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Preface

The 20th International Workshop on Fast Software Encryption (FSE 2013) was held at
Novotel Singapore Clarke Quay, Singapore, during March 11–13, 2013. The work-
shop was sponsored by the International Association for Cryptologic Research. FSE
2013 received 97 submissions from 24 countries. The 21 members of the Program
Committee were assisted by more than 90 external reviewers. In total, they delivered
337 reviews. Each submission was reviewed by at least three Program Committee
members. Submissions by Program Committee members received at least five
reviews. The review process was double-blind, and conflicts of interest were carefully
handled. The review process was handled through an online review system that
supported discussions among Program Committee members. Over the entire review
period, more than 200 messages were exchanged between Program Committee
members. Eventually, the Program Committee selected 30 papers (a 31 % acceptance
rate) for publication in the proceedings.

The program also included two invited talks, by Serge Vaudenay from Ecole
Polytechnique Federale de Lausanne, Switzerland, and by Daniel Bernstein from
University of Illinois at Chicago, USA, and Technische Universiteit Eindhoven,
The Netherlands.

The Program Committee also identified the best submissions from FSE for their
scientific quality, their originality, and their clarity. The FSE 2013 Best Paper Award
went to Gordon Procter and Carlos Cid from Royal Holloway, University of London,
United Kingdom. Their paper, ‘‘On Weak Keys and Forgery Attacks against Poly-
nomial-based MAC Schemes’’, identifies some properties of hash functions based on
polynomial evaluation that arise from the underlying algebraic structure.

Many people contributed to FSE 2013. We thank the authors for contributing their
excellent research. We thank the Program Committee members, and their external
reviewers, for making a significant effort to select for the program. We particularly
thank Dmitry Khovratovich, Subhamoy Maitra, Florian Mendel, and Christian
Rechberger for shepherding papers. Finally, we thank Jian Guo and Thomas Peyrin,
the general co-chairs, and the FSE Steering Committee members, who worked so hard
for the event and helped me a lot.

FSE 2013 collected a diversity of recent results in symmetric cryptography, from
theory to practical aspects, from design to cryptanalysis. We feel privileged for the
opportunity to develop the FSE 2013 program. We hope that the papers in these
proceedings will continue to inspire, guide, and clarify your academic and profes-
sional endeavors.

May 2014 Shiho Moriai
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Complementing Feistel Ciphers

Alex Biryukov1 and Ivica Nikolić2(B)

1 University of Luxembourg, Luxembourg, Luxembourg
alex.biryukov@uni.lu

2 Nanyang Technological University, Singapore, Singapore
inikolic@ntu.edu.sg

Abstract. In this paper, we propose related-key differential distinguish-
ers based on the complementation property of Feistel ciphers. We show
that with relaxed requirements on the complementation, i.e. the prop-
erty does not have to hold for all keys and the complementation does
not have to be on all bits, one can obtain a variety of distinguishers. We
formulate criteria sufficient for attacks based on the complementation
property. To stress the importance of our findings we provide analysis of
the full-round primitives:
– For the hash mode of Camellia-128 without FL, FL−1 layers, differ-

ential multicollisions with 2112 time.
– For GOST, practical recovery of the full key with 31 related keys and

238 time/data.

Keywords: Complementation · Feistel · Camellia · GOST

1 Introduction

It is a well established fact that the effective key size of DES [9] is 55 instead
of 56 bits. The reduction of one bit is due to the complementation property of
DES, i.e. by flipping all the bits in the key and in the plaintext, all the bits of
the ciphertext will flip as well. Hence in an exhaustive key search, one has to
try only half of the possible values for the key – the other complemented half
would produce related ciphertexts. This property applies to all Feistel ciphers
with round keys obtained as permutations of the master key bits/words, and
with a round function that starts with an XOR of a single round key.

The complementation property can be seen as a simple related-key distin-
guisher applicable to all of the keys and detectable with a single pair of plaintexts
and a corresponding pair of ciphertexts. The difference in the round keys, plain-
texts and the ciphertexts is always −1, i.e. it is in all of the bits. In this paper
we investigate the cases of ciphers with complementation properties applicable
not necessarily to all of the keys, but only to a subset i.e. weak-key class, and
with round key differences other than −1. We are aware of only one published
result that analyzes the complementation property – the work of Bouillaguet
et al. [3]. Even there the focus in not on the original property – the authors

S. Moriai (Ed.): FSE 2013, LNCS 8424, pp. 3–18, 2014.
DOI: 10.1007/978-3-662-43933-3 1, c© Springer-Verlag Berlin Heidelberg 2014



4 A. Biryukov and I. Nikolić

examine the generalizations of the complementation property, and exploit self-
similarity of the rounds in the ciphers. Our work however targets exclusively the
cases of complementation and only Feistel ciphers.

The starting point of our analysis is the observation that if instead of the
requirement that the complementation property holds for all keys (as in the case
of DES), we can examine only a subset of keys for which it applies. This leads
to the problem of constructing a high probability differential in the key schedule
of the cipher. We give the conditions on the output difference in the differential
and obtain quite simple criteria for existence of related-key attacks based on
the complementation property. The importance of our findings is shown on the
example of two full-round Feistel ciphers: Camellia-128 [1] and GOST [5]. We
analyze Camellia-128 without the non-linear layers FL,FL−1 and show how to
find a pair of keys that follow the low probability differential in the key schedule
constructed to exploit the complementation – this allows us to attack the hash
mode of this version of the cipher. Thus we obtain the first analysis on the full-
round Camellia without the FL,FL−1 in the hash mode – it requires around
2112 encryptions. Complementation property of GOST has been known (see
[4,7]), however all of the proposed key recovery attacks require impractical time
complexity. We show that if one uses several similar complementation properties,
an efficient key recovery attack on GOST exists. Our attack requires 31 related-
key pair, and only 238 time and data complexities to recover the full 256-bit key.
Thus we are able to perform the first experimental cryptanalysis of GOST on a
computer.

2 Complementation Property of Feistel Constructions

The complementation property was first observed in DES. It is based on the
observation that if one flips all of the bits of the master key and the plaintext,
then all of the bits of the ciphertext will flip as well. The foundation of these
observations for Feistel ciphers is given below. Without loss of generality we
assume that the Feistel is balanced as the case for unbalanced Feistels can be
examined similarly.

A balanced Feistel with r rounds is defined as:

Ln+1 = F (Ln,Kn) ⊕ Rn

Rn+1 = Ln,

where Kn is the n-th round key, P = L0||R0 is the plaintext, and C = Lr||Rr

is the ciphertext. In the vast majority of Feistel ciphers, the round function
F (L,K) can be decomposed as1:

F (L,K) = G(L ⊕ K),

1 The round function of DES does not strictly follow this definition due to the expan-
sion of the initial input from 32 bits to 48 bits, nonetheless our reasoning can still be
applied to DES.
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i.e. first the round key is bitwise added to the state L, followed by some additional
non-linear and linear transformations (G is usually a Substitution-Permutation
network). We use the term classical Feistels for the ciphers that have such an F
function.

Let KS(K) be the key schedule function of the cipher, i.e. given the master
key K, the function produces Ki, i = 1, . . . , r round keys:

KS(K) = (K1, . . . ,Kr)

Further assume that all of the round keys Ki are obtained by (possibly different)
bit permutations of the master key K (as in the case of DES). If one has two
related master keys K1,K2 such that K1 ⊕ K2 = −1 (with −1 we denote the
difference in all of the bits) then the following holds for all i: K1

i ⊕ K2
i = −1.

Let P 1, P 2 be two related plaintexts such that P 1 ⊕P 2 = −1, i.e. L1
0 ⊕L2

0 = −1
and R1

0 ⊕ R2
0 = −1. Then by induction for each i we get:

L1
i+1 ⊕ L2

i+1 =F (L1
i , K

1
i ) ⊕ R1

i ⊕ F (L1
i , K

1
i ) ⊕ R1

i =

G(L1
i ⊕ K1

i ) ⊕ R1
i ⊕ G(L1

i ⊕ −1 ⊕ K1
i ⊕ −1) ⊕ R1

i = R1
i ⊕ R2

i = −1

R1
i+1 ⊕ R2

i+1 =L1
i ⊕ L2

i = −1

Therefore L1
r ⊕ L2

r = −1, R1
r ⊕ R2

r = −1 and hence there is a difference in all of
the bits of the ciphertext.

The complementation property of such ciphers allows reduction of the key
space by one bit as for the brute force of the whole key space it is sufficient to
try only one half of all possible keys – the other half will produce a compliment
ciphertext under a compliment plaintext.

The complementation property can be observed for ciphers that not nec-
essarily have a key schedule composed of bit permutations. Notice, the only
requirement on the key schedule is to produce complemented round keys.

Lemma 1 (Classical Feistel complementation). Let for an n-bit classical
Feistel cipher EK(P ) with k-bit keys and a key schedule KS(K) exist a differ-
ential with probability p for KS(K) with output difference in all of the bits in
all of the round keys, i.e.

∃Δ : KS(K ⊕ Δ) ⊕ KS(K)
p−→ (−1, . . . ,−1)

Then, if p > 2−k, distinguisher for a weak-key class of size p · 2k exists for the
cipher EK(P ).

Proof. Once the difference in all of the round keys is −1, the complementation
property can be applied, i.e. the differential in the state holds with probability
1. Therefore if the attacker can build a differential with the input difference in
the master keys Δ, and output difference −1 in all of the round keys, then the
differential (−1,Δ) → (−1) for the cipher EK(P ) holds with probability p. To
find the right key pair that follows the differential in the key schedule one has
to try around 1/p pairs of randomly chosen master keys with input difference
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Δ, therefore the size of this weak key class is 2k · p. For any cipher, to produce
a pair of complemented plaintexts that result in complemented ciphertexts, one
has to try around 2n pairs, however even when p < 2−n, a false positive (i.e.
a complementation pair of plaintexts-ciphertexts that indicate belonging of a
key to the weak-key class) can be easily detected by trying a few more pairs of
complementing plaintexts. ≫

Remark 1. The complementation property holds regardless of the number of
rounds in the cipher, by increasing the number of rounds one cannot expect to
get a better resistance against this type of attacks.

Remark 2. The additional key whitenings at the beginning and at the end of
the Feistel do not influence the attack complexities, but merely change the input
difference in the plaintext and the output difference in the ciphertext.

The requirement of having the difference −1 in all of the round keys can be
replaced with the requirement of having some difference Δ which is not neces-
sarily −1. We call this property a partial complementation. Also, instead of a
single difference Δ one can require two differences Δ1,Δ2 that alternate, i.e. the
first round key has Δ1, the second Δ2, the third Δ1, etc. – this is an alternating
complementation.

Lemma 2 (Classical Feistel partial alternating complementation). Let
for an n-bit classical Feistel cipher EK(P ) with k-bit keys and a key schedule
KS(K) exist a differential with probability p for KS(K) with alternating differ-
ences in the round keys, i.e.

∃Δ : KS(K ⊕ Δ) ⊕ KS(K)
p−→ (Δ1,Δ2,Δ1,Δ2, . . . ,Δ1,Δ2)

Then, if p > 2−k, distinguisher for a weak-key class of size p · 2k exists for the
cipher EK(P ).

Proof. We can follow the same logic as in the proof of Lemma 1 with one excep-
tion – the initial difference in the plaintext should be (Δ1,Δ2). Then in each
round, in the XOR the difference from the round key (either Δ1 or Δ2) would
cancel the difference in the state. As they alternate with the same period of two
rounds, the XOR will always produce zero difference, hence the probability of
the differential in the state would be 1. Depending if the number of rounds is
even or odd, the difference in the ciphertext would be either (Δ1,Δ2) for even
rounds, or (Δ2,Δ1) for odd rounds. ≫

Remark 3. Lemma 2 is more general then Lemma 1, as the later is a particular
case of the former for Δ1 = Δ2 = −1.

The round function of some Feistel ciphers instead of an XOR applies mod-
ular addition of the round key, i.e. F (L,K) = G(L + K). We call this type
of ciphers, modular Feistels. The (complementary) differential in the state of a
modular Feistel not necessarily holds with probability 1 – the precise probability
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depends on the differences in the round key Ki and the state word Li as well as
on the number of rounds.

An efficient algorithm for computing the differential probability of modular
addition was presented by Limpaa and Moriai in [8]. Our further analysis is
based on this algorithm, however, due to space constraints we would not provide
its description. Let (X)m be the m rightmost (least significant) bits of an n-bit
word X and let |X| be the Hamming weight, i.e. the number of bits with value
1, of the word X.

Lemma 3 (Modular Feistel alternating complementation2). Let for an
r-round n-bit modular Feistel cipher EK(P ) with k-bit keys and a key sched-
ule KS(K) exist a differential with probability p for KS(K) with alternating
differences in the round keys, i.e.

∃Δ : KS(K ⊕ Δ) ⊕ KS(K)
p−→ (Δ1,Δ2,Δ1,Δ2, . . . ,Δ1,Δ2)

Then, if p·2−∈ r
2 ∗(|(Δ1)n−1|+|(Δ2)n−1|) > 2−k and 2−∈ r

2 ∗(|(Δ1)n−1|+|(Δ2)n−1|) > 2−n,
distinguisher for a weak-key class of size p · 2k exists for the cipher EK(P ).

Proof. In modular ciphers, we have to compute the probability of the differential
in the state as well. As in r rounds, there are3 √ r

2� round keys with Δ1 difference,
and the same number of keys with difference Δ2, it is sufficient to find only
the probability of one round (with both Δ1 and Δ2). The differences from the
incoming round key and the state word should cancel, thus avoid any incoming
difference in the SP network of the round function. Hence, by Algorithm 2 of [8],
γ should be equal to zero, and the maximal probability of one round is reached
when the incoming differences in the round key Ki and the state word Li (or
in the notation from [8], α = β) are the same – in this case the probability of
modular addition is 2−|(Δ1)n−1| or 2−|(Δ2)n−1|. Taking into account the number
of rounds, one obtains the claimed probability. The second requirement in the
Lemma is to ensure that the probability of the differential in the state is not
bellow 2−n. ≫

The variations of the complementation property presented above are indeed
related-key differential distinguishers for ciphers. In both classical and modular
Feistels, the size of the weak-key class depends only on the probability of the
differential in the key schedule. However, to find and detect if a specific key
belongs to the weak-key class differs between these two families, as for classical
Feistels, the probability of the differential in the state is 1, whereas for modular
Feistels, this probability might be lower. Hence, in the case of former one has to
try around 2P different pairs of keys and encrypt one pair of plaintexts, while
in the case of modular Feistels, for each of the 2P pairs of related-key has to
encrypt 2Q pairs of plaintexts (2−P , 2−Q are the probabilities of the differential
in the key schedule and in the state).
2 One of our anonymous reviewers has informed us that a similar idea was used against

DESX in Kelsey et al. [6]
3 When r is odd, there are √ r

2
≥ round keys with difference Δ1, and √ r

2
≥−1 round keys

with Δ2.
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3 The Case of Camellia-128

In this section we show how to apply the complementation property (Lemma 1)
to Camellia-128 [1] in the hash mode. We analyze the full-round Camellia-128
without the non-linear layers, i.e. we assume FL,FL−1 to be identity functions.

3.1 Description

Camellia is a classical Feistel cipher with a non-linear key schedule defined as
follows. The 128-bit master key KL is split into two keys L,R, i.e. KL = L||R
– both L and R are seen as 8-byte vectors. Further, these keys are fed to a
4-round Feistel-like transformation with an additional keys feedback after the
second round (see Fig. 1). Formally, the key schedule can be described as:

L1||R1 = KL (1)
L2 = F (L1 ⊕ Σ1) ⊕ R1; R2 = L1 (2)
L3 = F (L2 ⊕ Σ2) ⊕ R2; R3 = L2 (3)

L3 = L3 ⊕ L1; R3 = R3 ⊕ R1 (4)

L4 = F (L3 ⊕ Σ3) ⊕ R3; R4 = L3 (5)
L5 = F (L4 ⊕ Σ4) ⊕ R4; R5 = L4 (6)
KA = L5||R5 (7)

where Σi are word constants. In the sequel, we omit the addition of the constants
as they play no role in our analysis. The function F is an SP network, with the S-
layer defined as application of eight 8×8 S-boxes, and P-layer is a multiplication
of the eight-byte input with 8 × 8 byte matrix P . All the round keys Ki used in
the state are obtained from the two keys KL and KA with rotations on various
amounts, e.g. K4 = KL ≪15,K15 = KA ≪95, etc.

3.2 Complementing Camellia-128

From the description of Camellia-128 it follows that two different keys KL,KA

are used, the first key being also the only input to the key schedule. Since the
round keys are produced from these two keys with various rotations it follows
that the differences in KL,KA have to be invariant of rotations and thus −1.
Therefore, we need the differential ΔKL → (ΔKL,ΔKA) to be (−1) → (−1,−1).

The easiest way to build such differential is by providing a differential trail,
i.e. besides specifying the input and output differences, fixing as well the inter-
mediate differences after each transformation in the key schedule. Note that from
the condition on the differential it follows that ΔL1 = ΔR1 = ΔL5 = ΔR5 = −1,
i.e. each byte of these words has the fixed difference −1 (or ff in the hexadecimal
representation). Therefore, in the first and the fourth round of the key schedule,
the number of active bytes has to be maximal, i.e. eight active bytes will enter
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the S-layer. It is tempting to go with a trail that has no active bytes (or one
active byte) in both the second and third round, hence obtain a trail of the form
(we write only the round-by-round active bytes entering the F function):

8 → 0 → 0 → 8 or 8 → 1 → 1 → 8

However, these types of trails are not possible due to the matrix multiplication
P , i.e. P-layer. For example, if we require no active bytes in the second round,
then this means the output of the F function in the first round has canceled
with the −1 difference in R1, i.e. if we denote with ã = (a1, . . . , a8) the output
difference of the S-boxes in the function F of the first round, then the above
condition can be expressed as:

P · ã ⊕ (−1) = 0 ⇒ ã = (0, 0, 0, 0,−1,−1,−1,−1)

The solution vector ã has difference only in 4 bytes out of 8, while all the bijective
S-boxes are active, i.e. we get a contradiction. Therefore, the second round of the
key schedule cannot have zero active bytes. A similar situation can be observed
when the second (or the third) round has only 1 active byte.

The above result suggests that the minimal number of active bytes in the key
schedule is 8+2+2+8 = 20. Theoretically, this can lead to a trail with probability
2−6·20 = 2−120 > 2−128 when all the active S-boxes hold with probability 2−6.
Due to the specific input and output differences in the active S-boxes in the
first and the fourth rounds, this is not achievable – the differential probability
of these S-boxes is 2−7. Therefore if we assume the differential is composed of a
single trail only, its probability would always be lower than 2−128.

Further we try to find the actual probability of the differential taking into
account all possible differential trails that compose it. All the trails can be
divided into two groups: trails that have the same path (i.e. they have the same
position of the active bytes, but different values for the differences), and trails
that have different path.

Let S̃i be a possible output difference of the S-layer at round i, and F̃i be
an output difference of the F function at round i. Note, both S̃i, F̃i are 8 byte
vectors – S̃i = (s1i , . . . , s

8
i ), F̃i = (f1

i , . . . , f8
i ). Also, let Fi be the actual output

of the F function at round i. We will use S(x) to denote the S-layer, and ΔLi to
denote the difference of the left state at round i, hence S(ΔLi) = S̃i. From the
definition of the round function it holds F (ΔLi) = P · S(ΔLi) = P · S̃i = F̃i.

For S̃1, S̃2, S̃3, S̃3 the following conditions apply (see Fig. 1):

– S̃1 is produced when −1 difference in L1 goes through the S-layer:

S̃1 = S(−1) (8)

– S̃2 is produced with an XOR of F̃1 and the difference −1 in R1, followed by
the S-layer:

S̃2 = S(F̃1 ⊕ (−1)) = S(P · S̃1 ⊕ (−1)) (9)
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Fig. 1. The key schedule of Camellia-128 with the (−1, −1) → (−1, −1) differential.
The gray values are the differences.

– S̃3 is produced with application of the S-layer to ΔL3:

S̃3 = S(ΔL3)) = S(P · S̃2) (10)

Additionally, when F̃3 is XOR-ed to ΔR3, the output difference −1 is obtained
in R5:

F̃3 ⊕ ΔR3 = P · S̃3 ⊕ P · S̃1 = −1 (11)

– S̃4 is produced when −1 difference in R5 goes through the S-layer:

S̃4 = S(−1) (12)

Additionally, when F̃4 is XOR-ed to ΔL3, the output difference −1 is obtained
in L5:

F̃4 ⊕ ΔL3 = P · S̃4 ⊕ P · S̃2 = −1 (13)

The probability of the differential can be computed as the sum of probabilities
of all differential trails defined with 4 intermediate differences:

∑

(S̃1,S̃2,S̃3,S̃4)|(8),(9),(10),(11),(12),(13) are satisfied

2−7(|S̃1|+|S̃2|+|S̃3|+|S̃4|) (14)
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where |S̃i| denotes the number of active bytes in S̃i. In the following, we try
to simplify the conditions and to achieve formula for computing the above
probability.

Note that although both S̃1 = S(−1) and S̃4 = S(−1) are produced when
(−1) goes through the S-layer, a randomly chosen difference S̃1 and a difference
S̃4 are not necessarily the same (in fact they are different with a very high prob-
ability). To distinguish them we will use S(−1)L1 for the former and S(−1)R5

for the later.
Further we reduce the conditions on all S̃i to conditions only on S̃2, S̃3. From

(11) and the linearity of the matrix multiplication P it follows that

P · S̃3 ⊕ P · S̃1 = P · (S̃3 ⊕ S̃1) = −1

This leads to:
S̃3 = P−1(−1) ⊕ S̃1 (15)

Similarly, from (12) and (13) we get:

S̃2 = P−1(−1) ⊕ S(−1)R5 (16)

Taking into account (15), the condition (9) can be expressed as:

S̃2 = S(P · S̃1 ⊕ (−1)) = S(P · (S̃3 ⊕ P−1(−1)) ⊕ (−1)) (17)

= S(P · S̃3 ⊕ (−1) ⊕ (−1)) = S(P · S̃3) (18)

Let us summarize our findings. We get that for S̃2, S̃3 defined as:

S̃2 = P−1(−1) ⊕ S(−1)R5 (19)

S̃3 = P−1(−1) ⊕ S(−1)L1 (20)

two additional conditions have to hold:

S̃2 = S(P · S̃3) (21)

S̃3 = S(P · S̃2) (22)

In S̃1, S̃4 there are always 8 active S-boxes. The number of active S-boxes in
S̃2, S̃3 is defined by the above conditions. As P is linear, we can compute the
value of the vector P−1(−1), i.e.

P−1(−1) = (0, 0, 0, 0, ff, ff, ff, ff) (23)

Since the S-boxes in Camellia are bijective, the vector S(−1) always has 8 active
S-boxes. Therefore from (19), (20) we can conclude that the first 4 elements of
S̃2, S̃3 have to be non-zero, thus the number of active S-boxes in round 2 and 3 is
at least 4 (the first 4 bytes must be active). Additionally, regarding the number
and position of the active S-boxes, since there are always at least 4 active S-
boxes in S̃2 and S̃3, the conditions (21), (22) can always be satisfied (the branch
number of P is 4).
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Finally, we can give the probability of the differential (−1,−1) → (−1,−1):
∑

(S̃2,S̃3) satisfy (19), (20), (21), (22)

2−7(8+|S̃2|+|S̃3|+8) (24)

Recall that a differential is a collection of trails that take the same path (have
the same position of the active bytes) and trails that take different path. We
group all trails that take the same path into one single truncated trail. Then
a differential is a collection of truncated trails and hence its probability is the
sum of probabilities of the truncated trails. To define a truncated trail we just
have to fix the position of the actives S-boxes in the four rounds of the key
schedule. With Ti we denote the truncated difference entering the round function
of round i. Then a truncated trail can be defined as T1, T2, T3, T4. An actual
trail with S̃1, . . . , S̃4 belongs to a truncated trail if the position of the active
S-boxes in Si coincide with the position of the active S-boxes in Ti. Obviously
T1 = T4 = (1, 1, . . . , 1) as all the S-boxes in the first and the fourth round are
active. For the probability of the differential we get:

∑

(T2,T3)

2−7(8+|T2|+|T3|+8)#{(S̃2, S̃3)|S̃2 ∈ T2, S̃3 ∈ T3, S̃1, S̃2

satisfy (19), (20), (21), (22)} (25)

Hence, to find the probability of the differential, we only have to count the
number of possible differential trails (that satisfy a set of conditions) in all
possible truncated trails T2, T3 of the form (1, 1, 1, 1, x5, x6, x7, x8), xi ∈ {0, 1}.
To proceed further we define the notion of compliance.

Definition 1. Two differences Δ1,Δ2 comply through the function f(x) if there
exist x such that f(x ⊕ Δ1) ⊕ f(x) = Δ2.

This notion is introduced to check if some input difference Δ1 at function f(x)
can produce output difference Δ2.

Observation 1. Two randomly chosen differences Δ1,Δ2 comply through the
S-boxes of Camellia with probability 127

255 ≈ 2−1.

Every input difference to the S-box can go to 127 output differences or approx-
imately to 27 out of 28 − 1 possible, which is around 2−1.

As an example, let us compute the number of possible trails for the case
when T2, T3 have all 8 active bytes. From the properties of the S-boxes used in
Camellia we have that each input byte difference (including the difference ff)
can go to 127 or approximately4 27 distinct output differences. Since we have
4 We can approximate with 27 as one of the output differences happens twice, which

means that although we increase the number from 127 to 128, on the other hand we
decrease the probability for this difference from 2−6 to 2−7, hence the two rounding
errors compensate one another. This fact can easily be checked if one takes instead
of bytes, 7-bit nibbles. Then the maximal differential probability of 7 × 7 S-box can
be 26.
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8 active input bytes in S(−1)L1 and in S(−1)R5 , there are in total 27·8 = 256

differences for S̃2 and S̃3 (see the definitions (19), (20)). As S̃2 has 8 active bytes,
the following condition has to hold:

(d1, . . . , d8) = P−1(−1) ⊕ (s1R5
, . . . , s8R5

) (26)

= (0, 0, 0, 0, ff, ff, ff, ff) ⊕ (s1R5
, . . . , s8R5

), (27)

where all di are non-zero. Hence, out of all 256 this condition satisfy 256 · (1 −
127−4) ≈ 256 differences, or approximately all. A similar conclusion can be
obtained regarding (20).

Now let us focus on (21), (22). The probability that S̃2 comply with S̃3 from
(21) can be computed as:

1. the probability that P · S̃3 is 8 byte difference – it is approximately 1. In
the general case, when S̃2 has i active bytes, the probability is approximately
2−8·(8−i).

2. the probability that each of the differences in 8 bytes of S̃2 and P · S̃3 comply.
This is 2−8, while in the general case it is 2−i for differences in i bytes.

Therefore, for a randomly chosen differences the probability of (21) is 2−8. A
similar reasoning can be applied to (22). Hence, out of all possible S̃2, S̃3 there
are 256 ·256 ·2−8 ·2−8 = 296 differences that satisfy all four conditions. Therefore,
for T2 = T3 = (1, 1, 1, 1, 1, 1, 1, 1), the probability of the differential is at least:

296 · 2−7(8+8+8+8) = 296 · 2−224 = 2−128 (28)

If we take into account all possible T2, T3 for the probability of the differential
we get:

∑

i,j

2−7(8+i+j+8)Ci−4
4 · Cj−4

4 2112−8·(8−i)−8·(8−j)2−8(8−i)−i2−8(8−j)−j (29)

≈ 2−128 (30)

Thus, by Lemma 1, the size of the weak key class is 2128 · 2−128 = 1. For this
key K, the complementation property holds, i.e. KS(K ⊕ (−1))⊕KS(K) = −1,
and taking into account the whitening keys, we get that for any plaintext P , it
holds

EK⊕(−1)(P ) = EK(P ).

Note that the size of the weak key class is too small for any attack on the
cipher, however it is sufficient for an attack on the hash function mode of the
cipher. As a compression function, we can choose the standard Davies-Meyer
compression mode:

C(H,M) = EM (H) ⊕ H (31)

Let K be the key value for which the (−1,−1) → (−1,−1) differential in the key
schedule holds. For the compression function we get that for any H the following
holds:

C(H,K ⊕ (−1)) ⊕ C(H,K) = EK⊕(−1)(H) ⊕ H ⊕ EK(H) ⊕ H = 0 (32)
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Therefore if we can find the correct key K (which is indeed the correct message
M , as M = K in the hash mode), we can produce collisions for the compression
function of Camellia. Note, as H can be arbitrary, this leads to collisions for the
whole hash function. To find the exact value of the key K we use the conditions
(19)–(22) combined into the algorithm:

1. Create a set S̃ of all possible differences P−1(−1) ⊕ S(−1) – the size of the
set is 256.

2. Create a set SR of pairs of differences (δ2, δ3), δ2, δ3 ∈ S̃ such that δ2 complies
with P · δ3 and δ3 complies with P · δ2 - the size of this set is 296.

3. Choose a random pair (δ2, δ3) from SR.
4. Produce the value of L1 (and the corresponding F1) that converts −1 into

the δ3 ⊕ P−1(−1), i.e. S(L1 ⊕ (−1)) ⊕ S(L1) = δ3 ⊕ P−1(−1). As δ3 has 8
active S-boxes, and for each active S-box there are 2 different values (A and
A ⊕ (−1)), for a fixed δ3 there are 28 possible values of (L1, F1).

5. Produce similarly the values of (L4, F4) from δ2.
6. Produce F3 = L4 ⊕ F3 = L4 ⊕ F1, and L3 = F−1(F3). Check if F (L3 ⊕ P ·

δ2) ⊕ F (L3) = P · δ3. If not, go to step 3.
7. Produce F2 = L3, and L2 = F−1(F2). Check if F (L2⊕P ·δ3)⊕F (L2) = P ·δ2.

If not, go to step 3.
8. Output the key (L1, R1) = (L1, F (L1) ⊕ L2).

The probability of steps 6, 7 is 2−56 each and there are 22(48+8) possible (L1, F1)
and (L4, F4). Hence, after repeating step three 296 times and steps four-five 2112

times, one key candidate will be produced. Thus the complexity of the algorithm
is 2112.

Note that with an effort of 2112 we can produce one collision for the compres-
sion function of Camellia-128 (without FL,FL−1). Once we have the correct
message M , we can produce collision for any input chaining value. This means
that for any messages M1,M3 (the M3 block is used as message padding), we can
produce a collision for the hash function of Camellia-128. The colliding pairs are
(M1||M ⊕ (−1)||M3) and (M1||M ||M3). Therefore, to produce q collisions with
the same fixed difference between the message words (the difference is (0||−1||0)
we need 2112 calls to the hash function5. On the other hand, for the generic case,
producing such collisions (they are indeed called differential q multicollisions,
see [2]), one needs around q2

q−2
q+2 128 calls to the hash function. Hence, producing

256 differential multicollisions requires 28 · 2
254
258128 ≈ 2134 encryptions whereas

for the hash function of Camellia-128 without the non-linear layers FL,FL−1

in the Davies-Meyer mode, they can be produced with 2112 calls to the hash
function.

4 The Case of GOST

In this section we show how the partial complementation property (Lemma 3)
of GOST can be used to launch a practical related-key recovery attack on the
5 Actually, the number is smaller, as one hash function call requires much larger num-

ber of operations compared to the steps of our algorithm.
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full-round cipher. We note that the mentioned below complementation properties
have been known and exploited in attacks on GOST [4,7]. However, to the best of
our knowledge, all the attacks on GOST that recover the full key, are impractical.

4.1 Description of GOST

GOST is a modular 32-round Feistel cipher with 256-bit key. The key schedule
of GOST is trivial. The master key K is divided into eight 32-bit words Ki, i =
1, . . . , 8 and in each of the four groups of 8 rounds, the round keys RKj , j =
1, . . . , 32 are permutation of the key words Ki, i.e.

(RK1, . . . , RK8) = (K1, . . . ,K8) (33)
(RK9, . . . , RK16) = (K1, . . . ,K8) (34)
(RK17, . . . , RK24) = (K1, . . . ,K8) (35)
(RK25, . . . , RK32) = (K8, . . . ,K1) (36)

4.2 Complementing GOST

As GOST is a modular Feistel, Lemma 3 can be applied to this cipher. The
round keys do not allow the choice of different alternating Δ1,Δ2 as each of the
key words Ki is used in both even and odd rounds. For example, K1 is used
in rounds 1, 9, 17, and 32. Therefore, one has to choose Δ1 = Δ2 = Δ, i.e. all
of the keys Ki have the same difference Δ. The differential in the key schedule
holds with probability p = 1. To maximize the probability of the differential in
the state, one has to choose Δ = 231 – in this case the size of the class is 2256,
i.e. the complementation is applicable to all of the keys.

One can maintain the same size of the weak-key class (all keys), but reduce
the probability of the differential in the state. For example, when Δ1 = Δ2 =
Δ = 2i, i = 0, . . . , 30, then the partial complementation property is still applica-
ble to all keys, but detecting this property requires more data, i.e. instead of
the previous one pair of plaintexts and ciphertexts, by Lemma 3 now one needs
1/2−16(1+1) = 232 pairs. This weakens the distinguisher, but allows key recovery
attacks. Let Δ = 2m,m < 31. If in some round i, one knows the value of the
state S that is modularly added to the round key RKi (in the state/key pair, the
m-th bit has the difference 1), then under the assumption that the differences
have canceled, one can find the exact value RKm

i of the m-bit of the round key
RKi, i.e. if S is known, and

(S + RKi) ⊕ ((S ⊕ 2m) + (RKi ⊕ 2m)) = 0,

then the value RKm
i of the m-th bit of RKi can be computed as:

RKm
i = Sm ⊕ 1. (37)

It is trivial to check that only under such values of RKm
i and Sm the differences

would cancel. For m = 31, i.e. when the difference is in the most significant bit,
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then the cancellation always occurs, hence one cannot find the exact value of the
most significant bit with this approach.

The above single-bit recovery can be applied sequentially to all the bits of
the round key RKi, thus the whole RKi can be recovered. Once the i-th round
key is known, one can compute the state of the cipher in the next round and
thus repeat the same process but for the round key RKi+1. Hence this domino
effect allows to recover all of the round keys resulting in a full key recovery of the
master key. The attack presented below is a related-key attack with 31 related-
key pairs. For the secret master key K with the key words Ki, K = (K1, . . . ,K8),
the related keys Ki are defined as Ki = (K1 ⊕ 2i, . . . ,K8 ⊕ 2i), i = 0, . . . , 30.
The algorithm can be formulated as:

1. For each of the 31 related-key pairs (K,Ki), i = 0, . . . , 30 create 232 pairs of
plaintexts (P i

j , P
i
j ⊕2i) and obtain the corresponding ciphertexts (Ci

j , C̃
i
j), j =

0, . . . , 232 − 1.
2. For each i, i = 0, . . . , 30, find the pair of ciphertexts that have the required

difference 2i, i.e. find ji, such that Ci
ji

⊕ C̃i
ji

= 2i, i = 0, . . . , 30. The corre-
sponding plaintext pairs are (P i

ji
, P i

ji
⊕ 2i). In total there are 31 such pairs.

3. For each round r = 1, . . . 8, recover the key word Kr.
(a) For each k, k = 0, . . . , 30, the k-bit of Kr can be recovered from the

knowledge of incoming state. In the first round, the value of the state is
known, i.e. P k

jk
, and therefore Kk

r = P k
jk

⊕ 1 (see (37)). In total, 31 out of
32 bits of Kr are recovered.

(b) Guess the most significant bit of Kr, and compute the values of the 31
states for the next round – this can be performed as one knows both the
state and the round key.

The encryption of the initial 232 pairs of plaintexts for each i, guarantees
that with a high probability one can find a pair of ciphertexts with the same
difference – hence this pair follows the differential in the state. For each round,
one has to guess only a single bit (the most significant bit) of the round key,
thus step 3 has to be repeated at most 28 times. Therefore the time complexity
of the full key-recovery attack is 2 · (31 ·232 +28) ≈ 238 encryptions and a similar
data complexity of 238 chosen plaintexts.

The low complexities allow to perform an experimental cryptanalysis of
GOST on a computer. We have followed the attack algorithm described above
and were able to verify our approach by recovering the full 256-bit key – our
unoptimized implementation ran for one day on a single Intel i5 core. As the key
recovery can be parallelized, another implementation was able to recover the full
key in around 7 h using four Intel i5 cores.

5 Conclusion

We have shown a potential vulnerability in Feistel ciphers based on the com-
plementation property that results in relatively easily detectable related-key dif-
ferential attacks. Two such attacks on full-round Feistel primitives, the hash
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mode of Camellia-128 without FL,FL−1, and the block cipher GOST, have
been presented in this paper.

We have deduced a simple criteria for cryptanalysis of classical Feistel ciphers:
if for the key schedule there exists a high probability differential that produces
alternating differences in the round keys then the cipher is vulnerable to related-
key attacks, regardless of the number of rounds in the state. Moreover, from the
analysis of Camellia-128 without FL,FL−1, one can conclude that even if such
differential has a low probability, but a pair of keys following the differential
could be found, the hash mode of the cipher is still vulnerable.

The Feistel ciphers that use modular addition of the round keys in the state
are less susceptible to this type of attacks as the data required to detect the
complementation property depends on the number of rounds as well. However,
from the analysis of GOST one can see that, when the alternating differences in
the round keys have a low Hamming weight, such ciphers are potential targets
of complementation weaknesses as well. Our related-key attack on GOST was
confirmed experimentally.

We believe that our attacks based on the complementation property might
be launched on several other existing Feistel primitives, i.e. this paper does not
exhaust the possible targets. Thus the approach presented here can be seen as
simple tool for cryptanalysis of current Feistel primitives, but also an important
security threat that should be taken into account when designing new primitives
based on Feistel.
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Abstract. This paper aims to improve the understanding of the com-
plexities for Matsui’s Algorithm 2 — one of the most well-studied and
powerful cryptanalytic techniques available for block ciphers today.

We start with the observation that the standard interpretation of the
wrong key randomisation hypothesis needs adjustment. We show that it
systematically neglects the varying bias for wrong keys. Based on that,
we propose an adjusted statistical model and derive more accurate esti-
mates for the success probability and data complexity of linear attacks
which are demonstrated to deviate from all known estimates. Our study
suggests that the efficiency of Matsui’s Algorithm 2 has been previously
somewhat overestimated in the cases where the adversary attempts to
use a linear approximation with a low bias, to attain a high computa-
tional advantage over brute force, or both. These cases are typical since
cryptanalysts always try to break as many rounds of the cipher as pos-
sible by pushing the attack to its limit.

Surprisingly, our approach also reveals the fact that the success prob-
ability is not a monotonously increasing function of the data complexity,
and can decrease if more data is used. Using less data can therefore result
in a more powerful attack.

A second assumption usually made in linear cryptanalysis is the key
equivalence hypothesis, even though due to the linear hull effect, the bias
can heavily depend on the key. As a further contribution of this paper,
we propose a practical technique that aims to take this into account.
All theoretical observations and techniques are accompanied by experi-
ments with small-scale ciphers.

Keywords: Block ciphers · Linear cryptanalysis · Data complexity ·
Wrong key randomisation hypothesis · Key equivalence · Linear hull
effect

1 Introduction

Linear cryptanalysis proposed by Matsui [25,26], besides differential cryptanaly-
sis [5], has been a seminal cryptanalytic technique used to attack block ciphers
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since two decades now. It was linear cryptanalysis that both theoretically and
practically broke the former U.S. encryption standard DES. This might suggest
that NSA could have been unaware of the entire power of this attack, at least
at the design time of DES back in the 1970s.

Numerous papers investigated the questions of how to improve linear crypt-
analysis on the one hand and how to design ciphers resistant to linear cryptanaly-
sis on the other. With the establishment of such block cipher design approaches
as the wide-trail design strategy [9], which eventually lead to the design of the
current U.S. encryption standard AES [9], the cryptographers were given reli-
able tools to construct ciphers that are arguably resistant against the classical
flavours of linear cryptanalysis.

The extension of linear cryptanalysis to take advantage of multiple approxi-
mations revived the field [16–18,32]. Lately, increasingly more works [23,27,32]
have been dedicated to the study of the linear hull effect [28,29] – the fact that
depending on the key, the efficiency of linear cryptanalysis may significantly vary.
Also in terms of the success probability and data complexity estimation, a lot of
detailed works have been published [2,3,6,19–21,33]. The fact that many pub-
lished attacks have data and time requirements beyond practical reach implies
that the question of how to accurately estimate their complexity (and hence
determine which attack actually is a valid attack) is of great importance to the
security of block ciphers.

Our Contributions. In this paper, we aim to obtain a more accurate estima-
tion of success probability and data complexity of linear attacks using Matsui’s
Algorithm 2 — a question fundamental to symmetric-key cryptanalysis. Our
contributions are as follows:

– New wrong key randomisation hypothesis: Informally speaking, the
wrong key randomisation hypothesis says that by partially decrypting/
encrypting with a wrong key up to the boundary of the linear approximation,
the adversary faces a randomly drawn permutation instead of the expected
cipher structure with rounds peeled off. The standard interpretation of this
hypothesis in linear cryptanalysis seems to have been to replace a randomly
drawn permutation which varies for every wrong key candidate with the
expected behaviour among all permutations. We demonstrate that this can
be misleading and result in underestimated complexity in some cases. Those
cases are likely to occur when the adversary tries to exploit a linear approx-
imation with low bias, or to attain a high advantage over the brute force, or
both. These cases are actually very typical since cryptanalysts always try to
break as many rounds of the cipher as possible by pushing the attack to the
limit.

– More data does not necessarily mean higher probability of success:
As a surprising consequence of the adjusted wrong key randomisation hypothe-
sis, our analysis reveals that the success probability in general is not a monoto-
nous function of the data complexity. This means that sometimes, using less
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data can result in a better success probability of a linear attack. This is backed
up by experimental results confirming the non-monotonous behaviour of the
success rate.

– Linear hull vs. linear trails: The general methodologies to evaluate the
complexity of linear attacks at hand assume the exact bias or its good estimate
is given to the adversary. Practically speaking, however, this is never the case
for almost any real-world cipher. This is due to the fact that for a relatively
large block size (e.g. longer 50 bits) it is challenging to exactly evaluate the bias
even for one known key. That is why most linear attacks base their complexity
estimates on one or several known trails1 (rather than on the entire linear
hull bias). In this context, we make two observations in this paper. First,
we propose to split the linear hull into a signal part and a noise part. The
signal part is then sampled for random cipher keys to obtain a more reliable
evaluation of the impact of those trails. Second, we statistically model the
noise part to make the estimation of complexity more realistic.

The remainder of the paper is organized as follows. Some brief background on
block ciphers, linear cryptanalysis and previous work in this direction is given
in Sect. 2. In Sect. 3, the new model for the data complexity of linear attacks
based on the new wrong key randomisation hypothesis is developed. The non-
monotonicity of the success rate as function of data complexity is studied in
Sect. 4. Section 5 proposes a method of computing the data complexity of a linear
attack and presents experimental results. Our refined key equivalence hypothesis
is presented in Sect. 6. Section 7 proposes a practical algorithm implementing
the new key equivalence hypothesis for key-alternating ciphers. We conclude in
Sect. 8.

2 Preliminaries

2.1 Notation

We denote by F2 = {0, 1} the finite field with two elements and the n-dimensional
vector space over F2 by F

n
2 . The canonical scalar product of two vectors a, b ⊕ F

n
2

is denoted by aT b.
We denote by N (μ, Δ2) the normal distribution with mean μ and variance

Δ2. The probability density and cumulative distribution function of the standard
normal distribution N (0, 1) are denoted by γ(x) and Φ(x), respectively.

2.2 Block Ciphers and Linear Cryptanalysis

Block Ciphers. A block cipher is a mapping E : F
n
2 × F

κ
2 ∃ F

n
2 with the

property that Ek
def= E(·, k) is a bijection of Fn

2 for every k ⊕ F
κ
2 . If y = Ek(x),

1 We are aware of the earlier term linear characteristic [4] but prefer to use the term
linear trail throughout the paper.
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we refer to x as the plaintext, k as the key and y as the ciphertext of x under
the key k. We call n the block length and α the key size of the cipher.

Block ciphers are often constructed as iterated mappings based on round
functions βi[ki]. Let R denote the number of rounds. A key scheduling algorithm
expands the encryption key k into R round keys K

def= (k0, . . . , kR−1). The
ciphertext y of x0 = x is then obtained as y = xR with xi+1 = βi[ki](xi). If the
iteration can be written as a sequence of unkeyed rounds and bitwise addition
of the round keys by XOR, the cipher is called a key-alternating cipher [8,9].

Note that ciphers following the substitution-permutation network design are
key-alternating by definition. However, also some Feistel ciphers [13] can be writ-
ten as key-alternating ciphers [10]. This includes the well-known Feistel ciphers
CLEFIA [35], CAMELLIA [1], Piccolo [34], SMS4 [24], KASUMI [14].

Linear Cryptanalysis and Matsui’s Algorithm 2. A linear approximation
(Σ, δ) of a vectorial Boolean function f : Fn

2 ∃ F
n
2 is an ordered pair of n-bit

masks Σ and δ. It is said to hold with probability p
def= Prx∈F

n
2
(ΣT x = δT f(x)).

The deviation of p from 1/2 is called the bias ξ
def= p − 1/2. The correlation of

a linear approximation (Σ, δ) is C
def= 2p − 1 = 2ξ. The quantity LP

def= C2 is
called the linear probability of (Σ, δ).

Linear cryptanalysis [25,26] is a known plaintext attack exploiting linear
relations between bits of the plaintext and ciphertext holding with absolute bias
|ξ| > 0. Note that in the known plaintext model, the plaintexts are assumed to
be sampled independently and uniformly at random from the plaintext space,
which implies that repetitions can occur [20,33].

In this paper, we consider linear attacks using Matsui’s Algorithm 2. We
describe the attack for the case where subkey bits of the last round are attacked.
The adversary observes a number N of plaintext/ciphertext pairs encrypted
under the same cipher key k and chooses a linear approximation (Σ, δ) with
|ξ| > 0 for the remaining first R − 1 rounds. Suppose that the bits of xR−1 =
β[kR]−1(y) selected by δ depend on M bits of kR and the attacker wants to
recover a subset of m → M of them. For each of the 2m possible values of the
target subkey bits, the adversary (partially) decrypts the N ciphertexts and
tests whether the linear approximation ΣT x = δT β[kR]−1(y) holds. In this way,
a counter Ti is maintained for each key candidate ki, 0 → i < 2m. After this step,
the key candidates are ranked in increasing order of the absolute value of the
sample bias |ξ̂i| def= |Ti/N − 1/2|. Following [33], if the correct key kr is ranked
among the highest 2l out of the 2m key candidates with probability PS , we say
that the attack provides an advantage of a

def= m − l bits over exhaustive search
with success probability PS .

Linear Trails and Hulls. A linear approximation (Σ, δ) for an iterative block
cipher of R rounds with round functions βi can actually be decomposed into
R connecting linear approximations for the intermediate steps: U = [(Σ, u1),
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(u1, u2), . . . , (uR−1, δ)] with ui ⊕ F
n
2 . For each fixed value of the ui, such a

sequence is called a linear trail [9] or linear characteristic [25,26]. The approx-
imation (Σ, δ) can permit many trails with the same input mask Σ and output
mask δ, but different intermediate masks. The collection of all such trails is
called the linear hull (Σ, δ) [28,29].

2.3 Previous Analyses of the Data Complexity of Linear Attacks

The data complexity of both Matsui’s Algorithm 2 and the more general problem
of distinguishing the distributions for the right and the wrong keys have been
extensively studied in the literature [2,3,6,19–21,25,26,33].

In his original papers, using a normal approximation to the binomial distrib-
ution, Matsui [25,26] estimates the data complexity to be of the order |2ξ|−2 and
gives estimations which multiple of this is required to obtain a certain success
probability. This analysis has been systematized and deepened by Junod [19].
Furthermore, Junod and Vaudenay [21] have proven that Matsui’s key ranking
procedure is optimal for the case of Algorithm 2 using a single linear approxi-
mation.

In his important work, Selçuk [33] presented a thorough statistical analysis
of the data complexity of linear and differential attacks based on a model of
Junod [19] and a normal approximation for order statistics. This yields practical
closed formulas for the success probability PS and data complexity N of a linear
attack when an advantage of a bits is sought:

Theorem 1 ([33, Theorem 2]). Let PS be the probability that a linear attack
on an m-bit subkey, with a linear approximation of probability p, with N known
plaintext blocks, delivers an a-bit or higher advantage. Assuming that the linear
approximation’s probability to hold is independent for each key tried and is equal
to 1/2 for all wrong keys, one has for sufficiently large m and N :

PS = Φ
(
2
√

N |p − 1/2| − Φ−1(1 − 2−a−1)
)

. (1)

Corollary 1 ([33, Corollary 1]). With the assumptions of Theorem 1,

N =
(
(Φ−1(PS) + Φ−1(1 − 2−a−1))/2

)2 · |p − 1/2|−2 (2)

plaintext blocks are needed in a linear attack to accomplish an a-bit advantage
with a success probability of PS.

Other published estimates include analyses by Junod [20], Baignères, Junod
and Vaudenay [2], Baignères and Vaudenay [3], and Blondeau, Gérard and
Tillich [6]. Those estimates are summarised in Table 1, with D(p||q) denoting
the Kullback-Leibler divergence between two binomial distributions with prob-
abilities p and q.

Note that throughout the literature, the assumption is made that decrypting
with a wrong key results in a zero bias for the linear approximation. As we will
see, this constitutes a simplified view of the problem.
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Table 1. Estimates for the data complexity of a linear attack based on a linear approx-
imation with probability p, success probability PS and advantage a

Estimate for data complexity N Reference

N ≈
2Φ−1

(
(1−PS)+2−a−1

2

)2

D(p||0.5)
Baignères, Junod and

Vaudenay [2], Theorem 6

N ≈ − ln max{1−PS ,2−a−1}
D(p||0.5)

Baignères and Vaudenay [3],
Corollary 4

N ∼ = −
ln

(
ν·2−a−1√
D(p||0.5)

)
+0.5 ln (− ln (ν·2−a−1))

D(p||0.5)

with Δ =
(
(p − 0.5)

√
2η(1 − p)

)
/
(√

p/2
) Blondeau, Gérard and

Tillich [6], Theorem 2

2.4 Distribution of Biases in Boolean Permutations

Daemen and Rijmen [11] have proved the following characterisation of the dis-
tribution of correlation of a fixed linear approximation over the set of all n-bit
permutations:

Fact 1 ([11, Theorem 4.7]). Consider a fixed nontrivial linear approximation
(Σ, δ) with Σ, δ �= 0. When n ⇒ 5, the distribution of the correlation Cα,β over
all n-bit permutations can be approximated by the following distribution up to
continuity correction:

Cα,β ∈ N (0, 2−n). (3)

Since C = 2ξ, this immediately implies

Corollary 2. With the assumptions of Fact 1,

ξα,β ∈ N (0, 2−n−2). (4)

3 Improved Key Randomisation Hypothesis
and Success Rate

3.1 More Accurate Wrong Key Randomisation

In Matsui’s Algorithm 2 using a linear approximation (Σ, δ) and N known plain-
texts, a counter Ti is maintained for each key candidate ki. For each of the N
texts, the counter Ti is incremented if the approximation holds for a text when
performing a trial decryption with the key ki.

The distribution of Ti has a crucial impact on the precision of estimating the
data complexity of Matsui’s Algorithm 2. First of all, the distribution of the Ti

for the wrong keys has to be determined. It has been generally assumed that once
the ciphertext is partially decrypted using a wrong key, the resulting permutation
– over which the linear approximation is checked – turns into a randomly chosen
permutation. This is called the wrong key randomisation hypothesis [15,19].
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Multiple works have used this hypothesis and it usually proves to reflect the
reality. However, in its basic formulation it does not explicitly specify which
distribution to assume for the Ti. In the sequel, we argue that this is exactly
the point where the standard interpretation of the wrong key randomisation
hypothesis needs adjustment.

To the best of our knowledge, all previous complexity evaluations of Matsui’s
Algorithm 2 have used the hypothesis that for all wrong keys kw, 0 → w �= r <
2m, the approximation (Σ, δ) will hold with probability of exactly 1/2, that is
with bias zero. This constitutes the best scenario from the attacker’s point of
view:

Hypothesis 1 (Standard wrong key randomisation hypothesis). Con-
sider a nontrivial linear approximation L = (Σ, δ) with absolute bias |ξ| ≈ 0
for virtually all possible cipher keys. Let kr be the right subkey guess. Then, for
virtually all cipher keys and for all wrong subkey guesses kw �= kr:

∣∣∣ Pr(L holds
∣∣ kw) − 1

2

∣∣∣ = 0.

In this case, making the usual independence assumption, the distribution of
the wrong key counters Tw is given by a binomial distribution with probability
p = 1/2 and N repetitions. For sufficiently large N , this can be very closely
approximated by a normal distribution with mean Np = N/2 and variance
Np(1 − p) = N/4. The sample bias ξ̂w = Tw/N − 1/2 of the wrong keys is
therefore assumed to be approximately distributed as N (0, 1/(4N)).

Though the standard formulation of the wrong key randomisation hypothesis
is inspired by the intention to make the approximation (Σ, δ) behave as for a
randomly drawn n-bit permutation, the distribution of the ξ̂w is not completely
adequate. In fact, it is known (see Fact 1 and Corollary 2) that the bias of (Σ, δ)
over the n-bit permutations is not constantly zero, but instead follows a known
distribution over the wrong keys. We therefore postulate:

Hypothesis 2 (Adjusted wrong key randomisation hypothesis). Con-
sider a nontrivial linear approximation L = (Σ, δ) with absolute bias |ξ| ≈ 0
for virtually all possible cipher keys. Let kr be the right subkey guess. Then, for
virtually all cipher keys and for all wrong subkey guesses kw �= kr:

∣∣∣ Pr(L holds
∣∣ kw) − 1

2

∣∣∣ = N (0, 2−n−2).

The following lemma, which is a new result, takes this into account.

Lemma 1. In a linear attack with Matsui’s Algorithm 2 on an n-bit block cipher
using N known plaintexts, the sample bias ξ̂w of the wrong keys approximately
follows a normal distribution with mean zero and variance 1/4 · (1/N + 1/2n):

ξ̂w ∈ N (0, 1/4
(

1
N

+
1
2n

)
). (5)
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Proof. See the full version [7] of this paper for the proof.

Previous interpretations of the wrong key randomisation hypothesis have
therefore used the mean zero instead of the full distribution N (0, 2−n−2) for the
bias when decrypting with a wrong key. For the sample bias of the wrong keys,
this resulted in using N (0, 1/(4N)) instead of N (0, 1/4

(
1
N + 1

2n

)
), implying that

the distributions for the right key and the wrong keys were assumed to only
differ in the mean, but had the same variance. While this arguably simplifies the
analysis, the possible impact of this simplification has to be investigated.

Experimental Verification. Even in the new form presented in Lemma 1, the
wrong key randomisation hypothesis remains an idealisation. In order to verify
that it reflects the reality with reasonable accuracy, we have experimentally
determined the distribution of the sample bias over 216 wrong keys for two
structurally very different small-scale ciphers with a block length of 20 bits:
SmallPresent-20 [22] with 8 rounds, and RC6-5/6/10 [31] with four 5-bit
words, 6 rounds and an 80-bit key. In both cases, the number of samples was
N = 216. As illustrated in Fig. 1 the resulting distributions follow the theoretical
estimate of (5) quite closely in both cases. Note that the scattering of data points
occurs due to the fact that we are basically using a histogram with bin size one,
and deal with raw data instead of averaging.

3.2 Probability of Success

In this section, we study the implications of Lemma 1 for the success probability
in linear cryptanalysis with Matsui’s Algorithm 2. This leads to a new formula
for the success probability of a linear attack.

Theorem 2. Consider a linear attack with Matsui’s Algorithm 2 on an n-bit
block cipher (n ⇒ 5) using a linear approximation with bias ξ �= 0 and sufficiently
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Fig. 1. Experimental distribution of the sample bias over 216 wrong keys and 216 texts
for SmallPresent and small-scale RC6.
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large N → 2n known plaintexts. Denote by PS the probability that this attack
succeeds with an advantage of a > 0 bits over exhaustive key search. Then

PS ∪ Φ

(
2
√

N |ξ| −
√

1 +
N

2n
Φ−1(1 − 2−a−1)

)
. (6)

Proof. See the full version of this paper [7] for the proof.

Note that the difference between (6) and Selçuk’s formula (1) lies in the

factor
√

1 + N
2n of the term Φ−1(1−2−a−1). Since Φ is monotonously increasing,

our estimate for PS is always smaller or equal to (1), and the resulting data
complexity required for a certain advantage and PS will always be at least as
big as the one of (2).

The biggest deviations between both models occur when the influence of the

second term
√

1 + N
2n · Φ−1(1 − 2−a−1) grows. This can happen if the adversary

seeks a particularly big advantage a, or when the number of known plaintexts
gets close to 2n. Both cases typically occur when the cryptanalyst is aiming for
the maximum possible number of rounds that can be broken by his respective
linear attack.

4 Non-monotonicity of Success Rate as Function
of Data Complexity

Consider any fixed given combination of the bias ξ, the block length n and the
advantage a. The success probability of a linear attack is then a function of the
number of known plaintexts N only and can hence be expressed as PS(N). Even
though our estimate for PS(N) given by Theorem 2 is always smaller or equal to
Selçuk’s formula (1), the addition of the second term results in a function that
is not necessarily monotonously increasing in N anymore.

From (6), we can derive

Proposition 1. For fixed ξ, a and n, the success probability PS(N) with respect
to the data complexity as given by Eq. (6) attains a relative maximum at

N̂
def=

4|ξ|2 · 22n

(Φ−1(1 − 2−a−1))2 − 4|ξ|2 · 22n
. (7)

Proposition 1 implies that our model can in certain cases predict a decrease
in success probability for an increased number of known plaintexts. While this
may seem counterintuitive at first, one has to take into account that the success
probability depends on the overlapping area between two approximately normal
distributions, namely N (ξ, 1

4N ) for the right key and N (0, 1
4

(
1
N + 1

2n

)
) for the

wrong keys. In the context of small ξ and large N of the order 2n, increasing
N can actually result in increasing the overlapping area, and hence decrease the
success probability. This can be seen as a direct consequence of linear cryptanaly-
sis being a known plaintext attack: Since the observed plaintexts are sampled
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Fig. 2. Example of an equal overlapping area between N (τ, 1
4N

) and N (0, 1
4

(
1
N

+ 1
2n

)
)

for n = 20, τ = 2−10 and different values of N .

independently and uniformly at random from the plaintext space, the probabil-
ity of duplicates increases with N , up to a point where adding more samples to
the statistic only amplifies the noise. An attack exploiting a fixed linear approx-
imation with fewer known plaintexts could therefore be more efficient than with
more given samples.

A given advantage a corresponds to a fixed threshold T for distinguishing the
distributions, with the type I error EI = 1−PS varying with N , and fixed type II
error EII = 2−a−1. Having PS(N) = PS(N ∗) for N �= N ∗ is therefore equivalent
to having the same overlapping area EI +EII between the distributions for N and
N ∗ samples. This is depicted in Fig. 2: the overlapping area EI +EII between the
two Gaussian distributions in Fig. 2a and b is the same for different values of N .

We note that two conditions have to be fulfilled to be able to speak of mean-
ingful (i.e., practically relevant) non-monotonous behaviour: First, the condition
N̂ < 2n has to be satisfied (since N cannot exceed 2n); and second, one must
have PS ⇒ 2−a, i.e. the success probability of the attack must be higher than
two times the false positive rate. Otherwise, the adversary would have to repeat
the attack 1/PS > 2a times and gain only a bits advantage over the exhaustive
search.

An example of a parameter combination fulfilling both conditions is |ξ| =
2−10, n = 20 and a = 12, i.e., seeking a large advantage out of an approxima-
tion with only marginal bias. In this case, N̂ ∪ 218.75 < 220, and PS(N̂) ∪
2−9.89 > 2−12 = 2−a. With PS(220) ∪ 2−10.45, this constitutes a meaningful
example where using more samples actually decreases the success probability.
This theoretical prediction has been verified in the real world using experiments
with SmallPresent-20. The recovery of 10000 keys exhibiting exactly the bias
ξ = 2−10 was attempted for different values of N . The results given in Fig. 3
confirm the non-monotonous behaviour.
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N theor. PS exp. PS

217 0.00072 0.0006
218 0.00096 0.0009
218.5 0.00104 0.0009
218.75 0.00105 0.0011
219 0.00104 0.0010
219.5 0.00093 0.0009
220 0.00071 0.0007

(a) Experimental success probability.
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(b) Plot of PS(N) (Theorem 2).

Fig. 3. Experimental verification of non-monotonous behaviour for SmallPresent-20
with τ = 2−10 and a = 12.

5 Evaluation of the Data Complexity

In practice, when evaluating a particular linear attack (where n and ξ are fixed),
it is often interesting to determine the number N of required known plaintexts
for certain success probabilities and advantages that are sought by the attacker.
In the case of PS = 1/2 and an arbitrary fixed advantage of a ⇒ 1 bits, Eq. (6)
yields a closed formula for N :

Corollary 3. With the assumptions of Theorem 2, using a linear approxima-
tion with bias |ξ| > Φ−1(1 − 2−a−1)/2n/2−1, the number N of known plaintexts
required to obtain an advantage of a ⇒ 1 bits with success probability PS = 1/2
is given by

N ∪ 1/
((

2ξ/Φ−1(1 − 2−a−1)
)2 − 2−n

)
. (8)

The condition |ξ| > Φ−1(1− 2−a−1)/2n/2−1 in Corollary 3 basically prevents
the estimate for N from becoming negative. This happens if the sought advantage
a is too big for the given bias |ξ|, resulting in a data requirement of N > 2n texts,
which is clearly impossible and a step outside the model.

For values of PS different from 1/2, we can determine N by means of an
efficient numerical procedure for given PS , a, |ξ| and n. Note that this procedure
is equally applicable to the case PS = 1/2.

Proposition 2. With the assumptions of Theorem 2, for fixed ξ, PS , n and a,
the data complexity N can be determined numerically using Algorithm 5.1 up to
an absolute error of 1 − 2−n in linear time in the block length n.

Proof. See the full version of the paper [7] for the proof.
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Algorithm 5.1. Numerical computation of the data complexity N

Input: Bias τ, block length n, success probability PS ≥ 2−a, precision bound Δ (∗)
Output: Data complexity N required for the given parameters.

1: Define f(N) = 2
√

N |τ| −
√

1 + N
2n Φ−1(1 − 2−a−1)

2: Calculate N̂ ← (4|τ|2 · 22n
)
/
((

Φ−1(1 − 2−a−1)
)2 − 4|τ|2 · 22n

)

3: lower ← 1, upper ← min{N̂ , 2n}, i ← 0
4: while |f(lower) − PS | > 10−ν and i < n do
5: mid ← lower+upper

2

6: if f(mid) < PS then
7: lower ← mid
8: else
9: upper ← mid

10: end if
11: i ← i + 1
12: end while
13: return lower
∗The value of Δ in step 4 is used to early-abort fast-converging iterations as soon as an
adequate precision is reached. A recommended value is Δ = 15.

Algorithm 5.1 runs very efficiently even for large block sizes. For instance,
a straightforward Matlab implementation computes the value N = 2126.76 for
n = 128, |ξ| = 2−61.9, a = 10 and PS = 0.95 in about 0.09 seconds on an Intel
Core2 Duo E8400.

5.1 Experimental Results

In this section, we summarise the results of experiments carried out to verify the
accuracy of the estimate given by Theorem 2 and Proposition 2 and compare it
to other models.

The experiments were first carried out on SmallPresent-20, a small-scale
variant [22] of the block cipher present with block size n = 20 bits. The original
key schedule algorithm was used. In all experiments, we fixed a linear approxi-
mation with a certain bias ξ and success probability PS and then analysed the
data complexity N which is required to obtain different levels of advantage with
this PS . Each experiment for a certain combination of N and a was averaged
over 1000 times to obtain a reliable relation between N and a for this fixed PS .
To verify the independence of our experimental findings from the structure of
SmallPresent, all experiments were repeated with RC6-5/r/10, an instantia-
tion of RC6 [31] with a block size of 20 bits and an 80-bit key. The results on
this small-scale variant of RC6 indicate that our model is equally applicable to
this substantially different block cipher structure.

In the first experiment on SmallPresent, a linear approximation with bias
ξ = 2−8.22 was used. The success probability was fixed at 0.95. From (6), the
influence of the new model for wrong keys is expected to manifest itself already
for small advantages given this relatively high PS and low ξ (compared to the
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0.95.

Fig. 4. Theoretical and experimental evaluation of the data complexity estimate of
Proposition 2 for different levels of advantage.

block length). The results are depicted in Fig. 4a. The curve with squares was
obtained using Proposition 2 with an estimation of the hull bias averaged over
200 random keys. We can see that the experiments follow the theoretical pre-
diction very closely. The difference to the estimate of [33] is also apparent as
soon as a ⇒ 6. For a = 11, Selçuk’s formula can result in an underestimation of
N of factor two. The line with crosses represents the estimate based on Algo-
rithm 1 of [6]. The results of an analogous experiment on RC6-5/8/10 are given
in Fig. 4b.

Additional experimental results for different levels of ξ and a are given the
full version of the paper [7].

Our experiments indicate that Theorem 2 and its derivatives are unlikely to
decrease the precision in comparison to previous work, since our estimates are
more realistic for large a and/or low ξ but very close to Selçuk’s for small advan-
tages and/or high biases. They can hence be used as a universal replacement.
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Larger Block Sizes. Given the experimental evidence supporting the accuracy
of the estimates based on Theorem 2, it remains to investigate the impact of the
new model for larger block sizes where no practical experiments can be carried
out. This is detailed in the full version of the paper [7].

6 Towards a More Realistic Key Equivalence Hypothesis

In order to evaluate the success probability and data complexity of a linear
attack using Matsui’s Algorithm 2, one has to know the exact (absolute value of
the) bias ξ(kr) of the used linear approximation (Σ, δ) for the right key kr.

6.1 Standard Key Equivalence Hypothesis

Dually to the wrong key randomisation hypothesis, a common assumption for the
statistical behaviour when partially de- and/or encrypting with the right key is
that the bias of the resulting linear approximation does not deviate significantly
from its average over all keys [19]. More concretely, this is usually interpreted in
the following way [15], which we call the standard key equivalence hypothesis:

Hypothesis 3 (Standard key equivalence hypothesis). Consider a non-
trivial linear approximation L = (Σ, δ) with bias ξ(kr). Then |ξ(kr)| is indepen-
dent of the choice of the key:

|ξ(kr)| = 2−κ
∑

k∈F
κ
2

|ξ(k)| ∀kr.

However, for most practically interesting designs (including the AES, Serpent
and PRESENT), it has been shown that this strong form of the key equivalence
hypothesis does not hold [8,9]. In the case of key-alternating ciphers (or Feis-
tel ciphers which can be written as such), the contributions of the biases of
the individual trails to the bias of the hull for a fixed key kr can be explicitly
computed [8,9] as:

ξ(kr) =
∑

u0=α,ur=β

(−1)dU ⊕UT K |ξU |, (9)

with K denoting the key expansion of the key kr. This is known as the linear
hull, which causes the trail biases to be added or subtracted depending on the
value of the key [18,23,27,32]. As a consequence, it usually becomes infeasible
to compute the exact value of |ξr| or even its average over all keys.

Since the standard key equivalence hypothesis does not hold in most cases,
the question arises which value of ξr to take for the evaluation of the attack
complexity. For instance, the work [30] fixes the expanded key of present to zero
to estimate ξr. We note, though, that using a different key for this estimation will
result in a different value of ξr and hence change the estimated attack complexity.

In order to address this issue, we need to refine the usual key equivalence
hypothesis by taking the influence of linear hulls into account.
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To this end, we propose to decompose the linear hull into two parts: a signal
part (corresponding to the known dominant trails) and a noise part (consisting of
the unknown remainder of the hull). The signal part is then sampled for random
cipher keys to obtain a more reliable evaluation of the impact of those dominant
trails. We then model the noise part statistically to make the estimation of
complexity more realistic.

Previous approaches have omitted the influence of the unknown trails com-
pletely, and as has been demonstrated [23,27], the influence of the unknown part
of the hull can be very significant. Additionally, we average the data complexity
estimate over a number of randomly drawn master keys, as opposed to fixing one
specific expanded key. This leads to a refined formulation of the key equivalence
hypothesis.

6.2 Refined Key Equivalence Hypothesis

Assume that only one or a small number of dominant trails with high contri-
bution to the absolute bias of the hull (Σ, δ) are known. In a linear attack, to
recover (part of) the key kr, this hull has an unknown bias ξr(kr), potentially
varying from key to key. For each fixed value of the key, the actual value of
ξr(kr) can be decomposed into the contributions that stem from the biases of
the known trails and the biases of the remaining unknown trails in the hull. We
define the former to be the signal and the latter the noise:

Definition 1. Consider the linear approximation (Σ, δ) over an R-round itera-
tive block cipher and a fixed cipher key kr. The bias ξr(kr) of the hull (Σ, δ) is
given by

ξr(kr) =
∑

u0=α,uR=β

ξU (kr),

with ξU (kr) denoting the bias of the trail U with key kr. Suppose some t dominant
trails U = {U1, . . . , Ut} of the hull (Σ, δ) are known. By defining

ξUsignal
(kr)

def=
∑

U∈U
ξU (kr) (10)

ξUnoise
(kr)

def=
∑

(α,β)\U
ξU (kr), (11)

we obtain a repartitioning of the above sum as follows:

ξr(kr) = ξUsignal
(kr) + ξUnoise

(kr). (12)

In contrast to our approach, Röck and Nyberg [32] mention the concept of con-
sidering a subset of dominant trails, but do not consider the remainder of the
hull.

Based on Corollary 2, the noise part ξUnoise(kr) of the trail contributions can
now be modeled to approximately follow a normal distribution N (0, 2−n−2) over
the right keys. This leads to our refined key equivalence hypothesis:
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Hypothesis 4 (Refined key equivalence hypothesis). In the setting of Def-
inition 1, the key-dependent bias of a linear approximation in a key-alternating
cipher is given by

ξ(kr) = ξUsignal
(kr) + ξUnoise

(kr)

=
t∑

j=1

(−1)dUj
⊕UT

j kr |ξUj
| + N (0, 2−n−2).

Here, dUj
is either 0 or 1, standing for the key-independent part of the sign of

the linear trail contribution |ξUj
|, while UT

j kr deals with the key-dependent part
of it.

7 Constructive Key Equivalence in Key-Alternating
Ciphers

This leads to the following algorithm for estimating the data complexity N of a
linear attack on an n-bit block cipher using the linear approximation (Σ, δ): We
know t trails from the hull and sample ξUsignal over a number of keys by means
of (9), each time adding ξUnoise sampled from N (0, 2−n−2). For each tried key,
we compute an estimate for N based on this value of ξr. Then the average over
all tried keys is taken as the final estimate for N . This procedure is described in
Algorithm 7.1.

Algorithm 7.1. Computation of N using the signal-noise decomposition of the
hull for key-alternating ciphers.
Input: Trails Uj , 1 ≤ j ≤ t from the hull (α, β), their absolute biases |τUj |, number of

keys � to sample.
Input: Block length n, success probability PS ≥ 2−a.
Output: Estimate of the data complexity N required for the given parameters.
1: for i = 1, . . . , � do
2: Select the master key ki uniformly at random and compute the expanded key.
3: Sample noise(ki) from N (0, 2−n−2).
4: Compute

τ(ki) = τUsignal(ki) + τUnoise(ki)

=

t∑
j=1

(−1)
dUj

⊕UT
j Ki |τUj | + noise(ki).

5: Compute N(ki) based on τ(ki) with Algorithm 5.1.
6: end for
7: return Average N = 1

�

∑�
i=1 N(ki).
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7.1 Experimenting the Signal/Noise Decomposition

We have performed experiments on SmallPresent-20 to illustrate the effect of
the signal/noise decomposition of a linear hull. With a block length of n = 20
bits, and an 80-bit key space, it is not feasible to compute the exact distribution
or even only the exact average bias of a hull (Σ, δ) over the keys. Since n is small,
sampling and averaging over some keys is possible here, but this is not the case
anymore for realistic block lengths.

Consider the hull (Σ, δ) = (0x20400, 0x20000) over 3 rounds. A branch-and-
bound search for trails with |ξ| ⇒ 2−11 yields 8 trails from the hull: three with
absolute bias |ξ| = 2−10 and five with |ξ| = 2−11. Based on this data, the following
estimates for the data complexities of a linear attack with PS = 0.95 and varying
advantages were computed based on Proposition 2:

1. N for ξr(kr) of the known trails for one cipher key kr;
2. N determined with Algorithm 7.1 with η = 200 keys, but without the noise

part;
3. N determined with Algorithm 7.1 with η = 200 keys;
4. N for an estimation of the hull bias by means of the expected linear proba-

bility (ELP), averaged over all keys [28].

Additionally, the actual data complexity was determined experimentally. Each
experiment for a certain combination of N and a was averaged over 1000 times
to obtain a reliable relation between N and a for this fixed PS .

The results are depicted in Fig. 5. One observes that summing the trail biases
for one key results in a far too optimistic estimation. Averaging the data com-
plexity estimates for the signal trails for 200 keys (but without the noise part)
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Fig. 5. Theoretical and experimental evaluation of the data complexity with the
signal-noise decomposition of Algorithm 7.1. Cipher is SmallPresent with 5 rounds,
n = 20, PS = 0.95, the signal part contains 8 trails Uj with 2−10 ≤ |τUj | ≤ 2−11.
Experimental value of τ is 2−8.02.
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improves the accuracy, but yields an overestimate here. This can be attributed to
the impact of two factors: First, the hull must contain more signal trails that are
missing in our set of eight trails; and second, the noise impact of the remainder
of the hull is not accounted for. Additionally taking the noise into account yields
a more realistic estimate. In this specific case though, it is still an overestimate
since here obviously the remainder of the hull constructively helps to increase
the bias for many keys.

Figure 5 also compares our approach to the estimate based on the ELP,
obtained as the sum of the trail ELPs [28]. Note that computing the ELP exactly
is infeasible for realistic block ciphers, in contrast to our decomposition approach
where only a limited number of dominant trails have to be known.

8 Conclusions

In this paper, we proposed an approach to improving the accuracy of estimating
the data complexity and success probability of Matsui’s Algorithm 2.

First, we demonstrated that the standard interpretation of the wrong key
randomisation hypothesis in linear cryptanalysis implies a simplification that
can result in significant overestimations of the attack efficiency. Our adjusted
interpretation results in more precise estimates for the success probability and
data complexity of linear attacks. The largest improvements compared to pre-
vious results occur in the cases where the adversary attempts to use a linear
approximation with a low bias, or to attain a high computational advantage
over brute force, or both. These cases are particularly relevant in practice since
attacks are usually pushed to the limit by recovering many key bits or covering
as many rounds of the cipher as possible.

Second, our new analysis of linear attacks reveals that the success probability
is not a monotonous function of the data complexity, and can decrease if more
data is used. Somewhat surprisingly, using less data can therefore result in a
more powerful attack.

Third, we proposed a technique to refine the usual key equivalence hypothesis
by taking the linear hull effect into account.

Finally, all theoretical observations and techniques presented in this paper
have been verified by experiments with structurally different small-scale ciphers.

Acknowledgments. The authors would like to thank Vincent Rijmen for fruitful
discussions and the anonymous referees for their constructive comments.
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Abstract. WIDEA is a family of block ciphers designed by Junod and
Macchetti in 2009 as an extension of IDEA to larger block sizes (256 and
512 bits for the main instances WIDEA-4 and WIDEA-8) and larger
key sizes (512 and 1024 bits, respectively). WIDEA-w is composed of w
parallel copies of the IDEA block cipher, with an MDS matrix to provide
diffusion between them. An important motivation was to use WIDEA to
design a hash function.

In this paper we present low complexity attacks on WIDEA based on
truncated differentials. We show a distinguisher for the full WIDEA with
complexity only 265, and we use the distinguisher in a key-recovery attack
with complexity w · 268. We also show a collision attack on WIDEA-8 if
it is used to build a hash function using the Merkle-Damg̊ard mode of
operation.

The attacks exploit the parallel structure of WIDEA and the limited
diffusion between the IDEA instances, using differential trails where the
MDS diffusion layer is never active. In addition, we use structures of
plaintext to reduce the data complexity.

Keywords: Cryptanalysis · Block cipher · Hash function · Truncated
differential · IDEA · WIDEA · HIDEA

1 Introduction

Block ciphers are one of the most useful and versatile primitive in symmetric
cryptography. Their basic use is to encrypt data and provide confidentiality,
but they can also be used to build MAC algorithms (e.g. CBC-MAC), stream
ciphers (e.g. in counter mode) and hash functions (e.g. using the Davies-Meyer
or Matyas-Meyer-Oseas mode). Block ciphers are relatively well understood and
we have well-established ciphers suitable for most uses such as DES, AES, IDEA,
RC5, or Blowfish. However, there are still some new proposals to accommodate
specific needs such as large block size, low resources, reduced leakage, or high
speed on a particular platform. All these designs must be studied in depth before
they can be trusted and used in actual products. In this paper we study the recent
proposal WIDEA, which is based on IDEA.

S. Moriai (Ed.): FSE 2013, LNCS 8424, pp. 39–51, 2014.
DOI: 10.1007/978-3-662-43933-3 3, c© Springer-Verlag Berlin Heidelberg 2014



40 G. Leurent

IDEA. The “International Data Encryption Standard” (IDEA) is a block cipher
designed by Lai and Massey in 1991 [12]. IDEA is a modification of their earlier
“Proposed Encryption Standard” (PES) [11] and was initially called Improved
PES (IPES). IDEA uses 8.5 rounds of the so-called Lai-Massey scheme [16],
and mixes operations from incompatible structures (⊕, ≫, and ∃). It is well-
considered in the cryptographic community, and used in some products (e.g. in
PGP), but its adoption has been limited by IP restrictions.

After years of cryptanalysis, most of the known cryptanalytic techniques
have been used against IDEA: differential, linear, differential-linear, boomerang,
impossible differentials, bicliques, weak-keys, related-keys, . . . Still, the best
attacks in a block cipher scenario do not really affect the security of IDEA:
attack with a significant margin only reach 6 rounds [1,3,10,14] and only mar-
ginal attacks have been shown on the full version [3,10]. On the other hand, the
key schedule has been shown to be weak, and this gives classes of weak keys [4–6],
related-key attacks [2], and attacks in various hashing modes [17].

WIDEA. At FSE 2009 Junod and Macchetti proposed to revisit the IDEA
philosophy [9] in the light of modern CPU architectures. They gave a wordslice
implementation of IDEA using the vector instructions available in many current
CPU (SSE on x86, Altivec on PowerPC, NEON on ARM . . . ) and design a new
wide block cipher based on IDEA: WIDEA.

WIDEA-w is built from w parallel IDEA instances, using MDS matrices for
the diffusion across the parallel instances. WIDEA is quite fast on CPU with
vector instructions because the IDEA instances can be computed simultaneously.
WIDEA was expected to retain the good security properties of IDEA because it
follows the same design criteria: it mixes operations from incompatible structures
(⊕, ≫, ∃, and →) and full diffusion is achieved after one round.

WIDEA-w has a blocksize of 64 · w bits and a key size of 128 · w bits. The
main versions considered by the designers are WIDEA-4 and WIDEA-8; the
large block size and key size are justified with the idea of using them to design
a hash function.

Previous Analysis of WIDEA. Recently, Nakahara [7] and Mendel et al. [13]
found weak keys for WIDEA, similar to the weak keys of IDEA [5]. Mendel et al.
used the weak key property to create a free-start collision attack when WIDEA
is used in hash function mode.

1.1 Our Results

In this paper, we study the security of WIDEA as a block cipher, and when used
in a hashing mode. Our main result is a key recovery attack with complexity
270 or 271 which shows that WIDEA is very far from the expected strength of
a 512-bit or 1024-bit cipher. The large gap between the security of IDEA and
WIDEA is due to the insufficient diffusion across the parallel IDEA instances.
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Table 1. Comparision of attacks on WIDEA

Attack Version Data Time Mem. Ref, notes

CF collisions HIDEA-512 (w = 8) 214 [13], free-start

Distinguisher WIDEA-w 265 CP 265 264 3
Success: 63% w ≥ 4 265 CP 271 264 5.1, Seq. M

5 · 265+t/2 ACP 5 · 265+t/2 264−t 5.2
Key recovery WIDEA-w w · 268 CP w · 268 264 4

w ≥ 4 w · 268 CP w · 274 264 5.1, Seq. M

5w · 268+t/2 ACP 5w · 268+t/2 264−t 5.2
Hash collisions HIDEA-512 (w = 8) 2224 6

We describe a simple truncated differential trail in Sect. 2, where the MDS
diffusion layer is never active. This allows to keep a single IDEA instance active
and to have a relatively high probability for the trail. We show how to build
a distinguisher for WIDEA using structures of plaintext in Sect. 3. We give a
full key recovery attack in Sect. 4, and we discuss some techniques to reduce the
memory cost in Sect. 5. Finally, we study WIDEA used as a hash function, and
give a collision attack based on the same differential trail in Sect. 6.

Attack Settings. A block cipher is expected to behave like a family of pseudo-
random permutations: for an unknown key K, EK should be indistinguishable
from a truly random permutation. In this paper, we consider two different set-
tings, and our results are listed in Table 1:

Chosen Plaintext Attack: The adversary builds a list of plaintext Pi, and
receives the corresponding ciphertexts Ci = EK(Pi) under an unknown key K.

Adaptively Chosen Plaintext Attack: The adversary is given black-box
access to a block cipher EK with an unknown key K. He can ask for the encryp-
tion of any plaintext, and the choice of the plaintext can depend on previous
answers.

1.2 Description of WIDEA

We give a brief description of WIDEA, but our attack is independent of most low-
level details of the design. WIDEA, like IDEA, is a 16-bit oriented cipher, and
combines operations from several algebraic structures of size 216. The elements
of these structures are all mapped to 16-bit words, and the cipher uses the
operations alternatively. We use the following notations:
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X0 X1 X2 X3

Z0 Z1 Z2 Z3

Z4

Z5

Y0 Y1 Y2 Y3

A B

D

Γ Δ

A ⊕ (X0 Z0) √ (X2 Z2)
B ⊕ (X1 Z1) √ (X3 Z3)
D ⊕ (A Z4) B

Δ ⊕ D Z5

Γ ⊕ Δ (A Z4)
Y0 ⊕ (X0 Z0) √ Δ
Y1 ⊕ (X2 Z2) √ Δ
Y2 ⊕ (X1 Z1) √ Γ
Y3 ⊕ (X3 Z3) √ Γ

Fig. 1. IDEA round function

0 ≥ i < w
Ai ⊕ (X0,i Z0,i) √ (X2,i Z2,i)
Bi ⊕ (X1,i Z1,i) √ (X3,i Z3,i)
Di ⊕ (Ai Z4,i) Bi

D ⊕ M · M
0 ≥ i < w
Δi ⊕ Di Z5,i

Γi ⊕ Δi (Ai Z4,i)
Y0,i ⊕ (X0,i Z0,i) √ Δi

Y1,i ⊕ (X2,i Z2,i) √ Δi

Y2,i ⊕ (X1,i Z1,i) √ Γi

Y3,i ⊕ (X3,i Z3,i) √ Γi

Fig. 2. WIDEA round function

The round functions of IDEA and WIDEA are given in Figs. 1 and 2. The
important difference between the two is the multiplication by an MDS matrix M
over the field (GF(216),⊕,→). This operation is similar to the AES MixColumn
operation; it is used for diffusion between the parallel IDEA instances of WIDEA.
WIDEA iterates 8 rounds (for all values of w) plus a final half-round for key-
whitening:

C0,i = X0,i → K48,i C1,i = X2,i → K49,i C2,i = X1,i → K50,i C3,i = X3,i → K51,i

The key schedule is described over 64 · w words. The first 8 words are loaded
with the master key K, and the expanded words are computed as:

Ki =
(((

(Ki−1 ⊕ Ki−8)
16

≫ Ki−5

) 16
≪ 5

)
≪ 24

)
⊕ Ri,

where Ri are round constants. The round keys used for round r are
Zi,j = K6r+i,j .
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2 Truncated Differential Trail

Our attacks are based on a differential trail. We consider a pair of messages
P, P ∈ with a small difference encrypted through IDEA under the same key K,
and we study the difference in the state X,X ∈ after each round. However, we
don’t specify exactly the difference: we only specify for each word whether the
difference is zero or non-zero, giving a truncated differential trail.

We start with a pair of states with only one IDEA instance active, such as
(with instance 0 active):

X0,0 √= X ∈
0,0 X1,0 √= X ∈

1,0 X2,0 √= X ∈
2,0 X3,0 √= X ∈

3,0

X0,i = X ∈
0,i X1,i = X ∈

1,i X2,i = X ∈
2,i X3,i = X ∈

3,i for 1 ≤ i < w

When we compute the round function, we have Di = D∈
i for i √= 0, and with

probability 2−16, we also have D0 = D∈
0. In this case, the input of the MDS

matrix will be inactive, and the difference does not propagate to the other IDEA
instances. This leads to:

Y0,0 √= Y ∈
0,0 Y1,0 √= Y ∈

1,0 Y2,0 √= Y ∈
2,0 Y3,0 √= Y ∈

3,0

Y0,i = Y ∈
0,i Y1,i = Y ∈

1,i Y2,i = Y ∈
2,i Y3,i = Y ∈

3,i for 1 ≤ i < w

Graphically, we can represent the state X as a matrix of 16-words, with active
words in black and inactive words in white:

p=2−16

The trail inside the Multiply/Add/Diffuse box is:

p=2−16

The MDS matrix is applied to the right column, and all inputs are inactive.
We iterate this trail for 8 rounds of WIDEA, and the final half round does

not affect which words are active. This gives a truncated differential trail with
probability 2−128 for the full 8.5 rounds of WIDEA:

p=2−128
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For a random permutation over 64 · w bits, a pair would follow this trail
with probability 2−64·(w−1). Therefore, we have an efficient distinguisher for
WIDEA-w as soon as w ⇒ 3. If w ⇒ 4, the distinguisher is very strong, and we
do not expect to have any false positives.

3 Distinguisher

To exploit this property, we use structures of 264 plaintext, where one slice
takes all possible values, and the other slices are fixed to a constant value. This
structure gives 264 × (264 −1)/2 ∈ 2127 pairs of plaintext; each pair has only one
active slice and is a potential candidate for the differential trail. If we take two
such structures, this gives about 2128 plaintext pairs, and with a probability of
1 − 1/e ∈ 63%, at least one pair will follow the truncated trail.

We can efficiently test if such pairs are present by inserting all the ciphertexts
in a hash table indexed by the slices that are expected to be inactive. This gives
a chosen-plaintext distinguisher for WIDEA with complexity 265 as shown in
Algorithm 1.

Algorithm 1. Distinguish WIDEA from a random permutation
Input: E

for 0 ≥ t < 2 do
T ⊕ ∅

X ⊕ Rand()
for all X0,0, X0,1, X0,2, X0,3 do

Y ⊕ E(X)
Y ∼ ⊕ Y1,0...3≤Y2,0...3≤ . . . ≤Yw−1,0...3

if Y ∼ ∈ T then
return WIDEA Δ (T{Y ∼}, X) is a right pair.

end if
T{Y ∼} ⊕ X

end for
end for
return Random

4 Key Recovery

We can turn this simple distinguisher into a full key recovery with some more
effort.

4.1 First-Round Key

We consider a right pair (X,X ∈), and we study the internal state; we can express
D0,D

∈
0:

D0 =
((

(X0,0 → Z0,0) √ (X2,0 ≫ Z2,0)
)→ Z4,0

)
≫
(
(X1,0 ≫ Z1,0) √ (X3,0 → Z3,0)

)

D∈
0 =
((

(X ∈
0,0 → Z0,0) √ (X ∈

2,0 ≫ Z2,0)
)→ Z4,0

)
≫
(
(X ∈

1,0 ≫ Z1,0) √ (X ∈
3,0 → Z3,0)

)
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Since the pair follows the trail, we have D0 = D∈
0, or equivalently:

((
(X0,0 → Z0,0) √ (X2,0 ≫ Z2,0)

)→ Z4,0

)
�
((

(X ∈
0,0 → Z0,0) √ (X ∈

2,0 ≫ Z2,0)
)→ Z4,0

)

=
(
(X ∈

1,0 ≫ Z1,0) √ (X ∈
3,0 → Z3,0)

)
�
(
(X1,0 ≫ Z1,0) √ (X3,0 → Z3,0)

)
(1)

In this equation, the left hand side is a function of Z0,0, Z2,0, Z4,0 only, while the
right hand size is a function of Z1,0, Z3,0 only. We denote them as:

Fi(X,X ∈, Z0,i, Z2,i, Z4,i) =
((

(X0,i ∃ Z0,i) ⊕ (X2,i ≫ Z2,i)
) ∃ Z4,i

)

�
((

(X ∈
0,i ∃ Z0,i) ⊕ (X ∈

2,i ≫ Z2,i)
) ∃ Z4,i

)
(2)

Gi(X,X ∈, Z1,i, Z3,i) =
(
(X ∈

1,i ≫ Z1,i) ⊕ (X ∈
3,i ∃ Z3,i)

)

�
(
(X1,i ≫ Z1,i) ⊕ (X3,i ∃ Z3,i)

)
. (3)

We can recover the key efficiently using a meet-in-the-middle technique.
On the one hand, we compute F0(X,X ∈, k0, k2, k4) for all k0, k2, k4, and on
the other hand, we compute G0(X,X ∈, k1, k3) for all k1, k3. Then we look for
matches in the list because the correct key satisfies F0(X,X ∈, Z0,0, Z2,0, Z4,0) =
G0(X,X ∈, Z1,0, Z3,0) for a right pair X,X ∈.

In order to achieve a strong filtering, we use several right pairs X(j),X ∈(j) and
we look for simultaneous matches between all the F ’s and G’s, i.e. matches in the
concatenations

∣∣∣∣k
j=0

F0(X(j),X ∈(j), k0, k2, k4) and
∣∣∣∣k
j=0

G0(X(j),X ∈(j), k1, k3).
Unfortunately, this filtering cannot distinguish the real key K, and the key K ∈

where the most significant bit of Z1,0 is flipped, because the effect of this bit on
D is linear.

Each pair gives a 16-bit filtering and we are recovering 79 key bits, so we
expect that 5 pairs would be sufficient. However, when implementing the attack,
we found out that the filtering given by each pair is not independent, and we
need more than 5 pairs; our experiments show that using k = 8 pairs is enough
to isolate a single key pair most of time.

Therefore we can recover the correct value of Z0...4,0 (up to one bit) with
complexity 23·16 = 251 (we consider that the computation of 8 F and G functions
costs about the same as one evaluation of WIDEA). We can also recover the keys
Z0...4,i used in the other IDEA instances in the same way: we just need different
pairs following a path with another active slice.

4.2 Second-Round Key

We can now compute all the inputs to the MDS matrix in the first round, since
we know the keys used in each IDEA instance. Then we compute the output
of the MDS matrix, and we can again consider the parallel IDEA instances
independently. First, we guess Z5,i in order to compute the state after the end of
the first round. Then we apply the same meet-in-the-middle strategy as for the
first round, in order to recover the second round key Z6...10,i. Finally, we know
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that the master key is Z0...7 according to the key expansion algorithm. If several
key candidates remain, we test them with one of the plaintext/ciphertext pairs.
This would give a key-recovery with complexity w · 216 · 248 = w · 264.

Missing Key Bits. In fact, we have 2w key candidates for the first round,
because the most significant bits of the Z1,i’s can not be recovered by testing
collisions in D. Instead of running the analysis for the second round with all these
candidates, we use the fact that the unknown bits have a linear effect on the MDS
operation. Moreover, the coefficients of the MDS matrix given in [9] for WIDEA-8
are all between 1 and 9; therefore any linear combination is between 0 and 15.
For WIDEA-4, the coefficients are between 1 and 3; any linear combination is
between 0 and 3. Instead of guessing the w missing bits of the key, we can guess
the effect on the MDS output, which is of the form t → 0x8000, with 0 ≤ t < 4
for WIDEA-4 and 0 ≤ t < 16 for WIDEA-8 (i.e. a 2-bit guess and a 4-bit guess,
respectively). Therefore the actual complexity of the key-recovery attack will be
4 · 22 · 264 = 268 for WIDEA-4, and 8 · 24 · 264 = 271 for WIDEA-8. The attack
is described in Algorithms 2 and 3.

4.3 Complexity

We can slightly reduce the complexity using properties of the key schedule. More
precisely, when K6...10,0 has been recovered in the first IDEA instance, we can
use the key scheduling algorithm to compute some bits of K8, so that recovering
the key of the next instance become negligible compared to the first key recovery.
This reduces the complexity by a factor w.

Therefore, the analysis step has a complexity of only 266 memory accesses to
a table of size 232 for WIDEA-4 (268 accesses to a similar table for WIDEA8).
The computation of the F ’s and G’s will likely be negligible before the cost of
memory accesses. As a rough estimation we can assume that a memory access
to a table of size 232 takes about the same time as the computation of the block
cipher.

Data Complexity. The data complexity of the attack is w · 268: we need 8 · w
right pairs, and each pair is found after 265 chosen plaintexts. The data filtering
step to isolate right pairs is actually the most expensive step of the attack: it
requires w · 268 memory accesses to a table of size 264.

5 Reducing the Memory Cost

Since the complexity of the key-recovery attacks on WIDEA is rather low, we
briefly discuss practical aspects of the attack, in addition to the complexity
figures which don’t account for the cost of the memory. The bottleneck of the
attack is the filtering of right pairs. If we use a hash table to find collisions in
each structures as explained in Sect. 3, we need a random access memory of size
264, which is probably less practical than the time complexity of 266 or 268 for
the analysis step.
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Algorithm 2. Recover the Key from WIDEA
Input: (X(i,j), X ∼(i,j)) right pairs with slice i active 0 ≥ i < w, 0 ≥ j < k = 8

Δ First step: recover K0...4

for 0 ≥ i < w do
T ⊕ ∅

for all k1, k3 do

G ⊕ ∣∣∣∣k
j=0

Gi(X
(i,j), X ∼(i,j), k1, k3)

T{G} ⊕ (k1, k3)
end for
for all k0, k2, k4 do

F ⊕ ∣∣∣∣k
j=0

Fi(X
(i,j), X ∼(i,j), k0, k2, k4)

if F ∈ T then
k1, k3 ⊕ T{F}
K0...4,i ⊕ k0, k1, k2, k3, k4

end if
end for

end for
Δ Second step: recover K5...10

for 0 ≥ i < w do
for all k5, 0 ≥ t < 16 do

K5,i ⊕ k5

for all i, k do
Y i,k ⊕ RoundTweak(X (i,k), K, i, t ⊗ 0x8000)
Y ∼i,k ⊕ RoundTweak(X ∼(i,k), K, i, t ⊗ 0x8000)

end for
T ⊕ ∅

for all k1, k3 do

G ⊕ ∣∣∣∣k
j=0

Gi(Y
(i,j), Y ∼(i,j), k1, k3)

T{G} ⊕ (k1, k3)
end for
for all k0, k2, k4 do

F ⊕ ∣∣∣∣k
j=0

Fi(Y
(i,j), Y ∼(i,j), k0, k2, k4)

if F ∈ T then
k1, k3 ⊕ T{F}
K6...10,i ⊕ k0, k1, k2, k3, k4

end if
end for

end for
end for
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Algorithm 3. WIDEA round with a tweak (ι, t) after the MDS step
Δ t is the effect of the missing bits of Z1 on Dι

function RoundTweak(X, Z, η, t)
for 0 ≥ i < w do

Ai ⊕ (X0,i → Z0,i) √ (X2,i ≫ Z2,i)
Bi ⊕ (X1,i ≫ Z1,i) √ (X3,i → Z3,i)
Di ⊕ (Ai → Z4,i) ≫ Bi

end for
D ⊕ M · D
Dι ⊕ Dι √ t
for 0 ≥ i < w do

ffii ⊕ Di → Z5,i

Φi ⊕ ffii ≫ (Ai → Z4,i)
Y0,i ⊕ (X0,i → Z0,i) √ ffii

Y1,i ⊕ (X2,i ≫ Z2,i) √ ffii

Y2,i ⊕ (X1,i ≫ Z1,i) √ Φi

Y3,i ⊕ (X3,i → Z3,i) √ Φi

end for
return Y

end function

5.1 Sorting

A first way to avoid this problem is to store all the ciphertexts from a structure
sequentially, and to run a sorting algorithm to find collisions. This still requires
a memory of size 264, but we only make sequential accesses to this huge memory,
and we can use disk or tape storage. The sorting algorithm increases the cost of
the attack by a logarithmic factor, but the resulting attack will be much easier
to carry out in practice.

The storage needed for the attack will be about 264 elements of 16 bytes each
(4 16-bit words for the active input slice, and the output can be restricted to 4
16-bit words if we use an extra pass to check that the rest of the state collides).
This amounts to 268 bytes, or 256 exabytes.

5.2 Time-Memory Trade-Offs

We can also use a time-memory trade-off to reduce the memory requirement of
the attack. The filtering step of the attack is essentially a collision search for the
function

φr : {0, 1}64 ≈ {0, 1}64·(w−1)

x ∪≈ Trunc64·(w−1)(EK(x∀r))

with a random r ∅ {0, 1}64·(w−1). If we truncate the output of φr to 64 bits, we
can find collisions with a memory-less algorithm for a complexity of 232, using
adaptively chosen inputs. However, we expect on average that 263 collisions
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exists for this function, but only 0.5 collisions correspond to a right pair for
the differential trail. Therefore the total complexity to find a right pair without
memory will be 296.

More generally, we can store distinguished points so that finding N collisions
costs less than N · 232. Using the analysis of [15], we know that we can find a
“golden collision” with a complexity of 2 · 2.5 · 264+t/2 if we have a memory of
size 264−t (with 0 < t < 64).

6 Hash Function Collisions

One important use case of WIDEA as envisioned by the designers is to build a
hash function. Hash function benchmarks are given in [9], and a more complete
description of a hash function (named HIDEA) was presented in the ESC semi-
nar [8]. HIDEA uses WIDEA to build a compression function with the Davies-
Meyer mode, and iterates it with the Merkle-Damg̊ard and HAIFA modes of
operation. We note that the presentation of HIDEA in [8] suggests to use a
10.5-round WIDEA, instead of the 8.5-round version of [9].

To find collisions for HIDEA, we first look for a pair of messages M,M ∈ so that
the internal state X,X ∈ reached after processing them satisfies X0...3,i = X ∈

0...3,i

for i √= 0. This is equivalent to finding a collision in a truncated function with
an output of 64 · (w − 1) bits. For this step we can store the hash of 232·(w−1)

random messages, or use a memory-less collision finding algorithm. This step has
a complexity of 232·(w−1), i.e. 2224 for WIDEA-8. We note that we can just as
easily have two pre-specified prefixes P and P ∈ and look for M,M ∈ such that the
state X,X ∈ reached after processing P∀M and P ∈∀M ∈ satisfies X0...3,i = X ∈

0...3,i

for i √= 0.
We assume that P∀M and P ∈∀M ∈ both have the same length, and this length

is an integral number of blocks. When we append a random block N to P∀M
and P ∈∀M ∈, the compression function is computed as:

h(X,N) = Y ⊕ X, Y = EN (X)
h(X ∈, N) = Y ∈ ⊕ X ∈, Y ∈ = EN (X ∈).

We have X0...3,i = X ∈
0...3,i for i √= 0, and we know that with probability 2−128

(2−160 for a 10.5-round WIDEA), this gives Y0...3,i = Y ∈
0...3,i for i √= 0. Addition-

ally, we have Y0...3,0 ⊕ X0...3,0 = Y ∈
0...3,0 ⊕ X ∈

0...3,0 with probability 2−64. There-
fore we have h(X,N) = h(X ∈, N) with probability 2−192 (2−224 for a 10.5-round
WIDEA).

When combining both steps, we have a collision attack with complexity 2224

for WIDEA-8 with up to 10.5 rounds. The attack is described by Algorithm 4.
Surprisingly, this attack doesn’t use any property of the key schedule, and

can use arbitrary messages. This allows to build meaningful collisions easily. On
the other hand, a few more rounds can be attacked using message modification
techniques, if needed.



50 G. Leurent

Algorithm 4. Find collisions for HIDEA-512
Input: P, P ∼ chosen prefix

Find M, M ∼ with Trunc64(w−1)(H(P≤M)) = Trunc64(w−1)(H(P ∼≤M ∼))
Δ Complexity 2224

repeat
N ⊕ Rand()

until H(P≤M≤N) = H(P ∼≤M ∼≤N)
Δ Complexity 2224

7 Conclusion

In this paper we show devastating attacks on the WIDEA block cipher. Our
main result is a key-recovery attack with complexity w · 268 for the WIDEA
family with w ⇒ 4. In particular this affects the main instances considered in
the WIDEA paper: WIDEA-4 (256-bit block and 512-bit key) and WIDEA-8
(512-bit block and 1024-bit key). We also show a collision attack when WIDEA
is used to build a hash function, as was proposed by the designers. The collision
attack affects instances with w ⇒ 8: we can build collisions for HIDEA-512 (based
on WIDEA-8) with a complexity of 2224.

The attacks exploit the limited diffusion between the IDEA instances by
building trails where the MDS diffusion layer is never active. Since the input of
the MDS layer is only 16-bit for one IDEA instance, such trails have a probability
of 2−16·r for an r-round WIDEA. In addition, we use structures of plaintext to
reduce the data complexity of the block-cipher attacks. The attacks don’t depend
on low-level details of the design (such as the key schedule, the MDS matrix, or
the exact computational graph of IDEA). The complexity is almost independent
of the width w, and can even break extended version of WIDEA with more than
8.5 rounds.

We have implemented the key-recovery attack with a reduced WIDEA using
8-bit words, and all the steps of the attack worked as expected.
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Abstract. Relay attacks (and, more generally, man-in-the-middle
attacks) are a serious threat against many access control and payment
schemes. In this work, we present distance-bounding protocols, how these
can deter relay attacks, and the security models formalizing these pro-
tocols. We show several pitfalls making existing protocols insecure (or
at least, vulnerable, in some cases). Then, we introduce the SKI pro-
tocol which enjoys resistance to all popular attack-models and features
provable security. As far as we know, this is the first protocol with such
all-encompassing security guarantees.

1 Why Distance-Bounding?

It is well known that a chess beginner can win against a chess grand-master
easily by defeating two grand-masters concurrently, taking different colors in
both games, and relaying the move of one master to the other. This is a pure
relay attack where two masters play against each other while each of them thinks
he is playing against a beginner.

In real life, relay attacks find applications in access control. For instance, a
car with a wireless key can be opened by relaying the communication between
the key (the token) and the car. RFID-based access control to buildings can
also be subject to relay attacks [21]. The same goes for (contactless) credit-card
payments: a customer may try to pay for something on a malicious terminal
which relays to a fake card paying for something more expensive [15].

To defeat relay attacks, Brands and Chaum [9] introduced the notion of
distance bounding protocol. This relies on the fact that information is local and it
cannot travel faster than light. So, an RFID reader can identify when participants
are close enough because the round-trip communication time has been small
enough. The idea is that a prover holding a key x proves to a verifier that he
is close to him. Ideally, this notion should behave like a traditional interactive
proof system in the sense that it must satisfy:
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– completeness (i.e., an honest prover close to the verifier will pass the protocol
with high probability)

– soundness (i.e., if the verifier accepts the protocol, then it must be the case
that the information held by all close participants includes x)

– security (i.e., if the prover honestly runs the protocol, the provided information
does not provide any advantage to defeat soundness).

The last property is weaker than zero-knowledge and is generally required in
identification protocols. In practice, the literature does not define distance-boun-
ding like this but rather considers several popular threat models, as per the
following summary.

– Distance fraud [9]: a far-away malicious prover tries to pass the protocol.
– Mafia fraud [14]: an adversary between a far-away honest prover and a ver-

ifier tries to get advantage of his position to make the verifier accept. (This
generalizes relay attacks as the adversary may also modify messages.)

– Terrorist fraud [14]: a far-away malicious prover, with the help of an adver-
sary, tries to make the verifier accept, but without giving the adversary any
advantage to later pass the protocol alone. For instance, the malicious prover
wants to make the verifier accept, although he is far away, but does not want
to give his secret x to the adversary.

– Impersonation fraud [3]: An adversary tries to impersonate the prover and
make the verifier accept.

– Distance hijacking [13]: A far-away prover takes advantage of some honest
provers running the protocol to make the verifier accept.

In our model [8], we factor all these common threats into three possible
frauds.

– Distance fraud : this is the classical notion in which we also consider con-
currency with many other participants. I.e., we include other possible provers
(with other secrets) and verifiers. Consequently, our generalized distance fraud
also includes distance hijacking.

– Man-in-the-middle: we consider an adversary (maybe at several locations)
who can interact with many honest provers (possibly with different keys)
and verifiers during a learning phase. Then, the attack phase contains honest
provers with the key x, far away from a verifier V , and possibly many other
honest provers (with other keys) and other verifiers. The goal of the adversary
is to make V accept the prover holding x. Clearly, this generalizes mafia fraud
and includes impersonation fraud.

– Collusion fraud : A far-away prover holding x helps an adversary to make
the verifier accept the proof. This might be in the presence of many other
honest participants. However, there should be no man-in-the-middle attack
constructed based on this malicious prover. I.e., the adversary should not
extract from him any advantage to run (later) a man-in-the-middle attack.

Ideally, we could just keep this last notion which includes all others and is closer
to the soundness and the security notion in the interactive proof system.
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Table 1. Best attack results on existing distance-bounding Protocols [7]

Protocol Success probability
Distance-fraud MIM Collusion-fraud

Brands & Chaum [9] (1/2)n [18] (1/2)n [25] 1 [25]
Bussard & Bagga [10] 1 [4] (1/2)n [10] 1 [4]
Čapkun et al. (SECTOR) [11] (1/2)n [18] (1/2)n [25] 1 [25]
Hancke & Kuhn [20] (3/4)n [18] (3/4)n [25] 1 [25]
Reid et al. [34] (3/4)n [18] (3/4)n or 1 [4,26] (3/4)ν [25]
Singelée & Preneel [35] (1/2)n [18] (1/2)n [25] 1 [25]
Tu & Piramuthu [36] (3/4)n [30] 1 [25] (3/4)ν [30]
Munilla & Peinado [29] (3/4)n [18] (3/5)n [18] 1 [18]
Swiss-Knife [25] (3/4)n [25] (1/2)n [25] (3/4)ν [25]
Kim & Avoine [24] (7/8)n [18] (1/2)n [18] 1 [18]
Nikov & Vauclair [31] 1/ka [25] (1/2)n [25] 1 [25]
Avoine et al. [2] (3/4)n [2] (2/3)n [2] (2/3)ν [2]
a k is an additional parameter in this protocol

Verifier Prover
secret: x secret: x

initialization phase

pick NV
NV−−−−−−−−−−⊕
NP∃−−−−−−−−−− pick NP

a1 a2 = fx(NP,NV ) a1 a2 = fx(NP,NV )

distance bounding phase
for i = 1 to n

pick ci → {1,2}
start timeri

ci−−−−−−−−−−⊕
stop timeri

ri∃−−−−−−−−−− ri =
a1,i if ci = 1
a2,i if ci = 2

check responses

check timers
OutV−−−−−−−−−−⊕

Fig. 1. The Hancke-Kuhn distance-bounding protocol [20]

We summarize the best security results for many existing distance-bounding
protocols. Table 1 gives the probability of success of the best known attacks. This
table does not consider possibly bad pseudorandom function (PRF) instances [5]
nor any terrorist fraud based on noise tolerance [19]. These aspects will be dis-
cussed later in the present paper. For collusion-frauds, we consider a prover
leaking all but ν bits of his secret.
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Verifier Prover
secret: x secret: x

initialization phase

pick NV
NV−−−−−−−−−−⊕ pick NP

a1 = fx(NP,NV ) NP∃−−−−−−−−−− a1 = fx(NP,NV )
a2 = a1 √ x a2 = a1 √ x

distance bounding phase
for i = 1 to n

pick ci → {1,2}
start timeri

ci−−−−−−−−−−⊕
stop timeri

ri∃−−−−−−−−−− ri = aci,i
check responses

check timers
OutV−−−−−−−−−−⊕

Fig. 2. The DBENC distance-bounding protocol [5,34]

2 Towards a Secure Protocol

We first look at the Hancke-Kuhn protocol [20] in Fig. 1. Here, we use a symmet-
ric key x and two vectors a1, a2 of n bits which are derived from an exchange of
nonces. Then, the distance bounding phase proceeds in n rounds. In each round,
the verifier selects a random ci → {1, 2}, sends it to the prover and expects to
receive ri, the ith bit of aci . The verifier measures the round-trip communica-
tion time and rejects the proof if it took too long to respond or the response is
incorrect.

This protocol is vulnerable to a trivial terrorist fraud (actually, it was not
meant to resist to it): the malicious prover does the initial phase which is not
time-critical, then gives a1 and a2 to the adversary who can become a proxy for
the prover to the verifier. Clearly, a1 and a2 do not leak x.

To fix this problem, Reid et al. [34] introduce the protocol in Fig. 2 which we
call DBENC in [5]. Here, only a1 is derived from the initial nonces and a2 is set
to a1 √x. So, a malicious prover providing a1 and a2 to an adversary would also
leak x.

First of all, we stress that nonces must really be “numbers once used”, as
their name suggests. I.e., they shall not repeat. Otherwise, this protocol (as well
as many others) would leak some sensitive information, as noticed in [28].

Second, we observe that this protocol unfortunately becomes vulnerable to
a man-in-the-middle attack [25]. The idea of the attack is that the adversary
relays, during a learning phase, the communication between a close prover and
a verifier, but flips one challenge cj . The value rj which is sent as a response to
the verifier is selected at random. So, from the prover, the adversary learns the
response to cj , and by the final output of the verifier (acceptance or rejection),
the adversary deduces what is the correct answer to 1− cj . So, he learns the jth
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Verifier Prover
secret: x secret: x

initialization phase
NP∃−−−−−−−−−− pick NP

pick NV
NV−−−−−−−−−−⊕

a1 a2 = fx(NP,NV ) a1 a2 = fx(NP,NV )

distance bounding phase
for i = 1 to n

pick ci → {1,2,3}
start timeri

ci−−−−−−−−−−⊕

stop timeri
ri∃−−−−−−−−−− ri =

⎧
⎨

⎩

a1,i if ci = 1
a2,i if ci = 2
xi √a1,i √a2,i if ci = 3

check responses

check timers
OutV−−−−−−−−−−⊕

Fig. 3. The TDB distance-bounding protocol [2]

bit of a1 and a2 and deduces xj . He can repeat this for each j and infer x. Then,
the attack phase just impersonates the prover to the verifier, thanks to x. Other
instances of DBENC where a2 = a1 √ x are replaced by addition modulo some
q or addition with a random factor, can also be broken, as shown in [4].

In [28], it was suggested to replace a1 = fx(NP , NV ) and a2 = a1 √ x by
a1‖a2 = fx(NP , NV ) and a release of (R, x √ hR(a1, a2)) for some random R,
where h is a universal hash function. However, proving the security of such a
protocol does not seem to be easy.

The problem seems more easily amended by considering the TDB protocol [2]
in Fig. 3. Now, there are three possible challenges ci → {1, 2, 3}. The answer to 1
and to 2 consists of bits from a1 and a2, respectively. Both a1 and a2 are derived
from the nonces. The answer to 3 is a bit from a3 = a1 √ a2 √ x. The main idea
is that we use a threshold secret-sharing scheme to split xi into three shares, so
that two shares alone leak no information.

The security of TDB assumes that f is a PRF. Unfortunately, this assumption
alone is not enough to guarantee the security and some related security results
from the literature are incorrect. Indeed, as shown in [5], we can artificially
construct PRFs which make the protocol insecure. The PRF construction is
done by PRF programming. For instance, given a PRF g, we construct a new
function f defined by the following instances:

fx(NP , NV ) =
{

x‖x if NP = x
gx(NP , NV ) otherwise

We can easily show that f is also a PRF [5]. When the TDB protocol is instan-
tiated with this f , a malicious prover can mount a distance fraud by selecting
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Verifier Prover
secret: x secret: x

initialization phase

pick a, NV
NP∃−−−−−−−−−− pick NP

M = a√ fx(NP,NV )
M,NV−−−−−−−−−−⊕ a = M √ fx(NP,NV )

distance bounding phase
for i = 1 to n

pick ci → {1,2,3}
start timeri

ci−−−−−−−−−−⊕

stop timeri
ri∃−−−−−−−−−− ri =

⎧
⎨

⎩

a1,i if ci = 1
a2,i if ci = 2
xi √a1,i √a2,i if ci = 3

check responses

check timers
OutV−−−−−−−−−−⊕

Fig. 4. The TDB distance-bounding protocol with PRF masking [5]

NP = x. Indeed, we would have a1 = a2 = a3. So, the response ri is predicted
before receiving the challenge ci. Consequently, the prover can make sure that
the response arrives on time, without even knowing ci: he just replies before
receiving ci.

We fix this PRF-based problem by using PRF masking [5,7,8] as shown in
Fig. 4. There, the vectors a are chosen by the verifier. So, the malicious prover
cannot induce some properties onto a to mount distance frauds.

But, we can also mount a man-in-the-middle attack by PRF programming.
Given a PRF g, we first define a predicate trapdoorx(ᾱ‖t) ⇒∈ t = gx(ᾱ) √
right half(x). It must be hard, by playing with a gx oracle, to construct a string
satisfying this predicate. However, when playing with the prover in a learning
phase, and using the challenges c = (1, . . . , 1, 3, . . . , 3), the adversary obtains
such a string ᾱ. We define

fx(NP , NV ) =

⎧
⎨

⎩

a1‖a2 = α ‖ β ‖ γ ‖ β √gx(α) if ¬trapdoorx(NV )
where (α, β, γ) = gx(NP , NV )

a1‖a2 = x‖x otherwise

We can easily see that f is a PRF. Then, the learning phase works as follows:

1: play with P and send c = (1, . . . , 1, 3, . . . , 3) to obtain from the responses ᾱ⊕t
satisfying trapdoorx

2: play with P again with NV = ᾱ⊕t and get x

Based on x, the adversary can impersonate the prover.
In [5], we report other protocols which are weak, with respect to PRF progra-

mming (see Table 2).
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Table 2. Protocol which can be broken by PRF programming techniques [5]

Protocol Distance-Fraud MIM

TDB Avoine-Lauradoux-Martin [2]
√ √

Dürholz-Fischlin-Kasper-Onete [17]
√

–
Hancke-Kuhn [20]

√
–

Avoine-Tchamkerten [3]
√

–
Reid-Nieto-Tang-Senadji [34]

√ √
Swiss-Knife Kim-Avoine-Koeune-Standaert-Pereira [25] –

√

We do not fix this problem by primarily proposing another protocol but by
firstly requiring a new security assumption on the PRF f . Indeed, we somehow
require that leaking fx(y), sometimes fx(y) √ x, and sometimes a mixture of
both, does not compromise the security. More precisely, we require the (ε, T )-
circular keying property [8]. This assumes that an adversary A of complexity at
most T making queries of the form (yi, ai, bi) to an oracle

y, a, b ≈⊕ (a · x∈) + (b · fx(y))

cannot distinguish (up to an advantage ε) whether x and x∈ have been selected
by having x = x∈ or x and x∈ are independent. To make it possible, the adversary
must follow the constraint that for each i1, . . . , iq, c1, . . . , cq satisfying yi1 = · · · =
yiq and

∑q
j=1 cjbij = 0, we have that

∑q
j=1 cjaij = 0. As a sanity check, we prove

that this notion makes sense by constructing a circular-keying secure PRF in the
random oracle model [8]. Furthermore, this property excludes programmed PRFs
as per mentioned before.

All the previous protocols assume that there is no noise to harm the protocol
execution. However, the distance bounding phase is subject to high constraints.
Indeed, an allowed error of one microsecond in the time measurement will cor-
respond to an imprecision of 300 meters in the distance estimate, due to the
speed of light. Clearly, this may not defeat relay attacks. To reach a precision of
10 meters, the prover shall not spend more than 33 nanoseconds for receiving ci,
computing ri, and sending ri. So, computation or transmission will eventually be
subject to noise. To keep the completeness property, we need to tolerate a linear
number of errors, depending on the noise level. Thus, in the following protocol
(depicted on Fig. 5), only τ out of n rounds should be correct for a successful
run of the protocol.

As noticed by Hancke [19], this introduces a new vulnerability to terrorist
fraud. The idea of his attack is that the malicious prover will run the initialization
phase, then for τ out of n values of i he will reveal the response function ci ≈⊕ ri to
the adversary. This will only leak τ bits of x which is not enough to impersonate
the prover. Then, the adversary will be able to correctly answer τ rounds to pass
the protocol. (To make the attack work, the selection of the τ out of n values of
i must be fixed.)
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Verifier Prover
secret: x secret: x

initialization phase

pick a, NV
NP∃−−−−−−−−−− pick NP

M = a√ fx(NP,NV )
M,NV−−−−−−−−−−⊕ a = M √ fx(NP,NV )

distance bounding phase
for i = 1 to n

pick ci → {1,2,3}
start timeri

ci−−−−−−−−−−⊕

stop timeri
ri∃−−−−−−−−−− ri =

⎧
⎨

⎩

a1,i if ci = 1
a2,i if ci = 2
xi √a1,i √a2,i if ci = 3

#{i : ri and timeri correct} ∪ τ OutV−−−−−−−−−−⊕

Fig. 5. The TDB distance-bounding protocol with PRF masking and noise tolerance

3 The SKI Protocol

To address all previously noticed vulnerabilities, we introduce the SKI protocol.1

This protocol appeared in [7,8]. It enjoys provable security. The protocol is
depicted in Fig. 6. There, the function f must be a PRF with circular-keying
security.

Given a vector μ, the linear function Lμ is defined by

Lμ(x) = (μ · x, . . . , μ · x)

Namely, all bits are set to the dot product between μ and x. With x∈ = Lμ(x),
Hancke’s terrorist fraud would reveal a majority of the bits of x∈ thus leaking
Lμ(x). Since Lμ is not chosen by the prover, by repeating the attack, we can
collect enough information about x to reconstruct x. So, Hancke’s terrorist fraud
is prevented.

We let s denote the bit-length of the secret x. I.e., it is no longer necessarily
equal to n, the number of rounds.

We define the following function:

B(n, τ, q) =
n∑

i=τ

(n

i

)
qi(1 − q)n−i

To study completeness, we assume that there is a probability of pnoise that one
round is incorrectly executed by honest players. The probability that an honest
1 The name SKI comes from the first names of the authors: Serge, Katerina, and

Ioana.
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Verifier Prover
secret: x secret: x

initialization phase
NP∃−−−−−−−−−− pick NP

pick a,Lµ,NV
M,Lµ,NV−−−−−−−−−−⊕

M = a√ fx(NP,NV ,Lµ) a = M √ fx(NP,NV ,Lµ)
x = Lµ(x) x = Lµ(x)

distance bounding phase
for i = 1 to n

pick ci → {1,2,3}
start timeri

ci−−−−−−−−−−⊕

stop timeri
ri∃−−−−−−−−−− ri =

⎧
⎨

⎩

a1,i if ci = 1
a2,i if ci = 2
xi √a1,i √a2,i if ci = 3

#{i : ri and timeri correct} ∪ τ OutV−−−−−−−−−−⊕

Fig. 6. The SKI distance-bounding protocol [7,8]

prover, close to the verifier, passes the protocol is B(n, τ, 1 − pnoise). By using
the Chernoff bound [12], this is greater than 1 − e−2 ε2 n for

τ

n
< 1 − pnoise − ε (1)

We now describe the best distance fraud against SKI. The malicious prover
just runs the initialization phase. During the distance-bounding phase, he antic-
ipates the challenge ci by sending some ri such that ri has the largest preimage
set by the ci ≈⊕ ri response function. This maximizes the chances to win. We
can easily see that a single round will pass with probability 3

4 . So, the distance
fraud succeeds with probability B(n, τ, 3

4 ). By using the Chernoff bound, this is
lower than e−2 ε2 n when

τ

n
>

3
4

+ ε (2)

The best man-in-the-middle attack runs as follows: the adversary first relays
messages between the prover and the verifier in the initialization phase. Then, he
plays with the prover a distance-bounding phase to learn some answers. He can
then play with the verifier, with the responses that he has learnt, or with random
ones if he ignores the correct one. The probability to pass a round correctly is 2

3 .
So, the man-in-the-middle attack succeeds with probability B(n, τ, 2

3 ). By using
the Chernoff bound, this is lower than e−2 ε2 n when

τ

n
>

2
3

+ ε (3)
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The best collusion fraud consists of running the initialization phase between
the malicious prover and the verifier. Then, the prover selects some c∗

1, . . . , c
∗
n

and set F ∗
i (c) = Fi(c) for each c ∀= c∗

i , where Fi is the response function ci ≈⊕
Fi(ci) = ri. The F ∗

i (c∗
i ) values are set to random bits. Then, the prover gives

the table of F ∗ to the adversary who uses it as a response function. Clearly, this
leaks no information about x∈. The probability to pass a round correctly is 5

6 . So,
the collusion fraud succeeds with probability B(n, τ, 5

6 ). By using the Chernoff
bound, this is lower than e−2 ε2 n when

τ

n
>

5
6

+ ε (4)

To summarize equations (1)-(2)-(3)-(4), whenever pnoise < 1
6 − 2 ε, we can

adjust τ and have the failure cases bounded by e−2 ε2 n. Actually, we can formally
prove that the above attacks are optimal. We obtain the following result.

Theorem 1. (Boureanu-Mitrokotsa-Vaudenay [8]). If f is a (ε, T )-circu-
lar-keying secure PRF and the verifier requires at least τ correct rounds,

– all distance frauds (with complexity bounded by T ) have a success probability
bounded by Pr[success] ∪ B(n, τ, 3

4 ) + ε;
– all man-in-the-middle attacks (with complexity bounded by T ) have a success

probability bounded by Pr[success] ∪ B(n, τ, 2
3 ) + r2

2 2−k + ε, where k is the
nonce length and r is the number of participants in the experiment;

– for all collusion frauds such that p = Pr[CF succeeds] ∪ B(n
2 , τ − n

2 , 2
3 )1−c and

p−1 polynomially bounded, there is an associated man-in-the-middle attack
with P ∗ such that Pr[MiM succeeds] ∪ (

1 − B(n
2 , τ − n

2 , 2
3 )c

)s, for any c.

Although it does not explicitly appear for distance-fraud and man-in-the-middle,
we note that s plays a role in the ε anyway: if s is too small, f cannot be a secure
PRF so ε cannot be negligible.

To optimize τ with respect to the expected loss in the case of a failed authen-
tication or of an attack, we can follow the method in [16]. It requires to quantify
all possible types of losses.

There exist several variants of SKI with different properties. Namely, we can
consider secret sharing schemes other than the one in Fig. 6. We can consider
other leakage schemes Lμ as well. We refer to [7,8] for details.

4 Conclusion

Modeling the different types of frauds for distance-bounding is not easy. When
adopting an appropriate model, we can see that none of the existing distance-
bounding protocols in the literature resist all frauds, with the exception of SKI.
SKI is very lightweight, with several possible variants, of which herein we showed
two. Under the assumption that the underlying primitive is a PRF with circular-
keying security and that the level of noise in each round (in honest executions)
is lower than 1

6 , we can achieve provable secure distance-bounding.
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As future work, we will optimize the protocol to adjust the key sizes and
number of rounds in an adequate way. We also leave open the problem of making
a secure protocol without the pnoise < 1

6 limitation. For instance, we could try
to defeat man-in-the-middle attacks in a different way than by introducing a
secret sharing scheme [2]. Namely, we could use a challenge set of two elements
and authenticate the received challenges at the end, as done in the Swiss-Knife
protocol [25]. This way, we could reach a level of noise pnoise close to 1

4 . One
problem with this option is that proving security does not seem easy and, finally,
it may be weak against PRF programming [5].

Another line of research consists of adding privacy preservation. People alre-
ady suggested to protect location privacy [33], but this suffers from severe limi-
tations as shown in [1,27]. Anonymity could also be considered in a way similar
to RFID protocols [23,32,37]. One proposal is made in [22] but without terrorist
fraud protection.
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18. Özhan Gürel, A., Arslan, A., Akgün, M.: Non-uniform stepping approach to RFID
Distance bounding problem. In: Garcia-Alfaro, J., Navarro-Arribas, G., Cavalli,
A., Leneutre, J. (eds.) DPM 2010 and SETOP 2010. LNCS, vol. 6514, pp. 64–78.
Springer, Heidelberg (2011)

19. Hancke, G.P.: Distance bounding for RFID: eΦectiveness of terrorist fraud. In:
Conference on RFID-Technologies and Applications RFID-TA’12, Nice, France,
pp. 91–96. IEEE (2012)

20. Hancke, G.P., Kuhn, M.G.: An RFID distance bounding protocol. In: Confer-
ence on Security and Privacy for Emerging Areas in Communications Networks
SecureComm’05, Athens, Greece, pp. 67–73. IEEE (2005)

21. Hancke, G.P., Mayes, K., Markantonakis, K.: Confidence in smart token proximity:
relay attacks revisited. Comput. Secur. 28, 615–627 (2009)

22. Hermans, J., Onete, C., Peeters, R.: Effcient, secure, private distance bounding
without key updates. In: ACM Conference on Security and Privacy in Wireless
and Mobile Networks WISEC’13, Budapest, Hungary, pp. 207–218. ACM (2013)

23. Hermans, J., Pashalidis, A., Vercauteren, F., Preneel, B.: A new RFID privacy
model. In: Atluri, V., Diaz, C. (eds.) ESORICS 2011. LNCS, vol. 6879, pp. 568–
587. Springer, Heidelberg (2011)



Towards Secure Distance Bounding 67

24. Kim, C.H., Avoine, G.: RFID distance bounding protocol with mixed challenges
to prevent relay attacks. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009.
LNCS, vol. 5888, pp. 119–133. Springer, Heidelberg (2009)

25. Kim, C.H., Avoine, G., Koeune, F., Standaert, F.-X., Pereira, O.: The swiss-knife
RFID distance bounding protocol. In: Lee, P.J., Cheon, J.H. (eds.) ICISC 2008.
LNCS, vol. 5461, pp. 98–115. Springer, Heidelberg (2009)

26. Mitrokotsa, A., Dimitrakakis, C., Peris-Lopez, P., Hermandez-Castro, J.C.: Reid
et al’.s distance bounding protocol and mafia fraud attacks over noisy channels.
IEEE Commun. Lett. 14, 121–123 (2010)

27. Mitrokotsa, A., Onete, C., Vaudenay, S.: Mafia fraud attack against the RC
distance- bounding protocol. In: Conference on RFID-Technologies and Applica-
tions RFID-TA’12, Nice, France, pp. 74–79. IEEE (2012)

28. Mitrokotsa, A., Peris-Lopez, P., Dimitrakakis, C., Vaudenay, S.: On selecting the
nonce length in distance-bounding protocols. To appear in the Computer Journal
(Oxford), Special Issue on Advanced Semantic and Social Multimedia Technologies
for Future Computing Environment (2013). doi:10.1093/comjnl/bxt033

29. Munilla, J., Peinado, A.: Distance bounding protocols for RFID enhanced by using
void-challenges and analysis in noisy channels. Wirel. Commun. Mob. Comput. 8,
1227–1232 (2008)

30. Munilla, J., Peinado, A.: Security analysis of Tu and Piramuthu’s protocol. In: Con-
ference on New Technologies, Mobility and Security NTMS’08, Tangier, Morocco,
pp. 1–5. IEEE (2008)

31. Nikov, V., Vauclair, M.: Yet another secure distance-bounding protocol. In: Inter-
national Conference on Security and Cryptography Porto, Portugal, pp. 218-221.
INSTICC Press (2008)

32. Ouafi, K., Vaudenay, S.: Strong privacy for RFID systems from plaintext-aware
encryption. In: Pieprzyk, J., Sadeghi, A.-R., Manulis, M. (eds.) CANS 2012. LNCS,
vol. 7712, pp. 247–262. Springer, Heidelberg (2012)

33. Rasmussen, K.B., Capkun, S.: Location privacy of distance bounding protocols.
In: 15th ACM Conference on Computer and Communications Security, Alexandria
VA, USA, pp. 149–160. ACM Press (2008)

34. Reid, J., Nieto, J.M.G., Tang, T., Senadji, B.: Detecting Relay Attacks with
Timing-Based Protocols. In: ACM Symposium on Information, Computer and
Communications Security ASIACCS’07, Singapore, pp. 204–213. ACM (2007)

35. Singelée, D., Preneel, B.: Distance bounding in noisy environments. In: Stajano,
F., Meadows, C., Capkun, S., Moore, T. (eds.) ESAS 2007. LNCS, vol. 4572, pp.
101–115. Springer, Heidelberg (2007)

36. Tu, Y.J., Piramuthu, S.: RFID distance bounding protocols. In: EURASIP Work-
shop on RFID Technology, Vienna, Austria (2007)

37. Vaudenay, S.: On privacy models for RFID. In: Kurosawa, K. (ed.) ASIACRYPT
2007. LNCS, vol. 4833, pp. 68–87. Springer, Heidelberg (2007)

http://dx.doi.org/10.1093/comjnl/bxt033


Lightweight Block Ciphers



Reflection Cryptanalysis
of PRINCE-Like Ciphers
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Abstract. PRINCE is a low-latency block cipher presented at ASI-
ACRYPT 2012. The cipher was designed with a property called α-
reflection which reduces the definition of the decryption with a given key
to an encryption with a different but related key determined by α. In the
design document, it was shown that PRINCE is secure against known
attacks independently of the value of α, and the design criteria for α
remained open.

In this paper, we introduce new generic distinguishers on PRINCE-
like ciphers. First, we show that, by folding the cipher in the middle, the
number of rounds can be halved due to the α-reflection property. Fur-
thermore, we investigate many classes of α and find the best differential
characteristic for the folded cipher. For such α there exist an efficient
key-recovery attack on the full 12-round cipher with the data complex-
ity of 257.98 known plaintexts and time complexity of 272.39 encryptions.
With the original value of α we can attack a reduced six-round version
of PRINCE. As a result of the new cryptanalysis method presented in
this paper, new design criteria concerning the selection of the value of α
for PRINCE-like ciphers are obtained.

Keywords: Block cipher · α-reflection property · PRINCE · Statistical
attack · Reflection attack

1 Introduction

Recently, important applications in special constrained environments such as
RFID tags and sensors have received a lot of attention by the cryptographic
community. The new secure primitives should provide the best security possible
while under tight constraints. Traditionally, cryptographic algorithms have been
designed with large security margin to be on the secure side even when exposed
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to new and unknown vulnerabilities. Since lightweight ciphers must be as small
and power-efficient as possible, it is of utmost importance to analyze and under-
stand the security of cryptographic designs to reduce the superfluous margins.
New innovative and unconventional designs pose new challenges. For instance,
to reduce the power consumption of the encryption algorithm, new cipher pro-
posals, such as PRINTcipher [7] and LED [5] with very simple key-schedule or
even without key-schedule, have been developed. With the emergence of such
constructions, new attacks have emerged.

PRINCE is a low-latency block cipher proposed at ASIACRYPT 2012 [2]. In
order to reduce the cost of implementation of decryption, this iterated cipher uses
a property called Δ-reflection. As the key-schedule of the encryption is almost
non-existent, the round constants play crucial role in preventing self-similarity
attacks like slide attacks. The Δ-reflection property is built in the cipher by
selecting the round constants in pairs. The constants that form a pair have a
difference equal to Δ, and if one of them is used on round r then the other one is
used on round 2R − r + 1, where r = 1, 2, . . . , 2R, and 2R is the total number of
rounds of the cipher. As the round functions at round r and 2R − r + 1, r < R,
are selected to be inverses of each other, it follows that decryption with round
key K is identical to encryption with round key K ⊕ Δ.

In the original proposal, the security of PRINCE and the effects of the Δ-
reflection were studied extensively. In particular, it was shown that the cipher is
secure against known attacks with reasonable security margin. For instance, it
was shown that any differential or linear characteristic over 4 consecutive rounds
has at least 16 active S-boxes. This holds independently of the selection of the
non-zero parameter Δ.

In this paper, we study PRINCE in a more general setting of PRINCE-like
ciphers by allowing freedom in the selection of the value of Δ and of some other
components of the cipher. We identify new types of relations over the cipher,
and show that they can be used as distinguishers over PRINCE, but that their
effectivity depends crucially on the properties of Δ. We call these new relations
reflection characteristics. They are constructed by feeding input data of round r,
r ∃ R, forward over 2(R − r + 1) rounds and comparing it with the correspond-
ing output data of round 2R − r + 1 by exclusive-or differences. We investigate
distributions of these reflection differences. Their non-uniformity properties cru-
cially depend on the relationships between the differential properties of the round
function, fixed points of the middle linear layer and the reflection parameter Δ.

The starting point of the reflection cryptanalysis is a probabilistic relation on
the middle rounds of the cipher. The extracted relations starting from the middle
of the cipher share some similarities with some attacks on Feistel ciphers. Self-
similarity properties can be used to determine classes of weak keys as for instance
for the DES [8]. The reflection attack [6] and its modifications for hash func-
tions [3] take advantage of involution properties when classes of fixed points exist
in some intermediate rounds. In this paper, the involution property is replaced
by the Δ-reflection property, and the resulting reflection characteristics are not
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necessarily deterministic, but evaluated in terms of differential probabilities. The
resulting attacks require known plaintext only.

In sharp contrast to differential and linear characteristics on PRINCE-like
ciphers, the number of active S-boxes in a reflection characteristic strongly
depends on the value of Δ. In particular, we show that for some values of Δ
the key-recovery attack using reflection characteristic works for the full cipher.
We present a known-plaintext single-key attack with the data complexity of
257.95 plaintexts and time complexity of 272.37. For the original Δ specified in
[2], the key recovery attack using a reflection distinguisher found in this paper
breaks reduced-round versions of the cipher only up to 6 rounds and hence does
not threaten the security of full 12-round version of PRINCE. Nevertheless, we
believe that the introduction of the new distinguishers will shed light on the secu-
rity of PRINCE-like ciphers and can be taken into consideration when designing
ciphers according to the model of PRINCE.

The paper is organized as follows. In Sect. 2, we define a family of ciphers
called PRINCE-like ciphers. In Sect. 3, different characteristics for the ciphers
in this family are described and their probabilities determined. Concatenations
of these characteristics are also studied in order to provide characteristics on a
larger number of rounds. In Sect. 4, we show how reflection characteristics over
2R − 2 rounds of the cipher can be converted to distinguishers and used for key
recovery attacks on the full 2R rounds of the cipher. In Sect. 5, we evaluate the
complexity of the best reflection attacks and identify classes of the weakest Δ
using the original S-layer and M-layer of PRINCE.

2 Brief Description of PRINCE

Distinguishers and attacks presented in this paper focus not only on the original
PRINCE but are more general and can be applied to all ciphers with simi-
lar reflection structure. To this aim, let us start by describing what we call a
PRINCE-like cipher.

2.1 PRINCE-Like Cipher

A PRINCE-like cipher encrypts messages of n-bit blocks by iterating 2R times
a round function. We denote by EΔ

k the encryption function parametrized with
a 2n-bit key k = (k0||k1) → F

2n
2 and the reflection parameter Δ → F

n
2

∈.
The key schedule of a PRINCE-like cipher is simple. The 2n-bit key is split

into two n-bit parts k0 and k1. From k0, a key k∗
0 is derived using a rotation and

a shift as follows
k∗
0 = (k0 ≫ 1) ⊕ (k0 √ (n − 1)). (1)

The keys k0 and k∗
0 are used as whitening keys in the encryption operation that

follows the FX structure. The n-bit key k1 is added to the state in the 2R rounds
of the cipher.

The core function GΔ
k1

of this cipher (denoted by PRINCEcore in the original
proposal) is defined as an iteration of the 2R rounds. To keep it as general
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as possible, we assume that we have a non-linear S-layer composed of a set of
parallel Sboxes and two different linear layers, defined by n×n matrices M ∗ and
M , where M ∗ is an involution matrix.

The first R − 1 rounds Rr : Fn
2 → F

n
2 , 1 ∃ r ∃ R − 1, are identical and are

composed (in this order) of addition of the round constant RCr and the key k1,
the non-linear layer S and the linear permutation layer M . The R−1 last rounds
Rr : Fn

2 → F
n
2 , R + 2 ∃ r ∃ 2R are, in the reverse order, equal to inverses of the

first R−1 rounds except that the round constants are modified by Δ so that the
following holds:

RC2R−r+1 = RCr ⊕ Δ, for all r = 1, . . . , 2R. (2)

We call these rounds with r ∃ R − 1 or r ⇒ R + 2 the external rounds of the
PRINCE-like cipher.

The symmetry is broken by specifying the two middle rounds R and R+1 to
be different from each other and from the external rounds. Below we summarize
the definitions for all rounds.

Rr(x) = M(S(x ⊕ RCr ⊕ k1)) if 1 ∃ r ∃ R − 1
Rr(x) = M ∗(S(x ⊕ RCr ⊕ k1)) if r = R
Rr(x) = S−1(x) ⊕ RCr ⊕ k1 if r = R + 1
Rr(x) = S−1(M−1(x)) ⊕ RCr ⊕ k1 if R + 2 ∃ r ∃ 2R

(3)

The function GΔ
k1

(x) is then defined as the composition of these 2R round func-
tions. The structure of the cipher is depicted in Fig. 1. The family of PRINCE-like
ciphers have been designed, like for the original cipher, such that decryption can
be obtained from encryption with a different key. If we denote by P a plaintext,
the corresponding ciphertext is computed as C = EΔ

k (P ) with k = (k0||k∗
0||k1).

Decryption of C can be obtained by computing the encryption over a related
key: DΔ

k (C) = EΔ
k⊥(C) with k∗ = (k∗

0||k0||k1 ⊕ Δ).

k0
k1 k1 k1 k1 k1

k1

RCr

M S

R1 R2 R3 R4 R5

RC1 RC2 RC3 RC4 RC5

k1

RC6

S−1M ∼S

RC7

k1
k1 k1 k1 k1 k1

RCr

S−1M−1

k1

R8 R9 R10 R11 R12

RC8 RC9 RC10 RC11 RC12

k∼
0

XI
r XK

r XS
r XM

r Y M
r Y S

r Y K
r Y O

r

Fig. 1. Description of a 2R = 12 rounds PRINCE-like cipher
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2.2 Description of PRINCE

The full specification of PRINCE is given in [2]. It is a PRINCE-like cipher with
n = 64 and R = 6. The reflection constant is defined as Δ = C0AC29B7C97C50DD.
The function GΔ

k1
is called PRINCEcore. The S-layer is a non-linear layer where

each nibble is processed by the same Sbox. The action of this Sbox is given in
Table 5, in Appendix A.1. To construct the linear layers, first two 16×16 binary
involution matrices M̂0, M̂1 are defined. Definition of these components can be
found in Appendix A.1. Then the 64×64 block diagonal matrix M ∗ is generated
by setting its diagonal equal to (M̂0, M̂1, M̂1, M̂0). Then M ∗ is an involution.
The second linear matrix M for PRINCE is obtained by composition of M ∗ and
a permutation SR of nibbles by setting M = SR ∈ M ∗. The permutation SR is
analogous to the AES shift row operation, but instead of bytes, it operates on
nibbles.

Definition of the original round constants can be found in [2]. Exact val-
ues of these round constants are not used in the analysis presented in this
paper. However, our attacks exploit the Δ-reflection of the round constants RCr,
r = 1, . . . , 12, given in (2).

The description of the round functions given in Sect. 2.1 differs slightly from
the original. Nevertheless, it is easy to see that both descriptions are equivalent.

3 Distinguishers for PRINCE-Like Ciphers

In this section, different reflection characteristics on PRINCE-like ciphers are
constructed and investigated. The necessary notations for describing these char-
acteristics are depicted in Fig. 1 and explained next in more detail.

Given the round number r, 1 ∃ r ∃ R, we denote by XI
r the input state of the

round number r, and by XK
r , XS

r and XM
r , the states after the key and round

constant addition, the S-layer, and the M -layer, respectively. In order to exploit
the symmetry of the cipher, we give different definitions for R + 1 ∃ r ∃ 2R.
For these rounds, we denote by Y O

r the output state of the round number r, and
by Y K

r , Y S
r and Y M

r , the states before the key and round constant addition, the
S-layer, and the M -layer, respectively.

To build a distinguisher on a PRINCE-like cipher, we introduce two types
of characteristics. First we focus on the middle rounds of the cipher which are
different from the external ones. Characteristics on the middle rounds depend
on the property of the matrix M ∗. Then by using a folded view of the cipher and
the Δ-reflection property, we extend these characteristics to the external rounds
of the cipher.

3.1 Characteristics on the Middle Rounds

We identify two kinds of characteristics on 2 or 4 middle rounds of the cipher.
The first characteristic on the 2 midmost rounds is independent of the reflection
parameter. The second one is defined on 4 rounds and extends over one round
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before and one round after the midmost rounds. It behaves differently depending
of the reflection parameter. Probability of both of these characteristics is related
to the number of fixed points of the matrix M ∗.

Definition 1. Let f : A → A be a function on a set A. A point x → A is called
a fixed point of the function f if and only if f(x) = x.

In [2] it is stated based on the result of [4] that the number of fixed points of an
involution f : Fn

2 → F
n
2 is on the average equal to 2n/2. While the result of [4]

holds in general, restricting to the case of linear involutions f over F2 gives the
following result.

Lemma 1. Let f : Fn
2 → F

n
2 be a linear involution. Then the number of fixed

points of f is greater than or equal to 2n/2.

Proof. Let us denote B = f⊕I, where I is the n×n identity matrix over F2. Then
B2 = 0, which means that Im(B) ≈ Ker(B). As dim(Ker(B))+dim(Im(B)) = n,
we have dim(Ker(B)) ⇒ n

2 . As Ker(B) is the set of fixed points of f , the claim
follows.

In what follows, we denote by FM ⊥ , the set of fixed points of the matrix M ∗ and
by |FM ⊥ | the size of this set, which by Lemma 1 is larger than or equal to 2n/2.

Characteristic I1. The characteristic

Y O
R+1 ⊕ XI

R = Δ

over two rounds RR+1 ∈ RR of a PRINCE-like cipher holds with probability

PI1 = PFM⊥ =
|FM ⊥ |
2n

.

Characteristic I1 is depicted in Fig. 2(a). By Lemma 1 we have that PI1 ⇒ 2−n/2.
As the matrix M ∗ of PRINCE has exactly 232 = 2n/2 fixed points, it minimizes
the probability of characteristic I1.

α

0

XI
R

RCR

k1

XK
R

S

x

M ∼

x0

P [M ∼(x) = x]

S−1

Y K
R+1

RCR ⊕ α

k1

Y O
R+1

(a) I1

RCR−1

k1

XI
R−1

S M

RCR

XI
R

0

S M ∼ S−1

Y O
R+1

k1

RCR ⊕ α

M−1 S−1

Y O
R+2

RCR−1 ⊕ α

k1

α

(b) I2

Fig. 2. Middle-round characteristics
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Characteristic I2. The characteristic

Y O
R+2 ⊕ XI

R−1 = Δ

over four rounds RR+2 ∈RR+1 ∈RR ∈RR−1 of a PRINCE-like cipher holds with
probability

PI2 = 2−n#
⎧

x → F
n
2 |S−1

⎨
M ∗⎩S(x)

)) ⊕ x = Δ
}

.

Characteristic I2 is depicted in Fig. 2(b). Next we show that PI2 can be com-
puted efficiently. We write

PI2 = 2−n
∑

γ⊕F
n
2

#
{
x → F

n
2 |M ∗⎩S(x)

) ⊕ S(x) = γ,S(x ⊕ Δ) ⊕ S(x) = γ
}

.

The set on the right hand side of the equality is not empty only if γ → Im(M ∗⊕I).
We then deduce as in the proof of Lemma 1 that γ → FM ⊥ , and obtain

PI2 = 2−n
∑

γ⊕FM⊥

# {x → F
n
2 |M ∗(S(x)) ⊕ S(x) = γ,S(x ⊕ Δ) ⊕ S(x) = γ} .

Assuming that the fixed point properties of M ∗ and differential properties of
S are independent we obtain

PI2 ∪ PFM⊥

∑

γ⊕FM⊥

PrX [S(X) ⊕ S(X ⊕ Δ)) = γ] . (4)

The exact expression of the probability can be efficiently evaluated as the sum-
mation is taken over the fixed points only. In the case where M ∗ is a block-
diagonal matrix, the probability PI2 can be computed by decomposing the
probabilities over the different blocks, and will be shown in detail in the case of
PRINCE in Sect. 5.

This characteristic is useful for building a distinguisher if PI2 > 2−n. But
depending on M ∗ and the value of Δ, it is also possible that PI2 = 0. In this
case we get an impossible reflection characteristic. We will show in Sect. 4.2 how
characteristic I2, even if impossible, can be used for a distinguisher. Such a
situation occurs if S(x ⊕ Δ) ⊕ S(x) is never equal to a fixed point of M ∗.

3.2 External Characteristic

When the probabilities PI1 and PI2 are large, it is useful to extend the character-
istics I1 and I2 to more rounds. In what follows, we denote these characteristics
by Iv, v = 1, 2. The structure of PRINCE-like ciphers is such that the first and
the last external rounds are symmetrical. One of the main ideas in this paper is to
use this specific property to extend the distinguishers Iv, which cover 2v middle
rounds, to external rounds. This idea is illustrated in Fig. 3, which gives another
view of the cipher. In this representation, the 2R-round cipher can be viewed as
composed of two parallel copies of a (R− v)-round cipher connected together by
2v rounds. Then characteristics on 2u external rounds, 1 ∃ u ∃ R−v, are built as
ordinary related key differential characteristics with input data difference equal
to Δ and the key difference or round constant difference equal to Δ.
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Fig. 3. A folded view of a PRINCE-like cipher: the external characteristic

Characteristic Cu. Suppose that the characteristic Y O
R+v ⊕XI

R−v+1 = Δ holds.
The characteristic

Y O
R+u+v ⊕ XI

R−u−v+1 = γ

on the 2u external rounds is denoted by Cu. It holds with probability

PCv
= PrX [Fu

0 (x) ⊕ Fu
Δ (x ⊕ Δ) = γ] ,

where Fu
0 = R−1

R−v−u+1 ∈ · · · ∈ R−1
R−v and Fu

Δ = R−1
R+v+u ∈ · · · ∈ R−1

R+v+1.
The probability of this characteristic can be computed by using techniques

similar to the ones used in classical differential cryptanalysis. In particular, using
the Branch and Bound algorithm, it is possible to find the best characteristics
for a fixed reflection parameter Δ. Description of this method for PRINCE is
detailed in Sect. 5.

In comparison with differential cryptanalysis, the characteristic Cu benefits
from the related constant Δ. Similarly to related key differential attacks, zero
differences between states are possible. Then two parallel rounds, say RR−z+1

and RR+z, can for some characteristics be passed with probability equal to 1.
This happens when the data difference is cancelled by the key or round constant
difference. Examples of such situations will be given in Sect. 5. Even when the
difference is non-zero, two rounds of the cipher can be passed at the cost of one
non-linear layer, where the classical differential cryptanalysis on PRINCE-like
ciphers must consider differential probabilities over two non-linear layers.

Distinguishers over several rounds of the cipher, can then be built using a
combination of the external characteristic Cu with Iv, v = 1, 2. If PIv

× PCu
>

2−n, then 2v + 2u rounds of the cipher are distinguishable from random. In
Sect. 5 we identify classes of parameters Δ such that 4, 6, 8 and 10 rounds of a
PRINCE-like cipher can be distinguished from random.

4 Key Recovery

The characteristics constructed in the previous section can be used to build
either a probabilistic or a deterministic distinguisher. The combination of Iv
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and Cu gives a probabilistic reflection distinguisher. Then the relation

Y O
R+i ⊕ XI

R−i+1 = γ, (5)

for some i = u + v, holds with a positive probability p.
A deterministic distinguisher over 4 rounds exists for those values of Δ such

that PI2 = 0. Then we have an impossible reflection distinguisher such that the
relation

Y O
R+2 ⊕ XI

R−1 ∀= Δ, (6)

holds with probability 1.
In this section we describe how to convert these distinguishers on 2i rounds

to a key recovery attack on a cipher of 2R = 2i + 2 rounds.

4.1 Probabilistic Reflection Setting

Assuming a probabilistic distinguisher on 2i rounds of a PRINCE-like cipher
as described in Sect. 3, a key recovery attack can be derived by counting the
number of plaintext-ciphertext pairs such that the difference between XI

2 and
Y O
2i+1 is equal to γ.

In what follows, we denote by 2m the data complexity of the attack. This
value can be computed using Algorithm 1 of [1]. If we denote by a the advantage
of this attack, the corresponding false alarm probability is pfa = 2−a.

Key Recovery Attack for 2R = 2i +2 Rounds. Let us assume that a char-
acteristic Y O

2i+1 ⊕ XI
2 = γ over the midmost 2i rounds holds with probabil-

ity p, 0 < p ∃ 1. Without modification of the probability, this characteristic
can be extended in both sides over linear layer M−1 to obtain a characteristic
Y S
2i+2 ⊕ XS

1 = M−1(γ) = γ∈ depicted in Fig. 4.
To find the values of XS

1 and Y S
2i+2 for all pairs (P,C), the whole key (k0||k1)

needs to be guessed. The procedure makes use of the word-oriented structure of
the non-linear layer. We assume that the S-layer is nibble-oriented like in the
original PRINCE.

We present the n-bit state with n/4 nibbles and number them from 1 to n/4.
The j-th nibble of any n-bit word X is denoted by X(j). The complexity of the
attack depends of the number of non-zero nibbles of γ∈. In what follows, we
denote by w(γ∈), the number of non-zero nibbles of the difference γ∈.
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�

XI
2

R2R−1 √ · · · √ R2
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Fig. 4. Key recovery principle when 2R = 2i + 2
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As depicted in Fig. 4, the following property holds for all 1 ∃ j ∃ n/4:

γ∈(j) = S
⎩
P (j)⊕k0(j)⊕k1(j)⊕RC1(j)

)⊕S
⎩
C(j)⊕k∗

0(j)⊕k1(j)⊕RC2R(j)
)
.

We denote the number of nibbles of γ∈ that are equal to zero by α = n/4−w(γ∈).
Indices of these nibbles are stored in a list L. Hence |L| = α. Then the property

P (j) ⊕ k0(j) ⊕ C(j) ⊕ k∗
0(j) ⊕ Δ(j) = 0,

holds for all j → L, and can be used to reduce the time complexity of the attack.
For these nibbles, the value of k1(j) need not be guessed. Guessing k0 ⊕ k∗

0 and
computing P (j)⊕k0(j)⊕C(j)⊕k∗

0(j) allows us to discard already a large number
of (P,C) pairs.

Let us assume that the attacker has 2m plaintexts with corresponding cipher-
texts. Then the attack proceeds as follows:

1. For 24β values of K0 such that K0(j) = k0(j) ⊕ k∗
0(j) holds for all j → L

1.0 Take all 2m plaintext ciphertext pairs
1.1 For all j → L

Among the remaining pairs discard the ones such that
P (j) ⊕ C(j) ⊕ K0(j) ⊕ Δ(j) ∀= 0.

1.2 For 24w(γ∗) = 2n−4β values of K1 such that K1(j) = k0(j) ⊕ k1(j) holds
for all j /→ L and for all 2n−4β completions of K0

1.2.1 For all j /→ L
Compute K ∗

1(j) = K0(j) ⊕ K1(j) = k∗
0(j) ⊕ k1(j)

Among the remaining pairs discard the ones such that
S (P (j) ⊕ K1(j) ⊕ RC1(j))⊕S (C(j) ⊕ K∼

1(j) ⊕ RC2R(j)) ≥= Δ√(j).
1.2.2 Count the number of remaining pairs.

Store this number to a counter indexed by (K0||K1).
2. Keep a list of (K0||K1) ordered according to the counter values with the

highest value on top. Compute the corresponding keys k0 from K0 according
to the key expansion. Also compute k1(j) for j /→ L.

3. For the 22n−4β−a top candidates of k0 on the list and the 24β remaining bits
of k1, do an exhaustive search to find the whole key (k0||k1).

For each j in Step 1.1, only 4 bits out of 24β of key K0 are involved. The
first time we do this loop, we have to check the equality of 2m plaintexts, among
which 2m−4 pairs are expected to remain. After z iterations of the loop in Step
1.1, for each 4z − 4 key bits guessed in the previous steps and the 4 key bits of
the current iteration, we should guess a nibble of the key and check the property
for all remaining 2m−4(z−1) plaintext-ciphertext pairs. The time complexity of
Step 1.1 is

∑β
z=1 2m−4z+4 · 24z = α · 2m+4 simple operations.

Using the same arguments, Step 1.2 is iterated 24β
∑n/4

z=β+1 2m−4z+4 ·28(z−β) =

2m−4β+4
∑n/4

z=β+1 24z ∅ 2m+n+4−4β = 2m+4ω(γ∗)+4 times. If we denote β =
w(γ∈), the total time complexity of Step 1 corresponds to 2m+4ω+4 double
S-box evaluations, which is equivalent to 2m+5+4ν

(n/4)·(2R) = 2m+6+4ν

n·R full encryptions.
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Step 3 corresponds to 22n−a full encryptions, where 0 ∃ a ∃ 2n − 4α. Step 2, is
negligible compared to Step 1 and 3 and the total complexity of the algorithm
is 22n−a + 1

n·R ×2m+6+4w(γ∗) full encryptions. When the advantage is large, the
second term dominates.

To perform the described attack, storage of the 2m plaintext-ciphertext pairs
is necessary, as well as storage of all the 22n−l counters, one per guessed key.
Nevertheless, the memory complexity can be reduced by keeping only keys for
which the number of remaining pairs is above some fixed bound.

4.2 Impossible Reflection Setting

In this attack we make use of I2 and assume that the parameter Δ is such that I2

holds with probability equal to zero. Then a deterministic reflection distinguisher
with probability equal to one can be built. A guessed key can be discarded if it
gives a data pair such that the difference is equal to Δ.

Key Recovery for 2R =2i +2 Rounds. In the case of I2 we have i = 2, but
the attack works for any i, if an impossible characteristic over 2i rounds can
be built. To reduce the time complexity, we precompute certain values from the
states of the second round and the second to last round of the cipher. We denote
by P ∗ = P ⊕ k0 and C ∗ = C ⊕ k∗

0 the states after modification of the plaintext
and ciphertext by the whitening keys. For all 0 ∃ b ∃ 2n − 1, we denote by
(Vb,Wb) the following values:

Vb = S−1(b) ⊕ RC1,

Wb = S−1(b ⊕ M−1(Δ)) ⊕ RC2R. (7)

Then, as depicted in Fig. 4, the following properties hold for the pairs (P ∗, C ∗)
and the corresponding (Vb,Wb):

P ∗ ⊕ Vb = k1,

P ∗ ⊕ C ∗ = Vb ⊕ Wb.

Assume again we have 2m known pairs (P,C) of plaintexts with corresponding
ciphertexts. The goal is to find for as many key candidates k1 as possible a
(P ∗, C ∗) such that (P ∗ ⊕ k1, C

∗ ⊕ k1) is equal to some pair (Vb,Wb). Then we can
conclude that the key k1 is a wrong key and discard it. After pre-computation,
the attack works as follows.

Attack Procedure when (k0, k∗
0) is known

1. Consider a list of all keys k1.
2. For each 2m pairs (P ∗, C ∗)

Compute Λ = P ∗ ⊕ C ∗.
For all Vb in the row Λ in the hash table T compute the value k1 = P ∗ ⊕ Vb

and discard it from the list.
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3. If there is still a key in the list of key k1, consider k = (k0||k1) as a key
candidate.

On average, there is one Vb in each row of T . So by using 2m known plaintexts
and by considering the collisions, the number of remaining wrong keys k1 is about
2n(1 − 2−n)2

m

= 2n(1 − 2−n)2
n2m−n ∪ 2ne−2m−n

= 2n−1.44×2m−n

, for each fixed
k0. The remaining keys are then searched exhaustively.

The impossible characteristic I2 holds for the involution matrix M ∗, the
non-linear layer S and the reflection parameter value Δ specified for the original
PRINCE. In Sect. 5.4, many more such values of Δ are shown to exist. For all
these Δ, by using the full codebook, the right key can be found after 2126.56

encryptions. In total 267 bytes are necessary for the storage of the hash table.
Considering only PRINCEcore, using the full codebook, the right key k1 can be
found after 262.56 encryptions.

5 Various Classes of α-Reflection

In [2], the security of PRINCE and the effects of the Δ-reflection were studied
extensively. In particular, it was shown that the cipher is secure against known
attacks with reasonable security margin. For instance, it was shown that any
differential or linear characteristic over 4 consecutive rounds has at least 16 active
Sboxes. This holds independently of the selection of the non-zero parameter Δ.

In this section, we focus on a sub-family of PRINCE-like ciphers using the
same S-layer and the same linear layers M and M ∗ as in the original PRINCE.
Definition of these components as given in [2] are recalled in Sect. A.1. We com-
pute the probabilities PI1 , PI2 , and PCu

(1 ∃ u ∃ 4) of the distinguishers
proposed in Sect. 3, for various classes of values of Δ. Then we use these dis-
tinguishers for key-recovery attacks on PRINCE presented in Sect. 4, determine
the maximum number of rounds that can be attacked, and give complexities of
these attacks. The key-recovery attacks in Sect. 4, can be modified to apply on
PRINCEcore, in which case their complexities will be reduced. We will give these
complexities for comparison, but omit the descriptions of the actual attacks on
PRINCEcore due to lack of space.

5.1 Probability of the Characteristics: Computation

The difference between I1 and I2 is noticeable, since the probability of the former
is independent of the value of Δ, which is not the case for I2 on the 4 midmost
rounds. Next we describe how to compute the probability of these characteristics
for PRINCE.

Characteristic I1. The involution matrix M ∗ of the original PRINCE is such
that |F ∗

M | = 232. The probability of the characteristic I1 is then PI1 = 232

264 =
2−32.



Reflection Cryptanalysis of PRINCE-Like Ciphers 83

Characteristic I2. As M ∗ is a block-diagonal matrix constructed from the 16×
16 matrices M̂0 and M̂1, probability PI2 can be computed exactly by computing
the following probabilities:

P(λ)

M̂0
= 2−16#

⎧
x → F

16
2 |S−1

⎨
M̂0

⎩
S(x)

)) ⊕ x = Σ
}

P(λ)

M̂1
= 2−16#

⎧
x → F

16
2 |S−1

⎨
M̂1

⎩
S(x)

)) ⊕ x = Σ
}

where Σ is a 16-bits word and S is the application of 4 Sboxes. Then if Δ =
(Δ0, Δ1, Δ2, Δ3), we have

PI2 = P(Δ0)

M̂0
× P(Δ1)

M̂1
× P(Δ2)

M̂1
× P(Δ3)

M̂0
. (8)

Characteristic Cu. As presented in Sect. 3.2, characteristics on the external
rounds can be seen as a differential characteristics with input difference Δ and
related constant difference Δ, see Fig. 3. As PRINCE is a 64-bit cipher with 12
rounds, only 3 or 4 external rounds must be considered, and therefore computa-
tion of the best characteristics for a fixed Δ is possible by the Branch and Bound
algorithm. Finding the weakest Δ for such a characteristic remains nevertheless
a challenging task. When aiming at a combination with I2, focusing on the best
Δ for I2 gives a good starting point, whereas I1 is independent of Δ, a more
complex analysis should be done to find the values of Δ for which an attack on
the full 12 rounds of PRINCEcore is possible.

5.2 Maximizing PCu
for Combination of Cu with I1

We describe here the method we use to derive the Δ for which 12 rounds of the
cipher can be attacked using a combination of I1 and C4. As we have seen in
Sect. 4, a key-recovery attack on 12 rounds can be derived using a distinguisher
on 10 rounds. Hence we are interested in finding values of Δ which maximize
PC4 .

Maximizing PC4 . We start by the analysis of the properties of the S-box and
permutation layer M of PRINCE. Indeed, the values of Δ for which a minimal
number of Sboxes are active (that is, have non-zero differences) at each round
and the differential probabilities of the Sbox are maximal. To this aim, we first
express some properties of the matrices M̂0 and M̂1.

To maximize PCu
, we want to minimize the weight of Δ = (Δ0, Δ1, Δ2, Δ3) and

M−1(Δ). Since M̂ε, δ = 0, 1, have a branch number 4, w(Σ)+w(M̂ε(Σ)) ⇒ 4 and
we have only 61 out of the total of 216 values Σ such that w(Σ)+w(M̂ε(Σ)) = 4 for
both δ = 1 and δ = 2. Among these 61 values, 57 are such that Σ = (a1, a2, a3, a4),
where ai → {0, 1, 2, 4, 8}. Differential probabilities of the inverse Sbox for single-
bit differences are given in Table 1. Based on this table and experiments, we
assume that Δ with some nibble equal to 2 is not likely to maximize PC4 . To
find the best distinguisher on 10 rounds, we reduce the search space of Δ using
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Table 1. Differential probabilities of the inverse Sbox for single-bit differences.

a\b 1 2 4 8

1 2−2 2−3 2−3 0
2 0 0 2−3 2−3

4 2−3 0 2−3 2−2

8 2−2 2−3 2−3 2−3

the following procedure: For Δ = (a1, a2, · · · , a15, a16), where ai → {0, 1, 4, 8}
(232 values), we select the ones such that there exists a characteristic C2 with
PC2 ⇒ 2−12 (there are more than 300 values of Δ of this sort). Among the
remaining ones, check if there is a characteristic C4 with PC4 ⇒ 2−28.

In Tables 2 and 3, we present some values of Δ, for which we obtain a distin-
guisher on 10 rounds. Estimated time and data complexities of a key recovery
attack on the 12-round cipher are also shown in the same tables. These esti-
mates have been computed under the assumption that the right key maximizes
the number of remaining pairs in Step 4 of the key recovery attack, meaning
that the advantage is a = n + 4w(γ∈). The success probability is taken equal
to 95%. The data complexity is derived using Algorithm 1 of [1] and the time
complexity is derived as for the key recovery attack presented in Sect. 4.1.

Iterative Characteristic. For the Δ in Table 2, which maximize the proba-
bility PC4 × PI1 , the characteristic C4 is particular since a cancellation of the
difference occurs every second round. For instance, we can have Y O

R+1 ⊕XI
R = Δ,

Y O
R+2 ⊕XI

R−1 = 0, Y O
R+3 ⊕XI

R−2 = Δ, Y O
R+4 ⊕XI

R−3 = 0, and Y O
R+5 ⊕XI

R−4 = Δ.
Then every second folded round can be passed with probability one, and it can
be applied iteratively to minimize the probability of the characteristic. Such
characteristic are easily found even by hand. We just look for Δ such that Δ and
M−1(Δ) are non-zero on exactly the same nibble position. Such a cancellation
property occurs for some particular values of Δ. When w(Δ) = 4, the cancellation
property leads to an attack on 12 rounds of the cipher. No Δ with less than 4

Table 2. The weakest α with attack on 12 rounds (using C4√I1). Iterative characteristic
based on the cancellation idea.

α Δ√ w(Δ√) PC4 PRINCEcore PRINCE
Data/Time Data Time

8400400800000000 8800400400000000 4 2−22 256.21 257.98 272.39

8040000040800000 8080000040400000 4 2−22 256.21 257.98 272.39

0000408000008040 0000404000008080 4 2−22 256.21 257.98 272.39

0000000048008004 0000000044008008 4 2−22 256.21 257.98 272.39

0000440040040000 0000440040040000 4 2−24 258.72 260.28 274.69

8008000000008800 8008000000008800 4 2−24 258.72 260.28 274.69
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Table 3. Example of α with attack on 12 rounds (using C4 √ I1).

α Δ√ w(Δ√) PC4 PRINCEcore PRINCE
Data/Time Data Time

0108088088010018 0000001008000495 5 2−26 261.22 262.80 279.21

0088188080018010 00000100C09D0008 5 2−26 261.22 262.80 279.21

0108088088010018 000000100800D8CC 6 2−26 261.42 262.86 283.27

0001111011010011 1101100110000100 7 2−28 263.57(†) 263.57(†) 2112

†: complexities computed for an advantage of a = 16 bits.

active nibbles or with w(Δ) = 5 can satisfy the cancellation property. Neverthe-
less some Δ with 6 active nibbles have characteristic which cancel the difference
after two rounds. As for these Δ, Y O

R+3⊕XI
R−2 = Δ with probability PC2 ∃ 2−16,

the iterative characteristic Cu can be applied only once and a distinguisher on
6 rounds with probability p, where 2−49 ∃ p ∃ 2−48, leads to a key-recovery
attack on 8 rounds.

Non-Iterative Characteristic. In Table 3, we give other values of Δ, which
allow an attack on 12 rounds. While the list is not exhaustive, this table illus-
trates that also Δ with larger weight can lead to an attack on 12 rounds. Different
characteristic for the same Δ can be derived. While the weight of γ∈ is larger for
these characteristics, the time complexity of this attack is still reasonable. While
the list of Δ with a key recovery attack on 12 rounds is already quite large, the
number of Δ such that attacks on 6, 8, or 10 rounds are possible is even larger.
Search for Δ of this sort can be done by adjusting the constraint of the Branch
and Bound algorithm.

5.3 Maximizing PI2 for Combination with Cu

Finding the values of Δ which maximize PI2 can be done exhaustively by decom-
posing over the matrices M̂ε, δ = 0, 1, see Sect. 5.1. Computation for 216 values
of Σ gives us the list of best Δ regarding to this characteristic. In what fol-
lows, we focus on Σ ∀= 0 such that 2−12 ∃ P(λ)

M̂κ
∃ 2−10.54. As P0

M̂κ
∃ 2−8, we

obtain a list of 632 × 732 ∪ 224.33 values of Δ for which 2−48 ∃ PC2 ∃ 2−34.54.
Two values of Δ reach this upper bound. They are Δ = 0000111100000000 and
Δ = 0000000011110000.

The values Δ which maximize I2 and for which 10 rounds of a PRINCE-like
cipher can be distinguished from random also allow a combination of C4 and I1.
For instance, for Δ = 0000408000008040 we have a characteristic with PC3 =
2−19 and PI2 = 2−40. None of these characteristics give a better cryptanalysis
results than the ones given in Table 2. While for the attacks on 12 rounds all
values of Δ are such that w(Δ) ⇒ 4, we can find Δ of smaller nibble weight which
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Table 4. Example of α with attack on 10 rounds and w(α) = 2 (using C2 √ I2).
Computation done for PS = 95% and a = 16.

α Δ√ w(Δ√) PC2 PI2 PRINCEcore PRINCE
Data/Time Data Time

0000000001100000 1000111011011101 10 2−20 2−36 258.17 258.17 2112

0000000008040000 9189505500008991 11 2−24 2−36 263.57 263.57 2112

0000000000000804 4C0C18998C0C0000 10 2−24 2−36 263.57 263.57 2112

allow a key recovery attack on a 10-round cipher using a combination of C2 and
I2 as illustrated in Table 4.

For all the Δ presented in this section, also other characteristics can be
derived. Complexities of our attacks are based on the best characteristic.

5.4 Impossible Attack

If PI2 = 0, a deterministic distinguisher on 4 rounds of the cipher can be built.
It leads to a key-recovery attack for a 6-round cipher described in Sect. 4.2. The
time complexity of this attack correspond to 2126.56 encryptions and 267 bytes are
necessary for the storage of the hash table. This attack is efficient, in particular,
for Δ = C0AC29b7C97C50DD of PRINCE. But we can find many more values of
Δ with PI2 = 0.

As specified by Eq. (8), the computation of PC2 can be decomposed over M̂0

and M̂1. For M̂0, the number of Σ → F
16
2 for which P(λ)

M̂0
= 0 is 5940. For M̂1, the

number of Σ for which P(λ)

M̂1
= 0 is 6914. In total, we deduce that the impossible

distinguisher is valid for approximately 2 ·(212.54)×248+2 ·(212.76)×248 = 262.65

values of Δ.
Using the fact that M̂0 and M̂1 have no fixed points of weight 1, we conclude

that PC2 = 0, for all Δ with only 1 or 3 non-zero nibbles. Also a large number of
Δ with 2, 4 and 5 non-zero nibbles allow this impossible distinguisher. We also
found that for some Δ with 4 active nibbles we have an attack on 12 rounds,
while for some other Δ the best attack we found is on 6 rounds only. Hence the
weight of Δ alone does not prove anything about security or insecurity against
the reflection attacks discussed in this paper.

5.5 Truncated Attack

When the linear layer is defined as in the original proposal, using the shift
row operation of the AES, truncated reflection distinguishers can be derived
for Δ such that M−1(Δ) has a small number of active nibbles. Proof of the
characteristic presented below can be found in Appendix A.2.
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Lemma 2. Assume Δ is such that M−1(Δ) =

⎡

⎢⎢⎣

∗ 0 0 0
0 0 0 ∗
0 0 ∗ 0
0 ∗ 0 0

⎤

⎥⎥⎦, where ∗ can be any

4-bit value. Then the following truncated characteristic

Y O
R+3 ⊕ XI

R−2 =

⎡

⎢⎣

→ 0 0 0
→ 0 0 →
→ 0 → 0
→ → 0 0

⎤

⎥⎦ ⊕ Δ, (9)

holds on 6 rounds RR−2 ∈ · · · ∈RR+3 of the cipher with probability PFM⊥ = 2−32.
Similar characteristics can be obtained for Δ such that:

M−1(Δ) =

⎡

⎢⎢⎣

0 ∗ 0 0
∗ 0 0 0
0 0 0 ∗
0 0 ∗ 0

⎤

⎥⎥⎦ or M−1(Δ) =

⎡

⎢⎢⎣

0 0 ∗ 0
0 ∗ 0 0
∗ 0 0 0
0 0 0 ∗

⎤

⎥⎥⎦ or M−1(Δ) =

⎡

⎢⎢⎣

0 0 0 ∗
0 0 ∗ 0
0 ∗ 0 0
∗ 0 0 0

⎤

⎥⎥⎦ .

In all four cases of the characteristics, nine nibbles of the data difference are
equal to those of Δ. Hence the probability of such a truncated characteristic is
2−36.

By the previous lemma, such truncated characteristics exist for 4×(216−1) ∪
218 values of Δ. While distinguisher of Sects. 5.2 and 5.3 focused on Δ with a
small number of active nibbles, this distinguisher is targeted on Δ, for which
M−1(Δ) has a small number of active nibbles, but Δ itself can have any number
of non-zero nibbles. As an example, we give

Δ =

⎡

⎢⎢⎣

7 1 C B
9 5 9 3
9 A 5 9
3 6 8 D

⎤

⎥⎥⎦ , M−1(Δ) =

⎡

⎢⎢⎣

7 0 0 0
0 0 0 B
0 0 D 0
0 9 0 0

⎤

⎥⎥⎦ .

This truncated distinguisher enables a key-recovery attack for a cipher reduced to
eight rounds in the same way that the key recovery attack described in Sect. 4.
The keys k0 and k1 can then be recovered independently. In Appendix A.2
details of this key recovery attack are explained. This key recovery attack has
data complexity 236.85, time complexity of 297.8 memory accesses and 280 full
encryptions. The memory complexity is dominated by the storage of 263.6 bytes
for the hash table.

Several other kinds of truncated reflection characteristics can be derived for
different configuration of M−1(Δ). For instance, in some configurations, where
M−1(Δ) has up to eight non-zero nibbles a key-recovery attack on a 6-round
cipher can be done using a distinguisher on 4 rounds.

6 Conclusion

In this paper, we investigated the security of a family of ciphers, which includes
the new design PRINCE. This family is characterized by the Δ-reflection prop-
erty. We constructed new types of characteristics for such ciphers starting from
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a probabilistic or impossible relation on the midmost rounds of the cipher. By
using properties of the constant Δ and the symmetry of the cipher, such reflec-
tion characteristics can be considered as differential characteristics over a half
of the cipher, and in particular, their probabilities can be computed efficiently
using ordinary differential probabilities over the non-linear components of the
cipher. In the security analysis of PRINCE given in [2] the properties of Δ did not
receive much attention. In this paper, we show that the security of PRINCE-like
ciphers depends strongly on the choice of the value of Δ. By keeping the other
components of PRINCE as in the original design, and by varying the value of Δ,
we identified special classes of Δ for which reduced-round versions of the cipher
can be distinguished from random. The values of Δ in the weakest class allow
an efficient key-recovery attack on 12 rounds of the cipher. These results show
that the security of PRINCE is not independent of the value of Δ. On the other
hand, the best attack we could construct using this technique on PRINCE with
the original value of the reflection parameter Δ, was a key recovery attack on a
reduced 6-round version of the cipher. While the new technique, which exploits
the special reflection structure of the cipher, did not reveal any vulnerabilities
in the original design, it provided new information about the security criteria
for the selection of the reflection parameter as well as other componenets of the
cipher.
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A Appendix

A.1 Components of PRINCE

The linear layer of PRINCE is defined using four 4 × 4 matrices M0, M1, M2,
M3 given as follows:

M0 =

⎛

⎜⎜⎝

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎟⎠ , M1 =

⎛

⎜⎜⎝

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎟⎠ , M2 =

⎛

⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

⎞

⎟⎟⎠ , M3 =

⎛

⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎞

⎟⎟⎠ .
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Then the two 16 × 16 matrices M̂0 and M̂1 are defined as:

M̂0 =

⎛

⎜⎜⎝

M0 M1 M2 M3

M1 M2 M3 M0

M2 M3 M0 M1

M3 M0 M1 M2

⎞

⎟⎟⎠ , M̂1 =

⎛

⎜⎜⎝

M1 M2 M3 M0

M2 M3 M0 M1

M3 M0 M1 M2

M0 M1 M2 M3

⎞

⎟⎟⎠ .

The non-linear layer S consists of 16 copies of a 4-to-4-bit Sbox given in Table 5.

Table 5. Sbox of PRINCE

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S[x] B F 3 2 A C 9 1 6 7 8 0 E 5 D 4

A.2 Truncated Reflection Characteristic

Proof of Lemma 2. The 4 types of truncated characteristics given in Lemma 2
differ only by the position of the completely undetermined column of the differ-
ence. We present here the proof for the first column. Proofs for the other types
are similar.

As described by the characteristic C1, the probability that XI
R ⊕Y O

R+1 = Δ is
equal to PFM⊥ (= 2−32 for PRINCE). For the previous and the next round, we
have

Y O
R+2 ⊕ XI

R−1 = S−1
⎩
M−1(Δ)

) ⊕ Δ =

⎡

⎢⎢⎣

∗ 0 0 0
0 0 0 ∗
0 0 ∗ 0
0 ∗ 0 0

⎤

⎥⎥⎦ ⊕ Δ.

Since M−1 = M ∗ ∈ SR−1 is linear and

M−1

⎛

⎜⎜⎝

⎡

⎢⎢⎣

∗ 0 0 0
0 0 0 ∗
0 0 ∗ 0
0 ∗ 0 0

⎤

⎥⎥⎦

⎞

⎟⎟⎠ =

⎡

⎢⎢⎣

∗ 0 0 0
∗ 0 0 0
∗ 0 0 0
∗ 0 0 0

⎤

⎥⎥⎦,

we have

Y O
R+3 ⊕ XI

R−2 = S−1
⎨
M−1(Δ) ⊕

⎡

⎢⎢⎣

∗ 0 0 0
∗ 0 0 0
∗ 0 0 0
∗ 0 0 0

⎤

⎥⎥⎦
)

⊕ Δ =

⎡

⎢⎢⎣

∗ 0 0 0
∗ 0 0 ∗
∗ 0 ∗ 0
∗ ∗ 0 0

⎤

⎥⎥⎦ ⊕ Δ.

Key Recovery Attack. For simplicity, we restrict to the characteristic given
by Eq. (9). As this characteristic is completely undetermined in the first column,
and will stay completely undetermined in the same column after application of
the inverse of shift row, it is sufficient to focus on the 12 nibbles corresponding
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to the three most right columns of the matrix of (9). For a state Z, we denote
the truncation of the state to the last three columns by Zt. Let (P,C) be a
plaintext-ciphertext pair. The distinguisher involves only partial encryption of
48 bits of the plaintext Pt and partial decryption of the ciphertext Ct with the
key k0, k∗

0 and k1. It means that only up to 49 bits of k0 and 48 bits of k1 can
be obtained in a similar way to the attack of Sect. 4. An exhaustive search on
the remaining bits is then necessary to recover the full key.

The attack procedure is as follows:

Pre-computation
For each possible 260 pairs (a, b) → (F48

2 )2 such that a⊕b is equal to the truncated

state of

⎡

⎢⎢⎣

∗ 0 0 0
∗ 0 0 ∗
∗ 0 ∗ 0
∗ ∗ 0 0

⎤

⎥⎥⎦ ⊕ Δ compute the pair (ξa, βb) → (F48
2 )2 such that

ξa = S−1
⎩
M−1(a)

) ⊕ RC1,

βb = S−1
⎩
M−1(b)

) ⊕ RC8.

Store ξa in the row Λ = ξa ⊕ βb of the hash table T . The hash table T has 248

rows and on average each row have 260

248 = 212 values.

Attack Procedure

1. Guess 49 bits of the key k0 and extract 48 bits of k0 and of k∗
0.

(i) Allocate a counter Dk1 for each 248 values of k1.
(ii) For each 2m pairs (P ∗

t , C
∗
t) = (Pt ⊕ k0, Ct ⊕ k∗

0)
Compute Λ = P ∗

t ⊕ C ∗
t.

For all ξa in the row Λ of the hash table T increase the counter
D(P ⊥

t⊂νa) by one.
(iii) Consider a list of 248−a of the keys k1 with highest counter values.

2. Do an exhaustive search on the remaining 128 − a bits of key.

The time complexity of the attack without whitening keys (Steps (i) to (iii))
corresponds to 2m+12 memory accesses. To obtain k0, the attack should be
repeated for 249 keys k0. So the time complexity to find the whole key cor-
responds to 261+m memory accesses in addition to 2128−a full encryptions. We
need 260 × 48/8 × 2 ∅ 263.6 bytes for the storage of the hash table T and
249+48−a × 48/8 = 299.6−a bytes for the storage of the list of keys candidates.
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Abstract. In this article, we provide the first third-party security analy-
sis of the PRINCE lightweight block cipher, and the underlying PRINCEcore.
First, while no claim was made by the authors regarding related-key
attacks, we show that one can attack the full cipher with only a single
pair of related keys, and then reuse the same idea to derive an attack
in the single-key model for the full PRINCEcore for several instances of
the α parameter (yet not the one randomly chosen by the designers).
We also show how to exploit the structural linear relations that exist for
PRINCE in order to obtain a key recovery attack that slightly breaks the
security claims for the full cipher. We analyze the application of integral
attacks to get the best known key-recovery attack on a reduced version of
the PRINCE cipher. Finally, we provide time-memory-data tradeoffs that
require only known plaintext-ciphertext data and that can be applied to
full PRINCE.
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1 Introduction

Lightweight cryptography is a new, rapidly developing area of symmetric cryp-
tography that has emerged from the needs of constrained devices. The increasing
deployment of such devices in the everyday life has captured the attention of
the cryptographic community. It became clear that most of the available cryp-
tographic primitives, both ciphers and hash functions, fail to meet the basic
requirements of constrained devices – low cost hardware implementation, as well
as low power usage and latency. Thus, so-called lightweight primitives, designed
only for these type of devices, have been proposed (and some already have been
implemented) in the past several years.
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PRINCE [4] is a lightweight cipher published at Asiacrypt 2012, and opti-
mized with respect to latency when implemented in hardware. It is based on
Even-Mansour-like construction (so-called FX construction [2,10]) and it has
the interesting feature that one can perform decryption by reusing the encryption
process with a slightly different key. This feature, so-called α-reflection property,
clearly provides an advantage in implementations requiring both encryption and
decryption, but at the same time induces some structure. This structure forced
the designers to reduce the security expectations compared to an ideal cipher and
they claimed that the security of the cipher is ensured up to 2127−n operations
when 2n encryption/decryption queries are made. This bound is only valid for
the single-key model, and the authors made no claim concerning the related-key
model (a trivial related-key distinguisher can be built).

Our Contributions. In this article, we provide the first third-party analysis of
the PRINCE cipher. First, we analyze in Sect. 3 the resistance of PRINCE in regard
to related-key attacks. We emphasize that the designers clearly did not make any
claim regarding this attack model. However, the best attack is a trivial related-
key distinguisher and moreover, it is not clear up to what extend an attack can
be mounted. We show that with a single pair of related keys, one can recover
the whole secret key faster than exhaustive search or faster than the claimed
single-key security bound.

Furthermore, our related-key attacks are actually interesting not only for
the related-key model, but also for the single-key one since we leverage these
techniques to show in Sect. 4 that several choices of values for α lead to an
insecure version of PRINCEcore in the single-key model. It is to be noted that the
designers required α ⊕= 0 to enforce their security claims and the value of α was
eventually derived from the fraction part of π. We show that the choice of α is
actually sensitive for the security of the cipher.

In Sect. 5, we exploit the related-key relations verified with probability 1 that
exist for PRINCE in order to mount a key recovery attack, slightly breaking the
designers claims in the single-key scenario. Namely, we show that one can gener-
ically gain a factor 20.6 compared to their claims, by only taking into account
that the cipher is using the FX construction and has the α-reflection property.
While the gain is quite small, it indicates that more precise security proof (taking
in account the α-reflection property) might be an interesting research problem.

We explore the application of integral attacks in Sect. 6 and improve the best
known result on a reduced version of PRINCE, providing a 6-round key recovery
attack with low complexity.

Finally, in Sect. 7 we propose tradeoffs for PRINCE. We show that due to the
specific structure of the cipher, tradeoffs involving data and requiring only known
plaintexts-ciphertext are achievable for PRINCE. We start with a Memory-Data
tradeoff based on the meet-in-the-middle technique, and improve our results to
Time-Memory-Data tradeoff based on the original Hellman’s approach.

Our results are summarized in Table 1.
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Table 1. Summary of the results on PRINCE and PRINCEcore.

Cipher Rounds Data Time Memory Technique Ref.

PRINCE 4 24 264 24 Integral Sect. 6
5 5 · 24 264 28 Integral Sect. 6
6 216 264 216 Integral Sect. 6
12 21 2125.47 negl. Single-key Sect. 5
12 † 233 264 233 Related-key Sect. 3.1

12 MD = N, T = N
1
2 MD TO Sect. 7

12 T (MD)2 = N2N
1
2 TMD TO Sect. 7

12 TMD = NN
1
2 TMD TO Sect. 7

PRINCEcore 4 24 28 24 Integral Sect. 6
5 5 · 24 221 28 Integral Sect. 6
6 216 230 216 Integral Sect. 6
12 † 239 239 239 RK boomerang Sect. 3.2
12 241 241 negl. SK boomerang for chosen α Sect. 4

†: No security claim for related-key attacks TO: (Cryptanalytic) Tradeoff
RK: Related-key MD: Memory-Data
SK: Single-key TMD: Time-Memory-Data

2 Description of PRINCE

PRINCE [4] is a 64-bit block cipher that uses a 128-bit secret key k. The key
expansion first divides k into two parts of 64 bits each k = (k0||k1), where ||
denotes the concatenation, and then extends the key material into 192 bits:

k = (k0 || k1) ∃ (k0 || k∈
0 || k1) = (k0 ||L(k0) || k1), (1)

with L(x) = (x ≫ 1) → (x √ 63). The 64-bit subkeys k0 and k∈
0 are used as

input and output whitening keys respectively, while k1 is used as internal key
for the core block cipher PRINCEcore (see Fig. 1).

The internal block cipher PRINCEcore is a Substitution-Permutation Network
composed of 12 rounds. The round function Ri is defined by the bitwise addition
of the 64-bit subkey k1 and a 64-bit constant RCi, the application of a 4-bit
Sbox S to each of the 16 4-bit nibbles of the internal state, and finally the

R0

RC0

R1

RC1

R2

RC2

R3

RC3

R4

RC4

R5

RC5

SR-1 M⊥ SR R-1
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RC6

R-1
7

RC7

R-1
8

RC8

R-1
9

RC9

R-1
10

RC10

R-1
11

RC11

PRINCEcore

k0 k′
0

k1 RCi

S M

k1RCi

S-1M-1

Fig. 1. A schematic view of the PRINCE cipher.
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multiplication by a linear diffusion matrix M . The encryption of PRINCEcore is
then composed of the application of the 6 rounds R0, . . . ,R5, the multiplication
by a linear diffusion matrix Mmid, and finally the application the 6 inverse rounds
R−1

6 , . . . ,R−1
11 :

PRINCEcore = R−1
11 ◦R−1

10 ◦R−1
9 ◦R−1

8 ◦R−1
7 ◦R−1

6 ◦Mmid◦R5◦R4◦R3◦R2◦R1◦R0.

The 4-bit S-box S has a maximal differential probability of pmax = 2−2, and is
given by (in hexadecimal display) S[x] = [B,F,3,2,A,C,9,1,6,7,8,0,E,5,D,4].
The linear diffusion matrix M is composed of a linear matrix M ∈ and a nibble
shifting part SR (similar to a ShiftRows in AES [6]): M = SR◦M ∈. Then, the lin-
ear middle matrix Mmid is defined by Mmid = M ◦M ∈ ◦M−1 = SR◦M ∈ ◦SR−1.
We refer to [4] for the complete description of M ∈, but one must remark that its
diffusion property ensures that at least 16 Sboxes are active for 4 consecutive
round functions.

It is to be noted that RCi → RC11−i = α = 0xc0ac29b7c97c50dd for all
0 ⇒ i ⇒ 11, and since the matrix M ∈ is an involution, this allows to perform the
decryption D of PRINCE by simply encrypting with the key k1 → α instead of k1
and flipping the whitening keys k0 with k∈

0: D(k0 || k⊥
0 || k1)(·) = E(k⊥

0 || k0 || k1∗α)(·).
In this article, we see the internal state s of PRINCE as a 4 × 4 matrix form,

where each cell is a nibble, and if we denote s[i] the i-th nibble, 0 ⇒ i < 16 from
MSB to LSB, it would be located at row i (mod 4) and column ∈i/4≈.

3 Related-Key Attacks

In this section, we describe a related-key attack on the full PRINCE, and a related-
key attack on the core block cipher PRINCEcore. The first one (Sect. 3.1) uses a
single related-key, and the α-reflection property of the core cipher to recover
the 128-bit master key with 233 data, 263 operations and 232 memory. The sec-
ond attack (Sect. 3.2) uses a related-key differential characteristic with high-
probability to mount a boomerang distinguisher on the core block cipher, that
can be turned into a key-recovery attack for the 64-bit key k1 of PRINCEcore. We
have verified experimentally our results – an example of boomerang quartet for
the full 12-round PRINCEcore is given in Appendix A.

3.1 Related-Key Attack on Full PRINCE with the α-Reflection
Property

We denote in the sequel the secret master key that we aim to recover by k =
(k0, k1). We introduce one related-key k∈ = (k0, k1→α), where α refers to constant
defined in Sect. 2. The attack procedure uses the following distinguisher on the
whole core of PRINCE.

Property 1. Let (P,C) be the plaintext/ciphertext pair encrypted under the
secret key k of PRINCE, and (P ∈, C ∈) be the plaintext/ciphertext pair obtained
from PRINCE with the related key k∈. If C → P ∈ = k0 → L(k0), then P → C ∈ =
k0 → L(k0) with probability 1.
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P PRINCEcore C

k1k0 L(k0)

P ′ PRINCEcore C′

k1 ⊕ αk0 L(k0)

x

y′

y

x′

Fig. 2. Related-key distinguisher on full PRINCE.

Proof. As described in Sect. 2, PRINCE transforms a plaintext P into the cipher-
text C = Ek1(k0→P )→L(k0), where Ek1 instantiates PRINCEcore with key k1. For
a second plaintext P ∈, we set C ∈ = Ek1∗α(k0 →P ∈)→L(k0) using the related-key.
The condition C →P ∈ = k0 →L(k0) actually states that the output of PRINCEcore

in the first message equals the input of PRINCEcore in the second one. Namely,
C →P ∈ = k0 →L(k0) means x∈ = y from the notations of Fig. 2. Since y = Ek1(x)
and y∈ = Ek1∗α(x∈), we have x = y∈, which gives P → C ∈ = k0 → L(k0). ∪∀

From this distinguisher, we show how to mount a key-recovery attack on
PRINCE.

1. Query 232 ciphertexts to PRINCE with the key k = (k0, k1), and obtain
plaintext/ciphertext pairs denoted as (Pi, Ci). Store them in a hash table
Tc indexed by Xi = Pi → Ci.

2. Query 232 plaintexts to PRINCE with the related key k∈ = (k0, k1 → α), and
obtain plaintext/ciphertext pairs denoted as (P ∈

i , C
∈
i). Store them in a table

Tp index by Yi = P ∈
i → C ∈

i.
3. Find collisions in the keys of Tp and Tc.
4. For each pair Xi = Yj , compute Z = Ci →P ∈

j . Sample a plaintext P uniformly
at random, and obtain the corresponding ciphertext C from the encryption
oracle. Check the distinguisher by constructing the ciphertext C ∈ = P → Z,
querying its corresponding plaintext P ∈ decrypted with the related-key, and
check if P ∈ → C = Z. If this holds, then Z = k0 → L(k0).

5. Retrieve k0 by inverting the bijection x ∃ L(x) → x, and finish the attack by
recovering k1 exhaustively.

Complexity Analysis. After the two first steps where two structures of 232

independent values have been constructed, by the birthday paradox we expect
one collision for step 3. This collision gives a suggestion for k0 that we check with
the previously described distinguisher. This attack requires known plaintexts,
but we note that with a chosen plaintext attack, we can pick Ci and P ∈

j carefully
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such that Ci → P ∈
j covers all the possible 264 values. This ensures the value of k0

to be recover with probability 1 at Step 4.
The total data complexity is about 233 chosen plaintexts to construct the two

tables and check the distinguisher, and requires a time complexity equivalent to
233 + 264 ∅ 264 encryptions. We recall that the security bound for single-key
attack with 233 data claimed by the designers equals 127 − 33 = 94 bits.

3.2 Related-Key Boomerang Attack on PRINCEcore

In this section, we describe a related-key boomerang attack on PRINCEcore with a
time complexity equivalent to 248 encryptions. To construct the boomerang dis-
tinguisher, we split the core block cipher E of PRINCE into two halves E = E1◦E0,
where both E0 and E1 consists in 6 non-linear layers. The main observation that
makes the distinguisher efficient is the existence of related-key differential char-
acteristics with a very high probability. We start our analysis with an inspection
of the S-box of PRINCE.

Property 2. For the S-box of PRINCE, there are 15 differential transitions, i.e.
15 pairs of input-output differences, that hold with probability 2−2.

Further, we introduce three differences (Δ,ΔM ,∗) that play the main role in our
boomerang attacks. Let Δ ∃ ΔO be one of the 15 transitions with probability
2−2, and let ΔM be defined as ΔM = M(ΔO), where M is the linear layer of
PRINCE. Finally, let ∗ = Δ → ΔM .

Property 3. For PRINCEcore, there exists one round iterative characteristic
(ΔM ,∗) ∃ (ΔM ) where ΔM is the difference in the incoming state and ∗
is the difference in the key, that holds with probability 2−2.

The proof is trivial and is based on the particular values of the differences we
have defined above (see Fig. 3).

The related-key boomerang distinguisher uses two independent six-round dif-
ferential characteristics, produced as concatenation of six copies on the single-
round differential characteristic previously described. Thus, we obtain two six-
round characteristics with probabilities p = q = 2−2×6 = 2−12. Consequently,

≪ ≪≪≪
ΔM

≪ ≪≪≪

∇

≪

Δ

S

≪

ΔO

M⊥

≪≪≪≪ SR

≪ ≪≪≪
ΔM

Fig. 3. Iterative differential characteristic on one round of PRINCEcore used in the
boomerang distinguisher.
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the related-key boomerang distinguisher finds a boomerang quartet of plain-
texts in (pq)−2 = 248 queries to the encryption/decryption oracle. We have
implemented the distinguisher on a PC and found out that due to the amplified
probability of the boomerang, the actual complexity is lower, i.e. it is somewhere
around 236. Thus, we were able to find a boomerang quartet for the full 12 rounds
of PRINCEcore. An example of one such quartet is given in Appendix A.

Before we continue, we would like to make a few observations regarding the
boomerang:

• the distinguisher is applicable regardless of the choice of the diffusion matrix
M ,

• the distinguisher is applicable regardless of the position of Δ in the state, i.e.
we can choose any of the 16 nibbles,

• the distinguisher is applicable regardless of the choice of Δ in the top and the
bottom characteristics,

• for one of the six-round characteristics one can choose differential transition
that holds even with probability 2−3. In that case, the probability of the
boomerang becomes 26·2·(−3)+6·2·(−2) = 2−60.

Thus we can conclude that for PRINCEcore, one can launch around 15·16·15·16 ∅
216 different related-key boomerang distinguishers that hold with probability
2−48, and around 210 · 16 · 15 · 16 + 15 · 16 · 210 · 16 ∅ 221 boomerangs with
probability 2−60. In the sequel, we denote A(i, j) the boomerang distinguisher
with probability 2−48 where the active on the top characteristic is the i-th one,
and the j-th one for the bottom characteristic, 0 ⇒ i, j < 16.

Key-Recovery Attack. We now show how to turn the previous related-key
boomerang distinguisher into a key-recovery attack. After the previously described
distinguishing algorithm has completed, the attacker has one boomerang struc-
ture consisting in two pairs conforming to the first differential characteristic, and
two other pairs verifying the second differential characteristic. From the plaintext,
we show that the entropy of the nibble from k1 corresponding to the active nibble
in the top characteristic has been reduced to 2 bits. Indeed, as the pair verifies
the first round, we know the differential transition of the first active nibble, so
that there are only 4 possible values of that particular nibble1. Since we know the
values in the plaintexts, and we have two pairs that verify this transition, the cor-
responding key-nibble can only take two values. The same reasoning applies on
the ciphertexts for the bottom characteristic.

If we run 16 different instances of the boomerang distinguishing algorithm
A(n, n), 0 ⇒ n < 16, with the same nibble position n in the two characteristic,
each iteration would narrow the n-th nibble of k1 to exactly one value, but this
would also require 16·236 chosen-plaintexts. Instead, we run 8 times the algorithm
with different nibble positions in the top and the bottom part: A(n, n + 8),

1 The transitions occurring with probability 2−2, there are two pairs of values that are
solution to S(x) ⊕ S(x ⊕ Δ) = ΔO.
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0 ⇒ n < 8. Consequently, the information from the top pairs reduces the left
half of k1 to 28 values, and the bottom pairs reduces the right half of k1 to 28

values as well. In total, this requires 8 · 236 data and time to run the boomerang
algorithm A, and an additional 216 time to recover the actual key k1.

4 A Single-Key Attack on PRINCEcore with Chosen α

The related-key boomerang attack presented above does not make use of the α-
reflection property, but rather of the high probability one-round iterative char-
acteristic. In this section, we show that the two concepts can be combined into
a single-key boomerang attack with a modified value of α, i.e. we show exis-
tence of a set of values of α ⊕= 0 for which one can launch key-recovery attack
on PRINCEcore. The idea of our single-key attack is to align encryption with
decryption in the boomerang. We note that the possibility of alignment has
been discussed in the submission (see Sect. 3.1 of [4]), however the designers did
not examine the case of boomerangs.

First, let us assume the encryption Enc of PRINCEcore is aligned with decryp-
tion Dec, and focus on differential trails. Due to the α-reflection property, these
two primitives are identical up the the addition of the round constants RCi. As
pointed by the designers, to build a related-key differential trail between Enc
and Dec, one takes difference α in the related keys and since the same difference
α is introduced by the round constants, in each round the differences cancel and
the trail holds with probability 1. On the other hand in the single-key case, the
difference coming from the key is 0, while the constants would still have the
predefined α. Recall that in the six-round differential trails used in the related-
key boomerang attack, in each round the difference introduced by the key is
∗. Hence, if α would coincide with the difference ∗ in the key from the above
related-key boomerang, then a six-round single-key trail between Enc and Dec
is precisely the same as the six-round related-key trail between two Enc (or
between two Dec), i.e. the keys and constants switch roles. In other words, in
the single-key case one can build a six-round trail with probability 2−12.

The single-key boomerang attack for the whole PRINCEcore uses the same
ΔM in the top and bottom characteristics, and it can be described as follows:

1. Aligning encryption with decryption at the beginning: Take a random
plaintext P1 and compute C2 = P1 → ΔM .

2. Aligning two encryptions with decryptions at the end: Encrypt P1

to produce the ciphertext C1, and decrypt C2 to produce the plaintext P2.
Compute C3 = C1 → ΔM and P4 = P2 → ΔM .

3. Aligning encryption with decryption at the beginning: Decrypt C3

to produce the plaintext P3. Encrypt P4 to produce the ciphertext C4. If
P3 → C4 = ΔM output the boomerang quartet (P1, C2, P3, C4), otherwise go
to step 1.

After repeating 1–3 around 248 times, one finds the quartet with a high
probability. The proof of correctness of the above boomerang is similar as in the
case of standard boomerangs (where one aligns encryptions with encryptions).
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In the single-key case, we cannot choose the position of the active nibble as
it is fixed by the value of α. Thus in the key recovery attack, we can recover
only a single nibble of the master key. The first boomerang quartet will suggest
4 possible values for this nibble, and an additional quartet will give the exact
value. Thus the complexity of recovering 4 bits of the master key is 2 ·248 = 249.
The remaining 60 bits can be searched exhaustively. Our experimental results
suggest that when the top and the bottom characteristic use the same value ΔM

then the probability of the boomerang is somewhat lower, i.e. instead of 2−36

obtained in the case of different ΔM , now we get 2−40. Therefore the actual
recovery of the 4 bits is around 2 · 240 = 241.

The above attack is applicable only when the value of the constant α coincides
with the value of ΔM defined in the previous section. Therefore, α can take
15 · 16 = 240 different values. We note that the original value chosen by the
designers is not among these 240 values.

5 Exploiting the Extra Linear Relation

In this section, we give an analysis of PRINCE in the single-key model. We show
that while the claim of the authors is that no attack can be conducted on PRINCE
with less than 2127−n computations with 2n queries, it is possible to slightly break
this bound by leveraging the various linear relations that exist with probability
1 in the cipher. Of course, considering the small gain factor (only about 20.6),
our attack does not really contradict the claim of the designers. However, it
indicates that perhaps it might be worth to tweak the security proof in order to
take into account all the linear relations inherent to the structure of PRINCE. We
emphasize that the gain factor comes directly from the number of keys tested,
and not by computing only parts of the cipher as for biclique attacks [3]. It would
be possible to slightly increase the gain by combining with the accelerating tricks
from biclique attacks, but our goal is not in this direction as we are analyzing
the structural behavior of the cipher.

5.1 The Linear Relations

The idea underlying our attack is that there exist two linear relations for PRINCE
cipher that are verified with probability 1:

E(k0||k1)(P ) = E(k0∗Δ||k1)(P → Δ) → L(Δ) (2)
or: D(k0||k1)(C) = D(k0∗Δ||k1)(C → L(Δ)) → Δ (3)

and: D(k0||k1)(C) = E(k0||k1∗α)(C → k0 → L(k0)) → k0 → L(k0) (4)

The first Eq. (2) is the simple related-key relation due to the Even-Mansour
construction of PRINCE, while the second Eq. (4) is the α relation required for
the smooth decryption of PRINCE. Using these two relations, we will be able to
test 4 keys at the same time, with only one PRINCE computation, thus leading to
a maximal gain factor of 2 over the claimed security (2127 with a single query).
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First let us assume that we queried some plaintext P to the encryption oracle
and we received ciphertext C. By picking a random key (k0||k1), the attacker
can compute E(k0||k1)(P ) = C ∈ and directly check if C ∈ = C. If not, then he
knows that (k0||k1) is not the secret key. However, he can deduce more than just
this information. Indeed, from (2) and by denoting C ∈ → C = δ ⊕= 0, we deduce

E(k0∗L−1(δ)||k1)(P → L−1(δ)) = E(k0||k1)(P ) → L(L−1(δ))

= C ∈ → δ = C

and since δ ⊕= 0, then L−1(δ) ⊕= 0 and thus the key (k0 → L−1(δ)||k1) encrypts
a different plaintext than P to ciphertext C, i.e. it is not a valid key (and it is
different from key (k0||k1) since L−1(δ) ⊕= 0).

At this point, the attacker can test two keys with one PRINCE query and one
PRINCE offline computation. However, he can deduce even more information by
using Eq. (4) and using notation X = L−1(P → C → k0):

D(X||k1∗α)(C) = E(X||k1)(C → X → L(X)) → X → L(X)
= E(k0||k1)(C → X → L(X) → k0 → X) → X → L(X) → L(k0 → X)
= E(k0||k1)(P ) → L(k0) → X

= C ∈ → L(k0) → L−1(P → C → k0)

and if C ∈ →L(k0)→L−1(P →C →k0) ⊕= P , then it means that the key (X||k1 →α)
deciphers the ciphertext C to a plaintext different from P , i.e. it is not a valid
key. Let us denote Y = P → C ∈ → L(k0). Then:

E(Y ||k1∗α)(P ) = D(Y ||k1)(P → Y → L(Y )) → Y → L(Y )
= D(k0||k1)(P → Y → L(Y ) → L(k0 → Y )) → Y → L(Y ) → k0 → Y

= D(k0||k1)(C
∈) → k0 → L(Y )

= P → k0 → L(P → C ∈ → L(k0))

and if P → k0 → L(P → C ∈ → L(k0)) ⊕= C, then it means that the key (Y ||k1 → α)
encrypts the plaintext P to a ciphertext different from C, i.e. it is not a valid
key.

5.2 Speeding Up the Key Recovery with Linear Relations

For previous subsection, it is clear that with only a single query to the encryp-
tion oracle, and performing only a single PRINCE offline computation, one can
eliminate four keys at a time (namely K1 = (k0||k1), K2 = (k0 → L−1(δ)||k1),
K3 = (L−1(P → C → k0)||k1 → α) and K4 = (P → C → δ → L(k0)||k1 → α)) by
testing simple linear relations. However, there is a subtlety here because among
the four keys that are tested, some are not controlled by the attacker. Indeed,
while K1 is directly chosen by the attacker, the value of the tested keys K2 or
K4 depend on δ which is a random value from the view of the attacker. The
third key K3 does not depend on δ and therefore can be chosen by the attacker
as well (that is, k0 and k1 linearly define K1 and K3).
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We would like to evaluate the complexity of a brute force key search using
this method that tests four keys with only a single PRINCE computation. One
can first divide the sets of keys k1 into 263 independent pairs (k1, k1 → α). The
attacker will go through the 263 pairs and for each of them test all the possible
values of k0. For each PRINCE computation, he will eliminate two keys for k1 (i.e.
K1 and K2) and two keys for k1 → α (i.e. K3 and K4), continuing until he has
tested all the keys k0 for both k1 and k1 → α, and then going to the next pair
(k1, k1 → α). To minimize the overall complexity, at each step the attacker will
select a value for k0 such that key K1 and key K3 have not been tested yet and
this can be done with a good probability2 as long as the number of untested
keys k0 for both k1 and k1 → α is bigger than 232. The two others keys K2 and
K4 will randomly hit either a new and untested key or an already tested one,
but on average over the whole process about one key will be eliminated. Overall,
with one PRINCE computation on average about three new key candidates are
removed and the total key recovery complexity is about 2128/3 = 2126.4 PRINCE
evaluations, while with a single query to the encryption oracle the security claim
by the designers is 2127. We give in Appendix B a slightly more precise analysis
of the attack complexity, leading to 2126.47 computations.

5.3 Generalization to Several Queries

In the previous subsection, only a single plaintext query was sent to the encryp-
tion oracle, but in fact this is not enough to fully recover the PRINCE secret key
since at least two 64-bit queries are required to fully determine the 128-bit secret
key. Asking one more query to the oracle in order to prune the remaining key
candidates will reduce by a factor 2 the security claim given by the designers
which will become lower than our key recovery complexity. Therefore, we need
to generalize our previous attack to the case of several oracle queries, and we
analyze the example of two queries.

Our goal with two queries is now to be able to test 8 keys at a time (instead
of 4), using only one offline PRINCE computation. Let us assume that in addi-
tion to the first query (P,C), we also ask for the encryption of P → 1 and we
receive C+1. As before, by choosing a random key (k0||k1) and computing offline
E(k0||k1)(P ) = C ∈, we can test four keys at a time by using (P,C). It is actually
straightforward to apply the very same reasoning to (P → 1, C+1) as well and
get to test four more keys for free. For example, similarly to the first key K1 we
can write:

E(k0∗1||k1)(P → 1) = E(k0||k1)(P ) → L(1)
= C ∈ → L(1)

and if C ∈ → L(1) ⊕= C+1, then it means that the key (k0 → 1||k1) ciphers the
plaintext P → 1 to a ciphertext different from C+1, i.e. it is not a valid key.
2 Since there are 264 values of k0 to test, there will always be at least 232 untested key

for both k1 and k1 ⊕ α except at the very end of the process, but then the effect is
negligible since only 232 keys will remain to be tested.
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We can apply this kind of transformation to the three other keys K2, K3, K4

and obtain three more free keys.
During the key recovery process, we now get a structure with 8 tested keys,

where 4 are for k1 (two controlled and two uncontrolled) and 4 are for k1 → α
(two controlled and two uncontrolled). With the very same reasoning as before3,
we deduce that 6 new keys are tested on average per offline PRINCE computation,
and the final key recovery complexity is 2128/6 = 2125.4 PRINCE evaluations, while
with two queries to the encryption oracle the security claim by the designers is
2126. Using the same reasoning than depicted in Appendix B, we obtain a slightly
more precise analysis of the attack complexity, leading to 2125.47 computations.

6 Integral Attacks for Reduced-Round PRINCEcore and
PRINCE

In this section, we present key-recovery attacks for reduced variants of 4, 5 and
6 rounds of PRINCEcore, and show how to extend them to key-recovery attack
on the same number of rounds for PRINCE. The basic strategy comes as a direct
application of the SQUARE attack proposed in [5]. We begin by describing the
context for PRINCE with a 4-round version, and then show how to extend it to
5 and 6 rounds. In the sequel, we use the notations defined in Sect. 2 where the
middle layer Mmid is linear.

6.1 Attack on 4 Rounds

This small version considers two rounds R0 and R1 in the first part of the core
block cipher, followed by the middle linear layer Mmid, and finally the two last
rounds R2 and R3. The secret key to recover for PRINCEcore is k1. This attack, as
well as the subsequent ones, uses the following 3-round distinguishing property
as its core.

Property 4. Let Pn be a set of 24 plaintexts such that a particular nibble
n assumes all 24 possible values while the 15 other ones are fixed to chosen
constants. We call this structure a δ-set. The encryption of the δ-set Pn through
three rounds of PRINCEcore produces a set C where all nibbles are balanced,
that is:

∀n ∈ {0, . . . , 15},
⊕

c⊕C
c[n] = 0.

The proof strictly follows the one from [5] and is due to the wide-trail strategy
followed by the designers. Additionally, we can also consider the encryption of Pn

3 We have 4 controlled keys, which can be chosen to be always untested keys as long
as the number of untested keys k0 for both k1 and k1 ⊕ α is bigger than 248. Since
there are 264 values of k0 to test, there will always be at least 248 untested key for
both k1 and k1 ⊕ α except at the very end of the process, but then the effect is
negligible since only 248 keys will remain to be tested.
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under 3.5 rounds of PRINCEcore, where we skip the application of the non-linear
layer in the fourth round. Applying the S-box destroys this algebraic property
of the δ-set, but allows to mount a key-recovery attack.

We begin by constructing a δ-set P0 of 24 plaintexts where nibble at position
0 assumes all 24 values, we ask the encryption P0 under the secret key k1, and
store the ciphertexts in C. Then, for all nibbles n in k1, guess the value of k1[n]
and compute σ =

⊕
c⊕C S

(
c[n] → k1[n] → RC4[n]

)
. If σ = 0, then the nibble

before the last non-linear layer is balanced, and we get a valid suggestion for the
value k1[n]. Otherwise, we discard the guess.

This algorithm requires 24 chosen plaintexts and suggests in average one
value per nibble of k1 since each check should remove 1 out of 24 guesses. At the
end, we recover in sequence all the nibbles of k1 with a total time complexity of
16 · 24 = 28 simple operations, and 24 64-bit words of memory.

6.2 Attack on 5 Rounds

Further we show how to add one round at the end of the previous attack, to reach
five rounds. We note that this reduced variant of PRINCEcore is not symmetric
since there are two rounds, R0 and R1, before Mmid and three rounds after: R2,
R3 and R4. The strategy remains the same: we guess particular key nibbles to
check the distinguishing property on an encrypted δ-set C. Now we need to guess
4 nibbles of a column of k1 to partially decrypt the corresponding columns of the
ciphertexts and check the balanced property. Note that in the case of PRINCEcore,
we only need to guess 4 nibbles since there is no key-schedule, whereas for the
AES we would need 5.

In comparison to the previous attack where one check suffices to remove all
but one key guess, here we need more. Indeed, we expect a single check to behave
as a 4-bit filter, so that 4 δ-sets should provide enough information to discard
all but 1 key guess. In practice, we measure that the filter is not that strong: we
require in average 4.7 δ-set to determine the 4 key nibbles uniquely. In total, the
attack requires 5 · 24 chosen plaintexts, 5 · 24 memory to store them, and a time
complexity of 4 · 5 · 216 ∅ 221 simple operations to recover the full k1.

6.3 Attack on 6 Rounds

On top on the previous attack, we add one additional round at the beginning to
reach six rounds. The strategy is the same as the one for the AES: we construct
a set of plaintexts P such that we can construct a δ-set after one round. To
do so, we consider a larger structure of 216 plaintexts where the four diagonal
nibbles assume all the possible values, and we ask its encryption to get the
set of corresponding ciphertexts C. Then, we guess the four diagonal nibbles
of k1 and partially encrypt the associated data under the key guess to find 24

plaintexts/ciphertexts pairs defining a δ-set in the second round. We expect
212 δ-sets Pi for any nibble i, so the data can be reused to replay the attack
on a different δ-set. We can now apply the 5-round attack by guessing only 3
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additional nibbles: we already know one in each column from the diagonal guess.
In total, the attack requires 216 chosen plaintexts of data and same for memory
requirements and runs in time equivalent to 4 · 216 · 212 = 230 simple operations.

6.4 Extension from PRINCEcore to PRINCE

All the three previous attacks on PRINCEcore can be extended to attacks on
PRINCE by guessing the same nibbles in L(k0). Namely, if we have an integral
attack on r rounds of PRINCEcore requiring g precise guesses in the last appli-
cation k1, we can deduce an attack recovering k1 → L(k0) on the same number r
of rounds by guessing the same g nibbles in both k1 and L(k0). For each correct
final guess g that verifies the balanced property, we deduce the right value for
k1[g] → L(k0)[g]. Hence, for the 6-round attack, we can recover k1 → L(k0) with
216 chosen plaintexts and (24)4+3+4 = 244 simple operations. We first guess the
four diagonal nibbles of k1 to find the δ-set, then we guess 4 nibbles in a column
of L(k0) and three new guesses in the same column of k1 to partially decrypt
the ciphertexts. For the same reason as before, only three guesses are needed in
k1 because we already know one. Finally, we can exhaust the 264 values of either
k0 or k1 to recover the full 128-bit master key.

7 Time-Memory-Data Tradeoffs

In this section, we present tradeoffs for the construction used in PRINCE, i.e.
our approaches work regardless of the cipher used as PRINCEcore. The proposed
tradeoffs are based on a property that the cipher can be divided into two parts,
leading to a similar division of the phases of the key recovery attack. Then,
one side of the attack is precomputed as it does not depend on the plaintext-
ciphertext, while the other side is data-dependent and it is recomputed in the
online phase. Depending on the precomputation phase and in particular on the
memory used in this phase, our tradeoffs are based either on the meet-in-the-
middle (MITM) attacks or on Hellman’s tradeoffs [9]. We note that we give time-
memory-data tradeoffs, i.e. we show that one can achieve tradeoffs involving data
as well. This is not the case for the rest of the block ciphers, as the only known
generic block cipher tradeoff is the Hellman’s tradeoff which does not make use
of larger data set.

We assume the reader is familiar with the Hellman’s time-memory trade-
off that consists of two phases: (1) precomputation or offline phase, when the
attacker encrypts a chosen plaintext under all possible keys and stores part of the
results in so-called Hellman’s tables, and (2) online phase, in which the attacker
recovers the secret key using the tables. A cryptanalytic tradeoff is defined by
the following parameters:

• N is the size of the key space (e.g. for PRINCE N = 2128)
• P is the time complexity of the precomputation phase
• M is the amount of the memory used in both the precomputation and the

online phases
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• T is the time required to recover the secret key, i.e. the complexity of the
online phase

• D is the amount of data required to recover the secret key

The standard way of presenting a tradeoff is by giving its curve, which is a
simple relation between the time, memory, data, and the size of the key. The
Hellman’s time-memory tradeoff is the only known generic tradeoff for block
ciphers, and has the curve TM2 = N2,M > N

1
2 and P = N . We use (P,C) to

denote the plaintext-ciphertext pair for PRINCE, and (A,B) to denote the pair
for PRINCEcore.

Our tradeoffs exploit the linearity of the addition of k0. Recall that the
addition of the key k0 is defined as:

P → k0 = A (5)
B → L(k0) = C, (6)

or equivalently

L(P ) → L(A) = L(k0) (7)
B → C = L(k0). (8)

Thus, the values of P,C,A,B are related as:

L(P ) → C = L(A) → B (9)

Therefore, the separation of (P,C) on one side, and (A,B) on the other is man-
ageable. We note that a similar reduction was presented in [7]. It was applied
to the case of single-key Even-Mansour, where L(k0) = k0, and the inner trans-
formation F is a permutation rather than a cipher as in our case. However, [7]
does not examine the possibility of tradeoff attacks.

A MITM Tradeoff. Our first tradeoff is MITM based. It can be described as
follows:

1. In the precomputation phase, the attacker fixes 264−d values of A and for
all possible 264 values of the key k1 computes the corresponding value of
B = PRINCEcore(A, k1) and stores the tuple (L(A)→B,A,B, k1) in a table
S̃. The size of S̃ is 2128−d.

2. In the online phase, given 2d pairs of known plaintexts-ciphertexts, for each
pair (Pi, Ci), the attacker computes the value of L(P ) → C and checks for a
match in the table S̃. For every found match, the outer key k0 is computed,
and a possible candidate k0||k1 is checked on a few more pairs of plaintexts-
ciphertexts.

As there is 2d data, the size of the set S̃ is 2128−d, and the matching space is
only 64 bits, there would be 2d+128−d−64 = 264 candidates, thus the correct key
would be found with an overwhelming probability.
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This tradeoff has the following parameters:

N = 2128, P = 2128−d,M = 2128−d, T = 264,D = 2d, (10)

and thus the precomputation phase is smaller than N , i.e. PD = N , while the
resulting memory-data tradeoff curve is of the type:

DM = N,T = N
1
2 ,M > N

1
2 . (11)

Interestingly, this is precisely the curve given by Babbage and Golić [1,8] for
stream ciphers. Compared to the Hellman’s curve, we get TM2 = 26424·64−2d =
24·64264−2d = N2264−2d, hence when the data D > N

1
4 = 232, we get a better

tradeoff.

Hellman’s Tables Trade-off. Though the time complexity seems attractive
as it is only N

1
2 , the memory complexity required by the previous tradeoff is

quite large. Hence, it is reasonable to try to reduce the memory by increasing
the time. This is achievable by implementing Hellman’s tradeoff as intermediate
step of the tradeoff for the whole cipher. Hellman’s tradeoff satisfies the curve
TM2 = N2, where N = 2n, T = t2,M = mt, and mt2 = 2n. The values t,m are
related to the dimension and the number of the tables created during the offline
phase. Note that Hellman’s tables are computed for a particular plaintext. We
call P -Hellman’s tables, the precomputation phase computed under the plaintext
P . Thus P -Hellman’s tables can recover the secret key if the supplied plaintext
is P .

Our tradeoff based on Hellman’s tables can be described as:

1. In the precomputation phase, the attacker creates a set S̃ of 2n−d different
values Ai for A and for each value, builds Ai-Hellman’s tables for the cipher
PRINCEcore(Ai, k1).

2. In the online phase, given 2d pairs of known plaintexts-ciphertexts, for each
pair (Pi, Ci), the attacker performs the following steps:
• Fixes one value of Ai from the predefined set S̃,
• Computes the value of k0 = Pi → A,
• Computes the corresponding value of B = Ci → L(k0),
• Uses Ai-Hellman’s table, to find a value of k1 such that PRINCEcore(Ai,

k1) = B,
• Checks if the found key k0||k1 is the correct key by testing on a few more

pairs of plaintext-ciphertext,
• If the suggested key is incorrect, repeats all of the above steps.

As there is 2d data, and 264−d values of Ai in S̃, in total there are 2d264−d =
264 possible values for the key k0, and for each of them on average one value for
the key k1, or 264 pairs of suggested keys, thus the attacker finds the right key
with a high probability. In the precomputation phase, for a single value of A, the
attacker uses 264 computations to build Hellman’s tables and requires M = mt
memory to store each of them. In the online phase, given A and B, the attacker
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needs T = t2 time to find the correct value of the key k1. Therefore, the tradeoff
has the following parameters:

N = 2128, P = 2128−d,M = 264−dmt, T = 264t2,D = 2d, (12)

and the resulting time-memory-data tradeoff curve is of the type:

T (MD)2 = 264t222·64−2dm2t222d = 23·64(t2m2t2) = 23·6422·64 = 25·64 = N2N
1
2 .

(13)
Again, our tradeoff compared to the Hellman’s tradeoff is better at the points of
the curve where D > N

1
4 . We should note that due to the claimed security level

of PRINCE, i.e. TD < N , an additional requirement M2D > 2192 is introduced.

Hellman’s Single Table Trade-off. In the Hellman’s tradeoff, different tables,
each with a unique reduction function, are created in order to avoid colliding
chains, i.e. if the chains are too long, the probability they will collide is high and
therefore either the precomputation time has to be increased or the number of
keys that can be recovered in the online phase becomes small. The collisions in
the precomputation phase cannot be detected, hence the chains are kept short.
However, the situation changes if one can store all of the values. This type of
scenario is discarded in the classical Hellman’s tradeoff as it requires M = N .
However, in the case of PRINCEcore, the required memory is only M = N

1
2 which

is precisely the lower bound on the memory in the Hellman’s tradeoff (recall that
the memory requirement in the Hellman’s tradeoff is M > N

1
2 = 264). Using 264

memory, one can easily create a single Hellman’s table for the whole tradeoff –
the table has m chains, each with around t points. The first chain starts with a
terminal point (a value that does not have a preimage) and can have a length
of up to 232, i.e. t < 232. If the length t is chosen to be less than 232, then
the starting point of the next chain is the end point of the previous one. This
process is repeated until a collision is obtained – such collision can be detected
immediately as one has all the values stored. Once a collision occurs, the next
chain starts again with a terminal point. Hence, to build the whole table, one
needs 264 time and memory, and mt = 264. Only the starting and end points of
the chains are stored for the online phase, thus the memory of the online phase
is m, while the time complexity is t, and therefore the tradeoff curve becomes
TM = N . Note that the memory 264 is reusable across different tables, i.e. if
one wants to create different tables for tradeoffs with different plaintexts, the
same 264 can be used. Also, as the chains can have a maximal length of 232, if
follows that t ⇒ 232 and m ≥ 232.

The tradeoff presented above can be tweaked, and instead of building multiple
Hellman’s tables with mt2 = 2128, we can use the single table described here with
mt = 264. Hence, using this technique, we obtain the following tradeoff:

N = 2128, P = 2128−d,M = max(264−dm, 264), T = 264t,D = 2d, (14)

and the resulting time-memory-data tradeoff curve is of the type:

TMD = 264t264−dm2d = 22·64(tm) = 22·64264 = NN
1
2 . (15)
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Obviously M > N
1
2 has to hold (same as in the Hellman’s tradeoff), but

now we get that for any D > M/N
1
2 our tradeoff is better than Hellman’s,

that is if one uses 264+d memory, and can obtain more than 2d known pairs
of plaintext-ciphertext, by implementing our tradeoff he can recover the key
with less computations then by implementing the generic Hellman’s tradeoff.
We emphasize that our tradeoff requires only known data, i.e. it is far more
practical requirement, than the one of the generic tradeoff.
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A Example of a Boomerang Structure

We present here an example of a boomerang structure found for the attack
described in Sect. 3.2 (Table 2).

Table 2. Example of a related-key boomerang structure
(
(ki, pi, ci)

)
i=1,...,4

for the

full PRINCEcore in hexadecimal values.

(k1, k2, k1 ⊕ k2) 91b4e89d2625f1fb 91b5e88d2725f1fa 0001001001000001

(p1, p2, p1 ⊕ p2) 0b92a736c9bb91a3 0b93a726c8bb91a3 0001001001000000

(c1, c2, c1 ⊕ c2) 2f04603451d1d3df 3846bd541167b633 1742dd6040b665ec

(k3, k4, k3 ⊕ k4) 91a4e99d2635f1fa 91a5e98d2735f1fb 0001001001000001

(p3, p4, p3 ⊕ p4) a763296ea531a6b8 a762297ea431a6b8 0001001001000000

(c3, c4, c3 ⊕ c4) 2f14613451d1d3de 3856bc541167b632 1742dd6040b665ec

(k1, k3, k1 ⊕ k3) 91b4e89d2625f1fb 91a4e99d2635f1fa 0010010000100001

(p1, p3, p1 ⊕ p3) 0b92a736c9bb91a3 a763296ea531a6b8 acf18e586c8a371b

(c1, c3, c1 ⊕ c3) 2f04603451d1d3df 2f14613451d1d3de 0010010000000001

(k2, k4, k2 ⊕ k4) 91b5e88d2725f1fa 91a5e98d2735f1fb 0010010000100001

(p2, p4, p2 ⊕ p4) 0b93a726c8bb91a3 a762297ea431a6b8 acf18e586c8a371b

(c2, c4, c2 ⊕ c4) 3846bd541167b633 3856bc541167b632 0010010000000001

B Analysis of the Key Recovery Attack Complexity of
Sect. 5

In the cryptanalysis described in Sect. 5, the attacker would like to test the
entire set of the 2k possible keys. At each step, four keys will be tested directly.
However, for each step, the attacker can only choose the value of two keys, and
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the two others are randomly chosen among the set of all possible keys (thus
potentially already tested ones). Since the overall complexity of the attack is the
number of steps required to test the entire set of keys, we would like to evaluate
this quantity precisely.

In order to ease the modeling, we consider the problem where at each step
one key is chosen by the attacker (thus always an untested one) and another
one is chosen randomly. Let T1/2 be the step where half of the keys have already
been tested. After T1/2, at least one new key will be tested on average, since the
attacker can choose one key each step. Before T1/2, at least 1.5 new key will be
tested on average, since the attacker can choose one key each step and since the
randomly chosen key will have a probability greater than 1/2 to be an untested
key. We can conclude that the average number of keys tested per step is at least
2/(1 + 1/1.5) = 1.2.

We further continue the partitioning by denoting Ti/x the step where a pro-
portion i/x of all keys have already been tested. Then, with the same reasoning,
after Ti/x at least (2 − (i + 1)/x) new keys will be tested on average and before
Ti/x at least (2 − i/x) new keys will be tested on average. The approximation
gets more precise as x grows and we obtain that the average number of key
tested per step is equal to

lim
x⊂≤

x
∑x−1

i=0 (1/(1 + i/x))
=

1
ln(2)

∅ 1.443. (16)

As a consequence, the average number of steps required to test the entire key
space in Sect. 5 is approximately 2k/(2 × 1.443) = 2k−1.53.
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8. Golić, J.D.: Cryptanalysis of alleged A5 stream cipher. In: Fumy, W. (ed.) EURO-
CRYPT 1997. LNCS, vol. 1233, pp. 239–255. Springer, Heidelberg (1997)



Security Analysis of PRINCE 111

9. Hellman, M.E.: A cryptanalytic time-memory trade-off. IEEE Trans. Inf. Theory
26(4), 401–406 (1980)

10. Kilian, J., Rogaway, P.: How to protect DES against exhaustive key search (an
analysis of DESX). J. Cryptology 14(1), 17–35 (2001)



Cryptanalysis of Round-Reduced LED
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Abstract. In this paper we present known-plaintext single-key and
chosen-key attacks on round-reduced LED-64 and LED-128. We show that
with an application of the recently proposed slidex attacks [5], one imme-
diately improves the complexity of the previous single-key 4-step attack
on LED-128. Further, we explore the possibility of multicollisions and
show single-key attacks on 6 steps of LED-128. A generalization of our
multicollision attack leads to the statement that no 6-round cipher with
two subkeys that alternate, or 2-round cipher with linearly dependent
subkeys, is secure in the single-key model. Next, we exploit the possibil-
ity of finding pairs of inputs that follow a certain differential rather than a
differential characteristic, and obtain chosen-key differential distinguish-
ers for 5-step LED-64, as well as 8-step and 9-step LED-128. We provide
examples of inputs that follow the 8-step differential, i.e. we are able to
practically confirm our results on 2/3 of the steps of LED-128. We intro-
duce a new type of chosen-key differential distinguisher, called random-
difference distinguisher, and successfully penetrate 10 of the total 12
steps of LED-128. We show that this type of attack is generic in the
chosen-key model, and can be applied to any 10-round cipher with two
alternating subkeys.

Keywords: LED · Lightweight · Multicollision · Single-key attack ·
Chosen-key attack

1 Introduction

The lightweight block cipher LED was proposed by Guo et al. at CHES 2011 [10].
It is a hardware optimized 64-bit cipher, with two main instances LED-64 for
64-bit key support, and LED-128 for 128-bit keys. Based on the AES design,
LED uses modified, hardware-friendly operations and a trivial key schedule. As
the authors targeted compact design, but as well secure even against related-
key attacks, the number of rounds of LED is relatively large, i.e. LED-64 uses
32 rounds grouped in 8 steps of 4 rounds, while LED-128 has 48 rounds, or
equivalently 12 steps. A round of LED is similar to a round of AES, with one
exception: the addition of the round keys in AES is replaced with an addition
of constants in LED. The subkeys are added only after every fourth round, thus

S. Moriai (Ed.): FSE 2013, LNCS 8424, pp. 112–129, 2014.
DOI: 10.1007/978-3-662-43933-3 7, c© Springer-Verlag Berlin Heidelberg 2014
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one step of LED (which consists of 4 rounds), behaves as 4 rounds of single-key
AES – a construction with well analyzed differential and linear properties.

In the submission paper, the designers provide analysis of LED against various
attacks – we mention the attacks in the chosen-key model: 15 rounds for LED-64
and 27 rounds for LED-128. Isobe and Shibutani [11] show single-key attacks
on LED-64 reduced to 8 rounds, and LED-128 reduced to 16 rounds. Mendel
et al. [14] give a supplementary cryptanalysis in different single and related-key
models for both versions of the cipher. They are able to penetrate 16 rounds in
the related-key model for LED-64, and 24 rounds for LED-128, with an additional
single-key attack on 16 rounds of LED-128. An independent work proposed by
Bodganov et al. in [2] also introduced similar related-key attacks on the generic
structure of two-round SEM [5] with three identical keys.

We start our analysis with a brief overview of the previous results on the
scheme used in LED as well as of the techniques applied in the attacks on LED
(Sect. 2). The overview would help us to clearly describe our attacks in the single-
key model (Sect. 3), and in the chosen-key model (Sect. 4). Our first result is an
improvement of the single-key attack on 16-round LED-128 presented in [14].
We show that instead of using Daemen’s attack [4] as a preliminary step, one
can use the recently proposed slidex attack [5], and end up with an immediate
twofold gain in terms of the data requirements: the attack from a chosen plain-
text as in [14] becomes a known plaintext, while the data complexity from the
whole codebook drops to 2d, where d can be any value chosen by the attacker.
Next, by exploiting the idea of multicollisions, we show a single-key attack on 24
rounds of LED-128. We eliminate one of the subkeys by guessing, and then we
are able to attack the remaining construction by creating a set of multicollisions
which allows to find the second subkey. It is important to note that our tech-
nique is applicable to LED for any step function, that is the number of rounds we
can attack depends strictly on the number of used subkeys. Moreover, using the
same approach one can mount attacks on any two-round construction with three
equal (or linearly dependent) subkeys, e.g. SEM [5] with an additional round.
The idea of using differentials instead of differential characteristic is examined
in our chosen-key attacks on 20-round LED-64, and 32-,36-round LED-128. We
show that two consecutive active steps in a differential path, can be threated as
a differential. This leads to a significant reduction of the complexity for finding a
pair that follows the path. We are able with a complexity of around 232 encryp-
tions to construct a pair that follows our defined path, and give an example of
such pair found on a computer for 32 rounds of LED-128, i.e. we can show a
practical chosen-key distinguisher for 2/3 of the cipher rounds. We propose a
new type of chosen-key distinguishers, called random-difference distinguishers,
where the attacker is supposed to find a pair of inputs that follow a certain
differential, for any input difference. We show that LED-128 is vulnerable to this
type of distinguishers for 40 rounds out of the total 48 rounds, i.e. 5/6 of the
rounds of LED-128 can be distinguished in the chosen-key model. Furthermore,
we show that this distinguisher is generic to all 10-round/step ciphers with two
subkeys that alternate. An overview of the results on LED is given in Table 1.
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Table 1. Attacks on LED

Cipher Framework Type Steps Time Data Memory Ideal Source

LED-64 single-key Key recovery 2 256 28 211 264 [11]
(8 steps) chosen-key Distinguiher 3.75 216 − 216 232 [10]

related-key‡ Key recovery 4 262.7 262.7 262.7 264 [14]
chosen-key Distinguisher 4 233.5 − 232 241.4 4.1
chosen-key Distinguisher 5 260.2 − 261.5 266.1 4.1

LED-128 single-key Key recovery 4 2112 216 219 2128 [11]
(12 steps) single-key Key recovery 4 296 264 232 2128 [14]

single-key Key recovery 4 296 232 232 2128 3.1
related-key Key recovery 6 296 264 232 2128 [14]
single-key Key recovery 6 2124.4 259 259 2128 3.2
chosen-key Distinguisher 6.75 216 − 216 232 [10]
chosen-key Distinguisher 8 233.5 − 232 241.4 4.2
chosen-key Distinguisher 9 260.8 − 262 266.1 4.2
chosen-key Distinguisher 10 260.3 − 260 264 4.3

‡: Complexity is based on the 6 found pairs that follow the iterative characteristic.

2 Specification and Related Works

In this section we give a brief description of LED and present related analysis
relevant for understanding our attacks.

2.1 The Block Cipher LED [10]

LED uses a block size of 64 bits and a key size ranging from 64 bits to 128 bits.
The two primary instances, LED-64 and LED-128, use a 64-bit key and an 128-bit
key, respectively.

The key schedule is trivial and very efficient: LED-64 uses the 64-bit secret
key in each step as a subkey, while LED-128 divides the 128-bit secret key K into
halves K0||K1 and uses K0 and K1 alternatively as the subkeys, i.e. K0 is used
in the even steps, while K1 is used in the odd steps. LED follows the standard
iterative cipher structure and produces a ciphertext C from the plaintext P in t
iterations of a so-called step function Fi (see Fig. 1):

S0 ⊕− P

Si+1 ⊕− Fi(Si ∃ Ki), 0 → i → t − 1
C ⊕− St ∃ Kt

In LED-64 the number of steps t is 8, while in the other instances including
LED-128, t is defined as 12. The step function Fi is a 4-round AES-like permuta-
tion where the addition of the subkeys is replaced with an addition of constants.
Thus, all the step functions Fi can be seen as public permutations and differ
only in the round constants they use. Since most of our attacks can be mounted
independently of the specification of the step functions, we omit their description
and refer the interested reader to [9,10] for a full specification.
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Fig. 1. LED and its two primary instances LED-64 and LED-128

2.2 Related Attacks on the Even-Mansour Scheme

The Even-Mansour scheme [6] uses two secret keys (K0,K1) and a public permu-
tation F to construct a cipher EMK0,K1(P ) = F (P ∃K0)∃K1 (see Fig. 2). This
scheme is very attractive due to its extremely simple design with a provable
security margin. Several papers on cryptanalysis of Even-Mansour have been
published. This section briefly describes the attacks relevant to our paper.

Daemen’s Attack [4]. The chosen-plaintext attack of Daemen can be sketched
as:

1. Choose a non-zero difference Δ.
2. Choose 2d different random values as plaintexts P , query P and P ∃ Δ to

the Even-Mansour scheme to receive the corresponding ciphertexts C and C ∈

respectively, and compute and store ΔC = C ∃ C ∈.
3. Choose a random value X, compute ΔF (X) = F (X)∃F (X ∃Δ), and check

if ΔF (X) is among the stored ΔC computed at step 2. If a match is found,
then compute K0 = P ∃X and K1 = F (X)∃C and confirm on another pair
of plaintext-ciphertext that the values are correct.

After repeating the step 3 around 2n−d times, where n is the block size, the
secret keys are expected to be recovered. Thus the overall complexity is 2d chosen
plaintexts and 2n−d encryptions.

Slidex Attack [5]. Dunkelman et al. were able to match the complexity of
Daemen’s attack with only known-plaintexts, using a so-called slidex attack.

Fig. 2. Even-Mansour scheme Fig. 3. Single-key Even-Mansour scheme
(SEM)



116 I. Nikolić et al.

Let us assume the attacker obtains 2d known plaintext-ciphertext pairs (Pi, Ci).
Then the slidex attack can be described as:

1. Choose a random non-zero difference Δ.
2. For all (Pi, Ci) compute a set of F (Pi ∃ Δ) ∃ Ci and look for a collision in

the set.
3. If a collision is found, e.g. F (P ∃ Δ) ∃ C = F (P ∈ ∃ Δ) ∃ C ∈, then K0 =

P ∃ P ∈ ∃ Δ.
4. Otherwise, go to step 1.

After repeating the steps 1 − 4 around 2n−2d times, the correct value of K0 is
expected to be recovered. With the knowledge of K0, the value of K1 can be
trivially recovered using a single known pair (P,C). Thus the overall complexity
is 2d known plaintexts and 2n−d encryptions.

An Attack on SEM [5]. Dunkelman et al. proposed a single-key variant of
the Even-Mansour scheme depicted in Fig. 3, which uses the same secret key as
both the pre- and the post-whitening keys, i.e. F (P ∃ K) ∃ K. Following the
notation from [5], we refer to this single-key variant as SEM. Dunkelman et al.
provided once more a known-plaintext attack on SEM based on the observation
that P ∃C = X ∃Y . Again, we assume the attacker obtains 2d known plaintext-
cihertext pairs (Pi, Ci). The steps of the attack are as follows:

1. Compute a set of Pi ∃ Ci for all 2d (Pi, Ci).
2. Choose a random value of X, compute Y = F (X) and match X ∃ Y to the

values of P ∃ C from the set computed at step 1.
3. If a match is found, K = P ∃ X.
4. Otherwise, go to to step 2.

After repeating the steps 2 − 4 around 2n−d times, the correct value of K is
expected to be recovered. Thus the complexity is 2d known plaintexts and 2d +
2n−d computations.

2.3 Key-Recovery Attacks on LED

Several chosen-plaintext key-recovery attacks on LED have been published. This
section briefly describes the attacks related to this paper.

Three-SubsetMeet-in-the-MiddleAttacks on LED [11]. Isobe and Shibutani
applied the attack framework formalized by Bogdanov and Rechberger [3] to LED
in a very original and non-trivial manner [11] and presented chosen-plaintext
attacks on 2-step LED-64 and 4-step LED-128. Their complexity on 4-step LED-128
is 216 chosen plaintexts and 2112 encryptions. We stress that the time complexity
of their attacks cannot be reduced when more data is available.
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Guess-and-Recover Attacks on LED-128 [14]. Mendel et al. published key-
recovery attacks on 4-step and 6-step LED-128 in the single-key and the related-
key settings, respectively. The main strategy of their attacks is first to guess
the value of K0 in order to peel off the first and the last step functions, and
then to efficiently recover the value of K1 by attacking the shortened cipher.
In this paper we call such attack strategy guess-and-recover. The attack on 4-
step LED-128 (depicted in Fig. 4) starts by guessing the key K0, thus the 4-step
LED-128 is shortened to a cipher E, and moreover G (in Fig. 4) becomes now
a public permutation. As E follows the Even-Mansour scheme, Mendel et al.
adopted Daemen’s attack [4] sketched in Sect. 2.2 to recover the key K1. In
particular, for an input S1 to the cipher E, in order to get the value of E(S1),
the attacker computes P = F−1

0 (S1)∃K0, then queries P to LED-128 to receive
the corresponding ciphertext C, and finally computes F−1

3 (C ∃ K0) as E(S1).
Note, Mendel et al.’s attack is a known/chosen-plaintext attack and since the
Daemen’s attack procedure is executed for each guess of K0 (thus repeated 264

times), the data complexity of the attack equals the entire codebook while the
time complexity is 296 encryptions. The authors point out that the attacker is
able to reduce the data complexity below the entire codebook, however then he
has to sacrifice the time complexity, i.e. the time will increase proportionally. We
stress that the attack becomes a chosen-plaintext attack if the data complexity
is less than the entire codebook, otherwise it can be considered known-plaintext
attack (it requires the whole codebook, hence there is no difference between
chosen and known plaintext).

Mendel et al. were able to extended the above attack on 4 steps to 6 steps
of LED-128 in the related key settings. A pictorial view of the guess-and-recover
strategy on 6-step LED-128 is given in Fig. 5. The attack uses a related key
K ∈ = K0||K ∈

1, where K ∈
1 is K1 ∃ Δ. Let E∈ be the shortened cipher under the

related key K ∈. For a random value S1, inside the computations of E(S1) and
E∈(S1 ∃Δ), the difference ΔG1(S1) = G1(S1 ∃K1)∃G1(S1 ∃Δ∃K ∈

1) is always
0. Hence the input difference of G2 is always Δ. Thus Daemen’s attack can be
applied to recover the value of K1 in a straightforward way with the same data
and time complexity.

Fig. 4. Guess-and-recover strategy on 4-step LED-128
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Attacks on LED-64 Exploiting Differential Characteristics for the Step
Functions [14]. Mendel et al. proposed as well attacks on 3-step and 4-step
LED-64 in the related-key setting, by investigating the differential properties
of the step functions of LED, in particular differential characteristics with high
height as well as iterative differential characteristics. For the public permutations
used in the step function, the authors found differential characteristics with a
probability of around 2−54, while theoretically it may go up to 2−50 (25 active
Sboxes and each with 2−2). In one part of our analysis, we use the results of [14],
and in order to provide conservative results, we assume the optimal differential
characteristic for the step functions to hold with probability 2−54. However, as
pointed out by Mendel et al., differential characteristics with a better probability
may exist and if such characteristic is found, our attack complexity will be
immediately improved.

2.4 Differential Multicollisions for Block Ciphers [1]

This concept was introduced by Biryukov et al. [1]. It can be defined as follows:

Definition 1. A differential q-multicollision for the block cipher EK(·) is defined
as a set of two differences ΔP and ΔK and q key-plaintext pairs (K1, P1),
(K2, P2), . . ., (Kq, Pq) that satisfy the relation:

EK1(P1) ∃ EK1∗ΔK(P1 ∃ ΔP ) =
EK1(P2) ∃ EK2∗ΔK(P2 ∃ ΔP ) =
· · · =
EKq

(Pq) ∃ EKq∗ΔK(Pq ∃ ΔP ),

Biryukov et al. have proven that it takes at least q · 2
q−2
q+2 n queries to produce a

differential q-multicollision for an ideal n-bit block cipher. Thus if an attacker can
find a differential q-multicollision on a dedicated block cipher with a complexity
less than the lower bound q · 2

q−2
q+2 n, he can distinguish the cipher from ideal in

the chosen-key model.

3 Key-Recovery Attacks on LED-128 in the Single-Key
Setting

In this section we present key recovery attacks on 4 steps and 6 steps of LED-128
in the single-key framework. The attacks are independent of the definition of the
step function, and the data is always known-plaintext.

3.1 Attack on 4 Steps

We can improve the previous key-recovery attacks on 4-step LED-128 in a rel-
atively straightforward way. Our attack follows the guess-and-recover strategy,
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which is depicted in Fig. 4. First, note that the shortened cipher E is the SEM
scheme. Thus after guessing the value K0, to recover K1 instead of adopting Dae-
men’s approach [4] as in the previous attack [14], we apply Dunkelman et al.’s
slidex attack or their attack approach on SEM [5] sketched in Sect. 2.2. This
immediately gives us the first advantage: our attack is a known-plaintext attack.
Moreover, based on the complexity evaluation given below, our approach has a
second advantage: the complexity also gets improved. Since we will extend the
below approach to attack 6-step LED-128 in Sect. 3.2, here we give a detailed
description of the complete attack approach. The notations below follow the one
from Fig. 4.

AttackProcedure. Suppose the attacker obtains 2d known plaintext-ciphertext
pairs (P,C).

1. Guess the value of K0.
2. For all 2d pairs (P,C), compute S1 = F0(K0∃P ) and E(S1) = F−1

3 (K0∃C),
then compute S1 ∃ E(S1), and store the pairs (S1, S1 ∃ E(S1)).

3. Choose 264−d different random values denoted as X. For each X:
(a) Compute G(X) ∃ X and match it to S1 ∃ E(S1) stored at step 2.
(b) If a match is found, compute the value S1 ∃ X as a candidate of K1.

Otherwise, go to step 3(a) with the next value of X.
(c) Verify the correctness of the candidate for K1 by using another (S∈

1, E(S∈
1)),

where S∈
1 is not equal to S1. In particular, compute the value for E(S∈

1)
using the current guessed K0 and the candidate K1, and check whether
it is equal to the value for E(S∈

1) computed at Step 2. If they are equal,
output the currently guessed K0 and the candidate K1 as the real key, and
terminate the procedure. Otherwise, go to step 3(a) with the next value of
X.

4. Change the value of K0, and repeat steps 1− 3 until all possible values of K0

are tested.

Complexity. The unit is one computation of the whole 4-step LED-128 consist-
ing of four step functions. The steps 1−3 are repeated 264 times. One execution of
step 2 requires 2d × 2

4 = 2d−1 computations. In one execution of step 3, step 3(a)
is repeated 264−d times, and therefore the total complexity is 264−d × 2

4 = 263−d.
At step 3(b), on average there is one match among all the 264−d repetitions.
Hence the complexity of steps 3(b) and 3(c) is 1. Thus the overall time complex-
ity is 264 · (2d−1 + 263−d + 1) √ 263+d + 2127−d, while the data complexity is 2d

known plaintext-ciphertext pairs, and 2d memory required in step 2.

Success Probability. When the guessed value of K0 is correct, if one random
X at step 3 collides with S1 ∃ K1 for some S1 computed at step 2, the value of
K1 will be correctly recovered. The probability of a such collision is 1− 1

e √ 0.63.
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Fig. 5. Guess-and-recover attack on 6-step LED-128

Comparison to Previous Attacks. The optimal time complexity of our
attack is 296 by setting d to 32, while the data complexity is 232 known plain-
texts. Previous attacks either cannot reach such low time complexity (e.g. [11])
or with a much higher data complexity, i.e. the entire codebook, for the same
time complexity (e.g. [14]).

3.2 Attack on 6 Steps

We can extend the above attack to 6-step LED-128 by using multicollisions. As
depicted in Fig. 5, the shortened cipher E after guessing K0 can be regarded as
a two-step SEM. The relation S1 ∃ E(S1) = X ∃ S5 holds. Suppose we have a
q-multicollision on E(S1)∃S1. Namely, we find q values S

(1)
1 , S

(2)
1 , . . ., S

(q)
1 such

that E(S(1)
1 ) ∃ S

(1)
1 = E(S(2)

1 ) ∃ S
(2)
1 = · · · = E(S(q)

1 ) ∃ S
(q)
1 holds. Denote the

value of E(S(i)
1 ) ∃ S

(i)
1 , 1 → i → q, by Y . Let us select a random value as X,

then set S5 as X ∃ Y , and compute the value G1(X) ∃ G−1
2 (S5) as a candidate

value of K1, which can be verified trivially. Note that if X is equal to any of
S
(i)
1 ∃ K1, 1 → i → q, the computed candidate is the correct value of K1. Thus

after testing 264/q random values as X, the real value of K1 is expected to be
recovered. Recall that such attack procedure needs to be repeated for each guess
of K0, i.e. in total 264 times. Hence the overall complexity is 2128/q. The details
of the attack procedure are given below - for q = 8 the attack has the lowest
complexity.

Attack Procedure. The attacker obtains 259 known plaintext-ciphertext pairs
(P,C).

1. Guess the value of K0.
2. For all 259 (P,C), compute S1 = F0(P ∃ K0) and E(S1) = F−1

5 (C ∃ K0).
Then compute S1 ∃ E(S1) and store (P, S1, S1 ∃ E(S1)).

3. Find an 8-multicollision on S1 ∃ E(S1), namely a set of (P (1), S
(1)
1 , S

(1)
1 ∃

E(S(1)
1 )), . . ., (P (8), S

(8)
1 , S

(8)
1 ∃ E(S(8)

1 )) such that S
(1)
1 ∃ E(S(1)

1 ) = S
(2)
1 ∃

E(S(2)
1 ) = · · · = S

(8)
1 ∃E(S(8)

1 ). Denote the value of S
(i)
1 ∃E(S(i)

1 ), 1 → i → 8,
as Y . If no such 8-multicollision exists, go to step 1 with another guess value
as K0.
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4. Choose 261 random values as X. For each value of X:
(a) Compute X ∃ Y as S5.
(b) Compute G1(X) ∃ G−1

2 (S5) denoted as Z.
(c) Compute X ∃ Z, and match it to {S

(1)
1 , . . . , S

(8)
1 }. If it coincides with

some S
(i)
1 , then Z is regarded as a candidate value of K1. Otherwise, go

to step 4(a) with the next value of X.
(d) Verify the correctness of Z as K1 by using another relation (S1, E(S1))

with S1 �= S
(i)
1 . If it is correct, set K1 = Z, then output the current

guessed value of K0 and K1 as the real key, and terminate the attack
procedure. Otherwise, go to step 4(a) with the next value of X.

5. Change the value of K0, and repeat steps 1− 4 until all possible values of K0

are tested.

Complexity. The unit is one computation of the whole 6-step LED-128. The
steps 1−4 are repeated 264 times. One execution of step 2 has the complexity of
259 × 2

6 √ 257.4. In one execution of step 4, steps 4(a), 4(b) and 4(c) are repeated
261 times, and the total complexity is 261 × 4

6 √ 260.4. On average, there is only
one match at step 4(d) among 262 random values. Thus the complexity of step
4(e) is 1. Therefore the overall time complexity is 264 · (259.4 +260.4 +1) √ 2124.4,
while data complexity is 259 known plaintexts. The memory requirement is 259

for step 2.

Success Probability. We focus on the success probability of recovering K1,
when the guessed value of K0 is correct. First we evaluate the probability of
8-multicollisions at step 2. It has been proven that a q-multicollision among
q
⇒

q! × 2
q−1
q n n-bit random values exists with a probability 0.5 [7,16]. By setting

q = 8 and n = 64, q
⇒

q! × 2
q−1
q n is smaller than 258. Since we have in total

259 values, the probability of an 8-multicollision is almost 1. Then we evaluate
the probability of a collision between a random value X and a S

(i)
1 ∃ K1. The

probability of such a collision is 1− 1
e √ 0.63. Thus the overall success probability

is 0.63.

Remark. We emphasize that our attack is not related to the specification of
step functions, and thus applicable to any 6-step Even-Mansour scheme with the
key schedule of alternating two keys. The advantage of our attack is related to
the block size n. A shown above for the case n = 64, q is chosen as 8, and the
complexity is 23.6 times faster than the brute-force attack. In particular, for the
common block size n = 128, q can be 16, and our attack becomes 24.6 times
faster than the brute-force attack.

As we can see from the above analysis, the 6-step attack is actually based
on a 2-step multicollision-type attack (the permutations G1, G2 with subkey
additions), that is applicable to any permutations G1, G2. Thus we can derive
the following interesting fact:
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Observation 1. For any two-round n-bit cipher EK(P ) = G2(G1(P ∃ K) ∃
L1(K))∃L2(K), where G1, G2 are arbitrary permutations, and L1, L2 are linear
bijective functions, exists a known-plaintext attack a with time complexity of less
than 2n encryption queries.

It is interesting to note that Observation 1 actually answers affirmatively
the open problem proposed in [2] if there exist a single-key attack on two-round
SEM structure with three identical keys and computational complexity below
2n.

4 Chosen Key Differential Distinguishers for LED-64

and LED-128

The designers of LED pointed out in the specification document [10], that in order
to gain confidence in the cipher, one should study the security of the cipher in the
framework where the attacker knows or controls the key. Using the rebound [13]
and Super-Sbox [8,12] techniques, they were able to penetrate 15 rounds (3.75
steps) of LED-64, and 27 rounds (6.75 steps) of LED-128. The design strategy
underlying LED, in particular the trivial key schedule and fact that the best prob-
ability of a differential characteristic in an active step of LED cannot be higher
than 2−50, seem to confirm the findings of the designers. As LED-64 has 128-
bit input (64-bit key and 64-bit state), it leads that a differential characteristic
cannot have more than 2 active steps, otherwise the probability (for 3 steps)
would be at most 2−150, and the freedom of the 128-bit input is insufficient to
satisfy the characteristic. Similarly, for LED-128, the best characteristic cannot
have more than 3 active steps, as the probability of a 4-step characteristic would
be at most 2−200, hence the 192-bit input (128-bit key and 64-bit plaintext) is
insufficient for this characteristic.

The above reasoning however, applies to the case of differential character-
istics. Further we show that the situation changes when one investigates the
effects of differentials. To clarify our reasoning, let us examine the case of a
2-step differential where both steps are active and assume the input and the
output difference take some predefined values. The probability of a single dif-
ferential characteristic that composes the differential is at most 2−100. However,
the probability of the differential is much higher, i.e. 2−64 for any input-output
differences. Hence if we can efficiently find a pair of inputs that follow this dif-
ferential, then we would spend only 64-bits of freedom, instead of 100 bits as in
the case of characteristics.

The results presented in this section give solutions for finding such pairs, and
use the additional freedom to penetrate more steps of LED.

4.1 Differential Multicollision on 5-Step LED-64

Our distinguisher is based on the differential path given in Fig. 6. The path is
built by fixing an optimal differential characteristic in the last step function
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F4: Δ ∈ Δ≈, which determines the value of Δ and Δ≈, and then the following
values are set as well: ΔP = Δ, ΔK = Δ and ΔC = Δ ∃ Δ≈. Note, the
differential characteristic Δ ∈ Δ≈ holds with a probability of at least 2−54,
following Mendel et al.’s investigation [14] described in Sect. 2.3. After the path
is determined, we search for pairs (P,K) satisfying LED-64 K(P ) ∃ LED-64

K∗Δ(P ∃ Δ) = Δ ∃ Δ≈. The search procedure starts with launching a meet-in-
the-middle attack between step functions F1 and F2. Note that both the input
difference of F1 and the output difference of F2 are fixed as Δ. We select random
values X and Y , and independently compute ΔF1(X) = F1(X) ∃ F1(X ∃ Δ)
and ΔF−1

2 (Y ) = F−1
2 (Y ) ∃ F−1

2 (Y ∃ Δ). Then we match between ΔF1(X) and
ΔF−1

2 (Y )∃Δ. For a match, by adaptively selecting two values F1(X)∃F−1
2 (Y )

and F1(X)∃F−1
2 (Y ∃Δ) as the key K and computing the corresponding values

of P from (K,X), we obtain two pairs (K,P ) which can satisfy the path on the
first four step functions in Fig. 6. Finally, the differential characteristic on the
last step function F4 is satisfied probabilistically.

Attack Procedure

1. Select 2s random values X, compute ΔF1(X) = F1(X)∃F1(X∃Δ), and store
(X,ΔF1(X)). The value of s will be determined in the complexity evaluation
below.

2. Select 2s random values Y , compute ΔF−1
2 (Y ) = F−1

2 (Y )∃F−1
2 (Y ∃Δ) and

match ΔF−1
2 (Y ) ∃ Δ to stored ΔF1 at step 1. On average, there are 22s−64

matches.
3. For each matched pair X and Y ,

(a) Compute two values as K: K = F1(X) ∃ F−1
2 (Y ) and K = F1(X ∃ Δ) ∃

F−1
2 (Y ∃ Δ).

(b) Compute C and C ∈ for each pair (K,Y ) and (K ∃Δ,Y ∃Δ) respectively.
(c) If ΔC is equal to Δ ∃ Δ≈, compute the corresponding value of P , and

store the values of (P,K). On average, there are 22s−117 values of (P,K)
stored.

Complexity of Finding Differential q -Multicollision. The unit is one com-
putation of the whole 5-step LED-64. The dominant complexity comes from steps
1 and 2, each of them requires 2s × 1

5 units, hence the total complexity is approx-
imately 2s−1.3. To produce a differential q-multicollision, set 22s−117 = q, which
implies s = 58.5 + log2

⇒
q, and thus the complexity is

⇒
q · 257.2. For q = 26,

the overall complexity of our attack is 260.2, while the generic attack requires at
least 266.1 > 264 encryptions.

Fig. 6. Distinguisher on 5-step LED-64
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Table 2. An example of pair of inputs following the 8-STEP (32 rounds) differential
for LED-128. The two rows of each step denote the input and output values/differences
of the steps.

Input 1 Input 2 XOR difference

K0 63686a8c6ed193f6 63686a8c6ed193f7 0000000000000001
K1 0000000000000000 0000000000000000 0000000000000000
plaintext 33960e4a40a0f740 33960e4a40a0f740 0000000000000001

step 0 50fe64c62e7164b6 50fe64c62e7164b6 0000000000000000
e82c1e07da3b4304 e82c1e07da3b4304 0000000000000000

step 1 e82c1e07da3b4304 e82c1e07da3b4304 0000000000000000
3bb5fd710efb3bba 3bb5fd710efb3bba 0000000000000000

step 2 58dd97fd602aa84c 58dd97fd602aa84d 0000000000000001
50fdeb1af852210e 56c051f2c88d007a 063dbae830df2174

step 3 50fdeb1af852210e 56c051f2c88d007a 063dbae830df2174
eb82dccf19e68610 fe5507900afd76ad 15d7db5f131bf0bd

step 4 88eab643773715e6 9d3d6d1c642ce55a 15d7db5f131bf0bc
c6dbdb083c8dfccb b688dc44effea528 7053074cd37359e3

step 5 c6dbdb083c8dfccb b688dc44effea528 7053074cd37359e3
ef7e6ce5ebb78007 ef7e6ce5ebb78006 0000000000000001

step 6 8c160669856613f1 8c160669856613f1 0000000000000000
5f2a1e2a6f01e9eb 5f2a1e2a6f01e9eb 0000000000000000

step 7 5f2a1e2a6f01e9eb 5f2a1e2a6f01e9eb 0000000000000000
337e6d7828ea8fec 337e6d7828ea8fec 0000000000000000

ciphertext 501607f4463b1c1a 501607f4463b1c1b 0000000000000001

4.2 Differential Multicollision for 8-Step and 9-Step LED-128

Our distinguisher on 8-step LED-128 is based on a differential path given in
Fig. 7, where Δ can be any non-zero value. We set ΔP = Δ, ΔK = (ΔK0 =
Δ,ΔK1 = 0) and ΔC = Δ. First we select a random value as K1, which makes
G1 and G2 to become two public permutations. Then we carry out a meet-in-the-
middle attack between G1 and G2. Note both the input differences of G1 and the
output differences of G2 are fixed as Δ. We adopt the same meet-in-the-middle
procedure as the one presented in Sect. 4.1, and adaptively choose the value of
K0. As the rest of the differential path holds with probability 1, the chosen K0

with previously fixed K1 and P , which can be computed trivially from X, is the
expected solution, namely it satisfy the whole differential path. Following the
complexity evaluation as in Sect. 4.1, our attack needs q · 230.5 computations to
produce a differential q-multicollision, hence for q = 8, the overall complexity is
233.5, while the generic attack needs at least 241.4.

We would like to emphasize two aspects (freedoms) of our attack on 8 steps
of LED-128: first, the difference in K0 can be any, and second, the value of K1

can be arbitrary as well. Even with such relaxed requirements, we are still able
to find a pair that follows the differential path with a complexity of around 230.5
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Fig. 7. Distinguisher on 8-step LED-128

8-step encryptions. An example of such pair, found on a computer, is given in
Table 2. Note, in the example the difference in K0 is 1 and the value of K1 is 0.

Extension to 9 Steps. The above path can be extended with an additional step
at the end, thus leading to a 9-step path. First, we find an optimal differential
characteristic for the last step function F9: Δ ∈ Δ≈, i.e. we use again the
same characteristic that holds with 2−54. Then the differential is defined as
ΔP = Δ, ΔK = (ΔK0 = Δ,ΔK1 = 0), and ΔC = Δ≈. The distinguisher
uses a differential path, which is a concatenation of the path on the first 8 step
functions from Fig. 7 and the characteristic Δ ∈ Δ≈ for the last step function
F9. After selecting a random value as K1, we apply exactly the same search
procedure as in Sect. 4.1. However, this time instead of producing q pairs that
follow the 8-step differential, we produce q254 such pairs. Obviously, after the
last step, there would be around q pairs that satisfy the whole 9-step differential.

The complexity is dominated by the meet-in-the-middle attack and the gen-
eration of q254 pairs for the 8-step differential. To optimize the complexity, we
should create

⇒
q259 differences for each G1 and G2, hence there would be q2118

pairs in the middle and q2118−64 = q254 that follow the 8-step differential or q
pairs for the whole 9-step differential. Thus taking into account that the G1, G2

take 2
9 of the total number of rounds, the overall complexity for q = 26 is

2 ·23259 2
9 = 260.8 encryptions of 9-step LED-128. The generic case again requires

266.1 encryptions.

4.3 A Differential Distinguisher on 10-Step LED-128

In this section we introduce the concept of chosen-key random-difference distin-
guisher and present such distinguisher for 10 steps of LED-128.

In differential multicollisions, the attacker finds a set of two differences for
the key and the plaintext, such that all the differences in the ciphertext of q
pairs of keys/plaintexts, are the same. Thus the freedom is three differences:
in the key, in the plaintext, and in the ciphertext, and therefore, to prove the
distinguisher is not trivial, the attacker has to find many pairs of keys/plaintexts
that follow the same differential. Now assume, the freedom is only in one of the
input differences, and the other two depend on (or are equal to) this single
difference, i.e. the attacker wants to find a key/plaintext (K,P ) such that for
some given difference Δ, EK∗Δ(P ∃ Δ) ∃ EK(P ) = Δ holds. Obviously, if the
difference Δ is random, he cannot find the input pair with a complexity lower
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than 2n (see below), where n is the block size. However, one might reasonably
argue, that if the attacker has to provide a single pair of key/plaintext, then
he can use the additional freedom of the difference and come up with his own
Δ in time complexity lower than 2n, and thus achieve such distinguisher. Our
distinguisher below thwarts such approach, since it requires the attacker to be
able to build the input pair for any random difference Δ. This type of problem
already has been analyzed in the work of Patarin [15] – he has shown that the
xor of two random permutations cannot be distinguished from a pseudo-random
function with less than 2n queries. In our case, the permutations are defined as
P1(X) = P1(K,P,Δ) = EK∗Δ(P ∃ Δ) and P2(X) = P2(K,P,Δ) = EK(P ) ∃
Δ, i.e. they are keyed with both K and Δ, and for fixed values of these two
parameters they are two distinct permutations (as long as Δ �= 0). In the chosen-
key scenario discussed below, although the key can be chosen, the difference Δ is
still arbitrary and unknown, hence Patarin’s proof again applies to the pseudo-
random function (PRF) P1(X) ∃ P2(X), which can be translated into finding a
preimage of 0 for the PRF, as from EK∗Δ(P ∃ Δ) ∃ EK(P ) = Δ is follows we
are looking at the condition P1(X)∃P2(X) = 0. The complexity of finding such
preimage for an n-bit PRF is 2n queries, and thus encryptions/decryptions. Now
we are ready to give a formal definition of this non-trivial distinguisher:

Definition 2. A random-difference distinguisher exists for the cipher EK(P ),
if for any randomly chosen Δ, the attacker with a complexity less than 2n

encryptions/decryptions can find a plaintext P and a key K, such that EK(P )∃
EK∗Δ(P ∃ Δ) = Δ.

Further, we show that this type of distinguisher can be found for 10-step
LED-128, i.e. we show that for a randomly chosen Δ, with less than 264 queries/
encryptions we can find the input P,K0,K1 such that EK0∗Δ||K1(P ∃ Δ) ∃
EK0||K1(P ) = Δ. Our analysis is based on a differential path given in Fig. 8,
where the step functions denoted in a black color are active, while the white
steps are non-active. In Fig. 8 we also sketch the attack procedure. We start
with a meet-in-the-middle (MITM) attack between F2 and F3. Note that both
the input difference of F2 and the output difference of F3 are fixed as Δ. We
carry out the same MITM procedure as the one in Sect. 4.1, and find pairs
(K1,X), where X is the output value of F3, satisfying the differential path on
the first four step functions. Similarly, we perform MITM on the other side,
between F6 and F7, and find pairs (K1, Y ) where Y is the input value of F6,
satisfying the differential path on the last four step functions. Next, we match
(K1,X) and (K1, Y ) on the value of K1, and store (K1,X, Y ) if the value of

Fig. 8. Distinguisher on 10-step LED-128
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K1 is matched. Then we search for a q-multicollision among (K1,X, Y ) on the
value of K1. Namely we find a set of (K(1)

1 ,X(1), Y (1)), (K(2)
1 ,X(2), Y (2)), . . .,

(K(q)
1 ,X(q), Y (q)) with K1 = K

(1)
1 = K

(2)
2 = · · · = K

(q)
1 . For this fixed K1, G

becomes a public permutation. The last step is to find a value of K0, which links
X(i) to Y (i) for some 1 → i → q, i.e. G(X(i) ∃ K0) ∃ K0 = Y (i). The search
procedure is similar to the attack on SEM [5], i.e. if we have q possible values
for (X(i), Y (i)), we need only 2n/q values for the inputs/outputs of G in order
to find one match. A single match suggests immediately the value of K0, hence
we have fixed as well the second key K0, and thus finding the input plaintext is
trivial.

Attack Procedure. Let Δ be any non-zero value.

1. Choose 260 different random values A. Compute and store ΔF2(A) = F2(A)∃
F2(A∃Δ). Then choose 260 different random values X, compute ΔF−1

3 (X) =
F−1
3 (X)∃F−1

3 (X∃Δ), and match it to the stored ΔF2(A). For each matched
(ΔF2(A), ΔF−1

3 (X)), compute F2(A) ∃ F−1
3 (X) and F2(A ∃ Δ) ∃ F−1

3 (X)
as K1, and store (K1,X). On average, there are 257 stored (K1,X).

2. Launch the same procedure between F6 and F7 as in step 1, and store 257

(K1, Y ), where Y is the input value of F6.
3. Match (K1,X) and (K1, Y ) on the value of K1, and store (K1,X, Y ) if

(K1,X) and (K1, Y ) are matched. On average there are 250 (K1,X, Y ).
4. Find a 4-multicollision among (K1,X, Y ) on the value of K1. Namely, find

(K(1)
1 ,X

(1)
1 , Y

(1)
1 ), (K(2)

1 ,X
(2)
1 , Y

(2)
1 ), (K(3)

1 ,X
(3)
1 , Y

(3)
1 ) and (K(4)

1 ,X
(4)
1 , Y

(4)
1 )

with K
(1)
1 = K

(2)
1 = K

(3)
1 = K

(4)
1 . Compute X

(1)
1 ∃ Y

(1)
1 , X

(2)
1 ∃ Y

(2)
1 , X

(3)
1 ∃

Y
(3)
1 and X

(4)
1 ∃ Y

(4)
1 .

5. Choose 262 random value Z, and compute G(Z) ∃ Z, where G uses K
(i)
1 ,

1 → i → 4 as K1. Match the value of G(Z) ∃ Z to X
(1)
1 ∃ Y

(1)
1 , X

(2)
1 ∃ Y

(2)
1 ,

X
(3)
1 ∃ Y

(3)
1 and X

(4)
1 ∃ Y

(4)
1 . If a match to (X(i), Y (i)) for some 1 → i → 4 is

found, compute X(i) ∃ Z as K0, and output it with K
(i)
1 as K1 and P , which

can be trivially computed from X
(i)
1 .

Complexity. The unit is one computation of the whole 10-step LED-128. Steps
1 and 2 are both with a complexity 260 × 2

10 √ 257.7 encryptions. Step 5 requires
262× 2

10 √ 259.7 encryptions. Thus the overall complexity is 257.7+257.7+259.7 √
260.3, hence lower than 264.

Remark. As shown from the analysis above, again our attack is not related
to the specification of the step functions, and can be applied to any 10-round
construction with subkeys that come one after another, in a form of a chosen-key
random-difference distinguisher. Thus we can conclude that:

Observation 2. For any ten-round n-bit cipher with arbitrary round functions
and alternating subkeys, exists a chosen-key distinguisher with time complexity
less than 2n queries.
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5 Conclusion

In this paper, we have presented various attacks on LED in the single-key and
chosen-key models. We have improved the data complexity of the single-key
attack on 16 rounds of LED-128 in terms of lower and known-plaintext data.
We have also shown the first single-key attack on 24 rounds of LED-128. In the
chosen-key model, we have given practical results on 32 rounds, and have reached
as far as 40 rounds, using a novel chosen-key distinguisher.

The main contribution of this work is actually the idea of multicollisions
and their applications. The vast majority of our results/attacks, in particular
the attacks that penetrate through the largest number of rounds, are based
on creating multicollisions for some intermediate states inside the cipher, thus
obtaining a small set of independent values that are used further in meet-in-
the-middle attacks. As we have seen from our analysis, the primary advantage
of multicollisions is that they can be applied regardless of the specification of
the internal rounds/steps. Both Observations 1 and 2 are surprising to a large
extend as they state that the round transformation plays no role in the security
against 2-round single-key and 10-round chosen-key attacks. This result is indeed
due to the multicollisions and their property given above. Another condition for
applying the observations is simplicity of the key schedule. Although it seems
very compelling to use a trivial key schedule, especially in lightweight primitives,
its application leads to a huge reduction of the security margin at least in the
chosen-key model.

The two primary instances of LED apply 8, and 12 steps, respectively. How-
ever, when K1 in LED-128 is fixed, then this cipher has only 6 steps, i.e. 2 steps
less than LED-64. Although the steps now contain 8 rounds, the security mar-
gin of the cipher against attacks (such as most of our attacks presented here)
independent of the step function, is less than the one of LED-64. Hence, it seems
that an attack on 6-step LED-64, that does not use the structural properties of
the step functions, might result in an attack on full-round LED-128. We were
not able to trivially extend our 5-round chosen-key attack on LED-64, to 10-step
chosen-key attack on LED-128, only because it uses a differential characteristic
in the last step. We leave as an open research topic the problem of finding a
6-step attack on LED-64, independent of the step function.
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Abstract. We consider tweakable blockciphers with beyond the birth-
day bound security. Landecker, Shrimpton, and Terashima (CRYPTO
2012) gave the first construction with security up to O(22n/3) adversar-
ial queries (n denotes the block size in bits of the underlying blockcipher),
and for which changing the tweak does not require changing the keys for
blockcipher calls. In this paper, we extend this construction, which con-
sists of two rounds of a previous proposal by Liskov, Rivest, and Wagner
(CRYPTO 2002), by considering larger numbers of rounds r > 2. We
show that asymptotically, as r increases, the resulting tweakable block-
cipher approaches security up to the information bound, namely O(2n)
queries. Our analysis makes use of a coupling argument, and carries
some similarities with the analysis of the iterated Even-Mansour cipher
by Lampe, Patarin, and Seurin (ASIACRYPT 2012).

Keywords: Tweakable blockcipher · Beyond birthday bound · Cou-
pling · Message authentication code

1 Introduction

Tweakable Blockciphers. Tweakable blockciphers (TBC), introduced by
Liskov, Rivest, and Wagner [12], are families of (efficiently invertible) permu-
tations indexed by two functionally distinct parameters: the key (as usual for
a blockcipher) and the tweak. Phrased differently, a TBC is a family of block-
ciphers indexed by a tweak. The tweak is usually seen as a public parameter
bringing more versatility to the blockcipher, and in particular is assumed to be
under control of the attacker when defining security for a TBC.

There are very few constructions of blockciphers which are tweakable “by-
design”. The notable examples are the Hasty Pudding cipher [21], Mercy [3],
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and Threefish, the blockcipher underlying the Skein hash function [6]. See also
Goldenberg et al. [7] who considered how to incorporate a tweak in a Feistel
structure. Most of the time however, proposed constructions start from an exist-
ing blockcipher (which is assumed to be a secure strong pseudorandom permu-
tation) and build on top of it (in a black-box way) a new family of permutations
admitting a tweak. An important property of a TBC is that changing the tweak
should be very efficient (this is required for example for applications such as disk
or database encryption). Most of the time, changing the key in a blockcipher is
a costly operation. Hence, TBC designs where a change in the tweak implies
a change in the keys used for calls to the underlying blockcipher tend to be
avoided.

Simple constructions of tweakable blockciphers, such as the two proposals
made in the original paper by Liskov et al. [12], or the XE and XEX construc-
tions by Rogaway [20], are usually proven secure up to the so-called birthday
bound (BB), i.e. up to O(2n/2) adversarial queries for a blockcipher with n-
bit block length. The first proposal with beyond BB security was made by
Minematsu [16], however the construction suffers from a restricted tweak length
and requires rekeying the blockcipher when changing the tweak. More recently,
Landecker, Shrimpton, and Terashima [11] considered chaining two rounds of
the second proposal by [12] (called LRW2 in [11]), which works as follows: given
a blockcipher E with keyspace K and an Δ-AXU2 family of functions H, the
TBC constructed from E through the LRW2 construction has key space K × H,
and given a key k ⊕ K and a function h ⊕ H, the encryption of x with tweak t is
given by ⎧Ek,h(t, x) = h(t) ∃ Ek(x ∃ h(t)). Landecker et. al. named CLRW2 the
construction resulting from the chaining of two LRW2 constructions, namely:

⎧E(k1,k2),(h1,h2)(t, x) = h2(t) ∃ Ek2

⎨
h1(t) ∃ Ek1

⎩
x ∃ h1(t)

) ∃ h2(t)
)

.

They proved that the resulting TBC is secure (against adaptive chosen-plaintexts
and ciphertexts attacks) up to O(22n/3) queries. Moreover it admits arbitrary
tweaks (by choosing a suitable family H) and does not require rekeying the block-
cipher E when changing the tweak, hence resulting in a very interesting design.

Contributions of This Work. In this paper, we extend the work of Landecker
et al. [11] by considering longer chains of the LRW2 construction, with the hope
that security increases with the number r of rounds (see Fig. 1 for an idea of
the construction). We simply call this the CLRW construction with r rounds
(r-CLRW for short). And indeed, we show that asymptotically as r goes to +→,
the r-CLRW TBC achieves security up to O(2(1−Δ)n) adversarial queries. More
precisely, we show the following:

– first, against non-adaptive chosen-plaintexts (NCPA) adversaries, r-CLRW
achieves security up to O(2rn/(r+1)) queries;

– then, we prove a general “two weak make one strong” composition theorem
for TBCs stating that, given two TBCs ⎧E and ⎧E∈ secure against (information-
theoretic) NCPA adversaries, the composition ⎧E∈−1√ ⎧E is secure against adap-
tive chosen-plaintexts and ciphertexts (CCA) adversaries (care must be taken
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in how the tweak is handled when composing). We then use this theorem to
prove that r-CLRW achieves security up to O(2rn/(r+2)) queries against CCA
adversaries (in other words, it is a strong tweakable pseudorandom permuta-
tion up to this number of queries).

Our proof technique for the first part (NCPA adversaries) of the proof uses
a coupling argument. The coupling technique is a very useful tool for upper
bounding the statistical distance of the distribution of the outputs of an iterated
structure to the uniform distribution, and was previously used in cryptography
in [8,17,18]. More specifically, our analysis carries some similarities with the
analysis of the iterated Even-Mansour cipher by Lampe, Patarin, and Seurin [10],
with important differences though. The iterated Even-Mansour cipher [2,5] (also
called key-alternating cipher) is the construction of a blockcipher in the random
permutation model defined as follows: given r public permutations P1, . . . , Pr on
{0, 1}n, encryption of x is computed as:

y = kr ∃ Pr(kr−1 ∃ Pr−1(· · · P1(k0 ∃ x) · · · )) ,

where k0, . . . , kr are r + 1 keys of n bits.1 This construction was shown to be
secure (against CCA adversaries) up to O(2n/2) queries for r = 1 in [5], and up to
O(22n/3) queries for r = 2 in [2]. Later, Lampe et al. [10] showed, using a coupling
argument, that the construction is secure up to O(2rn/(r+1)) queries against
NCPA adversaries, and up to O(2rn/(r+2)) queries against CCA adversaries.

Though these results sound similar to ours, the two settings are quite differ-
ent. Namely, in the Even-Mansour setting, internal permutations P1, . . . , Pr are
publicly accessible by the adversary, whereas in the CLRW setting, Ek1 , . . . , Ekr

remain “hidden” in the construction. On the other hand, in the Even-Mansour
setting, keys are drawn at random at the beginning of the security experiment
and fixed afterwards, whereas in the CLRW setting, values hi(t) (which may
be seen as the analog of keys in the iterated Even-Mansour cipher) can be
“refreshed” by the adversary through the tweak t. Yet, in both settings, prob-
lems that have to be handled in the security proof are collisions at the input of
the internal permutations (but the way the adversary provokes such events in
both settings is quite different).

Application to MAC and Authenticated Encryption. In [11], the authors
defined a nonce-based MAC construction from a TBC called TBC-MAC2 (this
is a variant of a previous proposal by [12] called TBC-MAC). This construction
preserves the security of the underlying TBC. When instantiated with r-CLRW,
1 We remark that the iterated Even-Mansour cipher can be modified to use only r

keys (k1, . . . , kr) as follows: the encryption of x is computed as the composition of r
rounds of the single-key construction x ⊕√ ki ≥Pi(x≥ki). The resulting construction
is then the strict analog of r-CLRW. Moreover results of [10] carry over to this
construction.
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this directly yields a secure MAC (i.e. a secure PRF) up to O(2rn/(r+2)) queries.2

MAC schemes with security beyond the birthday bound are quite rare, and two
notable examples have been given by Yasuda [24,25]. Dodis ans Steinberger [4]
also gave an example with security close to O(2n) queries. Their construction
is more complex, but relies only on the weaker assumption that the underlying
blockcipher is unpredictable.

Besides MAC schemes, the r-CLRW construction can also be used to obtain
an authenticated encryption scheme with security close to the information bound:
for example, the OCB1 construction by Rogaway [20] gives an authenticated
encryption scheme from a TBC with a tight security bound.

Open Problems. We conjecture that our NCPA bound in fact also holds for
CCA adversaries, i.e. that the r-CLRW construction is secure up to O(2rn/(r+1))
queries against CCA adversaries. We think that this is probably the main open
problem regarding the construction since for r small, this makes a meaningful
gap in the bound. For example, we prove security up to O(23n/4) queries against
CCA adversaries only for 6 rounds, but we conjecture that this already holds
for 3 rounds. We note that the corresponding problem is equally open for the
iterated Even-Mansour cipher. In a recent preprint [23], Steinberger showed that
the iterated Even-Mansour cipher with 3 rounds is secure up to O(23n/4) queries
against CCA adversaries. We are currently unable to transfer his proof technique
to the r-CLRW construction for r = 3.

We also stress that we view our security proofs more as a feasibility result
than a practical one. Indeed, as soon as r is more than 4 or maybe 5, the key size
and the number of blockcipher calls of the resulting construction will become
too large to be reasonably practical. We think however that it is interesting to
see that a relatively simple construction enables to approach the information
bound. Moreover, improvements may come which will make the construction
more efficient or even practical for larger values of r.

Organization. We define the notation and give some useful definitions in
Sect. 2. Then, in Sect. 3, we prove our security result for r-CLRW against NCPA
adversaries. Finally, in Sect. 4, we prove our composition theorem for tweakable
blockciphers and apply it to characterize the security of r-CLRW against CCA
adversaries.

2 Preliminaries

2.1 Notation and Security Definitions

The set of integers i such that a ≤ i ≤ b will be denoted [a; b]. When S is a non-
empty finite set, we write s ⇒$ S to mean that a value is sampled uniformly
2 The security of TBC-MAC2 relies on the security of the underlying TBC against
adaptive CPA adversaries. We do not have a better bound for r-CLRW against such
adversaries than against adaptive CCA ones.
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at random from S and assigned to s. By AO1,O2,...(x, y, . . .) ∈ z we denote the
operation of running the (possibly probabilistic) algorithm A on inputs x, y, . . .
with access to oracles O1,O2, . . . (possibly none), and letting z be the output.

For a set D, we note Perm(D) the set of permutations of D, and we use
Perm(n) to denote the set of permutations of D = {0, 1}n. For two sets D
and K, we denote BC(K,D) the set of blockciphers with domain D and key
space K, i.e. the set of functions E : K × D ≈ D such that for all k ⊕ K,
Ek := E(k, ·) ⊕ Perm(D). For three sets D, K, and T , we denote TBC(K, T ,D)
the set of tweakable blockciphers with domain D, key space K, and tweak space
T , i.e. the set of functions ⎧E : K × T × D ≈ D such that for each tweak
t ⊕ T , ⎧E(·, t, ·) ⊕ BC(K,D). We will use ⎧Ek(·, ·) as a shorthand for ⎧E(k, ·, ·). We
denote BC(K, n) (resp. TBC(K, T , n)) the set of blockciphers (resp. tweakable
blockciphers) with domain D = {0, 1}n. The perfect cipher over D is defined as
the (inefficient) blockcipher whose key space is Perm(D). In the following, when
the domain is clear (D = {0, 1}n most of the time), we will simply denote E∗ the
perfect cipher over D. Sampling a random key for E∗ simply means sampling a
random permutation over D.

Fix an integer q ≤ |D|. Given a tuple t = (t1, . . . , tq) ⊕ T q, we will denote
γt ∪ Dq the set of possible inputs x = (x1, . . . , xq) ⊕ Dq such that all pairs
(ti, xi) are pairwise distinct:

γt = {x := (x1, . . . , xq) ⊕ Dq : (xi, ti) ∀= (xj , tj),∅i ∀= j} .

Let D,K, T be sets, E ⊕ BC(K,D) a blockcipher and ⎧E ⊕ TBC(K, T ,D) a
tweakable blockcipher. An adversary A is said to be non-adaptive if it chooses
all its queries (possibly randomly) before issuing the first one, and adaptive
otherwise. For any q, α , we define the following advantages (where, depending
on the security experiment, one has k ⇒$ K, β ⇒$ Perm(D), or ⎧β ⇒$ BC(T ,D)):

Advncpa
E (q, α) = maxA

∣∣Pr
[AEk(·) ∈ 1

] − Pr
[Aγ(·) ∈ 1

]∣∣

Advcca
E (q, α) = maxA

∣∣∣Pr
[
AEk(·),E−1

k (·) ∈ 1
]

− Pr
[
Aγ(·),γ−1(·) ∈ 1

]∣∣∣

Advñcpa

Ẽ
(q, α) = maxA

∣∣∣Pr
[
AẼk(·,·) ∈ 1

]
− Pr

[Aγ̃(·,·) ∈ 1
]∣∣∣

Advc̃ca
Ẽ

(q, α) = maxA
∣∣∣Pr

[
AẼk(·,·),Ẽ−1

k (·,·) ∈ 1
]

− Pr
[
Aγ̃(·,·),γ̃−1(·,·) ∈ 1

]∣∣∣ ,

where for ncpa and ñcpa (resp. cca and ⎡cca) the max is taken over non-adaptive
(resp. adaptive) adversaries making at most q oracle queries and running in time
at most α . The probabilities are over the random coins of A and the random
draw of k, β or ⎧β. In the following, we will refer to ⎧β as a tweakable permutation
(though this object is syntactically equivalent to a blockcipher) since it takes
the tweak as first input rather than the key.

Definition 1. Let S be an arbitrary set. A family of functions H from S to
{0, 1}n is said to be Δ-almost-2-XOR-universal (Δ-AXU2) if for all distinct x, x∈ ⊕
S and all y ⊕ {0, 1}n, one has Pr [h ⇒$ H : h(x) ∃ h(x∈) = y] ≤ Δ.
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Note that there exists very efficient and well-studied constructions of Δ-AXU2

function families with Δ ∗ 2−n [22], with short descriptions (i.e. keys). We will
stick to the convention of using a notation where the key is implicit in the
remaining of the paper.

2.2 Statistical Distance and Coupling

Given a finite event space γ and two probability distributions μ and Σ defined on
γ, the statistical distance (or total variation distance) between μ and Σ, denoted
‖μ − Σ‖ is defined as:

‖μ − Σ‖ =
1
2

⎢

x⊕β

|μ(x) − Σ(x)| .

The following definitions can easily be seen equivalent:

‖μ − Σ‖ = max
S⊂β

{μ(S) − Σ(S)} = max
S⊂β

{Σ(S) − μ(S)} = max
S⊂β

{|μ(S) − Σ(S)|} .

A coupling of μ and Σ is a distribution δ on γ × γ such that for all x ⊕
γ,

⎣
y⊕β δ(x, y) = μ(x) and for all y ⊕ γ,

⎣
x⊕β δ(x, y) = Σ(y). In other

words, δ is a joint distribution whose marginal distributions are resp. μ and
Σ. The fundamental result of the coupling technique is the following one. For
completeness, we provide the proof in Appendix A.

Lemma 1 (Coupling Lemma). Let μ and Σ be probability distributions on
a finite event space γ, let δ be a coupling of μ and Σ, and let (X,Y ) ∼ δ
(i.e. (X,Y ) is a random variable sampled according to distribution δ). Then
‖μ − Σ‖ ≤ Pr[X ∀= Y ].

2.3 Description of the r-CLRW Construction

We use and adapt the notation of [11]. Let K be a set and E ⊕ BC(K, n) a
blockcipher. Let T be a set and H a set of functions from T to {0, 1}n. We define
the tweakable blockcipher LRWE,H with domain {0, 1}n, key space ⎧K = K×H, and
tweak space T as follows. For any (k1, h1) ⊕ K × H, t ⊕ T , and x ⊕ {0, 1}n, let:

LRWE,H((k1, h1), t, x) = Ek1

⎩
x ∃ h1(t)

) ∃ h1(t) .

We also denote LRWE,H
k1,h1

:= LRWE,H((k1, h1), ·, ·) the mapping taking as input
(t, x) ⊕ T × {0, 1}n and returning y ⊕ {0, 1}n.

This construction was called the LRW2 construction in [11], being the sec-
ond construction proposed by Liskov et al. in [12] to build a tweakable blockci-
pher. We simply call it the LRW construction in this paper. In [11], the authors
proposed to chain two LRW constructions to increase the security beyond the
birthday bound, and called the resulting construction CLRW2. In this paper,
we will consider chaining r LRW constructions with r > 2 to obtain security
asymptotically close to the information bound.
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Fig. 1. The CLRWr,E,H tweakable blockcipher construction.

Let r be a positive integer. We define the tweakable blockcipher CLRWr,E,H

with domain {0, 1}n, key space ⎧K = Kr ×Hr, and tweak space T as follows. For
any k = (k1, . . . , kr) ⊕ Kr, h = (h1, . . . , hr) ⊕ Hr, t ⊕ T , and x ⊕ {0, 1}n, let
CLRWr,E,H((k, h), t, x) be defined as the value yr obtained recursively as:

⎤
y0 = x
yi = LRWE,H((ki, hi), t, yi−1) for 1 ≤ i ≤ r .

We also denote CLRWr,E,H
k,h := CLRWr,E,H((k, h), ·, ·) the mapping taking as input

(t, x) ⊕ T × {0, 1}n and returning y ⊕ {0, 1}n. The construction is depicted on
Fig. 1.

Thereafter, we will need the more ideal construction where the blockcipher
E is replaced by the perfect cipher E∗ over {0, 1}n as defined in Sect. 2.1.
The resulting (inefficient) TBC will be denoted CLRWr,E⊥,H, and for every β =
(β1, . . . , βr) ⊕ Perm(n)r and h = (h1, . . . , hr) ⊕ Hr, we denote CLRWr,E⊥,H

γ,h the
function defined as CLRWr,E,H

k,h above, where calls to Eki
are replaced by calls

to βi.

3 Security Analysis for Non-adaptive Adversaries

In this section, we first deal with non-adaptive chosen-plaintext (NCPA) adver-
saries. Using a coupling argument, we will prove the following theorem.

Theorem 1. Let K, T be sets, E ⊕ BC(K, n) be a blockcipher, and H be an
Δ-AXU2 family of functions from T to {0, 1}n. Then one has:

Advñcpa
CLRWr,E,H(q, α) ≤ r · Advncpa

E (q, α + rqT ) +
qr+1

r + 1
(2Δ)r ,

where T is the time to compute E or E−1.

Using an Δ-AXU2 function family with Δ ∗ 2−n, one can see that the construction
ensures security up to O(2rn/(r+1)) queries (assuming E is sufficiently secure
against NCPA adversaries). The remaining of the section is devoted to the proof
of Theorem 1.
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3.1 An Hybrid Argument

As a first step in the proof, we replace the blockcipher E used in the CLRW
construction by the perfect cipher E∗, i.e. we replace calls to Eki

for random and
independent keys ki by calls to uniformly random permutations βi. If we assume
that the blockcipher is a (strong) pseudorandom permutation, the construction
using E is only slightly less secure than the construction using E∗, as is captured
by the following lemma (we also treat the case of CCA adversaries).

Lemma 2. For any q, α , one has:

Advñcpa
CLRWr,E,H(q, α) ≤ r · Advncpa

E (q, α + rqT ) + Advñcpa

CLRWr,E⊥,H(q, α)

Advc̃ca
CLRWr,E,H(q, α) ≤ r · Advcca

E (q, α + rqT ) + Advc̃ca
CLRWr,E⊥,H(q, α) ,

where T is the time to compute E or E−1.

Proof. This is a classical hybrid argument. We only prove the NCPA case, the
CCA case is similar. Let A be a NCPA adversary trying to distinguish CLRWr,E,H

from a random tweakable permutation. For each i ⊕ [1; r], consider the following
adversary Ai trying to distinguish E from a random permutation. Ai runs A,
answering its queries as follows: it computes the r-CLRW construction where
the first i−1 permutations are uniformly random permutations, the i-th permu-
tation is computed by querying Ai’s own oracle, and the last r − i permutations
correspond to E with randomly drawn keys. Note that Ai is non-adaptive, makes
at most q queries to its own oracle, and runs in time at most α +rqT . Denote Oi

the oracle defined as the r-CLRW construction where the first i permutations
are uniformly random, and the last r− i permutations are E with uniformly ran-
dom keys. Then, when Ai is interacting with a random permutation, it answers
A’s queries as Oi+1, whereas when it is interacting with Ek it implements Oi.
Moreover O0 = CLRWr,E,H and Or = CLRWr,E⊥,H. By the triangular inequality:

∣∣∣Pr
[
ACLRWr,E,H ∈ 1

]
− Pr

[
Aγ̃ ∈ 1

]∣∣∣ ≤
r−1⎢

i=0

∣∣ Pr
[AOi ∈ 1

] − Pr
[AOi+1 ∈ 1

] ∣∣+

∣∣ Pr
[
ACLRWr,E⊥,H ∈ 1

]
− Pr

[
Aγ̃ ∈ 1

] ∣∣ .

The lemma follows by noting that the r first terms are exactly the advantages
of adversaries Ai, which are all upper bounded by Advncpa

E (q, α + rqT ). ��
Hence to study the security of CLRWr,E,H, we have to study the security of
CLRWr,E⊥,H. This is what we do in the remaining of the proof.

3.2 NCPA Advantage and Statistical Distance

A classical result states that the advantage of a (computationally unbounded)
NCPA adversary in distinguishing two systems S1 and S2 with at most q queries
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is upper bounded by the max over any q inputs of the statistical distance between
the outputs of the two systems. The two systems we consider here are CLRWr,E⊥,H

and a random tweakable permutation ⎧β, and we want to upper bound the sta-
tistical distance between the outputs of CLRWr,E⊥,H and the outputs of a random
tweakable permutation for any q queries to these two systems.

Thereafter, we will consider a NCPA-distinguisher A which chooses all its
(plaintexts) queries in advance. We will denote the i-th query (ti, xi). We denote
μq the distribution of the outputs when the distinguisher is accessing the
CLRWr,E⊥,H construction (the distribution is defined by the random draw of
β = (β1, . . . , βr) ⊕ Perm(n)r and h = (h1, . . . , hr) ⊕ Hr) and μ0 the distri-
bution of the outputs when the distinguisher is accessing a uniformly random
tweakable permutation ⎧β. Hence, for any α (since this holds even for computa-
tionally unbounded adversaries):

Advñcpa

CLRWr,E⊥,H(q, α) ≤ ‖μq − μ0‖ .

In the following, we will denote α = +→ in the advantage when it applies to
computationally unbounded adversaries.

3.3 Dividing the Problem into q Simpler Problems

We now give another way to describe the distribution μ0. For any t ⊕ T , we
do the following experiment: let It be the set of indexes i ⊕ [1; q] such that
ti = t and let (ui)i⊕It

be uniformly random pairwise distinct elements. We
claim that the distribution of the outputs of (t1, u1), . . . , (tq, uq) by any (not
necessarily uniform) random tweakable permutation ⎧β∈ whose distribution is
independent of the distribution of (ui) is μ0, i.e. the distribution of the outputs
of (ti, xi) by a uniformly random tweakable permutation ⎧β. Indeed, for every
t, the values (⎧β(ti, xi))i⊕It

and (⎧β∈(ti, ui))i⊕It
are both uniformly random and

pairwise distinct.
Now that we gave this new description of μ0, we can split the computation of

‖μq−μ0‖ in q simpler computations. The idea is to construct a distribution μω for
every ξ ≤ q such that μω is the distribution of the outputs of a random instance
of CLRWr,E⊥,H queried with (ti, xi) for i = 1, . . . , ξ and the last q − ξ queries
keep the same tweak ti as in adversarial queries, but their last coordinate is
uniformly random among unqueried values. More precisely, for each ξ ⊕ [0; q],
let ((t1, z1), . . . , (tq, zq)) be a tuple of queries such that zi = xi for i ≤ ξ, and zi

is uniformly random in {0, 1}n \ {zj | tj = ti, j < i} for i > ξ. This means that
the first ξ queries are the adversary’s queries and the remaining zi are chosen
uniformly at random among the possible values (all queries have to be pairwise
distinct). Denoting μω the distribution of the tuple of q outputs when a random
instance of CLRWr,E⊥,H receives inputs ((t1, z1), . . . , (tq, zq)), we have:

Advñcpa

CLRWr,E⊥,H(q, α = +→) ≤ ‖μq − μ0‖ ≤
q−1⎢

ω=0

‖μω+1 − μω‖ . (1)
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3.4 Coupling of μ�+1 and μ�

Restricting to the First α + 1 Queries
It remains to upper bound the statistical distance between μω+1 and μω, for
each ξ ⊕ [0; q − 1]. For this, we will construct a suitable coupling of the two
distributions. Note that we only have to consider the first ξ + 1 elements of the
two tuples of outputs since for both distributions, the i-th inputs for i > ξ + 1
are sampled uniformly at random. In other words,

‖μω+1 − μω‖ = ‖μ∈
ω+1 − μ∈

ω‖ , (2)

where μ∈
ω+1 and μ∈

ω are the respective distributions of the ξ + 1 first outputs of
the r-CLRW construction.

Construction of μ′
� and μ′

�+1

To define the coupling of μ∈
ω+1 and μ∈

ω, we consider a random CLRWr,E⊥,H
γ,h (i.e. β =

(β1, . . . , βr) and h = (h1, . . . , hr) are uniformly random in respectively Perm(n)r

and Hr) that receives inputs (tj , xj) for j = 1, . . . , ξ + 1 so that the outputs are
distributed according to μ∈

ω+1, and we consider another random CLRWr,E⊥,H
γ⊕,h⊕ (i.e.

β∈ = (β∈
1, . . . , β

∈
r) and h∈ = (h∈

1, . . . , h
∈
r) are uniformly random in respectively

Perm(n)r and Hr) with inputs (tj , zj) for j = 1, . . . , ξ+1 with zj = xj for every
j ≤ ξ and zω+1 being uniformly random in {0, 1}n \ {xj | tj = tω+1, j < ξ + 1}, so
that the outputs are distributed according to μ∈

ω.

Notation
For every j ≤ ξ + 1 and every i ⊕ [0; r], we note xi

j and zi
j the values defined by

induction: ⎥
⎦⎛

⎦⎜

x0
j = xj , z

0
j = zj

xi+1
j = hi(tj) ∃ βi(xi

j ∃ hi(tj))
zi+1

j = h∈
i(tj) ∃ β∈

i(z
i
j ∃ h∈

i(tj)) .

(3)

In order to apply the Coupling Lemma (Lemma 1), we have to find how to
correlate (β, h) and (β∈, h∈) so that the outputs of both systems (xr

1, . . . , x
r
ω+1)

and (zr
1 , . . . , zr

ω+1) are equal with high probability. We choose (β, h) uniformly at
random and we construct (β∈, h∈) as a function of (β, h). We have to pay attention
that the distribution of (β∈, h∈) remains uniform in order for (zr

1 , . . . , zr
ω+1) to be

distributed according to μ∈
ω.

Coupling of the First α Queries
For every j ≤ ξ, the j-th queries x0

j and z0
j are equal by definition. Considering

the system (3), we set h∈ = h and β∈
i(x

i
j ∃hi(tj)) = βi(xi

j ∃hi(tj)) for every j ≤ ξ
and i ≤ r. This implies that the first ξ outputs (xr

1, . . . , x
r
ω) and (zr

1 , . . . , zr
ω ) are

equal.
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Coupling of the (α + 1)-th Query
For every i ⊕ [0; r − 1] we define the coupling for the ξ + 1-th query as follows:

(1) if there exists j ≤ ξ such that zi
ω+1 ∃ hi(tω+1) = zi

j ∃ hi(tj) then β∈
i(z

i
ω+1 ∃

hi(tω+1)) is already defined. Unless we have coupled zi
ω+1 and xi

ω+1 in a
previous round, we cannot couple zi+1

ω+1 and xi+1
ω+1 at this round.

(2) else, if zi
ω+1 ∃ hi(tω+1) ∀= zi

j ∃ hi(tj) for all j ≤ ξ, then:
(a) if there exists j ≤ ξ such that xi

ω+1∃hi(tω+1) = xi
j ∃hi(tj) then we choose

β∈
i(z

i
ω+1∃hi(tω+1)) uniformly at random in {0, 1}n\{β∈

i(z
i
j∃hi(tj)), j ≤ ξ}.

We cannot couple zi+1
ω+1 and xi+1

ω+1 at this round.
(b) else, we define β∈

i(z
i
ω+1 ∃hi(tω+1)) = βi(xi

ω+1 ∃hi(tω+1)). This implies that
zi+1

ω+1 = xi+1
ω+1.

Note that once zi+1
ω+1 = xi+1

ω+1, zi⊕
ω+1 = xi⊕

ω+1 for any subsequent round i∈ ≥ i + 1, in
particular for i∈ = r, so that the coupling is successful.

Verification that (π′, h′) Is Uniformly Random
We set h∈ = h and h is uniformly random so h∈ is uniformly random. During the
coupling of the first ξ queries, we set β∈

i(x
i
j ∃ hi(tj)) = βi(xi

j ∃ hi(tj)) for every
j ≤ ξ and i ≤ r and βi(xi

j ∃ hi(tj)) is uniformly random among possible values
so β∈

i(x
i
j ∃hi(tj)) is uniformly random among possible values. Rule (1) says that

if there is a collision with a previous input of β∈
i, we cannot choose the value of

β∈
i(z

i
j ∃ hi(tj)) so this does not change anything to the distribution of β∈

i. When
conditions of rule (2)(a) are met, we have for some j ≤ ξ:

⎤
βi(xi

ω+1 ∃ hi(tω+1)) = βi(xi
j ∃ hi(tj)) = β∈

i(z
i
j ∃ hi(tj))

zi
ω+1 ∃ hi(tω+1) ∀= zi

j ∃ hi(tj) ,

which implies that β∈
i(z

i
ω+1 ∃ hi(tω+1)) ∀= βi(xi

j ∃ hi(tj)). This means that the
coupling is impossible and we choose β∈

i(z
i
ω+1 ∃ hi(tω+1)) uniformly at random

among possible values to keep β∈
i uniformly distributed. Finally, when conditions

of rule (2)(b) are met, we have no problem to couple: βi(xi
ω+1 ∃ hi(tω+1)) and

β∈
i(z

i
ω+1 ∃ hi(tω+1)) are both uniformly random among possible values. In con-

clusion, permutations β∈
i are uniformly random and independent as wanted, so

that (zr
1 , . . . , zr

ω+1) is distributed according to μ∈
ω.

Failure Probability of the Coupling
It remains to upper bound the probability that the coupling fails, i.e.

(zr
1 , . . . , zr

ω+1) ∀= (xr
1, . . . , x

r
ω+1) .

For every i ⊕ [0; r − 1], we denote faili the event that it exists j ≤ ξ such that
zi

ω+1 ∃ hi(tω+1) = zi
j ∃ hi(tj) or xi

ω+1 ∃ hi(tω+1) = xi
j ∃ hi(tj). This is the event
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of failing to couple at round i. Then we have:

Pr
[
faili

] ≤
⎢

j≤ω

Pr
[
zi

ω+1 ∃ hi(tω+1) = zi
j ∃ hi(tj)

or xi
ω+1 ∃ hi(tω+1) = xi

j ∃ hi(tj)
]

=
⎢

j≤ω

Pr
[
hi(tj) ∃ hi(tω+1) = zi

j ∃ zi
ω+1

or hi(tj) ∃ hi(tω+1) = xi
j ∃ xi

ω+1

]

≤
⎢

j≤ω

2Δ = 2ξΔ ,

where the second inequality comes from the Δ-AXU2 property of H (note that
when tω+1 = tj , necessarily zi

ω+1 ∀= zi
j and xi

ω+1 ∀= xi
j since all queries must be

distinct, so that the probability is zero). Since the functions hi are independent,
we have:

Pr

⎝
r−1⎞

i=0

faili

⎟
≤ (2ξΔ)r . (4)

Using the Coupling Lemma and the fact that zr
j = xr

j for all j ≤ ξ, we have:

‖μ∈
ω+1 − μ∈

ω‖ ≤ Pr
[
(zr

1 , . . . , zr
ω+1) ∀= (xr

1, . . . , x
r
ω+1)

] ≤ Pr
[
zr

ω+1 ∀= xr
ω+1

]
. (5)

If we succeed to couple the last query at some round i ≤ r − 1, we know that
zi⊕

ω+1 and xi⊕
ω+1 remain equal in the subsequent rounds so that:

Pr
[
zr

ω+1 ∀= xr
ω+1

] ≤ Pr

⎝
r−1⎞

i=0

faili

⎟
. (6)

Using (4), (5) and (6), we have:

‖μ∈
ω+1 − μ∈

ω‖ ≤ (2ξΔ)r . (7)

Finally, using (1), (2) and (7), we obtain:

Advñcpa

CLRWr,E⊥,H(q, α = +→) ≤
q−1⎢

ω=0

‖μ∈
ω+1 − μ∈

ω‖

≤
q−1⎢

ω=0

(2ξΔ)r

≤
⎠ q

0

(2ξΔ)rdl

=
qr+1

r + 1
(2Δ)r .

Theorem 1 then follows from the above inequality combined with Lemma 2.
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4 Security Analysis for Adaptive Adversaries

In this section, we first prove a general composition theorem for tweakable block-
ciphers similar to the “two weak make one strong” theorem for the composition
of usual blockciphers. This theorem roughly states that composing two blockci-
phers secure against NCPA adversaries yields a blockcipher secure against CCA
adversaries [14,15]. We prove exactly the same result for TBCs, but we stress that
the exact way the tweak is used in composition is important: namely, the same
tweak must be used in both ciphers. We state this theorem in the information-
theoretic setting (i.e. for computationally unbounded adversaries) since we will
then apply it to the CLRWr,E⊥H construction which has information-theoretic
security. Corresponding theorems in the computational setting are usually much
harder to obtain. Our proof technique is an extension of the “H Coefficients”
technique of Patarin [19] to tweakable blockciphers. One could probably use the
formalism of random systems [13] to obtain a tight bound in the computational
setting as in [15], however subtle problems have been recently found in this proof
technique [9] so that we prefer the more simple and straightforward statistical
approach. We then apply this result to prove the security of r-CLRW against
CCA adversaries up to O(2rn/(r+2)) queries.

4.1 Definitions ans Preliminary Results

Fix ⎧E ⊕ TBC(K, T ,D). For any t = (t1, . . . , tq) ⊕ T q, and any x = (x1, . . . , xq) ⊕
γt, we denote Σ(t,x) the distribution on γt induced by ⎧E and Σ∗

(t,x) the distribu-
tion induced by a random tweakable permutation on inputs (ti, xi), namely for
y = (y1, . . . , yq) ⊕ γt:

⎥
⎦⎛

⎦⎜

Σ(t,x)(y) = Pr
[
k ⇒$ K : ⎧Ek(ti, xi) = yi,∅i ≤ q

]

Σ∗
(t,x)(y) = Pr [⎧β ⇒$ BC(T ,D) : ⎧β(ti, xi) = yi,∅i ≤ q] .

Note that Σ∗
(t,x) is uniform over γt (the exact cardinality of γt depends on t).

For any η ⊕ [0, 1], we note Sλ,(t,x) the set of y ⊕ γt satisfying Σ(t,x)(y) ≥
(1 − η)Σ∗

(t,x)(y).
We start by proving two lemmas which will be useful for our main result.

The first one says that if, for every t = (t1, . . . , tq), x = (x1, . . . , xq), and
y = (y1, . . . , yq), the probability that ⎧Ek maps (ti, xi) to yi for all i is close
to the corresponding probability for a random tweakable permutation, then the
advantage of any adversary in distinguishing ⎧E from a random tweakable per-
mutation with q queries is small.

Lemma 3. Fix ⎧E ⊕ TBC(K, T ,D), and q ≤ |D|. If there exists η ⊕ [0, 1] such
that, for all t ⊕ T q and for all x ⊕ γt, Σ∗

(t,x)(Sλ,(t,x)) = 1, then

Advc̃ca
Ẽ

(q, α = +→) ≤ η .



146 R. Lampe and Y. Seurin

Proof. Consider a computationally unbounded CCA attacker A making q queries
to an oracle O acting like ⎧E or like a random tweakable permutation ⎧β. We
assume wlog that A is deterministic. We note δ = (δ1, . . . , δq) ⊕ Dq the transcript
of the attack, defined as follows. If A makes a direct query (t1, x1) and receives
an answer y1, one has δ1 = y1 and then, the attacker continues his attack and
receives the next answers δ2, . . . , δq. If the attacker makes an inverse query (ti, yi)
then δi is the answer xi. For each transcript δ, we denote t(δ), x(δ) and y(δ) the
corresponding values of t1, . . . , tq, x1, . . . , xq, y1, . . . , yq. We denote Σ the set of
transcripts δ such that the attacker outputs 1. If the oracle is acting like ⎧E then
the probability that the attacker outputs 1 is exactly

⎢

δ⊕Σ

Σt(δ),x(δ)(y(δ)) .

If the oracle is acting like a random tweakable permutation ⎧β then the probability
that the attacker outputs 1 is exactly

⎢

δ⊕Σ

Σ∗
t(δ),x(δ)(y(δ)) .

We deduce that the advantage of A equals:
∣∣∣∣∣
⎢

δ⊕Σ

⎨
Σt(δ),x(δ)(y(δ)) − Σ∗

t(δ),x(δ)(y(δ))
)∣∣∣∣∣ . (8)

Since for every t ⊕ T q, x ⊕ γt, and y ⊕ γt, one has Σ(t,x)(y) ≥ (1 − η)Σ∗
(t,x)(y),

it follows that:
⎢

δ⊕Σ

⎨
Σt(δ),x(δ)(y(δ)) − Σ∗

t(δ),x(δ)(y(δ))
)

≥ −η

and
⎢

δ/⊕Σ

⎨
Σt(δ),x(δ)(y(δ)) − Σ∗

t(δ),x(δ)(y(δ))
)

≥ −η .

(9)

Finally, it is easy to verify that
⎢

δ⊕Σ

⎨
Σt(δ),x(δ)(y(δ)) − Σ∗

t(δ),x(δ)(y(δ))
)

= (10)

−
⎢

δ/⊕Σ

⎨
Σt(δ),x(δ)(y(δ)) − Σ∗

t(δ),x(δ)(y(δ))
)

because ⎢

δ

Σt(δ),x(δ)(y(δ)) =
⎢

δ

Σ∗
t(δ),x(δ)(y(δ)) = 1 .

Using (8), (9) and (10), we deduce that the advantage of A is upper bounded
by η. ��
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The second lemma says that if the advantage of the best NCPA adversary
is small, then, for all t, x, almost all y are such that the probability of sending
(t, x) to y for a random ⎧Ek is close to the probability of sending (t, x) to y for a
random tweakable permutation.

Lemma 4. Fix ⎧E ⊕ TBC(K, T ,D) and q ≤ |D|. If there exists β ⊕ [0, 1] such
that

Advñcpa

Ẽ
(q, α = +→) ≤ β ,

then, for all t ⊕ T q and x ⊕ γt, one has:

Σ∗
(t,x)

⎨
S√

ν,(t,x)

)
≥ 1 −

√
β .

Proof. By contrapositive, suppose there exists t = (t1, . . . , tq) ⊕ T q and x =
(x1, . . . , xq) ⊕ γt such that

Σ∗
(t,x)

⎨
S√

ν,(t,x)

)
< 1 −

√
β .

Consider the adversary which queries (t1, x1), . . . , (tq, xq) and outputs 0 if the
answers y = (y1, . . . , yq) are such that y ⊕ S√

ν,(t,x) and 1 otherwise. His advan-
tage is exactly ∣∣∣∣∣∣

⎢

y/⊕S∗
β,(t,x)

Σ(t,x)(y) − Σ∗
(t,x)(y)

∣∣∣∣∣∣
,

and y /⊕ S√
ν,(t,x) means, by definition, that Σ(t,x)(y) < (1−√

β)Σ∗
(t,x)(y), so that

the advantage of this adversary is strictly greater than:
√

β ×
⎨
1 − Σ∗

(t,x)

⎨
S√

ν,(t,x)

))
> β ,

hence the result. ��

4.2 A Composition Theorem for Tweakable Blockciphers

Given two TBCs sharing the same set of tweaks and the same domain ⎧E1 ⊕
TBC(K1, T ,D) and ⎧E2 ⊕ TBC(K2, T ,D), we define the tweakable blockcipher
⎧E2 √ ⎧E1 ⊕ TBC(K1 × K2, T ,D) as:

∅(t, x) ⊕ D × T , (k1, k2) ⊕ K1 × K2,

⎧E2 √ ⎧E1((k1, k2), t, x) := ⎧E2(k2, t, ⎧E1(k1, t, x)) .

Theorem 2. Let ⎧E1 ⊕ TBC(K1, T ,D) and ⎧E2 ⊕ TBC(K2, T ,D) be two TBCs
satisfying:

Advñcpa

Ẽ1
(q, α = +→) ≤ β1 and Advñcpa

Ẽ2
(q, α = +→) ≤ β2 .

Then:
Advc̃ca

Ẽ−1
2 ◦Ẽ1

(q, α = +→) ≤ 2(
√

β1 +
√

β2) .
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Proof. We denote Σ1, Σ2, and Σ3 the distributions associated respectively to
⎧E1, ⎧E2 and ⎧E−1

2 √ ⎧E1. For every t ⊕ T q, x ⊕ γt, and η ⊕ [0, 1], we denote SẼi

λ,(t,x)

the set Sλ,(t,x) corresponding to ⎧Ei, i = 1, 2.
By Lemma 4, for all t ⊕ T q, x ⊕ γt, and y ⊕ γt, we have:

Σ∗
(t,x)

⎨
SẼ1√

ν1,(t,x)

)
≥ 1 −

√
β1 and Σ∗

(t,y)

⎨
SẼ2√

ν2,(t,y)

)
≥ 1 −

√
β2 . (11)

Furthermore, for all (k1, k2) ⊕ K1 × K2, ⎧E−1
2 √ ⎧E1((k1, k2), ·, ·) maps (t, x) to y if

and only if for all i ≤ q, ⎧E1(k1, ti, xi) = ⎧E2(k2, ti, yi). Denoting S∈ = SẼ1√
ν1,(t,x)

∩
SẼ2√

ν2,(t,y)
, one has, for any y ⊕ γt:

Σ3
(t,x)(y) =

⎢

z⊕βt

Σ1
(t,x)(z) · Σ2

(t,y)(z)

≥
⎢

z⊕S⊕
Σ1
(t,x)(z) · Σ2

(t,y)(z)

≥
⎢

z⊕S⊕

⎨
1 −

√
β1

)
Σ∗

(t,x)(z) ·
⎨
1 −

√
β2

)
Σ∗

(t,y)(z)

≥
⎨
1 −

√
β1

)⎨
1 −

√
β2

) |S∈|
|γt|2

=
⎨
1 −

√
β1

)⎨
1 −

√
β2

)
Σ∗
(t,x)(S

∈)Σ∗
(t,x)(y) .

By definition of S∈ and using Eq. 11, one has Σ∗
(t,x)(S

∈) ≥ (1 − √
β1 − √

β2) (note
that Σ∗ in fact only depends on t), so that:

Σ3
(t,x)(y) ≥ (1 − 2(

√
β1 +

√
β2))Σ∗

(t,x)(y) .

Since this holds for any t, x, and y, the theorem follows by applying Lemma 3
with η = 2(

√
β1 +

√
β2). ��

4.3 Application to the r-CLRW Construction

Finally, we apply the previous result to prove the security of r-CLRW against
CCA adversaries.

Theorem 3. Let K, T be sets, E ⊕ BC(K, n) be a blockcipher, and H be an
Δ-AXU2 family of functions from T to {0, 1}n. Then for any even integer r, one
has:

Advc̃ca
CLRWr,E,H(q, α) ≤ r · Advcca

E (q, α + rqT ) +
4
√

2√
r + 2

q(r+2)/4(2Δ)r/4 ,

where T is the time to compute E or E−1.
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Proof. Noting that the inverse of a r/2-CLRW construction is again a r/2-CLRW
construction, we can apply Theorem 2 to get:

Advc̃ca
CLRWr,E⊥,H(q, α = +→) ≤ 4

√
η ,

where

η := Advñcpa

CLRWr/2,E⊥,H(q, α = +→) ≤ qr/2+1

r/2 + 1
(2Δ)r/2

by the results of Sect. 3. The theorem then follows from Lemma 2. ��
Again, using an Δ-AXU2 function family with Δ ∗ 2−n, the construction achieves
security against CCA adversaries up to O(2rn/(r+2)) queries.

A Proof of the Coupling Lemma

The original statement and proof of the Coupling Lemma is due to Aldous [1].
Here we follow closely a proof by Vigoda.3

Let δ be a coupling of μ and Σ, and (X,Y ) ∼ δ. By definition, we have that
for any z ⊕ Γ, δ(z, z) ≤ min{μ(z), Σ(z)}. Moreover, Pr[X = Y ] =

⎣
z⊕β δ(z, z).

Hence we have:
Pr[X = Y ] ≤

⎢

z⊕β

min{μ(z), Σ(z)} .

Therefore:

Pr[X ∀= Y ] ≥ 1 −
⎢

z⊕β

min{μ(z), Σ(z)}

=
⎢

z⊕β

(μ(z) − min{μ(z), Σ(z)})

=
⎢

z⊕β
μ(z)≥ν(z)

(μ(z) − Σ(z))

= max
S⊂β

{μ(S) − Σ(S)}
= ‖μ − Σ‖ .
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Abstract. In this paper, we report extremely fast and optimised active
and passive attacks against the old IEEE 802.11 wireless communication
protocol WEP. This was achieved through a huge amount of theoreti-
cal and experimental analysis (capturing WiFi packets), refinement and
optimisation of all the former known attacks and methodologies against
RC4 stream cipher in WEP mode. We support all our claims by pro-
viding an implementation of this attack as a publicly available patch
on Aircrack-ng. Our new attacks improve its success probability drasti-
cally. We adapt our theoretical analysis in Eurocrypt 2011 to real-world
scenarios and we perform a slight adjustment to match the empirical
observations. Our active attack, based on ARP injection, requires 22 500
packets to gain success probability of 50 % against a 104-bit WEP key,
using Aircrack-ng in non-interactive mode. It runs in less than 5 s on an
off-the-shelf PC. Using the same number of packets, Aicrack-ng yields
around 3% success rate. Furthermore, we describe very fast passive only
attacks by just eavesdropping TCP/IPv4 packets in a WiFi communi-
cation. Our passive attack requires 27 500 packets. This is much less
than the number of packets Aircrack-ng requires in active mode (around
37 500), which is a huge improvement. We believe that our analysis brings
on further insight to the security of RC4.

1 Introduction

RC4 was designed by Rivest in 1987. It used to be a trade secret until it was
anonymously posted on Cypherpunks mailing list in September 1994. Nowadays,
due to its simplicity, RC4 is widely used in SSL/TLS, Microsoft Lotus, Oracle
Secure SQL and Wi-Fi 802.11 wireless communications. The 802.11 [9] used to
be protected by WEP (Wired Equivalent Privacy) which is now being replaced
by WPA (Wi-Fi Protected Access) due to security weaknesses.

WEP uses RC4 with a pre-shared key. Each packet is encrypted by an
XOR to a keystream generated by RC4. The RC4 key is a pre-shared key
prepended with a 3-byte nonce initialisation vector IV. The IV is sent in clear

Supported by a grant of the Swiss National Science Foundation, 200021 134860/1.

S. Moriai (Ed.): FSE 2013, LNCS 8424, pp. 155–178, 2014.
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for self-synchronisation. There have been several attempts to break the full RC4
algorithm, but it has only been devastating so far in this scenario. Indeed, the
adversary knows that the key is constant except the IV, which is known. An
active adversary can alter the IV. Nowadays, WEP is considered as being terri-
bly weak, since passive attacks can recover the full key easily by assuming that
the first bytes of every plaintext frame are known.

Structure of the paper. First, in Sect. 2, we refer to the motivation in this research
area, then we present RC4, WEP and Aircrack-ng in Sect. 3. In Sect. 4, we go
through all the existing well-known attacks on WEP. Next, we introduce some
useful lemmas in Sect. 5. Then, we present all known biases for RC4 in Sect. 6.
Subsequently, we elaborate on an optimised attack on WEP in Sect. 7 and, we
compare our results with Aircrack-ng 1.1 in Sect. 8. Finally, we discuss some
challenges and open problems in Sect. 9.

2 Motivation

For some people, attacking WEP is like beating a dead horse, but this horse is
still running wildly in many countries all over the world. Also, some companies
are selling hardware using modified versions of the WEP protocol, they claim
to be secure [2]. Moreover, the new analysis and biases presented in this paper
are related to RC4, which is the most popular stream cipher in the history of
symmetric key cryptography. WEP is an example of a practical exploitation of
these biases. The cryptanalysis of WEP is one of the most applied cryptographic
attacks in practice. Indeed, tools such as Aircrack-ng are massively downloaded
to provide a good example of weaknesses in cryptography. Finally, the TKIP
protocol used by WPA is not much different from WEP (just a patch over WEP),
so that attacks on WEP can affect the security of networks using TKIP, as seen
in [2,26]. For instance in [26], the authors used exactly the same biases as in
WEP to break WPA. Hence, gaining a better understanding of the behaviour of
these biases may lead to a practical breach of WPA security in future.

3 Preliminaries

3.1 Description of RC4 and Notations

The RC4 stream cipher consists of two algorithms: the Key Scheduling Algorithm
(KSA) and the Pseudo Random Generator Algorithm (PRGA). The RC4 engine
has a state defined by two registers (words) i and j and one array (of N words)
S defining a permutation over Z/NZ. The KSA generates an initial state for the
PRGA from a random key K of L words as described in Fig. 1. It starts with
an array {0, 1, . . . , N − 1}, where N = 28 and swaps N pairs, depending on the
value of the secret key K. At the end, we obtain the initial state S∈

0.
We define all the operators such as addition, subtraction and multiplication

in the ring of integers modulo N represented as Z/NZ, or ZN , where N = 256
(i.e. words are bytes). Thus, x + y should be read as (x + y) mod N .
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PAGRKAS

1: for i = 0 to N − 1 do
2: S[i] ⊕ i
3: end for
4: j ⊕ 0
5: for i = 0 to N − 1 do
6: j ⊕ j + S[i] + K[i mod L]
7: swap(S[i],S[j])
8: end for

1: i ⊕ 0
2: j ⊕ 0
3: loop
4: i ⊕ i + 1
5: j ⊕ j + S[i]
6: swap(S[i],S[j])
7: output zi = S[S[i] + S[j]]
8: end loop

Fig. 1. The KSA and the PRGA algorithms of RC4.

Once the initial state S∈
0 is created, it is used by the second algorithm of RC4,

the PRGA. Its role is to generate a keystream of words of log2 N bits, which will
be XORed with the plaintext to obtain the ciphertext. Thus, RC4 computes the
loop of the PRGA each time a new keystream word zi is needed, according to the
algorithm in Fig. 1. Note that each time a word of the keystream is generated,
the internal state (i, j, S) of RC4 is updated.

Sometimes, we consider an idealised version RC4Δ(t) of RC4 defined by a
parameter t as shown in Fig. 2. Namely, after round t, index j is assigned ran-
domly. This model has been already used in the literature such as in [17,20,22].
In fact, t is the index of the last known state. For instance, since we know
K[0],K[1],K[2] in WEP protocol, we can initially assume t = 2.

Let Si[k] (resp. S∈
i[k]) denote the value of the permutation defined by the

array S at index k, after the round i in the KSA (resp. the PRGA). We also
denote SN−1 = S∈

0. Let ji (resp. j∈
i) be the value of j after round i of the KSA

(resp. the PRGA), where the rounds are indexed with respect to i. Thus, the

KSAτ(t) PRGAτ

1: for i = 0 to N − 1 do
2: S[i] ⊕ i
3: end for
4: j ⊕ 0
5: for i = 0 to N − 1 do
6: if i √ t then
7: j ⊕ j + S[i] + K[i mod L]
8: else
9: j ⊕ random

10: end if
11: swap(S[i],S[j])
12: end for

1: i ⊕ 0
2: j ⊕ 0
3: loop
4: i ⊕ i + 1
5: j ⊕ random
6: swap(S[i],S[j])
7: output zi = S[S[i] + S[j]]
8: end loop

Fig. 2. The KSAν(t) and the PRGAν algorithms of RC4ν(t).
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KSA has rounds 0, 1, . . . , N − 1 and the PRGA has rounds 1, 2, . . .. The KSA and
the PRGA are defined by

KSA PRGA
j−1 = 0 j∈

0 = 0
ji = ji−1 + Si−1[i] + K[i mod L] j∈

i = j∈
i−1 + S∈

i−1[i]
S−1[k] = k S∈

0[k] = SN−1[k]

Si[k] =

⎧
⎨

⎩

Si−1[ji] if k = i
Si−1[i] if k = ji

Si−1[k] otherwise
S∈

i[k] =

⎧
⎨

⎩

S∈
i−1[j

∈
i] if k = i

S∈
i−1[i] if k = j∈

i

S∈
i−1[k] otherwise

zi = S∈
i[S

∈
i[i] + S∈

i[j
∈
i]]

Throughout this paper, we denote K̄[i] def= K[0] + · · · + K[i]. We let z denote
the keystream derived from K using RC4. In the applications we are concerned,
the first bytes of a plaintext frame are often known (see Fig. 6 in Appendix), as
well as the IV, the first 3 bytes of K. That is, we assume that the adversary can
use the keystream z and the IV in a known plaintext attack.

We let I0 be a set of integers, which represents the key byte indices which
are already known. We define a set clue which consists of all K̄ bytes whose
indices are in I0. To begin with, we have I0 = {0, 1, 2} and clue = IV. Given a
set of indices I0 and an index i, we assume that we have a list rowRC4

i|I0 of di|I0
vectors (f̄j , ḡj , pj , qj), j = 1, . . . , di|I0 with functions f̄j and the corresponding
predicates ḡj such that

Pr
[
K̄[i] = f̄j(z, clue)|ḡj(z, clue)

]
= pj

for some probability pj ⊕= 1
N and

Pr [ḡj(z, clue)] = qj

where qj is called the density of the bias (for the list of such correlations, see
Table 1 in Appendix).

For simplicity, we assume that for some given i, z, and clue, all suggested
f̄j(z, clue) for j’s such that ḡj(z, clue) holds, are pairwise distinct. We further
assume that the events K̄[i] = f̄j(z, clue) with different i’s are independent. We
will also assume that f̄j and ḡj are of the form f̄j(z, clue) = fj(h(z, clue)) and
ḡj(z, clue) = gj(h(z, clue)), where μ = h(z, clue) lies in a domain of size Nμ.
In fact, h is just a function compressing the data to the minimum necessary
to compute f̄j and ḡj . The following prominent relation exists between the key
bytes of RC4:

K̄[i + 16j] = K̄[i] + jK̄[15] (1)

for 0 ∃ i ∃ 15 and j = 0, 1, 2. This relation reveals that if K̄[15] is known, the
biases for K̄[i] and K̄[i + 16j] can be merged. This relation was initially used in
[34] to derive a better success probability. For example, if we know K̄[15], we can
use the biases for K̄[19] to vote for K̄[3]. Similarly, the biases for K̄[15], . . . , K̄[18]
and K̄[31], K̄[32] can be merged to vote for K̄[15]. Consequently, later, we recover
K̄[15] before any other byte of the key.
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Definition 1. Let A,B and C be three random variables over ZN. We say that
A is biased towards B with bias p conditioned on an event E and we represent
it as A

p
=
E

B if

Pr(A − B = x|E) =

⎧
⎨

⎩

p if x = 0

1−p
N−1 otherwise

When Pr[E] = 1, it is denoted as A
p
= B.

3.2 Description of WEP

WEP [8] uses a 3-byte IV concatenated to a secret key of 40 or 104 bits (5 or 13
bytes) as an RC4 key. Thus, the RC4 key size is either 64 or 128 bits. Since the
RC4 design does not accept an IV by default, WEP generates a per packet key
for each packet. A devastating problem of WEP is that the 13 bytes of the key
do not change for each packet encryption, while the first 3 bytes of the key are
changing. Thus, the attacker can run a statistical attack on the key. This was
avoided in WPA. In this paper, we do not consider the 40-bit key variant, but
a very similar approach can be leveraged to break the 40-bit key version. So,
L = 16. In fact, we have

K = K[0]→K[1]→K[2]→K[3]→ · · · →K[15] = IV0→IV1→IV2→K[3]→ · · · →K[15]

where IVi represents the (i + 1)-th byte of the IV and K[3]→...→K[15] represents
the fixed secret part of the key. In theory, the value of the IV should be random
but in practice, it is a counter, mostly in little-endian and it is incremented by
one each time a new 802.11b frame is encrypted. Sometimes, some particular
values of the IV are skipped to thwart the specific attacks based on “weak IV’s”.
Thus, each packet uses a slightly different key.

To protect the integrity of the data, a 32-bit long CRC32 check sum called
ICV is appended to the data. Similar to other stream ciphers, the resulting
stream is XORed with the RC4 keystream and it is sent through the communi-
cation channel together with the IV in clear. On the receiver’s end, the cipher-
text is again XORed with the shared key and the plaintext is recovered. The
receiver checks the linear error correcting code and it either accepts the data or
declines it.

It is well known [21,31,34] that a relevant portion of the plaintext is prac-
tically constant and that some other bytes can be predicted. They correspond
to the LLC header and the SNAP header and some bytes of the TCP/IPv4 and
ARP encapsulated frames. For example, by XORing the first byte of the cipher-
text with the constant value 0xAA, we obtain the first byte of the keystream.
Thus, even if these attacks are called known plaintext attacks, they are cipher-
text only in practice (see the Appendix for the structure of ARP and TCP/IPv4
packets).

We consider both passive and active adversaries in this paper. For an active
attack, the attacker eavesdrops the ARP packets and since the plaintext bytes are
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known up to the 32-nd byte, she can compute z1, . . . , z32 values using the cipher-
text. It is also possible to inject data into the network. Because the ARP replies
expire quickly (resetting the ARP cache), it usually takes only a few seconds
or minutes until an attacker can capture an ARP request and start re-injecting
it [31]. On the other hand, active attacks are detectable by Intrusion Detection
systems (IDS) and also some network cards require extra driver patches to be
able to inject data into the traffic, which is not available for all network cards.
This is not the case for a passive attack. The attacker can eavesdrop the wireless
communication channel for TCP/IPv4 packets, but some of the data frames are
not known in this case (see the Appendix). As represented in Table 1, the Klein
and the Maitra-Paul attacks require zi and zi+1 to recover K̄[i] respectively.
Hence in reality, we are not able to use those attacks to recover some bytes of
the key. This is not the case for the Korek attacks, since they only require z1
and z2. To summarise, we need more packets in a passive attack compared to
an active attack. We are going to elaborate on both types of attacks later.

3.3 Aircrack-ng

Aircrack-ng [5] is a WEP and WPA-PSK keys cracking program that can recover
keys once enough data packets have been captured. It is the most widely down-
loaded cracking software in the world. It implements the standard Fluhrer,
Mantin and Shamir’s (FMS) attack [7] along with some optimisations like the
Korek attacks [13,14], as well as the Physkin, Tews and Weinmann (PTW)
attack [31]. In fact, it currently has the implementation of state of the art
attacks on WEP and WPA. We applied a patch on Aircrack-ng 1.1 in our
implementation.

4 State of the Art Attacks on WEP

WEP key recovery process is harder in practice than in theory. Indeed, some
bytes of the keystream are unknown, depending on which type of packets are
captured. Moreover, theoretical success probability has often been miscalculated
and conditions to recover the secret key are not the same depending on the paper.
For example, [2,25,31,34] check 2 × 106 most probable keys instead of the first
one as in [7,11,13,14,27,28]. Additionally, IEEE 802.11 standard does not spec-
ify how the IV’s should be chosen. Thus, some attacks consider randomly picked
IV’s or incremental IV’s (both little-endian and big-endian encoded). Some imple-
mentations specifically avoid some classes of IV’s which are weak with respect
to some attacks.

To unify the results, we consider recovering a random 104-bit long secret key
with random IV’s. This corresponds to the default IV behaviour of the 802.11
GNU/Linux stack. We compare the previous and the new results using both
theoretical and practical analysis:

– In [7], Fluhrer, Mantin and Shamir’s (FMS) attack is only theoretically
described. The authors postulate that 4 million packets would be sufficient
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to recover the secret key of WEP with success probability of 50% with incre-
mental IV’s. A practical implementation of this attack has been realised by
Stubblefield, Ioannidis and Rubin [27,28]. They showed that indeed between
5 million to 6 million packets are required to recover the secret key using the
FMS attack. Note that in 2001, almost all wireless cards were using incremen-
tal IV’s in big-endian.

– There is no theoretical analysis of the Korek [13,14] key recovery attacks. Only
practical implementations such as Aircrack-ng [5] are available. Additionally,
Aircrack-ng classifies the most probable secret keys and does a brute-force
attack on this list. The success probability of 50% is obtained when about
100 000 packets are captured with random IV’s. Note that the amount of the
brute-forced keys depends on the values of the secret key and the “Fudge”
factor [5] (the highest vote counter is divided by the Fudge factor and all
values with votes higher than this value is brute-forced), a parameter chosen
by the attacker (often 1, 2 or 3). By default, around one thousand to one
million keys are brute-forced.

– The ChopChop attack was introduced in [12,30], which allows an attacker
to interactively decrypt the last m bytes of an encrypted packet by sending
128 × m packets in average to the network. The attack does not reveal the
main key and is not based on any special property of the RC4 stream cipher.

– In [11], Klein showed theoretically that his new attack needs about 25 000
packets with random IV’s to recover the secret key with probability 50%.
Note that, there is no practical implementation of the Klein attack alone, but
both PTW [31] and VV07 [34] attacks (using Klein attack by default), which
theoretically improve the key recovery process, need more than 25 000 packets.
So, the theoretical success probability of the Klein attack was over estimated.
We implemented this attack and we obtained the success probability of 50%
with about 60 000 packets (random IV’s).

– Physkin, Tews and Weinmann (PTW) showed in [31] that the secret key can
be recovered with only 40 000 packets for the same success probability (random
IV’s). However, this attack brute-forces the 2×106 most probable secret keys.
Thus, the comparison with previous attacks is less obvious. Moreover, there
is no theoretical analysis of this attack, only practical results are provided by
the authors. We confirmed this practical result.

– Vaudenay and Vuagnoux [34] showed an improved attack, where the same
success probability can be reached with an average of 32 700 packets with
random IV’s. This attack also tests the 2 × 106 most probable secret keys.
Moreover, only practical results are provided by the authors. We confirmed
this practical result.

– According to [2], Beck and Tews re-implemented the [34] attack in 2009, obtain-
ing the same success probability with only 24 200 packets using Aircrack-ng in
“interactive mode”, i.e., the success probability is fixed in this approach and the
goal is to derive the least average number of packets for a successful attack. Obvi-
ously, this approach requires less packets than the case where we fix the num-
ber of packets and compute the success rate. We focus on the latter approach,
since this is done often in the literature as a measure of comparison. Since Beck
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and Tews’s attack was implemented on Aircrack-ng, we ran it in non-interactive
mode. We observed that 24 200 packets brings about only less that 8% success
rate in non-interactive mode. In fact, it needs more than 36 000 packets to yield
the success probability of 50%. Therefore, it seems this attack does not yield
any more success rate than the [34] attack.

– Sepehrdad, Vaudenay and Vuagnoux [25], showed that only 9 800 packets is
enough to break WEP with success probability of 50%, while they used a
class of weak IV’s for their attack. We show in the following that reaching
9 800 packets to break WEP with random IV’s is extremely ambitious by the
currently available biases for RC4.

– In Eurocrypt 2011 [26], we presented an attack on WEP by optimising all
the previous known attacks in the literature and by introducing a few new
correlations. As a result, we claimed theoretically that using 4 000 packets,
our analysis provides a success probability of 50% to break WEP. We did not
implement the attack at that time. Only theoretical results were presented. In
this paper, we show that some parts of that evaluation is not precise enough
and need modification. In fact, we show that our theory needs more than 4 000
packets, due to the imprecise approximation of the variance of the rank of the
correct key and an improper estimation of the probability distribution of this
random variable.

– In this paper, in an optimised attack, we drop the number of packets to 22 500
for the same success probability by modifying the [26] attack and patching
Aircrack-ng in non-interactive mode. It requires only 19 800 packets using
Aircrack-ng in interactive mode. In our approach, the 2 × 106 most probable
secret keys are brute-forced and we use random IV’s.

We are going to construct a precise theory behind the WEP attack in the
subsequent sections. All our analysis has been checked precisely through exten-
sive amount of experiments. We show that we can recover a 104-bit long WEP
key using 22 500 packets in less than 5 s using an off-the-shelf PC. With less
number of packets, the attack will run for a longer period.

5 Some Useful Lemmas

Lemma 1. Let A,B and C be random variables in ZN such that

A
p1= B B

p2= C

then we assume that A − B and B − C are independent. We have A
P= C, where

P =
1
N

+
(

N

N − 1

) (
p1 − 1

N

)(
p2 − 1

N

)
def= p1 √ p2

Proof. See Chap. 3 of [24] for the proof. �⇒
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Corollary 1. Let A,B,C,D and E be random variables in ZN such that

A
p1= B B

p2= C C
p3= D D

p4= E

then we assume that A−B, B −C, C −D and D−E are independent. We have
A

P= E, where

P = p1 √ p2 √ p3 √ p4 =
1
N

+
(

N

N − 1

)3

·
4∏

i=1

(
pi − 1

N

)

For p4 = 1, we obtain

P = p1 √ p2 √ p3 =
1
N

+
(

N

N − 1

)2

·
3∏

i=1

(
pi − 1

N

)

Proof. The √ operation is commutative and associative over [0, 1] and 1 is the
neutral element. The above statements should be trivial using these properties.

�⇒
We can extend the above Corollary by adding new conditions.

Lemma 2. Let A,B,C,D and E be random variables in ZN and Cond and
Cond∈ be two events such that

A
p1= B B

p2= C C
p3=

Cond⊥
S[D] D

p4= E

We assume that A − B, B − C, C − S[D], D − E and Cond∈ are independent;
Furthermore, we assume

(A = S[D] ∈ Cond) ≈ (A = S[D] ∈ Cond∈) and Pr[Cond] = Pr[Cond∈]

Assuming that

Pr[A = S[E]|A ⊕= S[D],D ⊕= E,Cond] =
1

N − 1

we have
Pr[A = S[E]|Cond] = p1 √ p2 √ p3 √ p4

Proof. See Chap. 3 of [24] for the proof. �⇒
Lemma 3. To avoid the key byte dependency, the following equation can be
extracted to have a better key recovery attack.

K̄[i] = ji −
i∑

x=1

Sx−1[x]
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Proof. We prove it by induction on i by using

ji = ji−1 + Si−1[i] + K[i]

�⇒
Lemma 4. For 0 ∃ t < i, the following five relations hold on RC4Δ(t) for any
set (m1, . . . ,mb) of pairwise different mj’s such that mj ∃ t or mj > i − 1.

P b
A(i, t) def= Pr



⎡
b⎢

j=1

Si−1[mj ] = · · · = St+1[mj ] = St[mj ]

⎣

⎤ =
⎥

N−b
N

⎦i−t−1

Si−1[mj ]
P 1

A= St[mj ]
i∑

x=1

Sx−1[x]
PB(i,t)

= Δi(t) where

PB(i, t) def=
i−t−1∏

k=0

(
N − k

N

)
+

1
N

⎛
1 −

i−t−1∏

k=0

(
N − k

N

)⎜

P0
def= Pr[S∈

i−1[i] = · · · = S∈
1[i] = SN−1[i] = · · · = Si[i]] =

⎥
N−1

N

⎦N−2

S∈
i−1[i]

P0= Si[i]

where mj’s are distinct and

Δi(t) =
t∑

j=0

Sj−1[j] +
i∑

j=t+1

St[j]

Proof. See Chap. 3 of [24] for the proof. �⇒

6 The List of Biases for RC4

In this section, we only report RC4 correlations which are exploitable against
WEP application. All such biases are listed in Table 1 in Appendix, following the
notations in Sect. 3.1. This list includes the improved version of the Klein attack
in [34] and the improved version of the Maitra-Paul attack in [15]. Furthermore,
it includes an improved version of 19 biases by Korek [13,14] and SVV 10, the
improved bias of Sepehrdad, Vaudenay and Vuagnoux in [25]. All the probabili-
ties are new. We have proved all the correlations listed in Table 1, but, we have
omitted the proofs due to the lack of space1. Biases were computed using the
formulas represented after Table 1.

As an example, we are going to elaborate and provide a proof for the Klein-
Improved attack, since it is fundamental in our WEP attack. The proof of all the
other correlations are similar. The interested reader can also look at [4,24,26]
for more details.
1 See [23] for the proof of SVV 10 bias and for all the others, see Chap. 6 of [24].
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6.1 The Klein-Improved Attack

Andreas Klein combined the Jenkins correlation for the PRGA and weaknesses
of the KSA and derived a correlation between the key bytes and the keystream.
This bias was further improved in [34] by recovering K̄[i]’s instead of K[i] to
reduce the secret key bytes dependency.

Theorem 1 (Jenkins correlation [10], Sec. 2.3 in [16]). Assume that the
initial permutation S∈

0 = SN−1 is randomly chosen from the set of all the possible
permutations over {0, . . . , N − 1}. Then,

Pr[S∈
i[j

∈
i] = i − zi] ∪ 2

N Pr[S∈
i[i] = j∈

i − zi] ∪ 2
N

Proof

Pr[S∈
i[j

∈
i] = i − zi] = Pr[S∈

i[j
∈
i] = i − zi|S∈

i[i] + S∈
i[j

∈
i] = i] . Pr[S∈

i[i] + S∈
i[j

∈
i] = i]

+Pr[S∈
i[j

∈
i] = i − zi|S∈

i[i] + S∈
i[j

∈
i] ⊕= i] . Pr[S∈

i[i] + S∈
i[j

∈
i] ⊕= i]

= 1
N + 1

N

⎥
1 − 1

N

⎦ ∪ 2
N

By symmetry, the other equation can be proved similarly. �⇒
We use the theorem by Jenkins and explain how it can be merged with

the weaknesses of the KSA (see Algorithm 1). In fact, the attacker checks the
conditions. If they all hold, she votes for K̄[i] using the key recovery relation. We
are only using the assumptions in Algorithm 1 to compute the Klein-Improved
attack success probability. More clearly, we do not assume these relations always
hold. They are all probabilistic.

Algorithm 1. The Klein-Improved Attack
Success Probability: PKI(i, t)
Assumptions: (see Fig. 3)
1: St[ji] = · · · = Si−1[ji] = Si[i] = S∼

i−1[i] = S∼
i[j

∼
i] = i − zi

Conditions: (i − zi) ≥→ {St[t + 1], . . . , St[i − 1]} (Cond)
Key recovery relation: K̄[i] = S−1

t [i − zi] − Δi(t)

Exploiting the Jenkins correlation and the relations in the KSA and the PRGA,
we obtain

1. S∈
i[j

∈
i]

PJ= i − zi (Lemma 1)
2. S∈

i[j
∈
i] = S∈

i−1[i]

3. S∈
i−1[i]

P0= Si[i] (Lemma 4)
4. Si[i] = Si−1[ji]

5. Si−1[ji]
P 1

A=
Cond⊥

St[ji] (where Cond∈ is the event that ji ∃ t or ji > i − 1.)

6. ji = K̄[i] +
i∑

x=1

Sx−1[x] (Lemma 3)
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Fig. 3. The RC4 state update in the Klein-Improved attack

7.
i∑

x=1

Sx−1[x] PB= Δi (Lemma 4)

We make the same heuristic assumptions of independence as in Lemma 2, then
using Lemmas 2 and 4, we derive

PKI(i, t) = PJ √ P0 √ P 1
A(i, t) √ PB(i, t)

conditioned to Cond (see Algorithm 1). Hence, the key recovery relation becomes

K̄[i] PKI=
Cond

S−1
t [i − zi] − Δi(t)

Next, we are going to describe our modifications on Sepehrdad, Vaudenay
and Vuagnoux attack [26] to mount a very fast key recovery attack on WEP.

7 An Optimised Attack on WEP

We define an statistical attack using the following mapping:

zm, IVm hi−−−−−−∀ μi

fνi
(μi)−−−−−−∀

if gνi
(μi)

xi

Our goal is to recover the values of K̄[i]’s for i = {3, . . . , 15}. For each key can-
didate value xi (corresponding to K̄[i]), each packet m, and each γi = 1, . . . , di

(corresponding to each bias), if the agglomerated condition gγi
(hi(zm, IVm))
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holds, we define xi = fγi
(hi(zm, IVm)) as the value of the RC4 key byte suggested

by the bias γi on packet m, which is correct with probability pγi
. We let Xxi,m,γi

be some magic coefficient aγi
(to be optimised later) if fγi

(hi(zm, IVm)) = xi

and 0 otherwise. We let

Yxi
=

n∑

m=1

di∑

γi=1

Xxi,m,γi

where ni is the total number of packets to be used in attacking K̄[i]. Clearly,
the correct value for xi is suggested with probability pγi

and others are obtained
randomly. We assume the incorrect ones are suggested with the same probability
1−pνi

Nxi
−1 . So, the Xxi,m,γi

for the incorrect xi’s are random variables with the

expected values aγi
qγi

1−pνi

Nxi
−1 if xi is not the correct value. For the correct xi, then

Xxi,m,γi
are random variables with the expected value aγi

qγi
pγi

. The difference
between these two expected values is important. This is also the case for the
difference of the variances. As every xi is suggested with probability roughly
qνi

Nxi
, we assume that the variance of a bad Xxi,m,γi

can be approximated by
qνi

Nxi

⎝
1 − qνi

Nxi

⎞
a2

γi
. In [26], it was assumed that the variance of a good and a bad

counter Yxi
is the same. Our experiments revealed that they are actually very

different. Let α be the operator making the difference between the distributions
of a good xi and a bad one. We have

E(Yxi bad) =
ni

Nxi
− 1

∑

γi

aγi
qγi

(1 − pγi
)

E(Yxi good) = E(Yxi bad) + αE(Yi)

αE(Yi) =
ni

1 − 1
Nxi

∑

γi

aγi
qγi

(
pγi

− 1
Nxi

)

V (Yxi bad) ∪ ni

∑

γi

a2
γi

qγi

Nxi

(
1 − qγi

Nxi

)

V (Yxi good) = V (Yxi bad) + αV (Yi)

αV (Yi) ∪ ni

1 − 1
Nxi

∑

γi

a2
γi

qγi

(
pγi

− 1
Nxi

)

where E(Yxi bad) and V (Yxi bad) denote the expected value and the variance of
a Yxi

variable for any bad xi respectively. Here, we removed the subscript xi of
Yxi

in αE(Yi) as this does not depend on a specific value for xi. Let βi be such
that αE(Yi) = βi

⎟
V (Yxi bad) + V (Yxi good). The probability that the correct

Yxi
is lower than an arbitrary wrong Yxi

is Σi = δ (−βi). That is, the expected
number of wrong xi’s with larger Yxi

is

ri = (Nxi
− 1)δ (−βi) (2)
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So,

ni =

η2
i

∑
�i

a2
�i

[
2

(
q�i

Nxi

⎧(
1 − q�i

Nxi

⎧(
1 − 1

Nxi

⎧2

+ q�i

(
p�i − 1

Nxi

⎧(
1 − 1

Nxi

⎧⎪

⎛
⎝∑

�i

a�iq�i

(
p�i − 1

Nxi

⎧⎞
⎠

2

By derivating both terms of the fraction with respect to aγi
and equaling them,

we obtain that the optimal value is reached for

aγi
= aopti

def=

⎝
pγi

− 1
Nxi

⎞

⎝
pγi

− 1
Nxi

⎞
+ 2

Nxi

⎝
1 − 1

Nxi

⎞ ⎝
1 − qνi

Nxi

⎞

The above aopti
is very different from the one derived in [26]. In fact, aopti

is the
most crucial value to be optimised in the WEP attack. Using the old value of
aopti

in [26], the success probability would be much lower. Hence, we obtain

ni = nopt
def=

β2
i

⎝
1 − 1

Nxi

⎞

∑

γi

aγi
qγi

(
pγi

− 1
Nxi

) (3)

The attack works as in Algorithm 2, where Step 9 is computed using the below
algorithm:

1: Set I = (3, 4, . . . , 15) and I0 = {0, 1, 2}.
2: Initialize the Yxi counters to 0.
3: for m = 1 to ni do
4: for τi = 1 to di do
5: if g�i(hi(z

m, IVm)) holds then
6: Compute xi = f�i(hi(z

m, IVm)), the suggested value for K̄[i].
7: Increment Yxi by a�i .
8: end if
9: end for

10: end for
11: Output xi = arg maxxi Yxi .

This attack produces a ranking of possible xi’s (possible K̄[i]) in the form of a
list Li by decreasing order of likelihood. The complexity of voting for each K̄[i]
is represented as ci, where

ci = nidi (4)
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Algorithm 2. An optimised attack against the WEP protocol
1: compute the ranking L15 for I = (15) and I0 = {0, 1, 2}
2: truncate L15 to its first α15 terms
3: for each k̄15 in L15 do
4: run recursive attack on input k̄15

5: end for
6: stop: attack failed
recursive attack with input (k̄15, k̄3, . . . , k̄i−1):
7: If input is only k̄15, set i = 3.
8: if i √ imax then
9: compute the ranking Li for I = (i) and I0 = {0, . . . , i − 1, 15}

10: truncate Li to its first αi terms
11: for each k̄i in Li do
12: run recursive attack on input (k̄15, k̄3, . . . , k̄i−1, k̄i)
13: end for
14: else
15: for each k̄imax+1, . . . , k̄14 do
16: test key (k̄3, . . . , k̄14, k̄15) and stop if correct
17: end for
18: end if

Let Nxi
= N for all i and ri, ci be their parameters following Eqs. (2), (4).

Let Ri be the rank of the correct k̄i value in Li. Let’s define a random variable
Uij = 1(Yxi good<Yxi badj

), where Yxi badj
is the j-th bad counter in attacking

K̄[i]. Hence, we have

Ri =
Nxi

−1∑

j=1

Uij

The expected value and the variance of this random variable can be computed
as follows:

ri = E(Ri) = (Nxi
− 1)δ(−βi)

and
E(R2

i ) = E(Ri) + (Nxi
− 1)(Nxi

− 2) · E(Ui1.Ui2)
(5)

where

E(Ui1.Ui2) = 1∅
2βV (Yxi good)

⎠ ∗
−∗ e

− (Y −E(Yxi good))2
2V (Yxi good)

⎛
1 − δ

(
Y −E(Yxi bad)∅

V (Yxi bad)

)2
⎜

dY

This finally yields

V (Ri) = (Nxi
− 1)δ(−βi) + (Nxi

− 1)(Nxi
− 2) . E(Ui1.Ui2) − (Nxi

− 1)2δ(−βi)2 (6)
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In [26], Ui1 and Ui2 were incorrectly assumed to be independent, leading to

V (Ri) ∪ (Nxi
− 1)δ(−βi)(1 − δ(βi)) ∪ ri

which did not match our experiment. Now, the fundamental question is what
would be the distribution of Ri. This is discussed in the next section.

7.1 Analysis Based on Pólya Distribution

In [26], it was assumed that the distribution of Ri is normal. Running a few
experiments, we noticed that in fact it is not normal and it is following a distri-
bution very close to the Poisson distribution. A crucial observation was that the
variance of the distribution was much higher than the expected value. A number
of distributions have been devised for series in which the variance is significantly
larger than the mean [1,6,18], frequently on the basis of more or less complex
biological models [3]. The first of these was the negative binomial, which arose in
deriving the Poisson series from the point binomial [29,35]. We use a generalised
version of negative binomial distribution called the Pólya distribution.

To be more precise, if two events occur with Poisson distribution and their
expected values are very low, then it can be assumed that those events are
happening independently. On the other hand, for the Poisson events with high
expected values (approximated as normal), the occurrence of the former event
may increase the probability of the latter. In such cases, the overall distrib-
ution would be the Pólya [32,33]. Regarding the current problem, the events
(Yxi good < Yxi badj

) and (Yxi good < Yxi badj⊥ ) are not independent. Therefore,
they tend to follow the Pólya distribution. As E(Ri) and V (Ri) are known from
Eqs. (5), (6), the values pi and ri for attacking K̄[i] can be simply computed by

pi =
(

1 − E(Ri)
V (Ri)

)
and ri =

(
E(Ri)2

V (Ri) − E(Ri)

)

As a proof of concept, we have sketched the probability distribution of R3 for
5 000 packets. The corresponding parameters for the Pólya distribution would be
p = 0.9839 and r = 0.356 (see Fig. 4). As can be observed, those two distributions
are extremely close. Also,

ui
def= Pr[Ri ∃ Σi − 1] = 1 − Ipi

(Σi, ri)

where I is the regularised incomplete beta function. Overall, the success proba-
bility is

u = u15

imax∏

i=3

ui

and the complexity is

c = c15 + Σ15
⎥
c3 + Σ3

⎥
c4 + Σ4

⎥· · · cimax + ΣimaxN
14−imax · · · ⎦⎦⎦
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Fig. 4. R3 distribution using 5 000 packets following the Pólya distribution

To be able to compare our results with the state of the art, we set u = 50%.
To approximate the optimal choice of Σ’s, let imax = 14. We have to deal with
the following optimisation problem:

Minimize c in terms of Σi’s, limiting u =
15∏

i=3

(1 − Ipi
(Σi, ri)) =

1
2

To solve this optimisation problem, we use Lagrange multipliers to find the
optimal solution. We used the fmincon function in Matlab with the Sequen-
tial Quadratic Programming [19] (SQP) algorithm as the default algorithm to
compute the local minimum. As this algorithm needs a starting point x0 for its
computations, we used the GlobalSearch class which iterates the fmincon function
multiple times using random vectors for x0. Simultaneously, it checks how the
results merge towards the global minimum. One can also use Genetic algorithms
to find the optimal values.

8 Comparison with Aircrack-ng

Figure 5 represents a comparison between Aircrack-ng and our new attack. The
reader can see that our passive attack outperforms Aircrack-ng running in active
mode. This gives significant advantage to the attacker, since for some network
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Fig. 5. Our attacks success probability (both active and passive attacks) with respect
to the number of packets compared to Aircrack-ng in active attack mode.

cards, the driver has to be patched so that the network card can inject packets,
and in some cases such patch is not available at all. Moreover, the active attacks
are detectable by intrusion detection systems. Similarly, passive attacks can be
performed from much large distance. Moreover, the TCP/IPv4 packets can be
captured with much higher rate than ARP packets. As a rule of thumb, in a high
traffic network, (for instance the user is downloading a movie), if we consider
TCP/IPv4 packets with maximum size around 1500 bytes, in a 20 Mbit/sec
wireless network, it takes almost 10 s to capture 22 500 packets. This amount is
already enough to find a key with our improved Aircrack-ng in less than 5 s.

9 Challenges and Open Problems

WEP key recovery process is harder in practice than in theory. This is because
the biases in RC4 are not independent, and several bytes of the keystream
are unknown in ARP and TCP/IP packets. Therefore, the theoretical analy-
sis is more complex if the dependencies are considered. Also, some bytes of the
keystream have to be guessed, and the proportion of TCP/IP packets to ARP
packets is distinct for every network and attack (passive vs. active). The a priori
probability of guessing those bytes correctly can not be precisely determined,
and we had to leverage some heuristics to deal with this problem; Since this
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proportion also depends on the traffic itself, finding the Σ which is optimised for
every network is not feasible. We leveraged some heuristics to set the Σ to obtain
a high success rate in practice. Moreover, the Aircrack-ng is not an interactive
software. The interaction with the user may allow to tweak the Σ and/or wait
for more packets to capture. This trade-off should also be considered in real life
applications.

The Algorithm 2 is recursive. This recursion is very expensive in practice,
since with a wrong guess on a key byte, all the subsequent key bytes with higher
indices are recovered incorrectly (in theory), so we need to recompute the vote for
each of them again. In practice, we observed that a wrong guess of a key byte does
not influence the next key bytes recovery significantly. For instance, even with
a wrong guess on K̄[3], in many cases, we could still recover all the subsequent
bytes correctly. This is because a wrong guess for K̄[3] mandates only 16 wrong
swaps out of 256 iterations of the KSA. A further improvement to our work can
be to adjust our theory to consider such cases. Hence, in our implementation,
we perform a recursive attack to only find the best key candidate, and if it turns
out to be a wrong key, we then use the pre-computed voted list to perform an
exhaustive search, with no re-voting.

Conclusion

In this paper, we gave a precise theoretical background to improve the state of the
art attacks on WEP. As an empirical proof, we updated Aircrack-ng and showed
that our attack significantly outperforms the previous versions in all scenarios.
We modified the algorithm according to the theoretical results, removed the
ad-hoc constants which were initially found empirically in previous papers and
implementations. We gave a theoretical background for all constants which affect
the performance of the new Aircrack-ng. This result shows the significance of
theoretical analysis in practical scenarios, and allows the attacker to break WEP
even on constrained devices. As a result, the best attack to date requires 22 500
packets for the success probability of 50% to break WEP.

Note. The imprecision of distributions and variances also affect our analysis
reported for WPA in [26]. But, we recomputed all numerical values with the
precise theoretical formulas and observed only a negligible overheard compared
to the derived complexity in [26].

Acknowledgment. We would like to sincerely thank Dr. Erik Tews for giving very
helpful comments on Aicrack-ng implementation.
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A IEEE 802.11 Data Frames Encapsulating ARP and
TCP/IPv4 Protocols

ARP Packet

0xAA DSAP

0xAA SSAP

0x03 CTRL

0x00
0x00 ORG Code

0x00

0x08 ARP

0x06

0x00 Ethernet

0x01

0x08 IP

0x00

0x06 Hardware size

0x04 Protocol

0x00 Opcode Request/Reply

0x??

0x?? MAC addr src

0x??
0x??
0x??
0x??
0x??

0x?? IP src

0x??
0x??
0x??

0x?? MAC addr dst

0x??
0x??
0x??
0x??
0x??

TCP/IPv4Packet

0xAA DSAP

0xAA SSAP

0x03 CTRL

0x00
0x00 ORG Code

0x00

0x08 IP

0x00

0x45 IP Version + Header length

0x00 Type of Service

0x?? Packet length

0x??

0x?? IP ID RFC815

0x??

0x40 Fragment type and offset

0x??

0x?? TTL

0x06 TCP type

0x?? Header checksum

0x??

0x?? IP src

0x??
0x??
0x??

0x?? IP dst

0x??
0x??
0x??

0x?? Port src

0x??

0x?? Port dst

0x??

Fig. 6. The plaintext bytes of the 802.11 data frames encapsulating ARP and
TCP/IPv4 protocols [31,34]. The values in white are almost fixed or can be com-
puted dynamically. The values in light Grey can be guessed. The values in dark Grey
are not predictable. Often one of Port src or Port dest can be guessed, but not both.
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B Computation of Biases

Table 1. The biases for RC4, exploitable against WEP and WPA

row reference f̄ ḡ p

i Klein − Improved S−1
t [−zi + i] − σi(t) (i − zi) ≥→ {St[t + 1], . . . , St[i − 1]} PKI(i, t)

i ≥= 1 MP − Improved zi+1 − σi(t) i ≥= 1, zi+1 ≤ i, ∈0 √ i∼ √ t : ji⊥ ≥= zi+1 PMPI(i, t)

i A u15 2 − σi(t) St[i] = 0, z2 = 0 P 1
fixed−j

i A s13 S−1
t [0] − σi(t) St[1] = i, (S−1

t [0] < t + 1 or S−1
t [0] >

i − 1), z1 = i
Kor21

i A u13 1 S−1
t [z1] − σi(t) St[1] = i, (S−1

t [z1] < t+1 or S−1
t [z1] >

i − 1), z1 = 1 − i
Kor21

i A u13 2 1 − σi(t) St[i] = i, St[1] = 0, z1 = i P 3
fixed−j

i A u13 3 1 − σi(t) St[i] = i, St[1] = 1 − i, z1 = 1 − i P 3
fixed−j

i A s5 1 S−1
t [z1] − σi(t) St[1] < t + 1, St[1] + St[St[1]] = i,

z1 ≥= {St[1], St[St[1]]}, (S−1
t [z1] < t +

1 or S−1
t [z1] > i − 1)

Kor32

i A s5 2 S−1
t [St[1] − St[2]] − σi(t) St[2] + St[1] = i, S−1

t [St[1] − St[2]] ≥=
{1, 2}, (S−1

t [St[1] − St[2]] < t +
1 or S−1

t [St[1] − St[2]] > i − 1), z2 =
St[1]

Kor32

i A s5 3 S−1
t [z2] − σi(t) St[2] + St[1] = i, S−1

t [z2] ≥= {1, 2},
(S−1

t [z2] < t + 1 or S−1
t [z2] > i − 1),

z2 = 2 − St[2]

Kor32

i A u5 1 S−1
t [S−1

t [z1] − i] − σi(t) St[1] = i, S−1
t [z1] < t+1, S−1

t [S−1
t [z1]−

i] ≥= 1, (S−1
t [S−1

t [z1] − i] < t +
1 or S−1

t [S−1
t [z1] − i] > i − 1), z1 ≥=

{i, 1 − i, S−1
t [z1] − i}, S−1

t [z1] ≥= 2i

Kor32

i A u5 2 1 − σi(t) St[i] = 1, z1 = St[2] P 2
fixed−j

i A u5 3 1 − σi(t) St[i] = i, S−1
t [z1] ≥= 1, S−1

t [z1] < t + 1,
z1 = St[St[1] + i]

P 5
fixed−j

i A s3 S−1
t [z2] − σi(t) St[1] ≥= 2, St[2] ≥= 0, St[2]+St[1] < t+1,

St[2] + St[St[2] + St[1]] = i, S−1
t [z2] ≥=

{1, 2, St[1] + St[2]}, St[1] + St[2] ≥=
{1, 2}, (S−1

t [z2] < t + 1 or S−1
t [z2] >

i − 1)

Kor43

4 A 4 s13 S−1
t [0] − σ4(t) St[1] = 2, St[4] ≥= 0, (S−1

t [0] < t +
1 or S−1

t [0] > i − 1), z2 = 0
P 4

fixed−j

4 A 4 u5 1 S−1
t [N − 2] − σ4(t) St[1] = 2, z2 ≥= 0, z2 = St[0], z2 ≥= N −

2, (S−1
t [N − 2] < t+1 or S−1

t [N − 2] >
3)

Kor32

4 A 4 u5 2 S−1
t [N − 1] − σ4(t) St[1] = 2, z2 ≥= 0, (S−1

t [N − 1] < t +
1 or S−1

t [N − 1] > 3), z2 = St[2]
Kor32

i A neg 1 1 − σi(t) or 2 − σi(t) St[2] = 0, St[1] = 2, z1 = 2 Pneg(i, t)

i A neg 2 2 − σi(t) St[2] = 0, St[1] ≥= 2, z2 = 0 Pneg(i, t)

i A neg 3 1 − σi(t) or 2 − σi(t) St[1] = 1, z1 = St[2] Pneg(i, t)

i A neg 4 −σi(t) or 1 − σi(t) St[1] = 0, St[0] = 1, z1 = 1 Pneg(i, t)

16 SVV 10 S−1
t [0] − σ16(t) S−1

t [0] < t + 1 or S−1
t [0] > 15, z16 =

−16, j2 /→ {t + 1, . . . , 15}
PSVV10(t)
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PKI(i, t) = PJ √ P0 √ P 1
A(i, t) √ PB(i, t)

PMPI(i, t) = PD(i) √ PB(i, t)
Korbc(i, t) = Rb

c(i, t) √ PB(i, t)
Pneg(i, t) =

⎝
1−PB(i,t)

N−1

⎞

PSVV10(t) = Pdb2 √ P 1
A(16, t) √ PB(16, t)

P 1
fixed−j = C(i, t).

[
1
2
P 1

A(i, t)
(

N−1
N

)N−i
+ 1

N

(
1 − P 1

A(i, t)
(

N−1
N

)N−i
)]

+Pneg(i, t)

P 2
fixed−j =

[
1
ξ
P 2

A(i, t)
(

N
N−1

)t−2 (
N−2

N

)N−1−i
+
(
1 − P 2

A(i, t)
(

N−2
N

)N−i−1
)]

.

(
1
N

)
C(i, t) + Pneg(i, t)

P 3
fixed−j =

[(
N−1

N

)t+1 (N−2
N

)N−1−i
. P 2

A(i, t) + 1
N

(
1 − P 2

A(i, t)
(

N−2
N

)N−i−1
)]

.

C(i, t) + Pneg(i, t)

P 4
fixed−j =

[
1
2

(
N−1

N

)t+1 (N−2
N

)N−1−i
. P 2

A(i, t) + 1
N

(
1 − P 2

A(i, t)
(

N−2
N

)N−i−1
)]

.

C(i, t) + Pneg(i, t)

P 5
fixed−j =

[
( N−1

N )t+1( t
N )( N−3

N )N−1−i

(1− 1
N )( N−1

N )t+1( t
N )+ 1

N

. P 3
A(i, t) + 1

N

(
1 − P 3

A(i, t)
(

N−3
N

)N−i−1
)]

.

C(i, t) + Pneg(i, t)

where PJ = 2
N , P0 =

⎥
N−1

N

⎦N−2
, Pdb2 = 9.444

N ,

ξ = 1
N

[⎥
N−1

N

⎦N ⎥
1 − 1

N + 1
N2

⎦
+ 1

N2 + 1
]
.

C(i, t) =
⎝

NPB(i,t)−1
N−1

⎞

P b
A(i, t) =

⎥
N−b

N

⎦i−t−1

PB(i, t) =
∏i−t−1

k=0

⎥
N−k

N

⎦
+ 1

N

⎝
1 − ∏i−t−1

k=0

⎥
N−k

N

⎦⎞

PD(i) = (N−i−1)(N−i)
N3

⎥
N−2

N

⎦N−3+i ⎥
N−1

N

⎦3

Rb
c(i, t) = rc(i)P b

A(i, t) + 1
N (1 − rc(i)P b

A(i, t))

r1(i) =
⎥

N−2
N

⎦N−i−1

r2(i) =
⎥

N−3
N

⎦N−i−1

r3(i) =
⎥

N−4
N

⎦N−i−1
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Abstract. This paper investigates the practical security of RC4 in broad-
cast setting where the same plaintext is encrypted with different user
keys. We introduce several new biases in the initial (1st to 257th) bytes of
the RC4 keystream, which are substantially stronger than known biases.
Combining the new biases with the known ones, a cumulative list of
strong biases in the first 257 bytes of the RC4 keystream is constructed.
We demonstrate a plaintext recovery attack using our strong bias set of
initial bytes by the means of a computer experiment. Almost all of the
first 257 bytes of the plaintext can be recovered, with probability more
than 0.8, using only 232 ciphertexts encrypted by randomly-chosen keys.
We also propose an efficient method to extract later bytes of the plain-
text, after the 258th byte. The proposed method exploits our bias set of
first 257 bytes in conjunction with the digraph repetition bias proposed
by Mantin in EUROCRYPT 2005, and sequentially recovers the later
bytes of the plaintext after recovering the first 257 bytes. Once the pos-
sible candidates for the first 257 bytes are obtained by our bias set, the
later bytes can be recovered from about 234 ciphertexts with probability
close to 1.

Keywords: RC4 · Broadcast setting · Plaintext recovery attack · Bias ·
Experimentally-verified attack · SSL/TLS · Multi-session setting

1 Introduction

RC4, designed by Rivest in 1987, is one of most widely used stream ciphers in
the world. It is adopted in many software applications and standard protocols
such as SSL/TLS, WEP, Microsoft Lotus and Oracle secure SQL. RC4 consists
of a key scheduling algorithm (KSA) and a pseudo-random generation algorithm
(PRGA). The KSA converts a user-provided variable-length key (typically, 5–32
bytes) into an initial state S consisting of a permutation of {0, 1, 2, . . . , N − 1},
where N is typically 256. The PRGA generates a keystream Z1, Z2, . . ., Zr,
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. . . from S, where r is a round number of the PRGA. Zr is XOR-ed with the
r-th plaintext byte Pr to obtain the ciphertext byte Cr. The algorithm of RC4
is shown in Algorithm 1, where + denotes arithmetic addition modulo N , Δ is
the key length, and i and j are used to point to the locations of S, respectively.
Then, S[x] denotes the value of S indexed x.

After the disclosure of its algorithm in 1994, RC4 has attracted intensive
cryptanalytic efforts over past 20 years. Distinguishing attacks, which attempt
to distinguish an RC4 keystream from a random stream, were proposed in [3,
4,8,10,11,14,16]. State recovery attack, which recovers a full state instead of
the user-provided key, was shown by Knudsen et al. [7], and it was improved
by Maximov and Khovratovich [13]. Other types of attacks are also proposed,
e.g., key collision attack [12], keystream predictive attack [10] and key recovery
attacks from a state [1,15].

In FSE 2001, Mantin and Shamir presented an attack on RC4 in the broad-
cast setting where the same plaintext is encrypted with different user keys [11].
The Mantin-Shamir attack can extract the second byte of the plaintext from only
γ(N) ciphertexts encrypted with randomly-chosen different keys by exploiting
a bias of Z2. Specifically, the event Z2 = 0 occurs with twice the expected prob-
ability of a random one. In FSE 2011, Maitra, Paul and Sen Gupta showed that
Z3, Z4, . . . , Z255 are also biased to 0 [8]. Then the bytes 3 to 255 can also be
recovered in the broadcast setting, from γ(N3) ciphertexts.

Although the broadcast attacks were theoretically estimated, we find that
three questions are still open in terms of a practical security of broadcast RC4.

1. Are the biases exploited in the previous attacks the strongest biases for the
initial bytes 1 to 255?

2. While the previous results [8,11] estimate only lower bounds (γ), how many
ciphertexts encrypted with different keys are actually required for a practical
attack on broadcast RC4?

3. Is it possible to efficiently recover the later bytes of the plaintext, after byte
256?

Algorithm 1. RC4 Algorithm
KSA(K[0 . . . Δ − 1]):

for i = 0 to N − 1 do
S[i] ⊕ i

end for
j ⊕ 0
for i = 0 to N − 1 do

j ⊕ j + S[i] + K[i mod Δ]
Swap S[i] and S[j]

end for

PRGA(K):

i ⊕ 0
j ⊕ 0
S ⊕ KSA(K)
loop

i ⊕ i + 1
j ⊕ j + S[i]
Swap S[i] and S[j]
Output Z ⊕ S[S[i] + S[j]]

end loop
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1.1 Our Contribution

In this paper, we provide answers to all the aforesaid questions. To begin with,
we introduce a new bias regarding Z1, which is a conditional bias such that
Z1 is biased to 0 when Z2 is 0. Using this bias in conjunction with the bias of
Z2 = 0 [11], the first byte of a plaintext is extracted from γ(N2) ciphertexts
encrypted with different keys. Although the strong bias of the first byte, which is
a negative bias towards zero, has already been pointed out in [6,14], it requires
γ(N3) ciphertexts to extract the first byte of the plaintext. Thus, the new
conditional bias observed by us is very useful, because the number of required
ciphertexts to recover the first byte reduces by a factor of N/2 compared the
straightforward method. Besides, we introduce new strong biases, i.e., Z3 = 131,
Zr = r for 3 ⊕ r ⊕ 255, and extended keylength-dependent biases such that
Zx·Δ = −x·Δ for x = 2, 3, . . . , 7 and Δ = 16, which are extensions of the keylength-
dependent biases in which only the parameter of x = 1 is considered [5]. These
new biases are substantially stronger than known biases of Zr = 0 in case of
certain bytes within Z3, Z4, . . . , Z255. After providing theoretical considerations
for these biases, we experimentally confirm the validity of the same. Combining
the new biases with known biases, we construct a cumulative list of strongest
known biases in Z1, Z2, . . . , Z255. At the same time, we experimentally show two
new biases of Z256 and Z257, and add these to our bias set. Note that biases of
Z2, Z3, . . . , Z257 included in our bias set are strongest biases amongst all single
positive and negative biases of each byte when a 16-byte (128-bit) key is used.

We demonstrate a plaintext recovery attack using our bias set by the com-
puter experiment, and estimate the number of required ciphertexts and success
probability when N = 256. Almost all first 257 bytes, P1, P2, . . . , P257, can be
extracted with probability more than 0.8 from 232 ciphertexts encrypted by
randomly-chosen keys. Given 234 ciphertexts, all bytes of P1, P2, . . . , P257 can be
narrowed down to two candidates each with probability one. This is a first prac-
tical security evaluation of broadcast RC4 using all known biases of the cipher,
and some new ones that we observe.

Finally, an efficient method to extract later bytes of the plaintext, namely
bytes after P258, is given. It exploits our bias set of Z1, Z2, . . . , Z257 in con-
junction with the digraph repetition bias proposed by Mantin [10], and then
sequentially recovers bytes of the plaintext. Once the possible candidates for
P1, P2, . . . , P257 are obtained by our bias set, Pr (r ∃ 258) are recovered from
about 234 ciphertexts with probability one. Since the digraph repetition bias is
a long-term bias, which occurs in any keystream byte, our sequential method is
expected to recover any plaintext byte from only ciphertexts produced by differ-
ent randomly-chosen keys. We show that the first 250 bytes → 1000 T bytes of
the plaintext can be recovered from 234 ciphertexts with probability of 0.97170.

Also, the broadcast setting is converted into the multi-session setting of
SSL/TLS where the target plaintext block are repeatedly sent in the same posi-
tion in the plaintexts in multiple sessions.
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2 Known Attacks on Broadcast RC4

This section briefly reviews known attacks on RC4 in the broadcast setting where
the same plaintext is encrypted with different randomly-chosen keys.

2.1 Mantin-Shamir (MS) Attack

Mantin and Shamir first presented a broadcast RC4 attack exploiting a bias of
Z2 [11].

Theorem 1 [11]. Assume that the initial permutation S is randomly chosen
from the set of all the possible permutations of {0, 1, 2, . . . , N − 1}. Then the
probability that the second output byte of RC4 is 0 is approximately 2

N .

This probability is estimated as 2
256 when N = 256. Based on this bias, the

broadcast RC4 attack is demonstrated by Theorems 2 and 3.

Theorem 2 [11]. Let X and Y be two distributions, and suppose that the event
e happens in X with probability p and in Y with probability p · (1 + q). Then for
small p and q, O( 1

p·q2 ) samples suffice to distinguish X from Y with a constant
probability of success.

In this case, p and q are given as p = 1/N and q = 1. The number of samples is
about N .

Theorem 3 [11]. Let P be a plaintext, and let C(1), C(2), . . . , C(k) be the RC4
encryptions of P under k uniformly distributed keys. Then, if k = γ(N), the
second byte of P can be reliably extracted from C(1), C(2), . . . , C(k).

According to the relation C
(i)
2 = P

(i)
2 √ Z

(i)
2 , if Z

(i)
2 = 0 holds, then C

(i)
2 is same

as P
(i)
2 . From Theorem 1, Z2 = 0 occurs with twice the expected probability of

a random one. Thus, most frequent byte in amongst C
(1)
2 , C

(2)
2 , . . . , C

(k)
2 is likely

to be P2 itself. When N = 256, it requires more than 28 ciphertexts encrypted
with randomly-chosen keys.

2.2 Maitra, Paul and Sen Gupta (MPS) Attack

Maitra, Paul and Sen Gupta showed that Z3, Z4, . . . , Z255 are also biased to
0 [6,8]. Although the MS attack assumes that an initial permutation S is random,
the MPS attack exploits biases of S after the KSA [9]. Let Sr[x] be the value of
S indexed x after r round, where S0 is the initial state of RC4 after the KSA.
Biases of the initial state of the PRGA are given as follow.

Proposition 1 [9]. After the end of KSA, for 0 ⊕ u ⊕ N − 1, 0 ⊕ v ⊕ N − 1,



Full Plaintext Recovery Attack on Broadcast RC4 183

Pr(S0[u] = v) =

{
1
N · (

(N−1
N )v + (1 − (N−1

N )v) · (N−1
N )N−u−1

)
(v ⊕ u),

1
N · (

(N−1
N )N−u−1 + (N−1

N )v
)

(v > u).

The probability of Sr−1[r] in the PRGA are given as the follows.

Theorem 4 [6]1. For 3 ⊕ r ⊕ N − 1, the probability Pr(Sr−1[r] = v) is approx-
imately

Pr(S1[r] = v) ·
(

1 − 1

N

)r−2

+

r−1∑
t=2

r−t∑
w=0

Pr(S1[t] = v)

w! · N
·
(

r − t − 1

N

)w

·
(

1 − 1

N

)r−3−w

,

where Pr(S1[t] = v) is given as

Pr(S1[t] = v) =

⎧
⎪⎪⎪⎛
⎪⎪⎪⎝

Pr(S0[1] = 1) +
⎞

X ∈=1 Pr(S0[1] = X √ S0[X] = 1) (t = 1, v = 1),⎞
X ∈=1,v Pr(S0[1] = X √ S0[X] = v) (t = 1, v ≥= 1),

Pr(S0[1] = t) +
⎞

X ∈=t Pr(S0[1] = X √ S0[t] = t) (t ≥= 1, v = t),⎞
X ∈=t,v Pr(S0[1] = X √ S0[t] = v) (t ≥= 1, v ≥= t).

Then, the bias of Pr(Zr = 0) is estimated as follows.

Theorem 5 [6]. For 3 ⊕ r ⊕ N − 1, Pr(Zr = 0) is approximately

Pr(Zr = 0) → 1
N

+
cr

N2
,

where cr is given as

cr =
{ N

N−1 · (N · Pr(Sr−1[r] = r) − 1) − N−2
N−1 (r = 3),

N
N−1 · (N · Pr(Sr−1[r] = r) − 1) (r �= 3).

Since the parameters of p and q are given as p = 1/N and q = cr/N , The number
of required ciphertexts with different keys for the extraction of P3, P4, . . . , P255

is roughly estimated as γ(N3).

3 New Biases : Theory and Experiment

This section introduces four new biases in the keystream of RC4. To begin with,
we prove a conditional bias of Z1 towards 0 when Z2 = 0. After that, we present
new biases in the events, Z3 = 131, Zr = r, and extended keylength-dependent
biases, which are substantially stronger than the known biases such as Zr = 0.
Then, we construct a cumulative list of strong biases in Z1, Z2, . . . , Z257 to mount
an efficient plaintext recovery attack on broadcast RC4.
1 The theorems with respect to Zr = 0 in [8] and [6] are slightly different. This paper

uses the results from the full version [6].
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3.1 Bias of Z1 = 0|Z2 = 0

A new conditional bias such that Z1 is biased to 0 when Z2 = 0 is given as
Theorem 6.

Theorem 6. Pr(Z1 = 0|Z2 = 0) is approximately

Pr(Z1 = 0|Z2 = 0) → 1
2

·
(
Pr(S0[1] = 1) + (1 − Pr(S0[1] = 1)) · 1

N

)
+

1
2

· 1
N

.

Proof. Two cases of S0[2] = 0 and S0[2] �= 0 are considered. As mentioned in
[11], when Z2 is 0, S0[2] is also 0 with probability of 1

2 .

– S0[2] = 0
For i = 1, if S0[1] is 1, the index j is updated as j = S0[i] = S0[1] = 1. Then
the first output byte Z1 is expressed as follows (see Fig. 1),

Z1 = S1[S1[i] + S1[j]] = S1[S1[1] + S1[1]] = S1[2] = S0[2] = 0.

Assuming that Z1 = 0 holds with probability of 1
N when S0[1] �= 1, the

probability of Pr(Z1 = 0|S0[2] = 0) is estimated as

Pr(Z1 = 0|S0[2] = 0) = Pr(S0[1] = 1) + (1 − Pr(S0[1] = 1)) · 1
N

.

– S0[2] �= 0
Suppose that the event of Z1 = 0 occurs with probability of 1

N . Then Pr(Z1 =
0|S0[2] = 0) is estimated as

Pr(Z1 = 0|S0[2] �= 0) =
1
N

.

Therefore Pr(Z1 = 0|Z2 = 0) is approximately

Pr(Z1 = 0|Z2 = 0) = Pr(Z1 = 0|S0[2] = 0) · Pr(S0[2] = 0|Z2 = 0)
+Pr(Z1 = 0|S0[2] �= 0) · Pr(S0[2] �= 0|Z2 = 0)

→ 1
2

·
(
Pr(S0[1] = 1) + (1 − Pr(S0[1] = 1)) · 1

N

)
+

1
2

· 1
N

.

⇒∈
When N = 256, Pr(S0[1] = 1) is obtained by Proposition 1.

Pr(S0[1] = 1) =
1

256
·
((

1
256

)
+

(
1 −

(
1

256

))
·
(

1
256

)254
)

= 0.0038966.

Then, Pr(Z1 = 0|Z2 = 0) is computed as

Pr(Z1 = 0|Z2 = 0) =
1
2

·
(

Pr(S0[1] = 1) + (1 − Pr(S0[1] = 1)) · 1
256

)
+

1
2

· 1
256

= 0.0058470 = 2−7.418 = 2−8 · (1 + 2−1.009).
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Since the experimental value of Pr(Z1 = 0|Z2 = 0) for 240 randomly-chosen
keys is obtained as 0.0058109 = 2−8 · (1 + 2−1.036), the theoretical value is
correctly approximated.

From this bias, Pr(Z1 = 0 ≈ Z2 = 0) can also be estimated, as follows.

Pr(Z1 = 0 ≈ Z2 = 0) = Pr(Z2 = 0) · Pr(Z1 = 0|Z2 = 0).

When N = 256, it is estimated as

Pr(Z1 = 0 ≈ Z2 = 0) =
2

256
· 2−7.418 = 2−14.418 = 2−16 · (1 + 20.996).

This type of bias, called digraph bias, was proved as a long term bias by Fluhrer
and McGrew [3]. However, such a strong bias in initial bytes was not reported.
Specifically, the probability of the general long-term digraph bias is estimated as
2−16 · (1 + 2−8) in [3] when N = 256, while that of our bias is 2−16 · (1 + 20.996).
Thus our result reveals that the digraph bias in initial bytes is much stronger
than what is estimated in [3].

Note that we searched for the similar form of conditional biases in first 256
bytes of the RC4 keystream. In particular, we check following specific patterns,
(Zr−a = X|Zr = Y ) for 0 ⊕ X, Y ⊕ 255, 2 ⊕ r ⊕ 256, 1 ⊕ a ⊕ 8. However, such
a strong bias could not be found in our experiment, while all conditional biases
are not covered.

Application to Broadcast RC4 attack. Using this new conditional bias of
Z1 = 0|Z2 = 0 in conjunction with the bias of Z2 = 0 [11], the first byte of the
plaintext can be efficiently extracted, where N = 256. After 217 ciphertexts with
randomly-chosen keys are collected, following procedures are performed.

Step 1. Extract the second byte of the target plaintext, P2, from 28 cipher-
texts [11].

Step 2. Find the ciphertext in which Z2 = 0 is XOR-ed by the computation
of C2 √ P2. Then, 210 = 217 · 2/256 ciphertexts matching this criterion are
expected to be obtained.

Step 3. Regard the most frequent byte in the first byte C1 of these matching
210 ciphertexts as P1.

In Step 3, using the bias of Pr(Z1 = 0|Z2 = 0) = 2−8 · (1 + 2−1.009), P1 is
extracted from remaining 210(∪ 1

2−8·(2−1.009)2 ) ciphertexts by Theorems 2 and 3,
assuming the relation of C1 = P1 √Z1 = P1 holds. Although the bias of the first
byte has already been pointed out in [6,14], it requires 224 ciphertexts to extract
the first byte using the known biases, because the probability of the strongest
bias, which is a negative bias of Z1 towards 0, is estimated as about 2−8 ·(1−2−8)
[6]. Thus, the new conditional bias identified by us is very efficient, because the
number of required ciphertexts reduces by a factor close to N/2 compared to
that of the straightforward method.
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Fig. 1. Event for bias of Z1 = 0|Z2 = 0
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= S3[131 + 128]
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i = 1
j = S0[1] = 131

i = 2
j = 131 + S1[2]
  = 131 + 128 = 3

i = 3
j = 3 + S2[3]
  = 3 + 128 = 131

Fig. 2. Event for bias of Z3 = 131

3.2 Bias of Z3 = 131

A new bias of Z3 = 131, which is stronger than Z3 = 0 [6,8], is given as
Theorem 7.

Theorem 7. Pr(Z3 = 131) is approximately

Pr(Z3 = 131) → Pr(S0[1] = 131) · Pr(S0[2] = 128) +
(1 − Pr(S0[1] = 131) · Pr(S0[2] = 128)) · 1/N.

Proof. Suppose the events S0[1] = 131 and S0[2] = 128 occur after the KSA. For
i = 1, j is updated as S0[1] = 131. After S0[1] and S0[131] are swapped, S1[131]
becomes 131. For i = 2, j is updated as 131+S1[2] = 131+S0[2] = 131+128 = 3,
and S1[2] and S1[3] are swapped. Then S2[3] = 128 is obtained. Finally, for
i = 3, j is updated as 3 + S2[3] = 3 + 128 = 131. After S2[3] and S2[131] are
swapped, S3[3] = 131 and S3[131] = 128 holds. Then, a third output byte Z3 is
Z3 = S3[S3[3] + S3[131]] = S3[131 + 128] = S3[3] = 131. Thus, when S0[1] = 131
and S0[2] = 128 hold, Z3 = 131 holds with probability one. Figure 2 depicts this
event.

Assuming that in other cases, that is when S0[1] �= 131 or S0[2] �= 128, the
event Z3 = 131 holds with probability of 1/N , the probability of Pr(Z3 = 131)
is estimated as

Pr(Z3 = 131) → Pr(S0[1] = 131) · Pr(S0[2] = 128) +
(1 − Pr(S0[1] = 131) · Pr(S0[2] = 128)) · 1/N. ⇒∈

When N = 256, by Proposition 1, Pr(S0[1] = 131) and Pr(S0[2] = 128) are
estimated as

Pr(S0[1] = 131) =
1

256
·
((

255
256

)256−1−1

+
(

255
256

)131
)

= 0.0037848,

Pr(S0[2] = 128) =
1

256
·
((

255
256

)256−2−1

+
(

255
256

)128
)

= 0.0038181.
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Thus, Pr(Zr = 131) is computed as

Pr(Z3 = 131) → 0.0039206 = 2−8 · (1 + 2−8.089).

Since experimental value of this bias for 240 randomly-chosen keys is obtained as
0.0039204 = 2−8 · (1 + 2−8.109), the theoretical value is correctly approximated.

Let us compare it to the bias of Z3 = 0 of the MPS attack [6,8]. The exper-
imental value for 240 randomly-chosen keys is obtained as

Pr(Z3 = 0) = 0.0039116 = 2−8 · (1 + 2−9.512).

Thus, the bias of Z3 = 131 is stronger than that of Z3 = 0.
We should utilize Z3 = 131 instead of Z3 = 0 for the efficient plaintext

recovery attack. When Z3 = 131 and Z3 = 0 are jointly used, two candidates
of P3 remain. Thus, in order to detect one correct value of P3, the only use of
Z3 = 131 is more efficient.

3.3 Bias of Zr = r for 3 ≤ r ≤ N − 1

We also present a new bias in the event Zr = r for 3 ⊕ r ⊕ N − 1, whose
probabilities are very close to those of Zr = 0 [8], and the new biases are stronger
than those of Zr = 0 in some rounds. Thus, for an efficient attack, we need to
carefully consider which biases are stronger in each round. The probability of
Zr = r is given as Theorem 8.

Theorem 8. Pr(Zr = r) for 3 ⊕ r ⊕ N − 1 is approximately

Pr(Zr = r) → pr−1,0 · 1
N

+ pr−1,r · 1
N

· N − 2
N

+

(1 − pr−1,0 · 1
N

− pr−1,r · 1
N

− (1 − pr−1,0) · 1
N

· 2) · 1
N

,

where pr−1,0 = Pr(Sr−1[r] = 0) and pr−1,r = Pr(Sr−1[r] = r).

Proof. Let ir and jr be r-th i and j, respectively. For ir = r, an output Zr is
expressed as

Zr = Sr[Sr[ir] + Sr[jr]] = Sr[Sr[r] + Sr−1[r]].

Then, let us consider four independent cases.

Case 1 : Sr−1[r] = 0 ≈ Sr[r] = r
Case 2 : Sr−1[r] = r ≈ Sr[r] = jr − r ≈ jr �= r, r + r
Case 3 : Sr−1[r] �= 0 ≈ Sr[r] = r − Sr−1[r]
Case 4 : Sr−1[r] �= 0 ≈ Sr[r] = r

In Case 1 and Case 2, the output is always Zr = r. On the other hand, in Case
3 and Case 4, the output is not Zr = r.
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Case 1 : Sr−1[r] = 0 ≈ Sr[r] = r
The output is expressed as Zr = Sr[Sr[r] + Sr−1[r]] = Sr[r + 0] = Sr[r] = r (see
Fig. 3). Then, the probability of Zr = r is one. Here Sr[r] is chosen by pointer
j. Since jr for r ∃ 3 behaves randomly [8], Sr[r] is assumed to be uniformly
random. it is estimated as

Pr(Sr−1[r] = 0 ≈ Sr[r] = r) = pr−1,0 · 1
N

.

Case 2 : Sr−1[r] = r ≈ Sr[r] = jr − r ≈ jr �= r, r + r
The output is expressed as Zr = Sr[Sr[r] + Sr−1[r]] = Sr[jr − r + r] = Sr[jr] =
Sr−1[r] = r (see Fig. 4). Then, the probability of Zr = r is one. Similar to Case
1, Sr[r] is assumed to be uniformly random.

When jr = r, the probability of Zr = r is zero because of the relation of
Zr = Sr[Sr[r] + Sr−1[r]] = Sr[0 + r] = Sr[r] = 0. Also, when jr = r + r, since
Sr[r] = r and Zr = Sr[Sr[r] +Sr−1[r]] = Sr[r + r] �= r, the probability of Zr = r
is zero. Thus, the conditions of jr �= r, r + r are necessary for Zr = r. Then, it
is estimated as

Pr(Sr−1[r] = r ≈ Sr[r] = jr − r ≈ jr �= r, r + r) = pr−1,r · 1
N

· N − 2
N

.

Case 3 : Sr−1[r] �= 0 ≈ Sr[r] = r − Sr−1[r]
The equation of Zr = Sr[r − Sr−1[r] + Sr−1[r]] = Sr[r] holds. Then, Sr[r] =
r − Sr−1[r] is not r, because Sr−1[r] is not 0. Thus, it is estimated as

Pr(Sr−1[r] �= 0 ≈ Sr[r] = r − Sr−1[r]) = (1 − pr−1,0) · 1
N

.

Case 4 : Sr−1[r] �= 0 ≈ Sr[r] = r
The output is expressed as Zr = Sr[r + Sr−1[r]]. According to the equation of
Sr−1[r] �= 0, The probability of Zr = r is zero. Thus, it is estimated as

Pr(Sr−1[r] �= (0, r) ≈ Sr[r] = r − Sr−1[r]) = (1 − pr−1,0) · 1
N

.

Assuming that in other cases, Zr = r holds with probability of 1/N , the
probability of Pr(Zr = r) is estimated as

Pr(Zr = r) → pr−1,0 · 1
N

+ pr−1,r · 1
N

· N − 2
N

+

(1 − pr−1,0 · 1
N

− pr−1,r · 1
N

− (1 − pr−1,0) · 1
N

· 2) · 1
N

.

⇒∈
Here, pr−1,r and pr−1,0 are obtained from Theorem 4. Figure 5 shows the com-

parison of theoretical values and experimental values of Zr = r for 240 randomly-
chosen keys when N = 256. Since the theoretical values do not exactly coincide
with the experimental values, we do not claim that Theorem 8 completely prove
this bias. We guess that several minor events are not covered in our approach.
However, the order of the bias seems to be well matched. At least it can be said
that the main event causing this bias is discovered.
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3.4 Extended Keylength-Dependent Biases

Extended keylength-dependent biases, which are extensions of keylength-
dependent biases [5,17], are the bias of ZΔ = −Δ when the key length is Δ bytes.
For example, when using a 128-bit key (16 bytes), Z16 is biased to −16 (= 240).
In addition to it, we show that when the key length is Δ bytes, Zx·Δ is also
biased to −x · Δ (x = 2, 3, 4, 5, 6, 7), e.g., Zr = −r for r = 32, 48, 64, 80, 96,
112, assuming Δ = 16. Importantly, the extended keylength-dependent biases are
much stronger than the other known biases such as Zr = 0 and Zr = r. Table 1
shows experimental values of the extended keylength-dependent bias Zr = −r,
Zr = 0, and Zr = r for 240 randomly-chosen keys, when r is a multiple of the
key length, Δ = 16 in this case.

The probability of these biases is given as Theorem 9 (the proof is in Appen-
dix A).

Theorem 9. When r = x · Δ (x = 1, 2, . . . , 7), the probability of Pr(Zr = −r) is
approximately

Pr(Zr = −r) → 1
N2

+
(

1 − 1
N2

)
· αr + (1 − βr) · 1

N
,
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Table 1. Experimental values of Zr = −r, Zr = 0 and Zr = r

r Pr(Zr = −r) Pr(Zr = 0) Pr(Zr = r)

16 2−8 · (1 + 2−4.811) 2−8 · (1 + 2−7.714) 2−8 · (1 + 2−7.762)
32 2−8 · (1 + 2−5.383) 2−8 · (1 + 2−7.880) 2−8 · (1 + 2−7.991)
48 2−8 · (1 + 2−5.938) 2−8 · (1 + 2−8.043) 2−8 · (1 + 2−8.350)
64 2−8 · (1 + 2−6.496) 2−8 · (1 + 2−8.244) 2−8 · (1 + 2−8.664)
80 2−8 · (1 + 2−7.224) 2−8 · (1 + 2−8.407) 2−8 · (1 + 2−9.052)
96 2−8 · (1 + 2−7.911) 2−8 · (1 + 2−8.577) 2−8 · (1 + 2−9.351)
112 2−8 · (1 + 2−8.666) 2−8 · (1 + 2−8.747) 2−8 · (1 + 2−9.732)
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16, 32, 48, 64, 80, 96, 112

where

αr =
1

N2
·
(

1 − r + 1
N

)

·
N−1∑

y=r+1

(
1 − 1

N

)y

·
(

1 − 2
N

)y−r

·
(

1 − 3
N

)N−y+2r−4

,

and βr = Pr(Sr[jr] = 0) = Pr(Sr−1[r] = 0).

Figure 6 shows our experimental values for 240 randomly-chosen keys and
theoretical values of these extended keylength-dependent biases. Since theoreti-
cal and experimental values have almost the same value, theoretical values are
correctly approximated.

3.5 Cumulative Bias Set of First 257 Bytes

When N = 256, a set of strong biases in Z1, Z2, . . . , Z255 is given in Table 2.
Our new biases, namely the ones involving Z1, Z3, Z32, Z48, Z64, Z80, Z96,
Z112, are included. Here, let us compare between the biases of Zr = 0 [6,8] and
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Zr = r, whose probabilities are of the same order, and are very close in the range
3 ⊕ r ⊕ 255. According to our experiments with 240 randomly-chosen keys (see
Fig. 7), Zr = r is stronger than Zr = 0 in Z5, Z6, . . . , Z31. Thus we choose the
bias Zr = r in Z5, Z6, . . . , Z31 and the bias Zr = 0 in the other cases as the
strongest bias except for the cases involving Z3, Z16, Z32, Z48, Z64, Z80, Z96,
Z112. Besides, we experimentally found two new biases for the events Z256 �= 0
and Z257 = 0, and added these to our bias set, while we could not provide
the theoretical proofs. Note that it is experimentally confirmed that biases of
Z2, Z3, . . . , Z257 included in our bias set are strongest known biases amongst all
the positive and negative biases that have been discovered for these bytes.

For the first time, we propose a cumulative list of strongest known biases in
the initial bytes of RC4 that can be exploited in a practical attack against the
broadcast mode of the cipher.

4 Experimental Results of Plaintext Recovery Attack

We demonstrate a plaintext recovery attack using our cumulative bias set of first
257 bytes by a computer experiment, when N = 256, and estimate the number
of required ciphertexts and the probability of success for our attack. The details
of our experiment are as follows.

Step 1. Randomly generate a target plaintext P .
Step 2. Encrypt P with 2x randomly-chosen keys, and obtain 2x ciphertexts

C.
Step 3. Find most frequent byte in each byte, and extract Pr, assuming Pr =

Cr √ Zr where Zr is the value of the keystream byte from our bias set.

In the case of P1, the method mentioned in Sect. 3.1 is used for efficient extraction
of P1. Specifically, after P2 is recovered, we extract P1 by using the conditional
bias such that Z1 = 0 when Z2 = 0.

We perform the above experiment for 256 different plaintexts in the cases
where 26, 27, . . . , 235 ciphertexts with randomly-chosen keys are given. Figure 8
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Table 2. Cumulative bias set of first 257 bytes

r Strongest known bias of Zr Prob.(Theoretical) Prob.(Experimental)

1 Z1 = 0|Z2 = 0 (Our) 2−8 · (1 + 2−1.009) 2−8 · (1 + 2−1.036)
2 Z2 = 0 [11] 2−8 · (1 + 20) 2−8 · (1 + 20.002)
3 Z3 = 131 (Our) 2−8 · (1 + 2−8.089) 2−8 · (1 + 2−8.109)
4 Z4 = 0 [8] 2−8 · (1 + 2−7.581) 2−8 · (1 + 2−7.611)
5–15 Zr = r (Our) max: 2−8 · (1 + 2−7.627) max: 2−8 · (1 + 2−7.335)

min: 2−8 · (1 + 2−7.737) min: 2−8 · (1 + 2−7.535)

16 Z16 = 240 [5] 2−8 · (1 + 2−4.841) 2−8 · (1 + 2−4.811)
17–31 Zr = r (Our) max: 2−8 · (1 + 2−7.759) max: 2−8 · (1 + 2−7.576)

min: 2−8 · (1 + 2−7.912) min: 2−8 · (1 + 2−7.839)
32 Z32 = 224 (Our) 2−8 · (1 + 2−5.404) 2−8 · (1 + 2−5.383)
33–47 Zr = 0 [8] max: 2−8 · (1 + 2−7.897) max: 2−8 · (1 + 2−7.868)

min: 2−8 · (1 + 2−8.050) min: 2−8 · (1 + 2−8.039)
48 Z48 = 208 (Our) 2−8 · (1 + 2−5.981) 2−8 · (1 + 2−5.938)
49–63 Zr = 0 [8] max: 2−8 · (1 + 2−8.072) max: 2−8 · (1 + 2−8.046)

min: 2−8 · (1 + 2−8.224) min: 2−8 · (1 + 2−8.238)
64 Z64 = 192 (Our) 2−8 · (1 + 2−6.576) 2−8 · (1 + 2−6.496)
65–79 Zr = 0 [8] max: 2−8 · (1 + 2−8.246) max: 2−8 · (1 + 2−8.223)

min: 2−8 · (1 + 2−8.398) min: 2−8 · (1 + 2−8.376)
80 Z80 = 176 (Our) 2−8 · (1 + 2−7.192) 2−8 · (1 + 2−7.224)
81–95 Zr = 0 [8] max: 2−8 · (1 + 2−8.420) max: 2−8 · (1 + 2−8.398)

min: 2−8 · (1 + 2−8.571) min: 2−8 · (1 + 2−8.565)
96 Z96 = 160 (Our) 2−8 · (1 + 2−7.831) 2−8 · (1 + 2−7.911)
97–111 Zr = 0 [8] max: 2−8 · (1 + 2−8.592) max: 2−8 · (1 + 2−8.570)

min: 2−8 · (1 + 2−8.741) min: 2−8 · (1 + 2−8.722)
112 Z112 = 144 (Our) 2−8 · (1 + 2−8.500) 2−8 · (1 + 2−8.666)
113–255 Zr = 0 [8] max: 2−8 · (1 + 2−8.763) max: 2−8 · (1 + 2−8.760)

min: 2−8 · (1 + 2−10.052) min: 2−8 · (1 + 2−10.041)
256 Z256 = 0 (negative bias) (Our) N/A 2−8 · (1− 2−9.407)
257 Z257 = 0 (Our) N/A 2−8 · (1 + 2−9.531)

shows the probability of successfully recovering the values of P1, P2, P3, P5, and
P16 for each amount of ciphertexts. Here, the success probability is estimated by
the number of correctly-extracted plaintexts for each byte. For example, if the
target byte of only 100 plaintexts out of 256 plaintexts can be correctly recovered,
the probability is estimated as 0.39 (= 100/256). The second byte of plaintext P2

can be extracted from 212 ciphertexts with probability one. In previous attacks
such as the MS attack [11] and the MPS attack [8], the number of required
ciphertexts is theoretically estimated only in terms of the lower bound γ. Our
results first reveal the concrete number of ciphertexts, and the corresponding
success probability.

Figure 9 shows that the success probability of extracting each byte Pr (1 ⊕
r ⊕ 257) when 224, 228, 232, 235 ciphertexts are given. Note that the probability
of a random guess is 1/256 = 0.00390625. Given 232 ciphertexts, all bytes of
P1, P2, . . . , P257 can be extracted with probability more than 0.5. In addition,
most bytes can be extracted with probability more than 0.8. Also, the bytes
having stronger bias such as P1, P2, P16, P32, P48, P64, are extracted from
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only 224 ciphertexts with high probability. However, even if 235 ciphertexts are
given, the probability does not become one in some bytes. It is guessed that in
such bytes, the difference of probability of the strongest known bias (as in our
cumulative bias set) and the second one is very small. Thus, more ciphertexts
are required for an attack with probability one.

We additionally utilize the second most frequent byte in the ciphertexts for
extracting plaintext bytes. In other words, two candidates are obtained by using
the relation of Pr = Cr√Zr, where Cr are most and second most frequent cipher-
text bytes and Zr is chosen from our bias set. This result is shown in Fig. 10, and
its success probability is estimated as the probability that the guess for the cor-
rect plaintext byte is narrowed down to two possible candidates. Note that the
probability of a random guess for such a scenario is 2/256 = 0.0078125. Given
234 ciphertexts, each byte of P1, P2, . . . , P257 can be extracted with probability
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one. In this case, although we can not obtain the correct byte of the plaintext,
it is narrowed down to only two candidates. For the experiments of Figs. 9, 10,
it requires about one day if one uses a single CPU core (Intel(R) Core(TM) i7
CPU 920@ 2.67 GHz) to obtain the result of one plaintext, where 256 plaintexts
are used.

Figure 11 shows the number of plaintext bytes that are extracted with five
times higher probability than that of a random guess, i.e., where the success
probability is more than 5

256 . Given 229 ciphertexts, all the plaintext bytes
P1, P2, . . . , P257 are guessed with much higher probability than random guesses.

5 How to Recover Bytes of the Plaintext After P258

In this section, we propose an efficient method to recover later bytes of the
plaintext, namely bytes after P258. The method using our bias in initial bytes
is not directly applied to extract these bytes, because it exploits biases existing
in only the initial keystream. For the extraction of the later bytes, a long-term
bias, which occurs in any keystream bytes, is utilized. In particular, the digraph
repetition bias (also called ABSAB bias) proposed by Mantin [10], which is the
strongest known long-term bias, is used. Combining it with our cumulative bias
set of Z1, Z2, . . . , Z257, we can sequentially recover bytes of a plaintext, even
after P258, given only the ciphertexts.

5.1 Best Known Long-Term Bias (ABSAB bias)

ABSAB bias is statistical biases of the digraph distribution in the RC4 keystream
[10]. Specifically, digraphs AB tend to repeat with short gaps S between them,
e.g., ABAB, ABCAB and ABCDAB, where gap S is defined as zero, C, and
CD, respectively. The detail of ABSAB bias is expressed as follows,

Zr || Zr+1 = Zr+2+G || Zr+3+G for G ∃ 0, (1)

where || is a concatenation. The probability that Eq. (1) holds is given as Theo-
rem 10.

Theorem 10 [10]. For small values of G the probability of the pattern ABSAB
in RC4 keystream, where S is a G-byte string, is (1 + e(−4−8G)/N/N) · 1/N2.

For the enhancement of these biases, combining use of ABSAB biases with
different G is considered by using the following lemma for the discrimination.

Lemma 1 [10]. Let X and Y be two distributions and suppose that the indepen-
dent events {Ei: 1 ⊕ i ⊕ k } occur with probabilities pX(Ei) = pi in X and
pY (Ei) = (1 + bi) · pi in Y. Then the discrimination D of the distributions is∑

i pi · b2i .

The number of required samples for distinguishing the biased distribution from
the random distribution with probability of 1−Σ is given as the following lemma.
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Lemma 2 [10]. The number of samples that is required for distinguishing two
distributions that have discrimination D with success rate 1 − Σ (for both direc-
tions) is (1/D) · (1 − 2Σ) · log2

1−γ
γ .

This lemma shows that in the broadcast RC4 attack, given D and the number
of samples Nciphertext, the success probability for distinguishing the distribution
of correct candidate plaintext byte (the biased distribution) from the distribution
of one wrong candidate of plaintext byte (a random distribution) is a constant.
Prdistinguish denotes this probability.

5.2 Plaintext Recovery Method Using ABSAB Bias and Our Bias
Set

The following equation allows us to efficiently use ABSAB bias in the broadcast
RC4 attack.

(Cr || Cr+1) √ (Cr+2+G || Cr+3+G)
= (Pr √ Zr || Pr+1 √ Zr+1) √ (Pr+2+G √ Zr+2+G || Pr+3+G √ Zr+3+G)
= (Pr √ Pr+2+G √ Zr √ Zr+2+G || Pr+1 √ Pr+3+G √ Zr+1 √ Zr+3+G). (2)

Assuming that Eq. (1) (the event of the ABSAB bias) holds, the relation of
plaintexts and ciphertexts without keystreams is obtained, i.e., (Cr || Cr+1)
√ (Cr+2+G || Cr+3+G) = (Pr √ Pr+2+G || Pr+1 √ Pr+3+G) = (Pr || Pr+1) √
(Pr+2+G || Pr+3+G).

However, in the straight way, we can not combine these relations with dif-
ferent G to enhance the biases, as we do in the distinguishing attack setting.
When the value of G is different, the above equation is surely different even if
r is properly chosen. For example, in the cases of (r and G = 1) and (r + 1
and G = 0), right parts of equations are given as (Pr || Pr+1) √ (Pr+3 || Pr+4)
and (Pr+1 || Pr+2) √ (Pr+3 || Pr+4), respectively. Thus, due to independent use
of these equations with different G, we are not able to efficiently make use of
ABSAB bias in the broadcast setting.

In order to get rid of this problem, we give a method that sequentially recovers
the plaintext after P258 with the knowledge of pre-guessed plaintext bytes. For
example, in the cases of (r and G = 1) and (r + 1 and G = 0), if Pr, Pr+1,
and Pr+2 are already known, the two equations with respected to (Pr+3 || Pr+4)
is obtained by transposing Pr, Pr+1, and Pr+2 to the left part of the equation.
Then, these equations with different G can be merged.

Suppose that P1, P2, . . . , P257 are guessed by our cumulative bias set of the
initial bytes, where the success probability of finding these bytes are evaluated
in Sect. 4. Then we aim to sequentially find Pr for r = 258, 259, . . . , PMAX by
using ABSAB biases of G = 0, 1, . . . , GMAX . The detailed procedures are given
as follows.
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Step 1. ObtainC258−3−GMAX
, C258−2−GMAX

, . . . , CPMAX
in each ciphertext, and

make frequency tables Tcount[r][G] of (Cr−3−G || Cr−2−G)√(Cr−1 || Cr) for all
r = 258, 259, . . . , PMAX and G = 0, 1, . . . , GMAX , where (Cr−3−G ||
Cr−2−G) √ (Cr−1 || Cr) = (Pr−3−G || Pr−2−G) √ (Pr−1 || Pr) only if Eq. (1)
holds.

Step 2. Set r = 258.
Step 3. Guess the value of Pr.
Step 3.1. For G = 0, 1, . . . , GMAX , convert Tcount[r][G] into a frequency table

Tmarge[r] of (Pr−1 || Pr) by using pre-guessed values of Pr−3−GMAX
, . . . ,

Pr−2, and merge counter values of all tables.
Step 3.2. Make a frequency table Tguess[r] indexed by only Pr from Tmarge[r]

with knowledge of the Pr−1. To put it more precisely, using a pre-guessed
value of Pr−1, only Tables Tmarge[r] corresponding to the value of Pr−1 is
taken into consideration. Finally, regard most frequency one in table Tguess[r]
as the correct Pr.

Step 4. Increment r. If r = PMAX +1, terminate this algorithm. Otherwise, go
to Step 3.

The bytes of the plaintext are correctly extracted from Tmarge[r] only if it
is distinguished from other N2 − 1 wrong candidate distributions. Assuming
that wrong candidates are randomly distributed, a probability of the correct
extraction from Tmarge[r] is estimated as (Prdistingush)N2−1. In Step 3.2, our
method converts Tmarge[r] into Tguess[r] by using knowledge of Pr−1, where
Tguess[r] has N−1 wrong candidates. It enables us to reduce the number of wrong
candidates from N2 − 1 to N − 1. Then, a probability of the correct extraction
from Tguess[r] is estimated as (Prdistingush)N−1, which is 1/(Prdistingush)N+1

times higher than that of Tmarge[r]. Therefore, the table reduction technique of
Step 3.2 enables us to further optimize the attack.

Experimental Results. We perform practical experiments using our algorithm
to find P258, P259, P260, and P261 (PMAX = 261). As a parameter of ABSAB
bias, GMAX = 63 is chosen, because the increase of D is converged around
GMAX = 63. Then, D is estimated as D = 2−28.0. The success probability of
our algorithm for recovering Pr (r ∃ 258) when 230 to 234 ciphertexts are given
is shown in Table 3, where the number of tests is 256. Note that P1, P2, . . . , P257

are obtained by using our bias set (candidate one) with success probability as
shown in Fig. 9. For this experiment, it requires about one week if one uses a
single CPU core (Intel(R) Core(TM) i7 CPU 920@ 2.67 GHz) to get the result
of one plaintext, where 256 plaintexts are used.

Interestingly, given 234 ciphertexts, P258, P259, P260, and P261 can be recov-
ered with probability one, while the success probability of some bytes in P1,
P2, . . . , P257 is not one. Combining multiple biases allows us to omit negative
effects of some uncorrected value of P1, P2, . . . , P257. Although our experiment
is performed until P261, the success probability is expected not to change even
in the case of later bytes, because ABSAB bias is a long-term bias.
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Table 3. Success Probability of our algorithm for recovering Pr (r ≤ 258).

# of ciphertexts P258 P259 P260 P261

230 0.003906 0.003906 0.000000 0.000000
231 0.039062 0.007812 0.003906 0.007812
232 0.386719 0.152344 0.070312 0.027344
233 0.964844 0.941406 0.921875 0.902344
234 1.000000 1.000000 1.000000 1.000000

Let us discuss the success probability of extracting bytes after P262 when
234 ciphertexts are given. According to Lemma 2 and D = 2−28.0, 234 cipher-
texts allow us to distinguish an RC4 keystream from a random stream with the
probability of Prdistinguish = 1 − 10−19. Then, assuming that wrong candidates
are randomly distributed, the probability of correctly extracting the candidate
from (N − 1) wrong candidates is estimated as (Prdistinguish)N−1. Therefore,
our method enables to extract consecutive (257 + X) bytes of a plaintext with
the probability of ((Prdistinguish)N−1)X = (Prdistinguish)(N−1)·X . For instance,
when X = 240 and X = 250, the success probabilities are estimated as 0.99997
and 0.97170, respectively.

As a result, by using our sequential method, a large amount of plaintext
bytes, e.g., first 250 bytes → 1000 T bytes, is recovered from 234 ciphertext with
a probability of almost one. Therefore, it can be said that our attack is a full
plaintext recovery attack on broadcast RC4, the first of its kind proposed in the
literature.

6 Conclusion

In this paper, we have evaluated the practical security of RC4 in the broadcast
setting. After the introduction of four new biases of the keystream of RC4, i.e.,
the conditional bias of Z1, the biases of Z3 = 131 and Zr = r for 3 ⊕ r ⊕ 255, and
the extended keylength-dependent biases, a cumulative list of strongest known
biases in Z1, Z2, . . . , Z257 is given. Then, we demonstrate a practical plaintext
recovery attack using our bias set by a computer experiment. As a result, most
bytes of P1, P2, . . . , P257 could be extracted with probability more than 0.8 using
232 ciphertexts encrypted by randomly-chosen keys. Finally, we have proposed
an efficient method to extract bytes of plaintexts after P258. Our attack is able to
recover any plaintext byte from only ciphertexts generated using different keys.
For example, first 250 bytes of the plaintext are expected to be recovered from
234 ciphertexts with high probability.

Note that our attack on broadcast RC4, as proposed in this paper, utilizes
the advantage of sequential recovery of plaintext bytes. If the initial 256/512/768
bytes of the keystream are suppressed in the protocol, as recommended in case
of RC4 usages [14], our attack does not work any more. However, widely-used
protocols such as SSL/TLS use initial bytes of the keystream. For SSL/TLS,
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the broadcast setting is converted into the multi-session setting where the target
plaintext block are repeatedly sent in the same position in the plaintexts in
multiple SSL/TLS sessions [2].

Our evaluation reveals that broadcast RC4 is practically vulnerable to the
plaintext recovery attacks as moderate amount of ciphertexts, i.e., 224 to 234

ciphertexts generated by different keys, leaks considerable information about
the plaintext. Thus, RC4 is not to be recommended for the encryption in case
of the typical broadcast setting and multi-session setting of SSL/TLS.
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A Proof of Theorem 9

In order to prove Theorem 9, we give following Lemma 3 and Theorem 11, which
are extensions of Lemma 2 and Theorem 3 in [6]. Let (SK

r , iKr , jK
r ) be (S, i, j) of

the r-th round in the KSA, respectively.

Lemma 3. When r = x · Δ (x = 1, 2, . . . , 7), the probability of Pr(SK
r+1[r − 1] =

−r ≈ SK
r+1[r] = 0) is approximately

Pr(SK
r+1[r − 1] = −r ≈ SK

r+1[r] = 0) → 1
N2

+
(

1 − 1
N2

)
· Σr,

where Σr = 1
N · (

1 − 3
N

)r−2 · (
1 − r+1

N

)
.

Proof. The event of (SK
r+1[r−1] = −r≈SK

r+1[r] = 0) consists of following events.
In the first round of the KSA, when iK1 = 0 and jK

1 = K[0], the value 0 is
swapped for the value of SK

0 [K[0]] with probability of one. The index jK
1 requires

jK
1 = K[0] �∀ {r − 1, r,−r}, so that the values r − 1, r, −r are not swapped in

the first round of the KSA, respectively. In addition to it, it is required that
K[0] �∀ {1, 2, . . . , r − 2}, so that the value 0 at index K[0] is not touched by
these values of iK during the next r − 2 rounds of the KSA. This happens with
probability of

(
1 − r+1

N

)
. From round 2 to r − 1 of the KSA, jK

2 , jK
3 , . . . , jK

r−1

do not touch the three indices {r,−r,K[0]}, respectively. This happens with
probability of

(
1 − 3

N

)r−2. In the r-th round of the KSA, if the index jK
r has

the index −r, which happens with probability of 1/N , the value −r is swapped
into the index r − 1. In the (r + 1)-th round of the KSA, when iKr+1 = r and
jK
r+1 = jK

r + SK
r [r] + K[r] = −r + r + K[0] = K[0], the value SK

r [r] is swapped
for the value SK

r [K[0]], and from the above discussion, this index contains the
value 0. Considering the above events to be independent, the probability that
all of above events happen together is given by Σr = 1

N · (1 − 3
N

)r−2 · (1 − r+1
N

)
.
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Fig. 12. Event for bias of SK
r+1[r − 1] = −r √ SK

r+1[r] = 0

Assuming that in other cases, (SK
r+1[r − 1] = −r ≈ SK

r+1[r] = 0) holds with
probability of 1/N2, the probability of Pr(SK

r+1[r − 1] = −r ≈ SK
r+1[r] = 0) is

estimated as

Pr(SK
r+1[r − 1] = −r ≈ SK

r+1[r] = 0) → 1
N2

+
(

1 − 1
N2

)
· Σr.

⇒∈
Figure 12 shows the major path of SK

r+1[r − 1] = −r ≈ SK
r+1[r] = 0.

Theorem 11. When r = x · Δ (x = 1, 2, . . . , 7), the probability of Pr(Zr =
−r ≈ Sr[jr] = 0) is approximately

Pr(Zr = −r ≈ Sr[jr] = 0) → 1
N2

+
(

1 − 1
N2

)
· αr,

where

αr =
1

N2
·
(

1 − r + 1
N

)

·
N−1∑

y=r+1

(
1 − 1

N

)y

·
(

1 − 2
N

)y−r

·
(

1 − 3
N

)N−y+2r−4

.

Proof. From the algorithm of the PRGA, we have jr = jr−1 + Sr−1[r]. Hence,
Sr[jr] = Sr−1[r] = 0 implies jr = jr−1. In this case, an output Zr is expressed
as

Zr = Sr[Sr[ir] + Sr[jr]] = Sr[Sr−2[r − 1]].

Then, let us consider Pr(Sr[Sr−2[r − 1]] = −r ≈ Sr[jr] = 0).
The major path for the joint event (SK

r+1[r−1] = −r≈SK
r+1[r] = 0) constitutes

the first part of our main path leading to the target event. The second part can
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be constructed as follows. In an index y ∀ [r + 1, N − 1], if the jK do not
touch the index y, we have SK

y [y] = y with probability of
(
1 − 1

N

)y. From round
r + 2 to y of the KSA, jK do not touch the two indices {r − 1, r}, respectively.
This happens with probability of

(
1 − 2

N

)y−r−1. In the (y + 1)-th round of the
KSA, if the index jK

y+1 has the index r − 1, which happens with probability of
1/N , the value y is swapped for the value −r. Then, the value −r moves to
SK

y+1[y] = SK
y+1[S

K
y+1[r − 1]]. For the remaining N − y − 1 rounds of the KSA

and for the first r − 1 rounds of the PRGA, the jK or j values should not touch
the indices {r − 1, S[r − 1], r}, respectively. This happens with probability of(
1 − 3

N

)N−y+r−2. Now, we have (Sr−1[Sr−2[r − 1]] = −r ≈ Sr−1[r] = 0). And
then, we should also have jr �∀ {r−1, y} for Sr[Sr−2[r−1]] = −r. The probability
of this condition is

(
1 − 2

N

)
. Then, from algorithm of the PRGA, the output is

Zr = Sr[Sr−2[r − 1]] = −r. Considering the above events to be independent, the
probability that the second part events happen together is given by

Σ∗
r =

1
N

·
N−1∑

y=r+1

(
1 − 1

N

)y

·
(

1 − 2
N

)y−r

·
(

1 − 3
N

)N−y+r−2

.

Then, the probability that all of the events happen together is estimated as

αr = Σr · Σ∗
r

=
1

N2
·
(

1 − r + 1
N

)

·
N−1∑

y=r+1

(
1 − 1

N

)y

·
(

1 − 2
N

)y−r

·
(

1 − 3
N

)N−y+2r−4

.

Assuming that in other cases, Zr = −r ≈ Sr[jr] = 0 holds with probability of
1/N2, the probability of Pr(Zr = −r ≈ Sr[jr] = 0) is approximately

Pr(Zr = −r ≈ Sr[jr] = 0) → 1
N2

+
(

1 − 1
N2

)
· αr.

⇒∈
Figures 13, 14 show the major path of Zr = −r ≈ Sr[jr] = 0.
Using these extended joint events, the theorem 9 is proved as follows.

Proof. We can write Pr(Zr = −r) = Pr(Zr = −r ≈ Sr[jr] = 0) + Pr(Zr =
−r ≈ Sr[jr] �= 0), where the first term is given by Theorem 11. When Sr[jr] �= 0,
the event Zr = −r can be assumed to hold with probability of 1/N . Then, the
probability of Pr(Zr = −r) is estimated as

Pr(Zr = −r) → 1
N2

+
(

1 − 1
N2

)
· αr + (1 − βr) · 1

N
. ⇒∈



Full Plaintext Recovery Attack on Broadcast RC4 201

256

SK
0

y

y

none of jK

 touches the three indices

256

SK
y y

none of jK
1 , ..., jK

y

 touches the indice

256

SK
y+1 -ry

-r

r - 1

0

r

0

256

SK
N -ry 0

Fig. 13. Event for bias of Zr = −r √ Sr[jr] = 0 on KSA

256

S0 -ry 0

r - 1 r y

none of j 
 touches the three indices

256

Sr-2 -ry 0

256

Sr-1 -r y0

jr-1 = jr

256

Sr -ry 0

Zr = Sr[Sr[r] + Sr[j]] = Sr[y] = -r

Fig. 14. Event for bias of Zr = −r √ Sr[jr] = 0 on PRGA

References

1. Biham, E., Carmeli, Y.: Efficient reconstruction of RC4 keys from internal states.
In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 270–288. Springer, Heidelberg
(2008)

2. Canvel, B., Hiltgen, A.P., Vaudenay, S., Vuagnoux, M.: Password interception in
a SSL/TLS channel. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp.
583–599. Springer, Heidelberg (2003)

3. Fluhrer, S.R., McGrew, D.A.: Statistical analysis of the alleged RC4 keystream
generator. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, p. 19. Springer, Hei-
delberg (2001)
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Abstract. In this work we consider generic algorithms to find near-
collisions for a hash function. If we consider only hash computations, it
is easy to compute a lower-bound for the complexity of near-collision
algorithms, and to build a matching algorithm. However, this algorithm
needs a lot of memory, and makes more than 2n/2 memory accesses.
Recently, several algorithms have been proposed without this memory
requirement; they require more hash evaluations, but the attack is actu-
ally more practical. They can be divided in two main categories: they
are either based on truncation, or based on covering codes.

In this paper, we give a new insight to the generic complexity of
a near-collision attack. First, we consider time-memory trade-offs for
truncation-based algorithms. For a practical implementation, it seems
reasonable to assume that some memory is available and we show that
taking advantage of this memory can significantly reduce the complexity.
Second, we show a new method combining truncation and covering codes.
The new algorithm is always at least as good as the previous works, and
often gives a significant improvement. We illustrate our results by giv-
ing a 10-near collision for MD5: our algorithm has a complexity of 245.4

using 1 TB of memory while the best previous algorithm required 252.5

computations.

Keywords: Hash function · Near-collision · Generic attack · Time-
memory trade-off

1 Introduction

Hash functions are fundamental cryptographic primitives used in many con-
structions and protocols. A hash function takes a bitstring of arbitrary length
as input, and outputs a digest, a small bitstring of fixed length n:

h : {0, 1}∗ ⊕ {0, 1}n

When used in a cryptographic context, we expect a hash function to resist three
major attacks:

Collision attack: Given h, find x ∃= x∈ s.t. h(x) = h(x∈).
Second-preimage attack: Given h and x, find x∈ ∃= x s.t. h(x) = h(x∈).
Preimage attack: Given h and h, find x s.t. h(x) = h.

S. Moriai (Ed.): FSE 2013, LNCS 8424, pp. 205–218, 2014.
DOI: 10.1007/978-3-662-43933-3 11, c∗ Springer-Verlag Berlin Heidelberg 2014
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Due to the birthday paradox, we have a generic collision attack with complexity
2n/2, while brute force preimage or second-preimage attacks have complexity 2n:
this defines the security requirements of an n-bit hash function.

More generally, we expect a hash function to behave like a random function.
This requirement can not really be formalized but we expect that any property
that can be shown on a given hash function should also be present on a random
function.

In particular, we expect that it should be hard to find two messages resulting
in a digest with a small difference. This property is called near-collision, and
several attacks have been proposed in this setting recently [1–5].

It is relatively easy to give a lower bound on the complexity of near-collision
attacks: one needs at least 2n/2/

⎧Bw(n) hash function evaluation. However the
only known way to reach this lower bound requires a lot of memory, and more
than 2n/2 memory accesses. In order to bridge this gap, Lamberger et al. pro-
posed a memory-less approach based on covering codes [6,7], with a complexity
between 2n/2 and 2n/2/

⎧Bw/2(n).
In this work, we revisit the problem of finding near-collisions with an algo-

rithm that can be efficiently implemented in practice. We start from the obser-
vation that the machines used to run this kind of large computation (clusters,
GPUs, or dedicated hardware) usually have a decent amount of memory readily
available, or it can be added at a reasonable cost. Therefore, we do not aim for
a memory-less algorithm, we only aim for an algorithm with a practical amount
of memory, and a practical number of memory accesses. Our results show that
we can indeed reach a lower complexity than the memory-less algorithms based
on covering codes.

We first review previous collision and near-collision algorithms in Sect. 2. We
describe the main idea of our time-memory trade-off applied to truncation-based
algorithms in Sect. 3, and we describe a more general algorithm in Sect. 4 that
includes previous algorithms as special cases.

We use the following notations through this paper:

n Hash function output size;
t Truncated output size;
w Maximum distance for near-collisions;
M Memory size (number of chains stored);
Bw(n) Size of a Hamming ball of radius w.

2 Previous Works

Let us first discuss techniques to find full collisions (i.e. w = 0). This allows to
explain the basic techniques which will be used later to find near-collisions.

2.1 Finding Full Collisions

The basic approach to find collisions or near-collisions in a generic manner is to
evaluate the hash function a large number of times on random inputs, and to
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compute the Hamming distance for each pair of outputs. After i evaluations of
the hash function, one can test i(i−1)/2 pairs, and this birthday effect allows to
find collisions with only O(2n/2) evaluations of the hash function. More precisely,
the expected number of computation required is i =

⎧
Δ/2 · 2n/2 [8, Appendix

A]. When looking for full collisions, instead of comparing each new output to all
the previous ones, which require γ(2n) comparisons in total, one can create a
list of all the outputs, and sort the list in time O(n2n/2), or use a hash table to
reduce the number of comparisons to O(2n/2).

Memory-Less Algorithms. Even if we avoid the complexity of γ(2n) com-
parisons, the memory complexity of this simple approach makes it impractical.
Several works have shown that collisions can be found with little or no memory,
with a small increase in the time complexity. The main idea was introduced by
Pollard as the “rho” algorithm for factorization [9] and discrete logarithms [10],
and was later generalized to collision search. The hash function is first restricted
from {0, 1}∗ ⊕ {0, 1}n to {0, 1}n ⊕ {0, 1}n, so that it can be iterated. After
some number of steps, a chain of iterations reaches a cycle, and the graph will
have the shape of the greek letter “α”. On average, the cycle has length O(2n/2)
and is reached after O(2n/2) steps. The point where the tail of the α meets
with the cycle gives a collision in the hash function. It can be detected in time
O(2n/2) with little or no memory, using various cycle detection methods, such as
Floyd’s algorithm [11], Brent’s algorithm [12], using distinguished points [13], or
several other techniques [14,15]. These techniques mostly differ by the memory
requirements (constant or logarithmic), and the constant in the O(·) (between 1
and 3).

In this work we focus on the distinguished point approach because it can
be efficiently parallelized, and our focus is on problems with a relatively large
complexity. The complexity of finding collisions using distinguished points is
analyzed in detail by van Oorschot and Wiener in [8]. The main step of the
algorithm is to compute chains of iterations, starting from a random point, and
stopping when a distinguished point is reached, with an easily recognized feature,
such as a number of leading zeroes. The algorithm uses a table to store M such
chains (i.e. starting points and ending points) and when the same ending point
is seen twice, this most likely corresponds to a collision. To locate the collision,
one has to run the computation again from the starting point.

The analysis of van Oorschot and Wiener considers two different situations,
depending on i, the number of collision one is looking for. An important para-
meter in the analysis is the proportion of distinguished points β.

Finding a small number of collisions i.e. i → M .
If we have enough memory to store all the chains, we can expect to find i
collisions after a workload of Σ(

√
2ni), since this covers Σ(2ni) pairs of points.

More precisely, the complexity given by van Oorschot and Wiener1 is Csmall =⎧
Δ/2 · √

2ni + 2.5i/β.

1 In [8], the complexity is given as
√

Δ/2 · ⊕
2ni + 2.5/η, but this only holds if i is

smaller than the number of processors used in the attack.



208 G. Leurent

We choose the distinguishing property so that the memory will just be filled at
the end, but we try to avoid overwriting chains, so we use β = M/Csmall . This
results in Csmall =

⎧
Δ/2 · √2ni/(1 − 2.5i/M). If i → M , this becomes:

Csmall =
⎧

Δ/2 ·
√

2ni.

There is a speedup factor of
√

i compared to finding i collisions independently.

Finding a large number of collisions i.e. i � M .
In this case, the memory will have to be overwritten. The analysis of [8] shows
that when the memory is full, the complexity per collision is roughly 2nβ/M +
2/β. This reaches a minimum of

⎧
8 · 2n/M for β =

⎧
2M/2n. More precisely, van

Oorschot and Wiener performed experiments to determine the actual constants,
and the optimal complexity, reached with when β = 2.25

⎧
M/2n, is:

Clarge ⇒ 5
⎧

2n/M · i.

There is a speedup factor of
√

M/4 compared to finding i collisions indepen-
dently.

Global Bound. More generally, we can express an upper bound on the com-
plexity that works in both situations by summing the two expressions:

C ∈
⎨⎩

Δ

2
+ 5

⎩
i

M

)√
2ni. (1)

When i → M or i � M , one term is negligible, and this expression is equivalent
to Csmall or Clarge , respectively. Moreover, we verified experimentally that this
is also an upper bound when i ⇒ M , and the bound is relatively tight. In all
cases, there is a linear speedup when using several machines in parallel (see [8]
for full details).

2.2 Near-Collisions

A w-near-collision is a pair of messages x, x∈ such that ≈h(x)∪h(x∈)≈ ∈ w, where
≈ · ≈ is the Hamming weight. Let us first introduce some results regarding the
Hamming distance.

Definition 1. We denote the size of a Hamming ball of radius w by
Bw(n) = # {x ∀ {0, 1}n : ≈x≈ ∈ w} .

Property 1. We have Bw(n) =
∑w

i=0

(
n
i

)
.

Property 2. The probability that a random pair x, x∈ results in a w-near-collisions
is Bw(n)/2n.

Property 3. We have the following relation: Bw(n) = Bw(n − 1) + Bw−1(n − 1).



Time-Memory Trade-Offs for Near-Collisions 209

Lemma 1. We have the following inequality:

Bw−1(x) ∈
(

x

w

)
w

x − 2w + 1

Proof. (following [16])

Bw−1(x)(
x
w

) =

(
x

w−1

)
+

(
x

w−2

)
+

(
x

w−3

)
+ · · ·

(
x
w

)

=
w

x − w + 1
+

w(w − 1)
(x − w + 1)(x − w + 2)

+ · · ·

∈ w

x − w + 1
+

(
w

x − w + 1

)2

+ · · ·

∈
w

x−w+1

1 − w
x−w+1

=
w

x − 2w + 1
using the sum of a geometric series ∅∗

We can now describe algorithms for near-collision attacks.

Memory-Full Algorithm. The obvious method to find near-collisions is to
evaluate the hash function a large number of times on random inputs, and to
compute the Hamming distance between each pair of outputs. After i evalu-
ations of the hash function, one can test i(i − 1)/2 pairs, and a pair gives a
w-near-collision with probability Bw(n)/2n. The expected number of hash func-
tion computations before finding a near-collision is i =

⎧
Δ/2 · 2n/Bw(n). This

also gives a lower bound on the number of hash evaluations needed for any near-
collision algorithm: we need at least

⎧
Δ/2 · 2n/Bw(n) evaluations in order to

have a w-near-collision with a non-negligible probability.
However, this simple approach requires i · Bw(n) = γ(

⎧
2n · Bw(n)) memory

access to a table of size i = γ(
⎧

2n/Bw(n)), because for every new point, we must
check whether a point at distance less than w was reached previously. As opposed
to a collision attack, we can not reduce this complexity using a sorting algorithm,
a hash table, or chain of iterations; for any practical implementation, this will
in fact be the bottleneck. This leads to the study of techniques to find near-
collision without this huge memory complexity. Two categories of algorithms
have proposed recently to solve this problem by reducing it to finding collision
in a related function (which can done in a memory-less way).

Using Collisions in a Truncated Hash Function. A simple approach is to
look for collisions in a truncated version of the hash function. In the simplest case,
the hash function is truncated to t = n−w bits, and any collision in the truncated
version will give a w-near-collision for the full hash function. More interestingly,
if the hash function is truncated to t = n − 2w − 1 bits, a t-bit collision will give
a w-near-collision of the full hash function with probability 1/2 [7]. This gives
a near-collision algorithm with expected complexity

⎧
Δ/2 · 2(n−2w)/2 using a

memory-less collision finding algorithm on the truncated function.
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This can be represented as:

0 n −2w −1 n

no difference w differences

More generally, one can truncate δ bits, find collisions in a n − δ -bit function,
and check the Hamming weight of the δ truncated bits. This will give a w-near-
collision with probability Bw(δ)/2τ . The optimal value of δ can be found by
evaluating the complexity for all choices of δ . This problem is discussed more
formally in [17].

Using Covering Codes. A more efficient approach is to use covering codes,
as proposed by Lamberger et al. [6,7]. The idea is to use a covering code with
radius w/2, i.e. a set of codewords C such that for any point x ∀ {0, 1}n, there
exists a codeword c(x) ∀ C with ≈x ∪ c(x)≈ ∈ w/2. If the decoding function
c is efficient, we can look for collisions in c ◦ h. If c(h(x)) = c(h(x∈)), then
h(x) and h(x∈) are decoded to the same codeword c; we have ≈h(x∈) ∪ h(x)≈ ∈
≈h(x∈) ∪ c≈ + ≈h(x) ∪ c≈ ∈ w, which gives a w-near-collision. With a code of
dimension k, the attack has a complexity of

⎧
Δ/2 · 2k/2.

This can be represented as:

0 n

w = 2R differences

Finding the optimal k and building a corresponding code is a hard problem.
The sphere covering bound shows that 2k ≥ 2n/Bw/2(n), but there is a gap
between the best known codes and this lower bound. This problem is discussed by
Lamberger et al. in the context of near-collision attacks [6,7] using a concatena-
tion of Hamming codes. With a given length n, and a covering radius of R = w/2,
the optimal code following their construction has a dimension:

k = n − R · ξ − r (2)

where ξ :=
⌊
log2

(
n
R + 1

)⎡
and r :=

⎢
n−R(2�−1)

2�

⎣
.

This result is listed in Table 2 for some relevant values of the parameters,
together with the lower bound implied by the sphere covering bound.

3 Time-Memory Trade-Off with Truncation

Our first algorithm is a simple generalization of the truncation based method
described in Sect. 2.2. We observe that if we truncate δ bits with δ > 2w − 1,
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the probability that a collision in the truncated function is a near-collision of
the full hash function decreases rapidly, and we need to find many collisions. In
a truly memory-less approach, finding i such collisions require

⎧
Δ/2 · √2n−τ · i

computations, and there is little to gain by truncating more than 2w − 1 bits2

However, with some memory, this can be significantly reduced — by a factor
√

i
if M � i, or

√
M/4 if M → i, as detailed in Sect. 2.1.

In the following section, we explore this idea, and study the optimal value of
δ and the complexity of the resulting attack, depending on how much memory
is available. In a practical implementation of a near-collision attack, it seems
reasonable to assume that some memory is available, and we show that this
leads to significantly better attacks.

0 n − τ n

no difference w differences

3.1 Complexity

Our algorithm is quite simple: we truncate δ bits of the hash function, and we
look for collisions for the remaining n − δ bits. For each n − δ -bit collision, we
compute the Hamming distance in the truncated δ bits. We expect to find a
w-near-collision after testing i = 2τ/Bw(δ) collisions.

We observe that i(δ) is monotonically increasing since Bw(δ) = Bw(δ − 1) +
Bw−1(δ − 1) < 2Bw(δ − 1). With a small δ , we only need a small number
of collision, but the collisions are harder to find because the number of non-
truncated bit, n − δ is large. In order to find the best trade-off, we need an
accurate evaluation of the complexity of the algorithm, depending on the value
of δ and M . We use the analysis of van Oorschot and Wiener [8], as recalled in
Sect. 2.1.

3.2 Finding Optimal Parameters

In order to find an algebraic characterization of the optimal δ , we follow the
analysis of Sect. 2.1, and we consider two cases for the complexity, depending on
the relationship between i and M .

Small δ , small number of collisions i.e. 2τ/Bw(δ) → M
The complexity is

Csmall =
⎧

Δ/2 ·
⎧

2n−τ · 2τ/Bw(δ) =
⎧

Δ/2 · 2n/2/
⎧

Bw(δ).

This decreases when δ grows.

2 As shown in [17], the minimal complexity is achieved with τ √ (2 +
⊕

2)(w − 1).
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Large δ , large number of collisions i.e. 2τ/Bw(δ) � M The complexity is

Clarge =
5
⎧

2n−τ/M · 2τ

Bw(δ)
=

5 · 2n/2+τ/2

Bw(δ)
√

M
.

For most useful values of the parameters, this complexity is increasing when δ
grows. More precisely, we prove that Clarge is increasing when δ ≥ (

√
2 + 2)w:

Clarge is increasing ⇐⇒ Clarge(δ − 1)
Clarge(δ)

∈ 1

⇐⇒ Bw(δ)
Bw(δ − 1)

∈
√

2

We use Bw(δ) = Bw(δ − 1) + Bw−1(δ − 1) to simplify:

⇐⇒ Bw(δ − 1) + Bw−1(δ − 1)
Bw(δ − 1)

∈
√

2

⇐⇒ Bw−1(δ − 1)
Bw(δ − 1)

∈
√

2 − 1

⇐⇒ Bw(δ − 1)
Bw−1(δ − 1)

≥
√

2 + 1

We use Bw(δ − 1) =
(
τ−1
w

)
+ Bw−1(δ − 1) to further simplify:

⇐⇒
(
τ−1
w

)
+ Bw−1(δ − 1)

Bw−1(δ − 1)
≥

√
2 + 1

⇐⇒
(
τ−1
w

)

Bw−1(δ − 1)
≥

√
2

Using Lemma 1, we have
(
τ−1
w

)
/Bw−1(δ − 1) ≥ τ−2w

w . When δ ≥ (
√

2 + 2)w,
this gives

(
τ−1
w

)
/Bw−1(δ − 1) ≥ √

2, and Clarge(δ) is increasing. Note that this
formula only makes sense when M → 2τ/Bw(δ), i.e. for large values of δ , and
the assumption that δ ≥ (

√
2 + 2)w will be true in this domain for useful values

of the parameters. In particular it is true as soon as M > 224 and w < 48.

Optimal τ . When δ is small i.e. 2τ/Bw(δ) → M , the complexity decreases with
δ , but when δ is large, i.e. 2τ/Bw(δ) � M , it increases with δ . This proves that
the optimal choice of δ satisfies

2τ/Bw(δ) ⇒ M.
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For this value of δ , the two expressions Csmall and Clarge are equal up to a small
constant3, and the complexity is given by

C ⇒ 2n/2/
⎧

Bw(δ).

This is larger than the optimal complexity reached by the memory-full algo-
rithm of 2n/2/

⎧Bw(n), but for most parameters, it is better than the bound of
2n/2/

⎧Bw/2(n) which limits covering-code based algorithms.

Optimal τ in Practice. For given values of n and w, we can find a better
estimation of the optimal δ . We use the upper bound of (1), which gives the
following upper bound on the complexity:

C ∈ Csmall + Clarge =

⎨⎩
Δ

2
+ 5

⎩
2τ/Bw(δ)

M

)
·
⎤

2n

Bw(δ)
.

To find a good trade-off, we evaluate this bound for all values of δ , and we use
the δ that gives the lowest bound. Our experiments show that the upper bound
is quite tight, and the δ found in this way is optimal or almost optimal.

4 Combining Truncation and Covering Codes

We can build a better algorithm by combining the truncation approach with
the covering-code technique. When we truncate the hash function to n − δ bits,
instead of looking for collisions in the truncated function, we can look for near-
collisions using a covering code. More precisely, we use a covering code of radius
R, to find 2R-near-collisions in the truncated hash function. Then we check if
one of the near-collisions have less than w−2R active bits in the truncated part.
This approach covers both the truncation based techniques (when R = 0), and
the previous covering-code based techniques (when δ = 0 and R = w/2). This
is described by Algorithm 1, and can be represent by the following diagram:

0 n − τ n

2R differences w − 2R differences

If we use a covering code of dimension k, length n − δ , and radius R, we
will have near-collisions with a distance of 2R. Using the same ideas as in the
previous section, we use a time-memory trade-off to find a large number of near-
collisions; we can find i near-collisions for a cost of roughly

√
2ki if i → M or⎧

2k/M · i if i � M . On average, we need i = 2τ/Bw−2R(δ) 2R-near-collisions.

3 Like in Sect. 2.1, the complexity is in fact continuous.
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Algorithm 1. Find near-collisions
Input: h, n, w
Parameter: τ , R, k

Let c be the decoding function of a covering code [n − τ, k, R]
repeat

Find a collision x, x∼ for c ≥ Truncn−τ ≥ h
α This implies →Truncn−τ (h(x)) ≤ Truncn−τ (h(x∼))→ ∈ 2R

until →h(x) ≤ h(x∼)→ ∈ w

Like in the previous section, we use the bound of (1) to evaluate the complexity
of the attack:

C ∈
⎨⎩

Δ

2
+ 5

⎩
2τ/Bw−2R(δ)

M

)⎤
2k · 2τ

Bw−2R(δ)

It seems quite hard to give of close formula of the optimal choice of R and δ
for a given n, w and M . In particular, we note that k is a function of R and δ .
However, it is easy to find the optimal parameters by trying all the possibilities
for R and δ , and evaluating the resulting complexity using (2) to compute the
optimal k. We give the optimal parameters for several cases in Table 2.

Like in the previous section, we observe that the best parameters usually
satisfy 2τ/Bw(δ) ⇒ M . Moreover, we note that for many parameters, the optimal
choice gives R = 0 and we just have a truncation-based attack without any
covering code. The covering codes allow to improve the complexity only for
large values of n or small values of M .

4.1 Improved Analysis

In the previous analysis, we only consider near-collisions with less than w −
2R active bits in the truncated part. However, the algorithm can find w-near-
collisions with more active bits in the truncated part if the distance in the
remaining part is strictly smaller than 2R. In order to compute the probability
that a collision in the covering code gives a w-near-collision for the full hash
function, we use the distribution of the distance between two messages decoded
to the same codeword, as given in [6, Sect. 3.6].

For a Hamming code Hr of length n = 2r − 1, the distribution is:

d(y, y∈) =

⎥
⎦⎛

⎦⎜

0 with prob. n+1
(n+1)2

1 with prob. 2n
(n+1)2

2 with prob. n(n−1)
(n+1)2 .

The covering codes used in [6,7] are built as the direct sum of several Hamming
codes, and we can compute the distribution of their distance as a convolution of
the distribution for a Hamming code. For the truncation, the distribution is

d(y, y∈) =
⎝

0 with prob. 1/2τ

i with prob.
(
τ
i

)
/2τ
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This allows to compute accurately the probability that a collision in the covering
code is a near-collision for the hash function. The complexity will still be given by

C ∈
⎨⎩

Δ

2
+ 5

⎩
i

M

)√
2k · i

but we compute i from the distribution instead of using i = 2τ/Bw−2R(δ). In
addition, we can now consider a radius R larger than w/2, as suggested in [6].
In this case, most collisions in the covering code will have a distance larger than
w, but the time-memory trade-off reduces the cost of finding many collisions.

4.2 Application

Our final algorithm described in Algorithm 1 is quite general, and the behavior
will be very different depending on the parameters R and δ . We don’t see how
to analyze the optimal choice of parameters, but for a given value of n, w and
M , we can just evaluate the complexity for all values of the parameters R and
δ and select the best ones.

We give the complexity of our algorithm for some values of n, w and M in
Table 2, and we provide code to find the optimal parameters in Listing 1 using
Sage [18]. We compare several possible trade-offs with previous approaches: the
simple memory-full algorithm, the covering code algorithm of [6,7] and the corre-
sponding lower bound, and the simple truncation of 2w−1 bits. With reasonable
amounts of memory, our approach can lead to a significant improvement in the
complexity.

We note that the number of memory accesses is relatively limited (in the order
of M). The communication cost should not be a bottleneck for a practical imple-
mentation. Additionally, the memory does not need to be in a single machine, it
can be distributed over the computing nodes. Like previous algorithms, our algo-
rithm scales linearly when using more than one processor. Moreover, it should
be noted that even the memory-less algorithms actually need some memory for
an efficient parallel implementation.

We implemented this algorithm to verify that it behaves as expected, and we
give a 10-near-collision for MD5 in Table 1.

Table 1. 10-near collision for MD5. This was found after a 20 h computation using
1TB of memory, and 152 cores.

x x∼ x ≤ x∼

b6 24 ac c6 40 94 08 84 0d 87 0f a4 00 4b 6c bf bb a3 a3 62 40 df 64 3b

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

MD5(x) MD5(x∼) MD5(x) ≤ MD5(x∼)
ac 6b 49 aa fe 42 4f f8 68 79 db a8 fe 52 4f f8 c4 12 92 02 00 10 00 00

8a c9 5d f6 ef 4f 7b 3d 8a c9 5d f6 ef 4f 7b 3d 00 00 00 00 00 00 00 00
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Listing 1. Sage code to compute the complexity of a generic near-collision attack.

@CachedFunction

def covering_k(n,R):

if R = = 0:

return n

l = floor(log(n/R+1)/ log (2))

r = floor ((n-R*(2^l -1))/2^l)

return n - R*l - r

@CachedFunction

def covering_dist (n,R):

if R = = 0:

return [1]

l = floor(log(n/R+1)/ log (2))

r = floor ((n-R*(2^l -1))/2^l)

d = [1]

m = 2^l

for i in [1..R-r]:

d = convolution(d, [m/m^2 ,(2*m-2)/m^2,((m -1)*(m-2))/m^2])

m = 2^(l+1)

for i in [1..r]:

d = convolution(d, [m/m^2 ,(2*m-2)/m^2,((m -1)*(m-2))/m^2])

return d

@CachedFunction

def binomial_dist (n):

return [ binomial(n,i)/2^n for i in [0..n] ]

@CachedFunction

def prob_dist(n,t,R):

return convolution(binomial_dist (t),covering_dist (n-t,R))

def near_complexity (n,mem ,maxw):

best = n

for t in [0..n]:

for R in [0..2* maxw]:

K = prob_dist(n,t,R)

p = sum(K[0: maxw +1])

C = (sqrt(pi /2)+5* sqrt (1/p/2^ mem)) \

* sqrt (2^ covering_k(n-t,R)/p)

C = float(log(C)/log (2))

if C < best:

best = C

bestr = R

bestt = t

print "Compexity: %.1f (\\tau = %i, R = %i)" \

% (best , bestt , bestr )

return best



Time-Memory Trade-Offs for Near-Collisions 217

Table 2. Comparison of various approaches: log2 of the number of hash computations.
We omit a factor

√
Δ/2 so that birthday search is listed as 2n/2.

M-Fulla Time-memory trade-off (τ, R) Covering codes Trunc.

128 bits 216 (1 MB) 226 (1 GB) 236 (1 TB) Boundb [7,8] τ=2w−1

w = 2 57.5 60.5 (1, 1) 60.0 (25, 0) 59.5 (35, 0) 60.5 60.5 62.0
w = 4 52.3 57.6 (17, 1) 56.5 (27, 1) 55.6 (44, 0) 57.5 58.0 60.0
w = 6 47.8 54.5 (19, 2) 53.1 (35, 1) 52.0 (46, 1) 54.8 56.0 58.0
w = 8 43.8 51.6 (26, 2) 49.8 (43, 1) 48.5 (54, 1) 52.3 54.0 56.0
w = 10 40.1 48.7 (33, 2) 46.7 (50, 1) 45.2 (62, 1) 50.0 52.5 54.0

160 bits 216 (1 MB) 226 (1 GB) 236 (1 TB)
w = 2 73.2 76.5 (5,1) 76.0 (17, 1) 75.5 (35,0) 76.3 76.5 78.0
w = 4 67.7 73.2 (16, 1) 72.2 (26, 1) 71.6 (33, 1) 73.2 74.0 76.0
w = 6 62.8 70.2 (24, 1) 68.8 (33, 1) 68.0 (46, 1) 70.3 71.5 74.0
w = 8 58.5 67.3 (31, 1) 65.7 (34, 2) 64.5 (54, 1) 67.7 69.5 72.0
w = 10 54.4 64.4 (33, 2) 62.7 (45, 2) 61.2 (62, 1) 65.2 67.5 70.0

512 bits 226 (1 GB) 236 (1 TB) 246 (1 PB)
w = 2 247.5 251.5 (2, 2) 251.4 (26, 1) 251.1 (36,1) 251.5 251.5 254.0
w = 4 240.3 247.7 (3, 4) 247.2 (29, 2) 246.7 (39, 2) 247.5 248.0 252.0
w = 6 233.8 244.0 (27, 2) 243.2 (38, 2) 242.6 (49, 2) 243.8 245.0 250.0
w = 8 227.7 240.5 (23, 4) 239.6 (46, 2) 238.7 (57, 2) 240.3 242.0 248.0
w = 10 221.9 237.1 (30, 4) 236.0 (42, 4) 235.0 (65, 2) 237.0 239.5 246.0
a Number of hash function evaluation needed. The actual complexity is dominated by
memory accesses (more than 2n/2 accesses to a huge table).
b Lower bound for covering code approaches (van Wee bound).

5 Conclusion

In this work we present a new generic algorithm to find near-collision, that
generalizes both the previous truncation-based algorithms, and the previous
covering-code based algorithms. As opposed to previous work, we don’t aim
for a memory-less algorithm, but we study time-memory trade-offs. The algo-
rithm has been implemented in practice, and we give actual complexity figures
including the constants hidden in the analysis.

We show that with a practical amount of memory, this allows to select better
parameters than previous works; in most cases we achieve a complexity lower
than the sphere covering bound which limits the previous memory-less covering-
code based algorithms. The main advantage comes from the parallel collision
search algorithm of van Oorschot and Wiener, which can find i collisions in time
significantly less than

√
2n · i when using some memory.
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Abstract. On October 2-nd 2012 NIST announced its selection of the
Keccak scheme as the new SHA-3 hash standard. In this paper we present
the first published collision finding attacks on reduced-round versions
of Keccak-384 and Keccak-512, providing actual collisions for 3-round
versions, and describing an attack which is 245 times faster than birthday
attacks for 4-round Keccak-384. For Keccak-256, we increase the number
of rounds which can be attacked to 5. All these results are based on a
generalized internal differential attack (introduced by Peyrin at Crypto
2010), and use it to map a large number of Keccak inputs into a relatively
small subset of possible outputs with a surprisingly large probability. In
such a squeeze attack it is easier to find random collisions in the reduced
target subset by a standard birthday argument.

Keywords: Hash function · Cryptanalysis · SHA-3 · Keccak ·
Collisions · Internal differentials · Squeeze attack

1 Introduction

One of the stated reasons for the recent selection of Keccak by NIST as the new
SHA-3 hash standard was its exceptional resistance to cryptanalytic attacks [9].
Even though it was a prime target for several years and many cryptanalysts
have tried to break it (see [1,2,4,8,10,12–14,16,20,21]), there was very limited
progress so far in finding collisions even in greatly simplified versions of its vari-
ous flavors. In particular, there were no published collision finding attacks on any
number of rounds of its two largest flavors (Keccak-384 and Keccak-512), and
only three published collision finding attacks on Keccak-256 ([16,21] attacked
two rounds, and [12] doubled the number of rounds to 4). One of the main rea-
sons for this lack of progress is that the probabilities of the standard differential
characteristics of Keccak’s internal permutation are extremely small, as was rig-
orously shown in [10]. We bypass this seemingly insurmountable barrier by using
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a different kind of differential property, whose probability is not bounded by such
a proof.1 By using the new property, we provide in this paper either the first
or an improved attack on all these flavors: For Keccak-384 and Keccak-512 we
describe practical attacks (with actual collisions) on three rounds, and impracti-
cal attacks on four rounds of Keccak-384. For Keccak-256 we increase the number
of rounds which can be attacked from 4 to 5. The previous collision attacks and
our new results are summarized in Table 1.

Table 1. Collision attacks on round-reduced Keccak: the number of rounds attacked
with the corresponding time complexity in parentheses

Reference Keccak-224 Keccak-256 Keccak-384 Keccak-512

[16,21] 2 (practical) 2 (practical) - -
[12] 4 (practical) 4 (practical) - -
This paper - 5 (2115) 3 (practical) 4 (2147) 3 (practical)

Our new attacks use many ideas which were already known in some limited
form, but improves and combines them in new ways. They are a special type of
the very general notion of subset cryptanalysis, which tries to track the statis-
tical evolution of a certain set of values (which could be single states, pairs of
states, or a collection of states with “don’t care parts”) through the various oper-
ations in the cryptographic scheme. In general, the goal in subset cryptanalysis
is to find a subset of inputs which are mapped with larger than expected prob-
ability to some pre-fixed subset of all possible outputs. This is a widely used
technique, which includes as special cases most of our standard cryptanalytic
attacks, including differential, integral, and linear attacks, both in the single key
and in the related key cases. The first step in subset cryptanalysis is to construct
a subset characteristic which associates a triplet (input subset, output subset,
transition probability) to each internal operation f of the cryptosystem. The
transition probability specifies the probability that a random state chosen from
the input subset will be a member of the output subset after applying f . Based
on standard randomness assumptions, the total probability of the characteristic
is calculated by multiplying the various transition probabilities. Subset crypt-
analysis is typically used in order to construct a distinguisher, which makes it
possible to extract information about the last subkey of a cryptosystem.

Previous examples of subset cryptanalysis include partitioning cryptanaly-
sis [15] which divides the plaintext space and the output space (or the one-before
the last round value space) into sets which are related with non-trivial proba-
bilities. Other works track the development of the “subset” through the cryp-
tographic primitive by looking for invariants, e.g., fixed-points or fixed subsets.
For example, in [19] a subset of invariant values under the encryption process

1 While we do not actually go beyond the bound mentioned in [10], its proof does not
apply to the type of differential properties we consider in this paper.
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(in weak key classes) in PRINTcipher are identified. Another example is the
subset of special states identified in [18] which contains states whose left half
is equal to the right half, and is an invariant of the encryption under keyless
AES. We also note the close relationship between our approach and many of the
self-similarity properties identified over the years. Slide attacks [6] (as well as the
original flavor of related-key attacks [5]) is built over pairs of plaintexts which
are shifted versions of each other in the encryption process. In many cases (e.g.,
Feistel ciphers), it is easy to rewrite the slide requirement as a relation between
the slid pairs by defining the subsets according to the slid relation.

Squeeze Attacks. In the case of hash functions, we can use subset character-
istic in a different way, which we call a squeeze attack. To motivate this attack,
assume that the hash function maps a set S of possible inputs into a set D of
possible outputs. By the birthday paradox, we have to try a subset S∈ ⊕ S of
size

√|D| of inputs before we expect to find the first collision in D. Consider
now the variant of this attack in which we discard all the outputs we generate
which do not fall into a particular subset D∈ ⊕ D. Since D∈ is smaller than D we
need fewer samples in it in order to find a collision, but finding each sample is
more expensive. To find which effect is stronger, assume that the probability of
picking an input in S∈ whose output is in D∈ is p, and that D∈ contains a fraction
q of the points in D. The number of outputs in D∈ we need is

√|D∈| =
√

q|D|,
and the number of inputs in S∈ we have to try is

√
q|D|/p. When the map-

ping is random, p = q and this variant of the attack is worse than the birthday
bound for all D∈ which are smaller than D. However, if we can exploit some
non-random behavior of the hash function in order to find sets S∈ and D∈ for
which p2 > q, we can get an improved collision finding algorithm. We call it a
squeeze attack since we are forcing a larger than expected number of inputs to
squeeze into a smaller subset of possible outputs in which collisions are more
likely. By memorizing only such outputs and discarding all the other outputs we
generate, we can reduce both the time and the space needed to find collisions in
the given hash function (see Fig. 1). The analysis above shows that any subset
characteristic for which p2 > q suffices for an efficient squeeze attack on a hash
function, provided only that we can generate sufficiently many inputs in the ini-
tial subset of the characteristic. This is more flexible than standard differential
cryptanalysis of hash functions, where a high-probability differential character-
istic can be directly used in a collision attack only if it leads to a zero difference
in the output value.

The squeeze attack was used in several previous attacks, but usually in cases
where p was 1, in which the idea was beneficial for any q < 1 (e.g., in [7]). In
this paper, we apply the squeeze attack to Keccak with p ∃ 1. Our starting
point is the observation that most of the operations in Keccak have potentially
dangerous symmetry properties. The designers of Keccak were fully aware of
this fact, and decided to use asymmetric round constants precisely in order to
avoid this problem. However, the constants they chose were of very low Hamming
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21600 states

2384 outputs

2196 states

2270 outputs

p = 2−12

p = 2−12

p = 2−12

discard
Collision

Fig. 1. A squeeze attack with |S| = 21600, |S∼| = 2196, |D| = 2384, |D∼| = 2270, p = 2−12

weight, and thus their effect was small, changing a fully symmetric state into an
almost symmetric state.

Generalized Internal Differential Cryptanalysis. In this paper, we gener-
alize the technique of internal differential cryptanalysis developed by Peyrin [22]
in the cryptanalysis of the Grøstl hash function. While in standard differen-
tial attacks we consider two different plaintexts, and follow the evolution of
the difference between them, in internal differential attacks we consider only
one plaintext, and follow the statistical evolution of the differences between its
parts. In the case of Keccak, we use internal differential cryptanalysis in order
to follow the statistical evolution of almost symmetric states through the first
few rounds of Keccak. For example, if the symmetry we consider is that the first
half of the state should be equal to the second half of the state, then we follow
the evolution of small differences between these two parts through the various
cryptographic operations. Note that fully symmetric states have a zero internal
difference, which remains zero as the state goes through symmetry preserving
operations, whereas almost symmetric states have a low Hamming weight inter-
nal difference, which in many cases remains low Hamming weight after such
operations.

Our approach generalizes and extends the original idea presented in [22] in
several ways: first, internal differential cryptanalysis was previously shown to
be applicable to hash functions with explicitly defined and completely separate
data-paths. In this paper, we show that it is applicable in a much broader setting,
where the cryptosystem is not necessarily built using separate data-paths, but
still admits differential relations in the internal state that we can follow and con-
trol. Second, in [22] Peyrin considers differences between two halves of the state,
whereas most of our attacks consider more complex internal structures which
divide the state into more than two parts. This approach requires definitions
of new objects that capture the notion of these generalized difference relations
and allow us to analyze them. In addition to these generalizations, we introduce
several new techniques such as aggregating multiple internal differences, which
allow us to extend our subset characteristics, and thus attack more rounds of
reduced Keccak.
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2 Description of Keccak

In this section, we briefly describe the sponge construction and the Keccak hash
function. More details can be found in the Keccak specification [4]. The sponge
construction [3] works on a state of b bits, which is split into two parts: the first
part contains the first r bits of the state (called the outer part) and the second
part contains the last c = b − r bits of the state (called the inner part).

Given a message, it is first padded and cut into r-bit blocks, and the b state
bits are initialized to zero. The sponge construction then processes the message in
two phases: In the absorbing phase, the message blocks are processed iteratively
by XORing each block into the first r bits of the current state, and then applying
a fixed permutation on the value of the b-bit state. After processing all the blocks,
the sponge construction switches to the squeezing phase. In this phase, n output
bits are produced iteratively, where in each iteration the first r bits of the state
are returned as output and the permutation is applied to the state.

The Keccak hash function uses multi-rate padding: given a message, it first
appends a single 1 bit. Then, it appends the minimum number of 0 bits followed
by a single 1 bit, such that the length of the result is a multiple of r. Thus,
multi-rate padding appends at least 2 bits and at most r + 1 bits.

The Keccak versions submitted to the SHA-3 competition have b = 1600 and
c = 2n, where n → {224, 256, 384, 512}. The 1600-bit state can be viewed as a
3-dimensional array of bits, a[5][5][64], and each state bit is associated with 3
integer coordinates, a[x][y][z], where x and y are taken modulo 5, and z is taken
modulo 64.

The Keccak permutation consists of 24 rounds, which operate on the 1600
state bits. Keccak uses the following naming conventions, which are helpful in
describing its round function:

– A row is a set of 5 bits with constant y and z coordinates, i.e. a[√][y][z], or
r(y, z).

– A column is a set of 5 bits with constant x and z coordinates, i.e. a[x][√][z].
– A lane is a set of 64 bits with constant x and y coordinates, i.e. a[x][y][√].
– A slice is a set of 25 bits with a constant z coordinate, i.e. a[√][√][z].

Each round of the Keccak permutation consists of five mappings R = ι ◦ χ ◦
π ◦ ρ ◦ θ. The five mappings given below are applied for each x, y, and z (where
the state addition operations are over GF (2)):

1. θ is a linear map, which adds to each bit in a column, the parity of two other
columns.

θ: a[x][y][z] ⇒ a[x][y][z] +
4∑

y′=0

a[x − 1][y∈][z] +
4∑

y′=0

a[x + 1][y∈][z − 1]

2. ρ rotates the bits within each lane by T(x,y), which is a predefined constant
for each lane.

ρ: a[x][y][z] ⇒ a[x][y][z + T (x, y)]
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3. π reorders the lanes.

π: a[x][y][z] ⇒ a[x∈][y∈][z], where
(

x
y

)
=

(
0 1
2 3

)
·
(

x∈

y∈

)

4. χ is the only non-linear mapping of Keccak, working on each of the 320 rows
independently.

χ: a[x][y][z] ⇒ a[x][y][z] + ((¬a[x + 1][y][z]) ∈ a[x + 2][y][z])

Since χ works on each row independently, it can be viewed as an Sbox layer
which simultaneously applies the same 5 bits to 5 bits Sbox to the 320 rows
of the state. We note that the Sbox function is an invertible mapping, and
some of our techniques are based on the known observation that the algebraic
degree the algebraic degree of each output bit of χ as a polynomial in the five
input bits is only 2.

5. ι adds a 64-bit round constant to the first lane of the state.

ι: a[0][0][√] ⇒ a[0][0][√] + RC[ir]

Since we analyze in this paper round-reduced variants of Keccak with at most
5 rounds, we are only interested in the first five round constants: 0000000000
000001, 0000000000008082, 800000000000808a, 8000000080008000, 00000000
0000808b (given respectively in hexadecimal using the little-endian format).
Note that all five round constants have a low Hamming weight and the first
round-constant has a Hamming weight of only 1.

3 Notations

Given a message M , we denote its length in bits by |M |. Unless specified oth-
erwise, in this paper we assume that |M | = r − 2, namely we consider only
single-block messages of maximal length. Given M , we denote the initial state of
the Keccak permutation as the 1600-bit word M � M ||11||02n, where || denotes
concatenation.

The first three operations of Keccak’s round function are linear mappings,
and we denote their composition by L � ρ ◦ π ◦ θ. We sometimes refer to L as a
“half round” of the Keccak permutation, where ι ◦ χ represents the other half.
We denote the Keccak nonlinear function on 5-bit words defined by varying the
first index by χ|5. The difference distribution table (DDT ) of this function is a
two-dimensional 32 × 32 integer table, where all the differences are assumed to
be over GF (2). The entry DDT (δin, δout) specifies the number of input pairs to
this Sbox with difference δin that produce the output difference δout (i.e., the
size of the set {x → {0, 1}5 | χ|5(x) + χ|5(x + δin) = δout}).

Given a set S of internal states of Keccak, we define the action of each of
Keccak’s mappings on the set by applying it to every element of the set (e.g.,
θ(S) = {θ(u)|u → S}).
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4 Description of Our Basic Techniques

Given a subset characteristic for the compression function of a given hash func-
tion, we can describe our basic squeeze attack in the following way:

1. Pick an arbitrary message for which the values entering the compression func-
tion are in the initial subset of the characteristic.

2. Apply the compression function. If the subset characteristic is satisfied, com-
pute the output of the compression function. Otherwise, discard the message
and go back to Step 1.

3. Store the output in a table (along with the message). In case a collision is
found, stop and output the collision. Otherwise, go back to Step 1.

If the size of the output set is 2d (i.e., |D∈| = q|D| = 2d using the notation
of the Introduction), then after 2d/2 messages for which the characteristic is
followed, we expect a collision due to the birthday paradox. Hence, when the
probability of the subset characteristic is p, the time complexity of finding a
collision is p−1 ·2d/2 and the memory complexity is2 2d/2. To optimize the attack,
we need a subset characteristic for which p is as high as possible and d is as small
as possible.

4.1 Internal Difference Sets

A very interesting observation concerning Keccak is that four out of its five
internal mappings (all but ι), are translation invariant in the direction of the z
axis (as was already noted in the Keccak submission paper [4]). Namely, if one
state is the rotation of another state with respect to the z-axis (i.e., satisfies
b[x][y][z] = a[x][y][z + i], for some value of i), then applying to them any of
the θ, ρ, π, χ operations, maintains this property. To exploit this symmetry, we
pick subsets which are invariant with respect to the rotation along the z-axis
with all the non-trivial possible choices of i. Namely, given a rotation index i →
{1, 2, 4, 8, 16, 32}, the subsets are all the states for which a[x][y][z] = a[x][y][z+i].

In most of the remainder of this section, we assume for the sake of simplicity
that i = 16, but note that all of our definitions extend naturally to any i →
{1, 2, 4, 8, 16, 32}. For i = 16, a symmetric state a[x][y][z] is composed of four
repetitions of slices 0–15 (see Example 1). Each such sequence of slices (0–15,
16–31, 32–47, 48–63) is called a consecutive slice set or CSS in short. Applying
any of the four operations θ, ρ, π, χ to a symmetric state in which all CSS’s are
equal, does not disturb its symmetry. The application of ι interferes with this
symmetry, since the round constants are not the same among the consecutive
slice sets. However, given the low weight of the constants used by ι, the state
remains close to being symmetric.
2 Notice that we can use either Floyd’s cycle finding algorithm [17] or the parallel colli-

sion search algorithm [23] to reduce the memory complexity of the attack, depending
on the relative sizes of its domain and range subsets.
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|169D169D169D169D|A965A965A965A965|3EC73EC73EC73EC7|9025902590259025|C264C264C264C264|
|A34BA34BA34BA34B|0F330F330F330F33|4902490249024902|3D683D683D683D68|613D613D613D613D|
|C684C684C684C684|B368B368B368B368|589B589B589B589B|5F335F335F335F33|E27AE27AE27AE27A|
|22E822E822E822E8|3D583D583D583D58|B37AB37AB37AB37A|1047104710471047|D525D525D525D525|
|60F360F360F360F3|C3E4C3E4C3E4C3E4|37FA37FA37FA37FA|8193819381938193|69BA69BA69BA69BA|

The state is described as a matrix of 5 × 5 lanes of 64 bits, ordered from
left to right, where each lane is given in hexadecimal using the little-endian
format. Each lane of the state consists of 4 repetitions of a 16-bit word.
Example 1: A symmetric state with i = 16

To deal with ι, we have to extend our point of view, and consider states for
which the equality “almost holds”. The subsets used in our subset characteristics
are internal differences, which measure how close the state is to a symmetric
state. Generally speaking, this can be done by computing the XOR differences
between the first consecutive slice set, and each of the three other ones, denoted
by the triplet (Δ1,Δ2,Δ3). We define an internal difference in Keccak to be
the set of states with a fixed value of (Δ1,Δ2,Δ3). Obviously, when all 4 CSS’s
are equal, the differences between them are zero and the subset is called a zero
internal difference.

Alternatively, we can define an internal difference set as a coset in a group,
using a single representative state v and adding to it all the fully symmetric
states: {v+w|w is symmetric}. In general, given a rotation index i, we represent
an internal difference using the pair [i, v] (or [16, v] in case i = 16). Obviously, this
representation is redundant as we can select any u → [16, v] as the representative
state. However, as shown in the next subsection, it allows us to describe the
evolution of an internal difference [i, v] through Keccak’s linear mappings in a
very compact way.

Since an internal difference does not place any constraint on the value of the
first CSS, it will sometimes be convenient to choose a canonical representative
state for which this value is zero, and we denote it by v̂. Namely, for an internal
difference defined by (Δ1,Δ2,Δ3), the values of the four CSS’s in the canonical
representative state are 0, Δ1, Δ2 and Δ3, respectively.

4.2 The Evolution of Internal Differences Through Keccak’s
Permutation

As in standard differential cryptanalysis, we consider the difference between the
CSS’s, rather than the actual values. Hence, the zero internal difference passes
with probability 1 all the four operations θ, ρ, π, χ, just as a zero difference in a
differential characteristic passes through any operation.

Unlike a classical differential characteristic, in an internal differential charac-
teristic, the addition of a constant (i.e., the ι operation) effects the characteristic
by introducing a difference between the equal CSS’s. This difference then prop-
agates through the other operations, and its development has to be studied and
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controlled. Luckily, we can construct internal differential characteristics for Kec-
cak (with good probability) that track this evolution of “distance” from a zero
internal difference through the various Keccak mappings.

Given the affine nature of an internal difference, tracking its evolution through
Keccak’s affine mappings is trivial (and does not change the probability of the
internal differential characteristic): due to the translation invariance property
and the associativity of linear operations, the action of the first three map-
pings on [i, v] is determined by their action on the representative state, i.e.,
θ([i, v]) = [i, θ(v)], ρ([i, v]) = [i, ρ(v)] and π([i, v]) = [i, π(v)]. Since ι simply adds
a constant to each state of the set then ι([i, v]) = [i, ι(v)] as well.

The Evolution of Internal Differences Through χ. In contrast to the linear
mappings, applying χ, the non-linear mapping, to a randomly selected state
from an internal difference, the output internal difference depends on the actual
input, i.e., the output can belong to one of several internal differences. Just as in
differential cryptanalysis, we can choose a single output internal difference, and
then calculate the probability of the transition from the input internal difference
to this output internal difference.

When a state of an internal difference which is not symmetric enters the
χ function, we have to consider the possible outcomes in terms of “distance”
from the zero internal difference. To do so, we consider the rows on which χ
operates using an object called a rotated row set. For i = 16, a rotated row set
contains a row r(y, z) in the first CSS, along with its 3 symmetric counterparts
r(y, z + 16), r(y, z + 32) and r(y, z + 48) in the other CSS’s (see Example 2).
We note that given the input internal difference, once the value of r(y, z) is
set, we know the value of the remaining rows as well. Hence, given the value
of r(y, z) we can compute the corresponding outputs, and check the resulting
output internal difference.

Once we perform this operation, we can associate with each input internal
difference all the possible output internal differences (and the corresponding
probabilities) by trying all 32 possible values for r(y, z). In the particular case
where the input internal difference assigns a zero difference to all the rows of a
rotated row set, it passes through the χ mapping with probability 1. Similarly to
differential cryptanalysis, we call such a rotated row set inactive (with respect
to the internal difference), whereas a rotated row set with a non-zero difference
is called active.

For i = 32, each rotated row set contains exactly 2 Sboxes (rows), i.e., v
specifies a single input difference for the Sbox pair. In this case one can easily
use the difference distribution table of the Sbox to determine the distribution of
the output difference δout given the input difference δin.

In the internal differences that we consider in this paper, most rotated row
sets contain at most two distinct input values to the Sbox. We call such a rotated
row set sparse. In active sparse rotated row sets,3 one can divide the values
r(y, z), r(y, z + 16), r(y, z + 32) and r(y, z + 48) (or r(y, z), r(y, z + i), . . . for
general i → {1, 2, 4, 8, 16, 32}) into two groups, each with the same input to the
Sbox (see Example 3). Obviously, each group of Sboxes has the same output,
3 For inactive rotated row sets, the output internal difference is necessarily 0.
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leading to a sparse output internal difference as well. Since there is only a single
input difference between the two groups of Sboxes, we can use the difference
distribution table also in the more general case of i ≈= 32, when a rotated row
set is sparse.

|0001000100010001|0001000100010001|0001000100010001|0001000100010001|0001000100010001|

The first five lanes of a state in which the 20 bits of the first rotated row set
for i = 16 are set to 1. The lanes are ordered from left to right, where each
lane is given in hexadecimal using the little-endian format.
Example 2: A rotated row set

|0001000100010001|0001000000010000|0000000000000000|0001000100010001|0000000100000001|

The first five lanes (given in the format of Example 2) of a state in an
internal difference in which the first rotated row set is sparse for i = 16. The
(binary) value of r(0, 0) and r(0, 32) is 10011, while the value of r(0, 16) and
r(0, 48) is 11010. In this example, the internal difference fixes the difference
of 01001 between the two groups of rows. The value of the other rows is
zero.
Example 3: A sparse rotated row set

The Weight of Internal Differences. Finally, we give a heuristic concerning
the “quality” of a given internal difference in a characteristic. The closer the
internal difference is to the zero internal difference, its weight (i.e., the minimal
Hamming weight of a state in the internal difference) is lower.4 Since the zero
internal difference contains the zero state, its weight is zero, and the weight of an
internal difference measures the minimal Hamming distance between a state in
the internal difference and a symmetric state. In general, a low-weight internal
difference has only a few active rotated row sets, and thus passes through χ
with high probability. In this paper, we construct characteristics whose internal
differences have a low weight (and thus a high probability) by choosing low-
weight internal differences as outputs, as well as a few additional techniques
which will be described in the rest of this paper. As a preliminary example,
consider Characteristic 1 in Appendix A. This characteristic starts from the zero
internal difference and extends to 1.5 Keccak rounds with probability 1, where
the final internal difference has a weight of 11.
4 While there may be many states with minimal Hamming weight in an internal dif-

ference, we can calculate one of them from an arbitrary state w in the internal
difference: we iterate over all sets of 4 bits (in case i = 16), each containing one bit
in the first CSS and its symmetric counterparts in the other 3 CSS’s. For each such
set, we compute the majority of its bits in w, and complement it if its majority is 1.
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5 Exploiting Internal Differential Characteristics
in Collision Attacks on Keccak

In this section, we describe optimizations that allow us to devise efficient attacks
on round-reduced Keccak using internal differential characteristics.

5.1 Choosing the Value of the Rotation Index

Recall that a subset characteristic maps an input, selected from a subset of inputs
to the compression function, to a restricted output set of size 2d with probability
p. In order to find a collision, we have to try about p−1 ·2d/2 such inputs, and in
the case of Keccak, we need the ability to generate p−1·2d/2 single-block messages
M , such that M is a member of the initial internal difference. In our basic attack,
we use a zero internal difference (i,0) for a fixed i → {1, 2, 4, 8, 16, 32} (i.e., we
restrict our messages M such that M → (i,0)), which implies that we are free
to choose the value of the first i bits in each lane of the outer (controllable)
part of the initial state, not including the lane containing the padding, in which
we can only choose the value of the first i − 2 bits.5 Exploiting the fact that
the initialization sets the inner (uncontrollable) part of state to 0, and the fact
that we can control the values of r/64 lanes when the rate is r, we can generate
2r·(i/64)−2 initial states which are symmetric. Hence, we have to ensure that
2r·(i/64)−2 ∪ p−1 · 2d/2.

As we decrease the value of i, we increase the number of constraints on
the internal differences, leading to a smaller expected output subset size, thus
reducing the complexity of the attack. On the other hand, a value of i which is too
small leads to an insufficient number of possible messages for a collision attack.
Hence, we choose the smallest i → {1, 2, 4, 8, 16, 32} such that 2r·(i/64)−2 ∪ p−1 ·
2d/2 holds. We note that the value of i determines how a state is partitioned into
rotated row sets, and thus it may also affect the probability p of a characteristic
(i.e., we need to calculate p separately for each value of i).

5.2 Extending Internal Differential Characteristics

Constructing an internal differential characteristic which spans many rounds of
Keccak reduces its probability significantly, leading to an inefficient collision
attack which requires the evaluation of many messages. Thus, instead of cov-
ering all the attacked rounds, we extend the internal differential characteristic
up to some point (in our attacks, one and a half rounds before the output), and
continue to exploit Keccak’s properties (such as the limited diffusion of its Sbox
layer) in order to bound the size of the output subset (which is crucial in squeeze
attacks). This is done by extending the internal differential characteristic to a
subset characteristic without restricting its subsets to a particular form of [i, v̂].

5 The calculation for the padded lane does not apply for the case of i = 1, but we do
not use this value in our attacks on Keccak.
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In fact, since the output subset is not an internal difference (and actually not
even affine), in the final part we use subset cryptanalysis in its most general
form.

Aggregating Internal Differences Using Affine Subspaces. Assume that
the internal difference part of the subset characteristics ends just before the χ
layer with an internal difference [i, v̂]. We aggregate all the potential values of
[i, û], the output internal difference of χ, into an affine subspace by considering
each rotated row set independently, and computing û in symbolic form (i.e., by
allocating linear variables). We then continue and apply L to the symbolic form
of û, and thus maintain the knowledge of the affine subspace up to the χ function
of the next round.

Since the computed symbolic form of û may include some impossible values,
this may increase the bound on the size of the output size. However, due to the
limited diffusion properties of χ, it is easy to show explicitly that every single-bit
difference in a rotated row set can result in allocation of at most two variables,
hence the number of allocated variables for û is upper-bounded by twice the
weight of [i, v̂]. Moreover, when a rotated row set is sparse (with respect to [i, v̂]),
its Sboxes assume only (at most) two values, with a single input difference which
is fixed by v̂. Since the algebraic degree of the Keccak Sbox is only 2, all the
possible output differences of the Sboxes form an affine subspace (as observed
in the Keccak reference document [4]). Thus, when all the rotated row sets with
respect to [i, v̂] are sparse, the aggregated internal difference does not include
impossible internal differences.

In order to distinguish between explicit binary vectors, and symbolic forms,
we denote the explicit vector by û and the symbolic form by û. We note that
[i, û] still represents an affine subspace whose dimension is increased compared
to [i, û] by the number of allocated variables.

Bounding the Size of the Output Subset Beyond the Last χ Mapping.
Assume that we have an affine subspace of the form [i, û] as an input to χ, after
which χ and ι are applied, and the state is truncated and sent to the output.
Our goal is to upper bound the size of the output subset without reducing its
probability (which may happen if we restrict it to an affine subspace).

Clearly, the final application of ι does not affect the size of the output subset,
and can be ignored. In order to obtain a good bound, we exploit the limited
diffusion of χ which maps each row to itself and in particular, maps each set
of 64 rows (320 consecutive bits) of the form a[√][y][√] to itself. As the output
consists of the first n bits of the final state, we want to bound the number of its
possible values by computing the size of the subset before the last χ mapping
when projected to its first 320∀n/320∅ bits. Namely, for output sizes of 224,
256, 384 and 512, it is sufficient to compute the size of the subset before the χ
mapping on its first 320, 320, 640 and 640 bits respectively. For n = 384 we can
achieve a better bound by using a more specific property of χ: each bit a[x][y][z]
at the output of χ, depends only on the 3 input bits a[x][y][z], a[x + 1][y][z] and
a[x + 2][y][z]. Thus, the 64 bits of the lane a[x][y][√] at the output of χ, depend
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only on the 3 input lanes a[x][y][√], a[x+1][y][√] and a[x+2][y][√]. In the case of
n = 384, the first 320 bits are mapped to themselves by χ, and the remaining 64
bits depend only on 192 bits. Thus, in order to upper bound the output subset
size it is sufficient to compute the size of the subset when projected to its first
320 + 192 = 512 bits.

We now show how to bound the size of the n-bit output subset, given that it
depends only on the first n∈ bits before the χ mapping, and the affine subspace
at the entry to χ is represented by [i, û]. We first assign the variables of û an
arbitrary value (e.g., zero). We denote the resultant binary vector by û, and
obtain a basic bound in this simplified case, where [i, û] is an internal difference:
recall that each rotated row set can assume at most 32 values, hence each set
of 320 bits of the form a[√][y][√] can assume at most 32i = 25i values. Thus, for
n = 224 and n = 256 we obtain a basic bound of 25i, and for n = 512 we obtain
a basic bound of 22(5i). For n = 384, the computation can be split into two parts:
the 320 LSBs of the output can assume at most 25i values, and the 64 MSBs
depend on 3 input lanes and can assume at most min(264, 23i) values. This gives
a basic bound of 25i · min(264, 23i) for n = 384. In all cases, we emphasize that
the bound only depends on i and n (which determines n∈), rather than on the
actual values of the n∈ bits of û.

In the symbolic case, the n∈ bits of û are expressions, and the basic bound
applies independently for each possible value of these n∈ bits. Consequently, in
order to upper bound the output subset size, we need to multiply the basic bound
by the number of possible values that the n∈ expressions can assume. Since the
expressions are affine, we can easily compute their number of possible values by
computing their dimension using simple linear algebra.

In order to minimize the dimension of the n∈ expressions at the output, we
have to minimize the number of variables allocated in the previous round, when
extending the internal differential characteristic. Since we do not allocate any
variables to inactive rotated row sets, this can be assured if the final internal
difference of the characteristic (before the variable allocation) is of low weight.
Thus, in addition to the influence of the weight of the internal differences on the
probability p of a characteristic, the weight also plays a role in bounding the size
of the output subset 2d.

6 Collision Attacks on Round-Reduced Keccak-384
and Keccak-512

In this section, we present the details of our practical 3-round collision attacks on
Keccak-384 and Keccak-512 and our non-practical 4-round attack on Keccak-384.
Although our techniques can be applied to all variants of Keccak, actual colli-
sions were already presented for 4 rounds of Keccak-224 and Keccak-256 in [12],
and thus we focus first on Keccak-384 and Keccak-512, for which there are no
previously published collision attacks on any number of rounds.
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6.1 Practical Collisions in 3-Round Keccak-512

In order to find actual collisions in 3-round Keccak-512, we used the internal
differential characteristic given in Characteristic 1 in Appendix A. This charac-
teristic spans only the first Keccak round and the L mapping of the second round
(i.e., the first 1.5 rounds), and has a probability of 1. in our attack, we choose
i = 4, and we use the techniques of Sect. 5.2 in order to bound the size of the
output subset: we apply the variable allocation technique to the final internal
difference of the characteristic (whose weight is 11) to allocate 22 variables and
to extend the characteristic beyond the χ mapping of the second round. The
basic bound on the size of the output subset is 22·5·i = 240, and the dimension
of the first n∈ = 640 linear expressions is 22 (the maximal possible dimension
of linear expressions with 22 variables). This gives a bound of 240+22 = 262 on
the size of the output subset. Since the probability of the characteristic is 1, we
have to try about 231 single-block messages which give initial states in the zero
internal difference [4,0], in order to find a collision with good probability. Since
n = 512, in this case we have r = 576 and we can choose a sufficient number
of 2r·(i/64)−2 = 234 messages that satisfy the constraints. We implemented the
attack and obtained actual collisions in 3-round Keccak-512. A concrete example
(found in less than an hour on a single PC) is given in Collision 1 in Appendix B.

6.2 Practical Collisions in 3-Round Keccak-384

For Keccak-384, we can easily use the same characteristic (Characteristic 1 from
Appendix A). However, we prefer to use a different characteristic which leads
to a more efficient attack, and is also used as a basis for our 4-round attack of
Keccak-384 (described in the next section). The idea is to choose a low-weight
initial internal difference that limits the increase in the weight caused by the
second-round θ mapping, and thus reduces the weight of the internal difference
at the entry to the second-round χ mapping.6 In particular, we make sure that θ
acts as the identity on some low Hamming weight vector in the internal difference
after the first round.

Searching for Internal Differential Characteristics. The most interesting
set of states which are fixed-points of θ is the column parity kernel or CP-kernel,
which was defined in the Keccak submission document [4]: a 1600-bit state is in
the CP-kernel if all of its columns have an even parity, which makes such a state
a fixed-point of θ. Denote the initial internal difference in our characteristic
by [i, v0] and the internal difference obtained after one round by [i, v1]. We
require that there exists some low Hamming weight state u1 → [i, v1] in the
CP-kernel, and also set a similar constraint on [i, v0], which (unlike the attack
on Keccak-512) is not zero. Namely, we require that there exists a low Hamming

6 We note that the rate r of Keccak-384 is much larger than the rate of Keccak-512,
and thus we could not choose a similar initial internal difference for Keccak-512.
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weight state u0 → [i, v0] in the CP-kernel (otherwise θ will significantly increase
the weight of the internal difference already in the first round).

Techniques to find state differences that stay in the CP-kernel for two con-
secutive rounds were described in [10,14,21] in order to construct low Hamming
weight classical differential characteristics. Here, we use these techniques in a
straightforward way in order to construct low Hamming weight internal differ-
ential characteristics that fulfill the two constraints: As done in several previ-
ous paper which analyze standard differential characteristics of Keccak, we first
assume that the χ mappings act as an identity on the input internal differences
(this is typically possible when the input internal difference is of low weight).
As a result, the evolution of the internal differential characteristic is completely
linear and deterministic, and if we ignore the ι constants, then it is identical to
the evolution of a standard differential characteristic with the same initial state-
difference (which in our case represents an internal difference). Thus, we can use
the previous techniques to find good internal differential characteristics which
ignore the ι constants. Finally, we post-filter these characteristics by trying to
cancel the ι constants using the additional degrees of freedom offered by the χ
mappings.

The best internal differential characteristic that we found for Keccak-384
(which spans 1.5 rounds) is given in Characteristic 2 in Appendix A. Note that
its final internal difference has a weight of 6, which is lower compared to the
weight of 11 of the final internal difference in Characteristic 1. On the other
hand, the characteristic has a probability of 2−12 due to the transition through
the first χ mapping, whereas Characteristic 1 has probability 1. However, we
can easily reduce the workload of finding initial states that conform to this
characteristic from the trivial 212 to 1 (as described next), while losing only 12
degree of freedom.

Reducing the Workload of Finding Messages Conforming to the First
χ Transition. When the input to the first χ mapping is a state which belongs
to a non-zero internal difference [i, v̂], this transition is associated which a prob-
ability which is lower than 1. However, we can reduce the workload of finding
messages conforming to the first χ transition: we analyze each rotated row set
independently and restrict its inputs to an affine subspace for which the first
χ transition occurs with probability 1. Due to the fact that L is affine, we can
compute an affine subspace of initial states in the first internal difference of the
characteristic that satisfy the first χ transition.

Note that we restrict the initial states to an affine subspace that may not
include all the values which guarantee the first χ transition. Thus, this optimiza-
tion can also be detrimental by reducing the available degrees of freedom further
compared to the non-optimized method of trying arbitrary states in the initial
internal difference. Nevertheless, due to the limited diffusion properties of χ,
the transition of every single-bit difference in a rotated row set of v̂ depends on
the values of at most two state bits. Hence, the total number of state bits whose
values we restrict (and the total number of degrees of freedom that we lose as a
result) in order to guarantee the first χ transition is upper-bounded by twice the
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weight of [i, v̂]. Indeed, in Characteristic 2 the weight of the internal difference
at the input to the first χ mapping is 6, and we lose 12 degree of freedom.

The Full Attack. In our 3-round attack on Keccak-384, we choose i = 4, and
calculate the bound on the output subset as follows: we use the variable allocation
technique to allocate 12 variables (which is the maximal number since the final
internal difference has a weight of 6) and extend the characteristic beyond the χ
mapping of the second round. The basic bound on the size of the output subset
is 28·4 = 232, and the dimension of the first n∈ = 512 linear expressions is 12.
This gives a bound of 232+12 = 244 on the size of the output subset. Since the
workload to find initial states that conform to Characteristic 2 is 1, we have
to try (at most) 222 such initial states in order to find a collision with high
probability. For n = 384, we have r = 832 and we can choose a sufficient number
of 2−12 · 2r·(i/64)−2 = 238 messages that satisfy the constraints. We implemented
the attack and obtained actual collisions in 3-round Keccak-384. A concrete
example (found in less than a minute on a single PC) is given in Collision 2 in
Appendix B.

6.3 A Collision Attack on 4-Round Keccak-384

In this subsection, we briefly present a collision attack on 4-round Keccak-384.
The attack is based on the 2.5-round internal differential characteristic given
in Characteristic 3 in Appendix A, which is an extension by one round of the
1.5-round characteristic used in the 3-round attack on Keccak-384. The analysis
of the attack is given in the full version of this paper [11], and shows that the
expected time complexity of the attack is bounded by 2147. This is non-practical,
but 245 times faster than the birthday bound of 2192.

7 A Collision Attack on 5-Round Keccak-256

The target difference algorithm (TDA) was developed in [12] as a technique to
link a differential characteristic (which starts from an arbitrary state difference)
to the initial state of the Keccak permutation, using one permutation round.
More precisely, the initial state difference of the characteristic is called the target
difference, and the algorithm outputs many single-block message pairs which
satisfy the target difference after one permutation round. Hence, a differential
characteristic leading to a collision at the output after k rounds can be leveraged
to a collision attack on k + 1 rounds of Keccak.

In this section, we present a 5-round collision attack on Keccak-256 which is
based on an analogous variant of the TDA for internal differential cryptanalysis,
and is called a target internal difference algorithm (TIDA). Analogously to the
TDA, the TIDA is a technique that links an internal differential characteristic
(which starts from an arbitrary internal difference) to the initial state of the
Keccak permutation, using one permutation round. Thus, the initial internal
difference of the internal differential characteristic is called the target internal
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difference, and the algorithm outputs single-block messages whose internal state
belongs to the target internal difference after one permutation round.

Both the TDA, and the TIDA proposed in this paper are heuristic random-
ized algorithms, and we cannot formally prove their success. Given a subset
characteristic (which is an extension of an internal differential characteristic)
spanning k rounds of the Keccak permutation, a collision attack on k+1 rounds
of Keccak consists of the following steps:

1. Run the TIDA on the target internal difference (derived from the first internal
difference of the characteristic) with fresh randomness until it succeeds to
output single-block messages satisfying the target internal difference after
one permutation round.

2. Let M be the next message outputted by the TIDA (if no more messages
remain, return to Step 1):
(a) Run the Keccak permutation on M . If the evolution of the state from

the second round conforms with the internal differential characteristic,
continue and calculate the output of the hash function. Otherwise, discard
M and go to Step 2.

(b) Store the output in a hash table next to M , and check if it collides with an
output of a different message. If a collision is found, output the colliding
message pair, otherwise go to Step 2.

In order to analyze the time complexity of the attack, we have to estimate
the amortized time complexity of finding one message that satisfies the target
internal difference after one permutation round. The amortized time is calculated
as the ratio between the execution time of the TIDA and the number of messages
that it returns in a single execution. If we assume that the amortized time is
smaller than 1 (i.e., the amortized time is less than the execution time of the
Keccak permutation), and the time of a single execution of the TIDA in Step 1
is not too large, then the time complexity analysis of the attack is similar to the
analysis of the basic attack given in Sect. 4. Given that the size of the output
set is 2d values, then the memory complexity of the attack is 2d/2, similarly to
the basic attack given in Sect. 4.

Our 5-round collision attack on Keccak uses the internal differential charac-
teristic given in the full version of this paper [11], which covers rounds 1–3.5.
This characteristic is leveraged in order to attack 5 rounds using the techniques
of Sect. 5, while the TIDA is used to find messages in the initial internal differ-
ence of the characteristic (after 1 Keccak round). The full details and analysis
of the attack are given in the full version of this paper [11]. Based on extensive
simulations of the critical part of the attack, its estimated time complexity is at
most 2115, which is 213 times faster than the birthday bound of 2128.

8 Conclusions and Future Work

In this paper, we presented the first collision attacks on round-reduced
Keccak-384 and Keccak-512, and for Keccak-256, we increased the number of
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rounds which can be attacked from 4 to 5. Our algorithms are based on a squeeze
attack which uses internal differential cryptanalysis (which is a special case of
subset cryptanalysis) in order to map a large subset of inputs into a small pre-
fixed subset of all possible outputs, for which the birthday bound is significantly
reduced.

Internal differential cryptanalysis is also very useful in attack scenarios which
are different than the squeeze attack. For example, it is possible to use internal
differential cryptanalysis in preimage attacks on hash functions, given that the
target output is contained in a specific subset of outputs. Moreover, one can
think of several other attacks based on internal differential cryptanalysis (such
as impossible internal differential cryptanalysis and rebound attacks), which are
analogous to attacks in the standard differential setting.

An important future item is to construct better internal differential charac-
teristics for Keccak, or prove that they do not exist (and thus extend the work of
[10]). More generally, subset cryptanalysis, and in particular internal differential
cryptanalysis, seems to be a fruitful research direction. It may improve the crypt-
analytic toolbox, suggest better attacks on various schemes, and shed some light
on the types of constants which are hazardous to the security of cryptosystems.

Acknowledgements. The authors would like to thank the anonymous referees for
their very helpful comments on the preliminary version of this paper.

A Appendix: Internal Differential Characteristics for
Keccak

We provide the precise internal differential characteristics (labeled as Charac-
teristics 1–3) which we use in our collision attacks on round-reduced Keccak.

An internal difference [i, v] is represented by a state with the lowest Hamming
weight. Each state is given as a matrix of 5×5 lanes of 64 bits, ordered from left
to right, where each lane is given in hexadecimal using the little-endian format.
The symbol ‘-’ is used in order to denote a zero 4-bit value.

The internal differential characteristics are given as a sequence of internal
differences. The operation performed in each transition is specified between the
representative states and round numbers are specified to the right of the states.
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|----------------|----------------|----------------|----------------|----------------|
|----------------|----------------|----------------|----------------|----------------|
|----------------|----------------|----------------|----------------|----------------| R0
|----------------|----------------|----------------|----------------|----------------|
|----------------|----------------|----------------|----------------|----------------|∗ R
|---------------1|----------------|----------------|----------------|----------------|
|----------------|----------------|----------------|----------------|----------------|
|----------------|----------------|----------------|----------------|----------------| R1
|----------------|----------------|----------------|----------------|----------------|
|----------------|----------------|----------------|----------------|----------------|∗ L
|---------------1|----1-----------|----------------|----------------|------------8---|
|----------------|----------2-----|----------------|----2-----------|----------------|
|---------------2|----------------|----------------|-------------2--|----------------| R1.5
|--------1-------|----------------|-------------4--|----------------|----------------|
|----------------|----------------|-----1----------|----------------|---------------4|

The characteristic has a rotation index value of i = 4, as described in Section 6.1.

Characteristic 1: The 1.5-round internal differential characteristic with probability
1 used in order to find collisions in 3-round Keccak-512

|--8-------------|--4-------------|----------------|----------------|----------------|
|--8-------------|----------------|----------2-----|----------------|----------------|
|----------------|--4-------------|----------2-----|----------------|----------------| R0
|----------------|----------------|----------------|----------------|----------------|
|----------------|----------------|----------------|----------------|----------------|∗ L
|--8-------------|----------------|---------------1|----------------|----------------|
|----------------|----------------|----------------|----------------|----------------|
|--8-------------|---------8------|----------------|----------------|----------------|
|----------------|---------8------|---------------1|----------------|----------------|
|----------------|----------------|----------------|----------------|----------------|∗ χ (p = 2−12)
|--8------------1|----------------|---------------1|----------------|----------------|
|----------------|----------------|----------------|----------------|----------------|
|--8-------------|---------8------|----------------|----------------|----------------|
|----------------|---------8------|---------------1|----------------|----------------|
|----------------|----------------|----------------|----------------|----------------|∗ ι
|--8-------------|----------------|---------------1|----------------|----------------|
|----------------|----------------|----------------|----------------|----------------|
|--8-------------|---------8------|----------------|----------------|----------------| R1
|----------------|---------8------|---------------1|----------------|----------------|
|----------------|----------------|----------------|----------------|----------------|∗ L
|--8-------------|----------------|----------------|----------------|----------------|
|----------------|----------------|-4--------------|-------------1--|----------------|
|----------------|----------------|----------------|----------------|----------------| R1.5
|----------------|----------------|------2---------|------------8---|----------------|
|4---------------|----------------|----------------|----------------|----------------|

The characteristic has a rotation index value of i = 4 for the 3-round attack on
Keccak-384, as described in Section 6.2.

Characteristic 2: The 1.5-round internal differential characteristic with probability
2−12 used in order to find collisions in 3-round Keccak-384
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|--8-------------|----------------|----------------|----------------|----------------|
|----------------|----------------|-4--------------|-------------1--|----------------|
|----------------|----------------|----------------|----------------|----------------|
|----------------|----------------|------2---------|------------8---|----------------|
|4---------------|----------------|----------------|----------------|----------------|∗ χ (p = 2−12)
|--8-------------|----------------|----------------|----------------|----------------|
|----------------|----------------|-4--------------|-------------1--|----------------|
|----------------|----------------|----------------|----------------|----------------|
|----------------|----------------|------2---------|------------8---|----------------|
|4---------------|----------------|----------------|----------------|----------------|∗ ι
|--8---------8-82|----------------|----------------|----------------|----------------|
|----------------|----------------|-4--------------|-------------1--|----------------|
|----------------|----------------|----------------|----------------|----------------| R2
|----------------|----------------|------2---------|------------8---|----------------|
|4---------------|----------------|----------------|----------------|----------------|∗ L
|8-8------------8|-8-82488---4----|-81-------------|-4----1-----8---|--------6--12-4-|
|----------4----2|------18--481---|----------------|1-1-491----8----|------------2-4-|
|91----8----1-1-4|----------4-8--1|4----------8----|---------18--481|-----------1----| R2.5
|-----C--24-8----|----------------|---1-----2-2-922|--1-----81------|---4----2-------|
|------------4-8-|8--2----1-------|--C--24-8-------|----------------|22---1-----2-2-9|

The characteristic has a rotation index value of i = 16 (this applies to the full 2.5-round
characteristic used in the 4-round attack) and probability 2−12, as described in Section
6.3. The total probability of the full 2.5-round characteristic is 2−24.
Characteristic 3: The 1-round extension of Characteristic 2 used in the collision
attack on 4-round Keccak-384

B Appendix: Examples of Actual Collisions

We give examples of actual collisions for three rounds of Keccak-384 and Keccak-
512 (labeled as Collisions 1, 2). The padded messages and output values are
given in blocks of 32-bits ordered from left to right, where each block is given in
hexadecimal using the little-endian format.
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M1=

88888888 88888888 66666666 66666666 AAAAAAAA AAAAAAAA 77777777 77777777 BBBBBBBB BBBBBBBB
BBBBBBBB BBBBBBBB 11111111 11111111 88888888 88888888 CCCCCCCC CCCCCCCC

M2=

AAAAAAAA AAAAAAAA 88888888 88888888 EEEEEEEE EEEEEEEE 99999999 99999999 99999999 99999999
99999999 99999999 88888888 88888888 CCCCCCCC CCCCCCCC CCCCCCCC CCCCCCCC

Output=

56BCC94B C4445644 D7655451 5DD96555 71FA7332 3BA30B23 958408C5 64407664 41805414 11190901
6ABAA8BA A8ABAEFA 7EF8AEEE ECCE68DC 4EC8ACEC DD5D5CCC

The messages were found using Characteristic 1.

Collision 1: A collision in 3-round Keccak-512

M1=

FFFFFFFF FF7FFFFF BBBBBBBB BBFBBBBB 44444444 44444444 FFFFFFFF FFFFFFFF 99999999 99999999
44444444 44C44444 44444444 44444444 44644444 44444444 AAAAAAAA AAAAAAAA 66666666 66666666
44444444 44444444 DDDDDDDD DD9DDDDD DDFDDDDD DDDDDDDD

M2=

33333333 33B33333 55555555 55155555 AAAAAAAA AAAAAAAA 77777777 77777777 44444444 44444444
66666666 66E66666 EEEEEEEE EEEEEEEE 11311111 11111111 CCCCCCCC CCCCCCCC FFFFFFFF FFFFFFFF
11111111 11111111 99999999 99D99999 DDFDDDDD DDDDDDDD

Output=

99999991 11199999 4440C444 405C60DC 00000000 0C100010 777677F7 73F77767 3550F597 55D57155
66666664 66666666

The messages were found using Characteristic 2.

Collision 2: A collision in 3-round Keccak-384
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Abstract. In this paper we attack round-reduced Keccak hash func-
tion with a technique called rotational cryptanalysis. We focus on Kec-
cak variants proposed as SHA-3 candidates in the NIST’s contest for
a new standard of cryptographic hash function. Our main result is a
preimage attack on 4-round Keccak and a 5-round distinguisher on
Keccak-f [1600] permutation — the main building block of Keccak
hash function.

Keywords: Preimage attack · Keccak · Rotational cryptanalysis ·
SHA-3

1 Introduction

In 2007, the U.S. National Institute of Standards and Technology (NIST)
announced a public contest aiming at the selection of a new standard for a
cryptographic hash function. The main motivation behind starting the contest
has been the security flaws identified in the SHA-1 standard in 2005. Similarities
between SHA-1 and the most recent standard SHA-2 were worrisome and NIST
decided that a new, stronger hash function would be needed. Overall, 51 func-
tions were submitted to the first round of the contest. In July 2009 out of the
submitted functions, 14 were selected to the second round. At the end of 2010,
the five finalists were announced and eventually in October 2012 the winner has
been selected. The new SHA-3 standard will be Keccak hash function [5]. In
this paper we analyze Keccak using a technique called rotational cryptanalysis.

Rotational analysis is a relatively new type of attack. The technique was
mentioned and applied in [2,14,16], and formally introduced in [12]. Unlike the
diffierential analysis, where for a pair (x, y) the attacker follows the propagation
of the diffierence x⊕y through the cryptographic system, in the rotational analy-
sis, the adversary investigates the propagation of the rotational relations through
the cryptographic transformations. Khovratovich and Nikolić in [12] analyze the
primitives composed of only three operations: addition, rotation, xor (ARX).

S. Moriai (Ed.): FSE 2013, LNCS 8424, pp. 241–262, 2014.
DOI: 10.1007/978-3-662-43933-3 13, c© Springer-Verlag Berlin Heidelberg 2014
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For these primitives, they prove that the probability that a rotational pair of
inputs will produce a rotational pair on the output depends on the number of
additions only. In [17] a rotational distinguisher was designed for the keyed per-
mutation of the Shabal hash function. Rotational cryptanalysis was combined
with the rebound attack and applied to the compression function of the SHA-3
candidate Skein and its underlying cipher Threefish [13].

The known cryptanalytic results on Keccak can be divided into two types.
The first type is showing a non-random behaviour, weakness in the Keccak’s
internal permutation, such as our rotational distinguishers. The second type is
attacking the core security properties of the whole function (a preimage attack
and a collision attack). The distinguisher of Keccak’s permutation with the high-
est number of rounds is the zero-sum distinguisher proposed in [1] and later
improved in [6,9]. However, the complexity of these distinguishers is very high.
For example, the zero-sum distinguisher for all 24 rounds has the complexity of
21579. A diffierential analysis of Keccak’s internal permutation, given in [10],
leads to distinguishers up to 8 rounds with complexity of 2491.47 and for 5 rounds
with complexity of 28. Among the attacks on the Keccak hash function, the
most rounds were reached by Bernstein in his 8-round preimage attack [3]. How-
ever, the attack is much slower than parallel exhaustive search and it is inherently
memory-intensive. Also with the aid of diffierential analysis, Naya-Plasencia et
al. mounted the preimage and collision attacks on 2-round Keccak [15]. In [11]
the same result (2-round preimage and 2-round collision attacks) were obtained
through the SAT-based attacks. The most successful collision attack was given
in [8] where 4-round collisions were presented.

In this paper we focus our analysis on the Keccak variants proposed as SHA-
3 candidates. First we analyze the permutation Keccak-f [1600]. We mount the
4-round rotational distinguisher and then enhance it with a correlation analysis
which improves the result to 5 rounds. We implement the distinguishers and
verify the experimental results. Unlike the other rotational analysis we treat
rotational relations between bits independently and we operate on probabilities
of rotational relations. Our rotational cryptanalysis not only serves as a mean
to show a non-random behaviour in the cryptographic primitive, but also for
the first time the technique is used for mounting the preimage attack. A family
of 4-round distinguishers is the base for our 4-round preimage attack with the
complexity 64 times lower than exhaustive search. This is also the first 4-round
preimage attack with a negligible amount of memory needed for the attack.

2 KECCAK

In this section we provide a description of Keccak to the extent necessary for
understanding the attack described in the paper. For a complete specification,
we refer the interested reader to the original specification [5] (Table 1).

Keccak uses the sponge construction and hence is a member of the sponge
function family [4]. Figure 1 shows the construction. It can be used as a hash
function but also can be applied for generating infinite bit stream, making it
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Table 1. Best known preimage attacks on the Keccak variants proposed as SHA-3
candidates. The number in the column ‘Variant’ denotes a hash length.

Rounds Variant Time Memory Reference

6/7/8 512 2506/2507/2511.5 2176/2320/2508 [3]
4 224/256 2217.3/2249.3 261 [3]∗

4 384/512 2377.3/2505.3 261 [3]∗

4 512 2506 Negligible Sect. 4.2
4 384 2378 Negligible Sect. 4.2
4 256 2252 Negligible Sect. 4.2
4 224 2221 Negligible Sect. 4.2

∗These results were provided for us by the author of the attack. Originally
in [3] the results are given only for 6, 7 and 8 rounds

Fig. 1. Sponge construction [4]

suitable as a stream cipher or a pseudorandom bit generator. In this paper we
focus on the sponge construction for cryptographic hashing. Keccak has two
main parameters r and c, which are called bitrate and capacity, respectively.
The sum of those two makes the state size, which Keccak operates on. For
the SHA-3 proposal, the state size is 1600 bits. Diffierent values for bitrate and
capacity give the trade-offi between speed and security. The higher bitrate gives
the faster function that is less secure. Keccak follows the sponge two-phase
processing.

The initial 1600-bit state is filled with 0’s. In the first phase (also called
the absorbing phase), interleaved with applications of the permutation f (called
Keccak-f in the specification). The absorbing phase is finished when all message
blocks have been processed. In the second phase (also called the squeezing phase),
the first r bits of the state are returned as part of the output bits, interleaved
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with applications of the function f . The squeezing phase is finished after the
desired length of output digest has been produced.

For the variants proposed as SHA-3 candidates, the value of the parameter
c is equal to a hash length multiplied by 2. For example, the SHA-3 candidate
with 512-bit hash length is Keccak with c = 1024 and r = 576 (r + c = 1600).
In this paper we denote variants proposed as SHA-3 candidates by Keccak-512,
Keccak-384, Keccak-256, and Keccak-224. (The number is a hash length for
a given variant.)

Keccak can also operate on smaller states but through the whole paper we
always refer to the default variant with 1600-bit state. The state can be visualised
as an array of 5× 5 lanes, each lane is 64-bit long. The state size determines the
number of rounds in Keccak-f function. For the default 1600-bit state there
are 24 rounds. All rounds are the same except for constants which are diffierent
for each round.

Below there is a pseudo-code of a single round. In the latter part of the paper,
we often refer to the algorithm steps (denoted by Greek letters) described in the
following pseudo-code.
Round(A,RC) {

Δ step
C[x] = A[x,0] xor A[x,1] xor A[x,2] xor

A[x,3] xor A[x,4], forall x in (0...4)
D[x] = C[x-1] xor rot(C[x+1],1), forall x in (0...4)
A[x,y] = A[x,y] xor D[x], forall (x,y) in (0...4,0...4)

γ step forall (x,y) in (0...4,0...4)
A[x,y] = rot(A[x,y], r[x,y]),

α step forall (x,y) in (0...4,0...4)
B[y,2*x+3*y] = A[x,y],

β step forall (x,y) in (0...4,0...4)
A[x,y] = B[x,y] xor ((not B[x+1,y]) and B[x+2,y]),

Σ step
A[0,0] = A[0,0] xor RC

return A }

All the operations on the indices shown in the pseudo-code are done modulo 5.
A denotes the complete permutation state array and A[x,y] denotes a particular
lane in that state. B[x,y], C[x], D[x] are 64-bit intermediate variables. The
constants r[x,y] are the rotation offisets, while RC are the round constants.
rot(W,m) is the usual bitwise rotation operation, moving bit at position i into
position i+m in lane W (i+m are done modulo 64 – note that 64 is the lane size
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for the default variant of Keccak). Δ is the linear operation intends to provide
diffiusion for the state. γ is a permutation between bits in the lanes and α is a
permutation between the whole lanes. The only non-linear operation is β which
can be treated as a layer of 5-bit Sboxes. Finally, Σ xores the round constant
with the first lane. The constants play a vital role in our analysis and it is worth
mentioning that they have the very low Hamming weight. The constants for
the first 5 rounds are: 0000000000000001, 0000000000008082, 800000000000808a,
8000000080008000, 000000000000808b (given respectively in hexadecimal using
the little-endian format).

In our work we often need to refer to a particular bit of the state and we do
that by A(x,y,z). The coordinates x, y range from 0 to 4 specifying the lane in
the state and the coordinate z ranges from 0 to 63 specifying the bit number
in the given lane. With this notation we can refer to a state by A, to a lane by
A(3,2), to a value of a single bit by A(1,4,6), or to a position of a single bit by
(3, 1, 60).

3 Rotational Distinguishers for the Keccak-f [1600]
Permutation

In our analysis we follow the relation between two states (A,A∈) which change
through subsequent steps of Keccak-f [1600] permutation. In particular we are
interested in evolution of a rotational pair of states. Let us define the rotational
pair in the context of the Keccak-f [1600] permutation.

Definition 1. A pair of two 1600-bit states (A, A∈) is called a rotational pair
when each lane in the state A∈ is created by bitwise rotation operation of the
corresponding lane in the state A. The operation moves the bit from the position
(x, y, z) to the position (x, y, z + n), where z + n is done modulo 64. The coor-
dinates x, y range from 0 to 4 specifying the lane in the state and the coordinate
z ranges from 0 to 63 specifying the bit number in the given lane. n is called a
rotational number and is the same for every lane. Thus in the rotational pair
∃(x, y, z) : A(x,y,z) = A∈

(x,y,z+n).

Remark 1. Following Definition 1, there are up to 64 possible rotational pairs
including a pair, where A and A∈ are the same (having n = 0). We will use this
fact in the preimage attack described later in the paper.

In some parts of this work we are interested in the probability that a given pair
is a rotational one or a given pair of corresponding bits preserve the rotational
relation. Two following definitions help to formally define this probability.

Definition 2. Set Sn is a set of 21600 pairs of states which are created by an
operation (some number of steps of Keccak-f [1600] or their inverse) applied
to all possible rotational pairs. (All possible means 21600 possible rotational pairs
for a chosen rotational number n.)
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Definition 3. Probability pn(x,y,z) is the probability that for a pair of states (A,
A∈) randomly selected from the set Sn we have A(x,y,z) →= A∈

(x,y,z+n).
pn(x,y,z) can be expressed as pn(x,y,z) = 1/2+δn(x,y,z). Therefore if δn(x,y,z) = 1/2, the
corresponding bits have opposite values and if δn(x,y,z) = −1/2, the corresponding
bits are equal. In case δn(x,y,z) = 0, the bits are independent (Fig. 2).

A(x,y,z+n)(x,y,z)A =Pr( )(x,y,z)p =

Operation ........input

Operation ........rotated input
A (x,y,z+n)

A (x,y,z)

n

Fig. 2. Probabilistic relation between bits in a pair of states (A, A←)

When mounting distinguishers we refer to a random permutation which now
we define formally.

Given a permutation of n-bit sequences, i.e. p : {0, 1}n √ {0, 1}n. The collec-
tion of all permutations over n bit sequences is denoted by Pn. The cardinality
of the set Pn is n!.

Definition 4. Given a probability distribution Dn that assigns the probability
1
n! for each permutation p ∈ Pn. A permutation is called random if it is chosen
according to the (uniform) distribution Dn.

For a random permutation we assume that pn(x,y,z) follows the binomial dis-
tribution B(t, s) where t is a number of trials and s is a probability of success
and is equal to 0.5. The mean for the binomial distribution equals s · t and the
standard deviation ξ =

√
(1 − s)s · t.

To distinguish Keccak-f [1600] permutation from a random permutation we
check whether the experimental results (for a chosen p(x,y,z) follow the binomial
distribution B(t, 0.5). We choose a typical 95 % confidence interval and hence
the mean from the experimental sample should be within the range 0.5t ± 2ξ.
If the mean is beyond that range we conclude that experimental results do not
follow the binomial distribution B(t, 0.5) and hence Keccak-f [1600] can be
distinguished from a random permutation.

To calculate how the probabilities change through the successive steps of the
algorithm, let us first analyze two basic bitwise operations used in Keccak.

For the following Lemmas it is assumed that each p(x,y,z) is independent. Also
we assume that if corresponding bits from (A, A∈) are equal, both combinations
(‘00’ or ‘11’) have the same probability to be the actual values. The same applies
for combinations with opposite bits (‘01’ or ‘10’).



Rotational Cryptanalysis of Round-Reduced Keccak 247

Lemma 1 (AND). Given the bitwise AND operation, its input bits a, b and
the output bit out. Then the probability

Pout =
1
2
(pa + pb − papb),

where the probabilities pa and pb are defined according to Definition 3.

Lemma 2 (XOR). Given the bitwise XOR operation, its input bits a, b and
the output bit out. Then the probability

Pout = pa + pb − 2papb,

where the probabilities pa and pb are defined according to Definition 3.

Proofs of the lemmas are given in Appendix.
There is also the bitwise NOT operation in the algorithm but it does not

affiect the probabilities. NOT flips the values of the corresponding bits A(x,y,z)

and A∈
(x,y,z+n) but their relation (or precisely speaking the probability of relation

pn(x,y,z)) remains unchanged. Also the bitwise rotation operation (denoted in the
pseudo-code as rot(W,n)) does not change the values of probabilities. It rotates
the bits in the lane so their positions (coordinates z in pn(x,y,z)) change while
their probabilities pn(x,y,z) are not changed.

Having explained how the basic bitwise operations change the rotation prob-
abilities, the analysis of the Keccak-f [1600] steps remains mostly straightfor-
ward. In the transformation Δ, there is the XOR operation only, applied a number
of times. Due to the linearity of the XOR operation, the repeated application
of Lemma 2 will give the correct results of calculated probabilities. For the per-
mutations γ and α, nothing needs to be calculated as only the positions of bits
change. In the transformation β, the two Lemma 1 and Lemma 2 are applied. The
last step is the transformation Σ, where the lane (0,0) is xored with a constant.
Xoring with ‘0’ does not change anything. However, if there is ‘1’ at position
m in the constant and a rotational number n > 0, then xoring with a constant
change the probabilities as follows

pn(0,0,m) := 1 − pn(0,0,m) and
pn(0,0,m−n) := 1 − pn(0,0,m−n)

Example 1. Let us consider two 8-bit lanes A(0,0) and A∈
(0,0) with the rotational

number n = 3. The lanes have the following binary values: A(0,0) = 00000010
and A∈

(0,0) = 00010000. Because ∃z: A(0,0,z) = A∈
(0,0,z+3), then ∃z: p3(x,y,z) = 0

(according to Definition 3). Now if both lanes are xored with 8-bit constant
C = 00000001, new values of lanes are A(0,0) = 00000011 and A∈

(0,0) = 00010001.
Rotational relation has been spoilt at two positions (0 and 5), therefore the
probabilities p3(0,0,0) and p3(0,0,5) are now equal to 1. In Keccak-f [1600] the
constants are 64-bit long but the reasoning shown above is still valid.
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3.1 4-Round Distinguishers

We build a 4-round rotational distinguisher and show that after 4 rounds, there
are some coordinates (x, y, z) and the rotational number n for which pn(x,y,z) does
not follow the binomial distribution B(t, 0.5). Figure 3 illustrates an evolution of
rotation probabilities. A single square represents a value (or a range of values)
of the probability pn(x,y,z). Usually in this paper, we refer to a lane by its two
coordinates (x, y). However here for the sake of diagram readability instead of
5 × 5 matrix of lanes there are 25 rows, each representing a single lane. For
example, a value of pn(0,1,0) is represented by the leftmost square in the sixth row
and pn(4,4,63) is represented by the rightmost square in the last (25th) row.

In the beginning, all corresponding bits from a rotational pair are equal so
∃(x, y, z) pn(x,y,z) = 0. After the first application of Σ, some probabilities pn(x,y,z)
change and in the subsequent steps these changes propagate and influence other
bits. For most rotational numbers n, there are some probabilities pn(x,y,z) deviat-
ing from 0.5 until the end of the 4th round. According to our calculations, at the
end of 4th round the probability p54(4,4,14) = 0.5625. To verify the distinguisher we
chose randomly 10000 rotational pairs and ran them on the 4-round Keccak-
f [1600]. The mean from that sample was equal to 5682 (for 5682 rotational pairs
bits had diffierent values). For a random permutation which follows the binomial
distribution B(10000, 0.5), the mean equals 5000 and the standard deviation
equals 50. Thus the mean from the experiment on the 4-round Keccak-f [1600]
should be within the range 5000 ± 2 · 50 and clearly 5682 is beyond that range.
Hence we conclude we have a distinguisher for the 4-round Keccak-f [1600]
permutation.

We could not directly extend the distinguisher to 5 rounds because after Δ
in the 5th round all pn(x,y,z) = 0.5.

3.2 Extension to 5-Round Distinguisher

To extend the distinguisher to 5 rounds, we show that correlation between some
corresponding bits from A and A∈ deviates from what is expected from random
permutation. Let us first give an observation which helps to mount the 5-round
distinguisher.

Observation 1. Consider two bits (A(x,y,z), A(x,y′,z)) from state A which are in
the same column and let us assume that we know the probability that A(x,y,z) →=
A(x,y′,z)). Our point is that Δ does not change this probability. It is because Δ
treats each bit within a column in the same way: either it flips all 5 of them or
it leaves them unchanged.

We can use this observation in our rotational analysis. The diffierence is that
now we look at relations in one pair (A(x,y,z), A∈

(x,y,z+n)) and the second pair
(A(x,y′,z), A∈

(x,y′,z+n)). Each of these two pairs has the relation between its bits
(that is bits have either the same or opposite values). We are interested whether
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p = 0

0.4 ≥ p > 0

0.5 > p > 0.4

p = 0.5

0.6 ≥ p > 0.5

1 > p > 0.6

p = 1

Round 1

Round 2

Round 3

Round 4

Fig. 3. Evolution of probabilities p53(x,y,z) through 4 rounds of Keccak-f [1600].
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the relations are the same in both pairs, specifically the probability that relations
are the same in both pairs. For a random permutation this probability has the
binomial distribution B(t, 0.5). If we can show that for the 5-round Keccak-
f [1600] experimental results do not follow this distribution, then we have a
distinguisher.

First we determine a rotational number n for which pn(x,y,z) and pn(x,y′,z)
have the highest deviation from 0.5 at the end of the 4th round. It turns out
that for n = 63, p63(2,1,37) and p63(2,2,37) is the best pair1 (p63(2,1,37) = 0.5625 and
p63(2,2,37) = 0.49219).

Now let Pc denotes a probability that in the first pair (A(x,y,z), A∈
(x,y,z+n))

and in the second pair (A(x,y′,z), A∈
(x,y′,z+n)) is the same relation. That is the

probability:

Pc = pn(x,y,z) · pn(x,y′,z) + (1 − pn(x,y,z))(1 − pn(x,y′,z))

We can calculate Pc for the chosen pair p63(2,1,37) and p63(2,2,37).

Pc = 0.5625 · 0.49219 + (1 − 0.5625)(1 − 0.49219) = 0.49902375

This is the Pc value at the beginning of the 5th round. Then we have to examine
how the steps in the algorithm change this probability. As explained in Observa-
tion 1, Δ does not change this value. Subsequent algorithm steps γ and α also do
not change Pc value, they only change a position of Pc which now refers to diffier-
ent pairs of bits (A(1,2,43), A∈

(1,2,44)) and (A(2,0,16), A∈
(2,0,17)). After that there is

β which preserves the relation between the first pair and the second with a prob-
ability equals 0.53125. The reason that this value deviates from 0.5 is that β is a
non-linear operation and precisely the bitwise AND operation which introduces
the bias. All the details on how this value is calculated are given in Appendix.
Finally, Σ does not affiect our analysis here. Therefore, to have our pairs with the
same relation at the end of the 5th round, there are two ways this event may
occur. Either the pairs enter into the 5th round with the same relation and β
does not spoil it or they enter into the 5th round with the opposite relation and
β ‘fixes’ it. Then the total probability Pc for the chosen pair at the end of the
5th round is:

Pc = 0.53125 · 0.49902375 + (1 − 0.53125) · (1 − 0.49902375) = 0.499938984

For a random permutation, Pc follows the binomial distribution with the proba-
bility of success s = 0.5 — very close to 0.499938984. Then the bias for 5-round
Keccak-f [1600] is expected to be very small. To experimentally verify and
observe the bias we need to check many rotational pairs. A suΦcient number of
rotational pairs m is calculated from Chernoffi bound [7] and can be expressed
as the following inequality:
1 An anonymous reviewer pointed that a better pair can be found, that is p31(0,0,3) and

p31(0,2,3). It improves the distinguisher by a factor of 4.
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m ⇒ 1
(Pc − 0.5)2

ln
1∈
δ
,

where δ is the probability of an error of the bound (typically set to 0.05). From
the inequality we have m ⇒ 402 332 890 ≈ 228.6 and in the experiment we checked
403 000 000 rotational pairs. The distinguisher we implemented can be described
in a few short steps:

1. Generate randomly 403 000 000 rotational pairs
2. For each pair

(a) Run 5-round Keccak-f [1600] on the state A and the state A∈;
(b) if (A(1,2,43) ⊕ A∈

(1,2,44) ⊕ A(2,0,16) ⊕ A∈
(2,0,17) = 0) then

mean := mean + 1.

The mean from the experiment was equal to 201 450 503. For a random per-
mutation which follows the binomial distribution B(403 000 000, 0.5), the mean
equals 201 500 000 and the standard deviation equals 10 037. Thus the mean
from the experiment on the 5-round Keccak-f [1600] should be within the range
201 500 000± 2 · 10 037 and 201 450 503 is beyond that range. Hence we conclude
we have a distinguisher for the 5-round Keccak-f [1600] permutation.

3.3 5-Round Distinguisher with Lower Complexity

The idea allowing us to reduce the complexity of the 5-round distinguisher is to
start not from a rotational pair of states but from the pair of states (called ‘good’
states) which after one round gives the rotational pair. First diagram in Fig. 4
shows the structure which is used to generate a pair of ‘good’ states. Now we
explain how we construct this structure. (A rotational number n is set to 63 in
the following explanation but for any other n the logic of construction stays the
same.)

On the way to the rotational pair from a pair of ‘good’ states the following
should happen:

• Σ from the first round flips the value of p63(0,0,0) and p63(0,0,1). Thus to get the
rotational pair after Σ, there have to be p63(0,0,0) = 1, p63(0,0,1) = 1 and for all
other p63(x,y,z) = 0 before Σ step.

• We want that p63(0,0,0) = 1, p63(0,0,1) = 1 and all other p63(x,y,z) = 0 are going to
β and β does not change any of p63(x,y,z). This way Σ gets the right p63(x,y,z) to
produce the rotational pair.

However β is a non-linear operation and to have the condition fulfilled, some
A(x,y,z) and A∈

(x,y,z+n) have to be fixed. To have values fixed at this point it has
to be taken under consideration at the beginning of the first round. Once we
know the relation of the states A and A∈ before β step, it is easy to go back till
the beginning of the round. It is because α, γ and Δ are all linear operations and
they change the rotational relation with probability 1. Thus we simply invert
these three operations to get the rotational relation at the beginning of the
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p = 0

p = 1

fixed value

θ, ρ, π

χ, ι

Fig. 4. 1-round transition to a rotational pair. A rotational number n set to 63.

first round. Figure 4 shows a 1-round transition to a rotational pair where exact
positions of the fixed bits are marked. The values of fixed bits which lead to this
transition are given in Appendix.

We hoped that this 1-round transition to a rotational pair would give one
more round in the distinguisher. However it is not the case and the problem is
that the constant of the second round has the Hamming weight 3 (and not 1 as
for the first round). More 1’s in the round constant introduce more pn(x,y,z) = 1
which subsequently cause more pn(x,y,z) with undesirable value of 0.5. Yet this 1-
round transition can be used to lower the complexity of the 5-round distinguisher.
Similarly as in the distinguisher from the previous section, we are interested in
the pair of pn(x,y,z) at the end of 4th round which are in the same column and
whose values deviate from 0.5. For a rotational number n set to 63, we find
an excellent pair where both p63(4,3,22) and p63(4,4,22) are equal to 0. We calculate
Pc in exactly the same way as in Sect. 3.2 but this time the total probability



Rotational Cryptanalysis of Round-Reduced Keccak 253

Pc is much higher and is equal to 0.53125. Putting this value to the Chernoffi
inequality, we calculate the number of pairs m needed to detect the bias and
obtain m ⇒ 1534 ≈ 211. Around 211 needed pairs make the complexity of the
distinguisher roughly equal 212.

Trying to win more rounds by ‘going backwards’ by 2 (or more) rounds is
problematic. Either we end up with all fixed bits at the beginning of the distin-
guisher (then in fact is not a structural distinguisher any more), or if we assume
that transitions can be probabilistic the complexity of the distinguisher becomes
much higher than the complexity of the generic ‘attack’. We also tried the app-
roach where each undesirable pn(x,y,z) = 0.5 becomes 0 with probability 2−1.
However, we could not reach anything better than 5 rounds without exceeding
the generic complexity.

4 Preimage Attacks on Round-Reduced Keccak

First, we describe the preimage attack on 3-round Keccak-512 which is based
on the rotational distinguisher given in the previous section. Then we show how
to extend the attack to 4 rounds. To have the attack working on Keccak hash
function, we have to consider padding and Keccak parameters. Let us consider
Keccak-512 which has r = 576, c = 1024 and a hash length set to 512 bits. For
the preimage attack we propose the following structure of the message. A message
length is 574 bits, where first 8 lanes (512 bits) are unknown (to be determined
by the attacker). Last 62 bits of the message are set to 1. The message is padded
with two 1’s giving a block of 576 bits. This way we fulfil a condition that all
lanes (except first 8 lanes) have all 0’s or 1’s. We would use similar constraints
on a message when attacking Keccak with diffierent parameters (including all
Keccak variants proposed as SHA-3 candidates).

4.1 3-Round Preimage Attack

The goal of our attack is to find a preimage for a given 512-bit hash h. In the
structure of the message described above we have 512 unknown bits, then we
can expect that among 2512 possible messages there is, on average, one with a
given hash. The main idea of our attack is to find a rotational counterpart of
the preimage and show that the workload for this task is below exhaustively
trying all 2512 values. Once we have a rotational counterpart of the preimage,
we simply rotate it back and get the preimage.

As stated in Remark 1, for a given state there are up to 64 possible rotational
pairs (including the identity function). There are 512 unknown preimage bits in
the state A, then the probability that we guess one of the rotational counterpart
A∈ is 2−512 · 64 = 2−506. Thus we need 2506 guesses. There is a subtlety here
which should be mentioned. There are some messages which have fewer than 64
rotations. These ‘special’ messages have a cyclic pattern. For example a message
starting with four 0’s then four 1’s, then four 0’s and so on. However, the number
of ‘special’ messages is relatively small in comparison to 2512. It can be shown
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there are 2256 such messages for our case. (See Appendix for detailed analysis.)
For simplicity, we can start our attack with checking 2256 these special messages.
Then there are still almost 2512 possibilities left, but at least we are sure that in
this poll each state gives 64 rotational pairs.

To make our attack working, at the end of the 3rd round we need some
pn(x,y,z) = 0 or pn(x,y,z) = 1 for each rotational number n. In the precomputation
phase of the attack we generate 64 diagrams (the same as shown in Fig. 3), each
with a diffierent rotational number n. From these diagrams for each rotational
number n we make a list of 10 sets of coordinates (x, y, z) for which pn(x,y,z)
equals 0 or 1 at the end of the 3rd round. Please note that we have to consider
only (x, y, z) such that 64x + 320y + z < 512 because the attacker knows only
512 bits of a hash (not the whole 1600-bit state).

Here is the main loop of the attack given in the following pseudo-code:

1. guess first 8 lanes (512 bits) of the state A∈, the other bits are fixed according
to the structure of the message given above.

2. run 3-round Keccak-f [1600] on the state A∈.
3. for n := 0 to n < 64 do

(a) candidate := true;
(b) for all 10 sets of coordinates (x, y, z) being on the list created in precom-

putation do
if (pn(x,y,z) = 0) and (A(x,y,z) →= A∈

(x,y,z+n)) then candidate := false;
if (pn(x,y,z) = 1) and (A(x,y,z) = A∈

(x,y,z+n)) then candidate := false;
(c) if (candidate = true) then rotate back the guessed state by n bits and

run 3-round Keccak-512 on it to check whether the state is the preimage
of a given hash.

The attacker compares the probabilities pn(x,y,z) from the distinguisher with
the actual values of A (the given hash) and A∈ state (a result of 3-round
Keccak-512 on a guessed state). So, for example, if pn(2,3,1) = 0, then the
bits A(2,3,1) and A∈

(2,3,1+n) have to be the same. If the bits are diffierent, then
the candidate is rejected as a potential rotational counterpart of the preimage.
(It is the point in the pseudo-code where a variable candidate becomes false.)

As said earlier, running the main loop 2506 times, we should get one rotational
counterpart of the preimage. It could be the case that our guess (candidate) of
a rotational counterpart is not rejected, but in fact it is not a rotational coun-
terpart. Let us call it a false positive candidate. There will be many such false
positive candidates and the number of them is calculated as follows. For each
rotational number n there is a list of 10 sets of (x, y, z) (created in precompu-
tation) for which pn(x,y,z) equals 0 or 1. A probability that we hit on a candidate
for which all 10 values of pn(x,y,z) are the same as on the list is 2−10. Hence there
will be around 2512/210 = 2502 false positive candidates to check.

Now let us analyze the workload of inner loops. For each candidate there
are 64 rotational numbers n, and for each n there are 10 sets of coordinates to
check. Checking one set of coordinates can be implemented with 3 bitwise XOR
operations. So the workload of inner loops is roughly 64 · 10 · 3 = 1920 XOR



Rotational Cryptanalysis of Round-Reduced Keccak 255

operations. This workload is negligibly small as in the single step Δ (in a single
round) there are 3200 bitwise XOR operations.

Summing up, the workload of the attack is 2256 (checking special messages) +
2506 (main loop) + 2502 (checking false positive candidates). Thus complexity of
the attack is roughly 2506 Keccak-512 calls, 64 times better than the exhaustive
search.

4.2 Extension to 4-Round Preimage Attack

A direct extension of the attack to 4 rounds is not possible since there are not
any pn(x,y,z) = 0 or pn(x,y,z) = 1 at the end of the 4th round of the rotational
distinguisher. (As said earlier, we need some pn(x,y,z) equals 0 or 1 for mounting
the attack.)

It is easy to notice from Fig. 3 that Σ flips some pn(0,0,z) and in consequence it
leads to undesirable pn(x,y,z) = 0.5. Then if we could limit this effiect, hopefully
some pn(x,y,z) = 0 or pn(x,y,z) = 1 would be kept till the end of the 4th round and
make the attack work for 4 rounds. To realize this, we do the following. We trace
the rotational relations between A and A∈ (as in previous sections), but this
time A∈ is run on the modified version of Keccak-f [1600] — Keccak-f [1600]
without Σ. Such a modification leads to the following observation.

Observation 2. In Example 1, Sect. 3 it was shown that application of Σ to A
and A∈ states flips the value pn(x,y,z) for some triples (x, y, z). Our point is that
if we do not apply Σ to an A∈ state, there will be half as many flips. (It is not a
general rule but for constants with very low Hamming weight there are roughly
half as many flips.) Let us see a simple example.

Example 2. Let us consider two 8-bit lanes A(0,0) and A∈
(0,0) with the rotational

number n = 3. The lanes have the following binary values: A(0,0) = 00000010
and A∈

(0,0) = 00010000. Now A(0,0) is xored with 8-bit constant C = 00000001
and A∈

(0,0) is left without changes. Then we have A(0,0) = 00000011 and the
unchanged A∈

(0,0) = 00010000. Therefore a rotational relation has been spoilt at
only one position so now p3(0,0,0) is equal to 1. In Keccak-f [1600] the constants
are 64-bit long but the reasoning shown here stays the same.

Now is the key point. As stated earlier, fewer flips lead to fewer pn(x,y,z) with
undesirable 0.5 value. In consequence, now in the 4th round there are 9 triples
(x, y, z) for which pn(x,y,z) = 0 or pn(x,y,z) = 1. These triples fulfil the condition
64x + 320y + z < 512 as the attacker is given only 512 bits of a hash. In fact
pn(x,y,z) = 0 or pn(x,y,z) = 1 are not at the end of the 4th round but before β in the
4th round. (Step β destroys these desirable probabilities.) Fortunately, we can
invert Σ and β from the given hash as β operates on the rows independently and
can be inverted on a row-by-row basis. In Appendix we give a diagram showing
how the probabilities pn(x,y,z) evolve and propagate in the modified version of
Keccak-f [1600] without Σ.
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In precomputation phase we generate the list of sets of coordinates in the
very similar way as described for the 3-round attack. The only diffierence is that
now we use the diagram dedicated to the modified version of Keccak-f [1600]
(without Σ). The diagram and exact positions where pn(x,y,z) equals 0 or 1 is given
in Appendix. Also in precomputation we invert Σ and β of the 4th round from
the given hash (since these desirable pn(x,y,z) are before β in the 4th round, β

destroys them). The result of the inversion is now our state A to which we refer
in the pseudo-code of the attack.

Here is the main loop of the attack given in the following pseudo-code:

1. guess first 8 lanes (512 bits) of the state A∈, the other bits are fixed according
to the structure of the message given above.

2. run 4-round modified Keccak-f [1600] on the state A∈.
3. for n := 0 to n < 64 do

(a) candidate := true;
(b) for all 9 sets of coordinates (x, y, z) being on the list created in precom-

putation do
if (pn(x,y,z) = 0) and (A(x,y,z) →= A∈

(x,y,z+n)) then candidate := false;
if (pn(x,y,z) = 1) and (A(x,y,z) = A∈

(x,y,z+n)) then candidate := false;
(c) if (candidate = true) then rotate back the guessed state by n bits and

run 4-round Keccak-512 on it to check whether the state is the preimage
of a given hash.

The main loop of the 4-round preimage attack on Keccak-512 is very similar
to the 3-round variant, they diffier only in a few places. In Step 2 of the pseudo-
code instead of running a normal, full 4-round Keccak-f [1600], we run the
modified version without Σ (in all 4 rounds) up to β in the 4th round. Finally,
there will two times more false positive candidates as there are only 9 triples
(x, y, z) for which pn(x,y,z) = 0 or pn(x,y,z) = 1. The complexity of the attack stays
the same as in the 3-round attack. That is 2256 (checking special messages) +
2506 (main loop) + 2503 (checking false positive candidates), which is amounts
roughly to 2506 evaluations of the 4-round Keccak-512.

For Keccak-512, the preimage attack is better than the exhaustive search by
a factor of 26. The same gain can be achieved in the attack on Keccak-384. Our
preimage attack works also on Keccak-256 and Keccak-224 but the gain is
slightly smaller for these variants. The reason is that there are more false positive
candidates to check. It is because an attacker knows fewer bits of a hash (a hash
is shorter in these variants) and hence there are fewer triples (x, y, z) (fewer
than in Keccak-512 and Keccak-384) for which pn(x,y,z) = 0 or pn(x,y,z) = 1.
Consequently, the complexities of the preimage attacks on Keccak-224 and
Keccak-256 are 2221 and 2252, respectively.

Please also note that if we try to attack Keccak variant with higher bitrate
r (e.g. a variant with r = 600, c = 1000, and a hash length equals 512), the
claimed security for this variant is 2c/2 = 2500. In such a case our attack would
not be actually an attack as its complexity is higher than the claimed security
provided by designers.
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We could not extend the attack to 5 or more rounds because in the 5th round
all pn(x,y,z) = 0.5, while for the attack we need some pn(x,y,z) = 0 or pn(x,y,z) = 1.

5 Conclusion

In this paper we have presented the rotational distinguisher for Keccak-f [1600]
permutation — the main building block of the Keccak hash function. The dis-
tinguisher has been enhanced with the correlation analysis, allowing us to reach
5 rounds with the complexity of 212. We have implemented and verified the
distinguisher and experimental results have been consistent with the theoretical
model. A family of 4-round distinguishers helps us to mount the 4-round preim-
age attack on Keccak-512 variant with the complexity of 2506. All the presented
attacks are valid for all the Keccak variants submitted as SHA-3 candidates.
As future work, it would be interesting to investigate whether the diffierential
rebound attack could improve the rotational distinguishers. These two types of
analysis (rebound and rotational) were combined in the attacks on Skein hash
function [13].
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Appendix

Proof of Lemma 1

Analyzing the AND operation we consider two pairs of input bits. A pair from an
A state and its counterpart from an A∈ state. There are 16 possible combinations
of pairs and we group them in fours. We assume that all pairs of bits inside the
groups are uniformly distributed. It is shown in Fig. 5. Probabilities of getting the
given group are also shown. The most inner circles represents pair of output bits
(one bit from an A state and its counterpart from an A∈ state). It is clear from
Fig. 5 that four paths lead to a circle with output bits having opposite values
(pairs (0,1) and (1,0)). Actually, one path has probability 0 thus a calculation of
Pout (a probability that output bits have opposite values) comes down to adding
probabilities of the three paths. We have:

Pout = papb · 1
2

+ (1 − pa)pb · 1
2

+ (1 − pb)pa · 1
2

=
1
2
(pa + pb − papb)
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Fig. 5. All possible ‘paths’ for the bitwise AND operation for rotational pairs of bits.

Proof of Lemma 2

Proof of Lemma 2 is the same as for Lemma 1. The only diffierence is that now
there are only two paths leading to a circle with output bits having opposite
values. It is shown in Fig. 6. We have:

Pout = (1 − pa)pb · 1 + (1 − pb)pa · 1 = pa + pb − 2papb
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Fig. 6. All possible ‘paths’ for the bitwise XOR operation for rotational pairs of bits.
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Probability of Relation Preservation by χ

We are given two pairs of bits (A(1,2,43), A∈
(1,2,44)) and (A(2,0,16), A∈

(2,0,17)). Each
of these two pairs has the relation between its bits (that is bits have either the
same or opposite values). We can also look at relation between pairs and there
are two possibilities: either the same relation in both pairs or diffierent relation in
each pair. For example a pair (0,1) and a pair (1,0) means that relations in both
pairs is the same (bits are diffierent in pairs). We are interested in a probability
that β preserves the relation between pairs. β changes the values of bits in the
following way.

A(1,2,43) := A(1,2,43) XOR (A(2,2,43) AND A(3,2,43))
A∈

(1,2,44) := A∈
(1,2,44) XOR (A∈

(2,2,44) AND A∈
(3,2,44))

}
first rotational pair

A(2,0,16) := A(2,0,16) XOR (A(3,0,16) AND A(4,0,16))
A∈

(2,0,17) := A∈
(2,0,17) XOR (A∈

(3,0,17) AND A∈
(4,0,17))

}
second rotational pair

To keep the relation between bits A(1,2,43) and A∈
(1,2,44) from the first pair,

the result of the AND operation has to be the same in both equations from the
first pair. The probability of such event can be calculated from Fig. 5. We add
probabilities (paths) leading to the left, inner circle. (This circle represents the
output bits with the same values.) Then a probability is:

P = (1 − pa)(1 − pb) · 1 + papb · 1
2

+ (1 − pa)pb · 1
2

+ (1 − pb)pa · 1
2

In the 5th round, after Δ all pn(x,y,z) = 1
2 , then a numerical value of p is:

P = (1 − 1
2
)(1 − 1

2
)1 +

1
2

1
2

1
2

+ (1 − 1
2
)
1
2

1
2

+ (1 − 1
2
)
1
2

1
2

=
5
8

For the second rotational pair calculations are exactly the same with the
result of 5

8 . The event that β preserves the relation between the first and second
pair can happen either when the relation in each pair is preserved or the relation
in each pair is spoilt. Thus the probability of this event is equal to:

Pevent =
5
8

· 5
8

+ (1 − 5
8
)(1 − 5

8
) =

34
64

= 0.53125

Values of Fixed Bits in the Distinguisher from Sect. 3.3

Bits given in tables below are set to 1. All other fixed bits which are not listed
below (but are marked as fixed in Fig. 4) are set to 0.
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Bit Value

A(4,4,50) 1
A(4,4,51) 1
A←

(4,4,51) 1

A←
(0,2,21) 1

A←
(0,3,21) 1

A←
(0,0,22) 1

A←
(0,2,22) 1

A←
(0,3,22) 1

A←
(0,4,22) 1

A←
(2,0,20) 1

A←
(2,3,20) 1

A←
(2,2,21) 1

Bit Value

A←
(2,3,21) 1

A←
(3,2,51) 1

A←
(3,3,51) 1

A←
(3,0,50) 1

A←
(3,3,50) 1

A←
(3,0,52) 1

A←
(3,2,52) 1

A←
(3,3,52) 1

A←
(3,4,52) 1

A←
(0,2,51) 1

A←
(0,3,51) 1

As a consequence of such settings, after α some bits have also fixed (known)
values. Specifically, A(1,0,0) and A(1,0,1) with their rotational counterparts are
equal to 0. Also A(4,0,0) and A(4,0,1) with their rotational counterparts are fixed,
equal to 1. With this known values we are sure that the non-linear β changes
the states into the desirable rotational relation, as shown in Fig. 4.

Calculation of a Number of Special Messages

According to Definition 1 and Remark 1, for a given state A there are up to
64 possible rotational pairs (including an identity function). There are some
messages which have fewer than 64 rotations. These special messages must have
a cyclic pattern (e.g. alternating four 1’s and four 0’s) in all lanes. All 0’s or all
1’s in the given lane are also considered cyclic here. Please note that if at least
one lane in a state A is not cyclic then there are exactly 64 possible rotational
pairs (A, A∈). It is because this non-cyclic lane is distinct for each rotational
number n and consequently the whole A∈ will be distinct.

For a 64-bit lane there are 232 cyclic patterns. In our preimage attack there
are 8 unknown lanes in the A state (remaining lanes are fixed and cyclic), so the
number of combinations of cyclic patterns in these 8 lanes is: 232 · 232 . . . · 232︸ ︷︷ ︸

8 factors

=

2256. And hence the number of special messages is 2256.

Evolution of Probabilities pn
(x,y,z) in the Modified KECCAK Variant

Figure 7 shows how probabilities pn(x,y,z) change in the modified Keccak variant
(without Σ). The variant was used in 4-round preimage attack. Please note that
in the 4th round, after Δ, there are still pn(x,y,z) = 0 or pn(x,y,z) = 1 which is the
key observation for the 4-round preimage attack.
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p = 0

0.4 ≥ p > 0

0.5 > p > 0.4

p = 0.5

0.6 ≥ p > 0.5

1 > p > 0.6

p = 1

Round 1

Round 2

Round 3

Round 4 (only θ)

Fig. 7. Evolution of probabilities pn(x,y,z) in the modified Keccak variant.
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Abstract. The hash function Skein is one of 5 finalists of the NIST
SHA-3 competition. It is based on the block cipher Threefish which only
uses three primitive operations: modular addition, rotation and bitwise
XOR (ARX). This paper proposes a free-start partial-collision attack
on round-reduced Skein-256 by combing the rebound attack with the
modular differential techniques. The main idea of our attack is to con-
nect two short differential paths into a long one with another differential
characteristic that is complicated. Following our path, we give a free-start
partial-collision attack on Skein-256 reduced to 32 rounds with Hamming
distance 50 and complexity about 285 hash computations. In particular,
we provide practical near-collision examples for Skein-256 reduced to 24
rounds and 28 rounds in the fixed tweaks and choosing tweaks setting
separately.

As far as we know, this is the first construction of a non-linear dif-
ferential path for Skein which can lead to significantly improvement over
previous analysis.

Keywords: Hash function · Near-collision · SHA-3 · Skein

1 Introduction

Cryptographic hash functions are very important in modern cryptology which
provide integrity, authentication, etc. In 2005, as the most widely used hash
functions MD5 and SHA-1 were broken by Wang et al. [15,16], the status of the
hash functions becomes alarming. To deal with the undesirable situation, NIST
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started a hash competition for a new hash standard (SHA-3) in 2007. A total of
64 hash function proposals were submitted, and 51 of them advanced to the first
round. After more than one-year’s evaluation, 14 submissions have entered into
the second round. By 2010, the competition came into the final round, and 5
out of the second round candidates were selected as finalists. Now NIST chooses
Keccak [2] as the SHA-3 winner.

Skein [3] is one of the five finalists, which is a ARX-type hash function (based
on modular addition, rotation and exclusive-OR). The core of Skein is a tweak-
able block cipher called Threefish, which is proposed with 256-, 512-, 1024-bit
block sizes and 72, 72, 80 rounds respectively. During the competition, Skein has
been attracting the attention of the cryptanalysts, and there are several cryptan-
alytic results on the security of the compression function of Skein. At Asiacrypt
2009 [1], Aumasson et al. proposed a free-start near-collision attack for 17-round
Skein-512 compression function with the old constants. At CANS 2010 [14], Su
et al. presented free-start near-collisions of Skein-256/-512 reduced to 20 rounds
and Skein-1024 reduced to 24 rounds. At Asiacrypt 2010 [9], Khovratovich et al.
combined the rotational attack with the rebound attack, and gave distinguishers
for 53-round Skein-256 and 57-round Skein-512 respectively. When the algorithm
was getting into the second round, the authors had changed the rotation con-
stants to resist the rotational attack [8,9]. For the new version of Skein, Leurent
and Roy [12] gave a boomerang distinguisher for 32-round compression func-
tion of Skein-256 and Yu et al. [17] provided a boomerang distinguisher for 36-
round Skein-512. At FSE 2012 [10], Khovratovich et al. gave a pseudo-preimage
attack on 22-round Skein-512 hash function and 37-round Skein-512 compression
function by the biclique method, and their complexities of the attack are only
marginally lower than exhaustive search.

Rebound attack for the ARX-type hash function. The rebound attack
was presented by Mendel et al. at FSE 2009 [5] during the SHA-3 evaluation, it
is used to analyze the hash functions based on the AES-like structure. Series of
hash functions such as Whirlpool, Grøstl and JH [5–7,11] are vulnerable to the
rebound attack. Its basic strategy is to match two short truncated differentials
in the middle using freedom degrees of the chaining values and messages. As
the matching part is the S-box layer, which has a good distribution for the
input and output differences, i.e., the average probability for each input/output
difference pair to pass the S-box is 1/2, one can search the differentials that can
be connected with high probability.

However, when applying the rebound attack to the ARX-type hash functions,
we have to find two specific differentials that can be matched. Furthermore, there
aren’t S-boxes in the connecting layer, and the distribution of the differences by
applying the modular addition, rotation and XOR operations is harder to decided
than that of S-boxes. As a result, it is far more difficult to apply the rebound
attack to the ARX-type hash functions by connecting two differential paths into
a long one.

Our contribution. This paper focuses on the cryptanalysis of Skein-256 com-
pression function. We attempt to apply the rebound-type idea to the differential
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Table 1. The main results of this paper.

Type Rounds Hamming distance Complexity

Fixed-tweak free-start near-collision 24 (4–28) 2 226

Free-tweak free-start near-collision 28 (0–28) 34 244

Free-tweak free-start near-collision 28 (4–32) 28 241

Free-tweak free-start partial-collision 32 (0–32) 50 285

attack on the ARX-type algorithms. We first find two short differential paths by
the modular differential techniques, then connect them to get a 32-round differ-
ential path. Finally, by applying the message modification techniques, we give a
partial-collision attack on 32-round Skein-256 compression function. In order to
verify the validity of our differential path, we provide examples of near-collision
which follow our differential path for Skein-256 reduced to 24 and 28 rounds.
The main results of this paper are shown in Table 1.

The rest of the paper is organized as follows. In Sect. 2, we give some notations
and a brief description of Skein-256 compression function. The main idea of our
attack is described in Sect. 3. In Sect. 4, we demonstrate the techniques of our
attack in detail. Finally, a conclusion is given in Sect. 5.

2 Preliminaries

In this section, we first give some notations used through the paper, and then
describe the compression function of Skein-256 briefly.

2.1 Notations

1. ⊕: exclusive-OR (XOR)
2. + and −: addition and subtraction modular 264

3. Δa: the XOR difference of a and a∈

4. Δ+a: the modular subtraction difference of a and a∈ (modular 264)
5. ≪: rotation to the left
6. ai,j : the j-th bit of ai, where ai is a 64-bit word and ai,64 is the most significant

bit
7. ai,j−k: the abbreviation of ai,j , ai,j+1,...,ai,k

2.2 Near-Collision and Partial-Collision

The Handbook of Applied Cryptography [4] defines near-collision resistance by

Near-collision resistance. Let h be a hash function, it is hard to find any two
inputs M , M ∈ such that h(M) and h(M ∈) differ in a small number of bits.

More specifically, h is a hash function that takes an n-bit initial value IV and
an m-bit message block M as inputs, and outputs another n-bit chaining value.
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A k-bit (k < n) near-collision on h is obtained whenever two messages M1 and
M2 satisfy:

HW (h(M1, IV ) ⊕ h(M2, IV )) = n − k,

where HW denotes the Hamming distance. Usually, we comprehend the “small
number” as n − k ∃ n/3.

– For a generic attack, it is expected to have a k-bit near-collision with com-
plexity about

√
2n/Ck

n. For n = 256 and k = 206, the complexity is only
approximate to 239 hash computations; for n = 256 and k = 28, the complex-
ity is about 266.5.

– However, if we fix the k-bit colliding positions, the complexity for finding a
near-collision with Hamming distance n − k is about 2k/2 by the birthday
paradox. Previous works [13] have used the terms partial-collision for this
notion. For n = 256 and k = 206, the complexity to find a 206-bit partial-
collision is about 2103.

– When we fix the k-bit colliding positions and keep the differences in the other
positions being non-zero (actually, in this case the output difference is a given
difference with k-bit zeroes), the complexity for finding a k-bit near-collision
is about 2n/2 by the birthday paradox. For n = 256, the complexity is 2128 no
matter what the value of k is.

– Furthermore, when input difference is also fixed, the generic complexity would
be 2n. In this paper, our attack belong to this case.

2.3 Brief Description of the Compression Function of Skein-256

The compression function of Skein is defined as H = E(IV, T,M) ⊕ M , where
E(IV, T,M) is the block cipher Threefish, M is the message, IV is the initial
value and T is the tweak value. Here E takes the message as plaintext and the
IV as master key. The word size which Skein operates on is 64 bits. For Skein-
256, both M and IV are 256 bits, and the length of T is 128 bits. Let us denote
hi = (ai, bi, ci, di) as the output value of the i-th round, where ai, bi, ci and
di are 64-bit words. Let h0 = M be the plaintext, the encryption procedure of
Threefish-256 is carried out for i = 1 to 72 as follows.

If (i − 1) mod 4 = 0, first compute Ai−1 = ai−1 + K(i−1)/4,a, Bi−1 = bi−1 +
K(i−1)/4,b, Ci−1 = ci−1+K(i−1)/4,c and Di−1 = di−1+K(i−1)/4,d, where K(i−1)/4

are round subkeys which get involved every four rounds. Then carry out:

ai = Ai−1 + Bi−1, di = ai ⊕ (Bi−1 ≪ Ri,1),
ci = Ci−1 + Di−1, bi = ci ⊕ (Di−1 ≪ Ri,2),

where Ri,1 and Ri,2 are rotation constants which can be found in [3]. For the
sake of convenience, we denote hi−1 = (Ai−1, Bi−1, Ci−1,Di−1).

If (i − 1) mod 4 →= 0, compute:

ai = ai−1 + bi−1, di = ai ⊕ (bi−1 ≪ Ri,1),
ci = ci−1 + di−1, bi = ci ⊕ (di−1 ≪ Ri,2).
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After the last round, the ciphertext is computed as h72.
The key schedule starts with the master key K = (k0, k1, k2, k3) and the

tweak value T = (t0, t1). First we compute:

k4 := 0x1bd11bdaa9fc1a22 ⊕
3⊕

i=0

ki and t2 := t0 ⊕ t1.

Then the subkeys are derived for s = 0 to 18:

Ks,a := k(s+0) mod 5

Ks,b := k(s+1) mod 5 + ts mod 3

Ks,c := k(s+2) mod 5 + t(s+1) mod 3

Ks,d := k(s+3) mod 5 + s

3 Outline of Our Attack

Skein is one of the SHA-3 finalists which uses the operations modular addition,
rotation and XOR. Because of the strong diffusion after several rounds, only
short differential paths can be found for Skein. An easy way to get short differ-
ential path is to find a short local collision in the middle, and then extend the
local collision forward and backward, see the left part of Fig. 1. After finding a
differential path of this type, we try to modify the message of the first several
rounds to enhance the efficiency. For Skein, by choosing proper differences in
the messages, IVs and tweak values, we can get a local collision for 8 rounds.
Then we can get differential paths with more rounds by extending the 8-round
local collision forward and backward. But longer differential path is not easy
to search as a single bit difference will propagate to a heavy weight difference
after 4 rounds. A natural idea is raised to connect two short differential paths
into a long one, and then cancel a vast number of conditions by using message
modification techniques in the connecting layer, see the right part of Fig. 1. The
most expensive part of this strategy is the connection of the two differential
paths, which is described in Sect. 4. To solve this problem, we use the proper-
ties of both XOR difference and modular subtraction difference, and choose an
optimal position for the connection. Then by the bit-carry technique (which is
the key technique for the connection), we find a 8-round non-linear differential
to connect two short differential paths with 16 and 8 rounds respectively. Conse-
quently, a differential path with 32 rounds is constructed, which can be used to
mount near-collision attack on 32-round Skein-256 by further applying message
modification techniques to reduce the conditions. The details of our attack can
be found in Sect. 4.

Actually, our method can be applied to the ARX-type hash functions that do
not have complex message extensions, and the message words or IVs get involved
every round (or every several rounds).
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4 Partial Collisions for 32-Round Compression Function
of Skein-256

As mentioned above, the basic idea of our near-collision attack is to connect
two short differential paths into a long one. To achieve this purpose, there are
several steps to be carried out. Firstly, proper difference in (K,T ) should be
chosen, which is the starting point of our attack. Secondly, we connect two short
differential paths by the non-linear expansion in the middle rounds, and derive
the sufficient conditions to guarantee the differential path to hold. Thirdly, the
vast number of conditions in the intermediate rounds should be corrected by
modifying the chaining variables, the key K and the tweak value T . Finally, after
the message/IV modification, we search the remaining conditions by divide and
conquer technique.

4.1 Finding Two Short Differential Paths

The differences of the master key K = (k0, k1, k2, k3) and tweak value T = (t0, t1)
selected for our differential path are Δk3 = 263 and Δt0 = 263. According
to the key schedule, the differences for the subkey Ki = (Ki,a,Ki,b,Ki,c,Ki,d)
(0 ∃ i ∃ 8) are shown in Table 2.

The first short differential path we used consists of 16 rounds. Because ΔK1 =
(0, 0, 0, 263) and ΔK2 = (0, 0, 0, 0), the intermediate values are selected to meet
Δh4 = (0, 0, 0, 263), resulting in an 8-round path with zero differential from
rounds 5 to 12. By extending the difference Δh4 in the backward direction for 4
rounds and the difference Δh12 = ΔK3 in the forward direction for 4 rounds by
the linear expansion, a 16-round differential path with high probability can be
obtained.

The second differential path is shorter than the first one, as the number of
zero-difference rounds in it is only 4. We choose Δh24 as (0, 263, 263, 263) to com-
pensate the difference ΔK6 = (0, 263, 263, 263), which results in zero difference in
rounds 25 to 28. As a consequence, a 8-round differential path with high proba-
bility can be obtained by linearly expanding the difference Δh28 = ΔK7 in the
forward direction for 4 rounds.

Fig. 1. Two attack models
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Table 2. The subkey differences of 32-round Skein-256, given a difference δ = 263 in
k3 and t0.

i Rd Ki,a Ki,b Ki,c Ki,d

0 0 k0 k1 + t0 k2 + t1 k3

0 δ 0 δ

1 4 k1 k2 + t1 k3 + t2 k4 + 1

0 0 0 δ

2 8 k2 k3 + t2 k4 + t0 k0 + 2

0 0 0 0

3 12 k3 k4 + t0 k0 + t1 k1 + 3

δ 0 0 0

4 16 k4 k0 + t1 k1 + t2 k2 + 4

δ 0 δ 0

5 20 k0 k1 + t2 k2 + t0 k3 + 5

0 δ δ δ

6 24 k1 k2 + t0 k3 + t1 k4 + 6

0 δ δ δ

7 28 k2 k3 + t1 k4 + t2 k0 + 7

0 δ 0 0

8 32 k3 k4 + t2 k0 + t0 k1 + 8

δ 0 δ 0

4.2 Connecting the Two Short Differential Paths

The most difficult work in this paper is to connect the two short differential
paths from rounds 16 to 24 by the non-linear difference expansion. We choose
the 20-th round as the connecting point; the reason is that the 20-th round is the
place where the subkeys is involved (in the form of integer modular addition),
if we connect the two differential paths in this round, the only requirement
is that the integer modular substraction differences Δ+h20 computed by the
forward direction and the Δ+h20 computed by the backward direction should
satisfy the equation Δ+h20 = Δ+h20 + Δ+K5. Otherwise, if we connect the two
differential paths in the other rounds in which the subkeys do not intervene, both
the integer modular substraction differences and the XOR differences computed
by two directions must be equal. This will face more difficulties for connecting.

For example, let Δai = 0x37 be the XOR difference of round i computed
in the forward direction, and ΔAi = 0x11 be the difference computed in the
backward direction; the i-th round is the round where we want to match Δai

and ΔAi. If i = 20, it is easy to know that the difference Δ+ai equals to Δ+Ai

as long as Ai,1 = ai,1⊕1, ai,1 = ai,2 = ai+3⊕1, Ai,5 = ai,5⊕1 and ai,5 = ai,6⊕1.
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Hence Δai and ΔAi can be connected with probability 2−5. Otherwise, if i = 19,
it is obvious that Δai and ΔAi can not be connected because Δai →= ΔAi.

The major technique to connect two differential paths is the bit-carry tech-
nique; hundreds of bit equations need to be handled during the process of con-
nection. Now we describe how to connect the two differential paths briefly.

For 16 < i ∃ 20, firstly we compute the modular difference Δ+ai+1 =
Δ+ai + Δ+bi and Δ+ci+1 = Δ+ci + Δ+di, then we convert the modular dif-
ferences into XOR differences so that Δai and Δci have the lowest Hamming
weights respectively. Finally, the XOR differences Δbi+1 and Δdi+1 are com-
puted as Δbi+1 = Δci+1 ⊕ (Δdi ≪ Ri,2) and Δdi+1 = Δai+1 ⊕ (Δbi ≪ Ri,1).
In the same way, we can compute Δh24 to Δh20 by the backward direction so
that the Hamming weights of Δai and Δci (20 ∃ i ∃ 24) are as low as possible
(see Table 2).

What we have to do next is to match Δh20 and Δh20 so that their integer
modular substraction difference is equal to Δ+K5. Generally, we first select
Δ+a20 and Δ+c20 as the targets, and adjust the differences Δ+A20 and Δ+C20

to match Δ+a20 and Δ+c20 respectively by making a decision for the differences
of Δh20 to Δh24. Then we regard ΔB20 and ΔD20 as the targets again, and
adjust the differences Δb20 and Δd20 to be consistent with ΔB20 and ΔD20 by
modifying the differences Δh16 to Δh20.

In the following, we demonstrate how to match the modular substraction
differences of a20 and A20 as an example. Here Δ+a20 is the target, hence we
would like to adjust the difference Δ+A20 by modifying the differences Δa21,
Δd21, Δb22, Δa23 and Δd23 so that Δ+a20 = Δ+A20. From Table 3, we can
express the modular differences of Δa20 and ΔA20 as

Δ+a20 = ±20 ± 23 ± 28 ± 212 ± 214 + ....

Δ+A20 = ±20 ± 22 ± 24 ± 26 ± 212 ± 224 + ...

In order to match the 13 least significant bits of Δ+a20 and Δ+A20, we should
eliminate the differences ±22 ± 24 ± 26 and produce the differences ±23 ± 28

for Δ+A20. What has to be done is extending the bit differences in bold in
Table 3. We first extend the differences ΔB20,1, ΔB20,3, ΔB20,5 and ΔB20,7

to be ΔB20,1−2, ΔB20,3−4, ΔB20,5−6 and ΔB20,7−9, respectively. And then, to
obtain these extensions, differences Δd21,26, Δb22,38 and Δa23,32 are modified
for ΔB20,1; Δa21,28 is modified for ΔB20,3; d21,30 and c22,42 are modified for
ΔB20,5. In Table 3, we show the bit differences after extension in the brackets.
Because A20 = a21 − B20, we can produce the desired differences ±23 ± 28 for
A20 by further setting some conditions on B20 as follows:

B20,1 = B20,2 = B20,3 ⊕ 1,

B20,4 = a20,4,

B20,4 = B20,5 = B20,6 = B20,7 = B20,8 ⊕ 1,

B20,9 = a20,9 ⊕ 1.
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Table 3. Two differential paths for rounds 16 ∼ 20 and rounds 24 ∼ 20.

Round shifts Δai Δbi Δci Δdi

16 32, 32 12, 22, 64 6, 12, 26, 38, 44, 58 6, 12, 58, 64 12, 22, 54

17 14, 16 6, 22, 26, 38, 44, 58,
64

22, 28, 38, 54, 58, 64 6, 22, 54, 58, 64 6, 8, 20, 22, 38, 40,
44, 52, 64

18 52, 57 6, 26, 28, 44, 54 1, 8, 13, 15, 20, 31,
33, 37, 38, 40, 44,
45, 52, 54, 57, 58, 63

8, 20, 38, 40, 44, 52,
54, 58

6, 10, 16, 28, 42, 44,
46, 52, 54

19 23, 40 1, 6, 8, 13, 15, 20,
26, 28, 31, 33, 37,
40, 52, 57, 63

4, 6, 8, 10, 16, 18,
22, 30, 38, 40, 42,
45, 46, 50, 56, 58

6, 8, 10, 16, 20, 28,
38, 40, 42, 45, 58

1, 3, 4, 6, 8, 11, 15,
16, 17, 20, 22, 24,
26, 28, 33, 36, 37,
38, 40, 43, 52, 54,
56, 57, 60, 61, 63

20 5, 37 1, 4, 9, 13, 15, 18,
20, 22, 26, 28, 30,
33, 37, 42, 45, 50,
52, 56, 63

3, 6, 8, 9, 11, 13, 15,
16, 22, 24, 25, 26,
27, 29, 30, 34, 38,
40, 43, 48, 53, 56,
57, 59, 60, 61

1, 3, 8, 10, 15, 22,
24, 26, 33, 36, 41,
45, 52, 54, 56, 60, 63

1, 4, 11, 18, 20, 21,
22, 23, 26, 27, 28,
30, 31, 33, 35, 37,
42, 43, 47, 51, 52,
55, 56, 61

+ΔK5 0 263 263 263

20 5, 37 1, 3, 5, 7, 13, 25, 27,
31, 35, 37, 50, 56, 60

1(1-2), 3(3-4), 5(5-
6), 7(7-9), 13, 25,
27, 31, 35, 37

9, 17, 19, 23, 26, 29,
41, 52, 57, 59, 61, 64

9, 17, 19, 23, 27, 29,
31, 41, 57, 59, 61

21 25, 33 28(28-29), 32 (32-
34), 38, 50, 56, 60

28, 50, 56, 60 10, 26, 30, 42, 52,
62, 64

26(26-27), 30(30-
31), 52, 62

22 46, 12 32, 38 38(38-39) 10, 42(42-43), 64 10, 42

23 58, 22 32(32-33) 32 64 0

24 32, 32 0 64 64 64

The entries of this Table indicate the positions of the difference bits of hi.

Similarly, we can also match the other differences of a20 and A20. That is,
once an inconsistency occurs, we have to jump back to an earlier stage and make
a different decision about the difference; this might result in changes of stages
that are even earlier. Note that in this course, the following two requirements
have to be considered.

1. For Skein-256, the subkeys (the IVs) intervene in the chaining values every
4 rounds, hence the degrees of freedom of four rounds between two subkeys
are 256. As a result, the conditions deduced from guaranteeing the 4-round
differential path to hold must be less than 256.

2. The conditions deduced from the 32-round differential path should be less
than 640, because the degrees of the freedom of the M , K and T are 640.

The 32-round near-collision differential path is shown in Table 4. In Table 4,
we use two kinds of difference: the XOR difference and the integer modular
substraction difference. In the round i (the round after adding the subkey, i =
0, 4, 8, ..., 28), we express the difference in the positions a and c with the integer
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modular substraction difference, i.e., Δ+Ai = Δ+ai + Δ+Ki,a and Δ+Ci =
Δ+ci + Δ+Ki,c, because we only use the integer modular addition properties of
Ai and Ci when computing the chaining value hi+1). In the other positions of
the differential path, we use the XOR difference (see Table 4).

Corresponding to the differential path in Table 4, we can compute the suffi-
cient conditions in h20 √ h0 and h20 √ h32, which are shown in Tables 7 and 8
respectively.

4.3 Message/IV Modification

In order to fulfill the Message/IV modification, we replace the conditions bi,j ,
di,j (16 ∃ i ∃ 19, 1 ∃ j ∃ 32) from the round 19 down to round 16 in Table 7 with

Table 4. Differential path used for the partial-collision of 32-round compression func-
tion of Skein-256, with a probability of 2−89 after the message/IV modification.

Round Δai Δbi Δci Δdi

0 0500900a50210840 8100100210210800 0040040082044204 8040000084004204

0:+K0 Δ+a0 0100100210210800 Δ+c0 0040000084004204

1 0400800840000040 0000800040000040 0000040002040000 0000040002000000

2 0400000800000000 0000000800000000 0000000000040000 0000000000040000

3 0400000000000000 0400000000000000 0000000000000000 0000000000000000

4 0000000000000000 0000000000000000 0000000000000000 8000000000000000

4:+K1 0000000000000000 0000000000000000 0000000000000000 0000000000000000

5 − 12 0000000000000000 0000000000000000 0000000000000000 0000000000000000

12:+K3 8000000000000000 0000000000000000 0000000000000000 0000000000000000

13 8000000000000000 0000000000000000 0000000000000000 8000000000000000

14 8000000000000000 8000000000000800 8000000000000000 8000000000000000

15 0000000000000800 0000000000200000 0000000000000000 0200000000000820

16 0000000000200800 0600082002000820 0600000000000820 0020000000200800

16:+K4 Δ+a16 + 263 0600182006000820 Δ+c16 + 263 0020000000600800

17 8600182002200020 8260006008200000 8260000000200020 800819a0002801a0

18 08a0080006000020 4328099340d85f83 022819a000d80f80 08a82e0000008220

19 7898108fc7e9d4a1 0a4230a8a86980a0 0ac010a0004780a0 b1387ca0064840a5

20 d146001565005501 800001b6251fd503 4908150002104103 9900150068304100

20:+K5 Δ+a20 0000019fe700f703 Δ+c20 + 263 39001f01ebf3ff00

21 dfc601eff8000000 f7fe000008000000 2019fe007a003e03 e0080001fe000003

22 00003fff80000000 000001e000000000 80001e0000003e00 0000020000000200

23 0000000780000000 0000000080000000 8000000000000000 0000000000000000

24 0000000000000000 8000000000000000 8000000000000000 8000000000000000

24:+K6 0000000000000000 8000000000000000 8000000000000000 8000000000000000

25-28 0000000000000000 0000000000000000 0000000000000000 0000000000000000

28:+K7 0000000000000000 8000000000000000 0000000000000000 0000000000000000

29 8000000000000000 0000000000000000 0000000000000000 8000000001000000

30 8000000000000000 8000001001000800 8000000001000000 8000000000000000

31 0000001001000800 0000000001200000 0000000001000000 0200001041040820

32 0000001000200800 4304083042040830 0200001040040820 0120001000200800

32:+K8 8000001000200800 c104081042040810 8200001040040820 0120001000200800

Output Difference 8500901a50010040 4004181250250010 82400410c2004a24 8160001084204a04
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ai+1,((j+Ri+1,0) mod 64) ⊕ di+1,((j+Ri+1,0) mod 64) and bi+1,((j+Ri+1,1) mod 64) ⊕
ci+1,((j+Ri+1,1) mod 64) respectively.

We divide the conditions in Tables 7 and 8 into three groups which are shown
in Tables 9, 10, and 11 separately. The conditions in group-1 include all the
conditions from round 16 to 20 which are determined by h20=(a20, b20, c20 and
d20). The conditions in group-2 consist of the conditions in h20,h21,...,h24 and
c16 that depend on h20 and K5. All the other conditions are incorporated into
group-3 which are decided by h20, K5, K4,b and K4,d. The distribution of the
conditions for 32-round Skein-256 is shown in Table 5.

There are 216 conditions in group-1, of which 174 conditions can be fulfilled
by modifying the values of h20. Most of conditions in group-2 can be corrected
by modifying K5 and only 18 conditions are left after message modification. The
15 conditions in a16, b16, d16 and a15 of group-3 can be modified by K4,b and
K4,d, and there are 89 conditions remaining after the message modification.

4.4 The Partial-Collision Attack on the Compression Function of
32-Round Skein-256

In our attack, we take the 256-bit value h20 and the 384-bit K5, K4,b and K4,d as
the random variables. As the chaining values h19, h18, h17 and h16 only depend
on h20, the search of the right h20 is independent of K5 and K4. Once h20 are
fixed, the values of h20, h21, h22, h23, h24 and c16 are only determined by K5.
Therefore, our near-collision search algorithm can be divided into three phases:
the first phase is to find h20 that satisfies the conditions in group-1; the second
phase is to find K5 to ensure the conditions in group-2; the last phase is to find
K4,b and K4,d so that the differential path in Table 4 holds.

The partial-collision search algorithm:

1. Select a 256-bit chaining value h20 = (a20, b20, c20, d20) which satisfies the 95
conditions in h20 in Table 9.
– Compute the chaining value h19 = (a19, b19, c19, d19) from h20 and modify

the 62 conditions in a19 and c19 in Table 9 by h20 using the message/IV
modification techniques.

– Calculate the chaining values h18 = (a18, b18, c18, d18), h17 = (a17, b17,
c17, d17) and h16 = (A16, B16, C16,D16) by h19 in the backward direction.
Modify 17 out of the 59 conditions, and check whether the other 42 con-
ditions hold. If so, goto step 2; otherwise, goto step 1.

Table 5. The conditions distribution for our attack of 32-round Skein-256.

Groups Conditions Modified conditions Used message/IV

1 216 174 a20, b20, c20, d20

2 168 150 K5,a, K5,b, K5,c, K5,d

3 104 15 K4,b, K4,d
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2. Choose the 256-bit subkey K5 = (K5,a,K5,b,K5,c,K5,d) randomly.
– Compute

h20 = h20 + K5 = (A20, B20, C20,D20),
c16 = C16 − K5,b.

Modify the 53 conditions in B20 and D20 by K5,b and K5,d respectively.
– Compute h21, h22, h23 and h24 by h20 in the forward direction. Modify the

97 conditions in h21, h22 and h23 by K5. Then check whether the other 18
conditions are satisfied. If so, goto step 3; otherwise, goto step 2.

3. Select the 128-bit value K4,b and K4,d randomly.
– According to the key schedule,

K5,a = k0,K5,b = k1 + t2,K5,c = k2 + t0,K5,d = k3 + 5,
K4,a = k4,K4,b = k0 + t1,K4,c = k1 + t2,K4,d = k2 + 4,

where k4 = 0x1bd11bdaa9fc1a22 ⊕
3⊕

i=0

ki and t2 = t0 ⊕ t1. Derive the

key K = (k0, k1, k2, k3) and the tweak value T = (t0, t1):

k0 = K5,a,

k1 = K5,b − ((K4,b − K5,a) ⊕ (K5,c − K4,d + 4)),
k2 = K4,d − 4,

k3 = K5,d − 5,

t0 = K5,c − K4,d + 4,
t1 = K4,b − K5,a.

Then further deduce:

K4,a = 0x1bd11bdaa9fc1a22 ⊕ K5,a ⊕ (K5,d − 5) ⊕ (K4,d − 4) ⊕
(K5,b − ((K4,b − K5,a) ⊕ (K5,c − K4,d + 4))),

K4,c = K5,b.

– Compute b16 = B16 − K4,b, d16 = D16 − K4,d and a16 = A16 − K4,a.
Modify the 15 conditions in b16, d16 and a16 by K4,b and K4,d respec-
tively.

4. Compute K0, K1, K2, K3, K6, K7, K8 by K and T , calculate h24 to h32 by
h24, K6, K7 and K8 in the forward direction, and compute h15 to h0 by h16,
K0, K1, K2 and K3 in the backward direction.

5. Let h∈
20 = h20 ⊕ Δh20, where Δh20 is the difference of round 20 in Table 4.

Let K ∈ = (k0, k1, k2, k3 + 263) and T ∈ = (t0 + 263, t1), compute h∈
19 √ h∈

0

and h∈
20 √ h∈

32 by h∈
20, K ∈ and T ∈. Then check whether h0 ⊕ h∈

0 = Δh0 and
h32 ⊕ h∈

32 = Δh32, where Δh0 and Δh32 are the differences in round 0 and
round 32 of Table 4. If so, output the message pair (M = h0,M

∈ = h∈
0), the

master key K = (k0, k1, k2, k3) and the tweak T = (t0, t1); otherwise, goto
step 3.
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Degrees of freedom analysis: We consider the degrees of freedom from the
following four inspects:

Table 6. Free-start near collisions examples for Skein-256.

Near-Collision 1: a near collision with Hamming distance 2 from rounds 4 to 28

Message of Round 4

M (1) e06dae5ef2a07f47 ab4a1eb0d3ca9657 2df69dff1cf902f7 94f1d26c1640e047

M (2) e06dae5ef2a07f47 ab4a1eb0d3ca9657 2df69dff1cf902f7 14f1d26c1640e047

Key

K(1) 276233eabba1aee6 66468bf4f9186874 4c1044cb8ebdb40 71b6c3354128213a

K(2) 276233eabba1aee6 66468bf4f9186874 4c1044cb8ebdb40 f1b6c3354128213a

Tweak

T (1) 000000000000000 000000000000000

T (2) 800000000000000 000000000000000

Output: a4 ⊕ a28

Output1 7d750ef8ccb0bbd0 1cc1e98ec9f9a18a eab66d1642a6c3f1 fa19cc4783700f1c

Output2 7d750ef8ccb0bbd0 9cc1e98ec9f9a18a eab66d1642a6c3f1 7a19cc4783700f1c

Near-Collision 2: a near collision with Hamming distance 34 from rounds 0 to 28

Message of Round 0

M (1) 75567a6722e984c1 6aa74b49b44a4b0e 8dc87c2235fe4944 910233d1a5628f29

M (2) 7056ea6d72c88c81; eba75b4ba46b430e 8d887822b7fa0b40 114233d12162cd2d

Key

K(1) 174b482acb8192de d581ea180039c605 6a83af6bc11fb1ca 73aaa3494528212f

K(2) 174b482acb8192de d581ea180039c605 6a83af6bc11fb1ca f3aaa3494528212f

Tweak

T (1) 204974d2f898e9cd 0085794e10264ba2

T (2) a04974d2f898e9cd 0085794e10264ba2

Output: a0 ⊕ a28

Output1 9ba9ee20f9e4dbfb d99ef6dbe703fd1b 567033e47cd85ebe bfa917f64a5f8926

Output2 9ea97e2aa9c5d3bb d89ee6d9f722f51b 563037e4fedc1cba 3fe917f6ce5fcb22

Near-Collision 3: a near collision with Hamming distance 28 from rounds 4 to 32

Message of Round 4

M (1) 7c4d70e0bb911686 126e7d70b549e195 687401fcfdda8a32 74d4ba53d43c8f4b

M (2) 7c4d70e0bb911686 126e7d70b549e195 687401fcfdda8a32 f4d4ba53d43c8f4b

Key

K(1) 174b482acb8192de f80431a5cb0dcdc8 43f0a9b602dfc4e2 73aaa3494528212f

K(2) 174b482acb8192de f80431a5cb0dcdc8 43f0a9b602dfc4e2 f3aaa3494528212f

Tweak

T (1) 46dc7a88b6d8d6b5 b895bc87ab324c19

T (2) c6dc7a88b6d8d6b5 b895bc87ab324c19

Output: a4 ⊕ a32

Output1 e5e0fd7e130df9ae cd8f77d82cf70926 abd50d673bc9fab1 feca27355d91f45d

Output2 65e0fd6e132df1ae 0c8b7fc86ef30136 29d50d777bcdf291 7fea27255db1fc5d
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– The total degrees of the freedom come from the message M , the master key K
and the tweak value T . For skein-256, we have 256 + 256 + 128 = 640 degrees
of freedom to mount our attack. The number of conditions in our differentials
is 488 (see Tables 7 and 8). Hence the degrees of freedom are sufficient to
perform our attack.

– The local degrees of the freedom from rounds 20 down to 16 (group-1) are 256
which come from the chaining variables h20 = (a20, b20, c20, d20). The number
of the conditions in these 5 rounds is 216. It is enough to find a pair h20 and
h∈
20 so that the differential path of this part holds.

– The conditions in h20, h21, ... , h24 and c16 (group-2) are determined by K5

with 256-bit freedom degrees. While the number of conditions of this part is
only 168, so it’s enough to search a right K5.

– The degrees of the freedom from rounds 24 to 32 and rounds 16 down to 0 are
128. The number of conditions of this part is 104. Consequently, it’s enough
to search a partial-collision after the message modifications.

The complexity computation: The complexity of our attack includes three
parts:

– The first part is to find a right 256-bit chaining value h20 so that it satisfies
the 216 conditions of h20, h19, h18, h17 and h16 in Table 7. After the message
modifications, there are 42 conditions remaining. Hence the complexity of this
part is about 242 32-round Skein-256 compression function operations.

– The second part is to find a right 256-bit value K5 that satisfies the 168
conditions in Table 10. After message modifications, the complexity for this
part is about 218.

– The third part is to find a 128-bit value K4,b and K4,d that satisfies the 104
conditions in Table 11. After message modification, the complexity for this
part is about 289.

As a result, the total complexity of our attack is about 242 + 218 + 289 ≈ 289

32-round Skein-256 compression function operations. The complexity can be
reduced further when considering the impact of additional paths.

4.5 Near-Collisions Examples for Skein-256

In order to verify our differential path in Table 4, we give an example of 24-round
(4–28) near-collision without choosing the tweak. The complexity is about 226,
and the Hamming distance is only 2. We also give two near-collision examples for
28-round Skein-256 in the free tweak setting. The first example is a near collision
from rounds 0 to 28 with Hamming distance 34, and the second is from rounds
4 to 32 with Hamming distance 28. Even though the complexities of the attacks
for the two near collisions were estimated to be about 246 and 243 respectively
according to our differential path, we expect they will be lower in practice due
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to the impact of additional paths. They are confirmed by our implementations,
and the practical complexities are about 244 and 241 for the two near collisions
respectively. This also deduces the complexity of the partial-collision attack on
32-round Skein-256 by a factor of 22+2 = 24 resulting in an attack complexity
285. The near collisions are shown in Table 6.

4.6 Discussions about the Application to Skein-512

Our techniques can be also applied to Skein-512 and Skein-1024. Since Skein-512
is the primary proposal of Skein by the authors, we will mainly discuss how to
apply our techniques to Skein-512: By selecting the differences for the master
key K = (k0, k1, ..., k7) and the tweak value T = (t0, t1) as Δk7 = 263 and
Δt0 = 263, we construct the first short differential path from rounds 37 to 52
with a 8-round zero-differential (from rounds 41 to 48) and the second short
differential path from rounds 57 to 68 with a 4-round zero-differential in the
middle. Similar to the attack on Skein-256, connecting the two differential paths
(between round 53 and round 60) is also the most difficult part of the attack.
Moreover, we consider the connection to be even harder than that of Skein-256
since now 512 bits have to be connected. By leveraging the strategy of Skein-
256 on Skein-512 with more carefulness, we estimate that the complexity of the
attack on Skein-512 reduced to 32 rounds with Hamming distance 55 is about
288 32-round Skein-512 computations.

5 Conclusions

In this paper, we apply the rebound-type idea to the differential attack of the
ARX-type hash algorithms and connect two specific short differentials into a long
one. Utilizing our technique, we give three near-collision examples for 24 and
28 rounds Skein-256 compression function. The complexity of partial-collision
attack on 32-round Skein-256 compression function is about 285. Our method
has potential application to other ARX-type hash functions.

Appendix
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Table 7. The sufficient conditions for Round 20 down to 0 of the differential path in
Table 4.

20

a20
a20,27 = a20,25 ⊕1, a20,31 = a20,30, a20,33 = a20,31, a20,35 = a20,30, a20,37 = a20,30 ⊕1, a20,51 = a20,50,
a20,57 = a20,55

7

b20

b20,1 = a20,1, b20,2 = a20,1 ⊕1, b20,9 = a20,9 ⊕1, b20,11 = a20,11 ⊕1, b20,13 = a20,13 ⊕1, b20,15 = a20,15,
b20,16 = a20,15, b20,17 = a20,15, b20,18 = a20,15, b20,19 = a20,15, b20,20 = a20,15, b20,21 = a20,15 ⊕ 1,
b20,25 = a20,25 ⊕ 1, b20,27 = a20,27, b20,30 = a20,30, b20,34 = a20,30 ⊕ 1, b20,35 = a20,35 ⊕ 1, b20,37 =
a20,37 ⊕ 1, b20,38 = a20,37 ⊕ 1

19

c20 c20,2 = c20,1, c20,21 = c20,15 ⊕ 1, c20,45 = c20,43 , c20,63 = c20,60 4

d20

d20,9 = c20,9, d20,15 = c20,15 ⊕1, d20,21 = c20,21, d20,22 = c20,21 ⊕1, d20,41 = c20,41, d20,43 = c20,43 ⊕1,
d20,45 = c20,45 ⊕ 1,
d20,57 = c20,57 ⊕ 1, d20,60 = c20,60, d20,61 = c20,61

10

19

a19

a19,1 = a20,1, a19,6 = b19,6 ⊕ 1, a19,8 = a20,9, a19,11 = a20,11, a19,13 = a20,13, a19,15 = a20,15,
a19,16 = a20,15, a19,17 = a20,15 ⊕ 1, a19,20 = b19,20 ⊕ 1, a19,22 = b19,22 ⊕ 1, a19,23 = a20,25 ⊕ 1,
a19,24 = a20,25, a19,25 = a20,25 ⊕1, a19,26 = a20,25, a19,27 = a20,25, a19,31 = a20,30, a19,32 = a19,31 ⊕1,
a19,33 = a20,30 ⊕ 1, a19,34 = a20,30, a19,35 = a20,30, a19,36 = a20,30, a19,40 = b19,40, a19,45 = b19,45 ⊕ 1,
a19,52 = b19,50, a19,53 = a19,52 ⊕ 1, a19,56 = a20,55 ⊕ 1, a19,60 = a20,61 ⊕ 1, a19,61 = a20,61 ⊕ 1,
a19,62 = a20,61, a19,63 = a20,63 ⊕ 1

30

b19

b19,8 = a19,9, b19,16 = a20,15 ⊕ 1, b19,17 = a20,15, b19,22 = b19,20 ⊕ 1, b19,23 = a20,25 ⊕ 1, b19,28 =
a20,25 ⊕ 1, b19,30 = a20,30, b19,32 = a20,30, b19,36 = a20,30, b19,38 = a20,30 ⊕ 1, b19,40 = a20,41,
b19,46 = b19,45 ⊕ 1, b19,50 = a20,50 ⊕ 1, b19,55 = a20,55 ⊕ 1, b19,58 = a20,55, b19,60 = a20,61

16

c19

c19,6 = d19,6 ⊕ 1, c19,8 = a19,9, c19,16 = a20,15 ⊕ 1, c19,17 = c19,16, c19,18 = c19,17, c19,19 = c19,18,
c19,23 = d20,23 ⊕ 1, c19,38 = d19,38 ⊕ 1, c19,40 = d19,40, c19,45 = d19,45 ⊕ 1, c19,55 = c20,52 ⊕ 1,
c19,56 = c20,52, c19,58 = c20,57, c19,60 = c20,60 ⊕ 1

14

d19

d19,1 = c20,1 ⊕1, d19,3 = c20,1, d19,8 = c20,9, d19,15 = c20,15 ⊕1, d19,20 = c20,15 ⊕1, d19,26 = c20,26 ⊕1,
d19,27 = c20,26, d19,40 = c20,41, d19,43 = c20,43 ⊕ 1, d19,44 = d19,43, d19,46 = d19,43, d19,47 = d19,46 ⊕ 1,
d19,52 = c20,52 ⊕ 1, d19,53 = d19,52, d19,54 = d19,53, d19,57 = c20,57 ⊕ 1, d19,61 = c20,61 ⊕ 1, d19,62 =
c20,61 ⊕ 1

18

18

a18
a18,6 = a19,6, a18,26 = a19,26, a18,27 = a19,27, a18,44 = b18,44, a18,54 = b18,54 ⊕ 1, a18,56 = a19,56 ⊕ 1,
a18,60 = a19,60 ⊕ 1

7

b18

b18,1 = a19,1 ⊕ 1, b18,2 = a19,1, b18,8 = a19,8 ⊕ 1, b18,9 = a19,8 ⊕ 1, b18,10 = a19,8, b18,11 = a19,11 ⊕ 1,
b18,12 = a19,11, b18,13 = a19,13, b18,15 = a19,15⊕1, b18,20 = a19,20⊕1, b18,21 = a19,20⊕1, b18,23 = a19,23,
b18,24 = a19,23, b18,31 = a19,31⊕1, b18,33 = a19,33, b18,34 = b18,33, b18,37 = b18,33⊕1, b18,40 = a19,40⊕1,
b18,41 = b18,40⊕1, b18,44 = a19,45, b18,52 = a19,52⊕1, b18,54 = a19,56, b18,57 = a19,56⊕1, b18,58 = a19,56,
b18,63 = a19,63

25

c18

c18,8 = c19,8 ⊕ 1, c18,9 = c18,8 ⊕ 1, c18,10 = d18,10, c18,11 = d18,10, c18,12 = d18,10 ⊕ 1, c18,20 = d18,16,
c18,21 = c18,20 ⊕ 1, c18,23 = c19,23 ⊕ 1, c18,24 = c19,23 , c18,38 = c19,38, c18,40 = c19,40 ⊕ 1, c18,41 =
c18,40 ⊕ 1, c18,44 = d18,44 ⊕ 1, c18,45 = c19,45 ⊕ 1, c18,52 = d18,52 ⊕ 1, c18,54 = d18,54, c18,58 = c19,58

17

d18
d18,6 = c19,6, d18,10 = c19,8, d18,16 = c19,16 ⊕ 1, d18,42 = c19,40 ⊕ 1, d18,43 = d18,42 ⊕ 1, d18,46 = c19,45,
d19,54 = c19,55, d18,56 = c19,56, d18,60 = c19,60

9

17

a17
a17,6 = a18,6, a17,22 = b17,22⊕1, a17,26 = a18,26⊕1, a17,38 = b17,38, a17,44 = a18,44⊕1, a17,45 = a18,44,
a17,58 = a18,60, a18,59 = a18,60

8

b17 b17,28 = a18,26, b17,39 = b17,38 ⊕ 1, b17,54 = a18,54, b17,55 = a18,55, b17,58 = a18,60 5
c17 c17,6 = d17,6 ⊕ 1, c17,22 = d17,22, c17,54 = c18,54 ⊕ 1, c17,55 = c18,55, c17,58 = c18,58 ⊕ 1 5

d17
d17,8 = c18,8, d17,9 = d17,8, d17,20 = c18,20 ⊕ 1, d17,22 = c18,23 ⊕ 1, d17,38 = c18,38 ⊕ 1, d17,40 = c18,40,
d17,41 = c18,41, d17,44 = c18,44, d17,45 = c18,45, d17,52 = c18,52

10

16
B16

B16,6 = a17,6, B16,26 = a17,26⊕1, B16,27 = B16,26⊕1, B16,38 = a17,38, B16,44 = a17,44, B16,45 = a17,45,
B16,58 = a17,58, B16,59 = a17,59 ⊕ 1

8

D16 D16,22 = c17,22 ⊕ 1, D16,23 = D16,22 ⊕ 1, D16,54 = c17,54 ⊕ 1 3

16

a16 a16,12 = B16,12 ⊕ 1, a16,22 = a17,22 2

b16
b16,6 = B16,6 ⊕ 1, b16,12 = B16,12, b16,26 = B16,26 ⊕ 1, b16,38 = B16,38, b16,44 = B16,44 ⊕ 1, b16,58 =
B16,58, b16,59 = B16,59

7

c16 c16,6 = c17,6, c16,12 = D16,12 ⊕ 1, c16,58 = c17,58 ⊕ 1, c16,59 = c17,59 4
d16 d16,12 = D16,12, d16,22 = D16,22 ⊕ 1, d16,54 = D16,54 3

15
a15 a15,12 = a16,12 1
b15 b15,22 = a16,22 1
d15 d15,6 = c16,6, d15,12 = c16,12, d15,58 = c16,58 ⊕ 1 3

14 b14 b14,12 = a15,12 1

3 a3 a3,59 = b3,59 ⊕ 1 1

2
a2 a2,59 = a3,59, a2,36 = b2,36 ⊕ 1 2
c2 c2,19 = d2,19 ⊕ 1 1

1
a1 a1,7 = b1,7 ⊕ 1, a1,31 = b1,31 ⊕ 1, a1,36 = a2,36, a1,48 = b1,48 ⊕ 1, a1,59 = a2,59 5
c1 c1,19 = c2,19, c1,26 = d1,26 ⊕ 1, c1,43 = d1,43 ⊕ 1 3

0

a0
a0,7 = a1,7, a0,12 = B0,12 ⊕ 1, a0,17 = B0,17 ⊕ 1, a0,22 = B0,22 ⊕ 1, a0,29 = B0,29 ⊕ 1, a0,31 = a1,31,
a0,34 = B0,34 ⊕ 1, a0,36 = a1,36, a0,45 = B0,45 ⊕ 1, a0,48 = a1,48, a0,57 = B0,57 ⊕ 1, a0,59 = a1,59

12

b0 b0,12 = B0,12, b0,17 = B0,17, b0,22 = B0,22, b0,45 = B0,45, b0,29 = B0,29, b0,34 = B0,34, b0,57 = B0,57 7

c0
c0,3 = D0,3 ⊕ 1, c0,10 = D0,10 ⊕ 1, c0,15 = D0,15 ⊕ 1, c0,19 = c1,19, c0,26 = c1,26 ⊕ 1, D0,27 = c1,26 ⊕ 1,
c0,32 = D0,32 ⊕ 1, c0,43 = c1,43, c0,55 = c1,55

9

d0 d0,3 = D0,3, d0,10 = D0,10, d0,15 = D0,15, d0,27 = D0,27, d0,32 = D0,32, d0,55 = D0,55 6
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Table 8. The sufficient conditions for Round 20 ∼ 32 of the differential path in Table 4.

20

B20

B20,1 = b20,1, B20,2 = b20,2, B20,9 = b20,9 ⊕ 1, B20,10 = b20,9, B20,11 = b20,11, B20,13 = b20,13 ⊕ 1,
B20,14 = b20,13, B20,15 = b20,15, B20,16 = b20,15⊕1, B20,25 = b20,25⊕1, B20,26 = b20,25, B20,27 = b20,27,
B20,30 = b20,30 ⊕ 1, B20,31 = b20,30 ⊕ 1, B20,32 = b20,30 ⊕ 1, B20,33 = b20,30, B20,34 = b20,34,
B20,35 = b20,35⊕1, B20,36 = b20,35, B20,37 = b20,37⊕1, B20,39 = b20,37, B20,40 = b20,40, B20,41 = b20,41

23

D20

D20,9 = d20,9 ⊕ 1, D20,10 = d20,9 ⊕ 1, D20,11 = d20,9 ⊕ 1, D20,12 = d20,9 ⊕ 1, D20,13 = d20,9 ⊕ 1,
D20,14 = d20,9, D20,15 = d20,15 ⊕ 1, D20,16 = d20,15 ⊕ 1, D20,17 = d20,15 ⊕ 1, D20,18 = d20,15,
D20,21 = d20,21, D20,22 = d20,22 ⊕ 1, D20,23 = d20,22 ⊕ 1, D20,24 = d20,22 ⊕ 1, D20,25 = d20,22 ⊕ 1,
D20,26 = d20,22, D20,28 = d20,28, D20,30 = d20,30, D20,31 = d20,31 ⊕ 1, D20,32 = d20,31 ⊕ 1, D20,33 =
d20,31, D20,41 = d20,41 ⊕ 1, D20,42 = d20,41, D20,43 = d20,43 ⊕ 1, D20,44 = d20,43, D20,45 = d20,45,
D20,57 = d20,57, D20,60 = d20,60, D20,61 = d20,61 ⊕ 1, D20,62 = d20,61

30

21

a21

a21,28 = b20,27 ⊕ 1, a21,29 = a21,28, a21,30 = a21,28, a21,31 = a21,28 ⊕ 1, a21,32 = a20,30, a21,33 = a21,32,
a21,34 = a21,32, a21,35 = a21,32, a21,36 = a21,32 ⊕ 1, a21,38 = b20,38 ⊕ 1, a21,39 = b20,38, a21,40 = b20,40,
a21,41 = b20,41, a21,50 = a20,50, a21,51 = a20,51, a21,55 = a20,55 ⊕ 1, a21,56 = a20,55, a21,57 = a20,57 ⊕ 1,
a21,58 = a20,57 ⊕ 1, a21,59 = a20,57 ⊕ 1, a21,60 = a20,57, a21,61 = a20,61, a21,63 = a20,63

23

b21

b21,28 = a21,28, b21,50 = a21,50 ⊕ 1, b21,51 = a21,51, b21,52 = a21,51, b21,53 = a21,51, b21,54 = a21,51 ⊕ 1,
b21,55 = a21,55⊕1, b21,56 = a21,55, b21,57 = a21,57⊕1, b21,58 = a21,58⊕1, b21,59 = a21,59, b21,61 = a21,61,
b21,62 = a21,62 ⊕ 1, b21,63 = a21,63 ⊕ 1

14

c21

c21,1 = c20,1, c21,2 = c20,2, c21,10 = c20,9 ⊕ 1, c21,11 = c20,9 ⊕ 1, c21,12 = c20,9 ⊕ 1, c21,13 = c20,9 ⊕ 1,
c21,14 = c20,9, c21,26 = c20,26, c21,28 = D20,28 ⊕ 1, c21,29 = D20,28 , c21,30 = d20,30, c21,31 = d20,31 ⊕ 1,
c21,42 = c20,41 ⊕ 1, c21,43 = c21,42, c21,44 = c21,42, c21,45 = c21,42, c21,46 = c21,42, c21,47 = c21,42,
c21,48 = c21,42, c21,49 = c21,42 ⊕ 1, c21,52 = c20,52 ⊕ 1, c21,53 = c20,52, c21,62 = c20,60 ⊕ 1

23

d21

d21,1 = c21,1 ⊕ 1, d21,2 = c21,2 ⊕ 1, d21,26 = c21,26, d21,27 = c21,26 ⊕ 1, d21,28 = c21,28 ⊕ 1, d21,29 =
c21,29 ⊕ 1, d21,30 = c21,30 ⊕ 1, d21,31 = c21,31, d21,32 = c21,31 ⊕ 1, d21,33 = c21,31, d21,52 = c21,52,
d21,62 = c21,62, d21,63 = c21,62 ⊕ 1

13

22

a22

a22,32 = a21,32, a22,33 = a22,32, a22,34 = a22,32, a22,35 = a22,32, a22,36 = a22,32, a22,37 = a22,32 ⊕ 1,
a22,38 = a21,38, a22,39 = a21,39, a22,40 = a21,40, a22,41 = a21,41 ⊕ 1, a22,42 = a22,41, a22,43 = a22,41,
a22,44 = a22,41, a22,45 = a22,41, a22,46 = a22,41 ⊕ 1

15

b22 b22,38 = a22,38 ⊕ 1, b22,39 = a22,39 ⊕ 1, b22,40 = a22,40 ⊕ 1, b22,41 = a22,41 4

c22
c22,10 = c21,10, c22,11 = c21,11, c22,12 = c21,12, c22,13 = c21,13 , c22,14 = c21,14, c22,42 = c21,42,
c22,43 = c21,43, c22,44 = c21,44, c22,45 = c21,45 ⊕ 1 9

d22 d22,10 = c22,10, d22,42 = c22,42 2

23
a23 a23,32 = a22,32, a23,33 = a22,33, a23,34 = a22,34, a23,35 = a22,35 ⊕ 1 4
b23 b23,32 = a23,32 1

30 c30 c30,25 = d29,25 1

31

a31 a31,12 = b30,12, a31,25 = b30,25, a31,37 = b30,37 3
b31 b31,25 = a31,25 ⊕ 1 1
c31 c31,25 = c30,25 1
d31 d31,25 = c31,25 ⊕ 1 1

32
a32 a32,12 = a31,12, a32,22 = b31,22, a32,37 = a31,37 3
b32 b32,6 = b32,5 ⊕ 1, b32,38 = b32,37 ⊕ 1, b32,58 = b32,57 ⊕ 1 3
c32 c32,6 = d31,6, c32,12 = d31,12, c32,19 = d31,19, c32,31 = d31,31, c32,37 = d31,37, c32,58 = d31,58 6

32

A32 A32,12 = a32,12, A32,22 = a32,22, A32,37 = a32,37 3

B32
B32,5 = b32,5 ⊕1, B32,12 = b32,12, B32,19 = b32,19, B32,26 = b32,26, B32,31 = b32,31, B32,37 = b32,37 ⊕1,
B32,44 = b32,44, B32,51 = b32,51, B32,57 = b32,57 ⊕ 1, B32,63 = b32,63 ⊕ 1

10

C32 C32,6 = c32,6, C32,12 = c32,12, C32,19 = c32,19, C32,31 = c32,31, C32,37 = c32,37, C32,58 = c32,58 6
D32 D32,12 = d32,12, D32,22 = d32,22, D32,37 = d32,37, D32,54 = d32,54, D32,57 = d32,57 5
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Table 9. The conditions in group-1.

20

a20
a20,22 = a20,21, a20,27 = a20,25 ⊕1, a20,31 = a20,30, a20,33 = a20,30, a20,35 = a20,30, a20,37 = a20,30 ⊕1,
a20,45 = a20,30 ⊕ a20,43 ⊕ a20,41 ⊕ 1, a20,51 = a20,50, a20,55 = a20,30 ⊕ a20,43 ⊕ 1, a20,57 = a20,55

10

b20

b20,1 = a20,1, b20,2 = a20,1 ⊕1, b20,9 = a20,9 ⊕1, b20,11 = a20,11 ⊕1, b20,13 = a20,13 ⊕1, b20,15 = a20,15,
b20,16 = a20,15, b20,17 = a20,15, b20,18 = a20,15, b20,19 = a20,15, b20,20 = a20,15, b20,21 = a20,15 ⊕ 1,
b20,25 = a20,25 ⊕ 1, b20,27 = a20,27, b20,30 = a20,30, b20,34 = a20,30 ⊕ 1, b20,35 = a20,35 ⊕ 1, b20,37 =
a20,37 ⊕ 1, b20,45 = b20,9 ⊕ a20,43 ⊕ a20,13, b20,52 = a20,61 ⊕ a20,60 ⊕ a20,55 b20,63 = b20,52 ⊕ a20,21 ⊕
a20,15 ⊕ a20,60 ⊕ a20,55 ⊕ b20,26

21

c20

c20,2 = c20,1, c20,4 = a20,30⊕b20,4⊕a20,9⊕1, c20,5 = a20,30⊕b20,5⊕a20,9, c20,6 = a20,30⊕b20,6⊕a20,9⊕1,
c20,7 = a20,30 ⊕ b20,7 ⊕ a20,11 ⊕ 1, c20,8 = a20,11 ⊕ a20,30 ⊕ b20,8, c20,9 = a20,30 ⊕ a20,43 ⊕ b20,45,
c20,13 = a20,41 ⊕ b20,13 ⊕ a20,30, c20,15 = a20,21 ⊕ a20,15, c20,16 = a20,30 ⊕ a20,43 ⊕ b20,16 ⊕ 1, c20,17 =
c20,16 ⊕ b20,16 ⊕ b20,17, c20,18 = a20,61 ⊕ a20,60 ⊕ a20,55 ⊕ b20,11 ⊕ c20,11 ⊕ b20,18, c20,19 = c20,16 ⊕
b20,16 ⊕ b20,19, c20,20 = b20,20 ⊕ c20,16 ⊕ b20,16 ⊕ 1, c20,21 = c20,15 ⊕ 1, c20,25 = b20,52 ⊕ c20,15 ⊕ b20,25,
c20,26 = a20,60 ⊕ a20,55 ⊕ b20,63, c20,27 = b20,27 ⊕ b20,25 ⊕ c20,25, c20,28 = b20,28 ⊕ b20,25 ⊕ c20,25,
c20,29 = a20,30⊕a20,55⊕b20,29, c20,30 = b20,57⊕c20,15⊕b20,30, c20,33 = a20,61⊕b20,33⊕a20,30⊕1, c20,34 =
a20,60 ⊕a20,55 ⊕ b20,34, c20,35 = b20,35 ⊕a20,60 ⊕a20,55, c20,36 = a20,30 ⊕a20,43 ⊕a20,63 ⊕ b20,36 ⊕a20,45,
c20,38 = b20,38 ⊕ c20,1 ⊕ 1, c20,40 = b20,40 ⊕ c20,1, c20,41 = c20,13 ⊕ b20,13, c20,43 = a20,30 ⊕ a20,43,
c20,45 = c20,43, c20,48 = a20,11⊕b20,48⊕a20,50, c20,50 = a20,13⊕b20,50⊕a20,55, c20,52 = b20,52⊕c20,15⊕1,
c20,53 = a20,15 ⊕ b20,53 ⊕ a20,55, c20,54 = a20,15 ⊕ b20,54 ⊕ a20,55, c20,57 = b20,57 ⊕ c20,15 ⊕ 1, c20,60 =
a20,60 ⊕a20,55 ⊕1, c20,61 = a20,25 ⊕b20,61 ⊕a20,1 ⊕1, c20,62 = a20,25 ⊕b20,62 ⊕a20,1 ⊕1, c20,63 = c20,60,
c20,64 = c20,26 ⊕ b20,64

41

d20

d20,1 = a20,1 ⊕ a20,61, d20,9 = c20,9, d20,13 = a20,9 ⊕ a20,13, d20,15 = c20,15 ⊕ 1, d20,21 = c20,21,
d20,22 = c20,21 ⊕ 1, d20,23 = a20,23 ⊕ c20,15 ⊕ b20,13 ⊕ c20,13, d20,24 = a20,24 ⊕ c20,15 ⊕ c20,41 ⊕ 1,
d20,25 = a20,25 ⊕ c20,59 ⊕ b20,59 ⊕ a20,63 ⊕ 1, d20,27 = a20,27 ⊕ a20,25 ⊕ d20,25 ⊕ 1, d20,28 = a20,25 ⊕
a20,28 ⊕ 1, d20,33 = a20,25 ⊕ a20,33 ⊕ 1, d20,35 = a20,30 ⊕ a20,35, d20,37 = a20,30 ⊕ a20,37, d20,41 = c20,41,
d20,43 = c20,43 ⊕ 1, d20,45 = c120,45, d20,51 = a20,50 ⊕ a20,51 ⊕ d20,50 ⊕ 1, d20,55 = a20,50 ⊕ a20,55 ⊕ 1,
d20,57 = c20,57 ⊕ 1, d20,60 = c20,60, d20,61 = c20,60, d20,63 = a20,63 ⊕ a20,55

23

19

a19

a19,1 = a20,1, a19,3 = b20,40 ⊕ c20,40 ⊕ a20,50 ⊕ d20,50, a19,4 = a20,61 ⊕ a20,11 ⊕ b20,48 ⊕ c20,48 ⊕ b20,41 ⊕
c20,41 ⊕ b20,18 ⊕ c20,18 ⊕ a20,50 ⊕ d20,50, a19,6 = b19,6 ⊕ 1, a19,8 = b19,8, a19,11 = a20,11, a19,13 =
a20,13, a19,15 = a20,15, a19,16 = a20,15, a19,17 = a20,15 ⊕ 1, a19,20 = b19,20 ⊕ 1, a19,22 = b19,22 ⊕ 1,
a19,23 = b19,23 = a20,25 ⊕ 1, a19,24 = a20,25, a19,25 = a20,25 ⊕ 1, a19,26 = a20,25, a19,27 = a20,25,
a19,28 = a19,4 ⊕ d19,4 ⊕ d19,45 ⊕ d19,28 ⊕ 1 a19,31 = a20,30, a19,32 = a20,30 ⊕ 1, a19,33 = a20,30 ⊕ 1,
a19,34 = a20,30, a19,35 = a20,30, a19,36 = a20,30, a19,38 = b20,11 ⊕ c20,11 ⊕ a20,15 ⊕ 1, a19,40 = b19,40 ⊕ 1,
a19,43 = b20,16 ⊕ c20,16 ⊕ a19,20 ⊕ 1, a19,44 = b20,17 ⊕ c20,17 ⊕ a19,20 ⊕ 1, a19,45 = b19,45, a19,46 =
b20,19 ⊕ c20,19 ⊕ a20,25 ⊕ 1, a19,47 = b20,20 ⊕ c20,20 ⊕ a20,25 ⊕ 1, a19,52 = a20,50 ⊕ 1, a19,53 = a19,52 ⊕ 1,
a19,54 = b20,27⊕c20,27⊕a19,31⊕1, a19,56 = a20,55⊕1, a19,57 = b20,30⊕c20,30⊕a19,33, a19,60 = a20,61⊕1,
a19,61 = a20,61 ⊕ 1 a19,62 = a20,61, a19,63 = a20,63 ⊕ 1, a19,64 = b20,37 ⊕ c20,37 ⊕ a19,40

41

c19

c19,3 = b19,3 ⊕ b19,2 ⊕ c19,2 ⊕ 1, c19,6 = d19,6 ⊕ 1, c19,8 = c20,9, c19,18 = c20,15 ⊕ 1, c19,19 = c20,15 ⊕ 1,
c19,22 = a20,27 ⊕ d20,27 ⊕ b20,18 ⊕ c20,18 ⊕ 1, c19,23 = d20,23 ⊕ 1, c19,28 = a19,4 ⊕ b20,41 ⊕ c20,41 ⊕
b20,18 ⊕ c20,18 ⊕ a20,33 ⊕ d20,33 ⊕ 1, c19,30 = a20,35 ⊕ d20,35 ⊕ c20,52 ⊕ 1, c19,32 = a20,37 ⊕ d20,37 ⊕ c20,52,
c19,36 = a20,41 ⊕ d20,41 ⊕ c20,60 ⊕ 1, c19,38 = d19,38 ⊕ 1, c19,40 = c20,41, c19,45 = d19,45 ⊕ 1, c19,46 =
a20,51 ⊕d20,51 ⊕ c19,6, c19,50 = c19,8 ⊕a20,55 ⊕d20,55, c19,55 = c20,52 ⊕1, c19,56 = c20,52, c19,58 = c20,57,
c19,59 = c20,57, c19,60 = c20,60 ⊕ 1

21

18

a18

a18,6 = a19,6, a18,26 = a19,26, a18,27 = a19,27, a18,44 = b18,44, a18,54 = b18,54 ⊕ 1, a18,56 = a19,56 ⊕ 1,
a18,60 = a19,60 ⊕1, a18,16 = a20,61 ⊕d20,61 ⊕c20,52 ⊕a20,25, a18,42 = a20,23 ⊕d20,23 ⊕c20,15 ⊕a20,55 ⊕1,
a18,43 = a20,24 ⊕ d20,24 ⊕ c20,15 ⊕ a20,55 ⊕ 1, a18,46 = b20,18 ⊕ c20,18 ⊕ a20,61 ⊕ 1, a18,58 = d18,58 ⊕
d17,6 ⊕ c18,54

12

c18

c18,1 = a20,25⊕b20,61⊕c20,61⊕c20,9⊕1, c18,2 = a19,25⊕b20,62⊕c20,62⊕c20,9⊕1, c18,8 = c19,8⊕1, c18,9 =
c18,8 ⊕ 1, c18,10 = d18,10, c18,11 = d18,10, c18,12 = d18,10 ⊕ 1, c18,13 = a20,30 ⊕ b20,9 ⊕ c20,9 ⊕ c20,15 ⊕ 1,
c18,15 = a20,15 ⊕ b20,60 ⊕ c20,60, c18,20 = d18,16, c18,21 = c18,20 ⊕ 1, c18,23 = c19,23 ⊕ 1, c18,24 = c19,23,
c18,31 = b20,11 ⊕c20,11 ⊕a20,30, c18,33 = a20,55 ⊕b20,29 ⊕c20,29 ⊕c20,41, c18,34 = a19,57 ⊕b20,30⊕c20,30 ⊕
c20,41 ⊕ 1, c18,37 = a20,61 ⊕ b20,33 ⊕ c20,33 ⊕ a20,25 ⊕ d20,25 ⊕ c19,20, c18,38 = c19,38, c18,40 = c19,40 ⊕ 1,
c18,41 = c18,40 ⊕ 1, c18,44 = d18,44 ⊕ 1, c18,45 = c19,45 ⊕ 1, c18,51 = a18,60 ⊕ b18,51 ⊕ a18,44 ⊕ 1,
c18,52 = d18,52 ⊕ 1, c18,54 = d18,54, c18,58 = c19,58

26

17

a17

a17,6 = a18,6, a17,8 = d17,8 ⊕ a18,60, a17,9 = d17,9 ⊕ a18,60 a17,20 = a17,6 ⊕ d17,20, a17,22 = b17,22 ⊕ 1,
a17,26 = a18,26⊕1, a17,38 = b17,38, a17,40 = d17,40⊕a17,26⊕1, a17,41 = d17,41⊕a17,26, a17,44 = a18,44⊕1,
a17,45 = a18,44, a17,52 = d17,52 ⊕ a18,37, a17,58 = a18,60, a17,59 = a18,60

14

c17
c17,6 = d17,6 ⊕ 1, c17,22 = d17,22, c17,38 = b17,38 ⊕ c17,22 ⊕ 1 c17,39 = b17,39 ⊕ c17,22 c17,54 = c18,54 ⊕ 1,
c17,55 = c18,55, c17,58 = c18,58 ⊕ 1

7
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Table 10. The conditions in group-2.

20

B20

B20,1 = b20,1, B20,2 = b20,2, B20,9 = b20,9 ⊕ 1, B20,10 = b20,9, B20,11 = b20,11, B20,13 = b20,13 ⊕ 1,
B20,14 = b20,13, B20,15 = b20,15, B20,16 = b20,15⊕1, B20,25 = b20,25⊕1, B20,26 = b20,25, B20,27 = b20,27,
B20,30 = b20,30 ⊕ 1, B20,31 = b20,30 ⊕ 1, B20,32 = b20,30 ⊕ 1, B20,33 = b20,30, B20,34 = b20,34,
B20,35 = b20,35⊕1, B20,36 = b20,35, B20,37 = b20,37⊕1, B20,39 = b20,37, B20,40 = b20,40, B20,41 = b20,41

23

D20

D20,9 = d20,9 ⊕ 1, D20,10 = d20,9 ⊕ 1, D20,11 = d20,9 ⊕ 1, D20,12 = d20,9 ⊕ 1, D20,13 = d20,9 ⊕ 1,
D20,14 = d20,9, D20,15 = d20,15 ⊕ 1, D20,16 = d20,15 ⊕ 1, D20,17 = d20,15 ⊕ 1, D20,18 = d20,15,
D20,21 = d20,21, D20,22 = d20,22 ⊕ 1, D20,23 = d20,22 ⊕ 1, D20,24 = d20,22 ⊕ 1, D20,25 = d20,22 ⊕ 1,
D20,26 = d20,22, D20,28 = d20,28, D20,30 = d20,30, D20,31 = d20,31 ⊕ 1, D20,32 = d20,31 ⊕ 1, D20,33 =
d20,31, D20,41 = d20,41 ⊕ 1, D20,42 = d20,41, D20,43 = d20,43 ⊕ 1, D20,44 = d20,43, D20,45 = d20,45,
D20,57 = d20,57, D20,60 = d20,60, D20,61 = d20,61 ⊕ 1, D20,62 = d20,61

30

21

a21

a21,28 = b20,27 ⊕ 1, a21,29 = a21,28, a21,30 = a21,28, a21,31 = a21,28 ⊕ 1, a21,32 = a20,30, a21,33 = a21,32,
a21,34 = a21,32, a21,35 = a21,32, a21,36 = a21,32 ⊕ 1,
a21,38 = b20,38 ⊕ 1, a21,39 = b20,38, a21,40 = b20,40, a21,41 = b20,41, a21,50 = a20,50, a21,51 = a20,51,
a21,55 = a20,55 ⊕ 1, a21,56 = a20,55, a21,57 = a20,57 ⊕ 1, a21,58 = a20,57 ⊕ 1, a21,59 = a20,57 ⊕ 1,
a21,60 = a20,57, a21,61 = a20,61, a21,63 = a20,63

23

b21

b21,28 = a21,28, b21,50 = a21,50 ⊕ 1, b21,51 = a21,51, b21,52 = a21,51, b21,53 = a21,51, b21,54 = a21,51 ⊕ 1,
b21,55 = a21,55⊕1, b21,56 = a21,55, b21,57 = a21,57⊕1, b21,58 = a21,58⊕1, b21,59 = a21,59, b21,61 = a21,61,
b21,62 = a21,62 ⊕ 1, b21,63 = a21,63 ⊕ 1

14

c21

c21,1 = c20,1, c21,2 = c20,2, c21,10 = c20,9 ⊕ 1, c21,11 = c20,9 ⊕ 1, c21,12 = c20,9 ⊕ 1, c21,13 = c20,9 ⊕ 1,
c21,14 = c20,9, c21,26 = c20,26, c21,28 = D20,28 ⊕ 1, c21,29 = D20,28 , c21,30 = d20,30, c21,31 = d20,31 ⊕ 1,
c21,42 = c20,41 ⊕ 1, c21,43 = c21,42, c21,44 = c21,42, c21,45 = c21,42, c21,46 = c21,42, c21,47 = c21,42,
c21,48 = c21,42, c21,49 = c21,42 ⊕ 1, c21,52 = c20,52 ⊕ 1, c21,53 = c20,52, c21,62 = c20,60 ⊕ 1

23

d21

d21,1 = c21,1 ⊕ 1, d21,2 = c21,2 ⊕ 1, d21,26 = c21,26 , d21,27 = c21,26 ⊕ 1,
d21,28 = c21,28 ⊕ 1, d21,29 = c21,29 ⊕ 1, d21,30 = c21,30 ⊕ 1,
d21,31 = c21,31, d21,32 = c21,31 ⊕ 1, d21,33 = c21,31, d21,52 = c21,52, d21,62 = c21,62, d21,63 = c21,62 ⊕ 1

13

22

a22

a22,32 = a21,32, a22,33 = a22,32, a22,34 = a22,32, a22,35 = a22,32, a22,36 = a22,32, a22,37 = a22,32 ⊕ 1,
a22,38 = a21,38, a22,39 = a21,39, a22,40 = a21,40, a22,41 = a21,41 ⊕ 1, a22,42 = a22,41, a22,43 = a22,41,
a22,44 = a22,41, a22,45 = a22,41, a22,46 = a22,41 ⊕ 1

15

b22 b22,38 = a22,38 ⊕ 1, b22,39 = a22,39 ⊕ 1, b22,40 = a22,40 ⊕ 1, b22,41 = a22,41 4

c22
c22,10 = c21,10, c22,11 = c21,11, c22,12 = c21,12, c22,13 = c21,13 , c22,14 = c21,14, c22,42 = c21,42,
c22,43 = c21,43, c22,44 = c21,44, c22,45 = c21,45 ⊕ 1, 9

d22 d22,10 = c22,10, d22,42 = c22,42, 2

23
a23 a23,32 = a22,32, a23,33 = a22,33, a23,34 = a22,34, a23,35 = a22,35 ⊕ 1 4
b23 b23,32 = a23,32 1

16
c16

c16,6 = c17,6, c16,12 = D16,12 ⊕ 1, c16,58 = c17,58, c16,59 = c17,58 ⊕ 1 c16,38 = B16,38 ⊕ c17,6, c16,44 =
B16,44 ⊕ D16,12 , c16,26 = B16,26 ⊕ c17,58 ⊕ 1

7
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Table 11. The conditions in group-3.

16

a16 a16,12 = B16,12 ⊕ 1, a16,22 = a17,22, a16,54 = D16,54 ⊕ a17,22 3

b16
b16,6 = B16,6 ⊕1, b16,12 = B16,12, b16,26 = B16,26 ⊕1, b16,38 = B16,38, b16,44 = B16,44, b16,58 = B16,58,
b16,59 = B16,59

7

d16 d16,12 = D16,12, d16,22 = D16,22 ⊕ 1, d16,54 = D16,54 3

15 a15 a15,6 = c16,6 ⊕ a16,12, a15,12 = a16,12 2

3 a3 a3,59 = b3,59 ⊕ 1 1

2
a2 a2,59 = a3,59, a2,36 = b2,36 ⊕ 1 2
c2 c2,19 = d2,19 ⊕ 1 1

1
a1 a1,7 = b1,7 ⊕ 1, a1,31 = b1,31 ⊕ 1, a1,36 = a2,36, a1,48 = b1,48 ⊕ 1, a1,59 = a2,59 5
c1 c1,19 = c2,19, c1,26 = d1,26 ⊕ 1, c1,43 = d1,43 ⊕ 1 3

0

a0
a0,7 = a1,7, a0,12 = B0,12 ⊕ 1, a0,17 = B0,17 ⊕ 1, a0,22 = B0,22 ⊕ 1, a0,29 = B0,29 ⊕ 1, a0,31 = a1,31,
a0,34 = B0,34 ⊕ 1, a0,36 = a1,36, a0,45 = B0,45 ⊕ 1, a0,48 = a1,48, a0,57 = B0,57 ⊕ 1, a0,59 = a1,59

12

b0 b0,12 = B0,12, b0,17 = B0,17, b0,22 = B0,22, b0,45 = B0,45, b0,29 = B0,29, b0,34 = B0,34, b0,57 = B0,57 7

c0
c0,3 = D0,3 ⊕ 1, c0,10 = D0,10 ⊕ 1, c0,15 = D0,15 ⊕ 1, c0,19 = c1,19, c0,26 = c1,26 ⊕ 1, D0,27 = c1,26 ⊕ 1,
c0,32 = D0,32 ⊕ 1, c0,43 = c1,43, c0,55 = c1,55

9

d0 d0,3 = D0,3, d0,10 = D0,10, d0,15 = D0,15, d0,27 = D0,27, d0,32 = D0,32, d0,55 = D0,55 6

30 c30 c30,25 = d29,25 1

31

a31 a31,12 = b30,12, a31,25 = b30,25, a31,37 = b30,37 3
b31 b31,25 = a31,25 ⊕ 1 1
c31 c31,25 = c30,25 1
d31 d31,25 = c31,25 ⊕ 1 1

32
a32 a32,12 = a31,12, a32,22 = b31,22, a32,37 = a31,37 3
b32 b32,6 = b32,5 ⊕ 1, b32,38 = b32,37 ⊕ 1, b32,58 = b32,57 ⊕ 1 3
c32 c32,6 = d31,6, c32,12 = d31,12, c32,19 = d31,19, c32,31 = d31,31, c32,37 = d31,37, c32,58 = d31,58 6

32

A32 A32,12 = a32,12, A32,22 = a32,22, A32,37 = a32,37 3

B32
B32,5 = b32,5 ⊕1, B32,12 = b32,12, B32,19 = b32,19, B32,26 = b32,26, B32,31 = b32,31, B32,37 = b32,37 ⊕1,
B32,44 = b32,44, B32,51 = b32,51, B32,57 = b32,57 ⊕ 1, B32,63 = b32,63 ⊕ 1

10

C32 C32,6 = c32,6, C32,12 = c32,12, C32,19 = c32,19, C32,31 = c32,31, C32,37 = c32,37, C32,58 = c32,58 6
D32 D32,12 = d32,12, D32,22 = d32,22, D32,37 = d32,37, D32,54 = d32,54, D32,57 = d32,57 5
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Abstract. Universal hash functions are commonly used primitives for
fast and secure message authentication in the form of Message Authen-
tication Codes (MACs) or Authenticated Encryption with Associated
Data (AEAD) schemes. These schemes are widely used and standard-
ised, the most well known being McGrew and Viega’s Galois/Counter
Mode (GCM). In this paper we identify some properties of hash functions
based on polynomial evaluation that arise from the underlying algebraic
structure. As a result we are able to describe a general forgery attack,
of which Saarinen’s cycling attack from FSE 2012 is a special case. Our
attack removes the requirement for long messages and applies regard-
less of the field in which the hash function is evaluated. Furthermore we
provide a common description of all published attacks against GCM, by
showing that the existing attacks are the result of these algebraic prop-
erties of the polynomial-based hash function. Finally, we greatly expand
the number of known weak GCM keys and show that almost every subset
of the keyspace is a weak key class.

Keywords: Universal hashing · MAC · Galois/Counter Mode · Cycling
attacks · Weak keys

1 Introduction

The study of information-theoretic message authentication codes and universal
hashing was initiated by Gilbert et al. [14] and Carter and Wegman [10,11,38,39].
Universal hash functions can be used to construct message authentication codes
in both the information-theoretically secure and computationally secure set-
tings (see [9,39]). Simmons [33] provides a general summary of the theory of
unconditionally secure message authentication. Bernstein [2,3] provides a thor-
ough description of the geneology and more recent literature of unconditionally
secure message authentication, including a description of the contributions of
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Bierbrauer et al. [5], den Boer [12], and Taylor [36] to polynomial-based hash-
ing. Bernstein [4] also gives an interesting overview of the security of universal
hash function based MACs in the computationally secure setting. Shoup [32]
describes several methods for realising universal hash function families that are
related to polynomials including the evaluation hash [5,12,36] which is a variant
of the division hash or cryptographic CRC of Krawczyk [21] (itself a variant of
Rabin’s fingerprinting codes [27]).

In this paper, we focus on message authentication codes constructed from
universal hash functions that are realised by polynomial evaluation. These are
widely used and standardised; for examples see [2,13,17,20,22,31]. McGrew
and Viega’s Galois/Counter Mode (GCM) [26] is the most widely deployed
polynomial-based scheme. The algorithm is generally assumed to be secure, with
a small number of papers containing attacks against the authentication compo-
nent via the universal hash function: Ferguson’s attack against truncated GCM
tags [15], demonstrating that the security of short tags is significantly lower than
would be expected; Joux’s ‘forbidden attack’ [19], illustrating the brittleness
of GCM under nonce reuse; Handschuh and Preneel’s [16] extension to Joux’s
attack [16]; and Saarinen’s cycling attacks [29], which highlight a weakness due
to the underlying algebraic structure of a hash function based on polynomial
evaluation. Both Handschuh and Preneel [16] and Saarinen [29] have described
classes of weak keys for polynomial evaluation based universal hash functions,
with Saarinen particularly focusing on GCM.

Contributions. A motivation of this work was the observation that all existing
attacks against GCM are algebraic in nature, and in fact seem to exploit a fun-
damental underlying algebraic structure of the polynomial-based hash function.
The contributions of this paper are to identify and study some of the proper-
ties of hash functions based on polynomial evaluation that are the result of this
underlying algebraic structure. As a result, we are able to describe a general
forgery attack, of which Saarinen’s cycling attack is a special case; our attack
can however be used with short messages, applies regardless of the field in which
the hash is evaluated, and facilitates length extension attacks against GCM.
Furthermore, we provide a common description of all published attacks against
GCM by showing that the existing attacks are the result of these algebraic prop-
erties of the polynomial-based hash function. Finally, we greatly expand the
number of known weak GCM keys, and show that almost every subset of the
keyspace is a weak key class. We note that the attacks presented in this paper do
not in any way contradict the security bounds for GCM given by McGrew and
Viega [24]. However the algebraic properties (and related attacks) discussed in
this paper appear to be an inherent feature of polynomial-based authentication
schemes and therefore should be considered in the security assessment of new
schemes and extensions of existing ones.

Structure. This paper is structured as follows. In Sect. 2 we introduce the nota-
tion that will be used throughout this paper and provide a brief description of the
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syntax and security of message authentication codes. In Sect. 3 we give a basic
overview of three schemes that use hash functions based on polynomial evalua-
tion for message authentication, including GCM and SGCM. In Sect. 4 we describe
the main technique used in this paper for the cryptanalysis of polynomial-based
authentication schemes and discuss some features of the resulting attack that make
it more interesting than cycling attacks. Section 5 contains a common description
of the existing attacks against GCM. In Sect. 6 we show that there are many more
weak key classes for hash functions based on polynomial evaluation than have
previously been described and suggest a method to realise a key recovery attack
against polynomial-based hash function schemes. Section 7 contains a discussion
of the consequences of this attack.

2 Preliminaries

2.1 Notation

We consider a message M parsed as M1|| . . . ||Mm, where each Mi is n bits
long and || represents concatenation of strings. In the syntax of authenticated
encryption with associated data [28], this message consists of associated data
A ⊕ A that is authenticated but not encrypted and plaintext P ⊕ P that will
be encrypted and authenticated.

A family of hash functions will be denoted H = {hH : {0, 1}Δ ∃ {0, 1}n | H ⊕
KH} with each hash function hH indexed by a key H ⊕ KH. A block cipher E
is a family of permutations on {0, 1}n, with each permutation indexed by a key
k ⊕ KE . The application of a block cipher to input x ⊕ {0, 1}n using key k will
be denoted by Ek(x). Where a nonce is used it will be denoted by N.

A finite field will be denoted by K unless the order of the field has par-
ticular relevance, in which case it will be denoted by Fpr with |F| = pr. The
multiplicative group of a field K will be denoted by K

Δ.

2.2 Universal Hash Functions

A family of hash functions is said to be Δ–almost → universal if for every M,M ∈ ⊕
{0, 1}Δ with M √= M ∈ and for every c ⊕ {0, 1}n, PrH∗KH [hH(M) → hH(M ∈) = c] <
Δ. Throughout this paper Δ–almost → universal will be abbreviated to Δ–AXU. This
condition was introduced by Krawczyk [21] under the name Δ–OTP–Secure as it
is a necessary and sufficient condition for unconditional MAC security when the
output of the hash function is encrypted with the one time pad in a field of char-
acteristic 2. In this paper we will generally refer to Δ–AXU hash function families;
however any remark made that requires an Δ–AXU hash function family in char-
acteristic 2 will also hold for an Δ–almost strongly universal [34] or Δ–almost γ
universal [35] hash function family in any finite field.

A polynomial based hash function family is a common way to realise an Δ–
AXU hash function family. Shoup [32] describes several examples of this type
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of construction; the main example of interest to this paper is the evaluation
hash. In the case of the evaluation hash the message M determines a polynomial
gM =

∑m
i=1 Mix

i ⊕ K[x], where M = M1|| . . . ||Mm with each Mi ⊕ K. The hash
key is an element H ⊕ K and we define the hash function by hH(M) = gM(H).

There are several methods for turning a universal hash function into a mes-
sage authentication code (see [9,39] for early examples). The two most common
methods are Ek(N) + hH(M) and Ek(hH(M)).

2.3 Syntax

We will follow Black et al. [8] for a description of the syntax of nonce-based
message authentication schemes. A message authentication scheme is a pair of
algorithms, Gen and MAC, with four associated sets: K, the set of possible keys;
M, the message space; N , the set of nonces and T , the set of possible authen-
tication tags.

The key generation algorithm Gen takes as input the security parameter and
probabilistically outputs the shared key k ⊕ K. The algorithm MAC takes as
input a key k ⊕ K, a nonce N ⊕ N , and a message M ⊕ M and outputs
a tag T ⊕ T . The authenticity of a tuple (N,M, T) is verified by computing
MAC(k,N,M): if T = MAC(k,N,M) then the tag is valid, otherwise it is invalid.

2.4 Security

An adversary attacking a message authentication scheme is given access to two
oracles: a tag generation oracle S and a verification oracle V. At the begin-
ning of the experiment Gen is run to obtain k, then MAC takes queries (N,M)
and returns MAC(k,N,M). The verification oracle takes queries (N,M, T) and
returns 1 if T = MAC(k,N,M) or 0 otherwise. An adversary is said to suc-
cessfully forge an authentication tag if they can produce a verification query
(N,M, T) so that V returns 1 when (N,M) was not previously queried to S.

A common restriction of this security notion is to nonce-respecting adver-
saries where, although the adversary can control the nonce, they never query S
for (N,M ∈) if they have previously queried S for (N,M).

McGrew and Viega [24], Ferguson [15], and Handschuh and Preneel [16] all
assert that the probability of creating a valid (non-truncated) tag having seen
a single valid (message, tag) pair is approximately m/|K| where the polynomial
is evaluated in K and m is the length of message that the construction operates
on. It is worth emphasising that in this context, m is the maximum permissable
message length. This is included in the original paper [24] but is not made
explicitly clear in the later papers [15,16]. In this paper we will demonstrate the
importance of this distinction via a method of forging GCM tags using a longer
message than the one that was given in the valid (message, tag) pair from the
tag generation oracle.

Throughout this paper we will focus on GCM for concreteness however the
majority of the comments apply equally to any other hash function based on
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polynomial evaluation. Most of the results in this paper apply equally to both
common constructions of MACs from universal hash functions, either
T = Ek(N) + hH(M) or T = Ek(hH(M)), as our results are based on colli-
sions in the hash function. Where necessary it will be made clear that a remark
is dependent on one of these general constructions or the specific structure of
GCM.

3 Polynomial-Based Authentication Schemes

We present below a brief description of some of the main authentication schemes
based on polynomial evaluation hash functions that are of relevance to our work.

3.1 Galois/Counter Mode

Galois/Counter Mode (GCM) is an AEAD scheme submitted to NIST by
McGrew and Viega in 2004, with the specification slightly revised in 2005 [26]
(although the revision contained ‘no normative changes [from the 2004 specifica-
tion]’ ). GCM combines counter mode encryption with a polynomial evaluation
based MAC following the Encrypt–then–MAC paradigm, although the authen-
tication key is derived from the block cipher key.

AES–GCM encryption takes as input: a key k, an initialisation vector IV (the
nonce), plaintext P = P1|| . . . ||Pp and additional data A = A1|| . . . ||Aa. The key
is 128, 192 or 256 bits long; the IV should preferably be 96 bits long although
any length is supported (see [18]); and for each i, |Pi| = |Ai| = 128 except
for perhaps a partial final block. With this input, AES–GCM returns a cipher-
text C = C1|| . . . ||Cp (the same length as the plaintext) and an authentication
tag T.

The plaintext is encrypted using AES in counter mode, under key k with
counter value starting at CTR1. If the IV is 96 bits long the initial counter value
(CTR0) is IV||0311, otherwise it is a polynomial evaluation based hash of IV
after zero padding (using the hash key described below). For each i, CTRi =
inc(CTRi−1), where inc(·) increments the last 32 bits of its argument (modulo
232).

The authentication tag is computed from a polynomial evaluation hash (in
F2128). The message M is parsed as 128-bit blocks (with partial final blocks zero
padded) and each block is interpreted as an element of F2128 . The first block M1

encodes the length of the (unpadded) plaintext and additional data and will be
referred to as the ‘length field’ throughout this paper. This is followed by blocks
of additional data M2, . . . ,Ma+1 = Aa, . . . ,A1 and then the encrypted plaintext
Ma+2, . . . ,Ma+p+1 = Cp, . . . ,C1. Note that in this description the labelling of
the blocks Mi are reversed from those given in the original GCM specification
as this gives a neater description of the polynomial used in evaluating the hash
function. The hash key H is derived from the block cipher key: H = Ek(0128).
The hash function is then computed as hH(M) =

∑a+p+1
i=1 MiH

i (where all
operations are in F2128). The authentication tag is given by:

TM = Ek(CTR0) → hH(M).
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3.2 Sophie Germain Counter Mode

In 2012, Saarinen [29] observed cycling attacks against GCM and other poly-
nomial MACs and hashes. Following this Saarinen proposed SGCM [30] as a
variant of GCM; SGCM differs from GCM only by the choice of field in which
the hash is computed. SGCM uses Fq, where q = 2128+12451, rather than F2128 ,
as F

Δ
q has significantly fewer subgroups than F

Δ
2128 . It was claimed that SGCM

offers increased resistance to cycling attacks as a result of this change.

3.3 Poly1305–AES

Bernstein proposed Poly1305–AES in 2005 [2]1. Poly1305–AES takes as input
two 128-bit keys, one for AES and one for the hash (with some specific bits
set to zero); a 128 bit nonce; and a message (a byte string). The output of
Poly1305–AES is a 128-bit authentication tag.

The hash of a message is computed by evaluating a message-dependant poly-
nomial at the secret key (in F2130−5), and encrypting this by adding (in F2130−5)
the output of AESk(N) before reducing modulo 2128.

4 Algebraic Structure of Polynomial-Based
Authentication Schemes

Let H be a family of hash functions H = {hH : {0, 1}Δ ∃ {0, 1}n | H ⊕ KH}
based on polynomial evaluation and let M be an input string. Let hH(M) =
gM(H), where gM(x) =

∑m
i=1 Mix

i ⊕ K[x] and H ⊕ K. Now let q(x) =∑r
i=1 qix

i ⊕ K[x] be a polynomial with constant term zero, such that q(H) = 0.
Then it follows that

hH(M) = gM(H) = gM(H) + q(H) = gM+Q(H) = hH(M + Q),

where Q = q1||q2|| . . . ||qr and the addition M +Q is done block-wise (the shorter
is zero-padded if required). Thus given a polynomial q(x) satisfying these prop-
erties, it is straightforward to construct collisions for the hash function. It is
trivial to see that one can use any polynomial q(x) ⊕ 〈x2 − Hx⇒ ∈ K[x].

Collisions in the hash function correspond to MAC forgeries by substituting
the original message for the one that yields a collision in the hash function. These
forgeries arise from collisions in the hash function and hence the messages can
be substituted without any dependence on the method or key used to encrypt
the output of the hash function. This method allows an adversary to create
forgeries when he has seen a tuple of (nonce, message, tag) by only modifying
the message.

It should be noted that the polynomial defined by the message will always
have a zero constant term and therefore the polynomial q(x) that is used to
forge will always have x as a factor. If this term were non-zero and the hash
1 There is a preliminary version from 2004 on his website: http://cr.yp.to/mac.html.

http://cr.yp.to/mac.html
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of a message was encrypted additively (i.e. T = Ek(N) + hH(M)), it would
be possible to flip bits in the first message block and flip the same bits in the
authentication tag to create a valid forgery. This is the major difference between
Shoup’s Cryptographic CRC [32] and Rabin’s fingerprinting codes [27].

The main observation of this paper is that by working with polynomials
in the ideal 〈x2 − Hx⇒, it is straightforward to produce forgeries for polyno-
mial evaluation based authentication schemes. In [29], Saarinen proposed cycling
attacks by working with particular polynomials, namely xn −x (for more detail,
see Sect. 5.4). The forgery is successful if (x − H)|(xn − x) and therefore if
xn − x ⊕ 〈x2 − Hx⇒. However, the forgery will be successful if any polyno-
mial in this ideal is used to mount a similar attack. Furthermore, use of these
polynomials also makes it possible to test for membership of large subsets of the
keyspace with a single valid (message, tag) pair and a single verification query
(see Sect. 6).

4.1 Malleability

In [29], Saarinen also describes ‘targeted bit forgeries’ against GCM where, rather
than swapping the full blocks Mi and Mi+jt, corresponding bits in each cipher-
text block are flipped. This can also be described by the more general attack,
by using a multiple of q(x).

If q(H) = 0, then α · q(H) = 0 for any α ⊕ K and

TM = Ek(N) + hH(M)
= Ek(N) + M1 · H + · · · + Mm · Hm

= Ek(N) + (M1 + αq1) · H + · · · + (Mm + αqm) · Hm

= TM+γQ

where TM+γQ is the authentication tag for the message M1 → α · q1|| . . . ||Mm →
α · qm (recall that M contains the associated data, encrypted plaintext and the
length of both).

If the plaintext is encrypted using a stream cipher (or a block cipher in
counter mode) flipping bits in the ciphertext causes the same bits in the paintext
to be flipped. This allows us to predict relations between the original plaintext
and the forged plaintext (as Ci → αqi decrypts to Pi → αqi). Because α can be
chosen so as to set Ci → αqi equal to any value chosen by the adversary (for a
single i), an adversary can choose a differential (in a single block) between the
original message and the forged message.

If further control over the underlying plaintext in required, several forgery
polynomials could be used. In the best case, using t polynomials permits the
adversary control over t message blocks. The cost of this extra malleability is
that the forgery is only successful if the authentication key is a root of the
greatest common divisor of the two polynomials. This can be extended to give
as much control over the plaintext as required, but for every extra malleable
block the success probability is reduced by at least 1

|KH| .
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If the plaintext were encrypted using a block cipher (not in counter mode)
then an adversary would not have this fine control over the plaintext, but would
still be able to manipulate the ciphertext in this way.

This property also permits an adversary to create as many forgeries as there
are non-zero elements in the field (see [7,25] for further discussion of multiple
forgeries).

4.2 Length Extension

In the GCM specification, the last block input to the hash function (correspond-
ing to the term M1 · H in the MAC calculation) describes the length of the
plaintext and additional data. The more general attack described in this paper
allows an adversary to manipulate the length field (even though it does not
explicitly appear in the sent message). If an adversary is given a valid tag for
a message then the content of the length field is known, as it correctly encodes
the length of the plaintext and additional data. It is therefore possible to choose
a differential in the length field so that it corresponds to the length of the new
message. In particular, forgeries can be created using high degree polynomial
q(x) regardless of the size of the message in the initial (message, tag) pair.

This is an important remark as it removes one significant limitation on the
effectiveness of cycling attacks against GCM [29], which is the length of the
message necessary to launch an attack. For a cycling attack to be attempted, an
adversary requires as many blocks of correctly authenticated data as there are
elements in the subgroup with which he wishes to forge, in order to swap the first
and last blocks. By manipulating the length field any forgery probability can be
realised starting with a valid authentication tag on a single message block.

A common criticism of GCM is that the maximum message length may be
restrictive in the future as data rates increase [15]. However, it follows from
our work (and the original security proofs [24]) that increasing the maximum
permissible length would significantly decrease the security of the scheme.

4.3 Key Recovery

Saarinen suggests that once a weak key has been identified (by a successful
cycling attack), the adversary would create many forgeries by further cycling
attacks [29, Sect. 9]. Translating this to the more general polynomial root descrip-
tion: once a successful forgery occurs, the authentication key is known to be one
of the roots of the ‘forgery polynomial’ q. Therefore rather than making repeated
‘cycling forgeries’ with guaranteed success but limited control of the plaintext,
the adversary can aim to recover the authentication key and forge authentication
tags for arbitrary messages. By attempting to forge using a subset of the roots
of the forgery polynomial (and reducing the number of roots in the subset after
each successful attempt), an adversary can gradually recover the authentication
key using a method that is independent of encryption method or key used. This
would give a forgery probability less than 1 at each stage, however the adver-
sary can choose a trade-off between the forgery probability and the speed of
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recovering the authentication key. This is analogous to the key recovery attack
described by Handschuh and Preneel [16] (where the subsets are chosen to realise
a binary search of the keyspace). Note that in the case of GCM, recovery of the
hash key H does not lead to the recovery of the encryption key k as H = Ek(0).

4.4 Choosing Polynomials

To maximise the probability of a successful forgery it is important that the
polynomial used to attempt a forgery has many distinct roots, as a root with
multiplicities increases the degree of the polynomial (and hence the length of the
attempted forgery) without increasing the probability of success. The näıve way
to achieve this is to compute q(x) =

∏
i (x − Hi) for as many Hi as is required

to give the desired forgery probability.
Alternatively, if the polynomial defined by the hash function is evaluated in

Fpr and the irreducible factorisation of xpr − x is computed in a subfield Fpd , a
subset of these factors can be multiplied together (in Fpd). By choosing distinct
irreducible factors, the roots of the product polynomial will be distinct. Cycling
attacks [29] employ a variation on this method. The factorisation

22
n − 1 =

n∏

i=1

22
i−1

+ 1

allows Saarinen to find factors of x2128 −x in F2[x] which can be used in a cycling
attack (although they are not necessarily irreducible):

x2128 − x = x(x − 1)
(x3 − 1)
x − 1

(x5 − 1)
x − 1

(x17 − 1)
x − 1

· · ·
= x(x − 1)(1 + x + x2)(1 + x + · · · + x4)(1 + x + · · · + x16) . . .

To carry out a cycling attack using a subgroup of order t, the factors x, (x−1) and
(xt−1)

x−1 are multiplied together to obtain the polynomial xt+1−x. In general there
is no requirement to select (x − 1) or to use only three factors, for example the
polynomial x(1+x+x2)(1+x+. . . x16) could be used to give a forgery probability
of 19

2128 . This is not a cycling attack, as the polynomial used contains more than
two terms so the forgery does not involve simply swapping two message blocks,
but it does rely on the same underlying algebraic structure.

A third option is to use a randomly selected polynomial in Fpr [x]. One poten-
tial issue with this method is the presence of repeated factors. Square-free fac-
torisation has been extensively studied as it is a common first step in many
polynomial factorisation algorithms (for example, see [37, Ch. 14]). It may be
feasible to sample polynomials from Fpr [x] randomly and process this polyno-
mial to make it more desirable by removing repeated factors. This method does
not appear promising due to the large number of irreducible polynomials of any
given degree in Fpr [x] and the observation that a degree d polynomial that con-
sists of a single linear factor and an irreducible polynomial of degree d − 1 is
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almost as bad as a degree d irreducible polynomial from a forgery probability
perspective. Irreducible polynomials in Fp that are known to have a root in Fpr

would be good candidates for attempting forgeries as the normality of Fpr/Fp

guarantees that these polynomials will split into linear factors. Unfortunately
this does not appear to be a well studied area. A further disadvantage of choos-
ing random polynomials is that, although the roots of a polynomial in K[x] can
be identified efficiently (see [1] for example), it would be unlikely that a non-
intersecting subset of the keyspace would be used for a second forgery attempt
if the first was unsuccessful.

5 Existing Attacks Against GCM

We show below that the four known attacks on GCM can be described as special
cases of the properties discussed in Sect. 4.

5.1 Ferguson’s Short Tag Attack

Ferguson’s attack against GCM when short tags are used [15] begins by attempt-
ing to forge using a particular class of polynomials (linearised polynomials). Lin-
earised polynomials have the property that their roots form a linear subspace
of the splitting field of the polynomial (see [23, Chap. 3.4] for an overview).
Ferguson uses polynomials in F2[x] that split over F2128 , so the roots correspond
to possible authentication keys and it is possible to describe the roots of a lin-
earised polynomial using a matrix over F2. Multiple successful forgeries reduce
the dimension of the subspace of the keyspace that contains the authentication
key and eventually an adversary can recover the key.

5.2 Joux’s Forbidden Attack

Joux’s ‘forbidden attack’ against GCM [19] is also a specific case of the properties
discussed in this paper. This attack requires two messages, M and M ∈, that are
authenticated with the same (key, IV) pair. Reusing the (key, IV) pair in GCM
has the effect of reusing H, k and N:

TM → TM ⊥ = (hH(M) → fk(N)) → (hH(M ∈) → fk(N))
= hH(M) → hH(M ∈)
= hH(M → M ∈)

The adversary knows TM , TM ⊥ and both messages so is able to derive a
polynomial that is satisfied by the hash key. This attack is prevented if we only
consider nonce-respecting adversaries.
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5.3 Handschuh and Preneel

Handschuh and Preneel [16] describe a key recovery attack and a method to verify
a guess for a key. They identify the key recovery attack as an extension of Joux’s
‘forbidden attack’ which does not require nonce reuse. It consists of attempting to
create a forgery and then searching through the roots of the polynomial defined
by the difference betweeen the original message and the forged message. This
was initially identified by Black and Cochran [6], but extended and generalised
by Handschuh and Preneel. The method for verifying a key guess H corresponds
precisely with attemping to forge using the polynomial (x2 − Hx).

Handschuh and Preneel consider their attack to be infeasible for GCM due to
the blocksize of 128 bits, however it is precisely as feasible as Saarinen’s cycling
attacks.

5.4 Saarinen’s Cycling Attacks

In 2012, Saarinen observed cycling attacks against GCM and other polynomial-
based MACs and hashes [29]. If a hash key H lies in a subgroup of order t, then
Ht = 1 ⊕ K and (for any i, j) message blocks Mi and Mi+jt can be swapped
without changing the value of the hash.

For example (ignoring GCM’s length encoding), if H4 = H then blocks M1

and M4 can be swapped without changing the value of the hash:

hH(M1||M2||M3||M4) = M1 · H → M2 · H2 → M3 · H3 → M4 · H4

= M4 · H → M2 · H2 → M3 · H3 → M1 · H4

= hH(M4||M2||M3||M1).

It is more natural and general to consider the authentication keys that fall
in low order subgroups as roots of a low degree polynomial. Cycling attacks
correspond to the general attack introduced in this paper, using the polynomial

q(x) = (Mi − Mi+jt)(xt+1 − x),

noting that in fields of characteristic 2 subtraction is the same as →.

hH(M1||M2||M3||M4) =M1 · H → M2 · H2 → M3 · H3 → M4 · H4

=M1 · H → M2 · H2 → M3 · H3 → M4 · H4

→ (M1 → M4) · H → (M1 → M4) · H4

=M4 · H → M2 · H2 → M3 · H3 → M1 · H

=hH(M4||M2||M3||M1)

Using the more general ‘polynomial roots’ description it is possible to forge
using any subset of the keyspace. If the authentication keys that we wish to
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attempt to forge with are the elements of a low order subgroup, for example the
order three subgroup of FΔ

2128 (identified by Saarinen [29, Sect. 4.1]) plus the all
zero key:

H0 = 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

H1 = 80 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

H2 = 10 D0 4D 25 F9 35 56 E6 9F 58 CE 2F 8D 03 5A 94

H3 = 90 D0 4D 25 F9 35 56 E6 9F 58 CE 2F 8D 03 5A 94

then the polynomial that is created corresponds precisely to Saarinen’s cycling
attack. In this case (x − H0)(x − H1)(x − H2)(x − H3) = x4 − x.

6 Weak Keys for Polynomial-Based Authentication
Schemes

For any cryptographic algorithm, a relevant question for its security assessment
is whether it contains weak keys. Handschuh and Preneel [16, Sect. 3.1] give the
following definition of weak keys:

In symmetric cryptology, a class of keys [D] is called a weak key class if
for the members of that class the algorithm behaves in an unexpected
way and if it is easy to detect whether a particular unknown key belongs
to this class. For a MAC algorithm, the unexpected behavior can be that
the forgery probability for this key is substantially larger than average.
Moreover, if a weak key class [D] is of size C, one requires that identifying
that a key belongs to this class requires testing fewer than C keys by
exhaustive search and fewer than C verification queries.

Handschuh and Preneel [16] identify 0 as a weak authentication key for GCM
and other similar constructions as h0(M) = 0 for every message M. Following
the definition above and because |D| = 1, an adversary is not allowed to test
any key by exhaustive search, nor are they allowed any verification queries. For
a single element subset of the keyspace D = {HΔ} to be a weak key class, a
nonce-respecting adversary has to be able to identify whether or not H = HΔ

when they are given a number of (message, tag) pairs of their choosing (each
created using a different IV). We note that a nonce-respecting adversary can
detect whether D = {0} if |IV| √= 96: in this case all IVs hash to give the same
initial counter value and h0(M) = 0 for every message M so all messages have
the same authentication tag (as identified in [24, Sect. 5]). If |IV| = 96 a different
initial counter value is used to encrypt the output of the hash function and so
although the output of the hash function does not change this cannot be detected
given the output of the MAC algorithm.

Saarinen [29] demonstrated that the situation is much worse than described
by Handschuh and Preneel, as he was able to find classes of weak keys where
the authentication key falls in a low order subgroup of KΔ. It is then possible to
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create a valid forgery by swapping two message blocks of a valid (message, tag)
pair without changing the authentication tag if the authentication key lies in a
subgroup with order dividing the distance between the swapped message blocks.

This forgery will be successful if and only if the key is an element of such a
subgroup and therefore this provides a simple method for identifying weak keys
which requires one valid (message, tag) pair and one verification query. These
classes of weak keys therefore meet Handschuh and Preneel’s definition of weak
keys.

For example, the subset of authentication keys corresponding zero and the
elements of the subgroup of order 3 in F2128 is a weak key class. Membership of
this subset can be confirmed by a successful forgery if Mi and Mj are swapped
and i ≈ j mod 3. This is equivalent to attempting a forgery using (a multiple
of) the polynomial x4 − x.

However, it follows from the discussion in Sect. 4 that it is possible to derive
comparable statements for any set of authentication keys in F2128 , except that
rather than ‘nice’ binary descriptions, the polynomial description will involve
elements of F2128 . In particular, for any set of authentication keys D we can use
any polynomial in the ideal

∏
H∗D〈x2 − Hx⇒ to test for membership of that

subset of the keyspace. It follows that almost every subset of the GCM keyspace
is weak. We discuss this issue further in Sects. 6.1 and 7.

6.1 Keyspace Search

Based on the properties discussed in Sect. 4 it is possible to test for member-
ship of any subset of the keyspace using at most two verification queries. Mem-
bership of subsets that include the zero key can be tested by setting q(x) =∏

H∗D (x − H). This therefore requires one verification query, independent of
the size of D. To test for membership of a subset D that does not include zero,
first test whether H ⊕ D ∪ {0} and then rule out H = 0 using the method
described below. This therefore requires two verification queries, but again is
independent of the size of D. The distinction between subsets including zero or
not including zero is a consequence of the constant term of gM(x) being zero to
avoid predictable changes in the output of the hash from flipping low order bits.

Therefore, using Handschuh and Preneel’s definition, a set D of GCM authen-
tication keys is a weak key class if either: |D| ∀ 3 or |D| ∀ 2 and 0 ⊕ D.

Given one valid (message, tag) pair for a single block message and one ver-
ification query it is easy to determine whether or not H = 0. If the adversary
attempts to forge using any other single block message and the same tag, then
the forgery is successful if and only if H = 0 as seen below.

If no length encoding is used:

T = E(CTR0) + (M · H)
= E(CTR0) + (M ∈ · H)
∅ (M − M ∈) · H = 0
∅ M = M ∈ or H = 0
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If a GCM style length encoding is used:

T = E(CTR0) + (length · H) + (M · H2)

= E(CTR0) + (length · H) + (M ∈ · H2)

∅ (M − M ∈) · H2 = 0
∅ M = M ∈ or H = 0

By testing for membership of subsets of the keyspace, it is plausible that
an adversary could recover one bit of the authentication key with each forgery
attempt. If q(x) =

∏
H∗Y (x − H), where Y is the set of authentication keys for

which the first bit is zero, then a successful forgery confirms that the first bit
of the authentication key is zero and a failure confirms that the first bit is one.
Repeating this for each bit of the authentication key, the whole key could be
recovered using 128 verification queries.

This would require unfeasibly large messages to be used in the forgery
attempts in the case of authentication keys corresponding to elements of a field
with |K| ∗ 2128, but it is a strong argument against using a hash function based
on polynomial evaluation in a field with |K| � 2128. This may be a direction
taken by variants of GCM designed to improve the performance of GCM (see [40]
for one such example), however we recommend extreme caution when consider-
ing these modifications. In the case of GCM the size of the subsets that can be
tested is limited to around 256 as the maximum message length is limited.

One advantage of being able to test for membership of arbitrary subsets is
that it allows the adversary to use any partial knowledge of the authentication
key that they may have.

7 Discussions and Conclusions

7.1 Choice of Fields

It is true that the security against cycling attacks, as presented in [29], can be
increased by evaluating a hash function in a field with a multiplicative group,
the order of which does not have many factors. However the attack introduced in
this paper (of which cycling attacks is a special case) applies equally well in any
finite field, so Saarinen’s claim that ‘The security of polynomial-evaluation MACs
against attacks of this type of attack can be determined from the factorization of
the group size in a straightforward manner’ [29, Sect. 8] is somewhat misleading.

Saarinen’s claim is valid in the sense that the factorisation of |K| − 1 deter-
mines the extent to which the process of computing irreducible factors will suc-
ceed; however an attack using

∏
H∗D (x − H) will work equally well in every

field. In particular, it follows from our work that the SGCM variant of GCM has
the same inherent weaknesses regarding polynomial based forgery attacks.
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7.2 Length Extension

It is unfortunate that including the length of the additional authenticated data
and plaintext in the input to the hash function is not sufficient to prevent the
length extension attack presented in this paper. In schemes that use a GCM–
like length encoding, if the value of the length field were encrypted using a block
cipher before being input to the hash function, it would not be possible to alter
the message length as described in Sect. 4. However, one of the design goals of
GCM was to take advantage of AES pipelining, which precludes the use of the
block cipher to compute the authentication tag.

7.3 Malleability

Part of the reason that this weakness in the algebraic structure of polynomial
hashing is problematic for GCM is that it allows an adversary to choose the
changes that are made to the plaintext in a forged message. This is because
addition in a field of characteristic 2 is used for both the counter mode encryption
and the hash function evaluation.

One way to avoid this issue is to use different operations during encryption
and MAC generation. This is one significant advantage that (CTR & Poly1305–
AES) [2] has over GCM, as in this scheme the MAC is computed using addition
in a prime order field while the message is encrypted using addition in a field of
characteristic 2.

An alternative method to increase the difficulty for an adversary attempting
to make meaningful manipulations of plaintext is to use a mode of operation
other than CTR as this will prevent the ‘targeted bit forgeries’ described by
Saarinen [29, Sect. 6] and the analogous forgeries in this paper.

GCM roughly follows the Encrypt–then–MAC paradigm, as is generally per-
ceived to be best practice (although MAC–then–Encrypt has also been proved
secure in the nonce-based AEAD setting [28]). Despite going against the per-
ceived best practice, using a MAC–then–Encrypt approach (in addition to the
proposed changes described above) would make it harder for an adversary to
create ciphertexts that correctly decrypt to a plaintext known to be related to
a (plaintext,ciphertext) pair obtained from a query. We note however that the
introduction of other weaknesses caused by making these changes has not been
ruled out.

7.4 Weak Keys

The weak key classes that are identified in Sect. 6 cause the forgery probability
to be higher than expected because an adversary can detect whether the authen-
tication key that is being used is a member of that class and can then forge with
probability one.

The broader issue with polynomial evaluation based hashes is that it is pos-
sible to test for membership of large subsets of the keyspace with only one or
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two verification queries and once an adversary has successfully confirmed mem-
bership of a subset he can either continue to forge messages or conduct a search
of a much reduced keyspace. This is an unusual and undesirable property of a
cryptosystem.

It is interesting that the two-element subsets of the keyspace containing zero
are weak key classes, while those that do not contain zero are not, yet any subset
of the keyspace containing at least three elements is weak. This perhaps suggests
a problem with the definition of a weak key class. In our opinion the definition
is correct and the observations made in this paper are unavoidable properties
of hash functions based on polynomial evaluation that result from the algebraic
structure of the construction, so are not best described in terms of the number
of weak keys.

The most important discussion around this issue is whether an algorithm in
which almost every subset of the keyspace is a weak key class is a weak algorithm
or whether this is a property of the construction that, although highly undesir-
able, is not considered to reduce the security of the scheme to an unacceptable
level. We suggest that in the case of GCM it is the latter; in other polynomial-
based MAC schemes with different parameters it may be the former and this
property must be considered when designing and evaluating schemes.
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Abstract. Security against related-key attacks is an important criteria
for modern cryptographic constructions. In the related-key setting, the
adversary has the ability to query the underlying function on the target
key as well as on some related-keys. Although provable security against
related-key attack has received considerable attention in recent years,
most of the results in the literature aim to achieve pseudorandomness
and semantic security and often lead to inefficient constructions.

In this paper, we formalize the notion of unpredictability in the
related-key setting. We start with the definitions of related-key secu-
rity of Message Authentication Codes and identify required properties
of related-key derivation functions for provable security. We show that
unlike PRFs, MACs can inherently tolerate related-key attacks against
constant transformations. Next, we consider the construction of variable-
input-length MACs from fixed-input-length related-key unpredictable
functions. We present simple attacks against XCBC and TMAC. We
present a general construction of related-key secure MACs. Our construc-
tion, instantiated with Enciphered CBC construction of Dodis, Pietrzak
and Puniya (EUROCRYPT 2008), results into first provably secure
domain extension of related-key secure unpredictable functions. Finally,
we present two constructions of related-key secure MACs from DDH
assumption. The first construction is extremely efficient and tolerates
group-induced partial key transformations. The second construction
achieves security against independent group-induced tranformations and
is more efficient than the RK-PRFs achieved by Bellare and Cash
(CRYPTO 2010).

Keywords: Message authentication · Related-key attack · Domain
extension

1 Introduction

A series of cryptanalytic results have established the threat of related-key attacks
as a mainstream cryptographic challenge. Introduced by Biham and Knudsen
[6,16] for block ciphers, related-key cryptanalysis has led to high profile attacks,

S. Moriai (Ed.): FSE 2013, LNCS 8424, pp. 305–324, 2014.
DOI: 10.1007/978-3-662-43933-3 16, c© Springer-Verlag Berlin Heidelberg 2014



306 R. Bhattacharyya and A. Roy

ranging from key recovery [7] to distinguishers [8–10]. In a related-key setting,
the secret key of a cryptosystem/primitive can be partially controlled by the
adversary. Specifically, the adversary can apply key transformations to change
the key and observe the outcome under the modified keys. A typical example of
such transformation is fault injection attack.

Motivated by the cryptanalytic applications, Bellare and Kohno [5] initiated
a theoretical study of related-key (RK) security of block ciphers, traditionally
modelled as pseudorandom permutations (PRPs) and pseudorandom functions
(PRFs). They defined related-key security with respect to a class of related-
key-deriving (RKD) functions, Δ, which specifies the relations available to the
adversary, and considered an adversary who can (adaptively) choose the relation
from Δ during the attack. Although in some of the examples of [5], choice of
RKD set makes the adversary quite powerful, they help to characterize the set
of functions.

Despite of its importance in applied cryptography only a few positive results
are known in the RK setting [2,4,5,17]. Bellare and Kohno [5], followed by
Lucks [17] considered the construction of RK secure pseudorandom functions
and permutations from the ideal primitives like ideal cipher. Lucks introduced
the notion of group induced RKD class where, if the keyspace forms a group
under some given operation, then the RKD functions may be chosen by an
adversary using this group-operation. An obvious example of such operation
is bit wise exclusive or (XOR) operation of a key with some known constant
(of same bit length as the key). In a breakthrough result, Bellare and Cash [3]
constructed RK secure PRPs based on hardness of DDH/DLIN assumptions.
Although this construction proves an important feasibility result , the solution
is quite inefficient and hard to use in practice.

On the other hand, related-key distinguishers have been found for widely
used block-ciphers including AES [10]. Naturally, concerns are mounting over
the security of the primitives, designed based on these ciphers [18]. Specifically,
security of applications like message authentication codes, where block-ciphers
are used heavily as the underlying primitive, needs to be revisited in light of
the related-key attacks. Although, most of the popular MAC constructions were
proven to be pseudorandom assuming pseudorandomness of the underlying block
cipher, much weaker security notion, like unpredictability, is sufficient for MACs.
As AES and some other block-ciphers are believed to remain unpredictable, even
against related-key attacks, a natural question is what security guarantee we can
prove from this assumption. Specifically, Can we achieve an efficient construction
of Message Authentication Code, secure against related-key attacks, if we only
assume related-key unpredictability from the underlying block ciphers?

Our Results. In this paper, we focus our attention to the security of message
authentication codes against related-key attacks. Instead of modeling the block
cipher as RK-PRP, we model underlying block cipher as only RK unpredictable.
We reconsider several practical and popular constructions from the literature,
and analyze them in the light of related-key attacks, towards their feasibility
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as related-key MACs. We also present two proofs of concept RK unpredictable
functions, both based on DDH assumption. A more detailed description of our
results follows.

Definitions. We start with presenting general definition of unpredictability
against related-key attacks. We consider two types of security of unforgeability.
In the first type (called Weak Related-Key Unforgeability), adversary’s predic-
tion has to be on a fresh message, i.e. she can not predict the output of the
function (on the target key) on a message, which she has queried earlier even on
a related-key. In the stronger type (called Related-Key Unforgeability), adver-
sary can be more powerful. She is allowed to forge a message, even if she has
queried it on a related-key (although, not on the target key).

Handling Constant Functions. We revisit the necessary conditions for the
class of related-key transformations argued by Bellare and Kohno [5], specifically
transformations mapping all keys to some constant. We present a simple proof
that a general message authentication code is inherently secure against constant
RKD functions. To the best of our knowledge, this results to a first symmetric
key construction which can handle constant RKD transformations.

Cryptanalysis of Popular MAC Construction. Next, we show negative
results on many popular constructions. We show simple attacks against XCBC
and TMAC. We also prove that, if the key of the MAC construction is viewed
as a single key, ECBC and FCBC constructions do not guarantee unforgeability,
irrespective of the strength of underlying block ciphers.

A Related-Key Secure Domain Extension. The natural question that arises
from the results of previous paragraph is whether any existing construction pre-
serves unpredictability against a related-key adversary. For the general setting,
most designs use the NI construction of [1]. The general idea behind the con-
struction is a collision at the output would imply a collision at the compression
function (by standard MD argument). Then one would try to design an efficient
weak collision resistant compression function from unpredictable functions, and
prove that a collision at the compression function output can be used to predict
the output of the underlying functions. However, in the related-key scenario,
this need not be the case. Indeed, the collision of the mode as well as the com-
pression function may be with a related-key query. If the related key query was
made later, then the previous approach will not work.

To solve this problem, we propose a Merkle-Damg̊ard based construction
(prefix-free NI) for related-key unpredictability. Specifically, our construction is
a prefix free MD domain extension with an extra round at the end. Using this
extra round, we prove that even if the collision is with a related-key query, input
of the last round (during the evaluation of forgery output) is either new (hence
can be used for prediction) or generates a collision with a previous query on
the target key. Then one can extend the standard MD based arguments to find
forgery on the underlying functions.

We instantiate this mode of operation by the enciphered CBC construction
of Dodis, Pietrzak and Puniya [13], and prove that this gives a variable input
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length related-key unpredictable function from fixed input length related-key
secure unpredictable functions and permutations.

A General Construction of RK Unpredictable Functions. Our final
contribution is a provably secure construction of Related Key Unpredictable
function in the standard model. We instantiate this construction by two recent
constructions in [11]. Our basic construction, secure against partial key-
transformations, is much efficient in terms of keysize. Specifically, the keysize
in our case is linear as compared to quadratic keysize in [3]. Our second con-
struction is fully secure against component-wise group induced transformations.
The construction of Bellare and Cash [3] can be seen as a special case of our con-
struction. Additionally, the concept of key homomorphism in this work avoids
the complexity of key malleability faced in [3]. Compared to Bellare-Cash con-
struction, this construction is efficient in terms of exponentiation.

2 Overview of Our Technique

Claw-free RKD sets. In this work, like most of the previous positive results,
we focus on claw-free related-key deriving (RKD) functions. Roughly speaking,
a set Δ of RKD functions is called claw-free if for all but negiligible fraction of
k, distinct functions γ1 and γ2 from Δ, γ1(k) ⊕= γ2(k). We note that, Bellare,
Cash, and Miller [4] have constructed related-key secure signature scheme where
they could break this requirement. However, their construction heavily depends
on the notion of ICR pseudorandom generator, which in turn depends on RK-
secure pseudorandom functions. We stress that, no construction of RK-secure
pseudorandom function against non-claw free RKD set is known till date, and
constructions of [4] are not instantiable by current RK-secure PRFs. In such a
situation, we consider the claw-free RKD sets as worthy target.

Handling Multiple Keys. The most popular paradigm to design variable-
input-length (VIL) MAC (or PRF) is the Hash then MAC (or Hash then PRF)
approach. The message is first hashed by applying a collision resistant hash func-
tion, and then passed through an independent fixed input length MAC (PRF).
Naturally, the key of such a construction contains the key(s) of the hash func-
tion (or the underlying primitive) and an independently sampled key of the final
transformation. The key of the variable input length MAC is simply the con-
catenation of these sampled keys. The question is, how will the adversary change
this key, i.e. should she consider functions which work independently over the
individual keys? Or we can allow her to consider any claw-free RKD transforma-
tion over the keyspace (Cartesian product of the keyspace of the hash function
and the final transformation) of the variable input length MAC.

In Sect. 6, we show that if we allow any claw-free RKD transformation over
the keyspace, then multi-key constructions have an inherent limitation. Specif-
ically, we show attacks on ECBC and FCBC, where the related-key adversary
can turn a three key construction into a two key construction, using a claw-free
RKD class.
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We identify an alternative yet natural class of RKD functions, called
component-wise transformation as a feasible target. A component-wise trans-
formation over the keyspace Kn is an n-element vector of RKD functions over
K. Let γ = (γ1, γ2, · · · , γn) be such a vector where each γi is a function over K.
For any key k = (k1, k2, · · · , kn), γ(k) is defined by (γ1(k1), γ2(k2), · · · , γn(kn)).
We remark that this idea of component-induced transformation is not new. In
fact, constructions of RK-PRFs [3] were shown essentially for such classes. How-
ever, we are the first to formalize such idea.

Removing Unkeyed Collision Resistance Assumption. One of the most
important tools of the related-key secure VIL-PRF of [3] is an unkeyed collision
resistant hash function with carefully chosen range. Thus, security of this PRF
is based on the assumption of existence of unkeyed collision resistant hash func-
tion. This assumption is very strong (in fact, stronger than existence of one-way
function) and thus undesirable. However, the problem is, if we consider keyed
hash function, then that key is also subject to related key attack. It is not clear
from [3], how to tackle that problem.

We solve this problem by introducing the notion of identity collision resis-
tance and target preimage resistance for keyed hash functions. Intuitively, against
an identity collision resistant hash function H with key k, a related-key adver-
sary (which makes adaptive queries serially) will not be able to output, with
significant probability, a message m such that Hk(m) matches with the output
of the (related-key) queries she already made. We prove such a notion along with
a notion of target preimage resistance (lifted to the RK setting) is enough for the
Hash and MAC construction. We also show how to construct such an hash func-
tion from length preserving related-key secure MACs/permutations. Although
we faced some technical challenges (mentioned in the previous section), we solve
them with an elegant prefix-free padding and Merkle-Damg̊ard mode of opera-
tion.

Independent Work
Independent to our work, Xagawa [19] also considered related key security of
message authentication codes over additive rkd sets, extending the results of
[12]. Some of his results are similar to our algebraic constructions in Sect. 10.

3 Notations and Security Definitions

Notations: If x is a string, |x| denotes the length (number of characters) of the
string, x[i] denotes the ith character of x, and x1||x2||..||xt denotes concatenation
of t strings. For a finite set X, |X| denotes the size of the set. x ∃R X means
selecting an element x uniformly at random from the set X. A → x denotes that
an algorithm A outputs x. Func(D,R) denotes the set of all functions from D to
R. A family of functions F : K×D → R takes a key k √ K and an input m √ D,
and outputs F (k,m). Throughout the paper Fk denotes the function F (k, .). A
block-cipher is a family of permutations E : K × D → D and Ek denotes the
permutation E(k, .) for k √ K.
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Unforgeability of a function family: The security of F as a MAC is
expressed via the following security game, where A is an adversary with oracle
access to Fk,

Game UF-CMA

– Setup: k ∃R K.
– Query Phase: A makes a set of queries Q to the oracle Fk.
– Guess Phase: A → (m,α).
– Verify: If m /√ Q and Fk(m) = α then A wins, else A looses.

A family of function F is said to be (q, β, Σ) unforgeable under chosen message
attack if for all adversary A who makes q queries with total size of the queries
β bits,

Advmac
F (A)

def
= Prob[A wins game UF-CMA] ≤ Σ.

We note that the notion of unforgeability is also known as the unpredictability.

Framework for Related-Key Attack. In the related-key setting, security
of a function family F (K,D,R) is defined against a related-key adversary. At the
beginning of the corresponding security game the adversary outputs a set of func-
tions Δ ⇒ Func(K,K), called related-key deriving (RKD) functions. Throughout
the game, the adversary has access to a related-key oracle FRK. The oracle takes
an ordered pair (m,γ) as input (m √ D, γ √ Δ) and returns F (γ(k),m), where
Fk √ F (K,D,R) for some k(∃R K) unknown to the adversary.

If Δ contains the identity function id then FRK can also simulate the oracle
F (k, .). For the rest of the paper unless specified we will assume that Δ includes
the function id.

In [17] Lucks described an elegant way of choosing Δ as a set of group-induced
transformations when (K, ∈) is a group.

Definition 1 (Group Induced Transformations [17]). Let K be a group
under operation ≈. A group induced transformation is a set of functions, Δ, over
K defined as

Δ
def
= {γ : K → K|∪δ √ K : γ(k) = k ≈ δ}

Another important family of RKD functions, called partial transformations,
is also used in [5,17]. Partial transformations restrict the adversary to choose a
function which can change only a part of the entire key. For example if we have
a family of functions with key space K × K , then a partial key transformation
γ∈ can be defined as γ∈(k1, k2) = (k1, γ(k2)) where γ is an RKD function on K.

Finally, we introduce the notion of component-induced key transformations
for multiple-key constructions.

Definition 2 (Component-wise Transformations). Let K = K1 × K2 ×
· · · Kn be a set of keys. A component-wise transformation is a set of functions Δ
over K defined as

Δ
def
= {γ = (γ1, γ2, · · · , γn)|∀i, γi : Ki → Ki,∀k = (k1, k2, · · · , kn) √ K

γ(k) = (γ1(k1), γ2(k2), · · · , γn(kn))}
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We stress that, in case of component-wise transformations each γi is applied
on ki and is independent to other kjs.

4 Unforgeability Against Related-Key Attack

We start with a formal definition of the related-key security for MACs. Recall
that, in the related-key setup, the adversary may query the oracle on a message
and a related-key. The obvious way (analogous to [15], in the context of signa-
ture) to define the notion of related-key-unforgeability would be to ensure that
the forgery m∗ was never queried to the oracle with the relation id. However, the
adversary may define the RKD function to be such that it agrees with id for all
but negligable fraction of the keys. For such a function, the security gets broken
trivially. In other words, such a restriction would force the RKD class to be
claw-free. We present a general definition of related-key unforgeability through
the following game between an adversary and the challenger. The adversary A
has oracle access to FRK.

Game RK-UF-CMA

– Setup: k ∃R K , A gets the security parameter ξ. A submits the description
of the RKD class Δ. Q = ∅.

– Query: A adaptively queries with (m,γ), the challenger returns F (γ(k),m).
Q = Q ∗ (m,γ).

– Guess: A outputs a forgery (m∗, α∗).
– Verify: If F (k,m∗) = α∗, and γ(k) ⊕= k for all (m∗, γ) √ Q then A wins else A

looses.

Definition 3 (Related-Key Unforgeability). A family of functions F is said
to be (q, β, Σ) unforgeable under chosen message related-key attack over the RKD
set Δ if for all adversary A who makes q queries with total size of the queries β
bits,

Advrk−mac
F (A, Δ)

def
= Prob[A wins game RK-UF-CMA with RKD setΔ] ≤ Σ

where the probability is taken over the key k and the internal randomness of A.

5 Properties of RKD Transformations

In this section, we analyze the necessary properties of Δ, the RKD transforma-
tion, necessary for related-key security of MAC. In [5], Bellare Kohno proposed
two essential conditions, namely unpredictability and claw-free ness, for RKD
functions for related-key security. Specifically, they proved that if Δ contains a
constant function, then no block cipher can be pseudorandom against related-
key attack over Δ. In a sharp contrast, we now prove that, a general message
authentication code is inherently secure against constant RKD functions.
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Theorem 1. Let F : K × D → R be a MAC. Let Δ
def
= {γc : c √ K,∀k √

K, γc(k) = c} be the set of constant RKD transformations. For all related-key
adversary ARK against related-key unforgeability of F over RKD set Δ, there
exists adversary A such that

Advrk−mac
F (ARK , Δ) ≤ Advmac

F (A)

Proof. The main idea of the proof is the following: the adversary A will simulate
ARK . When ARK queries with id, A will answer the queries by making query to
its own oracle. However as the related-key functions are constant functions, A can
answer any related-key query (m,γc) by computing F (c,m) on its own1. Finally
when ARK outputs a forgery (m∗, α∗), A outputs (m∗, α∗). By the condition of
the game RK-UF-CMA, (m∗, id) was never queried by ARK . Hence (m∗, id) was
never queried by A as well. So, A succeeds whenever ARK succeeds.

Insecurity against colliding functions. The claw-freeness condition, how-
ever, is essential for security of related-key security of MAC. The attack of [5],
involving addition and xor over the keyspace, can indeed recover the secret key,
resulting a forgery. For detailed description of this attack, we refer the reader to
Proposition 4.3 of [5].

6 Related-Key Attacks Against Popular MAC
Constructions

In this section we show examples of some simple related-key adversaries against
some well known MAC constructions. We consider two popular variants of CBC-
MAC, namely XCBC and TMAC. Constructions like ECBC and FCBC can also
be attacked with a more aggressive class of transformations. Due to space con-
straint, the cryptanalysis of ECBC and FCBC are omitted in this proceedings
version. All these constructions were proved to be secure under the assumption
that underlying block cipher is PRP. Although our ultimate aim is to achieve a
related-key secure MAC when the underlying primitive is related-key unforge-
able, in the following examples we show that the XCBC and TMAC can be
forged using related-key attack even if the underlying block ciphers are related-
key secure prp.

Proposition 2. XCBC is not related-key secure.

Proof. The attack is extremely simple. Let n be the block length of the underly-
ing block cipher. Consider a message m = m1||m2 such that |m1| = |m2| = n. Let
the RKD set chosen by adversary be ARK . Δ = {γi(k1, k2, k2) = (k1, k2 ⊕ i, k3) :
0 < i < 2|k2|}∗ id. ARK makes a related-key query (m,γi) for any i > 0. Suppose
α be the answer. ARK returns (m∗, α) , where m∗ = m1||m2 ⊕ i.

1 Note that, obvious description of φc leaks the constant c.
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Let y = Ek1(m1). Then the last block operation is Ek1(y ⊕ m2 ⊕ k2). We
know that Ek1(y⊕m2⊕(k2⊕i)) = Ek1(y⊕(m2⊕i)⊕k2). Hence XCBCRK(m,γi) =
XCBC(m∗) = α. This implies (m∗, α) is a valid forgery and Advrk−mac

XCBC

(AXCBC , Δ) = 1.

TMAC can be viewed as a variant of XCBC MAC and instead of using three
keys it uses two keys in the construction. The last block operation of TMAC is
given as Ek1(m

∈ ⊕ (k2 ·u)), where u is a constant polynomial in GF (2n) and the
product is performed in the same field. The simplification of the product x · u is
linear in x. Hence using a RKD set similar as above the adversary will be able
to forge TMAC.

Corollary 1. TMAC is not a secure MAC Against related-key attack.

Prewhitening key and RKA: Both the attacks described above exploit the
use of prewhitening key. Suppose a MAC construction involves an operation
of the form Ek⊥(k ∈ x) (where x is a chaining value independent of k and ∈ is a
commutative-group induced operation ) and k is independent of k∈ and other keys
used in the construction. Then it is always possible to mount similar related-key
attack as above.

7 Technical Tools

In this section we introduce the tools we use in our construction. First we
introduce the notion of weak unforgeability against related-key attack, which
essentially bridges the notion of unforgeability between the standard and the
related-key settings.

Weak Unforgeability against Related-Key Attack

Definition 4 (Key-Homomorphic MAC). Let F : K × D → R be family of
MACs. We say that F is key-homomorphic MAC if K and R are groups with
efficient operations (≈ and ∈ respectively) and for any fixed m √ D, there is a
group homomorphism form K to R. Specifically, for any k1, k2 √ K,

Fk1 ⊕ k2(m) = F (k1,m) ∈ F (k2,m)

Let F be a family of key-homomorphic MACs and Δ⊕ a (K, ≈) group-induced
RKD set. Essentially, for γ √ Δ⊕, one can compute F (γ(k),m) by making queries
to F (k,m) and using the group homomorphism property of F . In the RK-UF-CMA
game, the adversary is challenged to forge F (k, .). Apparently, finding F (γ(k), .)
from F (k, .) does not directly help her. However, the adversary may first query
the related-key oracle and get F (γ(k),m) for some m, then using the group
homomorphism property, predict the value of F (k,m). To see this, consider an
adversary A who makes a query (m,γ) to FRK for some m √ D. Now, we know
that γ(k) = k ≈ δ for δ √ K. So, A knows α1 = F (γ(k),m) and can compute
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α2 = F (δ,m) on her own as the family F is public. Hence, A successfully forges
F (k, .) with (m,α) where α = α1 ∈ α−1

2 .
We observe that, previous adversary A is not a unique-message adversary.

Against a unique-message adversary of the RK-UF-CMA game, a key-homomorphic
MAC is related-key unforgeable over group induced Δ. Motivated by this obser-
vation, we introduce the notion of weak unforgeability against related-key attack.
In this case, the adversary is not allowed to forge a message which she has queried
even on some non-id RKD function.

Game WeakRK-UF-CMA

– Setup: k ∃R K , A gets the security parameter ξ. A submits the description
of the RKD class Δ. Q = ∅.

– Query: A adaptively queries with (m,γ), the challenger returns F (γ(k),m).
Q = Q ∗ (m,γ).

– Guess: A outputs a forgery (m∗, α∗).
– Verify: If F (k,m∗) = α∗, and (m∗, γ) /√ Q for any γ then A wins else A looses.

Definition 5 (Weak RK-Unforgeability). A family of functions F is said to
be (q, β, Σ) weakly unforgeable under chosen message related-key attack (WRK-
UF) over the RKD set Δ if for all adversary A who makes q queries with total
size of the queries β bits,

Advwrk−mac
F (A, Δ)

def
= Prob[A winsgame WeakRK-UF-CMAwithRKD setΔ] ≤ Σ

where the probability is taken over the key k and the internal randomness of A.

For a key homomorphic MAC the following lemma can be proved in a straight-
forward way.

Lemma 1 (Key Homomorphic MAC is WRK-UF). Let F : K×D → R be
a family of key-homomorphic MACs. Let Δ be a claw-free set of group induced
RKD functions. F is a secure WRK-UF over Δ. Specifically, for every (q, β)
adversary A, there exists a (q, β) adversary AF such that

Advwrk−mac
F (A, Δ) ≤ Advmac

F (A)

Identity Fingerprint. The main technical tool used in [3] in order to construct
the RK secure PRF is the notion of key fingerprint. Informally, a key fingerprint
(as defined in [3]) is a vector over the message space, such that under two different
keys, outputs of the function will be different on at least one index. However,
as observed in [4], this notion is too demanding and may not be achievable for
some PRFs.

In this paper, we consider the following relaxed notion of key fingerprint.

Definition 6 (Identity Fingerprint). Let F : K × D → R be family of func-
tions and Δ be a set of RKD functions over K. Let w be a d dimensional vector
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over D. We call w an identity-fingerprint of F over Δ if

Probk⊂RK
[
⊕φ √ Φ :

(
F (k, w1), F (k, w2), · · · , F (k, wd)

)

≥=
(

F (φ(k), w1), F (φ(k), w2), · · · , F (φ(k), wd)

)]
> 1 − negl

where d = O(|k|), negl is some negligible function in terms of |k|.
We remark that, the identity key fingerprint notion of [4] is similar. As argued

in [4], few distinct points from the domain can be considered as a candidate
identity fingerprint for any practical block-cipher. Although we cannot prove it
formally, such an assumption seems to be consistent with the premise of crypt-
analysis.

ICTPR Hash Function. In this paper we remove the collision resistant hash
function assumption. In our framework, we encounter keyed hash function which
is subject to tampering by the adversary. To achieve security even in such a
scenario, we propose and use the notion of ICTPR hash functions.

An ICTPR hash function H : K × D → R has two properties: identity-
collision (IC) resistance and target preimage (TP) resistance.

Identity Collision Resistance. Roughly, the identity collision resistance
ensures that, for (related-key) adversary with oracle access to HRK, output of a
query on a message m and the secret key (i.e. query of the form (m, id)), does
not collide with the output of some previous query (even on a related-key). The
formal security game works in the following way.

Game ID-CR

– Setup: k ∃R K , A gets the security parameter ξ. A submits the description
of the RKD class Δ. Q = ∅.

– Query: A adaptively queries with (m,γ), the challenger returns H(γ(k),m).
Q = Q ∗ (m,γ).

– Collision: A outputs a message m∗.
– Verify: If for some (m,γ) √ Q, H(γ(k),m) = H(k,m∗) and (m∗, id) /√ Q then

A wins else A looses.

Definition 7 (Identity Collision Resistant Hash Function). Let H : K ×
D → R be family of hash functions and Δ be a set of RKD functions on K. H
is said to be (q, β, Σ) identity collision resistant (ICR) over the RKD set Δ if for
all adversary A who makes q queries with total size of the queries β bits,

Advicr
H (A, Δ)

def
= Prob[A wins game ID-CR with RKD set Δ] ≤ Σ

where the probability is taken over the key k and the internal randomness of A.

Target Preimage Resistance Against Related-Key Attack. In addi-
tion to the identity collision resistance, we also need a notion of everywhere
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preimage resistance against related-key attacks. The preimage resistance game
between an adversary A and a challenger for a hash function H : K × D → R is
described as following

Game RK-TPR

– Setup: k ∃R K , A gets the security parameter ξ. A submits t targets
z1, · · · , zt √ R, and the description of the RKD class Δ. Q = ∅.

– Query: A adaptively queries with (m,γ), the challenger returns H(γ(k),m).
Q = Q ∗ (m,γ).

– Preimage: A outputs a message m∗.
– Verify: If H(k,m∗) = zi, for some i then A wins else A looses.

Definition 8 (Related-Key Target Preimage Resistant Hash Function).
Let H : K×D → R be family of hash functions and Δ be a set of RKD functions
on K. H is said to be (q, t, β, Σ) related-key target preimage resistant (RK-TPR)
over the RKD set Δ if for all adversary A who submits t targets, makes q queries
with total size of the queries β bits,

Advrk−tpr
H (A, Δ)

def
= Prob[A wins game RK-TPR with RKD set Δ] ≤ Σ

where the probability is taken over the key k and the internal randomness of A.

We define ICTPR advantage of an adversary A against a hash function H as

Advictpr
H = Advrk−tpr

H + Advicr
H

8 Construction of Related-Key Secure MAC

In this section, we show a general construction of related-key secure MAC. The
basic essence of our construction is essentially the Hash then MAC paradigm of
An and Bellare [1], lifted to the related-key setting. In fact most of the proposed
VIL-MAC constructions [13,14] have been proved secure in this paradigm. The
intuitive approach while extending the arguments of [1] would be to show that a
suitable hash function H followed by a FIL-related-key unforgeable MAC F will
give us a VIL-related-key secure MAC G. However, in the following theorem, we
prove that, for claw-free RKD sets, if the hash function is ICTPR, it is enough
for F only to be weak related-key unforgeable (cf. Definition 5).

Theorem 3. Let F : K1 × D → R be a weak related-key unforgeable MAC
over RKD set Δ1 with identity fingerprint w = (w1, w2, · · · , wd). Let H : K2 ×
{0, 1}∗ → D be a ICTPR hash function over the RKD set Δ2. Let G : (K1 ×
K2) × {0, 1}∗ → R be a family of function defined as

G(k1, k2,m)
def
= F (k1,H(k2,m‖F (k1, w1)‖F (k1, w2)‖ · · · ‖F (k1, wd)))

where k1 √ K1, k2 √ K2. G is related-key unforgeable against chosen message
attack over the component-induced RKD set Δ

def
= Δ1 × Δ2. Specifically if there
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exists a (q, l) adversary AG against G, then there exists a (q, q log |D|) adversary
AF against F , and a (q, l) adversary AH against H such that

Advwrk−mac
F (AF , Δ1) + Advictpr

H (AH , Δ2) ≥ Advrk−mac
G (AG, Δ)

Proof. Let ηid = F (k1, w1)‖F (k1, w2)‖ · · · ‖F (k1, wd), and ηΔ1 = F (γ1(k1), w1)‖
F (γ1(k1), w2)‖ · · · ‖F (γ1(k1), wd). The basic idea of the proof is the following.
Let (m∗, α) be a valid forgery. If x∗ = H(k2,m∗‖ηid) does not collide with any
previous H query (including the related-key oracles, thus maintaining identity
collision resistance), or one of the wis of the identity fingerprint w (thus main-
taining target preimage resistance), then the query to F (k, .) is new and was
not queried even to the related-key oracle FRK. Hence (x∗, α) is a valid forgery
against weak related-key unforgeable Fk. Hence we need to show that against
any related-key adversary if x∗ collides with the output of some previous HRK

query or x∗ √ {w1, · · · , wd}, ICTPR property of Hk2 can be broken. The argu-
ments for those cases are straightforward. We refer the reader to the full version
for the formal proof.

Up to this point, our approach closely matched with the approach of Bel-
lare and Cash, who also used similar arguments. The difference comes in while
constructing a ICTPR hash function. While [3] assumes an unkeyed collision
resistant function with tailor-made range, we present a mode of operation based
on fixed-input length related-key secure MAC (to construct VIL-related key
unforgeable MAC) in the next section. We mention that given a keyed colli-
sion resistant hash function H(k, .), one can easily get an ICTPR hash function
(against claw-free transformations), Ĥ(k, .) defined as Ĥ(k,m) = k‖H(k,m).
However, when constructing from block ciphers (as done in practice), this con-
struction is trivially insecure (as it gives away the key). Additionally, to use it
in Theorem 3, the final transformation requires to have a larger domain. On
the other hand, our construction can be instantiated with a single related-key
unpredictable function with independently sampled keys.

9 ICTPR from FIL-RKUF

In this section, we propose a mode of operation to construct a ICTPR hash
function from length preserving related-key unforgeable MACs. Such a mode
along with Theorem 3 will give us a variable input length MAC. We stress
that the proof works for any RKD set, i.e. if one starts with a fixed-
input-length related-key unpredictable function, secure without the
claw-free assumption on the RKD set, the resulting MAC remains
secure without the claw-free assumption.

We will describe the mode in two steps. First we shall describe a domain
extension of fixed-input-length ICTPR compression function. Then we shall
show that the enciphered CBC compression function of Dodis, Pietrzak, and
Puniya [13] can be used to construct a fixed-input-length ICTPR compression
function from length preserving related-key unforgeable MACs.
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9.1 VIL-ICTPR Hash Function from ICTPR Compression Function

We shall use a variant of prefix free Merkle-Damg̊ard iteration. Let D = {0, 1}2n,
R = {0, 1}n, and H ∈ : K × D → R be a fixed-input-length ICTPR compression
function.

Padding Rule. Let m be input message. Let len(m) = |m| be the length of the
message. The message m is divided into blocks of n − 1 bits. If len(m) is not a
multiple of n − 1, the last block is padded with a bit 1 and sufficiently many 0s.
After this padding let m1,m2, · · · ,ml be the blocks. The final padded message
Pad(m) will be the following

Pad(m) = y1‖y2‖ · · · ‖yl‖y,

where each yi = 0‖mi, and y = 1‖len(m).

The Mode. Our mode is essentially the Merkle-Damg̊ard mode with an extra
round at the end with 1‖0n−1 as the message block. Formal algorithm of the
iteration is the following

Algorithm 1. pseudo-code for the pfNI mode of operation

function pfNIH⊥
(k, m)

h0 ∃ 0n

Pad(m) = y1||y2|| · · · ||yl||y
for 1 ≤ i ≤ l do

hi ∃ H ∈(k, hi−1||yi)
hl+1 ∃ H ∈(k, hl||y)
h ∃ H ∈(k, hl+1||1||0n−1)
return h

Security. Now we show that the pfNI mode is ICTPR preserving. Let H ∈ :
K × {0, 1}2n → {0, 1}n be a compression function. We shall prove that, if there

exists an adversary AH against H
def
= pfNIH⊥

breaking the ICTPR property,
then there is an adversary AH⊥ against the ICTPR property of H ∈. To show
this, we need to show reductions for both identity collision resistance and target
preimage resistance (cf. Sect. 7).

Simulation of H. AH⊥ has access to the oracle H ∈
RK. Simulation of oracle HRK

will be performed by querying H ∈
RK. During the simulation, AH⊥ maintains a list

Q containing the queries to H ∈
RK and the corresponding responses.

Reduction for Identity Collision Resistance: Suppose AH breaks the identity
collision resistance of H. Recall that, identity collision resistance requires that
no query (m∗, id) generates a collision with a previous (m,γ) (γ may or may
not be id) query. Hence, AH makes a (m∗, id) query to H such that H(k,m∗) =
H(γ(k),m) and (m,γ) query was made before (m∗, id) query.

Let hγ⊕+1 be the penultimate chaining value during the computation of
H(k,m∗). The following two cases can happen depending on whether hγ⊕+1
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was given as a response of some previous H ∈
RK query. Let x = hγ+1‖10n−1 be the

last H ∈ query during the computation of H(γ(k),m).

1. hγ⊕+1 = IV : If hγ⊕+1 is equal to IV, then we can show a reduction breaking
the target preimage resistance of H ∈. We analyze it in the reduction for target
preimage resistance.

2. H ∈(k, hγ⊕+1‖ω) was not queried during the simulation for any ω √
{0, 1}n: The padding ensures that 10n−1 is the last message block of all the
queries. Hence hγ⊕+1 ⊕= hγ+1. Moreover, H ∈(k, hγ⊕+1‖10n−1) has been queried
after H ∈(γ(k), hγ+1‖10n−1).
As H(k,m∗) = H(γ(k),m), obviously

H ∈(k, hγ⊕+1‖10n−1) = H ∈(γ(k), hγ+1‖10n−1).

This collision breaks the identity collision resistance property of H ∈.
3. H ∈(k, hγ⊕+1‖ω) was queried during the simulation for some ω: If hγ⊕+1

is not equal to IV , then hγ⊕+1 matches with some chaining value during the
simulation of the pfNI mode on some previous (m∈, id) query. As m∗ ⊕= m∈, by
standard argument of prefix free padding and collision resistance of Merkle-
Damg̊ard iteration, we will find a collision with some previous H ∈(k, .) query.

Reduction for Target Preimage resistance: When AH submits the set of “target
images” {z1, · · · , zt}, AH⊥ submits T = {IV, z1, · · · , zt}. For each HRK(m,γ)
query, AH⊥ , simulates the pfNIH⊥

RK by making queries H ∈
RK. She checks whether

during the simulation, output of some H ∈(k, .) query is in T . In such a case, she
wins trivially. Note that, this takes care of the left out case in the reduction of
identity collision resistance.

If none of the outputs are in T , and AH outputs m∗, AH⊥ simulates the pfNI
mode and outputs the last compression function input (h∗

γ + 1‖|10n−1) as the
output.

So in all the cases, if AH breaks the ICTPR property of H, AH⊥ breaks the
ICTPR property of H ∈.

Lemma 2. Let H ∈ : K × {0, 1}2n → {0, 1}n be a compression function. Let
H : K × {0, 1}∗ → {0, 1}n be a hash function defined as

H(k,m)
def
= pfNIH⊥

(k,m).

For all adversary AH making q queries of total bit length l, there exists an
adversary A∈

H making �ql/(n−1)�+q queries of total bit length n(�ql/(n−1)�+q),
such that

Advictpr
H (AH , Δ) ≤ Advictpr

H⊥ (AH⊥ , Δ)

9.2 Constructing ICTPR Hash Function Using Length Preserving
RK-MAC

In this section we prove that the pfNI mode instantiated with enciphered CBC-
MAC compression function using a length-preserving, related-key-unforgeable
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function, gives a ICTPR hash function. Let F : K × {0, 1}n → {0, 1}n be a fam-
ily of functions. The EnCBC compression function based on length preserving
function F is defined as H ∈

k1,k2
(x1, x2) = F (k1, x1) ⊕ F (k2, x2).

Lemma 3. Let F : K × {0, 1}n → {0, 1}n be a family of related-key unforgeable
function over Δ with identity fingerprint w = {w1, · · · , wd}. Define H ∈ : (K ×
K) × {0, 1}2n → {0, 1}n as

H ∈
k1,k2

(x1, x2)
def
= F (k1, x1) ⊕ F (k2, x2).

Define H : (K × K) × {0, 1}∗ → {0, 1}n as

H(k1, k2,m)
def
= pfNIH⊥

(k1, k2,m)

Define Ψ : {0, 1}2β → {0, 1}2β as

((Δ \ {id}) × Δ) ∗ (id, id)

Then H is ICTPR against Related-Key Attack over the RKD set Ψ. For all
adversary AH making q queries of total bit length l, there exists an adversary
AF making �ql/(n − 1)� + q queries of total bit length n(�ql/(n − 1)� + q), such
that

Advictpr
H (AH ,Ψ) ≤

(
q4

2
+

q2d

2

)
Advrk−mac

F (AF , Δ)

The most natural way to prove the above Lemma will be to show that EnCBC
construction, instantiated with RK-MAC gives an ICTPR compression func-
tion. However, there is an obstacle to prove such a claim. Recall that we want
to show that when there is an ICTPR attack against the compression function,
we can mount related-key forgery against the underlying RK-MAC. The general
technique is to guess the colliding queries, and predict the output of chronolog-
ically last query. Unfortunately, the chronologically last query can indeed be on
related-key(the target key of ICTPR attack may be derived from two separate
target key queries made before the related-key query).

We give a direct proof the ICTPR security of the mode of operation, instanti-
ated with EnCBC compression function. Specifically, we show that for both the
conditions, described in the previous section, we can mount related-key forgery
against the underlying MACs. We refer the reader to full version for the full
proof.

10 Bellare-Cash Construction is MAC Preserving

Finally, as an application of Theorem 3, we show that the PRF construction
of Bellare and Cash [3], can also be used to construct a related-key unforge-
able MAC against chosen message attack. Note that, this construction uses an
unkeyed collision resistance hash function H. Although, we focused on keyed
hash function for all the previous results, we state this result to be complete in
our analysis of related-key security of message authentication codes.
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Theorem 4. Let F : K × D → R be a weak related-key unforgeable MAC over
RKD set Δ with identity fingerprint w = (w1, w2, · · · , wd). Let H : {0, 1}∗ →
D \ {w1, · · · , wd} be a collision resistant hash function. Let G : K × {0, 1}∗ → R
be a family of functions defined as

G(k,M)
def
= F (k,H(M‖F (k,w1)‖F (k,w2)‖ · · · ‖F (k,wd))) k √ K.

G is related-key unforgeable against chosen message attack over the RKD set Δ.
Specifically if there exists a (q, l) adversary AG against G, then there exists a
(q, q log |D|) adversary AF against F , and a (q, l) adversary AH against H such
that

Advcr
H (AH) + Advwrk−mac

F (AF , Δ) ≥ Advrk−mac
G (AG, Δ)

Proof (Proof Sketch). The proof is similar (infact, special case) to Theorem 3
and we skip the proof.

10.1 Security Against Partial Key Transformation from DDH
Assumption

In this section, we give a concrete construction of a related-key secure MAC
based on the following MAC construction, due to Dodis, Kiltz, Pietrzak, and
Wichs [11] based on the hash proof system of Cramer and Shoup.

MACHPS

– Setup. p is a large prime. G is a group of order p. g is a random generator of
G. Ĥ : G2 × D → Zp is a collision resistant hash function. K = Z

3
p, R = G

3.
– Key Generation: the secret key is k = (k1, k2, k3) ∃R Z

3
p.

– MAC: F : K × D → R is defined as

F (k1, k2, k3, m)
def
= (g →R G, V = gk1, gk2Ĥ(g,V,m)+k3) m √ D, k1, k2, k3 √ Zp.

For any element k = (k1, k2, k3) √ K and ∆ = (0, δ2, δ3) √ Z
3
p, define k ≈ ∆ =

(k1, k2 + δ2, k3 + δ3) where + is addition modulo p. It is easy to check that K
is a group under ≈. The group induced RKD class over K will be defined as
Δ

def
= γω(k) = (k ≈ ∆).
Although MACHPS is not key-homomorphic in general, but it is indeed key

homomorphic over Δ. Hence, we get the following lemma.

Lemma 4. MACHPS is weakly unforgeable against related-key attack over Δ.

To use Theorem 4, it is now enough to prove the existence of a fingerprint
for MACHPS . Due to space constraint we leave out the identity-fingerprint for
MACHPS in this version.

Theorem 5. Let G be a prime order group of p elements, g1, g2 be two ran-
dom generators of G. Let w1, w2 be two distinct elements from D. Suppose
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H : D × G → D \ {w1, w2} and Ĥ : G2 × D → Zp be two collision resistant
hash functions. Define K = Z

3
p, R = G

3. Define GHPS : K × D → R defined as

GHPS(k1, k2, k3, m)
def
= MACHPS(k1, k2, k3, H(m, Γ ))

where

Γ = g1, g
k1
1 , g

k2Ĥ(g1,V,w1)+k3
1 , g2, g

k1
2 , g

k2Ĥ(g2,V,w2)+k3
2 )

Let AG be an adversary against the related-key unforgeability of G under chosen
message attack over RKD set Δ, and AG makes q queries. Then we can construct
an adversary ADDH against the DDH problem in G, an adversary AH against
collision resistance of H, and an adversary AĤ against collision resistance of Ĥ
such that

Advrk−mac
G (AG, Δ) ≤ Advddh

G
(ADDH) + Advcr

H (AH) + Advcr
Ĥ

(AĤ)

10.2 Towards Full Security

Previous construction, although very efficient in terms of the keysize, is only
secure against partial key transformation. Now, we construct a related-key
unforgeable MAC against a full group induced key transformation. The weak
unforgeable MAC is based on another construction of Dodis et al. [11] which is
again based on weak PRF and arguments of Waters.

MACW

– Setup. p is a large prime. G is a group of order p. Message space is {0, 1}λ.
K = Z

λ+1
p , R = G

3.
– Key Generation: the secret key is k = (k0, k1, · · · , kλ) ∃R Z

λ+1
p .

– MAC: F : K × D → R is defined as

F (k0, k1, · · · , kλ,m)
def
= (g ∃R G, gk0+

∑λ
i=1 m[i]ki)

For any element k = (k0, k1, · · · , kλ) √ K and ∆ = (δ0, δ1, · · · , δλ) √ Z
λ+1
p ,

define k ≈ ∆ = (k0 + δ0, · · · , kλ + δλ) where + is addition modulo p. It is easy to
check that K is a group under ≈. The group induced RKD class over K will be
defined as Δ

def
= γω(k) = (k ≈ ∆).

MACW is key-homomorphic in an obvious way. Using Lemma 1

Lemma 5. MACW is weakly unforgeable against related-key attack over Δ.

Using Theorem 4, we get the following theorem

Theorem 6. Let G be a prime order group of p elements. Let

w = {0λ, 10λ−1, 010λ−2, · · · , 0λ−11}
Suppose H : D × G

2(λ+1) → D \ {w} be a collision resistant hash functions.
Define K = Z

λ+1
p , R = G

2. Define GW : K × D → R as

GW (k,m)
def
= MACW (k,H(m,MACW (k, 0λ),MACW (k, 10λ−1), · · · ,MACW (k, 0λ−11)))
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Let AG be an adversary against the related-key unforgeability of GW under
chosen message attack over RKD set Δ, and AG makes q queries. Then we can
construct an adversary ADDH against the DDH problem in G, an adversary AH

against collision resistance of H such that

Advrk−mac
G (AG, Δ) ≤ Advddh

G
(ADDH) + Advcr

H (AH)

11 Conclusion

Security against related-key attacks is currently considered as a major challenge
for symmetric key cryptography. In this paper, we considered security of mes-
sage authentication codes against related-key attacks. We formalized the secu-
rity definitions and identified feasible key transformations. We also presented the
first security analysis for domain extension of related-key secure unpredictable
functions(MAC). However our reduction for the Enciphered CBC construction
achieves a reduction-factor of O(2n/4) queries (Lemma 3). Finding construc-
tions with improved security bound is an interesting open problem. Specifically,
analysis of related-key security of Dodis-Steinberger construction [14] will be
very interesting.
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10. Biryukov, A., Khovratovich, D., Nikolić, I.: Distinguisher and related-key attack
on the full AES-256. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp.
231–249. Springer, Heidelberg (2009)

11. Dodis, Y., Kiltz, E., Pietrzak, K., Wichs, D.: Message authentication, revisited. In
Cryptology ePrint Archive (2012). http://eprint.iacr.org/2012/059

12. Dodis, Y., Kiltz, E., Pietrzak, K., Wichs, D.: Message authentication, revisited. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
355–374. Springer, Heidelberg (2012)

13. Dodis, Y., Pietrzak, K., Puniya, P.: A new mode of operation for block ciphers
and length-preserving MACs. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS,
vol. 4965, pp. 198–219. Springer, Heidelberg (2008)

14. Dodis, Y., Steinberger, J.: Message authentication codes from unpredictable block
ciphers. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 267–285. Springer,
Heidelberg (2009)

15. Goyal, V., O’Neill, A., Rao, V.: Correlated-input secure hash functions. In: Ishai,
Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 182–200. Springer, Heidelberg (2011)

16. Knudsen, R.K.: Cryptanalysis of LOKI91. In: Zheng, Y., Seberry, J. (eds.)
AUSCRYPT 1992. LNCS, vol. 718, pp. 196–208. Springer, Heidelberg (1993)

17. Lucks, S.: Ciphers secure against related-key attacks. In: Roy, B., Meier, W. (eds.)
FSE 2004. LNCS, vol. 3017, pp. 359–370. Springer, Heidelberg (2004)

18. Peyrin, T., Sasaki, Y., Wang, L.: Generic related-key attacks for HMAC. In: Wang,
X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 580–597. Springer,
Heidelberg (2012)

19. Xagawa, K.: Message authentication codes secure against additively related-key
attacks. Cryptology ePrint Archive, report 2013/111 (2013). http://eprint.iacr.
org/2013/111

http://eprint.iacr.org/2012/059
http://eprint.iacr.org/2013/111
http://eprint.iacr.org/2013/111


Provable Security



Attacks and Security Proofs of EAX-Prime

Kazuhiko Minematsu1(B), Stefan Lucks2, Hiraku Morita3, and Tetsu Iwata3

1 NEC Corporation, Kawasaki-Shi, Japan
k-minematsu@ah.jp.nec.com

2 Bauhaus-Universität Weimar, Weimar, Germany
stefan.lucks@uni-weimar.de

3 Nagoya University, Nagoya, Japan
h morita@echo.nuee.nagoya-u.ac.jp, iwata@cse.nagoya-u.ac.jp

Abstract. EAX∼ (or EAX-prime) is an authenticated encryption (AE)
specified by ANSI C12.22 as a standard security function for Smart
Grid. EAX∼ is based on EAX proposed by Bellare, Rogaway, and Wag-
ner. While EAX has a proof of security based on the pseudorandomness
of the internal blockcipher, no published security result is known for
EAX∼. This paper studies the security of EAX∼ and shows that there is
a sharp distinction in security of EAX∼ depending on the input length.
EAX∼ encryption takes two inputs, called cleartext and plaintext, and we
present various efficient attacks against EAX∼ using single-block cleart-
ext and plaintext. At the same time we prove that if cleartexts are always
longer than one block, it is provably secure based on the pseudorandom-
ness of the blockcipher.

Keywords: Authenticated encryption · EAX · EAX∼ · Attack ·
Provable security

1 Introduction

ANSI C12.22 [3] specifies a blockcipher mode for authenticated encryption (AE)
as the standard security function for Smart Grid. It is called EAX′ (or EAX-
prime)1. As its name suggests, EAX′ is based on EAX proposed by Bellare,
Rogaway, and Wagner at FSE 2004 [7]. Though EAX is already efficient with
a small amount of precomputation, EAX′ aims at even reducing the amount of
precomputation and memory, for making it suitable to the resource-constrained
devices, typically smart meters. ANSI submitted EAX′ to NIST [13] and NIST
called for the public comments on the proposal to approve EAX′. Following

A part of the result was presented at DIAC [12].
1 The authors of [13] exchangeably use the three names, EAX∼, EAX’, and EAX-

prime, to mean their proposal. To avoid any confusion by overlooking the tiny prime
symbol or apostrophe, which could be misunderstood as claiming an attack on EAX,
we prefer the longer name “EAX-prime” for the title. In the text we prefer the name
EAX∼.

S. Moriai (Ed.): FSE 2013, LNCS 8424, pp. 327–347, 2014.
DOI: 10.1007/978-3-662-43933-3 17, c∈ Springer-Verlag Berlin Heidelberg 2014
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ANSI C12.22, IEEE 1703 [6] and MC1222 [4] included EAX′. There is also an
RFC [5] related to ANSI C12.22.

Though EAX′ is similar to EAX, to the best of our knowledge, its formal
security analysis has not been published to date. In this paper, we investigate
the security of EAX′ and show that there is a sharp distinction depending on
the input length. The encryption algorithm of EAX′ takes two inputs, called
cleartext and plaintext. In the standard AE terminology, the cleartext serves as
a nonce, or a combination of nonce and associated data (the latter is also called
header).

First, we show that if the lengths of cleartext and plaintext are not exceeding
one block, there exist attacks against EAX′ for both privacy and authenticity.
Specifically, we present

– forgeries, i.e., cleartext/ciphertext pairs with valid authentication tags,
– chosen-plaintext distinguishers, distinguishing the EAX′ encryption from a

random encryption process, and
– chosen-ciphertext plaintext recovery attacks, decrypting ciphertexts by asking

for the decryption of another ciphertext with a valid authentication tag.

Our attacks are simple and efficient as they require only one or two queries.
The simplest one even produces a successful forgery without observing any valid
plaintext/ciphertext pair. Our forgery and distinguishing attacks strictly require
the target system to accept one-block cleartext and plaintext. The plaintext
recovery attacks relax this condition, and given any ciphertext with one-block
cleartext it works for any circumstance where ciphertext is decrypted without
checking the cleartext length. This makes the possibility of attack even larger.
Our attacks imply that, while the original EAX has a proof of security, the
security of EAX′ has totally collapsed as a general-purpose AE.

Next, we show that if the cleartext is always longer than one block, it recovers
the provable security based on the pseudorandomness of the blockcipher for both
privacy and authenticity notions. The security proof is obtained by combining
previous proof techniques of EAX by Bellare, Rogaway, and Wagner [7] with
some non-trivial extensions, such as Iwata and Kurosawa’s one used for proving
the security of OMAC [9].

One may naturally wonder if our attacks are applicable to ANSI C12.22.
Unfortunately we do not know if ANCI C12.22 protocols exclude one-block
cleartexts or not, hence we have no clear answer. Still, considering the effect
of our attacks, we conclude that EAX′ must be used with cleartext length check
mechanisms at both ends of encryption and decryption.

2 Preliminaries

Basic Notations. Let N = {0, 1, . . . }. Let {0, 1}∗ be the set of all finite-length
binary strings, including the empty string ε. The bit length of a binary string
X is written as |X|, and let |X|n def= ⊕|X|/n∃. Here |ε| = 0. A concatenation
of X,Y → {0, 1}∗ is written as X√Y or simply XY . A sequence of a zeros
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(ones) is denoted by 0a (1a). For k ≥ 0, let {0, 1}>k def=
⋃

i=k+1,...{0, 1}i and

({0, 1}n)>k def=
⋃

j=k+1,...({0, 1}n)j , and ({0, 1}n)+ def= ({0, 1}n)>0. We also define
{0, 1}⊕k, ({0, 1}n)⊕k, {0, 1}<k, ({0, 1}n)<k, {0, 1}⊂k, and ({0, 1}n)⊂k analo-
gously. For X,Y → {0, 1}n, X + Y or X − Y is considered as an addition or
a subtraction modulo 2n.

For X → {0, 1}∗, let X[1]√X[2]√ . . . √X[m] n⇒ X denote the n-bit block par-
titioning of X, i.e., X[1]√X[2]√ . . . √X[m] = X where m = |X|n, and |X[i]| = n
for i < m and |X[m]| ∈ n. For X,Y → {0, 1}∗, let X ≈end Y be the XOR of X
into the end of Y if |X| ∈ |Y |, i.e. X ≈end Y = (0|Y |−|X|√X) ≈ Y . Otherwise
X ≈end Y = X ≈ (0|X|−|Y |√Y ).

For a finite set X , if X is uniformly chosen from X we write X
$⇒ X .

Random Function and Random Permutation. Let Func(n,m) be the set
of all functions {0, 1}n ∪ {0, 1}m. We may abbreviate Func(n, n) to Func(n). In
addition, let Perm(n) be the set of all permutations over {0, 1}n. A uniform ran-
dom function (URF) having n-bit input and m-bit output is the set Func(n,m)
with uniform distribution over Func(n,m). It is denoted by R, and the corre-
sponding sampling is written as R

$⇒ Func(n,m). An n-bit uniform random
permutation (URP) is the set Perm(n) with uniform distribution over Perm(n).
It is denoted by P, and the corresponding sampling is written as P

$⇒ Perm(n).

Galois Field. Following [7], an n-bit string X may be viewed as an element
of GF(2n) by taking X as a coefficient vector of the polynomial in GF(2n). We
write 2X to denote the multiplication of 2 and X over GF(2n), where 2 denotes
the generator of the field GF(2n). This operation is called doubling. We also
write 4L to denote 2(2L). The doubling is efficiently implemented by one-bit
shift with conditional XOR of a constant, see e.g. [9].

3 Specification of EAX-Prime

We describe the encryption and decryption algorithms of EAX′. We changed the
original notations of EAX′ [3,13] following those of EAX [7]. This illustrates the
similarities and the differences of EAX and EAX′ (See also the last part of this
section).

EAX′ is a mode of operation based on an n-bit blockcipher, E. Here we
typically assume (n,E) = (128, AES-128), however other choice is possible [13].
The key of E is written as K. Formally, the encryption function of EAX′ accepts
a cleartext, N → {0, 1}∗ with N ∀= ε, a plaintext, M → {0, 1}∗, and a secret key,
K, to produce the ciphertext, C → {0, 1}∗, with |C| = |M | and the tag T →
{0, 1}32. The decryption function, which we also call the verification function,
accepts N , C, T , and K and generates the decrypted plaintext M if (N,C, T )
is valid, or the flag ∅ if invalid. Cleartext N contains information that needs
to be authenticated, but not encrypted. ANSI document requires that N must
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be unique for all encryptions using the same key2. Hence N can be seen as a
combination of a nonce and associated data in the standard terminology of AE
(e.g., see [7]). The plaintext M can be the empty string ε, corresponding to the
null string in [13], and in this case EAX′ works as a message authentication code
for N .

For generality we assume that the tag length is specified by a predeter-
mined parameter, τ → {1, . . . , n}. The original definition employs τ = 32. Let
EAX′[E, τ ] be EAX′ using n-bit blockcipher E with τ -bit tag. The corresponding
encryption and decryption algorithms are written as EAX′-EK,τ and EAX′-DK,τ .
If τ is clear from the context we may write EAX′[E] and EAX′-EK and EAX′-DK .
These algorithms and their components are shown in Fig. 1. The encryption
algorithm of EAX′ is depicted in Fig. 2. In Fig. 1, α denotes an n-bit constant,
(1n−32√0115√0115). Note that CBC’K(0n,M) is equivalent to the standard CBC-
MAC using EK with input M , denoted by CBCK(M). In our description, we
fixed an apparent error in line 72 of the original definition of EAX′.encryptK

in [3,13]. Some editorial errors of [13] were also pointed out by [1].

EAX′ and the Original EAX. The major differences between EAX′ and the
original EAX are summarized as follows. For other minor differences, see Section
3 of [13]. For the definition of EAX, see [7].

1. Role of N . Inputs to EAX′-EK consist of a cleartext N and a plaintext M ,
whereas those to the original EAX consist of a nonce N , a header (or asso-
ciated data) H, and a plaintext M . EAX′ requires N to be unique, hence it
works as a nonce. EAX′ does not explicitly define a header H; information
corresponding to the header is included in the cleartext N .

2. Tweaking method for CMAC. For input M , CMAC [2] using EK is defined as
CMACK(M) = CBCK(pad(M ;D,Q)). The original EAX uses the tweaked
CMAC having an n-bit tweak t, defined as CMACK(t√M), for t → {0n, 0n−11,
0n−210}, to process N , H, and C. For fast operation we need to precompute
EK(t) for all t and store them to RAM. EAX′ employs a different way to
tweak CMAC accepting two tweak values (i = 0, 1) to generate CMAC′(0)

K

and CMAC′(1)
K for processing N and C. For fast operation we can precompute

L = EK(0n). This reduces the precomputation time and RAM consumption
from the original EAX.

3. Counter mode incrementation. The original EAX uses CMACK(0n√N) as an
initial counter block for CTR mode, while that of EAX′ is CMAC′(0)

K (N) ∗ α
to set some bits to zero. One can find a similar zeroing-out in the deter-
ministic authenticated encryption called SIV [15]. As explained by [15], this
contributes to a slight simpler operation.

2 In ANSI C12.22, the uniqueness of N is guaranteed by including time information
with a specific format.



Attacks and Security Proofs of EAX-Prime 331

Algorithm EAX -EK,τ (N, M)

1. N ⊕ CMAC
(0)
K (N)

2. C ⊕ CTR K(N, M)

3. T ⊕ N √ CMAC
(1)
K (C)

4. T ⊕ msbτ (T )
5. return (C, T )

Algorithm EAX -DK,τ (N, C, T )

1. N ⊕ CMAC
(0)
K (N)

2. T ⊕ N √ CMAC
(1)
K (C)

3. T ⊕ msbτ (T )

4. if T = T return ≥
5. M ⊕ CTR K(N, C)
6. return M

Algorithm CMAC
(i)
K (M) (for i → {0, 1})

1. L ⊕ EK(0n)
2. D ⊕ 2L, Q ⊕ 4L
3. if i = 0 then
4. return CBC K(D, pad(M ; D, Q))
5. if i = 1 then
6. return CBC K(Q, pad(M ; D, Q))

Algorithm CTR K(N, M)

1. m ⊕ |M |n
2. N√ ⊕ N ≤ α
3. S ⊕ EK(N√) EK(N√ + m − 1)
4. C ⊕ M √ msb|M|(S)
5. return C

Algorithm CBC K(I, M) (for M →
({0, 1}n)+)

1. M [1] M [2] . . . M [m]
n⊕ M

2. C[0] ⊕ I
3. for i ⊕ 1 to m do
4. C[i] ⊕ EK(M [i] √ C[i − 1])
5. return C[m]

Algorithm pad(M ; B1, B2)

1. if |M | → {n, 2n, 3n, . . . , }
2. then return M √end B1

3. else
4. return (M 10n−1−(|M| mod n))√end B2

Fig. 1. (Upper) The encryption and decryption algorithms of EAX∼[E, τ ], origi-
nally with τ = 32. (Lower) Component algorithms of EAX∼[E, τ ]. Here, α =
(1n−32∈0115∈0115).

4 Attacks Based on One-Block Cleartext

4.1 Chosen-Message Forgeries

We first describe forgery attacks against EAX′[E, τ ]. Throughout the section D
and Q denote 2L and 4L with L = EK(0n). The adversary A we consider here can
access both encryption and decryption (verification) oracles, namely EAX′-EK

and EAX′-DK . Suppose A (possibly adaptively) asks q queries to the encryption
oracle, (N1,M1), . . . , (Nq,Mq), and receives (C1, T1), . . . , (Cq, Tq), and then asks
(N,C, T ) to the decryption oracle. We say A is successful if A receives a string
other than ∅ and (N,C, T ) ∀= (Ni, Ci, Ti) for any 1 ∈ i ∈ q (see also Sect. 5).
Here we assume the nonce-respecting adversary [14]; it is allowed to query any
(Ni,Mi) to the encryption oracle as long as Ni is unique.

Suppose M → {0, 1}⊂n. Then pad(M ;D,Q) = M ≈end D = M ≈ D when
|M | = n and pad(M ;D,Q) = M√10n−1−|M | ≈end Q = M√10n−1−|M | ≈ Q when
0 ∈ |M | < n. Therefore, the definition of CMAC′(i)

K in the previous section
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EK EK EK

bp

+1

EK EKEK

+1

CTR K

EK EK EK

bp

CMAC
(0)
K

CMAC
(1)
K

N [1] N [2] · · · N [b]

D D/Q

N

N

≤α

M [1]

M [2]

··
·

M [m]

msb|M [m]|

C[1] C[2] · · · C[m]

C[1] C[2] · · · C[m]

Q D/Q

N msbτ T

Fig. 2. The encryption algorithm of EAX∼. In the figure, |N |n = b and |M |n = m.
bp(x) = x if |x| = n and bp(x) = x∈10n−1−(|x| mod n) if |x| < n.

conforms to that

CMAC′(0)
K (M) =

{
EK(M) if |M| = n
EK(M√10n−1−|M | ≈ D ≈ Q) if 0 ∈ |M| < n

CMAC′(1)
K (M) =

{
EK(M ≈ D ≈ Q) if |M| = n
EK(M√10n−1−|M |) if 0 ∈ |M| < n

The above observation immediately gives the following attacks:

Forgery attack 1 (|N | = n and |C| < n).

1. Prepare (N,C) such that |N | = n and |C| < n and C√10n−1−|C| = N .
2. Query (N,C, T ) to the verification oracle, where T = 0τ .

This attack always succeeds as the “valid” tag for (N,C) is msbτ (EK(N) ≈
EK(C√10n−1−|C|)) = 0τ .

Forgery attack 2 (|N | < n and |C| = n).

1. Prepare (N,C) such that |N | < n, |C| = n, and N√10n−1−|N | = C.
2. Query (N,C, T ) to the verification oracle, where T = 0τ .
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The attack is again successful as the valid tag for (N,C) is msbτ (EK(D ≈ Q ≈
N√10n−1−|N |) ≈ EK(Q ≈ D ≈ C)) = 0τ . These attacks use only one forgery
attempt and no encryption query. By using one encryption query the forgery
attack is possible even when |N | = n and |C| = n:

Forgery attack 3 (|N | = |M | = n).

1. Query (N,M) with |N | = |M | = n and N ∀= 0n to the encryption oracle.
2. Obtain (C, T ) (where |C| = n) from the oracle and see if C ∀= 0n (quit if

C = 0n).
3. Query (Ñ , C̃, T̃ ) to the verification oracle, where |Ñ | < n, Ñ√10n−1−|Ñ | = C,

|C̃| < n, C̃√10n−1−|C̃| = N , and T̃ = T .

The above attack is almost always successful; unless C = 0n we have T =
msbτ (EK(N) ≈ EK(Q ≈ D ≈ C)) and the valid tag for (Ñ , C̃) is

msbτ (EK(D ≈ Q ≈ Ñ√10n−1−|Ñ |) ≈ EK(Q ≈ Q ≈ C̃√10n−1−|C̃|))
= msbτ (EK(D ≈ Q ≈ C) ≈ EK(N)),

thus equals to T . The converse of Forgery attack 3 is also possible for |N | < n
and |M | < n:

Forgery attack 4 (|N | < n and |M | < n).

1. Query (N,M) with |N | < n and |M | < n to the encryption oracle.
2. Obtain (C, T ) (where |C| = |M | < n) from the oracle.
3. Query (Ñ , C̃, T̃ ) to the verification oracle, where |Ñ | = |C̃| = n, Ñ =

C√10n−1−|C|, C̃ = N√10n−1−|N |, and T̃ = T .

We have T = msbτ (EK(D ≈ Q ≈ N√10n−1−|N |) ≈ EK(Q ≈ Q ≈ C√10n−1−|C|))
and the valid tag for (Ñ , C̃) is

msbτ (EK(D ≈ D ≈ Ñ) ≈ EK(Q ≈ D ≈ C̃))

= msbτ (EK(C√10n−1−|C|) ≈ EK(Q ≈ D ≈ N√10n−1−|N |)) = T.

Partially Selective Forgeries. A forgery is selective instead of existential,
if the adversary can determine the content of the message to be forged. Since
EAX′ provides authenticated encryptionwith associated data (AEAD), the con-
tent of the message consists of both the confidential plaintext M and the non-
confidential associated data (or cleartext) N . While the above attacks do not
allow to choose M , the adversary can arbitrarily choose N (restricted to |N | ∈ n
and, for |N | = n, N ∀= 0n). In this sense, the forgery attacks above are partially
selective.

4.2 Chosen-Plaintext Distinguishers

The forgery attacks above are based on the idea of generating (N,C) that makes
the tag T = 0τ . To distinguish EAX′-EK from a random encryption process,
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which produces (|M | + τ)-bit random sequence on receiving (N,M), one can
similarly make (N,M) so that EAX′-EK will generate (C, T ) with T = 0τ .

Distinguishing attack 1 (|N | = n and |M | = 0).

1. Query (N,M) to the encryption oracle, where N = 10n−1 and M = ε.
2. Obtain (C, T ) from the oracle with C = ε.
3. If T = 0τ then return 1, otherwise return 0.

As EAX′-EK returns T = 0τ with probability 1 while the same event occurs
with probability 1/2τ with a random encryption process, this enables us to easily
distinguish T from random with the distinguishing advantage almost 1, using
only one encryption query.

Distinguishing attack 2 (|N | = n, 1 ∈ |M | < n, and fixed i for 1 ∈ i ∈ n−1).

1. Fix M → {0, 1}i, and query (N,M) to the encryption oracle with N =
M√10n−1−|M |.

2. Obtain (C, T ) from the oracle.
3. If C = M and T = 0τ then return 1, otherwise return 0.

In this case, we have C = M with probability 1/2i for both EAX′-EK and a
random encryption process. Given the event C = M , we have

T = msbτ (EK(N) ≈ EK(C√10n−1−|C|)) = 0τ

with probability 1 for EAX′-EK , while T = 0τ occurs with probability 1/2τ for
the random encryption process. Thus, with probability 1/2i the distinguisher
succeeds with a high probability, which is non-negligible when i is small.

4.3 Chosen-Ciphertext Plaintext Recovery Attacks

Consider a triple (N∗, C∗, T ∗) of cleartext N∗, ciphertext C∗ and tag T ∗. The
corresponding plaintext M∗ is unknown. The adversary can ask a decryption
oracle, for the decryption of any (N,C, T ) under its choice, except for (N,C, T ) =
(N∗, C∗, T ∗) (otherwise, finding M∗ would be trivial). The adversary receives
either ∅ (if verification fails) or the decryption M of C. This is the setting in
a chosen ciphertext attack. Below, we focus on plaintext recovery attacks, where
the adversary actually finds (a part of) M∗. We describe two attacks: the first
for |N∗| = n, the second for |N∗| < n.

Plaintext recovery attack 1 (|N∗| = n).

1. Obtain (N∗, C∗, T ∗) for unknown plaintext M∗.
2. Prepare C with |C| < n and C√10n−1−|C| = N∗ and T = 0τ .
3. Query (N∗, C, T ) to the decryption oracle. Let M be the answer.
4. Compute the keystream KS = C ≈ M → {0, 1}|C|.

Since the decryption of (N∗, C∗, T ∗) uses the same keystream KS, we now can
compute the first |C| bits of M∗, or the full M∗ if |M∗| ∈ |C|. It succeeds for
the same reason as Forgery attack 1 (unless N∗ = 0n, in which case there is no
C in Step 2, or C∗√10n−1−|C⊥| = N∗ and T ∗ = 0τ , in which case the decryption
query in Step 3 makes the attack trivial).
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Plaintext recovery attack 2 (|N∗| < n).

1. Obtain (N∗, C∗, T ∗) for unknown plaintext M∗.
2. Prepare C with |C| = n and N∗√10n−1−|N⊥| = C and T = 0τ .
3. Query (N∗, C, T ) to the decryption oracle. Let M be the answer.
4. Compute the keystream KS = C ≈ M → {0, 1}n.

Unless N∗√10n−1−|N⊥| = C∗ and T ∗ = 0τ , the attack succeeds for the same
reason as Forgery attack 2.

4.4 Remarks

The Source of Attacks. Not to mention, our attacks cannot be applied on
the original EAX having the proof of security. Our attacks exploit the wrong
tweaking method of CMAC in EAX′. While the tweaking method in the orig-
inal EAX provides a set of computationally independent PRFs, the tweaking
method of EAX′ fails to do this. For instance CMAC′(0)

K (M) = CMAC′(1)
K (M ′)

holds with probability 1 for any (M,M ′) such that |M | = n and |M ′| < n and
M ′√10n−1−|M ⊕| = M , which is unlikely to occur if CMAC′(0)

K and CMAC′(1)
K

were computationally independent. The SIV-like counter incrementation also
increases the collision probability of counter blocks, however this only leads to
a small degradation in security, as mentioned by [3], hence our attacks do not
rely on this fact.

Applicability to ANSI C12.22 Protocols. All our attacks require |N | ∈ n.
The forgery and distinguishing attacks also require |M |, |C| ∈ n, and the plain-
text recovery attacks actually require at most the first n bits of the ciphertext.
In addition, the forgery and plaintext recovery attacks could not be prevented by
restricting the input length at encryption: one must implement the input length
check at decryption as well.

One can find some examples that have |M | = n or |M | = 0 (i.e. the authenti-
cation of N) with n = 128 in communication examples of ANSI C12.22 (Annex
G of [3]) or test vectors3 of EAX′ (Section V of [13]). At the same time, we do
not know4 whether |N | > n holds for ANSI C12.22 protocols, even though the
specification [13] does not, at least explicitly, regulate the length of cleartext.
The reference code of EAX′ given by [3,6] has no restriction on input lengths,
and we verified our attacks with that code.

A natural question arises from the above observation: whether EAX′ is prov-
ably secure under the restriction |N | > n. In the next section we provide a
positive answer to this question.
3 One can find test vectors with n-bit cleartexts in [13]. However, they seem to contain

an editorial error; the cleartext may mean the plaintext and vice versa.
4 In [13], “Justification” of Issue 6 (in page 3) states that “The CMAC∼ computations

here always involve CBC of at least two blocks”. This looks odd since M or C can
be null (as stated by ANSI) and CMAC∼ taking the empty string certainly operates
on the single-block CBC, but it may be a hint that |N | > n would hold for any
legitimate ANSI C12.22 messages.
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5 Provable Security for More-Than-One-Block Cleartext

Now we are going to prove that EAX′ provides the provable security when the
cleartext N is always more than n bits for both encryption and decryption.
Combined with the attacks described in the previous section, the result of this
section draws a sharp distinction on the security between the case |N | > n and
the case |N | ∈ n.

Security Notions. Following [7,14], we introduce two security notions, privacy
and authenticity, to model the security of EAX′. For c oracles, O1, O2, . . . , Oc,
we write AO1,O2,...,Oc to represent the adversary A accessing these c oracles in
an arbitrarily order. If F and G are oracles having the same input and output
domains, we say they are compatible.

A CPA-adversary A against EAX′[E, τ ] accesses EAX′-EK,τ . The encryption
queries made by A are denoted by (N1,M1), . . . , (Nq,Mq). We define A’s para-

meter list as (q, σN , σM ), where σN
def=

∑q
i=1 |Ni|n and σM

def=
∑q

i=1 |Mi|n if all

|Mi|n > 0. For convention, if |Mi| = 0 for some i ∈ q, σM
def= (

∑q
i=1 |Mi|n) + 1.

We also define random-bit oracle, $, which takes (N,M) → {0, 1}∗ × {0, 1}∗ and
returns (C, T ) $⇒ {0, 1}|M | × {0, 1}τ . The privacy notion for CPA-adversary A
is defined as

AdvprivEAX⊕[E,τ ](A) def= Pr[K $⇒ K : AEAX⊕-EK ⇒ 1] − Pr[A$ ⇒ 1]. (1)

We assume A in the privacy notion is nonce-respecting, i.e., all Nis are dis-
tinct. Similarly, a CCA-adversary A against EAX′[E, τ ] accesses EAX′-EK,τ and
EAX′-DK,τ . The encryption and decryption queries made by A are denoted by
(N1,M1), . . . , (Nq,Mq) and (Ñ1, C̃1, T̃1), . . . , (Ñqv , C̃qv , T̃qv ). We define A’s para-

meter list as (q, qv, σN , σM , σÑ , σC̃), where σÑ

def=
∑qv

i=1 |Ñi|n, σC̃

def=
∑qv

i=1 |C̃i|n
when all |C̃i|n > 0 and σC̃

def= (
∑qv

i=1 |C̃i|n) + 1 otherwise. The definitions of σN

and σM are the same as above. The authenticity notion for a CCA-adversary A
is defined as

AdvauthEAX⊕[E,τ ](A) def= Pr[K $⇒ K : AEAX⊕-EK ,EAX⊕-DK forges], (2)

where A forges if EAX′-DK returns a bit string (other than ∅) for a query
(Ñi, C̃i, T̃i) for some 1 ∈ i ∈ qv such that (Ñi, C̃i, T̃i) ∀= (Nj , Cj , Tj) for all 1 ∈
j ∈ q. We assume A in the authenticity notion is always nonce-respecting with
respect to encryption queries; using the same N for encryption and decryption
queries is allowed, and the same N can be repeated within decryption queries,
i.e. Ni is different from Nj for any j ∀= i but Ñi may be equal to Nj or Ñi⊕ for
some j and i′ ∀= i.

Bounds. We denote EAX′ with an n-bit URP being used as a blockcipher by
EAX′[Perm(n), τ ] and the corresponding encryption and decryption functions by
EAX′-EP and EAX′-DP. Similarly, the subscript K in the component algorithms
is substituted with P, e.g. CMAC′(i)

P . We here provide the security bounds for
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EAX′[Perm(n), τ ]; the computational counterpart for EAX′[E, τ ] is trivial. The
security bound for the privacy notion is as follows.

Theorem 1. Let A be the CPA-adversary against EAX′[Perm(n), τ ] who does
not query cleartexts of n bits or shorter and has parameter list (q, σN , σM ). Let
σpriv = σN + σM . Then we have

AdvprivEAX⊕[Perm(n),τ ](A) ∈ 18σ2
priv

2n
.

The security bound for the authenticity notion is as follows.

Theorem 2. Let A be the CCA-adversary against EAX′[Perm(n), τ ] who does
not query cleartexts of n bits or shorter for both encryption and decryption ora-
cles, and has parameter list (q, qv, σN , σM , σÑ , σC̃). Let σauth = σN +σM +σÑ +
σC̃ . Then we have

AdvauthEAX⊕[Perm(n),τ ](A) ∈ 18σ2
auth

2n
+

qv

2τ
.

6 Proofs of Theorem 1 and Theorem 2

6.1 Overview

The proofs of Theorems 1 and 2 are bit long, hence we first provide the overview.
The basic strategy follows from the proof of the original EAX [7] with some
extensions taken from OMAC proofs [9,10]. We first break down the algorithm
of EAX′[Perm(n), τ ] into a pair of functions, which we call OMAC-extension,
OMAC-e[P] = (OMAC-e[P](0),OMAC-e[P](1)), where OMAC-e[P](0) : {0, 1}>n×
N ∪ ({0, 1}n)>0 and OMAC-e[P](1) : {0, 1}∗ ∪ {0, 1}n. It uses an n-bit ran-
dom permutation P and an additional independent and random value, U →
{0, 1}n. Intuitively, OMAC-e[P](0) is a function that takes (N, d), where d =
|M |n (d = |C|n) for encryption (decryption), and produces N ≈ U and the d-
block keystream before truncation, i.e., S of Fig. 1 (See also Fig. 2). Similarly,
OMAC-e[P](1) takes a ciphertext, C, and produces CMAC′(1)

P (C) ≈ U . Since
(N ≈ U) ≈ (CMAC′(1)

P (C) ≈ U) = N ≈ CMAC′(1)
P (C), such a function pair can

perfectly simulate EAX′[Perm(n), τ ]. We introduce U to make the remaining
analysis less involved. Then, the bound evaluation for EAX′[Perm(n), τ ] is mostly
reduced to that of the indistinguishability between OMAC-e[P] and a random
function pair RND = (RND(0),RND(1)). Here RND

(0) takes (N, d) and samples
Y

$⇒ ({0, 1}n)dmax+1 if N is new, and outputs the first (d+1) blocks of Y , where
dmax is the maximum possible value of d implied by the game we consider. Sim-
ilarly RND

(1) takes C → {0, 1}∗ and outputs Y ′ $⇒ {0, 1}n if C is new. To bound
the indistinguishability between OMAC-e[P] and RND, we further break down
OMAC-e[P] into a set of ten small functions, Q = {Qi}i=1,...,10, following the
proof of OMAC [9]. Using two random values in addition to U , these functions
are built so that they behave close to a set of independent URFs or URPs, and
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at the same time have the capability to perfectly simulate OMAC-e[P] (hence
EAX′[Perm(n)]). The indistinguishability of Q from the set of URPs/URFs is
relatively easy to derive, and as a result the following analysis becomes much
easier.

6.2 Proof

Setup. Without loss of generality and for simplicity this section assumes that
the space of valid cleartexts of EAX′ is {0, 1}>n, rather than restricting the
adversary’s strategy.

For convenience we introduce the following notions. Let FK : X ∪ Y and
GK⊕ : X ∪ Y be two keyed functions with K → K and K ′ → K′, and let A be
the CPA-adversary. We define

AdvcpaF,G(A) def= Pr[K $⇒ K : AFK ⇒ 1] − Pr[K ′ $⇒ K′ : AGK⊕ ⇒ 1]. (3)

Note that this definition can be naturally extended when GK⊕ is substituted
with the random-bit oracle compatible with FK . Moreover, when FK and GK⊕

are compatible with EAX′-EK , we define Advcpa-nrF,G (A) as the same function as
AdvcpaF,G(A) but CPA-adversary A is restricted to be nonce-respecting. Let F =
(F e

K , F d
K) and G = (Ge

K⊕ , Gd
K⊕) be the pairs of functions that are compatible

with (EAX′-EK ,EAX′-DK). We define

Advcca-nrF,G (A) def= Pr[K $⇒ K : AF e
K ,Fd

K ⇒ 1] − Pr[K ′ $⇒ K′ : AGe
K⊕ ,Gd

K⊕ ⇒ 1], (4)

where the underlying A is assumed to be nonce-respecting for encryption queries.
Note that we have AdvprivEAX⊕[E,τ ](A) = Advcpa-nrEAX⊕-EK ,$(A) for any nonce-respecting
CPA-adversary A.

Step 1: OMAC-extension. For x → {0, 1}⊂n, let bp(x) = x if |x| = n and
bp(x) = x√10n−1−(|x| mod n) if |x| < n. If x = ε then bp(x) = 10n−1. We first
define OMAC-extension using an n-bit URP, denoted by OMAC-e[P] : {0, 1} ×
{0, 1}∗ × N ∪ ({0, 1}n)>0. The definition is given in Fig. 3. See also Fig. 4.
Actually it consists of two functions, written as

OMAC-e[P](0) : {0, 1}>n × N ∪ ({0, 1}n)>0, and (5)

OMAC-e[P](1) : {0, 1}∗ ∪ {0, 1}n, (6)

where the first argument to OMAC-e[P], t → {0, 1}, specifies which function to be
used, i.e., OMAC-e[P](0,X, d) = OMAC-e[P](0)(X, d) and OMAC-e[P](1,X, d) =
OMAC-e[P](1)(X) (d is discarded). Here |OMAC-e[P](0)(X, d)| = (d + 1)n. For
simplicity we assume the input domain of OMAC-e[P] is a set of (t,X, d) →
{0, 1}×{0, 1}∗×N that is acceptable for OMAC-e[P](t). More formally, when t =
0 we assume |X| > n and d → N, and when t = 1 we assume d is fixed (say 0). As
described in Sect. 6.1, OMAC-e[P] enables us to simulate EAX′-EP and EAX′-DP;
note that the simulator only needs to compute the sum of two outputs from
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CMAC′(0)
P and CMAC′(1)

P , and not to compute the output itself. For instance,
if we want to perform EAX′-EP for N = (N [1]√N [2]) and M = (M [1]√M [2])
with |N [1]| = |N [2]| = |M [1]| = n and |M [2]| = n − 2, then the procedure is (1)
Y √S[1]S[2] ⇒ OMAC-e[P](0, N, 2), (2) C ⇒ msb2n−2(S[1]S[2]) ≈ M , (3) Y ′ ⇒
OMAC-e[P](1, C, 0), where the last argument is arbitrary, (4) T ⇒ msbτ (Y ≈Y ′),
and (5) output (C, T ). The following proposition is easy to check.

Proposition 1. There exist deterministic procedures, fe(·) and fd(·), that use
OMAC-e[P] as a black box and perfectly simulate EAX′-EP and EAX′-DP. That
is, we have5 EAX′-EP ≡ fe(OMAC-e[P]) and EAX′-DP ≡ fd(OMAC-e[P]).

A keyed function F compatible with OMAC-e[P] is said to have OMAC-e
profile, and we denote F (t,X, d) by F (t)(X, d). Suppose an adversary querying F
of OMAC-e profile has q queries (t1,X1, d1), . . . , (tq,Xq, dq) and corresponding
answers are Y1, . . . , Yq. Such an adversary is called to be with parameter list

(q, σin, σout) where σin
def=

∑
i=1,...,q |Xi|n and σout

def=
∑

i=1,...,q;ti=0 |Yi|n.

Algorithm OMAC-e[P]:
Initialization
00 L ⊕ P(0n), U

$⊕ {0, 1}n

On query (t, X, d) → {0, 1} × {0, 1}∗ × N

10 X[1] X[2] . . . X[m]
n⊕ X

11 if |X| mod n = 0 or X = ε then w ⊕ 1, else w ⊕ 0 (note: w ∗ w(X))

12 if t = 0 (note: m ≥ 2 holds for valid queries)

13 Y [1] ⊕ P(2L √ X[1])
14 for i = 1 to m − 2 do Y [i + 1] ⊕ P(Y [i] √ X[i + 1])
15 V ⊕ P(Y [m − 1] √ bp(X[m]) √ 2w+1L)
15 Y ⊕ V √ U
16 if d = 0 return Y
17 else V √ ⊕ V ≤ α
18 for j = 0 to d − 1 do S[j + 1] ⊕ P(V √ + j)
19 return Y S[1]S[2] . . . S[d]
20 if t = 1
21 if |X| ⊗ n then Y ⊕ P(bp(X) √ 4L √ 2w+1L) √ U ; return Y
22 else Y [1] ⊕ P(4L √ X[1])
23 for i = 1 to m − 2 do Y [i + 1] ⊕ P(Y [i] √ X[i + 1])
24 Y ⊕ P(Y [m − 1] √ bp(X[m]) √ 2w+1L) √ U
25 return Y

Fig. 3. OMAC-extension using an n-bit URP, P.

5 Here F ≡ G means the equivalence of the output probability distribution functions,
i.e. Pr[F (x1) = y1, . . . , F (xq) = yq] = Pr[G(x1) = y1, . . . , G(xq) = yq]) for any
fixed possible x1, . . . , xq and y1, . . . , yq. The probabilities are defined over F and G’s
randomness.
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≤α
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P P
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X[1] X[2] X[m]

P P

U

Y

Fig. 4. Component functions of OMAC-extension. Here D and Q denote 2L and 4L
with L = P(0n), and U is uniformly random over n bits.

To further analyze OMAC-e[P], we introduce a set of ten functions, Q =
{Qi}i=1,...,10.

Definition 1. Let Qi : {0, 1}n ∪ {0, 1}n for i = 1, 2, 3, 4, 7, 8, 9 and let Qj :
{0, 1}n × N ∪ ({0, 1}n)>0 for j = 5, 6, and let Q10 : {0, 1}n \ {0n} ∪ {0, 1}n.
These functions are defined as

Q1(x) def= P(2L ≈ x) ≈ Rnd1, Q2(x) def= P(4L ≈ x) ≈ Rnd2,

Q3(x) def= P(Rnd1 ≈ x) ≈ Rnd1, Q4(x) def= P(Rnd2 ≈ x) ≈ Rnd2,

Q5(x, d) def= GP,U (P(2L ≈ Rnd1 ≈ x), d), Q6(x, d) def= GP,U (P(4L ≈ Rnd1 ≈ x), d)

Q7(x) def= P(2L ≈ Rnd2 ≈ x) ≈ U, Q8(x) def= P(4L ≈ Rnd2 ≈ x) ≈ U,

Q9(x) def= P(2L ≈ 4L ≈ x) ≈ U, Q10(x) def= P(x) ≈ U,

where P is an n-bit URP, and L = P(0n), and Rnd1 and Rnd2 are independent
n-bit random sequences, and U is another random n-bit value. Here, GP,U (v, d)
is v ≈U if d = 0 and (v ≈U√P(v ∗α)√P((v ∗α)+1)√ . . . √P((v ∗α)+ (d− 1))) if
d > 0. The sampling procedures for P, Rnd1, Rnd2, and U are shared by all Qis.
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We also treat Q as a tweakable function with tweak t → {1, . . . , 10} by writing
Q(t, x, d) = Qt(x, d) when t → {5, 6} and otherwise Q(t, x, d) = Qt(x). We can
easily see that OMAC-e[P] can be simulated with black-box access to Q, just the
same as Q functions appeared in the proof of OMAC [9] that simulate OMAC.

We next define Q̃ = {Q̃i}i=1,...,10. For all i = 1, . . . , 10, Q̃i is compatible
with Qi.

Definition 2. Let P1, . . . ,P4 be four independent n-bit URPs. Let R7, . . . ,R10

be four independent n-bit URFs, and let R5 and R6 be two independent URFs
with n-bit input and (dmax + 1)n-bit output. Using them we define

Q̃1(x) def= P1(x), Q̃2(x) def= P2(x),

Q̃3(x) def= P3(x), Q̃4(x) def= P4(x),

Q̃5(x, d) def= Rd+1
5 (x), Q̃6(x, d) def= Rd+1

6 (x)

Q̃7(x) def= R7(x), Q̃8(x) def= R8(x),

Q̃9(x) def= R9(x), Q̃10(x) def= R10(x),

where Rd+1
i (x) = msbn(d+1)(Ri(x)) for i = 5, 6. Here dmax is the maximum

possible value of queried d, which will be determined by the underlying game and
the adversary’s parameter.

We say a function compatible with Q is said to have Q profile. An adversary
querying a function of Q profile is characterized by the number of queries, q,
and the total sum of output n-bit blocks for t → {5, 6}, σout. The next lemma
shows the CPA-advantage in distinguishing Q and Q̃.

Lemma 1. Let A be the adversary querying a function of Q profile with para-
meter list (q, σout). Then we have Advcpa

Q,Q̃
(A) ∈ (3.5q2 + 10σoutq + 2.5σ2

out)/2n.

The proof is given in the full-version.

Step 2: Modified CBC-MAC. For any n-bit (keyed) permutations, G and
G′, let CBCG,G⊕ : ({0, 1}n)>0 ∪ {0, 1}n be defined as

CBCG,G⊕(X[1]√ . . . √X[m]) =

{
G(X[1]) if m = 1
CBCG⊕(G(X[1])√X[2]√ . . . √X[m]) if m ≥ 2,

where CBCG⊕ is the standard CBC-MAC using G′. We then define a function
compatible with OMAC-e[P], denoted by CBC. For any X → {0, 1}∗, let w(X) =
1 if |X| mod n ∀= 0 or X = ε and otherwise w(X) = 0. For |X| > n, CBC(0)(X, d)
is computed as follows.

1. X[1]√X[2]√ . . . √X[m] n⇒ X and w ⇒ w(X)
2. Z ⇒ CBCP1,P3(X[1]√ . . . √X[m − 1])
3. Output Y √S[1]√ . . . √S[d] ⇒ Rd+1

5+w(Z ≈ bp(X[m]))
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Here, if d = 0 the output is Y . Similarly, for X → {0, 1}∗, CBC(1)(X) is computed
as follows.

1. X[1]√X[2]√ . . . √X[m] n⇒ X and w ⇒ w(X)
2. If |X| ∈ n output Y ′ ⇒ R9+w(bp(X)),
3. Otherwise Z ′ ⇒ CBCP2,P4(X[1]√ . . . √X[m−1]), and output Y ′ ⇒ R7+w(Z ′ ≈

bp(X[m])).

The pseudo-code of CBC (combining CBC
(0) and CBC

(1)) is presented
in Fig. 5. Here, Ri

j(X) for j = 5, 6 denotes msbni(Rj(X)). One can simulate
OMAC-e[P] via black-box accesses to Q, including the final mask by U . For
example, to simulate OMAC-e[P](0, N, 2) for |N | = 3n, we first perform a
partition, N [1]√N [2]√N [3] n⇒ N , and then proceed as (1) Y [1] ⇒ Q1(N [1]),
(2) Y [2] ⇒ Q3(N [2] ≈ Y [1]), and (3) Y [3]√S[1]S[2] ⇒ Q5(N [3] ≈ Y [2]). If
|N [3]| = n−2 then Q5(N [3]≈Y [2]) is replaced with Q6(N [3]√10≈Y [2]). For more
examples, OMAC-e[P](1, C, 0) for |C| = n can be simulated via calling Q9(C).
For |C| < n, OMAC-e[P](1, C, 0) can be simulated via calling Q10(bp(C)) =
Q10(C√10 . . . 0). Formally, we have the following proposition.

Proposition 2. There exists a procedure h(·) that uses Q as a black box and
perfectly simulates OMAC-e[P], i.e. h(Q) ≡ OMAC-e[P]. Moreover, we have
h(Q̃) ≡ CBC for this h(·).

Let RND
(0) and RND

(1) be the independent random functions compatible
with OMAC-e[P](0) and OMAC-e[P](1). Here, RND(0) takes (N, d) → {0, 1}>n×N

and samples Y
$⇒ ({0, 1}n)dmax+1 if N is new, and outputs msbn(d+1)(Y ), where

dmax is the same as CBC. Similarly RND
(1) takes C → {0, 1}∗ and outputs

Y ′ $⇒ {0, 1}n if C is new. We define RND as a function consisting of RND(0) and
RND

(1) and taking t = 0, 1 as a tweak. Then, we have the following lemma. The
proof is given in the full-version.

Lemma 2. Let A be an adversary querying a function of OMAC-e profile with
parameter list (q, σin, σout). Then, Adv

cpa
CBC,RND(A) ∈ 2σ2

in/2n.

Step 3: Derivation of PRIV Bound. Combining the above lemmas and
propositions, our PRIV bound is derived. Let A be the CPA-adversary against
AE with parameter list (q, σN , σM ). Then there exist adversary B querying to a
function of OMAC-e profile with 2q queries, σin = σN + σM input blocks, and
σout = σM +2q output blocks, and adversary C querying to a set of ten functions
with Q profile, using σN +σM queries and σM +q output n-bit blocks for queries
with t = 5, 6, such that

AdvprivEAX⊕[Perm(n)](A) = Advcpa-nrEAX⊕-EP,$(A) = Advcpa-nrfe(OMAC-e[P]),$(A) (7)

∈ Advcpa-nrfe(OMAC-e[P]),fe(CBC)
(A) + Advcpa-nrfe(CBC),fe(RND)

(A) + Advcpa-nrfe(RND),$
(A)

︸ ︷︷ ︸
=0

(8)

∈ AdvcpaOMAC-e[P],CBC(B) + Advcpa
CBC,RND(B) (9)
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= Advcpa
h(Q),h(Q̃)

(B) + Advcpa
CBC,RND(B) (10)

∈ Advcpa
Q,Q̃

(C) +
2(σN + σM )2

2n
(11)

∈ 3.5(σN + σM )2 + 10(σM + q)(σN + σM ) + 2.5(σM + q)2

2n
+

2(σN + σM )2

2n

(12)

∈ 18(σN + σM )2

2n
=

18σ2
priv

2n
, (13)

as q ∈ σN . Here, the second equality in Eq. (7) follows from Proposition 1,
Eq. (10) follows from Proposition 2, Eq. (11) follows from Lemma 2, and Eq. (12)
follows from Lemma 1. In addition, Advcpa-nrfe(RND),

(A) = 0 holds because when A
queries (N,M) to fe(RND) the output is a subsequence of RND

(0)(N, |M |n)
with the first n bits XORed by the output of RND

(1) (whose input is a part
of RND(0)(N, |M |n)). As N is always fresh, the output is always random. This
concludes the proof of Theorem 1.

Step 4: Derivation of AUTH Bound. The AUTH bound is derived in a sim-
ilar way. Let EAX

′ be the AE algorithm compatible with EAX′[Perm(n)] using
fe(RND) and fd(RND) for the encryption and decryption algorithms. We let A
be the CCA-adversary against AE with parameter list (q, qv, σN , σM , σÑ , σC̃).
Then we have the following bound.

Advauth
EAX⊕(A) ∈ qv/2τ . (14)

The proof of Eq. (14) is given in the full-version. Then, there exist adversary
B querying to a function of OMAC-e profile with 2(q + qv) queries with σin =
σN + σM + σÑ + σC̃ and σout = σM + 2q + σC̃ + 2qv, and adversary C querying
to a function of Q profile with σN +σM +σÑ +σC̃ queries and σM + q +σC̃ + qv

output blocks for queries with t = 5, 6, such that

AdvauthEAX⊕[Perm(n)](A)

∈ Advcca-nr(EAX⊕-EP,EAX⊕-DP),(fe(RND),fd(RND))
(A) + Advauth

EAX⊕(A) (15)

∈ Advcca-nr(fe(OMAC-e[P]),fd(OMAC-e[P])),(fe(RND),fd(RND))
(A) +

qv

2τ
(16)

∈ AdvcpaOMAC-e[P],RND(B) +
qv

2τ
(17)

∈ AdvcpaOMAC-e[P],CBC(B) + Advcpa
CBC,RND(B) +

qv

2τ
(18)

= Advcpa
h(Q),h(Q̃)

(B) + Advcpa
CBC,RND(B) +

qv

2τ
(19)

∈ Advcpa
Q,Q̃

(C) +
2(σN + σM + σÑ + σC̃)2

2n
+

qv

2τ
(20)
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∈ 3.5(σN + σM + σÑ + σC̃)2 + 10(σM + q + σC̃ + qv)(σN + σM + σÑ + σC̃)
2n

+
2.5(σM + q + σC̃ + qv)2

2n
+

2(σN + σM + σÑ + σC̃)2

2n
+

qv

2τ
(21)

∈ 18σ2
auth

2n
+

qv

2τ
, (22)

since q ∈ σN and qv ∈ σÑ . Here, Eq. (16) follows from Proposition 1 and
Eqs. (14), (19) follows from Proposition 2, Eq. (20) follows from Lemma 2, and
Eq. (21) follows from Lemma 1. This concludes the proof of Theorem 2.

7 Fixing the Flaw

There would be ways to fix the flaw of EAX′ to make it as a secure general-
purpose AE accepting cleartexts of any length. Below, we provide some of them,
naming it to EAX′′. The concept here is not to touch the inside of EAX′, instead
using it as a black box. We only propose the fixes for encryption, as the corre-
sponding decryptions are fairly straightforward.

Method 1: EAX′′
1-EK(N,M) def= EAX′-EK(0n√N,M).

Algorithm CBC (given dmax):
Initialization
00 for i = 1 to 4 do Pi

$⊕ Perm(n)

01 R5
$⊕ Func(n, dmax), R6

$⊕ Func(n, dmax)

02 for j = 7 to 10 do Rj
$⊕ Func(n) (note: R10’s actual input is in {0, 1}n \{0n})

On query (t, X, d) → {0, 1} × {0, 1}∗ × N

10 X[1] X[2] . . . X[m]
n⊕ X

11 if |X| mod n = 0 or X = ε then w ⊕ 1, else w ⊕ 0 (note: w ∗ w(X))

12 if t = 0 (note: m ≥ 2 holds for valid queries)

13 Y [1] ⊕ P1(X[1])
14 for i = 1 to m − 2 do Y [i + 1] ⊕ P3(Y [i] √ X[i + 1])
15 if d = 0 then Y ⊕ R1

5+w(Y [m − 1] √ bp(X[m])); return Y
16 else Y S[1] S[2] . . . S[d] ⊕ Rd+1

5+w(Y [m − 1] √ bp(X[m]))
17 return Y S[1] S[2] . . . S[d]
18 if t = 1
19 if |X| ⊗ n then Y ⊕ R9+w(bp(X)); return Y
20 else Y [1] ⊕ P2(X[1])
21 for i = 1 to m − 2 do Y [i + 1] ⊕ P4(Y [i] √ X[i + 1])
22 Y ⊕ R7+w(Y [m − 1] √ bp(X[m]))
23 return Y

Fig. 5. CBC using four n-bit URPs, four n-bit URFs, and two n-bit input, (dmax+1)n-
bit output URFs.



Attacks and Security Proofs of EAX-Prime 345

Method 2: Use two keys for E, K and K ′, and let

EAX′′
2 -EK,K⊕(N,M) def=

{
EAX′-EK(N,M) if |N| > n,

EAX′-EK⊕(0n√N,M) if |N| ∈ n,

where K and K ′ are independent or K ′ = K ≈ cst for a non-zero constant
cst. The choice of cst must be done with care to avoid related-key attacks.
For instance, letting cst = 1|K| seems natural while this is problematic with
DES due to the complementary property of the key schedule. One option is
to use a random-looking constant, say the first few digits of π.

Method 3: Use a key for E, K, and an independent n-bit key, L, and let

EAX′′
3 -EK,L(N,M) def=

{
EAX′-EK(N,M) if |N| > n,

EAX′-E≤
K,L(0n√N,M) if |N| ∈ n,

where EAX′-E≤
K,L is EAX′ encryption with blockcipher ẼK,L defined as

ẼK,L(X) = EK(X ≈ L).

The security bounds of the above methods are easily derived from the results
of Theorems 1 and 2. For the latter option of Method 2 we also need a very
restricted form of related-key security of E, and for Method 3 we need the
theory of tweakable blockcipher [11]. Each method has its own pros and cons:
Method 1 is the simplest but needs additional blockcipher calls irrespective of
|N |. Methods 2 and 3 keep the original operation for |N | > n, but need additional
key or a stronger security requirement on E. We also warn that Method 3 allows
a partial key recovery attack with birthday complexity.

8 Concluding Remarks

Practical Implications. Attacks as those described in the current paper are
often turned down by non-cryptographers as “only theoretical” or “don’t apply
in practice”. Indeed, none of our attacks is applicable if the cleartext size exceeds
n bits. But even if ANSI C12.22 prohibited any cleartexts of size n = 128 bits
or shorter, including EAX′ in the standard would be like an unexploded bomb
– waiting to go off any time in the future. Remember that EAX′ is intended for
Smart Grid, i.e., for the use in dedicated industrial systems such as electrical
meters, controllers and appliances. It hardly seems reasonable to assume that
every device will always carefully check cleartexts and plaintexts for validity and
plausibility. Also, vendors may be tempted to implement their own nonstandard
extensions avoiding “unnecessarily long” texts.

For a non-cryptographer, assuming a “decryption oracle” may seem strange
– if there were such an oracle, why bother with message recovery attacks at all?
However, experience shows that such theoretical attacks are often practically
exploitable. For example, some error messages return the input that caused the
error: “Syntax error in ‘xyzgarble’.” Even if the error message does not transmit
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the entire fake plaintext, any error message telling the attacker whether the fake
message followed some syntactic conventions or not is potentially useful for the
attacker. See [8] for an early example.

Also note that our forgery attacks allow a malicious attacker to create a large
number of messages with given single-block cleartexts and random single-block
plaintexts, that appear to come from a trusted source, because the authentication
succeeded. What the actual devices will do when presented with apparently valid
random commands is a source of great speculation.

Our Recommendation. Whenever possible, avoid adopting EAX′ in new appli-
cations. If EAX′ cannot be avoided, then this has to be carefully implemented to
exclude one-block cleartexts. We note that specifying the minimum data length
in standard documents does not necessarily prevent the adversary from using
short cleartexts. Therefore, the cleartext length checking mechanisms are needed
at both ends of encryption and decryption. Instead, one can safely use EAX′′

which allows the re-use of EAX′ implementations. Other provably secure authen-
ticated encryptions, including the original EAX, are also safe options.
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Abstract. Known-key distinguishers for block ciphers were proposed
by Knudsen and Rijmen at ASIACRYPT 2007 and have been a major
research topic in cryptanalysis since then. A formalization of known-key
attacks in general is known to be diffcult. In this paper, we tackle this
problem for the case of block ciphers based on ideal components such
as random permutations and random functions as well as propose new
generic known-key attacks on generalized Feistel ciphers. We introduce
the notion of known-key indiffierentiability to capture the security of such
block ciphers under a known key. To show its meaningfulness, we prove
that the known-key attacks on block ciphers with ideal primitives to date
violate security under known-key indiffierentiability. On the other hand,
to demonstrate its constructiveness, we prove the balanced Feistel cipher
with random functions and the multiple Even-Mansour cipher with ran-
dom permutations known-key indiffierentiable for a suffcient number of
rounds. We note that known-key indiffierentiability is more quickly and
tightly attained by multiple Even-Mansour which puts it forward as a
construction provably secure against known-key attacks.

Keywords: Block ciphers · Known-key security · Known-key distin-
guishers · Indiffierentiability

1 Introduction

Known-Key Attacks and Our Approach. Known-key distinguishers for
block ciphers were introduced by Lars Knudsen and Vincent Rijmen at ASI-
ACRYPT 2007 [25]. In the classical single secret-key setting, the attacker does
not know the randomly generated key and aims to recover it or build another
distinguisher for the cipher. The security model in known-key attacks is quite
different though: the attacker knows the randomly drawn key the block cipher
operates with and aims to find a structural property for the cipher under the
known key – a property which an ideal cipher (a permutation drawn at ran-
dom) would not have. An example of such a structural property from [25] is
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as follows. For an n-bit block cipher with a known key, the goal is to find a
plaintext/ciphertext pair with the least s < n/2 significant bits zero. For the
ideal cipher, the adversary needs to invest about 2s encryptions. A cipher that
allows one to find such a pair with much less effort than 2s encryptions is con-
sidered insecure in the known-key model. The seminal work [25] proposes a
distinguisher for a permutation-based 7-round Feistel cipher and for 7 rounds of
AES.

Since their introduction, known-key attacks have been a major research topic
in the symmetric-key community. In explicit terms, there has been a great deal
of effort towards refining and extending the distinguishers proposed by Knud-
sen and Rijmen, including generalizations to Rijndael [34,44], SP-based Feis-
tel ciphers [45–47] and some other constructions [17,35,37]. More importantly
though, implicitly, known-key attacks have drawn attention to the security of
block ciphers in the open key model where the adversary knows or even chooses
keys. We think it is to some extent this renewed attention that eventually has
given rise to a recent line of cryptanalytic results for the full AES: chosen-key
distinguishers [7], related-key attacks [5–7] and single-key biclique meet-in-the-
middle attacks [8] — all essentially exploiting the weaknesses of AES in the open
key model.

Despite this cumulative impact in the symmetric-key community over the last
years, known-key attacks have been known to be difficult to formalize since, for-
mally speaking, it is not clear what an exploitable structural property of a block
cipher under a known key is. There have been several attempts to solve the prob-
lem in general but we are not aware of any published results here. In this work, we
take a slightly different approach to the problem: we focus on known-key distin-
guishers for block ciphers based on idealized primitives such as randomly drawn
functions or permutations (examples of such constructions are balanced Feistel
ciphers, generalized Feistel ciphers, and (multiple) Even-Mansour ciphers). For
such block ciphers, we formulate the new notion of known-key indifferentiability
which we believe captures the known-key security. To demonstrate its mean-
ingfulness, we prove that the existing known-key attacks on block ciphers with
idealized primitives actually lead to the violation of this notion. To demonstrate
its constructiveness, we prove Feistel and Even-Mansour known-key indifferen-
tiable for a sufficient number of rounds.

Indifferentiability Framework. Traditionally, block ciphers have been exam-
ined under the classical notion of indistinguishability. In that setting a block
cipher C is claimed secure if it is (computationally) indistinguishable from a fixed
random permutation R with the same domain and range as C. In other words, an
attacker has to distinguish between C and R when placed in either real or ideal
worlds, respectively. The seminal paper [27] of Luby and Rackoff showed that
three (four) rounds of the Feistel construction, with independent pseudorandom
functions in each round, yield a pseudorandom permutation (strong pseudoran-
dom permutation) where the distinguisher does not have access to the internal
functions. This result was followed by a number of works [21,30,36,38–41,52].
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On the other hand, the indistinguishability of Even-Mansour cipher was only
analyzed by [9,18,51]. Indistinguishability has been established as the de facto
security notion for block ciphers because in the encryption setting the intended
use of the cipher key is in a secret manner; a fact comfortably accommodated
by the notion of indistinguishability.

However, block ciphers find numerous and important uses beyond encryption.
Block ciphers have been used as a building block for hash functions
[19,23,26,31,33,42,50].1 Here, the block cipher should work towards achieving
the desired property of the higher level structure, and the cipher key is not
necessarily secret, but known or easy to manipulate by a distinguisher. Clearly,
indistinguishability cannot provide strong security guarantees in the open key
model: a distinguisher’s task becomes trivial once the key is known or chosen.
Even more, if for example we decide to examine the indistinguishability “secu-
rity” of a block cipher built out of an ideal underlying primitive (by explicitly
giving to the distinguisher additional access to the internal primitive) in the open
key setting, then again the notion indistinguishability falls short. A straightfor-
ward distinguishability attack here is possible in only two queries: one (K,M)
query to the cipher C to obtain Y and one message and/or public key dependant
x input to the underlying primitive P to help him compute Y ∈ as a function of
CK . The distinguisher needs to only verify if Y equals Y ∈, which is true for the
real construction C and false with high probability for a random permutation
R. The weakness of such an indistinguishability notion that allows access to the
internal primitives lays in the fact that there is an obvious “constructive” gap
in the ideal world where no communication between R and P is provided (as
opposed to the real world where C evaluates on P).

It is here where the notion of indifferentiability of Maurer et al. [29] comes
into use to allow for: (i) arguing security in the open key model and (ii) enabling
the distinguisher to gain access to the input/output behavior of the underlying
primitive. The notion of indifferentiability argues the security of an idealized
system built upon ideal underlying components, such as random functions or
permutations. Initially, indifferentiability was used to analyze hash functions
[1–4,11,20], more recently results for block ciphers have also appeared. In [15],
Dodis and Puniya proved that the Feistel construction with a super-logarithmic
number of rounds (random functions) is indifferentiable from an ideal permuta-
tion in the honest-but-curious indifferentiability model, where the adversary can
only query the global Feistel construction and get all the intermediate results.
The work of Coron et al. [10] attempted an indifferentiability proof for the Feis-
tel construction with 6 rounds to obtain a fixed random permutation. But it
were Holenstein et al. [22] who succeeded in proving a 14 round Feistel construc-
tion indifferentiable from a fixed random permutation. Weaker variants of the
indifferentiability notion have appeared also in [16,28,53].

In its essence, indifferentiability, similarly to indistinguishability, aims at esti-
mating the adversarial distinguishing advantage between the cipher C and R in
1 Many hash functions based on a fixed-key block cipher (also called permutation

based hash functions) have also been proposed [32,43,48].
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the real and ideal worlds, respectively. Indifferentiability allows the adversary to
access the underlying primitive(s) where the underlying ideal primitive(s) in the
ideal world is replaced by a simulator S, which aims to both mimic the behavior
of the ideal primitive(s) and provide for responses that evaluate correctly when
computed under the cipher composition. To fulfill the latter task the simulator
is given access to the idealized system R. That functionality of S allows for
overcoming the existing “constructive” gap in the indistinguishability definition.

In fact, indifferentiability was introduced as the right notion to argue security
of a block cipher as an ideal cipher, where each key names a new randomly chosen
permutation. This theoretical treatment of block ciphers allows one to argue
security results in a setting where the adversary freely chooses the key and each
chosen key namely fixes a new random permutation. But while this interpretation
might accommodate the analysis of block ciphers in the chosen key setting, it
appears to be too strong for the case when the key is actually fixed but publicly
known and thus the permutation is fixed. This brings us to our newly proposed
notion of known-key indifferentiability (iff-KK), which examines the security of
a block cipher as a composition from ideal primitives under a known key. Notice
that an indifferentiability related view was already taken in the work of Mandal,
Patarin and Seurin [28], who introduced the notion sequential indifferentiability
and then relate it to that of correlation intractability in the ideal model to
argue known key security. Our iff-KK notion is however more general and differs
by the fact that it does not limit the adversary to make queries first to the
underlying primitive and then to the cipher. Moreover, iff-KK explicitly provides
the distinguisher with a public key which directly influences the queries to the
block cipher and potentially the ones to the underlying primitives (whenever
that is required by composition).

Our Contributions. The contributions of this paper are as follows:

Known-key attacks on type-I generalized Feistel networks. Knudsen-Rijmen [25]
proposed known-key distinguishers on 7 rounds of the 2-line (balanced) Feistel
network: GFN(2,7) with any permutations and explicit key addition at the begin-
ning of the round function. We propose a known-key attack on 4Δ − 1 rounds
of an Δ-line permutation-based type-I generalized Feistel network: GFN(Δ,4Δ−1)

also with explicit key addition at the beginning of the round function. See Sect. 3.

Known-key indifferentiability. We propose a way to formalize the known-key
security of block ciphers based on ideal primitives via the indifferentiability
framework and put forward the notion of known-key indifferentiability in Sect. 4.
By no means we claim to have formalized what a known-key attack is for all block
ciphers and all existing attacks, but we do believe to have found an appropriate
notion when the underlying components of the cipher are ideal (e.g. random
permutations or random functions).



352 E. Andreeva et al.

Meaningfulness of known-key indifferentiability. To show that our notion of
known-key indifferentiability is useful and meaningful, we prove that the
known-key attacks proposed to date on block ciphers with ideal components
and explicit key input (namely, the attack by Knudsen-Rijmen on 7-round Feis-
tel with permutations, our attack on (4Δ − 1)-round Δ-line type-I Generalized
Feistel construction, and an attack by Coron et al. and Mandal et al. [10,28])
imply the known-key differentiability bound computed in Sect. 5.

Constructiveness of known-key indifferentiability. To demonstrate the construc-
tiveness of our known-key indifferentiability notion, we prove two popular generic
block cipher constructions known-key indifferentiable in Sect. 6. First, regarding
the general indifferentiability result of [22], we prove that 14 rounds of balanced
Feistel with random functions are known-key indifferentiable with a security
bounds of O(q16/2n/2). Second, we prove that the multiple Even-Mansour con-
struction instantiated with random permutations is perfectly known-key indif-
ferentiable for any number of rounds starting from 1. As opposed to Feistel
ciphers, this puts forward the Even-Mansour construction as particularly suit-
able for building known-key resistant ciphers.

2 Block Cipher Constructions

In this work, we mainly focus on known-key security of generalized Feistel net-
works and multiple Even-Mansour constructions.

2.1 Generalized Feistel Networks

Feistel networks are very common block cipher designs, dating back to the design
of Lucifer [49], and many generalizations of this design appeared in literature.
In our work, we focus on type-I networks, as described by Zheng, Matsumoto
and Imai [54], simply referring to it as generalized Feistel networks.

The generalized Feistel network GFN(Δ,r) : {0, 1}k×{0, 1}n ⊕ {0, 1}n consists
of r evaluations of a fixed random permutation γ on n/Δ bits, and it uses Δ lines.
For i ∃ {1, . . . , r}, the i-th round αi of GFN(Δ,r) is defined as

αi(p1, . . . , pΔ) = (p2 → γ(p1 → ki), p3, . . . , pΔ, p1) ,

where k1, . . . , kr denote the round keys derived from the master key K using
some key schedule. The function αi is depicted in Fig. 1. In this work, we also
consider a slightly modified variant of GFN(Δ,r), where no keys are XORed with
the inputs to the primitive, but instead, r different random functions f1, . . . , fr

are employed. We refer to this construction as GFNR(Δ,r), where the i-th round is
defined as αi(p1, . . . , pΔ) = (p2→fi(pi), p3, . . . , pΔ, p1). Note that by construction,
GFNR(Δ,r) does not have an explicit key input. However, one can append an n-
bit subkey to the input of function fi if explicit key input is needed. In this case,
random function fi maps (1 + 1/Δ)n bits to n/Δ bits.
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ki

· · ·π
ki−1 ki

ππ

Fig. 1. For 1 ≤ i ≤ r, round i of GFN(ν,r) with Δ input lines (left) and EMr (right,
with XOR of previous key additionally included).

Luby and Rackoff showed in the setting where independent pseudorandom
functions are used, three (four) rounds of the balanced Feistel construction
(that is, GFNR(2,3) and GFNR(2,4)) yield a pseudorandom permutation (strong
pseudorandom permutation) where the distinguisher does not have access to
the internal functions. This research line was followed up by a number of works
[21,30,36,38–41,52].

2.2 Multiple Even-Mansour

The multiple Even-Mansour construction relates to the notion of key-alternating
ciphers, which itself goes back to Daemen [12–14] and was used in the design of
AES. However, it was Knudsen [24] who proposed to instantiate multiple-round
key-alternating ciphers with randomly drawn, fixed and public permutations.
The single-round key-alternating construction or EM1 was proposed by Even-
Mansour [18].

Multiple Even-Mansour constructions EMr : {0, 1}k × {0, 1}n ⊕ {0, 1}n

consist of r evaluations of a fixed permutation γ on n bits, which are separated
by key addition. In other words,

EMr(K, p) = kr → γ(· · · γ(k1 → γ(k0 → p)) · · · ) ,

where k0, . . . , kr denote the round keys derived from the master key K using some
key schedule. For i ∃ {1, . . . , r}, round i of EMr (together with the addition of
the previous key) is depicted in Fig. 1.

In the setting where the r permutations are distinct and the round keys are
independently generated and secret, Bogdanov et al. [9] recently proved that EMr

is indistinguishable from a randomly drawn permutation with less than 22n/3

queries for r √ 2, and Steinberger [51] improved this result to indistinguishability
up to 23n/4 queries for r √ 3.

3 Known-Key Attacks on GFN(�,r)

Consider GFN(Δ,4Δ−1) based on r = 4Δ − 1 calls to a random invertible function
γ. Label the incoming lines as p = (p1, . . . , pΔ) and the outgoing ones as c =
(c1, . . . , cΔ). Denote by K the random, but known, master key, and let k1, . . . , kr
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be the r round keys. Denote the inputs to the i-th γ-evaluations by si →ki. Note
that there is a one-to-one correspondence between p and (s1, . . . , sΔ), as well as
between c and (sr−Δ+1, . . . , sr). Following the idea of Knudsen and Rijmen [25],
the goal is to find tuples p, p∈ with corresponding c, c∈ that satisfy p1→c2 = p∈

1→c∈
2.

Note that c2 = sr−Δ+2 by construction, and in our analysis we refrain from
computing (sr−Δ+3, . . . , sr) if not needed.

Before describing the inputs p, p∈ chosen by the attacker, we first explain
the attack. Let x be an arbitrary value, and consider z, β, Σ, δ, ξ variables to be
determined later. Distinguisher D aims at the following intermediate state values

sΔ+1 = x → kΔ+1 s∈
Δ+1 = x → β → kΔ+1

sΔ+2 = x → kΔ+2 s∈
Δ+2 = x → Σ → kΔ+2

sΔ+3 = x → kΔ+3 s∈
Δ+3 = x → kΔ+3

...
...

s2Δ−1 = x → k2Δ−1 s∈
2Δ−1 = x → k2Δ−1

s2Δ = z → k2Δ s∈
2Δ = z → δ → k2Δ

s2Δ+1 = x → ξ → k2Δ+1 s∈
2Δ+1 = x → k2Δ+1 .

Here, we point out two exceptions from this general (otherwise) description of the
attack. Firstly, for Δ = 2, s4 and s∈

4 adapt the value of s2Δ and s∈
2Δ, and similarly

for s5 and s∈
5. Secondly, for Δ = 3, s6 and s∈

6 follow the notation of s2Δ and s∈
2Δ,

and similarly for later state values. For Δ > 3 the description is non-ambiguous.
Then, sΔ, . . . , s1 and s2Δ+2, . . . , sr are computed in the straightforward way (i.e.
using si = si+Δ →f(si+Δ−1→ki+Δ−1)), and similar for the s∈-values. For Δ > 3, the
general attack is depicted in Fig. 2. By construction, z and δ need to be such that
γ(z) = ξ→kΔ+1→k2Δ+1 (from sΔ+1, s2Δ, and s2Δ+1) and γ(z→δ) = β→kΔ+1→k2Δ+1

(from s∈
Δ+1, s∈

2Δ, and s∈
2Δ+1). For the rest of the attack, we distinguish among

Δ = 2, Δ = 3, and Δ > 3.

Δ = 2. Starting with Δ = 2 (this is in fact the attack of Knudsen and Rijmen
[25]). Note that Σ does not occur in the analysis. We simply set δ = 0, and thus
ξ = β and we require γ(z) = β → k3 → k5. It remains to determine the value β.
We have:

p1 = s1 = x → k3 → γ(z → k2 → k4 → γ(x))
c2 = s7 = x → β → k5 → γ(z → k4 → k6 → γ(x → β))
p∈
1 = s∈

1 = x → β → k3 → γ(z → k2 → k4 → γ(x → β))
c∈
2 = s∈

7 = x → k5 → γ(z → k4 → k6 → γ(x)) .

As demonstrated in [25], p1 → c2 = p∈
1 → c∈

2 holds if β = x → γ−1(γ(x) → k2 → k6).
The tuples p and p∈ queried by D are easily derivable and not discussed.
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Δ = 3. Next we consider Δ = 3. This case turns out to require a special treatment.
We have:

p1 = s1 = x → k4 → γ(z → k3 → k6 → γ(x))
c2 = s10 = x → ξ → k7 → γ(z → k6 → k9 → γ(x → k5 → k8 → γ(x → ξ)))
p∈
1 = s∈

1 = x → β → k4 → γ(z → δ → k3 → k6 → γ(x → Σ))
c∈
2 = s∈

10 = x → k7 → γ(z → δ → k6 → k9 → γ(x → Σ → k5 → k8 → γ(x))) .

Note that

p1 → c2 = γ(z) → γ(z → k3 → k6 → γ(x)) →
γ(z → k6 → k9 → γ(x → k5 → k8 → γ(x → ξ)))

p∈
1 → c∈

2 = γ(z → δ) → γ(z → δ → k3 → k6 → γ(x → Σ)) →
γ(z → δ → k6 → k9 → γ(x → Σ → k5 → k8 → γ(x))) .

Our goal is these values to satisfy p1 → c2 = p∈
1 → c∈

2, but the same approach
as for Δ = 2 (and [25]) does not work here. However, if we take ξ such that
γ(x→k5 →k8 →γ(x→ ξ)) = k6 →k9, and Σ such that γ(x→Σ →k5 →k8 →γ(x)) =
k6 → k9, and δ = γ(x) → γ(x → Σ), the desired equation is satisfied. Then, by
construction, z = γ−1(ξ → k4 → k7) and β = γ(z → δ)→ k4 → k7. The tuples p and
p∈ queried by D are easily derivable and not discussed.

Δ > 3. Remains to consider the general case, Δ > 3. This attack is visualized
in Fig. 2. In this case, we simply set δ = 0, and thus ξ = β and we require
γ(z) = β → kΔ+1 → k2Δ+1. It remains to determine the values β and Σ. We find:

p1 = s1 = x → kΔ+1 → γ(z → kΔ → k2Δ → γ(x))
c2 = s3Δ+1 = x → β → k2Δ+1 → γ(z → k2Δ → k3Δ → γ̃(K,x, β))

p∈
1 = s∈

1 = x → β → kΔ+1 → γ(z → kΔ → k2Δ → γ(x))
c∈
2 = s∈

3Δ+1 = x → k2Δ+1 → γ(z → k2Δ → k3Δ → γ̃∈(K,x, β, Σ)) ,

where

γ̃(K,x, β) = γ(x → k2Δ−1 → k3Δ−1 → · · · γ(x → kΔ+2 → k2Δ+2 →
γ(x → kΔ+1 → k2Δ+1 → γ(x → β))) · · · )

γ̃∈(K,x, β, Σ) = γ(x → k2Δ−1 → k3Δ−1 → · · · γ(x → Σ → kΔ+2 → k2Δ+2 →
γ(x → β → kΔ+1 → k2Δ+1 → γ(x))) · · · ) .

Note that

p1 → c2 → p∈
1 → c∈

2 = γ(z → k2Δ → k3Δ → γ̃(K,x, β)) →
γ(z → k2Δ → k3Δ → γ̃∈(K,x, β, Σ)) .

We now put β to satisfy γ̃(K,x, β) = k2Δ → k3Δ (note that by the construction of
γ̃ this is really possible), and Σ to satisfy γ̃∈(K,x, β, Σ) = k2Δ →k3Δ for this given



356 E. Andreeva et al.

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

...... ......

...... ......

...... ......

...... ......

π

π

π

π

π

π

π

π

k1

k +1

k +2

k +3

k2 −1

k2

k2 +1

k3 +1

s1 = p1
s1 = p1

s +1 = x → k +1

s +1 = x → α → k +1

s +2 = x → k +2

s +2 = x → β → k +2

s +3 = x → k +3

s +3 = x → k +3

s2 −1 = x → k2 −1

s2 −1 = x → k2 −1

s2 = z → k2
s2 = z → k2

s2 +1 = x→α→k2 +1

s2 +1 = x → k2 +1

s3 +1 = c2
s3 +1 = c2

Fig. 2. Attack of Sect. 3 for Δ > 3. Parameter x can be freely chosen, parameters
η (= τ), α, and z depend on x and the round keys, and are explained in the text.
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β. This choice is well-defined: β is defined as a function of K and x, while Σ
and z are a function of K,x, and β. The tuples p and p∈ queried by D are easily
derivable and not discussed.
Conclusion of the attack. Once x is arbitrarily chosen, z, β, Σ, δ, ξ are easily com-
putable from K and x. For GFN(Δ,4Δ−1), the resulting plaintexts and ciphertexts
satisfy p1 → c2 = p∈

1 → c∈
2 with probability 1. This equation is, however, satisfied

by an ideal cipher R with probability at most 1/2n/Δ. This completes the attack.

4 Known-Key Indifferentiability for Block Ciphers

Consider a composed system C : {0, 1}k × {0, 1}n ⊕ {0, 1}n based on an under-
lying idealized primitive P : {0, 1}γ × {0, 1}x ⊕ {0, 1}y. Here, C is always a
keyed primitive (i.e., a block cipher), but P may or may not be keyed, and the
key space may differ from that of C. Furthermore, depending on C, P denotes
either a single or a composition of multiple idealized primitives Pi.

Where the classical notion of indistinguishability is established to provide
strong security guarantees in the secret key setting, this is not true in the open
key model where chosen or known keys come into play. In the latter setting, one
can benefit from the known indifferentiability definition introduced in the work
of Maurer et al. [29] and adapted for the case of hash functions by Coron et
al. [11]. Building upon these results, we propose a new definition of known-key
security. Our definition differs from earlier weaker versions of indifferentiability
[11,16,28,53] by its generality and the fact that it explicitly provides the dis-
tinguishing adversary with a public key under which it queries both the block
cipher and potentially the underlying primitives (if that is required by composi-
tion). It moreover, does not limit the adversary’s type of queries, as is the case
for leaky, public, and sequential indifferentiability.

We thus propose the following formalization:

Definition 1. Let C be a composed primitive with oracle access to an ideal prim-
itive P. Let R be an ideal primitive with the same domain and range as C. Let
S be a simulator with the same domain and range as P with oracle access to
R and making at most qS queries, and let D be a distinguisher making at most
qD queries. The known-key indifferentiability advantage Adviff-KK

C,S (D) of D is
defined as

∣∣∣Pr
(
K

$← {0, 1}k;DCP ,P(K) = 1
)

− Pr
(
K

$← {0, 1}k;DR,SR
(K) = 1

)∣∣∣ .

By Adviff-KK
C,S (qD) we denote the maximum advantage of any distinguisher mak-

ing at most qD queries to its oracles. Primitive C is said to be (qD; qS ; η) indif-
ferentiable from R if Adviff-KK

C,S (qD) < η.

In this indifferentiability experiment, the distinguisher is provided with access
to either of two worlds: left (real) and right (ideal). In the left world the distin-
guisher D has a query access to the composed construction C and the primitive
P, while in the right world D accesses the ideal primitive R and the simulator S,
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Table 1. Interface of D with the composed oracle O1 (C in the left world, R in the
right world) in the standard indiffierentiability setting and in Definition 1. For both
security definitions, the interface with the right oracle O2 is the same: D has full access
to O2.

Indiffierentiability Forward O1 query Inverse O1 query

Indiffierentiability (iffi) (K, M) −→ C = O1(K, M) (K, C) −→ M = O−1
1 (K, C)

Known-key indiffi. (iffi-KK)

(K
$← {0, 1}k fixed, public)

M −→ C = O1(K, M) C −→ M = O−1
1 (K, C)

respectively. In case the composed primitive C is invertible, D obtains access to
it in both forward and backward (inverse) direction. We refer to C and R as the
“composed” oracles O1, and these oracles always respond under the known-key
K. Hence, D can forward query a message input M to receive C = C(K,M) in
the left world and C = R(M) in the right world (here the randomly chosen key
K implicitly fixes an instance of R), or D can also backward query C to receive
M = C−1(K,C) and M = R−1(M) in the left and right worlds, respectively.
We refer to P and S as the “small” oracles O2, to which D has full access (i.e.,
even if C is designed to query P only on the key K), but we note that S knows
this public key K. From a practical point of view, the full access to the small
oracles makes perfect sense, as the original idea of indifferentiability is that the
distinguisher may know the underlying structure, and thus, use the underlying
primitive as it wishes.

The particular way of allowing the key input to the composed primitive to be
always the known key K but the key input to the small primitive to be anything,
sets this known-key indifferentiability definition apart from existing versions of
indifferentiability like [11,16,28,53]. In more detail, in Table 1, we compare the
interfaces in Definition 1 with the ones used in the indifferentiability definition
(see [10,22] for its block cipher instantiation). As it turns out, this change makes
our definition particularly suitable for analyzing known-key security. In Propo-
sition 1, we prove that iff implies iff-KK. Moreover, in Sect. 6 we also show a
counterexample that an implication in the opposite direction does not hold.

Proposition 1. If C is (qD; qS ; η) iff-secure block cipher, then it is (qD; qS ; η)
iff-KK-secure.

Proof. Let S be a simulator such that for any distinguisher D making at most
qD queries, the iff advantage is at most η. We define S ∈ = S to be the simulator
for the iff-KK security. We prove that for any iff-KK distinguisher D∈ making at
most qD queries, we have Adviff-KK

C,S⊥ (D∈) < η.
Let D∈ be any such distinguisher. We build an iff distinguisher D using D∈ that

has the same advantage in breaking C. Distinguisher D simulates the environment
for D∈ as follows: firstly, it selects uniformly at random a key K

$← {0, 1}k and
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runs D∈ on input K; then it forwards all queries by D∈ to its own oracles. If
D∈ succeeds in distinguishing the left and right worlds, D succeeds as well. In
particular, we have Adviff-KK

C,S⊥ (D∈) = Adviff
C,S(D) < η.

5 Known-Key Indifferentiability is Meaningful

Consider any known-key distinguishing attack on a block cipher C with idealized
primitive P. Let K ∃ {0, 1}k be a known key. A classical known-key distinguisher
for a function C(K, ·) based on ideal primitive P operates as follows: it makes q
queries to its primitives, and then it outputs 1 if the queries show some “unex-
pected” relation, which means that such relation should not hold for a random
primitive R with the same domain and range of C. We formalize and trans-
late such known-key distinguisher D to a distinguisher for the indifferentiability
notion iff-KK as follows. Let S be a simulator. In advance of making any queries,
this distinguisher fixes a predicate ϕ(Q), where Q is a list of query tuples. Then,
the distinguisher makes qD queries to its left and right oracles, to obtain a query
history QqD of size qD. If ϕ(QqD) holds, it outputs 1, and otherwise it outputs 0.
Clearly, D bases its decision solely on the predicate ϕ(QqD), and by Definition 1:

Adviff-KK
C,S (qD) √ Adviff-KK

C,S (D)

=
∣∣Pr

(
ϕ(QqD) for CP ,P) − Pr

(
ϕ(QqD) for R,SR)∣∣ . (1)

Now, in classical known-key distinguishing attacks, the first probability is (close
to) 1, while the second probability is significantly smaller. Note that for the
second probability, the distinguisher may ask queries to the simulator S, but in
order for S to be successful, it will try to consult R as often as possible and
queries to S can consequently be seen as indirect queries to R.

We demonstrate this approach using the attack of Sect. 3 on GFN(Δ,4Δ−1)

and an attack on GFNR(2,5) by Coron et al. and Mandal et al. [10,28], therewith
demonstrating that this approach applies to any known-key distinguishing attack
known in literature.

Theorem 1. Let C be GFN(Δ,r) : {0, 1}k ×{0, 1}n ⊕ {0, 1}n for r = 4Δ − 1 with
oracle access to an ideal primitive P = γ : {0, 1}n/Δ ⊕ {0, 1}n/Δ (cf. Sect. 3).
Let R denote an ideal cipher with the same domain and range as C. For any
simulator S that makes at most qS ⇒ 2n−1 − 1 queries to R, there exists a
distinguisher D that makes at most 2r + 2 queries to its oracles, such that

Adviff-KK
C,S (D) √ 1 − q2

S + 2
2n/Δ

.

Proof. Let S be any simulator making at most qS queries to R. Let K
$← {0, 1}k

be the given key, and k1, . . . , kr be the round keys. We construct a distinguisher
D that differentiates (C,P) from (R,S) with high probability. Define predicate
ϕ(Q) as follows:

∈ (p1 . . . pΔ; c1 . . . cΔ), (p∈
1 . . . p∈

Δ; c
∈
1 . . . c∈

Δ) ∃ Q such that p1 → c2 = p∈
1 → c∈

2 . (2)
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The distinguisher makes 2r queries to P as explained in Sect. 3. Then, it makes
its two corresponding queries to the left oracle, which results in Q2r+2 containing
exactly two left oracle queries. By construction,

Pr
(
ϕ(Q2r+2) for GFNP

(Δ,r),P
)

= 1 .

Remains to consider the probability ϕ(Q2r+2) holds in the other game. Suppose
the simulator makes qS queries, denote by QS the query history of S to R. By
basic probability theory:

Pr
(
ϕ(Q2r+2) for R,SR)

= Pr
(
ϕ(Q2r+2) for R,SR | ϕ(QS)

)
Pr

(
ϕ(QS)

)
+

Pr
(
ϕ(Q2r+2) for R,SR | ¬ϕ(QS)

)
Pr

(¬ϕ(QS)
)

⇒ Pr
(
ϕ(QS)

)
+ Pr

(
ϕ(Q2r+2) for R,SR | ¬ϕ(QS)

)
.

We first consider Pr
(
ϕ(QS)

)
. Any two queries the simulator makes to R satisfy

p1 → c2 = p∈
1 → c∈

2 with probability at most 2n−n/ν

2n−qS
, as any query is randomly

drawn from a set of size at least 2n − qS . Consequently, as the simulator makes
qS queries, and any couple may result in a collision,

Pr
(
ϕ(QS)

) ⇒
(

qS
2

)
2n−n/Δ

2n − qS
.

Regarding the second probability: conditioned on ¬ϕ(QS), (2) may still hold
if the two queries the distinguisher makes to R accidentally satisfy it. As the
second oracle query is drawn from a set of size at least 2n − (qS +1), the queries
satisfy p1 →c2 = p∈

1 →c∈
2 with probability at most 2n−n/ν

2n−(qS+1) . Concluding, we find

Pr
(
ϕ(Q2r+2) for R,SR) ⇒

((
qS
2

)
+ 1

)
2n−n/Δ

2n − (qS + 1)
⇒ q2

S + 2
2n/Δ

.

where we use that 2n − (qS + 1) √ 2n−1 for qS + 1 ⇒ 2n−1. Hence, we find
Adviff-KK

C,S (2r + 2) √ 1 − q2
S+2

2n/ν . ≈∪
Next we consider a distinguishing attack described in [10] and [28, Appendix C].

Theorem 2. Let C be GFNR(2,5) : {0, 1}n ⊕ {0, 1}n with oracle access to 5
ideal primitives P = (f1, . . . , f5) with fi : {0, 1}n/2 ⊕ {0, 1}n/2 (see Fig. 3).

f1 f2 f3 f4 f5

Fig. 3. GFNR(2,5) (see Theorem 2)
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Let R denote an ideal permutation with the same domain and range as C. For
any simulator S that makes at most qS ⇒ 2n−1 − 1 queries to R, there exists a
distinguisher D that makes at most 24 queries to its oracles, such that

Adviff-KK
C,S (D) √ 1 − q4

S + 2
2n/2

.

Proof. Denote the inputs of a GFNR(2,5) evaluation by (p, r) and the outputs
by (c, d). The attack of [10] and [28, Appendix C] describes a way to find 4
plaintext-ciphertext pairs that satisfy p1 → p2 → p3 → p4 = d1 → d2 → d3 → d4 = 0.
As in Theorem 1, predicate ϕ(Q) is defined as follows:

∈ (p1, r1; c1, d1), . . . , (p4, r4; c4, d4) ∃ Q such that
p1 → p2 → p3 → p4 = d1 → d2 → d3 → d4 = 0 . (3)

The distinguisher makes 20 queries to P (as in the proof of Theorem 1), and
the four corresponding queries to the left oracle, which results in Q24. By con-
struction, ϕ(Q24) holds for GFNP

(2,5),P with probability 1, and it remains to
consider the probability ϕ(Q24) holds in the other game. Similar to the proof of
Theorem 1, we find

Pr
(
ϕ(Q24) for R,SR) ⇒

(
qS
4

)
2n/2

2n − qS
+

2n/2

2n − (qS + 1)
,

and hence we obtain Adviff-KK
C,S (24) √ 1 − q4

S+2

2n/2 , for qS + 1 ⇒ 2n−1. ≈∪

6 Known-Key Indifferentiability is Constructive

The next obvious question then is, whether there exist block cipher constructions
that are known-key indifferentiable from an ideal cipher. In this section, we prove
that this is indeed the case.

First, we consider generalized Feistel networks. In [22], Holenstein et al. con-
sidered GFNR(2,14), a variant of GFN(2,14) where the keys are not XORed to
get the input to the primitives, but are used to obtain 14 different random func-
tions (see also Sect. 2), and proved that this construction has indifferentiable
advantage from an ideal cipher of O(q16/2n/2). Here, we refer to standard indif-
ferentiability (see Table 1 for the interfaces in this notion). Using this result, we
obtain the following theorem.

Theorem 3. Let C be GFNR(2,14) with oracle access to an ideal primitive P
consisting of 14 random functions (and where no round keys are XORed). Let
D be an arbitrary distinguisher making at most q queries. Then there exists a
simulator S such that

Adviff-KK
C,S (D) = O(q16/2n/2) ,

where S makes at most 1400q8 queries to R and runs in time O(q8).
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Proof. Holenstein et al. [22] proved that for C being GFN(2,14) any distinguisher
making at most q queries, has indifferentiability an advantage of Adviff

C,S(D) =
O(q16/2n/2). Their simulator makes at most 1400q8 queries to R and runs in
time O(q8). From Proposition 1, we conclude that the same bound holds for the
iff-KK-security of GFN(2,14), which completes the proof. ≈∪

Next, we consider multiple Even-Mansour, and show that already with one
round, this construction turns out to be optimally known-key indifferentiable
secure.

Theorem 4. Let for r √ 1, Cr be EMr with oracle access to an ideal primitive P
consisting of r random permutations. Let D be an arbitrary distinguisher making
at most q queries. Then there exists a simulator S such that

Adviff-KK
C,S (D) = 0 ,

where S makes at most q queries to R and runs in time O(q).

Proof. First, consider r = 1. Let k0∀k1
$← {0, 1}2n be the public key. Intuitively,

as soon as k0∀k1 is fixed, C behaves perfectly as a random permutation as P is.
Formally, simulator S uses oracle R to respond with Y = R(X → k0) → k1 on a
forward query X; and uses its oracle R to respond with X = R−1(Y → k1) → k0

on an inverse query Y . By construction, all queries made by the distinguisher
to S are exactly in correspondence with the random primitive R and D cannot
distinguish.

Now, for r > 1, the proof is not much different, although the simulator needs
to do some more bookkeeping. It responds randomly at every query, except
when it completes a chain, an evaluation EMr(K, p), in which case it adapts
its response to fit the random oracle. Note that, as the key is fixed, it can be
considered constant, and different EMr evaluations never collide somewhere in
the middle. In other words, for any i ∃ {1, . . . , r} the following holds: if γi

denotes the permutation in the i-th round, then one input-output-tuple of γi

corresponds to exactly one C(K, ·) evaluation, and vice versa. ≈∪
We note that EM1 is not iff-secure. Briefly, let S be any simulator making at
most qS queries. We construct a distinguisher D as follows. Here, O1 denotes
its composed oracle (C or R) and O2 its primitive oracle (P or S). Firstly, D
chooses arbitrary key k0∀k1 and message M , and queries Y ← O2(M → k0) and
C ← O1(k0∀k1,M). Then, if C = Y →k1, then D outputs 1, otherwise it outputs
0. Note that C = Y → k1 holds with probability 1 in the real world, and with
probability 1/2n in the ideal world (as in this setting the simulator does not
know k1). Using Theorem 4, this renders a separation between iff-KK and iff,
as already mentioned in Sect. 4.
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Abstract. We propose to relax the assumption that decryption failures
are indistinguishable in security models for symmetric encryption. Our
main purpose is to build models that better reflect the reality of cryp-
tographic implementations, and to surface the security issues that arise
from doing so. We systematically explore the consequences of this relax-
ation, with some surprising consequences for our understanding of this
basic cryptographic primitive. Our results should be useful to practition-
ers who wish to build accurate models of their implementations and then
analyse them. They should also be of value to more theoretical cryptog-
raphers proposing new encryption schemes, who, in an ideal world, would
be compelled by this work to consider the possibility that their schemes
might leak more than simple decryption failures.

1 Introduction

Attacks Based on Decryption Failures. Encryption schemes meeting
strong notions of security typically introduce redundancy into their ciphertexts,
and as a consequence ciphertexts may be deemed invalid during decryption.
A scheme’s correctness ensures that honestly generated ciphertexts will always
decrypt correctly, hence we expect decryption to ‘fail’ only for ciphertexts that are
corrupted during transmission or are adversarially generated. Typically, proto-
cols making use of an encryption scheme report decryption failures to the sender
through error messages, and thus the fact that a decryption failure has occurred
becomes known to the adversary. After Bleichenbacher’s attack on RSA PKCS#1
[9], it became recognised in the academic community that these decryption fail-
ures (and the attendant error messages) may leak significant information to an
adversary, undermining schemes’ confidentiality properties. Other examples in
the asymmetric setting were subsequently discovered [16,21] and called reaction
attacks. Vaudenay then showed that similar issues can arise in the symmetric
setting [27], and his ideas were extended to produce significant attacks against
(among others) SSL/TLS [11,23], IPsec [12,13], ASP.NET [14], XML encryption
[19] and DTLS [2]. Analysis of error messages in the symmetric setting was also
crucial to the success of attacks against the SSH Binary Packet Protocol [1].
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The Relation Between Attacks and Security Definitions. At a very
high level the above-mentioned attacks on symmetric schemes have the common
feature that during decryption some information about the plaintext is leaked,
due to error messages, their timing, or some other aspect of the implementa-
tion. The leaked information is normally quite small, and the power of these
attacks really comes from the adversary’s ability to amplify this leakage through
iteration. That is, given a target ciphertext, an adversary is able to produce a
sequence of related ciphertexts which when decrypted will leak more informa-
tion about the target plaintext. If we now compare this to the IND-CCA security
model, it appears that such attacks should be fully accounted for and prevented,
given the very conservative approach adopted in this model. Indeed, in the IND-
CCA model, the adversary is given full access to a decryption oracle for any
ciphertext except the target ciphertext, from which he learns either the corre-
sponding plaintext or the fact that decryption fails; and yet this should not leak
any information about the target plaintext. Furthermore, several of the attacks
above do not even make full use of the decryption oracle, but only consider
ciphertexts which result in decryption failures.

Why then are the attacks possible at all? Are the underlying encryption
schemes actually IND-CCA secure? Is the IND-CCA model the right one for cap-
turing these classes of attack?

SSL/TLS makes an instructive case study for answering these questions. At a
high level, SSL/TLS most commonly uses a Mac-then-Encrypt (MtE) construc-
tion, with either a stream cipher or CBC-mode encryption of a block cipher as
the encryption scheme. Thus SSL/TLS is covered by Krawczyk’s result [20], and
one might reasonably conclude that its symmetric encryption scheme is IND-
CCA secure. Yet Canvel et al. [11] presented plaintext-recovering attacks against
the OpenSSL implementation of SSL/TLS when CBC-mode is used, in which
the attacker does nothing other than submit certain ciphertexts for decryption
and analyse the results (i.e. the attacker ostensibly operates within the IND-CCA
model). The key point, however, is that at the time of Canvel et al.’s attacks
in 2003, it was possible to infer more from SSL/TLS decryption failures than
the simple fact that decryption had failed: decryption could fail either because
either the underlying padding needed by CBC-mode was incorrectly formatted or
because of a MAC failure, and it was possible to tell these conditions apart (either
because they were indicated by different error messages or because the error mes-
sages were produced at different times during decryption processing). This addi-
tional information was sufficient to realise a padding oracle attack, in the style of
[27]. Furthermore, this attack is technically outside the IND-CCA security model,
because this model only ever provides a single decryption failure symbol ⊕ to
the adversary. Thus, while SSL/TLS may be provably IND-CCA secure in theory,
it turned out not to be in practice. Suitable countermeasures involve making it
hard for an attacker to learn the cause of decryption failures and were incorpo-
rated into the TLS specification from version 1.1 onwards. Meanwhile, building
an accurate model of SSL/TLS’s symmetric encryption scheme and proving its
security has turned out to be a complex task that was only recently completed
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in [23]. Even there, however, it was necessary to assume that all decryption fail-
ures are indistinguishable (since, otherwise, attacks like those of [2,3,11,27] are
possible). A similar story could be told for MAC-then-encryption configurations
of IPsec, to which the theory in [20] and the attacks of [13] both apply.

So the answers to our questions above are, respectively, yes and no. Yes, the
underlying encryption schemes are provably IND-CCA secure. However, this is
for some description of the schemes that may not accurately reflect how they
are actually implemented. And no, the standard model for IND-CCA security is
not the right one for capturing these attacks: in the current formalism, more
specifically the basic syntax adopted for encryption schemes, it is assumed that
decryption failures are indistinguishable and that each decryption failure will
return the same error symbol ⊕. This creates a gap in the effective power con-
ferred by a decryption oracle between the IND-CCA model and practical attack
scenarios (where decryption failures are often distinguishable). In short, knowing
why decryption failed may be more informative to the adversary than the mere
fact that decryption has failed.

Our Contributions. We propose to strengthen the existing security definitions
for symmetric encryption by letting the adversary distinguish various possible
decryption errors. Our main purpose is to build models that better reflect the
reality of cryptographic implementations, and to surface the security issues that
arise from doing so. We are not the first to make this relaxation (see, for exam-
ple, [22,24]), but we are the first to systematically explore its consequences,
with some surprising consequences for our understanding of this basic crypto-
graphic primitive. Our results should be useful to practitioners who wish to build
accurate models of their implementations and then analyse them. They should
also be of value to more theoretical cryptographers proposing new encryption
schemes, who, in an ideal world, would be compelled by this work to consider the
possibility that their schemes might leak more than simple decryption failures.
(Of course, an alternative reaction by the latter group would be to cast this as
an implementation issue and simply assume indistinguishable errors as usual;
however, the history of attacks tells us that this is hard to guarantee in practice
and therefore a dangerous assumption to make.)

Our approach requires the adoption of a slightly different syntax for encryp-
tion schemes to the standard one. Now, our decryption algorithm will either
return a message from the message space, or an error message from a prede-
termined finite set of values which we refer to as the error space. Technically,
then, encryption schemes with multiple errors are a slightly different object from
single-error schemes. This approach allows us to handle schemes that can fail
in a finite number of distinguishable ways that will be indicated in practice by
different error messages. It also enables us to treat attacks in which indistin-
guishable error messages are returned (perhaps because they are all encrypted,
as is the case in SSL/TLS), but in which the errors are returned at a discrete
set of times. We note that our approach is equally applicable to the asymmetric
setting; here we will restrict our scope to the symmetric setting only.
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With this new syntax in hand, we re-examine the statement due to Bellare
and Namprempre [10] that semantic (IND-CPA) security in combination with
integrity of ciphertexts (INT-CTXT) is sufficient to imply chosen ciphertext (IND-
CCA) security. One consequence of their results is that ‘IND-CPA + INT-CTXT’
has come to be seen as the ‘right’ security notion to aim for in the symmetric case,
with this combined notion now being referred to as authenticated-encryption
security. This seems to be mostly because it implies IND-CCA security, and
because that is by now the accepted notion in the asymmetric setting. We show,
through separations, that this important relation no longer holds for multiple
error symmetric encryption schemes. Indeed, it is easy to see where the proof
of this relation in [10] breaks down: in the passage from the INT-CTXT security
game to the IND-CPA security game, the simulation in [10] simply replies to
all decryption queries with the error message ⊕; only if an adversary forges a
ciphertext does this simulation go awry. But this is not an accurate response in
the multiple error setting, since one of several possible error messages should be
returned, and the simulation does not necessarily know which.

We then go on to establish relations that are similar in spirit to the classic
relations, in that they combine a weak form of confidentiality with some form
of ciphertext integrity to obtain strong confidentiality. An interesting aspect
that emerges in our analysis is that it is not at all obvious how the notion of
ciphertext integrity should be extended to the multiple-error setting. We identify
two candidate definitions for ciphertext integrity, one being strictly stronger than
the other. We compare and contrast the two, and provide evidence (by means
of a rather non-trivial counterexample) for requiring the stronger variant in our
relations.

We also provide a natural extension of the IND-CCA3 security notion to the
multiple-error setting. This notion, due to Rogaway and Shrimpton [26], is an
elegant combination of semantic security and ciphertext integrity into a single
equivalent security notion. We show that it serves as a good security notion
for symmetric encryption with multiple errors. More specifically we show that
our extension to IND-CCA3 security does imply chosen-ciphertext security in the
multiple error setting.

We conclude by showing that the encode-then-encrypt-then-MAC (EEM)
construction is IND-CCA secure for any encoding scheme, any IND-CPA secure
encryption scheme with arbitrary error messages, and any SUF-CMA MAC. Fol-
lowing the works of Bellare and Namprempre [10] and Krawczyk [20], this result
provides further formal grounds for preferring the EEM composition over other
generic constructions, for example MAC-then-encrypt.

In addition to the standard symmetric encryption notions, we provide equiv-
alent results for security definitions involving indistinguishability from random
bits introduced by Rogaway [25], and for the stateful setting introduced by Bel-
lare et al. [8]. Many of these additional results follow rather straightforwardly,
but we consider it valuable to include them for completeness.

For reasons of space, all proofs are deferred to the full version [6].
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2 Preliminaries

2.1 Notation

Unless otherwise stated, an algorithm may be randomized. An adversary is an
algorithm. For any algorithm A we use y ∃ A(x1, x2, . . .) to denote executing
A with fresh coins on inputs x1, x2, . . . and assigning its output to y. If S is
a set then |S| denotes its size, and y ∃ $ S denotes the process of selecting
an element from S uniformly at random and assigning it to y. The set of all
finite binary strings is denoted by {0, 1}∗, for any positive integer n and bit b,
we denote by bn the string of n consecutive b’s and {0, 1}n represents the set
of all binary strings of length n. The empty string is represented by Δ. For any
two strings w and z and a positive integer i, w → z denotes their concatenation,
w √ z denotes their bitwise XOR, |w| denotes the length of w, and w[i] denotes
the ith bit of w. If j is a non-negative integer, then 〈j⇒Δ denotes the unsigned γ-
bit binary representation of j. Accordingly 〈·⇒−1 represents the inverse mapping
which maps strings of any length to N. If w is an γ-bit string and i is an integer
we use w+i as shorthand for 〈〈w⇒−1+i mod 2Δ⇒Δ. We use Func(X ,Y) to denote
the set of all functions with domain X and codomain Y. We will often have that
X = {0, 1}Δ or X = {0, 1}∗, and Y = {0, 1}n for some positive integers γ and
n. Accordingly we abbreviate notation for the corresponding sets of functions to
Func(γ, n) and Func(∈, n) respectively.

2.2 Building Blocks

Pseudorandom functions. A function family is a map F : K × X ≈ Y.
We refer to K as the key space of F , X as the domain of F , and Y as the
codomain of F . In this paper K, X , and Y will be sets of bit-strings. For eack
K ∪ K we define the map FK : X ≈ Y by FK(x) = F (K,x) for all x ∪ X . Thus
F can be seen as a collection of maps from X to Y, each identified by some key
in K . We will refer to FK as an instance of F . We will often make use of function
families that are pseudorandom.

Definition 1 (Pseudorandom functions). Let F : K × X ≈ Y be a function
family. Consider an adversary A with oracle access to some function with domain
X and codomain Y, that returns a single bit as its output. We define the prf-
advantage of adversary A with respect to the function family F as:

Advprf
F (A) = Pr

[
K ∃$ K : AFK(·) = 1

]
− Pr

[
f ∃$ Func(X ,Y) : Af(·) = 1

]
.

F is said to be a pseudorandom function (PRF), if for every adversary A with
reasonable resources its prf-advantage Advprf

F (A) is small.

MACs. A message authentication code (MAC) MA = (K, T ,V) with associated
error space Q∈ consists of three algorithms. The randomized key-generation
algorithm K takes no input and returns a secret key K. We will sometimes
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abuse notation and regard K as a set of keys. The tagging algorithm T may
be randomized or stateful. It takes as input the secret key K and a message
m ∪ {0, 1}∗ to return a tag α . The verification algorithm V is deterministic and
stateless. It takes the secret key K, a message m ∪ {0, 1}∗ and a candidate tag
α , and returns either 1 or an error message in Q∈. We require that for all K
that can be output by K and all m ∪ {0, 1}∗, it hold (with probability 1) that if
α ∃ TK(m) then VK(m, α) = 1. Here, we allow multiple possible error messages
for MA in order to be able to model certain types of attack, e.g. that in [3].

The standard security notion for MACs is existential unforgeability under
chosen message attacks (UF-CMA). We will however require a stronger variant
of this notion SUF-CMA which is defined below.

Definition 2 (SUF-CMA). Let MA = (K, T ,V) be a message authentication
code with associated error space Q∈. For an adversary A, define experiment
Expsuf-cma

MA (A) as shown in Fig. 1. A key K is first generated by calling K . The
adversary A is then given access to a tagging oracle Tag(·) and a verification
oracle Ver(·, ·). The adversary wins if it queries a valid message-tag pair that
was not previously returned by the tagging oracle. We define the adversary’s
advantage as:

Advsuf-cma
MA (A) = Pr

[
Expsuf-cma

MA (A)
]
.

The scheme MA is said to be SUF-CMA secure if, for every adversary A con-
suming reasonable resources its advantage Advsuf-cma

MA (A) is small.

The standard UF-CMA notion is defined analogously but the adversary is only
granted a win if it forges a tag for a message that was not previously queried to
the tagging oracle.

Encoding schemes. When constructing symmetric encryption schemes from
other components it is common to perform some form of preprocessing on the
message. Its purpose may be to map messages to the message space of the
encryption scheme, or as an attempt to extend the scheme’s functionality, such
as masking the message length. Generally such transformations are unkeyed, but
may be randomized. We model such transformations by encoding schemes.

An encoding scheme ES = (EC, DC) consists of two algorithms and associated
domain, codomain, and an error space. The encoding algorithm EC which may
be randomized, takes as input an element from its domain and maps it to some

Expsuf-cma
SE (A)

K ⊕ K
L ⊕ √,win ⊕ 0

ATag(·),Ver(·,·)

return win

Tag(m)

Γ ⊕ TK(m)
L ⊕ L ≥ (m, Γ)
return Γ

Ver(m, Γ)

v ⊕ VK(m, Γ)
if v Q→≤ ∼ and (m, Γ) ≤→ L

then win ⊕ 1
return v

Fig. 1. SUF-CMA experiment for message authentication codes.
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element in its codomain. The decoding algorithm DC is deterministic and takes
an element from its codomain and returns either an element in its domain or
an error symbol from its error space. The scheme must be correct, i.e. for every
element m in its domain it holds with probability 1 that DC(EC(m)) = m.

3 Symmetric Encryption with Multiple Errors:
Definitions

Syntax. A symmetric encryption scheme SE = (K, E ,D) with associated mes-
sage space M ∀ {0, 1}∗, ciphertext space C ∀ {0, 1}∗, and error space S∈ consists
of three algorithms. The randomized key-generation algorithm K takes no input
and returns a secret key K, an initial encryption state β0, and an initial decryp-
tion state Σ0. We will sometimes abuse notation and regard K as a set of keys.
The randomized and stateful encryption algorithm E : K×M×δ ≈ C×δ takes
as input the secret key K ∪ K, a plaintext m ∪ M, and the current encryption
state β ∪ δ, and returns a ciphertext in C together with an updated state. The
deterministic and stateful decryption algorithm D : K×C ×δ ≈ (M ∅ S∈)×δ
takes as input the secret key K, a ciphertext c ∪ C, and the current decryption
state Σ to return the corresponding plaintext m ∪ M or a special symbol from
S∈ (indicating that the ciphertext is invalid) and an updated state.

Our syntax of symmetric encryption schemes differs in two main ways from
the more conventional way of modelling symmetric encryption schemes. Firstly
it allows the decryption algorithm to indicate invalid ciphertexts with distinct
error messages within the error space. We will assume the error space be a set of
symbols {⊕1,⊕2, . . . ,⊕n} for some positive integer n. The symbol ⊕ will be used
interchangeably to denote a specific error symbol or a variable assuming values
from the error space. We will use the term multiple-error encryption scheme to
indicate schemes with an error space of size strictly greater than one. Secondly
we adopt a stateful syntax for both encryption and decryption. This is without
loss of generality. Both encryption and decryption can be made stateless by
defining K to always return the empty string for the corresponding initial state,
and having E ,D ignore (i.e. never update) the state.

For any γ ∪ N and any m = [m1, . . . ,mΔ] ∪ MΔ, we write (c, β) ∃ EK(m, β0)
as shorthand for (c1, β1) ∃ EK(m1, β0), (c2, β2) ∃ EK(m2, β1), . . . (cΔ, βΔ) ∃
EK(mΔ, βΔ−1), where c = [c1, . . . , cΔ] and β = βΔ. Similarly we use (m∗, Σ) ∃
DK(c, Σ0) to denote the analogous process for decryption. Finally, we require that
a symmetric encryption scheme satisfy correctness which is defined as follows:

Definition 3 (Correctness of SE). For all (K,β0, Σ0) that can be output by
K, all γ ∪ N, and all m ∪ MΔ, it holds (with probability 1) that if (c, β) ∃
EK(m, β0) and (m∗, Σ) ∃ DK(c, Σ0), then m∗ = m.

Indistinguishability notions. We adopt the ‘left-or-right’ model of indistin-
guishability from Bellare et al. [5] to define three notions of confidentiality for
symmetric encryption. Indistinguishability under chosen-plaintext attack (IND-
CPA), and indistinguishability under chosen-ciphertext attack (IND-CCA) are
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fairly standard, except for the fact that for multiple-error schemes the decryp-
tion oracle will now return one of many possible error messages. We introduce the
notion of indistinguishability under ciphertext-validity attack (IND-CVA), which
can be seen as a strengthened adaption of a similar notion defined by Bauer et
al. [4] to the symmetric setting. Here, in addition to an encryption oracle the
adversary is given access to a ciphertext-validity oracle which indicates whether
a ciphertext is valid or not, and if not, returns the exact error message output
by the decryption algorithm.

Definition 4 (IND-ATK security). Let SE = (K, E ,D) be a symmetric encryp-
tion scheme. For an adversaryA and a bit b, define the experimentsExpind-atk-b

SE (A)
where atk ∪ {cpa, cva, cca} as shown in Fig. 2. In all three experiments, a key K
is first generated by calling K . The adversary A is then given access to a left-or-
right encryption oracle LoR(·), and possibly a ciphertext-validity oracle Val(·) or
a decryption oracle Dec(·). No restriction is imposed on the adversary’s queries,
rather if it queries a pair of messages of unequal length to LoR(·), or if it queries a
ciphertext to Dec(·) previously returned by LoR(·), the � symbol is returned. In the
Val(·) oracle the � symbol indicates that the queried ciphertext was valid.

The adversary’s goal is to output a bit b∗, as its guess of the challenge bit b,
and the experiment returns b∗ as well. For each of these three experiments we
define the corresponding advantages of an adversary A as:

Advind-atk
SE (A) = Pr

[
Expind-atk-1

SE (A) = 1
]

− Pr
[
Expind-atk-0

SE (A) = 1
]
.

The scheme SE is said to be IND-ATK secure, if for every adversary A with
reasonable resources its advantage Advind-atk

SE (A) is small.

Indistinguishability from random bits. We can recast the above three
security notions in terms of indistinguishability from random bits as introduced

Expind-cpa-b
SE (A)

(K, Δ, π) ⊕ K
i ⊕ 0, C ⊕ ()

b√ ⊕ ALoR(·)

return b√

LoR((m0, m1))

if |m0| ≤= |m1|
then return

(c, Δ) ⊕ EK(mb, Δ)
i ⊕ i + 1, Ci ⊕ c
return c

Expind-cva-b
SE (A)

(K, Δ, π) ⊕ K
i ⊕ 0, C ⊕ ()

b√ ⊕ ALoR(·),Val(·)

return b√

Val(c)

(m, π) ⊕ DK(c, π)
if m → M then m ⊕
return m

Expind-cca-b
SE (A)

(K, Δ, π) ⊕ K
i ⊕ 0, C ⊕ ()

b√ ⊕ ALoR(·),Dec(·)

return b√

Dec(c)

(m, π) ⊕ DK(c, π)
if c → C then m ⊕
return m

Fig. 2. IND-ATK experiments for symmetric encryption schemes.
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by Rogaway [25]. Here the adversarial goal is to distinguish encrypted messages
from random bit-strings of the same length.

Definition 5 (IND$-ATK security). Let SE = (K, E ,D) be a symmetric encryp-
tion scheme.ForanadversaryAandabit b, define the experimentsExpind$-atk-b

SE (A)
where atk ∪ {cpa, cva, cca} as shown in Fig. 3. In all three experiments, a key K
is first generated by calling K . The adversary A is then given access to a special
encryption oracle Enc$(·), if b = 1 the oracle returns the encrypted message, oth-
erwise it returns a uniformly-random bit-string of the same length. In the ind$-cva
and ind$-cca experiments, the adversary is additionally given access to a ciphertext-
validity oracle Val(·) and a decryption oracle Dec(·) respectively. Trivial-win
conditions are avoided by having the decryption oracle return � in response to any
ciphertext that was previously output by the encryption oracle. The ciphertext-
validity oracle uses � to indicate that the queried ciphertext was valid or has been
previously output by the encryption oracle.

The adversary’s goal is to output a bit b∗, as its guess of the challenge bit b,
and the experiment returns b∗ as well. For each of these three experiments we
define the corresponding advantages of an adversary A as:

Advind$-atk
SE (A) = Pr

[
Expind$-atk-1

SE (A) = 1
]

− Pr
[
Expind$-atk-0

SE (A) = 1
]
.

The scheme SE is said to be IND$-ATK secure, if for every adversary A with
reasonable resources its advantage Advind$-atk

SE (A) is small.

Stateful indistinguishability notions. Secure protocols like SSH, SSL/TLS
and IPsec aim to protect against replay and reordering of ciphertexts. These secu-
rity goals are not captured by any of the above security notions. Bellare et al. [8]
introduced a notion called IND-sfCCA. This notion implies IND-CCA security
and additionally protects against replay and reordering of ciphertexts. We recall

Expind$-cpa-b
SE (A)

(K, Δ, π) ⊕ K
b√ ⊕ AEnc$(·)

return b√

Enc$(m)

(c, Δ) ⊕ EK(m, Δ)
if b = 0

then c ⊕$ {0, 1}|c|

i ⊕ i + 1, Ci ⊕ c
return c

Expind$-cva-b
SE (A)

(K, Δ, π) ⊕ K
i ⊕ 0, C ⊕ ()

b√ ⊕ AEnc$(·),Val(·)

return b√

Val(c)

(m, π) ⊕ DK(c, π)
if m → M or c → C

then m ⊕
return m

Expind$-cca-b
SE (A)

(K, Δ, π) ⊕ K
i ⊕ 0, C ⊕ ()

b√ ⊕ AEnc$(·),Dec(·)

return b√

Dec(c)

(m, π) ⊕ DK(c, π)
if c → C then m ⊕
return m

Fig. 3. IND$-ATK experiments for symmetric encryption schemes.
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this notion and introduce natural variants in terms of indistinguishability from
random bits and ciphertext-validity attacks. Of course, our definitions are also
for the setting of multiple errors. In what follows we will classify the adversary’s
decryption queries to be in-sync, if the sequence of queried ciphertexts is a prefix
of the sequence of ciphertexts returned by the encryption oracle. Accordingly we
refer to the first decryption query (and any subsequent one) for which this is no
longer true as an out-of-sync query.

Definition 6 (Stateful indistinguishability). Let SE = (K, E ,D) be a sym-
metric encryption scheme. For an adversary A and a bit b, define experiments
Expind-sfcca-b

SE (A) and Expind$-atk-b
SE (A) where atk ∪ {sfcva, sfcca} as shown in

Fig. 4. In all three experiments, a key K is first generated by calling K . In the
ind-sfcca experiment the adversary is given access to a left-or-right encryption
oracle LoR(·), and a stateful decryption oracle sfDec(·). The stateful decryption
oracle returns the decrypted ciphertexts only for out-of-sync queries, and returns
� otherwise. Similarly in the ind$-atk experiments the adversary is given access
to the special encryption oracle Enc$(·), and either a stateful ciphertext-validity
oracle sfVal(·) or a stateful decryption oracle sfDec(·).

The adversary’s goal is to output a bit b∗, as its guess of the challenge bit b,
and the experiment returns b∗ as well. For each of these three experiments we
define the corresponding advantages of an adversary A as:

Advind-sfcca
SE (A) = Pr

[
Expind-sfcca-1

SE (A) = 1
]

− Pr
[
Expind-sfcca-0

SE (A) = 1
]

Advind$-atk
SE (A) = Pr

[
Expind$-atk-1

SE (A) = 1
]

− Pr
[
Expind$-atk-0

SE (A) = 1
]
.

The scheme SE is said to be IND-sfCCA or IND$-ATK secure, if for every adver-
sary A with reasonable resources its respective advantage Advind-sfcca

SE (A) or
Advind$-atk

SE (A) is small.

The naming of these notions is partly justified by the fact that the decryp-
tion and ciphertext-validity oracles are stateful. In addition, it is easy to see that
for an encryption scheme to be IND-sfCCA or IND$-sfCCA secure, its decryption
algorithm must be stateful. However, a scheme need not have a stateful decryp-
tion algorithm to be IND$-sfCVA secure. As the reader may have noticed, we did
not define an IND-sfCVA notion. This is because in the presence of a left-or-right
encryption oracle, the sfVal(·) oracle reduces to a Val(·) oracle, and therefore
IND-sfCVA (defined in the obvious way) is equivalent to IND-CVA.

Ciphertext integrity. We define ciphertext integrity analogously to Bellare
and Namprempre [10], and we also consider its stateful variant [8] which addi-
tionally protects against replay and reordering attacks. Here an adversary trying
to forge a ciphertext is granted multiple attempts by giving it access to a verifi-
cation oracle Try(·), in addition to a standard encryption oracle. When extending
these notions to schemes with multiple errors, it is not clear how to interpret
the verification oracle’s functionality. That is, should the verification oracle indi-
cate only whether a ciphertext is valid or not, or should it additionally return
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Expind-sfcca-b
SE (A)

(K, Δ, π) ⊕ K
i ⊕ 0, j ⊕ 0
C ⊕ (), sync ⊕ 1

b√ ⊕ ALoR(·),sfDec(·)

return b√

LoR((m0, m1))

if |m0| ≤= |m1|
then return

(c, Δ) ⊕ EK(mb, Δ)
i ⊕ i + 1, Ci ⊕ c
return c

sfDec(c)

j ⊕ j + 1
(m, π) ⊕ DK(c, π)
if j > i or c ≤= Cj

then sync ⊕ 0
if sync = 1 then m ⊕
return m

Expind$-sfcva-b
SE (A)

(K, Δ, π) ⊕ K
i ⊕ 0, j ⊕ 0
C ⊕ (), sync ⊕ 1

b√ ⊕ AEnc$(·),sfVal(·)

return b√

Enc$(m)

(c, Δ) ⊕ EK(m, Δ)
if b = 0

then c ⊕$ {0, 1}|c|

i ⊕ i + 1, Ci ⊕ c
return c

Expind$-sfcca-b
SE (A)

(K, Δ, π) ⊕ K
i ⊕ 0, j ⊕ 0
C ⊕ (), sync ⊕ 1

b√ ⊕ AEnc$(·),sfDec(·)

return b√

sfVal(c)

j ⊕ j + 1
(m, π) ⊕ DK(c, π)
if j > i or c ≤= Cj

then sync ⊕ 0
if sync = 1 or m → M

then m ⊕
return m

Fig. 4. Stateful indistinguishability experiments for symmetric encryption schemes.

the exact error message output by the decryption algorithm if the ciphertext
is invalid? For single-error schemes the two interpretations are equivalent, but
this does not hold in general (see Sect. 4). For each of the standard and stateful
notions we consider both variants and we denote the weaker variant (i.e. the one
that is less informative to the adversary) with ‘∈’. In what follows we classify
verification queries to be in-sync or out-of-sync in an analogous manner as we
did for decryption.

Definition 7 (Ciphertext Integrity). Let SE = (K, E ,D) be a symmetric
encryption scheme. For an adversary A define the experiments Expint-atk

SE (A)
where atk ∪ {ctxt, ctxt∈, sfctxt, sfctxt∈} as shown in Fig. 5. In all experiments,
a key K is first generated by calling K . The adversary A is then given access
to an encryption oracle Enc(·), and one of the following verification oracles
Try(·),Try∗(·), sfTry(·), or sfTry∗(·). The Try∗(·) oracle (and similarly the sfTry∗(·)
oracle) returns � if the queried ciphertext is valid, or if the ciphertext has been
previously output by the encryption oracle (respectively: if the verification query
is in-sync), and returns ⊕ if the ciphertext is invalid. The Try(·) and sfTry(·)
oracles operate analogously but return the exact error message output by the
decryption oracle when a ciphertext is invalid.

In the int-ctxt and int-ctxt∈ experiments the adversary’s goal is to make
a valid verification query not previously output by the encryption oracle. In the
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Expint-ctxt
SE (A)

(K, Δ, π) ⊕ K
i ⊕ 0, C ⊕ (), win ⊕ 0

AEnc(·),Try(·)

return win

Expint-sfctxt∗
SE (A)

(K, Δ, π) ⊕ K
i ⊕ 0, j ⊕ 0, C ⊕ ()
sync ⊕ 1, win ⊕ 0

AEnc(·),sfTry∗(·)

return win

sfTry(c)

j ⊕ j + 1
(m, π) ⊕ DK(c, π)
if j > i or c ≤= Cj

then sync ⊕ 0
if sync = 0 and m S→≤ ∼

then win ⊕ 1
if m S→≤ ∼ then m ⊕
return m

Expint-sfctxt
SE (A)

(K, Δ, π) ⊕ K
i ⊕ 0, j ⊕ 0, C ⊕ ()
sync ⊕ 1, win ⊕ 0

AEnc(·),sfTry(·)

return win

Enc(m)

(c, Δ) ⊕ EK(m, Δ)
i ⊕ i + 1, Ci ⊕ c
return c

Try∗(c)

(m, π) ⊕ DK(c, π)
if c ≤→ C and m S→≤ ∼

then win ⊕ 1
if m → S∼ then m ⊕∈
else m ⊕
return m

Expint-ctxt∗
SE (A)

(K, Δ, π) ⊕ K
i ⊕ 0, C ⊕ (), win ⊕ 0

AEnc(·),Try∗(·)

return win

Try(c)

(m, π) ⊕ DK(c, π)
if c ≤→ C and m S→≤ ∼

then win ⊕ 1
if m S→≤ ∼ then m ⊕
return m

sfTry∗(c)

j ⊕ j + 1
(m, π) ⊕ DK(c, π)
if j > i or c ≤= Cj

then sync ⊕ 0
if sync = 0 and m S→≤ ∼

then win ⊕ 1
if m → S∼ then m ⊕∈
else m ⊕
return m

Fig. 5. Ciphertext integrity experiments for symmetric encryption schemes.

int-sfctxt and int-sfctxt∈ experiments the adversary’s goal is to make a valid out-
of-sync verification query. In all cases the experiment outputs a bit indicating the
adversary’s success. For each experiment we define the advantage of an adversary
A as:

Advint-atk
SE (A) = Pr

[
Expint-atk

SE (A) = 1
]
.

The scheme SE is said to be INT-ATK secure, if for every adversary A with
reasonable resources its advantage Advint-atk

SE (A) is small.

Error invariance. Although an encryption scheme may have multiple error
messages, not all error messages may be ‘available’ to the adversary. In particular
an adversary may not be able to produce (invalid) ciphertexts that generate all
possible error messages. We introduce a simple security notion that captures
exactly this situation. Informally an encryption scheme is error-invariant if no
efficient adversary can generate more than one of the possible error messages.
Of course any single-error scheme is trivially error invariant.

Definition 8 (INV-ERR security). Let SE = (K, E ,D) be a symmetric encryp-
tion scheme with error space S∈. For any ⊕∪ S∈ and an adversary A,
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Expinv-err
SE,∼ (A)

(K, Δ, π) ⊕ K
win ⊕ 0

AEnc(·),Dec(·)

return win

Enc(m)

(c, Δ) ⊕ EK(m, Δ)
return c

Dec(c)

(m, π) ⊕ DK(c, π)
if m → S∼ and m ≤=∈

then win ⊕ 1
return m

Fig. 6. INV-ERR experiment for symmetric encryption schemes.

define the experiment Expinv-err
SE,∈ (A) as shown in Fig. 6. A key K is first gener-

ated by calling K . The adversary A is then given access to an encryption oracle
Enc(·) and a decryption oracle Dec(·).

The adversary’s goal is to submit a ciphertext to the decryption oracle which
results in an error message not equal to ⊕ . The experiment outputs a bit indi-
cating the adversary’s success. We define the advantage of an adversary A with
respect to ⊕ as:

Advinv-err
SE,∈ (A) = Pr

[
Expinv-err

SE,∈ (A) = 1
]
.

The scheme SE is said to be INV-ERR secure if there exists a unique ⊕∪ S∈ such
that for every adversary A with reasonable resources its advantage Advinv-err

SE,∈ (A)
is small.

Additional notes. The reader may be wondering how exactly to interpret the
� symbol, given that we assign to it different meanings in our security definitions.
In general we use it to ‘suppress’ certain outputs from an oracle, and hence limit
the information conveyed by the oracle to the adversary. We use it to avoid
trivial win conditions by suppressing the output of in-sync decryption queries,
or left-or-right queries containing messages of different lengths. We also use it to
define ciphertext-validity and verification oracles by suppressing any plaintext
that is output by the decryption algorithm.

For each security definition we have defined the corresponding advantage of
an adversary with respect to some cryptographic scheme. We will sometimes
refer to the maximum advantage with respect to a cryptographic scheme over
all adversaries consuming reasonable resources. Any advantage not parametrized
by an adversary is to be interpreted this way.

4 Relations and Separations

Interpreting our implications and separations. An implication from
security notion X to security notion Y, indicated by X −≈ Y, means that any
scheme which is X-secure is also Y-secure. More formally there exists a constant
ξ > 0 such that for any symmetric encryption scheme SE and any Y adversary
Ay there exists a X adversary Ax (with similar resources) such that:

Advy
SE(Ay) ∗ ξ · Advx

SE(Ax)
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A separation from security notion X to security notion Y indicated by X �−≈ Y,
means that there exists a symmetric encryption scheme which meets notion X but
for which we can exhibit an attack showing that it does not meet notion Y. The
separation is interesting only if there exists some scheme which meets security
notion X, as otherwise the implication X −≈ Y is vacuously true. Our separations
can be categorised into two types. In the former we will assume that there exists
some scheme SE which meets notion X, and use it to construct a scheme SE which
meets notion X but is insecure in the Y sense. From the foregoing discussion,
such an assumption is in some sense minimal. In the second type of separations
we will assume the existence of pseudorandom functions and UF-CMA MACs to
construct a scheme which meets notion X but not notion Y. In this paper for
all separations of the latter type we will have that X −≈ IND-CPA. It is a well-
known result that the existence of IND-CPA-secure symmetric encryption implies
the existence of pseudorandom functions [15,17,18]. In addition a pseudorandom
function can be combined with an almost-universal hash function to obtain a
variable-input-length pseudorandom function, which in turn yields a UF-CMA
MAC. Thus from a theoretical viewpoint the underlying assumptions for either
type of separation are equivalent.

Note that when proving a separation we do not require the scheme to have
distinct error messages, as we are interested solely in the existence of a counterex-
ample showing that the relation under question cannot be established. Secondly
any multiple-error scheme which is secure under some notion X implies the exis-
tence of a single-error scheme which is also secure under notion X (simply by
mapping all error messages to a single error message). Consequently it is best to
prove separations using schemes with an error space of minimal cardinality. It
then follows that the separation also holds for all schemes of higher error-space
cardinality.

Straightforward relations. The following set of relations are self-evident.
We state them here for the sake of completeness without proofs.

Proposition 1

IND − sfCCA �� IND − CCA �� IND − CVA �� IND − CPA

IND$ − sfCCA ��

��

��

IND$ − CCA �� IND$ − CVA �� IND$ − CPA

IND$ − sfCVA

��

��

INT − sfCTXT ��

��

��

INT − CTXT �� INT − CTXT∗

INT − sfCTXT∗
��

��

Revisiting classic relations. If a symmetric encryption scheme that only
supports a single possible error symbol satisfies both passive confidentiality
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(IND-CPA) and integrity of ciphertexts, then it offers confidentiality against
chosen-ciphertext attacks [8,10]. Often, when analysing a particular scheme,
its chosen-plaintext security and ciphertext integrity are proven first, and then
the results of [8,10] are used to guarantee chosen-ciphertext security. Indeed, the
combination of IND-CPA and INT-sfCTXT (or their stateful versions) has come
to be the accepted security notion for symmetric encryption. We proceed to
re-examine the classic relations from [8,10] in the context of encryption schemes
with multiple error messages.

The following theorem serves as the basis for the two separations in Corol-
laries 1 and 2, showing that the classic relations no longer hold for multiple-error
schemes.

We point out that in proving the separations, we adopt the stronger inter-
pretations of ciphertext integrity so as to avoid any ambiguity in the results.

Theorem 1 (IND-CPA ∧ INT-sfCTXT �−≈ IND-CCA). Let F : Ke × {0, 1}Δ ≈
{0, 1}n be a pseudorandom function, and let MA = (Km, T ,V) be a UF-CMA
secure MAC with tag length γtag < n . Consider the stateful symmetric encryption
scheme SE1 having message space {0, 1}n−Δtag and error space {⊕0,⊕1} shown in
Fig. 7. For any IND-CPA adversary Acpa and any INT-sfCTXT adversary Aint

against SE1, both making at most 2Δ − 1 encryption queries, there exist two
corresponding adversaries Aprf and Auf using roughly the same resources as
Acpa and Aint, respectively, such that:

Advind-cpa

SE1
(Acpa) ∗ 2 · Advprf

F (Aprf), (1a)

Advint-sfctxt
SE1

(Aint) ∗ Advuf-cma
MA (Auf). (1b)

Moreover there exist efficient adversaries Acca and A∗
uf such that:

Advind-cca
SE1

(Acca) = 1 − Advuf-cma
MA (A∗

uf) . (1c)

Combining Theorem 1 and Proposition 1 yields the following two separations
corresponding to the aforementioned relations from [10] and [8].

Corollary 1 (IND-CPA ∧ INT-CTXT �−≈ IND-CCA). Let F : Ke × {0, 1}Δ ≈
{0, 1}n be a pseudorandom function, and let MA = (Km, T ,V) be a UF-CMA
secure MAC with tag length γtag < n . Then there exists a symmetric encryption
scheme that is both IND-CPA secure and INT-CTXT secure but that is not secure
in the IND-CCA sense.

Corollary 2 (IND-CPA ∧ INT-sfCTXT �−≈ IND-sfCCA). Let F : Ke × {0, 1}Δ ≈
{0, 1}n be a pseudorandom function, and let MA = (Km, T ,V) be a UF-CMA
secure MAC with tag length γtag < n . Then there exists a symmetric encryption
scheme that is both IND-CPA secure and INT-sfCTXT secure but that is not secure
in the IND-sfCCA sense.

Note that in proving Theorem1 we resorted to a stateful scheme. Only a
stateful scheme can be INT-sfCTXT secure, and therefore the counterexample
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Algorithm K
Ke ⊕$ Ke

Km ⊕ Km

Δ ⊕ 1, π ⊕ 1
K ⊕ Ke ⊗ Km

return (K, Δ, π)

Algorithm EK(m, Δ)

Γ ⊕ TKm(≡Δ〉τ ⊗ m)
c ⊕ FKe(≡Δ〉τ) ⊕ (m ⊗ Γ)

Δ ⊕ Δ + 1 mod 2τ

return (c, Δ)

Algorithm DK(c, π)

if |c| ≤= n then π ⊕ 0
if π = 0 then

return (∈0, π)
w ⊕ FKe(≡π〉τ) ⊕ c
parse w as m ⊗ Γ
v ⊕ VKm(≡π〉τ ⊗ m, Γ)
if v = 1

then π ⊕ π + 1 mod 2τ

else
π ⊕ 0
if m[1] = 0 then m ⊕∈0

else m ⊕∈1

return (m, π)

Fig. 7. The scheme SE1 of Theorem1.

used to prove Corollary 2 needs to be stateful. The same cannot be said however
about the separation in Corollary 1, and in fact it can be proven more generally
using a stateless scheme, but we omit the details for the sake of brevity.

New relations. We now go on to investigate how chosen-ciphertext security
can be obtained in the multiple-error setting. Given how useful the relations of
[10] and [8] have turned out to be, it would make sense to attempt to derive
analogous relations that hold more generally. The following theorem extends the
relation of [10] to schemes with multiple errors.

Theorem 2 (IND-CVA ∧ INT-CTXT −≈ IND-CCA). Let SE = (K, E ,D) be
a symmetric encryption scheme. For any IND-CCA adversary Acca there exist
adversaries Acva and Aint consuming similar resources to Acca such that:

Advind-cca
SE (Acca) ∗ Advind-cva

SE (Acva) + 2 · Advint-ctxt
SE (Aint) . (2)

A similar relation can be established for stateful chosen-ciphertext security,
and each of these relations can be re-proven for security notions involving indis-
tinguishability from random bits. We state these relations below.

Proposition 2

IND-CVA ∧ INT-sfCTXT −≈ IND-sfCCA
IND$-CVA ∧ INT-CTXT −≈ IND$-CCA

IND$-sfCVA ∧ INT-sfCTXT −≈ IND$-sfCCA

Necessity of strong ciphertext integrity. The above relations can be
seen as strengthened variants of the relations from [10] and [8], where we replaced
CPA security with CVA security and adopted the stronger notions of ciphertext
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integrity. It is natural to ask whether the left-hand side of each relation can be
somehow relaxed. We have seen in Corollaries 1 and 2 that reverting from CVA
security to CPA security is not an option. However it is not evident whether it
is necessary to require the stronger variants of ciphertext integrity. Theorem3
answers this question by means of a separation, proving that strong ciphertext
integrity is necessary for Theorem 2 to hold.

Theorem 3 (IND-CVA ∧ INT-CTXT∗ �−≈ IND-CCA). Let SE = (K, E ,D) be a
symmetric encryption scheme with a large message space M and an error space
{⊕0}, such that it is both IND-CVA secure and INT-CTXT∗ secure. Let the length
of its ciphertexts be bounded above by 2Δ for some integer γ. Consider the scheme
SE2 having message space M and error space {⊕0,⊕1} shown in Fig. 8. For any
IND-CVA adversary Acva making qe left-or-right queries, and any INT-CTXT∗

adversary Aint making qt verification queries, there exist adversaries A1
cva, A2

cva,
and A1

int (consuming similar resources to Acva and Aint) such that:

Advind-cva
SE2

(Acva) ∗ Advind-cva
SE (A1

cva) +
1
2

· Advind-cva
SE (A2

cva) +
qe

|M| , (3a)

Advint-ctxt∗
SE2

(Aint) ∗ Advint-ctxt∗
SE (A1

int) +
qt

|M| . (3b)

Moreover there exists an adversary Acca, making at most (γ+maxm⊕M(|m|)+1)
decryption queries and one left-or-right query such that:

Advind-cca
SE2

(Acca) = 1. (3c)

Theorem 3 also serves as a separation between INT-CTXT∗ and INT-CTXT,
showing that the latter is strictly stronger. Separations similar to that of Theo-
rem3 corresponding to the relations of Proposition 2 can also be established.

Proposition 3

2IND − CVA ∧ INT − sfCTXT∗ �−≈ IND − sfCCA

IND$ − CVA ∧ INT − CTXT∗ �−≈ IND$ − CCA

IND$ − sfCVA ∧ INT − sfCTXT∗ �−≈ IND$ − sfCCA

Algorithm K
(K, Δ, π) ⊕ K
m∗ ⊕$ M
(c∗, Δ) ⊕ EK(m∗, Δ)
K0 ⊕ (K, m∗, c∗)
return (K0, Δ, π)

Algorithm EK0(m, Δ)

if (m = m∗) then c ⊕ c∗

else (c, Δ) ⊕ EK(m, Δ)
return (0 ⊗ c, Δ)

Algorithm DK0(c, π)

parse c as b ⊗ c√

if (b = 0) then
if (c√ = c∗) then m ⊕ m∗

else (m, π) ⊕ DK(c√, π)
else χ ⊕ ≡|c∗|〉τ ⊗ c∗

if ≡c√〉−1 ≤ |χ| then
d ⊕ χ[≡c√〉−1], m ⊕∈d

else m ⊕∈0

return (m, π)

Fig. 8. The scheme SE2 of Theorem3.
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5 Further Relations and the IND$-CCA3 Notion

Authenticated-encryption security. Following the work of Bellare and
Namprempre [10], chosen-plaintext security and ciphertext integrity were iden-
tified as the two security goals for symmetric encryption. Rogaway and Shrimp-
ton [26] presented a single security notion, sometimes referred to as IND$-CCA3
and more commonly called authenticated-encryption security, that is equivalent
to the combination of chosen plaintext security and ciphertext integrity. We now
present a natural extension of this notion to the multiple error setting. Then in
Theorem 4 we show that this characterisation is equivalent to the combination of
chosen-plaintext security, weak chosen ciphertext integrity, and error invariance.

Definition 9 (IND$-CCA3 notion for multiple-error symmetric encryp-
tion). Let SE = (K, E ,D) be a multiple-error symmetric encryption scheme with
error space S∈. For an adversary A, an error ⊕∪ S∈ and a bit b, define exper-
iment Expind$-cca3-b

SE,∈ (A) as shown in Fig. 9. First K is called to generate a key
K, an initial encryption state β, and an initial decryption state Σ. The adver-
sary A is then given access to a special encryption oracle Enc$(·) and a special
decryption oracle Dec∅(·). When b = 1 both oracles behave as normal encryption
and decryption oracles. When b = 0 then Enc$(·) will return a random bit string
(of the same length as an actual ciphertext would have been), and Dec∅(·) will
always return ⊕ (unless the queried ciphertext was output by Enc$(·), in which
case it will return �).

The adversary’s goal is to output a bit b∗, as its guess of the challenge bit
b. The experiment returns b∗ as well and, for ⊕∪ S∈ and an adversary A, the
advantage is defined as:

Advind$-cca3
SE,∈ (A) = Pr

[
Expind$-cca3-1

SE,∈ (A) = 1
]

− Pr
[
Expind$-cca3-0

SE,∈ (A) = 1
]
.

The scheme SE is said to be IND$-CCA3 secure if there exists ⊕∪ S∈ such that
for every adversary A with reasonable resources its advantage Advind$-cca3

SE,∈ (A)
is small.

Note: An IND-CCA3 notion can be defined by replacing the Enc$(·) oracle with
a real-or-random encryption oracle (cf. [5]). Such an oracle returns either an
encryption of the queried message or an encryption of a random message of the
same length.

Theorem 4 (IND$-CPA ∧ INT-CTXT∗ ∧ INV-ERR −≈∃− IND$-CCA3). Let SE =
(K, E ,D) be a symmetric encryption scheme with error space S∈.

– For any ⊕∪ S∈ and any adversary Acca3 there exist adversaries Acpa, Aint

and Aerr (consuming similar resources to Acca3) such that:

Advind$-cca3
SE,∼ (Acca3) ≤ Advind$-cpa

SE (Acpa) +Advint-ctxt∗
SE (Aint) +Advinv-err

SE,∼ (Aerr) .
(4)
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Expind$-cca3-b
SE,∼ (A)

(K, Δ, π) ⊕ K
i ⊕ 0, C ⊕ ()

b√ ⊕ AEnc$(·),Dec∅(·)

return (b√)

Enc$(m)

(c, Δ) ⊕ EK(m, Δ)

if b = 0 then c ⊕ {0, 1}|c|

i ⊕ i + 1, Ci ⊕ c
return c

Dec∅(c)

(m, π) ⊕ DK(c, π)
if b = 0 then m ⊕∈
if c → C then m ⊕
return m

Fig. 9. IND$-CCA3 experiment for multiple-error symmetric encryption schemes.

– For any ⊕∪ S∈ and any three adversaries A∗
cpa, A∗

int and A∗
err there exist

three corresponding adversaries A1
cca3, A2

cca3 and A3
cca3 (consuming similar

resources to A∗
cpa, A∗

int and A∗
err, respectively) such that:

Advind$-cpa
SE (A∗

cpa) ∗ Advind$-cca3
SE,∈ (A1

cca3), (5a)

Advint-ctxt∗
SE (A∗

int) ∗ 2 · Advind$-cca3
SE,∈ (A2

cca3), (5b)

Advinv-err
SE,∈ (A∗

err) ∗ 2 · Advind$-cca3
SE,∈ (A3

cca3). (5c)

It can be similarly shown that:

Proposition 4 IND-CPA ∧ INT-CTXT∗ ∧ INV-ERR −≈∃− IND-CCA3.

The question remains whether IND$-CCA3 security guarantees IND$-CCA
security in the multiple error setting, which is the ultimate target security notion.
Proposition 5 tells us that this is indeed the case. In fact it says something
stronger, in that it relates IND$-CCA3 to the security notions from Proposition 2.

Proposition 5 IND$-CCA3 −≈ IND$-CVA ∧ INT-CTXT −≈ IND$-CCA.

6 The Security of Encode-Then-Encrypt-Then-MAC

The works of Bellare and Namprempre [10] and Krawczyk [20] provide formal
evidence for preferring Encrypt-then-MAC (EtM) over other generic composi-
tions like MAC-then-encrypt (MtE). However we believe that the merits of EtM
as a generic composition technique go beyond the implications of their work.
By combining results from [20] and [7], we know that MtE is actually IND-
CCA secure when instantiated with CBC or counter-mode encryption. Thus the
analysis of [10,20] does not explain why EtM should be more secure than MtE
when both are instantiated with CBC or counter-mode encryption. Nonetheless
practical cryptosystems (employing CBC and counter-mode encryption) based
on EtM have so far proved themselves less vulnerable to attack than ones based
on MtE. For example, the attacks in [2,3,11,13] exploit features of the encod-
ing schemes used in specific MtE constructions and the fact that an adver-
sary can distinguish among distinct decryption failures. Neither of these aspects
were considered in [10]. Reconsidering the generic compositions in the light of



386 A. Boldyreva et al.

Algorithm K
(Ke, Δ, π) ⊕ Ke

Km ⊕ Km

K ⊕ Ke ⊗ Km

return (K, Δ, π)

Algorithm EK(m, Δ)

w ⊕ EC(m)
(c, Δ) ⊕ EKe(w, Δ)
Γ ⊕ TKm(c)
return (c ⊗ Γ, Δ)

Algorithm DK(χ, π)

if |χ| < ιtag + 1 then
return (∈0, π)

parse χ as c ⊗ Γ
v ⊕ VKm(c, Γ)
if v → Q∼ then

return (v, π)
(w, π) ⊕ DKe(c, π)
if w → S∼ then

return (w, π)
m ⊕ DC(w)
return (m, π)

Fig. 10. The generic Encode-then-Encypt-then-MAC composition SEEEM with dis-
tinguishable decryption failures.

multiple-error messages (or equivalently distinguishable decryption failures) pro-
vides new formal grounds for preferring the EtM composition. More specifically
we consider an encode-then-encrypt-then-MAC (EEM) composition to account
for the pre-processing (such as padding) that is common in practical schemes.
The EEM composition is specified in Fig. 10. Theorem 5 shows that EEM is a
robust composition, in the sense that it provides IND-CVA and INT-CTXT secu-
rity, and therefore IND-CCA security, in the multiple-error setting, irrespective
of the encoding scheme used (and the error messages it returns) and the error
messages that the encryption component may return, as long as the encryption
component is IND-CPA and the MAC is SUF-CMA. In fact, we can prove that
EEM provides IND-CCA3 security if its MAC component only has a single error
message.

Theorem 5 (EEM provides IND-CVA+INT-CTXT). Suppose SE = (Ke, E ,D)
is a symmetric encryption scheme with message space M and error space S∈.
Let MA = (Km, T ,V) be a MAC with error space Q∈ producing tags of length
γtag. Let ES = (EC,DC) be a length-regular encoding scheme with domain M,
codomain M, and error space U∈. Figure 10 then defines a symmetric encryption
scheme SEEEM with message space M and error space S∈ = S∈∅Q∈∅U∈∅{⊕0

}, for some ⊕0 �∪ S∈ ∅Q∈ ∅U∈. For any IND-CVA adversary Acva and any INT-
CTXT adversary Aint against SEEEM , there exist adversaries Acpa, A1

suf, and
A2

suf such that:

Advind-cva
SEEEM

(Acva) ∗ Advind-cpa
SE (Acpa) + Advsuf-cma

MA (A1
suf) , (6)

Advint-ctxt
SEEEM

(Aint) ∗ Advsuf-cma
MA (A2

suf) . (7)

Moreover, these adversaries consume similar resources to Acva and Aint.

It is instructive to consider some distinguishable decryption failure attacks
that have been discovered on instantiations of the MAC-then-Encode-then-Ecrypt
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(MEE) composition, in order to see how such implementation flaws are captured
by our treatment. The attacks on TLS [11] and on DTLS [2] use timing differences
to distinguish a MAC failure from a padding failure. In the case of IPsec [13], the
encoding includes a padding portion as well as a header portion, and it is the abil-
ity to discern between malformed padding and a malformed header that gives rise
to the attack. The recent Lucky 13 attack on TLS [3] exploits timing differences in
the verification algorithm of HMAC. More specifically each compression function
evaluation in HMAC results in additional processing time during decryption that
can be detected by the adversary from the time delay in returning TLS’s MAC
failure message; the size of the delay relates to the amount of TLS padding pre-
viously removed and can be used to infer plaintext in an extension of Vaudenay’s
padding oracle attack [27]. This timing channel can be modelled in our framework
by transforming HMAC into a multiple-error MAC. Then the error messages that
HMAC returns can be easily predicted from the length of the string on which the
tag is to be verified. It follows from this observation that any proof of SUF-CMA
security for the usual single-error HMAC can be extended to this multiple-error
version of HMAC. So, while this multiple-error HMAC is still SUF-CMA secure,
its interaction with the TLS padding renders the MEE composition used in TLS
insecure. By contrast, as established in Theorem 5, an EEM composition would
not be compromised by such an implementation flaw.

7 More Separations

We now present a separation showing that IND-CVA is strictly stronger than
IND-CPA. We actually show something slightly stronger, in that the separation
also holds for schemes which are error invariant. This separation further serves
to point out that, even for single-error schemes, Theorem2 does not reduce to
the relation of Bellare and Namprempre from [10].

Theorem 6 (IND-CPA∧ INV-ERR �−≈ IND-CVA). Let F : Ke ×{0, 1}Δ ≈ {0, 1}n

be a pseudorandom function, where γ is sufficiently large. Then the symmetric
encryption scheme SE3 having message space ∅k⊂1{0, 1}nk and error space {⊕}
shown in Fig. 11 is such that, for any IND-CPA adversary Acpa making q encryp-
tion queries totalling μ bits of plaintext, there exists a corresponding adversary
Aprf (consuming similar resources to Acpa) with:

Advind-cpa

SE3
(Acpa) ∗ 2 · Advprf

F (Aprf) +
(μ

n
+ q

) (
q − 1
2Δ

)
. (8a)

Moreover there exists an efficient adversary Acva such that:

Advind-cva
SE3

(Acva) = 1. (8b)

In Sect. 3 it was noted that if the IND-sfCVA experiment is defined in the
obvious way, it would be syntactically equivalent to the IND-CVA experiment.
In the case of indistinguishability from random bits, an analogous equivalence is
not evident from the syntax. Theorem7 settles this in the negative.
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Algorithm K
K ⊕$ Ke

Δ ⊕ ε, π ⊕ ε
return (K, Δ, π)

Algorithm EK(m, Δ)

if |m {→≤| αn : α ≥ 1} then
return ∈

p ⊕ |m|/n
parse m as m1 ⊗ . . . ⊗ mp

mp+1 ⊕ 0n, c0 ⊕$ {0, 1}τ

for i ⊕ 1 to p + 1 do
ci ⊕ FK(c0 + i) ⊕ mi

c ⊕ c0 ⊗ c1 ⊗ . . . ⊗ cp+1

return (c, Δ)

Algorithm DK(c, π)

if |c {→≤| ι + αn : α ≥ 2} then
return ∈

q ⊕ (|c| − ι)/n
parse c as c0 ⊗ . . . ⊗ cq

for i ⊕ 1 to q do
mi ⊕ FK(c0 + i) ⊕ ci

if mq ≤= 0n then m ⊕∈
else m ⊕ m1 ⊗ . . . ⊗ mq−1

return (m, π)

Fig. 11. The scheme SE3 of Theorem6.

Theorem 7 (IND$-CVA ∧ INV-ERR �−≈ IND$-sfCVA). Let F : Ke × {0, 1}Δ ≈
{0, 1}n be a pseudorandom function, where γ is sufficiently large. Let MA =
(Km, T ,V) be a single-error MAC where T : Km ×{0, 1}∗ ≈ {0, 1}Δtag is pseudo-
random. Consider the symmetric encryption scheme SE4 having message space
∅k⊂1{0, 1}nk and error space {⊕} shown in Fig. 12. For any IND$-CVA adver-
sary Acva making q encryption queries totalling μ bits of plaintext, there exist
three adversaries A1

prf, A2
prf, and Auf with:

Advind$-cva
SE4

(Acva) ∗ Advprf
F (A1

prf) + Advprf
T (A2

prf) + Advuf-cma
MA (Auf)

+
μ

n
·
(

q − 1
2Δ

)
+

q(q − 1)
2Δ+n+1

.

Moreover there exist efficient adversaries Asfcva and A∗
uf such that:

Advind$-sfcva
SE4

(Asfcva) = 1 − Advuf-cma
MA (A∗

uf) . (9a)

Algorithm K
Ke ⊕$ Ke

Km ⊕$ Km

K ⊕ Ke ⊗ Km

Δ ⊕ ε, π ⊕ ε
return (K, Δ, π)

Algorithm EK(m, Δ)

if |m {→≤| αn : α ≥ 1} then
return ∈

p ⊕ |m|/n
parse m as m1 ⊗ . . . ⊗ mp

c0 ⊕$ {0, 1}τ

for i ⊕ 1 to p do
ci ⊕ FK(c0 + i) ⊕ mi

c ⊕ c0 ⊗ c1 ⊗ . . . ⊗ cp

Γ ⊕ TKm(c)
return (c ⊗ Γ, Δ)

Algorithm DK(χ, π)

if |χ {→≤| ι + ιtag + αn : α ≥ 1} then
return (∈, π)

parse χ as c ⊗ Γ
v ⊕ VKm(c, Γ)
if (v ≤= 1) then

return (∈, π)
q ⊕ (|c| − ι)/n
parse c as c0 ⊗ . . . ⊗ cq

for i ⊕ 1 to q do
mi ⊕ FK(c0 + i) ⊕ ci

m ⊕ m1 ⊗ . . . ⊗ mq

return (m, π)

Fig. 12. The scheme SE4 of Theorem7.
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Abstract. This paper studies state-of-the-art software implementation
of lightweight symmetric primitives from embedded system program-
mer’s standpoint. In embedded environments, due to many possible vari-
ations of ROM/RAM-size combinations, it is not always easy to obtain
an entire performance picture of a given primitive and to create a fair
benchmark from top speed records.

In this study we classify these size combinations into several cate-
gories and optimize operation speed in each category. We implemented
on Renesas’ RL78 microcontroller - a typical CISC embedded processor,
four block ciphers and seven hash functions with various combinations
of ROM and RAM sizes to make performance characteristics of these
primitives clearer. We also discuss how to create an interface and mea-
sure size and speed of a given primitive from a practical point of view.

As a result, our AES encryption codes run at as fast as 3,855 cycles/
block in the ROM-1KB RAM-64B category, and 6,622 cycles/block in
the ROM-512B RAM-128B category. For another examples aiming at
minimizing a ROM size, we have achieved 453-byte Keccak, 396-byte
Skein-256 and 210-byte PRESENT encryption codes on this processor.

1 Introduction

Lightweight crypto has become one of hot topics in cryptography, with increas-
ing market requirements of embedded security as a background. In the SHA-3
project, suitability to embedded applications was regarded as an important met-
ric for selection, and ISO/IEC 29192 is standardizing lightweight cipher primi-
tives. Lightweight crypto has been more often discussed in hardware contexts,
such as low area and low power consumption, but some of recent studies focus
on software implementation on low resource processors, which is, we believe,
equally important since it is rather common in embedded systems that encryp-
tion is carried out in hardware, but decryption is done in software.

One of such activities is ECRYPT II block cipher and hash function projects
[1,2], which have published performance evaluation results of many symmetric
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primitives on the ATtiny45 processor. All codes were written in an assembly
language, aiming at low-cost implementation. These works are effectively the
first extensive benchmarking on a low-end microprocessor.

The paper also deals with assembly language programming of symmetric
primitives on a low-end embedded processor, but takes different approaches.
First of all, our target processor RL78 has an accumulator-based CISC archi-
tecture with 8 registers and read-modify instructions, while ATtiny is a RISC
processor with 32 registers and a fixed instruction length. Looking at imple-
mentations of the same algorithm on different processor architectures will be of
independent interest.

Secondly we aim at demonstrating various ROM/RAM-size and speed trade-
offs for each primitive, not only pursuing pin-point top speed records. Embedded
system programmers often deal with a crypto routine as an almost black box
and want to know beforehand whether given size and speed can be achieved or
not on a target processor. One of our purposes is to give them information about
what ROM/RAM-size combinations are possible or impossible to implement
on this processor. To do this, we first classify the size combinations into several
categories and optimize each primitive in each category. Additionally we show a
code toward a fastest speed and another code focusing on a smallest ROM size,
accepting (very) slow computation speed.

Also we discuss interface and metric issues of symmetric primitives for embed-
ded applications. In particular we point out that currently there is no consensus
of how to count a RAM size of a given program. We here again take embedded
programmers’ viewpoint. What they are interested in is the amount of resources
that they must allocate for a primitive. In this regard, we count the entire tem-
porary area internally used in the primitive as RAM bytes, say, argument area
and stack consumption including callee save register storage with a standard
subroutine interface.

Our target primitives are AES [3], Camellia [4] and Clefia [5] with 128-bit key
and Present [6] with 80-bit key for block ciphers. Note that AES and Camellia
are included in ISO/IEC 18033-3, and Clefia and Present have been recently
adopted as ISO/IEC 29192-2, a standard of lightweight block ciphers. For hash
functions, our choices are SHA-256, SHA-512 [7], Keccak-256 [8], Skein-256,
Skein-512 [9] Grøstl-256 and Grøstl-512 [10], where Keccak-256, Skein-256 and
Skein-512 denote Keccak[r = 1088,c = 512], Skein-256-256 and Skein-512-512,
respectively.

As a result, it is shown that AES achieves excellent size-speed balances for
all ROM/RAM combinations on this processor. It runs at the speed of 3,855
cycles/block in the ROM-1KB RAM-64B category. Its ROM size was able to be
reduced down to 486 bytes. Camellia outperforms AES in decryption. It is also
demonstrated that the key scheduling of Clefia is a bottleneck for minimizing
a code and Present is slow due to its harware-oriented nature, but its simple
structure contributes to creating a very small program; we were able to write its
encryption code with 210 ROM bytes.

For hash functions, it is shown that SHA-256 and SHA-512 are still good
choices from a performance point of view. For 256-bit hash functions SHA-256 is
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fastest if 1 KB or more ROM is given, and for 512-bit hash functions Skein-512
is the only option if only 256-byte RAM is given. It is also demonstrated that
Keccak and Skein can be implemented in a very compact way; our smallest codes
of Keccak-256/Skein-256 had 453/396 ROM bytes, respectively.

2 The RL78 Microcontroller

RL78 is Renesas Electronics’ next-generation low-power microcontroller family
combining advanced features from both the 78 K and R8C families [11] which
have been widely used in embedded applications such as in-vehicle controlling
and mobile communication systems. It supports a wide range of pin, package and
memory size combinations, currently covering Flash-ROM/RAM size variations
of low-end 2KB/256B up to 512KB/32KB.

RL78 has a typical CISC architecture with an 8-bit accumulator-based instruc-
tion set including a small number of 16-bit instructions. It has eight 8-bit
general registers a,x,b,c,d,e,h,l, which can be also used as register pairs
ax,bc,de,hl. Most instructions allow only register a as a destination register,
and only register pair hl as a general address pointer. For instance, xor a,[hl]
is a valid instruction, but xor b,[hl] and xor a,[de] are not. This often causes
size and speed penalties in programming symmetric primitives.

On the other hand, an advantage of this architecture is that it supports read-
modify instructions and its average instruction length is short. Most instructions
of RL78 used in a small model i.e. all segments are within 64 KB, are one- to
three-byte long. For instance, xor a,[hl] is a read-modify one-cycle instruction
whose length is one byte.

As for the memory access speed, reading from internal RAM takes only one
cycle, but reading from ROM takes four cycles. Moreover when an address reg-
ister is modified in the preceding instruction, an additional one-cycle delay hap-
pens due to an address generation interlock stall. Hence a table lookup can be
costly on this processor.

Table 1 shows some of the instructions essential in our programming:

Table 1. Key instructions on RL78 in symmetric programming.

Instruction Length (byte) Latency Comment

addw ax,[hl+byte] 3 1 cycle 16-bit add without carry-in (with carry-out)

sknc 2 1 cycle skip next instruction if non-carry

xor/and/or reg1,reg2 1 1 cycle reg1 or reg2 must be register a

shl/shr a/b/c,cnt 2 1 cycle 8-bit left/right shift; shr accepts only a

shlw/shrw ax/bc,cnt 2 1 cycle 16-bit left/right shift; shrw accepts only ax

rolc/rorc a,1 2 1 cycle 8-bit rotate shift with carry

rolwc ax/bc,1 2 1 cycle 16-bit rotate shift with carry; left shift only

push/pop regpair 1 1 cycle push/pop a register pair to/from stack

call 16bit-adrs 3 3 cycles stack pointer is subtracted by 4 bytes

ret 1 6 cycles stack pointer is added by 4 bytes
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The 16-bit add instruction addw is convenient but unfortunately only works
without carry-in (its result affects the carry bit, though). Using sknc, however,
a memory-to-memory 32-bit addition can be implemented as shown below, which
is slightly shorter and faster than using an 8-bit add-with-carry instruction:

movw ax,[mem1+2]

addw ax,[mem2+2]

movw [mem3+2],ax

movw ax,[mem1]

sknc ; skip next instruction if no carry

incw ax ; ax = ax + 1

addw ax,[mem2]

movw [mem3],ax

On the other hand, no 16-bit operations are supported in logical instruc-
tions such as xor,or,and, and these instructions accept only register pair hl as
an address pointer. Also note that a subroutine call is quite expensive in this
processor. A call/ret pair takes a total of nine cycles, and consumes stack by
four bytes. For comparison, AVR’s rcall/ret pair (short call) takes seven cycles
with two stack bytes [12]. A programmer must try to minimize the number of
subroutine calls if aiming at a speed record on RL78. Interestingly, however, a
push/pop pair is inexpensive and handy for avoiding register starvation.

3 Interface and Metrics

3.1 Interface

First of all, we have adopted a commonly accepted program interface in embed-
ded systems; i.e. we implemented a target primitive as a subroutine callable from
C language, which we believe is a portable and small-overhead choice. In the fol-
lowing we use the calling conventions described in [13]: (1) the first argument is
passed by ax, (2) other arguments are passed through stack, and (3) hl must be
recovered at the end of the subroutine (callee-save register).

To reduce register pressure, we use only the first argument, and ax points
to the RAM area prepared by a caller, which includes a message block to be
encrypted or hashed, secret key (if any), a flag indicating first/middle/last block,
and temporary buffer for internal use. For instance, one of our AES encryption
routines has the following argument format that consists of a total of 50 bytes:

Bytes 00-15: plaintext/ciphertext

Bytes 16-31: secret key

Bytes 32-33: flag (bit 0/1: active in the first/last block)

Bytes 34-49: buffer for internal use

The first 16-byte plaintext is replaced by its correspondent ciphertext after
encryption. It is allowed to overwrite this area during encryption to minimize
RAM usage. The secret key can be also destroyed, but our codes were designed
so that a caller does not have to rewrite the same secret key every block when
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encrypting a multiple number of blocks. Note that this does not always mean
that the secret key area remains unchanged.

Our routines process one block in a single call. A caller is responsible for
creating a block format from a target message and calling a routine block-by-
block. This looks common in block cipher setting, but it is not obvious which side
(caller or callee) should be responsible for formatting the last block including a
padding in hash functions from performance point of view. In fact, in embedded
applications message size is often fixed or at most varies within a small range
and in such a case a fully general interface supporting an arbitrary length in the
callee side could simply lead to an overhead. Therefore in this paper we have
decided that, from a minimalist point of view, rather than pursuing a full black
box design, the interface policy of hash functions should be the same as that of
block ciphers.

3.2 ROM/RAM Count

There does not seem to exist a consensus of how to count ROM/RAM size of a
given crypto subroutine, especially RAM bytes on an embedded processor. Since
RAM is much more expensive than ROM, it is important to give unambiguous
information about RAM consumption to an embedded system programmer.

For instance, out of three implementation papers on the AVR processor
[14–16], the first one does not count mandatory parameters such as plaintext
and key areas as RAM bytes, the first and second papers seem to have excluded
stack consumption from the RAM count, and the second and third papers intro-
duce an uncommon subroutine calling convention where a callee can destroy any
register without restoration.

For another example, a code of Grøstl designed by Feichtner on the same
processor [10] pushes/pops 20 callee-save registers out of a total of 32 registers
at the beginning and end of the routine, which agrees with our code design
policy. In our metric, the ROM/RAM size should indicate the entire resource
consumption of a target subroutine, and hence, for example, we count the size
of RAM that the following sample code consumes as (at least) twelve bytes:

_Encryption_Routine: ; 4 bytes for calling this routine itself

push hl ; 2 bytes for storing hl, callee-save register

movw hl,ax

call _Leaf_Routine ; 4 bytes for calling this function

..

pop hl ; restoring hl

ret

_Leaf_Routine:

push bc ; 2 bytes for pushing bc

..

pop bc

ret
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Table 2. Portfolio of a primitive (an example).

ROM-Min (400B) ROM-512B ROM-1024B ROM-2048B

RAM-128B 20,000 9,000 3,000 -
RAM-64B x x 4,000 3,500

A consequence of this is that 64-byte RAM is very restrictive for most 128-bit
block ciphers with 128-bit key, because 32-byte RAM is a must (plaintext+key)
and often we need additional 16 bytes for keeping temporary data. Moreover, as
mentioned above, if we call an internal subroutine, 12-byte stack is needed. At
this stage we have only four free RAM bytes.

3.3 Categorization as to Resources

One of the purposes of this paper is to give a system programmer practical
information on size and speed trade-offs for each algorithm, not only pin-point
record data. We expect that this approach will make performance characteristics
of each algorithm much clearer, and in addition, will reveal that a specific size-
speed combination is impossible to implement on this processor, which is also
important information for a programmer.

On the other hand, it is not realistic to write codes for too many possible
ROM/RAM size combinations. Hence in this paper, we introduce several cate-
gories as to given memory size. Specifically, we categorize ROM size variations
into 512B, 1024B and 2048B and RAM size variations into 64B, 128B, 256B,
512B (first two are for block ciphers and latter two are for hash functions). Our
interest is to find out in which category i.e. in which ROM/RAM combination,
a target primitive is implementable or not, and if yes, what performance it can
achieve within the amount of resources specified in the category (Table 2).

Our complete implementation results are given in Appendix, but in the next
section, we use the following type of diagram to illustrate a performance portfolio
of each algorithm:

This table shows five different implementations for the target algorithm, one
of which runs at 3,000 cycles/block with less than 1024 ROM bytes and 128 RAM
bytes. If the given RAM resource is reduced down to 64 bytes, then its speed also
goes down to 4,000 cycles/block. Also if only 512 ROM bytes is available, then its
speed penalty becomes serious, 9,000 cycles/block. ‘x’ means that it is (or seems)
impossible to implement in this category, and ‘-’ denotes “satiated”, i.e. already
reached enough resource for achieving high speed and having further resource
does not lead to significant speed-up as compared with other implementations
(left or down whichever faster; 3,000 cycles/block in this case). From this table,
we can deliver important messages to an application programmer such as:

– 1024B/128B are most reasonable ROM/RAM resources for this primitive.
– If ROM size is less than 1024 bytes, its speed rapidly worsens.
– If only 512B/64B are available, using this primitive should be given up.
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In the next section, we skip rows and columns that contain only ‘-’ or
‘x’ entries. A special case is the left-most column, which is a ROM-minimum
implementation concentrating on minimizing ROM memory, lowering priority of
speed. We believe that this information is also practically important. In fact, in
some industrial systems, speed is not an issue since mechanical motion is usually
far more time-consuming than cryptographic applications.

3.4 Portability

All of our codes were written in assembly language in the small model, but
we tried them to be as portable as possible. Our codes are relocatable, i.e.
independent of the address where the code/data are located in physical memory.

Also we took into consideration that our codes should not conflict with other
modules, and therefore avoided to access system memory area. We used only
a single bank (RL78 has four register banks, each of which has an independent
register memory), and also we did not access 256-byte short address RAM, which
is a special area where a fast and short instruction is available. This area is shared
with system programs and use of this area could affect portability.

4 Implementations

4.1 Block Ciphers

AES: We implemented encryption-only and encryption-decryption versions sep-
arately for all block ciphers. For AES, all of our RAM-64B programs are based
on “flat” implementation, i.e. its round function including a key scheduling step
(due to the on-the-fly implementation) does not contain any loop/subroutine
inside. These flat programs required 1 KB ROM for encryption-only version and
2 KB ROM for encryption-decryption version, respectively. To reduce the ROM
size to 512B and 1 KB, we introduced a loop inside MixColumns, having a single
vector-matrix multiplication code, instead of having the entire matrix-matrix
multiplication. As a result, the RAM size of these codes exceeded 64B (Table 3).

On RL78, multiplying {02} can be done with the following simple sequence
of instructions without a branch:

shl a,1
sknc
xor a,#01bh

In Table 4, the first number of each entry denotes encryption cycles, and the
second/third number shows decryption cycles for first/second (and later) block,
respectively. Note that in decryption, the second and later blocks can be faster
than the first block by skipping part of its key scheduling. The right most col-
umn is another implementation for aiming at maximum speed by unrolling non-
critical parts, which exceeded 2048 ROM bytes.

It looks that around 3,800 and 5,700 cycles/block is the fastest speed of AES
encryption and decryption on this processor, respectively.
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Table 3. AES128 encryption-only portfolio.

ROM-Min (486B) ROM-512B ROM-1024B

RAM-128B 7,288 6,622 -
RAM-64B x x 3,855

Table 4. AES128 encryption-decryption portfolio.

ROM-Min (970B) ROM-1024B ROM-2048B Fast (2380B)

RAM-128B 7,743:12,683/10,862 7,339:10,636/9,106 - -
RAM-64B x x 3,917:6,804/5,911 3,865:6,541/5,706

Camellia: The key scheduling part of Camellia has rotate shifts on 128-bit data
whose shift counts are irregular. This irregularity and its FL functions lead to
a penalty in terms of ROM size. However since Camellia has Feistel structure,
its decryption is as fast as encryption and is faster than AES decryption. Main
ROM-size and speed trade-offs come from the number of different S-boxes that
the code contains, which can vary from one (256B) to four (1 KB), and the
number of independent rotate shift routines. Its speed converges to around 4,000
cycles/block for both encryption and decryption.

Several efforts were made to create ROM-minimum codes (800B for
encryption-only and 1024B for encryption-decryption): The P matrix is stored
in an 8-byte ROM table and its computation is done bit-by-bit. Also having
only one rotate shift routine that shifts 128-bit data by one bit, an n-bit rotate
shift is done by running the routine n times. Obviously these methods resulted
in heavy performance penalty, but it should be again noted that we focused on
minimizing ROM size, and hence this is a forget-the-speed option, unlike other
categories.

Clefia: Clefia has two independent 256-byte S-boxes, two 4x4 Matrices and a
240-byte constant value used in its key scheduling part, which causes a heavy

Table 5. Camellia128 encryption-only portfolio.

ROM-Min (800B) ROM-1024B ROM-2048B

RAM-128B 43,182/39,358 5,539/4,631 4,738/3,966
RAM-64B 5,733/4,820 4,918/4,125

Table 6. Camellia128 encryption-Decryption portfolio.

ROM-1024B ROM-2048B

RAM-128B 43,190/39,357:175,417/152,023 4,978/4,125:5,255/4,244
RAM-64B x 5,126/4,337:5,512/4,477
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Table 7. Clefia128 encryption-only portfolio.

ROM-Min (961B) ROM-1024B ROM-2048B

RAM-128B 17,434 12,367 8,208/5,302
RAM-64B x x 9,142/6,194

Table 8. Clefia128 encryption-decryption portfolio.

ROM-Min (1,309B) ROM-2048B

RAM-128B 18,062:18,759 9,399/6,208:9,931/6,740
RAM-64B 11,388/7,768:11,419/7,799

ROM size penalty. However the constant value can be generated on-the-fly. All
implementations except ROM-2048B versions used this technique to reduce their
code size (Tables 5 and 6).

The methodology for implementing Clefia is basically the same as that for
AES. RAM-128B versions are a bit faster than RAM-64B version, which is
mainly because the former codes were able to allocate more and enough memory
for on-the-fly subkey. The ROM-2048B versions have unrolled their most critical
parts but are not still flat programs. We have not written a fastest possible flat
code by accepting more ROM bytes, but it looks that around 5,000 cycles/block
is a maximal performance of this primitive (Tables 7 and 8).

Present: Present is a 64-bit block cipher with 80-bit key, and a 64-byte mem-
ory is enough for its RAM size. On the other hand, this algorithm is heavily
optimized for hardware and in software we have to compute its round func-
tion bit-by-bit. Main design trade-offs come from a 4-bit S-box v.s. an 8-bit S-
box. Our ROM-1024B version for encryption-only and ROM-2048B version for
encryption-decryption have a latter choice. Once an 8-bit output of the S-box is
stored on register x, then the pLayer of Present can be implemented basically
by a repetition of the following simple code:

Table 9. Present80 encryption-only portfolio.

ROM-Min (210B) ROM-512B ROM-1024B

RAM-64B 144,879 122,00 9,007

Table 10. Present80 encryption-decryption portfolio.

ROM-512B ROM-1024B ROM-2048B

RAM-64B 61,634:104,902/60,834 13,883:16,046/14,014 9,007:10,823/8,920
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mov a,reg1
addw ax,ax (shrw ax,1 in decryption)
mov reg2,a

As seen below, its fastest speed is around 9,000 cycles/block, significantly slower
than other lightweight block ciphers. On the other hand, since the structure
of Present is very simple, further reduction of code size is possible at the cost
of speed. Our ROM-minimum implementation requires only 210 ROM bytes
(encryption only), which runs at the speed of 144,879 cycles/block (Tables 9
and 10).

4.2 Hash Functions

SHA: It is obvious that SHA-256/SHA-512 cannot be implemented within
128/256 RAM bytes and we assume that 256/512-byte RAM is given. Then we
have room for storing intermediate message words Wi(0 ≤ i ≤ 15) doubly. This
makes the message scheduling part simpler by arranging the double-size message
buffer as W0||W1||...||W15||W0||W1||...||W15 where the first Wi and the second
Wi always the same. All of our codes of SHA-256/SHA-512 use this method.

For SHA256, our ROM-2048B version has achieved a flat code - its step
function is fully unrolled -, which actually needed only 1,239 ROM bytes. This
ROM size was able to be reduced to 1024B by introducing a byte-wise loop
within the Ch and Maj functions and making frequent xor-to-memory operations
a subroutine. The ROM-minimum version has a single rotate shift routine that
rotates by one bit (as that of Camellia). For SHA512, 2048 ROM bytes were not
enough for creating a flat code and 2,499 bytes were needed. The implementation
method for the ROM-2048B/ROM-minimum version of SHA-512 is the same
as that for the ROM-1024B/ROM-minimum version of SHA-256, respectively
(Tables 11 and 12).

Keccak: Keccak can be implemented within 256 RAM bytes only if a message
size is always within a single block. Hence we assume that 512-byte RAM is given.
Our flat code slightly exceeded 2048B, and in order to create a smaller code, we
had to deal with reduction of a total of 24 different rotate shift operations in the
ρ function. Our ROM-1024B code has a 1-bit rotate shift routine and m-byte

Table 11. Portfolio of SHA-256.

ROM-Min (796B) ROM-1024B ROM-2048B

RAM-256B 216,775/216,393 41,175/40,793 25,265/25,143

Table 12. Portfolio of SHA-512.

ROM-Min (1,285B) ROM-2048B Fast (2499B)

RAM-512B 819,034/818,268 81,610/80,844 66,008/65,562
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Table 13. Portfolio of Keccak.

ROM-Min (453B) ROM-512B ROM-1024B ROM-2048B

RAM-512B 516,528/517,022 237,960/238,454 155,209/155,703 118,705/119,171

Fast (2,214B)

RAM-512B 110,185/110,651

rotate shift routines (1 ≤ m ≤ 7) independently, and a given n = 8n1+n2-bit
rotate shift is done by carrying out the n1-byte shift routine and an n2-time
repetition of the 1-bit shift routine. Similarly our ROM-512B routine has a 1-
byte rotate routine and a 1-bit rotate routine, and an n-bit shift is made by
an n1-time repetition of the former and an n2-time repetition of the latter. The
ROM-minimum version has a 1-bit rotate routine only and repeating it n times
creates an n-bit rotate shift (Tables 13, 14 and 15).

Skein: An advantage of Skein is that it allows a very compact ROM/RAM
implementation. 2048 ROM bytes and 256 RAM bytes are enough for creating
a flat implementation of Skein-256. The methodology for reducing its ROM size
is basically the same as that of Keccak. Our ROM-1024B/512B/Min versions
correspond to Keccak’s ROM-1024B/512B/Min versions, respectively.

For Skein-512, our ROM-2048B code contains n1-byte rotate routines (1 ≤
n1 ≤ 7) and n2-bit rotate routines (1 ≤ n2 ≤ 7) independently, and our ROM-
1024B code uses four rotate routines (1-byte, 3-byte, 1-bit and 5-bit shifts) to
create a given n-bit rotation. The ROM-512B version has a 1-byte rotate routine
and a 1-bit rotate routine.

Grøstl: The most time-consuming part of Grøstl is obviously a computation of
MixBytes. To minimize speed penalty, reducing this part must be the last option.
Most of our ROM-2048B/1024B programs have an unrolled 8-dimensional vector-
matrix multiplication code and ROM size reduction comes from AddRoundConst.
Special implementations were made for the RAM-512B versions Grøstl-256.
In these programs, the 256-byte S-box is copied from ROM to RAM before

Table 14. Portfolio of Skein-256.

ROM-Min (457B) ROM-512B ROM-1024B ROM-2048B

RAM-256B 823,806/823,038 121,590/120,822 66,834/66,066 46,747/46,299

Table 15. Portfolio of Skein-512.

ROM-Min (457B) ROM-512B ROM-1024B ROM-2048B

RAM-256B 823,806/823,038 121,590/120,822 66,834/66,066 46,747/46,299
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Table 16. Portfolio of Grøstl-256.

ROM-Min (615B) ROM-1024B ROM-2048B

RAM-512B 95,271/63,286 73,011/47,746
RAM-256B 164,664/111,349 99,625/67,126 77,365/51,586

Table 17. Portfolio of Grøstl-512.

ROM-Min (672B) ROM-1024B ROM-2048B

RAM-512B 452,122/306,713 277,626/188,889 215,634/144,159

starting the first block for better performance, since reading from RAM is faster
than reading from ROM. As a result, we achieved a small gain of performance
(Tables 16 and 17).

In the following table, the cycle count of the output transformation Ω is
included in that of the first block.

5 Comparative Figures

This section briefly discusses performance comparison of our target algorithms.
Throughout this section, left and right graphs correspond to low and high
resources (1024 ROM bytes or less/2048 ROM bytes), respectively. The hori-
zontal axis denotes message length (bytes) and the vertical axis shows speed
(cycles/byte). We have excluded ROM-minimum implementations since they
are not optimized for operation speed. Note that only points make sense as
performance data. Lines are added only for visibility of these graphs.

Figure 1 shows performance comparison of encryption-only programs of block
ciphers. Since AES and Present have reached their maximal speed with 1 KB
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ROM, they are also included in the right graph. As easily seen, AES and Camellia
are generally good choices for both low and high resources, and if ROM size is
limited to 512 bytes, our options are limited to AES or Present.

Figure 2 shows performance comparison of encryption-decryption programs
of block ciphers, where (E)/(D) denotes encryption/decryption, respectively.
Again AES achieves a good performance. In this case, if a given ROM size is
1 KB, Camellia and Clefia are excluded. Note that however if 2 KB ROM is given,
Camellia’s decryption speed outperforms AES.

Figure 3 shows performance comparison of 256-bit hash functions. Interest-
ingly, SHA-256 is fastest for both low and high resource categories assuming
1 KB ROM is given. However SHA-256 is excluded and Keccak-256 and Skein-
256 survive when ROM size is limited to 512 bytes.

Figure 4 shows performance comparison of 512-bit hash functions. The per-
formance of Keccak-512 (Keccak[r = 576,c = 1024]) was derived from that of
Keccak-256 (Keccak[r = 1088,c = 512]), since these codes can be almost the
same except for input block sizes. This case Skein-512 is fastest on low resources
but SHA-512 again remains a good choice when 2 KB ROM is available. The
SHA-3 winner Keccak is not a high speed primitive, but is a low memory option
with Skein on this processor.

6 Concluding Remarks

We here mention a couple of possibilities to further improve performance on
this processor. As described in Sect. 3.4, we did not access any short address
RAM area to maintain portability of our programs. In general it is expected
that utilizing this area could lead to a shorter code, but in our case, its gain
seems to be limited unless we aim at a new ROM-minimum record.

Another possibility for speeding-up is to copy constant ROM data to RAM.
RL78 takes one cycle to read a RAM byte/word to register, but takes four cycles
to read from ROM. So if we copy ROM data to RAM before starting the routine
or in the first block, then the overall performance could be improved in return for
additional RAM resources. We tried this implementation in RAM-512B versions
of Grøstl only, which resulted in 10 % performance improvement, but obviously
there are many possibilities of applying this method to other primitives.

Also we have found that minimizing a ROM size is a tricky puzzle. Reducing
10 bytes often makes a code 10 times slower. While our strategy in minimizing
the ROM size was just to ignore speed, there must exist other various trade-
offs between size and speed in exploring this extreme goal. Going deeper to this
direction looks like another interesting topic.
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Appendix: Summary of Our Implementation Results

Block Ciphers

Category AES128 Enc-only AES128 Enc,Dec
ROM RAM ROM RAM cycles/block ROM RAM cycles/block
1 KB 128B - - - 1,024 84 7,339 : 10,636/9,106
512B 128B 510 78 6,622 x x x
Min 128B 486 78 7,288 970 84 7,743 : 12,683/10,862
Fast 64B - - - 2,380 64 3,865 : 6,541/5,706
2 KB 64B - - - 1,989 64 3,917 : 6,804/5,911
1 KB 64B 1,021 60 3,855 x x x

Category Camellia128 Enc-only Camellia128 Enc,Dec
ROM RAM ROM RAM cycles/block ROM RAM cycles/block

2KB 128B 2,004 70 4,738/3,966 2,047 74 4,978/4,125 : 5,255/4,244

1KB 128B 1,023 70 5,539/4,631 1,020 78 43,190/39,357 : 175,417/152,023

Min 128B 800 74 43,182/39,358 x x x

2KB 64B 2,037 64 4,918/4,125 2,033 64 5,216/4,337 : 5,512/4,477

1KB 64B 1,024 64 5,733/4,820 x x x

Category Clefia128 Enc-only Clefia128 Enc,Dec
ROM RAM ROM RAM cycles/block ROM RAM cycles/block
2 KB 128B 2,006 94 8,208/5,302 2,040 86 9,399/6,208 : 9,931/6,740
1 KB 128B 1,024 74 12,367 x x x
Min 128B 961 76 17,434 1,309 76 18,062 : 18,759

2 KB 64B 2,037 64 9,142/6,194 2,026 64 11,388/7,768 : 11,419/7,799

Category Present80 Enc-only Present80 Enc,Dec
ROM RAM ROM RAM cycles/block ROM RAM cycles/block
2 KB 64B - - - 1,855 48 9,007 : 10,823/8,920
1 KB 64B 897 42 9,007 1,009 54 13,883 : 16,046/14,014
512B 64B 510 46 12,200 512, 62 61,634 : 104,902/60,834
Min 64B 210 54 144,879

Hash functions

Category SHA256 SHA512
ROM RAM ROM RAM cycles/block ROM RAM cycles/block
Fast 512B - - - 2,499 420 66,008/65,562
2 KB 512B - - - 2,034 428 81,610/80,844
Min 512B - - - 1,285 430 819,034/818,268

2 KB 256B 1,239 216 25,265/25,143 x x x
1 KB 256B 1,016 224 41,175/40,793 x x x
Min 256B 796 224 216,775/216,393 x x x
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Category Keccak256
ROM RAM ROM RAM cycles/block
Fast 512B 2,214 392 110,185/110,651
2 KB 512B 2,017 392 118,705/119,171
1 KB 512B 1,024 392 155,209/155,703
512B 512B 512 392 237,960/238,454
Min 512B 453 392 516,528/517,022

Category Skein256 Skein512
ROM RAM ROM RAM cycles/block ROM RAM cycles/block
2 KB 256B 1,615 166 20,156/19,772 1,921 254 46,747/46,299
1 KB 256B 1,015 166 30,524/30,140 1,024 252 66,834/66,066
512B 256B 502 144 42,566/42,182 509 252 121,590/120,822
Min 256B 396 144 122,348/121,964 457 252 823,806/823,038

Category Grøstl256 Grøstl512
ROM RAM ROM RAM cycles/block ROM RAM cycles/block
2 KB 512B 1,481 476 73,011/47,746 2,044 412 215,634/144,159
1 KB 512B 1,023 476 95,271/63,286 1,015 412 277,627/188,889
Min 512B 672 412 452,122/306,713

2 KB 256B 1,471 220 77,365/51,586 x x x
1 KB 256B 1,019 220 99,625/67,126 x x x
Min 256B 615 230 164,664/111,349 x x x
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Abstract. Masking is a widely used countermeasure to protect block
cipher implementations against side-channel attacks. The principle is to
split every sensitive intermediate variable occurring in the computation
into d + 1 shares, where d is called the masking order and plays the
role of a security parameter. A masked implementation is then said to
achieve dth-order security if any set of d (or less) intermediate variables
does not reveal key-dependent information. At CHES 2010, Rivain and
Prouff have proposed a higher-order masking scheme for AES that works
for any arbitrary order d. This scheme, and its subsequent extensions,
are based on an improved version of the shared multiplication processing
published by Ishai et al. at CRYPTO 2003. This improvement enables
better memory/timing performances but its security relies on the refresh-
ing of the masks at some points in the algorithm. In this paper, we show
that the method proposed at CHES 2010 to do such mask refreshing
introduces a security flaw in the overall masking scheme. Specifically, we
show that it is vulnerable to an attack of order ⊕d/2√ + 1 whereas the
scheme is supposed to achieve dth-order security. After exhibiting and
analyzing the flaw, we propose a new solution which avoids the use of
mask refreshing, and we prove its security. We also provide some imple-
mentation trick that makes our proposed solution, not only secure, but
also faster than the original scheme.

1 Introduction

In the late nineties, attacks called Side Channel Analysis (SCA for short) have
been exhibited against cryptosystems implemented in embedded devices. Since
the seminal works [7,8], they have been refined and, in particular, the ini-
tial principle has been generalized in order to exploit several leakage points
simultaneously. This led to the introduction of the higher-order SCA concept.
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Those attacks are based on leakage observations resulting from the handling of
several (say d) intermediate variables during the cryptosystem processing. One
way to make them ineffective is to randomize the algorithm such that the proba-
bility distribution of any vector of less than d observations is independent of the
key. To perform this randomization, a standard technique is to apply Boolean
masking [2]. It consists in replacing the manipulation of every secret-dependent
intermediate variable x (called sensitive variable) by that of d+1 shares x0, . . . ,
xd satisfying x0 ⊕ x1 ⊕ · · · ⊕ xd = x. Usually, the d shares x1, . . . , xd (called the
masks) are randomly picked up and the last one x0 (called the masked variable)
is processed such that it satisfies the previous equality. When d random masks
are involved per sensitive variable, the masking is said to be of order d and every
d-tuple of intermediate variables of the computation is statistically independent
of any sensitive variable. In fact, only attacks exploiting the leakages related
to d + 1 intermediate variables may succeed in retrieving sensitive information.
Since the efficiency of such an attack becomes impractical as d increases [2], the
masking order is usually considered as a sound criterion to refer to the robustness
against SCA.

When applying the principle of masking to secure a block cipher implemen-
tation, a so-called masking scheme must be designed to operate on the masks
and the masked data. It must ensure that the final shares enable the recovery of
the expected ciphertext, while satisfying the dth-order security property for the
chosen order d. When satisfied, the latter property guarantees that no attack
of order lower than or equal to d is possible. The main difficulty in designing a
Boolean masking scheme lies in masking the non-linear parts of the cipher, the
so-called s-boxes.

The first scheme achieving dth-order security for an arbitrary chosen d has
been designed by Ishai, Sahai and Wagner in [5]. The here called ISW scheme
consists in masking the Boolean representation of an algorithm which is com-
posed of logical operations NOT and AND. Securing a NOT for any order d
is straightforward since x =

⊕
i xi implies NOT(x) = NOT(x0) ⊕ x1 · · · ⊕ xd.

The main contribution of [5] is a method to secure the AND operation for any
arbitrary order d (the description of this scheme is recalled in Sect. 2). A direct
application of ISW scheme to secure an s-box in software would consist in taking
the Boolean representation of the s-box and to process every logical operation
successively in a masked way. Since the Boolean representation of common s-
boxes involves a huge number of logical operations, a direct application of [5] is
often not possible in practice. A solution to deal with this efficiency issue has
first been proposed by Rivain and Prouff in [10] for the AES (it will be called
RP Scheme in the sequel), and then extended to any block cipher by Carlet et
al. in [1]. Those works start from the observation that the ISW scheme can be
extended to secure a multiplication over any finite field. The core idea is then to
represent the s-box to protect as a polynomial function over a finite field and to
secure the polynomial evaluation thanks to the ISW scheme.

Since the processing of affine transformations is performed by operating on
each share separately, proving its dth-order security is straightforward as noticed
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in [5,10]. Actually, only the secure processing of the multiplication a × b from
the sharings (a0, a1, · · · , ad) and (b0, b1, · · · , bd) is challenging. In [5], the ISW
scheme is shown to be secure at the order d/2, meaning that a dth-order security
is obtained from a masking of order 2d. As the complexity of ISW is quadratic in
the number of shares, such a doubling of the masking order makes the resulting
implementation roughly 4 times slower. To avoid such a penalty, the authors
of [10] additionally assume that the multiplication operands sharings involve
mutually independent random masks and they prove that ISW scheme is actually
dth-order secure under the latter condition.1 To satisfy this independence when
a multiplication of the form a × g(a) occurs in a secure s-box processing, with
g being a linear function, the authors of [10] suggest to refresh the mask of
g(a) before performing the secure multiplication a × g(a). To do so, they use a
so-called mask-refreshing procedure which from the sharing of g(a), computes a
new sharing of with fresh random values. Such a procedure is mandatory in [10]
as well as in the subsequent schemes [1,6] to deduce the dth-order security of the
whole s-box processing from that of the secure multiplications.

Our Contribution. In this paper, we show that the actual proposal of mask-
refreshing procedure in [10] fails in reaching its goal and introduces a security
flaw in the overall masking scheme. In fact, even if both the mask-refreshing
procedure and the ISW multiplication are secure at order d, their composition is
insecure and it is defeated by an attack of order ∃d/2→ + 1. After exhibiting and
analyzing the flaw, we propose a secure solution which avoids the use of mask
refreshing, and we prove its dth-order security. Our solution consists in adapting
ISW scheme to directly process, from a sharing of a, the multiplications of the
form a×g(a) with g being a linear function. We also provide an improvement that
allows to avoid costly multiplications over F2n in this context. As a consequence,
the resulting shared multiplication for a × g(a) is not only secure but also more
efficient than the original scheme proposed in [10].

Paper Organisation. In Sect. 2, we recall the ISW scheme and the existing
solutions to mask a full s-box computation at any order d. The flaw from the
composition of the mask-refreshing procedure and the secure multiplication is
exhibited and analyzed in Sect. 3. Then, we describe our new algorithm and
prove its dth-order security in Sect. 4. Eventually, implementation results are
provided in Sect. 5 to report on the efficiency of our improved algorithm when
plugged in RP Scheme.

2 Higher-Order Masking Schemes for S-Boxes

This section presents the different schemes published in the literature to mask
an s-box processing at any order d. We first recall the ISW scheme [5] which is
the starting point of the different solutions. Then we detail the RP Scheme for
1 Specifically [10] requires that every 2d-tuple composed of d elements from (ai)i and

of d elements from (bi)i is uniformly distributed and independent of any sensitive
variable.
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the AES s-box [10]. Eventually, we briefly recall the improvement proposed by
Kim et al. [6], and the extension put forward by Carlet et al. [1].

Ishai-Sahai-Wagner’s Scheme. Let a and b be binary values from F2 and let
(ai)0�i�d and (bi)0�i�d be dth-order sharings of a and b respectively. To securely
compute a sharing of c = a × b from (ai)i and (bi)i, the ISW method works as
follows:2

1. For every 0 � i < j � d, pick up a random bit ri,j .
2. For every 0 � i < j � d, compute rj,i = (ri,j ⊕ aibj) ⊕ ajbi.
3. For every 0 � i � d, compute ci = aibi ⊕ ⊕

j ∈=i ri,j .

It can be checked that the obtained shares form a sound encoding of c. Namely,
we have:

⊕d
i=0 ci =

( ⊕d
i=0 ai

)( ⊕d
i=0 bi

)
= ab = c. In [5] it is moreover shown

that the above computation achieves security at order d/2.

Rivain and Prouff’s Scheme. In [10], the authors proposed to use the ISW
scheme to secure a multiplication c = a × b over F2n for any n greater than
1. For completeness sake, we recall the obtained algorithm hereafter, where the
multiplication over F2n is denoted √.

Algorithm 1. SecMult

Input: shares ai satisfying
⊕

i ai = a, shares bi satisfying
⊕

i bi = b
Output: shares ci satisfying

⊕
i ci = a ≥ b

1: for i = 0 to d do
2: for j = i + 1 to d do
3: ri,j →$

F2n

4: rj,i → (ri,j ≤ ai ≥ bj) ≤ aj ≥ bi
5: end for
6: end for
7: for i = 0 to d do
8: ci → ai ≥ bi
9: for j = 0 to d, j ∈= i do ci → ci ≤ ri,j

10: end for
11: return (c0, c1, . . . , cd)

As shown in [10], for Algorithm 1 to be secure at order d, the masks (ai)i�1

and (bi)i�1 in input must be mutually independent. When this condition is not
satisfied, the authors suggest to refresh the masks of one of the operands prior to
the secure multiplication processing. For such a purpose, they suggest to apply
the following mask-refreshing procedure.
2 The use of brackets indicates the order in which the operations are performed, which

is mandatory for security of the scheme.
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Algorithm 2. RefreshMasks

Input: shares (zi)i satisfying
⊕

i zi = z
Output: shares (z′

i)i satisfying
⊕

i z′
i = z

1: (z′
0, z

′
1, . . . , z

′
d) → (z0, z1, . . . , zd)

2: for i = 1 to d do
3: ri →$

F2n

4: z′
0 → z′

0 ≤ ri
5: z′

i → z′
i ≤ ri

6: end for
7: return (z′

0, z
′
1, . . . , z

′
d)

In [10], Algorithms 1 and 2 are eventually involved to secure the whole expo-
nentiation to the power 254 over F256 (that is the non-linear part of the AES
s-box). We recall the complete exponentiation algorithm hereafter:

Algorithm 3. SecExp254
Input: shares xi satisfying

⊕
i xi = x

Output: shares yi satisfying
⊕

i yi = x254

1: for i = 0 to d do zi → x2
i //

⊕
i zi = x2

2: (z0, z1, . . . , zd) → RefreshMasks(z0, z1, . . . , zd)
3: (y0, y1, . . . , yd) → SecMult

(
(x0, x1, . . . , xd), (z0, z1, . . . , zd)

)
//
⊕

i yi = x3

4: for i = 0 to d do wi → y4
i //

⊕
i wi = x12

5: (w0, w1, . . . , wd) → RefreshMasks(w0, w1, . . . , wd)
6: (y0, y1, . . . , yd) → SecMult

(
(y0, y1, . . . , yd), (w0, w1, . . . , wd)

)
//
⊕

i yi = x15

7: for i = 0 to d do yi → y16
i //

⊕
i yi = x240

8: (y0, y1, . . . , yd) → SecMult
(
(y0, y1, . . . , yd), (w0, w1, . . . , wd)

)
//
⊕

i yi = x252

9: (y0, y1, . . . , yd) → SecMult
(
(y0, y1, . . . , yd), (z0, z1, . . . , zd)

)
//
⊕

i yi = x254

Kim-Hong-Lim’s Improvement. In [6], Kim et al. propose an alternative
to Rivain-Prouff’s scheme based on the so-called tower-field representation of
the AES s-box from [11]. The exponentiation is performed by representing the
field F256 as a quadratic extension of F16. In such a way, the AES s-box can
be computed with 5 multiplications over F16 rather than 4 multiplications over
F256. Even if the number of field multiplications is greater than in the orginal
scheme, multiplications over F16 can be tabulated, which eventually leads to a
significant timing improvement.

Carlet-Goubin-Prouff-Quisquater-Rivain’s Scheme. In [1], Carlet et al.
extend [10] to design a higher-order masking scheme for any nonlinear func-
tion from {0, 1}n to {0, 1}m with m � n and n small (typically n ∈ {4, 6, 8}).
Their approach is to express such an s-box as a sequence of affine functions over
F
n
2 and multiplications over F2n . Such a strategy is always possible since any
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function from {0, 1}n to {0, 1}m (with m � n) can be represented by a polyno-
mial

⊕2n−1
i=0 Δix

i in F2n [x] and the Δi can be obtained from the s-box look-up
table by applying Lagrange Interpolation Theorem. As for the secure exponen-
tiation (Algorithm 3), the secure evaluation algorithms proposed in [1] involve
a mask-refreshing procedure to change the sharing of some intermediate results
before applying the multiplication scheme. Once again, each sub-routine of the
evaluation procedure (affine transformation, multiplication processing and mask
refreshing) is provably dth-order secure and the security of the whole function
evaluation is essentially deduced from those local securities.

3 A Flaw from the Mask-Refreshing Procedure

Even though Algorithms 1 and 2 are both secure against dth-order SCA when
considered separately, we show hereafter that their sequential application, as
done in Steps 2–3 and Steps 5–6 of Algorithm 3, is not. Namely, we exhibit
a tuple of ∃d/2→ + 1 intermediate variables that jointly depend on the sensitive
input. Hence, for d > 1, this flaw invalidates the claim that the schemes proposed
in [1,6,10] achieve dth-order security.

To exhibit the flaw, we assume that the attacked s-box evaluation procedure
contains the following sequence:

(z0, z1, · · · , zd) ⇒ (g(x0), g(x1), . . . , g(xd)),
(z∗

0, z
∗
1, · · · , z∗

d) ⇒ RefreshMasks((z0, z1, · · · , zd)),
(y0, y1, · · · , yd) ⇒ SecMult((x0, x1, · · · , xd), (z∗

0, z
∗
1, · · · , z∗

d)),

with (xi)i, being a sharing of some sensitive variable x and with g being some
F2-linear function. Two examples of occurrence of this sequence can be found
in Algorithm 3: from Step 1 to Step 3 (with the function g corresponding to a
squaring over F256), and from Step 4 to Step 6 (with the function g corresponding
to a raising to the 4 over F256). The sequence above also occurs in the schemes
proposed in [1,6]

For the sake of clarity, we only consider the case where d is even (in the
odd case an extra intermediate variable would be needed). The flaw arises from
a particular intermediate variable of the mask refreshing combined with d/2
intermediate variables of the multiplication. Namely, the targeted intermediate
variables are:

– the variable z∗
0 just after the fourth step during the (d/2)th iteration of the

loop in RefreshMasks (Algorithm 2), denoted γ0 hereafter, and which satisfies

γ0 = z0 ⊕ ⊕d/2
i=1 ri

= z ⊕ ⊕d
i=1 zi ⊕ ⊕d/2

i=1 ri
= z ⊕ ⊕d/2

i=1(zi ⊕ ri ⊕ zd/2+i)
= g(x) ⊕ ⊕d/2

i=1

(
g(xi) ⊕ ri ⊕ g(xd/2+i)

)
,

(1)
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– the product z∗
i √ xj arising at Step 4 of SecMult (Algorithm 1 called on (xi)i

and (z∗
i)i) for every i ∈ {1, 2, . . . , d/2} and j = i + d/2, denoted γi hereafter,

and which satisfies

γi = z∗
i √ xd/2+i = (zi ⊕ ri) √ xd/2+i = (g(xi) ⊕ ri) √ xd/2+i. (2)

In a nutshell, the intermediate variable γi = (g(xi) ⊕ ri) √ xd/2+i is statistically
dependent on the sum g(xi) ⊕ ri ⊕ g(xd/2+i) involved to mask z = g(x) in the
expression of γ0 (see (1)). Therefore, the (d/2)-tuple (γi)i defined in (2) provides
information on the d/2 masks g(xi)⊕ ri ⊕ g(xd/2+i) and this information can be
used to partially unmask γ0. In other terms, the family of d/2 + 1 intermediate
variables γ0, γ1, . . . , γd/2 depends on the sensitive variable x.

In the context of side-channel attacks, the physical leakage of an implemen-
tation does not reveal the exact values of the intermediate variables but a noisy
function of them. That is why, and according to the methodology described in
[12], we analyze hereafter the quantity of information about x that an attacker
can expect to retrieve from noisy leakages on the γi, and we report the results
of some standard side-channel attack simulations in this context.

Information Theoretic Evaluation. To estimate the sensitive information
leakage corresponding to the identified flaw, we conduct hereafter an information
theoretic analysis for d = 2 (i.e. data are split in 3 shares). For comparison
purpose, we also conduct it for the sensitive information leakage corresponding
to a first-order and second-order Boolean masking. To this purpose we consider
that the leakage related to a variable manipulation corresponds to the Hamming
weight of the variable (denoted HW(·)) affected by an independent Gaussian
noise.

Let (Bi)i=1,2,3, denote three mutually independent random variables with
zero mean and standard deviation α and let (Mi)i=1,2,3 be three mutually inde-
pendent random variables with uniform distribution over F256. For the three
considered cases, we computed the mutual information I(X;L) between the tar-
geted sensitive variable X ∈ F256 and the vector of leakages L = (Li)i defined
as follows depending on the case:

1. For the flaw described in this paper with d = 2 and g being the squaring in
F256, we have L = (L1, L2) such that:

L1 = HW(X2 ⊕ M2
1 ⊕ M2

2 ⊕ M3) + B1,
L2 = HW(M2 √ (M2

1 ⊕ M3)) + B2.

2. For the classical third-order leakage on a second-order Boolean masking, we
have L = (L1, L2, L3) where

L1 = HW(X ⊕ M1 ⊕ M2) + B1,
L2 = HW(M1) + B2,
L3 = HW(M2) + B3.
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Fig. 1. Mutual information I(X;L) over an increasing σ.

3. For the classical second-order leakage on a first-order Boolean masking, we
have L = (L1, L2) where

L1 = HW(X ⊕ M1) + B1,
L2 = HW(M1) + B2.

The results are given in Fig. 1. We see that, for d = 2 and g = (·)2, the flaw
described in this paper delivers only small information about the sensitive vari-
able. This can be explained by the algebraic complexity of the relation between
the sensitive variable and the two leakages. However, the progression of the infor-
mation leakage as α grows is comparable to that of the classical second-order
leakage. This means that the security of the flawed second-order masking scheme
tends towards the security of a first-order masking scheme as the amount of noise
increases.

Attack Simulations. We have analyzed above the information leakage result-
ing from the exhibited flaw in comparison to unflawed first-order masking and
second-order masking. However, we did not discuss the capacity of an attacker
to exploit this information leakage using classical side-channel attack techniques.
To fill this gap we applied two classical side-channel distinguishers on simulated
traces using the introduced leakage model for different values of noise standard
deviations. Specifically we launched a second-order Correlation Power Analy-
sis (CPA for short) and a second-order Mutual Information Analysis (MIA for
short). The second-order CPA was performed by means of the centered product
combining function and its associated optimal prediction function as described
in [9], whereas the second-order MIA used an histogram-based bivariate pdf esti-
mation [4]. None of these attacks reached a success rate greater than 20% when
applied on the exhibited second-order flaw for a number of leakage measure-
ments up to one million, even when the noise component was null (i.e. α = 0).
These results show that although the information leakage is comparable to a
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classical leakage of order ∃d/2→ + 1 over an increasing noise, it seems difficult
to turn it into an efficient key-recovery using common side-channel attack tools.
It is however not excluded that a more powerful attacker using advanced side-
channel techniques (e.g. multivariate and/or profiling attacks) could properly
exploit the exhibited information leakage.

4 A Secure Solution

In the previous section we have exhibited a flaw of order ∃d/2→ + 1 in the dth-
order masking scheme proposed in [10] (and its extensions [1,6]). This flaw arises
from the mask-refreshing procedure involved in the secure computation of the
multiplications of the form x√ g(x) (where g is a linear function). Although the
resulting information leakage is small and seems difficult to exploit by standard
side-channel attack techniques, it is asymptotically stronger than the information
from a proper dth-order secure masking scheme. In order to avoid such a security
flaw, we propose in this section a new solution for the secure masked processing
of multiplications of the form x √ g(x).

Let a and b be two sensitive variables such that b = g(a) for a F2-linear
function g. When such a relation stands for a and b in Algorithm 3, their corre-
sponding sharings (ai)i and (bi)i before the call to the mask-refreshing procedure
satisfy bi = g(ai) for every i ∈ [0; d]. By exploiting this property, the idea is to
modify the secure multiplication algorithm in such a way that the masks refresh-
ing is not longer needed.

Before introducing our solution, let us introduce the function f defined from
F2n × F2n to F2n by

f(x, y) = x √ g(y) ⊕ g(x) √ y,

where √ denotes the multiplication over F2n . It can be checked that the F2-
linearity of g implies the F2-bilinearity of f . That is, for every x, y, r ∈ F2n , f
satisfies:

f(x, y) = f(x ⊕ r, y) ⊕ f(r, y) = f(x, y ⊕ r) ⊕ f(x, r). (3)

When bi equals g(ai) for every i, the value rj,i computed at Step 4 of the
ISW Scheme (Algorithm 1) satisfies:

rj,i = aibj ⊕ ajbi ⊕ ri,j = f(ai, aj) ⊕ ri,j ,

where ri,j is a freshly generated random value. One can then compute rj,i by
evaluating f on (ai, aj) and by adding the random value ri,j . However, f(ai, aj)
cannot be directly computed since it would leak on two different shares of a
at the same time. To avoid such a leakage we use an additional fresh random
value, denoted r∗

i,j , to split the computation of f(ai, aj) into the computation of
f(ai, aj ⊕ r∗

i,j) and f(ai, r
∗
i,j). That is, the variable rj,i is computed as:

rj,i =
(
ri,j ⊕ f(ai, r

∗
i,j)

) ⊕ f(ai, aj ⊕ r∗
i,j),
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where the brackets indicate the order in which the operations are processed.
Doing so, we avoid any joint leakage on ai and aj . We give hereafter the algo-
rithmic description of our solution.

Algorithm 4. Secure evaluation of h : x ∈≈ x √ g(x)
Input: shares (ai)i such that

⊕
i ai = a

Output: shares ci satisfying
⊕

i ci = a ≥ g(a) for some F2-linear function g
1: for i = 0 to d do
2: for j = i + 1 to d do
3: ri,j →$

F2n

4: r′
i,j →$

F2n

5: t → ri,j ≤ ai ≥ g(r′
i,j)

6: t → t ≤ (r′
i,j ≥ g(ai)) // t = ri,j ≤ f(ai, r

′
i,j)

7: t → t ≤ (ai ≥ g(aj ≤ r′
i,j))

8: t → t ≤ ((aj ≤ r′
i,j) ≥ g(ai)) // t = ri,j ≤ f(ai, aj)

9: rj,i → t
10: end for
11: end for
12: for i = 0 to d do
13: ci → ai ≥ g(ai)
14: for j = 0 to d, j ∈= i do ci → ci ≤ ri,j
15: end for

In Algorithm 4, the computation of rj,i involves four additions and four
multiplications over F2n . When n is small enough (e.g. n = 4), the multiplication
over F2n can be tabulated in a look-up table with 22n n-bit elements. However for
greater values of n (e.g. n = 6, n = 8), the size of such a table becomes prohibitive
and other strategies must be considered to implement the multiplication. A
typical choice is to use so-called log/alog tables (see for instance [3]), but the
resulting multiplication is less efficient. We show hereafter how the bilinearity of
f can be exploited to prevent such an efficiency loss.

Let us first introduce the function h mapping F2n to F2n and satisfying
h(x) = x√g(x). The F2-linearity of g then implies the following relation between
f and h:

f(x, y) = h(x ⊕ y) ⊕ h(x) ⊕ h(y),

for every x, y ∈ F2n . Then (3) gives:

f(x, y) = h(x ⊕ r ⊕ y) ⊕ h(x ⊕ r) ⊕ h(y ⊕ r) ⊕ h(r),

for every x, y, r ∈ F2n . Our approach is then to store a look-up table for h and
to compute rj,i as:

rj,i =
(((

ri,j ⊕ h(ai ⊕ r∗
i,j)

) ⊕ h(r∗
i,j ⊕ aj)

) ⊕ h(ai ⊕ r∗
i,j ⊕ aj)

) ⊕ h(r∗
i,j).

We give the algorithmic description of our improved solution in Algorithm 5.
Note that the use of brackets in Step 8 indicates the order in which the operations
are processed.
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Algorithm 5. Secure evaluation of h : x ∈≈ x √ g(x)
Input: shares (ai)i such that

⊕
i ai = a, a look-up table for h : x ⊗≡ x ≥ g(x)

Output: shares ci satisfying
⊕

i ci = a ≥ g(a) for some F2-linear function g
1: for i = 0 to d do
2: for j = i + 1 to d do
3: ri,j →$

F2n

4: r′
i,j →$

F2n

5: t → ri,j
6: t → t ≤ h(ai ≤ r′

i,j)
7: t → t ≤ h(aj ≤ r′

i,j)
8: t → t ≤ h

(
(ai ≤ r′

i,j) ≤ aj

)
9: t → t ≤ h(r′

i,j) // t = f(ai, aj) ≤ ri,j
10: rj,i → t
11: end for
12: end for
13: for i = 0 to d do
14: ci → h(ai)
15: for j = 0 to d, j ∈= i do ci → ci ≤ ri,j
16: end for

In Sect. 5, we provide implementation results to compare the above solution
when plugged in the RP Scheme (Steps 1 to 3 and Steps 4 to 6 in Algorithm 3)
to the original scheme using mask refreshing. We see that the scheme using our
new solution is not only secure, but also faster than the original scheme.

The only drawback of the new scheme is to require more random generations.
Specifically it needs d(d + 1) random field elements versus d (mask refreshing)
plus d(d + 1)/2 (secure multiplication) for the original scheme. However, the
mask refreshing procedure involved in the original scheme is flawed and it is
not clear whether it could be patched with less than d(d + 1)/2 random field
elements.

Security Proof. We prove hereafter that our solution achieves dth-order secu-
rity. Namely we show that any d-tuple of intermediate variables of Algorithm 4
is independent of the sensitive variable a. The (very similar) proof for Algorithm
5 is given in appendix.

Our proof consists in constructing a strict subset I of indices in [0; d] such
that the distribution of any d-tuple (v1, v2, . . . , vd) of intermediate variables of
Algorithm 4 can be perfectly simulated from a|I := (ai)i⊕I . This will prove the
dth-order security since, by definition, a|I is independent of a as long as the
cardinality of I is strictly smaller than d.

By construction, it can first be checked that an intermediate variable vh of
Algorithm 4 necessarily belongs to one of the five following categories:

1. ai, g(ai) and ai √ g(ai)
2. r∗

i,j , g(r∗
i,j), ai √ g(r∗

i,j) and r∗
i,j √ g(ai),

3. aj ⊕ r∗
i,j , g(aj ⊕ r∗

i,j), ai √ g(aj ⊕ r∗
i,j) and (aj ⊕ r∗

i,j) √ g(ai)
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4. ri,j , f(ai, r
∗
i,j) ⊕ ri,j , f(ai, r

∗
i,j) ⊕ ai √ g(aj ⊕ r∗

i,j) ⊕ ri,j and f(ai, aj) ⊕ ri,j

5. ai √ g(ai) ⊕ ⊕j0
j=0(f(aj , ai) ⊕ rj,i) with j0 � i − 1 and

ai √ g(ai) ⊕ ⊕i−1
j=0(f(aj , ai) ⊕ rj,i) ⊕ ⊕j0

j=i+1 ri,j with i < j0 � d

For the sake of clarity we use the notations ri,j and rj,i in the above list only
for fresh random values (i.e. the ri,j are always such that i < j and the rj,i are
always such that j < i).

To construct the set I, we proceed as follows. Initially, I is empty. First,
for every vh in category 1 or 5, we add i to I. Then, for the remaining vh (in
categories 2, 3 and 4), we add j to I if i is already in I and we add i to I
otherwise.

Now that the set I has been determined – and note that since there are at
most d intermediate variables vh, the cardinality of I can be at most d – we show
how to perfectly simulate the d-tuple (v1, v2, . . . , vd) using only the components
of a|I . First, we assign a random value to every ri,j and r∗

i,j entering in the
computation of any vh (as done in Steps 3 and 4 of Algorithm 4). Then every
intermediate variable vh is simulated as follows.

1. If vh is in category 1, then i ∈ I and vh is directly computed from ai.
2. If vh is in category 2, then i ∈ I and vh is directly computed from ai and r∗

i,j .
3. If vh is in category 3, then i ∈ I and two possible cases occur:

– if j ∈ I, then vh can be directly assigned from ai, aj and r∗
i,j ,

– if j /∈ I, then r∗
i,j does not enter in the expression of any other vh (otherwise

j would be in I), and aj ⊕ r∗
i,j is randomly distributed and mutually inde-

pendent of the variables in {v1, v2, . . . , vd}\{vh}. Hence vh can be assigned
to either r, g(r), ai √ g(r), or r √ g(ai), where r is a fresh random value
(and r∗

i,j does not need to be assigned to a random value at the beginning
of the simulation).

4. If vh is in category 4, then i ∈ I and two possible cases occur:
– if j ∈ I, then vh can be directly assigned from ai, aj , ri,j and r∗

i,j ,
– if j /∈ I, then ri,j does not enter in the expression of any other vh (otherwise

j would be in I), and vh is randomly distributed and mutually independent
of the variables in {v1, v2, . . . , vd}\{vh}. Hence vh can be assigned to a fresh
random value (and ri,j does not need to be assigned to a random value at
the beginning of the simulation).

5. If vh is in category 5, then i ∈ I and the firm term ai √ g(ai) is hence
directly computed from ai, whereas the second term

⊕j0
j=i+1 ri,j is directly

deduced from the ri,j ’s. Eventually, every element f(aj , ai) ⊕ rj,i in the sum⊕i−1
j=0(f(aj , ai) ⊕ rj,i) is assigned as follows:

– if j ∈ I then f(aj , ai) ⊕ rj,i is directly assigned from aj , ai and ri,j ,
– if j /∈ I then rj,i does not enter in the expression of any other vh (otherwise

j would be in I), and f(aj , ai) ⊕ rj,i is randomly distributed and mutu-
ally independent of the variables in the set {v1, v2, . . . , vd}\{vh}. Hence
f(aj , ai) ⊕ rj,i can be assigned to a fresh random value (and rj,i does not
need to be assigned to a random value at the beginning of the simulation).
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Table 1. Timings (clock cycles) for a masked implementation of the AES s-box w.r.t.
the masking order d.

d = 1 d = 2 d = 3

Rivain and Prouff scheme [10] 533 832 1905
Improved scheme (this paper) 407 622 1237

Table 2. Timings (clock cycles) for a masked implementation of a multiplication of
the form x ≥ g(x) where g is F2-linear and with masking order d ∈ {1, 2, 3}.

d = 1 d = 2 d = 3

Algorithm 1 110 252 346
Algorithm 5 41 107 204

5 Implementation Results

In this section, we give implementation results to compare, the original RP
Scheme with our new proposal. We implemented the RP scheme (Algorithm 3)
using Algorithm 5 for multiplications of the form x √ g(x) (i.e. for Steps 2–3
and Steps 4–6 in Algorithm 3) with the appropriate look-up tables (for h being
x ∈≈ x √ x2 and x ∈≈ x √ x4 respectively). Codes were written in assembly
language for an 8051 based 8-bit architecture with bit-addressable memory.
Table 1 lists the timing performances of the two versions of the scheme for
d ∈ {1, 2, 3}. In Table 2, we also report on the timing performances of a secure
multiplication of the form x √ g(x) when processed either with our new algo-
rithm (Algorithm 5) or with the original ISW scheme (Algorithm 1). We see that
our improved method achieves a significant gain in timings. Regarding mem-
ory, the RAM consumption is similar for both implementations, while our new
secure multiplication requires more ROM for the storage of the look-up table.
For the RP scheme, our new solution implies a 600-byte overhead in ROM to
store the two look-up tables (x ∈≈ x √ x2 and x ∈≈ x √ x4) and for Algorithm 5
source code.

A Security Proof for Algorithm 5

Similarly to what has been done in Sect. 4 for Algorithm 4, we show here that any
d-tuple of intermediate variables of Algorithm 5 is independent of the sensitive
variable a.

Our proof consists in constructing a set I of indices in [0; d] with cardi-
nality lower than or equal to d and such that the distribution of any d-tuple
(v1, v2, . . . , vd) of intermediate variables of Algorithm 5 can be perfectly simu-
lated from a|I := (ai)i⊕I . This will prove the dth-order security, by definition,
since a|I is independent of a as long as the cardinality of I is strictly smaller
than d.
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Let us first enumerate five possible categories for the intermediate variables
of Algorithm 5:

1. ai or h(ai);
2. r∗

i,j , ai ⊕ r∗
i,j , h(r∗

i,j) or h(ai ⊕ r∗
i,j);

3. aj ⊕ r∗
i,j , ai ⊕ r∗

i,j ⊕ aj , h(aj ⊕ r∗
i,j) or h(ai ⊕ r∗

i,j ⊕ aj);
4. ri,j , ri,j ⊕ h(ai ⊕ r∗

i,j), ri,j ⊕ h(ai ⊕ r∗
i,j) ⊕ h(aj ⊕ r∗

i,j),
ri,j ⊕ h(ai ⊕ r∗

i,j) ⊕ h(aj ⊕ r∗
i,j) ⊕ h(ai ⊕ r∗

i,j ⊕ aj),
or ri,j ⊕ h(ai ⊕ r∗

i,j) ⊕ h(aj ⊕ r∗
i,j) ⊕ h(ai ⊕ r∗

i,j ⊕ aj) ⊕ h(r∗
i,j);

5. h(ai) ⊕ ⊕j0
j=0(f(aj , ai) ⊕ rj,i) with j0 � i − 1, or

h(ai) ⊕ ⊕i−1
j=0(f(aj , ai) ⊕ rj,i) ⊕ ⊕j0

j=i+1 ri,j with j0 � d

For the sake of clarity we use the notations ri,j and rj,i in the above list only
for fresh random values (i.e. the ri,j are always such that i < j and the rj,i are
always such that j < i).

To construct the set I, we proceed as follows. Initially, I is empty and all
the vh’s are unassigned. First, for every vh of category 1 or 5, we add i to I.
Then, for every vh of category 2, 3 or 4, if i is already in I, then we add j to I,
otherwise we add i to I.

Now that the set I has been determined – and note that since there are at
most d intermediate variables vh, the cardinality of I can be at most d – we show
how to complete a perfect simulation of the d-tuple (v1, v2, . . . , vd) using only
the values of a|I . First, we assign a random value to every ri,j and r∗

i,j entering
in the computation of any vh (as done in steps 3 and 4 of Algorithm 5). Then
every intermediate variable vh is simulated as follows.

1. If vh is of category 1, then i ∈ I and vh is directly assigned from ai.
2. If vh is of category 2, then i ∈ I and vh is directly assigned from ai and r∗

i,j .
3. If vh is of category 3, then i ∈ I and two possible cases occur:

– if j ∈ I, then vh can be directly assigned from ai, aj and r∗
i,j ,

– if j /∈ I, then r∗
i,j does not enter in the expression of any other vh (otherwise

j would be in I). Therefore aj⊕r∗
i,j (or ai⊕r∗

i,j⊕aj) is randomly distributed
and mutually independent of variables in {v1, v2, . . . , vd}\{vh}. Hence vh
can be assigned to either r or h(r), where r is a fresh random value (and
r∗
i,j does not need to be assigned to a random value at the beginning of the

simulation).
4. If vh is of category 4, then i ∈ I and two possible cases occur:

– if j ∈ I, then vh can be directly assigned from ai, aj , ri,j and r∗
i,j ,

– if j /∈ I, then ri,j does not enter in the expression of any other vh (otherwise
j would be in I), and vh is randomly distributed and mutually independent
of variables in {v1, v2, . . . , vd}\{vh}. Hence vh can be assigned to a fresh
random value (and ri,j does not need to be assigned to a random value at
the beginning of the simulation).

5. If vh is of category 5, then i ∈ I, h(ai) is directly assigned from ai, and⊕j0
j=i+1 ri,j is directly assigned from the ri,j ’s. Then for the sum

⊕i−1
j=0(f(aj , ai) ⊕ rj,i), every f(aj , ai) ⊕ rj,i is assigned as follows:
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– if j ∈ I, then f(aj , ai) ⊕ rj,i is directly assigned from aj , ai and ri,j ,
– if j /∈ I, then rj,i does not enter in the expression of any other vh (oth-

erwise j ∈ I), and f(aj , ai) ⊕ rj,i is randomly distributed and mutually
independent of variables in {v1, v2, . . . , vd}\{vh}. Hence f(aj , ai)⊕ rj,i can
be assigned to a fresh random value (and rj,i does not need to be assigned
to a random value at the beginning of the simulation).
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Abstract. The literature on side-channel analysis describes numerous
masking schemes designed to protect block ciphers at the implementation
level. Such masking schemes typically require the computation of masked
tables prior to the execution of an encryption function. In this paper we
revisit an attack which directly exploits this computation in such a way
as to recover all or some of the masks used. We show that securely
implementing masking schemes is only possible where one has access to
a significant amount of random numbers.
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1 Introduction

In recent years a wide range of (higher-order) masking schemes have appeared
in the literature. A few of these works are dedicated hardware implementations
but the majority are designed to be implemented in embedded software (e.g. as
described by Akkar and Giraud [1]), which will be the focus of this article. For
instance, Rivain et al. [2] showed how to achieve resistance to second-order DPA
(using a table re-masking method). Recent work has discussed affine masking [3],
and a hardware-oriented masking scheme proposed by Ishai et al. [4–6].

First- and higher-order masking schemes (i.e. schemes which use one or sev-
eral random values as masks) are attractive because they (in theory) provide
provable security against differential power analysis (DPA) attacks and do not
require any specific alterations to a device. In other words, they seem (together
with hiding countermeasures) the panacea when it comes to securely implement-
ing ciphers such as AES and DES on otherwise leaky devices (i.e. devices not
resistant to DPA).

In this paper we focus on the precomputation based on a rather simple obser-
vation: if masks could be extracted by attacking the precomputation, there would
be no security at all in the masked encryption rounds. An attacker could simply
first extract the masks and use them to correctly predict the masked intermediate
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values, which would then make a standard DPA attack trivial. Even if an imple-
mentation were to use on-the-fly computations of masked S-box tables, if these
were vulnerable, then an attack would succeed, as demonstrated by Pan et al. [7].

In this paper we set out to provide a thorough analysis of the application
of this type of attack to a variety of state-of-the-art masking approaches when
the precomputation is implemented using hiding strategies. We give a thorough
theoretical analysis using the evaluation approach suggested by Whitnall and
Oswald [8]. This enables us to show, independently of a specific device, how well
such attacks work by giving a number of key figures for varying signal-to-noise
ratios (SNR, as defined by Mangard et al. [9]), such as the magnitude of resulting
correlation coefficients, success probabilities for deriving masks, and the number
of traces required for the subsequent key recovery step.

Furthermore, we describe some practical results of attacks on real devices
for two representative platforms (an 8-bit and a 32-bit microprocessor). Our
results serve as both warning and guidance: they show that the attacks work
even with strong hiding countermeasures, and provide information about what
SNR is required such that hiding begins to effectively mitigate our attacks.

We have structured our work as follows. We begin by briefly recalling the
necessary background with regards to Boolean and affine masking, hiding coun-
termeasures, and the working principle of standard DPA attacks in Sect. 2. Then
we explain our attacks against precomputation, including how we model them
for our theoretic analysis in Sect. 3. Results of this analysis are provided for all
combinations of masking schemes and hiding strategies, for different SNRs. Fol-
lowing on from that we describe our practical processors and setups and report
on practical attack outcomes in Sect. 4. We conclude in the last section of the
article. After providing references we also use an appendix to collect those tables
that are too unwieldy to be included in the main body of this work.

2 Background to Masking, Hiding, and DPA

The masking of intermediate values is a popular software countermeasure in
practice (evidence for this is provided by the large number of articles and patents
with industrial co-authors [1,3,10,11]). Boolean masking fits well to symmetric
encryption schemes (such as AES) and variants such as higher-order masking
or affine masking have been the topic of many recent publications. The simple
underlying principle of any masking scheme is that, rather than processing the
intermediate values (e.g. a key byte, plaintext byte, output of an S-box look-up)
directly, one conceals these values with some random value. The hope is that the
intermediate value will no longer be predictable and hence the implementation
will be secure with regard to (first-order) DPA attacks.

To complicate the adversary’s task even further one may also employ hid-
ing techniques. In software this typically means using dummy (or sequences
of) instructions (i.e. additional sequences of instructions operating on dummy
data, which are indistinguishable from the flow of the actual algorithm) and
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randomising the sequence of instructions in various ways. Adding dummy instruc-
tions is simple but can be costly, moreover recent work points to the inherent
difficulty of achieving indistinguishability in practice [12].

In the following sections we introduce details of Boolean and affine masking
that are relevant for DPA attacks on the precomputation that we concentrate
on. Further, we explain three randomization strategies which are relatively cheap
to implement, and to the best of our knowledge are relevant in practice. We
complete the necessary background by very briefly explaining Differential Power
Analysis (DPA).

2.1 Masking

We now explain the general principle of masking schemes based on Boolean
masks. Thereafter we explain how other schemes such as second-order Boolean
masking and affine masking are different.

Boolean masks are random values that are exclusive-ored (short XORed)
with intermediate values. In the case of AES, this implies that every state byte
is masked in this way (whether or not different masks are used for different state
bytes depends on efficiency considerations and on the order of DPA attacks one
wants to prevent). Similarly, all keys bytes are masked (the decision for different
or equal masks again depends on security and efficiency considerations). For
example, Herbst et al. [13] give a full explanation of a first-order masking scheme
for a typical software implementation of AES1. To keep this paper self-contained
we briefly summarise how the masked round functions are implemented:

AddRoundKey remains the same but operates on masked inputs. We assume key
and plaintext mask are different.

SubBytes is replaced by a masked table which is precomputed at the beginning
of each encryption round using Algorithm 1. There are two random values
involved in this precomputation: r, the address mask and s, the data mask.

ShiftRows remains unchanged.
The MixColumns function is implemented to ensure that all intermediate val-

ues remain masked throughout.
KeySchedule remains the same but works on masked data using the same

masked substitution table as the masked SubBytes function.

Second-order Boolean Masking: Second-order masking extends first-order
masking by applying a second mask to each intermediate value, i.e. a value is
represented by three shares (x = (x1, x2, x3), such that x = x1 ⊕ x2 ⊕ x3). A
masking scheme for AES following this principle has been described by Rivain
et al. [2]. As for Boolean masking, the majority of the round functions remain
largely unchanged. However, conducting a SubBytes operation becomes prob-
lematic because, unlike in first-order masking, it is not possible to ‘re-use’ a
1 Herbst et al. describe how to mask AES and randomise the flow within rounds (the

S-box precomputation is not randomised).
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Algorithm 1. Masking a Substitution Table for Boolean Masking.
Input: S a 256-byte substitution table, random values r, s ∈ {0, . . . , 255}.
Output: S∼ a 256-byte masked substitution table.

1 for i ← 0 to 255 do
2 S∼[i] = S[i ⊕ r] ⊕ s ;
3 end

4 return S∼

precomputed table (re-using a table with the same set of masks two or more
times would produce a second-order leakage). Consequently, the entire masked
S-box needs to be produced when required during the round function. Algo-
rithm 2 shows how to securely compute such an S-box.

Algorithm 2. Masking a Substitution Table for Second-Order Boolean
masking [2].
Input: S a 256-byte substitution table, random values

r1, r2, r3, s1, s2 ∈ {0, . . . , 255}, and x∼ where x = x∼ ⊕ r1 ⊕ r2
Output: S(x) ⊕ s1 ⊕ s2.

1 r∼ = (r1 ⊕ r2) ⊕ r3 ;
2 for i ← 0 to 255 do
3 a = i ⊕ r∼ ;
4 S∼[i] = (S[a ⊕ x∼] ⊕ s1) ⊕ s2 ;

5 end

6 return S∼[r3]

Affine Masking: Fumaroli et al. proposed an alternative masking scheme that
uses an affine transformation G rather than a Boolean mask [3]. Hence to mask
a value x ones applies G where

G : F28 −∃ F28 : x →−∃ r · x ⊕ r∈ ,

with randomly chosen mask bytes r √ F28 \ {0} and r∈ √ F28 .
Affine masking can be applied to all round functions by adapting the func-

tions accordingly (see Fumaroli et al. [3] for details). As we focus our attacks
on those operations relating to the computation required to produce a masked
substitution table we only give the algorithm required to generate such a table,
see Algorithm 3.
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Algorithm 3. Masking a Substitution Table for Affine Masking.
Input: S a 256-byte substitution table, r, r∼ two random values used as masks.
Output: S a 256-byte masked substitution table.

1 for i ← 0 to 255 do
2 G[i] = r · i ⊕ r∼ ;
3 end

4 for i ← 0 to 255 do
5 S∼[i] = G[S[G[i]]] ;
6 end

7 return G,S∼

2.2 Hiding

Our focus is on how to generate a masked (S-box) table prior to an encryption
run in some random order. Randomly going through the loop indices can be
achieved in various ways, and we list the three most generic strategies in order
of increasing complexity. Using Algorithm 1 as an example, line 2 would be
replaced by

S∈[f(i)] = S[f(i) ⊕ r] ⊕ s

for some function f .

Random start index. One method to introduce some randomness into the index-
ing (when looking at multiple runs of the loop as in multiple traces) is to ran-
domly choose the start index. That is

f : {0, . . . , 255} −∃ {0, . . . , 255} : x →−∃ x + k mod 256 ,

where a fresh k √ {0, . . . , 255} is generated for each instance of the algorithm.
This is also the method that was suggested by Herbst et al. [13].

Random walk. Another simple method, defined by Naccache et al. [14], uses an
LFSR to generate a (pseudo)random walk through the indices. That is,

f : {0, . . . , 255} −∃ {0, . . . , 255} : x →−∃ (((x ⊕ w) × u) + y) ⊕ z mod 256 ,

where a fresh w, y, z √ {0, . . . , 255} and u √ {1, 3, . . . , 255} are generated for
each instance of the algorithm.

Random permutation. To go through all the indices one could generate a random
permutation of the 256 elements in {0, . . . , 255}. However, creating such a ran-
dom permutation requires the generation of 256 random numbers [15]. Random
number generation is costly and one approach to make this more practical is to
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generate a shorter sequence of random numbers and apply the same sequence
repeatedly to the 256 elements. That is,

f : {0, . . . , 255} −∃ {0, . . . , 255} : x →−∃ gx mod n + m
⎧x

n

⎨
mod 256 ,

where g is a random sequence of length m given m|256 and n = 256/m. As pre-
viously, a fresh random sequence is generated for each instance of the algorithm.
Intuitively, the larger m is, the closer one gets to a truly random permutation.

2.3 Differential Power Analysis

We consider a ‘standard’ Differential Power Analysis (DPA) scenario as defined
by Mangard et al. [16]. That is, we assume that the power consumption T of a
cryptographic device depends on some internal value (or state) Fk∗(X) which we
call the intermediate value: a function Fk∗ : X ∃ Z of some part of the known
plaintext (a random variable X √ X ) which is dependent on some part of a secret
key k∗ √ K. Consequently, we have T = L ◦ Fk∗(X) + ε, where L : Z −∃ R

describes the data-dependent component and ε contains the remaining power
consumption which can be modelled as independent random noise. We consider
an attacker who acquires N power measurements corresponding to encryptions
of N known plaintexts xi √ X , i = 1, . . . , N and wishes to recover the secret key
k∗. The attacker can accurately compute the internal values as they would be
under each key hypothesis {Fk(xi)}N

i=1, k √ K and uses whatever information
available about the true leakage function L to construct a prediction model
M : Z ∃ M .

DPA is based on the assumption that the power model values corresponding
to the correct key hypothesis should have a closer resemblance to true trace mea-
surements than the power model values corresponding to incorrect key hypothe-
ses. This similarity can be measured using the correlation coefficient:

Dρ,T (k) = ρ(T,Mk) =
cov(T,Mk)⎩

var(T )
⎩

var(Mk)
. (1)

Whitnall and Oswald [8] note that the nearest rival margin (i.e., the distance
between the correct key and the closest rival hypothesis when the theoretic dis-
tinguishing vector2 is ranked) has a substantial bearing on practical outcomes,
because the number of needed power traces (NNT) that are required to detect a
statistically significant difference increases as the actual magnitude of the true
difference decreases. By defining practically relevant scenarios, it is hence pos-
sible to derive true correlation coefficients, examine the resulting margins and
then conclude on the number of needed traces (as explained in Chaps. 4 and

2 The theoretic distinguishing vector represents the underlying values which an attack
seeks to estimate, and is computed from known distributions rather than estimated
on sampled data.
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6 of [9]). The correlation coefficient in an ideal (noise-free) setting scales with
the SNR as shown in (2) (which corresponds to (6.5) Chap. 6 of [9]). Given the
correlation coefficient corresponding to the correct key ρck and the correlation
coefficient of the nearest rival ρnr we can use (3) (which corresponds to (4.43)
in [9]) to calculate the NNT. In this equation we choose α = 0.05 according to
the usual statistical practice).

ρ(T,Mk) =
ρ(L ◦ Fk∗(X),Mk)√

1 + 1
SNR

(2)

NNT = 3 + 8 · z21−α(
ln 1+ρck

1−ρck
− ln 1+ρnr

1−ρnr

)2 (3)

3 Mask Recovery Attacks

In an attack on the precomputation we take a single power consumption trace for
one encryption run and extract the part of the trace that corresponds to the pre-
computation. This trace is then divided up into 256 portions that are then used
as a set of traces to conduct a standard DPA. The message is the index i used to
control the loop, and the unknowns that we wish to derive are the masks used.

3.1 Boolean Masking

To attack an implementation of Boolean masking (see Algorithm 1) one pro-
ceeds by determining the mask r used to blind the address of the S-box table
followed by the mask s used to mask the data elements in the table. Note that
the application of this strategy does not change when applying it to second-order
Boolean masking: in order to target the masked S-box outputs it is sufficient to
extract r1 ⊕ r2 and s1 ⊕ s2 as they occur in Algorithm 2—which, in practice, is
no different to extracting r and s from Algorithm 1. Wherever we present tables
and results labelled ‘Boolean masking’ it should be understood that they relate
equally to second- and first-order outcomes.

Masking only. We now explain in more detail how the above description trans-
lates into a model that can be used to predict attack outcomes. As per our
description, we first attempt to extract r. The attack outcome here is a distin-
guishing vector that allows us to ‘rank’ our hypotheses for r. We then use r to
determine s. Looking at this differently: we can actually test several values of
r and examine the attack outcomes for s in each case (intuitively for incorrect
r the recovery of s will completely fail). In our work we settled on allowing a
certain number of the best, denoted h, hypotheses for r to be tested with s.
Consequently, to model the mask recovery attack for our theoretic analysis we
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define the Kx,h to represent the h highest ranking hypotheses for the variable x.
We can then consider the probability of complete mask recovery to be

Pr(r √ Kr,h) · Pr(s √ Ks,1|r is known)

We also take into account the probability of partially uncovering the masks, by
which we mean that our guess at r is correct and our guess at s is incorrect but
close (i.e. a short Hamming distance from the correct s)—which is reasonable
because the nearest rivals in an attack against an XOR operation are of this
form. These probabilities can be computed, for any given number of observations
(i.e., in our case the N = 256 trace-segments relating to the loops of the S-box
masking procedure), via a formula related to Eqn. (3):

Pr(ρcm distinguished from ρalt) = 1 − Φ



z1−α −
(
ln 1+ρcm

1−ρcm
− ln 1+ρalt

1−ρalt

)

2 · ⎩
2/(N − 3)



 (4)

where ρcm denotes the correct-hypothesis correlation and ρalt denotes the cor-
relation produced by the relevant alternative (for example, the h-th ranked
candidate for r). The values ρcm and ρalt are taken directly from theoretic dis-
tinguishing vector. As (4) shows we use the statistical power related to the
correct-hypothesis correlation and the relevant alternative to approximate the
probabilities for recovering r, and having r ranked among the first Kr,h hypothe-
ses respectively. Our method of retaining and confirming h hypotheses means
that we are not so concerned with minimising ‘false positives’—which corre-
sponds (implicitly) with relaxing the significance criteria. For our theoretic analy-
sis to be meaningful we need to choose, for these computations, a value of α which
reflects an attacker’s approach in practice, rather than obey typical statistical
conventions which impose strong decision criteria as protection against false pos-
itives.3 We settle on α = 0.2, which we were able to experimentally confirm does
align well with the apparent workings of our attack strategy in practice.

Based on these probabilities we can model the success of the subsequent key
recovery step carried out in a practical attack. The probabilities for (partial)
mask recovery describe how, in effect, an adversary would bias the masks (either
remove them if masks are recovered without error, or correctly predict most of
the bits effectively leaving only a small bias due to the remaining unknown bits).
With this information we can compute theoretic outcomes for the key recovery
3 Note that in many typical applications of formal hypothesis testing—medical treat-

ment evaluation, for example—false positives have serious consequences. Competent
analysts will opt to increase their sample sizes rather than weaken their decision cri-
teria in order to get conclusive results. Since the unmasking phase of a mask recovery
attack is constrained to a sample size of 256 an attacker does not have this option,
nor are the consequences of a false positive so ‘expensive’.
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step and use the nearest rival margins to obtain the number of needed traces
(for the entire attack) in practice for a given SNR4.

Table 1 lists the outcomes of these theoretic, modelled attacks for different
SNRs (where h = 10). The top line states the SNR level, increasing from high
noise at the left, towards no noise on the right. The second table line then lists
the percentage of masks fully recovered, and the third line lists the percentage of
masks partially recovered (a single-bit error). The numbers show that, up to an
SNR of two, full mask recovery is possible, but afterwards only partial recovery
is possible. The precise cut-off point for full recovery is 1.897 as we determined in
our theoretic model. The fourth and fifth line list then the values of the correct
key correlation and the margin to the nearest rival in the key recovery step. This
margin actually translates into the number of needed power traces. As the values
show up to an SNR of 2−1 the attack is basically equally effective as would be
a standard DPA attack on an unprotected device.

Table 1. Data complexity of mask recovery attacks against a Boolean masked AES
S-box (straightforward pre-computation phase).

2−5 2−3 2−1 21 23 25 27 Pure signal

S-box unmasked 29.4 56.9 91.2 100.0 100.0 100.0 100.0 100.0
S-box partially unmasked 55.0 42.7 8.8 0.0 0.0 0.0 0.0 0.0
Correct key correlation 0.123 0.296 0.565 0.816 0.943 0.985 0.996 1.000
Nearest rival margin 0.100 0.241 0.459 0.663 0.766 0.800 0.809 0.812
Traces needed 538 90 22 8 5 4 4 3

Masking and hiding. We now investigate how the three hiding strategies we
listed before impact on the effectiveness of the mask recovery attacks. We briefly
describe how the countermeasures change the model we detailed before. When
the starting index for the precomputation is chosen randomly, the first step of
the unmasking procedure attempts to recover the index i and the address mask
r, by trying each pair. In fact there is irresolvable ambiguity between two equally
ranked hypotheses—the correct pair (r,i) and the shifted pair (r+128 mod 256,
i + 128 mod 256). Fortunately, this does not pose an obstacle to recovering the
mask on the S-box output, as either pair will produce the same unmasked address
4 Throughout this paper we assume in our models that the device leaks the Hamming

weight and that the adversary uses this as power model. This is not a shortcoming for
several reasons. Firstly, the numbers we provide are independent of the actual power
model; they do however depend on the fact that we assume that the adversary’s
model effectively matches the leakage model of the device. If an adversary were to
use an imprecise model, this would change the outcomes and the analysis would need
to be done accounting for the imprecision. Secondly, leakages observed in practice
from software implementations on small processors originate typically from transfers
of intermediate data or address values over buses. These components typically leak
the Hamming weight or the Hamming distance from some fixed value.
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and therefore provide the predicted values for the second stage mask recovery
attack.

When the pre-computation is performed according to the ordering given by
an LFSR, the LFSR function itself must be recovered, which requires more attack
steps and leads to a larger aggregate loss of precision. However, it is still feasible.
If the index function is of the form

f : {0, . . . , 255} −∃ {0, . . . , 255} : x →−∃ (((x ⊕ w) × u) + y) ⊕ z mod 256 ,

then, by retaining the top h hypotheses at every step (which in practice is usually
smaller than for the standard attack—we take h = 4 in our analysis, to represent
an attacker’s response to the increased computational complexity), and using the
following step as confirmation, we estimate the proportion unmasked as:

Pr(w √ Kw,h) · Pr(x √ Kx,h|w is known) · Pr(y √ Ky,h|w, x are known)
· Pr(z ⊕ r √ Kz⊕r,h|w, x, y are known) · Pr(s √ Ks,1|w, x, y, z ⊕ r are known),

noting that we are unable to recover r as distinct from z, but that, for the
purposes of unmasking the address, it is sufficient to recover the XOR between
the two.

The theoretic analysis for attacks against the implementation which permutes
the indices in aligned blocks before precomputing the masked table is slightly
more complicated because one must take into account the probability of uncov-
ering only a proportion of the columns (see Sect. 2.2 for notation). Additionally,
as with the random start index variant, there remains ambiguity over the correct
column and mask pair: each column hypothesis will result in a maximal peak for
a certain hypothesis on the mask (From an information theoretic perspective,
it is clear that we cannot expect to recover 10 bits of information from an 8-
bit target value). However, all of these pairs reproduce the same (correct) 8-bit
unmasked address value, and since this is what we need for the second stage
output unmasking the ambiguity does not matter.

The proportion unmasked is estimated (via the Law of Total Probability5)
as:

n⎡

c=1

Pr(c columns are unmasked) · Pr(s √ Ks,1|c columns are unmasked)

=
n⎡

c=1

⎢
n

c

⎣
· Pr(column unmasked)c · (1 − Pr(column unmasked))n−c

· Pr(s √ Ks,1|c columns are unmasked)

Table 2 (which is laid out similarly to Table 1) presents the theoretic mask recov-
ery rates and subsequent key recovery performance for the hiding countermea-
sures. The attack remains (theoretically) successful against all countermeasures,
5 Law of Total Probability states that if {Bn : n = 1, 2, 3, . . .} is a finite or countably

infinite partition of a sample space and each event Bn is measurable, then for any
event A, Pr(A) =

∑
n Pr(A ∩ Bn) =

∑
n Pr(A|Bn) Pr(Bn) .
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Table 2. Data complexity of mask recovery attacks against a Boolean masked AES
S-box with hiding countermeasures.

2−5 2−3 2−1 21 23 25 27 Pure signal

Randomised start index
S-box unmasked 20.5 50.1 91.1 100.0 100.0 100.0 100.0 100.0
S-box partially unmasked 41.1 41.3 8.9 0.0 0.0 0.0 0.0 0.0
Correct key correlation 0.089 0.270 0.564 0.816 0.943 0.985 0.996 1.000
Nearest rival margin 0.073 0.220 0.459 0.663 0.766 0.800 0.809 0.812
Traces needed 1024 109 22 8 5 4 4 3

Random walk (LFSR)
S-box unmasked 1.1 8.6 50.9 97.6 100.0 100.0 100.0 100.0
S-box partially unmasked 3.9 21.0 40.2 2.4 0.0 0.0 0.0 0.0
Correct key correlation 0.01 0.08 0.47 0.81 0.94 0.98 1.00 1.00
Nearest rival margin 0.01 0.07 0.38 0.66 0.77 0.80 0.81 0.81
Traces needed 169275 1249 34 9 5 4 4 3

Permuted in 4 columns
S-box unmasked 24.1 42.7 87.4 100.0 100.0 100.0 100.0 100.0
S-box partially unmasked 31.7 38.1 12.0 0.0 0.0 0.0 0.0 0.0
Correct key correlation 0.083 0.237 0.557 0.816 0.943 0.985 0.996 1.000
Nearest rival margin 0.068 0.193 0.452 0.663 0.766 0.800 0.809 0.812
Traces needed 1175 142 23 8 5 4 4 3

Permuted in 8 columns
S-box unmasked 23.3 33.0 65.6 99.5 100.0 100.0 100.0 100.0
S-box partially unmasked 23.0 28.1 23.2 0.5 0.0 0.0 0.0 0.0
Correct key correlation 0.071 0.180 0.479 0.815 0.943 0.985 0.996 1.000
Nearest rival margin 0.057 0.146 0.389 0.662 0.766 0.800 0.809 0.812
Traces needed 1644 249 32 9 5 4 4 3

Permuted in 16 columns
S-box unmasked 23.3 28.7 45.3 86.9 100.0 100.0 100.0 100.0
S-box partially unmasked 18.7 21.0 22.9 9.0 0.0 0.0 0.0 0.0
Correct key correlation 0.065 0.148 0.361 0.765 0.943 0.985 0.996 1.000
Nearest rival margin 0.053 0.121 0.293 0.621 0.766 0.800 0.809 0.812
Traces needed 1933 369 59 10 5 4 4 3

Permuted in 32 columns
S-box unmasked 22.9 26.2 33.1 47.2 75.3 96.7 99.4 99.4
S-box partially unmasked 15.9 16.0 16.2 16.5 12.2 2.5 0.6 0.6
Correct key correlation 0.061 0.127 0.261 0.487 0.797 0.971 0.994 0.998
Nearest rival margin 0.049 0.103 0.212 0.395 0.647 0.789 0.808 0.811
Traces needed 2223 502 117 31 9 4 4 3

although the noise threshold at which mask recovery begins to deteriorate varies.
For the randomised start index this threshold is 1.897, for the random walk it
is 9.409, for the column-wise permutations it is 3.959, 9.029, and 25.260 for the
4-, 8- and 16-column variants respectively, whilst for the 32-column variant irre-
solvable ambiguity on some of the columns means that the masks can never be
perfectly recovered, even from noise-free leakage.
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3.2 Affine Masking

The attack on the affine masking scheme requires the recovery of a multiplicative
and a Boolean mask. As is clear from Algorithm 3, we cannot recover the Boolean
mask r∈ without having first recovered the multiplicative mask r. But once we
have recovered the Boolean mask r∈ we can use it to ‘confirm’ the correctness of
the multiplicative mask r.

Masking only. The strategy for recovering the multiplicative and additive com-
ponents of an affine-masked S-box output is slightly different. By retaining the
top h = 10 (say) candidates on the multiplicative mask, then looking at the
highest peak produced by the additive hypotheses for each of the 10, we hope
to confirm the correct multiplicative mask at the same time as discovering the
correct additive hypothesis. Because the input and output are masked with the
same values we only need recover the two, e.g. by attacking the pre-computation
of the affine transformation look-up table. If the outputs in the masked S-box
pre-computation can be identified and targeted then the nonlinearity of the S-
box improves the recovery of the second, additive mask—otherwise the margin
between the correct mask and the incorrect alternatives will be small, as always
when attacking a Boolean addition. We have produced two versions of the analy-
sis accordingly—one where we suppose the S-box structure may be exploited,
one where we suppose it cannot. These are presented in Table 3, from which
we see that, when the S-box nonlinearity is exploited, the affine masked table
precomputation is more vulnerable to mask recovery than the Boolean masked
table pre-computation (the SNR thresholds at which the mask recovery begins
to degrade are 0.500 when the S-box is exploited in the mask recovery stage,
and 1.897—the same as for the Boolean masking—when it is not). However, the
more complex nature of the mask application means that any imperfection in
the mask recovery incurs a greater penalty on the number of traces needed for
the key recovery stage (compared to the attacks on Boolean masking), so that
in noisy scenarios the affine scheme is the more resilient to the overall attack
strategy.

Masking and hiding. For the deliberately-complicated versions of the masking
schemes, different problems are associated with recovering the affine transfor-
mations to those which are associated with recovering the Boolean transforma-
tions. In particular, there are far more cases where ambiguity prevents recov-
ering the correct pairs with any confidence. In the analysis, we have generally
adopted the approach that, where c candidate pairs are equally theoretically
ranked, the probability of recovering the correct one is taken to be 1

c -times the
probability that the c will stand out together. That is, we cannot, except by
chance, distinguish it from the others, but will be able to unmask a proportion
(1c × Pr(top set correctly identified)) which will still help us in the key-recovery
phase of the attack.

The permuted columns variant requires particular adaptation, as there is
increasing ambiguity as the size of the permutation increases, with some even
producing constant leakage by virtue of the form of the affine transformation
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Table 3. Data complexity of mask recovery attacks against an affine masked AES
S-box.

2−5 2−3 2−1 21 23 25 27 Pure signal

Exploiting the S-box
Both masks recovered 57.7 97.4 100.0 100.0 100.0 100.0 100.0 100.0
Multiplicative mask recovered 19.6 2.0 0.0 0.0 0.0 0.0 0.0 0.0
Correct key correlation 0.101 0.325 0.577 0.816 0.943 0.985 0.996 1.000
Nearest rival margin 0.082 0.264 0.469 0.663 0.766 0.800 0.809 0.812
Traces needed 804 74 21 8 5 4 4 3

Not exploiting the S-box
Both masks recovered 27.2 56.3 91.2 100.0 100.0 100.0 100.0 100.0
Multiplicative mask recovered 33.7 32.8 8.8 0.0 0.0 0.0 0.0 0.0
Correct key correlation 0.048 0.188 0.526 0.816 0.943 0.985 0.996 1.000
Nearest rival margin 0.037 0.151 0.430 0.663 0.766 0.800 0.809 0.812
Traces needed 3911 233 26 9 5 4 4 3

(this does not happen with the Boolean masking). For a theoretic analysis, it
is tricky in places to approximate the best that can be achieved by a canny
attacker because different ways of combining the information and confirming
candidate hypotheses will inevitably produce different outcomes, and it is not
possible to explore and evaluate them all. We propose a strategy whereby each
column is attacked separately (searching over the column index space as well
as the mask space) and then the recovered affine transformation candidates are
compared over the columns to find the most likely. Accordingly, the proportion
unmasked for the key-recovery stage is computed as the probability of the correct
transformation achieving a majority vote.

The results corresponding to the modelling of these attacks can be found
in Tables 6 and 7 of Appendix A. Essentially, they show that the attacks are
less efficient than on the Boolean scheme, but that we can still expect them to
succeed for realistic platforms (they work for very low SNRs).

4 Theory Put to Practice

To gain some insight into the practical effectiveness of such attacks we performed
some of them on two platforms, an 8-bit and a 32-bit microprocessor. The 8-
bit microprocessor was an AT89S5253, which has an 8051 architecture. In this
case acquisitions were taken with a sampling rate of 500 MS/s and a clock speed
of 11 MHz. No filtering was conducted since this did not have any impact on
the SNR. The 32-bit microprocessor was an ARM7TDMI microprocessor, where
acquisitions were taken with a sampling rate of 200 MS/s and a clock speed of
7.3728 MHz. These acquisitions were filtered using a low-pass filter with a corner
frequency at 7.3728 MHz to improved the SNR.
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Fig. 1. The above traces show the instantaneous power consumption during the first
ten rounds of Algorithm 1. The left trace corresponds to the AT89 microprocessor
and the right traces to the ARM microprocessor. The power consumption showing the
individual rounds are delimited by dashed lines.

The SNR (as defined by Mangard et al. [9]) of these two setups is rather
different: the 8-bit controller features a very strong signal such that the overall
SNR is about 22, whereas the 32-bit processor only delivers an SNR of 0.54.

Boolean masking requires a simple precomputation as described in Algo-
rithm 1 and Algorithm 2 resp. As these algorithms suggest, one can see distinct
patterns corresponding to the 256 loops when inspecting power traces corre-
sponding to the execution of these algorithm on a device6. This is demonstrated
in Fig. 1 where the rounds of Algorithm 1 are clearly visible.

Our experiments showed that on both platforms mask recovery worked almost
perfectly.Toprovide somemeaningful and statistically soundnumberswe repeated
the experiment 1000 times with different masks and produced the results shown
in Table 4. These numbers give the error rates for recovering the masks r and s in
Algorithm 1, and show clearly that for both platforms the fact that we have 256
traces available is sufficient to recover the masks even with the relatively poor SNR
of the 32-bit platform. Note that proportions of data masks recovered with zero-bit
errors correspond to the first row of Table 1 (“S-box un-masked”), while the pro-
portions recovered with one-bit errors relate to the second row (“S-box partially
un-masked”). The SNRs of the two devices mean that both can be expected to
lead to almost perfect mask recovery (as indicated by the first two rows in Table 1),
which is reflected in our practical experiments. Some results of the AT89 attacks
are somewhat peculiar: we consistently observed a single bit error in the recovered
data masks (but not always for the same bit). We are currently unable to explain
this behavior in any satisfying way.

The introduction of simple hiding strategies has almost no impact, only a
sufficiently strong permutation starts to degrade the attack performance in prac-
tice. We show some more results giving the error rates for data mask recovery
for the ARM7 platform in Table 5. The numbers indicate that, as the size of the
permutation increases, the distribution of the error rate approaches a binomial
6 The practical attacks applied to an implementation of second-order Boolean mask-

ing.
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Table 4. The error rates for identifying masks for implementations of Boolean masking.

Address mask Data mask
Error (bits) 0 1 2 3 4+ 0 1 2 3 4+

ARM 0.99 0.0012 0.0020 0.00075 0.00020 0.92 0.075 0.0030 0.00075 0.0029
AT89 0.98 0.0081 0.0079 0.0067 0.00010 0 0.98 0.0027 0.0047 0.015

distribution where one would not be able to conduct an attack. All the permuta-
tion lengths tested would lead to a viable attack, we refer the reader to Mangard
et al. [9] for a description of how to compute the number of traces required to
conduct an attack.

Table 5. Error rates for Boolean masking using different hiding strategies.

Data mask, ARM
Error (bits) 0 1 2 3 4 5 6 7 8

RSI 0.94 0.035 0.0040 0.0060 0.0080 0.0030 0 0.0010 0
Random walk 0.35 0.52 0.11 0.011 0.0070 0.0040 0.0020 0.0010 0

Random permutation:
n = 4 0.84 0.093 0.017 0.016 0.013 0.012 0.0070 0 0
n = 8 0.47 0.15 0.11 0.066 0.10 0.061 0.030 0.0070 0
n = 16 0.064 0.11 0.19 0.23 0.21 0.12 0.065 0.015 0.0020
n = 32 0.011 0.052 0.13 0.25 0.27 0.19 0.081 0.015 0.0020

5 Conclusion

Masking schemes are popular in the literature, as indicated by the large number
of publications in this area. Claims about the security of these schemes are typ-
ically supported by evaluation with regards to what (higher) order DPA attacks
they can resist, but no focus has yet been put on scrutinising the practically
inevitable precomputation of masked tables.

After explaining, for the most common and practically relevant masking
approaches, how to randomize the precomputation step, we analyze the security
of the resulting implementations using both a theoretic approach and practical
implementations. For the theoretic analysis we explain how to model our attacks
and what this allows us to conclude about the percentage of masks recovered,
nearest rival margins and hence the number of needed power traces for different
SNRs. This analysis is generic and to some extent independent of the power
model (it can be adapted to incorporate other models).

These theoretic results indicate that our attacks are likely to work in practice,
since we see good theoretic results even for low SNRs (with the exception of the
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largest permutation). In the penultimate section of this paper we showed results
of actual attacks on two platforms. They tally with our theoretic outcomes and
hence confirm that our attacks are indeed highly relevant and applicable to prac-
tice. Without much effort we can break any of the implementations employing
masking and hiding in the precomputation.

Our results provide both a warning and some guidance. The warning is that,
without substantial extra effort to secure the computation of masked tables, this
operation will most likely leak the masks and hence render the masking of the
round function pointless. The guidance that we can give is with regards to the
SNR that needs to be achieved for the discussed randomisation strategies to
have some impact. Even if the device SNR itself is fixed, one can attempt to use
dummy instructions (bearing recent results in mind [12]) to lower the SNR by
desynchronising the loops in the precomputation. Given that the discussed ran-
domisation strategies themselves lead to a significant performance penalty (more
randomness required, increased effort in computing data and address values), a
further performance loss might however be unacceptable in practical applica-
tions. Our final conclusion is hence rather pessimistic: precisely for the devices
in which masking seems an inescapable necessity, the computation of masked
tables will most likely render the scheme insecure.

Acknowledgments. The work described in this paper has also been supported in
part the European Commission through the ICT Programme under Contract ICT-
2007-216676 ECRYPT II and the EPSRC via grant EP/I005226/1.
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Abstract. In this paper, we propose a new Authenticated Lightweight
Encryption algorithm coined ALE. The basic operation of ALE is the
AES round transformation and the AES-128 key schedule. ALE is an
online single-pass authenticated encryption algorithm that supports
optional associated data. Its security relies on using nonces.

We provide an optimized low-area implementation of ALE in ASIC
hardware and demonstrate that its area is about 2.5 kGE which is almost
two times smaller than that of the lightweight implementations for AES-
OCB and ASC-1 using the same lightweight AES engine. At the same
time, it is at least 2.5 times more performant than the alternatives in their
smallest implementations by requiring only about 4 AES rounds to both
encrypt and authenticate a 128-bit data block for longer messages. When
using the AES-NI instructions, ALE outperforms AES-GCM, AES-CCM
and ASC-1 by a considerable margin, providing a throughput of 1.19 cpb
close that of AES-OCB, which is a patented scheme. Its area- and time-
efficiency in hardware as well as high performance in high-speed parallel
software make ALE a promising all-around AEAD primitive.

Keywords: Authenticated encryption · Lightweight cryptography ·
AES

1 Introduction

Motivation. As essential security applications go ubiquitous, the demand
for cryptographic protection in low-cost embedded systems (such as RFID and
sensor networks) is drastically growing. This necessitates secure yet efficiently
implementable cryptographic schemes. In such use cases, the area and power
consumptions of a primitive in hardware are usually of paramount importance
and standard solutions are often prohibitively costly to deploy.
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Once this problem was recognized, the cryptographic community was fast to
address it by proposing a great deal of specialized lightweight cryptographic algo-
rithms, which include stream ciphers like Trivium [17], Grain [25], and Mickey [5],
block ciphers like SEA [41], DESL, DESXL [30], HIGHT [26], mCrypton [31],
KATAN/KTANTAN [16], and present [10], and hash functions like Quark [4],
Photon [24], and Spongent [9] — to mention only some fraction of them. We
note that the latter hash functions are following the overall design strategy of a
permutation-based sponge construction [6], similarly to Keccak [7], which also
provides competitive lightweight properties [29].

However, when it comes to authenticated encryption — the fundamental secu-
rity functionality in most real-world security systems — one has to establish that,
rather surprisingly, only a few lightweight schemes have been proposed so far,
examples are Grain-128a [2] and Hummingbird-2 [21]. At the same time, message
secrecy – as provided by plain encryption – is often of limited value in practice
if not accompanied by message authentication. This stipulates the acute need
for authenticated encryption in the field which is reflected in NIST [20] and
ISO/IEC [1] documents on modes of operation for block ciphers.

In the context of lightweight cryptography though, these standard modes
of operation have significant practical limitations. First, the lightweight block
ciphers are usually designed to save on state bits, so that the block size and key
size are usually kept at the edge of the reasonable minimum (it is rather typical
in lightweight cryptography to propose a block cipher with a 64-bit block and a
80-bit key). This significantly confines the security level of modes of operation
theoretically attainable due to generic attacks. Second, the standard
authenticated-encryption modes of operation traditionally aim at high-speed
implementations by minimizing the number of block cipher calls and other oper-
ations one has to perform per data block processed. For example, OCB [39],
which clearly outperforms such wide-spread schemes as AES-GCM and AES-
CCM in standard software, requires essentially a single AES call per data block
at bulk encryption only. However, such modes usually do not pay too much atten-
tion to the amount of memory and the circuit size one needs in a lightweight
hardware implementation. For instance, AES-OCB requires at least four 128-bit
registers and both AES-encryption and -decryption engines for both encryp-
tion/authentication and decryption/verification. Besides, OCB is a patented
scheme which hampers its wide deployment in the field.

A straightforward solution would be to address the first limitation (small
state) by raising the total internal state size of the lightweight primitives, for
instance, to 256 bits to avoid generic attacks up to a bound of 2128 operations.
However, this would in turn take away their major source of advantage and make
their area occupation comparable to that of AES-128. That is why we feel that
a dedicated authenticated-encryption design can also be based on AES when
128-bit level of security is desired.

In an attempt to mitigate the second limitation (additional memory require-
ments imposed by modes) one might choose to go for encrypt-then-mac or
mac-then-encrypt. However, not only would it jeopardize the highly relevant
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implementation goal for the scheme to be online but also require double message
input (being essentially two-pass) and twice more operations per data block
than e.g. OCB. In general, there appear to be no single-pass authentication
encryption modes of operation for block ciphers preserving the minimal state size
required. This emphasizes the demand for a dedicated lightweight authenticated-
encryption design.

Moreover, we also want to make this new design fast in software, as opposed
to some bit-oriented lightweight ciphers (such as Grain, Trivium, KATAN,
present, etc.) which succeed in attaining a low area in hardware but whose
performance in software is not even comparable to that of AES, especially in the
presence of the Intel AES-NI instructions. We feel that not much efficiency can
be gained by designing a slightly more efficient generic authenticated-encryption
mode of operation for block ciphers since the bottleneck will remain the one block
cipher call per data block. This is not only true for authenticated encryption
modes but also for MAC-only and encryption-only modes.

The situation is, however, essentially different if the designer is allowed to
look inside the specific underlying block cipher such as AES and to construct a
dedicated mode of operation which only uses exactly as many operations of the
underlying block cipher as needed. This is the approach taken in the designs of
the stream cipher LEX [8] and the message authentication algorithm Pelican [14].
Lately, similar reasoning was applied to the setting of authenticated encryption
resulting in the design of ASC-1 [28].

ALE. This paper proposes a lightweight authenticated encryption algorithm
based on AES called ALE (Authenticated Lightweight Encryption) which is
efficient both in hardware and software. It is a single-pass nonce-based online
scheme that preserves the memory alignment of data. The design of ALE com-
bines some ideas of Pelican, LEX and ASC-1 in a lightweight manner. In a nut-
shell, the algorithm uses Pelican keyed in all rounds (similarly to PC-MAC [34])
for computing the authentication tag and leaks bytes of the state in every round
in a LEX-type way for encryption/decryption. It has a 256-bit secret internal
state dependent on both key and nonce.

By requiring only 2.5 kGE of area in lightweight ASIC hardware, which is
less than 100 GE overhead compared to plain AES-ECB in the smallest imple-
mentation available [35], ALE is about half the size of AES-OCB and ASC-1. In
terms of speed in the lightweight implementation for medium-size messages and
longer, ALE is about 2.5 times faster than AES-OCB and about 4.5 times faster
than ASC-1 in its smallest implementation. When using the parallel AES-NI
instructions, ALE outperforms AES-GCM, AES-CCM and ASC-1 by a consid-
erable margin, providing a throughput close to that of AES-OCB, which is a
patented scheme.

At a first glance, the overall design philosophy of ALE might seem similar
to that of ASC-1. However, as the numbers of relative area and speed above
already strikingly suggest, ASC-1 has several crucial shortcomings in the way
of practical implementation. First, ASC-1 needs an internal state which is twice
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larger than that of ALE, which accounts to the significant difference in area
requirements. Second, the non-sequential order in which the AES-256 subkeys are
used in ASC-1 (e.g. subkey 11 is needed already in the first round) combined with
its serial nature, has a considerable impact on its performance. In lightweight
hardware, the engine in adjacent operations has to have subkeys which are many
rounds apart which can be done either by computing a key state back and forth
(which costs time) or by storing some values high-speed software (which costs
area). In high-performance parallel software implementations, the subkeys have
to be computed on the fly (since the key state is evolving) beforehand and stored
in registers to avoid additional memory accesses, which contains the advantage
of using AES-NI instructions a lot. Finally, ASC-1 does not accept associated
data that can be vital in some networking settings while ALE explicitly deals
with it.

The remainder of the paper is organized as follows. Section 2 gives a specifi-
cation of the algorithm. Section 3 introduces some elements of its cryptanalysis.
Section 4 provides lightweight implementation numbers of the algorithm in ASIC
hardware. Section 5 implements ALE in software using AES-NI instructions on
a SandyBridge Intel processor. We conclude in Sect. 6.

2 The Authenticated Lightweight Encryption
(ALE) Algorithm

In this section, we describe ALE – our new authenticated lightweight encryption
algorithm. The basic operation of ALE is the AES round transformation and the
AES-128 key schedule. In all the following, we assume that the reader is familiar
with AES.

2.1 Specification

ALE is an online single-pass nonce-based authenticated encryption algorithm
with associated data. Its encryption/authentication procedure accepts a 128-bit
master key Δ, a message μ, associated data γ and a 128-bit nonce α ⊕= 0. An
equivalent of at most 248 bits are allowed to be authenticated or both authenti-
cated and encrypted with the same master key. The encryption/authentication
procedure outputs the ciphertext β of exactly the same bit length as the message
μ and the authentication tag Σ of 128 bits for both the message μ and associ-
ated data γ. Its decryption/verification procedure accepts key Δ, ciphertext β,
associated data γ, nonce α and tag Σ . It returns the decrypted message μ if tag
is correct or ∃ otherwise.

The encryption/authentication operation can be described in five steps:

Padding: The padding of ALE is similar to the one of the MD4 hash function.
First a “1” is appended to the message μ, followed by δ “0” bits (with
δ = 128− (|μ|+1+64 (mod 128)), and finally the message length |μ| coded
on 64 bits is appended. The resulting padded message M is split into t blocks
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of 128 bits each, M = m1→ · · · →mt. Note that for associated data the same
padding method is used and the padded associated data is split into r blocks
of 128 bit each, A = a1|| · · · ||ar.

Initialization: The internal state consists of two 128-bit states: the key state
(upper line in Fig. 1) and the data state (lower line in Fig. 1). The key state
is initialized with nonce α encrypted with AES1 under the master key Δ. The
data state is initialized in two steps, First, it is initialized with 0 encrypted
with AES under the user-supplied key Δ. Second, the result AESκ(0) is AES-
encrypted using the initialized key state as key. After that, the final subkey
of the last AES encryption is updated one more time using the AES round
key schedule with byte round constant x10 in F28 . This value is stored in the
key state. Now both states are initialized.

Processing associated data: If there is only one padded associated data
block, then a1 is xored to the data state and one proceeds with processing
message immediately. Otherwise, if there are at least two padded associated
data blocks, A is processed block by block: The data state is encrypted with 4
rounds of AES using the key state as key. The final round subkey is updated
one more time using the AES round key schedule with byte round constant
x4 in F28 . This value is stored in the key state. The next block of A is xored
to the data state (Fig. 2).

Processing message: M is processed block by block: The data state is encryp-
ted with 4 rounds of AES using the key state as key. 16 bytes are leaked
from the data state in the 4 rounds of AES in accordance with the LEX
specification (Fig. 3).

This leak is xored to the current block of M . The final round subkey is
updated one more time using the AES round key schedule with byte round
constant x4 in F28 . This value is stored in the key state. The current block
of M is xored to the data state.

1 Here and further in the paper, we imply AES-128 whenever we write AES.
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For the last block of M the exact required number of most significant bits
are taken from the leak and xored to the last block (without padding) to
produce the last bits of ciphertext, and mt is xored to the data state.

Finalization: The data state is encrypted with the full AES using the master
key Δ. The output of this encryption is returned as the authentication tag Σ
for the message and associated data (Fig. 3).

The decryption/verification procedure is defined correspondingly. The only two
differences are that one works with the ciphertext β = c1|| · · · ||ct instead of the
message μ while xoring with the stream and that the supplied tag value Σ is
compared to the one computed by the algorithm. We want to stress that only if
the tag is correct the decrypted message is returned.

2.2 Security Assumptions and Claims

The security analysis of the algorithm starts from the following two assumptions.

Assumption 1 (Nonce-respecting adversary). A nonce value is only used
once with the same master key for encryption.

This assumption is quite common among nonce-based designs. Note that on most
platforms, this assumption can be easily satisfied by implementing the nonce as
a counter.
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Assumption 2 (Abort on verification failure). If the verification step of the
algorithm reveals that the ciphertext has been tampered with, then the algorithm
returns no information beyond the verification failure. In particular, no plaintext
blocks are returned.

This assumption significantly reduces the impact of chosen-ciphertext attacks,
since the adversary obtains very little information from a chosen-ciphertext
query. We feel that this assumption is quite natural for authenticated encryp-
tion modes. After all, when the verification fails, we know that the integrity of
the plaintext has been jeopardised, and there is no reason to output it. The
assumption does, however, exclude implementations where decryption is done
in a streaming mode, since all plaintext blocks need to be kept inside until the
verification has completed successfully.

Under these assumptions, the security claims for the algorithm are as follows.

Claim 1 (Resistance against state recovery). Any internal state recovery
with complexity equivalent to processing N data blocks has a success probability
at most N2−128.

Claim 2 (Resistance against key recovery). Any key recovery with com-
plexity equivalent to processing N data blocks has a success probability at most
N2−128, even if the internal state has been recovered.

Claim 3 (Resistance against forgery w/o state recovery). Any forgery
attack not involving key recovery/internal state recovery has a success probability
at most 2−128.

2.3 Properties

Here we list some of ALE’s merits in terms of implementation. Since ALE is
based on similar design principles as Pelican MAC and LEX, it also shares many
strong properties of these two designs.

– Security analysis benefits from existing analysis on AES as well as Pelican
MAC and LEX.

– AES hardware/software implementations might be reused with only a few
simple modifications, including the usage of Intel AES instructions.

– Side-channel attack countermeasures developed for the AES will be useful for
ALE as well, including threshold implementations in hardware to thwart first-
order power- and EM-based differential attacks and bitsliced implementations
to mitigate cache-timing leakage.

– For long messages, ALE needs only about 4 AES rounds to both encrypt and
authenticate a block of message, which is similar to ASC-1. However, about
10 AES rounds are needed by AES-OCB and 20 AES rounds are required by
AES-CCM to process a data block.
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– The overhead of ALE per message amounts to 3 AES calls. This is less than
the overhead of ASC-1 which is 4 AES calls but more than the overhead of
AES-OCB of 2 AES calls. AES-CCM has virtually no overhead but has an
excessive cost per block.

However, in terms of the number of AES rounds, AES-OCB becomes less
efficient already for messages longer than 128 bits and ASC-1 is always inferior
to ALE. Note that AES-OCB contains a nonce stretching mechanism that
effectively saves one AES call overhead if multiple messages are encrypted
with the same key and with adjacent counter values as nonces. However,
implementing this mechanism in lightweight hardware requires an additional
128-bit state which increases the area requirement by another 700–800 GE.

– Only two 128-bit states are needed by ALE to implement encryption, which
makes it lightweight-friendly. At the same time, 4 states needed for AES-OCB
and ASC-1. AES-CCM requires 3 states. In fact, 2 states needed by ALE are
even less than the encryption-only AES-CTR occupies, where some space
needs to be allocated for the counter.

– Only the AES encryption engine is needed by ALE for both the encryp-
tion/authentication and decryption/verification procedures. AES-OCB requi-
res both encryption and decryption engines for supporting those operations.

– ALE is an online scheme meaning it is single-pass and does not have to know
message length before the last message block is input. AES-CCM is off-line.
Additionally AES-CCM is two-pass. AES-OCB and ASC-1 are also online
schema.

– ALE accepts associated data while ASC-1 does not. AES-CCM and AES-OCB
can both work with associated data. AES-OCB is additionally capable of
accepting static associated data (which does not require any recomputation
for a new nonce).

3 Security Analysis

Since ALE combines some ideas of Pelican MAC [14] and LEX [8] it benefits
from existing security analysis. In the following, we briefly recall existing security
analysis on these two primitives and discuss their relevance to ALE with respect
to its Claims 1,2 and 3.

3.1 Forgery Without State Recovery

Like any MAC derived from the ALRED construction [15] also Pelican MAC
enjoys some level of provable security. It is shown that, in the absence of internal
collisions, the security of the construction can be reduced to the security of the
n-bit underlying block cipher [15, Theorems 1 and 2]. In other words, Pelican
cannot be broken with less than 2n/2 queries unless the adversary also breaks
the block cipher itself. However, the security proofs of Pelican MAC rely on
the fact that the iteration function is unkeyed. Therefore, they don’t carry over
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to ALE. PC-MAC is another MAC function derived from the original design
[34]. PC-MAC uses a keyed iteration function and has a proof of security in the
indistinguishability framework.

For the Pelican MAC two approaches to exploit knowledge of the (unkeyed)
iteration function are described by the designers to generate internal collisions
and hence forgeries.

Fixed Points. Since the iteration function is known in Pelican MAC, one may
compute the number of state values that are resulting in fixed points for a given
message block mi. Assume the number of fixed points is x, then the probability
that inserting the message block mi in a message will not impact its tag and
hence result in a forgery is x · 2−n.

However, if the iteration function can be modeled as a random permutation,
then the number of fixed points has a Poisson distribution and is expected to
be small [15]. Moreover, in ALE the iteration function is keyed with a nonce
dependent session key. Since this key changes for every iteration function, one
needs a fixed point in both the key state and data state rendering the attack
inefficient.

Extinguishing Differentials. Extinguishing differentials are very similar to
differential cryptanalysis for block ciphers. The main idea is to find pairs of
messages (or in our case also ciphertexts) with a certain difference that may
result in a zero difference in the state with a high probability after the difference
has been injected.

However, in the case of Pelican MAC the iteration function consists of 4
rounds of Rijndael implementing the wide trail design strategy [13], which allows
to prove good bounds against differential attacks. In more detail, any differential
characteristic spanning over 4 rounds has at least 25 active S-boxes resulting in
an upper bound for the differential probability of 2−150. Moreover, the differential
probability of any differential can be upper bounded by 2−114 [27]. Note that
this is not far away from the theoretically optimal bound of 2 · 2−128. In other
words, Pelican MAC and hence also ALE provides good upper bounds for the
probability of extinguishing differentials.

Moreover, we want to note that in ALE the iteration function is keyed with a
nonce dependent session key, which is changed for every encryption/authenticat-
ion procedure, complicating the application of differential cryptanalysis to ALE,
since an attacker also needs to predict the differences in the session key. However,
since this session key is generated by encrypting the nonce with the master key
using 10 rounds of AES, this seems to be a very difficult task.

3.2 State Recovery

All published attacks [11,19,43] on Pelican MAC so far are forgery attacks mak-
ing use of (generic) internal collisions on the internal state. Note that due to
the small state size of Pelican MAC of 128 bits, internal collisions can be found
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with complexity of 264 due to the birthday paradox. However, in ALE a nonce
dependent session key is used making it difficult to detect internal collisions on
the state unless the session key collides as well, basically doubling the internal
state size and giving some reinsurance in the design.

Most attacks on LEX published so far use the fact that LEX uses the same
round keys repeatedly. For instance the main idea of the key-recovery attack in
[11,18] is to find a pair of internal states after different numbers of encryptions
that partially collides after 4 rounds. Since the round keys are reused in LEX,
the adversary can easily locate two states that collide in the part of the state
which contains the round key. Hence, the complexity of a brute-force search for
(partial) internal collisions is determined by the size of the part of the state that
contains the ciphertext, i.e. 128 bits.

In ALE however, the round keys are not reused. Hence, the complexity of
a brute-force search for (partial) internal collisions is determined by the size
of the full internal state, i.e. 256 bits. It follows that finding (partial) internal
collisions becomes more difficult rendering the attack infeasible. Note that even
if the attack would be applicable, it might only be used to recover the internal
state, but not the master key.

If Assumption 1 is not satisfied, i.e. if nonce values are used repeatedly, then
the round keys are repeated. In that case, the attacks on Pelican and LEX can be
extended and applied to ALE. Because ALE combines injection and extraction,
the attacks become more powerful, and security is lost.

3.3 Key-Recovery

To recover the master key Δ in ALE an attacker needs to break the initialization
of ALE. However, even though assuming that the full internal sate after the
initialization is known to the attacker, he still needs to break full (10 rounds) of
AES to recover the master key.

3.4 Additional Security Analysis

Distinguishing Attacks. The encryption component of ALE is inspired by
the stream cipher LEX. The keystream bits in LEX are generated by extracting
32 bits from each round of AES in the OFB mode. In [22], Englund et al. describe
a distinguishing attack that is applicable to block ciphers in the OFB mode in
general. To be more precise, whenever the part of the state that depends on both
the key and the IV is smaller than twice the key size (as it is the case for instance
in LEX) the attack theoretically succeeds. However, in LEX the attack is thwart
by limiting the number of keystream bits that can generated from one master
key. In ALE we have a similar restriction but more important the internal state
is larger due to the session key (depending on the nonce and the master key)
used to key the iteration function.
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Slide Attack. A slide attack for an earlier version of LEX has been found
by Wu and Preneel in [42] and fixed later by Biryukov in a new version of
LEX. To avoid slide attacks two different functions for the initialization and the
encryption/authentication should be used. Even a very small difference between
the two is sufficient. For instance, the new version of LEX uses the full AES with
the XOR of the last subkey for the initialization and AES without the XOR of
this subkey for the encryption.

However, ALE uses the full AES (10 rounds without the application of Mix-
Columns in the last round) in the initialization, but only 4 rounds of AES for
the encryption/authentication. We think that this is sufficient to break the sim-
ilarities used by slide attacks.

4 Lightweight ASIC Hardware Implementation

This section presents a lightweight ASIC hardware implementation of ALE, and
compares it to the existing authentication encryption schemes such as AES-
OCB, AES-CCM and ASC-1. In this section, we did not include the results
obtained with AES-GCM as this schema is not particularly suitable for low cost
hardware. In fact, it requires an extra module for implementing the Galois field
multiplication which, additionally, has to be invoked several times.

4.1 Hardware Architecture

ALE was implemented targeting the lowest ASIC area occupation possible. For
this reason, our hardware architecture is based on the most compact AES imple-
mentation published so far [35]. The original AES implementation has a mixed
data-path: it instantiate a single S-box following the proposal of Canright [12]
but performs the MixColumn on all the 32 bit in parallel.

The overall design is depicted in Fig. 4. The base AES design was extended
to support our authenticated encryption proposal. A more complex control unit
was developed to handle the padding, the initialization and finalization, the
LEX-type leak, and the xor of the state with the input message. Also, a number
of multiplexers where added to the architecture to correctly select the inputs of
the AES accelerator. Our implementation requires to load two times the key and
one time the nonce and the null vector. The nonce is loaded in the first execution
of AES, while the null vector is loaded in the second. The key is loaded once
during the first execution of the AES and once during the last execution of AES.
Also, the input and output values should be maintained in the respective wires
and synchronized with the operations of the accelerator on order to correctly
perform the additions with the message and the additional data.

4.2 Comparison

We implemented all the designs having the same design goals and using the same
lightweight AES engine in their core. All the considered schemes were described
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in VHDL and then synthesized using the tool Synopsys design compiler 2009.06.
We performed a number of synthesis targeting different technologies (90 nm,
65 nm, and 45 nm), frequencies, and optimization parameters of the synthesis
tool.

Table 1 summarizes the implementation numbers (including area and timing)
of ALE as compared to the reference designs. These results were obtained set-
ting the clock frequency to 20 MHz and using the STMicroelectronics 65 nm
CMOS technology and the corresponding standard cell library characterized
for LP-HVT (low power high Vt) process. This technology was the one which
exhibits the best trade off between area and power consumption, thus the one
which resulted more suitable for lightweight applications. The clock frequency
was set to 20 MHz as usually, in low-cost hardware applications, the speed con-
straint is very relaxed (contrary to the area and power consumption). However,
during the whole set of experiments, we successfully synthesized our designs with
a clock frequency of up to 200 MHz.

As we were targetting low-cost hardware, we also report clocks per byte and
provide a graph for different message lengths in Table 2 and Fig. 5. The cycle
count does not consider the overhead for loading and offloading of the data. As
indication, Table 1 reports also the power consumption of each algorithm. The
estimation was carried out with Synopsys power compiler 2009.06, using the
standard tool parameters for the switching activity.
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Table 1. Lightweight ASIC implementation numbers for ALE compared to AES-
OCB2, AES-CCM and ASC-1. Overhead indicates the number of cycles needed for
the initial setup and the finalization of the authenticated encryption. The net per
block provides the number of clock cycles required to process each block of data, on
top of the overhead per message. The designs marked with ‘e/d’ incorporate both
encryption/authentication and decryption/verification functionalities.

Design Area (GE) Net per Overhead per Power (uW)
128-bit block message
(clock cycles) (clock cycles)

AES-ECB 2,435 226 - 87.84
AES-OCB2 4,612 226 452 171.23
AES-OCB2 e/d 5,916 226 452 211.01
ASC-1 A 4,793 370 904 169.11
ASC-1 A e/d 4,964 370 904 193.71
ASC-1 B 5,517 235 904 199.02
ASC-1 B e/d 5,632 235 904 207.13
AES-CCM 3,472 452 - 128.31
AES-CCM e/d 3,765 452 - 162.15
ALE 2,579 105 678 94.87
ALE e/d 2,700 105 678 102.32

Table 2. Lightweight ASIC implementation numbers for ALE compared to AES-
OCB2, AES-CCM and ASC-1 (in clocks per byte)

Algorithm Message length (bytes)
16 32 64 128 256 512 1024 2048 4096 8192

ECB 14.12 14.12 14.12 14.12 14.12 14.12 14.12 14.12 14.12 14.12
OCB2 42.38 28.25 21.19 17.66 15.89 15.01 14.57 14.35 14.24 14.18
ASC-1 A 79.62 51.38 37.25 30.19 26.66 24.89 24.01 23.57 23.35 23.24
ASC-1 B 71.19 42.94 28.81 21.75 18.22 16.45 15.57 15.13 14.91 14.80
CCM 28.25 28.25 28.25 28.25 28.25 28.25 28.25 28.25 28.25 28.25
ALE 48.93 27.75 17.15 11.85 9.21 7.88 6.20 6.89 6.72 6.64

ALE occupies 2,581 GE, and requires 783 clock cycles to authenticate and
encrypt one block of 128 bits. This cycle count includes the overhead of 678
cycles, which is caused by the three invocation of the AES algorithm needed for
initialization and finalization. Thus, only 105 clock cycles are needed to process
each further 128-bit block of data.

As comparison, we report in Table 1 also the performances of the AES core
used as starting point (AES-ECB) of our implementation and the ones of
AES-OCB, ASC-1, and AES-CCM authentication encryption schema. All the
algorithms were implemented using the same lightweight AES engine [35] and
the same experimental setup as ALE.

In its most compact implementation, ASC-1 is especially slow due to its
complex non-serial key schedule which has a high overhead (for instance, one
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Fig. 5. Hardware performance of ALE with respect to other AES-based authenticated
encryption schemes for different message lengths in lightweight ASIC implementations

has to know the 11th key of the AES-256 expanded key to compute the first
round and the first key again to compute the 5th round) which makes backward
and forward computations necessary. This implementation is given in Table 1 as
ASC-1 A. However, The key schedule overhead can be reduced if an additional
128-bit register is introduced. This implementation is given referred to as ASC-1
B in the table.

It can be observed that the overhead for the support of both the encryp-
tion/authentication and decryption/verification functionalities (those implemen-
tations are marked as ‘e/d’ in Table 1) is fairly small for ALE and ASC-1. At
the same time, since AES-OCB additionally requires an AES decryption engine
for decryption, the overhead is much more significant there.

ALE occupies an area which is approximately two times lower than those
of AES-OCB and ASC-1, while providing an overall speed at least two times
higher, being particularly suitable for lightweight applications. ALE also nicely
compares with the results reported in literature for Hummingbird-2 [21], which
in its smallest version has an area of approximately 2,159 (estimated using a
different technological library), and Grain-128a with authentication [2] which
occupies approximately 2,770 gates (estimated by the designers).

5 High-Performance Software Implementation

In this section, we evaluate the software performance of ALE and compare it
to other authenticated encryption schemes based on the AES. We propose such
evaluation because, as pointed out by Matsuda and Moriai [32], lightweight algo-
rithms will be used in the sensors which will populate the internet of things. After
the collection, the data will be forwarded to the servers of the cloud, where the
same algorithm, this time implemented to achieve high performances, will be
used for decryption.
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5.1 The Setting

First, we need to establish a common setting for the performance evaluation
of all algorithms in order to have a fair platform for comparison. We base our
scenario on the following assumptions.

Message lengths. In most communication protocols, typical messages are rel-
atively short, rarely exceeding 1024 bytes [33]. It is therefore of great impor-
tance to include initialisation overhead and take measurements for messages
consisting of only one or a few blocks. At the same time, performance usu-
ally starts to saturate with messages of two or four kilobytes. We therefore
provide data for 16 ·2b bytes, with 0 √ b √ 10. Furthermore, we assume that
these 2b blocks encompass the already padded message.

Parallel processing of messages. The fact that most processed messages are
rather short suggests that many of them will typically be encrypted under the
same key, but with a different nonce. This implies that a high-performance
software implementation can benefit from processing multiple messages for
different nonces in parallel. Note that the processing of messages with several
different keys and different nonces can be parallelised in the same way.

AES-NI and pipelining. Since we deal with AES-based ciphers, high perfor-
mance software implementations means using the AES-NI instructions [23].
The most critical factor in achieving good performance with AES-NI is to
fully utilise the pipeline, which is 8 cycles for the Sandy Bridge microarchi-
tecture, for which our implementations are optimised.

5.2 Implementation

According to this common scenario, we have implemented the following authen-
ticated encryption schemes: CCM, GCM and OCB3 with AES as the underlying
block cipher; ASC-1, and ALE. As a base line, we also include the unauthen-
ticated modes ECB and CTR. The used OCB3 implementation is the most
recent reference implementation from [40], the GCM implementation is the one
of OpenSSL v1.0.1c.

Those algorithms that are not inherently parallelisable (CCM and ALE)
were implemented following the paradigm of processing multiple messages with
different nonces in parallel, with CCM processing two independent messages in
parallel, and ALE four. ASC-1 was found not to benefit from this, since the
overhead introduced by its key schedule already requires storing key material in
cache memory due to the limited number of 128-bit registers. As an example, its
key scheduling requires the use of the 11th key already in the first round, and
the first key again in the 5th, and so forth. For OCB3, we include the overhead
introduced by calculating the initial key- and nonce-dependent values. However,
we do employ nonce-spreading to avoid the initial block cipher call most of the
time.

For the implementation of ALE, we only have four AES rounds per message
block instead of ten for the authenticated modes. However, this also means that
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in order to fill the 8 pipeline stages, we would have to calculate 8 key schedule
updates. Using the native AESKEYGENASSIST instruction for this purpose
actually decreases the performance, since it not pipelined in the same way as
the AES round functions.

With four messages processed in parallel, we can however avoid using
AESKEYGENASSIST by using AESENCLAST for the S-box step for the four
AES keys, and doing the key schedule’s LFSR manually, but in parallel on
128 bits. This implies that we can at most issue 5 AES round instructions every
8 cycles. See the pseudocode below:

loop:

# ... combine 4*32 bits from key1, ..., key4 in keyblock

aesenclast keyblock, 0

aesenc state1, key1

aesenc state2, key2

aesenc state3, key3

aesenc state4, key4

# ... LEX leaks

# ... inverse ShiftRows on keyblock

# ... spread keyblock to key1, ..., key4

# ... key schedule LFSR parallel on key1, ..., key4

goto loop

We also note that in a serial (as opposed to high-performance) implementa-
tion, ALE has the distinct advantage over OCB3 by only requiring 4 AES round
plus key scheduling per block, in contrast to full 10 AES rounds.

5.3 Results

All measurements were taken on a single core of an Intel Core i5-2400 CPU at
3100 MHz, and averaged over 100000 repetitions. Our findings are summarised
in Table 3 and illustrated in Fig. 6.

One can see that while the initialisation overhead generally has a huge impact
on the performance, this effect starts to fade out already at messages of around
256–512 bytes. Due to the parallel processing used for CCM, it almost ties with
GCM for medium-size and larger messages. OCB3 achieves nearly optimal per-
formance starting from 512 byte message length due to its parallelisability which
enables it to fully utilise the eight pipeline stages and compensates for its ini-
tialisation overhead. ASC-1 generally performs slower, mostly due to its non-
sequential use of the AES-256 key schedule which requires additional storage of
key material, exceeding the available 128-bit registers.

The experimental findings can be summarised as follows: When implemented
for multiple message processing, ALE provides software performance quite close
to OCB3-AES, and significantly better performance than CCM, GCM or ASC-1.
In [33], McGrew estimates that for high-speed data links, authenticated encryp-
tion with a throughput of up to 100 GBit/s would be desirable. In view of the
results of [3], AES-NI instructions benefit from a practically linear speed-up on
multiple cores. At the moment, standard Sandy Bridge desktop processors are
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Table 3. Software performance of authenticated encryption schemes based on the AES.
The platform is Intel Sandy Bridge (AES-NI). All numbers are given in cycles per byte
(cpb). A star (∗) indicates that this implementation is processing multiple messages
in parallel (for inherently serial algorithms for which this results in a performance
increase).

Algorithm Message length (bytes)
128 256 512 1024 2048 4096 8192

ECB 1.53 1.16 0.93 0.81 0.75 0.72 0.71
CTR 1.61 1.22 0.99 0.87 0.80 0.77 0.76
CCM∗ 3.97 3.49 3.31 3.22 3.18 3.15 3.15
GCM 4.95 3.88 3.33 3.05 2.93 2.90 2.89
OCB3 2.69 1.79 1.34 1.12 1.00 0.88 0.86
ASC-1 7.74 4.80 3.69 2.88 2.78 2.64 2.61
ALE∗ 3.55 2.34 1.74 1.44 1.31 1.23 1.19
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Fig. 6. Software performance of AES-based authenticated encryption schemes for dif-
ferent message lengths on Intel Sandy Bridge (AES-NI).

available with 6 cores at a frequency of 3.1 GHz. For messages of 1 KB length, this
implies a throughput of 103.3 GBit/s with ALE, and 132.8 GBit/s with OCB3.
This means that the above-mentioned performance requirement can be fulfilled
with either ALE or OCB3 using only one standard desktop CPU, with ALE
having the advantage of not being patented.

6 Conclusion

In this paper, we have proposed ALE – a new Authenticated Lightweight Encryp-
tion algorithm based on AES. It is a single-pass nonce-based online scheme that
combines some ideas of Pelican MAC, LEX and ASC-1 in a highly lightweight
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manner. ALE is about half the size of ASC-1 and in terms of speed in the
lightweight implementation, it is about 4.5 times faster than ASC-1 in its small-
est implementation.

By requiring only 2.5 kGE of area in lightweight ASIC hardware ALE is
actually significantly smaller than most other authentication encryption modes
including the popular modes AES-OCB and AES-CCM. In terms of speed in the
lightweight implementation, ALE is about 2.5 times faster than AES-OCB and
about 5 times faster than AES-CCM. When using the parallel AES-NI instruc-
tions, ALE outperforms AES-GCM, AES-CCM and ASC-1 by a considerable
margin, providing a throughput close to that of AES-OCB, which is a patented
scheme.
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Abstract. We present attacks on full Hummingbird-2 which are able to
recover the 128-bit secret keys of two black box cipher instances that have
a certain type of low-weight XOR difference in their keys. We call these
highly correlated keys as they produce the same ciphertext with a sig-
nificant probability. The complexity of our main chosen-IV key-recovery
attack is 264. The first 64 bits of the key can be independently recovered
with only 236 effort. This is the first sub-exhaustive attack on the full
cipher under two related keys. Our attacks use some novel tricks and
techniques which are made possible by Hummingbird-2’s unique word-
based structure. We have verified the correctness and complexity of our
attacks by fully implementing them. We also discuss enabling factors of
these attacks and describe an alternative design for the WD16 nonlin-
ear keyed function which is resistant to attacks of this type. The new
experimental function replaces S-boxes with simple χ functions.

Keywords: Hummingbird-2 · Related-key cryptanalysis · Lightweight
cryptography · Authenticated encryption · Hummingbird-2nu

1 Introduction

Hummingbird-2 is a light-weight authenticated encryption primitive designed
by a team led by Eric Smith of Revere Security and presented in RFIDSec ’11
[1]. Hummingbird-2 has been proposed for standardization in RFID use within
ISO [2].

Hummingbird-2 was created largely in response to an effective FSE ’11 attack
by Saarinen [3] against the original Hummingbird algorithm [4–6]. Saarinen’s
single-key attack broke the 256-bit Hummingbird-1 with 264 effort.

Some independent analysis on Hummingbird-2 has been published. In [7] a
“differential sequence attack” is described, but the total complexity of the attack
is higher than exhaustive search and therefore it is “of theoretical interest only”.
The same is said of the side channel cube attack presented in [8]. An even more
far-fetched attack is described in [9], requiring 2240 memory.

IACR ePrint [10] described an attack simultaneously using dozens of related
keys. Unfortunately the attack, as described, had some errors and the authors
subsequently withdrew the paper. However, some observations contained in it

S. Moriai (Ed.): FSE 2013, LNCS 8424, pp. 467–482, 2014.
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inspired our research that led to the discovery of high-probability correlated keys
described in Sect. 2.1.

The structure of this paper is as follows. In Sect. 2 we describe the relevant
components of the Hummingbird-2 algorithm and make a number of observations
about its various features. In Sect. 3 we describe an effective key-recovery attack
that uses a single key relation. We discuss enabling factors of the attack in
Sect. 3.7, followed by conclusions in Sect. 4.

Appendix A contains a full specification for a new variant which is resistant to
these attacks and is based on novel χ functions (rather than traditional S-boxes).

2 Examining the Hummingbird-2 Algorithm

Hummingbird-2 is neither a block cipher nor a stream cipher in the traditional
sense but combines some of the features of both. In this it resembles other
integrated authenticated encryption proposals such as Helix [11] and Phelix [12].

The “Hummingbird structure” uses 16-bit data paths throughout as it was
originally targeted towards low-end microcontrollers such as the TI MSP430
family. Data is always encrypted or decrypted in 16-bit increments. The cipher
accepts a 64-bit initialization vector IV , a 128-bit secret key K, and maintains a
128-bit state in registers R. A method for deriving message authentication tags
from the internal state is also given in the specification [1].

We use the following symbols and notation:

x ⊕ y : Exclusive-or operation between x and y.
x ≫ y : Modular addition x + y mod216.
x ≪ y : Modular subtraction x − y mod216.

x ≪ n : Left circular shift (rotation) of x by n bits.
x ≫ n : Right circular shift (rotation) of x by n bits.

Si : A 4 × 4 - bit nonlinear substitution box, i ∈ {1, 2, 3, 4}.
IV i : Word i of the 64-bit initialization vector, i ∈ {1, 2, 3, 4}.
Ki : Word i of the 128-bit secret key, i ∈ {1, 2, · · · , 8}.
Rr

i : Word i of the 128-bit state at position r, i ∈ {1, 2, · · · , 8}.
P r, Cr : Plaintext and ciphertext words at position r.

t
(r)
i : Used to mark temporary, internal quantities.

In the following sections, we will describe the various algorithm components
and present observations that will be used in the final overall attack. These
cryptanalytic observations may also be useful in attacks of other types than the
one described in this work. For a complete specification of Hummingbird-2, we
refer the reader to [1].

2.1 WD16 (and High-Correlation Related Keys)

Hummingbird-2 draws almost all of its nonlinearity from the WD16 function.
WD16 uses four keying words (total 64 bits) which define a permutation on a
16-bit input value. One may see WD16 as a 16-bit block cipher with a 64-bit key.
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WD16 is a four-round substitution-permutation network. In each round, a
16-bit subkey is XORed to the state, four 4 × 4 - bit S-boxes are applied in
parallel, followed by a linear mixing step. The structure is shown in Fig. 1.

We use S(x) to denote the parallel application of the 4-bit S-boxes S1, S2, S3,
S4 on the 16-bit word x. The linear operation is L(x) = x⊕ (x ≪ 6)⊕ (x ≫ 6).
If we shorten their compound operation to LS(x) = L(S(x)) then WD16 can be
written as:

WD16(x, k1, k2, k3, k4) = LS(LS(LS(LS(x ⊕ k1) ⊕ k2) ⊕ k3) ⊕ k4). (1)

We occasionally also use LS−1 and WD16−1 to denote the inverses of respective
functions. We fist observe that the WD16 can produce closely correlated output
with some distinct but related keys.

Observation 1. Consider two 64-bit WD16 keys (k1, k2, k3, k4) and (k∈
1, k

∈
2,

k∈
3, k

∈
4) that for some i ∈ {1, 2, 3} are related by δ = ki ⊕k∈

i and Δ = ki+1 ⊕k∈
i+1,

with the other two key words equivalent. There are such pairs that will yield
equivalent WD16 encryption and decryption for approximately 1/4 for input and
output values.

In a differential attack we only want to have a single active S-box to maximize
the probability. As with any 4 × 4 S-box, each one of S1, S2, S3 and S4 must
have differentials that work for at least four of the 16 input values, leading to
the given probability 1/4.

Looking at Fig. 1 we can see how after the δ = ki ⊕k∈
i difference is introduced

at position i, it is then subjected to a S-box substitution and a linear transfor-
mation before the Δ = ki+1 ⊕ k∈

i+1 key difference cancels it out at i+1 with the
given probability 1/4.

Table 1 gives a list of all of such pairs that have the optimum probability of
exactly 1/4. This table was created via an exhaustive search.

We give some examples of WD16 key pairs for which WD16A(x) = WD16B

(x) with probability 1/4:

A = 0001 0000 0000 0000 B = 0000 3B8E 0000 0000
A = FFFF FFFF F000 6198 B = FFFF FFFF 0000 0000
A = 1234 5000 6090 1234 B = 1234 A000 0108 1234

The last two examples use the F000 → 6198 relation which was (randomly)
chosen for the main attack described in Sect. 3 of this paper. There is a wide
spectrum of variations of a more general attack methodology that is represented
by that specific case; picking some other relation leads to a different attack.

2.2 Initialization and State Collisions

The initialization phase of Hummingbird-2 creates a 128-bit initial state from
the 64-bit IV using the secret key and the WD16 function.
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Fig. 1. The “WD16” mixing function is a 16-bit substitution-permutation network
with four rounds and a 64-bit subkey (k1, k2, k3, k4). It is used in both initialization
and encryption phases.
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Table 1. All 4 × 18 = 72 high-probability related key word pairs where δ = ki ⊕ k′
i is

canceled by Δ = ki+1 ⊕ k′
i+1 in the WD16 nonlinear function with probability 1/4.

δ → Δ δ → Δ δ → Δ δ → Δ

0001 → 3B8E 0010 → 74D3 0100 → C30C 1000 → D374

0002 → 2A8A 0010 → DC71 0100 → C71D 2000 → 6198

0002 → 2ECB 0020 → 30C3 0200 → 4D37 2000 → E3B8

0003 → 0441 0020 → B8E3 0300 → 8208 3000 → 2088

0007 → 0441 0030 → CC30 0300 → 8E3B 3000 → B2EC

0007 → 3B8E 0040 → CC30 0400 → 4515 5000 → E3B8

0008 → 1545 0050 → 1041 0400 → 8619 6000 → 8220

0008 → 3FCF 0060 → DC71 0600 → 4926 7000 → 8220

0009 → 330C 0060 → FCF3 0700 → 0822 8000 → 9264

000A → 1104 0070 → 1041 0700 → 8E3B 8000 → C330

000A → 3FCF 0080 → 5451 0A00 → 8208 9000 → 5154

000B → 0882 00A0 → 4410 0B00 → 0411 B000 → 1044

000C → 0CC3 00B0 → FCF3 0B00 → 4926 B000 → B2EC

000C → 2208 00C0 → 6492 0C00 → 4104 C000 → 4110

000E → 0882 00D0 → 2082 0D00 → 4D37 E000 → 1044

000E → 2649 00D0 → B8E3 0E00 → 0411 E000 → F3FC

000F → 1DC7 00F0 → 4410 0E00 → CF3F F000 → 4110

000F → 2649 00F0 → 5451 0F00 → 4104 F000 → 6198

Initialization is a four-round process. Figure 2 shows a single initialization
round. The state is first set as R = IV | IV . In each round, there are four
invocations of WD16 together with some mod 216 additive mixing, followed by
cyclic rotations of the first four registers and linear exclusive-or “accumulation”
mixing of the first four registers with the last four. The round counter i = 0, 1, 2, 3
is also used in the mix at the very beginning. The input keys to WD16 alter
between the two halves of the master key (K1, K2, K3, K4) and (K4, K5, K7,
K8).

Observation 2. For each key K, there is a family of 432 related keys K ∈ that
yield the same state R after four initialization rounds with probability P = 2−16

over all IV values.

There are six possible positions i for δ = Ki ⊕ K ∈
i and Δ = Ki+1 ⊕ K ∈

i+1

that maximize the probability; i ∈ {1, 2, 3, 5, 6, 7}. Since there are two S-box
activations in each round and four initialization rounds, the total probability of
arriving at the same initial state for two such related keys is (1/4)2×4 = 2−16.
As there are 72 suitable (δ,Δ) pairs (see Table 1), for each 128-bit key K there
are at least 6 × 72 = 432 related keys that will give the same initial state with
the given 2−16 probability. This observation has been experimentally verified.
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Fig. 2. Initialization round. There are four initialization rounds with a counter stepping
through i = 0, 1, 2, 3.

2.3 Encryption

Hummingbird-2 encrypts and decrypts data in 16-bit increments, as shown in
Fig. 3. The 128-bit state Ri and key K define a permutation from the plaintext
word P i to the ciphertext word Ci or vice versa. To encrypt plaintext word P i

into a ciphertext word Ci, the following steps are taken:

ti0 = P i ≫ Ri
1

ti1 = WD16(ti0,K1,K2,K3,K4)

ti2 = WD16(ti1 ≫ Ri
2,K5 ⊕ Ri

5,K6 ⊕ Ri
6,K7 ⊕ Ri

7,K8 ⊕ Ri
8)

ti3 = WD16(ti2 ≫ Ri
3,K1 ⊕ Ri

5,K2 ⊕ Ri
6,K3 ⊕ Ri

7,K4 ⊕ Ri
8)

ti4 = WD16(ti3 ≫ Ri
4,K5,K6,K7,K8)

Ci = ti4 ≫ Ri
1.
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Fig. 3. Encryption of plaintext word P i to ciphertext word Ci and update of state R.
The “temporary” variables t0 · · · t4 are used in the description of the attack.

After each encrypted word is processed, the state is updated:

Ri+1
1 = Ri

1 ≫ ti3

Ri+1
2 = Ri

2 ≫ ti1

Ri+1
3 = Ri

3 ≫ ti2

Ri+1
4 = Ri

4 ≫ Ri
1 ≫ ti3 ≫ ti1

Ri+1
5 = Ri

5 ⊕ (Ri
1 ≫ ti3)

Ri+1
6 = Ri

6 ⊕ (Ri
2 ≫ ti1)

Ri+1
7 = Ri

7 ⊕ (Ri
3 ≫ ti2)

Ri+1
8 = Ri

8 ⊕ (Ri
4 ≫ Ri

1 ≫ ti3 ≫ ti1).

For decryption, an inverse of WD16 function is required and the t quantities
are computed in reverse order. The update function remains the same.

2.4 Related-Key Progression in Encryption

We see that there are four invocations of WD16 in each encryption operation and
that key halves K1..K4 and K5..K8 are used twice each. In the middle two WD16
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rounds the key is XORed with four of the higher “accumulator” state registers,
but that has no effect on the differential. Since the differential is activated twice,
there is a (1/4)2 = 1/16 probability of matching ciphertexts.

Observation 3. There is a 1/16 probability that for a matching state R the
related keys K and K ∈ (as defined in Sect. 2.1) will encrypt the same plaintext
word to the equivalent ciphertext word.

Note that if the key difference is in K5..K8, there is a 1/4 probability of
equivalent state update as the last WD16 invocation only affects ciphertext
output, not the state. Conversely, if the key difference is in K1..K4, the state
update will be equivalent in decryption with 1/4 probability. Furthermore, if the
(δ,Δ) difference is in (K1,K2) as the first WD16 does not affect the state in
decryption and at least 12 bits of the plaintext will be equivalent as there is only
one active S-box.

3 Crafting an Attack

There are many ways that one can use the high-probability correlated keys in an
attack. We will describe the one that we implemented, which uses only a single
related key pair described in Sect. 3.1.

The attack proceeds in a number of distinct stages. We first find a suitable
IV values for the attack (Sect. 3.2), and then proceed to solve various inter-
nal quantities (Sects. 3.3 and 3.4) and finally parts of the secret key (Sects. 3.5
and 3.6).

3.1 Attack Model

We assume that the attacker has access to two “black box” oracles whose keys
are related by

K ⊕ K ∈ = (F000 6198 0000 0000 0000 0000 0000 0000). (2)

The choice of this particular key relation is almost arbitrary in the set of
admissible key differences. Many of the differentials in Table 1 could be used as
well.

In our model the attacking algorithm may perform chosen-IV initializations
and query encryptions and decryptions from the oracles. For an ideal cipher the
most effective way to recover the secret key K (and K ∈) would be to through
brute force with expected complexity of 2128 trials. Therefore we will use the
estimated time required for a single trial, consisting of initialization and encryp-
tion/decryption of a single word as the “unit complexity” c = 20.

We note that in a brute force attack eight words need to be encrypted in
order to be reasonably sure that the correct key has been found, but with the
probability 65535/65536 the incorrect ones can be rejected after encryption of a
single word. Hence we use this as the unit complexity.
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3.2 Finding a State Collision

The first stage of the attack is to find an IV value that produces a matching state
R after the four-round initialization procedure for both K and K ∈. As indicated
by Observation 2 in Sect. 2.2, one expects to find such a collision after searching
through 216 different IV values. Detection of a collision can be made by trial
decryptions. If we decrypt a word x immediately after initialization, then there
is a 1/4 probability that 12 bits of the corresponding plaintext words will match
as discussed in Sect. 2.4. The overall complexity of this step is no more than 220

to find an IV collision that holds with overwhelming probability.
Note that subsequent collisions may be found faster (for this K1,K2 relation)

if we first search using words (IV 1, IV 2, IV 3) and for consecutive searches keep
those words constant and loop through values of IV 4. The two initial round
collisions are therefore guaranteed and consecutive collisions can be found with
probability 2−12.

Our attack requires only a single initialization state collision, henceforth
denoted simply as IV .

3.3 Attacking Ri
1 with Carry Bits

It is important to note that in HB2 encryption we can also have state and
ciphertext word collisions when the plaintext words P (for K instance) and P ∈

(for K ∈ instance) are not equal.
The next stage involves the recovery of Ri

1. We can generate full codebooks
P i ↔ Ci and P ∈i ↔ C ∈i that depend on the IV and previous P j , j < i values
with roughly 217 effort if i is small. We fix Cj = C ∈j for j < i and the states Ri

do not diverge. Looking at Figures 1 and 3 we note the following.

Observation 4. The first (δ,Δ) collision in the encryption operation works
when

S((P i ≫ Ri
1) ⊕ K1) ⊕ S((P ∈i ≫ Ri

1) ⊕ K ∈
1) = L−1(Δ). (3)

Here we use S to denote the four parallel S-box lookups and L−1 to denote
the inverse of the shift/XOR linear step in WD16, as in Eq. 1.

The δ and Δ values dictate which values the input differential P i ⊕ P ∈i can
take. Since the input differential δ = K1 ⊕ K ∈

1 = F000 is in the high nibble, only
the high nibbles N = ((P i≫Ri

1)⊕K1)) >> 12 and N ∈ = ((P ∈i≫Ri
1)⊕K ∈

1) >> 12
really matter. We can tabulate successful pairs; see Table 2.

We see that Table 2 has only one entry per each horizontal and vertical line;
N ∈ can be given as a function of N and vice versa. If the N and N ∈ entries are
shifted by one position the collision at that point becomes impossible.

As we only want to have a single active S-box, may choose the high nibbles
of P i and P ∈i arbitrarily, but we have to keep the low 12 bits the same.

Observation 5. The probability of the carry shift depends solely on the value
of plaintext low bits and the low bits of Ri

1. The shift will occur only when

(P i ∧ 0FFF) + (Ri
1 ∧ 0FFF) ≥ 1000. (4)
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Table 2. High nibbles of intermediate values N = ((P i ≫ Ri
1) ⊕ K1)) >> 12 and

N ′ = ((P ′i ≫ Ri
1) ⊕ K′

1) >> 12 in WD16 that will provide a collision. These are the
pairs for which S1(N) ⊕ S1(N

′ ⊕ 0xF) = 0x6. Note that in the diagonal there are four
entries as expected; if N = N ′ there is a 1/4 probability of a collision.

N\N′
0 1 2 3 4 5 6 7 8 9 A B C D E F

0 - - - - - - - - - - A - - - - -
1 - 1 - - - - - - - - - - - - - -
2 - - 2 - - - - - - - - - - - - -
3 - - - - - - - - 8 - - - - - - -
4 - - - 3 - - - - - - - - - - - -
5 - - - - - - - - - - - - - - - F

6 0 - - - - - - - - - - - - - - -
7 - - - - - - - - - - - - C - - -
8 - - - - - 5 - - - - - - - - - -
9 - - - - 4 - - - - - - - - - - -
A - - - - - - - 7 - - - - - - - -
B - - - - - - 6 - - - - - - - - -
C - - - - - - - - - - - B - - - -
D - - - - - - - - - - - - - D - -
E - - - - - - - - - - - - - - E -
F - - - - - - - - - 9 - - - - - -

Since we have created a codebook of P i ↔ Ci, we may effectively loop
through the low 12 bits of p = P i ∧ 0FFF = P ∈i ∧ 0FFF and until the carry-over
“shift” occurs and the pattern changes from p = 0000. This will give us the low
bits of Ri

1. This process isn’t entirely foolproof as there are is a second collision
that is required in the encryption process, but due to abundance of trials we
may accurately pinpoint the p carry transition point with a good probability.

For each p value we may test 16 × 16 = 256 high nibble pairs for a matching
ciphertext collision. Those collisions must occur at the points with an entry in
Table 2. We may loop from low values of p towards higher values and see the
lowest p value which starts to give different “grid”. The algorithm we use is
therefore essentially based on elimination of impossible combinations.

Note that the K1 keying XOR in Eq. 3 also affects this step and the actual
shift that occurs. However, we have found that if we guess the highest bit of K1

(and hence K ∈
1 which has the inverse high bit), we can actually determine all

16 bits of Ri
1 with high probability with roughly 217 total complexity and one

guessed bit.

3.4 Deriving Additional Quantities for an Attack

From Sect. 2.3 we see that R1 is updated as Ri+1
1 = Ri

1 ≫ ti3. If we have derived
two consecutive R1 values using the technique outlined in Sect. 3.3, we obtain
the value of t3 at round i:

ti3 = Ri+1
1 ≪ Ri

1. (5)
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Furthermore, since Ci = ti4 ≫ Ri
1, we obtain

ti4 = Ci ≪ Ri
1. (6)

This stage proceeds by attempting to create a sequence where ti4 = ti+1
4 holds

with a high probability. To do this, for i = 1, 2, 3 · · · 27 process each full 16-bit
codebook as discussed in Sect. 3.3 and choose Ci to be the smallest value after
Ri

1 such that corresponding Pi and P ∈
i form a state collision.

For those pairs where ti4 = ti+1
4 , the following relation holds since WD16 is a

permutation and matching output words imply matching input words:

ti3 ≫ Ri
4 = ti+1

3 ≫ Ri+1
4 . (7)

We manipulate Eq. 7 into ti3 = ti+1
3 ≫ Ri+1

4 ≪ Ri
4 and substitute that into the

R4 update function
Ri+1

4 = Ri
4 ≫ Ri

1 ≫ ti3 ≫ ti1 (8)

to obtain
ti1 = ≪Ri

1 ≪ ti+1
3 . (9)

Since Ri
1 and ti+1

3 are known quantities, as is ti0 = P i ≫ Ri
1, we now can

attack the first half of the keywords:

ti1 = WD16(ti0,K1,K2,K3,K4). (10)

Note that due to the probabilistic nature of our R1 derivation method, not all of
these candidate pairs are valid. However, we have experimentally verified that
in practice a sufficient number is valid and the key search algorithm (described
in Sect. 3.5) is designed in a way that accounts for false pairs.

3.5 A Time-Memory Trade-off for K1 · · ·K4 Search

The information obtained in Sects. 3.3 and 3.4 – especially Eq. 10 – already
allow the keyspace of Hummingbird-2 to be split in half and a 264 attack can be
mounted via exhaustive search. We will describe a simple time-memory tradeoff
attack that allows further square root reduction for the first half of the key
words.

In this step, we are given n values (xi, yi), 1 ≤ i ≤ n, that satisfy

WD16(xi,K1,K2,K3,K4) = yi (11)

with a reasonable probability (see Eq. 10).
We’ve experimentally discovered that if we perform the search for matching

consecutive t4 pairs discussed in Sect. 3.4 up to a limit of 27 plaintext / ciphertext
words, we are typically left with n = 24 candidates. Out of these, about 23 will
be “right pairs” that actually satisfy Eq. 11 for the correct subkeys. This is a
sufficient fraction for a time-memory trade-off technique.

To eliminate one of the keys, we pair the values and investigate (xi, yi) and
(xj , yj), 1 ≤ i ≤ j ≤ n. There are n(n−1)/2 pairs, quarter of which will be right
pairs. This will help to cancel out K3 in the computation.
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Table Generation. For each i, j pair, we first construct a lookup table for
subkey K4. For each guessed 0 ≤ K4 < 216 we compute the middle value h and
build a table T ():

h = LS−1(LS−1(yi) ⊕ K4) ⊕ LS−1(LS−1(yj) ⊕ K4)
T (h) = K4.

Here a candidate for K4 can be obtained from the h value by building an appro-
priate data structure that takes care of collisions.

Key Search. Approaching the WD16 from the other direction, we then loop
through the 232 values of K1 and K2 and look for a match in

h∈ = LS(LS(xi ⊕ K1) ⊕ K2) ⊕ LS(LS(xj ⊕ K1) ⊕ K2) (12)

Here T (h∈) gives a candidate for K4 with O(1) effort. Then we check for all
1 ≤ k ≤ n pairs (xk, yk) how many of those yield the same K3 value

K?
3 = LS(LS(xk ⊕ K1) ⊕ K2) ⊕ LS−1(LS−1(yk) ⊕ T (h∈)). (13)

If five or six of those K3 values agree, then there is a significant probability
that we have found the correct 64-bit quartet (K1,K2,K3,K4) of the secret key
words.

Complexity. Since about 24 lookup key searches of 232 primitive operations
(and a total of 216 memory) is required, we estimate that the total complexity
of this step is less than 236 when adjusted to the scale of the complexity of brute
force key search as discussed in the beginning of Sect. 3.

3.6 Finding the Rest: K5 · · ·K8 Search

After the first half of the keying material has been discovered, it is a simple
matter to brute force the rest. We have not found a time-memory tradeoff or
other simple shortcut for the recovery of this part. Hence the total complexity
is dominated by the second half, giving the total complexity of 264 processing
and about 216 data.

It is quite easy to see that the last WD16 instance could be used to speed up
key recovery if the difference between two keys would be at the right half of the
key. However, in the beginning of Sect. 3 we chose a specific difference which lies
at the first words. If we adopt the nonstandard setting of [10] where more than
two “black boxes” with specific key relations can be accessed, then it the overall
complexity of key recovery can be pushed down to the 236 range. However, this
attack model is rather unrealistic.
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3.7 Discussion

Our attacks are specific to the Hummingbird structure as they do not purely
follow any clear classical attack path such as linear or differential cryptanalysis.
One may create a number of different attacks based on the same observations.

We developed the attack described in this paper while we were implementing
it. One discovery led to the next. Our attack implementation used clear black
box insulation and therefore we have a high degree of confidence that it works.
We have tested it with various subsets of key space.

Design Issues. The attacks are made possible by a combination of factors.
Lessons were perhaps not fully learned from the attacks of [3] which exploited
the simplistic key schedule and algebraic properties of the Hummingbird struc-
ture. However, a simple and fast key schedule is partly dictated by the timing
constraints of the RFID environment and protocols for which Hummingbird was
designed. It can also be argued that having 16-bit datapaths with additive mix-
ing has certain advantages when a cipher is specifically to be used with a 16-bit
embedded CPU, even though the particular structure of Hummingbird may not
fully utilize the potential.

Fixing WD16: Hummingbird-2ν. The main enabler of the attacks is the
WD16 function and the way it is keyed. Furthermore WD16 has a linear mixing
stage L(x) that has suboptimal diffusion and does not allow effective use of
lookup tables to speed up decryption of data like the MDS [13] matrices of
SHARK [14] and AES [15] do.

To mitigate both security and efficiency issues, we propose an alternative
where WD16(x, k1, k2, k3, k4) has been replaced with “S-boxless” χν(x, k1, k2,
k3, k4) to produce a variant called Hummingbird-2ν. Hummingbird-2ν is
described in more detail in Appendix A. This variant is geared towards hardware
implementation. We note that that the estimated implementation footprint for a
32-cycle version of HB2 is only 500 GE and an implementation that can perform
both encryption and decryption is around 700 GE. More accurate implementa-
tion results will be reported separately.

4 Conclusions

We have discovered and demonstrated large related key classes which produce
closely correlated output for any given input. The weak key classes penetrate
both the initialization and actual ciphering stages of Hummingbird-2.

We have developed a full key recovery related-key attack algorithm which
effectively halves the cipher’s key size. This attack allows the secret key can to
be recovered with only 264 time and 216 data in a two-key setting. The attack
has been implemented and verified to work. Furthermore, the first half of the
key can be recovered with only 236 effort. Other types of attacks may be derived
from the same observations.
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Even though it may be tempting to derive multiple keys from a single one
(e.g. one for each communication direction or medium), Hummingbird-2 should
only be used with strictly random keys. This approach is taken in the ISO
protocol proposal [2]. System designs where the secret keys of tags are related
or shortened should be avoided. Key bits must never be used to denote access /
product categories or other information.

Appendix

A Hummingbird-2ν

The new experimental variant Hummingbird-2ν is the same as Hummingbird-2,
expect that the WD16 substitution-permutation network has been replaced with
a new function, χν(x, k1, k2, k3, k4). The new variant is geared towards hardware
implementation and has a lower gate count than Hummingbird-2. Due to space
constraints, we can only give a brief description of the new variant here and
leave more detailed analysis for a separate report.

The new construction is based on χ functions, which are simple shift-invariant
transformations that were first characterized by Daemen in [16]. The SHA3
algorithm Keccak uses a χ function as it’s sole nonlinear component [17]. This
selection was done in part to inspire research on functions of this type. The
S-Boxes of the Hummingbird-2 WD16 design were selected based on extensive
research [18].

We define two nonlinear functions f and g that operate on 16-bit words:

f(x) =
(
(x ≪ 2) ∧ ¬(x ≪ 1) ∧ (x ≫ 1)

) ⊕ x

g(x) =
(¬x ∧ (x ≪ 4) ∧ ¬(x ≪ 12)

) ⊕ (x ≪ 8)

The steps required to compute y = χν(x, k1, k2, k3, k4) are

t1 = f(g(x ⊕ k1) ⊕ 4D71) t2 = f(g(t1 ⊕ k2) ⊕ 0F65)
t3 = f(g(t2 ⊕ k3) ⊕ 2746) t4 = f(g(t3 ⊕ k4) ⊕ 0B7C)
t5 = f(g(t4 ⊕ k1) ⊕ CFD5) t6 = f(g(t5 ⊕ k3) ⊕ 8E45)
t7 = f(g(t6 ⊕ k2) ⊕ 40DA) y = f(g(t7 ⊕ k4) ⊕ 62F0)

We acknowledge that one could use more of the keying material in each χν

function to make divide-and-conquer attacks more difficult. We decided not to
change the overall structure outside the nonlinear component at all, however.

The “magic constants” 4D710F6527.. are derived from the Ehrenfeucht-
Mycielski sequence [19,20]. The inverse function x = χ−1

ν (y, k1, k2, k3, k4) is
easy to derive when we note that f and g are involutions: f(f(x)) = x and
g(g(x)) = x. The steps are simple performed in reverse order. In a hardware
implementation the decryption circuitry closely matches the encryption circuit.
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Here are some test vectors for χν and a trace of execution for the last entry:

χν(0000, 0000, 0000, 0000, 0000) = FECB

χν(1234, 5555, 5555, 5555, 5555) = 18E6

χν(0000, 0123, 4567, 89AB, CDEF) = 3286

x=0000 t: 4C70 D80E 8857 2DB9 169D B89A 39B7 y=3286

Note that Hummingbird byte-word conversions are little-endian. Here’s a test
vector for Hummingbird-2ν encryption of 16 bytes and the resulting MAC:

KEY = 01 23 45 67 89 AB CD EF FE DC BA 98 76 54 32 10
IV = 12 34 56 78 9A BC DE F0

PT = 00 11 22 33 44 55 66 77 88 99 AA BB CC DD EE FF
CT = 63 66 F6 CB 60 0F A4 CE 52 78 D8 A8 5B 39 E2 B3

MAC = E8 50 64 50 68 CA 49 04 9C E8 6A 54 55 F0 00 F0
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Abstract. The GMR-1 and GMR-2 stream ciphers, which are used in
the satellite phones, have been reconstructed by Driessen et al. recently.
The GMR-1 cipher is shown to be a proprietary variant of the GSM A5/2
algorithm, thus it could be cracked using the previous known method. For
the newly designed GMR-2 cipher, by observing a non-uniform behavior
of its component, Driessen et al. proposed an efficient known plaintext
attack to recover the encryption key (a session key with 64-bit) with
approximately 5–6 frames (50–65 bytes) of keystream.

In this paper, we first revisit the properties of each component of
the GMR-2 cipher, and then present a low data complexity attack on
it by adopting the strategy of guess-and-determine. We call this kind of
attack the dynamic guess and determine attack, since the evolution of the
guessing part of the internal state of the attack is changed dynamically
according to the intermediate process. Our theoretical analysis demon-
strates that, using the proposed attack, the 64-bit encryption key could
be recovered by guessing no more than 32 bits when 15 bytes (1 frame) of
the keystream is available. Some experimental results are also performed
on a single PC to confirm our analysis, and the number of candidates for
exhaustive search is about 228 on average.

Keywords: Satellite phone · Stream cipher · GMR-2 · Guess-and-
determine

1 Introduction

1.1 Backgrounds and the GMR-2 Cipher

Nowadays, mobile communication systems have revolutionized the way we inter-
act with each other, and there have been built many cellular mobile network such
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as GSM, UMTS, CDMA2000, or 3GPP LTE. These cellular mobile networks all
require a so called cell site to create a cell within the network, which provides all
the necessary equipment for transmitting and receiving radio signals from mobile
handsets and the radio network. However, in some cases, such as the crew on oil
rig or ships on open sea, researchers on a field trip in a desert, or people living in
remote areas or areas that are affected by a natural disaster, it is not always to
be close to a mobile phone cellular network, then these residents, military and
government systems need to use satellite phones to communicate.

Satellite phone is a type of mobile phone that connects to orbiting satel-
lites instead of terrestrial cell sites. They provide similar functionality to terres-
trial mobile telephones such as the voice, short messaging service etc. Currently,
there are two major satellite phone standards both developed by ETSI, namely
the GMR-1 standard and the GMR-2 (aka GMR-2+) standard. For instance,
Thuraya phone implements the GMR-1 standard, while the GMR-2 standard is
mainly used by Inmarsat1.

As we all know, security plays a significant role for satellite phones, yet from
ETSI, we can only obtain the specifications of those two standards without any
information about implementation details of security aspects. In fact, these two
standards employ two different encryption algorithms called GMR-1 cipher and
GMR-2 cipher, whose details had not been publicly known until [7] was reported
in January 2012.

According to [7], the GMR-1 cipher is an improved version of A5/2 which
belongs to the GSM encryption standard. Thus the methods of analyzing A5/2 as
introduced in [3,5] can almost be applied to the GMR-1 cipher [8]. The GMR-
2 cipher is a newly designed stream cipher, and at present, only [7] presents
a known plaintext attack against GMR-2 cipher which is based on the read-
collision technique. This method needs approximately 50–65 bytes (5–6 frames)
of the keystream to recover the full key, and the computational complexity is
about 218.

1.2 Main Contribution and the Outline

In this paper, we propose a low data complexity attack on the GMR-2
cipher using the guess and determine approach. Guess-and-determine attack
is a common cryptanalytic approach against stream ciphers [1,2,4,6,9–12,15].
Its basic idea is to guess some parts of the internal state and derive other part
through the relationship between the keystream and the internal state introduced
by the keystream generation process. The validity of a guessed and determined
internal state is checked by running the cipher forward from that state. If the
generated keystream matches the intercepted keystream, we accept it. Other-
wise, we discard the current candidate and try the attack again.
1 Recently, the work in [13] shows that they can modify the firmware of a Inmarsat

IsatPhonePro satellite phone using only a USB cable, which allows to read and write
frames directly to any layer of the GMR-2 communication system, or even allows
users to inject and/or sniff frames without the need of any additional equipment.
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The general guess-and-determine attack assumes that the guessed part and
the corresponding determined part of the internal state are known to the adver-
sary prior to mounting the attack procedure. However, this approach cannot
directly applied to the GMR-2 cipher due to its special structure. Considering
this, we present a new strategy for guess-and-determine attack which we call the
dynamic guess-and-determine. In this strategy, the evolution of guessing part of
the internal state is changed dynamically according to the intermediate process,
i.e., the new guessing part depends on both the previous guessed and determined
parts of the internal state. We show how this kind of attack can be used to ana-
lyze the GMR-2 stream cipher. Our theoretical analysis demonstrates that, using
the proposed attack, the 64-bit session key could be recovered by guessing no
more than 32 bits when 15 bytes (1 frame) of the keystream are available. The
experimental results also confirm our analysis, and the number of candidates for
exhaustive search is about 228 on average.

The rest of this paper is organized as follows: In Sect. 2, we recall the GMR-2
cipher briefly. Section 3 gives some properties of the components of the cipher
and Sect. 4 gives basic analysis of the cipher. Section 5 presents our low data
complexity attack on GMR-2 cipher in detail and finally Sect. 6 concludes this
paper.

2 Description of the GMR-2 Cipher

2.1 Overall Structure of the GMR-2 Cipher

The GMR-2 cipher uses a 64-bit encryption-key, denoted as K = {K7, K6, · · · ,
K0} and operates on bytes. When the cipher is clocked, it generates one byte
of the keystream denoted by Zl, where l represents the number of clockings.
The cipher exhibits an 8-byte state register S = (S7, S6, · · · , S0), three major
components F , G, H, a 3-bit counter c ⊕ {0, 1, · · · , 7} and a toggle-bit t ⊕ {0, 1}.
A schematic overview of the overall structure is depicted in Fig. 1.

Fig. 1. Overall structure of the GMR-2 cipher
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Fig. 2. The structure of F-component

The F-component combines two bytes of the encryption-key with the previ-
ous output (a keystream byte), the G-component is a linear function for mixing
purpose, and the H-component consists of two DES S-boxes as a nonlinear fil-
ter. In the following subsections, we will describe the three major components
in detail.

2.2 F-Component

The F-component is the most interesting part of the cipher, and Fig. 2 shows its
internal structure. The 64-bit encryption-key K=(K7, K6, · · · , K0) is fed into
a 64-bit resister and it is unchanged during the execution of the cipher. At each
clock, the F-component just selects two key bytes Kc and Kτ1(α) from the lower
side and the upper side, which can be described formally as follows.

Assume the cipher is at the l-th clock, besides the encryption-key K, the
inputs of the F-component contain t, c and p, where c = l mod 8 is a counter
ranging from 0 to 7 sequentially and repeatedly, t = c mod 2 is a toggle bit,
and p = (p7, p6, · · · , p0) ⊕ {0, 1}8 is one byte of the keystream that has already
been generated in the last clock. We will simply use p = Zl−1 to denote one byte
of the keystream that has already been generated. The outputs of F-component
contain an 8-bit O0 and a 4-bit O1 of the following form

⎧
O0 =(Kτ1(α) ≫ τ2(τ1(α)))8;
O1 =((((Kc ∃ p) → 4)&0xF) ∃ ((Kc ∃ p)&0xF))4.

(1)
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Table 1. Definition of τ1 and τ2

α τ1(α) τ2(τ1(α)) α τ1(α) τ2(τ1(α))

(0,0,0,0) 2 6 (1,0,0,0) 3 7
(0,0,0,1) 5 3 (1,0,0,1) 0 4
(0,0,1,0) 0 4 (1,0,1,0) 6 2
(0,0,1,1) 6 2 (1,0,1,1) 1 5
(0,1,0,0) 3 7 (1,1,0,0) 5 3
(0,1,0,1) 7 1 (1,1,0,1) 7 1
(0,1,1,0) 4 4 (1,1,1,0) 4 4
(0,1,1,1) 1 5 (1,1,1,1) 2 6

where τ1 : {0, 1}4 −√ {0, 1}3 and τ2 : {0, 1}3 −√ {0, 1}3 are defined by table-
lookups as shown in Table 1, and α is defined as

α = N (t,Kc ∃ P ) =

⎧
((Kc ∃ p)&0xF))4, if t = 0;
(((Kc ∃ p) → 4)&0xF)4, if t = 1,

(2)

which can also be expressed using the following simple form

α = [(Kc ∃ p) → 4 × (c mod 2)]& 0xF.

2.3 G-Component

As demonstrated in Fig. 3, the G-component gets the output of the F-component
and one byte S0 of the state as its input. It employs three sub-components,
denoted by B1, B2, B3, all work on 4-bit input and returns 4-bit output with the

Fig. 3. The structure of G-component (the upper lines indicates lower bits)
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Fig. 4. The structure of H-component

following definitions
⎨
⎩

⎩

B1 : (x3, x2, x1, x0) �√ (x3 ∃ x0, x3 ∃ x2 ∃ x0, x3, x1);
B2 : (x3, x2, x1, x0) �√ (x1, x3, x0, x2);
B3 : (x3, x2, x1, x0) �√ (x2, x0, x3 ∃ x1 ∃ x0, x3 ∃ x0).

Since each Bi is linear, and all the other operations are just transposition or
XOR, the G-component is an entirely linear transformation, and we can express
the two 6-bit outputs O∈

0 and O∈
1 as linear functions of the input by Eq. (3)

⎨
⎩⎩

⎩⎩

O∈
0 = (O0,7 ∃ O0,4 ∃ S0,5, O0,7 ∃ O0,6 ∃ O0,4 ∃ S0,7, O0,7 ∃ S0,4,

O0,5 ∃ S0,6, O1,3 ∃ O1,1 ∃ O1,0, O1,3 ∃ O1,0)
O∈

1 = (O0,3 ∃ O0,0 ∃ S0,1, O0,3 ∃ O0,2 ∃ O0,0 ∃ S0,3, O0,3 ∃ S0,0,
O0,1 ∃ S0,2, O1,2, O1,0).

(3)

2.4 H-Component

The input of the H-component as shown in Fig. 4, is the outputs of G-component
O∈

0, O∈
1 and a toggle-bit t.

H-component contains two S-boxes S2 and S6, where S2 is the second S-box
of DES and S6 is the sixth S-box of DES. See Tables 2 and 3 for a reference.
However, these two S-boxes have been reordered to account for the different
addressing.

Assume the input of S-box is (x6, x5, x4, x3, x2, x1), then in this cipher, the
least-significant bits (x2, x1) select the S-box row and the four most-significant

Table 2. The S-box S2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10
1 3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5
2 0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15
3 13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9
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Table 3. The S-box S6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11
1 10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8
2 9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6
3 4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13

bits (x6, x5, x4, x3) select the S-box column. Now depending on the value of t,
the output of H-component, which is the l-th byte of the keystream, can be
defined by

Zl =

⎧
(S2(O∈

1), S6(O∈
0))8, if t = 0;

(S2(O∈
0), S6(O∈

1))8, if t = 1.
(4)

2.5 Mode of Operation

Now, we can describe the mode of operation [7] for the GMR-2 cipher. When
the cipher is clocked for the l-th time, the following happens:

– Based on the current state of the state-register S, the counter c, and the
toggle-bit t, the cipher generates one byte Zl of keystream.

– The counter c is incremented by one and the toggle-bit is computed as t =
c mod 2. When 8 is reached for c, then c is reset to 0.

– The state-register S is shifted by 8 bits to the right: Si = Si+1, i = 0, 1, . . . , 6,
and S7 = Zl. Meanwhile, p = Zl is also passed to the F-component as input
for the next iteration (the (l + 1)-th clock).

The cipher is operated in two modes, the initialization mode and the gener-
ation mode.

Initialization Mode. In the initialization phase, the following steps are per-
formed:

– The counter c = 0 and the toggle-bit t = 0.
– The 64-bit encryption-key is written into the resister in the F-component.
– The state-register S is initialized with the 22-bit frame-number N , and this

procedure is not detailed here as it is irrelevant with our attack. After c, t,
S have been initialized, the cipher is clocked eight times, but the resulting
keystream is discarded.

Generation Mode.2 After the initialization is finished, the cipher is clocked to
generate and output actual keystream bytes. We use Z

(N)
l to denote the l-th

(l ⇒ 0) byte of keystream generated after initialization with frame-number N .

2 There is a slight difference between the notation of [7] and ours in the generation

mode, in this paper, we always assume that Z
(N)
0 is the first output byte of the

keystream after the cipher is clocked eight times in the initialization phase.
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The frame-number is always incremented after 15 bytes of keystream, which
forces a re-initialization of the cipher. Therefore the keystream Z ∈ that is actually
used for N ⊕ {0, 1, · · · } is made up of blocks of 15 bytes that are concatenated
as follows:

Z ∈ = (Z(0)
0 , Z

(0)
1 , · · · , Z

(0)
14 , Z

(1)
0 , Z

(1)
1 , · · · , Z

(1)
14 , · · · ).

3 Properties of the Components of the GMR-2 Cipher

In this section, we carefully study the characteristic of the GMR-2 cipher and
propose several properties of its components which are related to our later analy-
sis.

3.1 Property of the F-Component

We first note that after the 64-bit encryption key K is fed into the F-component,
it remains unchanged not only in the phase of the initialization, but also in the
phrase of the keystream generation. Since the F-component is used to select two
key bytes Kc and Kτ1(α) from K, and the counter c is changed sequentially from
0–7, we only need to know how Kτ1(α) is selected.

Property of α. By Eq. (2), α can be expressed as:

α = N (t,Kc ∃ p)

=

⎧
(Kc,3 ∃ p3, Kc,2 ∃ p2, Kc,1 ∃ p1, Kc,0 ∃ p0)4, if t = 0;
(Kc,7 ∃ p7, Kc,6 ∃ p6, Kc,5 ∃ p5, Kc,4 ∃ p4)4, if t = 1.

This tells us that if p is known, then at each clock, we can get the value of
α only by the four least-significant bits of Kc when t = 0 (c is even) or the four
most-significant bits of Kc when t = 1 (c is odd). Thus, the key byte Kτ1(α)

selected by the upper side can be determined by the value of the most (least)
significant 4-bit of Kc provided p is known.

Properties of τ1 and τ2. From Table 1, we know that τ1 maps 4-bit to 3-bit,
thus a collision always exists. For instance, τ1(0, 0, 1, 0) = τ1(1, 0, 0, 1) = 0, and
τ1(0, 1, 1, 0) = τ1(1, 1, 1, 0) = 4, this observation combined with τ2(0) = τ2(4) =
4 lead to the efficient read-collision based attack in [7]. Note that τ2(·) maps
3-bit to 3-bit, but it is non-surjective. Since one of the output of F-component
is O0 = Kτ1(α) ≫ τ2(τ1(α)), we guess the reason why the designers choose a
non-surjective table for τ2(·), he just want to make the right rotation parameter
always being non-zero. Currently, we do not know whether this kind of non-
uniformity could lead to some other potential attacks.
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3.2 Property of the G-Component

According to Eq. (3), the link between the input and output of the G-component
can be expressed by





O∈
0,5

O∈
0,4

O∈
0,3

O∈
0,2

O∈
1,5

O∈
1,4

O∈
1,3

O∈
1,2

O∈
0,1

O∈
0,0

O∈
1,1

O∈
1,0



⎡

=





1 0 0 1 0 0 0 0 0 0 0 0
1 1 0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 1 0 0 0 0
0 0 0 0 1 1 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 1 1
0 0 0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1



⎡

·





O0,7

O0,6

O0,5

O0,4

O0,3

O0,2

O0,1

O0,0

O1,3

O1,2

O1,1

O1,0



⎡

∃





S0,5

S0,7

S0,4

S0,6

S0,1

S0,3

S0,0

S0,2

0
0
0
0



⎡

, (5)

based on which we can obtain the following three linear equation systems:

y =W · x ∃ v, (6)
y1 =W1 · x1 ∃ v1, (7)
y2 =W2 · x2 ∃ v2, (8)

where

W =




A 0 0
0 A 0
0 0 B



⎡ , W1 =
⎢
A 0
0 A

⎣
, W2 =

⎤
B

⎥
,

A =





1 0 0 1
1 1 0 1
1 0 0 0
0 0 1 0



⎡ , B =





1 0 1 1
1 0 0 1
0 1 0 0
0 0 0 1



⎡ , 0 =





0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



⎡ ,

and ⎨




y1 = (O∈
0,5, O

∈
0,4, O

∈
0,3, O

∈
0,2, O

∈
1,5, O

∈
1,4, O

∈
1,3, O

∈
1,2)

T

y2 = (O∈
0,1, O

∈
0,0, O

∈
1,1, O

∈
1,0)

T

y = (y1,y2)
,

⎨




x1 = (O0,7, O0,6, O0,5, O0,4, O0,3, O0,2, O0,1, O0,0)T

x2 = (O1,3, O1,2, O1,1, O1,0)T

x = (x1,x2)
,

⎨




v1 = (S0,5, S0,7, S0,4, S0,6, S0,1, S0,3, S0,0, S0,2)T

v2 = (0, 0, 0, 0)T

v = (v1,v2)
.

Further, let Kc = (kh,kl), where kh = (Kc,7,Kc,6,Kc,5,Kc,4)T denotes the
most significant 4-bit of Kc, and kl = (Kc,3,Kc,2,Kc,1,Kc,0)T denotes the least
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significant 4-bit of Kc. Similarly let p = (ph,pl), where ph = (p7, p6, p5, p4)T ,
pl = (p3, p2, p1, p0)T , and define u = ph ∃ pl, then Eq. (1) implies the following
two linear systems

x1 = Kτ1(α) ≫ τ2(τ1(α)) (9)
x2 = kh ∃ kl ∃ u (10)

In the following attack on the GMR-2 cipher, we will always use one of the
above linear systems, and we can guarantee that both the exact values of u and
v are known to us. We have the following observations:

Observation 1. Since A and B are invertible, so are W, W1 and W2, then from
Eqs. (6)–(8), we can obtain the value of y (yi) from x (xi) easily, and vice vera.

Observation 2. If both y1 and α are known, then from observation 1, we can
get the value of x1, and further from Eq. (9), we can calculate Kτ1(α) = x1 ≪
τ2(τ1(α)).

Observation 3. If both y2 and kh (kl) are known, then from observation 1,
we can get the value of x2, and further from Eq. (10), we can calculate kl =
x2 ∃ kh ∃ u (kh = x2 ∃ kl ∃ u).

Observation 4. The column indices of the two S-boxes S2 and S6 are selected
by y1, and the row indices are selected by y2. This relationship is depicted in
Fig. 5.

3.3 Property of the H-Component

According to Eq. (4) and the definition of the two S-boxes, we have the following
three results:

Fig. 5. The links between the input and output of the G-component (the upper lines
indicates lower bits). Note that α = [(Kc ⊕ p) √ 4 × (c mod 2)] & 0xF
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– If the row index and the output of an S-box are known, then we will get the
column index uniquely.

– If the column index and the output of an S-box are known, then we will also
get the row index uniquely except for S6 when the column index is 4 and the
output is 9, in this situation, the row index can be either 0 or 3.

– If only the outputs of both S-boxes are known, then we will get 4 × 4 = 16
possible inputs for H-component.

The above three results indicate that by intercepting the keystream of the
GMR-2 cipher (the output of the two S-boxes) and combining the guessed/
determined values of the row or column indices, we can “invert” these two
S-boxes to obtain the corresponding (partial) input candidates.

4 Basic Analysis of the GMR-2 Cipher

The previous section presents some properties of the three components of the
GMR-2 cipher. In this section, we show how these components interact with
each other.

Given the frame number N , let S
(l)
i denote the state of Si at the l-th (0 ∈

l ∈ 14) clock in the keystream generation phrase, then for 8 ∈ l ∈ 14 we have

S
(l)
0 = Z

(N)
l−8 and p = S

(l)
7 = Z

(N)
l−1 ,

which indicates that for 8 ∈ l ∈ 14, both S
(l)
0 and p are known to us, thus the

vectors v, v1, v2 and u as defined in the previous section are also known to
us. To simply our analysis, in the following of this section, we only focus on the
cipher at the (c + 8)-th clock with 0 ∈ c ∈ 6.

Note that at the (c+8)-th clock, the F-component just selects two key bytes
Kc and Kτ1(α) from the lower side and the upper side. According to the property
of the F-component, just by guessing the half value of Kc = (kh,kl), we can
determine the value of α and then know which key byte the F-component will
select.

Now, based on the fact that the link between the input and output of the
G-component can be expressed by a well-structured matrix W, we present the
following four rules for the guessing strategy when applying the dynamic guess-
and-determine attack as described in the next section.

Rule 1. Let Kc = (kh,kl), assume c is odd, and given a guessed value for kh,
if τ1(α) = c, then from Z

(N)
c+8 , either the guessed value of kh is wrong or the

candidate value of kl can be determined; Similarly, assume c is even, and given
a guessed value for kl, if τ1(α) = c, then from Z

(N)
c+8 , either the guessed value of

kl is wrong or the candidate value of kh can be determined.

Proof. We only give the proof for the first case, the other case is similar, and
thus the detail is omitted.
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From τ1(α) = c, we have Kτ1(α) = Kc, thus

x1 = Kτ1(α) ≫ τ2(τ1(α)) = (kh,kl) ≫ τ2(τ1(α)).

Noting that
x2 = kh ∃ kl ∃ u and x = (x1,x2),

thus if kh is known, then for each possible y (whose value is calculated later),
Eq. (6) can be converted into another linear equation system (which is related
to the guessed value of kh) with 12 equations and 4 indeterminate variables
representing kl.

According to the properties of the H-component, there will be 16 different
values for y = (y1,y2) from Z

(N)
c+8 . Thus, in total, 16 linear equation systems for

kl can be obtained.
If the guessed value of kh is the actual value, at least one of the above 16

linear systems will have a solution that can be find through Gaussian elimination
method. While if kh is a random guessed value, then based on the theory of
Linear Consistency Test [14], the probability that each linear equation system
has solutions is no more than

1
212−4

×
⎢

1 +
1

212+1

⎣4

≈ 2−8.

Thus, the probability that the above 16 linear equation systems have solutions
is upper bounded by 16 × 2−8 = 2−4. In other words, this indicates that the
number of candidates for kl is small. ≈∪
Rule 2. Let Kc = (kh,kl), assume c is odd (even), and given a guessed value
for kh (kl), if τ1(α) ∀= c, we further guess the value of kl (kh), in this situation,
we have a guessed value for Kc, and then Kτ1(α) can be determined by Z

(N)
c+8 .

Proof. Since Kc = (kh,kl) is known by guess, x2 = kh∃kl∃u is known, accord-
ing to observation 1, y2 can be calculated. By observation 4, the row indices for
the two S-boxes are known, then from Z

(N)
c+8 , the value of y1 which corresponds

to the column indices for the two S-boxes can be uniquely determined. By obser-
vation 2, the value of Kτ1(α) can be obtained. ≈∪
Rule 3. Let Kc = (kh,kl), assume c is odd, and given guessed value for kh,
if Kτ1(α) had already been guessed or determined previously, then kl can be
determined by Z

(N)
c+8 ; Similarly, assume c is even, and given guessed value for kl,

if Kτ1(α) had already been guessed or determined previously, then kh can be
determined by Z

(N)
c+8 .

Proof. Since Kτ1(α) is known, x1 is known, by observation 1, the value of y1

can be obtained. Noting that y1 corresponds to the column indices for S-boxes,
thus y2 which represents the row indices for S-boxes can be obtained from Z

(N)
c+8 .

According to observation 3, kh (kl) can be calculated with known kl (kh). ≈∪
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Remark 1. We remind here that, from y1 and Z
(N)
c+8 , we cannot always uniquely

deduce y2 as explained in Sect. 3.3, thus we will sometimes obtain two candidates
for y2.

Rule 4. Assume that the values for Kc and Kτ1(α) had already been guessed or
determined previously, then we can judge whether those guessed or determined
values are wrong by Z

(N)
c+8 .

Proof. Since Kc and Kτ1(α) are known, they can pass through the three compo-
nents to generate a keystream byte at the (c+8)-th clock, then we can compare
it with Z

(N)
c+8 . If they are not matched, the guessed values for Kc and Kτ1(α) are

wrong. ≈∪
Remark 2. When applying dynamic guess-and-determine attack on the GMR-2
cipher in the next section, in fact, at each step, we just adopt Rule 1–Rule 3
to guess or determine some parts of K, or adopt Rule 4 to verify whether the
guessed or determined value is wrong. If Rule 4 indicates some inconsistency at
the current clock, then the guessed value for the nearest clock is wrong, in this
situation, we must backtrack to this position, and try another guessed value.

5 Low Data Complexity Attack on the GMR-2 Cipher

As discussed in the introduction, the general guess-and-determine attack assumes
that both the guessed part and the corresponding determined part of the inter-
nal state are known to the adversary prior to mounting the attack. However,
considering the mechanism of the GMR-2 cipher, we cannot directly applied the
general guess-and-determine attack on it. Thus, we introduce a new strategy for
guess-and-determine attack which we call the Dynamic Guess-and-Determine.
The main feature is that we cannot decide which parts must be guessed and
which parts have to be determined in prior, what we can do is just dynamically
guessing some parts of the internal state. The idea can be further described as
follows.

First, we guess some part of the internal state of the target cipher, and then
according to the guessed value, we determine some other parts of the inter-
nal state through the intercepted keystream. Next, we continue to guess some
new part of the internal state, but this time the guessed part depends on both
the previous guessed and determined parts. Do this process until all parts of the
internal state are deduced. This indicates that we need to dynamically build the
candidates for K by backtracking.

Now we can adopt the above strategy to present a low data complexity
attack on the GMR-2 cipher. Our attack only needs one frame (15-byte) of
the keystream, and without loss of generality, we assume N = 0. The attack
contains the following two major steps3:
3 We point out here that although we describe our attack in two separate steps, in

fact, the second step (the exhaustive search step) can be incorporated in the first
step: if a candidate is obtained from the dynamic guess-and-determine phase, it can
be quickly tested to decide whether it is the right key.
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– In the first step, from the known keystream Z
(0)
0 ∅ Z

(0)
14 , we adopt the dynamic

guess-and-determine method to analyze the cipher at the (c + 8)-th clock,
where 0 ∈ c ∈ 6, and this can reduce the candidates for the 64-bit encryption-
key K from 264 to no more than 232.

– In the second step, we test the candidates for K from the first step by compar-
ing the keystream generated from these candidates with the exact keystream
Z

(0)
0 ∅ Z

(0)
7 , thus we obtain the unique value for K.

Since the second step of our attack is just doing exhaustive search operations
for the candidate set, we only discuss the first step in detail in the following
subsection.

5.1 The Attack Procedure

As explained before, to guarantee that the values of p and S
(l)
0 are known for

us at the l-th clock, we should analyze the cipher at the (c + 8)-th clock with
0 ∈ c ∈ 6.

Before introducing the proposed attack, we first define an index set

Γ ∗ {0, 1, · · · , 7}
to save the byte indices for the encryption key K that had already been known
by guessing or determining before the (c + 8)-th clock. Γ is initialized with ∅ at
the 8th clock, and is changed during the attack process.

Now let’s analyze the GMR-2 cipher at the (c + 8)-th clock with 0 ∈ c ∈ 6.
At each clock, we calculate the following values:

c, t, p = Z
(0)
c+7, S

(c+8)
0 = Z(0)

c , and Γ,

and judge whether c ⊕ Γ :

– If c ⊕ Γ , then Kc had been known, we could calculate α and judge whether
τ1(α) ⊕ Γ :
• If τ1(α) ⊕ Γ , then Kτ1(α) had been known, thus we can adopt Rule 4 to

determine whether Kc and Kτ1(α) are wrong. If they are incorrect (i.e.,
the guessed and determined values are wrong), then we trace back to the
nearest clock (at which the guessed value indicates such inconsistency) to
re-analyze the cipher.

• If τ1(α) ∀⊕ Γ , then Kτ1(α) had not been known, we can adopt Rule 2
to obtain Kτ1(α), and meanwhile set Γ ← Γ ∪ {τ1(α)}.

– If c ∀⊕ Γ , then Kc = (kh,kl) had not been known, now we decide to guess
kl if c is even, and kh if c is odd. Next, we calculate α and judge whether
τ1(α) ⊕ Γ :
• If τ1(α) ⊕ Γ , then Kτ1(α) had been known, we can adopt Rule 3

to get kh if c is even, and kl, if c is odd, and meanwhile set Γ ← Γ ∪ {c}.
• If τ1(α) ∀⊕ Γ , then Kτ1(α) had not been known. We further judge whether

c = τ1(α):
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If c = τ1(α), then we can adopt Rule 1 to either get the rest bits of Kc,
and set Γ ← Γ ∪ {c}, or deduce that the guessed value of kl (kh) is
wrong if c is even (odd), and then we guess another value for kl (kh).
If c ∀= τ1(α), then we guess the other four bits of Kc, and we can adopt
Rule 2 to get Kτ1(α), and meanwhile set Γ ← Γ ∪ {c, τ1(α)}.

The above process sequentially executes on the GMR-2 cipher from the 8th
clock to the 14th clock. When it is finished, there will be a candidate for the
64-bit K, then we test whether it is the right key by Z

(0)
0 ∅ Z

(0)
7 . If not, we

discard this candidate, and then we modify the guessed values to obtain another
candidate. This process is repeated until the right key is found at last.

5.2 Complexity Analysis and Experimental Results

From the attack procedure, especially from Rule 1– Rule 3, it is shown that if we
guess 8 bits, then we will obtain other 8 bits; while if we guess 4 bits, then we will
also deduce other 4 bits. Furthermore, Rule 4 can be further used to filter the
wrong guessed values. We thus conclude that for a 64-bit key K, we only need to
guess at most 32 bits on average, and the other 32 bits can be determined. This
estimation is rough, however, it seems difficult and even impossible to calculate
the exact time complexity of our attack in theory. So we do some experiments
for different frames and random keys. Our experimental results almost confirm
our analysis, and the number of candidates is a little better, it is about 228 on
average.

More specifically, we perform a non-optimized4 realization of the above attack
1000 times on a 3.2 GHz PC, and the result demonstrates that the 64-bit
encryption-key can be obtained in around 700 seconds on average, where 580
seconds are consumed to deduce the 228 candidates, and 120 seconds are con-
sumed to exhaustively search the candidates. Figure 6 is the frequence distrib-
ution of the exhaustive bits (the logarithm of the number of candidates) from
1000 experimental results.

The data complexity of the attack is just a frame of the keystream, i.e., 15-
byte keystream. The dynamic guess-and-determine phase only analyze 8th∅14th
clock, because S7, S6, . . . , S0 must be known in this phase. While for the exhaus-
tive search phase, Z

(0)
0 ∅ Z

(0)
7 can be used to distinguish the right key from the

228 candidates.
4 As described in Sect. 5.1, in the dynamic guess-and-determine attack, if we detect

some inconsistency at the (c+8)-th clock, we should backtrack to the nearest clock.
However, for easy programming with the recursive method, in our “non-optimized”
realization, we just trace back to the (c + 7)-th clock, thus there maybe exist many
redundant computations. We believe that using the original realization, the time
complexity of the attack can be further reduced quickly.
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Fig. 6. The frequence distribution of exhaustive bits from 1000 experimental results

Table 4. Cryptanalytic results on the GMR-2 cipher

Method Data Time Source

Read-Collision Based Technique 15–20 frames 210 [7]
Read-Collision Based Technique 5–6 frames (50–65 bytes) 218 [7]
Dynamic Guess-and-Determine 1 frames (15 bytes) 228 Sect. 5

6 Conclusion

The GMR-2 cipher has been widely used in the satellite phones communications,
and thus it is of special significant to analyze its security. The design method-
ology of GMR-2 cipher seems new and more complex, yet an efficient low data
complexity attack based on the strategy of dynamic guess-and-determine could
be mounted. This kind of attack needs only 1 frame (15-byte) of the keystream,
and it can recover the 64-bit session key by testing about 228 candidates on
average. Table 4 is the comparison between the known cryptanalytic result and
ours. Our proposed attack can also be implemented on a single PC, which again
demonstrates that the design methodology of the GMR-2 cipher is really far
from what is “state of the art” in stream ciphers.
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Abstract. Dinur and Shamir have described cube attacks at EURO-
CRYPT ’09 and they have shown how efficient they are on the stream
cipher Trivium up to 767 rounds. These attacks have been extended
to distinguishers but since this seminal work, no better results on the
complexity of key recovery attacks on Trivium have been presented. It
appears that the time complexity to compute cubes is expensive and
the discovery of linear superpoly also requires the computation of many
cubes. In this paper, we increase the number of attacked initialization
rounds by improving the time complexity of computing cube and we show
attacks that go beyond this bound. We were able to find linear superpoly
up to 784 rounds, which leads to an attack requiring 239 queries. Using
quadratic superpoly, we were also able to provide another attack up to
799 rounds which complexity is 240 queries and 262 for the exhaustive
search part. To achieve such results, we find a way to reduce the density
of the polynomials, we look for quadratic relations and we extensively use
the Moebius transform to speed up computations for various purposes.

Keywords: Trivium · Cube attacks · Cryptanalysis · Moebius
transform

1 Introduction

After every stream cipher submitted to the NESSIE project in 2000 was success-
fully broken, a new European project called eSTREAM was started in 2004 in
order to build new secure stream ciphers. One of the ciphers submitted, Trivium,
has a very simple design and yet no attack was discovered on its full version,
which uses 1152 initialization rounds.

There have been various attempts to attack reduced variants of Trivium.
In [12], Vielhaber managed to recover 47 bits of the key after 576 rounds using
an algebraic method. Afterwards, Dinur and Shamir described a full key recovery
in less than 230 requests to Trivium limited to 735 rounds and recovered 35 key
bits after 767 rounds in about 236 requests using the so-called cube attacks in [7].
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Consequently, the on-line attack requires an exhaustive search of 245. With the
introduction of cube testers, Aumasson et al. were able to build a distinguisher
on Trivium after 790 rounds and detect non-randomness properties after up to
885 rounds in [2]. Independently, in [10], Knellwolf, Meier and Naya-Plasencia
built a distinguisher up to 806 rounds for all keys and up to 961 rounds for some
very specific keys.

Despite a warning suggesting that the cube attack may be applied on stronger
versions of Trivium, no such results were obtained since 2009. In this paper, we
investigate how far the cube attack can realistically be applied to Trivium. Cube
attacks usually are composed of an online and an offline phase. During the offline
phase, the adversary is looking for linear relations and once the number of such
relations are high enough, the on-line phase requires to compute cube using
chosen public variables. In [7], only the complexity of the online phase is given.
The only information regarding the offline phase is that it lasted “several weeks”
for the strongest version, i.e. the attack on 767 rounds of Trivium. However,
this phase of the attack is the most interesting if we try to extend the previous
attacks. We were able to reproduce this phase in a matter of hours and a stronger
version in a couple of days worth of computation. The online phase has a low-
enough complexity to be feasible in practice.

Our Contributions. First of all, we develop efficient implementations and
optimizations to compute large cubes and for instance, we can compute a cube of
size 27 in less than a second on a standard computer. Using fast implementation
of the Moebius Transform, we realize many interesting computations such as
polynomial density measurements, degree testing or interpolation. In addition,
we used a different method than the one suggested in [7] to test many different
parameters at once. Thanks to this, over 90,000 computations which should
each require 236 operations can be computed in merely 2 hours where this would
have required about 13,000 hours with the classical method, offering an average
computing time of 80ms for every cube of size 36.

Furthermore, we investigated ways to smartly select the parameters with an
empirical filter which greatly improved the rate at which linear key bits relations
were established. This preselection technique is the main ingredient we propose
and we use to push the attack further with little increase in complexity. Indeed,
we were able to recover 42 key bits after 784 rounds of initialization for the
first time with less than 238 cipher requests in the online phase. Adding a phase
of brute-force, the 80-bit key can be fully recovered in less than 239 requests.
After 799 rounds, 12 key bits can be recovered directly, which leads to an attack.
Besides, studying the polynomials of degree 2 found after 784 rounds, we exper-
imentally interpolated several quadratic polynomials which reveal information
for a very large amount of keys after up to 799 initialization rounds. This phase
of the attack has a complexity about 239. This in turn allows a full key recovery
attack in 268 requests, then reduced to about 262.



504 P.-A. Fouque and T. Vannet

Organization of the Paper. In Sect. 2, we describe the Trivium stream cipher,
recall how cube attacks work and we present the Moebius transform. In Sect. 3,
we show that this transformation can be used in many places to improve the
complexity of Cube attacks and then, we explain how we can reduce empirically
the density of the polynomial in Trivium. This technique allows to look for linear
relations more easily and increases the number of initialization rounds we can
attack. Finally, we present our result on Trivium using 784 rounds. In Sect. 4, we
present an attack on 799 initialization rounds. To extend the attack further, we
need to look for quadratic relations and we show that we have to look for specific
relations, otherwise the search would not be possible. We also use the previous
technique to reduce the density and then, we show that we obtain quadratic and
linear relations.

2 Backgrounds

2.1 Trivium Description

The stream cipher Trivium [4] has an internal state of 288 bit registers s1, . . . , s288
and works with a 80-bit key x1, . . . , x80 using a 80-bit initialization vector
v1, . . . , v80.

It has three non-linear feedback shift registers (NLFSR) which are updated
in the following way after each of the 1152 rounds of initialization:

t1 ⊕ s66 + s93
t2 ⊕ s162 + s177
t3 ⊕ s243 + s288
zi ⊕ t1 + t2 + t3
t1 ⊕ t1 + s91 · s92 + s171
t2 ⊕ t2 + s175 · s176 + s264
t3 ⊕ t3 + s286 · s287 + s69
(s1, s2, . . . , s93) ⊕ (t3, s1, . . . , s92)
(s94, s95, . . . , s177) ⊕ (t1, s94, . . . , s176)
(s178, s279, . . . , s288) ⊕ (t2, s178, . . . , s287)

During the initialization phase, the output bit zi is discarded. Once this phase
is over, (zi)i is the generated stream of bits which will be added to the plaintext
(Fig. 1).

Furthermore, we denote by recursive expression of Trivium the following
equations:

⎧
⎨⎩

⎨

s1,r+1 = s243,r + s288,r + s286,r · s287,r + s69,r

s94,r+1 = s66,r + s93,r + s91,r · s92,r + s171,r

s178,r+1 = s162,r + s177,r + s175,r · s176,r + s264,r

Trivium was a candidate for the hardware profile of the eSTREAM competi-
tion. As such, it is designed to be implemented with a small number of gates and
was not designed to be efficiently used in software applications. Even then, the
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Fig. 1. The Trivium cipher.

standard software implementation is very efficient. Indeed, after being generated
by the feedback function, a bit will not be used again for at least 64 rounds. This
is used to compute 64 initialization rounds at once. As such, the registers only
have to be updated 1152/64 = 18 times during the initialization phase.

2.2 Cube Attacks

Given a cipher on secret bits and public bits, the cube attack, introduced by
Shamir and Dinur in [7], allows one to find linear or low degree relations between
key bits. Then using simple linear algebra or Grobner basis techniques, it is
possible to recover the bit values. The following method is used, in particular in
the easier case of linear relations:

Let x1, . . . , xn be the secret key bits and v1, . . . , vp the public bits (plain-
text or initialization vector) under the attacker’s control. In the ring R =
F2[x1, . . . , xn, v1, . . . , vp], we consider the polynomial representation of the first
output bit of the cipher as the polynomial P (x1, . . . , xn, v1, . . . , vp) in R. Given
a subset (“cube”) of the public variables C = {vc1 , . . . , vck} of size k, we write
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P as P = vc1 . . . vckPC + PR, PC , PR ∃ R, where no monomial of PR is divisible
by vc1 . . . vck .

Then, given an assignment of the variables outside of C, summing P over
every possible assignment of the variables of C will give the evaluation of the
polynomial PC on this assignment. In other words,

∑

C

P = PC in R. Indeed,

every monomial of PR will be summed with itself an even number of times in
the process because at least one variable of C does not appear in said monomial.
Meanwhile, vc1 . . . vck will be non-zero only once, when every variable of the cube
is set to 1. We call PC the superpoly yielded by C and

∏

i∈C

vi is called a maxterm

if the superpoly yielded by C is linear.
Therefore, if P has a low-enough degree d, even though it has a large number

of variables, linear relations between key bits can be obtained by summing 2d−1

evaluations of the cipher. Once sufficient such linear relations have been found
in an offline phase which has to be done only once, the linear system can be
partially solved during the online phase. All it requires is the evaluation of all
the cubes obtained in the offline phase for a specific unknown key. Finally, the
full key can be recovered with a phase of offline brute-force.

However, if P is a uniformly random polynomial of high degree d, then it
is extremely unlikely that there exists maxterms of size k < d − 1. Indeed, this
would require every single monomial of degree at most d − k to be linear.

Because the feedback function of Trivium as described in Sect. 2.1 has a single
monomial of degree 2, the polynomials in the formal representation of Trivium
are expected to retain a low degree even after hundreds of initialization rounds.
Furthermore, the output function of Trivium is simply the sum of the values of
6 registers, which does not affect the degree at all.

This makes reduced versions of this cipher suitable targets for the cube
attack. Indeed, even though the theoretical maximum degree is 160 (since there
are 160 variables), linear expressions were yielded by cubes of size only 29 after
767 rounds. In the same fashion we have found cubes of size 30 yielding linear
superpolys after 784 rounds and of size 32 after 799 rounds.

2.3 Moebius Transformation

In [8], Dinur and Shamir suggest using the Moebius transform as described in
[9] to compute every single subcube of a large cube at once. Because this is such
a powerful tool, we describe it and show some of the ways we used it to study
the cube attacks on Trivium.

Let us consider the algebraic normal form of a polynomial P ∃ F2[X], where
X = X1, . . . , Xn : P =

∑

σ∈{0,1}n

ασXσ with for all σ, ασ ∃ F2 and where

Xσ1...σn = Xσ1
1 . . . Xσn

n .

Now the Moebius transform of P is the function Pm :
{0, 1}n → F2

σ → ασ
.
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In other words, given the truth table of a boolean polynomial, the Moe-
bius transform returns the truth table of a function indicating whether a given
monomial is part of the polynomial. It is computed with the following simple
algorithm (proof is provided in [9]).

The innermost loop is executed
k−1∑

i=0

2k

2 · 2i
·
2i−1∑

j=0

1 =
k−1∑

i=0

2k−1 = k · 2k−1 times,

yet it consists of a single assignment and an exclusive or operation. Besides, the
32-bit implementation presented in [9] performs roughly 32 times less operations.
Similarly, we implemented a 128-bit version with a complexity of the order of
k · 2k−7 operations.

Require: Input Truth table S of Boolean function P , with 2k entries
Variable Sz is the small table size
Variable Pos is the small table position
for i = 0 to k − 1 do

Let Sz ⊕ 2i, Pos ⊕ 0
while Pos < 2k do

for j = 0 to Sz − 1 do
S[Pos + Sz + j] ⊕ S[Pos + j] √ S[Pos + Sz + j]

Let Pos ⊕ Pos + 2 · Sz
Output overwritten content of S containing Moebius transform

Now if we consider a cube C = {vc1 , . . . , vck} and the polynomial representa-
tion of a cipher P (x1, . . . , xn, v1, . . . , vp) ∃ R, by fixing every variable outside C
to some constant, we obtain a polynomial on the variables of C which we may call
Q. Now Qm(σ1, . . . , σk) is the value of the superpoly yielded by D = {vci |σi = 1}
when every variable of C \ D is set to 0.

As it happens, a 128-bit implementation of the attack on r rounds can com-
pute a cube of size k in r · 2k−7 calls to Trivium’s round function, where r ≈ 800
and k ≈ 40. In this regard the computation of the Moebius transform, while still
non-negligible, remained much faster than the computation of a single cube. Of
course, because the full truth table has to be stored, a lot of memory may be
required. Indeed, the computation of all subcubes of a cube of size k requires 2k

bits of memory.

3 An Attack on 784 Rounds of Trivium

In this section, we will describe a cube attack on Trivium up to 784 rounds. We
will mainly explain how we manage to compute linear superpoly in an efficient
manner.

3.1 Using the Moebius Transform to Improve the Cube Attack

In this section, we will describe how the Moebius Transform may improve the
complexity of the cube search phase in the cube attacks.
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Moebius Transform Is Interesting to Compute Polynomial Density.
An interesting application of the Moebius transform is the ability it gives us
to empirically measure the density of a black-box polynomial. Mainly we are
interested in checking up to which degree the polynomial can be considered
random (every monomial appears with probability 1/2). However testing the
presence of a given monomial is an NP-hard problem [5]. With the Moebius
transform, we can however test many monomials at once and get an approximate
result with a single exponential computation.

We can choose a large cube of size k and create the truth table of the boolean
function of the k variables in the cube and returning the first bit produced by the
cipher. Applying the Moebius transform on this truth table, one can check how
many monomials of every degree less than k appear in this restricted polynomial.

Because
(

k

d

)
becomes very large when d decreases (for d ⇒ k/2), this method

provides an accurate result. Of course since we restrict the polynomial to a
fraction of its variables (in Trivium’s case, likely no more than 40 out of 160),
there is no guarantee that the full polynomial P would follow the same density
distribution. Still, a low density observed on monomials of a given degree on
those variables is a clear indicator that the polynomial can not be considered
random at this degree.

Tables 1, 2, 3 and 4 show some of the results obtained with this method for
randomly selected cubes.

Table 1. Observed polynomial density after 732 rounds

Monomial size 23 24 25 26 27 28
Density (%) 41.21 30.19 16.14 5.47 1.01 0

Table 2. Observed polynomial density after 768 rounds

Monomial size 25 26 27 28 29 30 31
Density (%) 49.14 46.95 42.34 34.49 21.84 6.21 0

Table 3. Observed polynomial density after 784 rounds

Monomial size 30 31 32 33 34 35 36 37 38
Density (%) 48.74 47.09 42.38 35.57 25.38 15.07 6.90 1.60 0

Table 4. Observed polynomial density after 799 rounds

Monomial size 33 34 35 36 37 38 39

Density for random cube (%) 49.89 49.55 48.25 44.19 34.07 16.47 3.66
Density for selected cube (%) 38.44 28.36 16.82 7.31 1.84 0.15 0
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As can be observed, the degree up to which the cipher behaves like a ran-
dom polynomial increases very quickly until it reaches the point where neither
measurements nor cube computations can be done efficiently.

Moebius Transform Is Interesting to Test Polynomial Degree. Another
obvious application of the transform is to simply realize the constant /linearity
/degree 2 testing required in the attack and described in Sect. 4.1 on many cubes
at once. Doing this, every linearity or degree 2 test has to be fully computed on
the large cube before the test is applied. Because of this, it is not possible to
optimize by aborting the computations on cubes that are clearly not linear. Still,
using 240 bits of memory (128 GB), one can compute

(
40
35

)
= 658, 008 cubes of size

35 and
(
40
36

)
= 91, 390 cubes of size 36 in only 240 calls to Trivium, compared to

about 658, 008 ·235+91, 390 ·236 > 254 calls with straight up cube computations.
Using a computer with 16 cores running at 2.67 GHz, the full computation takes
about two hours.

Because one will naturally try to use a large cube as large as can fit in
the computer’s memory (the method gets considerably much better results when
the large cube is much larger than the target size), it is not possible to store the
cube values for every key needed for the test (over 50 keys, most likely). This is
not likely to be an issue as there is little reason to store the values of subcubes
with a small size. For instance, when computing on a large cube of size 40 after
800 rounds, the probability of finding a linear superpoly from a subcube of size

30 or less is negligible and
40∑

i=31

(
40
i

)
< 229 ∈ 240.

Moebius Transform Is Interesting to Interpolate Polynomials. Once a
maxterm has been found, the polynomial in question has to be interpolated. For
Trivium, this typically requires 80 additional cube computations. If the search for
maxterms was done through a Moebius transform, it is likely several cubes have
been found at once. Depending on the number of cubes found and their sizes,
it can be more profitable to interpolate them all at once through yet another
Moebius transform on the smallest cube containing every maxterm studied. In
most cases, this will be the original large cube.

3.2 Empirical Reduction of Density

The cube attacks described in [7] rely on the fact that the studied black-box
polynomial has a low degree. However, as explained previously, even though the
degree of polynomials in Trivium grows slowly, it is very likely it reaches 160
by the end of the 1152 initialization rounds. Studying the size of cubes required
to find linear maxterms also shows that the degree reaches well over 40 after
800 initialization rounds and is likely to reach 80 by 900 initialization rounds,
at which point the attack would be no better than brute force.

However, for a sparse enough polynomial, one can hope to find linear com-
binations of key bits even when monomials of much higher degree remain. This
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brings us to wonder how dense the polynomial representation of Trivium is.
First, looking at the results presented in [7], one can see Trivium should not be
considered a random polynomial. For such a polynomial, one would expect about
half of the key bits to be present in linear terms, however most of them contain
a single key bit, and none more than four. This leads us to believe that spe-
cific cubes of small size yielding very sparse low-degree polynomials coexist with
large cubes yielding high-degree or dense polynomials. While the random walk
described in [7] will detect the latter, we would be more interested in discovering
the former.

To achieve this, let us look at the formal expression of the output bit of
Trivium. It is the sum of 6 registers s66 + s93 + s162 + s177 + s243 + s288 where
each of these registers can be recursively expressed as a polynomial with a single
degree 2 monomial. As such there are 12 registers involved in the high-degree
part of the polynomial expression of the output bit.

Now we are looking for a maxterm c in the output polynomial P . Let us
assume c has a size greater than the degree of the monomials outside the high-
degree part of P . Then the polynomial yielded by c out of P is the sum of the 6
polynomials yielded by c out of the terms of degree 2, P1,1P1,2, . . . , P6,1P6,2, in
the recursive expression of P . If these polynomials are independent, it is unlikely
their non linear monomials will cancel each other during the sum. As such, we
also assume c is a maxterm for every Pi,1Pi,2. A sufficient condition for this
property is that every partition {c1, c2} of c is such that for all i the product
of the polynomials yielded by c1 out of Pi,1 and by c2 out of Pi,2 when every
variable of c is set to 1 is linear or constant.

This is the property we want to satisfy. Since in practice the maxterms tend
to yield polynomials with only a couple monomials, it is to be expected that
many such partitions will yield the zero polynomial on all 12 registers involved.
Looking at it another way, this is an empirical reduction of the output polyno-
mial’s density by checking that its high-degree part is the product of low-density
polynomials.

Once again, the search can be achieved with the Moebius transform [9]. After
picking two disjoint large cubes, one can find many subcubes yielding the zero
polynomial on all 12 coefficients. Now the disjoint union of two such subcubes
is a candidate for the cube c.

This method does not directly produce very satisfying results, but the large
number of cube candidates allows for further restrictions. The natural next step
is to pick disjoint cubes c1 and c2 both of which have as many subcubes yielding
the zero polynomial as possible. In practice, it is usually possible to find two
disjoint cubes of size k such that each of their subcubes of size at least k − 3
yields the zero polynomial on all twelve registers involved. The union of c1 and
c2 gives us a large cube on which to apply the Moebius transform to study its
subcubes, many of which are candidates. As can be observed in Table 4, the
reduction in density is notable and in return the number of maxterms detected
in a single transform increased from an average of 83 to an average of 916 after
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784 rounds. Similarly, after 799 rounds, the only way maxterms have been found
was using this method and its drastic reduction of density.

3.3 Results on 784 Rounds

Using the heuristic explained in Sect. 3.2, notable reductions in polynomial den-
sity have been observed in practice. Mainly tests have been conducted on the
version reduced to 784 rounds since a large cube of size 38 is sufficient to find
linear superpoly and takes reasonable time to be computed. In such a situation,
filtering the cubes only takes about 5 min while actual computation of a cube of
size 38 takes about 30 min (28 h to fully complete a linearity test). Doing this,
the density of monomials of size 34 falls from over 25 % to less than 10 %.

The Annex A contains the list of all 42 distinct key bits (“superpoly”) which
have been recovered after 784 rounds, along with the cubes yielding them. As
can be observed, they are made of 30 to 33 indices and a lot of them are subsets
of the same cube of size 38. One can also notice that every bit between x49 and
x69 has been recovered, while none were found between x70 and x80, suggesting
that the mixing is not applied uniformly on the key. This is the same in the
cubes found by Dinur and Shamir: they have all the bits between 54 and 67 and
none between 70 and 80 for 735 rounds.

4 An Attack on 799 Rounds of Trivium

4.1 Testing Properties of Boolean Functions in a Black-Box Manner

Testing Constant and Linearity. The most common linearity test for polyno-
mials is the Blum Luby Rubinfeld (BLR) test [3]. Given a black-box polynomial
P on n variables one wants to test for linearity, the BLR test requires the compu-
tation on random inputs X1 and X2, two vectors of n bits, on the 0 vector and on
X1+X2. One then simply checks whether P (X1)+P (X2)+P (0) = P (X1+X2).
The value of P (0) can be computed once at the start but every subsequent test
will require another 3 queries, each query in turn being the result of a cube com-
putation in time 2k where k is the size of the cube (in pratice, at least 30). What
is more, most polynomials tested are very far from being linear and a weaker
and faster version of the test could be used and still effectively detect non linear
polynomials.

To achieve this, we simply pick at random r vector of bits K1, . . . ,Kr rep-
resenting the keys, and test for every r(r − 1)/2 pair of keys {Ki,Kj} if the
black-box polynomial yielded by a cube is such that P (Ki) + P (Kj) + P (0) =
P (Ki + Kj). This way, r(r − 1)/2 linearity tests are done in merely 1 + r +
r(r − 1)/2 = r(r + 1)/2 + 1 queries instead of 1 + 3r(r − 1)/2. In practice,
we chose r = 10 which brought the total number of queries to 56 instead
of 136. To discard the non linear polynomials as soon as possible, linearity
tests are conducted right when they become available. In other words, we test
P (0), P (K1), P (K2), P (K1 + K2), P (K3), P (K1 + K3), P (K2 + K3), etc.
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However most polynomials tested which are not of degree at least two are
actually constant polynomials. As such, they would pass every single linearity
test and waste a lot of time. We then arbitrarily decided to stop the tests if the
polynomial returns the same value 20 times. In this case however, it is important
to test all 10 different keys by the time the 20 tests are done. Otherwise, only 6
different random keys would be tested and with probability 1/64 a linear, non
constant superpoly would be discarded. Since we hope to find about 80 such
superpolys, 10 independent random keys seem sufficient.

It is worth noting that there exist other linearity tests besides BLR which
can detect with greater precision if a polynomial is not quite linear. However
they are usually based on machine learning techniques and require a number of
queries too high to be applied to cube attacks where a single query can take
several hours of computation. Besides, an almost-linear superpoly is sufficient
for the attack as it will return the correct value of a key bit in almost every case.

Testing Degree 2. The special case of testing for quadratic polynomials is
a very interesting one. First, it is not very costly. The classical test consists
in independently picking 3 random keys k1, k2 and k3 and checking whether
P (0)+P (k1)+P (k2)+P (k3)+P (k1+k2)+P (k1+k3)+P (k2+k3)+P (k1+k2+
k3) = 0. However, because we have already queried on every sum of 2 random
keys while testing the polynomial for linearity, the only unknown expression
is P (k1 + k2 + k3). Thus we get a test for degree 2 with a single extra cube
computation over the linearity test. Since the keys are not chosen independently,
the test is a bit weaker than the theoretical one, but once again it is sufficient
to discard most polynomials of higher degree.

In practice, with r initially picked random keys, it is then theoretically pos-
sible to realize r(r − 1)(r − 2)/6 tests of degree 2. For r = 10, this is 120 tests.
Because this would be quite long, we decided to stop after 56 tests, mimicking
the number of queries for the linearity test. In addition, polynomials of degree
2 are easy to exploit to directly obtain key bits values. Because of the general
sparseness of the polynomials interpolated we can hope to find isolated mono-
mials of degree 2 among monomials of lower degree. This would reveal two keys
bits for a fourth of all keys, which is non negligible. Furthermore, if one of the
two bits happens to be known through a linear expression, the value of the other
one can be deduced for half of all possible keys.

Besides, when particular shapes arise (see Sect. 4.2 for details), it can become
easy to find additional linear relations between the key bits. For instance, if
xi ·xi+1+xi+2 = α and xi+1 ·xi+2+xi+3 = β, α, β ∃ F2, then xi+1 ·xi +αxi+1+
xi+3 = β which yields αxi+1 + xi+2 + xi+3 = α + β.

4.2 Empirical Interpolation of Degree 2 Polynomials

First let us mention that there exist 2n distinct polynomials on a given set of n
monomials. Since every query to the black-box returns a binary information (0
or 1), one cannot hope to exactly interpolate a polynomial in less than n queries.
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Thus, when trying to interpolate a polynomial P known to be linear on
80 variables, the best method should require no more than 81 requests. This
is easily achieved by first querying the polynomial on the 0 key (thus getting
the coefficient of the 1 monomial) and then on the key whose only non-zero
value is xi, for i ∃ {1, . . . , 80}. If P (0, . . . , 0) = P (0, . . . , 0, xi, 0, . . . , 0) then xi’s
coefficient is 0 in P and 1 otherwise.

Similarly, one can interpolate a polynomial of degree 2 in
2∑

i=0

(
80
i

)
= 3241

requests, which is optimal. The process simply consists in first checking the
presence of all linear monomials as described before and then checking for every
pair {xi, xj} if P ({xi, xj}) + P (xi) + P (xj) = P (0). The process can also be
done for a higher degree d, but the number of queries grows exponentially and
quickly becomes impractical.

It has however been observed in every single cube attack result brought forth
so far that the interpolated linear polynomials tend to be very sparse, most of
them containing a single key bit and none of them more than 5. If we make the
assumption that a linear black-box polynomial is actually a dictator (a single
key bit), it can easily be found in about 1 + ≈log2(80)∪ = 7 queries. However
this is not very accurate and because 81 queries is still reasonable, it is better
to avoid doing this.

Yet this becomes incredibly useful when interpolating polynomials of degree
2. In theory, interpolating a polynomial of degree 2 over 80 variables would
require 80 × 81/2 = 3240 cube computations. This can still be achieved in rea-
sonable time for cubes of size 30 (obtained after 784 rounds), and allowed us to
formally interpolate dozens of them but becomes unreasonable for polynomials
of size 34 and more (obtained after 800 rounds).

However, every such polynomial interpolated so far had a very specific shape.
It contains a single monomial of degree 2 which is of the form xi · xi+1 accom-
panied by the monomial of degree 1 xi+2, and possibly some other monomials
of degree 1. The same result can be observed on the polynomials obtained in
[11] after 704 rounds. This behavior can easily be explained by noticing that
polynomials of this shape appear in the very first rounds of Trivium (they are
part of the feedback function). It then does not come as a surprise that they
are the most likely candidates to appear in the sparsest part of the polynomial
representation of the cipher.

Now if we assume the quadratic polynomial detected has this shape, we
can easily interpolate it. Indeed, it suffices to test the presence of every linear
monomial (81 cubes need to be computed) and for every one detected, test
the presence of the associated monomial of degree 2 as described earlier (most
likely less than 10 extra cube computations). Then one can check whether the
interpolated polynomial actually matches the behavior of the superpoly on the
already computed cubes during the linearity and degree 2 tests. This works very
well in practice and out of dozens of such polynomials interpolated after 799
rounds, this process only failed on one of them.
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4.3 Results on 799 Rounds

Annex B lists all the linear and quadratic polynomials yielded after 799 rounds.
The 6 quadratic polynomials, which were chronologically found first as subcubes
of a large cube of size 40, have themselves a size between 34 and 37. The 12 linear
polynomials, which were found later in a low-density large cube also of size 40,
have a size between 32 and 33. As 12 key bits can be directly recovered thanks to
the maxterms in less than 237 queries, a full key recovery is possible by adding a
phase of 268 brute-force queries. Furthermore, due to the simplistic nature of the
6 quadratic polynomials, which can be evaluated in less than 240 queries, the key
space to be brute-forced can be reduced to 262 elements. Indeed, by choosing an
assignment for every variable appearing in a quadratic expression but a linear
one, the value of this linear variable becomes immediately known. Because all
of the 6 quadratic polynomials discovered have at least one such distinct linear
variable, the complexity is reduced by a factor of 26. In this regard, up to a certain
point, quadratic polynomials provide as much information as linear ones.

5 Conclusion

We have used the Moebius transform to analyze the off-line complexity of cube
attacks on Trivium. We propose a new technique to decrease the density of the
polynomials in Trivium and using this technique we were able to find 42 linear
relations between key bits after 784 rounds for the first time, providing the first
full key recovery attack at 784 rounds, feasible in about 15 min on a regular
computer. Besides, we have recovered 12 key bits and 6 quadratic relations after
799 rounds of initialization of Trivium. We also provided a method to empirically
select cubes yielding low degree polynomials.

A Key Bits Recovered After 784 Rounds

Cube indices Superpoly

2,5,6,9,10,13,21,23,25,27,29,32,34,36,38,40,42,44,45,48,51,53,55,57,59,63,65,68,73,78 x2
2,5,6,9,13,16,19,21,23,25,27,29,30,32,34,36,38,40,42,44,45,48,53,57,59,61,65,68,73,75,78 x4
2,3,4,6,8,9,10,14,16,19,21,22,23,25,28,30,32,36,37,39,41,49,51,56,59,64,68,71,74,76,79 x7 + 1

2,4,6,8,10,13,15,19,24,28,29,31,32,34,37,38,40,41,44,47,49,51,53,55,57,59,62,68,70,73,76,78 x9
1,3,6,8,11,14,15,18,22,25,27,29,34,37,40,42,46,48,50,52,55,57,59,61,66,68,69,71,74,79 x11
1,6,8,10,15,19,20,22,24,26,29,31,34,37,38,40,42,44,47,49,51,53,55,57,59,62,68,70,76,78 x19
2,4,6,8,10,13,15,19,22,24,28,29,32,34,37,38,40,41,44,47,49,51,53,55,57,59,62,70,73,78 x20
2,3,4,6,8,9,10,14,16,19,21,22,23,25,28,29,30,34,36,37,39,41,46,47,48,51,56,59,64,68,71,74,79 x21
2,5,6,9,11,13,16,19,21,23,24,25,27,29,30,32,34,36,38,40,42,44,45,48,51,53,55,57,59,68,73 x22
2,3,6,8,11,13,14,16,17,20,22,24,27,30,32,35,37,39,42,44,46,47,48,49,50,53,55,59,64,68,70,72,78 x23 + x68
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2,4,6,8,10,12,14,16,19,21,22,23,25,29,30,32,34,39,41,46,47,48,49,51,56,59,64,67,68,71,79 x24
1,3,6,11,14,16,20,22,24,27,30,32,35,37,39,42,44,46,47,48,49,50,53,55,59,64,68,70,72,78 x25
2,5,6,9,11,13,16,19,21,23,25,27,29,32,34,36,38,40,42,44,45,48,51,55,57,65,68,70,75,78 x26
1,3,6,8,11,13,14,17,20,22,24,27,30,32,34,37,39,42,44,46,47,49,50,53,55,57,59,62,68,70,72,78 x35
1,2,3,6,8,11,14,17,20,22,24,27,32,34,37,39,42,44,46,47,48,50,53,55,57,59,62,64,68,70,72 x37 + 1

2,3,6,8,11,13,14,16,20,22,24,27,30,32,34,35,37,39,42,44,46,48,50,53,55,57,59,62,68,72,78 x38
2,4,6,8,10,12,14,16,21,23,25,30,32,34,36,37,39,41,46,47,48,49,51,56,59,64,67,68,71,79 x39 + 1

2,5,6,10,13,16,21,23,25,27,29,34,36,38,40,42,44,45,48,51,53,55,59,61,65,68,70,73,75,78 x41 + 1

2,4,6,8,10,12,13,15,19,20,22,24,26,31,34,37,38,42,44,47,49,53,55,57,59,68,70,73,76,78 x43
4,6,8,10,13,15,19,20,24,26,28,31,34,37,38,40,41,42,44,47,49,51,53,55,57,59,68,70,73,76,78 x44
1,4,6,8,10,13,15,19,20,22,24,26,28,29,32,34,38,40,41,42,49,51,53,55,57,59,62,68,70,76,78 x47
2,4,6,8,10,13,15,19,20,22,24,26,28,29,31,34,37,38,40,42,44,53,55,57,59,62,68,70,76,78 x49
2,4,6,8,13,15,19,20,22,24,26,28,32,34,37,38,40,42,47,49,51,53,55,57,59,62,70,73,76,78 x50
2,5,9,10,13,16,21,23,25,27,29,30,32,34,36,38,40,42,44,45,48,53,55,57,59,63,65,68,75,78 x51
2,4,6,8,10,13,15,19,20,24,26,31,34,37,38,40,42,44,47,49,51,53,55,57,59,68,70,73,76,78 x52
2,5,6,9,13,16,23,25,27,29,30,34,36,38,40,42,44,45,48,51,53,55,57,59,61,63,65,68,70,78 x53
1,4,6,8,10,12,13,15,19,20,22,24,26,28,31,34,38,40,41,42,44,47,49,55,57,59,68,70,73,76,78 x54
2,4,6,8,10,13,15,19,22,24,26,31,32,37,38,40,42,44,47,49,51,53,55,57,59,68,70,73,76,78 x55
2,4,6,8,10,13,15,20,22,24,26,28,31,34,37,38,40,42,44,47,49,51,53,55,57,59,62,68,70,73,78 x56
2,4,6,8,10,13,15,19,20,22,24,26,28,29,31,32,34,37,38,40,42,44,47,51,53,57,59,62,70,73,76,78 x57
1,4,6,8,10,13,15,20,22,24,26,28,31,32,34,37,38,41,42,47,49,53,55,57,59,68,70,73,76,78 x58
2,4,6,8,10,12,14,16,19,21,22,23,25,28,29,30,34,36,37,39,41,46,48,51,56,59,64,71,76,79 x59
1,4,6,8,10,13,15,19,20,22,24,26,28,29,31,34,38,40,42,44,49,51,53,55,57,59,68,70,76,78 x60
1,4,6,8,10,12,13,15,19,22,24,26,29,31,34,37,38,42,44,47,49,51,53,55,57,59,68,70,73,78 x61
2,4,6,8,15,19,20,22,24,26,29,31,32,34,37,38,40,42,44,47,49,51,53,55,57,59,68,70,76,78 x62
2,4,6,8,13,15,19,20,22,24,26,28,31,32,34,40,41,42,47,49,51,53,55,57,59,68,70,73,76,78 x63
2,4,6,8,10,13,15,19,20,22,24,26,28,29,31,32,34,40,42,44,47,49,53,55,57,59,68,70,76,78 x64
2,4,6,8,10,12,15,19,20,22,24,26,28,29,32,34,37,40,42,44,47,51,53,55,57,59,62,68,70,78 x65
2,4,6,8,10,13,15,19,20,22,24,26,28,29,32,34,37,42,44,47,49,51,53,55,57,59,68,70,76,78 x66
2,3,4,6,8,10,14,16,19,21,22,23,25,28,30,32,34,36,37,39,41,46,51,56,59,64,68,71,74,76,79 x67
2,6,8,10,13,15,19,20,22,24,26,28,29,31,32,34,37,38,40,41,42,44,51,53,55,57,59,68,70,76,78 x68 + 1

1,2,6,8,11,13,14,17,20,22,24,27,32,34,37,39,42,44,46,47,48,50,53,55,57,59,62,64,68,70,78 x69

B TExpressions Recovered After 799 Rounds

Cube indices Expression

0,2,4,5,6,7,9,11,13,14,15,18,20,22,24,26,32,35,37,
39,42,44,46,48,53,55,57,61,68,70,72,79

x25

0,2,4,5,6,7,9,11,13,14,15,18,20,22,24,26,32,35,39,
42,44,46,48,52,55,57,62,68,70,74,76,79

x25 + x40

0,2,4,5,6,7,9,11,13,14,15,18,20,22,24,26,32,35,37,
39,42,44,46,48,52,53,55,57,61,62,68,70,79

x36

0,2,4,5,7,9,11,13,14,15,18,20,24,26,30,32,35,37,39,
40,42,44,46,48,52,53,55,62,68,70,74,79

x38

0,4,5,6,7,9,11,13,14,15,18,20,22,24,26,30,32,35,37,
39,40,44,46,48,52,55,57,62,68,70,74,79

x42

0,4,5,6,7,9,11,13,14,18,20,22,24,26,30,35,37,39,40,
44,46,48,52,55,57,62,68,70,72,74,76,79

x53

0,2,4,5,6,9,11,13,14,15,17,18,19,20,22,24,26,30,32,
35,39,40,44,48,53,55,57,61,62,70,74,76,79

x58
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0,5,6,7,9,11,13,17,19,22,24,26,30,32,35,37,39,42,
44,46,48,52,53,55,57,61,62,68,72,74,76,79

x60

0,2,4,5,6,7,9,11,13,15,17,18,19,22,24,26,30,32,37,
39,42,44,46,52,53,57,61,62,68,74,76,79

x62

0,4,5,7,9,11,13,14,15,17,18,19,20,22,24,26,30,32,
35,37,39,40,44,48,53,55,61,68,72,74,76,79

x64

0,4,5,6,7,9,11,13,15,18,20,22,24,26,30,32,35,37,39,
40,42,44,46,48,55,57,62,68,70,72,76,79

x66

0,4,5,6,7,9,11,13,14,15,17,19,22,24,26,32,35,37,39,
40,42,46,48,52,55,57,62,68,70,74,76,79

x67

0,2,4,6,8,11,13,16,19,21,23,26,28,30,32,34,36,38,40,
42,44,46,49,50,53,56,62,64,69,72,74,75,77,79

x9 + x34x35 + x36

0,2,4,6,8,11,13,16,19,21,23,26,28,30,32,34,36,38,40,
42,44,46,50,53,56,58,62,64,69,72,74,75,77,79

x22 +x47x48 +x49

0,2,4,6,8,11,13,16,19,21,23,26,28,30,32,34,36,38,40,
42,44,46,49,50,53,56,58,59,62,69,71,74,75,79

x24 +x49x50 +x51

0,2,4,6,8,11,13,16,19,21,23,28,30,32,34,36,38,40,42,
44,46,49,50,53,56,59,62,64,66,69,72,74,75,77,79

x11 +x36x37 +x38

0,2,4,6,8,11,13,16,19,21,23,26,28,32,34,36,38,40,42,
44,46,50,53,56,58,59,62,64,66,69,71,72,74,75,77,79

x52 +x77x78 +x79

0,2,4,6,8,11,13,16,19,21,23,26,28,32,34,36,38,40,42,
44,46,48,50,52,53,56,58,59,62,66,69,71,72,74,75,77,79

x9+x34x35+x36+
x61 +x17x18 +x19
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Abstract. Grain v1 is one of the 7 finalists selected in the final portfolio
by the eSTREAM project. It has an elegant and compact structure, espe-
cially suitable for a constrained hardware environment. Though a number
of potential weaknesses have been identified, no key recovery attack on
the original design in the single key model has been found yet. In this
paper, we propose a key recovery attack, called near collision attack, on
Grain v1. The attack utilizes the compact NFSR-LFSR combined struc-
ture of Grain v1 and works even if all of the previous identified weak-
nesses have been sewed and if a perfect key/IV initialization algorithm
is adopted. Our idea is to identify near collisions of the internal states at
different time instants and restore the states accordingly. Combined with
the BSW sampling and the non-uniform distribution of internal state dif-
ferences for a fixed keystream difference, our attack has been verified on
a reduced version of Grain v1 in experiments. An extrapolation of the
results under some assumption indicates an attack on Grain v1 for any
fixed IV in 271.4 cipher ticks after the pre-computation of 273.1 ticks,
given 262.8-bit memory and 267.8 keystream bits, which is the best key
recovery attack against Grain v1 so far. Hopefully, it provides some new
insights on such compact stream ciphers.
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During the eSTREAM competition, Grain v1 has successfully withstood huge
cryptanalytic efforts and in April 2008, it was selected into the final portfolio by
the eSTREAM project, as it has pushed the state of the art of stream ciphers
in terms of compact implementation [10].

Grain v1 has a compact structure with carefully chosen tap positions, feed-
back functions and output function. The feedback function of NFSR and the
filter function are chosen in such a way that the correlation [3] and distinguish-
ing attacks [16] on the former version, Grain v0, have been made impossible
in time faster than exhaustive search. The companion cipher, Grain-128 [14],
is designed in a similar way except that the feedback function is of low alge-
braic degree (a property not in Grain v1), which results in distinguishing attacks
[2,18], an algebraic attack of a modified version [4] and a dynamic cube attack of
full initialization rounds [8,9] and a new version, Grain-128a [15], with optional
authentication. In [7], a slide property in the initialization phase was discovered,
which can be used to reduce by half the cost of exhaustive key search for a
fixed IV and to mount related-key chosen IV attacks [7,17] against Grain v1 and
Grain-128.

In this paper, we propose a new key recovery attack, called near collision
attack, on Grain v1. The attack utilizes the compact NFSR-LFSR combined
structure of Grain v1 and works even if all of the previous identified weaknesses
have been sewed and if a perfect key/IV initialization algorithm is adopted, e.g.,
the slide property does not exist any more and there are a sufficiently large
number of initialization rounds. It is observed that the NFSR and LFSR are
of length exactly 80-bit (the same as the key length, with no redundance) and
the LFSR updates independently in the keystream generation phase. Further, if
the 160-bit internal states at two different time instants differ in only a small
number of positions, the output keystreams they generate will be similar to each
other. In fact, the keystream segment differences in this case can not take all the
possible values, i.e., there are lots of impossible keystream segment differences
and even for the possible differences, the distribution is heavily non-uniform.
Some differences occur with very high probability, while others do not. This is
due to the fact that for some keystream segment differences, there are many
low weight internal state differences that can cause them. Based on the near
match generalization of the birthday paradox, such near collisions of the internal
states do exist given enough keystream and the problem is how to explicitly and
efficiently identify them.

We develop an approach to detect such near collision internal states and the
basic attack is called NCA-1.01. Combined with BSW sampling, an enhanced
attack, NCA-2.0, is proposed and it can reduce the attack complexity com-
pared to NCA-1.0. We further improve it to NCA-3.0 by utilizing the heavily
non-uniform distribution of the internal state differences for a fixed keystream
difference. Then our attack has been launched and verified on a reduced version
of Grain v1 with 32-bit LFSR and 32-bit NFSR. An extrapolation of the results
under some reasonable assumption indicates an attack on Grain v1 for any fixed

1 Near collision attack version 1.0.
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Table 1. The attack complexity

Attack model Pre-computation time Data Memory Time

NCA-1.0 295.7 245.8 278.6 285.9

NCA-2.0 283.4 262 265.9 276.1

NCA-3.0 273.1 267.8 262.8 271.4

IV in 271.4 cipher ticks after the pre-computation of 273.1 ticks, given 262.8-bit
memory and 267.8 keystream bits. This is the best key recovery attack against
Grain v1 so far2. The results of all the NCA attacks are summarized in the fol-
lowing table. Our attack is just a starting point for further analysis of Grain-like
stream ciphers and hopefully it provides some new insights on the design of such
compact stream ciphers.

This paper is structured as follows. Some notations and preliminaries are
given in Sect. 2. Then, some key observations used in our attack and the descrip-
tion of Grain v1 are presented in Sect. 3. The general attack model and its com-
plexity analysis are formalized in Sect. 4. The NCA-2.0 based on BSW sampling
resistance is given in Sect. 5 and the NCA-3.0 based on the non-uniform distrib-
ution of keystream segment differences is presented in Sect. 6, respectively. The
basis simulation results on the reduced version of Grain is provided in Sect. 7.
Finally, we conclude in Sect. 8.

2 Notations and Preliminaries

In this section, we give a brief description of Grain3 and propose some lemmas
that we will use. The following notations are used throughout the paper.

– wH(·): the Hamming weight function, output the number of 1s in the binary
representation of the input argument.

– d: the maximum Hamming weight of the internal state difference.
– l: the length of the keystream segment, measured in bit.
– n: the length of the internal state, measured in bit.
– Δs: the internal state difference.
– V (n, d): the total number of the internal state differences with wH(Δs) ≤ d.
– Q(n, d, l): the total number of all the possible keystream segment differences,

while traversing all the V (n, d) internal state differences.
– R(n, d, l): the average number of the internal state differences, corresponding

to a fixed keystream segment difference.
– Bd: the set of the internal state differences with Δs ∈ Bd and wH(Δs) ≤ d.
– IΔs: the set of the difference position indexes of Δs. The difference position

indexes range from 0 to 159, corresponding to n0, n1, . . . , n79, l0, l1, . . . , l79.
– P : the pre-computation time complexity.
2 We give a rigorous analysis on the time complexity of the brute force attack on

Grain v1 in Sect. 3.3 and find that the actual complexity is 287.4 cipher ticks, which
is higher than 280 ticks.

3 We use Grain to denote Grain v1 hereafter.
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– T : the on-line time complexity.
– M : the memory requirement.
– D: the data complexity.
– Ω: the number of CPU clock cycles to generate one bit keystream in software.

It is easy to see that4 Bd = {Δs ∈ F
n
2 |wH(Δs) ≤ d} = {Δs1,Δs2, . . . ,ΔsV (n,d)}

and |Bd| = V (n, d) =
⎧d

i=0

⎨
n
i

⎩
. The definition of d-near-collision for two binary

strings is as follows.

Definition 1. Two n-bit strings s, s∈ are d-near-collision, if wH(s ⊕ s∈) ≤ d.

Similar to the birthday paradox, which states that two random subsets of a
space with 2n elements are expected to intersect when the product of their sizes
exceeds 2n, we present the following lemma of d-near-collision.

Lemma 1. Given two random subsets A, B of a space with 2n elements, then
there exists a pair (a, b) with a ∈ A and b ∈ B that is an d-near-collision if

|A| · |B| ≥ 2n

V (n, d)
(1)

holds, where |A| and |B| are the size of A and B respectively.

Proof. Let A = {a1, a2, . . . , a|A|} and B = {b1, b2, . . . , b|B|}. Each ai ∈ A, bj ∈ B
are uniformly random variables with values in F

n
2 . Consider the random variables

wH(ai ⊕bj) and let φ be the characteristic function of the event wH(ai ⊕bj) ≤ d,
that is,

φ(wH(ai ⊕ bj) ≤ d) =
{

1 if wH(ai ⊕ bj) ≤ d
0 otherwise.

For 1 ≤ i ≤ |A|, 1 ≤ j ≤ |B|, we consider the number NA,B(d) of pairs
(ai, bj) satisfying wH(ai ⊕ bj) ≤ d (the number of d-near-collisions): NA,B(d) =⎧|A|

i=1

⎧|B|
j=1 φ(wH(ai ⊕ bj) ≤ d). The expected value of NA,B(d) of pairwise-

independent random variables can be computed as E(NA,B(d)) = |A|·|B|· V (n,d)
2n .

Therefore, if we choose the size of A and B satisfying Eq. (1), the expected num-
ber of d-near-collisions pairs is at least 1. �

If d = 0, then V (n, d) = 1 and Lemma 1 reduces to the common collision,
otherwise the data required of finding a d-near-collision is much less than that of
finding a complete collision. If |A| · |B| = 2n/V (n, d), then the probability to find
a d-near-collision is about 50%. If |A| · |B| = 3 · 2n/V (n, d), then the probability
to find a d-near-collision is larger than 98%.

2.1 Grain-v1

Grain-v1 is one of the 7 finalists selected in the final portfolio by the eSTREAM
project. It is a bit-oriented stream cipher taking an 80-bit key and a 64-bit IV.
4 | · | denotes the cardinality of a set.
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The cipher consists of a pair of linked 80-bit shift registers, one is linear feedback
shift register (LFSR) and another is non-linear feedback shift register (NFSR),
denoted as {li, li+1, . . . , li+79} and {ni, ni+1, . . . , ni+79} respectively. The update
function of the LFSR is li+80 = li+62 + li+51 + li+38 + li+23 + li+13 + li and the
update function of the NFSR is

ni+80 = li + ni+62 + ni+60 + ni+52 + ni+45 + ni+37 + ni+33 + ni+28 + ni+21

+ ni+14 + ni+9 + ni + ni+63ni+60 + ni+37ni+33 + ni+15ni+9

+ ni+60ni+52ni+45 + ni+33ni+28ni+21 + ni+63ni+45ni+28ni+9

+ ni+60ni+52ni+37ni+33 + ni+63ni+60ni+21ni+15

+ ni+63ni+60ni+52ni+45ni+37 + ni+33ni+28ni+21ni+15ni+9

+ ni+52ni+45ni+37ni+33ni+28ni+21.

During keystream generation phase, shown in Fig. 1, the output bit zi is
filtered by a non-linear function h(x), which is balanced and correlation immune
of the first order, defined as follows.

h(x) = x1 + x4 + x0x3 + x2x3 + x3x4 + x0x1x2 + x0x2x3 + x0x2x4

+ x1x2x4 + x2x3x4,

where the variables x0, x1, x2, x3 and x4 correspond to the tap positions li+3,
li+25, li+46, li+64 and ni+63 respectively. The output function is taken as zi =⎧

k∗A ni+k + h(li+3, li+25, li+46, li+64, ni+63), where A = {1, 2, 4, 10, 31, 43, 56}.

h(x)

NFSR LFSR

Fig. 1. Keystream generation mode

h(x)

NFSR LFSR

Fig. 2. Initialization mode

Let the bits of the key be ki, 0 ≤ i ≤ 79 and the bits of the IV be IVi,
0 ≤ i ≤ 63. In the initialization phase, shown in Fig. 2, first load the NFSR with
the key bits, ni = ki, 0 ≤ i ≤ 79, then load the first 64 bits of the LFSR with the
IV, si = IVi, 0 ≤ i ≤ 63. The remaining bits of the LFSR are filled with ones,
i.e., si = 1, 64 ≤ i ≤ 79. Then the cipher is clocked 160 times without producing
any keystream bit. Instead the output function is fed back and xored with the
input, both to the LFSR and to the NFSR.
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3 Some Key Observations

We start with some key observations used in our attacks. More technical descrip-
tions of the various steps will be provided in the next sections.

3.1 State Recovery with Known State Difference

According to NFSR-LFSR combined structure of Grain, the internal states at
two different time instants can be recovered in a reasonable time if we know
the state difference. More precisely, during the keystream generation phase,
we denote the LFSR state as Lt1 = (lt10 , lt11 , . . . , lt179) at time t1 and Lt2 =
(lt20 , lt21 , . . . , lt279) at time t2 (0 ≤ t1 < t2).

Suppose that we know the difference ΔL = (lt10 ⊕lt20 , . . . , lt179⊕lt279) = (Δl0,Δl1,
. . . ,Δl79) with the time interval Δt = t2 − t1. Since the LFSR is clocked inde-
pendently (never affected by the NFSR or the keystream bits) in the keystream
generation phase of Grain, each lt2i in Lt2 can thus be linearly expressed by the
variables in Lt1 : 





lt20 = c00l
t1
0 + c01l

t1
1 + · · · + c079l

t1
79

lt21 = c10l
t1
0 + c11l

t1
1 + · · · + c179l

t1
79

...
lt279 = c790 lt10 + c791 lt11 + · · · + c7979l

t1
79,

where cj
i , 0 ≤ i, j ≤ 79 can be pre-computed according to Δt and the update

function of the LFSR, not depending on t1 and t2. Combined with ΔL, we can
easily derive the following linear system.






Δl0 = lt20 ⊕ lt10 = (c00 + 1)lt10 + c01l
t1
1 + · · · + c079l

t1
79

Δl1 = lt21 ⊕ lt11 = c10l
t1
0 + (c11 + 1)lt11 + · · · + c179l

t1
79

...
Δl79 = lt279 ⊕ lt179 = c790 lt10 + c791 lt11 + · · · + (c7979 + 1)lt179.

(2)

Variables in Lt1 can then be determined by solving (2), which means that we
can obtain the internal state of LFSR at t1. The time complexity of this step is
upper bounded by TL ≈ 218.9 basic operations [19]. Suppose one basic operation
needs one CPU cycle, then according to AppendixC that one tick of Grain needs
210.4 CPU clock cycles, hence TL = 218.9/210.4 = 28.5 cipher ticks in software.

The next step is to recover the NFSR state at t1. This process can be found in
AppendixA. The time complexity of this phase is upper bounded by TN = 220.3

cipher ticks. The key can then be easily recovered by the running internal state at
t1 backward. To sum up, given the internal state difference with the time interval,
the time complexity to retrieve the internal state is TK = TL +TN = 220.3 cipher
ticks.

3.2 The Distribution of the Keystream Segment Differences

The second observation is that the distribution of keystream segment differ-
ences (KSDs) is heavily biased, given a specific internal state differential (ISD).
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Table 2. The distribution of KSDs

ISD KSD Proportion (%) ISD KSD Proportion (%)

Δs1 0xa120 49.4 Δs4 0x0000 52.0
0xe120 50.6 0x0080 48.0

Δs2 0x0000 12.9 Δs3 0x0001 13.2
0x0001 13.8 0x0201 12.1
0x2000 38.3 0x0801 37.2
0x2001 35.1 0x0a01 37.5

For instance, we choose d = 4, l = 16, IΔs1 = {9, 31, 39, 69}5, IΔs2 = {99, 121,
134, 149}6, IΔs3 = {29, 64, 101, 147}7 and IΔs4 = {20, 26, 53, 141}8. Then we
randomly choose 104 internal states, calculate the companion states by adding
Δs1, Δs2, Δs3, Δs4 and generate the corresponding KSDs for Δs1, Δs2, Δs3
and Δs4 in Table 2.

From Table 2, there are only 2 values of KSD, each occurred with proportion
close to 1/2 for Δs1 and Δs4 respectively. There are 4 values of KSD with varying
proportions for Δs2 and Δs3 respectively, e.g., if the ISD is Δs2, then 38.3%
KSDs are 0x2000. We also test other ISDs with different d and l, the results are
similar to Table 2.

In many cases, there exists some impossible KSDs when d and l are fixed.
To illustrate this, given 1 ≤ d ≤ 4, l ∈ {8, 16, 24, 32}, we enumerated each
Δs ∈ Bd and count the number of Q(n, d, l) for all the possible ISDs in Bd. The
results show that there exists some impossible differences for most of (d, l) pairs.
Thus the value of Q(n, d, l) can be estimated as 2l−γ where 2γ is the number
of impossible differences, e.g., for (d, l) = (3, 24), γ = 4.7. Even for the possible
differences, the distribution is non-uniform, which causes some entropy leakage
as well. These features can be further utilized to enhance our attack.

3.3 Complexity of the Brute Force Attack

The third observation is that the complexity of brute force attack is higher than
280 ticks and such an attack can only be mounted for each fixed IV, while our
attack can be applied to the scenario with arbitrary IVs.

As a baseline, we analyzed the time complexity of the brute force attack on
Grain. Given a known fixed IV and a 80-bit keystream segment w, generated by
(K, IV) pair, the goal is to recover K using the exhaustive search strategy.

For each enumerated ki, 1 ≤ i ≤ 280 − 1, the attacker first needs to proceed
the initialization phase which needs 160 ticks. During the keystream generation
phase, once a keystream bit is generated, the attacker compares it to the cor-
responding bit in w. If they are equal, the attacker continue to generate the
5 Δs1 = 0x0002008080000000200000000000000000000000.
6 Δs2 = 0x0000000000000000000000080000000240002000.
7 Δs3 = 0x0000002000000000010000002000000000000800.
8 Δs4 = 0x0000100400002000000000000000000000200000.
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next keystream bit and do the comparison. If not, the attacker search another
key and repeat the previous steps. If each keystream bit is treated as a random
independent variable, then for each ki, the probability that the attacker need to
generate l (1 ≤ l ≤ 80) bits keystream is 1 for l = 1 and 2−(l−1) for l > 1, which
means that the previous l − 1 bits are equal to the counter bits in w. Let Nw be
the expected number of bits needed to generate for each enumerated key, which
is Nw =

⎧80
l=1 l · Pl =

⎧80
l=1 l · 2−(l−1) ≈ 4. Then, the total time complexity is

(280 − 1) · (160 + 4) ≈ 287.4 cipher ticks.

4 The General Attack Model

In this section, we will give a general description of our attack model. From
Sect. 3.1, it is easy to recover the internal state by utilizing the known ISD and
the time interval, thus the main concern is to retrieve the ISD derived from the
two d-near-collision internal states. Our attack consists of two phases, i.e., an
off-line stage only performed once followed by an on-line stage.

4.1 Off-line Stage

In the off-line stage, some well structured differential tables are pre-computed.
Given l and d, we enumerated the V (n, d) different ISDs in Bd and generate
their corresponding KSDs with proportions. In total, Q(n, d, l) different tables
will be constructed and indexed with KSD. The ISDs with the proportions, which
will generate the indexed KSD, will be stored in each KSD table. For example,
following Table 2 in Sect. 3.2, Δs2 together with the proportion 12.9% will be
stored in one line of table-0x0000 and Δs4 together with the proportion 52.0%
will also be saved in another line of table-0x0000. The table structure can be
illustrated as follows.

table − 0x0000






Δs4 52.0%
Δs2 12.9%

...
table − 0x0001






Δs2 13.8%
Δs3 13.2%

...
...

table − 0x0080

{
Δs4 48.0%

...
...

The total number of tables is Q(n, d, l) and the average number of rows in
each table is R(n, d, l). Due to the non-uniform distribution of the KSDs for a
fixed ISD, we only consider at most 100 KSDs whose proportions are the first 100
largest among all the KSDs, then each ISD will be stored in at most 100 different
KSD tables. Hence R(n, d, l) is upper bounded by 100 · V (n, d)/Q(n, d, l). The
memory requirement is thus M1 = Q(n, d, l) · R(n, d, l) = V (n, d) · 26.6 entries,
each containing n+δ bits where δ is used to store the proportion and δ = 7 bits9.
9 We use a 7-bit string to store the percentage number, e.g., for 67 %, we only store

binary representation of 67 (67 < 128).
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We sort each table with respect to the values of those proportions so that the
ISD with the maximum proportion will appear in the first row. All the tables will
be sorted with respect to their KSD indexes. Let N be the sampling number of
the random internal states when determining the projection from ISD to KSD,
then we have P = 2 · N · V (n, d) · l cipher ticks.

4.2 On-line Stage

Now we discuss how to obtain the ISD by utilizing the pre-computed tables and
the truncated keystreams. Let the length of the keystream segment be l̂ = l +β,
where β is the length of the keystream suffix used for verification. The on-line
stage contains the following steps:

Step 1. We randomly collect two keystream segments sets A and B, each ele-
ment ai ∈ A, bj ∈ B of which is l̂-bit. Let a

[l]
i and b

[l]
j denote the first l bits of

the keystream segments and the time instants for each a
[l]
i and b

[l]
j are also

recorded. Let sA
i and sB

j be the internal states corresponding to a
[l]
i and b

[l]
j

respectively, from Lemma 1, in order to assure that there exists at least one
pair (sA

i , sB
j ) so that sA

i ⊕ sB
j ∈ Bd, it is required that |A| · |B| ≥ 2n/V (n, d).

Step 2. We sort A and B with respect to the value of the first l bits and divide A,
B into m different groups GA

1 , GA
2 , . . . , GA

m and GB
1 , GB

2 , . . . , GB
m respectively.

The keysream segments in A (B) with the same a
[l]
i (b[l]j ) will be put into the

same group with the index a
[l]
i (b[l]j ). The size of each group can be estimated

as |GA
i | = |A|/2l, |GB

i | = |B|/2l, 1 ≤ i ≤ m. Note that if |A| ≥ 2l, then
m = 2l. If |A| < 2l, then there may be some empty groups and we define
m = |A|. The sorting time is T1 = |A| · log |A| + |B| · log |B| comparisons.

Step 3. Now we need to identify the candidate (sA
i , sB

j ) pairs that is d-near-
collision. Denote the Q(n, d, l) different KSDs in the off-line stage by W =
{w1, w2, . . . , wQ(n,d,l)} where each wk, 1 ≤ k ≤ Q(n, d, l) is of l-bit lengths.
For each wk ∈ W , we need to find all the pairs (a[l]

i , b
[l]
j ) satisfying a

[l]
i ⊕b

[l]
j =

wk. There are two strategies to achieve this goal:
Strategy I. For each wk ∈ W , we xor it to each group index of GA

i in
A and get A⊕. If there is one group GA⊥

i with the group index same
as the index of another group GB

i in B, then we get a
[l]
p ⊕ b

[l]
q = wk

for any 1 ≤ p ≤ |GA⊥
i | and 1 ≤ q ≤ |GB

i |, for if we xor wk to each
a
[l]
p ∈ GA⊥

j and get a
[l]⊥
p = a

[l]
p ⊕ wk, then any (a[l]⊥

p , b
[l]
q ) pair is a match

satisfying a
[l]⊥
p = a

[l]
p ⊕ wk = b

[l]
q , see Fig. 3. The time complexity is

T I
2 = Q(n, d, l) · m · log m comparisons.

Strategy II. For each GA
i in A, we xor its index to each index of GB

j in B
(get B⊕) and search a match in the sorted W = {w1, w2, . . . , wQ(n,d,l)}. If
a match wk ∈ W is found, then we have (a[l]

p , b
[l]
q ) satisfying a

[l]
p ⊕b

[l]
q = wk

with a
[l]
p ∈ GA

i , b
[l]
q ∈ GB

j , see Fig. 4. The time complexity is T II
2 =

m · m · log Q(n, d, l) comparisons.
The time complexity of Step 3 is T2 = min{T I

2 , T II
2 }.
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KSDs

A

A*

B

Find match

Fig. 3. Strategy I

KSDs

A

B*

B

Find match

Fig. 4. Strategy II

Step 4. From the previous steps, if we choose Strategy I in step 3, then for
each wi, there are at most Cwi

= 2l · |GA
j | · |GB

j | = |A| · |B|/2l matches, thus
the total number of matches is at most C = Cwi

· Q(n, d, l) = Q(n, d, l) ·
|A| · |B|/2l = |A| · |B| (Strategy II get at most C=|A| · |B| matches), among
which there are many pseudo-collisions10. This step is to filter out these
pseudo-collisions and find the real one. Precisely, for each pair (a[l]

p , b
[l]
q ), we

look for the table with the index a
[l]
p ⊕ b

[l]
q = wi, read the corresponding

ISD list Bwi

d and for each Δs ∈ Bwi

d , we can derive the internal state by
using the method described in Sect. 3.1. Finally, we can easily verify the
correctness of the state by running the cipher forward and compare the
generated keystream with those β bits collected in A and B. The average
size of the table is R(n, d, l) = 100 · V (n, d)/Q(n, d, l). The time complexity
is T3 = C · R(n, d, l) · TK = |A| · |B| · V (n, d) · 26.6 · TK/2l cipher ticks11 (for
strategy II, T3 = |A| · |B| · V (n, d) · 26.6 · TK/Q(n, d, l)).

The total online complexity of the on-line state is thus T = T1 +T2 +T3 and
the memory complexity is M2 = |A| + |B| entries, each containing l̂ bits.

Table 3. The attack complexity with various l

l P T1 T2 T3 T

102 295.7 240.9 285.8 286.4 286.4

104 295.7 240.9 285.9 284.4 285.9

106 295.7 240.9 285.9 272.4 285.9

n = 160, d = 16, D = 245.8, M = 278.6.
Strategy II is chosen in Step 3.

10 Pseudo-collision indicates the case that a
[l]
i ⊕ b

[l]
j matches to a KSD, but the internal

state recovered from the ISD found in the table indexed with the KSD is not correct.
11 We ignore the cost for verifying the correctness of the state, since it does not make

significant change in T3.
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4.3 Complexity Analysis

The unit of the time complexity is one tick of Grain. It is obvious that Q(n, d, l) is
upper bounded by 2l and R(n, d, l) is upper bounded by 100 · V (n, d)/Q(n, d, l).
The pre-computation time is P = 2 · N · V (n, d) · l. The data complexity is
D = |A| + |B| l̂-bit keystream segments and the memory requirement is M =
M1 + M2 = V (n, d) · 26.6 + |A| + |B| entries.

The time complexity in Step 2 is T1 = |A| · log |A|+ |B| · log |B| comparisons.
Suppose each comparison is done in one CPU cycle. Since one tick of Grain
needs Ω = 210.4 CPU clock cycles (see Appendix C for details), T1 = (|A| ·
log |A| + |B| · log |B|)/Ω cipher ticks. Similarly, the time complexity in Step 3 is
T2 = min{Q(n, d, l) · m · log m/Ω, m2 · log Q(n, d, l)/Ω} ticks.

For Grain n = 160 and d = 16, then V (n, d) ≈ 272. If we choose |A| =
|B| =

√
3 ∗ 2n/2/

√
V (n, d) ≈ 244.8 and the sample size N = 216, then the data

complexity is thus D = |A| + |B| = 245.8, the memory requirement is M = 278.6

167-bit entries and the time complexity of pre-computation is P = 289 · l. The
complexities varying with l are shown in Table 3. From Table 3, our attack has
a rather uniform complexity tradeoff. Besides, from |A| · |B| = 3 · 2n/V (n, d),
the estimated success probability is about 98%. We name this basic attack as
NCA-1.0. However, the pre-computation complexity P = 295.7 exceeds the brute
force attack complexity of 287.4. In the following sections, we will propose some
enhanced attacks.

5 Improvement I

The first improvement is designated by combining the sampling resistance
property of Grain with NCA-1.0. Biryukov and Shamir proposed the concept
of sampling resistance in [5], named BSW-sampling. It can be used to obtain
larger choices of tradeoff parameters on the Biryukov-Shamir tradeoff curve.

5.1 Sampling Resistance of Grain

The main idea is to find an efficient way to generate and enumerate special states,
from which some subsequent generated keystream bits have a fixed pattern (e.g.,
a string of zeros). If the length of the fixed pattern is k, then the sampling
resistance of the cipher is R = 2−k. In [6], it was proved that the sampling
resistance of Grain is 2−21 by guess and determine strategy. We use a simple
method to derive the sampling resistance of Grain which has lower complexity
than the guess and determine strategy in [6]. Here comes our Lemma 2, proved
in AppendixB.

Lemma 2. Given the value of 139 particular state bits of Grain and the first
21 keystream bits produced from that state, another 21 internal state bits can be
deduced directly.
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Table 4. The attack complexities with various l based on sampling resistance

l P ∗ T1 T2 T3 T

92 283.4 235.9 276.1 275.4 276.1

94 283.4 235.9 276.2 273.4 276.2

96 283.4 235.9 276.2 271.4 276.2

n∗ = 139, d = 13, D = 262, M = 265.9.
Strategy II is chosen in Step 3.

The 139 particular state bits contained 60 bits of the NFSR state and 79 bits
of the LFSR state. From Lemma 2, the sampling resistance of Grain is R =
2−21. Thus, we define a restricted one-way function τ : {0, 1}139 → {0, 1}139 by
choosing a prefix of 021.

1. For each 139-bit input value x, the remaining 21-bit internal state can be
determined by Lemma 2 and the prefix of 021.

2. Run the cipher forward for 160 ticks, generate an 160-bit segment 021||y and
output y.

Now, the searching space is reduced to a special subset of the internal states.

5.2 Complexity Analysis Based on Sampling Resistance

Now, the goal is to recover the n⊕ = 139 bits ISD which contains 60 NFSR
state bits and 79 LFSR state bits, instead of the n = 160 bits ISD. Note that
if we observe l-bit keystream from the output y of τ , we need additional 42
ticks, 21 ticks to compute the remaining 21-bit internal state and 21 ticks to
generate the prefix keystream. The pre-computation time complexity is thus
P ⊕ = 2 · N · V (n⊕, d) · (l + 42) ticks. In the on-line stage, we need to collect
those keystream segments with the prefix pattern 021, which can ensure that the
corresponding internal state existed in the reduced searching space. Hence, the
data complexity is D = (|A|+ |B|) ·221. Given d = 13, then V (n⊕, d) ≈ 259.3 and
|A| = |B| =

√
3·2n⊥/2/

√
V (n⊕, d) ≈ 240. Thus, the data complexity is D = (|A|+

|B|) ·221 = 262, the memory complexity is M = V (n⊕, d) ·26.6 + |A|+ |B| = 265.9

entries, each containing n⊕ + δ bits instead of n + δ bits. The pre-computation
time is P ⊕ = 2 · N · V (n⊕, d) · (l + 42) = 276.3 · (l + 42). The time complexities
with various l are summarized in Table 4. From Table 4, compared to NCA-1.0,
our improved attack reduces P by a factor of 212.3 and it saves 10-bit storage
for each entry in A and B. All the complexities are under the brute force attack
complexity of 287.4. We name this combined attack as NCA-2.0.

6 Improvement II

The second improvement is based on NCA-2.0 by utilizing the non-uniform dis-
tribution of KSDs among all the tables.
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Table 5. The attack complexity on Grain with various l based on special tables

l P ∗ T1 T2 T3 T

92 273.1 241.9 260.5 275.4 275.4

94 273.1 241.9 260.6 273.4 273.4

96 273.1 241.9 260.7 271.4 271.4

n∗ = 139, d = 10, M = 262.8 bits, D = 267.8.
Strategy I is chosen in Step 3.

6.1 Special Tables

As we have observed in Sect. 3.2, the distribution of the table size for each (d, l)
are non-uniform. For (d, l) = (4, 16), there are altogether Q(160, 4, 16) = 215.5

tables among which some tables like table-0x0000, table-0x0008, table-0x0004
contains 10 times more rows than those like table-0x0012 and table-0x0048.
Table-0x0000 contains the most rows among all the tables. Furthermore, most
tables like table-0xfe00, table-0xfd68 and table-0xfad1 only contain a single
row. Those tables with low Hamming weight indexes contains most of the ISD.
The distributions among other (d, l) pairs are similar.

For each (d, l) pair that 1 ≤ d ≤ 4, l ∈ {8, 16, 24, 32}, we found that the tables
with low Hamming weight indexes satisfying wH(KSD) ≤ 3 contain about 80%
of all the V (n, d) different ISDs. We call these tables special tables. In general,
we make the following assumption which is verified in random experiments.

Assumption 1. On average, the special tables can cover 50% of all the V (n⊕, d)
different ISDs, when d and l becomes larger.

The assumption indicates that in the off-line stage, we only need to construct
those special tables.

6.2 Complexity Analysis Based on Special Tables

All the complexities remain unchanged except T2 = min{l3 ·m·log m, m2 ·log l3}.
In NCA-2.0, n⊕ = 139, then given d = 10, V (n⊕, d) ≈ 249. If we choose |A| =
|B| =

√
3 · 2n⊥/2/

√
V (n⊕, d) ≈ 245.8 and the sample size N = 216, then the

pre-computation time complexity is P ⊕ = 266 · (l + 42) and the data complexity
is D = (|A| + |B|) · 221 = 267.8 entries12, each containing l̂ bits. The memory
complexity is M = V (n, d) · 26.6 + |A| + |B| = 255.6 entries, each containing
n⊕ + δ = 146 bits. The time complexities with various l are summarized in
Table 5. From it, we can obtain an attack of T = 271.4, M = 262.8 and D = 267.8

with the pre-computation complexity P = 273.1. We name this enhanced attack
as NCA-3.0.

12 In the on-line stage, the data can be collected in an overlapping way, thus to get
267.8 keysream segments, each containing l̂ bits, we only need l̂ + 267.8 − 1 ≈ 267.8

keystream bits.
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7 Simulations and Results

In this section, we validate our attacks by simulating a reduced version of Grain
v1 stream cipher. We first give a brief description of the reduced version and then
verify the Assumption 1 under various parameters. Finally, we apply NCA-2.0
and NCA-3.0 to the reduced cipher.

7.1 Reduced Version

The reduced version of Grain v1 cipher consists of an LFSR of 32 bits and an
NFSR of 32 bits. f ∈(x) = 1+x2+x7+x16+x32 is a primitive polynomial of degree
32. The update function of LFSR is defined as l∈i+32 = l∈i+30 + l∈i+25 + l∈i+16 + l∈i.
The feedback polynomial of the NFSR, g∈(x) is defined as

g∈(x) = 1 + x7 + x9 + x17 + x24 + x32 + x7x9 + x17x24

+ x7x9x17 + x9x17x24 + x7x9x17x24,

which is a balanced function of degree 4. Similar to Grain, the update function
of NFSR with the bit l∈i masked to the input is

n∈
i+32 = l∈i + n∈

i+25 + n∈
i+23 + n∈

i+15 + n∈
i+8 + n∈

i + n∈
i+25n

∈
i+23 + n∈

i+15n
∈
i+8

+ n∈
i+25n

∈
i+23n

∈
i+15 + n∈

i+23n
∈
i+15n

∈
i+8 + n∈

i+25n
∈
i+23n

∈
i+15n

∈
i+8.

We use the same non-linear filter function h(x) as in Grain v1 and take the
output function as z∈

i =
⎧

k∗A⊕ n∈
i+k + h(l∈i+3, l

∈
i+11, l

∈
i+21, l

∈
i+25, n

∈
i+24), where

A = {1, 4, 10, 21}. The key initialization is similar to Grain-v1. First, load the
NFSR with the 32-bit key, then load the first 24 bits of LFSR with the 24-bit
IV. The remaining bits of the LFSR are filled with ones. Then the cipher is
clocked 64 times without producing any keystream. Instead the output function
is feedback and xored with the input, both to the LFSR and to the NFSR. The
actual complexity of the brute force attack on the reduced version is 238.1 cipher
ticks. By using the same strategy in AppendixB, given the value of 53 particular
state bits of the reduced Grain (including 32 bits LFSR and 21 bits NFSR) and
the first 11 keystream bits produced from that state, another 11 internal state
bits can be deduced directly. Then the sampling resistance is R∈ = 2−11.

7.2 Verification of Assumption 1

Recall that the special tables are those with low Hamming weight indexes satis-
fying wH(KSD) ≤ 3. We first verify Assumption 1 in a random experiment. More
precisely, we randomly chose 104 ISDs in Bd and generate their corresponding
KSDs with the proportions. For each ISD, N random internal states were gener-
ated to determine the projection from ISD to KSD. Only those KSDs satisfying
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Table 6. Verification of Assumption 1

η l No. of ISDs Proportion (%)

50 24 9842 98.4
1000 24 9851 98.5

50 32 9202 92.0
1000 32 9153 91.5

n = 53, d = 4.

wH(KSD) ≤ 3 will be recorded and their corresponding ISDs will be stored in a
text file named with KSD. Similar to the process of the off-line stage, we only
consider at most η KSDs whose proportions are the first η largest among all the
KSDs. Finally, we count the number of different ISDs in these special tables.
For the reduced version of Grain, the length of the internal state is n = 53 and
we set d = 4, N = 212. thus we randomly chose 104 ISDs, each of which has
Hamming weight at most 4. The number of different ISDs in the special tables
under various l and η are summarized in the following Table. From it, we can
see that when η = 50 and l = 32, the special tables can cover more than 90%
of all the ISDs, which corroborate our theoretical assumption very well. Under
this configuration, we will apply NCA-2.0 and NCA-3.0 to the reduced version
in the following section.

7.3 Simulations

In the off-line stage, we set η = 50, N = 212 and d = 4. The theoretical complex-
ity with various l are given in the following table. The contents of a table will be
stored in a text file named with the corresponding KSD. The pre-computation
time under various keystream length l are summarized in the follow table. From
Table 8, the table construction of NCA-2.0 takes more time than that of NCA-3.0,
since NCA-3.0 only need to construct those special tables and the number of text
files is much less than that of NCA-2.0, which indicates a lower cost of table look-
up. In the on-line stage, we collected |A| = |B| =

√
3 · 2n⊥/2/

√
V (n⊕, d) ≈ 218

keystream segments. We apply NCA-2.0 and NCA-3.0 to the reduced version
of Grain respectively for 140 randomly generated (K, IV) pairs. The average
time for each attack and the experimental success probability are summarized in
Table 9. For both NCA-2.0 and NCA-3.0, the experimental time is based on run-
ning an non-optimized C++ program on a 1.83 GHz CPU with 2 GB RAM and
1 TB harddisk. The success probability is given in the last column of Table 10.
It is the proportion of the number of the correct internal state difference stored
in the KSD tables.

We also conducted an experiment to analyze all those randomly collected
keystream segments in the on-line stage of NCA-3.0. We attempt to find all
those keystream segment pairs satisfying wH(KSD) ≤ 3 and wH(ISD) ≤ d,
but get no results. We then repeat the experiment by increasing the maximum
Hamming weight of the special indexes from 3 to 5, we finally get an average
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Table 7. Theoretical complexity on reduced version of Grain

Attack l P D M T

NCA-2.0 24 236.3 229.2 223.9 236.2

NCA-3.0 24 236.3 229.2 223.9 236.2

NCA-2.0 32 236.7 229.2 223.9 231.4

NCA-3.0 32 236.7 229.2 223.9 228.2

η = 50, N = 212, d = 4.

Table 8. Pre-computation time of NCA-2.0 and NCA-3.0

Attack l Time Memory No. of tables

NCA-2.0 24 9 h, 50min 643MB 8192
NCA-3.0 24 6 h, 35min 216MB 378
NCA-2.0 32 27 h, 41 min 4.45 GB 2097152
NCA-3.0 32 6 h, 37min 11.6 MB 1562

η = 50, N = 212, d = 4.

Table 9. The simulation results on reduced version of Grain

Attack l Average attack timea Success probability (%)

NCA-2.0 24 1 h, 53min 9
NCA-3.0 24 1 h, 31min 7
NCA-2.0 32 2 h, 12min 6
NCA-3.0 32 41 min 4
aThis is the average time for each on-line attack.

success rate of 10%, i.e., 1 qualified keystream segment pair out of 10 simulations.
These experimental results suggest that we can not ensure a very stable success
probability of NCA-3.0 on the full version currently. It need to be refined further
and we indeed get some improvements by reducing the complexity of recovering
the NFSR given the LFSR and the state difference by a factor of about 29. We
will provide the details in the upcoming papers.

From Table 9, we can also see that the experimental success probability of
NCA-2.0 is lower than estimated in theory. The reason is that we choose a
restricted value of η and N . These two parameters directly influence the size
and the number of the pre-computed tables, hence affect the success probability.
How to theoretically derive the relationship between the success probability and
these two parameters is our future work.

8 Further Explanations and Discussions

To link the reduced version results with the full version analysis, the following
assumption is used in our analysis.

Assumption 2. The attack parameters in the full version analysis are chosen
based on a linear extrapolation according to the state length ratio.



534 B. Zhang et al.

Precisely, the sampling size of N = 216 in the full version of our attack is
chosen as follows. For the reduced version, we have a non-negligible success
probability when N = 212. The proportion of the state length for the full version
and the reduced version is 160/64 ≈ 3. Similarly, the KSD length proportions
are 106/32 ≈ 4 and 96/32 = 3. This indicates that N = 212 · 4 = 214 is an
appropriate choice for the full version. To further enhance the success probability,
we choose the sampling size N = 216. The theoretical relationship between N
and the success probability is not easy to determine analytically, but we will try
to pursue this issue in our future work.

In our simulations, we also tested the time of one tick for the reduced version
on our PC. One tick needs approximately 29 CPU clocks (about 0.24 ∗ 10−6

seconds to generate one keystream bit). When l = 32, the cost for NCA-2.0
is about 2 h and 12 min, which contains a number of I/O operations for table
look-ups (access to hard disk). The size of the pre-computed tables is about 4 GB,
which contains millions of txt files (This can be replaced by binary file, which
is faster for read and write operations). These hard disk operations will add
some burden to the running time our non-optimized C++ program. Therefore,
there exist some gaps between the time complexity of Tables 7, 8 and 9. We will
further optimized our experimental code in the future. We can actually improve
the running time by loading all the tables into CPU memory before the on-line
attack, then the I/O operation costs can be reduced in the on-line phase.

9 Conclusion

In this paper, we have proposed a key recovery attack, called near collision attack
on Grain v1. Based on some key observations, we have presented the basic attack
called NCA-1.0 and further enhance it to NCA-2.0 and NCA-3.0 by combining
the sampling resistance of Grain v1 and the non-uniform distribution of the
KSD table size respectively. Our attack has been verified on a reduced version
of Grain v1. Under some assumption, an extrapolation of the results indicates
an attack on the original Grain v1 for any fixed IV in 271.4 cipher ticks after the
pre-computation of 273.1 ticks, given 262.8-bit memory and 267.8 keystream bits,
while the brute force attack can only be mounted for a fixed IV. Our attack is just
a starting point for further analysis of Grain-like stream ciphers and hopefully
it provides some new insights on the design of such compact stream ciphers.

A Recovering the NFSR Initial State

We will discuss how to recover the NFSR state at t1, once the LFSR state
at t1 has been recovered. In [1], Afzal et al. conducted several experiments to
retrieve the maximum number of bits that can be obtained when the other bits
are guessed. Results show that no more than 77 bits can be recovered out of
160 bits, while guessing the remaining 83 bits (including all 80 bits LFSR and
3 bits of NFSR). The method is to solve an equation system containing the 77
unknown NFSR state bits. Furthermore, they also generate algebraic equations
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of Grain-v1 in Maple 10, and solved the equations with Magma V 2.13-5 [11] on
a PC with CPU at 1.73 GHz and 1 GB RAM. This method was also utilized in
a weak Key-IVs attack [20]. The results are summarized in the following table.

Table 10. Simulation results of algebraic analysis of Grain

Version No. of bits No. of bits Time to Keystream
Version guesseda recovered find solution bits used

Grain-v1 3 77 0.204 s 150
aSince the LFSR state is known, only 3 NFSR need to be guessed.

From Table 10, suppose that one operation (basic operation for solving the
non-linear equation) acts in one clock cycle of the CPU, then 1.73 · 109 ≈ 229.9

operations are executed per second for 1.73 GHz PC. Therefore, we need 229.9 ·
0.204 · 23 ≈ 230.7 operations (or CPU clock cycles) and 150 bits keystream to
retrieve all the 80 NFSR state at t1. Now we need to convert this time complexity
to one tick of Grain. According to AppendixC, one tick of Grain needs Ω = 210.4

CPU clock cycles. Therefore, the complexity to recover the NFSR state is TN =
230.7/Ω = 220.3 cipher ticks.

B Proof of Lemma 2

Proof. The listing strategy is same to the proof of the Lemma 1 in [6]. However,
we extend the steps from 18 to 21. From the output function of Grain zi =⎧

k∗A ni+k + h(li+3, li+25, li+46, li+64, ni+63, ) where A = {1, 2, 4, 10, 31, 43, 56}.
We attempt to enumerate all the NFSR bits from ni+10 to ni+31. It is impor-
tant to know that the non-linear feedback of Grain does not affect the output
function until the cipher has been clocked 18 times. Thus, we can easily derive
the following 17 steps

n10 = z0 + n1 + n2 + n4 + n31 + n43 + n56 + h(l3, l25, l46, l64, n63),
...

n25 = z15 + n16 + n17 + n19 + n46 + n58 + n71 + h(l18, l40, l61, l79, n78),
n26 = z16 + n17 + n18 + n20 + n47 + n59 + n72 + h(l19, l41, l62, l80, n79),

In step 1, the value of n10 can be determined by fixing 4 LFSR bits and
7 NFSR bits. We continue this procedure to derive the following values of
n11, n12, . . . , n25. At this point, we have fixed 57 NFSR bits, 64 LFSR bits and
deduced 16 NFSR bits. In step 17, l80 is involved in the computation of n26,
according to the linear feedback function, we need to fix 5 LFSR bits and 1
NFSR bit.

In step 18, n80 and l81 exist in the expression of n27, we have to fix 5 LFSR
bits and 2 NFSR bits (n28 and n0) to deduce n27. In the step 19, we can not
deduce n28 in this step, since it was fixed in the last step. However, n29 exists
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in the expression of z18, we can thus derive the value of n29 by fixing 3 LFSR
bits. In step 20, n30 can be obtained by fixing 2 LFSR bits. In the last step (step
21), l45 can be deduced directly without fixing any state bit. All the state bits
are known from step 22. The number of the fixed state bits are summarized in
Table 11. To sum up, we have recovered the 20 NFSR state bits and 1 LFSR state
bit using 60 bits of the NFSR state and 79 bits of the LFSR state (Altogether
139 bits of internal state). �

C How Can We Measure One-clock Cycle of Grain

The goal of this section is to measure the CPU clock cycle cost by one tick
of Grain in software. The source code of Grain we used here is written by the
designers [12]. We performed the testing several times on a PC with 2.83 GHz
CPU and the average time to generate one keystream bit is 0.475 · 10−6 s. Thus,
one tick of Grain is Ω = 0.475 · 10−6 · 2.83 · 109 ≈ 210.4 CPU cycles. The testing
codes is in Fig. 5 (This program should run with the source code of Grain).

Table 11. The fixed state bits in each step

Step Deduced bit Fixed LFSR Fixed NFSR bits

1 n10 l3, l25, l46, l64 n1, n2, n4, n31, n43, n56, n63

2 n11 l4, l26, l47, l65 n3, n5, n32, n44, n57, n64

3 n12 l5, l27, l48, l66 n6, n33, n45, n58, n65

4 n13 l6, l28, l49, l67 n7, n34, n46, n59, n66

5 n14 l7, l29, l50, l68 n8, n35, n47, n60, n67

6 n15 l8, l30, l51, l69 n9, n36, n48, n61, n68

7 n16 l9, l31, l52, l70 n37, n49, n62, n69

8 n17 l10, l32, l53, l71 n38, n50, n70

9 n18 l11, l33, l54, l72 n39, n51, n71

10 n19 l12, l34, l55, l73 n40, n52, n72

11 n20 l13, l35, l56, l74 n41, n53, n73

12 n21 l14, l36, l57, l75 n42, n54, n74

13 n22 l15, l37, l58, l76 n55, n75

14 n23 l16, l38, l59, l77 n76

15 n24 l17, l39, l60, l78 n77

16 n25 l18, l40, l61, l79 n78

17 n26 l19, l41, l62, l0, l23 n79

18 n27 l20, l42, l63, l1, l24 n28, n0

19 n29 l21, l43, l2 -
20 n30 l22, l44 -
21 l45 - -
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ECRYPT_ctx* ctx=new ECRYPT_ctx;

u32 KSLen=2000;

u8 key[10],IV[8],keyStream[KSLen];

ECRYPT_keysetup(ctx,key,80,64);

ECRYPT_ivsetup(ctx,IV);

clock_t start, finish;

double duration, speed;

start=clock();

ECRYPT_keystream_bytes(ctx,keyStream,KSLen);

finish=clock();

duration=((double)finish-start)/CLOCKS_PER_SEC;

speed=duration*2.83*1000*1000*1000/((double)KSLen*8);

printf("time%4.4f sec\n"

"The encryption speed is %3.4f cycles/bit \n",duration,speed);

Fig. 5. Code of testing.
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Abstract. In this paper, we revisit Demirci and Selçuk meet-in-the-
middle attacks on AES. We find a way to automatically model SPN block
cipher and meet-in-the-middle attacks that allows to perform exhaustive
search of this kind of attacks. This search uses the tool developed by
Bouillaguet, Derbez and Fouque at CRYPTO 2011 as a subroutine to
solve specific systems. We also take into account ideas introduced by
Dunkelman, Keller and Shamir at ASIACRYPT 2010 which can be seen
as a new tradeoff of the classical time/memory tradeoff used by Demirci
and Selçuk. As a result, we automatically recover all the recent improved
attacks of Derbez, Fouque and Jean on AES and we show new improved
attacks against 8-rounds of AES-192 and AES-256.

1 Introduction

The AES encryption scheme [18] has been developed in the late nineties and has
been specifically designed to resist against differential and linear cryptanaly-
sis. Since 2008, the best attack for the 128-bit version was an impossible dif-
ferential attacks by Lu et al. in [16] going back to a remark of Biham and
Keller [1] improved by Bahrak and Aref in 2007. For the 192-bit and 256-bit ver-
sions, Demirci and Selçuk have described generalization of the Gilbert-Minier
attack [15] which has also been discovered during the AES competition. During
almost 10 years, there was no new cryptanalytic result and the first successful
direction to analyze the AES encryption function comes from differential attacks
in the related-key setting in 2009. This is a very powerful adversarial model in
theory and it has recently been studied due to its applications in the analysis of
hash functions. In this model, many other interesting results have been obtained
by carefully studying the key schedule algorithms of AES-192 and AES-256 [2–5].

Despite important work on side-channel analysis on the AES, no real the-
oretical improvement on the first analysis performed during the AES compe-
tition [1,9,14,15] has been made. In this paper we turn our attention to the
standard single-key model using meet-in-the-middle attack since these attacks
are very efficient and are now the most efficient on all version of AES [11]. The
first new theoretical result has been shown by Demirci and Selçuk at FSE 2008
using the old Meet-in-the-Middle cryptanalysis technique [10]. They improve the
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DOI: 10.1007/978-3-662-43933-3 28, c© Springer-Verlag Berlin Heidelberg 2014
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Gilbert and Minier attack using meet-in-the-middle technique instead of colli-
sion ideas. These results at that time use a very small data complexity 234 but
require high precomputation and memory in 2216. They need a hash table para-
meterized by 24 byte values. These attacks only work for the 256-bit and 192-bit
versions thanks to a time/memory tradeoff which significantly increases the data
and time complexity. They have been improved by Dunkelman et al. in [13] and
more recently by Derbez et al. in [11]. Finally, recent biclique attacks [6] have
been able to attack the full number of rounds of the AES at the price of using
an exhaustive loop on all the key bits.

Meet-in-the-Middle Attacks on AES. At Asiacrypt 2010, Dunkelman,
Keller and Shamir improve Demirci and Selçuk attacks on AES-192 and AES-256
using many interesting new ideas in [13]. They introduce the idea of multisets,
a clever differential enumeration technique and a remark on the AES-192 key
schedule to present attacks whose complexity is better than [10]. The main tech-
nique is the differential enumeration which allows to reduce the high memory
complexity. This is mainly the bottleneck of the previous attacks with the pre-
computation phase. The attack can be seen as a new time/memory tradeoff,
while Demirci and Selçuk one was very simple. Indeed, in this latter basic attack
the memory is greater than the time. Consequently, they reduce the data in
memory by repeating the attack as many times as the inverse of the probability
of being in the table. Dunkelman et al. tradeoff uses a specific differential path
to reduce the memory. This saving allows to consider a new attack on 7 rounds
of AES-128 with basically the same complexity as the impossible differential
attack, which is the best attack on this version. They also improve the attacks
on the two other versions. However, since these attacks rely on a differential
technique, they require a huge amount of data. Basically, they show that the
number of parameters can be reduced from 24 to 16 while the time complexity
is constant. These attacks have been recently improved by Derbez et al. in [11]
by showing that the table can be reduced since many sequences in the table are
never reached. They exactly compute the size of the memory needed and show
that the table can be described by 10 parameters. This leads to the best attack
for 7 rounds of AES-128 and also to the other versions.

Finally, Bouillaguet et al. in [7] study low data complexity attacks in reduce-
round AES and in [8], some the authors build a computer-aided tool to look for the
best meet-in-the-middle attacks in this model. A software has been developed
allowing to solve linear systems of equations in F256 in the variables x, S(x)
where S is the AES S-box. This algorithm has been able to find attacks up to
5 rounds, but its complexity is exponential in the number of S-boxes. It is very
versatile and has been used to solve systems for other cryptosystems such as the
LEX stream cipher, the Pelican-MAC or fault attacks on AES [8,12].

Our Results. In this paper, we consider another direction to improve on
Demirci and Selçuk (DS) attack using only meet-in-the-middle techniques. Here,
we generalize DS attack using DS or DKS time/memory tradeoffs and we
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automatize the search of these attacks to find the best ones. We discover many
efficient attacks and we also rediscovered the recent improved attacks on all the
versions of AES presented in [11]. To perform this search, we use the tool of
Bouillaguet, Derbez and Fouque, but only on the keyschedule equations instead
of the system of equations describing the AES. These equations are sparse in
the number of Sbox and consequently, the complexity of the search is very low.
In particular, we have been able to improve the complexity on AES-192 and
AES-256 by a factor 232 and 240 respectively as it is summarized in Table 1.
Finally, some of the attacks we discovered have a small data complexity such as
the basic DS attack. This leads us to increase the number of rounds attacked
using small data complexity as in [7,8]. For instance, we present on AES-128
an attack on up to 6 rounds using 256 data complexity and 2106 in time and
memory whereas Bouillaguet et al. were able to find attack on 5 rounds with
complexity 2120. It is possible to extend this last attack to 7 rounds with a mar-
ginal improvement over exhaustive search. We refer the reader to Table 1 for all
the attacks.

Organization of the Paper. In Sect. 2, we describe the AES cipher and some
properties useful to analyze its security for meet-in-the-middle techniques. Then,
we present the previous attacks and ideas in Sect. 3 before showing our ideas
in Sect. 4. In Sect. 5, we discuss on the results and describe some of our new
attacks requiring at most 232 chosen plaintexts. The Sect. 6 is dedicated to the
differential enumeration technique introduced by Dunkelman et al. and contains
the description of new attacks on AES-192 requiring 2104 data, 2138 in memory
and 2140 in time and on AES-256 requiring 2103 in data, 2140 in memory and
2156 in time.

2 AES and Observations

2.1 Description of the AES

The Advanced Encryption Standard [18] is a Substitution-Permutation Network
that can be instantiated using three different key sizes: 128, 192, and 256. The
128-bit plaintext initializes the internal state viewed as a 4×4 matrix of bytes as
values in the finite field F256, which is defined using the irreducible polynomial
x8 +x4 +x3 +x+1 over F2. Depending on the version of the AES, Nr rounds are
applied to that state: Nr = 10 for AES-128, Nr = 12 for AES-192 and Nr = 14
for AES-256. Each of the Nr AES round (Fig. 1) applies four operations to the
state matrix (except in the last round where the MixColumns operation is
missing):

– AddRoundKey (AK) adds a 128-bit subkey to the state.
– SubBytes (SB) applies the same 8-bit to 8-bit invertible S-Box S 16 times in

parallel on each byte of the state,
– ShiftRows (SR) shifts the i-th row left by i positions,
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Fig. 1. Description of one AES round and the ordering of bytes in an internal state.

– MixColumns (MC) replaces each of the four column C of the state by M ×C
where M is a constant 4 × 4 maximum distance separable matrix over F256,

After the Nr-th round has been applied, a final subkey is added to the internal
state to produce the ciphertext. We refer to the original publication [18] for the
key expansion algorithms.

Notations. In this paper, we count the AES rounds from 0 and we refer to a
particular byte of an internal state x by x[i], as depicted in Fig. 1. Moreover, in
the ith round, we denote the internal state after AddRoundKey by xi, after
SubBytes by yi, after ShiftRows by zi and after MixColumns by wi. To
refer to the difference in a state x, we use the notation Δx. The first added
subkey is the master key k−1, and the one added after round i is denoted ki.

In some cases, we are interested in swapping the order of the MixColumns
and AddRoundKey operations. As these operations are linear they can be
interchanged, by first XORing the data with an equivalent key and only then
applying the MixColumns operation. We denote the equivalent subkey for the
altered version by:

ui = MC−1(ki) =

⎧

⎨⎨⎩

0e 0b 0d 09
09 0e 0b 0d
0d 09 0e 0b
0b 0d 09 0e



 × ki

2.2 Observations on the Structure of AES

In this section we recall two well-known observations on the structure of AES, that
will be used later in our attacks. We first consider the propagation of differences
through SubBytes layer.

Property 1. (the SubBytes property) Consider pairs (α ⊕= 0, β) of input/output
differences for a single S-box in the SubBytes operation. For 129/256 of such
pairs, the differential transition is impossible, i.e., there is no pair (x, y) such
that x ∃ y = α and S(x) ∃ S(y) = β. For 126/256 of the pairs (α, β), there
exist two ordered pairs (x, y) such that x ∃ y = α and S(x) ∃ S(y) = β, and for
the remaining 1/256 of the pairs (α, β) there exist four ordered pairs (x, y) that
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Table 1. Current cryptanalysis of AES variants in the single-key model

Version Rounds Data (CP) Memory Time Technique Reference

128 6 28 2106.17 2106.17 MITM Sect. 5.2
7 232 2126.47 2126.47 MITM Full ver.
7 290.4 2106 2117.2 MA ID [17]
7 297 298 299 MITM [11]
8 288 28 2125.3 Bicliques [6]
10 (full) 288 28 2126.2 Bicliques [6]

192 6 28 2109.67 2109.67 MITM Full ver.
7 28 2153.34 2163 MITM Full ver.
7 232 2129.67 2129.67 MITM Sect. 5.4
7 19 · 232 19 · 232 2155 Square [14]
7 291.2 2139.2 2101 ID [16]
7 295 2143 2143 MITM [10]
7 297 298 299 MITM [11]
8 232 2182.17 2182.17 MITM Full ver.
8 241 2186 2187.63 MITM [19]
8 2104.83 2138.17 2140 MITM Sect. 6.1
8 2107 296 2172 MITM [11]
8 2113 2130 2140 MITM Sect. 6.1
8 2113 282 2172 MITM [11]
9 280 28 2188.8 Bicliques [6]
12 (full) 280 28 2189.4 Bicliques [6]

256 6 28 2114.34 2122 MITM Full ver.
7 28 2186 2170.34 MITM Full ver.
7 216 2153.34 2178 MITM Sect. 5.3
7 232 2133.67 2133.67 MITM Full ver.
7 21 · 232 21 · 232 2172 Square [14]
7 295 2143 2143 MITM [10]
7 297 298 299 MITM [11]
8 28 2234.17 2234.17 MITM Full ver.
8 232 2193.34 2195 MITM Full ver.
8 234.2 2205.8 2205.8 MITM [10]
8 2102.83 2140.17 2156 MITM Sect. 6.1
8 2107 296 2196 MITM [11]
8 2113 2130 2156 MITM Sect. 6.1
8 2113 282 2196 MITM [11]
9 232 2254.17 2254.17 MITM Full ver.
9 2120 2203 2203 MITM [11]
9 2120 28 2251.9 Bicliques [6]
14 (full) 240 28 2254.4 Bicliques [6]

CP: Chosen-plaintext. ID: Impossible Differential. MITM: Meet-in-the-Middle.
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satisfy the input/output differences. Moreover, the pairs (x, y) of input values
corresponding to a given difference pattern (α, β) can be found instantly from
the difference distribution table of the Sbox.

Property 1 means that given the input and output difference of an S-box, we
can find in constant time the possible absolute values of the input, and there is
only a single one on average.

The second observation is a necessary and sufficient condition for a matrix
to be MDS applied to the matrix MC used in the MixColumns operation.

Property 2. (MixColumns property) Consider a pair (a, b) of 4-byte vectors,
such that a = MC(b), i.e. the input and the output of a MixColumns opera-
tion applied to one column. Denote a = (a0, a1, a2, a3) and b = (b0, b1, b2, b3)
where ai and bj are elements of F256. Then there is no equation involving
less than five bytes and for each choice of five bytes among the eight bytes
(a0, a1, a2, a3, b0, b1, b2, b3) there is a linear equation between them.

Finally, in our attacks we consider the encryption of structured sets of 256
plaintexts in which one active byte takes each one of the 256 possible values
exactly once, and each one of the other 15 bytes is a (possibly different) constant.
Such a structure is called a δ-set.

3 Related Results from Previous Work

In this section, we remind Demirci and Selçuk attack together with its improve-
ments which are the main results used in our attack. We refer the reader to [10]
and [13] for details.

3.1 The Demirci and Selçuk Attack

At FSE 2008, Demirci and Selçuk described the following 4-round property
for AES.

Property 3. Consider the encryption of a δ-set through four full AES rounds. For
each of the 16 bytes of the state, the ordered sequence of 256 values of that byte
in the corresponding ciphertexts is fully determined by just 25 byte parameters.
Consequently, for any fixed byte position, there are at most (28)25 = 2200 possible
sequences when we consider all the possible choices of keys and δ-sets (out of
the (28)256 = 22048 theoretically possible 256-byte sequences).

The 25 parameters are intermediate state bytes for any message of the δ-set
and their positions depend on the active byte of the δ-set and on which byte
we want to build values. As depicted on Fig. 2, if there are both at position
0 then the 25 parameters are the first column of xi+1, the full state xi+2, the
first column of zi+3 and xi+4[0]. Indeed, if those bytes are known for one of the
messages, we can compute the value of xi+4[0] for each message of the δ-set as
follows:
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Fig. 2. 4 AES-rounds. The 25 black bytes are the parameters of Property 3. Hatched
bytes play no role. The differences are null in white squares

1. Knowing the 256 differences in the full state zi we can compute the 256
differences in the full state xi+1 because Δxj+1 = MC.Δzj for any round
number j, where MC is the matrix used in the MixColumns operation.

2. Knowing the value of the first column of xi+1 for one message we can now
compute the value of this column for all messages.

3. Then we apply the Sbox on those bytes and get the value of zi+1[0], zi+1[7],
zi+1[10] and zi+1[13] for each message of the δ-set.

4. The differences are null in all the other bytes of zi+1 so we know the 256
differences in the full state zi+1.

5. In the same way we obtain the 256 differences in the full state zi+2 and then
in the first column of zi+3 to finally compute the 256 values of xi+4[0]

They first use this property to mount a basic meet-in-the-middle attack on
7 rounds AES-256 depicted on Fig. 3 and its procedure is roughly as follows:

• Preprocessing phase: Compute all the 2200 possible sequences according
to Property 3, and store them in a hash table.

• Online phase:
1. Ask for a structure of 232 chosen plaintexts such that the main diagonal

can take the 232 possible values and the remaining bytes are constant.
2. Choose one plaintext and guess the first column of its intermediate state

z0 and byte z1[0].
3. For each of the 255 non-zero values of Δz1 compute the corresponding

difference in the plaintext using the guessed bytes.
4. Order the obtained δ-set according to the value of the state byte z1[0].
5. Guess the first column of x6 and the byte x5[0] for one of the message

and deduce those state bytes for the 256 ciphertexts.
6. Build the sequence and check whether it exists in the hash table. If not,

discard the guess.

Note that the parameters of both the online and offline phases are state bytes
which we shall refer in the sequel as respectively Bon and Boff . The complexity
of the attack depends directly on how many values can assume those state bytes
and how fast can we enumerate them. Indeed, bytes of Boff (resp. Bon → P →
C) are related by the AES equations and thus lead to the knowledge of some
linear combinations of the (sub)keys bytes. Then it may exist some relations
derived from the key-schedule between them, allowing to reduce the number of
assumed values. In the sequel, we will denote by Koff (resp. Kon) the vector
space generated from these linear combinations. For instance, in the case of the
described attack and if the last MixColumns is omitted,
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Fig. 3. Online phase of Demirci and Selçuk attack. Bon is composed by gray and black
bytes. Gray bytes are used to identify a δ-set and to order it. Black bytes are used to
build the sequence from ciphertexts. Hatched bytes play no role. The differences are
null in white squares.

• {k−1[0, 5, 10, 15], k0[0], u5[0], k6[0, 7, 10, 13]} is a basis of Kon,
• {u1[0], u2[0, 7, 10, 13], k3[0, 5, 10, 15], k4[0]} is a basis of Koff .

All in all, this attack has a data complexity of 232 chosen plaintexts, a time
complexity of 280 × 28 partial encryptions/decryptions, and a memory require-
ment of 2200 256-byte sequences. The memory complexity of this attack is too
high to apply it on the 128 and 192-bit versions. But its time complexity is low
enough to mount an attack from it on 8 rounds AES-256. This is done by fully
guessing the last subkey, decrypting the last round and applying the 7-round
attack, which increases the time complexity by a factor 2128.

3.2 Previous Improvements of the Original Attack

We summarize the main improvements to the original attack of Demirci and
Selçuk.

Difference Instead of Value. Demirci and Selçuk showed that the number of
parameters can be reduced to 24 in Property 3 by considering the sequence of
the differences instead of values because in that case xi+4[0] is not needed.

Data/Time/Memory Trade-Off. They also showed that one can do a classi-
cal trade-off by storing in the hash table only a fraction of the possible sequences.
Then the attacker has to repeat the online phase many times to compensate the
probability of failure if the sequence is not present in the table which will increase
the data and time complexities. In other word, if the attack has a complexity
(D,T,M) (D for the data, T for the time complexity of the online phase and M
for the memory) then it is possible to modify it to reach a complexity equal to
(D × N,T × N,M/N) for any positive N such that D × N is smaller than the
size of the codebook. This trade-off allows to adapt the attack on 7 rounds of
AES-256 to attack the 192-bit version.

Data Recycling. The structure of 232 plaintexts used in the attack contains
224 δ-sets. Thus the data may be reused 224 times in the Data/Time/Memory
Trade-Off.

Time/Memory Trade-Off. Kara observed that considering the sequence of
the differences instead of values allows to remove x5[0] from Boff (as Demirci
and Selçuk did) or from Bon.
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Multiset. A multiset is an unordered set in which elements can occur many
times. Dunkelman et al. introduce them to replace the functional concept used in
the DS attack and propose to store in the hash table unordered sequences of 256
bytes instead of ordered sequences. Moreover, they claim that a multiset still con-
tains enough information to make the attack possible. Indeed they showed that
given two random functions f, g : F256 −√ F256, the multisets [f(0), . . . , f(255)]
and [g(0), . . . , g(255)] are equal with a probability smaller than 2−467,6. Com-
bined to the fact that the Sbox is a bijection, the main gain is to remove z1[0]
from Bon since it was used only to ordered the δ-set, and thus the time complex-
ity is decreased by a factor 28. Finally, we note that a multiset contains about
512 bits of information and its representation can be easily compressed into 512
bits of space while an ordered sequence needs 256 × 8 = 2048 bits.

Differential Enumeration. In [13], Dunkelman et al. introduce a more sophis-
ticated trade-off which reduces the memory without increasing the time com-
plexity. The main idea is to add restrictions on the parameters used to build
the table such that those restrictions can be checked (at least partially) during
the online phase. More precisely, they impose that sequences stored come from
a δ-set containing a message m which belongs to a pair (m,m∈) that follows a
well-chosen differential path. Then the attacker first focus on finding such pair
before to identify a δ-set and build the sequence. Sect. 6 is dedicated to this
technique.

4 Generalization of the Demirci and Selçuk Attack

The basic attack of Demirci and Selçuk requires a huge memory and a relatively
small time complexity. The classical data/time/memory trade-off allows to bal-
ance these complexities by increasing the data complexity and randomizing the
attack. In this section we present new improvements to reduce the data com-
plexity increase which leads to almost 216 variants of the Demirci and Selçuk
attack and we explain how to find the best ones between them.

4.1 New Improvements of the Original Attack

In this section we summarized our new improvements that allow us to reduce
the increase of the data complexity and, sometimes, to keep the deterministic
nature of the original attack.

Difference Instead of Value. The sequences stored in the table have the form
[f(0) + f(0), . . . , f(0) + f(255)] where f is a function that maps the value of
zi[0] to the value of xi+4[0]+ki+3[0]. But, as shown Sect. 3.1, the procedure used
to build the table produces functions that map the value of Δzi[0] to the value
of Δxi+4[0] and then the only effect of mapping the value of zi[0] is to set the
value of the subkey byte ui[0] (i.e. ui[0] ∈ Koff ). In another hand, if we store
in the table sequences of the form [f(0), . . . , f(255)] where f is a function that
maps the value of Δzi[0] to the value of Δxi+4[0], then each δ-set can be ordered
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in 256 ways, saving data in the classical data/time/memory trade-off described
Sect. 3.2. Furthermore, in the case of a δ-set encryption, each byte of the first
columns of xi+1 assumes the 256 values. As a consequence, to set one of those
bytes to 0 when building the hash table can be compensated by trying the 256
orders of a δ-set without randomizing the attack.

Multiset. Note that, given a sequence of 256 bytes b0, . . . , b255, bi = bj implies
that the multisets [bi + b0, . . . , bi + b255] and [bj + b0, . . . , bj + b255] are equal too.
But Dunkelman et al. shown that given a random function f : F256 −√ F256, the
multiset [f(0)+ f(1), . . . , f(0)+ f(255)] contains on average 162 different values
out of 256. Thus we conclude that a δ-set can be reused 162 ⇒ 27,34 times on
average. This remark holds on for the multisets stored in the hash table during
the precomputation phase and so the memory requirement must be corrected by
a factor 2−0,66.

Time/Memory Trade-Off. To improve the attack of Demirci and Selçuk our
idea is to store in the sequences the 256 differences in a linear combinations of
bytes of x5 instead of the 256 differences in a byte of x5. Thanks to Property 2,
minimal equations involving Δzi and Δxi+1 contains exactly 5 variables such
that k are on a column c of Δzi and 5 − k are on the column c of Δxi+1, with
1 ∈ k ∈ 4 for any round number i. We emphase that Demirci and Selçuk only
consider cases k = 1 and k = 4. The size of the set Bon (resp. Boff ) is deter-
mined by k and it decreases (resp. increases) when k is increased. Thus we can
trade time by memory and vice-versa without affecting the data complexity. Fur-
thermore, contrary to the other data/time/memory trade-offs, the attack need
not to be randomized. Attacks taking advantage of this trade-off are described
Sects. 5.2 and 5.4.

New Data/Time/Memory Trade-Off. The idea of the previous trade-off can
be applied to the δ-set. Instead of considering sets of 256 plaintexts such that
one byte assumes the 256 values and the others are constant, we consider set of
256 plaintexts such that exactly 5 bytes of zi and xi+1 are active. We still call
such a set a δ-set. The consequences on the attack are the same as the previous
trade-off but it now affects the size of the structure needed and bytes of zi must
be guessed in the online phase despite the use of unordered sequences. An attack
taking advantage of this trade-off is described Sect. 5.3.

4.2 Finding the Best Attack

Once the round-reduced AES is split into three parts, the new improvements
allow to mount (4× (

8
5

)
)2 ⇒ 215.6 different attacks but there are only (4× (

(
4
1

)
+(

4
2

)
+

(
4
3

)
+

(
4
4

)
))2 ⇒ 211.8 possible sets Bon (resp. Boff ) to study. To exhaust all

of them and find the best attacks we decide to automatize the search. Thus for
each set we need to answer to the two following questions:

• How many values can assume those state bytes?
• How fast can we enumerate them?
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A priori, this is not an easy task because S-boxes are involved in the keyschedule.
To perform it we used the tool developed in [8], originally designed to find the
best solver for an AES-like system of equations among a particular class of solvers
based on the meet-in-the-middle technique.

Algorithm 1. OriginalTool
Data: System of equations E in variables X involving some S-boxes.
Result: An optimal algorithm to enumerate all the solutions of E with

predictable time and memory complexities.

The problem we seek to solve is very close to the problem solved by this tool
but is still different and so we have slightly tweaked it.

Algorithm 2. TweakedTool (naive implementation)
Data: System of equations E in variables X involving some S-boxes and

a subset Y ≈ X.
Result: A list of optimal algorithms to enumerate all the possible values

of Y according to the system of equations E with predictable
time and memory complexities.

L ∪ ∀;
foreach Y ≈ Z ≈ X do

F ∪ the biggest subspace of E in variables Z;
A ∪ OriginalTool(F );
L ∪ best algorithms from L → {A};

end
return L

The output of our tweaked tool is a list because the number of possible values
of Y enumerated by considered algorithms is not necessary constant and if an
algorithm is slower than an other but finds less possible values for Y than it
then both of them must be studied. Note that the tweaked tool can be applied
directly to the set Boff (resp. Bon) and the system of equations describing the
AES but it is faster to apply it on a basis of Koff (resp. Kon) and the keyschedule
equations since the complexity of the original tool is exponential in the number
of S-box.

Finally we were able to perform an exhaustive search over all the parameters
for all round-reduced versions of AES for the three key lengths in less than an
hour on a personal computer.

5 Results

In this section we present the results obtained by exhausting the variants of the
attack of Demirci and Selçuk. We give an overview of the complexities reached
and describe three new attacks requiring at most 232 chosen plaintexts and min-
imizing the maximum between the time complexity (counted in AES encryption)
and the memory complexity (counted in 128-bit block).
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Fig. 4. Best variants on 7 rounds AES-192.

Fig. 5. Best variants on 8 rounds.

5.1 Overview of the Results

Some of our best results on 7 and 8 rounds are summarized on Figs. 4 and 5.
They give the (log256 of) data complexity reached as a function of the number
of guess to perform in the online phase and in the offline phase. A gray cell
means that the corresponding attack is deterministic while the other attacks are
obtained by applying the classical data/time/memory trade-off.

We observe that almost all the best attacks work with only 232 chosen-
plaintexts. For comparison, to reach balanced complexities on seven rounds
from the original attack by using the classical data/time/memory trade-off, the
amount of data needed will be approximately 271 chosen plaintexts. Further-
more, we have been able to increase by one the number of rounds attacked
with 232 chosen-plaintexts for the three key length but with time and memory



Exhausting Demirci-Selçuk Meet-in-the-Middle Attacks 553

P

x0 z0 x1 z1 x2 z2

x3 z3 x4 z4 x5 z5

C

Fig. 6. Attack on 6 AES rounds. Bytes of Boff are in black. Bytes of Bon are in gray.
Hatched bytes play no role. The differences are null in white squares

complexities very close to the natural bound of the exhaustive search. We also
obtained competitive results in the very low data complexity league with, for
instance, attacks on 8 rounds of AES-256 requiring only 28 chosen plaintexts.

5.2 Attack on Six Rounds AES-128 with 28 Chosen-Plaintexts

If the data available is limited to 28 chosen-plaintexts, the best attack found is
based on the attack depicted on Fig. 6 and the meet-in-the-middle is performed
on the equation

03.Δz3[8] + Δz3[9] = 07.Δx4[8] + 07.Δx4[9] + 02.Δx4[11].

Let be ein = 03.z3[8] + z3[9] and eout = 07.x4[8] + 07.x4[9] + 02.x4[11].
The bytes of Boff are the first column of x1, the two last columns of z2, and

bytes 8 and 9 of z3. They can assume 28×14 different values and so the memory
requirement is 2112−0,66 = 2111,34 multisets on average according to the remark
made in Sect. 4.1.

As the S-box is a bijection and as we consider a δ-set in which only one byte
is active, we do not need to guess x0[0] in order to identify the corresponding
set of 256 plaintexts to build the multiset. As a consequence, the bytes of Bon

are the entire state x5 except the first column, and the third column of x4

except byte 10. Thanks to the keyschedule equations, they can take only 28×12

values instead of 28×15 since we have the three equations u4[5] = u5[1] + u5[5],
u4[8] = u5[4] + u5[8] and u4[15] = u5[11] + u5[15].

All in all this leads to the following attack:

• Preprocessing phase:
1. Set Δiz0[0] to i for 0 ∈ i ∈ 255. Then Δiz0 is known since the other

differences are null.
2. Guess x1[0..3] (for one of the 256 messages) and use Δiz0 to compute

Δiz1[0], Δiz1[7], Δiz1[10] and Δiz1[13]. Then Δiz1 is known since the
other differences are null.

3. Guess bytes 1, 2, 6, 7, 8, 11, 12 and 13 of x2. Use them with Δiz1 to
compute Δiz2[8..15].

4. Guess x3[8] then compute Δiz3[8] using Δiz2[8..11].
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5. Guess x3[13] then compute Δiz3[9] using Δiz2[12..15].
6. Compute the multiset [Δ0ein, . . . ,Δ255ein] and store it in a hash table (if

it was not already in it).
• Online phase:

1. Ask for a structure of 256 plaintexts such that byte 0 assume the 256
possible values and others bytes are constant.

2. Choose one of them to be the one from which difference will be computed.
3. Guess bytes 1, 2, 4, 5, 8, 11, 14 and 15 of u5. Compute u4[5] and u4[8]

and then partially decrypt the ciphertexts to obtain Δix4[8] and Δix4[9]
for 0 ∈ i ∈ 255.

4. Guess bytes 3, 6 and 9 of u5, and continue to partially decrypt the cipher-
texts.

5. Guess byte 12 of u5. Compute u4[15] and then partially decrypt the
ciphertexts to obtain Δix4[11].

6. Build the multiset [Δ0eout, . . . ,Δ255eout] and check whether the multiset
exists in the hash table. If not, discard the key guess.

Finally, the time complexity is equivalent to 2×2−6 ×28 ×296 = 299 encryp-
tions and the memory requirement is 2113,34 AES-blocks. The probability for a
wrong guess to succeed is approximatively 2111,34 × 2−467,6 = 2−356,26 and, as
we try 296 key guess, we expect that only the right value remains after the last
step.

Trade-Off. Since the memory is higher than the time complexity, the data/time/
memory trade-off presented Sect. 3.2 is possible. This leads to an attack using
28 chosen plaintexts (as the data is reused 27,17 times), with a time complexity
equivalent to 2106,17 encryptions and requiring 2106,17 128-bit blocks.

Key Recovery. This attack retrieves the right value of u5 except on bytes 0, 7,
10 and 13 and so can easily be turned into a key-recovery attack. The attacker
guesses the four missing bytes of u5 to retrieve the master key and try it. This
step has a negligible complexity compared to the previous one.

5.3 Attack on 7 Rounds AES-256 with 216 Chosen-Plaintexts

The best attack on seven rounds AES-256 with 216 chosen-plaintexts is depicted
on Fig. 7.

The bytes of Boff are bytes 0,2 and 3 of x1, the three first columns of x2 and
the third column of z3. The bytes of Bon are bytes 0 and 15 of x0, the entire state
x6, the second column of x5 and byte 9 of x4. The number of values assumed by
the bytes of Bon is reduced by a factor 28 using the equation u4[5] = u6[1]+u6[5].
The time complexity is equivalent to 2178 encryptions and the memory is 2153,34

AES-blocks.

Key Recovery. This attack can easily be turned into a key-recovery attack
without increasing the complexity since only 12 key bytes are sufficient to recover
the master key.
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Fig. 7. Attack on 7 AES rounds (key length: 128 bits). Bytes of Boff are in black. Bytes
of Bon are in gray. Hatched bytes play no role. The differences are null in white squares

Fig. 8. Attack on 7 AES rounds (key length: 192 bits). Bytes of Boff are in black. Bytes
of Bon are in gray. Hatched bytes play no role. The differences are null in white squares

5.4 Attack on 7 Rounds AES-192 with 232 Chosen-Plaintexts

The best attack on seven rounds AES-192 with 232 chosen-plaintexts is depicted
on Fig. 8.

The bytes of Boff are the first column of x2, the three first columns of z3, and
bytes 0, 1 and 2 of z4. The bytes of Bon are the first column of z0, the second
and third columns of x6 and bytes 2 and 3 of x5. Thanks to the keyschedule
equations, we can reduce the number of possible values assumed by them by a
factor 28 since u5[7] = u6[11]+u6[15]. The time complexity is equivalent to 2106

encryptions and the memory requirement is 2153,34 AES-blocks.

Trade-Off. Applying the classical data/time/memory trade-off leads to an
attack using 232 chosen plaintexts, with a time complexity equivalent to 2129,67

encryptions and a memory requirement of 2129,67 AES-blocks. Note that the data
complexity remains 232 because the structure may be divided into 224 δ-sets and
each of them may be reused 27,34 times on average.

Key Recovery. This attack can easily be turned into a key-recovery attack
without increasing the complexity since only 15 key bytes are sufficient to recover
the master key.

6 The Differential Enumeration Technique

We present here our results using the differential enumeration technique first
introduced by Dunkelman et al. in [13] and improved by Derbez et al. in [11].
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Fig. 9. Attack on 8 AES rounds. Bytes of Boff are in black. Bytes of Bon are in gray.
Hatched bytes play no role. The differences are null in white squares

We explain how this technique works by describing a new attack on 8 rounds
and then we give an overview of our results.

6.1 Attack on 8 Rounds AES-192

Without restriction on data, the best attack on eight rounds AES-192 begins by
considering the attack depicted on Fig. 9.

The bytes of Boff are the first column of x2, the entire state x3, the two
last columns of z4 and bytes 2 and 3 of z5. The bytes of Bon are the second
column of z0, the three first columns of x7, and the first column of x6 excepted
byte 1. Thanks to the Keyschedule of AES-192 they take only 28×17 = 2136

values because u6[0] = u7[4] + u7[8] and u6[7] = u7[11] + u7[15]. Finally, the
time complexity is equivalent to 2138 encryptions and the memory requirement
is 2241,34 AES-blocks.

Differential Enumeration. The idea of Dunkelman et al. is to store in the hash
table only the multisets built from a δ-set containing a message m that belongs
to a pair (m,m∈) following a well-chosen differential path. In our case this is the
truncated differential 4 √ 1 √ 4 √ 16 √ 8 √ 2 √ 3 √ 12 depicted on Fig. 10.
Then the bytes of Boff can take only 216×8 values for such a pair. Indeed, if we
guess the differences in circled bytes then we obtain the difference before and
after the S-box for each bytes of Boff and thus we can derive their absolute value

P
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x4 z4 x5 z5 x6 z6 x7 z7

C

Fig. 10. Differential characteristic on 8 AES rounds. The differences are null in white
squares. The value of bytes of Boff can be derived from the differences in circled bytes.
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thanks to Property 1. As a consequence, the memory requirement is decreased
by a factor 2112. However, we now need to find a pair that follows this truncated
differential path and so the procedure of the online phase becomes:

1. Ask for a structure of 232 plaintexts such that the second diagonal assume
the 232 possible values and others bytes are constant.

2. Store the corresponding ciphertexts in a hash table to identify the pairs that
have a non-zero probability to follow the differential path.

3. For each of these pairs:
(a) Guess Δz6[0], Δz6[7] and Δz6[10] and compute the difference in the three

first columns of x7.
(b) Deduce the value of the three first columns of x7 using Δz7.
(c) Deduce u6[0] and u6[7] using u7[4], u7[8], u7[11] and u7[15].
(d) Deduce z6[0] and z6[7] and compute Δx6[0] and Δx6[3].
(e) Check if the equation between Δx6[0] and Δx6[3] is satisfied.
(f) Deduce Δx6[2] and then compute x6[2] using Δz6[10].
(g) Guess Δx1[5] and compute the difference in the second column of z0.
(h) Deduce the value of the second column of z0 using Δx0.
(i) Get the δ-set associated to one of the message of the pair and build the

multiset from the corresponding ciphertexts.
(j) Check whether the multiset exists in the hash table. If not, discard the

key guess.
4. Restart with a new structure if no check found.

As each structure contains 263 pairs and each of these pairs follows the differ-
ential with probability 2−144, we need 281 structures on average. Then, for each
structure we have to study only 263−32 = 231 pairs and for each of them we have
to perform 224 × 28 partial encryptions that is equivalent to 228 encryptions.
All in all, this leads to an attack with 2113 chosen plaintexts, a time complexity
equivalent to 2140 encryptions and a memory requirement of 2130 AES-blocks.

Reducing the data complexity. Note that for each possible choice of the
active diagonal in the plaintext we found 96 attacks with the same complexity.
As the corresponding differential paths are different it is possible to perform
many attacks in parallel to save data in exchange of memory. For instance, if we
use structure with three active diagonals, it is possible to reach a complexity of
2104,83 chosen plaintexts and 2138,17 AES-blocks, the time remaining unchanged.

Key Recovery. This attack can easily be turned into a key-recovery attack
without increasing the complexity since only 9 key bytes are sufficient to recover
the master key.

AES-256. This attack can be applied to the AES-256 excepted that the keysched-
ule does not allow us to reduce the time complexity anymore. This leads to an
attack with 2113 chosen plaintexts, a time complexity equivalent to 2156 encryp-
tions and a memory requirement of 2130 AES-blocks. For each possible choice of
the active diagonal in the plaintext we found 384 attacks with the same com-
plexity so it is possible to save more data than previously. For instance, if we
use structure with three active diagonals, it is possible to reach a complexity of
2102,83 chosen plaintexts and 2140,17 AES-blocks, the time remaining unchanged.
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Fig. 11. Differential Enumeration: results on 8 rounds AES-192. All attacks have a data
complexity of 2113 chosen plaintexts. Numbers in cells are the log2 of the numbers of
attacks found with the same complexity.

6.2 Results

As in the previous section, we have exhausted the almost 216 variants to find
the best attacks. For instance our results on the AES-192 reduced to 8 rounds
are summarized on Fig. 11. As expected we have automatically rediscovered the
attacks found by Dunkelman et al. and the ones found by Derbez et al., but
we have also obtained many new attacks including the best known attacks on 8
rounds for both AES-192 and AES-256 described Sect. 6.1.

Limitations. To save more data, Dunkelman et al. propose to consider differ-
ential paths with a bigger probability. We have exhausted the simple case where
the new differential paths do not have active new bytes in the middle rounds.
However, we did not try interesting cases where the active bytes of the pair and
bytes of Bon and Boff are desynchronized since, besides the number of cases to
handle, the complexity of our tweaked tool tends to explode as we cannot apply
it to the keyschedule only.

7 Conclusion

We have presented new attacks on AES by generalizing Demirci and Selçuk
meet-in-the-middle attacks. We took into account various time/memory tradeoffs
including more advanced techniques introduced by Dunkelman et al. in [13]. We
automatized the search of the best attacks of this kind using the tool developed
by Bouillaguet et al. in [8] solving linear systems of equations involving S-boxes.
As a result, we recovered all best attacks on AES-128, including the recent one
of Derbez et al. in [11] and found new more efficient attacks for AES-192 and
AES-256.
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Abstract. In this paper we introduce Janus, a software framework –
written in Java – which is built to provide assistance in finding indepen-
dent-biclique attacks for a user-chosen set of parameters, e.g., the number
of rounds and dimension of the biclique. Given a certain cipher, Janus
not only finds an optimal bipartite graph (biclique), but also provides
an all-round carefree package of finding an optimal matching-with-pre-
computation step, rendering the found biclique, and determining the
computational complexity of the attack.

We have used the Janus framework to verify existing results on ARIA
and the AES. Additionally, by using this framework, we could find the
first full-round biclique attacks on all versions of the AES-like cipher
BKSQ.

Keywords: Automated cryptanalysis · Biclique · BKSQ

1 Introduction

Overview. Biclique cryptanalysis was first introduced by Khovratovich et al.
in 2011 [17] and presented at the FSE 2012 [18]. The authors used this approach
to find preimages for reduced-round versions of the block cipher based hash
functions Skein [12] and SHA-2 [21]. Bicliques represent an improvement of the
splice-and-cut approach [4,22,23], which itself is a variant of meet-in-the-middle
attacks. More detailed, biclique cryptanalysis uses a complete bipartite graph
(biclique), which can be constructed over a part of a primitive, to extend an
existing meet-in-the-middle or similar attack. While the splice-and-cut approach
was intentionally designed to target hash functions, Wei et al. presented the
first splice-and-cut attacks on the block cipher KTANTAN [28]. Bogdanov et
al. then adapted biclique-based attacks on the AES [5]. Their work obtained a
high level of attention, since they demonstrated the first single-key attacks on
all full versions of the AES with a significant advantage over exhaustive search.
Since then, biclique attacks have become a well-known technique and attacks on
several further ciphers have been published in [1–3,7,8,13–15,20,24,26,27].

S. Moriai (Ed.): FSE 2013, LNCS 8424, pp. 561–581, 2014.
DOI: 10.1007/978-3-662-43933-3 29, c© Springer-Verlag Berlin Heidelberg 2014
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Finding good (independent) bicliques over a given number of rounds is a time-
consuming task which requires in-depth knowledge of the investigated cipher to
find well-suited differentials. Thus, it is adequate to think about using a computer
to find such bicliques. Usually, implementations of common block cipher APIs
are not designed to provide a sufficiently fine granularity, e.g., access to single
steps and the basic operations of the cipher is not supported, but required to
find good bicliques.

Our Contribution. A unified API is needed to reduce the effort of modifying
a block-cipher implementation for the biclique search. In addition, such an API
would allow applying one single biclique-searching framework that fits all. In this
paper, we present such a framework, called Janus, which is open source and free
to use1. The main feature of Janus is to find a complete and independent bipar-
tite graph for a certain number of given rounds. In addition, it computes the
corresponding step of matching with precomputations, and the overall complex-
ity. Finally, it supports rendering a graphical illustration of the found biclique
and the matching part.

Janus provides a highly modular and flexible API, i.e., it allows the user to
determine parameters like the used cryptographic primitive, the starting/ending
round, the dimension of the biclique, the starting difference, etc.

First, we used our framework to verify and validate published attacks on
variants of the AES and ARIA (see Sect. 4). Thereby, we detected a flaw in the
complexity computation of the attack on AES-192. Thus, we were not able to
verify the claim made for this attack. But secondly, further analysis revealed
that the authors just forgot to include one round during the matching-with-
precomputation phase. This example points out the importance of an automated
framework to validate claims for existing attacks.

Additionally, we used Janus to find the first full-round attacks on variants
of the AES-like cipher BKSQ [10]. Results of our work can be found in Sect. 4
in Table 1.

Related Work. There are several published tools and frameworks which sup-
port certain cryptanalytic techniques. Though, these frameworks are mostly lim-
ited to a very specific area of application. For example, the work of Daemen
and Van Assche2 concentrates only on analyzing their SHA-3 winner Keccak [9].
They provide, among other things, a computation of linear and differential trails.
Another framework was introduced by Leurent [19] to analyze ARX-based hash
functions (like Skein or Blake) with the goal to assist in finding good differen-
tial trails. Further, Stankovski implemented an automated algebraic cryptanaly-
sis framework [25], which uses the Maximum-Degree-Monomial (MDM) test to
launch algebraic attacks against stream and block ciphers. Currently, it supports
more than 20 stream and block ciphers, and provides a possibility to produce
TeX code for graphs.
1 https://github.com/janus-framework/janus
2 http://keccak.noekeon.org/KeccakTools-doc/ [April 2013]

https://github.com/janus-framework/janus
http://keccak.noekeon.org/KeccakTools-doc/
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Outline. In Sect. 2 we will provide a brief introduction of biclique cryptanalysis.
In Sect. 3 we introduce Janus – containing the search for bicliques, the match-
ing phase, and the rendering option. We used our framework to verify existing
attacks on the AES and ARIA, as well as to mount new attacks on BKSQ. Our
results are shown in Sect. 4. Section 5 concludes the paper.

2 Independent-Biclique Cryptanalysis

In this section we review the basics of independent-biclique cryptanalysis follow-
ing the work of [17]. A biclique is a complete bipartite graph which covers some
steps of a given cipher. It connects every element in a set of starting states S with
every element in a set of ending states C. We enumerate the elements in S by Sj

and the elements in C by Ci, where a path from Sj to Ci represents the encryp-
tion under a key K[i, j]. More formally, the 3-tuple of sets [{Sj}, {Ci}, {K[i, j]}]
is called a d-dimensional biclique, if

⊕i, j ∃ {0, . . . , 2d − 1} : Sj
K[i,j]−−−−→

B
Ci,

where B denotes the steps of the cipher covered by the biclique. The basic idea
is to divide the key space into 2k−2d groups of 22d keys, where k denotes the
length of the secret key and d is the dimension of the biclique. A biclique can
then be defined for one such group of keys K[i, j], where the individual keys
are represented relative to a so-called base key of the group, K[0, 0], and two
differences ΔK

i and √K
j :

K[i, j] = K[0, 0] ⊕ Δi ⊕ √j .

An adversary can construct a biclique over one part of a cipher and apply then
a meet-in-the-middle or similar attack over the remaining parts.

2.1 Independent Bicliques

In [5,16,17], Khovratovich et al. proposed two different paradigms for biclique
attacks: bicliques from independent differential trails (or independent bicliques)
and bicliques from interleaving differential trails (or long bicliques). Independent
bicliques allow the construction of bicliques from two sets of differentials:

1. In the beginning, the adversary chooses a so-called base computation, i.e., a
3-tupel {S0, C0,K[0, 0]}, where the key K[0, 0] maps the internal state S0 to
the state C0 over B:

S0
K[0,0]−−−−→

B
C0.

2. Then, it chooses 2d differences ΔK
i , derives new keys K[i, 0] = K[0, 0] ⊕ ΔK

i ,
perfoms 2d computations from the state S0 in forward direction and arrives
at 2d states Ci:

S0
K[0,0]∈ΔK

i−−−−−−−→
B

C0 ⊕ Δi = Ci ⊕ i ∃ {0, . . . , 2d − 1}.

These are called the Δi-differentials.
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3. Similarly, it chooses 2d further differences √K
j , again derives new keys K[0, j]

= K[0, 0] ⊕ √K
j , computes 2d times from the state C0 in backward direction,

and arrives at 2d states Sj :

Sj = S0 ⊕ √j

K[0,0]∈∗K
j⇒−−−−−−−

B−1
C0 ⊕ j ∃ {0, . . . , 2d − 1}.

These are called the √j-differentials.

If all Δi-differentials do not share any active non-linear operations with the
√j-differentials, then every state Sj can be connected with every state Ci by
encrypting Sj under the key K[i, j] = K[0, 0] ⊕ ΔK

i ⊕ √K
j . Thus, one obtains a

set of 22d independent (Δi,√j)-differential trails:

S0 ⊕ √j

K[0,0]∈ΔK
i ∈∗K

j−−−−−−−−−−−→
B

C0 ⊕ Δi ⊕ i, j ∃ {0, . . . , 2d − 1}.

The length of the biclique differentials is limited by two full diffusions of the
cipher. An adversary can potentially create bicliques over more rounds by using
the long-biclique approach. Though, the construction of long bicliques is quite
sophisticated and requires a significantly higher computational effort. More
importantly, the requirement for independent differentials is a very clear and
well-understood criterion that allows us to test it by using an automated app-
roach. Therefore, we focus on the independent-biclique approach in this work.

2.2 Matching-with-Precomputations

If a constructed biclique is quite short and the matching part needs to cover
too many rounds, then a meet-in-the-middle attack may no longer be applica-
ble. In such cases, [5] proposed an alternative procedure called matching-with-
precomputations.

Assume an adversary is given a cipher E which can be split into three parts
E = B∈E2∈E1, where E1 is the subcipher that maps a plaintext P to an internal
state V , E2 maps V to another internal state S, and B maps the state S to the
ciphertext C:

P
E1−−→ V

E2−−→ S
B−→ C.

After constructing a biclique over B, the adversary is given 2d states Ci, and
obtains the corresponding plaintexts Pi from a decryption oracle. Then, it per-
forms 2d forward computations from the plaintexts Pi to

−→
Vi,0,

Pi
K[i,0]−−−−→

E1

−→
Vi,0,

and stores the 2d values
−→
Vi,0. Similarly, it performs 2d backward computations

from the states Sj to
⇒−−
V0,j ,
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⇒−−
V0,j

K[0,j]⇒−−−−
E−1

2

Sj ,

and stores the 2d values
⇒−−
V0,j . These two steps are called the precomputations. In

the following, the adversary re-uses the stored values for the remaining 22d − 2d

computations

Pi
K[i,j]−−−−→

E1

−→
Vi,j , and

⇒−
Vi,j

K[i,j]⇒−−−−
E−1

2

Sj ,

where it recomputes only those parts of the key schedule and the round transfor-
mation that differ from the stored values. By using this method, one can reduce
the computational effort significantly even if no attacks are known to cover the
remaining parts of the cipher. The recomputation costs can be further reduced
by only matching in a part of V (partial matching).

2.3 Complexity Calculation

For every biclique, the adversary tests 22d keys. Hence, it needs to construct
2k−2d bicliques to cover the full key space. For the time complexity, [5] proposed
the equation:

Cfull = 2k−2d (Cbiclique + Cdecrypt + Cprecomp + Crecomp + Cfalsepos) , (1)

where

– Cbiclique denotes the costs for computing 2 · 2d trails over B,
– Cdecrypt is the complexity of the oracle to decrypt 2d ciphertexts,
– Cprecomp represents the effort for 2d computations of E1 to determine

⇒−−
V0,j and

2d computations of E−1
2 to determine

−→
Vi,0,

– Crecomp describes the costs of recomputing 22d values
⇒−
Vi,j and

−→
Vi,j , and

– Cfalsepos is the complexity to eliminate false positives.

The full computational effort of the attack is dominated by the recomputa-
tions. The memory requirements are upper bounded by storing 2d intermediate
states Vi,j .

3 Framework Design

Our current implementation consists of four components:

1. The biclique search subsystem is responsible for searching for independent
differential trails over some sub-cipher B of a given primitive E.

2. Given a found biclique, the matching subsystem analyzes the remaining parts
of the cipher to find a matching which leads to an attack with a minimal
computational effort.
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3. The rendering subsystem can visualize bicliques as well as matching phase
differentials in PDF format, using the community version 5.3.0 of the open-
source library iText [6].

4. Moreover, the framework contains a number of common components, such
as cipher implementations, serialization and utility classes, as well as cipher-
dependent helper classes which generate and compare differentials.

In this work we concentrate on describing the two major components in detail.

3.1 Biclique Search

The task of finding independent bicliques can be transformed into the task of
finding pairs of independent differentials (Δf ,√b). In advance, the user needs to
specify:

– a target cipher E,
– the round range of the sub-cipher B,
– the dimension of bicliques d,
– a strategy to test the independency of differentials,
– and a strategy to define and generate round key differences.

The general biclique search follows the steps from Sect. 2.1. Assume that B covers
the rounds [r, s] with 1 ≈ r ≈ s ≈ Nr of a given cipher E, where Nr is the total
number of rounds in E. We denote

– by NB
r = s − r + 1 the number of rounds covered by B,

– by Ti the state after Round i,
– by Ui the intermediate state after the non-linear operation in Round i,
– and by Ki the round key of Round i.

We further call the state of the cipher’s key register, which contains the key for
Round r, the starting key, and the state which contains the key for Round s the
ending key.

First, we fix K[0, 0] and S0 to and derive C0. This base computation is
computed only once for a given cipher and round interval. We then create a trail
Δf which will store all state values Ti, all intermediate state values Ui, as well
as all round keys Ki which are used in B. At the beginning, we initialize them
with all-zero values. Then, we choose a starting key difference ΔKf

with d bits
set. In the following, we iterate over all 2d possible values for the d set bits in
ΔKf

, and compute 2d − 1 differential trails

S0
K[0,0]∈ΔKf

i−−−−−−−−→
B

Cf
i , ⊕ i ∃ {1, . . . , 2d − 1}.
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We denote by Δf
i the resulting differences between the corresponding states,

intermediate states and round keys of the trail Δf and the base computation:

Δf
i =

(
S0

K[0,0]−−−−→
B

C0

)
⊕

(
S0

K[0,0]∈ΔKf

i−−−−−−−−→
B

Cf
i

)
.

Bits which are active in any of the 2d−1 differential trails Δf
i should remain active

in the differential Δf . Thus, the Δf
i -trails are accumulated to Δf by applying

the logical OR pair-wise to all corresponding state and round key differences of
all differentials Δf

i :

Δf ⇒
2d−1∨

i=1

Δf
i .

This procedure is repeated for in total Nd unique starting key differences ΔKf

,
⊕f ∃ {1, . . . , Nd}. All Nd accumulated forward trails Δf are stored in a list. The
Nd backward trails √b are computed similarly afterwards.

For every pair of differentials (Δf ,√b), we check if any of their corresponding
states or round keys share active parts in non-linear operations. If not, the
current pair yields an independent biclique. Since any identified biclique can be
used to mount an attack, we provide an option for the early abort as soon as
the first such pair has been found. The time complexity of the biclique search
process is given by

Ctime = Cforward + Cbackward + Ctesting,

where

– Cforward is given by constructing Nd Δ-differentials,
– Cbackward denotes the effort of constructing Nd √-differentials,
– and Ctesting represents the costs for comparing N2

d pairs of differentials (Δ,√).

The complexity is dominated by the effort for testing N2
d pairs of differentials.

We have to store the states and round keys of Nd forward differentials, where
every differential holds NB

r +1 (from r − 1 to s) state differences, NB
r (from r to

s) intermediate state differences, and a cipher-dependent number of Nk round
key differences, since E may employ pre- and post-whitening keys. Hence, we
need to store

Cmemory = Nd · (2NB
r + 1) · n + Nk · k

bits, where n and k denote the state and round-key size, respectively. In the case
when the available memory is not sufficient to store all forward differentials, the
biclique search is performed in iterations.
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Ciphers. Throughout the framework we employ a unified interface for cipher
implementations. Standard implementations allow the client to specify only the
plaintext, the used key and, in some cases, a tweak. The implementations in our
framework have to provide access also to internal values, such as intermediate
states to allow the comparison of state differences.

In addition, they have to provide access to the values of round keys as well
as to their internal key register. To obtain the longest possible independent
bicliques, one should not minimize the number of active bits with respect to the
secret key. Since the key schedule of most ciphers provides a significant diffusion,
it would increase the number of affected bits in the round-key differences ΔK

i or
√K

j and hence, would increase the number of active bits in the differential trails.
Instead, one should choose key differences which have a minimum number of
active bits in the round keys at the beginning (for Δ-differentials) or at the end
(for √-differentials) of B, respectively. This minimizes the number of active bits
in non-linear operations of the differential trails through B. Thus, the starting
point for choosing key differences should be an intermediate state of the cipher’s
key register, from where one can derive the differences for all further round
keys. The ciphers we are interested in utilize a key register which is updated in
an iterated reversible procedure, with the consequence that the secret key can
be reconstructed from any given register state. Our implementations specify if
the key schedule of a cipher is reversible. In this case – which applies to most
AES-like primitives and modern lightweight ciphers – they provide a method
which allows to invert the key schedule given an arbitrary k-bit state of the key
register at a certain number of iterations. In the opposite case, the starting key
differences are injected in the secret key as a fallback solution.

Starting Key Differences. The number of tested differentials, Nd, depends
on the dimension of the biclique d and the size of the key register k. Given k
and d, one could potentially generate Nd =

(
k
d

)
forward and backward differen-

tials, which becomes infeasible for k ∪ 64. Though, this effort can be reduced
significantly for byte- and nibble-wise operating ciphers. In the following, we
consider three strategies to generate key differences for such primitives, which
are illustrated in Fig. 1.

1. Firstly, one can set only a minimum number of d active bits in the starting
key difference. Then, for byte-wise operating primitives, there are only k

⊕d/8⊂

Fig. 1. Approaches to iterate over key differences for byte-wise/nibble-wise operating
ciphers: iterate over a minimum number of active bytes/nibbles (left), over multiple
bytes/nibbles with equal value (middle), or choose user-defined differences over a part
of the key to cancel out results of the round transformation (right).
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active bytes in the difference. As a consequence, for byte- and nibble-wise
primitives the number of possible differences which can be tested reduces to

Nd =
(

k/8
⊕d/8⊂

)
and Nd =

(
k/4

⊕d/4⊂
)

differentials, respectively. For bit-wise operating primitives, one can limit the
number of generated key differences to a user-definable number.

2. Secondly, one can set the same difference for multiple nibbles/bytes in the
starting key difference. At the first sight, these will produce additional active
bytes in the state after a key injection, making it harder for the differential
to be independent in a pair. At second sight, the additional active bytes may
cancel out byte differences in the key schedule and/or the round transforma-
tion of AES-like ciphers, as we can learn from the attack on SQUARE by Mala
[20]. Though, this strategy increases the number of tested keys to Nd = 2k/8

for byte-wise and Nd = 2k/4 for nibble-wise primitives, respectively.
3. Alternatively, one can employ custom rules to generate round-key differences.

In their attack on AES-192, Bogdanov et al. employed the inverse result of
a MixColumns operation as a part of the round key difference [5]. And in
their attack on ARIA-256 [8], the authors used dedicated differences in which
the right half of the 256-bit key canceled the difference injected by the left
half. One can learn from those examples that cipher-specific key differences
can result in longer bicliques for AES-like ciphers. Since testing all custom
differences in the key space is infeasible, the task of choosing “good” custom
starting key differentials can be left to the user.

3.2 Matching

A matching-with-precomputations step is supposed to be applied to the sub-
ciphers not covered by a given biclique (here E2 ∈ E1). Our framework can help
to identify a well-suited matching by investigating two aspects: first, it tests all
possible rounds which can be used to locate V :

P −−→
E1

V ⇒−−−
E−1

2

S,

and second, it tests all possible nibbles or bytes in V which can be used for a
partial matching. For every round r that can be used to locate V , we perform
four steps:

1. First, we compute differentials from the start and the end of the matching
part to the middle:

P
K[0,0]∈∗K

j−−−−−−−→
E1

Vr ⊕ √V
j and Vr ⊕ ΔV

i

K[0,0]∈ΔK
i⇒−−−−−−−

E−1
2

S.

Note that these differential trails result from injecting differences in the round
keys.
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2. Then, for every nibble/byte in V , we create a new difference δV in which the
bits that are used for a partial matching are set. We compute the differentials
from V to start and end:

P ⊕ δP K[0,0]⇒−−−−
E−1

1

Vr ⊕ δV and Vr ⊕ δV K[0,0]−−−−→
E2

S ⊕ δS .

These active bits in these trails represent the parts of the states and round
keys that have to be known in order to apply the partial matching.

3. For the recomputation effort of an attack, one has to consider only those
parts of the states and round keys that are active in both differential trails:
0 → √V

j and δP ⇒ δV . Therefore, we apply the logical AND (∀) between
the active bits/nibbles/bytes (depending on the cipher) of all corresponding
states and round keys and obtain the accumulated differential ΔP

j by

ΔP
j = (0 → δV ) ∀ (δP ⇒ Vr).

Similarly, we compute the accumulated differential √S
i

√S
i = (δVr ⇒ 0) ∀ (δV

r → δS).

4. As the final step, the number of active bits/nibbles/bytes in keys, states, and
intermediate states is counted in both ΔP

j and √S
i to have a single number

which refers to the recomputational effort.

4 Applications

We used our implementation to validate existing biclique attacks on the AES
and ARIA from [5,8], and to mount new attacks on the three versions of the
cipher BKSQ. Table 1 summarizes our results and compares them with previous
attacks.

4.1 Verifications

AES. In our experiments on the AES we could construct bicliques on up to
three rounds for the 128-bit, and on up to four rounds for the 192-bit and 256-
bit versions. Hence, our results confirm to the findings of Bogdanov et al. in terms
of maximal biclique lengths. In their independent-biclique attacks, Bogdanov et
al. pointed out that the round key differences are a linear function of the indices
i and j. Thus, the authors could neglect the effort for recomputing the S-boxes
in the key schedule. We did not employ this optimization, since we searched
for a more general approach in our implementation. Additionally, we detected a
minor flaw in the complexity calculation for the independent-biclique attack on
the 192-bit version. There, the authors forgot to consider either the round 6 or 7
with 16 active S-boxes which increases the number of SubByte operations from
2.8125 to 3.8125, and the total complexity from 2189.74 to 2190.16.
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Table 1. Independent-biclique attacks constructed by automated search in compar-
sion with previously published attacks. CP: chosen plaintexts, (∗): the computational
complexity should be 2190.16 (cf. Sect. 4.1).

Primitive Rounds Comp. Data Memory Ref.
complexity complexity (CP) complexity

AES
AES-128 10 (full) 2126.72 272 28 This work
AES-128 10 (full) 2126.18 288 28 [5]
AES-192 12 (full) 2190.28 248 28 This work
AES-192 12 (full) 2189.74(∗) 280 28 [5]
AES-256 14 (full) 2254.53 264 28 This work
AES-256 14 (full) 2254.42 240 28 [5]

ARIA
ARIA-256 16 (full) 2255.20 280 28 [8]

BKSQ
BKSQ-96 10 (full) 294.47 280 28 This work
BKSQ-144 14 (full) 2142.63 296 28 This work
BKSQ-192 18 (full) 2190.78 296 28 This work

ARIA. ARIA is a Korean variant of the AES. Its round transformation provides
a significant diffusion, where every input byte is involved in the computation
of seven output bytes. In the key schedule of ARIA, the input key is trans-
formed in a four-round Feistel structure to create four intermediate key words
W0,W1,W2,W3. All round keys are then extracted from these words using rota-
tions and XORs. Chen and Xu [8] injected one-byte differences for the Δi- and
√j-differentials in the leftmost 128 bits of the key, and used the rightmost 128
bits to cancel the resulting seven-byte difference. We have implemented and
verified the attack on ARIA-256. However, the Feistel preparation in the key
schedule refused more efficient attacks.

4.2 Independent-Biclique Attack on the Full AES-128 and AES-192

While the time complexities of the previous works on the AES are better than
our results for them, we could decrease the data complexity for the 128-bit and
192-bit versions. In the biclique for the 128-bit version, the ciphertexts Ci differ
in only 11 out of 16 bytes, as can be seen on the left side of Fig. 2 in Appendix A.
The bytes 0, 8, 12 (from left: the first, third and fourth byte in the uppermost
row) are active in the ciphertexts only after the key injection in the final round.
Due to the key schedule of the AES, these bytes in the final round key always
have an equal difference. As a consequence, since the ciphertexts can only take
(28)9 values, the data complexity is upper bounded by 272.

Similarly, in the biclique for the 192-bit version, the ciphertexts Ci differ in
only five out of 16 bytes before the final key addition, as illustrated on the right
side of Fig. 2 in Appendix A.
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Due to the key schedule, the bytes 1, 5, 9 (from left: the first, third and fourth
byte in the second row) in the round key for the final round always have an equal
difference. The ciphertexts for this biclique can take only (28)6 values. Thus, the
data complexity of an attack using this biclique is upper bounded by 248.

4.3 Specification of BKSQ

BKSQ is a substitution-permutation network that was proposed by Daemen
and Rijmen in [10]. The cipher represents a generalization of Rijndael, in which
the state has a rectangular m × n-structure (cf. [11]). There are three different
versions of BKSQ which all have a state size of 96 and individual key lengths
of 96, 144, or 192 bits. The internal state is represented by a 3 × 4- and the
secret key is represented as a 3 × 4-, 6 × 4-, or 9 × 4-byte matrix. The plaintext
is transformed in 10/14/18 rounds using the four operations:

– MixColumns/θ: The internal state is multiplied column-wise by a circulant
MDS-matrix in the Galois-Field GF (28).

– SubBytes/γ: Each byte in the internal state is replaced using an 8 × 8-bit
S-box.

– ShiftRows/π: The i-th row of the internal state for i ∃ {0, 1, 2} is rotated by
i bytes to the left.

– AddRoundKey/σ[ki]: The internal state is XORed byte-wise with the subkey
ki for round i.

Before the first round, an inverse θ-operation is applied to the plaintext and an
additional key k0 is XORed with the state.

4.4 Independent-Biclique Attack on Full BKSQ-96

This subsection explains our independent-biclique attack on full BKSQ-96. The
attack includes three steps: partitioning the key space, constructing a biclique,
and matching over the remaining parts of the cipher. The complexity of the
attack is described at the end.

Key Space Partitioning. We partition the key space in 280 sets with respect
to the round key for Round 8, k8. The base keys K[0, 0] of the sets are the 280

12-byte values with two bytes fixed to zero, where the ten remaining bytes run
over all possible values. The 216 keys K[i, j] in a set are defined by applying the
key differences ΔK

i and √K
j to the base key, where i, j ∃ {0, . . . , 255}.

K[0, 0] = 0 0 ΔK
i (k8) = ∇K

j (k8) =

Note that the key schedule of BKSQ-96 performs a bijective mapping where
every value for the secret key is mapped uniquely to one value of each round
key. Thus, our splitting of the key space covers the full secret key space.
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3-Round Biclique of Dimension 8. We construct a biclique of dimension
eight over the rounds 8-10. Fig. 3 in Appendix B shows the base computation as
well as the Δi- and √j-differentials. It can be seen from there that all Δi- and
√j-differentials are independent, i.e., their keys and states do not share active
bytes which are used as inputs to the non-linear S-box. From Fig. 3 in Appendix
B one can see that the Δi-differentials affect the ciphertexts Ci in only 10 bytes.
By fixing C0 for all bicliques, we can upper bound the data complexity of this
attack by 280 ciphertexts.

Matching Over 7 Rounds. The matching part covers the first seven rounds
of the cipher, as illustrated in Fig. 4 in Appendix B. We choose the first byte of
the state after Round 3 for the partial matching. The bytes which have to be
recomputed are darkened in Fig. 4.

Similar to the attacks on the AES in [5], we have to be accurate concerning
the recompution effort. In all attacks on BKSQ we follow the argumentation of
[5] and focus on the number of S-boxes which require recomputation in order to
have a single value which refers best to the total effort, since the number of S-box
lookups is the dominant summand compared to the number of recomputed θ-
and σ- operations.

As we can see from Fig. 4 in Appendix B, we need to consider nine S-boxes
in the first, three S-boxes in the second, and one additional S-box in the third
round. Hence, we have 9 + 3 + 1 = 13 S-boxes in the forward part of the
round transformation. In backward direction (covering rounds 4 to 7) we need
to consider 3 + 9 + 7 + 3 = 22 S-boxes in the round transformation. Additionally,
we have to take into account the S-boxes that require recompution in the key
schedule. BKSQ uses the S-box for the rightmost column of each of its round
keys. There are 3 + 3 + 3 + 3 + 1 + 1 + 0 + 1 = 15 such active S-boxes in the
last column of the round keys. These sum up to 13 + 22 + 15 = 50 S-boxes for
one group of keys.

Complexity of the Attack. In the full BKSQ-96, there are 10 · 12 = 120
S-boxes in all γ-operations of the full cipher and 30 S-boxes in the key schedule.
Thus, for 216 keys in one key group, Crecomp is equivalent to 216 · 50

150 = 214.42

full encryptions. In all of our attacks on BKSQ we use bicliques of dimension
eight. Therefore, the decryption oracle needs 28 decryptions per biclique. Since
we match in eight bits in the state v, we can expect to have 216−8 false positive
key candidates per key group in average, which have to be tested in a brute-force
stage.

For BKSQ-96, the effort to construct a biclique, Cbiclique, is given by com-
puting 2 ·28 times three out of 10 rounds, which is equal to 27.26 full encryptions.
The precomputations costs are given by computing 28 times three rounds in for-
ward direction from P to V and 28 times four rounds in backward direction from
S to V . Hence, Cprecomp is equal to 27.49 encryptions. The full computational
complexity is given by

280 · (27.26 + 28 + 27.49 + 214.42 + 28) = 294.48
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encryptions. This attack requires 280 chosen plaintexts, and memory to store 28

96-bit states at a time.

4.5 Independent-Biclique Attack on Full BKSQ-144

Key Space Partitioning. In the attack on the 144-bit version of BKSQ we
partition the key space in 2128 sets with respect to the block (k12∅kL

13), which
contains the full round key k12 and the leftmost two columns of k13. The base
keys of the sets, K[0, 0], are the 2128 18-byte values, where two bytes are fixed
to zero and the remaining 16 bytes run over all possible values. The 216 keys
K[i, j] in a set are defined by applying the key differences ΔK

i and √K
j to the

base key, where i, j ∃ {0, . . . , 255}.

K[0, 0] = 0

0

ΔK
i (k12||kL

13) = ∇K
j (k12||kL

13) =

Note that the key schedule of BKSQ-144 maps every value of the secret key
uniquely to one value of each 18-byte block of the key register. Thus, our splitting
of the key space with respect to (k12∅kL

13) covers the full secret-key space.

4-Round Biclique of Dimension 8. We construct a four-round biclique which
covers the rounds 11 to 14, as shown in Fig. 5 in Appendix C. This time, the
ciphertexts Ci are affected in all bytes. Thus, the attack can potentially include
the full codebook.

Matching Over 9 Rounds. We match in the first byte of the state after
Round 3. Figure 6 in Appendix C shows the active bytes in the matching phase.
We consider 9 + 3 + 1 = 13 S-boxes in forward and 3 + 9 + 12 + 12 + 12 + 6
+ 2 = 56 active S-boxes in the backward part of the matching. Moreover, in the
key schedule, we have to recompute one active S-box in each of the round keys
k1, k4, k7, and k10. Hence, there are in total 13 + 56 + 4 = 73 active S-boxes in
the matching phase.

Complexity of the Attack. In the full cipher, there are 14 · 12 = 168 S-boxes
in the γ-operations and 27 S-boxes in the key schedule. Thus, for 216 keys in one
key group, Crecomp is equivalent to 216 · 73

195 = 214.58 full encryptions. Cbiclique

is given by computing 2 · 28 times four out of 14 rounds, which is equivalent to
27.19 full encryptions. Considering Cprecomp, one has to compute 28 times ten
out of 14 rounds, which is equivalent to 27.51 full computations. The total time
complexity is given by

2128 · (27.19 + 28 + 27.51 + 214.58 + 28) = 2142.63

full encryptions. The data complexity of this attack is 296, and we need memory
to store 28 states.



A Framework for Automated Independent-Biclique Cryptanalysis 575

4.6 New Independent-Biclique Attack on Full BKSQ-192

Key Space Partitioning. For this attack we divide the key space into 2176

sets with respect to the block (k16∅k17), which contains the keys for rounds 16
and 17. The base keys K[0, 0] are the 2176 24-byte values with two bytes fixed
to zero, where all other bytes run over all possible values. The 216 keys K[i, j]
in a set are defined by applying the key differences ΔK

i and √K
j to the base key,

where i, j ∃ {0, . . . , 255}.

K[0, 0] =
0
0 ΔK

i (k16||k17) = i i ∇K
j (k16||k17) =

j

Note, that the key schedule of BKSQ-192 maps every value of the secret key
uniquely to one value of each 24-byte block of the key register. Thus, our splitting
of the key space with respect to (k16∅k17) covers the full secret-key space.

5-Round Biclique of Dimension 8. We construct a 5-round biclique which
covers the rounds 14 to 18, as shown in Fig. 7 in Appendix D. For this attack,
the Δi-differentials affect all bytes in the ciphertexts Ci. Hence, this attack may
require the full codebook.

Matching Over 13 Rounds. We match in the first byte of the state after
Round 5, as shown in Fig. 8, Appendix D. There, an adversary should recompute
12 + 12 + 9 + 3 + 1 = 37 S-boxes in the forward direction, 3 + 9 + 4 · 12 +
6 + 2 = 68 S-boxes in backward direction and six S-boxes in the key schedule.
Hence, 37 + 68 + 6 = 111 S-boxes need to be recomputed in total.

Complexity of the Attack. In BKSQ-192, there are 18 · 12 = 216 S-boxes
in the γ-operations and 51 bytes in the key schedule. Thus, for 216 keys in one
key group, Crecomp results in 216 · 111

267 = 214.73 full encryptions. Cbiclique is given
by computing 2 · 28 times five out of 18 rounds, which is equivalent to 27.15 full
encryptions. Cprecomp is given by computing 28 times 13 out of 18 rounds or
27.53 computations. The full time complexity is given by

2176 · (27.15 + 28 + 27.53 + 214.73 + 28) = 2190.78

full encryptions. Again, the data complexity is 296 and the memory complexity
is 28.

5 Conclusion and Outlook

With Janus, we have introduced a user-friendly, highly flexible, and expandable
framework for cryptanalysts which supports automated biclique cryptanalysis
of a user-specified cryptographic algorithm. With this framework, we found the
first full-round attacks on BKSQ-96, BKSQ-144, and BKSQ-192. It is planned to
increase the number of supported primitives, e.g., the AES and SHA-3 finalists
to analyze the resistance against biclique attacks.
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A Bicliques from the Attack on Full AES-128 and
AES-192

Forward differential

Round 8

Round 9

Round 10

Backward differential

Round 8

Round 9

Round 10

S0 Sj

Ci C0

Forward differential

Round 9

Round 10

Round 11

Round 12

Backward differential

Round 9

Round 10

Round 11

Round 12

S0 Sj

Ci C0

Fig. 2. Δi- and ∇j-differentials of the bicliques for the AES-128 (left) over the rounds
8 - 10 and the AES-192 (right) over the rounds 9 - 12.
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B Independent-Biclique Attack on Full BKSQ-96

Base computation

Round 8

Round 9

Round 10

Forward differential

Round 8

Round 9

Round 10

Backward differential

Round 8

Round 9

Round 10

S0 S0 Sj

C0 Ci C0

Fig. 3. Biclique for BKSQ-96 over the rounds 8 - 10 with Δi- and ∇j-differentials.

Backward matching

Round 4 Round 5 Round 6 Round 7

Forward matching

Round 1 Round 2 Round 3

Fig. 4. Recomputations for BKSQ-96 in forward and backward direction.
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C Independent-Biclique Attack on Full BKSQ-144

Base computation

Round 11

Round 12

Round 13

Round 14

Forward differential

Round 11

Round 12

Round 13

Round 14

Backward differential

Round 11

Round 12

Round 13

Round 14

S0 S0 Sj

C0 Ci C0

Fig. 5. Biclique for BKSQ-144 over the rounds 11 - 14 with Δi- and ∇j-differentials.

Backward matching

Round 4 Round 5 Round 9

...

Round 10

Forward matching Round 1 Round 2 Round 3

Fig. 6. Recomputations for BKSQ-144 in forward and backward direction.
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D Independent-Biclique Attack on Full BKSQ-192

Base computation

Round 14

Round 15

Round 16

Round 17

Round 18

Forward differential

Round 14

Round 15

Round 16

Round 17

Round 18

Backward differential

Round 14

Round 15

Round 16

Round 17

Round 18

S0 S0 Sj

C0 Ci C0

Fig. 7. Biclique for BKSQ-192 over the rounds 14 - 18 with Δi- and ∇j-differentials.

...

Backward matching

Round 6 Round 7 Round 8 Round 12 Round 13

Forward matching
Round 1 Round 2 Round 3 Round 4 Round 5

Fig. 8. Recomputations for BKSQ-192 in forward and backward direction.



580 F. Abed et al.

References

1. Abed, F., Forler, C., List, E., Lucks, S., Wenzel, J.: Biclique Cryptanalysis of
the PRESENT and LED lightweight ciphers. Cryptology ePrint Archive, report
2012/591 (2012). http://eprint.iacr.org/

2. Abed, F., List, E., Lucks, S.: On the security of the core of prince against biclique
and differential cryptanalysis. Cryptology ePrint Archive, report 2012/712 (2012).
http://eprint.iacr.org/

3. Ahmadian, Z., Salmasizadeh, M., Aref, M.R.: Biclique Cryptanalysis of the Full-
Round KLEIN block cipher. Cryptology ePrint Archive, report 2013/097 (2013).
http://eprint.iacr.org/

4. Aoki, K., Sasaki, Y.: Preimage attacks on one-block MD4, 63-step MD5 and more.
In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp.
103–119. Springer, Heidelberg (2009)

5. Bogdanov, A., Khovratovich, D., Rechberger, C.: Biclique cryptanalysis of the full
AES. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp.
344–371. Springer, Heidelberg (2011)

6. 1T3XT BVBA. iText, a Free Java-PDF Library (2012). http://www.itextpdf.com/
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Abstract. In several cryptographic primitives, Sboxes of small size are
used to provide nonlinearity. After several iterations, all the output bits
of the primitive are ideally supposed to depend in a nonlinear way on
all of the input variables. However, in some cases, it is possible to find
some output bits that depend in an affine way on a small number of
input bits if the other input bits are fixed to a well-chosen value. Such
situations are for example exploited in cube attacks or in attacks like the
one presented by Fuhr against the hash function Hamsi. Here, we define a
new property for nonlinear Sboxes, named (v, w)-linearity, which means
that 2w components of an Sbox are affine on all cosets of a v-dimensional
subspace. This property is related to the generalization of the so-called
Maiorana-McFarland construction for Boolean functions. We show that
this concept quantifies the ability of an Sbox to propagate affine relations.
As a proof of concept, we exploit this new notion for analyzing and
slightly improving Fuhr’s attack against Hamsi and we show that its
success strongly depends on the (v, w)-linearity of the involved Sbox.

Keywords: Sbox · Boolean function · Linear relations · Maiorana-
McFarland construction · Hash functions

1 Introduction

In the construction of symmetric primitives such as block ciphers and hash func-
tions, nonlinear functions are iterated to provide confusion. In particular, it is
required that all the outputs of the primitive depend in a nonlinear way on the
inputs. However, it might happen that some output bits can be expressed in an
affine way as a function of a small number of input bits, when the other input
bits are fixed to some well-chosen values. Clearly, the sizes of the corresponding
sets of inputs and outputs provide a measure of the induced weaknesses: such a
property always holds for any input set of size 1, but it should be avoided for
larger sets. Actually, in such a situation, an attacker would be able to derive some
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conditional relations of algebraic degree 1 between some inputs and some out-
puts of the primitive and to exploit them in a cryptanalysis, like a cube attack [9]
or an attack similar to the one presented by Fuhr on Hamsi [12]. However, it
is often difficult to determine whether such affine relations exist and even more
difficult to find them. Furthermore, from the designer’s point of view, it is not
easy to understand how such relations can be avoided at a low implementation
cost, especially without increasing the number of rounds.

Our Contributions. In this paper, we show that the number of affine relations
between input bits and output bits after several rounds of an SPN construction
depends on a new linearity measure of the Sbox, that we call (v, w)-linearity. The
parameters (v, w) quantify the ability of the Sbox to propagate affine relations.
More precisely, a vectorial function S from Fn

2 into Fm
2 is (v, w)-linear, if there

exist a subspace V ⊕ Fn
2 with dimV = v and a subspace W ⊕ Fm

2 with dimW =
w such that all Boolean functions x ∃→ λ · S(x), for λ √ W , have degree at most
1 on all cosets of V . We show that the (v, w)-linear functions correspond to the
functions which follow the generalized Maiorana-McFarland construction [18]
applied to vectorial functions. In other words, the use of Sboxes obtained by
this construction, which have been extensively studied for instance in [6,14,19,
21], introduces some weaknesses into a cryptographic primitive, which might be
exploited by a cube attack or by an attack like [12].

As a proof of concept, we analyze and slightly improve Fuhr’s attack against
Hamsi with the new insights brought by this notion. Most notably, we show
that the feasibility of this attack mainly depends on the (v, w)-linearity of the
Hamsi Sbox. By classifying 4-bit Sboxes in terms of (v, w)-linearity, we exhibit
the families of Sboxes which considerably reduce the success of the attack.

The rest of the paper is organized as follows. In Sect. 2 we introduce the
notion of (v, w)-linearity and present some general properties. We characterize,
in this same section, the (v, w)-linear functions for certain values of (v, w) and
we exhibit a classification of 4-bit Sboxes with respect to this new criterion. In
Sect. 3, we recall the principle of the second preimage attack by Fuhr against the
hash function Hamsi. Section 4 points out that the notion of (v, w)-linearity for
the involved Sbox brings a new insight on Fuhr’s attack. In particular, a more
extensive use of this notion enables us to slightly improve the attack against
Hamsi. We also investigate the feasibility of the attack for all possible choices of
the 4-bit Sbox. We refer to [2] for further details, especially on the classification
of 4-bit Sboxes and on the algorithms we used for finding affine relations for
Hamsi-256.

2 The Notion of (v, w)-linearity

When we consider an Sbox, i.e., a vectorial function with several output coor-
dinates, some of its cryptographic properties are derived from the properties of
its components, in the following sense.
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Definition 1. [20] Let S be a function from Fn
2 into Fm

2 . The components of
S are the linear combinations of its coordinates, i.e., the Boolean functions of
n variables Sλ : x ∃→ λ · S(x), where λ √ Fm

2 and S0 is the null function.

In the following, we often consider the restriction of S to an (affine) subspace
a+V of Fn

2 . This restriction corresponds to the function x √ V ∃→ S(a+x), and
it can be identified with a function of dimV variables.

2.1 Definition and Link with the Maiorana-McFarland Construction

Definition 2. Let S be a function from Fn
2 into Fm

2 . Then, S is said to be (v, w)-
linear if there exist two linear subspaces V ⊕ Fn

2 and W ⊕ Fm
2 with dimV = v

and dim W = w such that, for all λ √ W , Sλ has degree at most 1 on all cosets
of V .

Obviously, a function S that is (v, w)-linear is equally (v, i)-linear for every
1 ≤ i < w. Similarly, it is (i, w)-linear for every 1 ≤ i < v.

Any Boolean function f which is linear on all cosets of a v-dimensional sub-
space V can be written as

f(x, y) = π(x) · y + h(x) with (x, y) √ U × V,

where U is a supplementary subspace of V , π is a function from U to Fv
2 and h is a

Boolean function from U to F2. This construction is a well-known generalization
of the so-called Maiorana-McFarland construction of bent functions [18]. This
class has been generalized to vectorial functions in [19] and studied by several
authors, e.g. [6,14,21]. Then, it follows that an Sbox is (v, w)-linear if and only if
its 2w components corresponding to W define a function which is equivalent to a
vectorial Maiorana-McFarland function, in the sense of the following proposition.

Proposition 1. Let S be a function from Fn
2 into Fm

2 , and V and W two linear
subspaces V ⊕ Fn

2 and W ⊕ Fm
2 with dimV = v and dimW = w. Then, S is

(v, w)-linear w.r.t. (V,W ) if and only if the function SW corresponding to all
components Sλ, λ √ W , can be written as

SW (x, y) = M(x)y + G(x)

where Fn
2 is the direct sum of U and V , G is a function from U to Fw

2 and M(x)
is a w × v binary matrix whose coefficients are Boolean functions defined on U .

Proof. Let (λ1, . . . , λw) be a basis of W . Clearly, S is (v, w)-linear w.r.t. (V,W )
if and only if, for any 1 ≤ i ≤ w, Sλi

can be written as

Sλi
(x, y) = πi(x) · y + gi(x) .

Let G denote the function from U to Fw
2 whose w coordinates correspond to gi,

1 ≤ i ≤ w, and let M(x) denote the w × v matrix whose i-th row corresponds
to the v coordinates of πi(x). Then, the previous condition can be equivalently
written as

SW (x, y) = M(x)y + G(x) .

⇒∈
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2.2 General Properties

It directly follows from the definition that (v, w)-linear functions have some
weaknesses with respect to the usual cryptographic properties. In particular,
the algebraic degree and the nonlinearity of some components of the Sbox both
decrease when v increases. Indeed, an upper bound on the degree of the compo-
nents of S can be directly deduced from Proposition 1.

Proposition 2. Let S be a function from Fn
2 into Fm

2 . If S is (v, w)-linear w.r.t.
(V,W ), then all its components Sλ, λ √ W have degree at most n + 1 − v.

We now show that the (v, w)-linearity provides an upper bound on the non-
linearity of the function, i.e., on its distance to the set of all affine functions.
The following notation will be extensively used. For any Boolean function f
of n variables, we denote by F(f) the following value related to the Hamming
weight of f :

F(f) =
⎧

x∈Fn
2

(−1)f(x) = 2n − 2wt(f) .

This quantity is just the discrete Fourier transform (aka., Walsh transform) at
point 0 of the sign function (−1)f .

Definition 3. The Walsh spectrum of an Sbox S from Fn
2 into Fm

2 is the mul-
tiset

W(S) = {F(Sλ + ϕα), α √ Fn
2 , λ √ Fm

2 \ {0}} ,

where ϕα denotes the n-variable linear function x ∃→ α ·x. The nonlinearity of S
is the Hamming distance between the set of its nontrivial components {Sλ, λ ≈= 0}
and the set of all affine functions. It is given by

2n−1 − 1
2
L(S) where L(S) = max

α∈Fn
2 ,λ∗=0

|F(Sλ + ϕα)| .

Proposition 3. Let S be a function from Fn
2 into Fm

2 . If S is (v, w)-linear, then
L(S) ∪ 2v.

Proof. The result comes from the fact that the linearity of a Boolean function
f , L(f), is lower-bounded by the linearity of any of its restrictions to a subspace
(see e.g. Corollary V.3 in [4]). Since the restriction of Sλ, λ √ W , to V is affine,
it has linearity 2v. ⇒∈
The notion of (v, w)-linearity is also related to the notion of normality introduced
by Dobbertin [11], and then generalized by Charpin [7] as follows: a Boolean
function f of n variables is said to be weakly v-normal, if it is affine on an (affine)
subspace V of dimension v. However, (v, 1)-linearity is a stronger requirement
than weak v-normality since the component of S needs to have degree at most 1
on all cosets of V while weak normality requires this property on a single coset.

It is worth noticing that the two conditions derived from Propositions 2 and 3,
i.e., deg f ≤ n+1− v and L(f) ∪ 2v are not sufficient for guaranteeing that f is
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(v, 1)-linear. For instance, it has been shown in [5] that the Boolean function of
14 variables, f(x) = Tr(αx57) with α √ F4 \ F2, is not 7-weakly normal. Then,
this function is not (7, 1)-linear while it has degree 4 and satisfies L(f) = 27.

It is known that the Boolean functions which are affinely equivalent to a
Maiorana-McFarland bent function can be characterized by their second-order
derivatives [8]. The situation is similar for vectorial functions. In the following,
we denote by DaS the derivative of a function from Fn

2 into Fm
2 , i.e., DaS is the

function from Fn
2 into Fm

2 defined by DaS(x) = S(x + a) + S(x).

Proposition 4. Let S be a function from Fn
2 into Fm

2 . Then, S is (v, w)-linear
w.r.t. (V,W ) if and only if the function SW corresponding to all components
Sλ, λ √ W is such that all its second-order derivatives, DαDβSW with α, β √ V
vanish.

Proof. Let U denote a supplementary subspace of V .

– If S is (v, w)-linear w.r.t. (V,W ), then for any x √ U ,

SW (x, y) = M(x)y + G(x),

where M(x) is a w×v matrix and G a function from U to Fw
2 . It follows that,

for any α, β √ V , we have

DαDβSW (x, y)=SW (x, y)+SW (x, y+α)+SW (x, y+β)+SW (x, y+α+β)=0 .

– Conversely, if the second-order derivatives of SW , DαDβSW with α, β √ V ,
vanish, then for any x √ U , the function Fx from V to Fw

2 defined by Fx(y) =
SW (x, y) is such that all its second-order derivatives vanish. However, if a
function has degree at least 2, then it has at least one second-order derivative
which does not vanish. It follows that, for any x √ U , SW has degree at most 1
on x + V . ⇒∈

2.3 (v, 1)-linear Functions

In the following, we focus on (v, 1)-linear functions since the highest value of v
such that S is (v, 1)-linear is a relevant parameter. Actually, as seen in Proposi-
tions 2 and 3, this value provides bounds on the degree and on the nonlinearity
of the corresponding component: deg f ≤ n + 1 − v and L(f) ∪ 2v. Obviously,
any function is (1, 1)-linear. Then, we first consider (2, 1)-linear functions. From
Proposition 4, a Boolean function is (2, 1)-linear if and only if one of its second-
order derivatives vanishes. We now give a sufficient condition for this property.

Proposition 5. Let f be a balanced Boolean function of n variables, n even,
with deg(f) ≤ 3. Then f is (2, 1)-linear.

Proof. Since f is balanced, it is obviously not bent. Then, by definition, f
has at least one derivative, say Dαf , that is not balanced. Since deg(f) ≤ 3,
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we have that deg(Dαf) ≤ 2. If deg(Dαf) < 2, then DβDαf vanishes for at least
all values of β in a (affine) hyperplane. Thus, we deduce from Proposition 4 that
f is (2, 1)-linear. Suppose now that deg(Dαf) = 2 and consider its restriction to
a hyperplane H such that α ≈√ H. Let g denote this restriction, i.e. g = Dαf|H .
This restriction is a quadratic function of (n − 1) variables that is not balanced
(since its Hamming weight is half of the Hamming weight of Dαf). Since n is
even, n − 1 is odd and thus g cannot be bent. Therefore, g has at least one
derivative that is constant. That is, there exists some β √ Fn

2 such that DβDαf
is constant. Though, a quadratic function is balanced if and only if it has a
derivative equal to 1. Therefore, DβDαf is the all-zero function. ⇒∈
Most notably, it follows that all nontrivial components of a permutation of F4

2

are (2, 1)-linear.
The other extremal case of (n − 1, 1)-linear Boolean functions can be com-

pletely characterized. Indeed, it can be shown that the necessary conditions on
the degree and nonlinearity of an (n − 1, 1)-linear Boolean function (Proposi-
tions 2 and 3) are sufficient.

Proposition 6. Let f be a Boolean function of n variables. Then, f is (n−1, 1)-
linear if and only if deg f ≤ 2 and L(f) ∪ 2n−1. Moreover, if deg(f) = 2 and
L(f) ∪ 2n−1, there exist exactly three distinct hyperplanes H such that f has
degree at most 1 on both H and H̄.

Proof. The fact that any (n − 1, 1)-linear function has degree at most 2 and
linearity greater than or equal to 2n−1 is derived from the previous proposi-
tions. Conversely, let us consider a quadratic Boolean function f (we assume
that deg f = 2 since the result is trivial for affine or constant functions). Any
quadratic function f satisfies L(f) = 2

n+h
2 where 0 ≤ h < n is the dimension of

the linear space of f , LS(f) (see e.g. [4, Appendix 1]):

LS(f) = {a √ Fn
2 : Daf : x ∃→ f(x + a) + f(x) is constant} .

Moreover, the set
LS0(f) = {a √ Fn

2 : Daf = 0}
is a subspace of LS(f) of dimension either dimLS(f) or (dim LS(f) − 1). Since
L(f) = 2n−1, there are exactly 4 values of α such that |F(f + ϕα)| = 2n−1,
and exactly three among these four have the same sign. Now, we will prove that
these four values are the elements of β + LS(f)⊕, where β = 0 if dimLS0(f) =
dimLS(f), and β √ LS0(f)⊕ \LS(f)⊕ otherwise. We get from Lemma V.2 in [4]
that

⎧

α∈LS(f)⊥
F2(f + ϕα+β) = 22

⎧

e∈LS(f)

(−1)β·eF(Def)

= 22

⎨

⎩
⎧

e∈LS0(f)

F(Def) −
⎧

e∈LS(f)\LS0(f)

F(Def)



 = 22n .
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Therefore, all four F2(f + ϕα+β), α √ LS(f)⊕, are equal to 22n−2. Now, since

2F((f + ϕβ)|Ha
) = F(f + ϕβ) + F(f + ϕβ+a)

and
2F((f + ϕβ)|H̄a

) = F(f + ϕβ) − F(f + ϕβ+a)

we deduce that f is linear both on Ha and H̄a for some a ≈= 0, if and only if
there exist some u1, u2, u3 such that

F(f + ϕu1) = F(f + ϕu2) = F(f + ϕu3) = (−1)b2n−1

and
F(f + ϕu1+u2+u3)(−1)b+12n−1 .

Moreover, a can be any element in {u1 + u2, u1 + u3, u2 + u3}. Therefore, we
get that f is linear both on Ha and H̄a if and only if a is a nonzero element of
LS(f)⊕. ⇒∈
If we focus on Sboxes which guarantee the best resistance to linear attacks,
i.e., on permutations S of Fn

2 with L(S) ≤ 2⊂n+1
2 ≤, then, for n = 4, we deduce

from the previous propositions that any 4-bit permutation is (2, 1)-linear, and
that it is (3, 1)-linear if and only if it has maximal nonlinearity and a quadratic
component. For larger values of n, the situation is different. For instance, we can
prove the following.

Corollary 1. Let S be a permutation of Fn
2 with the best known nonlinearity,

that is L(S) ≤ 2⊂n+1
2 ≤. Then, if n ∪ 5, S is not (n − 1, 1)-linear.

Proof. If S has a component that is (n−1, 1)-linear, then we deduce from Propo-
sition 3 that

n − 1 ≤
⌈

n + 1
2

⌉
≤ n

2
+ 1.

Consequently, n
2 ≤ 2 and thus n ≤ 4. ⇒∈

2.4 Classification of 4-bit Sboxes

Many symmetric primitives are based on 4-bit balanced Sboxes. Several clas-
sifications of these Sboxes have been previously provided. We can for example
mention the classification by De Cannière [3], the one provided by Leander and
Poschmann [17] and another one by Saarinen [22]. In particular in [17], the
authors have proved that, for affine equivalence, there are exactly 16 classes of
4-bit permutations which are optimal in terms of resistance against both linear
and differential attacks. Here, we go one step further in this classification, and
consider the notion of (v, w)-linearity for those 16 classes. Actually, the number
of pairs (V,W ) such that an Sbox is (v, w)-linear w.r.t (V,W ) is invariant under
affine equivalence.
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The previous result shows that the number of quadratic components of the
Sbox plays an important role for (n − 1, w)-linearity. For instance, for a per-
mutation of F4

2 which is optimal for linear cryptanalysis, we have proved that
the number of pairs (V,W ) with dimV = 3 and dimW = 1 such that S is
(3, 1)-linear w.r.t to (V,W ) is equal to 3Q, where Q is the number of quadratic
components of S. Therefore, we first focus on the number of quadratic compo-
nents for a permutation of F4

2.
All classes of 5-variable Boolean functions for affine equivalence have been

exhibited in [1]. From this classification, since the 4-variable Boolean functions
can be seen as a subset of the functions in 5 variables, it can be deduced that any
of the 215 possible Boolean functions of four variables with degree at most 3 is
equivalent to one of the five functions given in Table 1. This table also provides
the corresponding Walsh spectra since affine equivalence preserves the multiset
composed of the magnitudes of all Walsh coefficients, i.e. functions belonging
to the same equivalence class, have the same multiset W(f) = {|F(f + ϕa)|,
a √ Fn

2}.

Table 1. Number of occurrences of each value in the Walsh spectrum of any of the
five equivalence classes for the 4-variable Boolean functions of degree at most 3.

Walsh spectrum
Class Representative ±16 ±12 ±8 ±4 0

I x1x2x3 1 7 8
II x1x2x3 + x1x4 2 8 6
III x1x2 4 12
IV x1x2 + x3x4 16 0
V 0 1 15

Proposition 7. Let S be a permutation of F4
2 having no affine or constant

component. Then, S has cI components of the class I, cII components of the
class II and cIII components of the class III, with

cI + cII + cIII = 15.

Moreover, the number Q of quadratic components of S (i.e., of components of
degree exactly 2) is equal to cIII and is of the form Q = 2r − 1, 0 ≤ r ≤ 4. It is
characterized by the Walsh spectrum of S (see Definition 3):

Q = W12 +
1
2
W8 − 15 ,

where Wi denotes the number of occurrences of i in W(S). Most notably, S and
S−1 have the same number of quadratic components.



A New Criterion for Avoiding the Propagation of Linear Relations 593

Proof. As S is a permutation, all of its components are of degree at most 3
and are equivalent to one of the five above classes. By hypothesis, as S does
not have any constant or affine component, S has no component of the class
V. Moreover, the number of components of degree 2 is equal to the number of
components of degree at most 2. Similarly, as all the non-trivial components of
a permutation are balanced, S has no component of the class IV. The number
of non-trivial components of the permutation S is equal to 15. Therefore, cI +
cII + cIII = 15. The class III corresponds to quadratic functions. Consequently,
cIII represents the number of quadratic components Q of S. As the values of λ
such that deg Sλ ≤ 2 form a vectorial subspace of F4

2, Q has the form 2r − 1.
According to Table 1 we have that

W12 = cI

W8 = 2cII + 4cIII = 30 − 2cI + 2cIII

implying that the number of quadratic components of S is given by cIII = W12+
1
2W8 − 15. Finally, as the inverse permutation of S has the same set (Wi)0√i√16

as S, the two permutations have the same number of quadratic components. ⇒∈
We have carried out an exhaustive search among all the permutations of F4

2

in order to determine all possible 4-tuples (cI , cII , cIII , cV ). All possible con-
figurations can be found in Appendix A of [2]. Then, we have exhibited some
permutations with Q √ {0, 1, 3, 7, 15}. But, permutations with Q = 15 satisfy
cV = 1, i.e., every quadratic permutation of F4

2 has one non-trivial component
of degree 1. There exist permutations with 7 quadratic components and optimal
nonlinearity, but they do not guarantee optimal resistance to differential attacks.

(v ,w)-linearity of Optimal 4-bit Sboxes

We concentrate now on optimal permutations of F4
2, i.e., permutations which

guarantee an optimal resistance against linear and differential attacks. The
exhaustive search over all 16 classes of such Sboxes in [17] shows that there
are 8 classes of optimal Sboxes with Q = 0, 4 with Q = 1, and 4 with Q = 3. For
each of the 16 classes of optimal Sboxes, Table 2 gives, for each pair (v, w), the
number N(v,w) of subspaces V such that the Sbox is (v, w)-linear w.r.t. (V,W ).

Since all optimal Sboxes have at most 3 quadratic components, we deduce
from Proposition 6 that they cannot be (3, 3)-linear, i.e. N(3,3) = 0.

The fact that, for all these Sboxes, N(2,1) = 35 comes from the following
result.

Proposition 8. Let S be a function from Fn
2 into Fn

2 of degree at most 3. Then,
for any pair (a, b) of elements in Fn

2 , there exists some nonzero λ √ Fn
2 such

that DaDbSλ = 0.
Equivalently, for any 2-dimensional subspace V ⊕ Fn

2 , there exists at least
one nonzero λ √ Fn

2 such that S is (2, 1)-linear w.r.t (V, {0, λ}).

Proof. The first statement is proved by contradiction as follows. Suppose that
there exists a pair (a, b) such that DaDbSλ ≈= 0 for all λ ≈= 0. This situation



594 C. Boura and A. Canteaut

Table 2. Number N(v,w) of subspaces V of dimension v for which there exists a w-
dimensional W such that Gi is (v, w)-linear with respect to (V, W ), for the 16 optimal
Sboxes Gi described in [17].

(v, w)
Q (2,1) (2,2) (2,3) (2,4) (3,1) (3,2) (3,3) (3,4)

G0 3 35 19 5 0 7 1 0 0
G1 3 35 23 3 0 7 1 0 0
G2 3 35 23 3 0 7 1 0 0
G3 0 35 5 0 0 0 0 0 0
G4 0 35 5 0 0 0 0 0 0
G5 0 35 5 0 0 0 0 0 0
G6 0 35 5 0 0 0 0 0 0
G7 0 35 5 0 0 0 0 0 0
G8 3 35 19 5 0 7 1 0 0
G9 1 35 13 0 0 3 0 0 0
G10 1 35 13 0 0 3 0 0 0
G11 0 35 5 0 0 0 0 0 0
G12 0 35 5 0 0 0 0 0 0
G13 0 35 5 0 0 0 0 0 0
G14 1 35 13 0 0 3 0 0 0
G15 1 35 11 1 0 3 0 0 0

can occur only if ∀a, b∅ has dimension 2. Obviously, all the (2n − 1) functions
DaDbSλ, λ ≈= 0, are distinct since DaDbSλ1 + DaDbSλ2 = DaDbSλ1+λ2 . Let
U be a supplementary subspace of ∀a, b∅. Then, the whole function DaDbSλ

is determined by its restriction to U since DaDbSλ(x) = DaDbSλ(x + v) for
any v √ ∀a, b∅. Then, because deg DaDbSλ ≤ 1, the number of distinct and
nonzero DaDbSλ corresponds to the number of nonzero affine functions of (n −
2) variables, which is equal to (2n−1 −1). This leads to a contradiction since the
(2n − 1) functions DaDbSλ are all distinct. The equivalent formulation in terms
of (2, 1)-linearity is a direct consequence of Proposition 4. ⇒∈

The next proposition explains why N(2,3) = 0 when Q = 0.

Proposition 9. Let S be a function from Fn
2 into Fn

2 such that all its non trivial
components have degree exactly (n − 1). Then, S is not (2, n − 1)-linear.

Proof. Suppose that there exist a hyperplane H and two nonzero distinct ele-
ments a and b in Fn

2 such that DaDbSλ = 0 for all λ √ H. Let L be a linear
permutation which maps a and b to the first two elements of the canonical
basis e1 and e2. Then, DaDbS(x) = De1De2(S ∗ L−1)(L(x)), implying that
De1De2(S ∗ L−1)λ = 0 for all λ √ H. Let M denote the set of all monomi-
als of degree (n − 1) of n variables whose second derivative with respect to e1
and e2 vanishes. Then, |M| = n − 2. Since all (S ∗ L−1)λ, λ √ H \ {0} have
degree (n − 1), all their ANF contain a sum of monomials of M, and all these
(2n−1 − 1) sums must be distinct. However, this situation cannot occur since
there are only 2|M| − 1 = 2n−2 − 1 such sums. ⇒∈
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Moreover, a counting argument shows that for 4-bit permutations with optimal
nonlinearity,

N(2,2) +2N(2,3) +4N(2,4) = 5+8Q and N(3,1) +2N(3,2) +4N(3,3) +8N(3,4) = 3Q .

Indeed, let us denote by Aw (resp. Bw) the number of subspaces V of dimension 2
(resp. dimension 3) such that w is the highest dimension such that S is (v, w)-
linear w.r.t. (V,W ) for some W of dimension w. Then,

N(2,i) =
4⎧

w=i

Aw and N(3,i) =
4⎧

w=i

Bw .

On the other hand, if Sλ is quadratic, it belongs to Class III identified in Table 1,
implying that it is (2, 1)-linear w.r.t. 19 subspaces of dimension 2, and (3, 1)-
linear w.r.t. 3 hyperplanes. If Sλ has degree 3, then it belongs to Class II, and
has three zero second-order derivatives. Then,

A1 + 3A2 + 7A3 + 15A4 = 3(15 − Q) + 19Q and B1 + 3B2 + 7B3 + 15B4 = 3Q .

Since N(2,1) = 35 from Proposition 8, we deduce that

35 + 2N(2,2) + 4N(2,3) + 8N(2,4) = 45 + 16Q

and
N(3,1) + 2N(3,2) + 4N(3,3) + 8N(3,4) = 3Q .

It is also worth noticing that N(3,2) √ {0, 1, 3}. Actually, we have proved in
Proposition 6 that S is (3, 2)-linear w.r.t. (Ha, ∀λ1, λ2∅) if and only if a belongs
to all three sets LS(Sλ)⊕, λ √ {λ1, λ2, λ1 +λ2}. Therefore, either all these three
LS(Sλ)⊕ are distinct, or they share one nonzero element or they are all equal.

From these results, we can deduce the values of N(v,w) in most cases for all
4-bit optimal Sboxes. All these values are provided in Table 2. In particular, all
figures for Q √ {0, 1} can be deduced from the previous propositions. For Q ∪ 3,
the weighted sum of N(3,1) and N(3,2) (resp. of N(2,2), N(2,3) and N(2,4)) can be
explained theoretically, but a theoretical explanation of their exact individual
values remains open. Most notably, Table 2 shows that there are five different
behaviours of 4-bit optimal Sboxes with respect to (v, w)-linearity. It is worth
noticing here that an Sbox and its inverse do not always have the same behav-
iour. Indeed, as pointed out in [17], any optimal Sbox Gi belongs to the same
equivalence class as its inverse except G0, G2, G14 and G15 which are such that
G−1

0 belongs to the same class as G2 and G−1
14 belongs to the same class as G15.

Then, we deduce that, for all Sboxes S in the four classes defined by G0, G2, G14

and G15, S and S−1 do not have the same behaviour regarding (v, w)-linearity.

3 Fuhr’s Attack Against Hamsi-256

The hash family Hamsi was designed by Küçük [15] in 2008 for the SHA-3
competition. It was among the 14 algorithms that were chosen by the NIST
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for the second round of the contest. A special feature of this function is that
its compression function consists of a small number of rounds of a permutation
with a particularly low algebraic degree. These weaknesses have been exploited
by Fuhr [12] and by Dinur and Shamir [10] in order to find second preimages
for the entire hash function. We show here that Fuhr’s attack is related to the
(v, w)-linearity of the Sbox used in Hamsi. More precisely, we use this notion
for formalizing an important part of the attack in [12], that is the search for
affine relations between some input and output bits of the compression function
of Hamsi-256. This enables us to slightly improve Fuhr’s result and to analyse
the influence of the choice of the Sbox on this type of attack.

3.1 Description of Hamsi-256

We start by describing the most important parts of the design of Hamsi-256,
the instance of the hash function outputting 256-bit digests. The Hamsi hash
function follows the Davies-Meyer construction. In Hamsi-256, the message is
padded and cut into 32-bit blocks. A linear code over F4 is used to expand each
32-bit message block to a 256-bit value (m0, . . . ,m7), where every mi is a 32-bit
word. Then, the 256-bit expanded message is combined together with the 256-bit
chaining value hi−1 and provides a 512-bit state. The inner permutation P is
then applied to this 512-bit state, seen as a 4 × 4 matrix of 32-bit words.
Concatenation: The chaining value (c0, . . . , c7) is concatenated to the message
words (m0, . . . ,m7) to form a 512-bit state s = (s0, . . . , s15), seen as a 4 × 4
matrix. The state s as also the way that the message and the chaining value
words are arranged within it are illustrated in Fig. 1.

The nonlinear permutation P of F512
2 is then applied to this concatenated

state. It is composed of three rounds of a permutation R, called the round
function. This round function is made up of three different layers of operations.
First, some constant values are added to the state. Then, a nonlinear layer
corresponding to 128 parallel applications of a 4-bit Sbox S is applied. Finally,
the bits of the state are mixed by a linear application L.

The substitution layer is based on a 4-bit Sbox S. S is one of the Sboxes used
in Serpent and is given by

S[16] = {8, 6, 7, 9, 3, 12, 10, 15, 13, 1, 14, 4, 0, 11, 5, 2}.

s0 s1 s2 s3

s4 s5 s6 s7

s8 s9 s10 s11

s12 s13 s14 s15

m0 m1 c0 c1

c2 c3 m2 m3

m4 m5 c4 c5

c6 c7 m6 m7

Fig. 1. Input state of the inner permutation P in Hamsi-256.
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The algebraic normal forms of its coordinates are

y0 = x0x2 + x1 + x2 + x3

y1 = x0x1x2 + x0x1x3 + x0x2x3 + x1x2 + x0x3 + x2x3 + x0 + x1 + x2

y2 = x0x1x3 + x0x2x3 + x1x2 + x1x3 + x2x3 + x0 + x1 + x3

y3 = x0x1x2 + x1x3 + x0 + x1 + x2 + 1.

This Sbox is applied in parallel to the 128 columns of the state. In the first
round, due to the way that the state is obtained by concatenation, every Sbox
mixes two message bits with two bits coming from the chaining value.

The diffusion layer of Hamsi-256 is based on the linear function L : F128
2 →

F128
2 that operates on 32-bit words. In the case of Hamsi-256, this function is

called four times in total in every round, one time for every diagonal of the state.
The function L(a, b, c, d), with a, b, c, d √ F32

2 can be described as follows:

a := a ≪ 13 d := (d ⊕ c ⊕ (a √ 3)) ≪ 7
c := c ≪ 3 a := (a ⊕ b ⊕ d) ≪ 5
b := (b ⊕ a ⊕ c) ≪ 1 c := (c ⊕ d ⊕ (b √ 7)) ≪ 22

Truncation and Feed-forward: The truncation T : F512
2 → F256

2 eliminates the
second and the last row of the state:

T (s0, s1, s2, . . . , s14, s15) = (s0, s1, s2, s3, s8, s9, s10, s11).

The truncated 256-bit state is then XORed to the previous chaining value hi−1

to form hi.
Notations: Table 3 describes how we have numbered the 512 bits of the state.
According to the representation of the Hamsi state seen in Fig. 1, we will say
that the bit 0 of the state, is the leftmost bit of s0, 31 is the rightmost bit of s0,
32 the leftmost bit of s1, 128 the leftmost bit of s4, etc.

3.2 Description of Fuhr’s Attack

Fuhr described in [12] a method for finding second preimages for Hamsi-256.
This cryptanalysis, of complexity equal to 2251.3 evaluations of the compression
function, was the first attack on this candidate that had a lower complexity

Table 3. Enumeration of the bits of the state.

0 . . . . . . 31 32. . . . .63 64. . . . .95 96. . . . .127
128 . . . 159 160 . . . 191 192 . . . 223 224 . . . 255
256 . . . 287 288 . . . 319 320 . . . 351 352 . . . 383
384 . . . 415 416 . . . 447 448 . . . 479 480 . . . 511
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than the generic attack when treating small messages. The key idea in this
cryptanalysis consists in finding affine relations between some input bits and
some output bits of the compression function, when the other input bits are
fixed to a constant value. These relations lead to preimages for the compression
function of Hamsi-256. These pseudo-preimages for the hash function are then
transformed into second preimages by using a meet-in-the-middle approach.

In order to find affine relations between some input and output bits of the
compression function, Fuhr noticed that, for the Hamsi Sbox S,

S(1, x, 0, 1 + x) = (1, 0, 0, x), for every x √ F2, (1)

where the least significant bit is the leftmost bit.
With this property in mind, it is possible to choose a set of variables in the

following way. If y √ F32
2 , we will denote by yj the j-th bit of y. If the message

block after the constant addition in the first round is such that sj
0 = 1 and sj

8 = 0,
then we can define a variable bit xj √ F2 and set sj

4 = xj and sj
12 = 1 + xj .

Due to relation (1), after the application of the first nonlinear layer, only sj
12 will

depend on xj . This has a particular interest as sj
12 will be part of the input word

d of the linear function L, which has a relatively slow diffusion, much slower than
the words a or c. The same applies for the neighboring column of the state, i.e.
the words s1, s5, s9, s13. If sj

1 = 1 and sj
9 = 0, we define the variable bit yj √ F2

and set sj
5 = yj and sj

13 = 1 + yj .
For mounting the attack, a message block is randomly picked. The first step

is to choose the set of variables I = X ∪ Y . For this, the values of s0, s1, s8
and s9 before the first Sbox layer are computed. If sj

0 = 1 and sj
8 = 0 then the

variable xj is added to X. In the same way, if sj
1 = 1 and sj

9 = 0, the variable
yj is added to Y . Once the variable set has been chosen, one has to search for
a set of output bits of the compression function O such that each bit of this set
can be expressed as an affine function of the variables of I.

Suppose that such a set has been found and denote NO = #O and NI = #I.
Let x0, . . . , xNI−1 be the elements of I and z0, . . . , zNO−1 the elements of O.
Then, if we are given a chaining value h◦ it is possible to find preimages for
the compression function, i.e. a message block m and a chaining value h, such
that f(h,m) = h◦, where f is the compression function of Hamsi-256, with the
following simple algorithm, described in [12].

1. Choose a message m such that the conditions required by Eq. (1) for the
positions indicated by the variables of I are satisfied.

2. Choose a chaining value h such that the conditions required by Eq. (1) for
the positions indicated by the variables of I are satisfied.

3. Compute the bits z0, . . . , zNO−1. Compute the coefficients of the affine system.
5. Solve the affine system. If the system has no solution then choose other values

for the constant part of h (without modifying the part of h imposed by the
conditions (1)) and go to Step 3. If there is still no solution, choose another
message m that fulfills the same constraints and go to Step 2.

6. If the affine system has a solution, check whether f(h,m) = h◦. This equation
has a solution with probability 2NO−256.
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The overall complexity of the attack, corresponding to 2251.3 evaluations of the
compression function, has been estimated in [12] by a very precise estimation of
the number of binary operations performed during each step of the algorithm.

Searching for Affine Relations for the Compression Function. A very
important part of the attack in [12] is the search for affine relations between
some input and some output bits of the compression function of Hamsi-256.

Due to Relation (1), after one round of computation all the bits of the state
depend affinely on the variable bits. However, this is not the case after the
second and the third round of the computation, since the initial variables pass
through the Sboxes of the last two rounds. Under some conditions though, some
output bits of an Sbox can still be expressed as a linear combination of the input
variables. The conditions identified in [12] are the following.

1. All but one input bits of the Sbox are constant. If this bit is some affine
combination of the initial variables, then this will also be the case for all the
four outputs of the Sbox.

2. If all the inputs of the Sbox depend on at most one initial variable, then all
the output bits of the Sbox will depend affinely on this variable.

3. If none of the first two situations occurs, this means that there exist at least
two inputs to the Sbox that depend in an affine way on at least two different
variables. However, by looking at the ANF of the four outputs of the Sbox, it
is possible to do the following two observations. The only nonlinear term of
the first output bit y0 is x0x2. Thus if this term is an affine combination of
the initial variables, this will also be the case for y0. Equally, if x0x1x2 and
x1x3 are affine in the initial variables, this will also be the case for y3.

These properties were used by Fuhr in the search for a set of variable bits I
and a set of output bits O which affinely depend on the variable bits I. In his
first paper [12], the number of variable bits NI was fixed and then an automated
search was launched in order to determine the variable set that would give the
largest number NO of such output bits. These results could then be used in order
to generate the largest possible set of affine relations. By using this method, Fuhr
found for some I of size NI = 7, NO = 14 affine equations in I and for NI = 8, 11
affine equations for the compression function. Later, in [13] he improved these
results, by finding for NI = 8, 16 affine equations and for NI = 9, 11 affine
equations.

4 Analysis and Improvement of Fuhr’s Attack

We show in this section how to make the search for affine relations between the
input and the output bits of the compression function more efficient. Besides the
improvement on Hamsi, our approach can similarly be applied to the search for
affine relations for any SPN construction using small Sboxes. The success of this
part of the work depends, to a large extend, on the quality of the used Sboxes.
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Our improvements are based on two different directions. The first one concerns
the way that the propagation through the Sboxes of the second and the third
round is treated. For this, we use the concept introduced in Sect. 2.

The second direction is related to the way we determine which Sboxes of
the first round should be affected and how. Furthermore, another differential
property of the Hamsi Sbox is used together with Relation (1) to go through the
Sbox layer of the first round.

4.1 Propagation of Affine Relations Through the Hamsi Sbox

Let x = (x0, x1, x2, x3) denote the input to an Sbox and y = (y0, y1, y2, y3)
its output. As described in Sect. 3.2, Fuhr exploited the following two algebraic
properties of the Hamsi Sbox in order to treat the case when at least two input
variables of an Sbox are affected by at least two different variables in the second
and third round.

– y0 has degree at most 1 if x0x2 has degree at most 1.
– y3 has degree at most 1 if x1x3 and x0x1x2 have degree at most 1.

These two properties can be reformulated in the following way (where each vector
x of F4

2 is represented by the integer (
∑3

i=0 xi2i)).

– S1 is (3, 1)-linear w.r.t. (Hα, ∀1∅) where Hα denotes the hyperplane ∀α∅⊕ for
α √ {1, 4, 5}.

– S8 is (2, 1)-linear w.r.t. (V, ∀8∅) for the three 2-dimensional subspaces V =
∀1, 8∅, V = ∀4, 8∅ and V = ∀5, 8∅.
With the notation used in [17] and in Table 2, the Hamsi Sbox is affinely

equivalent to G1. Therefore, there exist 23 subspaces V of dimension 2 for which
the Sbox is (2, 2)-linear and 3 subspaces of dimension 2 on which it is (2, 3)-
linear. For the Hamsi Sbox, all corresponding pairs (V,W ) can be deduced from
Table 4.

Table 4. List of all λ ≥ F4
2 such that S is (2, 1)-linear w.r.t. (V, →λ≤), for each subspace

V of dimension 2.

V List of λ V List of λ V List of λ V List of λ

→1, 2≤ {1, e, f} →2, 8≤ {1, e, f} →3, d≤ {3, c, f} →6, 8≤ {1, 4, 5, a, b, e, f}
→1, 4≤ {e} →2, 9≤ {1, e, f} →4, 8≤ {1, 6, 7, 8, 9, e, f} →6, 9≤ {4, a, e}
→1, 6≤ {4, a, e} →2, c≤ {1, e, f} →4, 9≤ {e} →6, a≤ {1, e, f}
→1, 8≤ {1, 8, 9} →2, d≤ {1, e, f} →4, a≤ {1, 2, 3, c, d, e, f} →6, b≤ {5, b, e}
→1, a≤ {1} →3, 4≤ {e} →4, b≤ {e} →7, 8≤ {1, 6, 7}
→1, c≤ {f} →3, 5≤ {5, b, e} →5, 8≤ {1, 8, 9} →7, 9≤ {3, e, f}
→1, e≤ {2, d, f} →3, 8≤ {1, 6, 7} →5, 9≤ {f} →7, a≤ {1}
→2, 4≤ {1, e, f} →3, 9≤ {1} →5, a≤ {1} →7, b≤ {f}
→2, 5≤ {1, e, f} →3, c≤ {f} →5, b≤ {2, d, f}
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From this table, we can check that, for λ = 1 (resp. for λ = 8), the properties
given by Fuhr describe the whole list of subspaces V such that S is (3, 1)-linear
(resp. (2, 1)-linear) w.r.t. to (V, ∀λ∅). Nevertheless, it appears that S is also (3, 2)-
linear, and (2, 2)-linear with respect to many other subspaces. In particular, we
can see that it is possible to identify other components of S which have also
degree at most 1 on the same subspaces. This is very useful in practice, as by
using this table we can now guarantee the affine propagation of some components
of S that we would have rejected before. For example we can observe that y1
and y2 are (2, 1)-linear with respect to three different subspaces of dimension 2
each. These cases that are not treated at all in [12] can now be used to search
for a possible affine propagation of the initial variables through the second and
the third round.

4.2 Searching for the Input Variables

In [12], Relation (1) is used in order to ensure the affine propagation through
the nonlinear layer of the first round. As we have already mentioned, this prop-
erty guarantees that after the Sbox layer of the first round, there is at most
one variable per active Sbox. We name active an Sbox that takes at least one
variable as input. In the contrary, we call an Sbox non-active if its input vector
is constant. Moreover, Relation (1) ensures that this unique variable belongs to
a word corresponding to the d-input of the linear function L (see Sect. 3.1). It is
easy to see from the description of L that the variables that belong to a word d
of the state propagate much slower than the variables in the words a and c. In
particular, each variable of a word d affects at most three bits of the state after
the application of the linear part. However, the variables of the words b have
the same slow propagation as the words d and this property was not exploited
in [12]. In this sense, the following property of the Hamsi Sbox appears to be
very useful:

S(1, x, 0, x) = (0, x, 1, 0), for every x √ F2. (2)

Our aim is to find a set of input variables I such that the set of output bits O
that are affine in I, is maximized. Then, the most difficult problem is to choose
which Sboxes of the state during the first round will be active. We have used
the following approach to solve this problem.

First, we restrict the search to the first 64 Sboxes of the state for the following
reason. Equally with the approach in [12], we are searching for a preimage h of a
given chaining value h◦. This is why the chosen variable bits of the internal state
must be assigned to positions that, after the concatenation, contain variables
coming out from the chaining value. By using Relation (1) or Relation (2), this
constraint is verified for the first half of the state. On the contrary, this does not
hold anymore for the second half, because the positions of the message bits and
the chaining value bits are interchanged.

However, it is obvious that we cannot test all the possible pairs (I,O) because
of the high complexity of such a search. For this reason we have adopted a
heuristic strategy, that can be found in Appendix B of [2]. This heuristic method
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exploits the low diffusion through the three rounds of the function for finding
good candidates for the input and output sets. An algorithm for obtaining such
candidate sets is equally described in [2] (Algorithm 1). Once such candidate sets
have been obtained, we launch an automated search, to see which combination
of NI of the input bits in the candidate set gives the largest number of affine
output bits. For each test, we check the propagation through the last two rounds
by using the relations identified by Table 4. These techniques have led to the
following results.

4.3 Results

For NI = 9 input variables. For the 9 Sboxes {0, 7, 24, 30, 35, 37, 51, 59, 61}, we
are fixing the inputs as required by Relation (1) for the Sboxes {0, 30, 35, 37}
and by Relation (2) for the others. Then the 13 output bits

{6, 8, 43, 78, 262, 278, 313, 320, 343, 345, 350, 355, 380}
depend in an affine way on the 9 input variables. In particular, we are able to
find two more affine relations than in [12] for NI = 9 variables.
For NI = 10 input variables. For the 10 Sboxes {0, 7, 12, 16, 30, 35, 37, 51, 59, 61},
we are fixing the inputs as required by Relation (1) for the Sboxes {0, 16, 30, 35, 37}
and by Relation (2) for the others. Then the 11 output bits

{6, 8, 43, 78, 278, 313, 320, 343, 345, 350, 380}
depend affinely on the 10 input variables. Here again we find two more output bits
than Fuhr in [12].

As we were able to find in both cases a higher number of affine equations
than those of the original paper, the overall complexity of the attack should
slightly decrease. However a complete complexity evaluation of our attack is
a very complex task since it requires to count down the performed number of
bitwise operations during all the steps of the attack. This procedure exceeds the
scope of this work.

5 Conclusions

We have introduced a new cryptographic property for vectorial Boolean func-
tions, that we call the (v, w)-linearity. This notion can be used as a new measure
of linearity for Sboxes and is related to the number of linear relations that prop-
agate through them. As the 4-bit balanced Sboxes are among the most used
building-blocks in symmetric primitives, we classify them according to this new
criterion. In particular, we analyse the (v, w)-linearity of “optimal” 4-bit permu-
tations, according to the classification of Leander and Poschmann in [17].

For instance, our analysis points out that the Sbox used in Hamsi does not
guarantee the best resistance to Fuhr’s attack. Indeed, if an Sbox belonging
to one of the classes G3, G4, G5, G6, G7, G11, G12 or G13 was used, the good
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linear and differential properties of the Sbox would still be preserved, but the
function would be (v, w)-linear for a smaller value of w. In other words, the
Sbox would have fewer components which may remain affine with respect to
the input variables. Moreover, the number of 2-dimensional subspaces V such
that S is (2, w)-linear w.r.t. (V,W ) for some W is quite large. This increases
the degrees of freedom in the cryptanalysis introduced by Fuhr, while the attack
would probably have failed for an Sbox without any quadratic component. In
order to verify this in practice, we implemented the same attack on the variant of
Hamsi based on some other Sbox. More precisely, we first used the representative
Sbox of the class G3, as this is given in [17] and then, the Sbox S0 of the finalist
of the SHA-3 competition, JH [23]. Indeed, we noticed that in both cases Fuhr’s
attack failed.

A future line of work would be to determine how the new notion of (v, w)-
linearity is related to some other recent attacks. For instance, the invariant
subspace attack [16] exploits a similar but stronger property of the 3 × 3 Sbox
used in PRINTcipher: two outputs of this Sbox are constant on a subspace of
dimension 1 and on all its cosets (the coset is here determined by the key). Some
relation to the resistance to first-order DPA could also be investigated.
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