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1 What is the Heat Kernel

In this section we shall discuss the notion of the heat kernel on a metric measure
space (M, d,μ). Loosely speaking, a heat kernel pt (x, y) is a family of measurable
functions in x, y ∈ M for each t > 0 that is symmetric, Markovian and satisfies the
semigroup property and the approximation of identity property. It turns out that the
heat kernel coincides with the integral kernel of the heat semigroup associated with
the Dirichlet form in L2(M,μ).

Let us start with some basic examples of the heat kernels.

1.1 Examples of Heat Kernels

1.1.1 Heat Kernel in Euclidean Spaces

The classical Gauss-Weierstrass heat kernel is the following function

pt (x, y) = 1

(4πt)n/2 exp

(
−|x − y|2

4t

)
, (1.1)

where x, y ∈ R
n and t > 0. This function is a fundamental solution of the heat

equation
∂u

∂t
= �u,

where � =∑n
i=1

∂2

∂x2
i

is the Laplace operator. Moreover, if f is a continuous bounded

function on R
n, then the function

u (t, x) =
∫
Rn

pt (x, y) f (y) dy
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solves the Cauchy problem {
∂u
∂t = �u,

u (0, x) = f (x) .

This can be also written in the form

u (t, ·) = exp(−tL) f,

where L here is a self-adjoint extension of −� in L2(Rn) and exp(−tL) is understood
in the sense of the functional calculus of self-adjoint operators. That means that
pt (x, y) is the integral kernel of the operator exp(−tL).

The function pt (x, y) has also a probabilistic meaning: it is the transition density
of Brownian motion {Xt }t≥0 in R

n (Fig. 1). The graph of pt (x, 0) as a function of x
is shown here:

The term |x−y|2
t determines the space/time scaling: if |x − y|2 ≤ Ct, then

pt (x, y) is comparable with pt (x, x), that is, the probability density in the C
√

t-
neighborhood of x is nearly constant.

1.1.2 Heat Kernels on Riemannian Manifolds

Let (M, g) be a connected Riemannian manifold, and � be the Laplace-Beltrami
operator on M . Then the heat kernel pt (x, y) can be defined as the integral kernel of
the heat semigroup {exp (−tL)}t≥0, where L is the Dirichlet Laplace operator, that
is, the minimal self-adjoint extension of −� in L2 (M,μ), and μ is the Riemannian
volume. Alternatively, pt (x, y) is the minimal positive fundamental solution of the
heat equation

∂u

∂t
= �u.

The function pt (x, y) can be used to define Brownian motion {Xt }t≥0 on M . Namely,
{Xt }t≥0 is a diffusion process (that is, a Markov process with continuous trajectories),
such that

Px (Xt ∈ A) =
∫
A

pt (x, y) dμ (y)

for any Borel set A ⊂ M (Fig. 2).
Let d (x, y) be the geodesic distance on M . It turns out that the Gaussian type

space/time scaling d2(x,y)
t appears in heat kernel estimates on general Riemannian

manifolds:

1. (Varadhan) For an arbitrary Riemannian manifold,

log pt (x, y) ∼ −d2 (x, y)

4t
as t → 0.
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Fig. 1 The Gauss-Weierstrass heat kernel at different values of t
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Fig. 2 The Brownian motion Xt hits a set A

2. (Davies) For an arbitrary manifold M , for any two measurable sets A, B ⊂ M

∫
A

∫
B

pt (x, y) dμ (x) dμ (y) ≤ √μ (A)μ (B) exp

(
−d2 (A, B)

4t

)
.

Technically, all these results depend upon the property of the geodesic distance:
|∇d| ≤ 1.

It is natural to ask the following question:

Are there settings where the space/time scaling is different from Gaussian?

1.1.3 Heat Kernels of Fractional Powers of Laplacian

Easy examples can be constructed using another operator instead of the Laplacian.
As above, let L be the Dirichlet Laplace operator on a Riemannian manifold M , and
consider the evolution equation
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∂u

∂t
+ Lβ/2u = 0,

where β ∈ (0, 2). The operator Lβ/2 is understood in the sense of the functional
calculus in L2 (M,μ) . Let pt (x, y) be now the heat kernel of Lβ/2, that is, the
integral kernel of exp

(−tLβ/2
)
.

The condition β < 2 leads to the fact that the semigroup exp
(−tLβ/2

)
is

Markovian, which, in particular, means that pt (x, y) > 0 (if β > 2 then pt (x, y)

may be signed). Using the techniques of subordinators, one obtains the following
estimate for the heat kernel of Lβ/2 in R

n :

pt (x, y) 
 C

tn/β

(
1 + |x − y|

t1/β

)−(n+β)


 C

tn/β

(
1 + |x − y|β

t

)− n+β
β

. (1.2)

(the symbol 
 means that both ≤ and ≥ are valid but with different values of the
constant C).

The heat kernel of
√L = (−�)1/2 in R

n (that is, the case β = 1) is known
explicitly:

pt (x, y) = cn

tn

(
1 + |x − y|2

t2

)− n+1
2

= cnt(
t2 + |x − y|2) n+1

2

,

where cn = �
( n+1

2

)
/π(n+1)/2. This function coincides with the Poisson kernel in

the half-space R
n+1+ and with the density of the Cauchy distribution in R

n with the
parameter t .

As we have seen, the space/time scaling is given by the term dβ(x,y)
t where β < 2.

The heat kernel of the operator Lβ/2 is the transition density of a symmetric stable
process of index β that belongs to the family of Lévy processes. The trajectories
of this process are discontinuous, thus allowing jumps. The heat kernel pt (x, y) of
such process is nearly constant in some Ct1/β-neighborhood of y. If t is large, then

t1/β � t1/2,

that is, this neighborhood is much larger than that for the diffusion process, which is
not surprising because of the presence of jumps. The space/time scaling with β < 2
is called super-Gaussian.

1.1.4 Heat Kernels on Fractal Spaces

A rich family of heat kernels for diffusion processes has come from Analysis on
fractals. Loosely speaking, fractals are subsets of R

n with certain self-similarity
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Fig. 3 Construction of the Sierpinski gasket

Fig. 4 The unbounded SG is obtained from SG by merging the latter (at the left lower corner of
the diagram) with two shifted copies and then by repeating this procedure at larger scales

properties. One of the best understood fractals is the Sierpinski gasket (SG). The
construction of the Sierpinski gasket is similar to the Cantor set: one starts with a
triangle as a closed subset of R

2, then eliminates the open middle triangle (shaded
on the diagram), then repeats this procedure for the remaining triangles, and so on
(Fig. 3).

Hence, SG is a compact connected subset of R
2. The unbounded SG is obtained

from SG by merging the latter (at the left lower corner of the next diagram) with two
shifted copies and then by repeating this procedure at larger scales (Fig. 4).

Barlow and Perkins [BP88], Goldstein [Gol87] and Kusuoka [Kus87] have inde-
pendently constructed by different methods a natural diffusion process on SG that
has the same self-similarity as SG. Barlow and Perkins considered random walks
on the graph approximations of SG and showed that, with an appropriate scaling,
the random walks converge to a diffusion process. Moreover, they proved that this
process has a transition density pt (x, y) with respect to a proper Hausdorff measure
μ of SG, and that pt satisfies the following elegant estimate:
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pt (x, y) 
 C

tα/β
exp

⎛
⎝−c

(
dβ(x, y)

t

) 1
β−1
⎞
⎠ , (1.3)

where d (x, y) = |x − y| and

α = dimH SG = log 3

log 2
, β = log 5

log 2
> 2.

Similar estimates were proved by Barlow and Bass for other families of fractals,
including Sierpinski carpets, and the parameters α and β in (1.3) are determined
by the intrinsic properties of the fractal. In all cases, α is the Hausdorff dimension
(which is also called the fractal dimension). The parameter β, that is called the walk
dimension, is larger than 2 in all interesting examples.

The heat kernel pt (x, y), satisfying (1.3) is nearly constant in some Ct1/β-
neighborhood of y. If t is large, then

t1/β � t1/2,

that is, this neighborhood is much smaller than that for the diffusion process, which
is due to the presence of numerous holes-obstacles that the Brownian particle must
bypass. The space/time scaling with β > 2 is called sub-Gaussian.

1.1.5 Summary of Examples

Observe now that in all the above examples, the heat kernel estimates can be unified
as follows:

pt (x, y) 
 C

tα/β
�

(
c

d (x, y)

t1/β

)
, (1.4)

where α,β are positive parameters and �(s) is a positive decreasing function on
[0,+∞). For example, the Gauss-Weierstrass function (1.1) satisfies (1.4) with
α = n, β = 2 and

�(s) = exp
(
−s2

)
(Gaussian estimate).

The heat kernel (1.2) of the symmetric stable process in R
n satisfies (1.4) with

α = n, 0 < β < 2, and

�(s) = (1 + s)−(α+β)

(super-Gaussian estimate).
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The heat kernel (1.3) of diffusions on fractals satisfies (1.4) with β > 2 and

�(s) = exp

(
−s

β
β−1

)

(sub-Gaussian estimate).
There are at least two questions related to the estimates of the type (1.4):

1. What values of the parameters α,β and what functions � can actually occur in
the estimate (1.4)?

2. How to obtain estimates of the type (1.4)?

To give these questions a precise meaning, we must define what is a heat kernel.

1.2 Abstract Heat Kernels

Let (M, d) be a locally compact, separable metric space and let μ be a Radon measure
on M with full support. The triple (M, d,μ) will be called a metric measure space.

Definition 1.1 (heat kernel) A family {pt }t>0 of measurable functions pt (x, y) on
M × M is called a heat kernel if the following conditions are satisfied, for μ-almost
all x, y ∈ M and all s, t > 0:

(i) Positivity: pt (x, y) ≥ 0.

(ii) The total mass inequality:

∫
M

pt (x, y)dμ(y) ≤ 1.

(iii) Symmetry: pt (x, y) = pt (y, x).
(iv) The semigroup property:

ps+t (x, y) =
∫
M

ps(x, z)pt (z, y)dμ(z).

(v) Approximation of identity: for any f ∈ L2 := L2 (M,μ),

∫
M

pt (x, y) f (y)dμ(y)
L2−→ f (x) as t → 0 + .

If in addition we have, for all t > 0 and almost all x ∈ M ,∫
M

pt (x, y)dμ(y) = 1,
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then the heat kernel pt is called stochastically complete (or conservative).

1.3 Heat Semigroups

Any heat kernel gives rise to the family of operators {Pt }t≥0 where P0 = id and Pt

for t > 0 is defined by

Pt f (x) =
∫
M

pt (x, y) f (y)dμ(y),

where f is a measurable function on M . It follows from (i) –(ii) that the operator
Pt is Markovian, that is, f ≥ 0 implies Pt f ≥ 0 and f ≤ 1 implies Pt f ≤ 1. It
follows that Pt is a bounded operator in L2 and, moreover, is a contraction, that is,
‖Pt f ‖2 ≤ ‖ f ‖2.

The symmetry property (iii) implies that the operator Pt is symmetric and, hence,
self-adjoint. The semigroup property (iv) implies that Pt Ps = Pt+s, that is, the
family {Pt }t≥0 is a semigroup of operators. It follows from (v) that

s- lim
t→0

Pt = id = P0

where s-lim stands for the strong limit. Hence, {Pt }t≥0 is a strongly continuous, sym-
metric, Markovian semigroup in L2. In short, we call that {Pt } is a heat semigroup.

Conversely, if {Pt } is a heat semigroup and if it has an integral kernel pt (x, y),

then the latter is a heat kernel in the sense of the above Definition.
Given a heat semigroup Pt in L2, define the infinitesimal generator L of the

semigroup by

L f := lim
t→0

f − Pt f

t
,

where the limit is understood in the L2-norm. The domain dom(L) of the generator
L is the space of functions f ∈ L2 for which the above limit exists. By the Hille–
Yosida theorem, dom(L) is dense in L2. Furthermore, L is a self-adjoint, positive
definite operator, which immediately follows from the fact that the semigroup {Pt }
is self-adjoint and contractive. Moreover, Pt can be recovered from L as follows

Pt = exp (−tL) ,

where the right hand side is understood in the sense of spectral theory.
Heat kernels and heat semigroups arise naturally from Markov processes. Let({Xt }t≥0 , {Px }x∈M

)
be a Markov process on M , that is reversible with respect to

measure μ. Assume that it has the transition density pt (x, y), that is, a function such
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that, for all x ∈ M , t > 0, and all Borel sets A ⊂ M ,

Px (Xt ∈ A) =
∫
M

pt (x, y) dμ (y) .

Then pt (x, y) is a heat kernel in the sense of the above Definition.

1.4 Dirichlet Forms

Given a heat semigroup {Pt } on a metric measure space (M, d,μ), for any t > 0,

we define a bilinear form Et on L2 by

Et (u, v) :=
(

u − Pt u

t
, v

)
= 1

t
((u, v) − (Pt u, v)),

where (·, ·) is the inner product in L2. Since Pt is symmetric, the form Et is also
symmetric. Since Pt is a contraction, it follows that

Et (u) := Et (u, u) = 1

t
((u, u) − (Pt u, u)) ≥ 0,

that is, Et is a positive definite form.
In terms of the spectral resolution {Eλ} of the generator L, Et can be expressed

as follows

Et (u) = 1

t
((u, u) − (Pt u, u)) = 1

t

⎛
⎝ ∞∫

0

d‖Eλu‖2
2 −

∞∫
0

e−tλd‖Eλu‖2
2

⎞
⎠

=
∞∫

0

1 − e−tλ

t
d‖Eλu‖2

2,

which implies that Et (u) is decreasing in t , since the function t �→ 1−e−tλ

t is
decreasing. Define for any u ∈ L2

E (u) = lim
t ↓ 0

Et (u)

where the limit (finite or infinite) exists by the monotonicity, so that E (u) ≥ Et (u).

Since 1−e−tλ

t → λ as t → 0, we have
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E (u) =
∞∫

0

λd‖Eλu‖2
2.

Set

F : = {u ∈ L2 : E (u) < ∞} = dom
(
L1/2

)
⊃ dom (L)

and define a bilinear form E (u, v) on F by the polarization identity

E (u, v) := 1

4
(E (u + v) − E (u − v)) ,

which is equivalent to
E (u, v) = lim

t→0
Et (u, v) .

Note that F contains dom(L). Indeed, if u ∈ dom(L), then we have for all v ∈ L2

lim
t→0

Et (u, v) =
(

lim
t→0

u − Pt u

t
, v

)
= (Lu, v) .

Setting v = u we obtain u ∈ F . Then choosing any v ∈ F we obtain the identity

E(u, v) = (Lu, v) for all u ∈ dom(L) and v ∈ F .

The space F is naturally endowed with the inner product

[u, v] := (u, v) + E (u, v) .

It is possible to show that the form E is closed, that is, the space F is Hilbert.
Furthermore, dom (L) is dense in F .

The fact that Pt is Markovian implies that the form E is also Markovian, that is

u ∈ F ⇒ ũ := min(u+, 1) ∈ F and E (̃u) ≤ E (u) .

Indeed, let us first show that for any u ∈ L2

Et (u+) ≤ Et (u) .

We have

Et (u) = Et (u+ − u−) = Et (u+) + Et (u−) − 2Et (u+, u−) ≥ Et (u+)

because Et (u−) ≥ 0 and
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Et (u+, u−) = 1

t
(u+, u−) − 1

t
(Pt u+, u−) ≤ 0.

Assuming u ∈ F and letting t → 0, we obtain

E (u+) = lim
t→0

Et (u+) ≤ lim
t→0

Et (u) = E (u) < ∞

whence E (u+) ≤ E (u) and, hence, u+ ∈ F .
Similarly one proves that ũ = min(u+, 1) belongs to F and E (̃u) ≤ E (u+).

Conclusion Hence, (E,F) is a Dirichlet form, that is, a bilinear, symmetric, positive
definite, closed, densely defined form in L2 with Markovian property.

If the heat semigroup is defined by means of a heat kernel pt , then Et can be
equivalently defined by

Et (u) = 1

2t

∫
M

∫
M

(u(x) − u(y))2 pt (x, y)dμ(y)dμ(x) (1.5)

+ 1

t

∫
M

(1 − Pt 1(x)) u2(x)dμ(x).

Indeed, we have

u(x) − Pt u(x) = u (x) Pt 1 (x) − Pt u (x) + (1 − Pt 1(x)) u (x)

=
∫
M

(u(x) − u(y)) pt (x, y)dμ(y) + (1 − Pt 1(x)) u (x) ,

whence

Et (u) = 1

t

∫
M

∫
M

(u(x) − u(y)) u(x)pt (x, y)dμ(y)dμ(x)

+ 1

t

∫
M

(1 − Pt 1(x)) u2(x)dμ(x).

Interchanging the variables x and y in the first integral and using the symmetry of
the heat kernel, we obtain also

Et (u) = 1

t

∫
M

∫
M

(u(y) − u(x)) u(y)pt (x, y)dμ(y)dμ(x)

+ 1

t

∫
M

(1 − Pt 1(x)) u2(x)dμ(x),
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and (1.5) follows by adding up the two previous lines.
Since Pt 1 ≤ 1, the second term in the right hand side of (1.5) is non-negative.

If the heat kernel is stochastically complete, that is, Pt 1 = 1, then that term vanishes
and we obtain

Et (u) = 1

2t

∫
M

∫
M

(u(x) − u(y))2 pt (x, y)dμ(y)dμ(x). (1.6)

Definition 1.2 The form (E,F) is called local if E (u, v) = 0 whenever the func-
tions u, v ∈ F have compact disjoint supports. The form (E,F) is called strongly
local if E (u, v) = 0 whenever the functions u, v ∈ F have compact supports and
u ≡ const in an open neighborhood of supp v.

For example, if pt (x, y) is the heat kernel of the Laplace-Beltrami operator on a
complete Riemannian manifold, then the associated Dirichlet form is given by

E (u, v) =
∫
M

〈∇u,∇v〉dμ, (1.7)

and F is the Sobolev space W 1
2 (M). Note that this Dirichlet form is strongly local

because u = const on supp v implies ∇u = 0 on supp v and, hence, E (u, v) = 0.
If pt (x, y) is the heat kernel of the symmetric stable process of index β in R

n ,
that is, L = (−�)β/2, then

E (u, v) = cn,β

∫
Rn

∫
Rn

(u (x) − u (y)) (v (x) − v (y))

|x − y|n+β
dxdy,

and F is the Besov space Bβ/2
2,2 (Rn) = {u ∈ L2 : E (u, u) < ∞}. This form is clearly

non-local.
Denote by C0 (M) the space of continuous functions on M with compact supports,

endowed with sup-norm.

Definition 1.3 The form (E,F) is called regular if F ∩ C0 (M) is dense both in F
(with [·, ·]-norm) and in C0 (M) (with sup-norm).

All the Dirichlet forms in the above examples are regular.
Assume that we are given a Dirichlet form (E,F) in L2 (M,μ). Then one can

define the generator L of (E,F) by the identity

(Lu, v) = E (u, v) for all u ∈ dom (L) , v ∈ F , (1.8)

where dom (L) ⊂ F must satisfy one of the following two equivalent requirements:

1. dom (L) is a maximal possible subspace of F such that (1.8) holds
2. L is a densely defined self-adjoint operator.
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Clearly, L is positive definite so that specL ⊂ [0,+∞). Hence, the family of
operators Pt = e−tL, t ≥ 0, forms a strongly continuous, symmetric, contraction
semigroup in L2. Moreover, using the Markovian property of the Dirichlet form
(E,F), it is possible to prove that {Pt } is Markovian, that is, {Pt } is a heat semigroup.
The question whether and when Pt has the heat kernel requires a further investigation.

1.5 More Examples of Heat Kernels

Let us give some examples of stochastically complete heat kernels that do not satisfy
(1.4).

Example 1.4 (A frozen heat kernel) Let M be a countable set and let {xk}∞k=1 be the
sequence of all distinct points from M . Let {μk}∞k=1 be a sequence of positive reals
and define measure μ on M by μ ({xk}) = μk . Define a function pt (x, y) on M × M
by

pt (x, y) =
{ 1

μk
, x = y = xk

0, otherwise.

It is easy to check that pt (x, y) is a heat kernel. For example, let us check the
approximation of identity: for any function f ∈ L2 (M,μ), we have

Pt f (x) =
∫
M

pt (x, y) f (y) dμ (y) = pt (x, x) f (x) μ ({x}) = f (x) .

This identity also implies the stochastic completeness. The Dirichlet form is

E ( f ) = lim
t→0

(
f − Pt f

t
, f

)
= 0.

The Markov process associated with the frozen heat kernel is very simple: Xt =
X0 for all t ≥ 0 so that it is a frozen diffusion.

Example 1.5 (The heat kernel in H
3) The heat kernel of the Laplace-Beltrami oper-

ator on the 3-dimensional hyperbolic space H
3 is given by the formula

pt (x, y) = 1

(4πt)3/2

r

sinh r
exp

(
−r2

4t
− t

)
,

where r = d (x, y) is the geodesic distance between x, y. The Dirichlet form is given
by (1.7).

Example 1.6 (The Mehler heat kernel) Let M = R, measure μ be defined by

dμ = ex2
dx,
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and let L be given by

L = −e−x2 d

dx

(
ex2 d

dx

)
= − d2

dx2 − 2x
d

dx
.

Then the heat kernel of L is given by the formula

pt (x, y) = 1

(2π sinh 2t)1/2 exp

(
2xye−2t − x2 − y2

1 − e−4t
− t

)
.

The associated Dirichlet form is also given by (1.7).
Similarly, for the measure

dμ = e−x2
dx

and for the operator

L = −ex2 d

dx

(
e−x2 d

dx

)
= − d2

dx2 + 2x
d

dx
,

we have

pt (x, y) = 1

(2π sinh 2t)1/2 exp

(
2xye−2t − (x2 + y2

)
e−4t

1 − e−4t
+ t

)
.

2 Necessary Conditions for Heat Kernel Bounds

In this Chapter we assume that pt (x, y) is a heat kernel on a metric measure space
(M, d,μ) that satisfies certain upper and/or lower estimates, and state the conse-
quences of these estimates. The reader may consult [GK08, GHL03] or [GHL09]
for the proofs.

Fix two positive parameters α and β, and let � : [0,+∞) → [0,+∞) be a
monotone decreasing function. We will consider the bounds of the heat kernel via

the function 1
tα/β �

(
d(x,y)

t1/β

)
.

2.1 Identifying � in the Non-local Case

Theorem 2.1 (Grigor’yan and Kumagai [GK08]) Let pt (x, y) be a heat kernel on
(M, d,μ).

(a) If the heat kernel satisfies the estimate
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pt (x, y) ≤ 1

tα/β
�

(
d (x, y)

t1/β

)
,

for all t > 0 and almost all x, y ∈ M, then either the associated Dirichlet form
(E,F) is local or

�(s) ≥ c (1 + s)−(α+β)

for all s > 0 and some c > 0.
(b) If the heat kernel satisfies the estimate

pt (x, y) ≥ 1

tα/β
�

(
d (x, y)

t1/β

)
,

then we have

�(s) ≤ C (1 + s)−(α+β)

for all s > 0 and some C > 0.
(c) Consequently, if the heat kernel satisfies the estimate

pt (x, y) 
 C

tα/β
�

(
c

d (x, y)

t1/β

)
,

then either the Dirichlet form E is local or

�(s) 
 (1 + s)−(α+β) .

2.2 Volume of Balls

Denote by B (x, r) a metric ball in (M, d), that is

B(x, r) := {y ∈ M : d(x, y) < r} .

Theorem 2.2 (Grigor’yan et al. [GHL03]) Let pt be a heat kernel on (M, d,μ).
Assume that it is stochastically complete and that it satisfies the two-sided estimate

pt (x, y) 
 C

tα/β
�

(
c

d (x, y)

t1/β

)
. (2.1)

Then, for all x ∈ M and r > 0,

μ(B(x, r)) 
 rα,
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that is, μ is α-regular.
Consequently, dimH (M, d) = α and μ 
 Hα on all Borel subsets of M, where

Hα is the α-dimensional Hausdorff measure in M.

In particular, the parameter α is the invariant of the metric space (M, d), and
measure μ is determined (up to a factor 
 1) by the metric space (M, d).

2.3 Besov Spaces

Fix α > 0, σ > 0. We introduce the following seminorms on L2 = L2 (M,μ):

Nα,σ
2,∞ (u) = sup

0<r≤1

1

rα+2σ

∫∫
{x,y∈M :d(x,y)<r}

|u(x) − u(y)|2 dμ(x)dμ(y), (2.2)

and

Nα,σ
2,2 (u) =

∞∫
0

dr

r

1

rα+2σ

∫∫
{x,y∈M :d(x,y)<r}

|u(x) − u(y)|2 dμ(x)dμ(y). (2.3)

Define the space �
α,σ
2,∞ by

�
α,σ
2,∞ =

{
u ∈ L2 : Nα,σ

2,∞(u) < ∞
}

,

and the norm by
‖u‖2

�
α,σ
2,∞

= ‖u‖2
2 + Nα,σ

2,∞(u).

Similarly, one defines the space �
α,σ
2,2 . More generally one can define �

α,σ
p,q for p ∈

[1,+∞) and q ∈ [1,+∞].
In the case of R

n , we have the following relations

�n,σ
p,q

(
R

n) = Bσ
p,q

(
R

n) , 0 < σ < 1,

�
n,1
2,∞

(
R

n) = W 1
p

(
R

n) ,
�

n,1
2,2

(
R

n) = {0} ,

�n,σ
p,q

(
R

n) = {0} , σ > 1.

where Bσ
p,q is the Besov space and W 1

p is the Sobolev space. The spaces �
α,σ
p,q will

also be called Besov spaces.

Theorem 2.3 (Jonsson [Jon96], Pietruska-Pałuba [Pie00], Grigor’yan et al.
[GHL03]) Let pt be a heat kernel on (M, d,μ). Assume that it is stochastically
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complete and that it satisfies the following estimate: for all t > 0 and almost all
x, y ∈ M,

1

tα/β
�1

(
d(x, y)

t1/β

)
≤ pt (x, y) ≤ 1

tα/β
�2

(
d(x, y)

t1/β

)
, (2.4)

where α,β be positive constants, and �1,�2 are monotone decreasing functions
from [0,+∞) to [0,+∞) such that �1 (s) > 0 for some s > 0 and

∞∫
0

sα+β�2(s)
ds

s
< ∞. (2.5)

Then, for any u ∈ L2,
E (u) 
 Nα,β/2

2,∞ (u),

and, consequently, F = �
α,β/2
2,∞ .

By Theorem 2.1, the upper bound in (2.4) implies that either (E,F) is local or

�2 (s) ≥ c (1 + s)−(α+β) .

Since the latter contradicts condition (2.5), the form (E,F) must be local. For non-
local forms the statement is not true. For example, for the operator (−�)β/2 in R

n,

we have F = Bβ/2
2,2 = �

n,β/2
2,2 that is strictly smaller than Bβ/2

2,∞ = �
n,β/2
2,∞ . This case

will be covered by the following theorem.

Theorem 2.4 (Stós [Sto00]) Let pt be a stochastically complete heat kernel on
(M, d,μ) satisfying estimate (2.4) with functions

�1 (s) 
 �2 (s) 
 (1 + s)−(α+β) .

Then, for any u ∈ L2,

E (u) 
 Nα,β/2
2,2 (u).

Consequently, we have F = �
α,β/2
2,2 .

2.4 Subordinated Semigroups

Let L be the generator of a heat semigroup {Pt }. Then, for any δ ∈ (0, 1) , the
operator Lδ is also a generator of a heat semigroup, that is, the semigroup

{
e−tLσ}
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is a heat semigroup. Furthermore, there is the following relation between the two
semigroups

e−tLδ =
∞∫

0

e−sLηt (s) ds,

where ηt (s) is a subordinator whose Laplace transform is given by

e−tλδ =
∞∫

0

e−sληt (s) ds, λ > 0.

Using the known estimates for ηt (s), one can obtain the following result.

Theorem 2.5 Let a heat kernel pt satisfy the estimate (2.4) where �1 (s) > 0 for
some s > 0 and

∞∫
0

sα+β′
�2 (s)

ds

s
< ∞,

where β′ = δβ, 0 < δ < 1. Then the heat kernel qt (x, y) of operator Lδ satisfies
the estimate

qt (x, y) 
 1

tα/β′

(
1 + d (x, y)

t1/β′

)−(α+β′)

 min

(
t−α/β′

,
t

d (x, y)α+β′

)
,

for all t > 0 and almost all x, y ∈ M.

2.5 The Walk Dimension

It follows from definition that the Besov seminorm

Nα,σ
2,∞ (u) = sup

0<r≤1

1

rα+2σ

∫∫
{x,y∈M :d(x,y)<r}

|u(x) − u(y)|2 dμ(x)dμ(y)

increases when σ increases, which implies that the space

�
α,σ
2,∞ :=

{
u ∈ L2 : Nα,σ

2,∞ (u) < ∞
}
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shrinks. For a certain value of σ, this space may become trivial. For example, as was
already mentioned, �

n,σ
2,∞ (Rn) = {0} for σ > 1, while �

n,σ
2,∞ (Rn) is non-trivial for

σ ≤ 1.

Definition 2.6 Fix α > 0 and set

β∗ := sup
{
β > 0 : �

α,β/2
2,∞ is dense in L2 (M,μ)

}
. (2.6)

The number β∗ ∈ [0,+∞] is called the critical exponent of the family
{
�

α,β/2
2,∞

}
β>0

of Besov spaces.

Note that the value of β∗ is an intrinsic property of the space (M, d,μ), which is
defined independently of any heat kernel. For example, for R

n with α = n we have
β∗ = 2.

Theorem 2.7 (Jonsson [Jon96], Pietruska-Pałuba [Pie00], Grigor’yan et al.
[GHL03]) Let pt be a heat kernel on a metric measure space (M, d,μ). If the
heat kernel is stochastically complete and satisfies (2.4), where �1 (s) > 0 for some
s > 0 and ∞∫

0

sα+β+ε�2(s)
ds

s
< ∞ (2.7)

for some ε > 0, then β = β∗.

By Theorem 2.1, condition (2.7) implies that the Dirichlet form (E,F) is local.
For non-local forms the statement is not true: for example, in R

n for symmetric stable
processes we have β < 2 = β∗.

Theorem 2.8 Under the hypotheses of Theorem 2.7, the values of the parameters α
and β are the invariants of the metric space (M, d) alone. Moreover, we have

μ 
 Hα and E 
 Nα,β/2
2,∞ .

Consequently, both the measure μ and the energy form E are determined (up to a
factor 
 1) by the metric space (M, d) alone.

Example 2.9 Consider in R
n the Gauss-Weierstrass heat kernel

pt (x, y) = 1

(4πt)n/2 exp

(
−|x − y|2

4t

)

and its generator L = −� in L2 (Rn) with the Lebesgue measure. Then α = n,
β = 2, and
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E (u) =
∫
Rn

|∇u|2 dx .

Consider now another elliptic operator in R
n :

L = − 1

m (x)

n∑
i, j=1

∂

∂xi

(
ai j (x)

∂

∂x j

)
,

where m (x) and ai j (x) are continuous functions, m (x) > 0 and the matrix
(
ai j (x)

)
is positive definite. The operator L is symmetric with respect to measure

dμ = m (x) dx,

and its Dirichlet form is

E (u) =
∫
Rn

ai j (x)
∂u

∂xi

∂u

∂x j
dx .

Let d (x, y) = |x − y| and assume that the heat kernel pt (x, y) of L satisfies the
conditions of Theorem 2.7. Then we conclude by Corollary 2.8 that α and β must
be the same as in the Gauss-Weierstrass heat kernel, that is, α = n and β = 2;
moreover, measure μ must be comparable to the Lebesgue measure, which implies
that m 
 1, and the energy form must admit the estimate

E (u) 

∫
Rn

|∇u|2 dx,

which implies that the matrix
(
ai j (x)

)
is uniformly elliptic. Hence, the operator L

is uniformly elliptic.
By Aronson’s theorem [Aro67, Aro68] the heat kernel for uniformly elliptic

operators satisfies the estimate

pt (x, y) 
 C

tn/2 exp

(
−c

|x − y|2
t

)
.

What we have proved here implies the converse to Aronson’s theorem: if the Aronson
estimate holds for the operator L, then L is uniformly elliptic.

The next theorem handles the non-local case.

Theorem 2.10 Let pt be a heat kernel on a metric measure space (M, d,μ). If the
heat kernel satisfies the lower bound
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pt (x, y) ≥ 1

tα/β
�1

(
d (x, y)

t1/β

)
,

where �1 (s) > 0 for some s > 0, then β ≤ β∗.

Proof In the proof of Theorem 2.3 one shows that the lower bound of the heat kernel
implies F ⊂ �

α,β/2
2,∞ (and the opposite inclusion follows from the upper bound and

the stochastic completeness). Since F is dense in L2, it follows that β ≤ β∗. �

As a conclusion of this part, we briefly explain the walk dimension from three
different points of view. As we have seen, there is a parameter appears in three
different places:

• A parameter β in heat kernel bounds (2.4).
• A parameter θ in Markov processes: for a process Xt , one may have (cf. [Bar98,

formula (1.1)])

Ex

(
|Xt − x |2

)

 t2/θ.

Then θ is a parameter that measures how fast the process Xt goes away from
the starting point x in time t . Alternatively, one may have that, for any ball
B(x, r) ⊂ M ,

Ex
(
τB(x,r)

) 
 rθ,

where τB(x,r) is the first exit time of Xt from the ball

τB = inf {t > 0 : Xt /∈ B(x, r)} .

• A parameter σ in function spaces Nα,σ
2,∞ or Nα,σ

2,2 . By (2.2) or by (2.3), it is not hard
to see that σ measures how much smooth of the functions in the space Nα,σ

2,∞ or
Nα,σ

2,2 .

In general the three parameters β, θ, 2σ may be different. However, it turns out
that, under some certain conditions, all these parameters are the same:

β = θ = 2σ. (2.8)

For examples, by Theorems 2.3 and 2.4, we see that σ = β
2 , whilst by Theorems 3.8

and 4.3 below, we will see that β = θ.
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2.6 Inequalities for the Walk Dimension

Definition 2.11 We say that a metric space (M, d) satisfies the chain condition if
there exists a (large) constant C such that for any two points x, y ∈ M and for any
positive integer n there exists a sequence {xi }n

i=0 of points in M such that x0 = x ,
xn = y, and

d(xi , xi+1) ≤ C
d(x, y)

n
, for all i = 0, 1, . . . , n − 1. (2.9)

The sequence {xi }n
i=0 is referred to as a chain connecting x and y.

Theorem 2.12 (Grigor’yan et al. [GHL03]) Let (M, d,μ) be a metric measure
space. Assume that

μ(B(x, r)) 
 rα (2.10)

for all x ∈ M and 0 < r ≤ 1. Then

β∗ ≥ 2.

If in addition (M, d) satisfies the chain condition, then

β∗ ≤ α + 1.

Observe that the chain condition is essential for the inequality β∗ ≤ α + 1 to
be true. Indeed, assume for a moment that the claim of Theorem 2.12 holds without
the chain condition, and consider a new metric d ′ on M given by d ′ = d1/γ where
γ > 1. Let us mark by a dash all notions related to the space (M, d ′,μ) as opposed to
those of (M, d,μ). It is easy to see that α′ = αγ and β∗′ = β∗γ. Hence, if Theorem
2.12 could apply to the space (M, d ′,μ) it would yield β∗γ ≤ αγ + 1 which implies
β∗ ≤ α because γ may be taken arbitrarily large. However, there are spaces with
β∗ > α, for example on SG.

Clearly, the metric d ′ does not satisfy the chain condition; indeed the inequality
(2.9) implies

d ′(xi , xi+1) ≤ C
d ′(x, y)

n1/γ
,

which is not good enough. Note that if in the inequality (2.9) we replace n by n1/γ,

then the proof of Theorem 2.12 will give that β∗ ≤ α + γ instead of β∗ ≤ α + 1.

Theorem 2.13 (Grigor’yan et al. [GHL03]) Let pt be a stochastically complete heat
kernel on (M, d,μ) such that
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pt (x, y) 
 C

tα/β
�

(
c

d (x, y)

t1/β

)
.

(a) If for some ε > 0
∞∫

0

sα+β+ε�(s)
ds

s
< ∞, (2.11)

then β ≥ 2.

(b) If (M, d) satisfies the chain condition, then β ≤ α + 1.

Proof By Theorem 2.2 μ is α-regular so that Theorem 2.12 applies.
(a) By Theorem 2.12, β∗ ≥ 2, and by Theorem 2.12, β = β∗, whence β ≥ 2.
(b) By Theorem 2.12, β∗ ≤ α + 1, and by Theorem 2.10, β ≤ β∗, whence

β ≤ α + 1. �

Note that the condition (2.11) can occur only for a local Dirichlet form E . If both
(2.11) and the chain condition are satisfied, then we obtain

2 ≤ β ≤ α + 1. (2.12)

This inequality was stated by Barlow [Bar98] without proof.
The set of couples (α,β) satisfying (2.12) is shown on the diagram (Fig. 5):
Barlow [Bar04] proved that any couple of α,β satisfying (2.12) can be realized

for the heat kernel estimate

pt (x, y) 
 C

tα/β
exp

⎛
⎝−c

(
dβ(x, y)

t

) 1
β−1
⎞
⎠ (2.13)

For a non-local form, we can only claim that

0 < β ≤ α + 1

(under the chain condition). In fact, any couple α,β in the range

0 < β < α + 1

can be realized for the estimate

pt (x, y) 
 1

tα/β′

(
1 + d (x, y)

t1/β′

)−(α+β′)
.

Indeed, if L is the generator of a diffusion with parameters α and β satisfying (2.13),
then the operator Lδ, δ ∈ (0, 1), generates a jump process with the walk dimension
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α

2

β

1

1 2 3 4

Fig. 5 The set 2 ≤ β ≤ α + 1

β′ = δβ and the same α (cf. Theorem 2.5). Clearly, β′ can take any value from
(0,α + 1).

It is not known whether the walk dimension for a non-local form can be equal to
α + 1.

2.7 Identifying � in the Local Case

Theorem 2.14 (Grigor’yan and Kumagai [GK08]) Assume that the metric space
(M, d) satisfies the chain condition and all metric balls are precompact. Let pt

be a stochastically complete heat kernel in (M, d,μ). Assume that the associated
Dirichlet form (E,F) is regular, and the following estimate holds with some α,β > 0
and � : [0,+∞) → [0,+∞):

pt (x, y) 
 C

tα/β
�

(
c

d (x, y)

t1/β

)
.

Then the following dichotomy holds:

• either the Dirichlet form E is local, 2 ≤ β ≤ α + 1, and �(s) 
 C exp(−cs
β

β−1 ).
• or the Dirichlet form E is non-local, β ≤ α + 1, and �(s) 
 (1 + s)−(α+β).
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3 Sub-Gaussian Upper Bounds

3.1 Ultracontractive Semigroups

Let (M, d,μ) be a metric measure space and (E,F) be a Dirichlet form in L2 (M,μ) ,

and let {Pt } be the associated heat semigroup, Pt = e−tL where L is the generator
of (E,F). The question to be discussed here is whether Pt possesses the heat kernel,
that is, a function pt (x, y) that is non-negative, jointly measurable in (x, y) , and
satisfies the identity

Pt f (x) =
∫
M

pt (x, y) f (y) dμ (y)

for all f ∈ L2, t > 0, and almost all x ∈ M . Usually the conditions that ensure the
existence of the heat kernel give at the same token some upper bounds.

Given two parameters p, q ∈ [0,+∞], define the L p → Lq norm of Pt by

‖Pt‖L p→Lq = sup
f ∈L p∩L2\{0}

‖Pt f ‖q

‖ f ‖p
.

In fact, the Markovian property allows to extend Pt to an operator in L p so that the
range L p ∩ L2 of f can be replaced by L p . Also, it follows from the Markovian
property that ‖Pt‖L p→L p ≤ 1 for any p.

Definition 3.1 The semigroup {Pt } is said to be L p → Lq ultracontractive if there
exists a positive decreasing function γ on (0,+∞), called the rate function, such
that, for each t > 0

‖Pt‖L p→Lq ≤ γ (t) .

By the symmetry of Pt , if Pt is L p → Lq ultracontractive, then Pt is also Lq∗ →
L p∗

ultracontractive with the same rate function, where p∗ and q∗ are the Hölder
conjugates to p and q, respectively. In particular, Pt is L1 → L2 ultracontractive if
and only if it is L2 → L∞ ultracontractive.

Theorem 3.2 (a) The heat semigroup {Pt } is L1 → L2 ultracontractive with a rate
function γ, if and only if {Pt } has the heat kernel pt satisfying the estimate

esup
x,y∈M

pt (x, y) ≤ γ (t/2)2 for all t > 0.

(b) The heat semigroup {Pt } is L1 → L∞ ultracontractive with a rate function γ,
if and only if {Pt } has the heat kernel pt satisfying the estimate

esup
x,y∈M

pt (x, y) ≤ γ (t) for all t > 0.
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This result is “well-known” and can be found in many sources. However, there
are hardly complete proofs of the measurability of the function pt (x, y) in (x, y),
which is necessary for many applications, for example, to use Fubini. Normally
the existence of the heat kernel is proved in some specific setting where pt (x, y)

is continuous in (x, y) , or one just proves the existence of a family of functions
pt,x ∈ L2 so that

Pt f (x) = (pt,x , f
) =

∫
M

pt,x (y) f (y) dμ (y)

for all t > 0 and almost all x . However, if one defines pt (x, y) = pt,x (y), then
this function does not have to be jointly measurable. The proof of the existence of
a jointly measurable version can be found in [GH10]. Most of the material of this
section can also be found there.

3.2 Restriction of the Dirichlet Form

Let � be an open subset of M . Define the function space F(�) by

F(�) = { f ∈ F : supp f ⊂ �}F .

Clearly, F(�) is a closed subspace of F and a subspace of L2 (�).

Theorem 3.3 If (E,F) is a regular Dirichlet form in L2 (M) , then (E,F(�)) is a
regular Dirichlet form in L2 (�). If (E,F) is (strongly) local then so is (E,F(�)).

The regularity is used, in particular, to ensure that F(�) is dense in L2 (�). From
now on let us assume that (E,F) is a regular Dirichlet form. Other consequences of
this assumptions are as follows (cf. [FOT11]):

1. The existence of cutoff functions: for any compact set K and any open set U ⊃ K ,
there is a function ϕ ∈ F ∩ C0 (U ) such that 0 ≤ ϕ ≤ 1 and ϕ ≡ 1 in an open
neighborhood of K .

2. The existence of a Hunt process
({Xt }t≥0 , {Px }x∈M

)
associated with (E,F).

Hence, for any open subset � ⊂ M , we have the Dirichlet form (E,F(�)) that
is called a restriction of (E,F) to �.

Example 3.4 Consider in R
n the canonical Dirichlet form

E (u) =
∫
Rn

|∇u|2 dx

in F = W 1
2 (Rn). Then F(�) = C1

0 (�)
W 1

2 =: H1
0 (�) .
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Using the restricted form (E,F(�)) corresponds to imposing the Dirichlet
boundary conditions on ∂� (or on �c), so that the form (E,F(�)) could be called
the Dirichlet form with the Dirichlet boundary condition.

Denote by L� the generator of (E,F(�)) and set

λmin (�) := inf specL� = inf
u∈F(�)\{0}

E (u)

‖u‖2
2

. (3.1)

Clearly, λmin (�) ≥ 0 and λmin (�) is decreasing when � expands.

Example 3.5 If (E,F) is the canonical Dirichlet form in R
n and � is the bounded

domain in R
n, then the operator L� has the discrete spectrum λ1 (�) ≤ λ2 (�) ≤

λ3 (�) ≤ ... that coincides with the eigenvalues of the Dirichlet problem

{
�u + λu = 0,

u|∂� = 0,

so that λ1 (�) = λmin (�).

3.3 Faber-Krahn and Nash Inequalities

Continuing the above example, we have by a theorem of Faber-Krahn

λ1 (�) ≥ λ1
(
�∗) ,

where �∗ is the ball of the same volume as �. If r is the radius of �∗, then we have

λ1
(
�∗) = c′

r2 = c

|�∗|2/n = c

|�|2/n ,

whence
λ1 (�) ≥ cn |�|−2/n .

It turns out that this inequality, that we call the Faber-Krahn inequality, is intimately
related to the existence of the heat kernel and its upper bound.

Theorem 3.6 Let (E,F) be a regular Dirichlet form in L2 (M,μ). Fix some constant
ν > 0. Then the following conditions are equivalent:

(i) (The Faber-Krahn inequality) There is a constant a > 0 such that, for all non-
empty open sets � ⊂ M,

λmin (�) ≥ aμ (�)−ν . (3.2)
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(ii) (The Nash inequality) There exists a constant b > 0 such that

E (u) ≥ b‖u‖2+2ν
2 ‖u‖−2ν

1 , (3.3)

for any function u ∈ F \ {0}.
(iii) (On-diagonal estimate of the heat kernel) The heat kernel exists and satisfies

the upper bound
esup

x,y∈M
pt (x, y) ≤ ct−1/ν (3.4)

for some constant c and for all t > 0.

The relation between the parameters a, b, c is as follows:

a 
 b 
 c−ν

where the ratio of any two of these parameters is bounded by constants depending
only on ν.

In R
n, we see that ν = 2/n.

The implication (ii) ⇒ (iii) was proved by Nash [Nas58], and (iii) ⇒ (ii) by
Carlen-Kusuoka-Stroock [CKS87], and (i) ⇔ (iii) by

Grigor’yan [Gri94] and Carron [Car96].
Proof of (i) ⇒ (ii) ⇒ (iii) Observe first that (ii) ⇒ (i) is trivial: choosing in (3.3)

a function u ∈ F(�) \ {0} and applying the Cauchy-Schwarz inequality

‖u‖1 ≤ μ (�)1/2 ‖u‖2 ,

we obtain

E (u) ≥ bμ (�)−ν ‖u‖2
2 ,

whence (3.2) follow by the variational principle (3.1).
The opposite inequality (i) ⇒ (ii) is a bit more involved, and we prove it for

functions 0 ≤ u ∈ F ∩ C0 (M) (a general u ∈ F requires some approximation
argument). By the Markovian property, we have (u − t)+ ∈ F ∩ C0 (M) for any
t > 0 and

E (u) ≥ E ((u − t)+
)
. (3.5)

For any s > 0, consider the set

Us := {x ∈ M : u (x) > s} ,

which is clearly open and precompact. If t > s, then (u − t)+ is supported in Us ,
and whence, (u − t)+ ∈ F (Us). It follows from (3.1)
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E ((u − t)+
) ≥ λmin (Us)

∫
Us

(u − t)2+ dμ. (3.6)

For simplicity, set A = ‖u‖1 and B = ‖u‖2
2. Since u ≥ 0, we have

(u − t)2+ ≥ u2 − 2tu,

which implies that

∫
Us

(u − t)2+dμ =
∫
M

(u − t)2+dμ ≥ B − 2t A. (3.7)

On the other hand, we have

μ(Us) ≤ 1

s

∫
Us

u dμ ≤ A

s
,

which together with the Faber-Krahn inequality implies

λmin (Us) ≥ aμ (Us)
−ν ≥ a

( s

A

)ν
. (3.8)

Combining (3.5)–(3.8), we obtain

E (u) ≥ λmin (Us)

∫
Us

(u − t)2+ dμ ≥ a
( s

A

)ν
(B − 2t A) .

Letting t → s+ and then choosing s = B
4A , we obtain

E (u) ≥ a
( s

A

)ν
(B − 2s A) = a

(
B

4A2

)ν B

2
= a

4ν2
Bν+1 A−2ν,

which is exactly (3.3).
To prove (ii)⇒ (iii), choose f ∈ L2∩L1, and consider u = Pt f . Since u = e−tL f

and d
dt u = −Lu, we have

d

dt
‖u‖2

2 = d

dt
(u, u) = −2 (Lu, u) = −2E (u, u)

≤ −2b‖u‖2+2ν
2 ‖u‖−2ν

1 ≤ −2b‖u‖2+2ν
2 ‖ f ‖−2ν

1 ,

since ‖u‖1 ≤ ‖ f ‖1 . Solving this differential inequality, we obtain
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‖Pt f ‖2
2 ≤ ct−1/v ‖ f ‖2

1 ,

that is, the semigroup Pt is L1 → L2 ultracontractive with the rate function
γ (t) = √

ct−1/v . By Theorem 3.2 we conclude that the heat kernel exists and
satisfies (3.4). �

Let M be a Riemannian manifold with the geodesic distance d and the Riemannian
volume μ. Let (E,F) be the canonical Dirichlet form on M . The heat kernel on
manifolds always exists and is a smooth function. In this case the estimate (3.4) is
equivalent to the on-diagonal upper bound

sup
x∈M

pt (x, x) ≤ ct−1/ν .

It is known (but non-trivial) that the on-diagonal estimate implies the Gaussian upper
bound

pt (x, y) ≤ Ct−1/ν exp

(
−d2 (x, y)

(4 + ε) t

)
,

for all t > 0 and x, y ∈ M , which is due to the specific property of the geodesic
distance function that |∇d| ≤ 1.

In the context of abstract metric measure space, the distance function does not
have to satisfy this property, and typically it does not (say, on fractals). Consequently,
one needs some additional conditions that would relate the distance function to the
Dirichlet form and imply the off-diagonal bounds.

3.4 Off-diagonal Upper Bounds

From now on, let (E,F) be a regular local Dirichlet form, so that the associated
Hunt process

({Xt }t≥0 , {Px }x∈M
)

is a diffusion. Recall that it is related to the heat
semigroup {Pt } of (E,F) by means of the identity

Ex ( f (Xt )) = Pt f (x)

for all f ∈ Bb (M), t > 0 and almost all x ∈ M (Fig. 6).
Fix two parameters α > 0 and β > 1 and introduce some conditions.

(Vα) (Volume regularity) For all x ∈ M and r > 0,

μ (B (x, r)) 
 rα.

(FK) (The Faber-Krahn inequality) For any open set � ⊂ M ,

λmin (�) ≥ cμ (�)−β/α .
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x

Xt
Xτ

Fig. 6 First exit time τ

For any open set � ⊂ M, define the first exist time from � by

τ� = inf{t > 0 : Xt /∈ �}.

A set N ⊂ M is called properly exceptional, if it is a Borel set of measure 0 that
is almost never hit by the process Xt starting outside N . In the next conditions N
denotes some properly exceptional set.(

Eβ

)
(An estimate for the mean exit time from balls) For all x ∈ M \ N and r > 0

Ex
[
τB(x,r)

] 
 rβ

(the parameter β is called the walk dimension of the process).(
Pβ

)
(The exit probability estimate) There exist constants ε ∈ (0, 1), δ > 0 such

that, for all x ∈ M \ N and r > 0,

Px

(
τB(x,r) ≤ δrβ

)
≤ ε.

(E�) (An isoperimetric estimate for the mean exit time) For any open subset
� ⊂ M ,

sup
x∈�\N

Ex (τ�) ≤ Cμ (�)β/α .

If both (Vα) and
(
Eβ

)
are satisfied, then we obtain for any ball B ⊂ M

sup
x∈B\N

Ex (τB) 
 rβ 
 μ (B)β/α .

It follows that the balls are in some sense optimal sets for the condition (E�).

Example 3.7 If Xt is Brownian motion in R
n, then it is known that
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ExτB(x,r) = cnr2,

so that
(
Eβ

)
holds with β = 2. This can also be rewritten in the form

ExτB = cn |B|2/n ,

where B = B (x, r).
It is also known that for any open set � ⊂ R

n with finite volume and for any
x ∈ �,

Ex (τ�) ≤ Ex
(
τB(x,r)

)
,

provided that ball B (x, r) has the same volume as �; that is, for a fixed value of |�|,
the mean exist time is maximal when � is a ball and x is the center. It follows that

Ex (τ�) ≤ cn |�|2/n

so that (E�) is satisfied with β = 2 and α = n.

Finally, introduce notation for the following estimates of the heat kernel:

(U Eloc) (Sub-Gaussian upper estimate) The heat kernel exists and satisfies the
estimate

pt (x, y) ≤ C

tα/β
exp

⎛
⎝−c

(
dβ(x, y)

t

) 1
β−1
⎞
⎠

for all t > 0 and almost all x, y ∈ M .
(�U E) (�-upper estimate) The heat kernel exists and satisfies the estimate

pt (x, y) ≤ 1

tα/β
�

(
d (x, y)

t1/β

)

for all t > 0 and almost all x, y ∈ M , where � is a decreasing positive function
on [0,+∞) such that

∞∫
0

sα�(s)
ds

s
< ∞.

(DUE) (On-diagonal upper estimate) The heat kernel exists and satisfies the esti-
mate

pt (x, y) ≤ C

tα/β

for all t > 0 and almost all x, y ∈ M .
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(
Texp

)
(The exponential tail estimate) The heat kernel pt exists and satisfies the

estimate ∫
B(x,r)c

pt (x, y) dμ(y) ≤ C exp

(
−c
( r

t1/β

) β
β−1

)
, (3.9)

for some constants C, c > 0, all t > 0, r > 0 and μ-almost all x ∈ M .
Note that it is easy to show that (3.9) is equivalent to the following inequality: for
any ball B = B (x0, r) and t > 0,

Pt 1Bc (x) ≤ C exp

(
−c
( r

t1/β

) β
β−1

)
for μ-almost all x ∈ 1

4
B

(see [GH08, Remark 3.3]).(
Tβ

)
(The tail estimate) There exist 0 < ε < 1

2 and C > 0 such that, for all t > 0
and all balls B = B(x0, r) with r ≥ Ct1/β ,

Pt 1Bc (x) ≤ ε for μ -almost all x ∈ 1

4
B.

(
Sβ

)
(The survival estimate) There exist 0 < ε < 1 and C > 0 such that, for all

t > 0 and all balls B = B(x0, r) with r ≥ Ct1/β ,

1 − P B
t 1B(x) ≤ ε for μ -almost all x ∈ 1

4
B.

Clearly, we have

(UEloc) ⇒ (�UE) ⇒ (DUE).

Theorem 3.8 (Grigor’yan and Hu [GH10]) Let (M, d,μ) be a metric measure space
and let (Vα) hold. Let (E,F) be a regular, local, conservative Dirichlet form in
L2(M,μ). Then, the following equivalences are true:

(UEloc) ⇔ (FK) + (Eβ

)⇔ (E�) + (Eβ

)
⇔ (FK) + (Pβ

)⇔ (E�) + (Pβ

)
⇔ (DUE) + (Eβ

)⇔ (DUE) + (Pβ

)
,

⇔ (�UE)

⇔ (FK) + (Sβ

)⇔ (FK) + (Tβ

)
⇔ (DUE) + (Sβ

)⇔ (DUE) + (Tβ

)
⇔ (DUE) + (Texp

)
.

Let us emphasize the equivalence
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(UEloc) ⇔ (E�) + (Eβ

)
where the right hand side means the following: the mean exit time from all sets �

satisfies the isoperimetric inequality, and this inequality is optimal for balls (up to a
constant multiple). Note that the latter condition relates the properties of the diffusion
(and, hence, of the Dirichlet form) to the distance function.

Conjecture 3.9 Under the hypotheses of Theorem 3.8,

(UEloc) ⇔ (FK) +
{
λmin (Br ) 
 r−β

}
Indeed, the Faber-Krahn inequality (FK) can be regarded as an isoperimetric

inequality for λmin (�), and the condition

λmin (Br ) 
 r−β

means that (FK) is optimal for balls (up to a constant multiple).
Theorem 3.8 is an oversimplified version of a result of [GH10], where instead

of (Vα) one uses the volume doubling condition, and other hypotheses must be
appropriately changed.

The following lemma is used in the proof of Theorem 3.8.

Lemma 3.10 For any open set � ⊂ M

λmin (�) ≥ 1

esupx∈� Ex (τ�)
.

Proof Let G� be the Green operator in �, that is,

G� = L−1
� =

∞∫
0

e−tL�dt.

We claim that
Ex (τ�) = G�1 (x)

for almost all x ∈ �. We have

G�1 (x) =
∞∫

0

e−tL�1� (x) dt =
∞∫

0

Ex
(
1�

(
X�

t

))

=
∞∫

0

Ex
(
1{t<τ�}

)
dt = Ex

∞∫
0

(
1{t<τ�}

)
dt = Ex (τ�) .
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Setting
m = esup

x∈�

Ex (τ�) ,

we obtain that G�1 ≤ m, so that m−1G� is a Markovian operator. Therefore,∥∥m−1G�

∥∥
L2→L2 ≤ 1 whence specG� ∈ [0, m]. It follows that spec L� ⊂

[m−1,∞) and λmin (�) ≥ m−1. �

A new analytical approach is developed in [GH10] to prove Theorem 3.8, which
is different from the Davies-Gaffney approach [Dav92] . The difficult part in proving
Theorem 3.8 is to deduce (U Eloc) from various conditions.

Sketch of proof for Theorem 3.8 We sketch the main steps.

• By a direct integration, we have

(�U E) ⇒ (
Tβ

)
.

Indeed, for any x ∈ 1
4 B, we see that B(x, 1

2r) ⊂ B . Thus, setting rk = 2k(r/2)

and using condition (�U E) and the monotonicity of �, we obtain that

∫
M\B

pt (x, y)dμ(y) ≤
∫

M\B(x,r/2)

pt (x, y)dμ(y) (3.10)

=
∞∑

k=0

∫
B(x,rk+1)\B(x,rk )

pt (x, y) dμ(y)

≤
∞∑

k=0

∫
B(x,rk+1)\B(x,rk )

Ct−α/β�
( rk

t1/β

)
dμ(y)

≤
∞∑

k=0

Crα
k+1t−α/β�

( rk

t1/β

)

= C ′
∞∑

k=0

(
2k−1r

t1/β

)α

�

(
2k−1r

t1/β

)

≤ C ′
∞∫

1
4 r/t1/β

sα�(s)
ds

s
.

The integral (3.10) converges, and its value can be made arbitrarily small provided
that rβ/t is large enough. Hence, condition

(
Tβ

)
follows.

• The following implications hold:

(E�)
L. 3.10⇒ (FK)

T. 3.6⇒ (DUE) .
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In particular, we see that the heat kernel exists under any of the hypotheses of
Theorem 3.8.

• We can also show that (
Eβ

)⇒ (
Pβ

) =⇒ (
Tβ

)
(the implication

(
Eβ

)⇒ (
Pβ

)
was pointed out in [Bar98]).

• By a bootstrapping technique, we obtain (hard!) the implication

(
Tβ

) =⇒ (
Texp

)
(see also [GH08]). Hence, any set of the hypothesis of Theorem 3.8 imply both
(DUE) and

(
Texp

)
.

• Finally, it is easy to check the implication

(DUE) + (Texp
)⇒ (U Eloc) . (3.11)

Indeed, using the semigroup identity, we have that, for all t > 0, almost all
x, y ∈ M , and r := 1

2 d (x, y),

pt (x, y) =
∫
M

p t
2
(x, z) p t

2
(z, y) dμ(z) (3.12)

≤
⎛
⎜⎝ ∫

B(x,r)c

+
∫

B(y,r)c

⎞
⎟⎠ p t

2
(x, z) p t

2
(z, y) dμ(z)

≤ esup
z∈M

p t
2
(z, y)

∫
B(x,r)c

p t
2
(x, z) dμ(z)

+ esup
z∈M

p t
2
(x, z)

∫
B(y,r)c

p t
2
(y, z) dμ(z).

On the other hand, by condition (DUE),

esup pt ≤ Ct−α/β,

whilst by condition
(
Tβ

)
,

∫
B(x,r)c

p t
2
(x, z) dμ(z) ≤ C exp

⎛
⎝−c

(
dβ (x, y)

t

) 1
β−1
⎞
⎠ .

Therefore, it follows from (3.12) that, for almost all x, y ∈ M ,
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pt (x, y) ≤ C

tα/β
exp

⎛
⎝−c

(
dβ (x, y)

t

) 1
β−1
⎞
⎠ ,

proving the implication (3.11). �

Recently, Andres and Barlow [AB] gave a new equivalence condition for (U Eloc).
Consider the following functional inequality.(

C S Aβ

)
(The cutoff Sobolev annulus inequality) There exists a constant C > 0

such that, for all two concentric balls B(x, R), B(x, R + r), there exists a cutoff
function ϕ satisfying

∫
U

f 2dμ〈ϕ〉 ≤ 1

8

∫
U

ϕ2dμ〈 f 〉 + Cr−β
∫
U

f 2dμ

for any f ∈ F , where U = B(x, R + r) \ B(x, R) is the annulus and μ〈ϕ〉 is the
energy measure associated with ϕ:

∫
M

udμ〈ϕ〉 = 2E(uϕ,ϕ) − E(ϕ2, u) for any u ∈ F ∩ C0(M).

We remark here that constant C is universal that is independent of two concentric
balls B(x, R), B(x, R + r) and function f , whilst the cutoff function ϕ may depend
on the balls but is independent of function f . The coefficient 1

8 is not essential and
is chosen for technical reasons.

Theorem 3.11 (Andres, Barlow [AB]) Let (M, d,μ) be an unbounded metric mea-
sure space and let (Vα) hold. Let (E,F) be a regular, local Dirichlet form in
L2(M,μ). Then, the following equivalence is true:

(U Eloc) ⇔ (FK) + (C S Aβ

)
.

We mention that here the Dirichlet form is not required to be conservative as in
Theorem 3.8.

The key point in proving Theorem 3.11 is to derive the “Davies-Gaffney” bound
[Dav92], and then use the technique developed in [Gri92, CG98] to show a mean
value inequality for weak solutions of the heat equation. It is quite surprising that
the Davies-Gaffney method still works when the walk dimension β may be greater
than 2.
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4 Two-Sided Sub-Gaussian Bounds

4.1 Using Elliptic Harnack Inequality

Now we would like to extend the results of Theorems 3.8, 3.11, and obtain also the
lower estimates and the Hölder continuity of the heat kernel. As before, (M, d,μ) is
a metric measure space, and assume in addition that all metric balls are precompact.
Let (E,F) is a local regular conservative Dirichlet form in L2 (M,μ).

Definition 4.1 We say that a function u ∈ F is harmonic in an open set � ⊂ M if

E (u, v) = 0 for all v ∈ F (�) .

For example, if M = R
n and (E,F) is the canonical Dirichlet form in R

n, then
a function u ∈ W 1

2 (Rn) is harmonic in an open set � ⊂ R
n if

∫
Rn

〈∇u,∇v〉dx = 0

for all v ∈ H1
0 (�) or for v ∈ C∞

0 (�). This of course implies that �u = 0 in a weak
sense in � and, hence, u is harmonic in � in the classical sense. However, unlike the
classical definition, we a priori require u ∈ W 1

2 (Rn) .

Definition 4.2 (Elliptic Harnack inequality (H)) We say that M satisfies the elliptic
Harnack inequality (H) if there exist constants C > 1 and δ ∈ (0, 1) such that for
any ball B (x, r) and for any function u ∈ F that is non-negative and harmonic in
B (x, r),

esup
B(x,δr)

u ≤ C einf
B(x,δr)

u.

We remark that constants C and δ are independent of ball B(x, r) and function u.

We introduce the near-diagonal lower estimate of heat kernel.

(N L E) (Near-diagonal lower estimate) The heat kernel pt (x, y) exists, and sat-
isfies

pt (x, y) ≥ c

tα/β

for all t > 0 and μ × μ-almost all x, y ∈ M such that d (x, y) ≤ δt1/β, where
δ > 0 is a sufficiently small constant.

Denote by
(
U Estrong

)
a modification of condition (U Eloc) that is obtained by

adding the Hölder continuity of pt (x, y) and by restricting inequality in (U Eloc) to
all x, y ∈ M . In a similar way, we can define condition

(
N L Estrong

)
.
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Theorem 4.3 (Grigor’yan, Telcs [GT12, Theorem 7.4]) Let (M, d,μ) be a metric
measure space and let (Vα) hold. Let (E,F) be a regular, strongly local Dirichlet
form in L2(M,μ). Then, the following equivalences are true:

(H) + (Eβ

) ⇔ (U Eloc) + (N L E)

⇔ (
U Estrong

)+ (N L Estrong

)
.

This theorem is proved in [GT12] for a more general setting of volume doubling
instead of (Vα).

Observe that the following implications hold [GT12, Lemma 7.3]:

(H) ⇒ (M, d) is connected,(
Eβ

) ⇒ (E,F) is conservative,(
Eβ

) ⇒ diam (M) = ∞.

Proof Sketch of proof for Theorem 4.3 First one shows that

(Vα) + (Eβ

)+ (H) ⇒ (FK) ,

which is quite involved and uses, in particular, Lemma 3.10. Once having (Vα) +(
Eβ

)+ (FK) , we obtain (U Eloc) by Theorem 3.8.
Using the elliptic Harnack inequality, one obtains in a standard way the oscillating

inequality for harmonic functions and then for functions of the form u = G� f (that
solves the equation L�u = f ) in terms of ‖ f ‖∞ .

If now u = P�
t f then u satisfies the equation

d

dt
u = −L�u,

and whence

u = −G�

(
d

dt
u

)
.

Knowing an upper bound for u, which follows from the upper bound of the heat
kernel, one obtains also an upper bound for d

dt u in terms of u. Applying the oscillation
inequality one obtains the Hölder continuity of u and, hence, of the heat kernel.

Let us prove the on-diagonal lower bound

pt (x, x) ≥ ct−α/β .

Note that (U Eloc) and (Vα) imply that
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B(x,r)

pt (x, y) dμ (y) ≥ 1

2

provided r ≥ K t1/β (cf. [GHL03, formula (3.8)]). Choosing r = K t1/β , we obtain

p2t (x, x) =
∫
M

p2
t (x, y) dμ (y)

≥ 1

μ (B (x, r))

⎛
⎜⎝ ∫

B(x,r)

pt (x, y) dμ (y)

⎞
⎟⎠

2

≥ c

rα
= c′

tα/β
.

Then (N L E) follows from the upper estimate for

|pt (x, x) − pt (x, y)|

when y close to x , which follows from the oscillation inequality. �
We next characterize (U Eloc) + (N L E) by using the estimates of the capacity

and of the Green function.

Definition 4.4 (capacity) Let � be an open set in M and A � � be a Borel set.
Define the capacity cap(A,�) by

cap(A,�) := inf {E (ϕ) : ϕ is a cutoff function of (A,�)} . (4.1)

It follows from the definition that the capacity cap(A,�) is increasing in A, and
decreasing in �, namely, if A1 ⊂ A2,�1 ⊃ �2, then cap(A1,�1) ≤ cap(A2,�2).

Using the latter property, let us extend the definition of capacity when A ⊂ � as
follows:

cap(A,�) = lim
n→∞ cap(A ∩ �n,�) (4.2)

where {�n} is any increasing sequence of precompact open subsets of � exhausting
� (in particular, A ∩ �n � �).

Note that by the monotonicity property of the capacity, the limit in the right
hand side of (4.2) exists (finite or infinite) and is independent of the choice of the
exhausting sequence {�n}.

Next, define the resistance res (A,�) by

res (A,�) = 1

cap(A,�)
. (4.3)

We introduce the notions of the Green operator and the Green function.
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Definition 4.5 For an open � ⊂ M , a linear operator G� : L2(�) → F(�) is
called a Green operator if, for any ϕ ∈ F(�) and any f ∈ L2(�),

E(G� f,ϕ) = ( f,ϕ) . (4.4)

If G� admits an integral kernel g�, that is,

G� f (x) =
∫
�

g�(x, y) f (y)dμ(y) for any f ∈ L2(�), (4.5)

then g� is called a Green function.

It is known (cf. [GH00, Lemma 5.1]) that if (E,F) is regular and if � ⊂ M
is open such that λmin(�) > 0, then the Green operator G� exists, and in fact,
G� = (−L�)−1, the inverse of −L�, where L� is the generator of (E,F (�)).
However, the issue of the Green function g� is much more involved, and is one of
the key topics in [GH00].

For an open set � ⊂ M , function E� is defined by

E� (x) := G�1(x) (x ∈ M) , (4.6)

namely, the function E� is a unique weak solution of the following Poisson-type
equation

− L�E� = 1, (4.7)

provided that λmin(�) > 0.
It is known that

E� (x) = Ex (τ�) for μ-a.a. x ∈ M. (4.8)

Clearly, if the Green function g� exists, then

E� (x) = G�1(x) =
∫
�

g� (x, y) dμ(y) (4.9)

for μ-almost all x ∈ M .
We introduce the following hypothesis.(
Rβ

)
(Resistance condition

(
Rβ

)
) We say that the resistance condition

(
Rβ

)
is

satisfied if, there exist constants K , C > 1 such that, for any ball B of radius
r > 0,

C−1 rβ

μ (B)
≤ res (B, K B) ≤ C

rβ

μ (B)
, (4.10)

where constants K and C are independent of the ball B. Equivalently, (4.10) can
be written in the form
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res (B, K B) 
 rβ

μ (B)
.

(
E ′

β

)
(Condition

(
E ′

β

)
) We say that condition

(
E ′

β

)
holds if, there exist two

constants C > 1 and δ1 ∈ (0, 1) such that, for any ball B of radius r > 0,

esup
B

E B ≤ Crβ,

einf
δ1 B

E B ≥ C−1rβ .

(
Gβ

)
(Condition

(
Gβ

)
) We say that condition

(
Gβ

)
holds if, there exist constants

K > 1 and Ċ > 0 such that, for any ball B := B (x0, R), the Green kernel gB

exists and is jointly continuous off the diagonal, and satisfies

gB (x0, y) ≤ C

R∫
K −1d(x0,y)

sβds

sV (x, s)
for all y ∈ B \ {x0},

gB (x0, y) ≥ C−1

R∫
K −1d(x0,y)

sβds

sV (x, s)
for all y ∈ K −1 B \ {x0},

where V (x, r) = μ(B(x, r)) as before.

Theorem 4.6 (Grigor’yan and Hu) [GH00, Theorem 3.14]) Let (M, d,μ) be a
metric measure space and let (Vα) hold. Let (E,F) be a regular, strongly local
Dirichlet form in L2(M,μ). Then, the following equivalences are true:

(H) +
(

E ′
β

)
⇔ (

Gβ

)⇔ (H) + (Rβ

)
⇔ (U Eloc) + (N L E)

⇔ (
U Estrong

)+ (N L Estrong

)
.

We mention that condition (Vα) can be replaced by conditions (VD) and (RVD),
the latter refers to the reverse doubling condition (cf. [GH00]).

Sketch of proof for Theorem 4.6 The proofs of Theorem 4.6 consists of two
parts.

• Part One. Firstly, the following implications hold:
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(
U Estrong

)+ (N L Estrong

)
�

(U Eloc) + (N L E)

� ⇑
(H) + (Eβ

) ⇒ (H) +
(

E ′
β

)

In fact, by Theorem 4.3, we only need to show that

(
Eβ

)⇒
(

E ′
β

)
, (4.11)

(H) +
(

E ′
β

)
=⇒ (U Eloc) + (N L E). (4.12)

The implication (4.11) can be proved directly by using the probability argument,
see [GH00, Theorem 3.14]. And the implication (4.12) can be done by showing
the following

(H) +
(

E ′
β

)
⇒ (FK) ([GT12, formula (3.17) and T.3.11])(

E ′
β

)
⇒ (

Sβ

)
(by [GHL00, formula (6.34)])

(FK) + (Sβ

) ⇒ (U Eloc) (by Theorem 3.8)

(H) +
(

E ′
β

)
⇒ (N L E) (by [GT12, Section 5.4]).

• Part Two. Secondly, we need to show that

(H) +
(

E ′
β

)
⇔ (

Gβ

)⇔ (H) + (Rβ

)
.

This is the hard part. The cycle implications are obtained in [GH00, Section 8 ] as
follows:

(H) + (Rβ

) =⇒ (
Gβ

) =⇒ (H) +
(

E ′
β

)
=⇒ (H) + (Rβ

)
.

One of the most challenging results (cf. [GH00, Lemma 5.7]) is to obtain an
annulus Harnack inequality for the Green function, without assuming any specific
properties of the metric d, unlike previously known similar results in [Bar05],
[GT02] where the geodesic property of the distance function was used. �



Heat Kernels on Metric Measure Spaces 191

4.2 Matching Upper and Lower Bounds

The purpose of this subsection is to improve both (U Eloc) and (N L E) in order to
obtain matching upper and lower bounds for the heat kernel. The reason why (U Eloc)

and (N L E) do not match, in particular, why (N L E) contains no information about
lower bound of pt (x, y) for distant x, y is the lack of chaining properties of the
distance function, that is an ability to connect any two points x, y ∈ M by a chain
of balls of controllable radii so that the number of balls in this chain is also under
control.

For example, the chain condition considered above is one of such properties.
If (M, d) satisfies the chain condition, then as we have already mentioned, (N L E)

implies the full sun-Gaussian lower estimate by the chain argument and the semigroup
property (see for example [GHL03, Corollary 3.5]).

Here we consider a setting with weaker chaining properties. For any ε > 0, we
introduce a modified distance dε (x, y) by

dε (x, y) = inf{xi } is ε-chain

N∑
i=1

d (xi , xi−1) , (4.13)

where an ε-chain is a sequence {xi }N
i=0 of points in M such that

x0 = x, xN = y, and d(xi , xi−1) < ε for all i = 1, 2, ..., N .

Clearly, dε (x, y) is decreases as ε increases and dε (x, y) = d (x, y) if ε > d (x, y).
As ε ↓ 0, dε (x, y) increases and can go to ∞ or even become equal to ∞. It is easy
to see that dε (x, y) satisfies all properties of a distance function except for finiteness,
so that it is a distance function with possible value +∞.

It is easy to show that
dε (x, y) 
 εNε (x, y) ,

where Nε (x, y) is the smallest number of balls in a chain of balls of radius ε con-
necting x and y (Fig. 7):

Nε can be regarded as the graph distance on a graph approximation of M by an
ε-net.

If d is geodesic, then the points {xi } of an ε-chain can be chosen on the short-
est geodesic, whence dε (x, y) = d (x, y) for any ε > 0. If the distance function
d satisfies the chain condition, then one can choose in (4.13) an ε-chain so that
d (xi , xi+1) ≤ C d(x,y)

N , whence dε (x, y) ≤ Cd (x, y). In general, dε (x, y) may go
to ∞ as ε → 0, and the rate of growth of dε (x, y) as ε → 0 can be regarded as a
quantitative description of the chaining properties of d.

We need the following hypothesis

Cβ (Chaining property) For all x, y ∈ M ,
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x0=x

xN=yxi

Fig. 7 Chain of balls connecting x and y

εβ−1dε (x, y) → 0 as ε → 0,

or equivalently,

εβ Nε (x, y) → 0 as ε → 0.

For x �= y we have εβ−1dε (x, y) → ∞ as ε → ∞, which implies under
(
Cβ

)
that for any t > 0, there is ε = ε (t, x, y) satisfying the identity

εβ−1dε (x, y) = t (4.14)

(always take the maximal possible value of ε). If x = y, then set ε (t, x, x) = ∞.

Theorem 4.7 (Grigor’yan, Telcs [GT12, Section 6]) Assume that all the hypothesis
of Theorem 4.6 hold. If

(
Eβ

)+ (H) and
(
Cβ

)
are satisfied, then

pt (x, y) 
 C

tα/β
exp

⎛
⎝−c

(
dβ
ε (x, y)

t

) 1
β−1
⎞
⎠ (4.15)


 C

tα/β
exp (−cNε (x, y)) , (4.16)

where ε = ε (t, x, y).

Since dε (x, y) ≥ d (x, y), the upper bound in (4.15) is an improvement of
(U Eloc); similarly the lower bound in (4.15) is an improvement of (N L E). The
proof of the upper bound in (4.15) follows the same line as the proof of (U Eloc) with
careful tracing all places where the distance d (x, y) is used and making sure that it
can be replaced by dε (x, y). The proof of the lower bound in (4.16) uses (N L E) and
the semigroup identity along the chain with Nε balls connecting x and y . Finally,
observe that (4.15) and (4.16) are equivalent, that is
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Nε 

(

dβ
ε (x, y)

t

) 1
β−1

,

which follows by substituting here Nε 
 dε/ε and t = εβ−1dε (x, y) .

By Theorem 4.6, the same conclusion in Theorem 4.7 is true if
(
Eβ

) + (H) is

instead replaced by the one of conditions (H) +
(

E ′
β

)
,
(
Gβ

)
and (H) + (Rβ

)
.

Example 4.8 A good example to illustrate Theorem 4.7 is the class of post critically
finite (p.c.f.) fractals. For connected p.c.f. fractals with regular harmonic structure,
the heat kernel estimate (4.16) was proved by Hambly and Kumagai [HK99], see also
[KS05, Theorem 5.2]. In this setting d (x, y) is the resistance metric of the fractal
M and μ is the Hausdorff measure of M of dimension α := dimH M . Hambly and
Kumagai proved that (Vα) and

(
Eβ

)
are satisfied with β = α + 1. The condition(

Cβ

)
follows from their estimate

Nε (x, y) ≤ C

(
d (x, y)

ε

)β/2

,

because

εβ Nε (x, y) ≤ Cd (x, y)β/2 εβ/2 → 0 as ε → 0.

The Harnack inequality (H) on p.c.f. fractals was proved by Kigami [Kig01,
Proposition 3.2.7, p.78]. Hence, Theorem 4.7 applies and gives the estimates (4.15)
and (4.16).

The estimate (4.16) means that the diffusion process goes from x to y in time t
in the following way. The process firstly “computes” the value ε (t, x, y), secondly
“detects” a shortest chain of ε-balls connecting x and y, and then goes along that
chain (Fig. 8).

This phenomenon was first observed by Hambly and Kumagai on p.c.f. fractals,
but it seems to be generic. Hence, to obtain matching upper and lower bounds, one
needs in addition to the usual hypotheses also the following information, encoded in
the function Nε (x, y): the graph distance between x and y on any ε-net approxima-
tion of M .

Example 4.9 (Computation of ε) Assume that the following bound is known for all
x, y ∈ M and ε > 0

Nε (x, y) ≤ C

(
d (x, y)

ε

)γ

,

where 0 < γ < β, so that
(
Cβ

)
is satisfied (since Nε ≥ d (x, y) /ε, one must have

γ ≥ 1). Since by (4.14) we have εβ Nε 
 t , it follows that
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x

y

Fig. 8 Two shortest chains of ε-ball for two distinct values of ε provide different routes for the
diffusion from x to y for two distinct values of t

εβ

(
d (x, y)

ε

)γ

≥ ct,

whence

ε ≥ c

(
t

d (x, y)γ

) 1
β−γ

.

Consequently, we obtain

Nε (x, y) ≤ Cd (x, y)γ ε−γ ≤ Cd (x, y)γ
(

d (x, y)γ

t

) γ
β−γ = C

(
d (x, y)β

t

) γ
β−γ

,

and so

pt (x, y) ≥ c

tα/β
exp

⎛
⎝−

(
d (x, y)β

ct

) γ
β−γ

⎞
⎠ .

Similarly, the lower estimate of Nε

Nε (x, y) ≥ c

(
d (x, y)

ε

)γ

implies an upper bound for the heat kernel

pt (x, y) ≤ C

tα/β
exp

⎛
⎝−

(
d (x, y)β

Ct

) γ
β−γ

⎞
⎠ .
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Remark 4.10 Assume that (Vα) holds and all balls in M of radius ≥ r0 are connected,
for some r0 > 0. We claim that

(
Cβ

)
holds with any β > α. The α-regularity of

measure μ implies, by the classical ball covering argument, that any ball Br of radius
r can be covered by at most C

( r
ε

)α balls of radii ε ∈ (0, r). Consequently, if Br

is connected then any two points x, y ∈ Br can be connected by a chain of ε-balls
containing at most C

( r
ε

)α balls, so that

Nε (x, y) ≤ C
(r

ε

)α
.

Since any two points x, y ∈ M are contained in a connected ball Br (say, with
r = r0 + d (x, y)), we obtain

εβ Nε (x, y) ≤ Cεβ−αrα → 0

as ε → 0, which was claimed.

4.3 Further Results

We discuss here some consequences and extensions of the above results. For this,
we introduce two-sided estimates of the heat kernel.

(U L Eloc) (Upper and lower estimates) The heat kernel pt (x, y) exists and satis-
fies

pt (x, y) 
 C

tα/β
exp

⎛
⎝−c

(
dβ(x, y)

t

) 1
β−1
⎞
⎠ . (4.17)

Theorem 4.11 Let (M, d,μ) be a metric measure space, and let (E,F) be a regular,
conservative Dirichlet form in L2(M,μ) . If (M, d) satisfies the chain condition, then
the following equivalences take place:

(Vα) +

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
Eβ

)+ (H)(
E ′

β

)
+ (H)(

Rβ

)+ (H)(
Gβ

) + (locality) ⇐⇒ (U L Eloc),

where condition (locality) means that (E,F) is local.

Remark 4.12 Observe that if (E,F) is regular, conservative and local, then (E,F) is
strongly local; this is easily seen by using the Beuling-Deny decomposition [FOT11,
Theorem 3.2.1, p. 120] and by noting that both killing and jump measures disappear.
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Remark 4.13 Observe also that (Vα) + (N L E)+ (chain condition) implies that the
off-diagonal lower estimate

pt (x, y) ≥ C ′

tα/β
exp

⎛
⎝−c′

(
dβ(x, y)

t

) 1
β−1
⎞
⎠ (4.18)

for μ-almost all x, y ∈ M and all t > 0, see for example [GHL08, Proposition 3.1]
or [Bar98], [GHL03, Corollary 3.5].

Sketch of proof for Theorem 4.11 (1) “⇒”.
Let us show the implication

(Vα) + (Eβ

)+ (H) + ( locality) ⇒ (U L Eloc). (4.19)

Indeed, by Remark 4.12, we have that (E,F) is strongly local. Now, using Theorem
4.3, we obtain (U Eloc) + (N L E). Using Remark 4.13, we see that (4.18) holds,
showing that (U L Eloc) is true.

Similarly, using Theorem 4.6, we obtain the other three implications “⇒”.
(2) “⇐”.
Let us show the opposite implication

(U L Eloc) ⇒ (Vα) + (Eβ

)+ (H) + (locality). (4.20)

Indeed, note that

(U L Eloc) ⇒ (Vα) (by Theorem 2.2)

(U Eloc) ⇒ (locality) (by Theorem 2.14)

(U Eloc) + (N L E) ⇒ (
Eβ

)+ (H) (by Theorem 4.3)

showing that the implication (4.20) holds.
Similarly, all the other three implications “⇐=” also hold. �

Remark 4.14 The implication (4.19) can also be proved by using Theorem 4.7 and
the fact that dε 
 d.

Conjecture 4.15 The condition
(
Eβ

)
above may be replaced by

λmin (B (x, r)) 
 r−β . (λβ)

In fact,
(
Eβ

)
in all statements can be replaced by the resistance condition:

res(Br , B2r ) 
 rβ−α (Rβ)

where Br = B (x, r). In the strongly recurrent case α < β, it alone implies the
elliptic Harnack inequality (H) so that two sided heat kernel estimates are equivalent
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to (Vα) + (Rβ

)
as was proved by Barlow, Coulhon, Kumagai [BCK05] (in a setting

of graphs) and was discussed in M. Barlow’s lectures.
An interesting (and obviously hard) question is the characterization of the elliptic

Harnack inequality (H) in more geometric terms—so far nothing is known, not even
a conjecture.

One can consider also a parabolic Harnack inequality (PHI), which uses caloric
functions instead of harmonic functions. Then in a general setting and assum-
ing the volume doubling condition (VD) (instead of (Vα)), the following holds
(cf. [BGK12]):

(PHI) ⇔ (U Eloc) + (N L E) .

On the other hand, (PHI) is equivalent to

Poincaré inequality + cutoff Sobolev inequality,

see [BBK06].

Conjecture 4.16 The cutoff Sobolev inequality here can be replaced by
(
λβ

)
and/or(

Rβ

)
.

5 Upper Bounds for Jump Processes

We have investigated above the heat kernel for the local Dirichlet form. In this section
we shall study the non-local Dirichlet form and present the equivalence conditions
for upper bounds of the associated heat kernel. As an interesting example, we discuss
the heat kernel estimates for effective metric spaces.

A non-local Dirichlet form will give arise to a jump process, that is, the trajectories
of this process are discontinuous, as we have already seen for a symmetric stable
process of index β (Lévy process). And the heat kernel decays at a polynomial rate
(cf. 1.2), instead of an exponential rate as for a local Dirichlet form.

Jump process have found various applications in science. For instance, a Lévy
flight is a jump process and can be used to describe animal foraging patterns, the
distribution of human travel and some aspects of earthquake behavior (cf. [BBW08]).

5.1 Upper Bounds for Non-local Dirichlet Forms

The techniques for obtaining heat kernel bounds for non-local Dirichlet forms has
been developed by a number of authors, see for example [BBCK09, BGK09, BL02,
CK03, CK08] and the references therein. The basic approach to obtaining heat kernel
upper estimates used in these papers consists of the two steps. The first step is to
obtain the heat kernel upper bounds for a truncated Dirichlet form, that is, in the
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case when the jump density J (x, y) has a bounded range. In this case one uses the
Davies method as it was presented in the seminal work [CKS87] and where the cut-
off functions of form (λ − d(x0, x))+ were used (where λ is a positive constant).
This method can be used as long as the cut-off functions belong to the domain of the
Dirichlet form, which is the case only when β < 2 (hence, if β ≥ 2 then this method
does not work).

The second step is to obtain heat kernel estimates for the original Dirichlet form by
comparing the heat semigroup of the truncated Dirichlet form with the original heat
semigroup. We remark that while the first step was done by purely analytic means,
the second step in the above-mentioned papers used a probabilistic argument.

Here we describe an alternative new approach of [GHL00] for obtaining upper
bounds.

Recall that by a theorem of Beurling and Deny, any regular conservative Dirichlet
form admits a decomposition

E(u, v) = E (L)(u, v) + E (J )(u, v), (5.1)

where E (L) is a local part and

E (J ) (u, v) =
∫∫

M×M\diag

(u(x) − u(y)) (v(x) − v(y)) d j (x, y) (5.2)

is a jump part with a jump measure j defined on M × M \ diag. In our setting the
jump measure j will have a density with respect to μ × μ, which will be denoted by
J (x, y) , and so the jump part E (J ) becomes

E (J ) (u, v) =
∫∫
M×M

(u(x) − u(y)) (v(x) − v(y)) J (x, y)dμ(y)dμ(x). (5.3)

We introduce the following hypothesis.(
V≤
)

(Upper α- regularity) For all x ∈ M and all r > 0,

V (x, r) ≤ Crα.

(UE) (Upper estimate of non-local type) The heat kernel pt exists and satisfies
the off-diagonal upper estimate

pt (x, y) ≤ C

tα/β

(
1 + d(x, y)

t1/β

)−(α+β)

for all t > 0 and μ-almost all x, y ∈ M.

(J≤) (Upper bound of jump density) The jump density exists and admits the esti-
mate
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J (x, y) ≤ Cd(x, y)−(α+β),

for μ-almost all x, y ∈ M .
(Tstrong) (Strong tail estimate) There exist constants c > 0 and β > 0 such that,
for all balls B = B(x0, r) and for all t > 0,

Pt 1Bc (x) ≤ ct

rβ
for μ -almost all x ∈ 1

4
B.

Clearly, we have that
(
Texp

)⇒ (
Tstrong

)⇒ (
Tβ

)
.

We now state the main technical result of [GHL00].

Theorem 5.1 (Grigor’yan et al. [GHL00]) Let (M, d,μ) be a metric measure space
with precompact balls, and let (E,F) be a regular conservative Dirichlet form in
L2 (M,μ) with jump density J . Then the following implication holds:

(
V≤
)+ (DUE) + (J≤) + (Sβ

)⇒ (U E) . (5.4)

We remark that by [GHL03, Theorem 3.2], if (E,F) is conservative then

(
V≤
)+ (U E) ⇒ (Vα) .

Hence, the hypotheses of Theorem 5.1 imply that μ is α-regular.
Sketch of proof for Theorem 5.1 We sketch the ideas of the proof.

• Step 1. We decompose E(u) into two parts:

E(u) = E (ρ)(u) +
∫
M

∫
M\B(x,ρ)

(u(x) − u(y))2 J (x, y)dμ(y)dμ(x),

where ρ ∈ (0,∞) is any fixed number. Then the form
(E (ρ),F) can be extended

to a regular Dirichlet form
(E (ρ),F (ρ)

)
. Indeed, since using condition (J≤),

esup
x∈M

∫
B(x,ρ)c

J (x, y)dμ(y) < ∞,

the form
(E (ρ),F) is closable, and its closure

(E (ρ),F (ρ)
)

in L2 is a regular
Dirichlet form in L2. Note that

(E (ρ),F (ρ)
)

is ρ-local (non-local): E (ρ)( f, g) = 0
for any two functions f, g ∈ F (ρ) with compact supports such that

dist (supp f, supp g) > ρ.

• Step 2. We need to obtain upper estimates of the heat kernel qt (x, y) of the trun-
cated Dirichlet form

(E (ρ),F (ρ)
)
. Indeed, conditions (DUE),

(
J≤
)
, (Sβ) and

(
V≤
)
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imply the following estimate of qt (x, y) :

qt (x, y) ≤ C

tα/β
exp

(
4ρ−β t

)
exp

(
−c

(
d(x, y)

ρ
∧ ρ

t1/β

))
(5.5)

for all t > 0 and μ-almost all x, y ∈ M , where constants C, c > 0 depend
on the constants in the hypotheses but are independent of ρ. This can be done
with a certain amount of effort, by using the bootstrapping technique where the
comparison inequality [GHL10, Corollary 4.8, Remark 4.10] for heat semigroups
play an important rôle.

• Step 3. Next we apply the following useful inequality between two heat kernels:

pt (x, y) ≤ qt (x, y) + 2t esup
x∈M,y∈B(x,ρ)c

J (x, y) (5.6)

for all t > 0 and almost all x, y ∈ M; this inequality follows from the parabolic
maximum principle alone. Therefore, by choosing an appropriate ρ, it follows
from (5.5), (5.6) that, for any real n ≥ 0,

pt (x, y) ≤ c(n)

tα/β

(
1 + d(x, y)

t1/β

)− (α+β)n
n+α+β

(5.7)

for almost all x, y ∈ M and all t > 0.
Note that (5.7) is nearly close to our desired estimate (U E) . However, one can
not just obtain (U E) by directly taking the limit as n → ∞, since we do not
know whether the coefficient c(n) is bounded uniformly in n. We need the second
iteration.

• Step 4. Finally, we will obtain (U E) by a self-improvement of (5.7). Indeed, one
can use (5.7) to obtain

∫
B(x,r)c

pt (x, y)dμ(y) ≤ C(n)
(

r t−1/β
)−θ

,

where θ = nβ−α(α+β)
n+α+β ∈ (0,β) (note that this estimate is sharper than condition(

Sβ

)
), and then repeating the above procedure, we arrive at (U E). �

Now we can state some equivalences for (U E).

Theorem 5.2 (Grigor’yan et al. [GHL00]) Let (M, d,μ) be a metric measure space
with precompact balls, and let (E,F) be a regular conservative Dirichlet form in
L2 (M,μ) with jump density J . If

(
V≤
)

holds, then the following equivalences are
true:
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(U E) ⇔ (U E�) + (J≤) (5.8)

⇔ (DUE) + (J≤) + (Tβ

)
⇔ (DUE) + (J≤) + (Sβ

)
⇔ (DUE) + (J≤) + (Tstrong

)
.

Proof Observe that the implication (U E) ⇒ (J≤) holds by [BGK09, p. 150],
and (U E) ⇒ (U E�) is trivial by taking �(s) = (1 + s)−(α+β). The implica-
tion (U E�) ⇒ (DUE) is obvious. The implication (U E�) ⇒ (

Tβ

)
was proved in

(3.10) (see also [GHL03, formula (3.6), p. 2072]). Since (E,F) is conservative, the
equivalence

(
Tβ

) ⇔ (
Sβ

)
holds by [GH08, Theorem 3.1, p. 96]. By Theorem 5.1

we have
(DUE) + (J≤) + (Sβ

)⇒ (U E) ,

which closes the cycle of implications, thus proving the first three equivalences.
Finally, the implication (U E) ⇒ (

Tstrong

)
is true by using (3.10), and hence

(U E) ⇒ (DUE) + (J≤) + (Tstrong

)
⇒ (DUE) + (J≤) + (Tβ

)⇒ (U E) ,

which finishes the proof. �

Remark 5.3 The upper estimate (U E) is best possible for non-local forms in the
following sense: if the heat kernel pt satisfies the estimate

pt (x, y) ≤ 1

tα/β
�

(
d(x, y)

t1/β

)

for all t > 0 and μ-almost all x, y ∈ M , where � is a continuous decreasing function
on [0,+∞), then necessarily

�(s) ≥ c (1 + s)−(α+β)

for some c > 0 (see Theorem 2.14).

Remark 5.4 Under the standing assumptions of Theorem 5.2, the following equiv-
alence is true

(U Eloc) ⇔ (DUE) + (“locality”) + (Sβ

)
.

Indeed, since (U Eloc) is stronger than (U E) , it implies (DUE) and
(
Sβ

)
by Theorem

5.2. Next, (U Eloc) ⇒(“locality”) by Theorem 2.14 above. The opposite implication

(DUE) + (“locality”) + (Sβ

)⇒ (U Eloc)

was stated in Theorem 3.8.
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In order to state some consequence of Theorem 5.2, we need the following
Proposition.

Define first the following condition:

(J≥) (Lower bound of jump density) There exist constants C,α,β > 0 such that,
for μ -almost all x �= y,

J (x, y) ≥ C−1d(x, y)−(α+β).

Proposition 5.5 Let (M, d,μ)be a metric measure space, and let (E,F)be a regular
Dirichlet form in L2 (M,μ) with jump density J . Then

(Vα) + (J≥) ⇒ (DUE) . (5.9)

Proof As was proved in [HuK06, Theorem 3.1], under (Vα) the following inequality
holds for all non-zero functions u ∈ L1 ∩ L2:

∫
M

∫
M

(u (x) − u (y))2

d (x, y)α+β
dμ (x) dμ (y) ≥ c||u||2(1+β/α)

2 ‖u‖−2β/α
1 ,

where c is a positive constant. Using (5.1), (5.3) and
(
J≥
)

we obtain

E (u) = E (L) (u) + E (J ) (u)

≥ C
∫
M

∫
M

(u (x) − u (y))2

d (x, y)α+β
dμ (x) dμ (y)

≥ c||u||2(1+β/α)
2 ‖u‖−2β/α

1

for all u ∈ F ∩ L1. Hence, (DUE) follows by Theorem 3.6. �
We obtain the following consequence of Theorem 5.2.

Theorem 5.6 (Grigor’yan et al. [GHL00]) Let (M, d,μ) be a metric measure space
with precompact balls, and let (E,F) be a regular conservative Dirichlet form in
L2 (M,μ) with jump density J . If (Vα) holds and J (x, y) 
 d(x, y)−(α+β), then

(U E) ⇔ (
Sβ

)
. (5.10)

Proof Let us show that
(
Sβ

) ⇒ (U E) . Indeed, (DUE) holds by Proposition 5.5.
Hence, (U E) is satisfied by Theorem 5.2. The opposite implication (U E) ⇒ (

Sβ

)
holds also by Theorem 5.2. �

Therefore, if (Vα) holds and J (x, y) 
 d(x, y)−(α+β), then in order to obtain
off-diagonal upper bounds of heat kernels, one needs only to verify the survival
condition

(
Sβ

)
. In the sequel, we will show that the survival condition

(
Sβ

)
holds

for a class of measure spaces with effective resistance metrics.
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5.2 Upper Bounds Using Effective Resistance

We will show how Theorem 5.2 can be applied for a certain class of metric measure
spaces with effective resistance.

Let (E,F) be a regular Dirichlet form in L2 (M,μ) as before. Recall that the
effective resistance R(A, B) between two disjoint non-empty closed subsets A and
B of M is defined by

R(A, B)−1 = inf {E (u) : u ∈ F ∩ C0, u|A = 1 and u|B = 0} . (5.1)

It follows from (5.1) that, for any fixed A, R(A, B) is a non-increasing function of
B. Denote by

R(x, B) := R({x}, B) and R(x, y) := R({x}, {y}).

In general, it may happen that R(x, y) = ∞ for some points x, y ∈ M . Below we
will exclude this case.

Fix a parameter γ > 0, and introduce conditions (R1) and (R2).

(R1) : For all u ∈ F ∩ C0(M) and all x, y ∈ M , the following inequality holds:

|u(x) − u(y)|2 ≤ Cd(x, y)γE (u) .

(R2) : For all x ∈ M and r > 0,

R(x, B(x, r)c) ≥ C−1rγ .

Theorem 5.7 (Grigor’yan et al. [GHL00]) Let (E,F) be a regular Dirichlet form
in L2 (M,μ). Then

(Vα) + (R1) + (R2) ⇒ (
Sβ

)+ (DUE),

where β = α+γ. Consequently, under the standing conditions (Vα)+ (R1)+ (R2),
we have that

(U E) ⇔ (J≤). (5.2)

Sketch of proof for Theorem 5.7 The proof consists of the following five steps.

• Step 1. For any ball B := B(x0, r), using conditions (R1) and (R2) , we can obtain
the two-sided estimate of the Green functions gB(x, y) :

sup
x,y∈B

gB(x, y) ≤ Crγ, (5.3)

inf
y∈B(x0,ηr)

gB(x0, y) ≥ C−1rγ, (5.4)
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x

y

B(x,r)

B(x,2r)

Ω
supp f

Fig. 9 Points x, y

where C > 0 and η ∈ (0, 1).

• Step 2. Therefore, under condition (Vα), it follows from (5.3), (5.4) that condition(
E ′

β

)
holds:

esup
B

E B ≤ Crα+γ, (5.5)

einf
δ1 B

E B ≥ C−1rα+γ, (5.6)

where E B is the weak solution of the Poisson-type equation (4.7) as before, and
C > 0 and δ1 ∈ (0, 1/2).

• Step 3. To show condition
(
Sβ

)
, observe that, for all t > 0 and μ-almost all x ∈ B,

P B
t 1B(x) ≥ E B(x) − t∥∥E B

∥∥∞
, (5.7)

which follows by using the parabolic maximum principle, nothing else. Hence,
using (5.5), (5.6),

P B
t 1B(x) ≥ E B(x) − t∥∥E B

∥∥∞
≥ c − c1tr−β

≥ c

2
,

for all t > 0 and μ-almost all x ∈ B(x0, δ1r), provided that tr−β is small enough,
thus proving

(
Sβ

)
.

• Step 4. We show that (R1) ⇒ (DUE). Consider a function f ∈ F ∩ C0(�)

normalized so that sup | f | = 1, and let x ∈ � be a point such that | f (x)| = 1.
Let r be the largest radius such that B(x, r) ⊂ �. Then the ball B (x, 2r) is
not covered by � so that there exists a point y ∈ B (x, 2r) \ � (note that M is
unbounded by condition (Vα)). In particular, y /∈ supp f (see Fig. 9). Noting that
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E (J ) ( f ) ≤ E ( f ) and by the α-regularity of μ

r ≤ C [μ (B(x, r))]1/α ≤ C [μ (�)]1/α ,

we obtain from (R1) that

1 = | f (y) − f (x)|2
≤ Cd(y, x)β−αE (J ) ( f )

≤ C (2r)β−α E ( f ) ≤ C2β−α [μ (�)]β/α−1 E ( f ) .

Since ‖ f ‖2
2 ≤ μ (�), it follows that

E ( f )

‖ f ‖2
2

≥ c [μ (�)]−β/α ,

for some c > 0, thus proving the Faber-Krahn inequality. Hence, condition (DUE)

follows by using Theorem 3.6.
• Step 5. Finally, with a certain amount of effort [GHL00, Proposition 6.5,

Lemma 6.4], one can show that

(R1) + (R2) ⇒ conservativeness of (E,F) .

Therefore, the equivalence (5.2) follows directly by using Theorem 5.2.

References

[AB] Andres, S., Barlow, M.: Energy inequalities for cutoff fucntions and some applications.
J. Reine Angew. Math. (preprint)

[Aro67] Aronson, D.: Bounds for the fundamental solution of a parabolic equation. Bull. Amer.
Math. Soc. 73, 890–896 (1967)

[Aro68] Aronson, D.: Non-negative solutions of linear parabolic equations. Ann. Scuola Norm.
Sup. Pisa. Cl. Sci. 22, 607–694 (1968) (Addendum 25:221–228, 1971)

[Bar98] Barlow, M.: Diffusions on fractals. Lecture Notes of Mathematics, vol. 1690, pp. 1–
121. Springer, Berlin (1998)

[Bar04] Barlow, M.: Which values of the volume growth and escape time exponents are possible
for graphs? Rev. Mat. Iberoamericana 20, 1–31 (2004)

[Bar05] Barlow, M.: Some remarks on the elliptic harnack inequality. Bull. London Math. Soc.
37, 200–208 (2005)

[BBCK09] Barlow, M., Bass, R., Chen, Z.-Q., Kassmann, M.: Non-local Dirichlet forms and
symmetric jump processes. Trans. Amer. Math. Soc. 361, 1963–1999 (2009)

[BBK06] Barlow, M., Bass, R., Kumagai, T.: Stability of parabolic Harnack inequalities on metric
measure spaces. J. Math. Soc. Japan 58, 485–519 (2006)

[BCK05] Barlow, M., Coulhon, T., Kumagai, T.: Characterization of sub-Gaussian heat kernel
estimates on strongly recurrent graphs. Comm. Pure Appl. Math. 58, 1642–1677 (2005)

[BGK09] Barlow, M., Grigor’yan, A., Kumagai, T.: Heat kernel upper bounds for jump processes
and the first exit time. J. Reine Angew. Math. 626, 135–157 (2009)



206 A. Grigor’yan et al.

[BGK12] Barlow, M., Grigor’yan, A., Kumagai, T.: On the equivalence of parabolic harnack
inequalities and heat kernel estimates. J. Math. Soc. Japan 64, 1091–1146 (2012)

[BP88] Barlow, M., Perkins, E.: Brownian motion on the Sierpínski gasket. Probab. Theory
Relat. Fields 79, 543–623 (1988)

[BBW08] Barthelemy, P., Bertolotti, J., Wiersma, D.: A Lévy flight for light. Nature 453, 495–498
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