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10.1 Introduction

Often we can describe the macroscopic behaviour of systems without knowing
much about the nature of the constituents of the systems let alone the states the
constituents are in. Thus, we can describe the behaviour of real or ideal gases
without knowing the exact velocities or places of the constituents. It suffices to
know certain macroscopic quantities in order to determine other macroscopic
quantities. Furthermore, the macroscopic regularities are often quite simple. Mac-
roscopic quantities are often determined by only a few other macroscopic quanti-
ties. This fact is quite remarkable, as Jerry Fodor noted:

Damn near everything we know about the world suggests that unimaginably complicated
to-ings and fro-ings of bits and pieces at the extreme micro-level manage somehow to
converge on stable macro-level properties. […] [T]he ‘somehow’, really is entirely mys-
terious […] why there should be (how there could be) macro level regularities at all in a
world where, by common consent, macro level stabilities have to supervene on a buzzing,
blooming confusion of micro level interactions (Fodor 1997, p. 161).

The puzzle is that on the one hand macroscopic behaviour supervenes on the
behaviour of the constituents, i.e. there is no change in the macroscopic behaviour
without some change at the micro-level. On the other hand not every change in the
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states of the constituents leads to a change on the macro-level. To some extent the
macro-behaviour is independent of what is going on at the micro-level. The
questions we will address in this paper is whether there is an explanation for the fact
that as Fodor put it the micro-level “converges on stable macro-level properties”,
and whether there are lessons from this explanation for other issues in the vicinity.

Various metaphors have been used to describe this peculiar relation of the micro-
level to the macro-level. The macro-behaviour has been said to be “autonomous”
(Fodor 1997), it has been characterized as “insensitive to microscopics” or due to
“higher organizing principles in nature” (Laughlin and Pines 2000, p. 261) and
above all macroscopic behaviour is said to be “emergent”, where emergence
implies novelty, unexplainability and irreducibility. There is no consensus about
how best to define the concept of emergence—partly due to the fact that there is no
uncontroversial set of paradigmatic examples and partly due to the fact the concept
of emergence plays a role in a variety of philosophical and scientific contexts (For a
discussion see Humphreys and Bedau 2008, Introduction).

As a consequence of these conceptual difficulties we will in the first part of the
paper focus on the notion of the stability of macro-phenomena. One obvious
advantage of this terminological choice consists in the fact that stability as opposed
to emergence allows for degrees. Even though there is no precise concept of
emergence it seems uncontroversial that whether or not some behaviour falls under
this concept should be an all or nothing affair. The very word “stability” by contrast
allows for behaviour to be more or less stable. However, in the second part of the
paper we will also take up some issues that play a role in debates about emergence.

Even though the concept of stability has been used in various different senses
within the philosophy of science recently, there is a clear conceptual core: Stability is
a property we attribute to entities (things, properties, behaviour, sets, laws etc.) if the
entity in question does not change even though other entities, that are specified, do
change. This definition captures the notions of stability that have been recently been
discussed in various contexts. Woodward and Mitchell call laws or causal general-
izations “stable” relative to background conditions if they continue to hold, even
though the background conditions change (Mitchell 2003, p. 140; Woodward 2007,
p. 77). Lange calls a set of statements stable if their truth-value would remain the
same under certain counterfactual changes (Lange 2009, p. 29). What we are inter-
ested in this paper is the stability of the behaviour of macro-systems vis-à-vis changes
with respect to the micro-structure of the system. So the changes we consider concern
not external or background conditions but rather system-internal features.

An explanation for the stability of macro-phenomena is not only an interesting
project in itself. We do think that our discussion of stability throws some light on
some issues that play a role in debates about emergence, as we will explain from
Sect. 10.5 onwards. Furthermore our account of stability is of wider significance for
other areas of philosophy. It is apparent that Fodor’s seminal papers on the
autonomy of the special sciences is largely motivated by the observation that
macro-behaviour is stable under some changes on the micro-level. This in turn
motivated the position of ‘non-reductive’ physicalism in the philosophy of mind.
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Even though what we will finally present is not a non-reductive but rather a
reductive account of stability, this account nevertheless vindicates what we take to
be two of the core-intuitions that motivate non-reductive physicalism: (1) There are
macro-level properties that are distinct from micro-level properties. (2) Macro-level
properties are dependent on micro-level properties (See Rudder-Baker 2009, p. 110
for a similar characterisation of non-reductive physicalism that does not refer
explicitly to the failure of reduction). Even though we will not discuss this point in
any detail we would like to suggest that it is the stability of macro-behaviour that
makes distinct macro-properties possible.

Fodor’s question, as to how it is possible that extremely complex behaviour at an
atomistic level could (for many macroscopic systems we know of) give rise to
stable macroscopic behaviour has in recent years been transformed into a wider and
more ambitious question, viz. how it is possible that even microscopically very
different systems manage to exhibit the same type of stable macroscopic behaviour.
In a still wider context it has been discussed by Batterman, most notably in his
paper “Multi-realizablity and Universality” (2000) as well as Batterman (2002). His
central claim is that the notion of universality used to describe the surprising degree
of insensitivity of critical phenomena in the vicinity of continuous phase transition
points can also be used to explain how special science properties can be realized by
quite heterogeneous systems. Indeed, the renormalization group (RNG) explanation
of the universality of critical phenomena was advocated as a paradigm that could
account for the multi- realizability of macro-behaviour in general. While we agree
that RNG provides an explanation of a certain kind of stability of macro-behaviour,
we wish to point out that the case of critical phenomena is very special, in that it is
restricted to phenomena that obtain in the vicinity of 2nd order phase transitions,
but not elsewhere. Batterman himself is aware of this problem (See Batterman
2011). A similar remark pertains to Morrison’s recent paper on emergence (Mor-
rison 2012). Her account of emergence and stability in terms of symmetry breaking
pertains only to a restricted class of those systems that exhibit stable behaviour.

For a more general explanation of the stability of macro-phenomena of indi-
vidual systems, but also across classes of similar systems, other principles must
therefore be invoked. In this paper we propose to rationalise the stability of macro-
behaviour by pointing out that observations of macro-behaviour are usually
observations on anthropomorphic scales, meaning that they are results of coarse-
grained observations in both space and time. That is, they involve averages, both
over individual behaviours of huge numbers of atomistic components constituting
the system under study, and averages of their behaviour over time scales, which are
very large compared to characteristic time-scales associated with motion at the
micro-level. In fact we shall point out that large numbers of constituent atomistic
components, beyond their role in observations on anthropomorphic scales, are also
a prerequisite for the very existence and stability of ordered states of matter, such as
crystals or magnetic materials.

Just to give an impression of orders of magnitude involved in descriptions of
macroscopic amounts of matter, consider a cubic-millimetre of a gas at ambient
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temperature and pressure. It already contains approximately 2.7 × 1016 gas mole-
cules, and the distance between constituents particles is so small that the typical
time between two successive scattering events with other molecules would for each
of the molecules be of the order of 10−10 s, entailing that equilibration times in such
systems are very short.

Indeed, the traditional way of taking the time-averaging aspect associated with
observations of macro-behaviour into account has been to consider results of such
observations to be properly captured by values characteristic of thermodynamic
equilibrium, or—taking a microscopic point of view—by equilibrium statistical
mechanics. It is this microscopic point of view, which holds that a probabilistic
description of macroscopic systems using methods of Boltzmann-Gibbs statistical
mechanics is essentially correct that is going to form a cornerstone of our reasoning.
Indeed, within a description of macroscopic systems in terms of equilibrium sta-
tistical mechanics it is essential that systems consist of a vast number of constituents
in order to exhibit stable, non-fluctuating macroscopic properties and to react in
predictable ways to external forces and fields. In order for stable ordered states of
matter such as crystals, magnetic materials, or super-conductors to exist, numbers
must (in a sense we will specify below) in fact be so large as to be “indistin-
guishable from infinity”.

Renormalization group ideas will still feature prominently in our reasoning,
though somewhat unusually in this context with an emphasis on the description of
behaviour away from criticality.

We will begin by briefly illustrating our main points with a small simulation
study of a magnetic system. The simulation is meant to serve as a reminder of the
fact that an increase of the system size leads to reduced fluctuations in macroscopic
properties, and thus exhibits a clear trend towards increasing stability of macro-
scopic (magnetic) order and—as a consequence—the appearance of ergodicity
breaking, i.e. the absence of transitions between phases with distinct macroscopic
properties in finite time (Sect. 10.2). We then go on to describe the mathematical
foundation of the observed regularities in the form of limit theorems of mathe-
matical statistics for independent variables, using a line of reasoning originally due
to Jona-Lasinio (1975), which relates limit theorems with key features of large-scale
descriptions of these systems (Sect. 10.3). Generalizing to coarse-grained descrip-
tions of systems of interacting particle systems, we are lead to consider RNG ideas
of the form used in statistical mechanics to analyse critical phenomena. However,
for the purpose of the present discussion we shall be mainly interested in conclu-
sions the RNG approach allows to draw about system behaviour away from criti-
cality (Sect. 10.4). We will briefly discuss the issue how the finite size of actual
systems affects our argument (Sect. 10.5). We will furthermore discuss to what
extent an explanation of stability is a reductive explanation (Sect. 10.6) and will
finally draw attention to some interesting conclusions about the very project of
modelling condensed matter systems (Sect. 10.7).
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10.2 Evidence from Simulation: Large Numbers
and Stability

Let us then begin with a brief look at evidence from a simulation, suggesting that
macroscopic systems—which according to our premise are adequately character-
ised as stochastic systems—need to contain large numbers of constituent particles
to exhibit stable macroscopic properties.

This requirement, here formulated in colloquial terms, has a precise meaning in
the context of a description in terms of Boltzmann-Gibbs statistical mechanics.
Finite systems, are according to such a description, ergodic. They would therefore
attain all possible micro-states with probabilities given by their Boltzmann-Gibbs
equilibrium distribution and would therefore in general also exhibit fluctuating
macroscopic properties as long as the number of constituent particles remains finite.
Moreover ordered phases of matter, such as phases with non-zero magnetization or
phases with crystalline order would not be absolutely stable, if system sizes were
finite: for finite systems, ordered phases will always also have a finite life-time
(entailing that ordered phases in finite systems are not stable—in a strict sense.
However, life-times of ordered states of matter can diverge in the limit of infinite
system size.

Although real world systems are clearly finite, the numbers of constituent par-
ticles they contain are surely unimaginably large (recall numbers for a small volume
of gas mentioned above), and it is the fact that they are so very large which is
responsible for the fact that fluctuations of their macroscopic properties are virtually
undetectable. Moreover, in the case of systems with coexisting phases showing
different forms of macroscopic order (such as crystals or magnetic systems with
different possible orientations of their macroscopic magnetisation), large numbers
of constituent particles are also responsible for the fact that transitions between
different manifestations of macroscopic order are sufficiently rare to ensure the
stability of the various different forms of order.

We are going to illustrate what we have just described using a small simulation
of a magnetic model-system. The system we shall be looking at is a so-called Ising
ferro-magnet on a 3D cubic lattice. Macroscopic magnetic properties in such a
system appear as average over microscopic magnetic moments attached to ‘ele-
mentary magnets’ called spins, each of them capable of two opposite orientations in
space. These orientations can be thought of as parallel or anti-parallel to one of the
crystalline axes. Model-systems of this kind have been demonstrated to capture
magnetic properties of certain anisotropic crystals extremely well.

Denoting by siðtÞ ¼ �1 the two possible states of the i-th spins at time t, and by
sðtÞ the configuration of all siðtÞ, one finds the macroscopic magnetisation of a
system consisting of N such spins to be given by the average

SNðsðtÞÞ ¼ 1
N

XN
i¼1

siðtÞ: ð10:1Þ
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In the model system considered here, a stochastic dynamics at the microscopic
level is realised via a probabilistic time-evolution (Glauber Dynamics), which is
known to converge to thermodynamic equilibrium, described by a Gibbs-Boltz-
mann equilibrium distribution of micro-states

PðsÞ ¼ 1
ZN

exp �bHNðsÞ½ � ð10:2Þ

corresponding to the “energy function”

HNðsÞ ¼ �
X
ði;jÞ

Jijsisj: ð10:3Þ

The double sum in this expression is over all possible pairs ði; jÞ of spins. In
general, one expects the coupling strengths Jij to decrease as a function of the
distance between spins i and j, and that they will tend to be negligibly small
(possibly zero) at distances larger than a maximum range of the magnetic inter-
action. Here we assume that interactions are non-zero only for spins on neigh-
bouring lattice sites. One can easily convince oneself that positive interaction
constants, Jij [ 0, encourage parallel orientation of spins, i.e. tendency to macro-
scopic ferromagnetic order. In (10.2) the parameter b is a measure of the degree of
stochasticity of the microscopic dynamics, and is inversely proportional to the
absolute temperature T of the system; units can be chosen such that b ¼ 1=T .

Figure 10.1 shows the magnetisation (10.1) as a function of time for various
small systems. For the purposes of this figure, the magnetisation shown is already
averaged over a time unit.1

The first panel of the figure demonstrates that a system consisting of N ¼ 33 ¼
27 spins does not exhibit a stable value of its magnetisation. Increasing the number
of spins N ¼ 43 ¼ 64 that the system appears to prefer values of its magnetisation
around SNðsðtÞÞ ’ �0:83. However, transitions between opposite orientations of
the magnetization are still very rapid. Increasing numbers of spins further to
N ¼ 53 ¼ 125, one notes that transitions between states of opposite magnetization
become rarer, and that fluctuations close to the two values SNðsðtÞÞ ’ �0:83
decrease with increasing system size. Only one transition is observed for the larger
system during the first 104 time-steps. However, following the time-evolution of the
magnetisation of the N ¼ 53 ¼ 125 system over a larger time span, which in real-
time would correspond to approximately 10−7 s, as shown in the bottom right panel,
one still observes several transitions between the two orientations of the magneti-
zation, on average about 10−8 s apart.

1 The time unit in these simulations is given by the time span during which every single spin has
on average once been selected for an update of its state. It is this unit of time which is comparable
for systems of different sizes (Binder and Stauffer 1987, pp. 1–36); it would correspond to a time-
span of approximately 10−12 s in conventional units.
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The simulation may be repeated for larger and larger system sizes; results for the
magnetization (10.1) are shown in the left panel of Fig. 10.2 for systems containing
N ¼ 163 and 643 spins. The Figure shows that fluctuations of the magnetisation
become smaller as the system size is increased. A second effect is that the time
spans over which a stable (in the sense of non-switching) magnetisation is observed
increases with increasing system size; this is shown for the smaller systems in
Fig. 10.1. Indeed, for a system containing N ¼ 643 ¼ 262;144 spins, transitions
between states of opposite magnetization are already so rare2 that they are out of
reach of computational resources available to us, though fluctuations of the mag-
netization about its average value are still discernible. Note in passing that fluc-
tuations of average properties of a small subsystem do not decrease if the total
system size is increased, and that for the system under consideration they are much
larger than those of the entire system as shown in the right panel of Fig. 10.2.

The present example system was set up in a way that states with magnetisations
SN’� 0:83 would be its only (two) distinct macroscopic manifestations. The
simulation shows that transitions between them are observed at irregular time

-1

-0.5

0

0.5

1

0 2000 4000 6000 8000 10000

t

-1

-0.5

0

0.5

1

0 2000 4000 6000 8000 10000

m
N

m
N

m
N

m
N

t

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 2000 4000 6000 8000 10000

t

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 20000 40000 60000 80000 100000

t

Fig. 10.1 1st row magnetisation of a system of N ¼ 33 spins (left) and N ¼ 43 spins (right); 2nd
row magnetisation of a system of N ¼ 53 spins (left) and N ¼ 53 spins (right) but now monitored
for 105 time-steps. The temperature T in these simulations is chosen as T ¼ 3:75, leading to an
equilibrium magnetization K in the thermodynamic limit

2 Measured in conventional time units, such a system will exhibit a magnetisation which remains
stable for times of the order of several years.
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intervals for small finite systems. This is the macroscopic manifestation of ergo-
dicity. The time span over which a given macroscopic manifestation is stable is seen
to increase with system size. It will diverge—ergodicity can be broken—only in the
infinitely large system. However, the times over which magnetic properties are
stable increase so rapidly with system size that it will be far exceeding the age of the
universe for systems consisting of realistically large (though certainly finite)
numbers of particles, i.e. for N ¼ Oð1023Þ.

Only in the infinite system limit would a system exhibit a strictly constant non-
fluctuating magnetisation, and only in this limit would one therefore, strictly
speaking, be permitted to talk of a system with a given value of its magnetisation.
Moreover, only in this limit would transitions between different macroscopic phases
be entirely suppressed and only in this limit could the system therefore, strictly
speaking, be regarded as macroscopically stable.

However our simulation already indicates that both properties can be effectively
attained in finite (albeit large) systems. The systems just need to be large enough for
fluctuations of their macroscopic properties to become sufficiently small as to be
practically undetectable at the precision with which these are normally measured,
and life-times of different macroscopic phases (if any) must become sufficiently
large to exceed all anthropomorphic time scales by sufficiently many orders of
magnitude. With respect to this latter aspect of macroscopic stability, reaching
times which exceed the age of the universe could certainly be regarded as sufficient
for all purposes; these are easily attained in systems of anthropomorphic dimension.

So, there is no explanation of why a finite system would exhibit a strictly
constant non-fluctuating magnetisation. Thermodynamics, however, works with of
such strictly constant, non-fluctuating properties. This might appear to be a failure
of reduction: The properties thermodynamics assumes finite macroscopic systems
to have, cannot be explained in terms of the properties of the parts, their interac-
tions. This, however, would be the wrong conclusion to draw. It is essential to note
that we do understand two things and these suffice for the behaviour of the
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Fig. 10.2 Magnetisation of systems containing N ¼ 163 and N ¼ 643 spins showing that
fluctuations of the average magnetization of the system decreases with system size (left panel), and
of a system containing N ¼ 643 spins, shown together with the magnetization of a smaller
subsystem of this system, containing only Ns ¼ 33 spins (right panel)
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compound being reductively explainable: Firstly, we can explain on the basis of the
properties of the parts and their interactions why finite systems have a (fairly) stable
magnetisation, such that no fluctuations will occur for times exceeding the age of
the universe if the systems are sufficiently large. Thus we can explain the observed
macro-behaviour reductively. Secondly, we can explain why thermodynamics
works even though it uses quantities defined in the thermodynamic limit only: Even
though the strictly non-fluctuating properties that thermodynamics works with do
not exist in real, i.e. finite systems they are (i) observationally indistinguishable
from the properties of finite systems and (ii) we theoretically understand how in the
limit N ! 1 fluctuations disappear, i.e. the non-fluctuating properties arise. We
would like to argue that this suffices for a reductive explanation of a phenomenon.

In what follows we describe how the suppression of fluctuations of macroscopic
quantities in large systems can be understood in terms of statistical limit theorems.
We follow a reasoning originally due to Jona-Lasinio (1975) that links these to the
coarse grained descriptions and renormalization group ideas, starting in the fol-
lowing section with systems of independent identically distributed random vari-
ables, and generalizing in Sect. 10.4 thereafter to systems of interacting degrees of
freedom.

10.3 Limit Theorems and Description on Large Scales

Large numbers are according to our reasoning a prerequisite for stability of mac-
roscopic material properties, and only in the limit of large numbers we may expect
that macroscopic properties of matter are also non-fluctuating. Early formulations of
equations of state of macroscopic systems which postulate deterministic functional
relations, e.g. between temperature, density and pressure of a gas, or temperature,
magnetisation and magnetic field in magnetic systems can therefore claim strict
validity only in the infinite system limit. They are thus seen to presuppose this limit,
though in many cases, it seems, implicitly.

From a mathematical perspective, there are—as already stressed by Khinchin in
his classical treatise on the mathematical foundations of statistical mechanics
(Khinchin 1949)—two limit theorems of probability theory, which are of particular
relevance for the phenomena just described: (i) the law of large numbers, according
to which a normalized sum of N identically distributed random variables of the form
(10.1) will in the limit N ! 1 converge to the expectation l ¼ hski of the sk,
assuming that the latter is finite; (ii) the central limit theorem according to which the
distribution of deviations from the expectation, i.e., the distribution of SN � l for
independent identically distributed random variables will in the limit of large N
converge to a Gaussian of variance r2=N, where r2 ¼ hs2ki � hski2 denotes the
variance of the sk.

3

3 For precise formulations of conditions and proofs, see Feller (1968).
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The central limit theorem in particular implies that fluctuations of macroscopic
quantities of the form (10.1) will in the limit of large N typically decrease as 1=

ffiffiffiffi
N

p
with system size N. This result, initially formulated for independent random vari-
ables may be extended to so-called weakly dependent variables. Considering the
squared deviation SN � hSNið Þ2, one obtains its expectation value

ðSN � hSNiÞ2
D E

¼ 1
N2

XN
k;‘¼1

Ck;‘ ¼ 1
N2

XN
k;‘¼1

�
ðsk � hskiÞðx‘ � hx‘iÞ

�
ð10:4Þ

and the desired extension would hold for all systems, for which the correlations Ck;‘

are decreasing sufficiently rapidly with “distance” jk � ‘j to ensure that the sumsP1
‘¼1 jCk;‘j are finite for all k.
The relation between the above-mentioned limit theorems and the description of

stochastic systems at large scales are of particular interest for our investigation, a
connection that was first pointed out by Jona-Lasinio (1975).4 The concept of large-
scale description has been particularly influential in the context of the renormal-
ization group approach which has led to the our current and generally accepted
understanding of critical phenomena.5

To discuss this relation, let us return to independent random variables and,
generalising Eq. (10.1), consider sums of random variables of the form

SNðsÞ ¼ 1
N1=a

XN
k¼1

sk: ð10:5Þ

The parameter a fixes the power of system size N by which the sum must be
rescaled in order to achieve interesting, i.e., non-trivial results. Clearly, if the power
of N appearing as the normalization constant in Eq. (10.5) is too large for the type
of random variables considered (i.e. if α is too small), then the normalized sum
(10.5) will almost surely vanish, SN ! 0, in the large N limit. Conversely, if the
power of N in Eq. (10.5) too small (a too large), the normalized sum (10.5) will
almost surely diverge, SN ! �1, as N becomes large. We shall in what follows
restrict our attention to the two important cases a ¼ 1—appropriate for sums of
random variables of non-zero mean—and a ¼ 2—relevant for sums of random
variables of zero mean and finite variance. For these two cases, we shall recover the
propositions of the law of large numbers (a ¼ 1) and of the central limit theorems
a ¼ 2ð Þ as properties of large-scale descriptions of (10.5).

4 On this, see also Batterman (1998), who referred to the relation on several occasions in the
context of debates on reductionism.
5 The notion of critical phenomena refers to a set of anomalies (non-analyticities) of thermody-
namic functions in the vicinity of continuous, second order phase transitions. A lucid exposition is
given by Fisher (1983).
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To this end we imagine the sk to be arranged on a linear chain. The sum (10.5)
may now be reorganised by (i) combining neighbouring pairs of the original
variables and computing their averages �sk, yielding N 0 ¼ N=2 of such local aver-
ages, and by (ii) appropriately rescaling these averages so as to obtain renormalised
random variables s0k ¼ 2l�sk , and by expressing the original sum (10.5) in terms of a
corresponding sum of the renormalised variables, formally

sk ¼ s2k�1 þ s2k
2

; s0k ¼ 2lsk; N 0 ¼ N=2; ð10:6Þ

so that

SNðsÞ ¼ 2ð1�1=a�lÞSN0 ðs0Þ: ð10:7Þ

One may compare this form of “renormalization”—the combination of local
averaging and rescaling—to the effect achieved by combining an initial reduction of
the magnification of a microscope (to the effect that only locally averaged features
can be resolved) with an ensuing change of the contrast of the image it produces.

By choosing the rescaling parameter l such that l ¼ 1� 1=a, one ensures that
the sum (10.5) remains invariant under renormalization,

SNðsÞ ¼ SN 0 ðs0Þ: ð10:8Þ

The renormalization procedure may therefore be iterated, as depicted in
Fig. 10.3: sk ! s0k ! s00k ! . . ., and one would obtain the corresponding identity of
sums expressed in terms of repeatedly renormalised variables,

SNðsÞ ¼ SN 0 ðs0Þ ¼ SN 00 ðs00Þ ¼ . . . ð10:9Þ

The statistical properties of the renormalised variables s0k will, in general be
different from (though, of course, dependent on) those of the original variables sk,
and by the same token will the statistical properties of the doubly renormalised
variables s00k be different from those of the s0k, and so on. However, one expects that
statistical properties of variables will after sufficiently many renormalization steps,
i.e., at large scale, eventually become independent of the microscopic details and of
the scale considered, thereby becoming largely independent of the statistical
properties of the original variables sk, and invariant under further renormalization.
This is indeed what happens under fairly general conditions.

It turns out that for sums of random variables sk with non-zero average l ¼ hski
the statement of the law of large numbers is recovered. To achieve asymptotic
invariance under repeated renormalization, one has to choose a ¼ 1 in (10.5), in
which case one finds that the repeatedly renormalised variables s0000...k converge
under repeated renormalization to the average of the sk, which is thereby seen to
coincide with the large N limit of the SN .
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If sums of random variables of zero mean (but finite variance) are considered,
the adequate scaling is given by a ¼ 2. In this case the repeatedly renormalised
variables s0000...k , and thereby the SN , are asymptotically normally distributed with
variance r2 of the original variables sk , even if these were not themselves normally
distributed. The interested reader will find details of the mathematical reasoning
underlying these results in Appendix 10.8 below.

Let us not fail to mention that other stable distributions of the repeatedly
renormalised variables s0000...k , thus of the SN—the so-called Lévy a-stable distribu-
tions (Feller 1968)—may be obtained by considering sums random variables of
infinite variance. Although such distributions have recently attracted some attention
in the connection with the description of complex dynamical systems, such as
turbulence or financial markets, they are of lesser importance for the description of
thermodynamic systems in equilibrium, and we shall therefore not consider these
any further in what follows.

Interestingly, the asymptotics of the convergence to the stable distributions
under repeated renormalization described above can be analyzed in full analytic
detail for the presently considered case of sums of independent random variables.
As demonstrated in Appendix 10.9, this allows to quantify the finite size corrections
to the limiting distributions in terms of the scaling of high-order cumulants with
inverse powers of system size N.

10.4 Interacting Systems and the Renormalization Group

For the purpose of describing macroscopic systems the concept of large-scale
descriptions of a system, used above to elucidate the two main limit theorems of
mathematical statistics, needs to be generalised to interacting, thus correlated or
dependent random variables. Such a generalisation was formulated at the beginning
of the 1970s as renormalization group approach to interacting systems.

Starting point of this approach is the Boltzmann-Gibbs equilibrium distribution
of microscopic degrees of freedom taking the form (10.2). The idea of the renor-
malization group approach to condensed matter systems is perhaps best explained
in terms of the normalisation constant ZN appearing in (10.2), the so-called partition

Fig. 10.3 Repeated enlargement of scale: the present example begins with a system of 24 random
variables symbolised by the dots in the first row. These are combined in pairs, as indicated by
frames surrounding two neighbouring dots. Each such pair generates a renormalised variable,
indicated by 12 dots of lighter shade in the second row of the figure. Two of those are combined in
the next step as indicated by frames around pairs of renormalised variables, thereby starting the
iteration of the renormalization procedure
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function. It is related to the dimensionless free energy f N of the system via ZN ¼
e�Nf N and thereby to its thermodynamic functions and properties.6 To this end the
partition function in (10.2) is written in the form

ZN ¼ ZNðKÞ ¼
X
s

e�HNðs;KÞ; ð10:10Þ

in which HNðs;KÞ denotes the dimensionless energy function of the system, i.e., the
conventional energy function multiplied by the inverse temperature b, while K
stands for the collection of all coupling constants in HN (multiplied by b). These
may include two-particle couplings as in (10.3), but also single-particle couplings
as well as a diverse collection of many-particle couplings. Renormalization
investigates, how the formal representation of the partition function changes, when
it is no longer interpreted as a sum over all micro-states of the original variables, but
as a sum over micro-states of renormalised variables, the latter defined as suitably
rescaled local averages of the original variables in complete analogy to the case of
independent random variables.

In contrast to the case of independent variables, geometric neighbourhood
relations play a crucial role for interacting systems, and are determined by the
physics of the problem. E.g., for degrees of freedom arranged on a d-dimensional
(hyper)-cubic lattice, one could average over the bd degrees of freedom contained in
a (hyper)-cube Bk of side-length b to define locally averaged variables, as illustrated
in Fig. 10.4 for d ¼ 2 and b ¼ 2, which are then rescaled by a suitable factor bl in
complete analogy to the case of independent random variables discussed above,

sk ¼ b�d
X
i2Bk

si; s0k ¼ blsk: N 0 ¼ N=bd : ð10:11Þ

The partition sum on the coarser scale is then evaluated by first summing over all
micro-states of the renormalised variables s0 and for each of them over all con-
figurations s compatible with the given s0, formally

ZNðKÞ ¼
X
s0

X
s

Pðs0; sÞe�HN ðs;KÞ
" #

�
X
s0

e�HN0 ðs0;K0Þ ¼ ZN0 ðK0Þ ð10:12Þ

where Pðs0; sÞ� 0 is a projection operator constructed in such a way that
Pðs0; sÞ ¼ 0, if s is incompatible with s0, whereas Pðs0; sÞ[ 0, if s is compatible
with s0, and normalised such that

P
s0 Pðs0; sÞ ¼ 18s. The result is interpreted as the

partition function corresponding to a system of N 0 ¼ b�dN renormalised variables,

6 The dimensionless free energy is just the product of the standard free energy and the inverse
temperature b. At a formal level, the partition function is closely related to the characteristic
function of a (set of) random variables, in terms of which we analysed the idea of large-scale
descriptions for sums of independent random variables in Appendix 10.8.
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corresponding to a dimensionless energy function HN 0 of the same format as the
original one, albeit with renormalised coupling constants K ! K0, as expressed in
(10.12). The distance between neighbouring renormalised degrees of freedom is
larger by a factor b than that of the original variables. Through an ensuing rescaling
of all lengths ‘ ! ‘=b one restores the original distance between the degrees of
freedom, and completes the renormalization group transformation as a mapping
between systems of the same format.

As in the previously discussed case of independent random variables, the ren-
ormalization group transformation may be iterated and thus creates not only a
sequence of repeatedly renormalised variables, but also a corresponding sequence
of repeatedly renormalised couplings

K ! K0 ! K00 ! K000 ! . . . : ð10:13Þ

As indicated in Fig. 10.5, this sequence may be visualised as a renormalization
group ‘flow’ in the space of couplings.

The renormalization transformation entails a transformation of (dimensionless)
free energies f NðKÞ ¼ �N�1 ln ZN of the form

f NðKÞ ¼ b�df N0 ðK0Þ: ð10:14Þ

For the present discussion, however, the corresponding transformation of the so-
called correlation length n which describes the distance over which the degrees of
freedom in the system are statistically correlated, is of even greater interest. As a
consequence of the rescaling of all lengths, ‘ ! ‘=b, in the final step of the ren-
ormalization transformation, one obtains

nNðKÞ ¼ bnN 0 ðK0Þ: ð10:15Þ

Repeated renormalization amounts to a description of the system on larger and
larger length scales. The expectation that such a description would on a sufficiently
large scale eventually become independent of the scale actually chosen would

Fig. 10.4 Iterated coarsening of scale
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correspond to the finding that the renormalization group flow would typically
approach a fixed point: K ! K0 ! K00 ! . . . ! K�. As in the case of the renor-
malization of sums of independent random variables exponent l in the rescaling
operation in Eq. (10.11) must be judiciously chosen to allow approach to a fixed
point describing non-trivial large scale behaviour.

The existence of fixed points is of particular significance in the limit of infinitely
large system size N ¼ N 0 ¼ 1, as in this limit Eq. (10.15), n1ðK�Þ ¼ bn1ðK�Þ
will for b 6¼ 1 only allow for the two possibilities

n1ðK�Þ ¼ 0 or n1ðK�Þ ¼ 1: ð10:16Þ

The first either corresponds to a so-called high-temperature fixed point, or to a
low-temperature fixed point. The second possibility with infinite correlation length
corresponds to a so-called critical point describing a continuous, or second order
phase transition. In order to realise the second possibility, the initial couplings K of
the system must be adjusted in such a way that they come to lie precisely on the
critical manifold in the space of parameters, defined as the basin of attraction of the
fixed point K� for the renormalization group flow. If the system’s initial couplings
K are not exactly on the critical manifold, but close to it, repeated renormalization
will result in a flow that visits the vicinity of the fixed point K, but is eventually
driven away from it (see Fig. 10.5). Within an analysis of the RG transformation
that is linearized in the vicinity of K� this feature can be exploited to analyse critical
behaviour of systems in the vicinity of their respective critical points and quantify it
in terms of critical exponents, and scaling relations satisfied by them (Fisher 1974,
1983).

high−T FP

low−T FP

critical MF

K*

Fig. 10.5 Renormalization group flow in the space of couplings
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The distance from the critical manifold is parameterized by the so-called “rel-
evant couplings”.7 Experience shows that relevant couplings typically form a low-
dimensional manifold within the high-dimensional space of system parameters K.
For conventional continuous phase transitions it is normally two-dimensional—
parametrized by the deviation of temperature and pressure from their critical values
in the case of gasses, by corresponding deviations of temperature and magnetic field
in magnetic systems, and so forth.8 The fact that all systems in the vicinity of a
given critical manifold are controlled by the same fixed point does in itself have the
remarkable consequence that there exist large classes of microscopically very
diverse systems, the so-called universality classes, which exhibit essentially the
same behaviour in the vicinity their respective critical points (Fisher 1974, 1983).

For the purpose of the present discussion, however, the phenomenology close to
off-critical high and low-temperature fixed points is of even greater importance.
Indeed, all non-critical systems will eventually be driven towards one of these under
repeated renormalization, implying that degrees of freedom are virtually uncorre-
lated on large scales, and that the description of non-critical systems within the
framework of the two limit theorems for independent variables discussed earlier is
therefore entirely adequate, despite the correlations over small distances created by
interactions between the original microscopic degrees of freedom.

10.5 The Thermodynamic Limit of Infinite System Size

We are ready for a first summary: only in the thermodynamic limit of infinite
system size N ! 1 will macroscopic systems exhibit non-fluctuating thermody-
namic properties; only in this limit can we expect that deterministic equations of
state exist which describe relations between different thermodynamic properties as
well as the manner in which these depend on external parameters such as pressure,
temperature or electromagnetic fields. Moreover, only in this limit will systems
have strictly stable macroscopic properties in the sense that transitions between
different macroscopic phases of matter (if there are any) will not occur in finite time.
Indeed stability in this sense is a consequence of the absence of fluctuations, as
(large) fluctuations would be required to induce such macroscopic transformations.
We have seen that these properties can be understood in terms of coarse-grained

7 These correspond to a subset of the couplings encoded in K, whose distance from the critical
manifold is increased under renormalization. The critical manifold itself is parameterized by the
so-called irrelevant couplings; their distance from the critical point K� is decreased under
successive renormalizations.
8 Note that in practical RG analyses of the liquid gas critical point, chemical potential is usually
used instead of pressure. Also, proper independent coordinates of the manifold of relevant cou-
plings are not necessarily the physical parameters themselves; they could be, and often are,
constructed from suitable combinations thereof. For a detailed discussion, see e.g. Lavis and Bell
(1998).
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descriptions, and the statistical limit theorems for independent or weakly dependent
random variable describing the behaviour averages and the statistics of fluctuations
in the large system limit, and we have seen how RNG analyses applied to off-
critical systems can provide a rationalization for the applicability of these limit
theorems.

Real systems are, of course, always finite. They are, however, typically com-
posed of huge numbers of atomic or molecular constituents, numbers so large in
fact that they are for the purposes or determining macroscopic physical properties
“indistinguishable from infinity”: fluctuations of macroscopic properties decrease
with increasing system size, to an extent of becoming virtually undetectable in
sufficiently large (yet finite) systems. Macroscopic stability (in the sense of absence
of transitions between different macroscopic phases on time-scales which exceed
the age of the universe) in large finite systems ensues.

One might argue that this is a failure of reduction, and in a sense this is true (as
mentioned before). Strictly non-fluctuating properties as postulated or assumed by
thermodynamics do only exit in the thermodynamic limit of infinite system size
N ! 1. On the basis of finitely many parts of actual systems it cannot be explained
why systems have such properties. We suggest that one should bite the bullet and
conclude that strictly non-fluctuating properties as postulated by thermodynamics
do not exist. But as already mentioned this is less of a problem than it might appear.
There are two reasons why this is not problematic. First: We can explain on the
basis of the properties of the parts and their interactions of actual finite systems why
they have stable properties, in the sense that fluctuations of macroscopic observ-
ables will be arbitrarily small, and that ergodicity can be broken, with life-times of
macroscopically different coexisting phases exceeding the age of the universe. Thus
the observed behaviour of the system can be reductively explained. We do have a
micro-reduction of the observed behaviour. Second: We furthermore understand
how the relevant theories, thermodynamics and statistical mechanics, are related in
this case. They are related by the idealization of the thermodynamic limit of infinite
system size N ! 1 and we have an account of how de-idealization leads to the
behaviour statistical mechanics attributes to finite systems. The stability we
observe, i.e. the phenomenon to be explained, is compatible both with the ideali-
zation of infinite system size and with the finite, but very large, size of real systems.
The fact that strict stability requires the infinite limit poses no problem because we
are in a region where the difference between the finite size model and the infinite
size model cannot be observed.

The role of the thermodynamic limit and the issue of stability of macroscopic
system properties are more subtle, and more interesting, in the case of phase
transitions and critical phenomena. To discuss them, it will be helpful to start with a
distinction.

What we have discussed so far is the stability of macroscopic physical properties
vis-á-vis incessant changes of the system’s dynamical state on the micro-level. Let
us call this “actual stability” and contrast it with “counterfactual stability”. Coun-
terfactual stability is the stability of the macro-behaviour with respect to non-actual
counterfactual changes a system’s composition at the micro-level might undergo:
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e.g., in a ferro-magnetic system one might add next-nearest neighbour interactions
to a system originally having only nearest neighbour interactions, and scale down
the strength of the original interaction in such a manner that would leave the
macroscopic magnetization of a system invariant.

The notion of counterfactual stability applies in particular to the phenomenon of
universality of critical phenomena. Critical phenomena comprise a set of anomalies
(algebraic singularities) of thermodynamic functions that are observed at second
order phase transitions in a large variety of systems. Critical phenomena, and
specifically the critical exponents introduced to characterize the non-analyticities
quantitatively have various remarkable properties. For instance, critical exponents
exhibit a remarkable degree of universality. Large classes of systems are charac-
terized by identical sets of critical exponents, despite the fact that interactions at the
microscopic level may be vastly different. Within the RNG approach described in
the previous section this is understood as a global property of a renormalization
group flow: all systems with Hamiltonians described by couplings K in the vicinity
of a given critical manifold will be attracted by the same RNG fixed point K�, and
therefore exhibit identical critical exponents.

The case of critical behaviour is thus a special and particularly impressive case
of (counterfactual) stability. Note, however, that even though the notion of uni-
versality provides a notion of stability (see Batterman 2002, p. 57ff), the range it
applies to is fairly restricted and does not cover all the cases Fodor had in mind
when he was referring to the stability of macro-level. In particular, universality of
critical phenomena as uncovered by the RNG approach only refers to asymptotic
critical exponents,9 describing critical singularities only in the immediate vicinity of
critical points. The thermodynamic properties of a system not exactly at its critical
point will, however, be influenced by the presence of irrelevant couplings, and thus
show properties which are system-specific, and not universal within universality
classes. We will discuss some further notes of caution in Sect. 10.6 below.

The case of critical phenomena requires special discussion also with respect to the
infinite system limit. We have seen that the thermodynamic limit is a prerequisite for
systems to exhibit non-fluctuating macroscopic physical properties, but that this type
of behaviour is well approximated (in the sense of being experimentally indistin-
guishable from it) in finite sufficiently large systems. Thermodynamically, phase
transitions and critical phenomena are associated with non-analyticities in a system’s
thermodynamic functions. Given certain uncontroversial assumptions, such
non-analyticities cannot occur in finite systems (cf. Menon and Callendar 2013,
p. 194) in the canonical or grand-canonical ensembles of Statistical Mechanics. For
phase transitions to occur, and systems to exhibit critical phenomena it thus appears
that an “ineliminable appeal to the thermodynamic limit and to the singularities that
emerge in that limit” (Batterman 2011, p. 1038) is required.

9 This includes asymptotic scaling functions and even asymptotic corrections to scaling (Wegner
1976).
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Is this an appeal to idealizations that differs from other cases? To discuss this
question, we need to return to the finite N versions of the RG flow Eqs. (10.14) and
(10.15) for the free energy and the correlation length, respectively. It is customary
to use the linear extent L of the system rather than the number of particles N ¼ Ld

(assuming hypercubic geometry), to indicate the finite extent of the system, and to
rewrite the finite-L RG flow equations in the form

f NðKÞ � f ðK; L�1Þ ¼ b�df ðK0; bL�1Þ ð10:17Þ

and

nNðKÞ � nðK; L�1Þ ¼ bnðK0; bL�1Þ: ð10:18Þ

These reformulations already indicate that the inverse L�1 of the system’s linear
dimension L is a relevant variable in the RNG sense due to the final rescaling
‘ ! ‘=b of all lengths (thus L�1 ! bL�1 [ L�1) in the final RG step. The con-
dition for the appearance of this additional relevant variable to be the only modi-
fication of the RNG transformation is that the system must be sufficiently large that
the RG-flow in the space of couplings K ! K0 ! K00 ! . . . is itself unmodified by
the finite size of the system. In a real-space picture of RG, it requires in particular all
renormalized couplings to be embeddable in the system (for details, see Barber
1983). A finite value of L then implies that a finite system can never be exactly
critical in the sense of exhibiting an infinite correlation length. As the relevant
variable L�1 is non-zero, the system is driven away from the critical manifold under
renormalization, and indeed coarse graining is impossible beyond the scale L set by
the system size. If carried through, this finite-size modification of the RNG trans-
formation gives rise to so-called finite-size-scaling theory (FSS) which describes in
quantitative detail the way in which critical singularities are rounded due to finite
size effects (Barber 1983). The analysis is more complicated than, but conceptually
fully equivalent to the finite size scaling analysis for the statistical limit theorems
described in Appendix 10.9. In particular, variables that are irrelevant in the RG
sense are scaled with suitable inverse powers of L in finite systems, the powers
being related to the eigenvalues of the linearized RG transformation (in complete
analogy to the situation described in Appendix 10.9). Thus while proper singu-
larities of thermodynamic functions disappear in systems of finite size, deviations
from the behaviour described in terms of the corresponding infinite-system singular
functions will become noticeable only in ever smaller parameter regions around
“ideal” critical points, as system sizes grow, and will in sufficiently large systems
eventually be indistinguishable from it using experiments of conceivably attainable
precision. In this sense, the infinite system idealization of singular behaviour of
thermodynamic functions in the vicinity of critical points is an idealization, which is
controllable in large systems in a well-defined sense, which does not appear to be
fundamentally different from that of non-fluctuating thermodynamic functions and
absolute stability discussed earlier.
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As before there is no explanation of why a finite system would exhibit phase
transitions in the strict sense. Phase transitions as defined by thermodynamics do
only exist in the thermodynamic limit of infinite system size N ! 1. On the basis
of finitely many parts of actual systems it cannot be explained why systems have
such properties. The same applies to the universal behaviour of systems in the same
universality classes. Strictly speaking universality only obtains in the thermody-
namic limit. Neither the occurrence of phase transitions nor universality can be
explained in terms of the properties of the parts, their interactions. This might
appear to be a failure of reduction. That would, however, be the wrong conclusion
to draw. Again, in both cases (the occurrence of phase transitions and the universal
behaviour at the critical point) we do understand two things and these suffice for the
behaviour being reductively explainable: Firstly, in the case of phase-transitions, we
can explain on the basis of the properties of the parts and their interactions why
finite systems exhibit behaviour that is observationally indistinguishable from strict
phase-transitions, which involve non-analyticities (For this point see also Kadanoff
2013, p. 156 or Menon and Callendar 2013, pp. 212–214). Thus we can explain the
observed macro-behaviour reductively. In the case of universality, finite-size-
scaling theory makes available reductive explanations of the observed similarities in
the macro-behaviour of different kinds of systems. Secondly, we can explain why
thermodynamics works as well as it does even though it uses quantities defined in
the thermodynamic limit only: Even though neither phase transitions as defined in
thermodynamics do not exist in real, i.e. finite systems nor the phenomenon of
universality (in the strict sense), they are (i) observationally indistinguishable from
the properties and behaviour of finite systems and (ii) we theoretically understand
how in the limit N ! 1 phase transitions and universal behaviour (in the strict
sense) would arise. In short: We idealize, but we understand how the idealizations
work (For a discussion of some of these points see also Butterfield 2011, Sect. 7 as
well as Menon and Callender 2013, Sect. 3.2).

10.6 Supervenience, Universality and Part-Whole-
Explanation

In the previous section we have argued that we do have reductive explanations of
the observed behaviour that in thermodynamics is described in terms of phase
transitions and universal behaviour. In this section we will deal with a possible
objection. It might be argued that for a reductive explanation of the macro-
behaviour the properties of the constituents have to determine the properties of the
compound. However, in the cases we are discussing, no such determination relation
obtains. In this section we would like to reject this claim.

When the macro behaviour of physical systems is stable, many details of the
exact micro-state are irrelevant. This is particularly impressive in the case of
universality.
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Margret Morrison argues that if the microphysical details are irrelevant, the
phenomenon in question is not reducible to its microphysical constituents and that
the supervenience relation is “inapplicable in explaining the part-whole aspects”
of such phenomena (Morrison 2012, p. 156). Morrison classifies universal
behaviour at phase transitions as “emergent”, characterizing emergence as
follows:

…what is truly significant about emergent phenomena is that we cannot appeal to micro-
structures in explaining or predicting these phenomena, even though they are constituted by
them (Morrison 2012, p. 143).

Even though we agree with Morrison that universal phenomena are in an
interesting sense ontologically independent of the underlying microstructure we
reject her claim that this violates the “reductionist picture” (Morrison 2012, p. 142).
We will focus on one line of her argument. What Morrison calls the “reductionist
picture” entails the claim that the constituents properties and states determine the
behaviour of the compound system. The reductionist picture entails (or presup-
poses) the supervenience of the properties of the compound on the properties (and
interactions) of the parts. Only if the constituents’ properties and interactions
determine the compounds properties can we reductively explain the latter in terms
of the former. One problem for the reductionist, according to Morrison, is the
failure of supervenience.

Why would one suppose that supervenience fails in the case of stable macro-
behaviour and universal behaviour in particular? In Morrison’s paper we find two
arguments. The first has to do with the thermodynamic limit. The stable macro-
behaviour to be explained presupposes an infinite number of constituents. Real
systems are finite. The behaviour to be explained is not determined by the
behaviour of the finite number of constituents. We have already dealt with this issue
in the previous section and have indicated why we are not convinced by this line of
argument. We thus move to her second argument:

If we suppose that micro properties could determine macro properties in cases of emer-
gence, then we have no explanation of how universal phenomena are even possible.
Because the latter originate from vastly different micro properties, there is no obvious
ontological or explanatory link between the micro and macro levels (Morrison 2012,
p. 162).

We fail to see why it should be impossible that vastly different micro-properties
determine the same micro-property. To illustrate: the integer 24 may be obtained as a
sum of smaller integers in many different ways 24 ¼ 13þ 11 ¼ 10þ 14 ¼ð
9þ 8þ 7 etc.Þ. However, this is not a valid argument for the claim that the summands
fail to determine the sum. Similarly, the fact that a multiplicity of micro-states gives
rise to the samemacro-state is no objection to the claim that themicro-state determines
the macro-state.

In fact, the simulation in Sect. 10.2 and the explanations in Sects. 10.3 and 10.4 aim
at explaining how this is possible. The simulation in Sect. 10.2 has illustrated that, by
simply increasing the sample size, fluctuations decrease and macroscopic
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modifications become more and more rare, i.e. the macro-state becomes more and
more stable despite of changes in the micro-states. In Sect. 10.3 we discussed an
explanation for this phenomenon for the case of non-interacting constituents/vari-
ables. It is in virtue of the central limit theorem that fluctuations of macroscopic
observables decrease with the number N of constituents as 1ffiffiffi

N
p for large system sizes,

and that stable behaviour exists for large systems. In Sect. 10.4wemoved to the case of
interacting variables/constituents. Again, what is provided is an explanation for why
so many features of the micro-system are irrelevant. RNG explains how systems that
are characterized by very different Hamilton operators nevertheless give rise to very
similar macro-behaviour. This only works because, given a particular Hamiltonian,
i.e. the micro-properties, the macro-behaviour is fixed and thus determined. If su-
pervenience would indeed fail it would be indeterminate how the Hamiltonian (which
represents the properties of the constituents and their interaction) would behave in
phase space under renormalization. The RNG-theory explains universality by
showing that a whole class of Hamiltonians is attracted by the same fixed point under
iterated renormalizations. If themacro-behaviour of the systems in questionwould not
supervene on the micro-structure, the RNG-explanation would not get started.

These explanations tell us why and in which sense certain features of the con-
stituents or their interactions become irrelevant: note that irrelevance in the RNG
sense acquires a technical meaning, which coincides with the plain-English
meaning of the word only as far as the determination of asymptotic critical expo-
nents (in infinitely large systems) is concerned.

The fact that certain features of the constituents are irrelevant in the technical
RNG sense does therefore not imply that the properties and states of the constit-
uents fail to influence the macro-behaviour. Rather, it is only a small number of
features of these that does the work for asymptotic critical exponents. Interestingly,
these same features are also responsible for driving an off-critical system away from
critical RNG fixed points and towards one of the fixed-points at which the (coarse-
grained) system appears as a collection of uncorrelated degrees of freedom, for
which the limit theorems for uncorrelated or weakly correlated random variables
provide an appropriate description.

Whenever a system is not exactly at its critical point, there will always be a
residual effect of the so-called irrelevant variables on thermodynamic behaviour. A
finite system, in particular, is never exactly at a critical point, as 1=L (with L
denoting the linear dimension of the system) is always a relevant variable in the
renormalization group sense (increasing under renormalization/coarse graining);
this leads to rounding of critical singularities, which can be quantitatively analysed
(see Sect. 10.5). As a consequence, Morrison’s argument, if valid, would not apply
to finite systems (nor to systems which are off-critical for other reasons), and
therefore the so-called irrelevant variables will contribute to the determination of
the macro-behaviour of all finite systems.

It may be worth at this point to explicitly discuss the specific nature and reach of
RNG analyses of macroscopic systems. To begin with it is helpful to recall that with
respect to the analysis of collective behaviour in general and of phase transitions in
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particular RNG has a twofold explanatory role. These two roles concern two sets of
questions that ought to be distinguished.

The first set of questions addressed by RNG concerns the behaviour of indi-
vidual critical systems: Why does the compressibility of water diverge according
to some fixed function of temperature etc.? With regard to questions like this
RNG is simply a coarse-graining procedure that allows us to calculate approxi-
mately correct results. The explanation of the single system’s critical exponents
starts with the description of the microstructure. In this context RNG is effectively
used as a tool for micro-reductive explanation of the system’s behaviour. RNG is
merely an effective tool to evaluate thermodynamic functions of interacting sys-
tems (albeit in the majority of cases only approximately), where exact evaluations
are infeasible. In some sense, RNG can be regarded as a successor theory of mean
field theory, which was unable to produce even approximately correct critical
exponents.

There is, however, a second set of questions. Micro-reductive explanations may
appear to be unable to answer these. These questions concern universality and
scaling (i.e. the fact that the critical exponents obey certain system-independent
relations). Why are there universality classes at all, i.e. why is it that systems with
extremely different microstructure such as alloys ferro-magnets and liquids obey
exactly the same laws near their critical points, i.e. why is it that the values of the
critical exponents of the members of such classes coincide? Furthermore, why is it
the case that all critical systems—irrespective their universality class—obey the
scaling relations?10

RNG appears to answer the above questions non-reductively. The essential
ingredients of such an explanation are not properties of the constituents of
single critical systems, one might argue, but rather properties of the renor-
malization-group-flow—topological features of the space of coupling constants
(see Morrison 2012, p. 161/2). The renormalization-group-transformation
induces a mapping between Hamiltonians or the coupling-constants of the
Hamiltonians in question. The iteration of such a mapping defines a flow in the
space of coupling constants as represented in Fig. 10.5. Fixed points come
along with basins of attraction. All Hamiltonians/physical systems within such a
basin flow towards the same critical point, i.e. their behaviour is identical. It is
—basically—the existence of these basins of attraction that explain why
physical systems with widely diverging microstructure behave identically near
the critical point.

The explanation of universality and the scaling relation do not appear to appeal
to the microscopic constitution of individual systems that show this behaviour.
Instead it appeals to topological features of the space of coupling constants/
Hamiltonians.

10 For the sake of completeness, we note that there are well-understood exceptions (see e.g.
Wegner 1976), which we need, however, not discuss in the context of the present paper.
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But the reductionist is able to defend her view: Why should micro-
explanations be unable to explain that a variety of systems behave identical
near the critical point? There is a feature on the micro-level that all of these
systems have in common. And it is in virtue of this common feature that RNG
works:

The starting point in the renormalization group approach is to realize that the most
important fluctuations at the critical point have no characteristic length. Instead the
important fluctuations have all wavelengths ranging from the atomic spacing up to the
correlation length; close to the critical point the correlation length is much larger than the
atomic spacing (Wilson 1976).

The absence of a characteristic length (the divergence of the correlation length)
at the critical point implies invariance of a system under coarse graining, or scale
transformations. An RNG transformation which describes the effect of coarse
graining in terms of a transformation K ! K 0 of the systems’ set of couplings will
therefore identify a critical point with a fixed point K� of that transformation. The
reductionist will thus think of topological features of the transformation such as
basins of attraction (i.e. universality classes) as an unavoidable consequence of this
type of analysis.

This is finally, once more the point to recall that there is a second way in which
fluctuations of thermodynamic properties of a system can fail to exhibit a charac-
teristic length: this is the situation where the correlation length vanishes and the
system is statistically fully homogeneous (and therefore also scale invariant). This
possibility is realized at the high- or low-temperature fixed points of the RNG
transformations (as discussed in Sect. 10.4), which will come with their own basins
of attraction and associated notions of insensitivity to detail, as embodied in sta-
tistical limit theorems.

To sum up: What we claim to have shown is that the reductionist picture
according to which the constituents’ properties and states determine the
behaviour of the compound system, and the macro-phenomena can be
explained in terms of the properties and states of the constituents is neither
undermined by stable phenomena in general nor by universal phenomena in
particular.

Let us add, however, that the reductionist picture as outlined above does not
imply that an explanation of the macro-behaviour of a system always has to appeal
to the micro-level. The fact that it is possible to give such an explanation does not
imply that it is the best explanation let alone the only available explanation. In fact,
once we know that many details are irrelevant, we have a perfectly good reason to
focus on those factors that are not irrelevant. This is the topic of the following
section.
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10.7 Post Facto Justification of Modelling

Let us close with the following observation: A remarkable feature of our analysis
of stability of macroscopic system properties based on a renormalization group
approach is the fact that it provides us with a justification for certain kinds of
idealisation. Models that are used to describe critical (or other collective) behaviour
of given physical systems are often grossly simplified, and it is a non-trivial
problem to understand why such models can nevertheless be as successful, as they
apparently are. RNG illuminates this point as follows. It teaches us that systems,
which are described by Hamiltonians that differ only with respect to irrelevant
couplings (systems within the basin of attraction of the RNG fixed point relevant
for the large scale phenomenon under study) will under renormalization be
attracted to the same fixed point, and will therefore exhibit the same type of
collective behaviour behaviour. The presence of irrelevant couplings can in this
sense be regarded as belonging to the inessential details which do not significantly
affect the problem under study, such as critical behaviour of a given many-particle
system, or macroscopic off-critical properties. In a quantitatively well-defined
sense, such irrelevant couplings can therefore be neglected when analysing col-
lective phenomena in such systems—critical or not. A description of a system
which neglects or abstracts from these details constitutes what would properly be
described as an idealized description. Within the RNG setting we therefore have a
well-defined and even quantifiable notion of the sense in which an idealized
description of a complex system will nevertheless capture the essence of its col-
lective behaviour.

It is a remarkable fact that conventional second order phase transitions are
characterized by just two relevant couplings in the RNG sense; this tells us that all
but two operators within an infinite set characterizing the universe of possible
Hamiltonians for a given system are irrelevant, and can therefore be neglected when
analysing asymptotic critical behaviour associated with second order phase tran-
sitions. Moreover it is the presence of these same two relevant couplings which is
responsible for driving the RNG flow to off-critical fixed points at which systems
are statistically fully homogeneous and their macroscopic properties thus describ-
able in terms of statistical limit theorems for uncorrelated or weakly correlated
random variables.

It is due to this remarkable fact that simplified models do at all allow us to
capture the essence of collective behaviour. In this sense RNG provides a justi-
fication for the idea of modelling per se, and it gives us a glimpse on the reasons
why “simple” models of condensed matter could at all be successful. Note finally
that it is essential that systems are large to allow levels of description which are
sufficiently coarse-grained compared to atomistic scales. Stability, and as we have
just discussed, simplicity only arises at this sufficiently coarse scale. It has been
pointed out (Kühn 2008) that in this sense large numbers appear to be an essential
prerequisite for facilitating successful theory formation for condensed matter
systems.
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A.1 Renormalization and Cumulant Generating Functions

The renormalization group transformation for the case of sums of independent
random variables is best investigated in terms of their cumulant generating
functions.

Given a random variable X, its characteristic function is defined as the Fourier
transform of its probability density pX ,

11

uXðkÞ ¼ eikX
� � ¼ Z dx pXðxÞ eikx: ð10:19Þ

Characteristic functions are important tools in probability. Among other things,
they can be used to express moments of a random variable in compact form via
differentiation,

�i
d
dk

� �n

uXðkÞjk¼0 ¼ Xnh i ¼
Z

dx pXðxÞ xn: ð10:20Þ

For this reason, characteristic functions are also referred to as moment gener-
ating functions. A second important property needed here is that the characteristic
function of a sum X þ Y of two independent random variables X and Y is given by
the product of their characteristic functions. For, denoting by pX and pY the
probability densities corresponding to the two variables, one finds

uXþY ðkÞ ¼
Z

dxdy pXðxÞpYðyÞ eikðxþyÞ ¼ uXðkÞuY ðkÞ: ð10:21Þ

Rather than characterizing random variables in terms of their moments, it is
common to use an equivalent description in terms of so-called cumulants instead.
Cumulants are related to moments of centered distributions and can be seen to
provide measures of “dispersion” of a random variable. They are defined as
expansion coefficients of a cumulant-generating function (CGF) which is itself
defined as the logarithm of the moment generating function

fXðkÞ ¼ loguXðkÞ; ð10:22Þ

hence n-th order cumulants jnðXÞ are given by

jnðXÞ � �i
d
dk

� �n

fXðkÞjk¼0; n� 1: ð10:23Þ

11 In this appendix, we follow the mathematical convention to distinguish in notation between a
random variable X and its realisation x.
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The two lowest order cumulants are j1ðXÞ ¼ l, and j2ðXÞ ¼ VarðXÞ, i.e., the
mean and the second centered moment. The multiplication property of characteristic
functions of sums of independent random variables translates into a corresponding
addition property of the CGF of sums of independent variables,

fXþYðkÞ ¼ fXðkÞ þ fYðkÞ; ð10:24Þ

entailing that cumulants of sums of independent random variables are additive.
We note in passing that characteristic functions are the probabilistic analogues of

partition functions in Statistical Mechanics, and hence that cumulant generating
functions are probabilistic analogues of free energies.

We now proceed to use the additivity relations of CGFs to investigate the
properties of sums of random variables (10.5),

SNðsÞ ¼ 1
N1=a

XN
k¼1

sk

under renormalization. We denote CGF corresponding to SN by FN . Let f1 denote
the CGF of the original variables, f2 that of the renormalised variables s0k (con-
structed from sums of two of the original variables), and more generally, let f2‘
denote the CGF of the ‘-fold renormalised variables, constructed from sums
involving 2‘ original variables. We then get

FNðkÞ : ¼ log eikSN
� � ¼ Nf1

k
N1=a

� �
¼ N

2
f2

k

ðN=2Þ1=a
 !

¼ N
4
f4

k

ðN=4Þ1=a
 !

¼ . . . ¼ N
2‘

f2‘
k

ðN=2‘Þ1=a
 !

:

ð10:25Þ

Assuming that multiply renormalised variables will acquire asymptotically stable
statistical properties, i.e. statistical properties that remain invariant under further
renormalization, the f2‘ would have to converge to a limiting function f �,

f2‘ ! f �; ‘ ! 1: ð10:26Þ

This limiting function f � would have to satisfy a functional self-consistency
relation of the form

f �ð21=akÞ ¼ 2f �ðkÞ ð10:27Þ

which follows from (10.25). This condition states that the invariant CGF f �ðkÞ must
be a homogeneous function of degree a.
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The solutions of this self-consistency relation for a ¼ 1 and a ¼ 2 are thus seen
to be given by

f �ðkÞ � lim
N!1

FNðkÞ ¼ cak
a; ð10:28Þ

One identifies the CGF of a non-fluctuating (i.e. constant) random variable with
ca ¼ ihXi ¼ il for a ¼ 1, and that of a Gaussian normal random variable with zero-
mean and variance r2 with ca ¼ � 1

2 r
2 for a ¼ 2, and thereby verifies the state-

ments of the two limit theorems.
One can also show that the convergence (10.26) is realised for a very broad

spectrum of distributions for the microscopic variables, both for a ¼ 1 (the law of
large numbers), and for a ¼ 2 (the central limit theorem). For a ¼ 1, there is a
“marginal direction” in the infinite-dimensional space of possible perturbations of
the invariant CGF (corresponding to a change of the expectation value of the
random quantities being summed), which doesn’t change its distance to the
invariant function f �ðkÞ under renormalization. All other perturbations are irrelevant
in the sense that their distance from the invariant CGF will diminish under repeated
renormalization. For a ¼ 2 there is one “relevant direction” in the space of possible
perturbations, in which perturbations of the invariant CGF will be amplified under
repeated renormalization (it corresponds to introducing a non-zero mean of the
random variables being added), and a marginal direction that corresponds to
changing the variance of the original variables. All other perturbations are irrelevant
and will be diminished under renormalization. The interested reader will find a
formal verification of these statements in the following Appendix 10.9. Interestingly
that stability analysis will also allow to quantify the rate of convergence to the
limiting distribution as a function of system size N (for sums of independent
random variables which—apart from having finite cumulants—are otherwise
arbitrary).

A.2 Linear Stability Analysis

Statements about the stability of invariant CGF under various perturbations are
proved by looking at the linearisation of the renormalization group transformation
in the vicinity of the invariant CGF. We shall see that this description considerably
simplifies the full analysis compared to the one in terms of probability densities
used in (Sinai 1992).

Let Ra denote the renormalization transformation of a CGF for the scaling
exponent a. From (10.25), we see that its action on a CGF f is defined as

Ra½f �ð21=akÞ ¼ 2f ðkÞ: ð10:29Þ
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Assuming f ¼ f � þ h, where h is a small perturbation of the invariant CGF, we
have

Ra½f � þ h�ð21=akÞ ¼ 2ðf �ðkÞ þ hðkÞÞ: ð10:30Þ

Using an expansion of the transformation Ra in the vicinity of f �, and denoting
by Da ¼ Da½f �� the operator of the linearised transformation in the vicinity of f � on
the l.h.s, one has Ra½f � þ h� ’ Ra½f �� þ Dah to linear order in h, thus

Ra½f ��ð21=akÞ þ Dahð21=akÞ ’ 2f �ðkÞ þ 2hðkÞ: ð10:31Þ

By the invariance of f � under Ra, we get

Dahð21=akÞ ¼ 2hðkÞ ð10:32Þ

to linear order. The stability of the invariant CGF is then determined by the
spectrum of Da, found by solving the eigenvalue problem

Dahð21=akÞ ¼ 2hðkÞ ¼ khð21=akÞ: ð10:33Þ

Clearly this equation is solved by homogeneous functions:

hðkÞ ¼ hnðkÞ ¼ jn
ðikÞn
n!

; ð10:34Þ

for which

2hnðkÞ ¼ knhnð21=akÞ

entails

kn ¼ 21�n=a: ð10:35Þ

In order for f � þ hn to describe a system with finite cumulants, we must have
n� 1.

For the case a ¼ 1 then we have k1 ¼ 1 (the corresponding perturbation being
marginal), and kn\1 for n[ 1 (the corresponding perturbations thus being irrel-
evant). The marginal perturbation amounts to changing the mean of the random
variable to lþ j1, as mentioned earlier.

In the case where a ¼ 2 we have that k1 ¼ 2
1
2 (the corresponding perturbation

being relevant), k2 ¼ 1 (the corresponding perturbation being marginal), and kn\1
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for all n[ 2 (the corresponding perturbations thus being irrelevant). The relevant
perturbation amounts to introducing a nonzero mean l ¼ j1 of the original random
variables, while the marginal perturbation changes the variance to r2 þ j2, as
mentioned earlier. All other perturbations change higher order cumulants of the
random variables considered and are irrelevant.

Knowledge about the eigenfunctions of the linearized RG transformation and
their eigenvalues allows to obtain a complete overview over the finite N cor-
rections to the limit theorems we have looked at in Appendix 10.8. Suppose we
have

f1ðkÞ ¼ f �ðkÞ þ
X
n[ 1

hnðkÞ ¼ f �ðkÞ þ
X
n[ 1

jn
ðikÞn
n!

in (10.25). Then after ‘ coarse-graining steps we have

FNðkÞ ¼ Nf1
k

N1=a

� �
¼ f �ðKÞ þ N

X
n[ 1

hn
k

N1=a

� �

¼ f �ðKÞ þ N
2‘
X
n[ 1

k‘nhn
k

ðN=2‘Þ1=a
 ! ð10:36Þ

where we have exploited the invariance and homogeneity of f �ðkÞ, and the fact
that each coarse graining step rescales the eigenfunction hn by an eigenvalue kn.
We have recorded this relation in a slightly more complicated version than
necessary to formally link it up with the analogous steps used in the derivation of
finite-size scaling relations in the case of interacting systems. The reader is
invited to check correctness of (10.36) herself using nothing but the homogeneity
of the hn.

In a system with finite N, the number ‘ of coarse graining steps that can be
performed is necessarily finite, and in fact restricted to 2‘max ¼ N. Using this
maximum value in (10.36), we get

FNðkÞ ¼ f �ðKÞ þ
X
n[ 1

k‘max
n hnðkÞ ¼ f �ðKÞ þ

X
n[ 1

N1�n=ahnðkÞ ð10:37Þ

which is the result that would have been obtained by just using homogeneity in

FNðkÞ ¼ Nf1 k
N1=a

	 

. This result entails that higher order cumulants of SN scale with

inverse powers of N according to

jnðSNÞ ¼ N1�n=ajnðS1Þ; ð10:38Þ

so that, e.g., all cumulants higher than the second order cumulant will vanish in the
infinite system limit in the case a ¼ 2 of the central limit theorem.
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