
On Symmetric Encryption with Distinguishable
Decryption Failures

Alexandra Boldyreva1, Jean Paul Degabriele2, Kenneth G. Paterson2(B),
and Martijn Stam3

1 Georgia Institute of Technology, Atlanta, USA
2 Royal Holloway, University of London, London, UK

kenny.paterson@rhul.ac.uk
3 University of Bristol, Bristol, UK

Abstract. We propose to relax the assumption that decryption failures
are indistinguishable in security models for symmetric encryption. Our
main purpose is to build models that better reflect the reality of cryp-
tographic implementations, and to surface the security issues that arise
from doing so. We systematically explore the consequences of this relax-
ation, with some surprising consequences for our understanding of this
basic cryptographic primitive. Our results should be useful to practition-
ers who wish to build accurate models of their implementations and then
analyse them. They should also be of value to more theoretical cryptog-
raphers proposing new encryption schemes, who, in an ideal world, would
be compelled by this work to consider the possibility that their schemes
might leak more than simple decryption failures.

1 Introduction

Attacks Based on Decryption Failures. Encryption schemes meeting
strong notions of security typically introduce redundancy into their ciphertexts,
and as a consequence ciphertexts may be deemed invalid during decryption.
A scheme’s correctness ensures that honestly generated ciphertexts will always
decrypt correctly, hence we expect decryption to ‘fail’ only for ciphertexts that are
corrupted during transmission or are adversarially generated. Typically, proto-
cols making use of an encryption scheme report decryption failures to the sender
through error messages, and thus the fact that a decryption failure has occurred
becomes known to the adversary. After Bleichenbacher’s attack on RSA PKCS#1
[9], it became recognised in the academic community that these decryption fail-
ures (and the attendant error messages) may leak significant information to an
adversary, undermining schemes’ confidentiality properties. Other examples in
the asymmetric setting were subsequently discovered [16,21] and called reaction
attacks. Vaudenay then showed that similar issues can arise in the symmetric
setting [27], and his ideas were extended to produce significant attacks against
(among others) SSL/TLS [11,23], IPsec [12,13], ASP.NET [14], XML encryption
[19] and DTLS [2]. Analysis of error messages in the symmetric setting was also
crucial to the success of attacks against the SSH Binary Packet Protocol [1].
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The Relation Between Attacks and Security Definitions. At a very
high level the above-mentioned attacks on symmetric schemes have the common
feature that during decryption some information about the plaintext is leaked,
due to error messages, their timing, or some other aspect of the implementa-
tion. The leaked information is normally quite small, and the power of these
attacks really comes from the adversary’s ability to amplify this leakage through
iteration. That is, given a target ciphertext, an adversary is able to produce a
sequence of related ciphertexts which when decrypted will leak more informa-
tion about the target plaintext. If we now compare this to the IND-CCA security
model, it appears that such attacks should be fully accounted for and prevented,
given the very conservative approach adopted in this model. Indeed, in the IND-
CCA model, the adversary is given full access to a decryption oracle for any
ciphertext except the target ciphertext, from which he learns either the corre-
sponding plaintext or the fact that decryption fails; and yet this should not leak
any information about the target plaintext. Furthermore, several of the attacks
above do not even make full use of the decryption oracle, but only consider
ciphertexts which result in decryption failures.

Why then are the attacks possible at all? Are the underlying encryption
schemes actually IND-CCA secure? Is the IND-CCA model the right one for cap-
turing these classes of attack?

SSL/TLS makes an instructive case study for answering these questions. At a
high level, SSL/TLS most commonly uses a Mac-then-Encrypt (MtE) construc-
tion, with either a stream cipher or CBC-mode encryption of a block cipher as
the encryption scheme. Thus SSL/TLS is covered by Krawczyk’s result [20], and
one might reasonably conclude that its symmetric encryption scheme is IND-
CCA secure. Yet Canvel et al. [11] presented plaintext-recovering attacks against
the OpenSSL implementation of SSL/TLS when CBC-mode is used, in which
the attacker does nothing other than submit certain ciphertexts for decryption
and analyse the results (i.e. the attacker ostensibly operates within the IND-CCA
model). The key point, however, is that at the time of Canvel et al.’s attacks
in 2003, it was possible to infer more from SSL/TLS decryption failures than
the simple fact that decryption had failed: decryption could fail either because
either the underlying padding needed by CBC-mode was incorrectly formatted or
because of a MAC failure, and it was possible to tell these conditions apart (either
because they were indicated by different error messages or because the error mes-
sages were produced at different times during decryption processing). This addi-
tional information was sufficient to realise a padding oracle attack, in the style of
[27]. Furthermore, this attack is technically outside the IND-CCA security model,
because this model only ever provides a single decryption failure symbol ⊥ to
the adversary. Thus, while SSL/TLS may be provably IND-CCA secure in theory,
it turned out not to be in practice. Suitable countermeasures involve making it
hard for an attacker to learn the cause of decryption failures and were incorpo-
rated into the TLS specification from version 1.1 onwards. Meanwhile, building
an accurate model of SSL/TLS’s symmetric encryption scheme and proving its
security has turned out to be a complex task that was only recently completed
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in [23]. Even there, however, it was necessary to assume that all decryption fail-
ures are indistinguishable (since, otherwise, attacks like those of [2,3,11,27] are
possible). A similar story could be told for MAC-then-encryption configurations
of IPsec, to which the theory in [20] and the attacks of [13] both apply.

So the answers to our questions above are, respectively, yes and no. Yes, the
underlying encryption schemes are provably IND-CCA secure. However, this is
for some description of the schemes that may not accurately reflect how they
are actually implemented. And no, the standard model for IND-CCA security is
not the right one for capturing these attacks: in the current formalism, more
specifically the basic syntax adopted for encryption schemes, it is assumed that
decryption failures are indistinguishable and that each decryption failure will
return the same error symbol ⊥. This creates a gap in the effective power con-
ferred by a decryption oracle between the IND-CCA model and practical attack
scenarios (where decryption failures are often distinguishable). In short, knowing
why decryption failed may be more informative to the adversary than the mere
fact that decryption has failed.

Our Contributions. We propose to strengthen the existing security definitions
for symmetric encryption by letting the adversary distinguish various possible
decryption errors. Our main purpose is to build models that better reflect the
reality of cryptographic implementations, and to surface the security issues that
arise from doing so. We are not the first to make this relaxation (see, for exam-
ple, [22,24]), but we are the first to systematically explore its consequences,
with some surprising consequences for our understanding of this basic crypto-
graphic primitive. Our results should be useful to practitioners who wish to build
accurate models of their implementations and then analyse them. They should
also be of value to more theoretical cryptographers proposing new encryption
schemes, who, in an ideal world, would be compelled by this work to consider the
possibility that their schemes might leak more than simple decryption failures.
(Of course, an alternative reaction by the latter group would be to cast this as
an implementation issue and simply assume indistinguishable errors as usual;
however, the history of attacks tells us that this is hard to guarantee in practice
and therefore a dangerous assumption to make.)

Our approach requires the adoption of a slightly different syntax for encryp-
tion schemes to the standard one. Now, our decryption algorithm will either
return a message from the message space, or an error message from a prede-
termined finite set of values which we refer to as the error space. Technically,
then, encryption schemes with multiple errors are a slightly different object from
single-error schemes. This approach allows us to handle schemes that can fail
in a finite number of distinguishable ways that will be indicated in practice by
different error messages. It also enables us to treat attacks in which indistin-
guishable error messages are returned (perhaps because they are all encrypted,
as is the case in SSL/TLS), but in which the errors are returned at a discrete
set of times. We note that our approach is equally applicable to the asymmetric
setting; here we will restrict our scope to the symmetric setting only.
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With this new syntax in hand, we re-examine the statement due to Bellare
and Namprempre [10] that semantic (IND-CPA) security in combination with
integrity of ciphertexts (INT-CTXT) is sufficient to imply chosen ciphertext (IND-
CCA) security. One consequence of their results is that ‘IND-CPA + INT-CTXT’
has come to be seen as the ‘right’ security notion to aim for in the symmetric case,
with this combined notion now being referred to as authenticated-encryption
security. This seems to be mostly because it implies IND-CCA security, and
because that is by now the accepted notion in the asymmetric setting. We show,
through separations, that this important relation no longer holds for multiple
error symmetric encryption schemes. Indeed, it is easy to see where the proof
of this relation in [10] breaks down: in the passage from the INT-CTXT security
game to the IND-CPA security game, the simulation in [10] simply replies to
all decryption queries with the error message ⊥; only if an adversary forges a
ciphertext does this simulation go awry. But this is not an accurate response in
the multiple error setting, since one of several possible error messages should be
returned, and the simulation does not necessarily know which.

We then go on to establish relations that are similar in spirit to the classic
relations, in that they combine a weak form of confidentiality with some form
of ciphertext integrity to obtain strong confidentiality. An interesting aspect
that emerges in our analysis is that it is not at all obvious how the notion of
ciphertext integrity should be extended to the multiple-error setting. We identify
two candidate definitions for ciphertext integrity, one being strictly stronger than
the other. We compare and contrast the two, and provide evidence (by means
of a rather non-trivial counterexample) for requiring the stronger variant in our
relations.

We also provide a natural extension of the IND-CCA3 security notion to the
multiple-error setting. This notion, due to Rogaway and Shrimpton [26], is an
elegant combination of semantic security and ciphertext integrity into a single
equivalent security notion. We show that it serves as a good security notion
for symmetric encryption with multiple errors. More specifically we show that
our extension to IND-CCA3 security does imply chosen-ciphertext security in the
multiple error setting.

We conclude by showing that the encode-then-encrypt-then-MAC (EEM)
construction is IND-CCA secure for any encoding scheme, any IND-CPA secure
encryption scheme with arbitrary error messages, and any SUF-CMA MAC. Fol-
lowing the works of Bellare and Namprempre [10] and Krawczyk [20], this result
provides further formal grounds for preferring the EEM composition over other
generic constructions, for example MAC-then-encrypt.

In addition to the standard symmetric encryption notions, we provide equiv-
alent results for security definitions involving indistinguishability from random
bits introduced by Rogaway [25], and for the stateful setting introduced by Bel-
lare et al. [8]. Many of these additional results follow rather straightforwardly,
but we consider it valuable to include them for completeness.

For reasons of space, all proofs are deferred to the full version [6].
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2 Preliminaries

2.1 Notation

Unless otherwise stated, an algorithm may be randomized. An adversary is an
algorithm. For any algorithm A we use y ← A(x1, x2, . . .) to denote executing
A with fresh coins on inputs x1, x2, . . . and assigning its output to y. If S is
a set then |S| denotes its size, and y ← $ S denotes the process of selecting
an element from S uniformly at random and assigning it to y. The set of all
finite binary strings is denoted by {0, 1}∗, for any positive integer n and bit b,
we denote by bn the string of n consecutive b’s and {0, 1}n represents the set
of all binary strings of length n. The empty string is represented by ε. For any
two strings w and z and a positive integer i, w ‖ z denotes their concatenation,
w ⊕ z denotes their bitwise XOR, |w| denotes the length of w, and w[i] denotes
the ith bit of w. If j is a non-negative integer, then 〈j〉� denotes the unsigned �-
bit binary representation of j. Accordingly 〈·〉−1 represents the inverse mapping
which maps strings of any length to N. If w is an �-bit string and i is an integer
we use w+i as shorthand for 〈〈w〉−1+i mod 2�〉�. We use Func(X ,Y) to denote
the set of all functions with domain X and codomain Y. We will often have that
X = {0, 1}� or X = {0, 1}∗, and Y = {0, 1}n for some positive integers � and
n. Accordingly we abbreviate notation for the corresponding sets of functions to
Func(�, n) and Func(∗, n) respectively.

2.2 Building Blocks

Pseudorandom functions. A function family is a map F : K × X → Y.
We refer to K as the key space of F , X as the domain of F , and Y as the
codomain of F . In this paper K, X , and Y will be sets of bit-strings. For eack
K ∈ K we define the map FK : X → Y by FK(x) = F (K,x) for all x ∈ X . Thus
F can be seen as a collection of maps from X to Y, each identified by some key
in K . We will refer to FK as an instance of F . We will often make use of function
families that are pseudorandom.

Definition 1 (Pseudorandom functions). Let F : K × X → Y be a function
family. Consider an adversary A with oracle access to some function with domain
X and codomain Y, that returns a single bit as its output. We define the prf-
advantage of adversary A with respect to the function family F as:

Advprf
F (A) = Pr

[
K ←$ K : AFK(·) = 1

]
− Pr

[
f ←$ Func(X ,Y) : Af(·) = 1

]
.

F is said to be a pseudorandom function (PRF), if for every adversary A with
reasonable resources its prf-advantage Advprf

F (A) is small.

MACs. A message authentication code (MAC) MA = (K, T ,V) with associated
error space Q⊥ consists of three algorithms. The randomized key-generation
algorithm K takes no input and returns a secret key K. We will sometimes
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abuse notation and regard K as a set of keys. The tagging algorithm T may
be randomized or stateful. It takes as input the secret key K and a message
m ∈ {0, 1}∗ to return a tag τ . The verification algorithm V is deterministic and
stateless. It takes the secret key K, a message m ∈ {0, 1}∗ and a candidate tag
τ , and returns either 1 or an error message in Q⊥. We require that for all K
that can be output by K and all m ∈ {0, 1}∗, it hold (with probability 1) that if
τ ← TK(m) then VK(m, τ) = 1. Here, we allow multiple possible error messages
for MA in order to be able to model certain types of attack, e.g. that in [3].

The standard security notion for MACs is existential unforgeability under
chosen message attacks (UF-CMA). We will however require a stronger variant
of this notion SUF-CMA which is defined below.

Definition 2 (SUF-CMA). Let MA = (K, T ,V) be a message authentication
code with associated error space Q⊥. For an adversary A, define experiment
Expsuf-cma

MA (A) as shown in Fig. 1. A key K is first generated by calling K . The
adversary A is then given access to a tagging oracle Tag(·) and a verification
oracle Ver(·, ·). The adversary wins if it queries a valid message-tag pair that
was not previously returned by the tagging oracle. We define the adversary’s
advantage as:

Advsuf-cma
MA (A) = Pr

[
Expsuf-cma

MA (A)
]
.

The scheme MA is said to be SUF-CMA secure if, for every adversary A con-
suming reasonable resources its advantage Advsuf-cma

MA (A) is small.

The standard UF-CMA notion is defined analogously but the adversary is only
granted a win if it forges a tag for a message that was not previously queried to
the tagging oracle.

Encoding schemes. When constructing symmetric encryption schemes from
other components it is common to perform some form of preprocessing on the
message. Its purpose may be to map messages to the message space of the
encryption scheme, or as an attempt to extend the scheme’s functionality, such
as masking the message length. Generally such transformations are unkeyed, but
may be randomized. We model such transformations by encoding schemes.

An encoding scheme ES = (EC, DC) consists of two algorithms and associated
domain, codomain, and an error space. The encoding algorithm EC which may
be randomized, takes as input an element from its domain and maps it to some

Expsuf-cma
SE (A)

K ← K
L ← ∅,win ← 0

ATag(·),Ver(·,·)

return win

Tag(m)

τ ← TK(m)
L ← L ∪ (m, τ)
return τ

Ver(m, τ)

v ← VK(m, τ)
if v Q∈� ⊥ and (m, τ) �∈ L

then win ← 1
return v

Fig. 1. SUF-CMA experiment for message authentication codes.
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element in its codomain. The decoding algorithm DC is deterministic and takes
an element from its codomain and returns either an element in its domain or
an error symbol from its error space. The scheme must be correct, i.e. for every
element m in its domain it holds with probability 1 that DC(EC(m)) = m.

3 Symmetric Encryption with Multiple Errors:
Definitions

Syntax. A symmetric encryption scheme SE = (K, E ,D) with associated mes-
sage space M ⊆ {0, 1}∗, ciphertext space C ⊆ {0, 1}∗, and error space S⊥ consists
of three algorithms. The randomized key-generation algorithm K takes no input
and returns a secret key K, an initial encryption state σ0, and an initial decryp-
tion state �0. We will sometimes abuse notation and regard K as a set of keys.
The randomized and stateful encryption algorithm E : K×M×Σ → C×Σ takes
as input the secret key K ∈ K, a plaintext m ∈ M, and the current encryption
state σ ∈ Σ, and returns a ciphertext in C together with an updated state. The
deterministic and stateful decryption algorithm D : K×C ×Σ → (M ∪ S⊥)×Σ
takes as input the secret key K, a ciphertext c ∈ C, and the current decryption
state � to return the corresponding plaintext m ∈ M or a special symbol from
S⊥ (indicating that the ciphertext is invalid) and an updated state.

Our syntax of symmetric encryption schemes differs in two main ways from
the more conventional way of modelling symmetric encryption schemes. Firstly
it allows the decryption algorithm to indicate invalid ciphertexts with distinct
error messages within the error space. We will assume the error space be a set of
symbols {⊥1,⊥2, . . . ,⊥n} for some positive integer n. The symbol ⊥ will be used
interchangeably to denote a specific error symbol or a variable assuming values
from the error space. We will use the term multiple-error encryption scheme to
indicate schemes with an error space of size strictly greater than one. Secondly
we adopt a stateful syntax for both encryption and decryption. This is without
loss of generality. Both encryption and decryption can be made stateless by
defining K to always return the empty string for the corresponding initial state,
and having E ,D ignore (i.e. never update) the state.

For any � ∈ N and any m = [m1, . . . ,m�] ∈ M�, we write (c, σ) ← EK(m, σ0)
as shorthand for (c1, σ1) ← EK(m1, σ0), (c2, σ2) ← EK(m2, σ1), . . . (c�, σ�) ←
EK(m�, σ�−1), where c = [c1, . . . , c�] and σ = σ�. Similarly we use (m′, �) ←
DK(c, �0) to denote the analogous process for decryption. Finally, we require that
a symmetric encryption scheme satisfy correctness which is defined as follows:

Definition 3 (Correctness of SE). For all (K,σ0, �0) that can be output by
K, all � ∈ N, and all m ∈ M�, it holds (with probability 1) that if (c, σ) ←
EK(m, σ0) and (m′, �) ← DK(c, �0), then m′ = m.

Indistinguishability notions. We adopt the ‘left-or-right’ model of indistin-
guishability from Bellare et al. [5] to define three notions of confidentiality for
symmetric encryption. Indistinguishability under chosen-plaintext attack (IND-
CPA), and indistinguishability under chosen-ciphertext attack (IND-CCA) are



374 A. Boldyreva et al.

fairly standard, except for the fact that for multiple-error schemes the decryp-
tion oracle will now return one of many possible error messages. We introduce the
notion of indistinguishability under ciphertext-validity attack (IND-CVA), which
can be seen as a strengthened adaption of a similar notion defined by Bauer et
al. [4] to the symmetric setting. Here, in addition to an encryption oracle the
adversary is given access to a ciphertext-validity oracle which indicates whether
a ciphertext is valid or not, and if not, returns the exact error message output
by the decryption algorithm.

Definition 4 (IND-ATK security). Let SE = (K, E ,D) be a symmetric encryp-
tion scheme. For an adversaryA and a bit b, define the experimentsExpind-atk-b

SE (A)
where atk ∈ {cpa, cva, cca} as shown in Fig. 2. In all three experiments, a key K
is first generated by calling K . The adversary A is then given access to a left-or-
right encryption oracle LoR(·), and possibly a ciphertext-validity oracle Val(·) or
a decryption oracle Dec(·). No restriction is imposed on the adversary’s queries,
rather if it queries a pair of messages of unequal length to LoR(·), or if it queries a
ciphertext to Dec(·) previously returned by LoR(·), the � symbol is returned. In the
Val(·) oracle the � symbol indicates that the queried ciphertext was valid.

The adversary’s goal is to output a bit b′, as its guess of the challenge bit b,
and the experiment returns b′ as well. For each of these three experiments we
define the corresponding advantages of an adversary A as:

Advind-atk
SE (A) = Pr

[
Expind-atk-1

SE (A) = 1
]

− Pr
[
Expind-atk-0

SE (A) = 1
]
.

The scheme SE is said to be IND-ATK secure, if for every adversary A with
reasonable resources its advantage Advind-atk

SE (A) is small.

Indistinguishability from random bits. We can recast the above three
security notions in terms of indistinguishability from random bits as introduced

Expind-cpa-b
SE (A)

(K, σ, �) ← K
i ← 0, C ← ()

b′ ← ALoR(·)

return b′

LoR((m0, m1))

if |m0| �= |m1|
then return

(c, σ) ← EK(mb, σ)
i ← i + 1, Ci ← c
return c

Expind-cva-b
SE (A)

(K, σ, �) ← K
i ← 0, C ← ()

b′ ← ALoR(·),Val(·)

return b′

Val(c)

(m, �) ← DK(c, �)
if m ∈ M then m ←
return m

Expind-cca-b
SE (A)

(K, σ, �) ← K
i ← 0, C ← ()

b′ ← ALoR(·),Dec(·)

return b′

Dec(c)

(m, �) ← DK(c, �)
if c ∈ C then m ←
return m

Fig. 2. IND-ATK experiments for symmetric encryption schemes.
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by Rogaway [25]. Here the adversarial goal is to distinguish encrypted messages
from random bit-strings of the same length.

Definition 5 (IND$-ATK security). Let SE = (K, E ,D) be a symmetric encryp-
tion scheme.ForanadversaryAandabit b, define the experimentsExpind$-atk-b

SE (A)
where atk ∈ {cpa, cva, cca} as shown in Fig. 3. In all three experiments, a key K
is first generated by calling K . The adversary A is then given access to a special
encryption oracle Enc$(·), if b = 1 the oracle returns the encrypted message, oth-
erwise it returns a uniformly-random bit-string of the same length. In the ind$-cva
and ind$-cca experiments, the adversary is additionally given access to a ciphertext-
validity oracle Val(·) and a decryption oracle Dec(·) respectively. Trivial-win
conditions are avoided by having the decryption oracle return � in response to any
ciphertext that was previously output by the encryption oracle. The ciphertext-
validity oracle uses � to indicate that the queried ciphertext was valid or has been
previously output by the encryption oracle.

The adversary’s goal is to output a bit b′, as its guess of the challenge bit b,
and the experiment returns b′ as well. For each of these three experiments we
define the corresponding advantages of an adversary A as:

Advind$-atk
SE (A) = Pr

[
Expind$-atk-1

SE (A) = 1
]

− Pr
[
Expind$-atk-0

SE (A) = 1
]
.

The scheme SE is said to be IND$-ATK secure, if for every adversary A with
reasonable resources its advantage Advind$-atk

SE (A) is small.

Stateful indistinguishability notions. Secure protocols like SSH, SSL/TLS
and IPsec aim to protect against replay and reordering of ciphertexts. These secu-
rity goals are not captured by any of the above security notions. Bellare et al. [8]
introduced a notion called IND-sfCCA. This notion implies IND-CCA security
and additionally protects against replay and reordering of ciphertexts. We recall

Expind$-cpa-b
SE (A)

(K, σ, �) ← K
b′ ← AEnc$(·)

return b′

Enc$(m)

(c, σ) ← EK(m, σ)
if b = 0

then c ←$ {0, 1}|c|

i ← i + 1, Ci ← c
return c

Expind$-cva-b
SE (A)

(K, σ, �) ← K
i ← 0, C ← ()

b′ ← AEnc$(·),Val(·)

return b′

Val(c)

(m, �) ← DK(c, �)
if m ∈ M or c ∈ C

then m ←
return m

Expind$-cca-b
SE (A)

(K, σ, �) ← K
i ← 0, C ← ()

b′ ← AEnc$(·),Dec(·)

return b′

Dec(c)

(m, �) ← DK(c, �)
if c ∈ C then m ←
return m

Fig. 3. IND$-ATK experiments for symmetric encryption schemes.
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this notion and introduce natural variants in terms of indistinguishability from
random bits and ciphertext-validity attacks. Of course, our definitions are also
for the setting of multiple errors. In what follows we will classify the adversary’s
decryption queries to be in-sync, if the sequence of queried ciphertexts is a prefix
of the sequence of ciphertexts returned by the encryption oracle. Accordingly we
refer to the first decryption query (and any subsequent one) for which this is no
longer true as an out-of-sync query.

Definition 6 (Stateful indistinguishability). Let SE = (K, E ,D) be a sym-
metric encryption scheme. For an adversary A and a bit b, define experiments
Expind-sfcca-b

SE (A) and Expind$-atk-b
SE (A) where atk ∈ {sfcva, sfcca} as shown in

Fig. 4. In all three experiments, a key K is first generated by calling K . In the
ind-sfcca experiment the adversary is given access to a left-or-right encryption
oracle LoR(·), and a stateful decryption oracle sfDec(·). The stateful decryption
oracle returns the decrypted ciphertexts only for out-of-sync queries, and returns
� otherwise. Similarly in the ind$-atk experiments the adversary is given access
to the special encryption oracle Enc$(·), and either a stateful ciphertext-validity
oracle sfVal(·) or a stateful decryption oracle sfDec(·).

The adversary’s goal is to output a bit b′, as its guess of the challenge bit b,
and the experiment returns b′ as well. For each of these three experiments we
define the corresponding advantages of an adversary A as:

Advind-sfcca
SE (A) = Pr

[
Expind-sfcca-1

SE (A) = 1
]

− Pr
[
Expind-sfcca-0

SE (A) = 1
]

Advind$-atk
SE (A) = Pr

[
Expind$-atk-1

SE (A) = 1
]

− Pr
[
Expind$-atk-0

SE (A) = 1
]
.

The scheme SE is said to be IND-sfCCA or IND$-ATK secure, if for every adver-
sary A with reasonable resources its respective advantage Advind-sfcca

SE (A) or
Advind$-atk

SE (A) is small.

The naming of these notions is partly justified by the fact that the decryp-
tion and ciphertext-validity oracles are stateful. In addition, it is easy to see that
for an encryption scheme to be IND-sfCCA or IND$-sfCCA secure, its decryption
algorithm must be stateful. However, a scheme need not have a stateful decryp-
tion algorithm to be IND$-sfCVA secure. As the reader may have noticed, we did
not define an IND-sfCVA notion. This is because in the presence of a left-or-right
encryption oracle, the sfVal(·) oracle reduces to a Val(·) oracle, and therefore
IND-sfCVA (defined in the obvious way) is equivalent to IND-CVA.

Ciphertext integrity. We define ciphertext integrity analogously to Bellare
and Namprempre [10], and we also consider its stateful variant [8] which addi-
tionally protects against replay and reordering attacks. Here an adversary trying
to forge a ciphertext is granted multiple attempts by giving it access to a verifi-
cation oracle Try(·), in addition to a standard encryption oracle. When extending
these notions to schemes with multiple errors, it is not clear how to interpret
the verification oracle’s functionality. That is, should the verification oracle indi-
cate only whether a ciphertext is valid or not, or should it additionally return
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Expind-sfcca-b
SE (A)

(K, σ, �) ← K
i ← 0, j ← 0
C ← (), sync ← 1

b′ ← ALoR(·),sfDec(·)

return b′

LoR((m0, m1))

if |m0| �= |m1|
then return

(c, σ) ← EK(mb, σ)
i ← i + 1, Ci ← c
return c

sfDec(c)

j ← j + 1
(m, �) ← DK(c, �)
if j > i or c �= Cj

then sync ← 0
if sync = 1 then m ←
return m

Expind$-sfcva-b
SE (A)

(K, σ, �) ← K
i ← 0, j ← 0
C ← (), sync ← 1

b′ ← AEnc$(·),sfVal(·)

return b′

Enc$(m)

(c, σ) ← EK(m, σ)
if b = 0

then c ←$ {0, 1}|c|

i ← i + 1, Ci ← c
return c

Expind$-sfcca-b
SE (A)

(K, σ, �) ← K
i ← 0, j ← 0
C ← (), sync ← 1

b′ ← AEnc$(·),sfDec(·)

return b′

sfVal(c)

j ← j + 1
(m, �) ← DK(c, �)
if j > i or c �= Cj

then sync ← 0
if sync = 1 or m ∈ M

then m ←
return m

Fig. 4. Stateful indistinguishability experiments for symmetric encryption schemes.

the exact error message output by the decryption algorithm if the ciphertext
is invalid? For single-error schemes the two interpretations are equivalent, but
this does not hold in general (see Sect. 4). For each of the standard and stateful
notions we consider both variants and we denote the weaker variant (i.e. the one
that is less informative to the adversary) with ‘∗’. In what follows we classify
verification queries to be in-sync or out-of-sync in an analogous manner as we
did for decryption.

Definition 7 (Ciphertext Integrity). Let SE = (K, E ,D) be a symmetric
encryption scheme. For an adversary A define the experiments Expint-atk

SE (A)
where atk ∈ {ctxt, ctxt∗, sfctxt, sfctxt∗} as shown in Fig. 5. In all experiments,
a key K is first generated by calling K . The adversary A is then given access
to an encryption oracle Enc(·), and one of the following verification oracles
Try(·),Try∗(·), sfTry(·), or sfTry∗(·). The Try∗(·) oracle (and similarly the sfTry∗(·)
oracle) returns � if the queried ciphertext is valid, or if the ciphertext has been
previously output by the encryption oracle (respectively: if the verification query
is in-sync), and returns ⊥ if the ciphertext is invalid. The Try(·) and sfTry(·)
oracles operate analogously but return the exact error message output by the
decryption oracle when a ciphertext is invalid.

In the int-ctxt and int-ctxt∗ experiments the adversary’s goal is to make
a valid verification query not previously output by the encryption oracle. In the
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Expint-ctxt
SE (A)

(K, σ, �) ← K
i ← 0, C ← (), win ← 0

AEnc(·),Try(·)

return win

Expint-sfctxt∗
SE (A)

(K, σ, �) ← K
i ← 0, j ← 0, C ← ()
sync ← 1, win ← 0

AEnc(·),sfTry∗(·)

return win

sfTry(c)

j ← j + 1
(m, �) ← DK(c, �)
if j > i or c �= Cj

then sync ← 0
if sync = 0 and m S∈� ⊥

then win ← 1
if m S∈� ⊥ then m ←
return m

Expint-sfctxt
SE (A)

(K, σ, �) ← K
i ← 0, j ← 0, C ← ()
sync ← 1, win ← 0

AEnc(·),sfTry(·)

return win

Enc(m)

(c, σ) ← EK(m, σ)
i ← i + 1, Ci ← c
return c

Try∗(c)

(m, �) ← DK(c, �)
if c �∈ C and m S∈� ⊥

then win ← 1
if m ∈ S⊥ then m ←⊥
else m ←
return m

Expint-ctxt∗
SE (A)

(K, σ, �) ← K
i ← 0, C ← (), win ← 0

AEnc(·),Try∗(·)

return win

Try(c)

(m, �) ← DK(c, �)
if c �∈ C and m S∈� ⊥

then win ← 1
if m S∈� ⊥ then m ←
return m

sfTry∗(c)

j ← j + 1
(m, �) ← DK(c, �)
if j > i or c �= Cj

then sync ← 0
if sync = 0 and m S∈� ⊥

then win ← 1
if m ∈ S⊥ then m ←⊥
else m ←
return m

Fig. 5. Ciphertext integrity experiments for symmetric encryption schemes.

int-sfctxt and int-sfctxt∗ experiments the adversary’s goal is to make a valid out-
of-sync verification query. In all cases the experiment outputs a bit indicating the
adversary’s success. For each experiment we define the advantage of an adversary
A as:

Advint-atk
SE (A) = Pr

[
Expint-atk

SE (A) = 1
]
.

The scheme SE is said to be INT-ATK secure, if for every adversary A with
reasonable resources its advantage Advint-atk

SE (A) is small.

Error invariance. Although an encryption scheme may have multiple error
messages, not all error messages may be ‘available’ to the adversary. In particular
an adversary may not be able to produce (invalid) ciphertexts that generate all
possible error messages. We introduce a simple security notion that captures
exactly this situation. Informally an encryption scheme is error-invariant if no
efficient adversary can generate more than one of the possible error messages.
Of course any single-error scheme is trivially error invariant.

Definition 8 (INV-ERR security). Let SE = (K, E ,D) be a symmetric encryp-
tion scheme with error space S⊥. For any ⊥∈ S⊥ and an adversary A,
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Expinv-err
SE,⊥ (A)

(K, σ, �) ← K
win ← 0

AEnc(·),Dec(·)

return win

Enc(m)

(c, σ) ← EK(m, σ)
return c

Dec(c)

(m, �) ← DK(c, �)
if m ∈ S⊥ and m �=⊥

then win ← 1
return m

Fig. 6. INV-ERR experiment for symmetric encryption schemes.

define the experiment Expinv-err
SE,⊥ (A) as shown in Fig. 6. A key K is first gener-

ated by calling K . The adversary A is then given access to an encryption oracle
Enc(·) and a decryption oracle Dec(·).

The adversary’s goal is to submit a ciphertext to the decryption oracle which
results in an error message not equal to ⊥ . The experiment outputs a bit indi-
cating the adversary’s success. We define the advantage of an adversary A with
respect to ⊥ as:

Advinv-err
SE,⊥ (A) = Pr

[
Expinv-err

SE,⊥ (A) = 1
]
.

The scheme SE is said to be INV-ERR secure if there exists a unique ⊥∈ S⊥ such
that for every adversary A with reasonable resources its advantage Advinv-err

SE,⊥ (A)
is small.

Additional notes. The reader may be wondering how exactly to interpret the
� symbol, given that we assign to it different meanings in our security definitions.
In general we use it to ‘suppress’ certain outputs from an oracle, and hence limit
the information conveyed by the oracle to the adversary. We use it to avoid
trivial win conditions by suppressing the output of in-sync decryption queries,
or left-or-right queries containing messages of different lengths. We also use it to
define ciphertext-validity and verification oracles by suppressing any plaintext
that is output by the decryption algorithm.

For each security definition we have defined the corresponding advantage of
an adversary with respect to some cryptographic scheme. We will sometimes
refer to the maximum advantage with respect to a cryptographic scheme over
all adversaries consuming reasonable resources. Any advantage not parametrized
by an adversary is to be interpreted this way.

4 Relations and Separations

Interpreting our implications and separations. An implication from
security notion X to security notion Y, indicated by X −→ Y, means that any
scheme which is X-secure is also Y-secure. More formally there exists a constant
κ > 0 such that for any symmetric encryption scheme SE and any Y adversary
Ay there exists a X adversary Ax (with similar resources) such that:

Advy
SE(Ay) ≤ κ · Advx

SE(Ax)
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A separation from security notion X to security notion Y indicated by X �−→ Y,
means that there exists a symmetric encryption scheme which meets notion X but
for which we can exhibit an attack showing that it does not meet notion Y. The
separation is interesting only if there exists some scheme which meets security
notion X, as otherwise the implication X −→ Y is vacuously true. Our separations
can be categorised into two types. In the former we will assume that there exists
some scheme SE which meets notion X, and use it to construct a scheme SE which
meets notion X but is insecure in the Y sense. From the foregoing discussion,
such an assumption is in some sense minimal. In the second type of separations
we will assume the existence of pseudorandom functions and UF-CMA MACs to
construct a scheme which meets notion X but not notion Y. In this paper for
all separations of the latter type we will have that X −→ IND-CPA. It is a well-
known result that the existence of IND-CPA-secure symmetric encryption implies
the existence of pseudorandom functions [15,17,18]. In addition a pseudorandom
function can be combined with an almost-universal hash function to obtain a
variable-input-length pseudorandom function, which in turn yields a UF-CMA
MAC. Thus from a theoretical viewpoint the underlying assumptions for either
type of separation are equivalent.

Note that when proving a separation we do not require the scheme to have
distinct error messages, as we are interested solely in the existence of a counterex-
ample showing that the relation under question cannot be established. Secondly
any multiple-error scheme which is secure under some notion X implies the exis-
tence of a single-error scheme which is also secure under notion X (simply by
mapping all error messages to a single error message). Consequently it is best to
prove separations using schemes with an error space of minimal cardinality. It
then follows that the separation also holds for all schemes of higher error-space
cardinality.

Straightforward relations. The following set of relations are self-evident.
We state them here for the sake of completeness without proofs.

Proposition 1

IND − sfCCA �� IND − CCA �� IND − CVA �� IND − CPA

IND$ − sfCCA ��

��

��

IND$ − CCA �� IND$ − CVA �� IND$ − CPA

IND$ − sfCVA

��

��

INT − sfCTXT ��

��

��

INT − CTXT �� INT − CTXT∗

INT − sfCTXT∗
��

��

Revisiting classic relations. If a symmetric encryption scheme that only
supports a single possible error symbol satisfies both passive confidentiality
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(IND-CPA) and integrity of ciphertexts, then it offers confidentiality against
chosen-ciphertext attacks [8,10]. Often, when analysing a particular scheme,
its chosen-plaintext security and ciphertext integrity are proven first, and then
the results of [8,10] are used to guarantee chosen-ciphertext security. Indeed, the
combination of IND-CPA and INT-sfCTXT (or their stateful versions) has come
to be the accepted security notion for symmetric encryption. We proceed to
re-examine the classic relations from [8,10] in the context of encryption schemes
with multiple error messages.

The following theorem serves as the basis for the two separations in Corol-
laries 1 and 2, showing that the classic relations no longer hold for multiple-error
schemes.

We point out that in proving the separations, we adopt the stronger inter-
pretations of ciphertext integrity so as to avoid any ambiguity in the results.

Theorem 1 (IND-CPA ∧ INT-sfCTXT �−→ IND-CCA). Let F : Ke × {0, 1}� →
{0, 1}n be a pseudorandom function, and let MA = (Km, T ,V) be a UF-CMA
secure MAC with tag length �tag < n . Consider the stateful symmetric encryption
scheme SE1 having message space {0, 1}n−�tag and error space {⊥0,⊥1} shown in
Fig. 7. For any IND-CPA adversary Acpa and any INT-sfCTXT adversary Aint

against SE1, both making at most 2� − 1 encryption queries, there exist two
corresponding adversaries Aprf and Auf using roughly the same resources as
Acpa and Aint, respectively, such that:

Advind-cpa

SE1
(Acpa) ≤ 2 · Advprf

F (Aprf), (1a)

Advint-sfctxt
SE1

(Aint) ≤ Advuf-cma
MA (Auf). (1b)

Moreover there exist efficient adversaries Acca and A′
uf such that:

Advind-cca
SE1

(Acca) = 1 − Advuf-cma
MA (A′

uf) . (1c)

Combining Theorem 1 and Proposition 1 yields the following two separations
corresponding to the aforementioned relations from [10] and [8].

Corollary 1 (IND-CPA ∧ INT-CTXT �−→ IND-CCA). Let F : Ke × {0, 1}� →
{0, 1}n be a pseudorandom function, and let MA = (Km, T ,V) be a UF-CMA
secure MAC with tag length �tag < n . Then there exists a symmetric encryption
scheme that is both IND-CPA secure and INT-CTXT secure but that is not secure
in the IND-CCA sense.

Corollary 2 (IND-CPA ∧ INT-sfCTXT �−→ IND-sfCCA). Let F : Ke × {0, 1}� →
{0, 1}n be a pseudorandom function, and let MA = (Km, T ,V) be a UF-CMA
secure MAC with tag length �tag < n . Then there exists a symmetric encryption
scheme that is both IND-CPA secure and INT-sfCTXT secure but that is not secure
in the IND-sfCCA sense.

Note that in proving Theorem1 we resorted to a stateful scheme. Only a
stateful scheme can be INT-sfCTXT secure, and therefore the counterexample
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Algorithm K
Ke ←$ Ke

Km ← Km

σ ← 1, � ← 1
K ← Ke ‖ Km

return (K, σ, �)

Algorithm EK(m, σ)

τ ← TKm(〈σ〉� ‖ m)
c ← FKe(〈σ〉�) ⊕ (m ‖ τ)

σ ← σ + 1 mod 2�

return (c, σ)

Algorithm DK(c, �)

if |c| �= n then � ← 0
if � = 0 then

return (⊥0, �)
w ← FKe(〈�〉�) ⊕ c
parse w as m ‖ τ
v ← VKm(〈�〉� ‖ m, τ)
if v = 1

then � ← � + 1 mod 2�

else
� ← 0
if m[1] = 0 then m ←⊥0

else m ←⊥1

return (m, �)

Fig. 7. The scheme SE1 of Theorem1.

used to prove Corollary 2 needs to be stateful. The same cannot be said however
about the separation in Corollary 1, and in fact it can be proven more generally
using a stateless scheme, but we omit the details for the sake of brevity.

New relations. We now go on to investigate how chosen-ciphertext security
can be obtained in the multiple-error setting. Given how useful the relations of
[10] and [8] have turned out to be, it would make sense to attempt to derive
analogous relations that hold more generally. The following theorem extends the
relation of [10] to schemes with multiple errors.

Theorem 2 (IND-CVA ∧ INT-CTXT −→ IND-CCA). Let SE = (K, E ,D) be
a symmetric encryption scheme. For any IND-CCA adversary Acca there exist
adversaries Acva and Aint consuming similar resources to Acca such that:

Advind-cca
SE (Acca) ≤ Advind-cva

SE (Acva) + 2 · Advint-ctxt
SE (Aint) . (2)

A similar relation can be established for stateful chosen-ciphertext security,
and each of these relations can be re-proven for security notions involving indis-
tinguishability from random bits. We state these relations below.

Proposition 2

IND-CVA ∧ INT-sfCTXT −→ IND-sfCCA
IND$-CVA ∧ INT-CTXT −→ IND$-CCA

IND$-sfCVA ∧ INT-sfCTXT −→ IND$-sfCCA

Necessity of strong ciphertext integrity. The above relations can be
seen as strengthened variants of the relations from [10] and [8], where we replaced
CPA security with CVA security and adopted the stronger notions of ciphertext
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integrity. It is natural to ask whether the left-hand side of each relation can be
somehow relaxed. We have seen in Corollaries 1 and 2 that reverting from CVA
security to CPA security is not an option. However it is not evident whether it
is necessary to require the stronger variants of ciphertext integrity. Theorem3
answers this question by means of a separation, proving that strong ciphertext
integrity is necessary for Theorem 2 to hold.

Theorem 3 (IND-CVA ∧ INT-CTXT∗ �−→ IND-CCA). Let SE = (K, E ,D) be a
symmetric encryption scheme with a large message space M and an error space
{⊥0}, such that it is both IND-CVA secure and INT-CTXT∗ secure. Let the length
of its ciphertexts be bounded above by 2� for some integer �. Consider the scheme
SE2 having message space M and error space {⊥0,⊥1} shown in Fig. 8. For any
IND-CVA adversary Acva making qe left-or-right queries, and any INT-CTXT∗

adversary Aint making qt verification queries, there exist adversaries A1
cva, A2

cva,
and A1

int (consuming similar resources to Acva and Aint) such that:

Advind-cva
SE2

(Acva) ≤ Advind-cva
SE (A1

cva) +
1
2

· Advind-cva
SE (A2

cva) +
qe

|M| , (3a)

Advint-ctxt∗
SE2

(Aint) ≤ Advint-ctxt∗
SE (A1

int) +
qt

|M| . (3b)

Moreover there exists an adversary Acca, making at most (�+maxm∈M(|m|)+1)
decryption queries and one left-or-right query such that:

Advind-cca
SE2

(Acca) = 1. (3c)

Theorem 3 also serves as a separation between INT-CTXT∗ and INT-CTXT,
showing that the latter is strictly stronger. Separations similar to that of Theo-
rem 3 corresponding to the relations of Proposition 2 can also be established.

Proposition 3

2IND − CVA ∧ INT − sfCTXT∗ �−→ IND − sfCCA

IND$ − CVA ∧ INT − CTXT∗ �−→ IND$ − CCA

IND$ − sfCVA ∧ INT − sfCTXT∗ �−→ IND$ − sfCCA

Algorithm K
(K, σ, �) ← K
m∗ ←$ M
(c∗, σ) ← EK(m∗, σ)
K0 ← (K, m∗, c∗)
return (K0, σ, �)

Algorithm EK0(m, σ)

if (m = m∗) then c ← c∗

else (c, σ) ← EK(m, σ)
return (0 ‖ c, σ)

Algorithm DK0(c, �)

parse c as b ‖ c′

if (b = 0) then
if (c′ = c∗) then m ← m∗

else (m, �) ← DK(c′, �)
else ψ ← 〈|c∗|〉� ‖ c∗

if 〈c′〉−1 ≤ |ψ| then
d ← ψ[〈c′〉−1], m ←⊥d

else m ←⊥0

return (m, �)

Fig. 8. The scheme SE2 of Theorem3.
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5 Further Relations and the IND$-CCA3 Notion

Authenticated-encryption security. Following the work of Bellare and
Namprempre [10], chosen-plaintext security and ciphertext integrity were iden-
tified as the two security goals for symmetric encryption. Rogaway and Shrimp-
ton [26] presented a single security notion, sometimes referred to as IND$-CCA3
and more commonly called authenticated-encryption security, that is equivalent
to the combination of chosen plaintext security and ciphertext integrity. We now
present a natural extension of this notion to the multiple error setting. Then in
Theorem 4 we show that this characterisation is equivalent to the combination of
chosen-plaintext security, weak chosen ciphertext integrity, and error invariance.

Definition 9 (IND$-CCA3 notion for multiple-error symmetric encryp-
tion). Let SE = (K, E ,D) be a multiple-error symmetric encryption scheme with
error space S⊥. For an adversary A, an error ⊥∈ S⊥ and a bit b, define exper-
iment Expind$-cca3-b

SE,⊥ (A) as shown in Fig. 9. First K is called to generate a key
K, an initial encryption state σ, and an initial decryption state �. The adver-
sary A is then given access to a special encryption oracle Enc$(·) and a special
decryption oracle Dec∅(·). When b = 1 both oracles behave as normal encryption
and decryption oracles. When b = 0 then Enc$(·) will return a random bit string
(of the same length as an actual ciphertext would have been), and Dec∅(·) will
always return ⊥ (unless the queried ciphertext was output by Enc$(·), in which
case it will return �).

The adversary’s goal is to output a bit b′, as its guess of the challenge bit
b. The experiment returns b′ as well and, for ⊥∈ S⊥ and an adversary A, the
advantage is defined as:

Advind$-cca3
SE,⊥ (A) = Pr

[
Expind$-cca3-1

SE,⊥ (A) = 1
]

− Pr
[
Expind$-cca3-0

SE,⊥ (A) = 1
]
.

The scheme SE is said to be IND$-CCA3 secure if there exists ⊥∈ S⊥ such that
for every adversary A with reasonable resources its advantage Advind$-cca3

SE,⊥ (A)
is small.

Note: An IND-CCA3 notion can be defined by replacing the Enc$(·) oracle with
a real-or-random encryption oracle (cf. [5]). Such an oracle returns either an
encryption of the queried message or an encryption of a random message of the
same length.

Theorem 4 (IND$-CPA ∧ INT-CTXT∗ ∧ INV-ERR −→←− IND$-CCA3). Let SE =
(K, E ,D) be a symmetric encryption scheme with error space S⊥.

– For any ⊥∈ S⊥ and any adversary Acca3 there exist adversaries Acpa, Aint

and Aerr (consuming similar resources to Acca3) such that:

Advind$-cca3
SE,⊥ (Acca3) ≤ Advind$-cpa

SE (Acpa) +Advint-ctxt∗
SE (Aint) +Advinv-err

SE,⊥ (Aerr) .
(4)
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Expind$-cca3-b
SE,⊥ (A)

(K, σ, �) ← K
i ← 0, C ← ()

b′ ← AEnc$(·),Dec∅(·)

return (b′)

Enc$(m)

(c, σ) ← EK(m, σ)

if b = 0 then c ← {0, 1}|c|

i ← i + 1, Ci ← c
return c

Dec∅(c)

(m, �) ← DK(c, �)
if b = 0 then m ←⊥
if c ∈ C then m ←
return m

Fig. 9. IND$-CCA3 experiment for multiple-error symmetric encryption schemes.

– For any ⊥∈ S⊥ and any three adversaries A′
cpa, A′

int and A′
err there exist

three corresponding adversaries A1
cca3, A2

cca3 and A3
cca3 (consuming similar

resources to A′
cpa, A′

int and A′
err, respectively) such that:

Advind$-cpa
SE (A′

cpa) ≤ Advind$-cca3
SE,⊥ (A1

cca3), (5a)

Advint-ctxt∗
SE (A′

int) ≤ 2 · Advind$-cca3
SE,⊥ (A2

cca3), (5b)

Advinv-err
SE,⊥ (A′

err) ≤ 2 · Advind$-cca3
SE,⊥ (A3

cca3). (5c)

It can be similarly shown that:

Proposition 4 IND-CPA ∧ INT-CTXT∗ ∧ INV-ERR −→←− IND-CCA3.

The question remains whether IND$-CCA3 security guarantees IND$-CCA
security in the multiple error setting, which is the ultimate target security notion.
Proposition 5 tells us that this is indeed the case. In fact it says something
stronger, in that it relates IND$-CCA3 to the security notions from Proposition 2.

Proposition 5 IND$-CCA3 −→ IND$-CVA ∧ INT-CTXT −→ IND$-CCA.

6 The Security of Encode-Then-Encrypt-Then-MAC

The works of Bellare and Namprempre [10] and Krawczyk [20] provide formal
evidence for preferring Encrypt-then-MAC (EtM) over other generic composi-
tions like MAC-then-encrypt (MtE). However we believe that the merits of EtM
as a generic composition technique go beyond the implications of their work.
By combining results from [20] and [7], we know that MtE is actually IND-
CCA secure when instantiated with CBC or counter-mode encryption. Thus the
analysis of [10,20] does not explain why EtM should be more secure than MtE
when both are instantiated with CBC or counter-mode encryption. Nonetheless
practical cryptosystems (employing CBC and counter-mode encryption) based
on EtM have so far proved themselves less vulnerable to attack than ones based
on MtE. For example, the attacks in [2,3,11,13] exploit features of the encod-
ing schemes used in specific MtE constructions and the fact that an adver-
sary can distinguish among distinct decryption failures. Neither of these aspects
were considered in [10]. Reconsidering the generic compositions in the light of
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Algorithm K
(Ke, σ, �) ← Ke

Km ← Km

K ← Ke ‖ Km

return (K, σ, �)

Algorithm EK(m, σ)

w ← EC(m)
(c, σ) ← EKe(w, σ)
τ ← TKm(c)
return (c ‖ τ, σ)

Algorithm DK(ψ, �)

if |ψ| < �tag + 1 then
return (⊥0, �)

parse ψ as c ‖ τ
v ← VKm(c, τ)
if v ∈ Q⊥ then

return (v, �)
(w, �) ← DKe(c, �)
if w ∈ S⊥ then

return (w, �)
m ← DC(w)
return (m, �)

Fig. 10. The generic Encode-then-Encypt-then-MAC composition SEEEM with dis-
tinguishable decryption failures.

multiple-error messages (or equivalently distinguishable decryption failures) pro-
vides new formal grounds for preferring the EtM composition. More specifically
we consider an encode-then-encrypt-then-MAC (EEM) composition to account
for the pre-processing (such as padding) that is common in practical schemes.
The EEM composition is specified in Fig. 10. Theorem 5 shows that EEM is a
robust composition, in the sense that it provides IND-CVA and INT-CTXT secu-
rity, and therefore IND-CCA security, in the multiple-error setting, irrespective
of the encoding scheme used (and the error messages it returns) and the error
messages that the encryption component may return, as long as the encryption
component is IND-CPA and the MAC is SUF-CMA. In fact, we can prove that
EEM provides IND-CCA3 security if its MAC component only has a single error
message.

Theorem 5 (EEM provides IND-CVA+INT-CTXT). Suppose SE = (Ke, E ,D)
is a symmetric encryption scheme with message space M and error space S⊥.
Let MA = (Km, T ,V) be a MAC with error space Q⊥ producing tags of length
�tag. Let ES = (EC,DC) be a length-regular encoding scheme with domain M,
codomain M, and error space U⊥. Figure 10 then defines a symmetric encryption
scheme SEEEM with message space M and error space S⊥ = S⊥∪Q⊥∪U⊥∪{⊥0

}, for some ⊥0 �∈ S⊥ ∪Q⊥ ∪U⊥. For any IND-CVA adversary Acva and any INT-
CTXT adversary Aint against SEEEM , there exist adversaries Acpa, A1

suf, and
A2

suf such that:

Advind-cva
SEEEM

(Acva) ≤ Advind-cpa
SE (Acpa) + Advsuf-cma

MA (A1
suf) , (6)

Advint-ctxt
SEEEM

(Aint) ≤ Advsuf-cma
MA (A2

suf) . (7)

Moreover, these adversaries consume similar resources to Acva and Aint.

It is instructive to consider some distinguishable decryption failure attacks
that have been discovered on instantiations of the MAC-then-Encode-then-Ecrypt
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(MEE) composition, in order to see how such implementation flaws are captured
by our treatment. The attacks on TLS [11] and on DTLS [2] use timing differences
to distinguish a MAC failure from a padding failure. In the case of IPsec [13], the
encoding includes a padding portion as well as a header portion, and it is the abil-
ity to discern between malformed padding and a malformed header that gives rise
to the attack. The recent Lucky 13 attack on TLS [3] exploits timing differences in
the verification algorithm of HMAC. More specifically each compression function
evaluation in HMAC results in additional processing time during decryption that
can be detected by the adversary from the time delay in returning TLS’s MAC
failure message; the size of the delay relates to the amount of TLS padding pre-
viously removed and can be used to infer plaintext in an extension of Vaudenay’s
padding oracle attack [27]. This timing channel can be modelled in our framework
by transforming HMAC into a multiple-error MAC. Then the error messages that
HMAC returns can be easily predicted from the length of the string on which the
tag is to be verified. It follows from this observation that any proof of SUF-CMA
security for the usual single-error HMAC can be extended to this multiple-error
version of HMAC. So, while this multiple-error HMAC is still SUF-CMA secure,
its interaction with the TLS padding renders the MEE composition used in TLS
insecure. By contrast, as established in Theorem 5, an EEM composition would
not be compromised by such an implementation flaw.

7 More Separations

We now present a separation showing that IND-CVA is strictly stronger than
IND-CPA. We actually show something slightly stronger, in that the separation
also holds for schemes which are error invariant. This separation further serves
to point out that, even for single-error schemes, Theorem2 does not reduce to
the relation of Bellare and Namprempre from [10].

Theorem 6 (IND-CPA∧ INV-ERR �−→ IND-CVA). Let F : Ke ×{0, 1}� → {0, 1}n

be a pseudorandom function, where � is sufficiently large. Then the symmetric
encryption scheme SE3 having message space ∪k≥1{0, 1}nk and error space {⊥}
shown in Fig. 11 is such that, for any IND-CPA adversary Acpa making q encryp-
tion queries totalling μ bits of plaintext, there exists a corresponding adversary
Aprf (consuming similar resources to Acpa) with:

Advind-cpa

SE3
(Acpa) ≤ 2 · Advprf

F (Aprf) +
(μ

n
+ q

) (
q − 1
2�

)
. (8a)

Moreover there exists an efficient adversary Acva such that:

Advind-cva
SE3

(Acva) = 1. (8b)

In Sect. 3 it was noted that if the IND-sfCVA experiment is defined in the
obvious way, it would be syntactically equivalent to the IND-CVA experiment.
In the case of indistinguishability from random bits, an analogous equivalence is
not evident from the syntax. Theorem7 settles this in the negative.
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Algorithm K
K ←$ Ke

σ ← ε, � ← ε
return (K, σ, �)

Algorithm EK(m, σ)

if |m {∈�| αn : α ≥ 1} then
return ⊥

p ← |m|/n
parse m as m1 ‖ . . . ‖ mp

mp+1 ← 0n, c0 ←$ {0, 1}�

for i ← 1 to p + 1 do
ci ← FK(c0 + i) ⊕ mi

c ← c0 ‖ c1 ‖ . . . ‖ cp+1

return (c, σ)

Algorithm DK(c, �)

if |c {∈�| � + αn : α ≥ 2} then
return ⊥

q ← (|c| − �)/n
parse c as c0 ‖ . . . ‖ cq

for i ← 1 to q do
mi ← FK(c0 + i) ⊕ ci

if mq �= 0n then m ←⊥
else m ← m1 ‖ . . . ‖ mq−1

return (m, �)

Fig. 11. The scheme SE3 of Theorem6.

Theorem 7 (IND$-CVA ∧ INV-ERR �−→ IND$-sfCVA). Let F : Ke × {0, 1}� →
{0, 1}n be a pseudorandom function, where � is sufficiently large. Let MA =
(Km, T ,V) be a single-error MAC where T : Km ×{0, 1}∗ → {0, 1}�tag is pseudo-
random. Consider the symmetric encryption scheme SE4 having message space
∪k≥1{0, 1}nk and error space {⊥} shown in Fig. 12. For any IND$-CVA adver-
sary Acva making q encryption queries totalling μ bits of plaintext, there exist
three adversaries A1

prf, A2
prf, and Auf with:

Advind$-cva
SE4

(Acva) ≤ Advprf
F (A1

prf) + Advprf
T (A2

prf) + Advuf-cma
MA (Auf)

+
μ

n
·
(

q − 1
2�

)
+

q(q − 1)
2�+n+1

.

Moreover there exist efficient adversaries Asfcva and A′
uf such that:

Advind$-sfcva
SE4

(Asfcva) = 1 − Advuf-cma
MA (A′

uf) . (9a)

Algorithm K
Ke ←$ Ke

Km ←$ Km

K ← Ke ‖ Km

σ ← ε, � ← ε
return (K, σ, �)

Algorithm EK(m, σ)

if |m {∈�| αn : α ≥ 1} then
return ⊥

p ← |m|/n
parse m as m1 ‖ . . . ‖ mp

c0 ←$ {0, 1}�

for i ← 1 to p do
ci ← FK(c0 + i) ⊕ mi

c ← c0 ‖ c1 ‖ . . . ‖ cp

τ ← TKm(c)
return (c ‖ τ, σ)

Algorithm DK(ψ, �)

if |ψ {∈�| � + �tag + αn : α ≥ 1} then
return (⊥, �)

parse ψ as c ‖ τ
v ← VKm(c, τ)
if (v �= 1) then

return (⊥, �)
q ← (|c| − �)/n
parse c as c0 ‖ . . . ‖ cq

for i ← 1 to q do
mi ← FK(c0 + i) ⊕ ci

m ← m1 ‖ . . . ‖ mq

return (m, �)

Fig. 12. The scheme SE4 of Theorem7.
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