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Abstract We study a class of dynamical systems in L2 spaces of infinite products
X . Fix a compact Hausdorff space B. Our setting encompasses such cases when the
dynamics on X = BN is determined by the one-sided shift in X , and by a given
transition-operator R. Our results apply to any positive operator R in C(B) such
that R1 = 1. From this we obtain induced measures � on X , and we study spectral
theory in the associated L2(X, �). For the second class of dynamics, we introduce
a fixed endomorphism r in the base space B, and specialize to the induced solenoid
Sol(r). The solenoid Sol(r) is then naturally embedded in X = BN, and r induces
an automorphism in Sol(r). The induced systems will then live in L2(Sol(r),�).
The applications include wavelet analysis, both in the classical setting of R

n , and
Cantor-wavelets in the setting of fractals induced by affine iterated function systems
(IFS). But our solenoid analysis includes such hyperbolic systems as the Smale-
Williams attractor, with the endomorphism r there prescribed to preserve a foliation
by meridional disks. And our setting includes the study of Julia set-attractors in
complex dynamics.
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1 Introduction

The purpose of this paper is to offer a general framework for geometry and analysis
of iteration systems. We offer a setting encompassing the kind of infinite product,
or solenoid constructions arising in the study of iterated function systems (IFSs).
Our aim is to give an operator theoretic construction of infinite product measures
in a general setting that includes wavelet analysis of IFSs. To motivate this, recall,
that to every affine function system S with fixed scaling matrix, and a fixed set of
translation points in R

n , we may associate to S a solenoid. By this we mean a measure
space whose L2 space includes L2(Rn) in such a way that R

n embeds densely in
the solenoid. (In the more familiar case of n = 1, we speak of a dense curve in an
infinite-dimensional “torus”. The latter being a geometric model of the solenoid.

The need for this generality arose in our earlier investigations, for example in the
building of wavelet systems on Cantor systems, of which the affine IFSs are special
cases. In these cases (see Theorem 2.6 and Corollary 4.5 below) we found that one
must pass to a suitable L2 space of a solenoid. Indeed, we showed that such wavelet
bases fail to exist in the usual receptor Hilbert space L2(Rn) from wavelet theory.

For reference to earlier papers dealing with measures on infinite products, and
their use in harmonic analysis and wavelet theory on fractals; see e.g., [DJ12, DJS12,
DLS11, DJ11a, DS11, DJ11b, DHSW11, DJ10, DJP09, LN12, DL10, LW09].

The paper is organized as follows: Starting with a compact Hausdorff space B, and
a positive operator R in C(B), we pass to a family of induced probability measures�
(depending on R) on the infinite product � = BN. Among all probability measures
on �, we characterize those which are induced. In Sect. 2, we prove a number of
theorems about R-induced measures on �, and we include applications to random
walks, and to fractal analysis. In Sect. 3, we then introduce an additional structure:
a prescribed endomorphism r in the base space B, and we study the corresponding
solenoid Sol(r), contained in�, and its harmonic analysis, including applications to
generalized wavelets. The latter are studied in detail in Sect. 4 where we introduce
wavelet-filters, in the form of certain functions m on B.

2 Analysis of Infinite Products

Definition 2.1 Let B be some compact Hausdorff space. B refes to a σ -algebra,
usually generated by the open sets, so Borel. We will denote by C the cylinder sets,
see below. We denote by M(B) the set of positive Borel masures on B, and by
M1(B) those that have μ(B) = 1. Let V be some set.

BV =
∏

V

B = all functions from V to B.

For example V = N or Z.
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For x ∈ BV we denote by πv(x) := xv , v ∈ V . If V = N, then we denote by

π−1
1 (x) = {(x1, x2, . . . ) ∈ BN : x1 = x}.

Let r : B → B be some onto mapping, and μ a Borel probability measure on B,
μ(B) = 1.

To begin with we do not introduce μ and r , but if r is fixed and

1 ≤ #r−1(x) < ∞, for all x ∈ B, (2.1)

then we introduce two objects

(1) R = RW , the Ruelle operator;
(2) Sol(r), the solenoid.

For (1), fix W : B → [0,∞) such that

∑

r(y)= 0x

W (y) = 1, for all x ∈ B,

and set

(RWϕ)(x) =
∑

r(y)=x

W (y)ϕ(y). (2.2)

For (2),

Sol(r) =
{

x ∈ BN : r(xi+1) = xi , i = 1, 2, . . .
}

(2.3)

σ(x)i = xi+1, (x ∈ BN), r̂(x) = (r(x1), x1, x2, . . . ). (2.4)

More generally, consider

R : C(B) → C(B) or R : M(B) → M(B), (2.5)

where M(B) is the set of all measurable functions on B.

Definition 2.2 We say that R is positive iff

ϕ(x) ≥ 0 for all x ∈ B implies (Rϕ)(x) ≥ 0, for all x ∈ B. (2.6)

We will always assume R1 = 1 where 1 indicates the constant function 1 on B. This
is satisfied if R = RW in (2.2), but there are many other positive operators R with
these properties.

While what we call “the transfer operator” or a “Ruelle operator” has a host of dis-
tinct mathematical incarnations, each dictated by a particular family of applications,
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they are all examples of positive operators R in the sense of our Definition 2.2. Our
paper has two aims: One is to unify, and extend earlier studies; and the other is to
prove a number of theorems on measures, dynamical systems, stochastic processes
built from infinite products. Indeed there are many positive operators R which might
not fall in the class of operators studied as “transfer operators”. The earlier literature
on transfer operators includes applications to physics [LR69], to the Selberg zeta
function [FM12], to dynamical zeta functions [Rue02, Rue96, Nau12, MMS12];
to C∗-dynamical systems [Kwa12, ABL11]; to the study of Hausdorff dimension
[Hen12]; to spectral theory [ABL12].

These applications are, in addition to the aforementioned, to analysis on fractals,
and to generalized wavelets. For book treatments, we refer the reader to [Bal00],
and [BJ02]. The literature on positive operators R, in the general sense, is much less
extensive; but see [Arv86].

Definition 2.3 A subset S of BN is said to be shift-invariant iff σ(S) ⊂ S, where σ
is as in (2.4), σ(x)i = xi+1.

Remark 2.4 Every solenoid Sol(r) is shift-invariant.

Example 2.5 The solenoids introduced in connection with generalized wavelet con-
structions:

Let r : B → B as above and let μ be a strongly invariant measure, i.e.,

∫
f dμ =

∫
1

#r−1(x)

∑

r(y)=x

f (y) dμ(x)

for all f ∈ C(B).
A quadrature mirror filter (QMF) for r is a function m0 in L∞(B, μ) with the

property that

1

N

∑

r(w)=z

|m0(w)|2 = 1, (z ∈ B) (2.7)

As shown by Dutkay and Jorgensen [DJ05, DJ07], every quadrature mirror filter
(QMF) gives rise to a wavelet theory. Various extra conditions on the filter m0 will
produce wavelets in L2(R) [Dau92], on Cantor sets [DJ06, MP11], on Sierpinski
gaskets [DMP08] and many others.

Theorem 2.6 [DJ05, DJ07] Let m0 be a QMF for r . Then there exists a Hilbert
space H, a representation π of L∞(B) on H, a unitary operator U on H and a
vector ϕ in H such that

(i) Covariance

Uπ( f )U∗ = π( f ◦ r), ( f ∈ L∞(B)) (2.8)
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(ii) Scaling equation
Uϕ = π(m0)ϕ (2.9)

(iii) Orthogonality

〈π( f )ϕ , ϕ〉 =
∫

f dμ, ( f ∈ L∞(B)) (2.10)

(iv) Density

span
{
U−nπ( f )ϕ : f ∈ L∞(B), n ≥ 0

} = H (2.11)

The system (H,U, π, ϕ) in Theorem 2.6 is called the wavelet representation
associated to the QMF m0.

While, as we mentioned before, these representations can have incarnations on the
real line, or on Cantor sets, they can be also represented using certain random-walk
measures on the solenoid (see [DJ05, DJ07, Dut06]).

Remark 2.7 In examples when the condition (2.1) is not satisfied, the modification
of the family of relevant integral operators is as follows.

In the general case when r : B → B is given, but #r−1(x) = ∞, the modification
of the operators R, extending those from Example 2.5, is as follows:
Consider

(i) W : B → [0,∞) Borel
(ii) p : B × B(B) → [0,∞) such that for all x ∈ B, p(x, ·) ∈ M(r−1(x)), so is a

positive measure such that

∫

r−1(x)

W (y)p(x, dy) = 1, (x ∈ B).

Then set

(Rϕ)(x) =
∫

r−1(x)

ϕ(y)W (y)p(x, dy).

Example 2.8 G = (V, E) infinite graph, V are the vertices, E are the edges.

i(e) = initial vertex, t (e) = terminal vertex. (2.12)

S(G) = solenoid of G =
{

ẽ ∈ EN : t (e j ) = i(e j+1) for all j ∈ N

}
. (2.13)

For example V = Z
2 and the edges are given by x ∼ y iff ‖x − y‖ = 1. For details

and applications, see [JP10].
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Definition 2.9 Now back to C, the cylinder sets mentioned in Definition 2.1. C ∈ C
are subsets of BV indexed by finite sytems v1, . . . , vn , O1, . . . , On , vi ∈ V , Oi ⊂ B
open subsets, i = 1, . . . , n, n ∈ N.

Cvi ,Oi :=
{

x̃ ∈ BV : xvi ∈ Oi for all i = 1, . . . , n
}
. (2.14)

Notation: C generates the topology and the σ -algebra of subsets in BV in the usual
way, and BV is compact by Tychonoff’s theorem.

If ϕ is a function on B, we denote by Mϕ the multiplication operator Mϕ f =
ϕ f , defined on functions f on B. In the applications below, we will use C(B), all
continuous functions from B to R.

Lemma 2.10 Consider BN and the algebra generated by cylinder functions of the
form f = ϕ1 ⊗ · · · ⊗ ϕn, ϕi ∈ C(B), n ∈ N, 1 ≤ i ≤ n,

(ϕ1 ⊗ · · · ⊗ ϕn)(x̃) = ϕ1(x1)ϕ2(x2) . . . ϕn(xn), (x̃ ∈ BN), (2.15)

or
ϕ1 ⊗ · · · ⊗ ϕn = (ϕ1 ◦ π1)(ϕ2 ◦ π2) . . . (ϕn ◦ πn). (2.16)

Let AC be the algebra of all cylinder functions. Then AC is dense in C(BN).

Proof Easy consequence of Stone-Weierstrass. ��
Theorem 2.11 Let R be a positive operator as in (2.5), with R1 = 1. Then for each
x ∈ B there exists a unique Borel probability measure Px on BN such that

∫

BN

ϕ1⊗· · ·⊗ϕn dPx = (
Mϕ1 RMϕ2 . . . RMϕn 1

)
(x), (ϕi ∈ C(B), n ∈ N). (2.17)

Proof We only need to check that the right-hand side of (2.17) for ϕ1 ⊗ . . . ϕn equals
the right-hand side of (2.17) for ϕ1 ⊗ . . . ϕn ⊗ 1; but this is immediate from (2.17)
and the fact that R1 = 1. The existence and uniqueness of Px the follows form the
inductive method of Kolmogorov. ��
Corollary 2.12 Let B and R : C(B) → C(B) be as in Theorem 2.11, and let
μ ∈ M1(B) be given. Let � = �(μ) be the measure on � = BN given by

∫
f d� :=

∫

B

∫

π−1
1 (x)

f dPx dμ(x). (2.18)

Then

(i) V1 : L2(B, μ) → L2(�,�) given by V1ϕ := ϕ ◦ π1 is isometric.
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(ii) For its adjoint operator V ∗
1 , we have V ∗

1 : L2(�,�) → L2(B, μ) with

(V ∗
1 f )(x) =

∫

π−1
1 (x)

f dPx . (2.19)

Proof The assertion (i) is immediate from Theorem 2.11. To prove (ii) we must show
that the following formula holds:

∫

B

⎛

⎜⎜⎝

∫

π−1
1 (x)

f dPx

⎞

⎟⎟⎠ψ(x) dμ(x) =
∫

�

f ψ ◦ π1 d� (2.20)

for all f ∈ L2(�,�) and all ψ ∈ C(B).
Recall that V ∗

1 is determined by

〈
V ∗

1 f , ψ
〉
L2(μ)

= 〈 f , V1ψ〉L2(�,�) . (2.21)

But by Lemma 2.10 (Stone-Weierstrass), to verify (2.20), we may restrict attention
to the special case when f has the form given in (2.16). Note that if f = (ϕ1 ◦
π1)(ϕ2 ◦ π2) . . . (ϕn ◦ πn) then

f (ψ ◦ π1) = ((ϕ1ψ) ◦ π1)(ϕ2 ◦ π2) . . . (ϕn ◦ πn),

and so the right-hand side of (2.20) is equal to

=
∫

�

((ϕ1ψ) ◦ π1)(ϕ2 ◦ π2) . . . (ϕn ◦ πn) d�

=
∫

B

ϕ1(x)ψ(x)R(ϕ2 R(. . . ϕn−1 R(ϕn)) . . . )))(x) dμ(x) =
∫

B

ψ(x)
∫

f dPx dμ(x)

which is the left-hand side of (2.20) and (ii) follows. ��
Remark 2.13 When R : C(B) → C(B) is a given positive operator, we induce
measures on � = BN by the inductive procedure outlined in the proof of Theorem
2.11; but implicit in this construction is an extension of ϕ �→ R(ϕ) from all ϕ
continuous to all Borel measurable functions. This extension uses the Riesz theorem
in the usual way as follows: Fix x ∈ B and then apply Riesz’ theorem to the positive
linear functional C(B) � ϕ �→ R(ϕ)(x). There is a unique regular Borel measure
μx on B such that
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R(ϕ)(x) =
∫

B

ϕ(y) dμx (y), (ϕ ∈ C(B)).

If E ⊂ B is Borel, we define

R̃(E)(x) = R̃(χE )(x) := μx (E);

but we shall use this identification without overly burdening our notation with tildes.

Lemma 2.14 Let B and R be specified as above. Given μ ∈ M1(B), let� = �(μ)

denote the corresponding measure on �, i.e.,

∫

�

f d� =
∫

B

∫

π−1
1 (x)

f dP
(R)
x dμ(x) (2.22)

We shall consider V1 : L2(B, μ) → L2(�,�) and its adjoint operator V ∗
1 :

L2(�,�) → L2(B, μ), where V1ϕ = ϕ ◦ π , for all ϕ ∈ L2(B, μ). Note that
the adjoint operator V ∗

1 makes reference to the choice of R at the very outset. The
following two hold:

(i) R naturally extends to L2(B, μ); and
(ii)

RV ∗
1 f = V ∗

1 ( f ◦ σ), ( f ∈ L2(�,�)) (2.23)

Remark 2.15 Given R, we say that a function ϕ ∈ B is harmonic iff Rϕ = ϕ. It
follows that harmonic functions contain the range of V ∗

1 , applied to { f : f ◦σ = f }.
For a stronger conclusion, see Corollary 2.21.

Proof of Lemma 2.14 Using the Stone-Weierstrass theorem, applied to C(�), we
note that it is enough for us to check the validity of formula (2.23) on the algebra
A(cyl) spanned by all cylinder functions

f = (ϕ1 ◦ π1)(ϕ2 ◦ π2) . . . (ϕn ◦ πn) (2.24)

n ∈ N, ϕi ∈ C(B). But note that if f is as in (2.24) then

f ◦ σ = (ϕ1 ◦ π2)(ϕ2 ◦ π3) . . . (ϕn ◦ πn+1) (2.25)

Using then (2.19) in Corollary 2.12 above, we conclude that

(V ∗
1 ( f ◦ σ))(x) = R(ϕ1 R(ϕ2(R . . . ϕn−1 R(ϕn)) . . . ))(x) = (RV ∗

1 f )(x);

The extension from the cylinder functions A(cyl) to all of L2(�,�) now fol-
lows from the usual application of Stone-Weierstrass; recall that C(�) is dense in
L2(�,�) relative to the L2-norm; and we have the desired conclusion. ��
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2.1 What Measures on BN have a Transfer Operator?

Below we characterize, among all Borel probability measures � on BN, precisely
those which arise from a pair μ and R with a transfer operator R and μ a measure
on B. The characterization is general and involves only the one-sided shift σ on BN.

Lemma 2.16 Let� ∈ M1(BN) and setμ := � ◦π−1
1 ∈ M(B); then forμ-almost

all x ∈ B there is a field Px ∈ M(π−1
1 (x)) such that

d� =
∫

B

dPx dμ(x) (2.26)

and the following hold

(i) The operator V1 : L2(B, μ) → L2(BN, �) given by

V1ϕ = ϕ ◦ π1 (2.27)

is isometric.
(ii) Its adjoint operator V ∗

1 : L2(BN, �) → L2(B, μ) satisfies

(V ∗
1 f )(x) =

∫

π−1
1 (x)

f dPx =: Ex ( f ), (x ∈ B). (2.28)

Proof (i) For ϕ ∈ C(B), we have

‖V1ϕ‖2
L2(�)

=
∫

BN

|ϕ ◦ π1|2 d� =
∫

BN

|ϕ|2 ◦ π1 d�

=
∫

B
|ϕ|2 d(� ◦ π−1

1 ) =
∫

B
|ϕ|2 dμ.

(ii) For ϕ ∈ C(B) and f ∈ L2(BN, �), we have

∫

BN

(V1ϕ) f d� =
∫

B
ϕ(x)(V ∗

1 f )(x) dμ(x), (2.29)

where V ∗
1 f ∈ L2(B, μ). Hence

∫

BN

(ϕ ◦ π1) f d� =
∫

B
ϕ(x)(V ∗

1 f )(x) dμ(x) (2.30)

and (V ∗
1 f )(x) is well defined for μ-almost all x ∈ B. Moreover, the mapping

C(BN) � f �→ (V ∗
1 f )(x) (2.31)
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is positive; i.e., f ≥ 0 implies (V ∗
1 f )(x) ≥ 0. This follows from (2.30). For if

E ⊂ B, μ(E) > 0, and V ∗
1 f < 0 on E then there exists ϕ ∈ C(B), ϕ > 0 such

that
∫

B ϕ(x)(V
∗
1 f )(x) dμ(x) < 0, which contradicts (2.30). Now the conclusion in

(2.28) follows from an application of Riesz’ theorem to (2.31). ��
Proposition 2.17 Let � ∈ M(BN), then (Px )x∈B from Lemma 2.16 has the form
(2.17) in Theorem 2.11 if and only if there is a positive operator R such that R1 = 1
and

Ex ( f ◦ σ) = (R(E • f ))(x) (2.32)

holds for all x ∈ B and for all f ∈ L2(BN, �), where in (2.32) we use the notation

Ex (. . . ) =
∫

π−1
1 (x)

. . . dPx = E
(�)(. . . |π1 = x) (2.33)

for the field of conditional expectations, and E • f denotes the map x �→ Ex f .

Proof The implication (2.17) ⇒ (2.32) is already established. It is Lemma 2.14(ii).
Now assume some positive operator R exists such that (2.32) holds. We will then
prove that � is the measure determined in Theorem 2.11 from R and μ = � ◦ π−1

1 .
It is enough to verify (2.17) on all finite tensors

f = (ϕ1 ◦ π1)(ϕ2 ◦ π2) . . . (ϕn ◦ πn) (2.34)

as in (2.16); and we now establish (2.17) by induction, using the assumed (2.32).
The case n = 1 is

Ex (ϕ ◦ π1) = ϕ(x), (ϕ ∈ C(B), x ∈ B);

and this follows from Lemma 2.16.
For n = 2, we compute as follows

Ex (ϕ1 ◦ π1 ϕ2 ◦ π2) = ϕ1(x)(Rϕ2)(x). (2.35)

To do this, we shall prove the following fact, obtained from assumption (2.32):
For ψ ∈ C(B) and f ∈ L2(BN, �) we have

Ex ((ψ ◦ π1) f ) = ψ(x)Ex ( f ). (2.36)

Using (2.28) in Lemma 2.16(ii), note that (2.36) is equivalent to

∫

BN

(ϕ ◦ π1)(ψ ◦ π1) f d� =
∫

B

ϕψV ∗
1 f dμ,
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which in turn follows from V1(ϕψ) = (V1ϕ)(V1ψ) since ϕ �→ ϕ ◦ π1 is multiplica-
tive.

Returning to (2.35), we then get

Ex ((ϕ1 ◦ π1)(ϕ2 ◦ π2)) =ϕ1(x)Ex (ϕ2 ◦ π2) = ϕ1(x)Ex (ϕ2 ◦ π1 ◦ σ)
=ϕ1(x)R(E • (ϕ2 ◦ π1))(x) = ϕ1(x)(Rϕ2)(x).

We shall now be using πi ◦ σ = πi+1.
Assume that

Ex ( f ) = ϕ1(x)R(ϕ2 R(. . . R(ϕn) . . . ))(x) (2.37)

holds when f in (2.34) has length n − 1; then we show it must hold if it has length
n. We set

Ex ( f ) = Ex ((ϕ1 ◦ π1)(g ◦ σ)),

where g is a tensor of length n − 1. Hence the induction hypothesis yields

Ex ( f ) = ϕ1(x)Ex (g ◦ σ) = ϕ1(x)R(E • (g))

which is the right-hand side of (2.37). ��

2.2 Subalgebras in L∞(�,�) and a Conditional Expectation

Let B, R : C(B) → C(B), μ ∈ M1(B) and � = �(μ) be as specified. The only
assumptions on R are that

(i) it is linear;
(ii) it is positive and

(iii) R1 = 1.

We will be using Theorem 2.11 and Corollaries 2.12 and 3.14 referring to the
measures

{P(R)x : x ∈ B} on π−1
1 (x), (x ∈ B). (2.38)

The theorem below is about the operators {Vn : n ∈ N}, Vn : L2(B, μ) →
L2(�,�) given by

Vnϕ = ϕ ◦ πn, (ϕ ∈ C(B), n ∈ N).

Since V1 : L2(B, μ) → L2(�,�) is isometric, it follows that
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Q1 := V1V ∗
1 (2.39)

is a projection in each of the Hilbert spaces L2(�,�(μ)).

Theorem 2.18 With B, R, μ,� = �(μ) and Vn specified as above, we have the
following formulas:

(i) V ∗
1 Vn+1 = Rn on L2(B, μ), n = 0, 1, 2 . . . ;

(ii) Q1 := V1V ∗
1 is a conditional expectation onto

A1 := {ϕ ◦ π1 : ϕ ∈ L∞(B, μ)}

Q1((ϕ ◦ π1) f ) = (ϕ ◦ π1)Q1( f ) for all ϕ ∈ L∞(B, μ), f ∈ L∞(�,�).
(2.40)

(iii) Q1(ϕ ◦ πn+1) = (Rnϕ) ◦ π1 for all ϕ ∈ C(B), n = 0, 1, 2, . . . .

Proof (i) As a special case of Theorem 2.11, we see that

∫

π−1
1 (x)

(ϕ ◦ πn+1) dP
(R)
x = (Rnϕ)(x) (2.41)

holds for all ϕ ∈ C(B). We further see that (2.41) extends to both L∞(B, μ) and to
L2(B, μ). Hence

(V ∗
1 Vn+1ϕ)(x) =

∫

π−1
1 (x)

(ϕ ◦ πn+1) dP
(R)
x = (Rnϕ)(x), (x ∈ B). (2.42)

(ii) By Lemma 2.10, we see that to verify (2.40), it is enough to check it for
cylinder functions f , i.e.,

f = (ψ1 ◦ π1)(ψ2 ◦ π2) . . . (ψn ◦ πn), (2.43)

n ∈ N, ψi ∈ C(B). But if f is as in (2.43), then

(ϕ ◦ π1) f = ((ϕψ1) ◦ π1)(ψ2 ◦ π2) . . . (ψn ◦ πn), (2.44)

and the desired formula (2.40) is immediate.
(iii) Given (i), we may apply V1 to both sides in (2.42), and the desired formula

(iii) follows. ��
It is important to stress that one obtains a closed-form expression for V ∗

1 where the
operator V1 : ϕ �→ ϕ ◦π1 is introduced in Corollary 2.12. Indeed V ∗

1 is a conditional
expectation:
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(V ∗
1 f )(x) = E

(�)( f |π1 = x) = E
(�)
x ( f ), (x ∈ B, f ∈ L2(�,�)) (2.45)

By contrast, the situation for V ∗
n , n > 1 is more subtle.

Proposition 2.19 Let B, R : C(B) → C(B) and� = �(μ) ∈ M1(�) be as above,
i.e., μ = � ◦ π−1

1 . Let R∗ be the adjoint of the operator R when considered as a
bounded operator in L2(B, μ). For V ∗

2 we have

V ∗
2 ((ϕ1 ◦ π1)(ϕ2 ◦ π2) . . . (ϕn ◦ πn)) = R∗(ϕ1)ϕ2 R(ϕ3 . . . R(ϕn) . . . ). (2.46)

Proof Let ψ be the function given on the right hand side in (2.46). The operator
V2 : ϕ �→ ϕ ◦ π2 maps from L2(B, μ) into L2(�,�). The assertion in (2.46)
follows if we check that, for all ξ ∈ C(B), we have the following identity:

∫

�

(ϕ1 ◦ π1)((ξϕ2) ◦ π2)(ϕ3 ◦ π3) . . . (ϕn ◦ πn) d� =
∫

B

ξψ dμ. (2.47)

But we may compare the left-hand side in (2.47) with the use of Theorem 2.11:

=
∫

B

ϕ1 R((ξϕ2)R(ϕ3 R(. . . R(ϕn) . . . ))) dμ =
∫

B

(R∗ϕ1)ξϕ2 R(ϕ3 R(. . . R(ϕn) . . . )) dμ,

which is the desired conclusion (2.46).
Recall that, by Theorem 2.18, we have R = V ∗

1 V2 , and so R∗ = V ∗
2 V1. ��

The next result is an extension of Lemma 2.14(ii). Note that (2.23) is the assertion
that V ∗

1 intertwines the two operations, R and f �→ f ◦ σ . The next result shows
that, by contrast, V ∗

2 acts as a multiplier.

Corollary 2.20 Let B, R, � and μ = � ◦ π−1
1 be as in Proposition 2.19, and set

ρ := R∗1 ∈ L2(B, μ); then

(V ∗
2 ( f ◦ σ))(x) = ρ(x)Ex ( f ) = ρ(x)(V ∗

1 f )(x), (x ∈ B, f ∈ L2(�,�)).

Proof This is immediate from Proposition 2.19, see (2.46). Recall that the span of
the tensors is dense in L2(�,�) and that if f = (ϕ1 ◦ π1)(ϕ2 ◦ π2) . . . (ϕn ◦ πn),
then f ◦ σ = (ϕ1 ◦ π2)(ϕ2 ◦ π3) . . . (ϕn ◦ πn+1). ��
In Proposition 4.6 we calculate the multiplier ρ for the special case of the wavelet
representation from Example 2.5.

Corollary 2.21 Let B and R be as in Theorem 2.18, and let μ ∈ M1(B) be given.
The induced measure on � = BN is denoted �(μ) and specified as in (2.18). We
then have the following equivalence:
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(i) h ∈ L2(B, μ) and Rh = h, i.e., h is harmonic; and
(ii) There exists f ∈ L2(�,�(μ)) such that f = f ◦ σ and

h(x) =
∫

π−1
1 (x)

f dP
(R)
x . (2.48)

Proof The implication (ii)⇒(i) follows from Lemma 2.14 and Remark 2.15. For
(i)⇒(ii), let h be given and assume it satisfies (i). An application of (iii) from Theo-
rem 2.18 now yields

Q1(h ◦ πn+1) = Rn(h) ◦ π1 = h ◦ π1 = V1h.

Using (2.39), we get V1(h − V ∗
1 (h ◦ πn+1)) = 0 for all n = 0, 1, 2, . . . ; and

therefore

h = V ∗
1 (h ◦ πn+1), (n ∈ N). (2.49)

Recalling

V ∗
1 (h ◦ πn+1)(x) =

∫

π−1
1 (x)

h ◦ πn+1 dP
(R)
x (2.50)

and using Theorem 2.11, we conclude that {h ◦πn+1}n∈N is a bounded L2(�,�(μ))-
martingale.

By Doob’s theorem, there is a f ∈ L2(�,�(μ)) such that

lim
n→∞ ‖ f − h ◦ πn+1‖L2(�(μ)) = 0.

Since πn+1 ◦ σ = πn , it follows that f ◦ σ = f . Taking the limit in (2.49) and using
that the operator norm of V ∗

1 is one, we get that h = V ∗
1 f and therefore the desired

formula (2.48) holds. ��

2.3 A Stochastic Process Indexed by N

Remark 2.22 In the literature one has a number of theorems dealing with the exis-
tence of measures μ satisfying the various conditions; and if μ ◦ R = μ is satsified,
then the measure is called a Ruelle equilibrium measure.

Theorem 2.23 Let B be compact Hausdorff and R : C(B) → C(B) positive,
R1 = 1. Let μ ∈ M1(B) such that μ(B) = 1, μ ◦ R = μ. Set
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Xn(ϕ) = ϕ ◦ πn, (ϕ ∈ C(B), n ∈ N)

and
∫

f d� =
∫

B

∫

π−1
1 (x)

f dP
(R)
x dμ(x) (2.51)

Then

E(. . . ) =
∫
. . . d�

satisfies

E(Xn(ϕ)Xn+k(ψ)) =
∫

B

ϕ(x)(Rkψ)(x) dμ, (n, k ∈ N, ϕ, ψ ∈ C(B)) (2.52)

i.e., Rk is the transfer operator governing distances k. Asymptotic properties as k
goes to infinity govern long-range order.

Proof From the definition of P
(R)
x we have

P
(R)
x (Xn(ϕ)) = Rn−1(ϕ)(x), ϕ ∈ C(B) (2.53)

Now let n, k, ϕ, ψ as in the statement in (2.52). Let � be the measure on BN in
(2.51). Then

E(Xn(ϕ)Xn+k(ψ)) =
∫

BN

(ϕ ◦ πn)(ψ ◦ πn+k) d�

=
∫

B

Rn−1(ϕRk(ψ))(x) dμ(x)

=
∫
ϕ(x)Rk(ψ)(x) dμ(x)

which is the desired conclusion. ��
Definition 2.24 We say that {Xk(ϕ)} is independent at ∞ if

lim
k→∞ E(Xn(ϕ)Xn+k(ψ)) =

(∫
ϕ dμ

) (∫
ψ dμ

)
, (ϕ, ψ ∈ C(B), n ∈ N).

(2.54)
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Corollary 2.25 Suppose for all ϕ in C(B) we have

lim
k→∞ Rk(ϕ) =

(∫
ϕ dμ

)
1,

then (2.54) is satisfied.

Proof We proved

E(Xn(ϕ)Xn+k(ψ)) =
∫
ϕRkψ dμ.

Now take the limit as k → ∞, the desired conclusion (2.54) follows. ��
The next result answers the question: what is the distribution of the random vari-

able Xn(ϕ)?

Corollary 2.26 Assumeμ◦ R = μ. The distribution of Xn(ϕ) isμ({x ∈ B : ϕ(x) ≤
t}) for all n.

Proof Take ϕ real valued for simplicity.
For t ∈ R,

�({x̃ ∈ BN : ϕ ◦ πn(x̃) ≤ t}) =
∫

B

∫

π−1
1 (x)

χ{ϕ≤t} ◦ πn dP
(R)
x dμ(x)

=
∫

B

Rn−1χ{ϕ≤t} dμ =
∫

B

χ{ϕ≤t} dμ.

In particular, it follows that all the random variables Xn(ϕ) have the same
distribution. ��

2.4 Application to Random Walks

Corollary 2.27 Let (r,W ) be as in Definition 2.1, and let RW be the Ruelle operator
in (2.2), P

(W )
x —the random walk measure with transition probability specified as

follows

Prob(x → y) =
{

W (y), if r(y) = x
0, otherwise

(2.55)

Then Px from Theorem 2.11 is equal to P
(W )
x .

Proof We apply Theorem 2.11 to R = RW in (2.2) and we compute the right-hand
side in (2.15) with induction
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(Mϕ1 RW . . . RW Mϕn+1 )(x) = ϕ1(x)
∑

y1

· · ·
∑

yn

W (y1)W (y2) . . .W (yn)ϕ2(y1) . . . ϕn+1(yn),

where r(yi+1) = yi , 1 ≤ i < n, r (n)(yn) = x . Further,

=
∑

· · ·
∑

Prob(x → y1)Prob(y1 → y2 |, y1) . . . Prob(yn−1 → yn | yn−1)ϕ(y1) . . . ϕ(yn)

=
∫

dP
(W -transition RW -measure)
x ϕ1 ⊗ · · · ⊗ ϕn (2.56)

��

Remark 2.28 The assertion in (2.56) applies to any random walk measure, for exam-
ple, the one in Example 2.8.

Let G = (V, E) be as in Example 2.8, with E un-directed edges. Let c : E →
[0,∞) be such that

c(xy) = c(yx) for all (xy) ∈ E, c(xy) �= 0 if (xy) �∈ E . (2.57)

A function as in (2.57) is called conductance.
Set p = pc, where

pxy = cxy∑
z,z∼x cxz

= cxy

c(x)
, (2.58)

where

c(x) =
∑

z,z∼x

cxz, and z ∼ x means (zx) ∈ E .

Then there is a unique P
(c)
x such that

∫
ϕ1 ⊗ · · · ⊗ ϕn dP

(c)
x =

∑

y1

· · ·
∑

yn

pxy1 py1 y2 . . . pyn−1 ynϕ1(y1) . . . ϕn(yn),

where the sums are over all y1, y2, . . . , yn such that (yi yi+1) ∈ E .
Note that P

(W )
x is supported on the solenoid, and P

(c)
x is supported on S(G) (see

(2.13)).

Remark 2.29 The last application is useful in the setting of harmonic functions on
graphs G = (V, E) with prescribed conductance function c as in (2.57). Set

(�ϕ)(x) =
∑

y∈V,y∼x

cxy(ϕ(x)− ϕ(y)) (2.59)

the graph Laplacian with conductance c.
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A function ϕ on V satisfies �ϕ ≡ 0, iff

ϕ(x) =
∑

y∈V,y∼x

p(c)xy ϕ(y), (2.60)

where p(c)xy = cxy
c(x) as in (2.58).

Application. Use Px to get harmonic functions. The study of classes of harmonic
functions is of interest for infinite networks (see Remarks 2.28 and 2.29), and in
Corollary 2.21 is is shown that the harmonic functions h are precisely those that
arise from applying Ex to functions f , f ◦ σ = f on BN, i.e.,

h(x) =
∫

f (x . . . ) dPx ,

and conversely a martingale limit constructs f from h. For more details on this
construction, see Corollary 2.21.

2.5 An Application to Integral Operators

Let K : B× B → [0,∞) be a continuous function and letμ be a probability measure
on B such that

∫

B

K (x, y) dμ(y) = 1 for all x ∈ B. (2.61)

Define

RK f (x) =
∫

B

K (x, y) f (y) dμ(y), (x ∈ B, f ∈ C(B)).

Then R = RK defines a positive operator as in Definition 2.2, RK 1 = 1 and then Px
in Theorem 2.11 satisfies
∫

BN

ϕ1 ⊗ · · · ⊗ ϕn+1 dPx =

ϕ1(x)
∫
. . .

∫
K (x, y1)K (y1, y2) . . . K (yn−1, yn)ϕ2(y1) . . . ϕn+1(yn) dμ(y1) . . . dμ(yn)

We get a measure � on BN as follows

∫
f d� =

∫
f dPx dμ(x) (2.62)

since the right-hand side in (2.62) is independent of x .



The Role of Transfer Operators and Shifts in the Study of Fractals . . . 83

3 Positive Operators and Endomorphisms

3.1 Preliminaries About r : B → B

Given an endomorphism r , we form the solenoid Sol(r) ⊂ BN. Below we will study
r̂ : Sol(r) → Sol(r),

r̂(x1x2 . . . ) = (r(x1)x1x2 . . . )

and r̂ ∈ Aut(Sol(r)).
Given a positive operator R : C(B) → C(B), R1 = 1 we then form the measure

P
(R)
x in the usual way. We will prove the following property P

(R)
x ◦ r̂−1 = P

(R)
x on

the solenoid but not on BN.
We will impose the conditon (3.10)

R((ϕ ◦ r)ψ) = ϕRψ

as the only axiom. It may or may not be satisfied for some examples of positive
operators R. But it does hold in the following two examples:

(Rϕ)(x) =
∑

r(y)=x

W (y)ϕ(y) and

(Rϕ)(x) = 1

#r−1(x)

∑

r(y)=x

|m(y)|2ϕ(y),

where the functions W and m are given subject to the usual conditions.
For reference to earlier papers dealing with measures on infinite products, random

walk, and stochastic processes; see e.g., [JP11, JP10, AJ12].

Example 3.1 Classical wavelet theory on the real line. Let N = 2, B = T =
{z ∈ C : |z| = 1} � R/Z � (− 1

2 ,
1
2 ] via z = e2π iθ , θ ∈ R/Z; μ = dθ ;

L2(B, μ) = L2((− 1
2 ,

1
2 ], dθ), r : B → B,

r(z) = z2, or equivalentlyr(θ mod Z) = 2θ mod Z. (3.1)

Let

m0(θ) =
∑

n∈Z

hne2π inθ , or equivalently m0(z) =
∑

n∈Z

hnzn, (3.2)

where we assume
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∑

n∈Z

hn = √
2,

∑

n∈Z

|hn|2 < ∞.

Lemma 3.2 With m0 as in (3.2), the condition (2.7) is equivalent to

∑

k∈Z

hkhk−2n = 1

2
δn,0. (3.3)

Proposition 3.3 ([BJ02, DJ05]) Suppose that m0 is as above, and that there is a
solution ϕ ∈ L2(R) satisfying

1√
2
ϕ

( x

2

)
=

∑

n∈Z

hnϕ(x − n), (3.4)

and

The translates ϕ(· − n) are orthogonal in L2(R), n ∈ Z. (3.5)

Set W : L2(T) → L2(R),

(Wξ)(x) =
∑

n∈Z

ξ̂ (n)ϕ(x − n) =: π(ξ)ϕ, (3.6)

where ξ ∈ L2(T), and ξ̂ (n) = ∫
T

enξ dμ;

(S0ξ)(z) = m0(z)ξ(z
2), (z ∈ T); (3.7)

and

(U f )(x) = 1√
2

f
( x

2

)
, f ∈ L2(R). (3.8)

(i) Then S0 is isometric, and (L2(R), ϕ, π,U ) is a wavelet representation.
(ii) The dilation W : L2(T) → L2(R) then takes the following form: W is isometric

and it intertwines S0 and the unitary operator U, i.e., we have

(W S0ξ)(x) = (U Wξ)(x) = 1√
2
(Wξ)

( x

2

)
, (ξ ∈ L2(T), x ∈ R). (3.9)

Remark 3.4 With m0 as specified in Proposition 3.3, we conclude that the wavelet
representation can be realized on L2(R). On the other hand, we will see in Corollary
4.5 that it can be also realized on the solenoid. The two representations have to be
isomorphic. The identifications can be done via the usual embedding of R into the
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solenoid x �→ (e2π i x , e2π i x/2, e2π i x/22
, . . . ). The measure� in this case is supported

on the image of R under this embedding. For details, see [Dut06].

Axioms. B compact Hausdorff space, R : C(B) → C(B) positive linear operator
such that R1 = 1, r : B → B onto, continuous.

Assume

R((ϕ ◦ r)ψ) = ϕR(ψ), (ϕ, ψ ∈ C(B)) (3.10)

Note that (3.10) is the only property that we assume on the operator R.

Lemma 3.5 On the solenoid

Sol(r) = {(x1, x2, . . . ) ∈ BN : r(xi+1) = xi },

πi ◦ r̂ = r ◦ πi .

Proof For x̃ = (x1, x2, . . . ),

r̂(x̃) = (r(x1), x1, x2, . . . ). (3.11)

πi ◦ r̂(x̃) = xi−1 = r(xi ) = r ◦ πi (x̃). ��

Remark 3.6 Our initial setup for a given endomorphism r in our present setup is
deliberately left open to a variety of possibilities. Indeed, the literature on solenoid
analysis is vast, but divides naturally into cases when r : B → B has only one
contractivity degree; as opposed to a mix of non-linear contractive directions. The
first case is common in wavelet analysis, such as those studied in [DJ06, DJ07, DJ10,
DJ12]. Examples of the second class, often called “hyperbolic” systems, includes
the Smale-Williams attractor, with the endomorphism r there prescribed to preserve
a foliation by meridional disks; see e.g., [Kuz10, KP07, KP07, Rue04]. Or the study
of complex dynamics and Julia sets; see e.g., [BCMN04] .

Lemma 3.7 Let r : B → B be given and let r̂ ∈ Aut(Sol(r)) be the induced
automorphism on the solenoid. Then

r̂(π−1
1 (x)) = π−1

1 (r(x)) ∩ π−1
2 (x), (x ∈ B).

Proof Use the definition of r̂ in (3.11). ��
Definition 3.8 Given μ and R, they generate the probability measure � = �(μ) on
BN. We assume R1 = 1 and μ(B) = 1. Define

E( f ) =
∫

BN

f d� (3.12)
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Ex ( f ) := E( f |π1 = x) =
∫

π−1
1 (x)

f d� (3.13)

Ex1,x2( f ) := E( f |π1 = x1, π2 = x2) =
∫

π−1
1 (x1)∩π−1

2 (x2)

f d�. (3.14)

for all x1, x2 ∈ B. As before we take

E( f ) =
∫

B

∫

π−1(x)

f dPx dμ(x) (3.15)

and we then get

Ex ( f ) =
∫

π−1(x)

f dPx (3.16)

Lemma 3.9 Let B, R and r be given as above.

R((ϕ ◦ r)ψ) = ϕR(ψ) (3.17)

Then the following two are equivalent for some measure μ on B:

(i) μ ◦ R = μ

(ii)
∫
(ϕ ◦ r)ψ dμ = ∫

ϕRψ dμ.

Proof (i)⇒(ii). Assume (i) and (3.17). Then

∫
ϕ ◦ r · ψ dμ =

∫
R((ϕ ◦ r)ψ) dμ =

∫
ϕRψ dμ

which is condition (ii).
(ii)⇒(i). Assume (ii). Then set ϕ = 1 in (ii) and we get

∫
ψ dμ = ∫

Rψ dμ
which is the desired property (i). ��
Lemma 3.10 Assume the basic axiom (3.17). For f ∈ L1(�), we denote by E•( f ),
the function x �→ Ex ( f ), x ∈ B. Then

Ex ( f ◦ σ) = R(E • ( f ))(x) (3.18)

Also,

Ex ( f ◦ r̂) = Er(x),x ( f ) (3.19)

for all x ∈ B, f ∈ L1(�), or equivalently
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E( f ◦ r̂ |π1 = x) = E( f |π1 = r(x), π2 = x); (3.20)

see the notations in Definition 3.8.

Proof Equation (3.18) is proved in (2.32). For (3.19), we use the Stone-Weierstrass
approximation as before. If

f = (ϕ1 ◦ π1)(ϕ2 ◦ π2) . . . (ϕn ◦ πn),

then

f ◦ r̂ = (ϕ1 ◦ r ◦ π1)(ϕ2 ◦ r ◦ π2) . . . (ϕn ◦ r ◦ πn),

and so

Ex ( f ◦ r̂) =ϕ1(r(x))R(ϕ2 ◦ r R(ϕ3 ◦ r . . . R(ϕn ◦ r)) . . . )(x)

=ϕ1(r(x))ϕ2(x)R(ϕ3 R(. . . ϕn−1 R(ϕn)) . . . )(x) = Er(x),x ( f ),

or equivalentlly (3.20). ��
Proposition 3.11 Let B and R : C(B) → C(B) be as stated in Theorem 2.11. For
every μ ∈ M1(B) we denote the induced measure on � = BN by �(μ). If some
r : B → B satisfies

R((ϕ ◦ r)ψ) = ϕR(ψ), (ϕ, ψ ∈ C(B)) (3.21)

then every one of the induced measures�(μ) has its support contained in the solenoid
Sol(r).

Proof Using Lemma 2.14, it is enough to prove that each of the measures P
(R)
x with

x fixed (from Corollary 2.12) has its support equal to

π−1
1 (x) ∩ Sol(r) (3.22)

For every n, consider all infinite words indexed by y ∈ r−n(x) and specified on
the beginning length-n segments as follows �n(r, x) : (x, rn−1(y), . . . , r(y), y,
free infinite tail) and note that

π−1
1 (x) ∩ Sol(r) =

⋂

n

�n(r, x) (3.23)

For n = 1, we have

P
(R)
x (�1(r, x)) = R(χ{x} ◦ r)(x) = χ{x}(x)R(1) = 1,

where we used assumption (3.21) in the last step in the computation.
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The remaining reasoning in the proof is an induction. Indeed, one checks that

P
(R)
x (�n(r, x)) = R((χ{x} ◦ r)R((χ{x} ◦ r2)R(. . . (χ{x} ◦ rn−1)R(χ{x} ◦ rn) . . . )))(x)

= R((χ{x} ◦ r)R(. . . R(χ{x} ◦ rn−1) . . . ))(x).

Hence the assertion for n − 1 implies the next step n. By induction, we get

P
(R)
x (�n(r, x)) = 1, (n ∈ N, x ∈ B).

Using (3.23), we get

P
(R)
x (π−1

1 (x) ∩ Sol(r)) = lim
n→∞ P

(R)
x (�n(r, x)) = 1.

As a consequence, the measure P
(R)
x assigns value 1 to the indicator function of

π−1
1 (x) ∩ Sol(r). But

Sol(r) =
⋃

x∈B

π−1
1 (x) ∩ Sol(r).

So if μ(B) = 1, it follows from (2.51) that

�(μ)(Sol(r)) =
∫

BN

χSol(r) d�(μ) = 1;

and as a result that

�(μ)(BN\Sol) = 0

which is the desired conclusion. ��
Corollary 3.12 Let B, r, μ, R be as above and assume (3.17). Then� is supported
on Sol(r) and r̂ is invertible on Sol(r) with r̂−1 = σ . The measure � is invariant
(for r̂ ) if and only if

μ ◦ R = μ. (3.24)

Proof It is enough to prove that

∫

Sol(r)

f ◦ σ d� =
∫

Sol(r)

f d� (3.25)

holds for all f ∈ L1(�) if and only if (3.24) holds. But, by (3.18) we have
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∫

Sol(r)

f ◦ σ d� =
∫

B

Ex ( f ◦ σ) dμ(x) =
∫

B

R(E • ( f ))(x) dμ(x),

and
∫

Sol(r)

f d� =
∫

B

Ex ( f ) dμ(x).

But the functions x �→ Ex ( f ) are dense in L1(B, μ) as f varies in L1(�) (consider
for example f = g ◦ π1 for g ∈ C(B)). Thus the equivalence of (3.24) and (3.25) is
immediate from this. ��
Corollary 3.13 Let R be a positive operator in C(B) satsifying the axioms above,
R1 = 1, R((ϕ ◦ r)ψ) = ϕR(ψ) for all ϕ,ψ ∈ C(B). Let μ be a Borel measure on
B, and set � = �(μ)

∫

Sol(r)

f d� :=
∫

B

∫

π−1
1 (x)

f dP
(R)
x dμ(x);

then

U (R) f := f ◦ r̂ (3.26)

defines a unitary operator on L2(Sol(r),�) if and only if μ = μ ◦ R.

Proof Since r̂ is invertible in Sol(r), we conclude that U (R) maps onto L2(Sol(r),�).
Recall r̂−1 = σ

σ(x1, x2, x3, . . . ) = (x2, x3, x4, . . . ) (3.27)

Since, by Proposition 3.11, the measure � is supported on Sol(r), the result follows
from Corollary 3.12. ��
Corollary 3.14 Let B and R : C(B) → C(B) be as in Corollary 2.12. Let μ ∈
M1(B) and consider � = �(μ). Let r : B → B be an endomorphism.

(i) For the operators V1 : L2(B, μ) → L2(Sol(r),�)and U (R) : f �→ f ◦̂r acting
in L2(Sol(r),�)we have the following covariance relation: V1 is isometric and

(V ∗
1 U (R)V1)(ϕ) = ϕ ◦ r, (ϕ ∈ C(B)).

(ii) Assume that μ = μ ◦ R and

R((ϕ ◦ r)ψ) = ϕR(ψ), (ϕ, ψ ∈ C(B)) (3.28)
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holds. For functions F on �, say F ∈ L∞(Sol(r)), let MF be the multiplica-
tion operator defined by F. Then U (R) is unitary and the following covariance
relation holds:

(U (R))∗MFU (R) = MF◦σ .

Proof (i) We will make use of the formula (2.19) for V ∗
1 , see Corollary 2.12(ii). We

now compute

(V ∗
1 U (R)V1ϕ)(x) = ExU (R)V1ϕ = Ex (ϕ ◦ π1 ◦ r̂) = Ex (ϕ ◦ r ◦ π1) = (ϕ ◦ r)(x),

which is the conclusion in (i). (ii) We proved in Corollary 3.13 that U (R) is unitary.
The covariance relation follows from a simple computation. ��

For reference to earlier papers dealing with measures on infinite products, and
shift-invariant systems; see e.g., [CGHU12, CH94].

3.2 Compact Groups

As a special case of our construction, we mention the compact groups; this will
include the case of wavelet theory.

Proposition 3.15 Assume B is a compact group with normalized Haar measure μ.
Let r : B → B be a homomorphism r(xy) = r(x)r(y) for all x, y ∈ B, and assume
for N ∈ N, N > 1

#r−1(x) = N , (x ∈ B).

Set

(Rϕ)(x) = 1

N

∑

r(y)=x

ϕ(y), (ϕ ∈ C(B)); (3.29)

then

(i) Sol(r) is a compact subgroup of BN.
(ii) The induced measure � = �(μ,R) is the Haar measure on the group Sol(r).

Proof (i) If x̃ = (x1, x2, . . . ), ỹ = (y1, y2, . . . ) ∈ Sol(r) then r(xi+1 yi+1) =
r(xi+1)r(yi+1) = xi yi , so x̃ ỹ ∈ Sol(r).

(ii) From (3.29) we see that the measures Px in the decomposition

d� =
∫

B

Px dμ(x) (3.30)
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Px ∈ M(π−1
1 (x)), x ∈ B, are random-walk measures with uniform distributions

on the points in r−1(x), for all x ∈ B. If E denotes the �-expectation and Ex the
Px -expectation, we have

Ex ( f ) = E( f |π1 = x), (x ∈ B).

For points ỹ = (y1, y2, . . . ) ∈ Sol(r), denote by f (·ỹ) the translated function on
Sol(r). Then

E( f (·ỹ) |π1 = x) = E( f |π1 = xy1) (3.31)

where we use the terminology in Proposition 2.17.
Now, combining (3.30) and (3.31), we arrive at the formula:

∫

Sol(r)

f (·ỹ) d�=E( f (·ỹ)) =
∫

B

E( f (·ỹ) |π1=x) dμ(x)=
∫

B

E( f |π1=xy1) dμ(x)

=
∫

B

E( f |π1 = x) dμ(x) =
∫

Sol(r)

f d�.
��

Remark 3.16 In wavelet theory, one often takes B = R
n/Zn , and a fixed n × n

matrix A over Z such that the eigenvalues λ satisfy |λ| > 1. For r : B → B, then
take

r(x mod Z
n) = Ax mod Z

n, (x ∈ R
n)

and it is immediate that r satisfies the multiplicative property in Proposition 3.15.
There are important examples when r : B → B does not satisfy this property.

Example 3.17 (Non-group case: the Smale-Williams attractor) Take B = T × D,
where T = R/Z and D = {z ∈ C : |z| ≤ 1} the disk. For (t, z) ∈ T × D, set

r(t, z) = (2t mod Z,
1

4
z + 1

2
e2π i t ).

Then Sol(r) is the Smale-Williams attractor, see [KP07], a hyperbolic strange attrac-
tor.

4 Isometries

Below we study condition on functions m : B → C which gurantees that L2(μ) �
f �→ m · f ◦ r ∈ L2(μ) defines an isometry in L2(B, μ); and we will study the
unitary dilations L2(Sol(r),�) � f̃ �→ f̃ ◦ r̂ ∈ L2(Sol(r),�).
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Setting. B fixed compact Hausdorff space. We introduce

(i) r : B → B measurable, onto such that

1 ≤ #r−1(x) < ∞, (x ∈ B) (4.1)

(ii) μ Borel measure on B, μ(B) = 1.
(iii) m : B → C a fixed function on B.

Question: Given two of them what are the conditions that the third should satisfy
such that

L2(μ) � f �→ m · f ◦ r ∈ L2(μ) (4.2)

is an isometry.

Definition 4.1 Transformations of measures. Given ν measure on B, ν ∈ M1(B)
and r : B → B, set ν ◦ r−1 ∈ M1(B). For A ∈ B(B) a Borel set, (ν ◦ r−1)(A) :=
ν(r−1(A)) where r−1(A) := {x ∈ B : r(x) ∈ A}.

Fact: ν ◦ r−1 is determined uniquely by the condition

∫

B

ϕ ◦ r dν =
∫
ϕ d(ν ◦ r−1), (ϕ ∈ C(B)) (4.3)

Lemma 4.2 Fix r, μ,m; then (4.2) is satisfied iff

(|m|2 dμ) ◦ r−1 = μ (4.4)

Definition 4.3 Fix r , then we say that μ is strongly invariant iff

∫
ϕ(x) dμ(x) =

∫
1

#r−1(x)

∑

r(y)=x

ϕ(y) dμ(x) (4.5)

Lemma 4.4 Given r and assume μ is strongly invariant, then the isometry property
(4.2) holds iff the corresponding positive operator

(Rϕ)(x) := 1

#r−1(x)

∑

r(y)=x

|m(y)|2ϕ(y)

satisfies R1 = 1.

Proof Substitute (4.5) into (4.4). Note that then the equation

∫

B

ϕ(r(x))|m(x)|2 dμ(x) =
∫

B

ϕ(x)
1

#r−1(x)

∑

r(y)=x

|m(y)|2 μ(x), (ϕ ∈ C(B))
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holds; so f �→ m · f ◦ r is isometric in L2(μ) iff

1

#r−1(x)

∑

r(y)=x

|m(y)|2 = 1

μ-a.e. x ∈ B. ��
The next corollary appears in [DJ07, Theorem 5.5].

Corollary 4.5 Let B and r be as specified in Sect. 3, let μ be strongly invariant and
let the function m be quadrature mirror filter, as in Example 2.5. Assume in addition
that m is non-singular, i.e.

μ({x : m(x) = 0}) = 0.

Then, with R as in Lemma 4.4, we get a wavelet representation as in Theorem 2.6
to L2(Sol(r),�(μ)) with

(i) H = L2(Sol(r),�(μ));
(ii) U f = (m ◦ π1)( f ◦ r̂), for all f ∈ L2(Sol(r),�(μ));

(iii) π(g) f = (g ◦ π1) f , for all g ∈ L∞(B), f ∈ L2(Sol(r),�(μ));
(iv) ϕ = 1.

Proof The details are contained in [DJ07, Theorem 5.5] and require just some simple
computations. We only have to check that our measure �(μ) coincides with the one
defined in [DJ07]. For this, we use [DJ07, Theorem 5.3] and we have to check that

∫
ϕ ◦ πn d�(μ) =

∫
Rn(ϕ) dμ, (ϕ ∈ C(B)).

But this follows immediately from the definition of �(μ) in (2.17). ��
Proposition 4.6 Let B, r, μ and m0 as in Example 2.5, i.e., m0 is a QMF and the
measure μ on B is assumed strongly invariant with respect to r , and let R as in
Lemma 4.4. Then the function ρ = R∗1 in Corollary 2.20 is ρ = |m0|2.

Proof The result follows if we verify the formula for R∗; we have

(R∗ψ)(x) = |m0(x)|2ψ(r(x)). (4.6)

The derivation of (4.6) may be obtained as a consequence of strong invariance as
follows: for all ϕ,ψ ∈ C(B), we have:

∫

B

|m0|2(ψ ◦ r)ϕ dμ =
∫

B

ψ(x)
1

N

∑

r(y)=x

|m0(y)|2ϕ(y) dμ(x) =
∫

B

ψ(x)(Rϕ)(x) dμ(x);

and the assertion (4.6) follows. ��
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