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Abstract. The GMR-1 and GMR-2 stream ciphers, which are used in
the satellite phones, have been reconstructed by Driessen et al. recently.
The GMR-1 cipher is shown to be a proprietary variant of the GSM A5/2
algorithm, thus it could be cracked using the previous known method. For
the newly designed GMR-2 cipher, by observing a non-uniform behavior
of its component, Driessen et al. proposed an efficient known plaintext
attack to recover the encryption key (a session key with 64-bit) with
approximately 5–6 frames (50–65 bytes) of keystream.

In this paper, we first revisit the properties of each component of
the GMR-2 cipher, and then present a low data complexity attack on
it by adopting the strategy of guess-and-determine. We call this kind of
attack the dynamic guess and determine attack, since the evolution of the
guessing part of the internal state of the attack is changed dynamically
according to the intermediate process. Our theoretical analysis demon-
strates that, using the proposed attack, the 64-bit encryption key could
be recovered by guessing no more than 32 bits when 15 bytes (1 frame) of
the keystream is available. Some experimental results are also performed
on a single PC to confirm our analysis, and the number of candidates for
exhaustive search is about 228 on average.

Keywords: Satellite phone · Stream cipher · GMR-2 · Guess-and-
determine

1 Introduction

1.1 Backgrounds and the GMR-2 Cipher

Nowadays, mobile communication systems have revolutionized the way we inter-
act with each other, and there have been built many cellular mobile network such
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as GSM, UMTS, CDMA2000, or 3GPP LTE. These cellular mobile networks all
require a so called cell site to create a cell within the network, which provides all
the necessary equipment for transmitting and receiving radio signals from mobile
handsets and the radio network. However, in some cases, such as the crew on oil
rig or ships on open sea, researchers on a field trip in a desert, or people living in
remote areas or areas that are affected by a natural disaster, it is not always to
be close to a mobile phone cellular network, then these residents, military and
government systems need to use satellite phones to communicate.

Satellite phone is a type of mobile phone that connects to orbiting satel-
lites instead of terrestrial cell sites. They provide similar functionality to terres-
trial mobile telephones such as the voice, short messaging service etc. Currently,
there are two major satellite phone standards both developed by ETSI, namely
the GMR-1 standard and the GMR-2 (aka GMR-2+) standard. For instance,
Thuraya phone implements the GMR-1 standard, while the GMR-2 standard is
mainly used by Inmarsat1.

As we all know, security plays a significant role for satellite phones, yet from
ETSI, we can only obtain the specifications of those two standards without any
information about implementation details of security aspects. In fact, these two
standards employ two different encryption algorithms called GMR-1 cipher and
GMR-2 cipher, whose details had not been publicly known until [7] was reported
in January 2012.

According to [7], the GMR-1 cipher is an improved version of A5/2 which
belongs to the GSM encryption standard. Thus the methods of analyzing A5/2 as
introduced in [3,5] can almost be applied to the GMR-1 cipher [8]. The GMR-
2 cipher is a newly designed stream cipher, and at present, only [7] presents
a known plaintext attack against GMR-2 cipher which is based on the read-
collision technique. This method needs approximately 50–65 bytes (5–6 frames)
of the keystream to recover the full key, and the computational complexity is
about 218.

1.2 Main Contribution and the Outline

In this paper, we propose a low data complexity attack on the GMR-2
cipher using the guess and determine approach. Guess-and-determine attack
is a common cryptanalytic approach against stream ciphers [1,2,4,6,9–12,15].
Its basic idea is to guess some parts of the internal state and derive other part
through the relationship between the keystream and the internal state introduced
by the keystream generation process. The validity of a guessed and determined
internal state is checked by running the cipher forward from that state. If the
generated keystream matches the intercepted keystream, we accept it. Other-
wise, we discard the current candidate and try the attack again.
1 Recently, the work in [13] shows that they can modify the firmware of a Inmarsat

IsatPhonePro satellite phone using only a USB cable, which allows to read and write
frames directly to any layer of the GMR-2 communication system, or even allows
users to inject and/or sniff frames without the need of any additional equipment.
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The general guess-and-determine attack assumes that the guessed part and
the corresponding determined part of the internal state are known to the adver-
sary prior to mounting the attack procedure. However, this approach cannot
directly applied to the GMR-2 cipher due to its special structure. Considering
this, we present a new strategy for guess-and-determine attack which we call the
dynamic guess-and-determine. In this strategy, the evolution of guessing part of
the internal state is changed dynamically according to the intermediate process,
i.e., the new guessing part depends on both the previous guessed and determined
parts of the internal state. We show how this kind of attack can be used to ana-
lyze the GMR-2 stream cipher. Our theoretical analysis demonstrates that, using
the proposed attack, the 64-bit session key could be recovered by guessing no
more than 32 bits when 15 bytes (1 frame) of the keystream are available. The
experimental results also confirm our analysis, and the number of candidates for
exhaustive search is about 228 on average.

The rest of this paper is organized as follows: In Sect. 2, we recall the GMR-2
cipher briefly. Section 3 gives some properties of the components of the cipher
and Sect. 4 gives basic analysis of the cipher. Section 5 presents our low data
complexity attack on GMR-2 cipher in detail and finally Sect. 6 concludes this
paper.

2 Description of the GMR-2 Cipher

2.1 Overall Structure of the GMR-2 Cipher

The GMR-2 cipher uses a 64-bit encryption-key, denoted as K = {K7, K6, · · · ,
K0} and operates on bytes. When the cipher is clocked, it generates one byte
of the keystream denoted by Zl, where l represents the number of clockings.
The cipher exhibits an 8-byte state register S = (S7, S6, · · · , S0), three major
components F , G, H, a 3-bit counter c ∈ {0, 1, · · · , 7} and a toggle-bit t ∈ {0, 1}.
A schematic overview of the overall structure is depicted in Fig. 1.

Fig. 1. Overall structure of the GMR-2 cipher
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Fig. 2. The structure of F-component

The F-component combines two bytes of the encryption-key with the previ-
ous output (a keystream byte), the G-component is a linear function for mixing
purpose, and the H-component consists of two DES S-boxes as a nonlinear fil-
ter. In the following subsections, we will describe the three major components
in detail.

2.2 F-Component

The F-component is the most interesting part of the cipher, and Fig. 2 shows its
internal structure. The 64-bit encryption-key K=(K7, K6, · · · , K0) is fed into
a 64-bit resister and it is unchanged during the execution of the cipher. At each
clock, the F-component just selects two key bytes Kc and Kτ1(α) from the lower
side and the upper side, which can be described formally as follows.

Assume the cipher is at the l-th clock, besides the encryption-key K, the
inputs of the F-component contain t, c and p, where c = l mod 8 is a counter
ranging from 0 to 7 sequentially and repeatedly, t = c mod 2 is a toggle bit,
and p = (p7, p6, · · · , p0) ∈ {0, 1}8 is one byte of the keystream that has already
been generated in the last clock. We will simply use p = Zl−1 to denote one byte
of the keystream that has already been generated. The outputs of F-component
contain an 8-bit O0 and a 4-bit O1 of the following form{

O0 =(Kτ1(α) ≫ τ2(τ1(α)))8;
O1 =((((Kc ⊕ p) � 4)&0xF) ⊕ ((Kc ⊕ p)&0xF))4.

(1)
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Table 1. Definition of τ1 and τ2

α τ1(α) τ2(τ1(α)) α τ1(α) τ2(τ1(α))

(0,0,0,0) 2 6 (1,0,0,0) 3 7
(0,0,0,1) 5 3 (1,0,0,1) 0 4
(0,0,1,0) 0 4 (1,0,1,0) 6 2
(0,0,1,1) 6 2 (1,0,1,1) 1 5
(0,1,0,0) 3 7 (1,1,0,0) 5 3
(0,1,0,1) 7 1 (1,1,0,1) 7 1
(0,1,1,0) 4 4 (1,1,1,0) 4 4
(0,1,1,1) 1 5 (1,1,1,1) 2 6

where τ1 : {0, 1}4 −→ {0, 1}3 and τ2 : {0, 1}3 −→ {0, 1}3 are defined by table-
lookups as shown in Table 1, and α is defined as

α = N (t,Kc ⊕ P ) =

{
((Kc ⊕ p)&0xF))4, if t = 0;
(((Kc ⊕ p) � 4)&0xF)4, if t = 1,

(2)

which can also be expressed using the following simple form

α = [(Kc ⊕ p) � 4 × (c mod 2)]& 0xF.

2.3 G-Component

As demonstrated in Fig. 3, the G-component gets the output of the F-component
and one byte S0 of the state as its input. It employs three sub-components,
denoted by B1, B2, B3, all work on 4-bit input and returns 4-bit output with the

Fig. 3. The structure of G-component (the upper lines indicates lower bits)
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Fig. 4. The structure of H-component

following definitions⎧⎪⎨
⎪⎩

B1 : (x3, x2, x1, x0) �→ (x3 ⊕ x0, x3 ⊕ x2 ⊕ x0, x3, x1);
B2 : (x3, x2, x1, x0) �→ (x1, x3, x0, x2);
B3 : (x3, x2, x1, x0) �→ (x2, x0, x3 ⊕ x1 ⊕ x0, x3 ⊕ x0).

Since each Bi is linear, and all the other operations are just transposition or
XOR, the G-component is an entirely linear transformation, and we can express
the two 6-bit outputs O′

0 and O′
1 as linear functions of the input by Eq. (3)⎧⎪⎪⎨

⎪⎪⎩
O′

0 = (O0,7 ⊕ O0,4 ⊕ S0,5, O0,7 ⊕ O0,6 ⊕ O0,4 ⊕ S0,7, O0,7 ⊕ S0,4,
O0,5 ⊕ S0,6, O1,3 ⊕ O1,1 ⊕ O1,0, O1,3 ⊕ O1,0)

O′
1 = (O0,3 ⊕ O0,0 ⊕ S0,1, O0,3 ⊕ O0,2 ⊕ O0,0 ⊕ S0,3, O0,3 ⊕ S0,0,

O0,1 ⊕ S0,2, O1,2, O1,0).

(3)

2.4 H-Component

The input of the H-component as shown in Fig. 4, is the outputs of G-component
O′

0, O′
1 and a toggle-bit t.

H-component contains two S-boxes S2 and S6, where S2 is the second S-box
of DES and S6 is the sixth S-box of DES. See Tables 2 and 3 for a reference.
However, these two S-boxes have been reordered to account for the different
addressing.

Assume the input of S-box is (x6, x5, x4, x3, x2, x1), then in this cipher, the
least-significant bits (x2, x1) select the S-box row and the four most-significant

Table 2. The S-box S2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10
1 3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5
2 0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15
3 13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9
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Table 3. The S-box S6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11
1 10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8
2 9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6
3 4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13

bits (x6, x5, x4, x3) select the S-box column. Now depending on the value of t,
the output of H-component, which is the l-th byte of the keystream, can be
defined by

Zl =

{
(S2(O′

1), S6(O′
0))8, if t = 0;

(S2(O′
0), S6(O′

1))8, if t = 1.
(4)

2.5 Mode of Operation

Now, we can describe the mode of operation [7] for the GMR-2 cipher. When
the cipher is clocked for the l-th time, the following happens:

– Based on the current state of the state-register S, the counter c, and the
toggle-bit t, the cipher generates one byte Zl of keystream.

– The counter c is incremented by one and the toggle-bit is computed as t =
c mod 2. When 8 is reached for c, then c is reset to 0.

– The state-register S is shifted by 8 bits to the right: Si = Si+1, i = 0, 1, . . . , 6,
and S7 = Zl. Meanwhile, p = Zl is also passed to the F-component as input
for the next iteration (the (l + 1)-th clock).

The cipher is operated in two modes, the initialization mode and the gener-
ation mode.

Initialization Mode. In the initialization phase, the following steps are per-
formed:

– The counter c = 0 and the toggle-bit t = 0.
– The 64-bit encryption-key is written into the resister in the F-component.
– The state-register S is initialized with the 22-bit frame-number N , and this

procedure is not detailed here as it is irrelevant with our attack. After c, t,
S have been initialized, the cipher is clocked eight times, but the resulting
keystream is discarded.

Generation Mode.2 After the initialization is finished, the cipher is clocked to
generate and output actual keystream bytes. We use Z

(N)
l to denote the l-th

(l ≥ 0) byte of keystream generated after initialization with frame-number N .

2 There is a slight difference between the notation of [7] and ours in the generation

mode, in this paper, we always assume that Z
(N)
0 is the first output byte of the

keystream after the cipher is clocked eight times in the initialization phase.
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The frame-number is always incremented after 15 bytes of keystream, which
forces a re-initialization of the cipher. Therefore the keystream Z ′ that is actually
used for N ∈ {0, 1, · · · } is made up of blocks of 15 bytes that are concatenated
as follows:

Z ′ = (Z(0)
0 , Z

(0)
1 , · · · , Z

(0)
14 , Z

(1)
0 , Z

(1)
1 , · · · , Z

(1)
14 , · · · ).

3 Properties of the Components of the GMR-2 Cipher

In this section, we carefully study the characteristic of the GMR-2 cipher and
propose several properties of its components which are related to our later analy-
sis.

3.1 Property of the F-Component

We first note that after the 64-bit encryption key K is fed into the F-component,
it remains unchanged not only in the phase of the initialization, but also in the
phrase of the keystream generation. Since the F-component is used to select two
key bytes Kc and Kτ1(α) from K, and the counter c is changed sequentially from
0–7, we only need to know how Kτ1(α) is selected.

Property of α. By Eq. (2), α can be expressed as:

α = N (t,Kc ⊕ p)

=

{
(Kc,3 ⊕ p3, Kc,2 ⊕ p2, Kc,1 ⊕ p1, Kc,0 ⊕ p0)4, if t = 0;
(Kc,7 ⊕ p7, Kc,6 ⊕ p6, Kc,5 ⊕ p5, Kc,4 ⊕ p4)4, if t = 1.

This tells us that if p is known, then at each clock, we can get the value of
α only by the four least-significant bits of Kc when t = 0 (c is even) or the four
most-significant bits of Kc when t = 1 (c is odd). Thus, the key byte Kτ1(α)

selected by the upper side can be determined by the value of the most (least)
significant 4-bit of Kc provided p is known.

Properties of τ1 and τ2. From Table 1, we know that τ1 maps 4-bit to 3-bit,
thus a collision always exists. For instance, τ1(0, 0, 1, 0) = τ1(1, 0, 0, 1) = 0, and
τ1(0, 1, 1, 0) = τ1(1, 1, 1, 0) = 4, this observation combined with τ2(0) = τ2(4) =
4 lead to the efficient read-collision based attack in [7]. Note that τ2(·) maps
3-bit to 3-bit, but it is non-surjective. Since one of the output of F-component
is O0 = Kτ1(α) ≫ τ2(τ1(α)), we guess the reason why the designers choose a
non-surjective table for τ2(·), he just want to make the right rotation parameter
always being non-zero. Currently, we do not know whether this kind of non-
uniformity could lead to some other potential attacks.
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3.2 Property of the G-Component

According to Eq. (3), the link between the input and output of the G-component
can be expressed by⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

O′
0,5

O′
0,4

O′
0,3

O′
0,2

O′
1,5

O′
1,4

O′
1,3

O′
1,2

O′
0,1

O′
0,0

O′
1,1

O′
1,0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1 0 0 0 0 0 0 0 0
1 1 0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 1 0 0 0 0
0 0 0 0 1 1 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 1 1
0 0 0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

O0,7

O0,6

O0,5

O0,4

O0,3

O0,2

O0,1

O0,0

O1,3

O1,2

O1,1

O1,0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⊕

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

S0,5

S0,7

S0,4

S0,6

S0,1

S0,3

S0,0

S0,2

0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5)

based on which we can obtain the following three linear equation systems:

y =W · x ⊕ v, (6)
y1 =W1 · x1 ⊕ v1, (7)
y2 =W2 · x2 ⊕ v2, (8)

where

W =

⎛
⎝A 0 0

0 A 0
0 0 B

⎞
⎠ , W1 =

(
A 0
0 A

)
, W2 =

(
B

)
,

A =

⎛
⎜⎜⎝

1 0 0 1
1 1 0 1
1 0 0 0
0 0 1 0

⎞
⎟⎟⎠ , B =

⎛
⎜⎜⎝

1 0 1 1
1 0 0 1
0 1 0 0
0 0 0 1

⎞
⎟⎟⎠ , 0 =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ ,

and ⎧⎨
⎩

y1 = (O′
0,5, O

′
0,4, O

′
0,3, O

′
0,2, O

′
1,5, O

′
1,4, O

′
1,3, O

′
1,2)

T

y2 = (O′
0,1, O

′
0,0, O

′
1,1, O

′
1,0)

T

y = (y1,y2)
,

⎧⎨
⎩

x1 = (O0,7, O0,6, O0,5, O0,4, O0,3, O0,2, O0,1, O0,0)T

x2 = (O1,3, O1,2, O1,1, O1,0)T

x = (x1,x2)
,

⎧⎨
⎩

v1 = (S0,5, S0,7, S0,4, S0,6, S0,1, S0,3, S0,0, S0,2)T

v2 = (0, 0, 0, 0)T

v = (v1,v2)
.

Further, let Kc = (kh,kl), where kh = (Kc,7,Kc,6,Kc,5,Kc,4)T denotes the
most significant 4-bit of Kc, and kl = (Kc,3,Kc,2,Kc,1,Kc,0)T denotes the least
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significant 4-bit of Kc. Similarly let p = (ph,pl), where ph = (p7, p6, p5, p4)T ,
pl = (p3, p2, p1, p0)T , and define u = ph ⊕ pl, then Eq. (1) implies the following
two linear systems

x1 = Kτ1(α) ≫ τ2(τ1(α)) (9)
x2 = kh ⊕ kl ⊕ u (10)

In the following attack on the GMR-2 cipher, we will always use one of the
above linear systems, and we can guarantee that both the exact values of u and
v are known to us. We have the following observations:

Observation 1. Since A and B are invertible, so are W, W1 and W2, then from
Eqs. (6)–(8), we can obtain the value of y (yi) from x (xi) easily, and vice vera.

Observation 2. If both y1 and α are known, then from observation 1, we can
get the value of x1, and further from Eq. (9), we can calculate Kτ1(α) = x1 ≪
τ2(τ1(α)).

Observation 3. If both y2 and kh (kl) are known, then from observation 1,
we can get the value of x2, and further from Eq. (10), we can calculate kl =
x2 ⊕ kh ⊕ u (kh = x2 ⊕ kl ⊕ u).

Observation 4. The column indices of the two S-boxes S2 and S6 are selected
by y1, and the row indices are selected by y2. This relationship is depicted in
Fig. 5.

3.3 Property of the H-Component

According to Eq. (4) and the definition of the two S-boxes, we have the following
three results:

Fig. 5. The links between the input and output of the G-component (the upper lines
indicates lower bits). Note that α = [(Kc ⊕ p) � 4 × (c mod 2)] & 0xF
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– If the row index and the output of an S-box are known, then we will get the
column index uniquely.

– If the column index and the output of an S-box are known, then we will also
get the row index uniquely except for S6 when the column index is 4 and the
output is 9, in this situation, the row index can be either 0 or 3.

– If only the outputs of both S-boxes are known, then we will get 4 × 4 = 16
possible inputs for H-component.

The above three results indicate that by intercepting the keystream of the
GMR-2 cipher (the output of the two S-boxes) and combining the guessed/
determined values of the row or column indices, we can “invert” these two
S-boxes to obtain the corresponding (partial) input candidates.

4 Basic Analysis of the GMR-2 Cipher

The previous section presents some properties of the three components of the
GMR-2 cipher. In this section, we show how these components interact with
each other.

Given the frame number N , let S
(l)
i denote the state of Si at the l-th (0 ≤

l ≤ 14) clock in the keystream generation phrase, then for 8 ≤ l ≤ 14 we have

S
(l)
0 = Z

(N)
l−8 and p = S

(l)
7 = Z

(N)
l−1 ,

which indicates that for 8 ≤ l ≤ 14, both S
(l)
0 and p are known to us, thus the

vectors v, v1, v2 and u as defined in the previous section are also known to
us. To simply our analysis, in the following of this section, we only focus on the
cipher at the (c + 8)-th clock with 0 ≤ c ≤ 6.

Note that at the (c+8)-th clock, the F-component just selects two key bytes
Kc and Kτ1(α) from the lower side and the upper side. According to the property
of the F-component, just by guessing the half value of Kc = (kh,kl), we can
determine the value of α and then know which key byte the F-component will
select.

Now, based on the fact that the link between the input and output of the
G-component can be expressed by a well-structured matrix W, we present the
following four rules for the guessing strategy when applying the dynamic guess-
and-determine attack as described in the next section.

Rule 1. Let Kc = (kh,kl), assume c is odd, and given a guessed value for kh,
if τ1(α) = c, then from Z

(N)
c+8 , either the guessed value of kh is wrong or the

candidate value of kl can be determined; Similarly, assume c is even, and given
a guessed value for kl, if τ1(α) = c, then from Z

(N)
c+8 , either the guessed value of

kl is wrong or the candidate value of kh can be determined.

Proof. We only give the proof for the first case, the other case is similar, and
thus the detail is omitted.
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From τ1(α) = c, we have Kτ1(α) = Kc, thus

x1 = Kτ1(α) ≫ τ2(τ1(α)) = (kh,kl) ≫ τ2(τ1(α)).

Noting that
x2 = kh ⊕ kl ⊕ u and x = (x1,x2),

thus if kh is known, then for each possible y (whose value is calculated later),
Eq. (6) can be converted into another linear equation system (which is related
to the guessed value of kh) with 12 equations and 4 indeterminate variables
representing kl.

According to the properties of the H-component, there will be 16 different
values for y = (y1,y2) from Z

(N)
c+8 . Thus, in total, 16 linear equation systems for

kl can be obtained.
If the guessed value of kh is the actual value, at least one of the above 16

linear systems will have a solution that can be find through Gaussian elimination
method. While if kh is a random guessed value, then based on the theory of
Linear Consistency Test [14], the probability that each linear equation system
has solutions is no more than

1
212−4

×
(

1 +
1

212+1

)4

≈ 2−8.

Thus, the probability that the above 16 linear equation systems have solutions
is upper bounded by 16 × 2−8 = 2−4. In other words, this indicates that the
number of candidates for kl is small. 	

Rule 2. Let Kc = (kh,kl), assume c is odd (even), and given a guessed value
for kh (kl), if τ1(α) �= c, we further guess the value of kl (kh), in this situation,
we have a guessed value for Kc, and then Kτ1(α) can be determined by Z

(N)
c+8 .

Proof. Since Kc = (kh,kl) is known by guess, x2 = kh⊕kl⊕u is known, accord-
ing to observation 1, y2 can be calculated. By observation 4, the row indices for
the two S-boxes are known, then from Z

(N)
c+8 , the value of y1 which corresponds

to the column indices for the two S-boxes can be uniquely determined. By obser-
vation 2, the value of Kτ1(α) can be obtained. 	

Rule 3. Let Kc = (kh,kl), assume c is odd, and given guessed value for kh,
if Kτ1(α) had already been guessed or determined previously, then kl can be
determined by Z

(N)
c+8 ; Similarly, assume c is even, and given guessed value for kl,

if Kτ1(α) had already been guessed or determined previously, then kh can be
determined by Z

(N)
c+8 .

Proof. Since Kτ1(α) is known, x1 is known, by observation 1, the value of y1

can be obtained. Noting that y1 corresponds to the column indices for S-boxes,
thus y2 which represents the row indices for S-boxes can be obtained from Z

(N)
c+8 .

According to observation 3, kh (kl) can be calculated with known kl (kh). 	
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Remark 1. We remind here that, from y1 and Z
(N)
c+8 , we cannot always uniquely

deduce y2 as explained in Sect. 3.3, thus we will sometimes obtain two candidates
for y2.

Rule 4. Assume that the values for Kc and Kτ1(α) had already been guessed or
determined previously, then we can judge whether those guessed or determined
values are wrong by Z

(N)
c+8 .

Proof. Since Kc and Kτ1(α) are known, they can pass through the three compo-
nents to generate a keystream byte at the (c+8)-th clock, then we can compare
it with Z

(N)
c+8 . If they are not matched, the guessed values for Kc and Kτ1(α) are

wrong. 	

Remark 2. When applying dynamic guess-and-determine attack on the GMR-2
cipher in the next section, in fact, at each step, we just adopt Rule 1–Rule 3
to guess or determine some parts of K, or adopt Rule 4 to verify whether the
guessed or determined value is wrong. If Rule 4 indicates some inconsistency at
the current clock, then the guessed value for the nearest clock is wrong, in this
situation, we must backtrack to this position, and try another guessed value.

5 Low Data Complexity Attack on the GMR-2 Cipher

As discussed in the introduction, the general guess-and-determine attack assumes
that both the guessed part and the corresponding determined part of the inter-
nal state are known to the adversary prior to mounting the attack. However,
considering the mechanism of the GMR-2 cipher, we cannot directly applied the
general guess-and-determine attack on it. Thus, we introduce a new strategy for
guess-and-determine attack which we call the Dynamic Guess-and-Determine.
The main feature is that we cannot decide which parts must be guessed and
which parts have to be determined in prior, what we can do is just dynamically
guessing some parts of the internal state. The idea can be further described as
follows.

First, we guess some part of the internal state of the target cipher, and then
according to the guessed value, we determine some other parts of the inter-
nal state through the intercepted keystream. Next, we continue to guess some
new part of the internal state, but this time the guessed part depends on both
the previous guessed and determined parts. Do this process until all parts of the
internal state are deduced. This indicates that we need to dynamically build the
candidates for K by backtracking.

Now we can adopt the above strategy to present a low data complexity
attack on the GMR-2 cipher. Our attack only needs one frame (15-byte) of
the keystream, and without loss of generality, we assume N = 0. The attack
contains the following two major steps3:
3 We point out here that although we describe our attack in two separate steps, in

fact, the second step (the exhaustive search step) can be incorporated in the first
step: if a candidate is obtained from the dynamic guess-and-determine phase, it can
be quickly tested to decide whether it is the right key.
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– In the first step, from the known keystream Z
(0)
0 ∼ Z

(0)
14 , we adopt the dynamic

guess-and-determine method to analyze the cipher at the (c + 8)-th clock,
where 0 ≤ c ≤ 6, and this can reduce the candidates for the 64-bit encryption-
key K from 264 to no more than 232.

– In the second step, we test the candidates for K from the first step by compar-
ing the keystream generated from these candidates with the exact keystream
Z

(0)
0 ∼ Z

(0)
7 , thus we obtain the unique value for K.

Since the second step of our attack is just doing exhaustive search operations
for the candidate set, we only discuss the first step in detail in the following
subsection.

5.1 The Attack Procedure

As explained before, to guarantee that the values of p and S
(l)
0 are known for

us at the l-th clock, we should analyze the cipher at the (c + 8)-th clock with
0 ≤ c ≤ 6.

Before introducing the proposed attack, we first define an index set

Γ ⊆ {0, 1, · · · , 7}
to save the byte indices for the encryption key K that had already been known
by guessing or determining before the (c + 8)-th clock. Γ is initialized with ∅ at
the 8th clock, and is changed during the attack process.

Now let’s analyze the GMR-2 cipher at the (c + 8)-th clock with 0 ≤ c ≤ 6.
At each clock, we calculate the following values:

c, t, p = Z
(0)
c+7, S

(c+8)
0 = Z(0)

c , and Γ,

and judge whether c ∈ Γ :

– If c ∈ Γ , then Kc had been known, we could calculate α and judge whether
τ1(α) ∈ Γ :
• If τ1(α) ∈ Γ , then Kτ1(α) had been known, thus we can adopt Rule 4 to

determine whether Kc and Kτ1(α) are wrong. If they are incorrect (i.e.,
the guessed and determined values are wrong), then we trace back to the
nearest clock (at which the guessed value indicates such inconsistency) to
re-analyze the cipher.

• If τ1(α) �∈ Γ , then Kτ1(α) had not been known, we can adopt Rule 2
to obtain Kτ1(α), and meanwhile set Γ ← Γ ∪ {τ1(α)}.

– If c �∈ Γ , then Kc = (kh,kl) had not been known, now we decide to guess
kl if c is even, and kh if c is odd. Next, we calculate α and judge whether
τ1(α) ∈ Γ :
• If τ1(α) ∈ Γ , then Kτ1(α) had been known, we can adopt Rule 3

to get kh if c is even, and kl, if c is odd, and meanwhile set Γ ← Γ ∪ {c}.
• If τ1(α) �∈ Γ , then Kτ1(α) had not been known. We further judge whether

c = τ1(α):
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If c = τ1(α), then we can adopt Rule 1 to either get the rest bits of Kc,
and set Γ ← Γ ∪ {c}, or deduce that the guessed value of kl (kh) is
wrong if c is even (odd), and then we guess another value for kl (kh).
If c �= τ1(α), then we guess the other four bits of Kc, and we can adopt
Rule 2 to get Kτ1(α), and meanwhile set Γ ← Γ ∪ {c, τ1(α)}.

The above process sequentially executes on the GMR-2 cipher from the 8th
clock to the 14th clock. When it is finished, there will be a candidate for the
64-bit K, then we test whether it is the right key by Z

(0)
0 ∼ Z

(0)
7 . If not, we

discard this candidate, and then we modify the guessed values to obtain another
candidate. This process is repeated until the right key is found at last.

5.2 Complexity Analysis and Experimental Results

From the attack procedure, especially from Rule 1– Rule 3, it is shown that if we
guess 8 bits, then we will obtain other 8 bits; while if we guess 4 bits, then we will
also deduce other 4 bits. Furthermore, Rule 4 can be further used to filter the
wrong guessed values. We thus conclude that for a 64-bit key K, we only need to
guess at most 32 bits on average, and the other 32 bits can be determined. This
estimation is rough, however, it seems difficult and even impossible to calculate
the exact time complexity of our attack in theory. So we do some experiments
for different frames and random keys. Our experimental results almost confirm
our analysis, and the number of candidates is a little better, it is about 228 on
average.

More specifically, we perform a non-optimized4 realization of the above attack
1000 times on a 3.2 GHz PC, and the result demonstrates that the 64-bit
encryption-key can be obtained in around 700 seconds on average, where 580
seconds are consumed to deduce the 228 candidates, and 120 seconds are con-
sumed to exhaustively search the candidates. Figure 6 is the frequence distrib-
ution of the exhaustive bits (the logarithm of the number of candidates) from
1000 experimental results.

The data complexity of the attack is just a frame of the keystream, i.e., 15-
byte keystream. The dynamic guess-and-determine phase only analyze 8th∼14th
clock, because S7, S6, . . . , S0 must be known in this phase. While for the exhaus-
tive search phase, Z

(0)
0 ∼ Z

(0)
7 can be used to distinguish the right key from the

228 candidates.
4 As described in Sect. 5.1, in the dynamic guess-and-determine attack, if we detect

some inconsistency at the (c+8)-th clock, we should backtrack to the nearest clock.
However, for easy programming with the recursive method, in our “non-optimized”
realization, we just trace back to the (c + 7)-th clock, thus there maybe exist many
redundant computations. We believe that using the original realization, the time
complexity of the attack can be further reduced quickly.



500 R. Li et al.

Fig. 6. The frequence distribution of exhaustive bits from 1000 experimental results

Table 4. Cryptanalytic results on the GMR-2 cipher

Method Data Time Source

Read-Collision Based Technique 15–20 frames 210 [7]
Read-Collision Based Technique 5–6 frames (50–65 bytes) 218 [7]
Dynamic Guess-and-Determine 1 frames (15 bytes) 228 Sect. 5

6 Conclusion

The GMR-2 cipher has been widely used in the satellite phones communications,
and thus it is of special significant to analyze its security. The design method-
ology of GMR-2 cipher seems new and more complex, yet an efficient low data
complexity attack based on the strategy of dynamic guess-and-determine could
be mounted. This kind of attack needs only 1 frame (15-byte) of the keystream,
and it can recover the 64-bit session key by testing about 228 candidates on
average. Table 4 is the comparison between the known cryptanalytic result and
ours. Our proposed attack can also be implemented on a single PC, which again
demonstrates that the design methodology of the GMR-2 cipher is really far
from what is “state of the art” in stream ciphers.
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