On Weak Keys and Forgery Attacks Against
Polynomial-Based MAC Schemes

Gordon Procter®™ and Carlos Cid

Information Security Group, Royal Holloway,
University of London, London, UK
{gordon.procter.2011,carlos.cid}@rhul.ac.uk

Abstract. Universal hash functions are commonly used primitives for
fast and secure message authentication in the form of Message Authen-
tication Codes (MACs) or Authenticated Encryption with Associated
Data (AEAD) schemes. These schemes are widely used and standard-
ised, the most well known being McGrew and Viega’s Galois/Counter
Mode (GCM). In this paper we identify some properties of hash functions
based on polynomial evaluation that arise from the underlying algebraic
structure. As a result we are able to describe a general forgery attack,
of which Saarinen’s cycling attack from FSE 2012 is a special case. Our
attack removes the requirement for long messages and applies regard-
less of the field in which the hash function is evaluated. Furthermore we
provide a common description of all published attacks against GCM, by
showing that the existing attacks are the result of these algebraic prop-
erties of the polynomial-based hash function. Finally, we greatly expand
the number of known weak GCM keys and show that almost every subset
of the keyspace is a weak key class.

Keywords: Universal hashing - MAC - Galois/Counter Mode * Cycling
attacks - Weak keys

1 Introduction

The study of information-theoretic message authentication codes and universal
hashing was initiated by Gilbert et al. [14] and Carter and Wegman [10,11,38,39].
Universal hash functions can be used to construct message authentication codes
in both the information-theoretically secure and computationally secure set-
tings (see [9,39]). Simmons [33] provides a general summary of the theory of
unconditionally secure message authentication. Bernstein [2,3] provides a thor-
ough description of the geneology and more recent literature of unconditionally
secure message authentication, including a description of the contributions of

The work described in this paper has been supported in part by the European
Commission through the ICT programme under contract ICT-2007-216676 ECRYPT
II.

S. Moriai (Ed.): FSE 2013, LNCS 8424, pp. 287-304, 2014.
DOI: 10.1007/978-3-662-43933-3_15, (© Springer-Verlag Berlin Heidelberg 2014

288 G. Procter and C. Cid

Bierbrauer et al. [5], den Boer [12], and Taylor [36] to polynomial-based hash-
ing. Bernstein [4] also gives an interesting overview of the security of universal
hash function based MACs in the computationally secure setting. Shoup [32]
describes several methods for realising universal hash function families that are
related to polynomials including the evaluation hash [5,12,36] which is a variant
of the division hash or cryptographic CRC of Krawczyk [21] (itself a variant of
Rabin’s fingerprinting codes [27]).

In this paper, we focus on message authentication codes constructed from
universal hash functions that are realised by polynomial evaluation. These are
widely used and standardised; for examples see [2,13,17,20,22,31]. McGrew
and Viega’s Galois/Counter Mode (GCM) [26] is the most widely deployed
polynomial-based scheme. The algorithm is generally assumed to be secure, with
a small number of papers containing attacks against the authentication compo-
nent via the universal hash function: Ferguson’s attack against truncated GCM
tags [15], demonstrating that the security of short tags is significantly lower than
would be expected; Joux’s ‘forbidden attack’ [19], illustrating the brittleness
of GCM under nonce reuse; Handschuh and Preneel’s [16] extension to Joux’s
attack [16]; and Saarinen’s cycling attacks [29], which highlight a weakness due
to the underlying algebraic structure of a hash function based on polynomial
evaluation. Both Handschuh and Preneel [16] and Saarinen [29] have described
classes of weak keys for polynomial evaluation based universal hash functions,
with Saarinen particularly focusing on GCM.

Contributions. A motivation of this work was the observation that all existing
attacks against GCM are algebraic in nature, and in fact seem to exploit a fun-
damental underlying algebraic structure of the polynomial-based hash function.
The contributions of this paper are to identify and study some of the proper-
ties of hash functions based on polynomial evaluation that are the result of this
underlying algebraic structure. As a result, we are able to describe a general
forgery attack, of which Saarinen’s cycling attack is a special case; our attack
can however be used with short messages, applies regardless of the field in which
the hash is evaluated, and facilitates length extension attacks against GCM.
Furthermore, we provide a common description of all published attacks against
GCM by showing that the existing attacks are the result of these algebraic prop-
erties of the polynomial-based hash function. Finally, we greatly expand the
number of known weak GCM keys, and show that almost every subset of the
keyspace is a weak key class. We note that the attacks presented in this paper do
not in any way contradict the security bounds for GCM given by McGrew and
Viega [24]. However the algebraic properties (and related attacks) discussed in
this paper appear to be an inherent feature of polynomial-based authentication
schemes and therefore should be considered in the security assessment of new
schemes and extensions of existing ones.

Structure. This paper is structured as follows. In Sect. 2 we introduce the nota-
tion that will be used throughout this paper and provide a brief description of the

On Weak Keys and Forgery Attacks 289

syntax and security of message authentication codes. In Sect.3 we give a basic
overview of three schemes that use hash functions based on polynomial evalua-
tion for message authentication, including GCM and SGCM. In Sect. 4 we describe
the main technique used in this paper for the cryptanalysis of polynomial-based
authentication schemes and discuss some features of the resulting attack that make
it more interesting than cycling attacks. Section 5 contains a common description
of the existing attacks against GCM. In Sect. 6 we show that there are many more
weak key classes for hash functions based on polynomial evaluation than have
previously been described and suggest a method to realise a key recovery attack
against polynomial-based hash function schemes. Section 7 contains a discussion
of the consequences of this attack.

2 Preliminaries

2.1 Notation

We consider a message M parsed as M||...||M,,, where each M; is n bits
long and || represents concatenation of strings. In the syntax of authenticated
encryption with associated data [28], this message consists of associated data
A € A that is authenticated but not encrypted and plaintext P € P that will
be encrypted and authenticated.

A family of hash functions will be denoted H = {hy : {0,1}* — {0,1}" | H €
K3} with each hash function hy indexed by a key H € K3. A block cipher E
is a family of permutations on {0,1}", with each permutation indexed by a key
k € Kg. The application of a block cipher to input « € {0,1}" using key k will
be denoted by Ejx(x). Where a nonce is used it will be denoted by N.

A finite field will be denoted by K unless the order of the field has par-
ticular relevance, in which case it will be denoted by F,- with |F| = p". The
multiplicative group of a field K will be denoted by K*.

2.2 Universal Hash Functions

A family of hash functions is said to be e-almost ® universal if for every M, M’ €
{0,1}* with M # M’ and forevery c € {0,1}", Pryex,, [ha(M) @ hg(M') = ¢ <
€. Throughout this paper e-almost @ universal will be abbreviated to e~AXU. This
condition was introduced by Krawczyk [21] under the name e-OT P—Secure as it
is a necessary and sufficient condition for unconditional MAC security when the
output of the hash function is encrypted with the one time pad in a field of char-
acteristic 2. In this paper we will generally refer to e~AXU hash function families;
however any remark made that requires an e~AXU hash function family in char-
acteristic 2 will also hold for an e-almost strongly universal [34] or e-almost A
universal [35] hash function family in any finite field.

A polynomial based hash function family is a common way to realise an e
AXU hash function family. Shoup [32] describes several examples of this type

290 G. Procter and C. Cid

of construction; the main example of interest to this paper is the evaluation
hash. In the case of the evaluation hash the message M determines a polynomial
gu = > oy Miz' € Klz], where M = M,||...||M,, with each M; € K. The hash
key is an element H € K and we define the hash function by hg (M) = gy (H).

There are several methods for turning a universal hash function into a mes-
sage authentication code (see [9,39] for early examples). The two most common
methods are Ey(N) + hy (M) and Ey(hg(M)).

2.3 Syntax

We will follow Black et al. [8] for a description of the syntax of nonce-based
message authentication schemes. A message authentication scheme is a pair of
algorithms, Gen and MAC, with four associated sets: IC, the set of possible keys;
M, the message space; N, the set of nonces and 7, the set of possible authen-
tication tags.

The key generation algorithm Gen takes as input the security parameter and
probabilistically outputs the shared key k € K. The algorithm MAC takes as
input a key ¥ € K, a nonce N € N, and a message M € M and outputs
a tag T € 7. The authenticity of a tuple (N, M,T) is verified by computing
MAC(k, N, M): it T = MAC(k, N, M) then the tag is valid, otherwise it is invalid.

2.4 Security

An adversary attacking a message authentication scheme is given access to two
oracles: a tag generation oracle S and a verification oracle V. At the begin-
ning of the experiment Gen is run to obtain k, then MAC takes queries (N, M)
and returns MAC(k, N, M). The verification oracle takes queries (N, M,T) and
returns 1 if 7= MAC(k, N, M) or 0 otherwise. An adversary is said to suc-
cessfully forge an authentication tag if they can produce a verification query
(N, M,T) so that V returns 1 when (N, M) was not previously queried to S.

A common restriction of this security notion is to nonce-respecting adver-
saries where, although the adversary can control the nonce, they never query &
for (N, M’) if they have previously queried S for (N, M).

McGrew and Viega [24], Ferguson [15], and Handschuh and Preneel [16] all
assert that the probability of creating a valid (non-truncated) tag having seen
a single valid (message, tag) pair is approximately m/|K| where the polynomial
is evaluated in K and m is the length of message that the construction operates
on. It is worth emphasising that in this context, m is the mazimum permissable
message length. This is included in the original paper [24] but is not made
explicitly clear in the later papers [15,16]. In this paper we will demonstrate the
importance of this distinction via a method of forging GCM tags using a longer
message than the one that was given in the valid (message, tag) pair from the
tag generation oracle.

Throughout this paper we will focus on GCM for concreteness however the
majority of the comments apply equally to any other hash function based on

On Weak Keys and Forgery Attacks 291

polynomial evaluation. Most of the results in this paper apply equally to both
common constructions of MACs from universal hash functions, either
T = Ex(N) + hg(M) or T = Ei(hg(M)), as our results are based on colli-
sions in the hash function. Where necessary it will be made clear that a remark

is dependent on one of these general constructions or the specific structure of
GCM.

3 Polynomial-Based Authentication Schemes

We present below a brief description of some of the main authentication schemes
based on polynomial evaluation hash functions that are of relevance to our work.

3.1 Galois/Counter Mode

Galois/Counter Mode (GCM) is an AEAD scheme submitted to NIST by
McGrew and Viega in 2004, with the specification slightly revised in 2005 [26]
(although the revision contained ‘no normative changes [from the 2004 specifica-
tion]”). GCM combines counter mode encryption with a polynomial evaluation
based MAC following the Encrypt—then—-MAC paradigm, although the authen-
tication key is derived from the block cipher key.

AES-GCM encryption takes as input: a key &, an initialisation vector IV (the
nonce), plaintext P = Py||...||P, and additional data A = A4||...[|A,. The key
is 128, 192 or 256 bits long; the IV should preferably be 96 bits long although
any length is supported (see [18]); and for each i, |P;| = |4;| = 128 except
for perhaps a partial final block. With this input, AES-GCM returns a cipher-
text C' = C4]|...]|C}, (the same length as the plaintext) and an authentication
tag T.

The plaintext is encrypted using AES in counter mode, under key k with
counter value starting at CTR;. If the IV is 96 bits long the initial counter value
(CTRy) is IV|[0311, otherwise it is a polynomial evaluation based hash of IV
after zero padding (using the hash key described below). For each i, CTR; =
inc(CTR;_1), where inc(-) increments the last 32 bits of its argument (modulo
232).

The authentication tag is computed from a polynomial evaluation hash (in
Fai28). The message M is parsed as 128-bit blocks (with partial final blocks zero
padded) and each block is interpreted as an element of Fgi2s. The first block M
encodes the length of the (unpadded) plaintext and additional data and will be
referred to as the ‘length field” throughout this paper. This is followed by blocks
of additional data M,,... .M, 1 = A,,...,A; and then the encrypted plaintext
Mgio,...,Myypi1 = C,,...,Cy. Note that in this description the labelling of
the blocks M; are reversed from those given in the original GCM specification
as this gives a neater description of the polynomial used in evaluating the hash
function. The hash key H is derived from the block cipher key: H = Ej(01%8).
The hash function is then computed as hy (M) = S ¢PH MH? (where all
operations are in Fai2s). The authentication tag is given by:

Ty = E,,(CTRy) @ hy (M).

292 G. Procter and C. Cid

3.2 Sophie Germain Counter Mode

In 2012, Saarinen [29] observed cycling attacks against GCM and other poly-
nomial MACs and hashes. Following this Saarinen proposed SGCM [30] as a
variant of GCM; SGCM differs from GCM only by the choice of field in which
the hash is computed. SGCM uses F,, where ¢ = 2128 412451, rather than Fauos,
as F; has significantly fewer subgroups than F7,,s. It was claimed that SGCM
offers increased resistance to cycling attacks as a result of this change.

3.3 Poly1305-AES

Bernstein proposed Poly1305-AES in 2005 [2]'. Poly1305-AES takes as input
two 128-bit keys, one for AES and one for the hash (with some specific bits
set to zero); a 128 bit nonce; and a message (a byte string). The output of
Poly1305-AES is a 128-bit authentication tag.

The hash of a message is computed by evaluating a message-dependant poly-
nomial at the secret key (in Fais0_5), and encrypting this by adding (in Faiso_5)
the output of AESy (V) before reducing modulo 2128,

4 Algebraic Structure of Polynomial-Based
Authentication Schemes

Let H be a family of hash functions H = {hy : {0,1}* — {0,1}" | H € Ky}
based on polynomial evaluation and let M be an input string. Let hy (M) =
gu(H), where gy(z) = >0, Miaz' € Klz] and H € K. Now let ¢(z) =
>, ;' € K[z] be a polynomial with constant term zero, such that ¢(H) = 0.
Then it follows that

hi (M) = ga(H) = gu(H) + ¢(H) = gm1(H) = ha (M + Q),

where @ = ¢1]|g2]| - . . ||g- and the addition M + @ is done block-wise (the shorter
is zero-padded if required). Thus given a polynomial g(x) satisfying these prop-
erties, it is straightforward to construct collisions for the hash function. It is
trivial to see that one can use any polynomial ¢(z) € (z*> — Hz) C K[z].

Collisions in the hash function correspond to MAC forgeries by substituting
the original message for the one that yields a collision in the hash function. These
forgeries arise from collisions in the hash function and hence the messages can
be substituted without any dependence on the method or key used to encrypt
the output of the hash function. This method allows an adversary to create
forgeries when he has seen a tuple of (nonce, message, tag) by only modifying
the message.

It should be noted that the polynomial defined by the message will always
have a zero constant term and therefore the polynomial g(x) that is used to
forge will always have x as a factor. If this term were non-zero and the hash

! There is a preliminary version from 2004 on his website: http://cr.yp.to/mac.html.

http://cr.yp.to/mac.html

On Weak Keys and Forgery Attacks 293

of a message was encrypted additively (i.e. T = E(N) + hg(M)), it would
be possible to flip bits in the first message block and flip the same bits in the
authentication tag to create a valid forgery. This is the major difference between
Shoup’s Cryptographic CRC [32] and Rabin’s fingerprinting codes [27].

The main observation of this paper is that by working with polynomials
in the ideal (z? — Haz), it is straightforward to produce forgeries for polyno-
mial evaluation based authentication schemes. In [29], Saarinen proposed cycling
attacks by working with particular polynomials, namely " — z (for more detail,
see Sect.b5.4). The forgery is successful if (z — H)|(z™ — z) and therefore if
2" —x € (x? — Hz). However, the forgery will be successful if any polyno-
mial in this ideal is used to mount a similar attack. Furthermore, use of these
polynomials also makes it possible to test for membership of large subsets of the
keyspace with a single valid (message, tag) pair and a single verification query
(see Sect. 6).

4.1 Malleability

In [29], Saarinen also describes ‘targeted bit forgeries’ against GCM where, rather
than swapping the full blocks M; and M, j:, corresponding bits in each cipher-
text block are flipped. This can also be described by the more general attack,
by using a multiple of g(x).

If g(H) =0, then o - ¢(H) = 0 for any o € K and

Ty = Ex(N) + hu (M)
=F,(N)+My-H+---+ M, -H™
:Ek(N)+(M1+CYQI)'H+"'+(Mm+aqm)'Hm
:TMJra(Q

where Th/tqq is the authentication tag for the message M1 & a - ¢1f|... || My, &
a - g (recall that M contains the associated data, encrypted plaintext and the
length of both).

If the plaintext is encrypted using a stream cipher (or a block cipher in
counter mode) flipping bits in the ciphertext causes the same bits in the paintext
to be flipped. This allows us to predict relations between the original plaintext
and the forged plaintext (as C; ® ag; decrypts to P; ® ag;). Because a can be
chosen so as to set C; @ ag; equal to any value chosen by the adversary (for a
single %), an adversary can choose a differential (in a single block) between the
original message and the forged message.

If further control over the underlying plaintext in required, several forgery
polynomials could be used. In the best case, using ¢ polynomials permits the
adversary control over ¢ message blocks. The cost of this extra malleability is
that the forgery is only successful if the authentication key is a root of the
greatest common divisor of the two polynomials. This can be extended to give
as much control over the plaintext as required, but for every extra malleable

block the success probability is reduced by at least ‘Tl?—tl

294 G. Procter and C. Cid

If the plaintext were encrypted using a block cipher (not in counter mode)
then an adversary would not have this fine control over the plaintext, but would
still be able to manipulate the ciphertext in this way.

This property also permits an adversary to create as many forgeries as there
are non-zero elements in the field (see [7,25] for further discussion of multiple
forgeries).

4.2 Length Extension

In the GCM specification, the last block input to the hash function (correspond-
ing to the term M; - H in the MAC calculation) describes the length of the
plaintext and additional data. The more general attack described in this paper
allows an adversary to manipulate the length field (even though it does not
explicitly appear in the sent message). If an adversary is given a valid tag for
a message then the content of the length field is known, as it correctly encodes
the length of the plaintext and additional data. It is therefore possible to choose
a differential in the length field so that it corresponds to the length of the new
message. In particular, forgeries can be created using high degree polynomial
q(x) regardless of the size of the message in the initial (message, tag) pair.

This is an important remark as it removes one significant limitation on the
effectiveness of cycling attacks against GCM [29], which is the length of the
message necessary to launch an attack. For a cycling attack to be attempted, an
adversary requires as many blocks of correctly authenticated data as there are
elements in the subgroup with which he wishes to forge, in order to swap the first
and last blocks. By manipulating the length field any forgery probability can be
realised starting with a valid authentication tag on a single message block.

A common criticism of GCM is that the maximum message length may be
restrictive in the future as data rates increase [15]. However, it follows from
our work (and the original security proofs [24]) that increasing the maximum
permissible length would significantly decrease the security of the scheme.

4.3 Key Recovery

Saarinen suggests that once a weak key has been identified (by a successful
cycling attack), the adversary would create many forgeries by further cycling
attacks [29, Sect. 9]. Translating this to the more general polynomial root descrip-
tion: once a successful forgery occurs, the authentication key is known to be one
of the roots of the ‘forgery polynomial’ ¢q. Therefore rather than making repeated
‘cycling forgeries’ with guaranteed success but limited control of the plaintext,
the adversary can aim to recover the authentication key and forge authentication
tags for arbitrary messages. By attempting to forge using a subset of the roots
of the forgery polynomial (and reducing the number of roots in the subset after
each successful attempt), an adversary can gradually recover the authentication
key using a method that is independent of encryption method or key used. This
would give a forgery probability less than 1 at each stage, however the adver-
sary can choose a trade-off between the forgery probability and the speed of

On Weak Keys and Forgery Attacks 295

recovering the authentication key. This is analogous to the key recovery attack
described by Handschuh and Preneel [16] (where the subsets are chosen to realise
a binary search of the keyspace). Note that in the case of GCM, recovery of the
hash key H does not lead to the recovery of the encryption key k as H = E}(0).

4.4 Choosing Polynomials

To maximise the probability of a successful forgery it is important that the
polynomial used to attempt a forgery has many distinct roots, as a root with
multiplicities increases the degree of the polynomial (and hence the length of the
attempted forgery) without increasing the probability of success. The naive way
to achieve this is to compute ¢(z) = [[, (x — H;) for as many H; as is required
to give the desired forgery probability.

Alternatively, if the polynomial defined by the hash function is evaluated in
I~ and the irreducible factorisation of zP" — z is computed in a subfield Fpa, a
subset of these factors can be multiplied together (in F,«). By choosing distinct
irreducible factors, the roots of the product polynomial will be distinct. Cycling
attacks [29] employ a variation on this method. The factorisation

2" —1=T]2* +1
=1

allows Saarinen to find factors of 22" —z in Fy [x] which can be used in a cycling
attack (although they are not necessarily irreducible):

2128

T —x:x(m—1)<x_1)(x_1)(x _1)...

r—1 x—1 z—1
—z(@e—-DA+z+2”)1+z+-+2)1+z+- +2'%)...

To carry out a cycling attack using a subgroup of order ¢, the factors x, (x—1) and
(Q;tjll) are multiplied together to obtain the polynomial z'*! —z. In general there
is no requirement to select (x — 1) or to use only three factors, for example the
polynomial z(1+z+x2)(1+z+. .. 2'%) could be used to give a forgery probability
of 2{%. This is not a cycling attack, as the polynomial used contains more than
two terms so the forgery does not involve simply swapping two message blocks,
but it does rely on the same underlying algebraic structure.

A third option is to use a randomly selected polynomial in F-[z]. One poten-
tial issue with this method is the presence of repeated factors. Square-free fac-
torisation has been extensively studied as it is a common first step in many
polynomial factorisation algorithms (for example, see [37, Ch. 14]). It may be
feasible to sample polynomials from F,-[z] randomly and process this polyno-
mial to make it more desirable by removing repeated factors. This method does
not appear promising due to the large number of irreducible polynomials of any
given degree in Fp[z] and the observation that a degree d polynomial that con-
sists of a single linear factor and an irreducible polynomial of degree d — 1 is

296 G. Procter and C. Cid

almost as bad as a degree d irreducible polynomial from a forgery probability
perspective. Irreducible polynomials in), that are known to have a root in [Fp-
would be good candidates for attempting forgeries as the normality of Fp-/F,
guarantees that these polynomials will split into linear factors. Unfortunately
this does not appear to be a well studied area. A further disadvantage of choos-
ing random polynomials is that, although the roots of a polynomial in K[z] can
be identified efficiently (see [1] for example), it would be unlikely that a non-
intersecting subset of the keyspace would be used for a second forgery attempt
if the first was unsuccessful.

5 Existing Attacks Against GCM

We show below that the four known attacks on GCM can be described as special
cases of the properties discussed in Sect. 4.

5.1 Ferguson’s Short Tag Attack

Ferguson’s attack against GCM when short tags are used [15] begins by attempt-
ing to forge using a particular class of polynomials (linearised polynomials). Lin-
earised polynomials have the property that their roots form a linear subspace
of the splitting field of the polynomial (see [23, Chap. 3.4] for an overview).
Ferguson uses polynomials in Fs[z] that split over Faiz2s, so the roots correspond
to possible authentication keys and it is possible to describe the roots of a lin-
earised polynomial using a matrix over Fo. Multiple successful forgeries reduce
the dimension of the subspace of the keyspace that contains the authentication
key and eventually an adversary can recover the key.

5.2 Joux’s Forbidden Attack

Joux’s ‘forbidden attack’ against GCM [19] is also a specific case of the properties
discussed in this paper. This attack requires two messages, M and M’, that are
authenticated with the same (key, IV) pair. Reusing the (key, IV) pair in GCM
has the effect of reusing H, k and N:

The adversary knows Ths, Th;r and both messages so is able to derive a
polynomial that is satisfied by the hash key. This attack is prevented if we only
consider nonce-respecting adversaries.

On Weak Keys and Forgery Attacks 297

5.3 Handschuh and Preneel

Handschuh and Preneel [16] describe a key recovery attack and a method to verify
a guess for a key. They identify the key recovery attack as an extension of Joux’s
‘forbidden attack’ which does not require nonce reuse. It consists of attempting to
create a forgery and then searching through the roots of the polynomial defined
by the difference betweeen the original message and the forged message. This
was initially identified by Black and Cochran [6], but extended and generalised
by Handschuh and Preneel. The method for verifying a key guess H corresponds
precisely with attemping to forge using the polynomial (z? — Hxr).

Handschuh and Preneel consider their attack to be infeasible for GCM due to
the blocksize of 128 bits, however it is precisely as feasible as Saarinen’s cycling
attacks.

5.4 Saarinen’s Cycling Attacks

In 2012, Saarinen observed cycling attacks against GCM and other polynomial-
based MACs and hashes [29]. If a hash key H lies in a subgroup of order ¢, then
H' =1 € K and (for any 4,j) message blocks M; and M, ;; can be swapped
without changing the value of the hash.

For example (ignoring GCM’s length encoding), if H* = H then blocks M
and My can be swapped without changing the value of the hash:

By (M || My||M3||My) = My - H® My - H> @ M3 - H*> © My - H*
=My-H® M, -H>® Ms-H* ® M, - H*
= hp (My|| Ma|| M| My).
It is more natural and general to consider the authentication keys that fall

in low order subgroups as roots of a low degree polynomial. Cycling attacks
correspond to the general attack introduced in this paper, using the polynomial

q(z) = (M; = My o) (2" —),
noting that in fields of characteristic 2 subtraction is the same as &.
by (M || Ms||Ms||My) =M, - H® My - H* @ My - H* © My - H*
=M, -HO M, -H>® M;-H>® M, - H*
@ (M ® My)-He (M & My) - H*
=My -HO M, H*®o M; -H>® M, -H
=hp (My|[Ma][Ms]| M)

Using the more general ‘polynomial roots’ description it is possible to forge
using any subset of the keyspace. If the authentication keys that we wish to

298 G. Procter and C. Cid

attempt to forge with are the elements of a low order subgroup, for example the
order three subgroup of 3,5 (identified by Saarinen [29, Sect. 4.1]) plus the all
zero key:

Hy =00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
H, =80 00 00 00 00 00 00 00 00 00 OO 00 00 00 00 00
H; =10 DO 4D 25 F9 35 56 E6 9F 58 CE 2F 8D 03 5A 94
H; =90 DO 4D 25 F9 35 56 E6 9F 58 CE 2F 8D 03 5A 94

then the polynomial that is created corresponds precisely to Saarinen’s cycling
attack. In this case (x — Ho)(x — Hy)(x — Hy)(z — H3) = 2* — .

6 Weak Keys for Polynomial-Based Authentication
Schemes

For any cryptographic algorithm, a relevant question for its security assessment
is whether it contains weak keys. Handschuh and Preneel [16, Sect. 3.1] give the
following definition of weak keys:

In symmetric cryptology, a class of keys [D] is called a weak key class if
for the members of that class the algorithm behaves in an unexpected
way and if it is easy to detect whether a particular unknown key belongs
to this class. For a MAC algorithm, the unexpected behavior can be that
the forgery probability for this key is substantially larger than average.
Moreover, if a weak key class [D] is of size C, one requires that identifying
that a key belongs to this class requires testing fewer than C' keys by
exhaustive search and fewer than C' verification queries.

Handschuh and Preneel [16] identify 0 as a weak authentication key for GCM
and other similar constructions as ho(M) = 0 for every message M. Following
the definition above and because |D| = 1, an adversary is not allowed to test
any key by exhaustive search, nor are they allowed any verification queries. For
a single element subset of the keyspace D = {H*} to be a weak key class, a
nonce-respecting adversary has to be able to identify whether or not H = H*
when they are given a number of (message, tag) pairs of their choosing (each
created using a different V). We note that a nonce-respecting adversary can
detect whether D = {0} if |[IV] # 96: in this case all IVs hash to give the same
initial counter value and ho(M) = 0 for every message M so all messages have
the same authentication tag (as identified in [24, Sect. 5]). If |[IV| = 96 a different
initial counter value is used to encrypt the output of the hash function and so
although the output of the hash function does not change this cannot be detected
given the output of the MAC algorithm.

Saarinen [29] demonstrated that the situation is much worse than described
by Handschuh and Preneel, as he was able to find classes of weak keys where
the authentication key falls in a low order subgroup of K*. It is then possible to

On Weak Keys and Forgery Attacks 299

create a valid forgery by swapping two message blocks of a valid (message, tag)
pair without changing the authentication tag if the authentication key lies in a
subgroup with order dividing the distance between the swapped message blocks.

This forgery will be successful if and only if the key is an element of such a
subgroup and therefore this provides a simple method for identifying weak keys
which requires one valid (message, tag) pair and one verification query. These
classes of weak keys therefore meet Handschuh and Preneel’s definition of weak
keys.

For example, the subset of authentication keys corresponding zero and the
elements of the subgroup of order 3 in Fo12s is a weak key class. Membership of
this subset can be confirmed by a successful forgery if M; and M; are swapped
and ¢ = j mod 3. This is equivalent to attempting a forgery using (a multiple
of) the polynomial z* — .

However, it follows from the discussion in Sect. 4 that it is possible to derive
comparable statements for any set of authentication keys in Foi2s, except that
rather than ‘nice’ binary descriptions, the polynomial description will involve
elements of Fy12s. In particular, for any set of authentication keys D we can use
any polynomial in the ideal [],cp(z* — Hz) to test for membership of that
subset of the keyspace. It follows that almost every subset of the GCM keyspace
is weak. We discuss this issue further in Sects. 6.1 and 7.

6.1 Keyspace Search

Based on the properties discussed in Sect.4 it is possible to test for member-
ship of any subset of the keyspace using at most two verification queries. Mem-
bership of subsets that include the zero key can be tested by setting ¢(z) =
[Izep (x — H). This therefore requires one verification query, independent of
the size of D. To test for membership of a subset D that does not include zero,
first test whether H € D U {0} and then rule out H = 0 using the method
described below. This therefore requires two verification queries, but again is
independent of the size of D. The distinction between subsets including zero or
not including zero is a consequence of the constant term of gas(x) being zero to
avoid predictable changes in the output of the hash from flipping low order bits.

Therefore, using Handschuh and Preneel’s definition, a set D of GCM authen-
tication keys is a weak key class if either: |D| > 3 or |D| > 2 and 0 € D.

Given one valid (message, tag) pair for a single block message and one ver-
ification query it is easy to determine whether or not H = 0. If the adversary
attempts to forge using any other single block message and the same tag, then
the forgery is successful if and only if H = 0 as seen below.

If no length encoding is used:

T=FE(CTRy) + (M- H)
= E(CTRg) + (M’ - H)
s(M-M) H=0
sSM=M o H=0

300 G. Procter and C. Cid

If a GCM style length encoding is used:

T = E(CTRg) + (length - H) + (M - H?)
= BE(CTRy) + (length - H) 4 (M’ - H?)
& (M-M)-H>=0
sM=M orH=0

By testing for membership of subsets of the keyspace, it is plausible that
an adversary could recover one bit of the authentication key with each forgery
attempt. If ¢(x) = [[¢y (x — H), where) is the set of authentication keys for
which the first bit is zero, then a successful forgery confirms that the first bit
of the authentication key is zero and a failure confirms that the first bit is one.
Repeating this for each bit of the authentication key, the whole key could be
recovered using 128 verification queries.

This would require unfeasibly large messages to be used in the forgery
attempts in the case of authentication keys corresponding to elements of a field
with |K| a2 2128 but it is a strong argument against using a hash function based
on polynomial evaluation in a field with |K| < 228, This may be a direction
taken by variants of GCM designed to improve the performance of GCM (see [40]
for one such example), however we recommend extreme caution when consider-
ing these modifications. In the case of GCM the size of the subsets that can be
tested is limited to around 2% as the maximum message length is limited.

One advantage of being able to test for membership of arbitrary subsets is
that it allows the adversary to use any partial knowledge of the authentication
key that they may have.

7 Discussions and Conclusions

7.1 Choice of Fields

It is true that the security against cycling attacks, as presented in [29], can be
increased by evaluating a hash function in a field with a multiplicative group,
the order of which does not have many factors. However the attack introduced in
this paper (of which cycling attacks is a special case) applies equally well in any
finite field, so Saarinen’s claim that ‘The security of polynomial-evaluation MACs
against attacks of this type of attack can be determined from the factorization of
the group size in a straightforward manner’ [29, Sect. 8] is somewhat misleading,.

Saarinen’s claim is valid in the sense that the factorisation of |K| — 1 deter-
mines the extent to which the process of computing irreducible factors will suc-
ceed; however an attack using [];cp (2 — H) will work equally well in every
field. In particular, it follows from our work that the SGCM variant of GCM has
the same inherent weaknesses regarding polynomial based forgery attacks.

On Weak Keys and Forgery Attacks 301

7.2 Length Extension

It is unfortunate that including the length of the additional authenticated data
and plaintext in the input to the hash function is not sufficient to prevent the
length extension attack presented in this paper. In schemes that use a GCM-
like length encoding, if the value of the length field were encrypted using a block
cipher before being input to the hash function, it would not be possible to alter
the message length as described in Sect.4. However, one of the design goals of
GCM was to take advantage of AES pipelining, which precludes the use of the
block cipher to compute the authentication tag.

7.3 Malleability

Part of the reason that this weakness in the algebraic structure of polynomial
hashing is problematic for GCM is that it allows an adversary to choose the
changes that are made to the plaintext in a forged message. This is because
addition in a field of characteristic 2 is used for both the counter mode encryption
and the hash function evaluation.

One way to avoid this issue is to use different operations during encryption
and MAC generation. This is one significant advantage that (CTR & Poly1305—
AES) [2] has over GCM, as in this scheme the MAC is computed using addition
in a prime order field while the message is encrypted using addition in a field of
characteristic 2.

An alternative method to increase the difficulty for an adversary attempting
to make meaningful manipulations of plaintext is to use a mode of operation
other than CTR as this will prevent the ‘targeted bit forgeries’ described by
Saarinen [29, Sect. 6] and the analogous forgeries in this paper.

GCM roughly follows the Encrypt—then—-MAC paradigm, as is generally per-
ceived to be best practice (although MAC—-then—Encrypt has also been proved
secure in the nonce-based AEAD setting [28]). Despite going against the per-
ceived best practice, using a MAC—then—Encrypt approach (in addition to the
proposed changes described above) would make it harder for an adversary to
create ciphertexts that correctly decrypt to a plaintext known to be related to
a (plaintext,ciphertext) pair obtained from a query. We note however that the
introduction of other weaknesses caused by making these changes has not been
ruled out.

7.4 Weak Keys

The weak key classes that are identified in Sect. 6 cause the forgery probability
to be higher than expected because an adversary can detect whether the authen-
tication key that is being used is a member of that class and can then forge with
probability one.

The broader issue with polynomial evaluation based hashes is that it is pos-
sible to test for membership of large subsets of the keyspace with only one or

302 G. Procter and C. Cid

two verification queries and once an adversary has successfully confirmed mem-
bership of a subset he can either continue to forge messages or conduct a search
of a much reduced keyspace. This is an unusual and undesirable property of a
cryptosystem.

It is interesting that the two-element subsets of the keyspace containing zero
are weak key classes, while those that do not contain zero are not, yet any subset
of the keyspace containing at least three elements is weak. This perhaps suggests
a problem with the definition of a weak key class. In our opinion the definition
is correct and the observations made in this paper are unavoidable properties
of hash functions based on polynomial evaluation that result from the algebraic
structure of the construction, so are not best described in terms of the number
of weak keys.

The most important discussion around this issue is whether an algorithm in
which almost every subset of the keyspace is a weak key class is a weak algorithm
or whether this is a property of the construction that, although highly undesir-
able, is not considered to reduce the security of the scheme to an unacceptable
level. We suggest that in the case of GCM it is the latter; in other polynomial-
based MAC schemes with different parameters it may be the former and this
property must be considered when designing and evaluating schemes.

References

1. Berlekamp, E.R.: Factoring polynomials over large finite fields. Math. Comput.
24(111), 713-735 (1970)

2. Bernstein, D.J.: The Poly1305-AES message-authentication code. In: Gilbert, H.,
Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 32—49. Springer, Heidelberg
(2005)

3. Bernstein, D.J.: The Poly1305-AES message-authentication code. Slides from FSE
(2005). http://cr.yp.to/talks/2005.02.21-1/slides.pdf

4. Bernstein, D.J.: Stronger security bounds for Wegman-Carter-Shoup authentica-
tors. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 164-180.
Springer, Heidelberg (2005)

5. Bierbrauer, J., Johansson, T., Kabatianskii, G., Smeets, B.: On families of hash
functions via geometric codes and concatenation. In: Stinson, D.R. (ed.) CRYPTO
1993. LNCS, vol. 773, pp. 331-342. Springer, Heidelberg (1994)

6. Black, J., Cochran, M.: MAC reforgeability. Cryptology ePrint Archive, report
2006/095 (2006)

7. Black, J., Cochran, M.: MAC reforgeability. In: Dunkelman, O. (ed.) FSE 2009.
LNCS, vol. 5665, pp. 345-362. Springer, Heidelberg (2009)

8. Black, J., Halevi, S., Krawczyk, H., Krovetz, T., Rogaway, P.. UMAC: fast and
secure message authentication. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol.
1666, pp. 216-233. Springer, Heidelberg (1999)

9. Brassard, G.: On computationally secure authentication tags requiring short
secret shared keys. In: Chaum, D., Rivest, R.L., Sherman, A.T. (eds.) CRYPTO,
pp. 79-86. Plenum Press, New York (1982)

10. Carter, L., Wegman, M.N.: Universal classes of hash functions (extended abstract).
In: Hopcroft, J.E., Friedman, E.P., Harrison, M.A. (eds.) STOC, pp. 106-112. ACM
(1977)

http://cr.yp.to/talks/2005.02.21-1/slides.pdf

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

On Weak Keys and Forgery Attacks 303

Carter, L., Wegman, M.N.: Universal classes of hash functions. J. Comput. Syst.
Sci. 18(2), 143-154 (1979)

den Boer, B.: A simple and key-economical unconditional authentication scheme.
J. Comput. Secur. 2, 65-72 (1993)

Dworkin, M.: Recommendation for block cipher modes of operation:
Galois/Counter Mode (GCM) and GMAC. NIST Special Publication 800—
38D, NIST, Nov 2007

MacWilliams, F.J.; Gilbert, E.N.; Sloane, N.J.A.: Codes which detect deception.
Technical report 3, Bell Sys. Tech. J., Mar 1974

Ferguson, N.: Authentication weaknesses in GCM. Comments submitted to NIST
Modes of Operation Process (2005)

Handschuh, H., Preneel, B.: Key-recovery attacks on universal hash function based
MAC algorithms. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 144—
161. Springer, Heidelberg (2008)

Igoe, K., Solinas, J.: AES Galois Counter Mode for the secure shell transport layer
protocol. IETF Request for Comments 5647 (2009)

Iwata, T., Ohashi, K., Minematsu, K.: Breaking and repairing GCM security
proofs. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417,
pp. 31-49. Springer, Heidelberg (2012)

Joux, A.: Authentication failures in NIST version of GCM. Comments submitted
to NIST Modes of Operation Process (2006)

Kohno, T., Viega, J., Whiting, D.: CWC: a high-performance conventional authen-
ticated encryption mode. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017,
pp. 408—426. Springer, Heidelberg (2004)

Krawczyk, H.: LFSR-based hashing and authentication. In: Desmedt, Y.G. (ed.)
CRYPTO 1994. LNCS, vol. 839, pp. 129-139. Springer, Heidelberg (1994)

Law, L., Solinas, J.: Suite B cryptographic suites for IPsec. IETF Request for
Comments 6379 (2011)

Lidl, R., Neiderreiter, H.: Finite Fields, vol. 20, 2nd edn. Encylopedia of Mathe-
matics and its Applications. Cambridge University Press, Cambridge (1997)
McGrew, D.A., Viega, J.: The security and performance of the Galois/Counter
Mode (GCM) of operation. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT
2004. LNCS, vol. 3348, pp. 343-355. Springer, Heidelberg (2004)

McGrew, D.A., Fluhrer, S.R.: Multiple forgery attacks against message authenti-
cation codes. Comments submitted to NIST on the Choice Between CWC or GCM
(2005)

McGrew, D.A., Viega, J.: The Galois/Counter Mode of operation (GCM). Sub-
mission to NIST Modes of Operation Process, May 2005

Rabin, M.O.: Fingerprinting with random polynomials. Technical report (1981)
Rogaway, P.: Authenticated-encryption with associated-data. In: Atluri, V. (ed.)
ACM Conference on Computer and Communications Security, pp. 98-107. ACM
(2002)

Saarinen, M.-J.O.: Cycling attacks on GCM, GHASH and other polynomial MACs
and hashes. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 216-225.
Springer, Heidelberg (2012)

Saarinen, M.-J.O.: SGCM: the Sophie Germain Counter Mode. Cryptology ePrint
Archive, report 2012/326 (2012)

Salter, M., Housley, R.: Suite B profile for transport layer security (TLS). IETF
Request for Comments 6460 (2011)

304

32.

33.

34.

35.

36.

37.

38.

39.

40.

G. Procter and C. Cid

Shoup, V.: On fast and provably secure message authentication based on univer-
sal hashing. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 313-328.
Springer, Heidelberg (1996)

Simmons, G.J.: Contemporary Cryptology: The Science of Information Integrity.
Institute of Electrical, and Electronics Engineers. IEEE Press, Piscataway (1992)
Stinson, D.R.: Universal hashing and authentication codes. Des. Codes Crypt. 4(3),
369-380 (1994)

Stinson, D.R.: On the connections between universal hashing, combinatorial
designs and error-correcting codes. Electron. Colloquium Comput. Complexity
(ECCC) 2(52), 1-24 (1995)

Taylor, R.: Near optimal unconditionally secure authentication. In: De Santis,
A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 244-253. Springer, Heidelberg
(1995)

von zur Gathen, J., Gerhard, J.: Modern computer algebra, 2nd edn. Cambridge
University Press, Cambridge (2003)

Wegman, M.N., Carter, L.: New classes and applications of hash functions. In:
FOCS, pp. 175-182. IEEE Computer Society (1979)

Wegman, M.N., Carter, L.: New hash functions and their use in authentication
and set equality. J. Comput. Syst. Sci. 22(3), 265-279 (1981)

Aoki, K., Yasuda, K.: The security and performance of “GCM” when short mul-
tiplications are used instead. In: Kutylowski, M., Yung, M. (eds.) Inscrypt 2012.
LNCS, vol. 7763, pp. 225-245. Springer, Heidelberg (2013)

	On Weak Keys and Forgery Attacks Against Polynomial-Based MAC Schemes
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Universal Hash Functions
	2.3 Syntax
	2.4 Security

	3 Polynomial-Based Authentication Schemes
	3.1 Galois/Counter Mode
	3.2 Sophie Germain Counter Mode
	3.3 Poly1305--AES

	4 Algebraic Structure of Polynomial-Based Authentication Schemes
	4.1 Malleability
	4.2 Length Extension
	4.3 Key Recovery
	4.4 Choosing Polynomials

	5 Existing Attacks Against GCM
	5.1 Ferguson's Short Tag Attack
	5.2 Joux's Forbidden Attack
	5.3 Handschuh and Preneel
	5.4 Saarinen's Cycling Attacks

	6 Weak Keys for Polynomial-Based Authentication Schemes
	6.1 Keyspace Search

	7 Discussions and Conclusions
	7.1 Choice of Fields
	7.2 Length Extension
	7.3 Malleability
	7.4 Weak Keys

	References

