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Abstract This article is an extended version of the talk given by the author at
the conference “Advances in fractals and related topics”, in December 2012 at the
Chinese Hong-Kong University. It gathers recent advances in Mandelbrot cascades
theory and related topics, namely branching random walks, directed polymers on
disordered trees, multifractal analysis, and dynamical systems.

1 Introduction

In the late sixties, motivated by Kolmogorov’s work [Kol62] on turbulence in
which the “lognormal hypothesis” appeared, Mandelbrot introduced lognormal
multiplicative processes (see [Man72]) to build random measures obtained as limit of
martingales, and describing the distribution of the energy dissipation in intermittent
turbulence. As his model turned out to be too difficult to found and study in complete
rigor, Mandelbrot defined (not necessarily log-normal or conservative) multiplica-
tive cascades on homogeneous trees [Man74a, Man74b], now called Mandelbrot
cascades, to provide a mathematically easier to define and, a priori, tractable model
of turbulence. Some of his conjectures on the model behavior were then proved
by Kahane and Peyrière in [Kah74, Pey74, KP76], and some questions remained
open for a long time. In the eighties, Kahane developed multiplicative chaos theory
[Kah85, Kah87a] to give a completely rigorous framework to Mandelbrot origi-
nal lognormal multiplicative processes, and go beyond. This theory (which cov-
ers the case of Mandelbrot cascades) and its applications have been particularly
enriched by the regular introduction of new models of multiplicative cascades [BF05,
BJM10, BJM10a, BM02, BM03, BM04, BM04a, BM09, CRV13, Fan89, Fan97,
LRV00, Pey77, Pey79, RV10, WW69], and during the last five years by the rigorous
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connexion between lognormal multiplicative chaos and KPZ relations in quantum
gravity [BJRV13, BS09, DS11, KPZ98, RV08] and the connexion between this
chaos and SLE curves [AJKS11, She00], as well as by fine renormalization results
for degenerate multiplicative chaos [AS14, BRV12, DRSV00a, DRSV00, JW11,
Mad00, Web11] (the interested reader should consult the recent survey [RV13] on
lognormal multiplicative chaos for more details).

This paper focuses on Mandelbrot cascades, and aims at gathering recent advances
in its theory and related topics, namely branching random walks, directed polymers on
disordered trees, multifractal analysis, and dynamical systems (other surveys dealing
with Mandelbrot cascades, multiplicative chaos and applications are [BFP10, Fan04,
Kah91, Pey00]).

2 Mandelbrot Cascades

Consider the set A = {0, . . . , b − 1}, where b ≥ 2. Set A ∗ = ⋃
n≥0 A n , where,

by convention, A 0 is the singleton {ε} whose the only element is the empty word ε.
If w ∈ A ∗, we denote by |w| the integer such that w ∈ A |w|. If n ≥ 1 and
w = w1 · · · wn ∈ A n then for 1 ≤ k ≤ n the word w1 · · · wk is denoted by w|k. By
convention, w|0 = ε.

Given v and w in A n , v ∧w is defined to be the longest prefix common to both v

and w, i.e., v|n0, where n0 = sup{0 ≤ k ≤ n : v|k = w|k}.
Let A ω stand for the set of infinite sequences w = w1w2 · · · of elements of A .

Also, for x ∈ A ω and n ≥ 0, let x |n stand for the projection of x on A n .
If w ∈ A ∗, we consider the cylinder [w] consisting of infinite words in A ω

whose w is a prefix.
We index the closed b-adic subintervals of [0, 1] by A ∗: for w ∈ A ∗, we set

Iw =
⎡

⎣
∑

1≤k≤|w|
wkb−k,

∑

1≤k≤|w|
wkb−k + b−|w|

⎤

⎦ .

Let W be a non negative random variable such that E(W ) = 1 and
(
W (w)

)
w∈A ∗

a family of independent random variables, identically distributed with W . Denote by
(�,A, P) the probability space over which these random variables are defined.

Then the non negative martingale

Yn = b−n
∑

w∈A n

W (w|1)W (w|2) · · · W (w|n) (2.1)

converges to a non negative random variable Y , and the sequence of Borel positive
measures (μn)n≥1 defined on [0, 1] by
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μn(dx) = W (w|1)W (w|2) · · · W (w|n) dx if x ∈ Iw, w ∈ A n, (2.2)

weakly converges to a non negative measure μ = μW with total mass ‖μ‖ = Y
almost surely. In the literature, the terminology Mandelbrot cascade, or Mandelbrot
martingale denotes the martingale (Yn)n≥1 or the measure-valued sequence (μn)n≥1,
while μ is called a Mandelbrot measure.

For each 0 ≤ k ≤ b − 1, substituting
(
W (kw)

)
w∈A ∗ to

(
W (w)

)
w∈A ∗ yields a

copy Y (k) of Y , so that the Y (k) are independent, and independent of (W (0), . . . , W
(b − 1)). The statistical self-similarity of the construction is summarized in the
fundamental almost sure equation

Y = b−1
b−1∑

k=0

W (k)Y (k). (2.3)

Moreover, defining more generally

Yn(w) = b−n
∑

v∈A n

W (w · v|1)W (w · v|2) · · · W (w · v|n), (w ∈ A ∗),

and Y (w) = limn→∞ Yn(w), Y (w) is a copy of ‖μ‖ and one gets the following
multiplicative structure for the the mass of b-adic intervals:

μ|w|+n(Iw) = b−|w|Yn(w)
∏

1≤ j≤|w|
W (w| j),

which leads

μ(Iw) = b−|w|Y (w)
∏

1≤ j≤|w|
W (w| j), (2.4)

since b-adic numbers cannot be atoms of μ (indeed, fixing x0 ∈ [0, 1], and, for ε > 0,
fε a non negative function bounded by 1, with compact support in [x0 − ε, x0 + ε]
and taking the value 1 over [x0 − ε/2, x0 + ε/2], we have E(μ({x0})) ≤ E(μ( fε)) ≤
lim infn→∞ E(μn( fε)) ≤ Leb( fε) ≤ 2ε, where we used the martingale property of
(μn)n≥1).

Finally, μ possesses the statistical self-similar structure:

μ|Iw =
(

b−|w| ∏

1≤ j≤|w|
W (w| j)

)
μ(w) ◦ f −1

w (w ∈ A ∗), (2.5)

where fw is the direct similitude mapping [0, 1] onto Iw and μ(w) is the copy of μ
built from (W (w · v))v∈A ∗.

It turns out that μ may vanish almost surely. This had been observed by
Mandelbrot, who considered the function
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ϕ(q) = ϕW (q) = q − 1 − logb E(W q) (q ∈ R+), (2.6)

and conjectured that P(μ �= 0) > 0 if and only if ϕ′(1−) > 0. It was Kahane who
proved this result in [Kah74, KP76] (this was also proved independently and a bit
later by Biggins [Big77] in the more general context of the branching random walk,
with a different approach; another approach is presented in [WW69]).

Theorem 1 One has P(μ �= 0) > 0 if and only if E(W log W ) < log(b), i.e.
ϕ′

W (1−) > 0. Moreover, in this case, (Yn)n≥1 is uniformly integrable: E(Y ) = 1.

The necessity of ϕ′(1−) ≥ 0 is easy to see, for otherwise since ϕ(1) = 0 one has
ϕ(h) > 0 for h close to 1−, so that

E(Y h
n ) ≤ b−nh

E

∑

w∈A n

W (w|1)h W (w|2)h · · · W (w|n)h = b−nϕ(h)

tends to 0, and Y = 0 almost surely by applying Fatou’s lemma. The sufficiency
of ϕ′(1−) > 0 is also quite direct if one assumes ϕ(h) > −∞ for some h > 1.
Indeed, in this case choosing h close enough to 1+ yields ϕ(h) < 0. Then, following
Kahane in [KP76], if we write Yn = b−1 ∑b−1

k=0 W (k)Yn−1(k) and take h ∈ (1, 2],
then Y h

n = ((b−1 ∑b−1
k=0 W (k)Yn−1(k))h/2)2 ≤ b−h(

∑b−1
k=0 W (k)h/2Yn−1(k)h/2)2, so

E(Y h
n ) ≤ b−hbE(W h)E(Y h

n−1)+b−hb(b−1)E(W h/2)2
E(Y h/2

n−1)
2 ≤ bϕ(h)

E(Y h
n−1)+

b−hb(b − 1) since E(W ) = E(Yn−1) = 1, and finally E(Y h
n ) ≤ (1 − bϕ(h))−1b−hb

(b − 1) after noting that E(Y h
n−1) ≤ E(Y h

n ) by Jensen’s inequality. Thus (Yn)n≥1 is
bounded in Lh , hence uniformly integrable. The sharp result is much more delicate.

When E(W log W ) ≥ log(b), i.e. ϕ′(1−) ≤ 0, Mandelbrot naturally asked in
[Man74a] for the existence of a normalizing positive sequence (An)n≥1 so that
(Yn/An)n≥1 converges, at least in law, to some non degenerate random variable. He
observed that the convergence in law of Yn/An to some random variable Z imposes
that An+1/An converges to a positive constant c, so that Z must satisfy the equation

Z
dist=

b−1∑

k=0

W (k)

bc
Z(k), (2.7)

where
dist= means equality in distribution, the Z(k) are independent, identically

distributed with Z , and independent of (W (0), . . . , W (b − 1)).
The non trivial solutions of this equation and its generalization to the

branching random walk context, also called fixed points of the smoothing trans-
formation, have been studied intensively, starting with the fundamental paper
[DL83] by Durrett and Liggett (their motivation came from interacting particle sys-
tems) and followed by regular notable advances. We will see (Sect. 3.1) that its
general solutions are natural combinations of stable laws and the laws of random
variables of the same nature as ‖μ‖, or combinations of stable laws and the laws of
the total mass of critical Mandelbrot measures. These solutions have counterparts in
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terms of statistically self-similar measures, namely derivatives of stable Lévy sub-
ordinators in Mandelbrot time, or critical Mandelbrot time. These statistically self-
similar measures, as well as Mandelbrot and critical Mandelbrot measures provide
fundamental illustrations of the multifractal formalism, a notion that was pointed out
by Frisch and Parisi to provide a fine geometric description of the energy dissipation
in intermittent turbulence, with Mandelbrot measures as main illustration [FP88].
This will be explained in Sect. 5, where we present recent progress in the multifrac-
tal analysis of these objects, as well as in the control of the modulus of continuity of
Mandelbrot and critical Mandelbrot measures. These moduli of continuity controls
are partly based on the remarkable advances achieved in the solution to the original
normalization question (see Sect. 3.2). It turns out that combining these renormal-
ization results with fixed points of the smoothing transformation theory yields, in
the case of a second order phase transition, a precise description of the asymptotic
behavior of the partition functions and the limiting laws of Gibbs measures associated
with polymers on disordered trees expressed in terms of the statistically self-similar
measures mentioned above (Sect. 4).

In fact, in his notes on multiplicative cascades [Man74a], Mandelbrot starts by
raising the following general problem: assume only that W is a random variable
taking values in R, and consider the sequence of functions

Fn(x) = FW,n(x) =
x∫

0

Qn(u) du, (2.8)

where Qn(x) = W (w|1)W (w|2) · · · W (w|n) dx if x ∈ Iw, w ∈ A n ; under which
condition does there exist a normalizing sequence (An)n≥1 such that Fn(x)/An con-
verges in law, or in a stronger sense?

We will give some results in this direction in Sect. 6. In Sect. 7 we explain
how Mandelbrot cascades define a natural dynamical system on fixed points of the
smoothing transformation with finite expectation, to which is associated a functional
CTL whose limit process is obtained as the limit of an additive cascade on A ∗.

Finally, let us mention that a lot of results presented in this paper are not specific
to multiplicative cascades on regular trees, and have extensions in the context of
branching random walks on Galton-Watson trees. Also, while we consider measures
on the interval [0, 1], the results of Sect. 5 can be extended to Mandelbrot measures
on [0, 1]d (d ≥ 2). The only difference in that one must use a different way to define
the Lévy-Mandelbrot measures defined in Sect. 3.1.2; the procedure is explained in
[BJRV13, BRV12].

In Sects. 3–5, to simplify the discussion we assume that W > 0 and the probability
distribution of log(W ) is non lattice.
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3 Fixed Points of the Smoothing Transformation and Associated
Statistically Self-similar Measures; Renormalization
of Mandelbrot Cascades

This section gathers old and new information related to the solutions of the functional
equation pointed out by Mandelbrot in connexion with the renormalization of the
martingale (Yn)n≥1 when ϕ′(1) ≤ 0.

3.1 Fixed Points of the Smoothing Transformation

If Z is a non negative random variable, denote by φZ the Laplace transform of its
probability distribution.

Consider the positive random variable W and do not assume a priori that
E(W )= 1. Then consider the equation

Z
dist= b−1

b−1∑

k=0

W (k)Z(k), (3.1)

where the random variables W (k), 0 ≤ k ≤ b − 1, are independent copies of W , the
random variables Z(k) are independent copies of the non negative random variable
Z , and (W (0), . . . , W (b −1)) and (Z(0), . . . , Z(b −1)) are independent. If Z is not
identically equal to 0, then it is easily deduced from (3.1) that in fact Z is positive
almost surely; moreover any positive multiple of Z satisfies (3.1).

In terms of Laplace transform, (3.1) means

φZ = (
E(φZ (b−1tW ))

)b
, (3.2)

so that φZ is a fixed point of the smoothing transformation TW defined on the space
of Laplace transforms of probability distributions on R+ as

TW (φ) = (E(φ(b−1tW )))b.

As indicated in the previous section, non trivial solutions of Eq. (3.1) have been
studied intensively [DL83, Gui90, BK97, Liu98, Liu00, Liu01, BK04, BK05,
AM12, ABM12] (see also [AM13] for the study of non necessarily positive solutions,
still with W > 0).

Let ϕ be defined as in Sect. 5.1.3.

Theorem 2 Equation (3.1) (or equivalently (3.2)) has a non trivial solution if and
only if there exists α ∈ (0, 1] such that ϕW (α) = 0 and ϕ′

W (α−) ≥ 0. Moreover, if

Z1 and Z1 are two such solutions, there exists c > 0 such that Z1
dist= cZ2.
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This was proved by Durrett and Liggett under the assumption ϕ(1 + ε) > −∞
for some ε > 0. This assumption has been removed thanks to recent advances due
to Alsmeyer, Biggins, Kyprianou and Meiners works in [ABM12, AM12, BK04,
BK05]. We do not try to outline the extremely involved proof of this result; we just
mention that renewal theory and fluctuation theory of random walks on R play a
central role here.

It turns out that assuming that ϕ′′(α−) > −∞ whenever ϕ′(α−) = 0 simplifies
the description of the solutions. This is what we will do in the next subsections.

3.1.1 Special Solutions from Mandelbrot and Critical
Mandelbrot Cascades When α = 1

For q ∈ R+ and n ≥ 1 set

Yq,n = bn(ϕ(q)−q)
∑

w∈A n

W (w|1)q W (w|2) · · · W (w|n)q ,

and

Ỹn = −dYq,n

dq

∣
∣
∣
q=1

.

Notice that if ϕ(1) = 0, i.e. E(W ) = 1, then Y1,n = Yn (see (2.1)). If, moreover,
ϕ′(1) = 0, we are in the critical case of degeneracy of Mandelbrot cascades, and Ỹn
takes the form

Ỹn = −
∑

w∈A n

(b−n W (w|1)W (w|2) · · · W (w|n)) log(b−n W (w|1)W (w|2) · · · W (w|n));

in this case it is a martingale with respect to (σ(W (w) : w ∈ A k, 1 ≤ k ≤ n))n≥1
and it is called derivative martingale.

The following result gathers information about the non trivial solutions of (3.1)
when ϕ(1) = 0 and ϕ′(1) ≤ 0.

Theorem 3 Assume that ϕ(1) = 0.

(1) Suppose that ϕ′(1−) > 0. Let Y be the almost sure limit of (Yn)n≥1 given by
Theorem 1.

(a) For q > 1 one has E(Y q) < ∞ if and only if ϕ(q) > 0;
(b) If ϕ(q0) = 0 and ϕ′(q0) > −∞ for some q0 > 1 (such a q0 is necessar-

ily unique due to the concavity of ϕ), one has P(Y > x) ∼∞ Ax−q0 for
some A > 0. (c) For q < 0, ϕ(q/b) > −∞ implies E(Y q ′

) < ∞ for all
q ′ ∈ (q, 0), and E(Y q) < ∞ implies ϕ(q/b) > −∞.

Moreover, any non trivial solution Z of (3.1) satisfies Z
dist= cY for some c > 0.
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(2) Suppose that ϕ′(1−) = 0 and ϕ′′(1−) > −∞. Then (Ỹn)n≥1 is a martingale
which converges almost surely to a positive random variable Ỹ satisfying the
following properties:

(a) for q > 0 one has E(Y )q < ∞ if and only if q < 1;
(b) φỸ (t) ∼0+ 1 − ct log(1/t) for some c > 0;
(c) if ϕ(1 + ε) > −∞ for some ε > 0, P(Ỹ > x) ∼∞ Ax−1 for some A > 0.
(d) For q < 0, ϕ(q/b) > −∞ implies E(Y q ′

) < ∞ for all q ′ ∈ (q, 0), and
E(Y q) < ∞ implies ϕ(q/b) > −∞.

Moreover, any non trivial solution Z of (3.1) satisfies Z
dist= cỸ for some c > 0.

Under the assumption that ϕ(1 + ε) > −∞ for some ε > 0, Durrett and Liggett
showed that whenϕ(1) = 0 andϕ′(1−) = 0, Eq. (3.2) possesses non trivial solutions
satisfying φ(t) ∼0+ 1 − ct log(1/t) for some c > 0, and unique up to a scaling fac-
tor in their argument. Then Liu [Liu98] used this behavior of φ at 0+ to identify the
solutions as the Laplace transform of Ỹ by proving that Ỹn converges to a non trivial
limit (the point is that for any fixed t > 0,

∏
w∈A n φ(tW (w|1)W (w|2) · · · W (w|n))

is a bounded non negative martingale with expectation in (0, 1), which is asymptot-
ically equivalent to e−tcỸn ). The weaker condition used in Theorem 3 is established
in [BK04, BK05].

The necessary and sufficient condition for the finitness of moments of order greater
than 1 when ϕ′(1) > 0 (conjectured in [Man74a]) was established by Kahane
in [Kah74, KP76] by generalizing the argument presented just after Theorem 1.
The right tail behaviors of solutions when ϕ′(1) > 0 and ϕ′(1) = 0 are due
Guivarc’h [Gui90] (conjectured in [Man74a]) and Buraczewski [Bur09] respectively.
The proofs strongly rely on random difference equations and renewal theories.

The result on moments of negative orders is first established in [Kah91] (see also
[Liu01, Mol96]). Its proof consists in estimating from (3.2) the asymptotic behavior
of φY or φỸ at ∞.

Associated statistically self-similar measures Under the assumptions of
Theorem 3(1), we already now the Mandelbrot measure μ.

Under the assumptions of Theorem 3(2), defining

Ỹn(w) = −
∑

v∈A n

W (w · v|1) · · · W (w · v|n)

bn log
W (w · v|1) · · · W (w · v|n)

bn (w ∈ A ∗)

and Ỹ (w) = limn→∞ Ỹn(w), Ỹ (w) is a copy of ‖μ̃‖ and

ν̃([w]) = b−|w|Ỹ (w)
∏

1≤ j≤|w|
W (w| j), (3.3)

defines almost surely a measure on A ω . One can show (see [Bar00]) ν̃-amost every
t ∈ A ω is normal, so that ν̃ has no atom in the set of infinite branches of A ω
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encoding b-adic numbers of [0, 1]. Thus ν̃ naturally projects on [0, 1] to a measure
μ̃ = μ̃W , called critical Mandelbrot measure, such that for any w ∈ A ∗,

μ̃|Iw =
(

b−|w| ∏

1≤ j≤|w|
W (w| j)

)
μ̃(w) ◦ f −1

w (w ∈ A ∗), (3.4)

where μ̃(w) is the copy of μ̃ built from (W (w · v))v∈A ∗.

3.1.2 General Form of the Solutions

Theorem 4 Assume that ϕ(α) = 0 and ϕ′(α−) ≥ 0 for some α ∈ (0, 1] (this α is
then unique by concavity of ϕ). Let Lα be a stable Lévy subordinator of index α if
α ∈ (0, 1) and the identity map of R+ if α = 1. Assume that Lα is independent of
(W (w))w∈A ∗ . Let Wα = Wα/E(Wα).

(1) Suppose that ϕ′(α−) > 0. Then Wα satisfies the assumptions of Theorem 3(1).
Let Yα be the limit of the associated Mandelbrot cascade built from (Wα(w))w∈A ∗ .

Any non trivial solution Z of (3.1) satisfies Z
dist= cLα(Yα) for some c > 0. More-

over, φZ (t) ∼0+ 1 − c′tα for some c′ > 0.
(2) Suppose that ϕ′(α−) = 0 and ϕ′′(α−) > −∞. Then Wα satisfies the assump-

tions of Theorem 3(2). Let Ỹα be the limit of the associated derivative mar-
tingale built from (Wα(w))w∈A ∗ . Any non trivial solution Z of (3.1) satisfies

Z
dist= cLα(Ỹα) for some c > 0. Moreover, φZ (t) ∼0+ 1− c′tα log(1/t) for some

c′ > 0.

Durrett and Liggett obtained the same sets of solutions under the stronger assump-
tion mentioned above, and the sharp result, without the assumption ϕ′′(α−) > −∞
when ϕ′(α−) = 0, is obtained in [ABM12]. Notice that checking that cLα(Yα) is
solution of (3.1) in case (1) and cLα(Ỹα) is solution of (3.1) in case (2) is a simple
exercise using that φLα(t) = e−γtα for some γ > 0.

Associated statistically self-similar measures Denote by μ and μ̃ the Mandelbrot
measure and critical Mandelbrot measure considered at the end of Sect. 3.1.1. Let
α ∈ (0, 1) and Lα anα-stable Lévy subordinator independent of (W (w))w∈A ∗ . Then
let μα (resp. μ̃α) be the positive measure obtained as the derivative of Lα(μ([0, ·]))
(resp. Lα(μ̃([0, ·]))). Let us also callμα a Lévy-Mandelbrot measure and μ̃α a critical
Lévy-Mandelbrot measure. These measures are statistically self-similar in the sense
that we have for any w ∈ A ∗

(μα)|Iw
dist=
(

b−|w| ∏

1≤ j≤|w|
W (w| j)

)1/α
μα,(w) ◦ f −1

w (w ∈ A ∗), (3.5)

where μα,(w) is a copy of μα independent of
∏

1≤ j≤|w| W (w| j), and the same holds
for μ̃α.
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In the context of Theorem 4, (3.5) reads

(μαWα
)|Iw

dist=
(

b−|w| ∏

1≤ j≤|w|
W (w| j)

)
μα,(w)

Wα
◦ f −1

w (w ∈ A ∗),

which is similar to (2.5) and (3.4).

3.2 Renormalization of Mandelbrot Cascades

We now suppose that ϕ(1) = 0 and ϕ′(1−) ≤ 0 and come to the existence of a
sequence (An)n≥1 such that Yn/An converges in law to a non trivial limit. When
log W is Gaussian, the solution to this question has been conjectured by Derrida and
Spohn [DS88] in the context of directed polymers on disordered trees and rigor-
ously established recently by Webb [Web11], while in the general result presented
below, the first part has been obtained by Aidekon and Shi [AS14], and the second
one combines a convergence in law result obtained by Madaule [Mad00] with an
identification of the limiting law using Theorem 4.

Theorem 5

(1) Suppose that ϕ(1) = 0, ϕ′(1−) = 0 and ϕ′′(1−) > −∞. Then (
√

n Yn)n≥1

converges in probability to

√
−2

πϕ′′(0)
Ỹ .

(2) Suppose that ϕ(1) = 0 and ϕ′(1−) < 0. Let α be the unique solution of
ϕ′(α) = ϕ(α)/α in (0, 1). The random variable Wα = Wα/E(Wα) satisfies
the assumptions of Theorem 4(2). Let Ỹα be the associated limit of the derivative
martingale built from (Wα(w))w∈A ∗ .

The sequence ((n3/2bn(ϕ(α)−α))1/α Yn)n≥1 converges in law to Lα(Ỹα), where
Lα is a stable Lévy subordinator of index α independent of Ỹα.

Theorem 5(2) is a special case of a more general renormalization results for Yn

when one assumes only that W > 0 and there exists α ∈ (0, 1) such that ϕ′(α) =
ϕ(α)/α (see Sect. 4.2).

The limiting law of μn/An is described in the next section.

4 Directed Polymers on A ∗: Partition Functions,
Free Energies and Gibbs Measures

Here we consider the random variables (W (w))w∈A ∗ of the previous sections and
we only assume that W > 0. If we define the potential V = log(b) − log W and
set V (w) = log(b) − log W (w) (w ∈ A ∗), in the setting of [DS88] the branching
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random walk H(w) = V (w|1) + · · · + V (w|n), w ∈ A n , defines for each n ≥ 1 a
polymer on the tree A n in the random medium (V (w))w∈⋃1≤k≤n A n by associating
the energy H(w) to each path of length n; moreover, this model possesses logarithmic
correlations.

Then, of first importance is the asymptotic behavior, as n tends to ∞, of thermo-
dynamical objects such as the partition function

Zn(β) =
∑

w∈A n

e−βH(w) (β ≥ 0),

the free energy

Pn(β) = log Zn(β)

n log(b)
,

and the Gibbs measures defined on [0, 1] by

νβ,n(dx) = b−n e−βH(w)

Zn(β)
dx if x ∈ Iw and w ∈ A n,

where β stands for the inverse of the temperature.
Writing e−βH(w) = (b−nW (w|1) · · · W (w|n))β shows the direct connexion with

Mandelbrot cascades.
The understanding of these asymptotic behaviors has made enormous progress in

the recent years. We still define ϕ(β) as in Sect. 5.1.3.
Four different situations can occur; they are described in the Sects. 4.1–4.4 and

depend on the behavior of ϕ at

βc = sup{β > 0 : ϕ′(β−)β − ϕ(β) > 0},

with the convention sup(∅) = 0.
For β ≥ 0 and n ≥ 1, we denote by μβ,n the measure defined by (2.2) when the

weight W is taken equal to

Wβ = Wβ

E(Wβ)
. (4.1)

Notice that by construction we have

‖μβ,n‖ = Zn(β)

E(Zn(β))
and ϕ′

Wβ
(1−) = ϕ′(β−)β − ϕ(β).

Section 4.5 presents a unified result for the free energy behavior.
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4.1 No Phase Transition: βc = +∞

Theorem 6 With probability 1, for all β ∈ [0,βc), (μβ,n)n≥1 weakly converges to
a non degenerate Mandelbrot measure μβ .

Consequently,
( Zn(β)

E(Zn(β))

)

n≥1
converges to ‖μβ‖, Pn(·) converges to the analytic

function −ϕ(·) uniformly on compact subintervals of [0,βc), and (νβ,n)n≥1 weakly

converges to
μβ

‖μβ‖ , as n → ∞.

That the result holds for each fixed β almost surely essentially follows from
Theorem 1 applied when W is taken equal to Wβ . The uniform version of this
result essentially follows from [Big92] and [Bar00]. Biggins considers in [Big92] the

analytic extensions of the mappingsYn : β �→ Zn(β)

E(Zn(β))
in a complex neighborhood

of {β : ϕ′(β−)β − ϕ(β) > 0}. He proves the almost sure uniform convergence of
these extensions on a common domain U of C by combining Cauchy’s formula with
the fact that, for each compact subset of U , Yn(z) − Yn−1(z) converges uniformly
exponentially to 0 in L p for some p > 1. It remains to prove that almost surely, for
all β such that ϕ′(β−)β − ϕ(β) > 0, we have limn→∞ Yn(β) > 0; this is done in
[Bar00] (Fig. 1).

4.2 Second Order Phase Transition: βc ∈ (0,∞)

and ϕ′
Wβc

(1−) = ϕ′(β−
c )βc − ϕ(βc) = 0

This situation is illustrated by the case where the potential V is Gaussian (Fig. 2).

Theorem 7

(1) The same conclusions as in Theorem 6 hold over [0,βc).
(2) Suppose that E(Wβc | log(W )|2) < ∞, i.e. ϕ′′

Wβc
(1−) > −∞. Let μ̃βc be the

critical Mandelbrot measure built from (Wβc (w))w∈A ∗ in Sect. 3.1.1. Then
(√

n
Zn(βc)

E(Zn(βc))

)

n≥1
converges in probability to c‖μ̃βc‖ for some explicit c > 0,

and (νβc,n)n≥1 weakly converges in probability to
μ̃βc

‖μ̃βc‖
as n → ∞.

(3) Suppose that E(Wβc | log(W )|3) < ∞. For β > βc, let μ̃
βc
β

βc
be the critical

Lévy-Mandelbrot measure built from μ̃βc and a stable Lévy subordinator of
index βc/β in Sect. 3.1.2.
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ϕ(β)

β0
1

−1

ϕ′(βc)β
ϕ(β)

β0
βc1

−1

ϕ′(βc)β

ϕ(β)

β

−∞

0
βc1

−1

ϕ′(βc)β

ϕ(β)

β

−∞

0

−1

(a) (b)

(c) (d)

Fig. 1 The four possible behaviors of ϕ (by design, when βc > 0, we make the pictures with
ϕ(1) = 0 and ϕ′(1) > 0 to link these behaviors with multifractal analysis of Mandelbrot measures
in Sect. 5). a No phase transition. b Second order phase transition. c First order phase transition.
d The degenerate case

Then, for all β > βc,
(

n
3
2
β
βc

Zn(β)

(E(Zn(βc)))
β
βc

)

n≥1
weakly converges in distribu-

tion to c‖μ̃
βc
β

βc
‖ for some c > 0, and (νβ,n)n≥1 weakly converges in distribution

to μ̃
βc
β

βc
/‖μ̃

βc
β

βc
‖ as n → ∞.

(4) Pn(·) converges almost surely, uniformly over the compact subsets of R+ to

P(β) =
⎧
⎨

⎩

−ϕ(β) if 0 ≤ β ≤ βc,

−ϕ(βc)

βc
β = −ϕ′(β−

c )β if β > βc
.

Thus P is analytic except at βc where it is differentiable with a discontinuity of
its second derivative, hence it presents a second order phase transition at βc.

Part (1) is obtained in a similar way as in the previous case.
For parts (2) and (3), the convergences of the renormalized partition functions

are established in [Web11] for the log-normal case (with convergence in law for the
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P (β)

β0
1

1

−ϕ

P (β)

β0
βc1

1

−ϕ′(β−
c )β

−ϕ

P (β)

β0
βc1

1
−ϕ

−ϕ′(β−
c )β

−ϕ(βc)
βc

β

P (β)

β

+∞

1

0

(a) (b)

(c) (d)

Fig. 2 The corresponding pressure function. a No phase transition. b Second order phase transition.
c First order phase transition. d The degenerate case

part (2)), and [AS14] and [Mad00] for part (2) and (3) respectively. The identification
of the limit in case (3) follows easily from (2.7) and Theorem 4.

In part (3), the exponent 3
2 is reminiscent from the asymptotic behavior of Mn =

min{βc H(w) − nϕ(βc) : w ∈ A n}, for which one has, due to [Web11] for the
log-normal case, and [Aid13] for the general case.

Theorem 8 Suppose that E(Wβc | log(W )|2) < ∞. Then, there exists c > 0 such
that for all x ∈ R,

lim
n→∞ P(Mn ≥ 3

2
n + x) = E(e−cex ‖μ̃βc ‖).

The asymptotic behavior of the Gibbs measures reflects the fact that when the
temperature 1/β becomes lower than 1/βc, the systems is in its glassy phase: asymp-
totically with n, the energy concentrates around a few local minima of H(x |n), a phe-
nomenon amplified as β tends to ∞, and also called freezing transition (see [CD01]).

It is out of our scope to describe the techniques developed in [Aid13, AS14,
Mad00, Web11]. The convergence of the Gibbs measures in case (2) and (3) requires
additional arguments provided in [JW11] for the case β = βc, and in [BRV12]
for β ≥ βc.
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Regarding point (4), this result or its analogue for Mandelbrot measures, has
been obtained by several authors [CK92, Fra95, HW92, Mol96, OW00, WW13].
Due to (1), only the case β ≥ βc must be considered. Due to the convexity of the
functions Pn , it is quite direct that lim infn→∞ Pn(β) ≥ −ϕ′(β−

c )β for β ≥ βc.
Moreover, for β ≥ βc, if 0 < β′ < βc, we have Zn(β) = ∑

w∈A n e−βH(w) =
∑

w∈A n (e−β′ H(w))β/β′ ≤ Zn(β′)β/β′
. Consequently, since Pn(β′) converges to

−ϕ(β′), we get lim supn→∞ Pn(β) ≤ β
β′ (−ϕ(β′)). Letting β′ tend to βc yields

the result.

4.3 First Order Phase Transition: βc ∈ (0,∞)

and ϕ′
Wβc

(1−) = ϕ′(β−
c )βc − ϕ(βc) > 0

Notice that in this case one necessarily has ϕ(β) = −∞ for β > βc. Also, the
measures μβc,n weakly converge almost surely to the non degenerate Mandelbrot
measure μβc , for which Theorem 1 is optimal in the sense that ϕWβc

(β) = −∞ for
β > 1, hence in this case (‖μβc,n‖)n≥1 is not bounded in any Lq , q > 1.

We have the following result.

Theorem 9

(1) The same conclusions as in Theorem 6 hold over [0,βc].
(2) With probability 1, Pn(·) converges almost surely, uniformly over the compact

subsets of R+ to

P(β) =
⎧
⎨

⎩

−ϕ(β) if 0 ≤ β ≤ βc,

−ϕ(βc)

βc
β > −ϕ′(β−

c )β if β > βc
.

Thus P is analytic except at βc where it is continuous and not differentiable,
hence it presents a first order phase transition at βc.

Remark 1 The expression of P shows that the concave Legendre-Fenchel transform
of −P , i.e. the mapping α ∈ R �→ inf{αβ + P(β) : β ≥ 0} is non negative at
α = ϕ(βc)/βc. This proves that |βc H(w) − nϕ(βc)| behaves sub-linearly at some
w ∈ A n , like in the case of the previous section.

Consequently, this raises the following questions: does min{βc H(w)−nϕ(βc)−
sn : w ∈ A n} converge in law for some sub-linear sequence (sn)n≥1? If so, is there
a freezing phenomenon like in the previous case?

Then, one can wondering if for β > βc,
(

e
β
βc

sn Zn(β)

(E(Zn(βc)))
β
βc

)

n≥1
weakly con-

verges in distribution to c‖μ
βc
β

βc
‖ for some c > 0, and (νβ,n)n≥1 weakly converges in
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distribution to μ
βc
β

βc
/‖μ

βc
β

βc
‖ as n → ∞, where μ

βc
β

βc
is the Lévy-Mandelbrot measure

built from μβc and a stable Lévy subordinator of index βc/β in Sect. 3.1.2.

The upper bound for lim supn→∞ Pn(β) over (βc,∞) is obtained like in the
previous case. The lower bound for lim infn→∞ Pn(β) is more involved. It was
obtained by Molchan in [Mol96] only along a deterministic subsequence. However,
we believe that Molchan’s approach can give the convergence along the whole
sequence. Anyway, in [AB14], an alternative approach gives the result in connection
with the multifractal analysis of H(w) (see Sect. 5.1.3).

4.4 The Degenerate Case: βc = 0, i.e. ϕ = −∞ Over R
∗+

In this case, we have:

Theorem 10 With probability 1, Pn converges pointwise to −ϕ as n → ∞.

This convergence result is shown in [Mol96] along a deterministic subsequence,
and in this form in [AB14].

Remark 2 One can wonder if there is a precise superexponential speed of divergence
of Zn(β) to ∞ when β > 0.

4.5 A Uniform Point of View for the Free Energy

We can deduce from the previous results the following synthetic presentation:

Theorem 11 With probability 1, limn→∞ Pn(β) = β inf{−ϕ(β′)/β′ : β′ ∈
(0,β]} = inf{−ϕ(θβ)/θ : θ ∈ (0, 1]} for all β > 0.

5 Fine Geometric Properties of Statistically Self-similar
Measures

This section presents recent results about the modulus of continuity of Mandelbrot
and critical Mandelbrot measures, as well as recent progress in their multifractal
analysis, with consequences for the multifractal analysis of their discrete companions,
i.e. Lévy-Mandelbrot and critical Lévy-Mandelbrot measures. We also give results
about the dimension of these measures. Finally, we say a word about KPZ formula.
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5.1 Dimension, Modulus of Continuity, and Multifractal Analysis
of Mandelbrot and Critical Mandelbrot Measures

Here we suppose that E(W ) = 1.

5.1.1 Dimension

Recall that a positive and finite Borel measure ν on [0, 1] is said to be exact
dimensional with dimension D if limr→0+ log(μ(B(x,r)))

log(r)
= D, ν-almost everywhere,

or equivalently limn→∞ log(μ(In(x)))
−n log(b)

= D, ν-almost everywhere, where In(x) stands
for the closure of the semi-open to the right b-adic interval of generationx which
contains x when x ∈ [0, 1) and [1 − b−n, 1] if x = 1.

Theorem 12

(1) Suppose that ϕ′(1−) > 0. Then the Mandelbrot measure μ is exact dimentional
with dimension ϕ′(1−); in particular it is continuous.

If, moreover, E(W | log W |3) < ∞ and −ϕ′′(1−) > 0 (i.e. W �dist= 1), then for
μ-almost every x we have

lim inf
n→∞ (resp. lim sup

n→∞
)

log(μ(In(x))) + n log(b)ϕ′(1−)
√

2 log(b)(−ϕ′′(1−))n log log(n)
= −1(resp. − 1).

(2) Suppose that ϕ′(1−) = 0 and ϕ′′(1−) > −∞. Then the critical Mandelbrot
measure μ̃ is exact dimensional with dimension 0. If, moreover, ϕ(1+ ε) > −∞
for some ε > 0, then μ̃ is continuous.
Also, if log(W ) is Gaussian, for μ̃-almost every x, for all α > 1/3 and k ∈ N,
for n large enough, we have

exp
(
−√6 log(b)

√
n (log n + α log log n)

)
≤ μ̃(In(x)) ≤ n−k . (5.1)

For part (1), the fact that μ is exact dimensional, conjectured in [Man74b], was
proved by Peyrière in [KP76, Pey74] under the assumption E(Y log+(Y )) < ∞,
which is shown to be equivalent to ϕ′′(1) > −∞ in [Big79]. In [Kah87], Kahane
used a powerful percolation argument combined with Theorem 1 to eliminate the
assumption E(Y log+(Y )) < ∞.

The law of the iterated logarithm is stated in [Liu00] assuming E(W | log W |2)< ∞.
To get such a law, consider the now called “Peyrière measure” Q introduced in
[Pey74] and defined on (� × [0, 1],A ⊗ B([0, 1])) by
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Q(A) = E

⎛

⎜
⎝

∫

[0,1]
1A(ω, x)μ(dx)

⎞

⎟
⎠ ,

so that “Q-almost everywhere” means “almost surely, μ-almost everywhere”. Its
proof first uses the standard law of the iterated logarithm applied to the sequence of
centered i.i.d. random variables log(W (x |k))− log(b)+ log(b)ϕ′(1−) with variance

− log(b)ϕ′(1−) with respect to Q, to control
∑n

k=1 log(W (x |k))−log(b)+log(b)ϕ′′(1−)√
2 log(b)(−ϕ′′(1−))n log log(n)

.

However the control of Y (x |n) as o(
√

n log log(n)) has a gap in [Liu00]. Assuming
E(W | log W |3) < ∞, we know from [Big79] that E(Y log(Y )2) < ∞. Then, for
ε > 0, a calculation yields

Q
({| log Y (x |n)| ≥ √

nε}) = Q

(
{Y (x |n) ≥ e

√
nε}
)

+ Q

(
{Y (x |n) < e−√

nε}
)

= E

(
Y · 1{Y≥e

√
nε}
)

+ E

(
Y · 1{Y<e−√

nε}
)

≤ E

(
Y · 1{Y≥e

√
nε}
)

+ e−√
nε.

Applying the elementary inequality
∑

n≥1 1{X≥√
n} ≤ X2 we get

∑

n≥1

Q
({| log Y (x |n)| ≥ √

nε}) ≤
∑

n≥1

E

(
Z · 1{Z≥e

√
nε}
)

+
∑

n≥1

e−√
nε

= E

⎛

⎝Z ·
∑

n≥1

1{ log Z
ε ≥√

n
}

⎞

⎠+
∑

n≥1

e−√
nε

≤ ε−2
E(Z(log Z)2) +

∑

n≥1

e−√
nε < ∞.

Then the Borel-Cantelli lemma yields | log Y (x |n)| = o(
√

n), μ-almost everywhere.
For part (2), the fact that μ̃ is exact dimensional with dimension 0 is established

in [Bar00] using large deviations estimates to prove that
∑

n≥1 μ̃({x : μ̃(In(x)) ≤
b−nε}) < ∞ for all ε > 0. This is refined in [BKNSW14a], using Theorem 3(2, 3),
to get the lower bound in (5.1) (this bound is easy to extend to general distributions
for W ). The fact that μ̃ is atomless under the assumption ϕ(1 + ε) > −∞ for some
ε > 0 is also established in [BKNSW14a]; this exploits Theorems 3(2, 3) and 5(1)
to prove that nγ maxw∈A n μ(Iw) converge to 0 in probability as n → ∞ for all
γ ∈ [0, 1/2). The upper bound in (5.1) is more involved than the lower one; we refer
to [BKNSW14a] for the details of (5.1).

Remark 3 The bounds (5.1) are not completely satisfactory since we do not know
whether they are sharp or not; in fact, we believe that at least the second one is not
sharp, and also that the order of magnitude of the sharp upper bound should differ
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from that of the lower bound and reflect the fluctuations of random walks conditioned
to stay positive.

5.1.2 Modulus of Continuity

At first we notice that if μ is a non degenerate Mandelbrot measure then βc ≥ 1 and
βc > 1 if ϕ′

Wβc
(1−) = 0, and if μ̃ is a critical Mandelbrot measure, then βc = 1,

where βc is defined in Sect. 4.
Also, it is important to have in mind that for either of these measures, the smallest

pointwise Hölder exponent is ϕ(βc)/βc, which equals ϕ′(β−
c ) if ϕ′

Wβc
(1−) = 0

(see Sect. 5.1.3). It is natural to complete this information by estimating the modulus
of continuity of these measures.

Theorem 13

(1) Assume that ϕ′(1) > 0, ϕ′
Wβc

(1−) = 0, and there exists β > βc such that
ϕ(β) > −∞.
With probability 1, for all γ ∈ (0, 1/2), there exists C > 0 such that for all
subintervals I ⊂ [0, 1], the Mandelbrot measure μ satisfies

μ(I ) ≤ C |I |ϕ(βc)/βc

(

log

(

1 + 1

|I |
))−γ/βc

. (5.2)

(2) Assume that ϕ(−β) > −∞ and ϕ(1 + β) > −∞ for some β > 0, as well as
ϕ′(1) = 0.
With probability 1, for all γ ∈ (0, 1/2), there exists C > 0 such that for all
subintervals I ⊂ [0, 1], the critical Mandelbrot measure μ̃ satisfies

μ̃(I ) ≤ C

(

log

(

1 + 1

|I |
))−γ

. (5.3)

Moreover, one cannot take γ > 1/2 in the above statement.

This result is proved in [BKNSW14a].
For (1), one needs that E(Y β) < ∞ for some β > βc to use the fact that h(x) =

P(Y ≥ x) ≤ cx−β for such a β; this is the case by Theorem 3(1) since ϕ(βc) > 0
and our assumption imply ϕ(β) > 0 near β+

c . This is combined in a non obvious

way with the upper bound for E

((
n

3
2
β
βc Zn(β)

(E(Zn(βc)))
β
βc

)θ)
provided for θ ∈ (0, 1) in

[Mad00] (and used here with θ = βc/β) to prove that

P
(

max
w∈A n

{μ(Iw)} ≥ 2−n ϕ(βc)
βc n− γ

βc
) = E

( ∏

w∈A n

(1 − h(eβc H(w)−nϕ(βc)n−γ))
)

≤ Cεn
(1−ε)(γ−3/2)
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for all ε > 0 and γ ∈ (0, 3/2). This yields (5.2).

Similarly, the upper bound for E
(
(n

1
2 Zn(1))θ

)
provided for θ ∈ (0, 1) in [HS09]

is combined with the information P(Ỹ ≥ x) ≤ cx−1 provided by Theorem 3(2, 3)
to prove that P(maxw∈A n μ(Iw) ≥ n−γ) ≤ Cεn(1−ε)(γ−1/2) for all ε > 0 and
γ ∈ (0, 1/2). This yields (5.3). The fact that one cannot take γ > 1/2 in (5.3) is
proved by using Theorems 5(1) and 8, as well as the information P(Ỹ ≥ x) ≥ c′x−1

(x ≥ 1) provided by Theorem 3(2, 3) to obtain that P(maxw∈A n μ(Iw) < n−γ) tends
to 0 for all γ > 1/2.

Remark 4

(1) It is not known if the choice γ < 1/2 in (5.2) can be improved.
(2) Property (5.3) is extended to critical lognormal multiplicative chaos measures

in [BKNSW14+].
(3) Theorem 13 only deals with the second order phase transition case (in the frame of

Sect. 4). To get similar results in the first order phase transition case is desirable.
This is related to Remark 1.

5.1.3 Multifractal Analysis

Recall that given a positive Borel measure ν supported on [0, 1], its multifractal
analysis consists in computing the Hausdorff dimension, denoted dim, of the level
sets of the pointwise Hölder exponent of ν, namely the sets

Eν(γ) =
{

x ∈ [0, 1] : γ(ν, x) = γ
}

(γ ≥ 0),

where

γ(ν, x) = lim inf
r→0+

log ν(B(x, r))

log(r)
.

The Lq -spectrum of ν is defined as

τν : q ∈ R �→ lim inf
r→0+

log sup
{∑

i μ(B(xi , r))q
}

log(r)
, (5.4)

where the supremum is taken over all the centered packing of [0, 1] by closed balls
of radius r . Define also

τ̃ν : q ∈ R �→ lim inf
n→∞

−1

n log(b)
log

∑

w∈A n

μ(Iw))q , (5.5)

Throughout, we adopt the convention that a set has a negative dimension if and only
if it is empty.
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One always has

dim Eν(γ) ≤ τ∗
ν (γ),

and one says that ν obeys the multifractal formalism at γ if dim Eν(γ) = τ∗
ν (γ)

(see [Ols95]).
Let us naturally extend ϕ to the real line as

ϕ(q) = ϕW (q) = q − 1 − logb E(W q) (q ∈ R),

Given a function ψ : R → R ∪ {−∞}, define its concave Legendre-Fenchel
conjugate as

ψ∗ : γ ∈ R �→ inf{γq − ψ(q) : q ∈ R}.

Let

f : γ �→
{
ϕ∗(γ) if ϕ∗(γ) ≥ 0

−∞ otherwise
.

For non degenerate Mandelbrot measures and critical Mandelbrot measures, one
has the following result (for point (3) we refer the reader to appendix for the definition
of Hausdorff measures).

Theorem 14 Let ν be the non degenerate Mandelbrot measure μ if ϕ′(1−) > 0, or
the critical Mandelbrot measure μ̃ if ϕ′(1−) = 0 and ϕ′′(1−) > −∞.

Suppose that ϕ(−ε) > −∞ for some ε > 0. Then, with probability 1,

(1) τν(0) = −1 and for all q ∈ R
∗, τν(q) = sup{ϕ(θq)/θ : θ ∈ (0, 1]}. Moreover,

τν = f ∗, f = τ∗
ν , and in (5.4), lim inf can be replaced by lim.

(2) For all γ ≥ 0, dim Eν(γ) = τ∗
ν (γ) = f (γ).

(3) Eν(τ ′
ν(0)) is of full Lebesgue measure;

(0–∞ law) for all γ ≥ 0 such that dim 0 < τ∗
ν (γ) < 1, for all gauge functions

g, we have Hg(Eν(γ)) = ∞ if lim supt→0+ log(g(t))/ log(t) ≤ τ∗
ν (γ) and

Hg(Eν(γ)) = 0 otherwise.
(4) For n ≥ 1, γ ∈ R+ and ε > 0 let

f (n, γ, ε) = n−1 logb #
{
w ∈ A n : logμ(Iw)

−n log(b)
∈ [γ − ε, γ + ε]

}
.

We have

for all γ ≥ 0, lim
ε→0+ lim inf

n→∞ f (n, γ, ε) = lim
ε→0+ lim sup

n→∞
f (n, γ, ε) = f (γ).

Let us sketch the ideas of the proof of this result, and start with a remark.
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Fig. 3 Multifractal nature of a Mandelbrot measure with a second order phase transition at q−
and a first order phase transition at q+ = 1, i.e. in the case where Theorem 1 is sharp. a The Lq

spectrum of μ. b Its Legendre transform
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(a) (b)

Fig. 4 Multifractal nature of a Mandelbrot measure with a second phase transition at both q− and
q+. This situation occurs when W is lognormal. a The Lq spectrum of μ. b Its Legendre transform

Remark 5

(1) It turns out that τ̃ν = τν , so according to Part(1), τν(q) is on R+ the opposite of
the free energy P(q) of the directed polymer associated with H(w) defined in
Sect. 4, and on R−, τν(q) is the opposite of P(−q), where P is the free energy
of the directed polymer associated with −H(w). Thus, there may be two phase
transitions for τν : one on R+ according to q+ = sup{q > 0 : ϕ′(q)q−ϕ(q) > 0}
is finite or not, and one on R− according to q− = inf{q < 0 : ϕ′(q)q−ϕ(q) > 0}
is finite or not. This yields nine possible situations under our assumptions in
the case of Mandelbrot measures, and three in the case of critical Mandelbrot
measures, since on R+ there is automatically a second order phase transition
at 1. Some of these possibilities are illustrated in Figs. 3, 4, 5 and 6.

(2) Due to (2.4) and (3.3), and Parts (2) and (4) of Theorem 14 are geometric and
statistical counterparts in A ω and A ∗ of Cramer’s theorem and its extension by
Bahadur and Zabell (see [DZ98]), which ensures that for allγ ∈ R, over any fixed
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Fig. 5 Multifractal nature of a Mandelbrot measure with q− = −∞ and a second order phase
transition at q+. a The Lq spectrum of μ. b Its Legendre transform
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Fig. 6 Multifractal nature of a critical Mandelbrot measure (one always has q+ = 1, where a
second order phase transition occurs), with a first order phase transition at q−. a The Lq spectrum
of μ̃. b Its Legendre transform

infinite branch w1 · · ·wn · · · of A ω , after setting L(q) = logb E((bW −1)q),
one has

r(γ) := inf
q∈R

L(q) − γq

= lim
ε→0

lim inf
n→∞ n−1 logb P(|γ − (n log b)−1

n∑

k=1

log(b) − log(W (w1 · · · wn)| ≤ ε)

= lim
ε→0

lim sup
n→∞

n−1 logb P(|γ − (n log b)−1
n∑

k=1

log(b) − log(W (w1 · · · wn)| ≤ ε).

Indeed, heuristically, due to the rate of growth of the trees {A }n , n ≥ 1, almost
surely, for all γ ∈ R such that 1 + r(γ) ≥ 0, one should have the “logarithmic
frequency”
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lim
ε→0+ lim inf

n→∞ f (n, γ, ε) = lim
ε→0+ lim sup

n→∞
f (n, γ, ε)

= lim
ε→0

lim inf
n→∞ n−1 logb

(
#(A n) · P(|γ − (n log b)−1

n∑

k=1

log(b)

− log(W (w1 · · · wn)| ≤ ε)
)

= 1 + r(γ) = ϕ∗(γ).

This observation about point (4) was made by Mandelbrot in [Man74a].

We notice that the formula given by Theorem 14 for τν simplifies to τν = ϕ over
(q−, q+), and also τ∗

ν (γ) = ϕ∗(γ) for γ = ϕ′(q), q ∈ (q−, q+).
The lower bound τν(q) ≥ T (q) = sup{ϕ(θq)/θ : θ ∈ (0, 1]} is quite easy. At first

the problem reduces to packings by b-adic intervals, since τν = τ̃ν . Then, notice that
for q ∈ (q−, q+), after Theorem 3 we have E(‖ν‖q) < ∞, so (using (2.5) or (3.4))

∑

n≥1

E

( ∑

w∈A n

ν(Iw)qbn(ϕ(q)−ε)) = E(‖ν‖q)
∑

n≥1

b−nε < ∞

for all ε > 0. This yields τ̃ν(q) ≥ ϕ(q), but ϕ(q) = sup{ϕ(θq)/θ : θ ∈ (0, 1]} if
q ∈ (q−, q+). For the other values of q, the argument giving the lower bound for
τ̃ν is similar to that used to obtain the upper bound for lim supn→∞ Pn in Sect. 4.2
when β ≥ βc. Moreover, one can show that T ∗ = f and f = T ∗ (see [AB14] for
the details).

Thus, for all γ ≥ 0, dim Eν(γ) ≤ τ∗
ν (γ) ≤ f (γ) ≤ ϕ∗(γ).

Let γ ≥ 0 such that ϕ∗(γ) ≥ 0. When ν = μ, the sharp lower bound ϕ∗(γ) for
dim Eν(γ) is determined in several papers (under different kind of assumptions, and
sometimes for the level sets associated with γ̃(ν, x) rather than γ(ν, x)) in the case
that γ = ϕ′(q) with q ∈ (q−, q+) [Bar00, BBP03, BHJ11, BJ10, Fal94, HW92,
Kah91, Mol96, Ols94] or q ∈ {q−, q+} [Bar00, BJ10]. This fully describes the
range of γ for which Eν(γ) �= ∅ in the cases for which q− and q+ correspond
to no phase transition or a second order phase transition: one can prove that, with
probability 1, for all q ∈ (q−, q+), the Mandelbrot measure μq associated with
the weights Wq(w) (see (4.1)) is exact dimensional with a Hausdorff dimension
equal to ϕ∗(ϕ′(q)) = ϕ′(q)q − ϕ(q) and is carried by Eν(α) [Bar00] (in [BHJ11,
Fal94, HW92, Kah91, Mol96, Ols94], one finds the weaker version: for each fixed
q ∈ (q−, q+), dim Eν(ϕ′(q)) ≥ ϕ∗(ϕ′(q)) almost surely). For γ = ϕ′(q) with
q ∈ {q−, q+}, if q is finite then one shows that the critical Mandelbrot measure μ̃q is
carried by Eν(ϕ′(q)) [Bar00], otherwise one builds an inhomogeneous Mandelbrot
measure carried by Eν(ϕ′(q)) and whose Hausdorff dimension is ϕ∗(ϕ′(q)) [BJ10].

The same approach is used in [Bar00] to achieve the multifractal analysis of μ̃ in
absence of first order phase transition on R−.

However, in case of first order phase transition at q ∈ {q−, q+}, the
previous method does not make it possible to study Eν(γ) for the exponents γ in
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[ϕ(q)/q,ϕ′(q−)) if q = q+ or in (ϕ′(q+),ϕ(q)/q] if q = q−. Moreover, in any
situation, they cannot provide the 0–∞ law obtained in point (3).

In [AB14], a new approach is developed to treat all the possible types of phase
transition in the multifractal analysis of branching random walks. Moreover, fol-
lowing the approach developed in [BBP03] or [BJ10], one can reduce the study
of the level sets of γ(ν, x) to that of the level sets of lim infn→∞ log ν(In(x))

−n log(b)
.

Also, the assumption ϕ(−ε) > −∞ for some ε > 0 assures that E(‖ν‖−ε) <

∞, and E(‖ν‖ε) < ∞ for ε ∈ (0, 1), so that the study of the level sets of
lim infn→∞ log ν(In(x))

−n log(b)
reduces to the level sets of lim infn→∞ H(x |n)

n log(b)
, by using (2.4).

One can also assume that W �dist= 1 without loss of generality. Then (we still use
the notations of Sect. 4), there exists A0 > 0 such that for A ≥ A0, P(|V | ≤ A) > 0.
One considers the random weights

Wq,A(w) = 1{|V (w)|≤A}W q(w)

E(1{|V (w)|≤A}W q(w))

and the functions

ϕA(q) = −1 + q − logb E(1{|V (w)|≤A}W q).

One has ϕA ↘ ϕ pointwise as A → ∞, and it can be shown that this implies that
ϕ∗

A ↗ ϕ∗ pointwise on the interior of {γ : ϕ∗(γ) > −∞} as A → ∞. It follows
that one can find an increasing sequence (Ak)k≥1 converging to ∞ and for each
k ≥ 1 a finite set Dk ⊂ {q : ϕ∗

Ak
(ϕ′

Ak
(q)) > 0} such that for each γ such that

ϕ∗(γ) ≥ 0, there exists (qk)k≥1 ∈ ∏
k≥1 Dk such that limk→∞ ϕ′

Ak
(qk) = γ and

limk→∞ ϕ∗
Ak

(ϕ′
Ak

(qk)) = ϕ∗(γ).
Instead of considering Mandelbrot measures like the measures μq , q ∈ (q−, q+),

one considers the family of inhomogeneous Mandelbrot measures obtained as fol-
lows.

Fix an increasing sequence of integers (Nk)k≥0 with N0 = 0. Set Mk = ∑k
i=1 Ni

and for n ≥ 1 define kn so that

Mkn + 1 = 1 +
kn∑

k=1

Nk ≤ n ≤
kn+1∑

k=1

Nk .

For every sequence B = (qk)k≥1 ∈ ∏∞
k=1 Dk , consider the inhomogeneous branch-

ing random walk

HB(w) = n log(b)−
kn∑

k=1

Nk∑

i=1

log Wqk ,Ak (w|Mk−1+i)−
n−Mkn∑

i=1

log Wqk ,Ak (w|Mkn +i)
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defined on EB,n = {w ∈ A n : |V (w|Mk + i)| ≤ Ak, ∀ k, i such that Mk + i ≤ n}.
Then define the random measures

μB,n(dx) = 1EB,n (w)e−HB (w) bndx, if x ∈ Iw.

They form a martingale which converges almost surely to a random measure μB

supported on EB = ⋂
n≥1

⋃
w∈EB,n

Iw. Moreover, it is possible to choose (Nk)k≥1
suitably so that all the measures μB are simultaneously defined and non degenerate
conditionally on EB �= ∅. The sequence (Nk)k≥1 can also be fixed so that for all γ
such that ϕ∗(γ) ≥ 0, each time B = (qk)k≥1 is such that limk→∞ ϕ′

Ak
(qk)= γ and

limk→∞ ϕ∗
Ak

(ϕ′
Ak

(qk)) = ϕ∗(γ), then, conditionally on {EB �= ∅}, μB is exact
dimensional with dimension ϕ∗(γ) and carried both by the set EH (γ) = {x :
limn→∞ H(x |n)

n log(b)
= γ} and the set Ẽν(γ) =

{
x ∈ [0, 1] : limn→∞ log ν(In(x))

−n log(b)
=

γ
}

∩
{

x ∈ [0, 1] : limr→0+ log ν(B(x,r)
log(r)

= γ
}

. Moreover, there are uncountably

many such measures for a given γ, and two such measures μB and μB′ are mututally
singular if B and B ′ are not ultimately equal. Since, moreover, P({EB �= ∅}) tends
to 1 as the first terms A1 of (Ak)k≥1 tends to ∞, the measures μB are the main
tool to get parts (2) of the theorem. Part (3) requires additional work, and uses in
an essential way the reach family exhibited above of inhomogeneous measures of
dimension ϕ∗(γ) supported by Eν(γ).

To get what remains of part (1), it is first not hard to deduce point (4) from the
previous estimations for the Hausdorff dimensions: we have

a.s., for all γ ≥ 0, lim
ε→0+ lim inf

n→∞ f (n, γ, ε) = lim
ε→0+ lim sup

n→∞
f (n, γ, ε) = f (γ).

Then the conclusion follows from Varadhan’s integral Lemma [DZ98, Theorem 4.3.1].

Remark 6

(1) The measures of type μB can be used to control the Hausdorff and packing
dimensions of the wider family of sets

Eν(γ; γ′) =
{

x ∈ [0, 1] : lim inf
n→∞

log ν(In(x))

−n log(b)
= γ, lim sup

n→∞
log ν(In(x))

−n log(b)
= γ′},

0 ≤ γ ≤ γ′, (see [AB14] for the details).
(2) Consider the branching random walk H(w), w ∈ A ∗, for itself, and do not

assume any integrability properties for H (or W ). Set

f̃ (n, γ, ε) = n−1 logb #
{
w ∈ A n : Hn(w)

n log(b)
∈ [γ − ε, γ + ε]

}
.

The same approach as above yields that with probability 1,
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for all γ ∈ R, dim EH (γ) = lim
ε→0+ lim inf

n→∞ f̃ (n, γ, ε)

= lim
ε→0+ lim sup

n→∞
f̃ (n, γ, ε) = f (γ).

(see [AB14]).
This includes in particular the both sided degenerate case ϕ(q) = −∞ for all
q �= 0 (see Sect. 4.4 for the definiton of the degenerate case), and in this case
one has dim EH (γ) = 1 for all γ ∈ R.

5.2 Multifractal Analysis of Lévy-Mandelbrot and Critical
Lévy-Mandelbrot Measures

We now describe the multifractal nature of the discrete statistically self-similar
measures defined in Sect. 3.1.2 (notice that by construction these measures are exact
dimensional with dimension 0) (Fig. 7).

Theorem 15 Let α ∈ (0, 1) and ν the non degenerate Mandelbrot measure μ if
ϕ′(1−) > 0, or the critical Mandelbrot measure μ̃ ifϕ′(1−) = 0 andϕ′′(1−) > −∞.
Let να be the associated Lévy-Mandelbrot or critical Lévy-Mandelbrot measure in
Sect. 3.1.2.

Suppose that ϕ(−ε) > −∞ for some ε > 0. With probability 1, we have

(1) for all q ∈ R, τνα(q) = min(τν(q/α), 0);
(2) for all γ ∈ R+, dim Eνα(γ) = τ∗

να(γ).

Remark 7 There is a phase transition at q+ = α; it is of first order when ν = μ and
of second order when ν = μ̃. On R−, we have the same three possibilities as for ν.

We are going to see that when ν = μ, the first order phase transition at q = α also
corresponds to a transition in the geometric properties responsible for the Hausdorff

τ (q )

q
0

1

−1

q− α

τ(q−)

τ∗(h )

h0

1

ϕ′(1−)/α τ(q−)/q−τ ′(q−)

τ ′(0)

(a)
(b)

Fig. 7 Multifractal nature of a Lévy-Mandelbrot measure, with the necessary first order phase
transition at α = q+, and another first order phase transition at q−. a The Lq spectrum of μα. b Its
Legendre transform
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τ(q−)/q−τ ′(q−)τ ′(0)
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Fig. 8 Multifractal nature of a critical Lévy-Mandelbrot measure, with the necessary second order
phase transition at α = q+, and a first order phase transition at q−. a The Lq spectrum of μ̃α. b Its
Legendre transform

dimensions of the sets Eνα(γ) for γ ∈ [0,ϕ′(1−)/α]: for these exponents the rate of
approximations of the elements of Eνα(γ) by the atoms of να come into play, while
for the other exponents, and the same holds when ν = μ̃, the Hausdorff dimension of
Eνα(γ) can be captured essentially in the same way as for the sets Eν(αγ) (Fig. 8).

We can reduce the study of the Lq -spectrum to packings by b-adic intervals. For
αq− < q < α we have, using (3.5)

∑

n≥1

E

( ∑

w∈A n

να(Iw)qbn(ϕ(q/α)−ε)) = E(‖να‖q)
∑

n≥1

b−nε < ∞

for all ε > 0. This yields τν(q) ≥ ϕ(q/α), and with manipulations similar to
those use in the sketch of proof of Theorem 14, we get the lower bound τνα(q) ≥
min(τν(q/α), 0) almost surely. In particular, τνα(α) ≥ 0, so that since τνα(1) = 0
and τνα is non decreasing and concave, we must have τνα = 0 over [α,∞). The
upper bound for τνα is a consequence of the lower bound for the Hausdorff dimension
in part (2) of the theorem, as well as the inverse Legendre transform for ϕ∗.

Part (2) is proven in [Jaff99] when ν is the Lebesgue measure restricted to [0, 1]
(W = 1 almost surely), i.e. να is just the derivative of a Lévy subordinator, in
the following form: dim Eνα(γ) = αγ if γ ∈ [0, 1/α], and dim Eνα(γ) = −∞
otherwise.

Fix T > 0 and let P = {(yn, rn) : n ≥ 1} be a Poisson point process with
intensity dy ⊗ dr

r2 in [0, T ]×R
∗+, so that the sequence (rn)n≥1 tends to 0 as n → ∞.

Then take for Lα the α-stable Lévy subordinator Lα(y) = ∑
n:yn≤y r1/α

n , so that

να = ∑
n≥1 r1/α

n δyn := ρwhen ν is the Lebesgue measure. The multifractal analysis
in this case uses the following facts. At first, it results from quite direct estimates that
for any y ∈ R+ \ {yn : n ≥ 1}, the pointwise exponent γ(ρ, y) equals 1/(αs(y)),
where s(y) is the rate of approximation of y by the family {(yn, rn) : n ≥ 1},
defined as
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s(y) = lim sup
n→∞

log(|y − yn|)
log(rn)

.

By a theorem of Shepp [She72], one has s(y) ≥ 1 for all y ∈ [0, T ] \ {yn : n ≥ 1},
hence γ(ρ, y) ≤ 1/α, so Eρ(γ) = ∅ if γ > 1/α. Moreover, as a consequence of
a theorem on the “ubiquitous systems” established independently in [Jaf00a] and
[DMPV95] and applied to the family {(yn, rn) : n ≥ 1}, one has dim{y : s(y) : s} =
1/s for all s ≥ 1, hence the Hausdorff dimension of Eρ(γ) = {y ∈ [0, T ] : s(y) :
1/(αγ)} = αγ.

The general case is treated in [BS07] under stronger assumptions on ϕ that only
allow no phase transition or a second order phase transition on R−. Condition-
ally on ν, the Lévy subirdinator Lα is considered over [0, T ], with T = ‖ν‖.

The composition by the indefinite integral of ν when W �dist= 1 induces distor-
sions with respect to the situation explained above. For γ ≥ ϕ′(1−)/α such that
ϕ∗(αγ) ≥ 0, one takes a measure μB of Hausdorff dimension ϕ∗(αγ) ≥ 0 car-
ried by Eν(αγ) as in the proof of Theorem 14 and proves that for μB-almost
very x , noting F(x) = ν([0, x]), we have s(F(x)) = 1, which combined with
limr→0+ log(ν(B(x,r)))

log(r)
= αγ and γ(�, F(x)) = 1/(αs(F(x))) yields γ(να, x) = γ.

Hence dim Eνα(γ) ≥ ϕ∗(αγ) = (min(τν(q/α), 0))∗(γ).
When ν = μ̃, since ϕ′(1−) = 0, this yields the whole spectrum for γ > 0.

Since Eνα(0) contains the atoms of να, i.e. {F−1({yn : n ≥ 1}), we also have
dim Eνα(0) ≥ 0 = (min(τν(q/α), 0))∗(0), and this is also valid when ν = μ.

The most delicate sets are the Eνα(γ) for γ ∈ (0,ϕ′(1−)/α) when ν = μ, for
which we must prove dim Eνα(γ) ≥ αγ. This requires a non trivial extension of
classical “ubiquitous systems” (which deserve to be called homogeneous) to “het-
erogeneous ubiquitous systems”. This is achieved in [BS07], and applied to the
present situation in [BS07]. The main tool provided by these papers is, for each
s > 1, a Borel probability measure ρs on [0, 1] such that for ρs-almost every

x , lim infr→0+ log(ρs (B(x,r)))
log(r)

≥ ϕ′(1−)
s (which implies that for any Borel set E ,

one has ρs(E) = 0 if dim E <
ϕ′(1−)

s ) and there exists a decreasing sequence
(ε j ) j≥1 and a subsequence (n j ) j≥1 such that for each j ≥ 1 one has F−1(yn j ) ∈
B(x, r

s/ϕ′(1−)−ε j
n j ). This second property implies that να(B(x, r

s/ϕ′(1−)−ε j
n j )) ≥ r1/α

n j ,
hence γ(να, x) ≤ ϕ′(1−)/αs. In particular for γ = ϕ′(1−)/(αs), ρs(Fνα(γ)) = 1,
where Fνα(γ) = {x ∈ [0, 1] : γ(να, x) ≤ γ}.

Now, we notice that for γ ∈ (0,ϕ′(1−)/α), we have (min(τν(q/α), 0))∗(γ) =
αγ. Moreover, it also comes from the multifractal formalism [Ols95] that dim Fνα
(γ′) ≤ τ∗

να(γ
′) for γ′ ∈ [0, τ ′

να(0
−)]. Since τνα(q) ≥ min(τν(q/α), 0) almost surely

for all q, we get dim Fνα(γ′) ≤ τ∗
να(γ

′) ≤ αγ′ for all 0 ≤ γ′ < γ < ϕ′(1−)/α).

Now, setting γ = ϕ′(1−)/αs, since lim infr→0+ log(ρs (B(x,r)))
log(r)

≥ ϕ′(1−)
s = αγ,

we get ρs(Fνα(γ′)) = 0 for all 0 ≤ γ′ < γ, hence ρs

(⋃
0≤γ′<γ Fνα(γ′)

)
= 0
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noting that the sets Fνα(γ′) are non decreasing. Finally, writing Eνα(γ) = Fνα(γ) \⋃
0≤γ′<γ Fνα(γ′), we obtain ρs(Eνα(γ)) > 0 hence dim Eνα(γ)) ≥ αγ.
The construction of the measures ρs is rather involved, and uses a combination of

Shepp’s theorem and the statistical self-similarity and exact dimensionality properties
of μ.

5.3 KPZ Formula

Here we give, in the Mandelbrot cascade context, results related to KPZ formula
[KPZ98] of two dimensional quantum gravity. The KPZ formula was reformulated
and proved by Duplantier and Sheffield [DS09, DS11] as a relation between the
box counting dimensions of sets in the Euclidean geometry and the expecting box
counting dimensions of sets computed using a random measure given by exponential
of the Gaussian Free Field (a fundamental example of log-Gaussian multiplicative
chaos), and reformulated by Benjamini and Schramm [BS09] and Rhodes and Vargas
[RV08] as a relation between Hausdorff dimensions of sets computed using the
Lebesgue measure to measure the size of balls, and the Hausdorff dimensions of sets
when the Lebesgue measure is replaced by a non degenerate Mandelbrot measure
or the limit of a non degenerate log-infinitely divisible cascade. In dimension 1,
this can be directly interpreted in terms of a change of metric. Then, a rigorous
proof of the “dual” KPZ formula was given in [BJRV13], using discrete random
measures which are the analogue of the measure μα of Sect. 3.1.2 in the log-normal
multiplicative chaos framework (see [RV13] for a review of this). This has been
extended to the cascade case in [BKNSW14a], with similar formulas for critical
Mandelbrot measures μ̃ and the associated discrete measures μ̃α.

Since we work in dimension 1, it is convenient to present KPZ formulas as a
relation between the Hausdorff dimension of a set and the Hausdorff dimension of
its image by the indefinite integral of a given statistically self-similar measure:

Theorem 16 Let ν be the non degenerate Mandelbrot measure μ if ϕ′(1−) > 0, or
the critical Mandelbrot measure μ̃ if ϕ′(1−) = 0 and ϕ′′(1−) > −∞. Denote also
ν by ν1. Suppose that ϕ(−q) < −∞ for all q ∈ (0, 1/b).

Let α ∈ (0, 1] and define Fα(t) = να([0, t]) for t ∈ [0, 1] (i.e. Fα is the α-stable
Lévy process Lα in independent multifractal time F : t �→ ν([0, t]). If E is a Borel
subset of [0, 1] of Hausdorff dimension ξ0, then, with probability 1, the Hausdorff
dimension of Fα(E) is the unique solution ξ of the equation

1 + ϕ(ξ/α) = ξ0.

Notice that when α = 1, F1 = F . In this case, when ν = μ, the result is
proved in [BS09], since the authors prove that the dimension ξ of E under the met-
ric d(x, y) = μ([x, y]) is given by the above formula. The formula is quite easy
to guess using a natural covering argument and the fact that for all x, x ′ ∈ [0, 1],



Mandelbrot Cascades and Related Topics 31

E(d(x, y)s) ≤ 8|x − y|1+ϕ(s) for all s ∈ [0, 1] to find an upper bound of dim E
under the metric d. For the lower bound, one first reduces the situation to E being
compact. If ξ0 = 0 there is nothing to prove. Otherwise, for each t ∈ [0, ξ0)

one fixes a Frostman Borel measure ρ such that the energy
∫ ∫

ρ(dx)ρ(dy)

|y − x |t is

finite, sets s the solution of 1 + ϕ(s) = t , and then shows that the measures
ρn(dx) = Ws(w|1)Ws(w|2) · · · Ws(w|n) ρ(dx) if x ∈ Iw, w ∈ A n weakly con-
verge to a non degenerate measure ρs supported on E almost surely and such that∫ ∫

ρs(dx)ρs(dy)

d(x, y)s
< ∞ almost surely, which implies that the Hausdorff dimen-

sion of E under d is at least s. Since s tends to ξ as t tends to ξ0, this is enough to
conclude.

This approach can be adapted to get the result when α = 1 and ν = μ̃ (see
[BKNSW14a]). The general case then follows from the fact that a.s. Lα(A) =
α dim A for all subsets A of [0, 1] [Ber96, III.5].

6 On Signed and Complex Multiplicative Cascades

We give some convergence and renormalization results proved in [BM09, BJM10,
BJM10a] for the continuous function-valued sequence (Fn = FW,n)n≥1 defined in
(2.8). The asymptotic behavior of (Fn)n≥1 is far from being completely understood
in general, and deserves to be further explored. An interesting related and earlier
work is [DES93] about the mean field theory of directed polymers with random
complex weights whose modulus is independent of the argument; under this kind of
assumptions, renormalization results in the space of distributions have been obtained
very recently in [LRV00] for complex Gaussian multiplicative chaos on R

d when
the modulus and argument which are independent.

When (Fn)n≥1 has a non degenerate limit F , the multifractal analysis of F is
similar to that of Mandelbrot measures, but new multifractal phenomena can emerge
when working with conservative complex cascades (see [BJ10]), a situation excluded
in the present setting. This classical multifractal analysis can be completed by the
natural notion of multifractal analysis of the graph roughness, a notion explored for
non degenerate limits of (Fn)n≥1 in [Jin11].

For simplicity we suppose that |W | > 0 almost surely. Also, we assume that
P(W ∈ C \ R+) > 0 and the normalization E(W ) = 1 holds, so that (Fn)n≥1 is a
martingale. Then we set

ϕ(q) = ϕW (q) = q − 1 − logb E(|W |q).
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6.1 Some Convergence Theorems

6.1.1 Strong Convergence of Complex Cascades

There are conditions sufficient to imply the convergence of Fn = FW,n , which in
view of the positive case (Theorems 1 and 3(b)) seem optimal. The following result
is proved in [BJM10a] (see [BJM10] for an extended version to general complex
multiplicative chaos).

Theorem 17 Assume that there exists q > 1 such that ϕW (q) > 0. Also suppose
q ∈ (1, 2] or ϕW (2) > 0.

(1) (Fn)n≥1 uniformly converges, with probability 1, and in Lq norm, when n goes
to ∞, towards a Hölder function F = FW .

(2) F =
b−1∑

i=0

1[i/b,(i+1)/b]
(

F(i/b)+W (i) Fi ◦ f −1
i

)
, where (W (0), . . . , W (b−1)),

F0, . . . , Fb−1 are independent, Fi is equidistributed with F, and the equality
holds with probability 1.

With respect to the convergence of (μn)n≥1 when W > 0, the proof necessitates
an additional compactness argument.

Remark 8

(1) The statistical self-affinity expressed by Theorem 17(2) implies, setting Z =
F(1) − F(0) and Z(i) = Fi (1) − Fi (0):

Z = b−1
b−1∑

k=0

W (k) Z(k),

which could be considered as an extension of (2.3) to the case of complex weights
W (k).

(2) When the weight W is real and such that |W | = b1−H , Theorem 17 yields a limit
function F which is a monofractal object obtained by a multiplicative cascade,
which shares lots of properties with the fractional brownian motion of index
H , but its construction is more straightforward. This remarkable fact was one
of Mandelbrot’s first motivations to consider the signed cascades. Nevertheless
there is a constraint on the exponent H : it should lie within the interval (1/2, 1]
(see [BM09] for a specific study of the monofractal case).
For a pair BH = (F1, F2) of two independent copies of such a monofractal
process, Jin has proved in [Jin14] an analogue of Kaufman’s theorem about the
Hausdorff dimension of the image of Borel subsets of R+, namely P(∀ E ∈
B([0, 1]), dim BH (E) = H−1 dim E) = 1.

(3) In [BJM10a], when |W | is not constant, the natural question of deciding whether
the limit F can be decomposed as a monofractal process B composed with
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the indefinite integral of a Mandelbrot measure μ is discussed. Under stronger
assumptions than that of Theorem 17, denoting by β the unique solution of
ϕ(q) = 0 in [1, 2], and setting Wβ = |W |β/E(|W |β), such a decomposition
exists, B being of index H = 1/β, and μ = μWβ .

6.1.2 Weak Convergence Towards a Brownian Motion in Multifractal
Time When W Is Real Valued

When one cannot use Theorem 17, it is natural to seek for a suitable normalisation
of the process FW,n in order it be convergent in distribution. We present one result
in this direction.

Assume

(1) W ∈ R almost surely.
(2) ϕW > −∞ on R+.
(3) ϕW (2) ≤ 0 and ϕW is non-decreasing.

It follows from these hypotheses that |W | ≤ b a.s., and the hypotheses of Theorem 17
are not fulfilled. Also, a direct computation shows that the martingale Fn(1) is not
bounded in L2. More precisely

σ2
n = E(|Fn(1)|2) ∼

⎧
⎪⎪⎨

⎪⎪⎩

σ2b−nϕW (2) with σ2 = E
(∣
∣∑b−1

i=0 W (i)
∣
∣2
)− b2

E
(∑b−1

i=0 |W (i)|2)− b2
if ϕW (2) < 0

σ2n with σ2 = b−2 ∑
i �= j E(W (i)W ( j)) if ϕW (2) = 0

.

Moreover, (3) implies ϕW2(q) > 0 for all q > 1 (where W2 = W 2/E(W 2). So,
the non decreasing function FW2 , which is nothing but the indefinite integral of the
Mandelbrot measure μW2 , is non degenerate, and FW2(1) is bounded in Lq for all
q > 1 after Theorem 3(1).

Theorem 18 Under the above assumptions, the random continuous function Fn/σn

converges in distribution towards B ◦ FW (2) , where B is a standard brownian motion
independent of FW (2) .

This is established in [BJM10a]. The assumption (3) is used to identify the law
of the limit process thanks to the moments method and the equation Fn(1) =∑b−1

k=0 b−1W (k)Fn−1,k , after proving the tightness of the normalized sequence.
However, it is desirable to relax this assumption.

Remark 9 A few additional information about the asymptotic behavior of Fn when
the assumptions of Theorems 17 and 18 fail can be found in [BJM10a]. When W/|W |
and |W | are independent, precise information about the convergence in probability
of the free energy n−1 log |Fn(1)| can be found in [DES93], with three main possible
phases. The recent related work achieved in [LRV00] leads to believe that in general,
possible limit of Fn/An when the conditions of Theorem 17 fail are Brownian motion
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in critical Mandelbrot or critical Lévy-Mandelbrot time when ϕ presents a second
order phase transition at βc.

6.2 Multifractal Analysis of Roughness in the Graph of F

The multifractal analysis of the limit function F in Theorem 17 is a refinement of
that of the Mandelbrot measure μ: one considers the Hölder exponent associated
with the oscillations of order 1 of F ,

hF (t) = lim inf
r→0+

log OscF ([t − r, r + r ])
log r

and the corresponding level sets

EF (h) = {t ∈ [0, 1] : hF (t) = h} (h ≥ 0).

The exponent hF (·) should be considered as a measure of the aspect more or less
rough of the graph of F at each point: the smaller hF (t), the larger roughness at t is.

Let

τF (q) = lim inf
r→0

log sup
{∑

i OscF (Bi )
q
}

log r
,

where the supremum is taken over all families of pairwise disjoint closed intervals Bi ,
of diameter 2r , and centered in supp(F ′), and F ′ is the derivative of F in the dis-
tribution sense. The following statement is similar to Theorem 14. It is originally
proved in [BJ10] under much stronger assumptions (also, in [BJ10] a finer multi-
fractal analysis is achieved; also see [BFP10, BS05, Jaf98, Jaf00, Jaf04] to have a
substantial overview of the multifractal formalism for functions), but the techniques
introduced in [AB14] makes it possible to relax them, and now cover cases presenting
first order phase transition.

Theorem 19 Under the assumptions of Theorem 17, if ϕ(−ε) > −∞ for some
ε > 0, then with probability 1, all the conclusions of Theorem 14 hold with ν
replaced by F.

The sets EF (h) are only indirectly linked to the apparent roughness of the graph
because they lie in the support of F . This leads to consider the roughness spectrum
which gives the Hausdorff dimension of the sets obtained by lifting on the graph of F
the sets EF (h). In other terms, this spectrum is the Hausdorff dimensions of the sets

G F (h) = {(t, F(t)) : t ∈ EF (h)} (h ≥ 0).
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Fig. 9 Example of roughness spectrum dG
F : h �→ dim G F (h)

The following result [Jin11] is the first of this kind for multifractal stochastic
processes. We present here a stronger version using the assumptions of Theorem 19.

Theorem 20 Under the assumptions of Theorem 19, if W is real valued, with prob-
ability 1, one has

dim Graph(F) = 1 − τ (1),

and, for all h ≥ 0 such that EF (h) �= ∅, one has

dim EF (h) = τ∗
F (h)

and

dim G F (h) =
(dim EF (h)

h
∧ ( dim EF (h) + 1 − h

)) ∨ dim EF (h).

The upper bounds for Hausdorff dimensions follows from quite standard arguments
and is true in general. For the lower bound, the proof uses the auxiliary measures
introduced to find a lower bound for dim EF (h). These measures are lifted to the
graph of F , and the lifted measures do have the desired lower Hausdorff dimension.
This dimension is estimated by showing that they have a finite energy with respect
to suitable Riesz kernels. However, while for the calculation of the dimension of the
graph this method works quite straightforward, for the sets G F (h) in general the
study is very delicate (see [Jin11] for details) (Fig. 9).
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7 Mandelbrot Cascades as a Dynamical System

We present the results obtained in [BPW09], showing that Mandelbrot cascades
define a dynamical system on a subset of the fixed points of the smoothing trans-
formation. The asymptotic behavior of this dynamical systems exhibits a functional
central limit theorem whose Gaussian limit process is, unexpectedly, the limit of an
additive cascade on a tree. Fine properties of this process are also detailed.

7.1 A Dynamical System

Let P the set of Borel probability measures on R+. If μ ∈ P and p > 0, we denote
by mp(μ) the moment of order p of μ, i.e.,

mp(μ) =
∫

R+

x p μ(dx).

Then let P1 be the set of elements of P whose first moment equals 1:

P1 = {ρ ∈ P : m1(ρ) = 1}.

Using the characterizations of the elements of P by their Laplace transform,
the smoothing transformation Sρ associated with ρ ∈ P considered in Sect. 3.1 is
nothing but the mapping from P to itself so defined: If ν ∈ P , one considers 2b
independent random variables, Z(0), Z(1), . . . , Z(b − 1), whose common proba-
bility distribution is ν, and W (0), W (1), . . . , W (b − 1) whose common probability
distribution is ρ; then Sρν is the probability distribution of the random variable

b−1
∑

0≤ j<b
W ( j) Z( j).

Since the measure ρ is in P1, Sρ maps P1 into itself. We have seen (Theorem 1)
that the condition

∫
x log(x) ρ(dx) < log b is necessary and sufficient for the weak

convergence of the sequence Sn
ρδ1 (where δ1 stands for the Dirac mass at point 1)

towards a probability measure ν, which therefore is a fixed point of Sρ. Indeed, under
this assumption Sn

ρδ1 is the probability distribution of the uniformly integrable non-
negative martingale (Yn)n≥1 whose limit Y has probability distribution ν belonging
to P1 and satisfies Sρν = ν due to (2.3). In this case, we denote the measure ν by Tρ.
It is natural to try and iterate T. But, in general this is not possible because ν = Tρ
may not inherit the property

∫
x log(x) ν(dx) < log b. So, we have to find a domain

stable under the action of T. This is done by imposing conditions on moments.
Indeed, it is easily seen that the sequence (Yn)n≥1 defined by (2.1) remains

bounded in L2 norm if and only if E(W 2) = m2(ρ) < b, and that in this case
Formula (2.3) yields
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EY 2 = b − 1

b − EW 2 (7.1)

(since the random variables W ( j) and Y ( j) are independent and of expectation 1,
squaring both sides of Formula (2.3) yields b2

EY 2 = bEW 2
EY 2 + b(b − 1)). It

follows that if b ≥ 3 and 1 ≤ EW 2 < b − 1, we have EY 2 ≤ EW 2 (the equality
holding only if W = 1). Therefore, since the condition EW 2 < b is stronger than
E(W log W ) < log b when EW = 1 (since the function t �→ log EW t is convex),
T is a transformation on the subset of P1 defined by

Pb = {
ρ ∈ P1 : 1 < m2(ρ) < b − 1

}
.

If ρ ∈ Pb, due to (2.3), we can associate with each n ≥ 0 a random
variable Wn+1 as well as 2b independent random variables Wn(0), . . . , Wn(b − 1)

and Wn+1(0), . . . , Wn+1(b − 1) such that

Wn+1 = 1

b

b−1∑

k=0

Wn(k)Wn+1(k), (7.2)

Tnρ is the probability distribution of Wn(k) for every k such that 0 ≤ k ≤ b − 1, and
Tn+1ρ is the probability distribution of Wn+1 and Wn+1(k) for every 0 ≤ k ≤ b − 1.
We advise the reader that if one writes Formula (7.2) with n − 1 instead of n, the
variables Wn(k) which then appear are different from the previous ones.

We have seen in Sect. 2 that the random variable Y represents the increment
between 0 and 1 of the non-decreasing continuous function F on [0, 1] obtained as
the almost sure uniform limit of the sequence of non-decreasing continuous functions
Fn defined in (2.8), and F is nothing but the indefinite integral of the Mandelbrot
measure μ. Thus, (2.4) rewrites, for w ∈ A ∗,

�(F, Iw) = b−|w|Y (w)
∏

1≤ j≤|w|
W (w| j), (7.3)

where for any bounded f : [0, 1] �→ R, for every sub-interval I = [α,β] of [0, 1],
we denote by �( f, I ) the increment f (β) − f (α) of f over the interval I .

Let us denote by �(ρ) the probability distribution of the limit F , considered as a
random continuous function.

We can describe the asymptotic behavior of the dynamical system (Pb, T), as
well as the asymptotic behavior of

(
Tnρ,�(Tn−1ρ)

)
n≥1 as n goes to ∞.

We need some more definitions. For b ≥ 3, set

w2(b) = min

(

b − 1, b
b4 − 4b2 + 12b − 8

b4 + 8b2 − 12b + 4

)

and, for t such that 1 < t < w2(b),
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w3(b, t) = b2

2
+ 1

2

√
b(b4 − 4b2 + 12b − 8) − t

(
b4 + 8b2 − 12b + 4

)

b − t
.

One always has w3(b, t) < b2 − 1.
Also set

Db =
{
ρ ∈ P : m1(ρ) = 1, 1 < m2(ρ) < w2(b), and m3(ρ) < w3

(
b, m2(ρ)

)}
.

Theorem 21 Suppose b ≥ 3. Let ρ ∈ Pb, and, for n ≥ 0, define σn =
(∫

(x − 1)2 Tnμ(dx)

)1/2

. Then

(1) The limit of (b − 1)n/2σn exists and is positive; so limn→∞ Tnμ = δ1.
More generally, the probability distributions �(Tnρ) weakly converges towards
δId.

(2) Suppose that ρ lies in the domain Db ⊂ Pb. Then, if Wn is a variable whose

distribution is Tnμ,
Wn − 1

σn
converges in distribution towards N (0, 1).

More generally, if hn is a random function distributed according to �(Tn−1ρ),

the distribution of
hn − Id

σn
weakly converges towards the distribution of the

unique continuous Gaussian process (Xt )t∈[0,1], such that X (0) = 0 and, for
all j ≥ 1, the covariance matrix M j of the vector

(
�(X, Iw)

)
w∈A j is given by

M j (w,w′) =
{

b−2 j
(
1 + (b − 1)|w|) if w = w′,

b−2 j (b − 1)|w ∧ w′| otherwise.

Part (1) of the theorem follows from an easy calculation. For part (2), setting
Zn = Wn−1

σn
one first exploits (7.2) to prove that (|Wn|)n≥1, and then (|Zn|)n≥1,

is bounded in L3. This uses a recursion in which the domain of attraction Db is
introduced. Then, using (7.2) again one gets, after setting,

Rn = 1

b

b−1∑

j=0

Zn( j)Zn−1( j)σn−1 + 1

b

(
σn−1

σn
− √

b − 1

) b−1∑

j=0

Zn−1( j),

Zn = Rn +
√

b − 1

b

b−1∑

k=0

Zn−1(k) + 1

b

b−1∑

k=0

Zn(k). (7.4)

Due to the equivalence σn ∼ c(b − 1)−n/2, the situation is essentially reducible to

the relation Zn =
√

b−1
b

∑b−1
k=0 Zn−1(k) + 1

b

∑b−1
k=0 Zn(k). Using the relation (7.4)

recursively n times yields a relation of the form Zn
dist= o(1)+∑Nn

k=1 an,k Zn,k , where
the Zn,k are independent centered variables, each of which is distributed like one of
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the Zk , 1 ≤ k ≤ n, limn→∞ sup{an,k = 1 ≤ k ≤ Nn} = 0 and
∑Nn

k=1 a2
n,k = 1. An

application of Lindeberg theorem (using the boundedness of (|Zk |)k≥1 in L3) yields
the convergence in law of (Zn)n≥1 to N (0, 1).

For the functional central limit theorem, set Zn = hn − Id

σn
. From (7.3) one

deduces

�(Zn, Iw) = b− jσ−1
n

⎡

⎣Wn(w)

j∏

k=1

Wn−1(w|k) − 1

⎤

⎦

= b− j Zn(w)

j∏

k=1

Wn−1(w|k)

+ b− j
j∑

l=1

σn−1

σn
Zn−1(w|l)

l−1∏

k=1

Wn−1(w|k). (7.5)

From this relation one can both show the tightness of the distributions of the processes
Zn , n ≥ 1, and the convergence in distribution of the increments by simply passing
to the limit and using the independences between the Wn−1(w|k) and Wn(w): there
exist

(N (v)
)
v∈⋃ j

k=1 A k and
(Ñ (w)

)
w∈A j two families of N (0, 1) random variables

so that all the random variables involved in these families are independent, and

lim
n→∞

(
�(Zn, Iw)

)
w∈A j

dist= b− j

⎛

⎝Ñ (w) + √
b − 1

j∑

k=1

N (w|k)

⎞

⎠

w∈A j

. (7.6)

This is enough to derive the convergence in law of the Zn to the Gaussian process
X of the statement.

Remark 10 It is natural to seek for a larger domain of attraction thanDb. This requires
to be able to keep controls similar to the previous ones in L2+ε
(if not in L2) rather than in L3.

7.2 The Limit Process X as the Limit of an Additive Cascade

Recall that, if v ∈ A ∗, [v] stands for the cylinder in A ω consisting of sequences
beginning by v.

Let (ξ(w))w∈A ∗ be a sequence of independent N (0, 1) random variables. For
each w ∈ A ∗,

ζn(w) = √
b − 1

n∑

j=1

b− j
∑

v∈A j

ξ(wv),
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is a martingale bounded in L2 norm, whose limit ζ(w) is a N (0, 1) random variable,
independent of the ξ(v), |v| ≤ |w|. Moreover, all the ζ(w), w ∈ A n are independent.

One can then check that

M([w]) = b−|w|
⎛

⎝ζ(w) + √
b − 1

∑

1≤k≤|w|
ξ(w|k)

⎞

⎠ (7.7)

defines a finitely additive Gaussian random measure defined on the cylinders of A ω

Then, the limit process X of the previous sections can be seen as the primitive of
the projection of M on [0, 1], and the structure of the increment �(X, Iw) given by
(7.7) is an additive counterpart to the multiplicative structure of the increment of F
given by (7.3).

Of course (7.7) makes sense even for b = 2.

7.3 Fine Properties of X

Due to the structure of the increments of X , it is natural to consider for all α ∈ R the
sets

Eα =
{

t ∈ [0, 1) : lim sup
n→∞

�(X, In(t))

nb−n
= α

√
b − 1

}

,

Eα =
{

t ∈ [0, 1) : lim inf
n→∞

�(X, In(t))

nb−n
= α

√
b − 1

}

,

and
Eα = Eα

⋂
Eα,

where In(t) stands for the semi-open to the right b-adic interval of generation n
containing t . One has

Theorem 22 With probability 1,

(1) the modulus of continuity of X is a O
(
δ log(1/δ)

)
,

(2) X does not belong to the Zygmund class,
(3) the set E0 contains a set of full Lebesgue measure at each point of which X is

not differentiable,

(4) dim Eα = dim Eα = dim Eα = 1 − α2

2 log b
if |α| ≤ √

2 log b, and Eα = ∅ if

|α| >
√

2 log b.

The multifractal analysis part (4) is directly deduced from the multifractal analy-
sis of the branching random walk S(w) = ∑

1≤ j≤|w| ξ(w| j) which follows from
the approach explained in Sect. 5.1.3. Part (3) is a consequence of the law of the
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iterated logarithm with respect to P ⊗ Leb. Points (1) and (2) follow from quite
direct calculations.

It would be good to decide whether or not X is nowhere differentiable.

Appendix: Hausdorff Measures and Dimension

Given g : R+ → R+ a continuous non-decreasing function near 0 and such that
g(0) = 0, and E a subset of [0, 1], the Hausdorff measure of E with respect to the
gauge function g is defined as

Hg(E) = lim
δ→0+ inf

{∑

i∈N

g(diam(Ui ))
}
,

the infimum being taken over all the countable coverings (Ui )i∈N of E by subsets of
K of diameters less than or equal to δ.

If s ∈ R
∗+ and g(u) = us , then Hg(E) is also denoted Hs(E) and called the

s-dimensional Hausdorff measure of E . Then, the Hausdorff dimension of E is
defined as

dim E = sup{s > 0 : Hs(E) = ∞} = inf{s > 0 : Hs(E) = 0},

with the convention sup ∅ = 0 and inf ∅ = ∞.
For more information the reader is referred to [Fal03, Mat95].
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