
Chapter 4
Dissipation in Quantum Mechanical
Systems: Where Is the System and Where
Is the Reservoir?

Joachim Ankerhold

4.1 Introduction

Brownian motion, that is the fate of a heavy particle immersed in a fluid of lighter
particles, is the prototype of a dissipative system coupled to a thermal bath with
infinitely many degrees of freedom. The work by Einstein in (1905) developed a
mathematical language to describe the random motion of the particle and uncovered
the fundamental relation between friction, diffusion, and the temperature T of the
bath. Half a century later, this seed had grown into the theory of irreversible
thermodynamics (Landau and Lifshitz 1958), which governs the relaxation and
fluctuations of classical systems near equilibrium. By that time, a new challenge
had emerged, the quantum mechanical description of dissipative systems.

In contrast to classical Brownian motion, where right from the beginning the
work by Einstein and Smoluchowski (Smoluchowski 1906) had provided a way to
consider both weak and strong friction, the quantum mechanical theory could for a
long time only handle the limit of weak dissipation. In this case the interaction
between the “particle” and the “bath” can be treated perturbatively and one can
derive a master equation for the reduced density matrix of the “particle” (Blum
1981). This approach has been very successful in quite a number of fields emerging
in the 1950s and 1960s, such as nuclear magnetic resonance (Wangsness and Bloch
1953; Redfield 1957) and quantum optics (Gardiner and Zoller 2004). It turns out
that, in this regime, conventional concepts developed in classical thermodynamics
still apply, since the “particle” can be considered as a basically independent entity
while the role of the reservoir is to induce decoherence and relaxation towards a
thermal Boltzmann distribution solely determined (apart from temperature) by
properties of the “particle”.
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Roughly speaking, a dissipative quantum system can be characterized by three
typical energy scales: an excitation energy �hx0, where x0 is a characteristic fre-
quency of the system, a coupling energy �hc to the bath, where c is a typical
damping rate, and the thermal energy kBT . The weak coupling master equation is
limited to the region �hc��hx0; kBT . This is the case whenever the typical linewidth
caused by environmental interactions is small compared to the line separation and
the thermal “Matsubara” frequency 2pkBT=�h.

It is thus to be expected that, for stronger damping and/or lower temperatures,
quantum mechanical non-locality may have a profound impact on the system-
(“particle”) bath correlation. With the further progress in describing the system-bath
interaction non-perturbatively in terms of path integrals (Weiss 2008), it has turned
out that this is indeed the case. In fact, quantum Brownian motion in this regime
gives rise to collective processes that cannot be understood from those of the
independent parts (emergence). Accordingly, the concept of “reduction” on which
the formulation of open quantum systems is based, wherein one concentrates on a
relevant system and keeps from the actual reservoir only its effective impact on this
system, appears in a new light. In particular, while the procedure has been extre-
mely successful, it forces us to abandon conventional perceptions about the role of
what we consider as the “system” and what we consider as the “surroundings”. The
goal of the present contribution is to illustrate and discuss this situation.

To set the stage, I will start by briefly recalling the formulation of noisy classical
dynamics and then proceed with a discussion about the general formulation of open
quantum systems. The three specific examples to follow illustrate various facets of
the intricate correlations between a system and its reservoir. As such they may also
reveal new aspects of the concatenation between quantum system and observer.

4.2 Dissipation and Noise in Classical Systems

Energy dissipation in classical systems is a well-known phenomenon. A prominent
example is the dynamics of a damped pendulum: starting initially from an elongated
position, one observes an irreversible energy flow out of the system which finally
brings it back to its equilibrium state. A more subtle situation is the diffusive motion
of a small particle immersed in a liquid, also known as Brownian motion. As first
pointed out by Einstein (1905), the stochastic movement of the small particle
directly reflects scattering processes with the molecules of the thermal environment.
In a stationary situation, the energy gained/lost in each scattering event is balanced
by an energy flow into/out of this thermal reservoir. A brute force description of
Brownian motion would start from Newton’s equation of motion for the whole
compound system, small particle and molecules in the liquid. From a purely
practical point of view, this is completely out of reach, not only due to the enor-
mous number of degrees of freedom but also owing to the fact that microscopic
details of the molecule–molecule and molecule–particle interaction are not usually
known in detail. However, even if this information were available and even if we
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were able to simulate the complex dynamics numerically, what would we learn if
we were only interested in the motion of the immersed particle? The relevant
information would have to be extracted from a huge pile of data and the relevant
mechanism governing the interaction between particle and liquid would basically
remain hidden.

Hence, the standard approach is based on Newton’s equation of motion for the
relevant particle augmented by forces describing both dissipative energy flow and
stochastic scattering. For a one-dimensional particle of mass m and position q
moving in a potential field VðqÞ, this leads in the simplest case to a so-called
Langevin equation (Risken 1984):

mq
��ðtÞ þ V 0ðqÞ þ mc _qðtÞ ¼ nðtÞ ; ð4:1Þ

where dots denote time derivatives and V 0ðqÞ ¼ dV=dq. The impact of the reservoir
only appears through the friction rate c and the stochastic force nðtÞ, which has the
properties

hnðtÞi ¼ 0 ; hnðtÞnðt0Þi ¼ 2mckBTdðt � t0Þ ðwhite noiseÞ :

This latter relation is known as a fluctuation-dissipation theorem, reflecting the
fact that energy dissipation and stochastic scattering are inevitably connected since
they have the same microscopic origin. A more realistic description takes into
account the fact that the back-action of the reservoir on the system dynamics is
time-retarded (colored noise), thus turning the constant friction rate into a time-
dependent friction kernel c _qðtÞ ! R t

0 dscðt � sÞ _qðsÞ (generalized Langevin equa-
tion). Anyway, the main message here is that, as long as we observe only the
relevant particle, the impact of the reservoir is completely described by at least two
macroscopic parameters, namely, the friction constant and the temperature, which
can be determined experimentally. The complicated microscopic dynamics of the
surrounding degrees of freedom need not be known.

4.3 Dissipative Quantum Systems

In contrast to the situation for classical systems, the inclusion of dissipation/fluc-
tuations within quantum mechanics is much more complicated (Weiss 2008; Breuer
and Petruccione 2002). A quantization of the classical Langevin Eq. (4.1) in terms
of Heisenberg operators together with the quantum version of the fluctuation-dis-
sipation theorem only applies for strictly linear dynamics (free particle, harmonic
oscillator) and under the assumption that system and reservoir are initially inde-
pendent. The crucial problem is that quantum mechanically the interaction between
system and reservoir leads to a superposition of wave functions and thus to
entanglement. This is easily seen when one assumes that the total compound system
is described by a Hamiltonian of the form
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H ¼ HS þ HI þ HR; ð4:2Þ

where a system HS interacts via a coupling operator HI with a thermal reservoir HR.
Whatever the structure of these operators, their pairwise commutators will certainly
not all vanish. Typically, one has ½HS;HR� ¼ 0 while ½HS;HI� 6¼ ½HR;HI� 6¼ 0 for
non-trivial dynamics to emerge. Accordingly, the operator for thermal equilibrium
of the total structure, viz.,

Wb � exp½�bðHS þ HI þ HRÞ�;

does not factorize (in contrast to the classical case). In a strict sense, the separation
between the system and its environment no longer actually exists. Stating this in the
context of the system-observer situation in quantum mechanics: the presence of an
environment acts like an observer continuously probing the system dynamics.

The question is thus: how can we identify the system and reservoir from the full
compound? The answer basically depends on the interests of the observer, and often
simply on the devices available for preparation and measurement. Practically, one
focuses on a set of observables fOkg associated with a specific sub-unit which in
many cases coincides with the observables of a specific device that has been pre-
pared or fabricated. The rest of the world remains unobserved. This then defines
what is denoted as HS in (4.2). Time dependent mean values follow from
hOki ¼ TrSfOkqðtÞg, where the reduced density operator

qðtÞ ¼ TrRfUðt; 0ÞWð0ÞUðt; 0Þyg ð4:3Þ

is determined from the full time evolution Uðt; 0Þ ¼ expð�iHt=�hÞ of an initial state
Wð0Þ of the full compound by averaging over the unobserved reservoir degrees of
freedom. Conceptually, this is in close analogy to the classical Langevin Eq. (4.1)
on the level of a density operator, with the notable difference though that a con-
sistent quantization procedure necessitates knowledge of a full Hamiltonian (4.2).
For the system part this may be obvious, but it is in general extremely challenging,
if not impossible, for the reservoir and its interaction with the system.

Progress is made by recalling that what we defined as the surroundings typically
contains a macroscopic number of degrees of freedom and, since it is not directly
prepared, manipulated, or detected, basically stays in thermal equilibrium (Weiss
2008). Large heat baths, however, display Gaussian fluctuations according to the
central limit theorem. A very powerful description applying to a broad class of
situations then assumes that a thermal environment consists of a quasi-continuum of
independent harmonic oscillators linearly coupled to the system, i.e.,

HR þ HI ¼
X
k

p2k
2mk

þ mkx2
k

2
xk � ck

mkx2
k

Q

� �2

: ð4:4Þ
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Here Q denotes the operator of the system through which it is coupled to the bath
(pointer variable). For systems with a continuous degree of freedom, it is typically
given by the position operator (or a generalized position operator). The system-bath
interaction is written in a translational invariant form so that the reservoir only affects
the system dynamically in a similar way to what happens in the classical case (4.1).
In fact, the classical version of this model reproduces the Langevin equation,
implying that the influence of the reservoir on the system is completely determined
by the temperature T and the spectral distribution of the bath oscillators, viz.,

JðxÞ ¼ p
2

X
k

c2k
2mkxk

dðx� xkÞ:

A continuous distribution JðxÞ ensures that energy flow from the system into the
bath occurs irreversibly (Poincaré’s recurrence time tends to infinity). Each oscil-
lator may only weakly interact with the system, but the effective impact of the
collection of oscillators may still capture strong interaction. For instance, in the case
of so-called Ohmic friction corresponding classically to white noise, one has
JðxÞ ¼ mcx.

The bath force n ¼ P
k ckxk acting on the system obeys Gaussian statistics and is

thus completely determined via its first moment hnðtÞi ¼ 0 and its second moment
KðtÞ ¼ hnðtÞnð0Þi. As an equilibrium correlation, it obeys the quantum fluctuation-
dissipation theorem, namely,

~KðxÞ ¼ 2�hJðxÞ 1� e�x�hb
� ��1

; ð4:5Þ

where ~KðxÞ denotes the Fourier transform of KðtÞ and b ¼ 1=kBT . One sees that
for Ohmic dissipation JðxÞ ¼ mcx, and in the high temperature limit x�hb ! 0, the
correlation becomes a constant ~KðxÞ ¼ 2mc kBT and thus describes the white noise
known from classical dynamics (4.1). In the opposite limit of vanishing temperature
x�hb ! 1, however, one has ~KðxÞ ¼ 2mc �hx, which gives rise to an algebraic
decay KðtÞ / 1=t2. This non-locality in time reflects the discreteness of energy
levels of reservoir oscillators and causes serious problems when evaluating the
reduced dynamics. At low temperatures, the reduced quantum dynamics is always
strongly retarded (non-Markovian) on time scales �hb, whence a simple time-local
equation of motion does not generally exist. Equivalently, the idea of describing the
time evolution of physical systems by means of equations of motion with suitable
initial conditions is not directly applicable for quantum Brownian motion. It may
hold approximately in certain limits such as very weak coupling (Breuer and
Petruccione 2002) or, as we will see below, very strong dissipation.

The above procedure may also be understood from a different perspective.
“What we observe as dissipation’’ in a system of interest is basically a consequence
of our ignorance with respect to everything that surrounds this system. Dissipation
is not inherent in nature, but rather follows from a concept that reduces the real
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world to a small part to be observed and a much larger part to be left alone. In the
sequel, we will illustrate the consequences of this reduction, which are much more
subtle than in the classical domain.

4.4 Specific Heat for a Brownian Particle

According to conventional thermodynamics, the specific heat (for fixed volume) is
given by

Cv ¼ oU
oT

; ð4:6Þ

where U denotes the internal energy of the system. Following classical concepts
(Landau and Lifshitz 1958), the latter can be obtained either from the system energy
(Hänggi et al. 2008)

UE ¼ hHSi

¼ Trfexpð�bHÞHSg
Trfexpð�bHÞg

ð4:7Þ

or from the partition function

UZ ¼ � oZ
ob

¼ Trfexpð�bHÞg
TrRfexpð�bHRÞg :

ð4:8Þ

Here, we have used subscripts to distinguish between the two ways of obtaining
the internal energy and thus the specific heat. Note that the partition function of the
full compound system is defined with respect to the partition function of the bath
alone. This is the only consistent way to introduce it, given that we average over the
unobserved bath degrees of freedom. One easily realizes that the two routes may
lead to quite different results, since

UZ � UE ¼ hHIi þ hHRi � hHRiR : ð4:9Þ

Apart from the energy stored in the system-bath interaction, there also appears
the difference in bath energies taken with respect to the full thermal distribution
/ expð�bHÞ and the bath thermal distribution / expð�bHRÞ. Classically, this
difference vanishes due to the factorization of the thermal distribution. It may be
negligible in the weak coupling regime where this factorization still holds
approximately but certainly fails for stronger coupling and/or reservoirs with
strongly non-Markovian behavior.
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For a free quantum particle with so-called Drude damping, i.e., when cðtÞ ¼
cxD expð�xDtÞ or equivalently JðxÞ ¼ mcxxD=ðxþ xDÞ with Drude frequency
xD, one finds at low temperatures T ! 0 (Hänggi et al. 2008)

Cv;E

kB
� pkBT

3�hc
;
Cv;Z

kB
� pkBT

3�hc
1� c

xD

� �
; ð4:10Þ

in accordance with the third law of thermodynamics (vanishing specific heat for
T ! 0). However, in contrast to Cv;E, the function Cv;Z becomes negative for
c=xD [ 1, thus indicating a fundamental problem with this second way to obtain the
specific heat. Apparently, the problem must be related to the definition (4.8) of the
partition function of the reduced system. It does not exist in the high temperature
regime or for Ohmic damping xD ! 1, and it is also absent for a harmonic system.

Any partition function can be expressed in terms of the density of states lðEÞ of
the system as Z ¼ R1

0 dElðEÞ expð�bEÞ, which in turn allows us to retrieve lðEÞ
from a given partition function (Weiss 2008; Hänggi et al. 2008). Physically
meaningful densities lðEÞ must always be positive though. However, for reduced
systems this is not the case in exactly those domains of parameter space where
Cv;Z\0. As a consequence, it only makes sense physically to start with the defi-
nition (4.7) for the specific heat, and this also implies that the partition function of a
reduced quantum system does not play the same role as its counterpart in con-
ventional classical thermodynamics.

This finding can once again be stated in the context of the measurement process
in quantum physics: the expectation value of the system energy hHSi is certainly
experimentally accessible, while it seems completely unclear how to probe the
partition function (4.8). One of its constituents, the partition function of the bare
reservoir, cannot be measured as long as it is coupled to the system which, however,
is not at the disposal of the experimentalist.

4.5 Roles Reversed: A Reservoir Dominates Coherent
Dynamics

It is commonly expected that a noisy environment will tend to destroy quantum
coherences in the system of interest and thus make it behave more classically. This
gradual loss of quantumness has been of great interest recently because there has
been a boost in activities to tailor atomic, molecular, and solid state structures with
growing complexity and on growing length scales. A paradigmatic model is a two-
state system interacting with a broadband heat bath of bosonic degrees of freedom
(spin-boson model) which plays a fundamental role in a variety of applications
(Weiss 2008; Breuer and Petruccione 2002; Leggett et al. 1987). Typically, at low
temperatures and weak coupling, an initial non-equilibrium state evolves via damped
coherent oscillations towards thermal equilibrium, while for stronger dissipation,
relaxation occurs via an incoherent decay. This change from a quantum-type of
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dynamics to a classical-type with increasing dissipation at fixed temperature (or with
increasing temperature at fixed friction) is often understood as a quantum to classical
transition. It has thus been analyzed in great detail to tackle questions about the
validity of quantum mechanics on macroscopic scales or the appearance of a clas-
sical world from microscopic quantum mechanics.

However, the picture described above does not always apply, as has been found
only very recently (Kast and Ankerhold 2013a, b). In particular, at least for a
specific class of reservoir spectral densities, so-called sub-Ohmic spectral densities,
the situation is more complex, with domains in parameter space where the quantum-
classical transition is completely absent even for very strong dissipation. This
persistence of quantum coherence corresponds to a strong system-reservoir entan-
glement, such that the dynamical properties of the two-level system are dominated
by properties of the bath.

A generic example of a two-level system is a double-well potential where two
energetically degenerate minima are separated by a high potential barrier (Weiss
2008; Leggett et al. 1987). At very low temperatures, only the degenerate ground
states jLi and jRi in the left and the right well, respectively, are relevant. They are
coupled via quantum tunneling through the potential barrier with a coupling energy
�hD. Hence, the corresponding Hamiltonian for this two-level system follows as
HS ¼ ð�hD=2ÞðjLihRj þ jRihLjÞ and the interaction with the bath is mediated via the
operator Q ! ðjLihLj � jRihRjÞ in (4.4). In this way, the reservoir tends to localize
the system in one of the ground states, while quantum coherence tends to delocalize
it (superpositions of jLi and jRi). The competition between the two processes leads
to a complex dynamics for the populations hLjqðtÞjLi ¼ 1� hRjqðtÞjRi and in most
cases to damped oscillatory motion (coherent dynamics) for weak and monotonic
decay (classical relaxation) for strong friction.

Sub-Ohmic reservoirs appear in many condensed phase systems where low
frequency fluctuations are more abundant than in standard Ohmic heat baths. The
corresponding spectral function

JsðxÞ ¼ 2pax1�s
c xs; 0\s\1; ð4:11Þ

depends on the spectral exponent s, a coupling strength a, and a frequency scale xc.
In the limit s ! 1, one recovers the standard Ohmic distribution. In thermal equi-
librium and at zero temperature, a two-level system embedded in such an environ-
ment displays two “phases”: a delocalized phase (quantum coherence prevails) for
weaker friction and a localized phase (quantum non-locality destroyed) for stronger
friction. The question then is: what does the relaxation dynamics towards these
phases look like? The simple expectation is that the dynamics is quantum-like
(oscillatory) in the former case and classical-like (monotonic decay) in the latter.
That this is not always true is revealed by a numerical evaluation of (4.3).

As mentioned above, a treatment of the reduced quantum dynamics is a chal-
lenging task and, in fact, an issue of intense current research. While we refer to the
literature [(Kast and Ankerhold 2013a, b) and references therein] for further details,
we only mention that one powerful technique is based on the path integral
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representation of (4.3) in combination with Monte Carlo algorithms. This numerical
approach also allows one to access the strong friction regime in contrast to existing
alternatives. As a result one gains a portrait in the parameter space of s; a (see Fig. 4.1)
indicating the domains of coherent and incoherent non-equilibrium dynamics.
Notably, for 0\s\1=2, a transition from coherent to incoherent dynamics is absent
even for strong coupling to the environment, and even though asymptotically the
system approaches a thermal equilibriumwith localized (classical-like) phase. It turns
out that the frequency of this damped oscillatory population dynamics is given by
Xs � 2axc=s (for s�1), with an effective damping rate c0 � 2axc. Thus, the ratio
Xs=c0 � 1=s�1, whence the system is strongly underdamped.

What is remarkable here is that these dynamical features of the two-level system
are completely determined by properties of the reservoir. To leading order, the
system energy scale �hD is negligible. In other words, on the one hand the system
dynamics is slaved to the reservoir, and on the other hand the reservoir is no longer
destructive but rather supports quantum coherent dynamics. This is only possible
when system and bath are strongly entangled, which is indeed the case (Kast and
Ankerhold 2013a). It is then at least questionable to consider the reservoir merely as
a noisy background. Rather, in an experiment, one would access what are basically
reservoir properties, whereas the two-level system acts only as a sort of mediator.

4.6 Emergence of Classicality in the Deep Quantum Regime

In conventional quantum thermodynamics one finds that, in the high temperature
limit, classical thermodynamics is recovered. A simple example is a harmonic
oscillator with frequency x0. If the thermal scale kBT far exceeds the energy level
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Fig. 4.1 Parameter space of a two-level system interacting with a sub-Ohmic reservoir with
spectral exponent s and coupling strength a at T ¼ 0. Below (above) the black line, for long times,
the non-equilibrium dynamics approaches a thermal state with delocalized (localized) phase. This
relaxation dynamics is incoherent only in the shaded area and coherent elsewhere, particularly, for
s\1=2 and also for strong friction
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spacing �hx0, quantization is washed out by thermal fluctuations and the oscillator
displays classical behavior. For an open quantum system interacting with a real heat
bath, an additional scale enters this scenario, namely, level broadening �hc (c is a
typical coupling rate) induced by the finite lifetime of energy eigenstates. In the weak
coupling regime c�x0, the above argument then applies, and the classical domain is
characterized by �hc��hx0�kBT . Consequently, the scale �hc does not play any role
and the classical Boltzmann distribution expð�bHSÞ does not dependent on c.

The same is true approximately at lower temperatures, where the canonical
operator of the reduced system is given by that of the bare system, i.e.,
qb / expð�bHSÞ, as long as c�x0. In fact, even the reduced dynamics (4.2) can
be cast into time-local evolution equations for the reduced density qðtÞ if the time
scale for bath-induced retardation �hb is much shorter than the time scale for bath-
induced relaxation 1=c. On a coarse-grained time scale, the reduced dynamics then
appears to be Markovian. This domain

�hc
kBT

�1 ð4:12Þ

includes the weak friction regime c=x0�1, in which so-called master equations are
valid down to very low temperatures �hx0=kBT�1 (Breuer and Petruccione 2002)
(see Fig. 4.2). It also contains the classical regime of strong friction c=x0�1 and
very high temperatures x0�h=kBT�1. Anyway, in the domain defined via (4.12), the

Fig. 4.2 Domains in parameter space for an open quantum system with typical energy level
spacing �hx0, interacting with a heat bath at reciprocal temperature b and with friction rate c.
Below the black line (grid shaded), the level broadening due to friction is negligible (c�hb�1),
while above (c�hb�1), it must be treated non-perturbatively. The dashed horizontal line separates
the domain of weak friction c=x0�1 from the overdamped one c=x0�1. At lower temperatures
x0�hb[ 1, classicality appears in the line-shaded domain where a time scale separation c=x2

0��hb
applies. See text for details
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level broadening due to friction does not play a significant role and can be treated
perturbatively.

The opposite is true for very strong dissipation c=x0�1 and low temperatures
x0�h=kBT�1 (Ankerhold et al. 2001), so that

�hc
kBT

�1 : ð4:13Þ

One might think that a simplification of the reduced dynamics is then not possible at
all. However, it turns out that this is not quite true. Indeed, one must keep in mind
that, in this regime, the relevant relaxation time scale for the reduced density is not
given by 1=c, but rather by c=x2

0. This follows directly from the classical dynamics
of the harmonic oscillator, whose two characteristic roots are given by

k	 ¼ � c
2
	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

4
� x2

0

r
: ð4:14Þ

In the overdamped limit, the fast frequency k� � c corresponds to the fast equil-
ibration of momentum, while the slow frequency kþ � x2

0=c describes the much
slower relaxation of position. Accordingly, on a coarse-grained time scale, one may
consider the momentum part of the reduced density to be equilibrated to the
instantaneous position, so that the position part is the only relevant quantity for the
dynamics [note that the system interacts with the bath in (4.4) via the position
operator].

This separation of time scales is well known in classical physics as the over-
damped or Smoluchowski limit (Risken 1984). There, it corresponds to a reduction
of the Langevin Eq. (4.1) in which inertia effects are adiabatically eliminated.
Equivalently, the position part Pðq; tÞ of the full phase space distribution of a one-
dimensional particle with mass m moving in a potential VðqÞ obeys the famous
Smoluchowski equation (Smoluchowski 1906; Risken 1984), a time evolution
equation in the form of a diffusion equation

oPðq; tÞ
ot

¼ 1
cm

o
oq

V 0ðqÞ þ kBT
o
oq

� �
Pðq; tÞ : ð4:15Þ

For quantum Brownian motion one can indeed show (Ankerhold et al. 2001;
Ankerhold 2007; Maier and Ankerhold 2010) that a generalization of this equation,
the so-called quantum Smoluchowski equation, follows from the reduced dynamics
(4.2) in the overdamped regime where c=x2

0��hb (x0 then refers to a typical energy
scale of the system, see Fig. 4.2). The diffusion constant has to be replaced by a
position-dependent diffusion coefficient DðqÞ ¼ kBT=½1� bV 00ðqÞK� according to
kBTo=oq ! o=oqDðqÞ. In the high temperature limit, one recovers the result (4.15)
from K ! 0, while in the domain (4.13), one has K / lnðc�hbÞ=c. Then, the
dependence on the bath coupling c and Planck’s constant �h appears in a highly
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non-perturbative way and may substantially influence the dynamics. However, the
equation which governs this dynamics has a basically classical structure.

One may also understand the origin of an �h-dependent diffusion coefficient from
Heisenberg’s uncertainty relation. In the strong coupling regime, the reservoir
squeezes fluctuations in position to the extent that the position distribution obeys a
semi-classical type of equation of motion. This in turn requires momentum fluc-
tuations to be strongly enhanced, which can indeed be shown. The quantum
parameter K is reminiscent of this interdependence between position and momen-
tum fluctuations. What is interesting experimentally, is the fact that, according to
(4.13), quantum fluctuations may already appear at very high temperatures
(�hx0�kBT) if friction is sufficiently strong as, for example, in biological structures.

4.7 Summary and Conclusion

In this contribution we have shed some light on the subtleties that are associated
with the description of open quantum systems. In contrast to the procedure in
classical physics, quantum Brownian motion can only be consistently formulated
when given a Hamiltonian of the full system. In a first step, this requires one to
identify the relevant system part and its irrelevant surroundings, a choice which is
not unique and depends on the focus of the observer. One then implements a
reduction, keeping only the effective impact of the environment by assuming that it
constitutes a heat bath. This has at least two substantial advantages: (i) a micro-
scopic description of the actual reservoir is not necessary and (ii) this modeling
provides a very general framework, applicable to a broad class of physical situa-
tions. In fact, it has turned out to be the most powerful approach we have for
understanding experimental data for dissipative quantum dynamics. However, the
price to pay for this reductionism is that, on the one hand, the dynamics cannot
generally be cast into the form of simple time evolution equations, and on the other,
conventional concepts and expectations must be treated with great caution.

The fundamental process is once again the non-locality of quantum mechanics,
which in this context may lead to a “blurring” of what is taken to be the system and
what is taken to be its surroundings. This entanglement becomes particularly
serious when the interaction between the system and the heat bath is no longer
weak. We have discussed here one example from thermodynamics and two
examples from non-equilibrium dynamics. With respect to the first, it was shown
that the partition function of a reduced system is not a proper partition function in
the conventional sense and so cannot always be used to derive thermodynamic
quantities. In the second and the third example, our naive conception of the division
of the world into a classical realm and a quantum realm has been challenged. There
may be emergence, with the consequence that quantum mechanics may survive
even for strong friction and classicality may be found even in the deep quantum
domain.
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