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Abstract Using the notions of scales and their gauge functions associated with
self-similar sets, we give a necessary and sufficient condition for two metrics on
a self-similar set being quasisymmetric to each other. As an application, we con-
struct metrics on the Sierpinski carpet which is quasisymmetric with respect to the
Euclidean metrics and obtain an upper estimate of the conformal dimension of the
Sierpinski carpet.

1 Introduction

The main purpose of this paper is to give a characterization of quasisymmetry for
self-similar sets in terms of scales and related notions introduced in [Kig09]. As an
application, we will construct a series of metrics on the Sierpinski carpet which are
quasisymmetric to the restriction of the Euclidean metric and give an upper estimate
of the quasiconformal dimension of the Sierpinski carpet (Fig. 1).

Quasisymmetric maps have been introduced by Tukia and Väisälä in [TV80] as
a generalization of quasiconformal mappings in the complex plane.

Definition 1.1 (Quasisymmetry).

(1) Let (X, d) and (X, ρ) be metric spaces. ρ is said to be quasisymmetric, or QS
for short, with respect to d if and only if there exists a homeomorphism h from
[0,+∞) to itself such that h(0) = 0 and, for any t > 0, ρ(x, z) < h(t)ρ(x, y)

whenever d(x, z) < td(x, y). We write ρ ∼
QS

d if ρ is quasisymmetric with

respect to d.
(2) Let (X, d) be a metric space. A homeomorphism f : X → X is called qua-

sisymmetric if and only if d ∼
QS

d f , where d f (x, y) is defined by d f (x, y) =
d( f (x), f (y)).

The above definition immediately implies the following facts.
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Fig. 1 The Sierpinski carpet

Proposition 1.2 Let (X, d) and (X, ρ) be metric spaces.

(1) If ρ ∼
QS

d, then the identity may of X is a homeomorphism from (X, d) to (X, ρ).

(2) The relation ∼
QS

is an equivalence relation among metrics on X. In particular,

ρ ∼
QS

d if and only if d ∼
QS

ρ.

Associated with the notion of quasisymmetry, the quasiconformal dimension of
a metric space has been introduced by Pansu in [Pan89] as an invariant under quasi-
symmetric modification of a metric.

Definition 1.3 (Quasiconformal dimension) Let (X, d) be ametric space.We define
the conformal dimension of (X, d), dimC(X, d), by

dimC(X, d) = inf{dimH (X, ρ)|ρ is a metric on Xand d ∼
QS

ρ},

where dimH (X, ρ) is the Hausdorff dimension of (X, ρ).

Quasisymmetricmaps on self-similar sets havebeenpaidmuch attentions in recent
years as well as their conformal dimensions. For example, Bonk and Merenkov have
shown that any quasisymmetric homeomorphism from the Sierpinski carpet to itself
is a composition of rotations and reflections in [BM00]. About the conformal dimen-
sions, Tyson and Wu have proven that the conformal dimension of the Sierpinski
gasket is one in [TW06]. For the Sierpinski carpet, it is known that

1+ log 3

log 2
≤ dimC(SC, dE ) < dimH (SC, dE ) = log 8

log 3
, (1.1)
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where SC is the Sierpinski carpet and dE is the restriction of the Euclidean metric.
The strict inequality between the Hausdorff and the quasiconformal dimensions in
(1.1) has shown by Keith and Laakso [KL04]. See [MT10] for details.

The first problemwe are going to study is to obtain a verifiable characterization of
quasisymmetric metrics. It will turn out that scales and related notions introduced in
[Kig09] are useful in dealing with such a problem. Let K be a connected self-similar
set associated with the family of contractions {F1, . . . , FN }, i. e. K = F1(K ) ∪
. . . ∪ FN (K ). Define Fw1...wm = Fw1 ◦ . . . ◦ Fwm and Kw1...wm = Fw1...wm (K ) for
any w1, . . . ,wm ∈ {1, . . . , N }. The notion of scales has been introduced in order
to study how to find a metric under which the contraction mappings {F1, . . . , FN }
have prescribed values of contraction ratios. A scale essentially gives “diameters” of
Kw1...wm ’s and induces a family of assumed “balls” Us(x) around x ∈ K with radius
s > 0. See Sect. 2 for precise definitions. In the language of scales, we are going to
present an equivalent condition in Theorem 3.4 for metrics being quasisymmetric to
each other which is easy to verify for concrete examples, in particular, in the case of
“self-similar” metrics.

As an application, we will present a systematic way of constructing a self-similar
metric on the Sierpinski carpet which is quasisymmetric to dE and Ahlfors regular.
The main idea is to find an “invisible” set introduced in Sect. 4. Roughly speaking, an
invisible set is a collection of places where the shortest paths between two separated
boundary points will not visit. (We define the “boundary” of the Sierpinski carpet
by the union of four line segments, namely, the most upper, lower, right and left line
segments of the square which is the convex hull of the Sierpinski carpet.) Putting
an arbitrary weight on an invisible set, we will obtain a self-similar metric having
the desired properties mentioned above with an explicit formula for its Hausdorff
dimension in Theorem 5.3. Constructing series of invisible sets and taking advantage
of the associated metrics, we will show that

dimC(SC, dE ) ≤ log ( 9+
√
41

2 )

log 3
= 1.858183... <

log 8

log 3
= 1.892789....

in Sect. 6.1

Note that the conformal dimension in the above inequality can be replaced by
the Ahlfors regular conformal dimension since our metrics are Ahlfors regular. See
[MT10] for the definition of the Ahlfors regular conformal dimension.

The following is a convention in notations in this paper.
Let f and g be functions with variables x1, . . . , xn . We use “ f 
 g for any

(x1, . . . , xn) ∈ A” if and only if there exist positive constants c1 and c2 such that

1 After completion of the preliminary version of this paper, B. Kleiner informed me that he had
obtained better upper bound of dimC(SC, dE ) around 1999 by a different method in [Kle00]. His
upper bound is about 1.856685 . . .. The author would like to express his gratitude to Professor Bruce
Kleiner for his detailed comments.
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c1 f (x1, . . . , xn) ≤ g(x1, . . . , xn) ≤ c2 f (x1, . . . , xn)

for any (x1, . . . , xn) ∈ A.

2 Basic Notions

This section is devoted to introducing fundamental notions and results regarding
scales and self-similar sets and scales.

The following is the standard definitions on (finite and infinite) sequences of finite
symbols.

Definition 2.1 Let S be a finite set. For m ≥ 0, define Wm(S) = Sm = {w|w =
w1 . . . wm,wi ∈ S}, where W0(S) = {∅}. Define W∗ = ∪m≥0Wm . Also �(S) =
SN = {ω|ω = ω1ω2 . . . ,ωi ∈ S}. For w = w1 . . . wm ∈ W∗(S), the length |w| of w
is defined by |w| = m. For w = w1 . . . wm and v = v1 . . . vn ∈ W∗(S), we define
w · v (or wv for short) by w·v = w1 . . . wmv1 . . . vn . For a subseteq A, B ∈ W∗(S),
A · B (or AB for short) is defined by A·B = {wv|w ∈ A, v ∈ B}.
Remark The notion of “gauge function” given in the above definition is not related to
the notion of “conformal gauge” which is commonly used in literatures concerning
the conformal dimension, for example, [MT10].

With the product topology, �(S) is compact, perfect and totally disconnected.
In other words, �(S) is a Cantor set. A scale is defined by a gauge function which
assign a “diameter” to every w ∈ W∗(S).

Definition 2.2 (Scale). Let S be a finite set.

(1) A function g : W∗(S) → (0, 1] is called a gauge function if and only if g(∅) =
1, g(w1 . . . wm) ≤ g(w1 . . . wm−1) and maxw∈Wm (S) g(w) → 0 as m → 0. A
gauge function g is said to be elliptic if and only if there exists c ∈ (0, 1) and n
such that gwi ≥ cg(w) for any i ∈ S and any w ∈ W∗(S) and gwv ≤ cg(w) for
any w ∈ W∗(S) and v ∈ Wn .

(2) Let g be a gauge function. Define

�g
s = {w = w1 . . . wm |g(w1 . . . wm−1) ≥ s > g(w1 . . . wm)}

We call Sg = {�g
s }s∈(0,1] a scale on � associated with the gauge function g.

If no confusion may occur, we omit S in Wm(S), W∗(S) and �(S) and simply
write Wm, W∗ and � respectively.

The notion of self-similar structure describes topological feature of self-similar
sets.

Definition 2.3 (K , S, {Fi }i∈S) is called a self-similar structure if the following four
conditions (S1), (S2), (S3) and (S4) are satisfied:
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(S1) K is a compact metrizable set.
(S2) S is a finite set.
(S3) Fs : K → K is continuous for any s ∈ S.
(S4) There exists a continuous surjectionπ : �(S) → K such that Fs◦π = π◦σs for

any s ∈ K , where σs : �(S) → �(S) is defined by σs(ω1ω2 . . .) = sω1ω2 . . ..

Hereafter in this paper, (K , S, {Fs}s∈S) is always a self-similar structure.

Notation Define Fw1...wm = Fw1 ◦ · · · ◦ Fwm and Kw = Fw(K ). Moreover, define
K (A) = ∪w∈A Kw for a subset A ⊆ W∗.

A scale S on �(S) induces a family of “balls” U (n)(x, s) around x ∈ X with
“radius” s. One of the main concerns is the existence of a metric under which those
“balls” are really balls, in other words, the existence of adapted metric according to
the following definition.

Definition 2.4 Let S = {�s}s∈(0,1] be a scale on � associated with a gauge func-
tion g.

(1) For x ∈ K , define (�s)
(n)
x and U (n)

S (x, s) inductively by

(�s)
(0)
x = {w|w ∈ �s, x ∈ Kw}

U (n)

S (x, s) = K
(
(�s)

(n)
x

)

(�s)
(n)
x = {w|w ∈ �s, Kw ∩U (n−1)

S (x, s) �= ∅}

(2) A metric d on K is said to be adapted to the scale S if and only if there exist
α,β > 0 and n ≥ 1 such that

Bd(x,αs) ⊆ U (n)

S (x, s) ⊆ Bd(x,βs)

for any x ∈ K and any s.

The notion of gentleness between scales is introduced in [Kig09] as a part of the
equivalence condition for a measure being volume doubling with respect to a scale.
Roughly, if two scales are gentle with respect to each other, then the transition to one
scale to the other is “smooth”.

Definition 2.5 Let Sg and Sl be scales on � associated with gauge functions g and
l respectively. We say Sl is gentle with respect to Sg if and only if there exists c > 0
such that l(w) ≤ cl(v) whenever w, v ∈ �s for some s > 0 and Kw ∩ Kv �= ∅. We
write Sg ∼

GE
Sl if Sl is gentle with respect to Sg .

Proposition 2.6 Among elliptic scales, i.e. scales whose gauge functions are elliptic,
∼
GE

is an equivalent relation. In particular, if g and l are elliptic, then Sg ∼
GE

Sl implies

Sl ∼
GE

Sg .
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There exists a natural “pseudo”metric associated with a scale which is defined by
the infimum of the “length” of paths between two points.

Definition 2.7 (1) A sequence (w(1), . . . ,w(n)) is called a path in K if and only if
w(1), . . . ,w(n) ∈ W∗, Kw(i)∩Kw(i+1) �= ∅ for any i = 1, . . . , n−1. The collec-
tion of all the paths is denoted by CH. ForU, V ⊆ K , a path (w(1), . . . ,w(n)) is
called a path betweenU and V if and only if Kw(1)∩U �= ∅ and Kw(n)∩V �= ∅.
We use CH(U, V ) to denote the collection of paths between U and V . For two
paths p1 = (w(1), . . . ,w(n)) and p2 = (v(1), . . . , v(m)), if Kw(n)∩Kv(1) �= ∅,
we define p1 ∨ p2 ∈ CH by p1 ∨ p2 = (w(1), . . . ,w(n), v(1), . . . , v(m)).

(2) Let S be a scale on � associated with a gauge function g. For any x, y ∈ K , we
define

DS(x, y) = inf{
n∑

i=1
g(w(i))|(w(1), . . . ,w(n)) ∈ CH(x, y)}.

Remark We identify a point x ∈ X and a set {x} if no confusion may occur.

Remark We often use Dg instead of DS if S is the scale associated with a gauge
function g.

Proposition 2.8 DS is a pseudometric, i.e. DS(x, y) = DS(y, x), DS(x, y) ≥ 0,
DS(x, x) = 0 and DS(x, y) ≤ DS(x, z)+ DS(z, y).

By [Kig09, Lemma 2.3.10], we have the following theorem, which says that a
metric adapted to a scale S, if such a metric exists at all, is essentially DS.

Theorem 2.9 Let S be a scale. There exists a metric d on K such that d is adapted
to S if and only if DS is a metric on K which is adapted to S.

3 Quasisymmetric Metrics and Scales

In this section, we give an equivalent condition for two metrics on a self-similar set
being quasisymmetric in terms of scales and related notions introduced in Sect. 2.

Let (K , S, {Fi }i∈S) be a self-similar structure. Assume that K �= V0. Hereafter in
this section, every metric on K is assumed to satisfy the following two properties:

1. It produces the same topology as the original topology of K .
2. The diameter of K under it equals one.
The next lemma can be verified immediately by the definitions in the previous

section.

Lemma 3.1 Let S1 = {�1
s } and S2 = {�2

s } be scales. If S1 ∼
GE

S2, then for any

n ≥ 1, there exists cn ∈ (0, 1) such that
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U (n)
1 (x, cnt) ⊆ U (n)

2 (x, s) ⊆ U (n)
1 (x, t/cn)

for any x ∈ K , any (s, t) with �1
t,x ∩�2

s,y �= ∅, where U (n)
i (x, s) = U (n)

Si
(x, s) and

�i
t,x = (�i

s)
(0)
x for i = 1, 2.

First we define a scale associated with a metric.

Definition 3.2 Let d be a metric on K with diam(K , d) = 1. Define Sd = {�d
s } be

the scale with the gauge function dw = diam(Kw, d).

Lemma 3.3 Let S = {�s} be an elliptic scale and let d be a metric on K which is
adapted to S. Let l(w) be the gauge function of S. Then

(1) dw 
 l(w) for any w ∈ W∗.
(2) The pseudometric DS associated with S is a metric and DS(x, y) 
 d(x, y) for

any x, y ∈ K .
(3) Sd is elliptic and d is adapted to Sd .

Proof Write U (n)(x, r) = U (n)

S (x, r). Since d is adapted to S, we have

U (n)(x,βs) ⊆ Bd(x, s) ⊆ U (n)(x,αr) (3.2)

(1) For w ∈ W∗, U (n)(x, l(w)) ⊆ Bd(x,αl(w)). Hence dw ≤ αl(w). Now
by [Kig09, Lemma 1.3.12], there exists y ∈ Kw and γ ∈ (0, 1) such that
U (n)(y, γl(w)) ⊆ Kw. Hence Bd(x,βγl(w)) ⊆ Kw. Since K is connected,
we have βγl(w) ≤ dw.

(2) This is immediate from Theorem 2.9.
(3) These claims are immediate from (1) and Lemma 3.1. ��

Nowwe present one of the main results of this paper. The following theorem gives
an equivalent condition for certain metrics on a self-similar set being quasisymmetic.
It plays a crucial role in the proof of Theorem 5.3.

Theorem 3.4 Let d be a metric on K and let S = {�s} be an elliptic scale. Assume
that d is adapted to S. Let ρ be a metric on K . Then d ∼

QS
ρ if and only if Sρ is elliptic,

S ∼
GE

Sρ and ρ is adapted to Sρ.

The rest of this section is devoted to the proof of Theorem 3.4.

Proof First we show⇒. Assume d ∼
QS

ρ. By Lemma 3.3, we may regard the gauge

function of S is dw and hence S = Sd .
By the results in [Kig00, Part 2], d ∼

QS
ρ is equivalent to the facts that there exists

δ ∈ (0, 1) such that



260 J. Kigami

Bd(x, r) ⊇ Bρ

(
x, δρd(x, s)

)
Bρ(x, r) ⊇ Bd

(
x, δdρ(x, r)

) (3.3)

and

ρd(x, r/2) ≥ δρd(x, r) (3.4)

dρ(x, r/2) ≥ δdρ(x, r),

where ρd(x, r) = supy∈Bd (x,r) ρ(x, y) and dd(x, r) = supy∈Bρ(x,r) d(x, y).
First we show the following claim.

Claim 1 Let w ∈ �d
s . Then there exists z ∈ Kw such that ρw ≥ cρd(z, s), where

c is a constant which is independent of w and s.

Proof of Claim 1 By [Kig09, Lemma 1.3.12] and (3.3), we may find z ∈ Kw such
that

Kw ⊇ U (n)
d (z, γs) ⊇ Bd(z, γs/α) ⊇ Bρ

(
z, δρd(z, γs/α)

)

Hence by (3.4)
ρw ≥ δρd(z, γs/α) ≥ cρd(z, s). ��

Step 1: Sρ is elliptic.
Proof of “ρwi ≥ cρw for any w ∈ W∗ and any i ∈ S:
By Claim 1, it follows that

ρwi ≥ c′ρd(z, dwi ) ≥ c′ρd(z, 2dwi ). (3.5)

for some z ∈ Kwi”. On the other hand,

Kw ⊆ Bd(z, 2dw) ⊆ Bρ(z, ρd(x, 2dw)).

Hence
ρw ≤ ρd(z, 2dw).

This with (3.5) suffices.
Proof of “there exists c ∈ (0, 1) and m such that ρwv ≤ cρw for any w ∈ W∗ and

any v ∈ Wm”.
Since Kwv ⊆ Bρ(x, ρd(x, 2dwv)), we have

ρwv ≤ ρd(x, 2dwv) ≤ δρd(x, dwv), (3.6)

where x ∈ Kwv . On the other hand, by [Kig09, Lemma 1.3.12], there exists z ∈ Kw

such that
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Kw ⊇ U (n)
d (x, γdw) ⊇ Bρ

(
x, δρd(x, γdw)

)
.

Hence
ρw ≥ δρd(x, γdw) ≥ δ′ρd(x, dw) (3.7)

Now, since Sd is elliptic, there exists a ∈ (0, 1) such that

dwv ≤ ca|v|dw

for any w and v. Hence by (3.6) and (3.7), the uniform decay of ρ with respect to d,
(See [Kig00, Proposition 10.7]),

ρwv ≤ δρd(x, dwv) ≤ δρd(x, ca|v|dw) ≤ cb|v|ρd(x, dw) ≤ c′b|v|ρw,

where b ∈ (0, 1). Hence choosing sufficiently large m = |v|, we obtain the desired
inequality.

Thus we have shown that Sρ is elliptic.
Step 2: S ∼

GE
Sρ

Letw, v ∈ �d
s with Kw∩Kv �= ∅. Choose x ∈ Kw andy ∈ Kv . Thend(x, y) ≤ 2s

and hence Bd(x, 3s) ⊇ Bd(y, s). This implies ρd(x, 3s) ≥ ρd(y, s). By (3.4),

ρd(x, s) 
 ρd(y, s).

ByClaim1, choosing y ∈ Kv properly,we see thatρv ≥ cρd(y, s). Sinceρd(x, 2s) ≥
ρw, (3.4) shows that Sd ∼

GE
S.

Step 3: ρ is adapted to Sρ.
Let x ∈ K and let w ∈ �d

r,x ∩�
ρ
s,x . Then by Lemma 3.1, (3.3) and (3.4),

U (n)
ρ (x, cs) ⊇ U (n)

d (x, r) ⊇ Bd(x, r/α) ⊇ Bρ

(
x, δρd(x, r/α)

)

⊇ Bρ

(
x, δ′ρd(x, 2r)

) ⊇ Bρ(x, δ′ρw) ⊇ Bρ(x, δ′′s).

On the other hand, let x ∈ K and let w ∈ �
ρ
s ∩�d

t . Then

Bρ(x, s) ⊇ Bd
(
x, δdρ(x, s)

) ⊇ U (n)
d

(
x,βδdρ(x, s)

) ⊇ U (n)
ρ (x, c′r), (3.8)

wherewv ∈ �d
βδdρ(x,s),x

∩�
ρ
r,x . Since Bρ(x, 2s) ⊇ Kw, we see that dρ(x, 2s) ≥ dw.

Hence dρ(x, s) ≥ c1dw. Consequently, dwv ≥ c2dw, where c2 is independent of
w and v. This implies that |v| is uniformly bounded. Since Sρ is elliptic, ρwv ≥
c3ρw. This implies U (n)

ρ (x, c′r) ⊇ U (n)
ρ (x, c4s). By (3.8), it follows that Bρ(x, s) ⊇

U (n)
ρ (x, c5s). Thus we have shown that ρ is adapted to Sρ.
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This concludes the proof of⇒. ��
To show the converse direction of Theorem 3.4, we need the following lemma.

Lemma 3.5 Assume that d is adapted to Sd . Then, for any n and k, there exists
λ ∈ (0, 1) such that

U (n)
d (x, r) ⊇ U (n+k)

d (x,λr)

for any x ∈ K and any r.

Proof Since d is adapted to Sd , there exists c > 0 such that U (n)
d (x, r) ⊇ Bd(x, cr).

Then Bd(x, cr) ⊇ U (n+k)
d (x, cr/(n + k + 2)). ��

Proof (of⇐ of Theorem 3.4) Since d and ρ are adapted to Sd and Sρ respectively,

U (n)
d (x,β1r) ⊆ Bd(x, r) ⊆ U (n)

d (x,α1r)

U (m)
ρ (x,β2r) ⊆ Bρ(x, r) ⊆ U (m)

ρ (x,α2r).

First we show (3.3). By Lemma 3.1,

Bd(x, r) ⊆ U (n)
d (x,α1r) ⊆ U (n)

ρ (x, cρw), (3.9)

where w ∈ �d
α1r,x . Using Lemma 3.5 if necessary, we obtain

Bd(x, r) ⊆ U (m)
ρ (x, c1ρw) ⊆ Bρ(x, c2ρw).

Hence ρd(x, r) ≤ c2ρw. Now by Lemma 3.1,

Bd(x, r) ⊇ U (n)
d (x,β1r) ⊇ U (n)

ρ (x, c′ρwv), (3.10)

where wv ∈ �d
β1r,x . By making use of Lemma 3.5 if necessary, we have

Bd(x, r) ⊇ U (m)
ρ (x, c′′ρwv) ⊇ Bρ(x, c′′β2ρwv).

Since Sd is elliptic, the fact that w ∈ �d
α1r,x and wv ∈ �d

β1r,x implies that |v| is
uniformly bounded with respect to x and r . Since Sρ is also elliptic, we see that
ρwv ≥ c3ρw ≥ c4ρd(x, r). Hence (3.3) holds. (By exchanging ρ and d, we also
obtain the other one.)

Next we show (3.4). By (3.9),

ρd(x, r) ≤ c(n + 1)ρw,

where w ∈ �d
α1r . Replacing r by λr for λ ∈ (0, 1) in (3.10), we have
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Bd(x,λr) ⊇ U (n)(x, c′ρwv),

wherewv ∈ �d
λβ1r,x . This implies ρd(x,λr) ≥ c′ρwv . The same arguments as above

show that |v| is uniformly bounded and ρwv ≥ cρw. Combining all these, we obtain

ρd(x,λr) ≥ c′ρwv ≥ c′′ρw ≥ c′′′ρd(x, r).

Again the other one is obtained by exchanging d and ρ. Thus we have obtained
(3.4). ��

4 Sierpinski Carpet and Its Invisible Sets

In this and the following sections, we are going to apply Theorem3.4 to the Sierpinski
carpet. First we give the definition of the Sierpinski carpet.

Definition 4.1 Let S = {↙,↓,↘,→,↗,↑,↖,←}. Define p↙ = −1 − √−1,
p↓ = −√−1, p↘ = 1 − √−1, p→ = 1, p↗ = 1 + √−1, p↑ =

√−1, p↖ =
−1+√−1 and p← = −1. Moreover, define Fs : C→ C for s ∈ S by

Fs(z) = (z − ps)

3
+ ps .

The Sierpinski carpet K is the unique non-empty compact set which satisfies

K =
⋃
s∈S

Fs(K ).

Let dE be the restriction of the Euclidean metric on the Sierpinski carpet K .

We consider dE as the standard metric on K and are going to construct metrics
which is quasisymmetric with respect to dE . Obviously, the scale SdE associated
with dE is elliptic and dE is adapted to the scale SdE . In fact, the gauge function
associated with dE is given by 3−|w| for any w ∈ W∗.

Next we introduce notions and notations regarding the boundary of the Sierpinski
carpet (Fig. 2).

Definition 4.2

(1) Define L = K ∩ {z|Re z = −1}, R = K ∩ {z|Re z = 1}, T = K ∩ {z|Im z = 1}
and B = K ∩ {z|Im z = −1}. Let Hw = Fw(H) for any w ∈ W∗ and any
H ∈ {L , R, T, B}. Moreover define ∂m = {Lw, Rw, Tw, Bw|w ∈ Wm}.

(2) Define Lm = {↙,←,↖}m, Rm = {↘,→,↗}m, T m = {↖,↑,↗}m , Bm =
{↙,↓,↘}m and δm = Lm ∪ Rm ∪ T m ∪ Bm .

Remark Recall that K (A) = ∪w∈A Kw for a subset A ⊆ W∗. The map A → K (A)

can be regarded as a map from the subsets of W∗ to the subsets of K . In the case
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−1 1

B

T

L R

Fig. 2 Generation of the Sierpinski carpet

of the Sierpinski carpet, this map is injective, i.e. if A �= B, then K (A) �= K (B).
Therefore, if no confusion may occur, we identify A ⊆ W∗ with K (A) ⊆ K .

Note that DdE (x, y) ≥ 1 for any (x, y) ∈ (L×R)∪(T×B). This fact may remain
true even if you put 0 as weights (length) of some pieces of w’s. Such a collection
of w’s is called an invisible set, whose precise definition is given below.

Definition 4.3

(1) Let

CHm = {(w(1), . . . ,w(n))|(w(1), . . . ,w(n)) ∈ CH,w(i) ∈ Wm}

and let CHm(U, V ) = CH(U, V ) ∩ CHm for U, V ⊆ K .
(2) Let A ⊆ Wm . For p = (w(1), . . . ,w(n)) ∈ CHm , define

�A(p) = #{i |i = 1, . . . , n,w(i) /∈ A}
3m

(3) Let A ⊆ Wm . A is said to be an invisible set if and only if

inf
p∈CHm (L ,R)∪CHm (T,B)

�A(p) ≥ 1

(4) Let A ⊆ Wm . A is said to be +-invariant if and only if K (A) is symmetric with
respect to both the real and imaginary axes.

Since Lm , Rm , T m and Bm are the shortest paths, we have the following propo-
sition.
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Proposition 4.4 Let A ⊆ Wm. If A is invisible, then A ∩ δm = ∅.

The next theorem is one of the fundamental property of an invisible set. It will
play a key role in constructing a metric associated with an invisible set in the next
section.

Theorem 4.5 Let A ⊆ Wm be an invisible set and let X ⊆ Wn be an invisible and
+-invariant set. Then AWn ∪ Wm X is an invisible set.

The rest of this section is devoted to the proof of Theorem 4.5.

Definition 4.6

(1) Let A ⊆ Wm . Define ∂m A = {F |F ∈ ∂m, F ⊆ K (A) ∩ K\K (A)}.
(2) Define fm,→(z) = z + 3−m , fm,←(z) = z − 3−m , fm,↑(z) = z + 3−m

√−1
and fm,↓(z) = z − 3−m

√−1. Moreover, let fm,↙ = fm,↓ ◦ fm,←, fm,↘ =
fm,↓◦ fm,→, fm,↖ = fm,↑◦ fm,← and fm,↗ = fm,↑◦ fm,→.

(3) Let w ∈ Wm . For s ∈ S, if there exists w′ ∈ Wm such that fm,s(Kw) = Kw′ ,
then define (w)s = w′. Otherwise define (w)s = %, where % is used as the
symbol which represents non-existence (Fig. 3).

Lemma 4.7 Let F ∈ ∂m and let G ∈ ∂m(Wm(F)). If X ⊆ Wn is invisible and
+-invariant, then �Wm X (p) ≥ 3−m for any p ∈ CHm+n(F, G).

Proof Note that #(Wm(F)) ≤ 6. Up to parallel translations, the reflections in the
real and the imaginary axes and the π/2-rotation, we may assume that F = Bw for
somew ∈ Wm . Then Wm(F) ⊆ {w, (w)←, (w)↙, (w)↓, (w)↘, (w)→}, where some
of them may be %. In fact there are 7 cases. (See Fig. 4.)

Case 1 #(Wm(F)) = 6.
Case 2 #(Wm(F)) = 5 and (w)↘ = %.
Case 3 #(Wm(F)) = 5 and (w)↓ = %.
Case 4 #(Wm(F)) = 4 and (w)↓ = (w)↘ = %.
Case 5 #(Wm(F)) = 3 and (w)↓ = (w)↘ = (w)↙ = %.
Case 6 #(Wm(F)) = 3 and (w)← = (w)↙ = (w)↘ = %.
Case 7 #(Wm(F)) = 2 and (w)↓ = (w)↙ = (w)↘ = (w)← = %.

We consider the first case. The other cases can be treated by the similar discussion.
If D = ∪U∈∂m (Wm (F))U , then D = ∂K (Wm(F)). Let p = (w(1), . . . ,w(k)) ∈
CHm+n(F, G). The reflection in the line containing F induces a natural bijection
from Wm(F) · Wn to itself, which is denoted by η. Define θ : Wm(F) · Wn →
{(w)←,w, (w)→} · Wn by

θ(uv) =
{

uv if u ∈ {(w)←,w, (w)→} and v ∈ Wn,

η(uv) if u ∈ {(w)↙, (w)↓, (w)↘} and v ∈ Wn .

Define v(i) = θ(w(i)) and p̃ = (v(1), . . . , v(k)). Then the+-invariant property of X
implies that p̃ ∈ CHm+n(F, D1), where D1 = L(w)←∪T(w)←∪Tw∪T(w)→∪R(w)→ ,
and
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Fig. 4 Construction of �n , ⇑n and↙↙n

�Wm X (p) = �Wm X (̃p),

If v(k) ∩ L(w)← �= ∅, then there exists j such that (v( j), v( j + 1), . . . , v(k)) ∈
CHm(R(w)← , L(w)←) and Kv(i) ⊆ (w)← · Wn for any i ∈ { j, j + 1, . . . , k}. Since
X is invisible, it follows that

�Wm X (p) ≥ �Wm X ((v( j), . . . , v(k))) ≥ 3−m .

The same discussion shows that �Wm X (p) ≥ 3−m if Kv(k) ∩ R(w)→ �= ∅.
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Next suppose v(K )∩(
T(w)← ∪ Tw ∪ T(w)→

) �= ∅. Then using the reflections in the
lines containing Lw and Rw, we may construct (u(1), . . . ,u(k)) ∈ CHm+n(Bw, Tw)

which satisfies u(i) ∈ w · · ·Wn for any i and �Wm X (p) = �Wm X ((u(1), . . . ,u(k))).
Since X is invisible, it follows that �Wm X (p) ≥ 3−m . ��
Lemma 4.8 Let F, G ∈ ∂m with F ∩ G = ∅ and let p = (w(1), . . . ,w(k)) ∈
CHm+n(F, G). If {w(i)}ki=1 ∩ AWn = ∅, then there exists p∗ ∈ CHm(F, G) such
that �A(p∗) ≤ �AWn∪Wm X (p).

Proof Let k1 = max{ j |{w(i)} j
i=1 ⊆ Wm+n(F)}. Define v(1) = [w(k1)]m . Note

that v(1) /∈ A. There exists a unique F1 ∈ {Lv(1), Rv(1), Tv(1), Bv(1)} ∩ ∂m(Wm(F))

such that Kw(k1) ⊆ F1. By Lemma 4.7,

�AWn∪Wm X ((w(1), . . . ,w(k1))) ≥ 3−m = �A((v(1))).

Now, if F1 ∩ G �= ∅, (v(1)) ∈ CHm(F, G) and �AWn∪Wm X (p) ≥ �A((v(1)). Hence
we have constructed p∗ = (v(1)). Otherwise, replacing (w(1), . . . ,w(k)) and F by
(w(k1), . . . ,w(k)) and F1 respectively, we repeat the same procedure as above and
obtain k2, v(2) and F2. Inductively, we have p∗ = (v(1), . . . , v(l)) with the desired
properties. ��
Lemma 4.9 Let F, G ∈ ∂m with F ∩ G = ∅. Then for any p ∈ CHm+n(F, G),
there exists p∗ ∈ CHm(F, G) such that �A(p∗) ≤ �AWn∪Wm X (p).

Proof Let p = (w(1), . . . ,w(k)). Ifw(i) /∈ AWn for any i , then Lemma 4.8 suffices.
Hence we assume that there exists i such that w(i) ∈ AWn .

Claim 1 Without loss of generality, we may assume that there exists p1 ≥ 1 and
G1 ∈ ∂m such that w(1), . . . ,w(p1) ∈ Wm+n\AWn ,w(p1+1) ∈ AWn ,G1∩F = ∅,
G1 ⊆ K[w(p1+1)]m and (w(1), . . . ,w(p1)) ∈ CHm+n(F, G1).

Proof of Claim 1 Case 1: F ∩ K (A) = ∅
In this case, define

p1 = min{i |w(i) ∈ AWn} − 1

and choose G1 ∈ ∂m so that G1 ∩ Kw(p1) ∩ Kw(p1+1) �= ∅ and G1 ⊆ K[w(p1)]m .
Case 2: F ∩ K (A) �= ∅

In this case, F intersects at most two connected components of K (A). Let C1 and
C2 be those connected components of K (A) (It is possible that C1 = C2).
Case 2.1: {i |Kw(i) ⊆ C1 ∪ C2} = ∅.

Define p1 and choose G1 as in Case 1. Then p1 and G1 satisfies the desired
property.
Case 2.2: {i |Kw(i) ⊆ C1 ∪ C2} �= ∅.
Define

q = max{i |Kw(i) ∈ C1 ∪ C2}.
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We may choose F0 ∈ ∂m so that F0 ∩ Kw(q) ∩ Kw(q+1) �= ∅ and F0 ⊆ K[w(q)]m .
Moreover, we may choose p0 = (v(1), . . . , v(k0)) ∈ CHm(F, F0) so that v(i) ∈
AWn for any i = 1, . . . , k0 and v(k0) = [w(q)]m . Note that �A(p0) = 0. If F0∩G �=
∅, then Kv(k0) ∩ G �= ∅ and p0 ∈ CHm(F, G). Hence letting p∗ = p0, we have
constructed p∗ which satisfies all the conditions. Assume that F0 ∩ G = ∅. Since
(w(1), . . . ,w(q)) ∈ CHm+n(F, F0) corresponds p0 ∈ CHm(F, F0), it is enough
to show the statement of the lemma in the case where F and p are replaced by F0
and (w(q + 1), . . . ,w(k)) respectively. In this situation, the counterpart of Case 2.1
holds and so does Claim 1 (End of Proof of Claim 1). ��
Claim 2 Without loss of generality, we may assume that there exists k∗ and F∗ ∈ ∂m

such that w(k∗), . . . ,w(k) ∈ Wm+n\AWn , w(k∗ − 1) ∈ AWn , F∗ ∩ G = ∅, F∗ ⊆
Kw(k∗) and (w(k∗), . . . ,w(k)) ∈ CHm+n(F∗, G).

Proof of Claim 2 By considering the chain (w(k),w(k − 1), . . . ,w(1)) ∈ CHm+n

(G, F), the same argument as in the proof of Claim 1 yields this claim (End of Proof
of Claim 2).

Now under Claim 1 and Claim 2, wemay choose p1, . . . , p j+1 and q0, q1, . . . , q j

which satisfy the following conditions (A), (B), (C) and (D):

(A) q0 = 0, p j+1 = k, qi < pi+1 < qi+1 for any i .
(B) {(w(qi−1 + 1), . . . ,w(pi )} ∩ AWn = ∅ for any i = 1, . . . , j + 1
(C) Kw(pi+1) and Kw(qi ) belong to the same connected component of K (A) for any

i = 1, . . . , j .
(D) Kw(qi ) and Kw(pi+1+1) belong to the different connected components of K (A)

for any i = 1, 2, . . . , j − 1

Let pi = (w(qi−1 + 1), . . . ,w(pi )) for i = 1, . . . , j + 1. Define F1 = F . For
i ≥ 2, we may choose Fi ∈ ∂m so that Fi ∩ Kw(qi−1) ∩ Kw(qi−1+1) �= ∅ and
F ⊆ K[w(qi−1)]m . Moreover, for i = 1, . . . , j , we may choose Gi ∈ ∂m so that
Gi ∩ Kw(pi ) ∩ Kw(pi+1) �= ∅ and Gi ⊆ K[w(pi+1)]m . Also let Fj+1 = G. By the
condition (D), Fi ∩Gi = ∅ for any i = 1, . . . , j+1. Hence letting F = Fi , G = Gi

and p = pi and applying Lemma 4.8, we obtain p∗,i = (v(i, 1), . . . , v(i, ki )) ∈
CHm(Fi , Gi ) which satisfies �A(p∗,i ) ≤ �AWn∪Wm X (pi ).

Note that Gi and Fi belong to the same connected component of K (A) by the
condition (C). Hence there exists p1

i = (u(i, 1), . . . ,u(i, li )) ∈ CHm(Gi , Fi ) such
that u(i, 1), . . . ,u(i, li ) ∈ A.

Finally let p∗ = (p∗,1, p1
1, p∗,2, . . . , p1

j , p∗, j+1). Then p∗ ∈ CHm(F, G) and
�A(p∗) ≤ �AWn∪Wm X (p). ��
Proof of Theorem 4.5 Let p = (w(1), . . . ,w(k)) ∈ CHm+n(L , R). Set F =
L [w(1)]m and G = R[w(k)]m . By Lemma 4.9, there exists p∗ ∈ CHm(F, G) such
that �A(p∗) ≤ �AWn∪Wm X (p). Since A is invisible, we have �A(p∗) ≥ 1. Hence
�AWn∪Wm X (p) ≥ 1. In the same way, if p′ ∈ CHm+n(T, B), it follows that
�AWn∪Wm X (p′) ≥ 1. Thus AWn ∪ Wm X is invisible. ��
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5 Metric Associated with Invisible Set

In this section, we construct a metric associated with a +-invariant invisible set and
characterize the Hausdorff dimension and the Hausdorff measure with respect to the
metric.

Throughout this section, we fix a +-invariant invisible set A ⊆ Wm .
Notation We write Wm,n = (Wm)n = Wmn , Wm,∗ = ∪n≥0Wm,n and �(m) =
(Wm)N.

Naturally Wm,∗ is regarded as a subset of W∗ and �(m) is identified with �.

Definition 5.1

(1) Let ε > 0. Define D A
ε (w) for w ∈ Wm by

D A
ε (w) =

{
3−m ifw /∈ A,

ε ifw ∈ A.

and D A
ε (∅) = 1 for ∅ ∈ W0. For any w = w(1) · · ·w(n) ∈ Wm,n , where w(i) ∈

Wm , define

D A
ε (w) = D A

ε (w(1))D A
ε (w(2))· · ·D A

ε (w(n)).

(2) Define

CH(m) = {(w(1), . . . ,w(k))|
(w(1), . . . ,w(k)) ∈ CH,w(i) ∈ Wm,∗ for any i = 1, . . . , k}.

and CH(m)(U, V ) = CH(U, V ) ∩ CH(m) for U, V ⊆ K . Moreover, define
�A,ε(p) = ∑k

i=1 D A
ε (w(i)) for any p = (w(1), . . . ,w(k)) ∈ CH(m) and, for

x, y ∈ K ,
d A
ε (x, y) = inf{�A,ε(p)|p ∈ CH(m)(x, y)}.

D A
ε (·) is a gauge function on �(m) and d A

ε is the associated pseudometric.
The next fact is obvious from the definition.

Proposition 5.2 d A
0 (x, y) ≤ d A

ε (x, y) for any x, y ∈ K and any ε > 0.

The next theorem shows that da
ε is really a metric and d A

ε ∼
QS

dE .

Theorem 5.3 For any ε > 0, d A
ε is a metric on K which is quasisymmetric

with respect to dE . The Hausdorff dimension of K with respect to the metric d A
ε ,

dimH (K , d A
ε ) is given by the unique α which satisfies

(8m − #(A))3−mα + #(A)εα = 1. (5.1)
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Furthermore, let Hα be the α-dimensional Hausdorff measure on (X, d A
ε ). Then the

metric measure space (X, d A
ε ,Hα) is Ahlfors α-regular, i.e.

Hα(Bd(x, r)) 
 rα

for any x ∈ K and r ∈ [0, diam(X, d A
ε )).

Letting ε ↓ 0 in (5.1), we obtain the following corollary.

Corollary 5.4

dimC(K , dE ) ≤ log 8

log 3
+ 1

m log 3
log

(
1− #(A)

8m

)
.

In the rest of this section, we are going to prove the above theorem. Hereafter, we
omit A in the notations D A

ε (w), �A,ε(p) and d A
ε (x, y) and write Dε(w), �ε(p) and

dε(x, y) respectively.

Lemma 5.5 Define An ⊆ Wmn inductively by A1 = A and

An+1 = AWmn ∪ Wm An .

Then An is +-invariant and invisible.

Proof Letting X = An and applying Theorem 4.5, we see inductively that An+1 is
+-invariant and invisible. ��
Lemma 5.6 d A

0 (x, y) ≥ 1 for any (x, y) ∈ (L × R) ∪ (T × B).

Proof Define I (p) = maxi=1,...,k |w(i)|/m for any p = (w(1), . . . ,w(k)) ∈
CH(m)(L , R). We are going to show that �0(p) ≥ 1 by an induction in I (p).
If I (p) = 0, then p = (∅) and �0(p) = D0(∅) = 1. Let J = {i |i =
1, . . . , k, |w(i)| = I (p)m}. Then there exists k1, . . . , kl and j1, . . . , jl such that
ki ≤ ji < ki+1 and J = ∪i=1,...,l{ j |ki ≤ j ≤ ji }. Let pi = (w(ki ), . . . ,w( ji )).
Since |w(ki − 1)| ≤ (I (p) − 1)m and |w( ji + 1) ≤ (I (p) − 1)m, there exist
F, G ∈ ∂M , where M = (I (p) − 1)m, such that F ⊆ Kw(ki−1), F ∩ Kw(ki ) �= ∅,
G ⊆ Kw( ji+1) and G ∩ Kw( ji ) �= ∅. If F ∩ G = ∅, then Kw(ki−1) ∩ Kw( ji+1) �= ∅.
Hence if p′ = (w(1), . . . ,w(ki − 1),w( ji + 1), . . . ,w(k)) ∈ CH(m)(L , R), then
we define pi∗ as the empty sequence. Note that �0(p) ≥ �0(p′). Now assume that
F ∩ G = ∅. Set X = AM . Lemma 5.5 shows that X is +-invariant and invis-
ible. Then by Lemma 4.9, there exists pi∗ = (v(1), . . . , v(l)) ∈ CHM (F, G)

such that �AM (pi∗) ≤ �AM Wm∪WM A(pi ). Note that AM Wm ∪ WM A = AI (p)m ,
that �AM (pi∗) = �0(pi∗) and that �AM Wm∪WM A(pi ) = �0(pi ). Let p∗ be the chain
where pi is replaced by pi∗ for all i . Then p∗ ∈ CH(m)(L , R), I (p∗) < I (p) and
�0(p) ≥ �0(p∗). Now we have �0(p) ≥ �0(p∗) ≥ 1 by induction hypothesis.

Now, d A
0 (x, y) ≥ inf{�0(p)|p ∈ CH(m)(x, y)} ≥ 1 for any x ∈ L and any y ∈ R.

In the same manner, it follows that d A
0 (x, y) ≥ 1 for any x ∈ T and any y ∈ B as

well. ��
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Lemma 5.7 d A
ε (·, ·) is a metric on K for any ε > 0.

Proof Let x, y ∈ K with x �= y. Then Re x �= Re y or Im x �= Im y. Suppose
Re x < Re y. Then there exist n and i ∈ {0, 1, . . . , 3mn − 1} such that Re x ≤
(2i − 3mn)3−mn < (2i + 2− 3mn)3−mn ≤ Re y.

Claim d A
ε (x, y) ≥ min{D A

ε (w)|w ∈ Wm,k, k = 0, 1, . . . , n}.
Proof of Claim Define W i

m,n = {w|w ∈ Wm,n, Kw ⊆ {z|(2i − 3mn)3−mn ≤ Re z ≤
(2i + 2− 3mn)3−mn}. Let Dmn,i = min{Dε(w)|w ∈ W i

m,n}. We also define Lmn,i =
∪w∈W i

m,n
Lw and Rmn,i = ∪w∈W i

m,n
Rw. Let p = (w(1), . . . ,w(k)) ∈ CH(m)(x, y). If

|w(i)| ≤ mn for some i , then the claim is trivial. Hence assume that |w(i)| < mn for
any i = 1, . . . , k. Then p contains (w(p),w(p+1), . . . ,w(q)) ∈ CH(Lmn,i , Rmn,i )

which satisfiesw(i) ∈ ∪w∈W i
m,n

wWm,∗. Letw(i) = u(i)v(i) for i = p, . . . , q, where

u(i) ∈ W i
m,n and v(i) ∈ Wm,∗. It follows that

�A,ε(p) ≥ �A,ε((w(p),w(p + 1), . . . ,w(q))) ≥ Dmn,i

q∑
i=p

Dε(v(i)). (5.2)

Now the reflection ψ in the real axis induces a natural bijection ϕ↔ : W∗ → W∗
defined by ψ(Kw) = Kϕ↔(w) which satisfies ϕ↔(ϕ↔(w)) = w. Hereafter in this
section, we write ϕ = ϕ↔. There exist p1, p2, . . . pl such that p1 = p, pl = q + 1,
pi < pi+1, u(pi ) = u(pi + 1) = . . . = u(pi+1 − 1) and u(pi ) �= u(pi+1) for
any i . Let v̄( j) = ϕi (v( j)) for j = pi , pi + 1, . . . , pi+1 − 1, where ϕ j is the
j-th iteration of ϕ. Then (v̄(p), v̄(p + 1), . . . , v̄(q)) ∈ CH(m)(L , R). Since A is
+-invariant, ∑q

i=p Dε(v(i)) = ∑q
i=p Dε(v̄(i)). Hence Lemma 5.6 implies that

q∑
i=p

Dε(v(i)) =
q∑

i=p

Dε(v̄(i)) ≥
q∑

i=p

D0(v̄(i)) ≥ 1.

Combining this with (5.2), we have �A,ε(p) ≥ Dmn,i . Hence the claim holds (End
of Proof of Claim).

The claim shows that d A
ε (x, y) > 0 if Re x �= Re y. Similar discussion implies

d A
ε (x, y) > 0 if Im x �= Im y. ��

Proof of Theorem 5.3 Let S(m)(A, ε) = {�(m)
s (A, ε)}s∈(0,1] be the scale on �(m)

whose gauge function is D A
ε and let S(m) by the scale on �(m) whose gauge

function g is given by g(w(1) . . . w(k)) = 3−mk for w(1) . . . w(k) ∈ Wm,∗ with
w(1), . . . ,w(k) ∈ Wm . Obviously �(m) is adapted to the Euclidean metric on K .
Also since S(m)(A, ε) and S(m) are self-similar, they are elliptic.

Note that (K , Wm, {Fw}w∈Wm ) is a rationally ramified self-similar structure.
(See [Kig09, Sect. 1.5] for the definition of rationally ramified self-similar struc-
tures.) In fact, define h : L1 → R1 by h(↖) =↗, h(←) =→, h(↙) =↘ and
g : T 1 → B1 by g(↖) =↙, g(↑) =↓, g(↗) =↘. Then define hm : Lm → Rm
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by hm(w1 . . . wm) = h(w1) . . . h(wm) for w1 . . . wm ∈ Lm and gm : T m → Bm by
gm(w1. . .wm) = g(w1). . .g(wm) for w1 . . . wm ∈ T m . Then a relation set Rm of
(K , Wm, {Fw}w∈Wm ) is given by

Rm = {(Lm, Rm, hm,w, v)|w, v ∈Wm, Lw = Rv}∪
{(T m, Bm, gm,w, v)|w, v ∈ Wm, Tw = Bv}

By Proposition 4.4, D A
ε (w) = 3−m for anyw ∈ Lm ∪ Rm ∪T m ∪ Bm . Using [Kig09,

Theorem 1.6.6], we see that S(m)(A, ε) ∼
GE

S(m).

Theorems 1.6.1 and 2.2.7 in [Kig09] imply that S(m)(A, ε) is intersection type
finite. Since d A

ε is a metric on K by Lemma 5.7, we may apply [Kig09, Theorem
2.3.16] and show that d A

ε is adapted to the scale S(m)(A, ε). Thus we have obtained
all the conditions in Theorem 3.4 and hence shown that d A

ε is quasisymmetric with
respect to the Euclidean metric.

The Hausdorff dimension and Ahlfors regularity of the Hausdorff measure of
(K , d A

ε ) are immediately obtained by [Kig01, Theorem 1.5.7]. ��

6 Construction of Invisible Sets

Under the existence of an invisible set, we have constructed a corresponding met-
ric which is quasisymmetric with respect to dE and characterized the associated
Hausdorff dimension in the previous two sections. In this section, it is shown that
invisible sets do exist. In fact, we construct a series of invisible sets inductively.

Definition 6.1 Let ψ" and ψ↔ be the reflections in the real and complex axes
respectively. Then ψ" induces a natural bijection ϕ" from W∗ to itself defined by
ψ"(Kw) = Kϕ"(w)

. In the same way, we define a bijection ϕ↔ from W∗ to itself by
ψ↔(Kw) = Kϕ↔(w). Moreover, let R be the π/2-rotation around the origin 0 and let
ρ : W∗ → W∗ be the bijection defined by R(Kw) = Kρ(w).

The idea to have invisible sets is to divide the notion of a invisible set into a
vertically invisible set and a horizontally invisible set. The final existence of invisible
sets are established by taking intersections of vertically invisible set and horizontally
invisible set in Theorem 6.4.

Definition 6.2 Define �n,⇑n and↙↙n as subsets of Wn inductively by

�n+1 = {↖,←,↙,↗,→,↘}· �n ∪ ↑ · ⇑n ∪ ↓ · ⇓n (6.1)

⇑n+1 = {↗,←,↖,→}· �n ∪ ↑ · ⇑n ∪ ↙ · ↙↙n∪ ↓ ·Wn∪ ↘ · ↘↘n (6.2)

↙↙n+1 = {↖,←}· �n ∪{↓,↘}· ⇔n ∪{↑,→,↙}· ↙↙n∪ ↗ ·Wn (6.3)

and �0=⇑0=↙↙0 = ∅, where ⇓n= ϕ"(⇑n),↘↘n= ϕ↔(↙↙n) and⇔n= ρ(�n).
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Lemma 6.13 will show that �n and⇔n are vertically and horizontally invisible
sets respectively.

Lemma 6.3

#(�n) = 8n − 7+√41

2
√
41

(
9+√41

2

)n

+ 7−√41

2
√
41

(
9−√41

2

)n

Proof Write an = #(�n), bn = #(⇑n) and cn = #(↙↙n). By (6.1), (6.2) and (6.3), it
follows that

an+1 = 6an + 2bn

bn+1 = 4an + bn + 2cn + 8n

cn+1 = 4an + 3cn + 8n .

Solving these with a0 = b0 = c0 = 0, we obtain an as in the statement of the
lemma. ��

Now we have the main theorem of this section.

Theorem 6.4 Let An =�n ∩ ⇔n. Then An is a +-invariant invisible set and

αn ≤ 8n − #(An) ≤ 2αn,

where

αn = 7+√41

2
√
41

(
9+√41

2

)n

− 7−√41

2
√
41

(
9−√41

2

)n

.

Example 6.5 A0 = A1 = A2 = A3 = ∅.

A4 = {↑↓←→,↑↓→←,↓↑←→,↓↑←→,←→↑↓,←→↓↑,→←↑↓,

→←↓↑}.

Applying Corollary 5.4 and letting n →∞, we obtain the following upper esti-
mate of the conformal dimension of the Sierpinski carpet.

Corollary 6.6

dimC(K , dE ) ≤ log ( 9+
√
41

2 )

log 3
= 1.858183... <

log 8

log 3
= 1.892789....

Remark The known lower bound of dimC(K , dE ) given in (1.1) is log 6
log 3 =

1.630929....
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The rest of this section is devoted to proving Theorem 6.4.

Lemma 6.7 (1) ϕ↔(�n) = �n and ϕ"(�n) = �n.
(2) ϕ↔(⇑n) = ⇑n.
(3) ϕ↔ ◦ ρ(↙↙n) = ↙↙n.

Definition 6.8 Define the vertical index I n" : Wn → {1, . . . , 3n} by

I n" (w) = 3n(Im (Fw(
√−1))+ 1)

2

For H ∈ {L , R}, define wn
H (i) for i = 1, . . . , 3n as the unique w ∈ Hn which

satisfies I n" (w) = i . Moreover, for w, v ∈ Wn , define pn
H (w, v) ∈ CHn by

pn
H (w, v) =

⎧
⎪⎨
⎪⎩

(wn
H

(
I n" (w)

)
, wn

H

(
I n" (w)+ 1

)
, . . . , wn

H

(
I n" (v)

)
if I n" (w) ≤ I n" (v),

(wn
H

(
I n" (w)

)
, wn

H

(
I n" (w)− 1

)
, . . . , wn

H

(
I n" (v)

)
if I n" (v) ≤ I n" (w).

In the same way, we define the horizontal index I n↔ : Wn → {1, . . . , 3n}, wn
T (i),

wn
B(i), pn

T (w, v) and pn
B(w, v).

Lemma 6.9 Let A ⊆ Wn. Assume that

inf{�A(p∗)|p∗ ∈ CHn(T, p↙)} ≥ 1 (6.4)

Let p = (w(1), . . . ,w(k)) ∈ CHn. If (w(1),w(k)) ∈ (T n ∪ Ln)× Ln, then

�A(p) ≥ |I n" (w(1))− I n" (w(k))| + 1

3n
= �A(pn

L(w(1),w(k))). (6.5)

Remark Using the symmetries, we may exchange (T, L , p↙) in the statement of
Lemma 6.9 by (T, R, p↘), (B, L , p↖) and (B, R, p↗).

Proof Since �A((wn
L(i))i=1,...,3n ) ≥ 1, it follows that {wn

L(i)|i = 1, . . . , 3n} ∩ A =
∅. Let p = (w(1), . . . ,w(k)) ∈ CHn .

Suppose that (w(1),w(k)) ∈ T n × Ln . Note that w(k) = wn
L(i) for some i .

Thenpn
L(w(1),w(k)) = (wn

L(3n),wn
L(3n−1), . . . ,wn

L(i)) and �A(pn
L(w(1),w(k)))

= 1− (i − 1)/3n . Since p ∨ pn
L(wn

L(i − 1),wn
L(1)) ∈ CHn(T, p↙), (6.4) implies

�A(p)+ �A(pn
L(wn

L(i − 1),wn
L(1))) = �A(p ∨ pn

L(wn
L(i − 1),wn

L(1))) ≥ 1.

This shows (6.5) in this case.
Suppose that (w(1),w(k)) ∈ Ln × Ln . Set w(1) = wn

L( j) and w(k) =
wn

L(i). If j < i , then we consider (w(k), . . . ,w(1)) in place of (w(1), . . . ,w(k)).
In this way, we may assume that j ≥ i without loss of generality. Let p̃ =
pn

L

(
wn

L (3n) ,wn
L( j + 1)

) ∨ p ∨ pn
L

(
wn

L( j − 1),wn
L(1)

)
. Since p̃ ∈ CHn(T, p↙),

we have
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3n − j

3n
+ �A(p)+ i − 1

3n
= �A (̃p) ≥ 1

This immediately implies (6.5) in this case. ��
Lemma 6.10 Let X, Y ⊆ Wn. Assume that

inf{�X (p)|p ∈ CHn(T, B)} ≥ 1

and that

inf{�Y (p)|p ∈ CHn(T, p↙)} ≥ 1.

Define A = ↖ ·X ∪ ↑ ·Y . If p = (w(1), . . . ,w(k)) ∈ CHn+1(T, B↖) and
{w(1), . . . ,w(k)} ⊆ {↖,↑}·Wn, then

�A(p) ≥ 1

3
.

Proof Let w(i) = s(i)v(i), where s(i) ∈ {↖,↑} and v(i) ∈ Wn .
First assume that s(1) =↖. Then there exist j1, j2, . . . , j2p+2 which satisfies the

following three conditions (C1), (C2) and (C3):

(C1) j1 = 1, j2p+2 = k + 1 and j1 < j2 < . . . < j2p+2
(C2) s(i) = ↖ for i = j2q−1, . . . , j2q − 1 and q = 1, . . . , p + 1
(C3) s(i) = ↑ for i = j2q , . . . , j2q+1 − 1 and q = 1, . . . , p.

Set p1,q = (
w( j2q−1), . . . ,w( j2q − 1)

)
and p̃1,q = (

v( j2q−1), . . . , v( j2q − 1)
)
.

Since
(
v( j2q−1), v( j2q − 1)

) ∈ (T n × Rn) ∪ (Rn × Rn) ∪ (Rn × Bn), Lemma 6.9
and its variants explained in the remark imply

�A
(
p1,q

) = 1

3
�X

(̃
p1,q

) ≥ 1

3
�X

(
pn

R

(
v

(
j2q−1

)
, v

(
j2q − 1

)))
. (6.6)

Set p2,q =
(
w

(
j2q

)
, . . . ,w

(
j2q+1 − 1

))
and p̃2,q =

(
v

(
j2q

)
, . . . , v

(
j2q+1 − 1

))
.

Since
(
v

(
j2q

)
, v

(
j2q+1 − 1

)) ∈ Ln × Ln , Lemma 6.9 shows that

�A
(
p2,q

) = 1

3
�Y

(̃
p2,q

) ≥ 1

3
�Y

(
pn

L

(
v

(
j2q

)
, v

(
j2q+1 − 1

)))
. (6.7)

Note that for any i = 1, . . . , 3n , there exists l = 1, 2, . . . , 2q + 1 such that
I n" (v ( jl)) ≤ i ≤ I n" (v ( jl+1 − 1)) or I n" (v ( jl)) ≥ i ≥ I n" (v ( jl+1 − 1)). Hence

p+1∑
q=1

�X
(
pn

R

(
v

(
j2q−1

)
, v

(
j2q − 1

)))+
p∑

q=1
�Y

(
pn

L

(
v

(
j2q

)
, v

(
j2q+1 − 1

))) ≥ 1.
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Combining this with (6.6) and (6.7), we obtain

�A(p) =
p+1∑
q=1

�A
(
p1,q

)+
p∑

q=1
�A

(
p2,q

) ≥ 1

3
.

Thus we have shown the desired statement in the case when s(1) =↖.
If s(1) = ↑, slight modification of the above arguments yields the lemma as

well. ��
Definition 6.11 Define π : W∗ → W∗ by

π(w) =
{

w if Re Fw(0) ≤ 0,

ϕ↔(w) if Re Fw(0) > 0.

For p = (w(1), . . . ,w(k)) ∈ CHn , we define πn(p) = (π(w(1)), . . . ,π(w(k)).
Also define ξ : W∗ → W∗ by

ξ(w) =
{

w if Re Fw(0) ≤ Im Fw(0),

ϕ↔(ρ(w)) if Re Fw(0) > Im Fw(0).

For p = (w(1), . . . ,w(k)) ∈ CHn , we define ξn(p) = (ξ(w(1)), . . . , ξ(w(k)).

By the symmetry of �n , ⇑n and↙↙n given in Lemma 6.7, we have the following
lemma.

Lemma 6.12 (1) πn : CHn → CHn, ��n (πn(p)) = ��n (p) and �⇑n (πn(p)) =
�⇑n (p).

(2) ξn : CHn → CHn and �↙↙n (ξn(p)) = �↙↙n (p).

Lemma 6.13 Suppose that

inf{��n (p)|p ∈ CHn(T, B)} ≥ 1 (6.8)

and
inf{�⇑n (p)|p ∈ CHn(T, {p↙, p↘}) ≥ 1. (6.9)

If p = (w(1), . . . ,w(k)) ∈ CHn+1(T, B↖ ∪ B↗) and {w(i)}ki=1 ⊆ {↖,↑,↗}·Wn,
then ��n+1(p) ≥ 1/3.

Proof Replacing p by πn+1(p), we may assume that w(1), . . . ,w(k) ∈ {↖,↑}·Wn

and w(k) ∈↖ ·Bn without loss of generality. Set X =�n and Y =⇑n . Then the
assumptions (6.8) and (6.9) of Lemma 6.10 follows. Hence ��n+1(p) ≥ 1/3. ��
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Lemma 6.14 Suppose that (6.8) holds and that

inf{�↙↙n (p)|p ∈ CHn(T ∪ R, p↙) ≥ 1. (6.10)

Let p = (w(1), . . . ,w(k)) ∈ CHn+1(T, B↙). If {w(1), . . . ,w(k)} ⊆ ↖,↑,↗ ·Wn,
then �↙↙n+1(p) ≥ 1/3.

Proof First assume that {w(1), . . . ,w(k)} ⊆ {↖,↑}·Wn . By (6.3), applying Lemma
6.10 with X = �n and Y = ↙↙n , we have �↙↙n+1(p) ≥ 1/3.

Next, suppose that w(i) ∈↗ ·Wn for some i . Let

i∗ = max{i |w(i) ∈ ↗·Wn} + 1.

and let
j∗ = min{ j |w( j) ∈ ↖·Wn, j ≥ i∗} − 1.

Then, for i = {i∗, . . . , j∗}, there exists v(i) ∈ Wn such that w(i) =↑ ·v(i). Define

p∗ = (↑ ·ξ (v (i∗)) ,↑ ·ξ (v (i∗ + 1)) , . . . ,↑ ·ξ (v ( j∗)) ,w ( j∗ + 1) , . . . ,w (k)) .

By (6.3) and Lemma 6.12,

�↙↙n+1 (w (i∗) , . . . ,w ( j∗)) = 1

3
�↙↙n (v (i∗) , . . . , v ( j∗))

= 1

3
�↙↙n (ξ (v (i∗)) , . . . , ξ (v ( j∗)))

= �↙↙n+1 (↑ ·ξ (v (i∗)) , . . . ,↑ ·ξ (v ( j∗))) .

Hence �↙↙n+1(p) ≥ �↙↙n+1 (p∗). Let p∗ = (w∗(1),w∗(2), . . . ,w∗(l)). Then w∗(i) ∈
{↖,↑}·Wn for any i = 1, . . . , l. Now replacing p by p∗, we are exactly in the first
case and hence the desired inequality is satisfied. ��
Lemma 6.15 (6.8), (6.9) and (6.10) hold for any n ≥ 0.

Proof We use induction on n. Obviously (6.8), (6.9) and (6.10) holds for n = 0 since
�n,⇑n and↙↙n are the empty sets. Assume that (6.8), (6.9) and (6.10) are true for
n = m.

First we show (6.8) holds for n = m + 1. Let p = (w(1), . . . ,w(k)) ∈ CHm+1
(T, B). Note that by Lemma 6.7-(1), πn+1(p) ∈ CHm+1(T, B) and ��m+1(p) =
��m+1(πn+1(p)). Hence replacing p by πn+1(p), we may assume that w(i) ∈ {↖,

↑,←,↙,↓}·Wm for any i = 1, . . . , k without loss of generality. Set w(i) =
s(i)v(i), where s(i) ∈ {↖,↑,←,↙,↓} and v(i) ∈ Wm . We may choose i1, i2, i3
and i4 which satisfies i1 < i2 < i3 < i4 and the following tree conditions (a1), (b1)
and (c1):

(a1) s(1), . . . , s(i1) ∈ {↖,↑}, (v(1), . . . , v(i1)) ∈ CHm(T, B↙),
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(b1) s(i) = ← for i = i2, . . . , i3, (v(i2), . . . , v(i3)) ∈ CHm(T, B),
(c1) s(i4), . . . , s(k) ∈ {↙,↓}, w∗(i4) ∈ ↙·T m .

Let p1 = (w(1), . . . ,w(i1)). Then by the induction hypothesis, we may apply
Lemma 6.13 and see that ��m+1(ψ1) ≥ 1/3.

Let p2 = (w(i2), . . . ,w(i3)). Since (v(i2), . . . , v(i3)) ∈ CHm(T, B), the induc-
tion hypothesis implies

��m+1(p2) = 1

3
��m (v(i2), . . . , v(i3)) ≥ 1

3
.

Set p3 = (w(i3), . . . ,w(k)) and p̃3 = (
ϕ" (w (k)) ,ϕ" (w (k − 1)) , . . . ,ϕ"

(w (i3))
)
. Then ��m+1(p3) = ��m+1 (̃p3). As p1, wemay apply Lemma 6.13 to p̃3 and

obtain ��m+1 (̃p3) ≥ 1/3. Combining all the estimates on ��m+1(pi ) for i = 1, 2, 3,
we have ��m+1(p) ≥ 1.

Secondly, we show that (6.9) holds for n = m + 1. Let p = (w(1), . . . ,w(k)) ∈
CHm+1(T, {p↙, p↘}). As in the first case, we may assume that w(i) ∈ {↖,↑,

←,↙,↓} for any i = 1, . . . , k without loss of generality. Set w(i) = s(i)v(i),
where s(i) ∈ {↖,↑,←,↙,↓} and v(i) ∈ Wm . We may choose i1, i2, i3 and i4
which satisfies i1 < i2 < i3 < i4 and the following tree conditions (a2), (b2) and
(c2):

(a2) s(1), . . . , s(i1) ∈ {↖,↑}, (v(1), . . . , v(i1)) ∈ CHm(T, B↙),
(b2) s(i) = ← for i = i2, . . . , i3, (v(i2), . . . , v(i3)) ∈ CHm(T, B),
(c2) s(i) =↙ for i = i4, . . . , k. (v(i4), . . . , v(k)) ∈ CHm(T ∪ R, p↙).

Define p1, p2 and p3 as in the first case. Then using the same discussion as in the first
case, we obtain �⇑m+1(p j ) ≥ 1/3 for j = 1, 2. Since (v(i4), . . . , v(k)) ∈ CHm(T ∪
R, p↙), The induction hypothesis and Lemma 6.14 yield that
�↙↙m ((v(i4), . . . , v(k))) ≥ 1. By (6.2), it follows that

�⇑m+1(p3) = 1

3
�↙↙m ((v(i4), . . . , v(k))) ≥ 1/3.

Thus, we have shown that �⇑m+1(p) ≥ 1.
Finally we show that (6.10) holds for n = m + 1. Let p = (w(1), . . . ,w(k)) ∈

CHm+1(T ∪ R, p↙). Note that ξm+1(p) ∈ CHm+1(T, p↙) and �↙↙m+1(p) =
�↙↙m+1(ξm+1(p)). Hence replacing p by ξm+1(p), we may assume that w(i) ∈
{↖,↑,↗,←,↙}·Wm for any i = 1, . . . , k without loss of generality (Fig. 5).
Set w(i) = s(i)v(i), where s(i) ∈ {↖,↑,↗,←,↙} and v(i) ∈ Wm . We may
choose i1, i2, i3 and i4 which satisfies i1 < i2 < i3 < i4 and the following tree
conditions (a3), (b3) and (c3):

(a3) s(1), . . . , s(i1) ∈ {↖,↑}, (v(1), . . . , v(i1)) ∈ CHm(T, B↙),
(b3) s(i) = ← for i = i2, . . . , i3, (v(i2), . . . , v(i3)) ∈ CHm(T, B),
(c3) s(i) =↙ for i = i4, . . . , k. (v(i4), . . . , v(k)) ∈ CHm(T ∪ R, p↙).
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(1, 1) (1, 2) , , 4)

(2, 4)

(3, 4)

(4, 4)

(1, 2)

(1, 3)

(1, 4) , 4) , 4)

Fs([−1, 1]2) for s ∈ S(4)

w∈W2

Fw([−1, 1]2)

(3

(13)(1

(2

Fig. 5 Construction of K (4)

Define p1, p2 and p3 as in the above two cases. Then by the induction hypothesis
and (6.3), it follows that �↙↙m+1(p j ) ≥ 1/3 for j = 2, 3. Furthermore, Lemma 6.14
implies �↙↙m+1(p1) ≥ 1/3. Hence we have �↙↙m+1(p) ≥ 1.

Thus we have obtained (6.8), (6.9) and (6.10) for n = m + 1. ��
Proof of Theorem 6.4 Since An ⊆ �n , �An (p) ≥ 1 for any p ∈ CHn(T, B). By the
fact that ⇔n= ρ(�n), it follows that �⇔n (p) ≥ 1 for any p ∈ CHn(L , R). Hence
�An (p) ≥ 1 for any p ∈ CHn(L , R). Thus An is invisible. By Lemma 6.7-(1), it
follows that An is +-invariant.

Lemma 6.3 shows that 8n−#(�n) = #(Wn\�n) = αn . Since Wn\�n ⊆ Wn\An ⊆
(Wn\�n) ∪ (Wn\⇔n), we have αn ≤ 8n − #(An) ≤ 2αn . ��

7 Generalized Sierpinski Carpet

The idea of invisible sets can be exploited for the generalized Sierpinski carpets.
We will present results for a special class of the generalized Sierpinski carpet in
this section. We fix N ≥ 3. The complex plane C is identified with R

2 in the usual
manner.

Definition 7.1

(1) For any (i, j) ∈ {1, . . . , N }2,we define J(i, j) = [−1+2(i−1)/N ,−1+2i/N ]×
[−1 + 2( j − 1)/N ,−1 + 2 j/N ] and F(i, j) : R2 → R

2 by F(i, j)(x, y) =
(x/N + a(i, j), y/N + b(i, j)), where a(i, j) = −1 + (2i − 1)/N and b(i, j) =
−1+ (2 j − 1)/N .

(2) Define S(N ) = {(i, j)|(i, j) ∈ {1, . . . , N }2, i ∈ {1, N } or j ∈ {1, N }}. Let
K (N ) be the unique compact set which satisfies
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K (N ) =
⋃

(i, j)∈S(N )

F(i, j)

(
K (N )

)
.

When N = 3, K (3) is the Sierpinski carpet.

Proposition 7.2 #(S(N )) = 4N−4 and dimH

(
K (N ), dE

)
= log (4N − 4)

log N
, where

dE is the restriction of the Euclidean metric.

In the following, we occasionally omit N in S(N ) and K (N ) and write them S and
K respectively. Also we use Wm, W∗ and � in place of Wm

(
S(N )

)
, W∗

(
S(N )

)
and

�
(
S(N )

)
.

Definition 7.3 Let A ⊆ Wm .

(1) Let A ⊆ Wm . For p = (w(1), . . . ,w(k)) ∈ CHm , define

�A(p) = #({i |i = 1, . . . , k,w(i) /∈ A})
N m

.

(2) A is called an invisible set if and only if

inf
p∈CHm (T,B)∪CHm (L ,R)

�A(p) ≥ 1,

where T, B, L and R are the same as in the last tree sections.

We also define the notion of+-invariance exactly same as in the previous sections.
Then the analogous results as Theorems 4.5 and 5.3 hold. As a consequence we have
the following statement.

Theorem 7.4 Let A ⊂ Wm be a +-invariant invisible set. Then

dimC(K (N ), dE ) ≤ log ((4N − 4)m − #(A))

m log N
.

Aprocedurewhich is similar to that in Sect. 6 produces a sequence of invisible sets.
We assume N ≥ 4 hereafter. The maps ϕ↔, ϕ" and ρ from W∗ to itself associated
with symmetries can be defined in the same way as in the last section.

Definition 7.5 Define �n⊆ Wn and↘↘n⊆ Wn inductively by

�n+1 = {(i, j)|(i, j) ∈ S.i ∈ {1, N }}· �n

∪ (2, 1)· ↘↘n ∪(2, N )· ↗↗n ∪(N − 1, 1)· ↙↙n ∪ (N − 1, N )· ↖↖n

∪ {(i, j)|(i, j) ∈ S, j ∈ {1, N }, i /∈ {1, 2, N − 1, N }}·Wn,
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Fig. 6 Construction of �n and↘↘n for N = 5

↘↘n+1 = {(1, N ), (2, 1), (N − 1, N )}· ↘↘n

∪ {(1, j)| j = 1, . . . , N − 1}· �n ∪{(i, N )|i = 2, . . . , N }· ⇔n

∪ {(1, j)| j = 3, . . . , N }·Wn ∪ {(i, N )|i = 1, . . . , N − 2}·Wn,

�0= ∅ and ↘↘0= ∅, where⇔n= ρ(�n), ↙↙n = ϕ↔(↘↘n), ↗↗n= ϕ"(↘↘n) and
↖↖n= ϕ↔(↗↗n) (Fig. 6).

By the above definition, it follows that

xn+1 = 2N xn + 4yn + 2(N − 4)(4N − 4)n

yn+1 = 2(N − 1)xn + 3yn + (2N − 5)(4N − 4)n,

where xn = #(�n) and yn = #(↘↘n). Define

τN =
√
4N 2 + 20N − 23.

Then we have

xn = (4N − 4)n −
(2N + 5

2τN
+ 1

2

)(2N + 3+ τN

2

)n

+
(2N + 5

2τN
− 1

2

)(2N + 3− τN

2

)n

The same discussion as in the last section shows

inf
p∈CHn(T,B)

��n (p) ≥ 1.
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Hence we obtain the counterpart of Theorem 6.4.

Theorem 7.6 Let An = �n ∩ ⇔n. Then An is +-invariant invisible set and there
exist c1, c2 > 0 such that

c1

(
2N + 3+ τN

2

)n

≤ (4N − 4)n − #(An) ≤ c2

(
2N + 3+ τN

2

)n

for sufficiently large n.

As an corollary, we obtain the following estimate of the conformal dimension of
K (N ). The lower estimate is shown by applying [MT10, Example 4.1.9].

Corollary 7.7

log (2N )

log N
≤ dimC

(
K (N ), dE

)
≤ log 2N+3+τN

2

log N

<
log (4N − 4)

log N
= dimH

(
K (N ), dE

)
.

Remark

2N + 3 ≤ 2N + 3+ τn

2
< 2N + 4.
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