (i.e., returning a σ such that f(σ) ≤ δf(σ∗)),
or δ-approximately even across a sequence of record additions and deletions. We will
not try the approach of naturally extending f so that it is defined over all real num-
bers, and finding an analytical expression for a σ that exactly minimizes f as f is not
convex, and is discontinuous at many points. To meet our privacy requirement, we will
only design algorithms A which return a value σ that is a symmetric function of the
values s1, . . . , sn. For the exact algorithms, this can be easily verified since these algo-
rithms return the value σ that minimizes the function f defined in Formula 1, and f is
a symmetric function of s1, . . . , sn. For the approximate algorithms, this is verified by
direct inspection that the formula used in each of these algorithms is also a symmetric
function of s1, . . . , sn.

368 G. Di Crescenzo and D. Shallcross

3 Exact Algorithms

We discuss two exact algorithms: a naive algorithm that runs in time O(nσmax) and an
improved algorithm that runs in time O(n+ σmax log σmax).

A First Exact Algorithm. On input a, s1, . . . , sn, define algorithm A0,1 for the EDS
problem as follows: for each value σ from P , evaluate f(σ) using Formula (1); finally,
select the value σ that minimizes f(σ). This algorithm finds an optimal solution for EDS
in O(n|P |) = O(nsmax) arithmetic operations. By further checking that the constraint
is satisfied, this algorithm is directly extended to find an optimal solution for maxEDS
and avgEDS in the same asymptotic running time.

A Second Exact Algorithm. As a potential improvement, we consider algorithmA0,2

that precomputes two sets of values related to the multiplicities of the payload sizes, and
uses an alternative expression for f(σ) that is faster to compute, given the precomputed
values. Specifically, the precomputed values consist of the multiplicities of the pay-
load sizes mv = |{i ∈ N : si = v}|, and the related values m+

v = |{i ∈ N : si ≥ v}|,
defined for all v ∈ P . We note the following

Fact 1. For each v = 1, . . . , smax, it holds that m+
v = m+

v+1 +mv.

The alternative expression for f(σ) is the following:

f(σ) =

�smax/σ�∑
h=1

∑
i:�si/σ�=h

⌈si
σ

⌉
(σ + a) (2)

=

�smax/σ�∑
h=1

h
(
m+

1+σ(h−1) −m+
1+σh

)
(σ + a) (3)

Based on these definitions, we define algorithmA0,2 for the EDS problem, as follows:

AlgorithmA0,2: On input a, s1, . . . , sn, do the following:

1. Calculate smax

2. Calculate mv , for each v from 1 to smax.
3. Calculate m+

v , for each v from smax down to 1, using recurrence relation in Fact 1.
4. Calculate f(σ), for each σ in P , using Formula (3).
5. Return the value σ∗

f that minimizes f .

For the running time, we observe that steps 1, 2 and 3 can be run in time O(n), step
4 in time O(smax log smax) (that is, O(smax/σ), for σ = 1, . . . , smax), and step 5
in time O(smax). This algorithm is directly extended to find an optimal solution for
maxEDS by further checking that the constraint is satisfied, which can be done in
time O(n). Checking that the constraint for avgEDS is satisfied can be done in time
O(smax log smax) by observing that the left hand side of the constraint can be rewritten
similarly as in Formula (3). Thus, algorithmA0,2 can be extended to work for maxEDS
and avgEDS by keeping the same asymptotic running time. We obtain the following

Theorem 1. For each of the problems EDS, maxEDS and avgEDS, we can construct
an algorithm that exactly solves the problem in O(min{nsmax, n + smax log smax})
arithmetic operations.

On Minimizing the Size of Encrypted Databases 369

The running time in Theorem 1 is not polynomial in the input length (as it is linear in
smax) and can be too expensive in practical large databases (e.g., when n ≥ 109 and
smax ≥ 10MB). Thus, we turn our attention to finding approximation algorithms with
faster running times (possibly, linear in n and polylogarithmic in smax). As both the al-
gorithm’s running time and the quality of the approximation are of interest, we study al-
gorithms that attempt to minimize one metric while achieving satisfactory performance
on the other one. Specifically, we study algorithms with constant approximation factor
and very fast running time (i.e., O(n)) in Section 4, and algorithms with very small
(i.e., (1 + ε), for any ε > 0) approximation factor and any running time improving over
A0,1 and A0,2 in Section 5.

4 Faster Algorithms with O(1) Approximation Factor

In this section we study algorithms for maxEDS and avgEDS that attempt to minimize
their running time while achieving a constant approximation factor. When compared
with the exact algorithms in Section 3, the algorithms in this section achieve a smaller
running time (only linear in n and with no dependency on smax) at the cost of achieving
approximation factor 2 or slightly greater than 2. We start with a definition useful for
both algorithms; we define function g over the set of real numbers, as follows:

g(σ) =

n∑
i=1

(si
σ

+ 1
)
(σ + a), (4)

Then, our first algorithm, for problem maxEDS, and its properties are as follows.

Algorithm Amax
1 : On input a, s1, . . . , sn, cmax, compute s̄ =

∑n
i=1 si/n and then

σ∗
g =

√
as̄, and then return σ, computed as the value among �σ∗

g�, �σ∗
g�, �smax/cmax�

that is at least �smax/cmax� and results in the smaller value for f(σ).

Theorem 2. Amax
1 2-approximately solves the maxEDS problem in O(n) arithmetic

operations.

An algorithmA1 for problem EDS with the same running time and approximation fac-
tor can be obtained by directly simplifyingAmax

1 . We cannot directly adapt these tech-
niques to avgEDS, as a value for σ satisfying the equality in constraint

∑n
i=1�si/σ� ≤

cavg may be hard to find, due to the n rounding operations. Instead, we minimize the
approximating function g subject to an even tighter constraint, and bound the additional
error produced. We now define an algorithm for avgEDS and state its properties.

AlgorithmAavg
1 : On input a, s1, . . . , sn, cavg, compute the quantities β = cavg/n and

s̄ =
∑n

i=1 si/n. Then check whether
⌊√

as̄
⌋
≥ s̄/(β − 1). If yes, set s∗g the value

among
⌊√

as̄
⌋

and
⌈√

as̄
⌉

that has a lower value of function g, as defined in Formula 4.
If not, set s∗g = �s̄/(β − 1)�. Finally, return s∗g.

Theorem 3. Aavg
1 (2+1/s̄+1/(β(β−1)))-approximately solves the avgEDS problem

in O(n) arithmetic operations, where β = cavg/n.

370 G. Di Crescenzo and D. Shallcross

5 Fast Algorithms with (1 + ε) Approximation Factor

We show an algorithm for maxEDS (and thus EDS) that achieves (1+ε) approximation
factor, for any ε > 0, and running time asymptotically smaller than the exact algorithms
described in Section 4. Our algorithm extends the technique used in Section 4 where
we approximated function f by a convex function g. Here, we approximate function f
with several functions gk, for any integer k > 0. First, for any integers k > 0 and any
real number x > 0, we define w(k, x) as �x� if x ≤ k − 1 or 1 + x if x > k− 1. Then,
for any integer k > 0, we define an approximation function gk to f as

gk(σ) =
∑
i∈N

w
(
k,

si
σ

)
(σ + a)

Note that for k = 1, function g1 is the same as function g defined in Section 4, where
we have showed that g can be computed in time O(n). For k > 1, we can still evaluate
function gk more efficiently than f , using some auxiliary variables and a suitable piece-
wise decomposition and rewriting of gk. A first set of definitions relevant to this goal
include the previously defined quantities mv,m

+
v and some new quantities bv, ch,v,

defined as follows, for each v = 1, . . . , smax, and each integer h > 0:

1. bv =
∑

si≥v si; and
2. ch,v = |{i ∈ N : �si/v� = h}|.

To reduce the number of candidate σ values from P from which we plan to evaluate
gk(σ), for any integer k and any j = 0, . . . , q, where q is the max value such that
(1 + ε)q ∗ �smax/cmax� ≤ smax, we define the quantities:

1. τ0 = �smax/cmax�, τj = �(1 + ε) ∗ τj−1�;
2. Mj = |{i ∈ N : 1 + τj(k − 1) ≤ si < τj+1(k − 1)}|; and

3. Bj =
∑τj+1(k−1)

si≥1+τj(k−1) si.

By applying the definitions of mv,Mj, bv, Bj , ch,σ,m
+
v , we derive the following

Fact 3. For each j = 0, . . . , q and each integer h > 0, it holds that
1. m+

1+τj(k−1) = m+
τj+1(k−1) +Mj

2. b1+τj(k−1) = b+τj+1(k−1) +Bj

3. ch,τj = m+
1+τj(h−1) −m+

1+τjh

We can then evaluate gk(σ), for all σ = τ0, τ1, . . . , τq , as

gk(σ) =
k−1∑
h=1

∑
i:�si/σ�=h

⌈si
σ

⌉
(σ + a) +

∑
i:si/σ>k−1

(
1 +

si
σ

)
(σ + a) (5)

=

(
k−1∑
h=1

ch,σh

)
(σ + a) +

(
m+

1+σ(k−1) + b1+σ(k−1)
1

σ

)
(σ + a) (6)

Based on the above, we can now construct our algorithm Amax
2 , by setting k = �1/ε�,

quickly computing gk based on Formula 6 and Fact 3, approximating f with gk, and

On Minimizing the Size of Encrypted Databases 371

minimizing gk subject to the constraint �smax/σ� ≤ cmax and σ varying over the
multiplicative grid of τ0, . . . , τq .

AlgorithmAmax
2 : On input a, s1, . . . , sn, cmax, ε, do the following:

1. Calculate smax and set k = �1/ε�.
2. Calculate all Mj , for j = 0, . . . , q by scanning all si’s only once and, for each si,

using binary search to find the associated Mj .
3. Calculate all Bj , for j = 0, . . . , q by scanning all si’s only once and, for each si,

using binary search to find the associated Bj .
4. Calculate m+

1+τj(k−1), for j = 0, . . . , q, using recurrence relation in Fact 3, item 1.
5. Calculate b1+τj(k−1), for j = 0, . . . , q, using recurrence relation in Fact 3, item 2.
6. Calculate ch,τj , for j = 0, . . . , q, and h = 1, . . . , k − 1, using recurrence relation

in Fact 3, item 3.
7. Choose the value σ∗

g,k that minimizes gk, by examining every value of σ from
{τ0, τ1, . . . , τq} and using Formula (6) to evaluate gk(σ).

Theorem 4. For any ε > 0,Amax
2 (1 + ε)-approximately solves the maxEDS problem

in O(n log(log(cmax)/ε) + log cmax/ε
2) arithmetic operations.

Acknowledgement. We thank Euthimios Panagos for interesting discussions. This
work was supported by the Intelligence Advanced Research Projects Activity (IARPA)
via Department of Interior National Business Center (DoI/NBC) contract number
D13PC00003. The U.S. Government is authorized to reproduce and distribute reprints
for Governmental purposes notwithstanding any copyright annotation hereon.
Disclaimer: The views and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official policies or endorse-
ments, either expressed or implied, of IARPA, DoI/NBC, or the U.S. Government.

References

1. Di Crescenzo, G., Cook, D., McIntosh, A., Panagos, E.: Practical private information retrieval
from a time-varying, multi-attribute, and multiple-occurrence database. In: Atluri, V., Pernul,
G. (eds.) DBSec 2014. LNCS, vol. 8566, pp. 337–352. Springer, Heidelberg (2014)

2. Di Crescenzo, G., Feigenbaum, J., Gupta, D., Panagos, E., Perry, J., Wright, R.: Practical
and Privacy-Preserving Policy Compliance for Outsourced Data. In: Proc. of 2nd WAHC
Workshop (2014)

3. Erickson, R.E., Halfin, S., Luss, H.: Optimal Sizing of Records when Divided Messages Can
Be Stored in Records of Different Sizes. Operations Research 30, 29–39 (1982)

4. Erickson, R.E., Luss, H.: Optimal Sizing of records Used to Store Messages of Various
Lengths. Management Science 26, 796–809 (1980)

5. Goldreich, O., Micali, S., Wigderson, A.: How to Play any Mental Game or A Completeness
Theorem for Protocols with Honest Majority. In: Proc. of ACM STOC 1987, pp. 218–229
(1987)

6. Goldwasser, S., Micali, S.: Probabilistic Encryption. J. Comput. Syst. Sci. 28(2), 270–299
(1984)

372 G. Di Crescenzo and D. Shallcross

7. Hacigümüs, H., Iyer, B.R., Li, C., Mehrotra, S.: Executing SQL over encrypted data in
the database-service-provider model. In: Proc. of SIGMOD Conference 2002, pp. 216–227
(2002)

8. Luss, H.: An Extended Model for the Optimal Sizing of Records. Journal of Operation Re-
search Society 34, 1099–1105 (1983)

9. Sipala, P.: Optimum Cell Size for the Storage of Messages. IEEE Transactions on Software
Engineering SE-7, 132–134 (1981)

10. Wolman, E.: A Fixed Optimum Cell-Size for Records of Various Lengths. Journal of the
ACM 12, 53–70 (1965)

11. Yao, A.C.: How to Generate and Exchange Secrets. In: Proc. of IEEE FOCS 1986,
pp. 162–167 (1986)

Efficient and Enhanced Solutions

for Content Sharing in DRM Systems

Michal Davidson1, Ehud Gudes2, and Tamir Tassa1

1 The Open University, Ra’anana, 43100, Israel
michalsaraw@gmail.com, tamirta@openu.ac.il
2 Ben-Gurion University, Beer-Sheva, 84105, Israel

ehud@cs.bgu.ac.il

Abstract. We present a solution to the problem of content sharing in
digital rights management (DRM) systems. Users in DRM systems pur-
chase content from content providers and then wish to distribute it be-
tween their own devices or to other users. The goal is to allow the sharing
of such content, with the control of the content provider, while ensuring
that it complies with the content’s usage rules. While most of the previ-
ous studies on content sharing in DRM systems assume the existence of
authorized domains, ours does not make that assumption. The solutions
that we present here are based on Certified Sharing Requests which are
used when devices request from the content provider authorization to
share content with other devices. Our solutions enhance the usability of
DRM, from both the users’ and content provider’s perspective, by sup-
porting on-the-fly sharing, sharing and re-sharing of controlled content,
and a pay-per-share business model.

Keywords: digital rights management, content sharing, authorized do-
main, proxy re-encryption.

1 Introduction

The usage of Digital Rights Management (DRM) in the digital media industry
is controversial, since it limits the use of legally purchased content, and it does
not allow certain scenarios that were previously possible. One of the main con-
troversies with DRM systems is with regard to content sharing. When physical
or DRM-free content is purchased it can be shared, copied, and re-sold. On the
other hand, in DRM systems, the content provider (CP) wants to control such
content sharing, and ideally would like to get paid whenever such content is
further shared with other users.

Most current solutions for content sharing propose and expand upon the use
of an “Authorized Domain” — a group of devices which can freely share content
between themselves [1]. However, such solutions have two main drawbacks: they
do not support ”on the fly” sharing, namely, sharing between devices that do
not belong to the same domain; and they do not offer means to control which
content can be shared between two devices.

V. Atluri and G. Pernul (Eds.): DBSec 2014, LNCS 8566, pp. 373–381, 2014.
c© IFIP International Federation for Information Processing 2014

374 M. Davidson, E. Gudes, and T. Tassa

In this paper we propose solutions for content sharing that do not rely upon
authorized domains. A recent scheme that solves the content sharing problem
without assuming authorized domains was proposed by Ma et al. [2]. Their
scheme uses a proxy re-encryption method [3] which allows re-encryption of a
message without decrypting it first. Although this method is elegant and secure
(see its detailed description in the next section), it involves a considerable over-
head in terms of storage, and it relies on the complex cryptographic primitive
of bilinear pairing. Moreover, the implementation of the pairing in [2] dictates
using the El-Gamal public key cryptosystem and prevents using other public
key methods like the prevalent RSA cryptosystem. Finally, the solution in [2]
does not support re-sharing of purchased content with other users, or a flexible
payment scheme.

Here we address the above two problems and present a simpler scheme for
controlled sharing in DRM systems. Our scheme is called the Certified Sharing
Request (CSR) Scheme. It supports ”on the fly” sharing, re-sharing to any pre-
set depth, verification of content-dependent sharing privileges, CP knowledge
of sharing, and a pay-per-share business model. We achieve those functional
objectives while ensuring common security and privacy properties.

2 Background and Related Work

2.1 Definitions

Digital Rights Management (“DRM”) is a method for controlling the viewing
and distribution of digital content. A DRM system consists of the following
entities:

– Content (C) - a purchasable item of digital content. The content is dis-
tributed in an encrypted format, using a symmetric encryption, and can
only be decrypted using the corresponding content key.

– Content License (CL)- a record that includes the content key and a set
of usage rules. Content licenses are typically encrypted using public key
encryption.

– Content Provider (CP) - The entity that owns the content items and wishes
to control the distribution of the content to its client devices.

– Device (will be denoted by A, B, A0, A1 etc.) - a tamper proof computer
processing unit that is capable of parsing and decrypting the encrypted con-
tent and the encrypted content licenses. Each device holds a secret key and
a corresponding certificate, which is signed by a Certificate Authority. We
assume that the device’s secret key, as well as the content keys which the
device extracts from content licenses, are securely stored and processed in a
trusted hardware device (so called Trusted Computing Base, or TCB) and
cannot be accessed by a third party.

Content Sharing in DRM Systems 375

2.2 Related Work and Content Sharing with Proxy Re-encryption

Most literature on the topic of content sharing within DRM systems focuses on
the use of the Authorized Domain model [1]. This is the classic DRM solution for
content sharing, in which a group of authorized devices are defined as belonging
to a joint domain, and devices within the same domain can freely share content
between them.

The studies [4,5] suggest improvements in the authorized domain model. Other
studies do not assume that model: Sadeghi et al. [6] provide a secure platform on
open systems which allows the usage of dynamic licenses; Lee et al. [7] propose
a system for content sharing which relies on time-based rights.

A recent work on DRM and content sharing [2] uses the method of proxy
re-encryption [3]. The method in [3] allows users who received a message that
was encrypted with their public key to re-encrypt it for other users without
decrypting it first. They describe two types of probabilistic public key encryption
functions — first and second level encryptions. If (skA, pkA) denotes the private
and public key pair of user A, then E
(m, pkA), = 1, 2, denote the first and
second level encryptions of the plaintext m for user A. User A may decrypt
any ciphertext in E
(m, pkA) using his private key skA. In addition, he may re-
encrypt E2(m, pkA) into E1(m, pkB) without decrypting it first. Their method
uses bilinear pairings that are based on the Tate pairing [8]. We now proceed to
describe the content sharing solution of [2].

Purchasing Content. When device A requests from the CP to purchase con-
tent C, the CP sends to A a message x ∈ E1(m, pkA), where m = CL is the
content license of the requested content. In addition, the CP generates a random
key pair (skR, pkR) and sends to A a message y ∈ E2(m, pkR). Finally, it adds
to its records a new record that holds the identifiers of A and C, the generated
random key pair, and a counter of the number of times in which A shared C so
far. After the purchasing protocol is completed, A uses the message x to recover
the content license CL, with which it can decrypt the encrypted content.
Sharing Content.When device A wishes to share the purchased content C with
another device B, it sends a corresponding request to the CP. The CP checks
the details of the two devices A and B, and the number of times in which A had
already shared that particular content. If that sharing request is approved, the
CP computes a re-encryption key, rk, using B’s public key pkB and the random
private key skR that was generated when A purchased that content, and sends it
to A. A uses rk together with the message y which it received upon purchasing
that content in order to compute a ciphertext z ∈ E2(m, pkB), by means of
bilinear pairing. Device A then sends z together with the encrypted content to
device B. B proceeds to recover the content license m and decrypt the content.

There are several disadvantages to this solution: (a) Payment for sharing
content can only be performed by the device A who is sharing the content;
a better business model would be for the device B to pay to the CP for the
shared content. (b) This model requires that the CP stores a record for each
device and each purchased content, where each record stores the corresponding
counter and a pair of cryptographic keys. (c) The method is limited to only one

376 M. Davidson, E. Gudes, and T. Tassa

level of sharing; it does not allow device B to re-share the content with another
device. (d) The method relies upon the complex and costly bilinear pairing
function. (e) The usage of bilinear pairings in [2] is based on El-Gamal public
key cryptography and, thus, prevents using other public key cryptosystems, such
as RSA.

3 Certified Sharing Requests (CSR) and the CSR Scheme

Here we present our solution for content purchasing, sharing and re-sharing. We
describe how a given device A0 can purchase content C from the CP; how A0

may share C with another device A1; how A1 can re-share C with A2; and, in
general, how to perform re-sharing of any depth.

While in the proxy re-encryption solution A0 re-encrypts the content licence
for A1, in our solution the CP encrypts the content license for A1. We chose to
transfer the task of encrypting the content license from A0 to the CP for the
following reasons: (a) The CP must be involved in any such sharing or re-sharing
operation since it needs to verify that the sharing or re-sharing is consistent
with the usage rules for the content C. Hence the CP can also encrypt the
content license for the new device. (b) In [2], the process of re-encryption can
be performed only once per content and device, and thus does not support re-
sharing. In our scheme, the CP can perform a direct encryption rather than
re-encryption, hence re-sharing of any depth is possible.

Our solution is based on Certified Sharing Requests (CSRs). The CSRs in-
clude: information on the content C, the certificates of the devices that are
involved in the sharing and re-sharing operations, and payment information.
The CSRs are signed by all involved devices. The mechanism of CSRs is flexible
enough to support interoperability between DRM systems; namely, a device in
one DRM system can share content with a device that belongs to a different
DRM system, under the above assumptions. This will allow content providers
to charge devices for ”pay per sharing”, regardless of the DRM system to which
they belong.

3.1 Purchasing Content

Here we describe the process that takes place when a device, A0, wishes to
purchase a certain content, C. At the completion of this process, A0 receives
from the CP three items: (a) the content C, encrypted by a symmetric encryption
using the content key kC ; (b) the content license (which includes kC), encrypted
by A0’s public key; and (c) a corresponding sharing license, denoted SL, which
will be used only when A0 chooses to share C with other devices. Note that in
the entire paper the content license and the content itself can be decrypted only
by the TCB, so no key in the clear (i.e., non-encrypted key) can be sent out by
the device.

Content Sharing in DRM Systems 377

When A0 wishes to purchase a content C, the following protocol is executed:

1. A0 sends to the CP a message with A0’s certificate and C’s ID.
2. The CP verifies A0’s certificate, and that it is not revoked, then encrypts the

content license m = CL of C with A0’s public key, creates a corresponding
sharing license SL, and certifies it by signing it. The signed sharing license
will be denoted by [SL, SigCP]. The CP then sends to A0 the encrypted
content, the encrypted content license, and the signed sharing license.

3. The CP creates and stores a record of the form (A0, C, STC,A0), where
STC,A0 is a counter of the number of times in which A0 shared the con-
tent C with other devices; it is initialized to zero.

4. A0 also creates a counter STC for the number of times that it shared the
content C with other devices.

The sharing license SL which the purchasing device A0 receives upon pur-
chasing the content C will be used when A0 wishes to share that content with
another device A1. The SL will contain the following fields: (1) C (the ID of the
purchased content); (2) GDI (the Global Device ID of A0); (3) MSL (Maxi-
mum Sharing Level), denoting the depth of permitted sharing for C; and (4)NoS
(Number of Sharings), bounding the total number of devices that can receive
the shared content from A0 by means of sharing or re-sharing.

3.2 Sharing Content

When A0 wishes to share C with A1, the following protocol is executed.

1. A0 sends to A1 the message [SL, SigCP , COD] where [SL, SigCP] is the
certified sharing license that A0 received from the CP when it purchased C,
and COD (Charge Original Device) is a field that indicates which device
will be charged for the content sharing: COD = 0 means that A0 will be
charged, while COD = 1 means that A1 will be charged.

2. A1 adds to the received message its certificate CertA1 and a payment infor-
mation field EPI. EPI includes the information needed to charge A1 for
performing this sharing, if COD = 1; otherwise, if COD = 0, EPI is empty.

3. A1 sends to A0 the message [SL, SigCP , COD,CertA1 , EPI, SigA1], where
the last field is A1’s signature on the preceding fields in the message.

4. A0 verifies that the internal counter STC which it maintains for the content
C is smaller than NoS (the value that appears in SL), and that A1 did
not alter the value COD. If those verifications passed successfully then A0

increments STC and signs the sharing request. The result is called a CSR
(Certified Sharing Request):

CSR1 := [SL, SigCP , COD,CertA1 , EPI, SigA1, SigA0] .

Here, SigA0 is the signature of A0 on all preceding fields in CSR1.

5. A0 sends CSR1 to the CP.

378 M. Davidson, E. Gudes, and T. Tassa

6. The CP performs the following verifications: (a) the three signatures in
CSR1; (b) neither of the devices A0, A1 is revoked; (c) the MSL field, as ap-
pears in SL, is at least 1; and (d) it retrieves the record (A0, C, STC,A0) and
checks that STC,A0 < NoS (and if so, it increments the value of STC,A0).
If all verifications were successful, the CP encrypts the content license with
A1’s public key and sends it to A1 (either via A0 or directly).

7. A0 sends to A1 the encrypted content. (Recall that A0 already has the en-
crypted content, since it received it from the CP upon purchasing it.)

8. A1 decrypts the content license using his private key in order to recover the
content key. It then proceeds to decrypt the content using that key.

Note that the device A0 has to verify the internal counter STC in Step 4 in the
protocol above in order to refrain from unnecessary communications vis-a-vis the
CP. The CP repeats the same check (Step 6d) since it does not trust A0, but, as
explained above, the check by A0 in Step 4 is still necessary for communication
overhead considerations. We note that if the check in the device is performed in
the TCB, it can prevent Denial of Service attacks.

3.3 Re-sharing Content

Assume that a specific content C was already shared by the following chain of
devices, A0, A1, . . . , Ai−1; i.e., A0 purchased that content from the CP, and then
it shared it with A1, who continued to share it with A2, and so forth. Below we
describe how Ai−1 can re-share the content with a new device Ai. Before doing
so, we comment that if the field COD equals 0, then, as before, it means that
A0 will pay for that re-share; however, if COD = 1 then the recipient of the
content in the re-sharing operation (i.e., Ai in this case) will be charged for that
operation.

The re-sharing protocol proceeds as follows:

1. DeviceAi−1, that already possesses [SL, SigCP , COD,CertA1 , . . . , CertAi−1]
from the protocol that took place when it obtained the shared content, sends
this sharing request to Ai.

2. Ai adds to the sharing request its certificate CertAi and the payment infor-
mation field EPI (where COD = 1) or an empty EPI (where COD = 0).

3. Ai sends to Ai−1 the sharing request

[SL, SigCP , COD,CertA1 , . . . , CertAi−1 , CertAi , EPI, SigAi] ,

where the last field is Ai’s signature on the preceding fields in the message.
4. The message is sent up the chain of devices, where device Aj adds its own

signature on the message that it received from Aj+1, and then sends it to
Aj−1, j = i− 1, . . . , 1.

5. A0 verifies that STC is smaller than NoS, and that Ai did not alter the value
COD. If those verifications passed successfully then A0 increments STC and
signs the sharing request. The resulting CSR is:

CSRi := [SL, SigCP , COD,CertA1 , . . . , CertAi , EPI, SigAi, . . . , SigA0] .

Content Sharing in DRM Systems 379

6. A0 sends CSRi to the CP.
7. The CP performs the following verifications: (a) it verifies all i+2 signatures

that appear in CSRi; (b) none of the devices A0, . . . , Ai is revoked; (c) the
MSL field, as appears in SL, is at least i; and (d) it retrieves the record
(A0, C, STC,A0) and checks that STC,A0 < NoS (and if so, it increments the
value of STC,A0).

8. If all verifications were successful, the CP encrypts the content license with
Ai’s public key and sends it to Ai (either via A0 or directly).

9. Ai−1 sends to Ai the encrypted content. (Recall that Ai−1 already has the
encrypted content, since Ai−2 shared it with him.)

10. Ai decrypts the content license using his private key in order to recover the
content key. It then proceeds to decrypt the content using that key.

3.4 The Partial Trust Scenario

Due to space limitations, we focused in this paper on a scenario of non-trust,
where devices that are direct clients of the CP are not granted any trust regard-
ing the right to authorize a sharing request. The CP does not delegate to A0

any verification tasks; it performs all necessary checks before sending out the
content license encrypted for the new device. The disadvantage in such a non-
trust scenario is greater storage and performance overhead. In the full version
of this paper we present a relaxed scenario of partial trust, in which the CP has
a partial trust in its direct client devices. In particular, device A0 is trusted to
do most of the verification which is currently done by the CP in the full-trust
scenario. Therefore, in such a model, the storage and computational costs for
the CP are reduced significantly.

3.5 Advantages and Disadvantages of the CSR Scheme

The CSR scheme supports re-sharing, where the depth and number of re-sharings
can be set upfront and controlled. Payment can be made by either the device
which originally purchased the content from the CP or from the device which
is the recipient in the re-sharing act, what allows a more flexible pay-per-share
business model. Compared to the proxy re-encryption scheme, the CP has to
store a smaller database that holds only the counter per device per content,
without the need to store a pair of cryptographic keys. In the partial trust
scenario the amount of data that needs to be stored by the CP is further reduced,
since the CP has to store just one counter per device (and not per device per
content). Finally, the CSR scheme does not rely upon the complex and costly
bilinear pairing function.

When comparing the security of the proxy-reencryption and the CSR scheme,
we see that in both schemes public key encryption is used to protect the content
license which contains the content key. In addition, the sharing requests in the
CSR scheme are always signed, by the tamper-proof TCB, so that they are
authenticated and cannot be repudiated. This is an advantage over the proxy
re-encryption solution which does not use signatures, and thus is vulnerable

380 M. Davidson, E. Gudes, and T. Tassa

to both man-in-the-middle attacks, and Denial of Service (DOS) attacks. Both
solutions require each device to have a trusted computing base (TCB). The TCB
of A0 is not required by the proxy re-encryption solution for content sharing,
since the re-encryption can be performed on the device itself without exposing
either the content key or the device’s secret key. In the CSR scheme, on the
other hand, any action that involves signatures is a TCB operation. Hence, both
schemes depend on a TCB, but in the CSR scheme the overhead on the TCB
is greater due to the use of signatures. The conclusion is that the security of
both schemes is comparable, but the CSR scheme is advantageous in terms of
protecting sensitive information on the CP, in providing authentication and non-
repudiation to sharing requests, and in reducing the risk of DOS and man-in-the
middle attacks.

4 Conclusions and Future Work

We proposed a scheme for content sharing in a DRM system. Content sharing is
performed using a Certified Sharing Request (CSR). In contrast to most related
work on content sharing in DRM systems, our approach does not rely on the
Authorized Domain model. The CSR model improves upon the limitations of
the Authorized Domain model by supporting ”on-the-fly” sharing, controlled
content sharing and re-sharing, and a pay-per-share business model. We propose
versions of our CSR scheme both for the fully secure non-trust scenario and for
the partial trust scenario with improved performance.

In the future, we would like to enhance the CSR scheme by supporting privacy
preservation, i.e. allowing content sharing where the content provider receives
payment and sends a content license while remaining oblivious of the identity
of the user who purchased that content. We intend to investigate the applica-
tion of proxy re-encryption in order to support privacy preservation within the
CSR scheme. We may also refine the payment model, and define in more depth
the rules whereby the content provider should halt sharing in the partial trust
scenario.

References

1. Popescu, B.C., Crispo, B., Tanenbaum, A.S., Kamperman, F.: A DRM security
architecture for home networks. In: Digital Rights Management Workshop, pp. 1–
10 (2004)

2. Ma, G., Pei, Q., Jiang, X., Wang, Y.: A proxy re-encryption based sharing model
for DRM. Int’l J. of Digital Content Tech. and its Applications 5(11), 385 (2011)

3. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption
schemes with applications to secure distributed storage. ACM Trans. Inf. Syst. Se-
cur. 9(1), 1–30 (2006)

4. Abbadi, I.M.: Digital rights management using a master control device. In:
Cervesato, I. (ed.) ASIAN 2007. LNCS, vol. 4846, pp. 126–141. Springer, Heidelberg
(2007)

Content Sharing in DRM Systems 381

5. Sheppard, N.P., Safavi-Naini, R.: Sharing digital rights with domain licensing. In:
The ACM Workshop on Multimedia Content Protection and Security, pp. 3–12
(2006)

6. Sadeghi, A.-R., Wolf, M., Stüble, C., Asokan, N., Ekberg, J.-E.: Enabling fairer
digital rights management with trusted computing. In: Garay, J.A., Lenstra, A.K.,
Mambo, M., Peralta, R. (eds.) ISC 2007. LNCS, vol. 4779, pp. 53–70. Springer,
Heidelberg (2007)

7. Lee, S., Kim, J., Hong, S.J.: Redistributing time-based rights between consumer
devices for content sharing in DRM system. Int. J. Inf. Sec. 8(4), 263–273 (2009)

8. Galbraith, S.D., Harrison, K., Soldera, D.: Implementing the tate pairing. In: Fieker,
C., Kohel, D.R. (eds.) ANTS 2002. LNCS, vol. 2369, pp. 324–337. Springer, Heidel-
berg (2002)

A Scalable and Efficient Privacy Preserving

Global Itemset Support Approximation
Using Bloom Filters

Vikas G. Ashok1 and Ravi Mukkamala2

1 State University of New York, Stony Brook, NY 11794, USA
vganjiguntea@cs.stonybrook.edu

2 Old Dominion University, Norfolk, VA 23529, USA
mukka@cs.odu.edu

Abstract. Several secure distributed data mining methods have been
proposed in the literature that are based on privacy preserving set opera-
tion mechanisms. However, they are limited in the scalability of both the
size and the number of data owners (sources). Most of these techniques
are primarily designed to work with two data owners and extensions to
handle multiple owners are either expensive or infeasible. In addition,
for large datasets, they incur substantial communication/computation
overhead due to the use of cryptographic techniques. In this paper, we
propose a scalable privacy-preserving protocol that approximates global
itemset support, without employing any cryptographic mechanism. We
also present some emperical results to demonstrate the effectiveness of
our approach.

Keywords: Privacy Preserving Set Union Protocol, Privacy Preserving
Data Mining, Secure Multiparty Computation.

1 Introduction

With the increasing need for global data mining, mining of data dispersed among
a wide variety of data owners, several schemes have been developed in literature.
In addition, the ever increasing awareness for preserving privacy of individuals
and organizations has prompted the development of several privacy-preserving
global data mining schemes. In this paper, we focus our attention on secure
global set operation algorithms. Current techniques in this area are primarily
based on data perturbation and secure multiparty computation (SMC) [1–3].

In the case of data perturbation based techniques, each data owner deliber-
ately distorts its private data before sharing it with a third party data miner.
The onus now is on the data miner to use special techniques to reconstruct
the original distribution of the received perturbed data for data mining pur-
poses. In the SMC approach of [2], data owners securely perform global data
mining without revealing individual private data. While data perturbation tech-
niques (e.g. [4]) trade utility for privacy and suffer from security problems, SMC

V. Atluri and G. Pernul (Eds.): DBSec 2014, LNCS 8566, pp. 382–389, 2014.
c© IFIP International Federation for Information Processing 2014

Scalable and Efficient Privacy Preserving Global Itemset Support 383

techniques (e.g. [3]) are in general expensive in terms of computation and com-
munication overhead since they may depend on encryption mechanisms.

The goal of our work is to present an efficient scalable and privacy preserving
protocol for secure set union computation that does not rely on any crypto-
graphic techniques and requires minimum cooperation between the participat-
ing data sites. In our approach, we strategically decompose a single bloom filter
representing an itemset at each data source into several partial bloom filters
that can be shared with other sites without violating privacy. Our cooperative
protocol ensures that the final result obtained from operations on these partial
bloom filters is the same as that obtained from a naive protocol employing the
original undecomposed bloom filters without any privacy concerns. We also show
that our protocol performs better than some of the well known approaches with
respect to the overall communication cost. We present a brief discussion of the
related work next.

2 Background

A standard Bloom filter [5] uses an m bit array to represent a set S where all
m bits are initially set to 0. Every element x ∈ S is hashed using k independent
uniform hash functions h1(), . . . , hk() each with the range {1, . . . ,m} and the
corresponding bits hi(x) in the array are set to 1. Any membership query can
therefore be addressed by simply hashing the query element y using the same k
hash functions and checking if the corresponding bits in the Bloom filter array
are set to 1.

It has been shown in [9] that the number z of 0 bits in a Bloom filter for a
set S is strongly concentrated around its expectation m(1−1/m)k|S|. Therefore,
given z, m and k, we can approximate the size of S using (1).

|S| = ln(z/m)

k ln(1− 1/m)
(1)

The secure computation performed by previous work (e.g. [7,8]) typically refer
to the cooperative determination of set intersection/union cardinality for item-
sets distributed across several sites. To the best of our knowledge, all existing
approaches (e.g. [7,8]) rely on some encryption mechanism for their effective op-
eration, thereby making them either unscalable or cost intensive. Our approach
overcomes these deficiencies by employing Bloom filters.

3 Problem Statement

We assume that there are n ≥ 2 data sites which independently collect similar
data for a sample of individuals belonging to some population P . Each site (or
data owner) Si, 1 ≤ i ≤ n, has data for a sample Di drawn from population
P . Each transaction in Di is assumed to have a unique identifier TID (e.g.,
SSN, driver’s license number, etc.). Overlaps between samples at different sites

384 V.G. Ashok and R. Mukkamala

may exist; the data corresponding to the same individual may exist at multiple
sites. The goal is to determine the overall global support of an itemset, without
violating privacy of individual private data. In other words, for a given itemset
X and a site Si, if Li(X) denotes the set of TIDs of transactions in Di that
contain X , the goal is to preserve individual privacy while estimating the global
support (sg(X)) of X given by |

⋃
1≤i≤n Li(X)|.

With respect to privacy, we assume an Honest-but-Curious (HBC) adversary
model [10]. Informally, in the HBC model, the participating parties correctly
observe the protocol but they may utilize any information exchanged in the
intermediate stages of the protocol to learn certain private details about indi-
viduals. Therefore, the privacy requirement in this model states that any party
should not be able to learn anything more than what can be deduced from the
final output of the multiparty computation.

4 Privacy Preserving Global Itemset Support
Computation Protocol

This protocol involves direct communication among the sites (data owners) with-
out any third party. The main idea behind the protocol is based on the following
observation: determining global support sg(X) = |

⋃
1≤i≤n Li(X)| for an itemset

X is approximately equivalent to determining the number of elements hashed
into the global Bloom filter BFG(X) using (1), where the set of hashed ele-
ments in BFG equals

⋃
1≤i≤n Li(X). Therefore, the task boils down to comput-

ing BFG(X) in a privacy preserving manner. The protocol is shown in Algorithm
1. It involves two phases, decomposition and reconstruction, described below.

4.1 Decomposition

In the decomposition phase, each site Si generates n Bloom filters BF i
j , 1 ≤ j ≤

n, one for each of the n sites, which are individually incomprehensible/incomplete
but collectively represent Li(X). Therefore, each of these component Bloom
filters can be safely shared with another participating site without any concern of
privacy violation. To generate these BF i

j , 1 ≤ j ≤ n, we propose a partial Bloom
filter construction technique that leverages the services of GenerateLocalKeys
routine presented in Algorithm 1.

In this technique, given an itemset X , a site Si uses only subsets of publicly
known k hash functions to generate any Bloom filters for Li(X). Both the size
and composition of these subset of hash functions are private to Si. In our
protocol, since we generate n component Bloom filters, we need n such subsets
of hash functions. In addition, each hash function has to appear in at least one
of these subsets so that the Bloom filters collectively represent Li(X).

The GenerateLocalKeys function (Algorithm 1) produces n random subsets
(Keys) of indices of k Bloom filter hash functions such that each of the k indices
appear in at least one subset or Key. As seen in Algorithm 1, in the initialization
phase (lines 22–26 in Algorithm 1), n keys are initialized with random subsets

Scalable and Efficient Privacy Preserving Global Itemset Support 385

Algorithm 1. Protocol for global support approximation of itemset X

Input: n ≥ 2, Li(X) for 1 ≤ i ≤ n, m, X, and H = h1, . . . , hk such that k > n.
Output: Global support sg(X) and global Bloom filter BFG(X).

1: for all Sites Si, 1 ≤ i ≤ n do

 Phase 1: Decomposition

2: Keys ← GenerateLocalKeys(k, n)
3: for j = 1 to n do
4: BF i

j ← CreateBloomFilter(Keys[j], Li(X))
5: Send BF i

j to site Sj

6: end for

 Phase 2: Reconstruction

7: initialize temporary variable BF ′
i to 0.

8: for j = 1 to n do
9: Receive BF j

i from site Sj .
10: BF ′

i ← BF ′
i ∨BF j

i

11: end for
12: Send BF ′

i to all sites.

 Merge intermediate results

13: Initialize BFG(X) ← BF ′
i .

14: for j = 1 to n do
15: Receive BF ′

j from site Sj .
16: BFG(X) ← BFG(X) ∨ BF ′

j

17: end for
18: sg(X) = Approximate size of BFG(X) using equation 1.
19: end for

20: procedure GenerateLocalKeys(k, n)
Private: random subset length parameters a, b.

21: Create a set K ← {1, 2, . . . , k}
Initialize: Create n random subsets of K, each of random size r.

22: for i = 1 to n do
23: r = RandomNumber(a, b), 1 ≤ a < b < k
24: K′ = RandomSubset(K, r)
25: Keys[i] ← K′

26: end for
Finalize: Ensure that all hash functions in HS are considered.

27: for hf = 1 to k do
28: r′ = RandomNumber[1, n]
29: Keys[r′] = Keys[r′] ∪ {hf}
30: end for
31: return Keys
32: end procedure

33: procedure CreateBloomFilter(Key,List)
34: Create set H ′ ← {hj |j ∈ Key}

Create BF by hashing List using H ′.
35: Return BF
36: end procedure

386 V.G. Ashok and R. Mukkamala

of K, where K is the set of all Bloom filter hash function indices. The size of
these initialized keys can be controlled using private parameters a and b. In
the finalization phase (lines 27–30 in Algorithm 1), we ensure that each hash
function index is present in at least one key. In other words, the k hash function
indices are randomly distributed among the n keys just like throwing k balls into
n bins assuming that each ball is equally likely to fall into any one of the n bins.
The index subsets generated by GenerateLocalKeys function are then used by
the CreateBloomFilter subroutine (Algorithm 1) to produce the partial Bloom
filters.

At the end of the decomposition phase, partial bloom filter BF i
j is sent to Sj ,

for every 1 ≤ j ≤ n. This sharing is safe since the size and composition ofKeys[j]
used in generating BF i

j is unknown to Sj . Note that it is not a wise decision
to share more than one partial Bloom filter with a single site as it is publicly
known that these bloom filters collectively represent Li(X) and therefore may
allow adversary to make stronger assumptions about the content of Li(X).

4.2 Reconstruction

The reconstruction phase is simple and based on the following insight - the global
bloom filter BFG is simply the bitwise ’or’ of all the bloom filters generated by
all the sites in the decomposition phase.

By the end of the decomposition phase, every site Si receives BF j
i , 1 ≤

j ≤ n, at the beginning of the reconstruction phase. Therefore, as a first step,
the protocol performs a bitwise ’or’ of all received BF j

i and broadcasts the
corresponding intermediate result to all other sites. For example, S1 performs
BF 1

1 ∨BF 2
1 . . .∨BFn

1 and sends the result of this operation to all sites. Once Si

receives all intermediate bloom filters from other sites, another round of Bitwise
OR operation yields the global bloom filter BFG. The global support sg(X) can
then be obtained from BFG using (1).

4.3 Privacy Analysis

The extent of privacy achieved by our protocol depends on the confidence with
which a site Si can predict the number and identities of hash functions used by
another site Sj , j �= i for generating BF j

i . This is because the knowledge of the
number of hash functions can reveal the size of the input set through (1) and
the knowledge of identities of used hash functions can reveal private data at any
site. It is easy to notice that no meaningful information can be deduced from
individual analysis of BF ′

j , 1 ≤ j ≤ n, received during reconstruction phase as
these bloom filters are composed of various partial chunks belonging to different
sites. Therefore, we limit our focus to BF j

i , 1 ≤ j ≤ n, received at the beginning
of reconstruction phase.

For a given bloom filterBF j
i received by Si from Sj, let T be a random variable

indicating the number of hash functions used by Sj to generate BF j
i . Also, let

Ex denote the event that x hash function indices were placed in Keys[i] after

Scalable and Efficient Privacy Preserving Global Itemset Support 387

Table 1. Commnication cost of various protocols. Notation: s - average size of input
set of TIDs and |P | - domain size of input set TIDs

Protocol Communication Cost(bits)

Commutative encryption (Vaidya [7]) O(n(2n− 2)s ∗ EncryptionSize)
Homomorphic encryption (Kissener [8]) O(n2s log2 |P | ∗ EncryptionSize)
Proposed protocol 2n(n− 1)m

initialization phase of GenerateLocalKeys subroutine and let E′
y be the event

that Keys[i] is selected y times during finalization phase of GenerateLocalKeys
subroutine.

Pr{T = t} represents the probability that t hash functions were used in gen-
erating BF j

i . Ideally, we expect this probability to be low for all possible values
of t, or in other words the distribution of Pr{T = t} to be uniformly spread
out. Pr{T = t} can be computed using the law of total probability as shown in
equation (2).

Pr{T = t} =
b∑

x=a

k∑
y=0

Pr{Ex ∩ E′
y}Pr{T = t|(Ex ∩E′

y)} (2)

Since E and E′ are mutually independent events, Pr{Ex ∩ E′
y} is simply the

product of Pr{Ex} and Pr{E′
y}. Informally, Pr{T = t|(Ex ∩E′

y)} represents the
probability of obtaining t distinct hash functions as a result of union between two
random subsets of hash functions having sizes x and y respectively. Therefore,
Pr{T = t|(Ex ∩E′

y)} has a non-zero value shown in (3), only when both x, y ≤ t
and x+ y ≥ t.

Pr{T = t|(Ex ∩ E′
y)} =

(
k−x
t−x

)(
x

y−(t−x)

)(
k
y

) (3)

The probability of determining the identities of hash functions H used in

generating BF j
i can therefore be computed as Pr{T=|H|}

(k
|H|)

. These probabilities

are typically small as shown in the experimental section. Next, we evaluate the
cost of our protocol.

4.4 Cost Analysis

Table 1 compares the communication cost of our protocol with existing popular
cryptography dependent approaches proposed in [7] and [8]. The communication
cost in our approach is easy to derive since each site transmits (n − 1)m bits
of information to other sites twice during the execution of the protocol. As
seen in Table 1, our approach reduces the communication cost to a considerable
extent since, in practice, m << s ∗ EncryptionSize. In addition, the absence of
encryption tends to lower the computation cost as well.

388 V.G. Ashok and R. Mukkamala

Fig. 1. (top:) Height of density function of T given n and k. (bottom:) Percentage error
in global support approximation where actual support is 100, 000.

5 Empirical Results and Analysis

In this section, we study the impact of various protocol parameters on accuracy
and privacy of the global frequent itemset mining. As explained earlier, while
accuracy is dependent on correct estimation of global union cardinality using
equation (1), privacy is dependent on the high confidence prediction of the num-
ber (T) and identity of hash functions constituting the keys generated privately
using GenerateLocalKeys.

Let the height of a probability distribution of T given n and k be defined
as the maximum value on the curve representing that distribution. Obviously,
smaller the height, better the privacy. Figure 1(top) shows the heights of different
probability curves of T obtained by varying the number of sites n and total hash
functions k. It is observed that irrespective of n, the height is lowered when
k is increased. However, k cannot be arbitrarily increased as it adds to both
computation and communication overhead (since m ∝ k).

We now look at the accuracy measure. In order to assess the impact of m and
k on accuracy, we plot average percentage error in global support estimation for
an itemset X in Figure 1(bottom) where actual global support s′g(X) is 100, 000.

Specifically, for a given combination of m and k, we plot
Abs(s′g(X)−sg(X))

s′g(X) . sg(X)

is computed by averaging results over 10, 000 runs. Each of the runs constitutes
a simple experiment where we first insert s′g(X) random elements into a Bloom
filter. We compute the number of 0s (z) in the Bloom filter, and then estimate
the size of input set from z using (1). As observed in Figure 1(bottom), the global
support approximation method is very robust as the maximum percentage error

Scalable and Efficient Privacy Preserving Global Itemset Support 389

for this scenario is 0.18%. Also, for a few values of m (1.5, 2.5 million bits), the
error is very low and independent of k.

In summary, the proposed method has mechanisms to control the accuracy
and privacy of the resulting global frequent itemsets obtained through data min-
ing across different data owners.

6 Conclusions and Future Work

In this paper, we looked at an efficient mechanism to approximate global frequent
itemset support from data owned by several independent data owners. The pri-
mary objectives that inspired the protocol development were local data privacy,
scalability, reduced communication and computational cost, and finally high accu-
racy. While the earlier schemes in literature had high accuracy and privacy, they
were deficient in offering scalability and efficiency due to extensive use of crypto-
graphic mechanisms. On the other hand, we employed bloom filters as a means to
preserve privacy across data owners. We also carried out empirical analysis of the
protocol and determined the relationship between the parameter values of the pro-
tocol and the resulting accuracy and privacy. In future, we plan to extend this work
by building full-scale prototypes of the protocol to validate the results and gain a
deeper understanding of the impact of the hash functions on the performance.

References

1. Liu, K., Kargupta, H., Ryan, J.: Random projection-based multiplicative data per-
turbation for privacy preserving distributed data mining. IEEE Trans. Knowledge
and Data Engg. 18(1), 92–106 (2006)

2. Lindell, Y., Pinkas, B.: Privacy preserving data mining. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 36–54. Springer, Heidelberg (2000)

3. Kantarcioglu, M., Nix, R., Vaidya, J.: An efficient approximate protocol for privacy-
preserving association rule mining. In: Theeramunkong, T., Kijsirikul, B., Cercone,
N., Ho, T.-B. (eds.) PAKDD 2009. LNCS, vol. 5476, pp. 515–524. Springer, Hei-
delberg (2009)

4. Kargupta, H., Datta, S., Wang, Q., Sivakumar, K.: On the privacy preserving
properties of random data perturbation techniques. In: Proceedings of the Third
IEEE International Conference on Data Mining (ICDM 2003), November 19-22.
IEEE Computer Society, Los Alamitos (2003)

5. Bloom, B.H.: Space/time Trade-offs in Hash coding with Allowable Errors. Com-
munications of the ACM 13(7), 422–426 (1970)

6. Qiu, L., Li, Y., Wu, X.: Preserving privacy in association rule mining with Bloom
filters. Journal of Intelligent Information Systems 29(3), 253–278 (2007)

7. Vaidya, J., Clifton, C.: Secure set intersection cardinality with application to as-
sociation rule mining. Journal of Computer Security 13(4), 593–622 (2005)

8. Kissner, L., Song, D.: Privacy-preserving set operations. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005)

9. Andrei, A., Mitzenmacher, M.: Network applications of Bloom filters: A survey.
Internet Mathematics 1(4), 485–509 (2004)

10. Goldreich, O.: Foundations of Cryptography. Basic Applications, vol. 2. Cambridge
University Press (2009)

Author Index

Ahn, Gail-Joon 356
Alhadidi, Dima 82
Aljumah, Feras 82
Ashok, Vikas G. 382

Barouti, Samira 82
Bkakria, Anis 17
Braun, Lucas 307

Cheng, Yuan 292
Cook, Debra 339
Costante, Elisa 243
Crispo, Bruno 130
Cuppens, Frédéric 17, 66, 195
Cuppens-Boulahia, Nora 17, 66, 195

Davidson, Michal 373
Debbabi, Mourad 82
De Capitani di Vimercati, Sabrina 33
den Hartog, Jerry 243
Derler, David 49
Di Crescenzo, Giovanni 339, 364
Duan, Lian 211

Erbacher, Robert 114
Etalle, Sandro 243

Fang, Yi 211
Fong, Philip W.L. 163
Foresti, Sara 33

Gadyatskaya, Olga 130
Gross-Amblard, David 17
Gudes, Ehud 373

Han, Wonkyu 356
Hanser, Christian 49
Haque, Md Munirul 146
Hasan, Ragib 146
Hong, Yuan 179, 211
Hu, Hongxin 356
Huang, Chu 114

Jajodia, Sushil 33, 227
Justus, Benjamin 66

Kant, Krishna 227
Khan, Rasib 146
Kossmann, Donald 307

La Spina, Francesco 130
Le, Meixing 227
Lu, Haibing 179, 211

McIntosh, Allen 339
Mehregan, Pooya 163
Moataz, Tarik 66, 195
Moser, Ermanno 130
Mukkamala, Ravi 382

Panagos, Euthimios 339
Paraboschi, Stefano 33
Park, Jaehong 292
Pechenizkiy, Mykola 243
Petković, Milan 98, 243

Ranise, Silvio 260
Ray, Indrajit 66, 195
Ray, Indrakshi 66, 195

Samarati, Pierangela 33
Sanamrad, Tahmineh 307
Sandhu, Ravi 292
Shallcross, David 364
Slamanig, Daniel 49
Solomon, Michael G. 324
Stoller, Scott D. 276
Sunderam, Vaidy 324

Tassa, Tamir 373
Truong, Anh 260

Vaidya, Jaideep 179
Vavilis, Sokratis 98
Venkatesan, Ramarathnam 307

Wang, Lingyu 179
Wei, Wei 1

Xiong, Li 324
Xu, Zhongyuan 276

Yang, Yanjiang 211
Yu, Ting 1

Zannone, Nicola 98
Zawoad, Shams 146
Zhauniarovich, Yury 130
Zhu, Sencun 114

	Preface
	Organization
	Privacy without Encrypting: Protect Your Dataand Use It Too
	Getting Ready for the Next Privacy and Security Challenges
	Table of Contents
	Integrity Assurance for Outsourced Databases without DBMS Modification
	1 Introduction
	2 Related Work
	3 System Model
	3.1 Database OutsourcingModel
	3.2 Assumptions and Attack Models
	3.3 Security Goals

	4 SystemDesign
	4.1 Running Example
	4.2 Authenticated Data Structure
	4.3 Identify Authentication Data
	4.4 Store Authentication Data
	4.5 Extract Authentication Data

	5 Data Operations
	5.1 Select
	5.2 Update

	6 Experimental Evaluation
	6.1 Performance Analysis

	7 Conclusion
	References

	Specification and Deployment of IntegratedSecurity Policies for Outsourced Data
	1 Introduction
	2 Related Work
	3 Proposed Approach
	4 System Specification Using Epistemic LTL
	4.1 Syntax and Semantics
	4.2 Data Model
	4.3 Specifying Basic Knowledge Axioms
	4.4 Goal Representation

	5 Security Policy Specification
	5.1 Security Constraint
	5.2 Utility Constraint

	6 Security Mechanisms Specification
	6.1 Encryption-Based Mechanism Specification
	6.2 Anonymization-Based Mechanism Specification

	7 Choosing the Right Mechanisms
	7.1 First Step: Satisfy the Chosen Goal
	7.2 Second Step: Violated Security Constraints
	7.3 Third Step: Satisfying the Violated Constraints
	7.4 Fourth Step: Choosing the Best Security Mechanisms

	8 Best Mechanisms Selection
	9 Conclusion
	References

	Optimizing Integrity Checksfor Join Queries in the Cloud
	1 Introduction
	2 Scenario and Basic Concepts
	3 Semi-join
	4 Limiting Salts and Buckets to Twins and Markers
	5 Performance Analysis
	6 Experimental Results
	7 Related Work
	8 Conclusions
	References

	Privacy-Enhancing Proxy Signaturesfrom Non-interactive Anonymous Credentials
	1 Introduction
	1.1 Contribution
	1.2 Related Work

	2 Preliminaries
	3 Anonymous Credentials
	3.1 Abstract Model of Anonymous Credentials
	3.2 Two Concrete Anonymous Credential Systems
	3.3 Remarks on Anonymous Credentials in our Constructions

	4 Privacy-Enhancing Proxy-Type Signatures
	4.1 Blank Digital Signatures
	4.2 Warrant-Hiding Proxy Signatures

	5 From Anonymous Credentials to Proxy-Signatures
	5.1 Mapping from Templates and Warrants to Attributes
	5.2 Constructing BDS from Anonymous Credentials
	5.3 Constructing WHPS from Anonymous Credentials
	5.4 From AC Security to BDS and WHPS Security

	6 Instantiations from CL and Brands’ Credentials
	7 Comparison and Discussion
	References

	Privacy-Preserving Multiple Keyword Searchon Outsourced Data in the Clouds
	1 Introduction
	2 Related Work
	3 Overview of the Approach
	3.1 Problem Statement
	3.2 Notations
	3.3 PCSSE Protocol
	3.4 PCSSE Security Definition

	4 PCSSE-1 Construction
	4.1 Setup Phase
	4.2 Search Phase

	5 PCSSE-2 Construction
	6 Security Analysis and Evaluation
	6.1 Security Analysis
	6.2 Evaluation

	7 Conclusion
	References

	Secure and Privacy-Preserving Queryingof Personal Health Records in the Cloud
	1 Introduction
	2 Execution Environment
	2.1 Entities
	2.2 Assumptions

	3 Building Blocks
	4 Secure Maximum/Minimum Computation
	5 Secure Execution of Health Queries in Cloud
	5.1 Key Generation and Tree Construction
	5.2 Query Sanitization and Token Generation
	5.3 Tree Traversal and Query Execution
	5.4 Query Result Decryption

	6 Security and Efficiency Analysis
	6.1 Security Analysis
	6.2 Complexity Analysis
	6.3 Performance Evaluation

	7 Related Work
	8 Conclusion
	References

	Data Leakage Quantification
	1 Introduction
	2 Related Work
	3 Running Example
	4 Approach
	5 Modeling and Reasoning on Data Sensitivity
	6 Mapping Information on the Data Model
	7 Data Leakage Quantification
	7.1 M-Score
	7.2 Application ofM-Score
	7.3 L-Severity

	8 Validation
	8.1 Determining Data Sensitivity
	8.2 Assessing Data Leakage Severity Validation

	9 Conclusions
	References

	Toward Software Diversity in HeterogeneousNetworked Systems
	1 Introduction
	2 Related Work
	3 Problem Formulation
	3.1 System Model
	3.2 Graph Multi-coloring Problem with Local Constraints

	4 Software Assignment Algorithm
	4.1 Formulating Constraints
	4.2 Algorithm Description
	4.3 Algorithm Complexity Analysis

	5 Evaluations
	5.1 Simulation Setup
	5.2 Simulation Metrics
	5.3 Simulation Results

	6 Discussion and Future Work
	7 Conclusions
	References

	FSquaDRA: Fast Detectionof Repackaged Applications
	1 Introduction
	2 Our Approach
	3 Evaluation
	4 Cross-Market Repackaging
	5 Related Work
	6 Conclusions
	References

	‘Who,When, and Where?’ Location Proof Assertion for Mobile Devices
	1 Introduction
	2 Related Work
	3 Modelling a Secure Location Assertion
	3.1 Witnesses and Assertions
	3.2 Terminologies
	3.3 ThreatModel
	3.4 System Model

	4 Security and Challenges in Location Proofs
	4.1 Challenges and Attacks

	5 A Secure Location Proof Assertion Scheme
	5.1 Schematic Description of Secure Location Proof Assertion
	5.2 Location Assertion Protocol Architecture

	6 Security Analysis
	6.1 Collusion Patterns
	6.2 Threat Analysis

	7 System Evaluation
	7.1 Protocol Implementation
	7.2 Performance Analysis
	7.3 Performance Comparison

	8 Threshold Adjustment
	8.1 Threshold Initialization
	8.2 Variable-Distance Threshold Measurements
	8.3 Relay Attacks using Proxy
	8.4 Sliding Threshold Model

	9 Conclusion
	References

	Design Patterns for Multiple Stakeholdersin Social Computing
	1 Introduction
	2 Related Work
	3 Design Pattern: Simple Annotations
	3.1 Setting
	3.2 Privacy Challenges
	3.3 Solution: Separation of Protection

	4 Design Pattern: Higher Order Annotations
	4.1 Replying Comments
	4.2 Appending Comments
	4.3 Hybrid Solution for Comments

	5 Relationship Disclosure via Annotations
	6 Implementation Strategy
	7 Performance Evaluation
	7.1 Dataset
	7.2 Setup
	7.3 Measurements
	7.4 Results and Interpretation

	8 Discussions and Future Work
	References

	Collaboratively Solving the Traveling Salesman Problem with Limited Disclosure
	1 Introduction
	2 Related Work
	3 Problem Formulation
	3.1 TSP and Simulated Annealing
	3.2 Cost-Reducible Collaborative TSP

	4 Privacy-Preserving Algorithm
	4.1 Building Blocks
	4.2 Two-Level Secure Simulated Annealing (TSSA)
	4.3 Secure Communication Protocol

	5 Security and Cost Analysis
	6 Experimental Validation
	6.1 Computation Cost Comparison (Two-party)
	6.2 Results of k-RTSP

	7 Conclusion and Future Work
	References

	ELITE: zEro Links Identity managemenTsystEm
	1 Introduction
	2 ELITE: zEro Links Identity managemenT systEm
	2.1 Preliminaries
	2.2 ELITE-1 Scheme Construction
	2.3 Discussion
	2.4 Privacy Analysis

	3 ELITE-2 Solution for Multitude of Traits Issue
	3.1 Minutiae Cylinder-Code Overview
	3.2 ELITE-2 Construction
	3.3 Complexity Analysis

	4 Conclusion
	References

	Dynamic Workflow Adjustment with Security Constraints
	1 Introduction
	2 Problem Definitions
	3 Theoretical Study
	4 Model Formulation
	5 Customized Algorithms
	5.1 State-of-Art SAT Algorithms
	5.2 Basic Algorithm
	5.3 Problem-Specific Configurations
	5.4 Branching Heuristics

	6 Related Work
	7 Conclusion
	References

	Consistent Query Plan Generationin Secure Cooperative Data Access
	1 Introduction
	2 Related Work
	3 Problem and Definitions
	3.1 A Running Example
	3.2 Definitions and Authorization Model
	3.3 Inadequacy of Classical Query Planning

	4 Complexity of Query Planning
	4.1 Query Plan Cost Model
	4.2 Enumerating All Query Plans

	5 Consistent Query Planning
	5.1 Greedy Query Planning Algorithm
	5.2 Properties of the Algorithm
	5.3 PreliminaryPerformanceEvaluation of theAlgorithm

	6 Conclusions and Future Work
	References

	Hunting the Unknown
	1 Introduction
	2 TheFramework
	2.1 Data Collection and Feature Extraction
	2.2 Profiling
	2.3 Tuning
	2.4 Detection and Feedback Loop

	3 Evaluation
	3.1 Methodology
	3.2 Results

	4 Discussion, Limitations and Future Work
	5 Related Work
	6 Conclusions
	References

	Incremental Analysis of Evolving AdministrativeRole Based Access Control Policies
	1 Introduction
	2 RBAC and ARBAC
	3 Solving User-Role Reachability Problems
	4 Incremental Analysis of Evolving ARBAC Policies
	4.1 iBR and Filter

	5 Implementation and Experiments
	6 Conclusion
	References

	Mining Attribute-BasedAccess Control Policies from Logs
	1 Introduction
	2 ABAC Policy Language
	3 Problem Definition
	4 Algorithm
	4.1 Example

	5 Evaluation Methodology
	5.1 ABAC Policies
	5.2 Log Generation
	5.3 Metrics

	6 Experimental Results
	7 Related Work
	7.1 ABAC Policy Mining from ACLs
	7.2 Role Mining from Logs

	References

	Attribute-Aware Relationship-Based AccessControl for Online Social Networks
	1 Introduction
	2 Background and Motivation
	2.1 ReBAC
	2.2 Beyond Relationships

	3 Preliminaries
	3.1 Basic Notations
	3.2 UURAC Model Components
	3.3 Social Graph

	4 UURACA Model
	4.1 Attributes in OSNs
	4.2 Attribute-Based Policy Formulation
	4.3 Policy Specifications

	5 Algorithm
	6 Conclusion
	References

	Randomly Partitioned Encryption for Cloud Databases
	1 Introduction
	1.1 Background and State of the Art
	1.2 Contributions and Main Results
	1.3 Overview

	2 Client-Server Architecture
	3 Adversary Models
	3.1 Domain Attack
	3.2 Frequency Attack
	3.3 Query Log Attack

	4 Deterministic RPE
	4.1 Analysis of Domain Attack

	5 Probabilistic RPE
	5.1 Analysis of Frequency Attack

	6 Fixed Range Query Rewrite
	6.1 Analysis of Query Log Attack

	7 Database Functionality
	8 Performance Analysis and Experimental Results
	9 Related Work
	10 Conclusion
	References

	Towards Secure Cloud Databasewith Fine-Grained Access Control
	1 Introduction
	2 Related Work
	3 Problem Definition and Building Blocks
	4 ZeroVis Framework
	4.1 Framework Overview
	4.2 Data Insertion and Encryption
	4.3 Data Retrieval and Decryption
	4.4 Implementation

	5 PerformanceResults
	6 Conclusions and Future Work
	References

	Practical Private Information Retrieval from a Time-Varying, Multi-attribute, and Multiple-Occurrence Database
	1 Introduction
	2 Models and Requirements
	3 Two-Party Database Retrieval
	3.1 Privacy and Efficiency in the 2-PartyModel
	3.2 Our Protocol

	4 Three-Party Database Retrieval
	4.1 Privacy and Efficiency in the 3-PartyModel
	4.2 Our Protocol

	5 Extension: Conjunction Formulae
	6 Performance Evaluation
	References

	LPM: Layered Policy Management for Software-Defined Networks
	1 Introduction
	2 Layered Policy Management (LPM) Framework
	2.1 Overview
	2.2 Policy Management in SDN Application Layer
	2.3 Policy Management in SDN Control Layer
	2.4 Policy Management in SDN Data Layer

	3 Implementation and Evaluation
	4 Related Work
	5 Conclusion
	References

	On Minimizing the Size of Encrypted Databases
	1 Introduction
	2 Definitions, Privacy and Algorithmic Models
	3 Exact Algorithms
	4 Faster Algorithms with O(1) Approximation Factor
	5 Fast Algorithms with (1 + �) Approximation Factor
	References

	Efficient and Enhanced Solutionsfor Content Sharing in DRM Systems
	1 Introduction
	2 Background and Related Work
	2.1 Definitions
	2.2 Related Work and Content Sharing with Proxy Re-encryption

	3 Certified Sharing Requests (CSR) and the CSR Scheme
	3.1 Purchasing Content
	3.2 Sharing Content
	3.3 Re-sharing Content
	3.4 The Partial Trust Scenario
	3.5 Advantages and Disadvantages of the CSR Scheme

	4 Conclusions and Future Work
	References

	A Scalable and Efficient Privacy PreservingGlobal Itemset Support ApproximationUsing Bloom Filters
	1 Introduction
	2 Background
	3 Problem Statement
	4 Privacy Preserving Global Itemset Support Computation Protocol
	4.1 Decomposition
	4.2 Reconstruction
	4.3 Privacy Analysis
	4.4 Cost Analysis

	5 Empirical Results and Analysis
	6 Conclusions and Future Work
	References

	Author Index

