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Abstract. A novel adaptive synchronization scheme for complex network
with time-varying delay and delay coupling is proposed in this paper. Based on
Lyapunov stability theory, a linear adaptive controller is designed which can be
used in the future practical engineering. Sufficient experimental results on the
network synchronization are given to ensure that the dynamic network can
synchronize the individual node state in any specified networks. Finally,
numerical simulations show the good performance of this proposed scheme.
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1 Introduction

Nowadays, complex networks have been intensively investigate across fields of sci-
ence and engineering [1–5], for lots of systems in nature can be described by the
model of complex network, such as the Internet, communication networks, word wide
web, food web, and so on. In fact, synchronization is a kind of typical collective
behaviors and basic motions in nature.

System with time delays is quite ubiquitous in nature. The time delays are usually
caused by the tolerance of some reaction itself in communication and epidemic
transportation tetrad or by the tolerance of some reaction itself in communication and
epidemic, respectively. Therefore, time delays should be modeled in order to simu-
lating more realistic networks. In [6] C. Li and G. Chen introduced complex
dynamical network and investigate their synchronization phenomena and criteria.
In [7] J. Zhou and T. Chen investigated synchronization dynamics of a general model
of complex delayed networks as well as the effects of time delays. In [8], Atay
provided synchronization of couples network with coupling delays, and found proper
time. Daly may be helpful to synchronization. Of course, there are also some other
previous works [9, 10] and so on are introduced in this area.

These works involved mainly focus on delay nodes and global coupling networks
with time delay s, which is usually a constant. Nevertheless, many real networks are
not so. Thereby, we study adaptive synchronization of complex network with time-
varying delay nodes and delay coupling, which can better explain a variety of dynamic
characteristics and provide theoretic references for the control of real networks.

Y. Yuan et al. (Eds.): ISCTCS 2013, CCIS 426, pp. 283–289, 2014.
DOI: 10.1007/978-3-662-43908-1_36, � Springer-Verlag Berlin Heidelberg 2014



The rest of the paper is organized as follows: in Sect. 2 the hypothesis, lemma and
model have been proposed. And then, based on Lyapunov stability theory, we study
the sufficient condition and corollary of synchronization on networks. In Sect. 3, we
give numerical simulations, and the conclusion was presented in Sect. 4.

2 Adaptive Synchronization of Complex Networks
with Time-Varying Delay

This section introduces an uncertain complex dynamical model and gives some pre-
liminary definitions and hypotheses. Consider an uncertain nonlinear coupling
dynamical network consisting of N identical nodes, which is described as follows:

_xi tð Þ ¼ f1 xi; tð Þ þ f2 xi t � s tð Þð Þ; tð Þ þ gi x t � s tð Þð Þð Þ þ ui ð1Þ

For all t� 0, where 1� i�N, xi ¼ xi1; xi2; . . .; xinð ÞT2 Rn is the state vector of ith
node;

fk : Rn � Rþ ! Rn; k ¼ 1; 2 are smooth nonlinear function; gj : Rm ! Rn are
uncertain continuous nonlinear coupling functions, where m ¼ nN; 1� j�N; The
delay sðtÞ is nonnegative continuous functions; ui 2 Rn are the control inputs.

xi t � s tð Þð Þ ¼ xi1ðt � s tð Þð Þ; xi2 t � s tð Þð Þ; . . .; xin t � s tð ÞÞð ÞT

xðt � sðtÞÞ ¼ ðx1ðt � sðtÞÞ; x2ðt � sðtÞÞ; . . .; xNðt � sðtÞÞÞT

When the network realizes synchronization, there will be x1 ¼ x2 ¼ . . . ¼ xN . At
the same time, the coupled control terms will disappear, namely
gi x t � s tð Þð Þð Þ þ ui ¼ 0; 1� i�N. This will ensure that an arbitrary solution xi tð Þ of
single nodes is also a solution of the synchronous coupling network.

Take s tð Þ as the solution of isolated node in network, and assume that the solution
is existent and unique, then this solution satisfies:

_s t; s tð Þð Þ ¼ f1 s tð Þ; tð Þ þ f2 s t � s tð Þð Þ; tð Þ

s t � s tð Þð Þ ¼ s1ðt � s tð Þð Þ; s2 t � s tð Þð Þ; . . .; sn t � s tð ÞÞð ÞT ð2Þ

where s tð Þ can be generated an equilibrium point, a periodic orbit, a periodic orbit, or
a chaotic orbit in the phase apace.

Define error vector as follows:

ei tð Þ ¼ xi tð Þ � s tð Þ; 1� i�N ð3Þ

Then the objective of controller ui is to guide the dynamical network (1) to
synchronize. That is

lim
t!1

ei tð Þk k2¼ lim
t!1

xi tð Þ � s t; s tð Þð Þk k2¼ 0; 1� i�N ð4Þ

284 Y. Zhang and F. Li



According to Eqs. (1) and (2), we have:

_ei ¼ ~f1ðxi; sÞ þ ~f2ðxiðt � sðtÞÞ; sÞ þ ~giðxðt � sðtÞÞ; sÞ þ ui ð5Þ

where ~f1ðxi; sÞ ¼ f1ðxi; tÞ � f1ðs; tÞ

~f2ðxiðt � sðtÞÞ; sÞ ¼ f2ðxiðt � sðtÞÞ; tÞ � f2ðs; tÞ

~gi x t � s tð Þð Þ; sð Þ ¼ gi x t � s tð Þð Þ; tð Þ � giðs; s; . . .; sÞ; 1� i�N

Make Eq. (5) partly lined at s t; s tð Þð Þ:

_ei ¼ A tð Þei þ B tð Þei t � s tð Þð Þ þ ~gi x t � s tð Þð Þ; sð Þ þ ui 1� i�N ð6Þ

where AðtÞ ¼ Df1ðs; tÞ B tð Þ ¼ Df2 s; tð Þ is Jacobin matrix of fk k ¼ 1; 2ð Þ, and
ei ¼ xi tð Þ � s t; s tð Þð Þ

In the following, we will give a hypothesis and lemma:

Hypothesis 1. (H1) Assume that there exists a nonnegative constant a; b and
cij; i; j ¼ 1; 2; . . .;N, satisfying

A tð Þk k2� a B tð Þk k2� b; ð7Þ

~gi x t � s tð Þð Þ; sð Þk k2�
XN

j¼1

cij ej t � s tð Þð Þ
�� ��

2
; cij [ 0 ð8Þ

Remark 1. If (H1) holds, then we get:

A tð Þ þ AT tð Þ
� ��

2
�� ��

2
� a ð9Þ

Lemma 1. [11] If x and y are vectors, and e is nonnegative constant, then the fol-
lowing inequality hold:

2xT y� exT xþ 1
e

yT y ð10Þ

Theorem 1. Let the hypothetical condition and Lemma are satisfied and
_s tð Þ\r r\1ð Þ. Then the synchronous solution s tð Þ of uncertain dynamical network
(1) is asymptotic stable under the adaptive controllers

ui ¼ �diei i ¼ 1; 2; . . .;N ð11Þ

and updating laws:

_di ¼ kie
T
i ei ¼ ki eik k2

2; i ¼ 1; 2; . . .;N ð12Þ

where ki; i ¼ 1; 2; . . .;N are positive constants.

Adaptive Synchronization of Complex Networks 285



Proof. Consider the Lyapunov candidate as follows:

V ¼ 1
2

XN

i¼1

eT
i ei þ

1
2

XN

i¼1

di � d̂i

� �2

ki
þ 1

1� r

XN

i¼1

Z t

t�s tð Þ
eT

i sð Þei sð Þds ð13Þ

where d̂i 1� i�Nð Þ are positive constants to be determined.
The derivation of V tð Þ along the system (6) is:

_V ¼ 1
2

XN

i¼1

_eT ei þ eT
i _ei

� �
þ
XN

i¼1

di � d̂i

� �
eT

i ei

þ
XN

i¼1

eT
i ei

1� r
�
XN

i¼1

1� _s tð Þ
1� r

eT
i t � s tð Þð Þei t � s tð Þð Þ

¼
XN

i¼1

eT
i

AT tð Þ þ A tð Þ
2

� d̂iIn þ
1

1� r
In

� �
ei þ

XN

i¼1

eT
i ~gi x t � s tð Þð Þ; sð Þ

þ
XN

i¼1

eT
i Bei t � s tð Þð Þ �

XN

i¼1

1� _s tð Þ
1� r

eT
i t � s tð ÞÞei t � s tð Þðð Þ

�
XN

i¼1

eT
i

AT tð Þ þ A tð Þ
2

� d̂iIn þ
1

1� r
In

� �
ei

þ
XN

i¼1

1
2

eT
i t � s tð Þð

� �
ei t � s tð Þð Þ þ eT

i B tð ÞBT tð Þei

�

þ
XN

i¼1

XN

j¼1

eT
i

�� ��
2
cij ejðt � sðtÞÞ
�� ��

2
�
XN

i¼1

1� _sðtÞ
1� r

eT
i t � s tð Þð Þei t � s tð Þð Þ

�
XN

i¼1

eT
i aþ b2

2
� d̂i þ

1
1� r

� �
ei þ

XN

i¼1

1
2

eT
i t � s tð Þð Þei t � s tð Þð Þ

þ
XN

i¼1

XN

j¼1

eT
i

�� ��
2
cij ej t � s tð Þð Þ
�� ��

2
�
XN

i¼1

1� _s tð Þ
1� r

eT
i t � s tð Þð Þei t � s tð Þð Þ

¼ aþ b2

2
þ 1

1� r
� d̂i

� �
eT eþ eTCeðt � sðtÞÞ � 1

2
eT t � s tð Þð Þe t � s tð Þð Þ

�
XN

i¼1

1� _s tð Þ
1� r

eT
i t � s tð Þð Þei t � s tð Þð Þ

� aþ b2

2
þ 1

1� r
� d̂i

� �
eT eþ 1

2
eTCTCeþ eT t � s tð Þð Þe t � s tð Þð Þ

� 1� _s tð Þ
1� r

eT t � s tð Þð Þe t � s tð Þð Þ

\ aþ b2

2
þ 1

1� r
� d̂i

� �
eT eþ 1

2
eTCTCe _s tð Þ\r r\1ð Þð Þ

\ aþ b2

2
þ 1

1� r
� d̂i

� �
eT eþ 1

2
eTCTCe _s tð Þ\r r\1ð Þð Þ
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where e ¼ e1k k2; e2k k2; . . .; eNk k2

� �T
;

e t � s tð Þð Þ ¼ e1 t � s tð Þð Þk k2; e2 t � s tð Þð Þk k2; . . .; eN t � s tð Þð Þk k2

� �T
and C

¼ cij

� �
N�N

Since a; b; r and cij 1� i; j�Nð Þ are nonnegative constants, one can select suitable

constants d̂i 1� i�Nð Þ, to make diag aþ b2

2 þ 1
1�r� d̂1; . . .; aþ b2

2 þ 1
1�r� d̂N

n o
þ

1
2 eTCCT to be a negative definite matrix. Thus it follows error vector ei tð Þ !
0 1� i�Nð Þ as t!1. That is the synchronous solution s tð Þ of uncertain dynamical
network (1) is asymptotic stable. The proof is thus completed.

For linear coupling, H1 is naturally satisfied. Thus one get the following corollary.

Corollary 1. Let the hypothetical condition is satisfied, and _s tð Þ\r r\1ð Þ; gj :
Rm ! Rn are uncertain continuous linear coupling functions, where m ¼ nN. We also
get asymptotic stable under the adaptive controllers (11) and (12).

3 Numerical Simulation

This section presents an example to show the effectiveness of above synchronization

criterions. Consider the coupling function gi x t � s tð Þð Þð Þ ¼
PN

j¼1
cijxj t � s tð Þð Þ. Obvi-

ously, it satisfied previous hypothetical condition, where cij is an unknown parameter,
the node dynamical function is _x ¼ �kxþ cx t � sð Þ 1� x t � sð Þð Þ; s ¼ 0:1. This
network is formed by the Logistic system with two balanced points
s0 ¼ 0; s1 ¼ 1� k=c. When k ¼ 26; c ¼ 104, the system will begin chaotic state.
For simplicity, we investigate the network with ten nodes with time-varying delays,
coupling strength between nodes are 0.1, s tð Þ ¼ 0:1� 0:02 sin 5tð Þ.

The dynamical system is described as follows:

_xi1 ¼ �26xi1 þ 104xi1 t � s tð Þð Þ 1� xi1 t � s tð Þð Þð Þ þ 0:1xi�1 1 t � s tð Þð Þ
þ 0:1xiþ1 1 t � s tð Þð Þ

_xi2 ¼ �26xi2 þ 104xi2 t � s tð Þð Þ 1� xi2 t � s tð Þð Þð Þ þ 0:1xi�1 2 t � s tð Þð Þ
þ 0:1xiþ1 2 t � s tð Þð Þ

_xi3 ¼ �26xi3 þ 104xi3 t � s tð Þð Þ 1� xi3 t � s tð Þð Þð Þ þ 0:1xi�1 3 t � s tð Þð Þ
þ 0:1xiþ1 3 t � s tð Þð Þ

When i ¼ 1, we can get:

_x11 ¼ �26x11 þ 104x11 t � s tð Þð Þ 1� x11 t � s tð Þð Þð Þ þ 0:1x2 1 t � s tð Þð Þ
þ 0:1x10 1 t � s tð Þð Þ
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_x12 ¼ �26x12 þ 104x12 t � s tð Þð Þ 1� x12 t � s tð Þð Þð Þ þ 0:1x2 2 t � s tð Þð Þ
þ 0:1x10 2 t � s tð Þð Þ

_x13 ¼ �26x13 þ 104x13 t � s tð Þð Þ 1� x13 t � s tð Þð Þð Þ þ 0:1x2 3 t � s tð Þð Þ
þ 0:1x10 3 t � s tð Þð Þ

In the same way, when i = 10.
Take s ¼ 1� k=c ¼ 0:75 as the goal of synchronization. When a ¼ 1; b ¼ 2,

r ¼ 0:5 and d̂i [ 6, obviously, which satisfies assumption.
As described in Figs. 1 and 2, for the case of identical topological structures, the

larger the control strengths ki ; i ¼ 1; 2; . . .;N, the faster the convergence to
synchronization.
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Fig. 1. ki ¼ 5
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Fig. 2. ki ¼ 10

288 Y. Zhang and F. Li



4 Conclusion

This paper mainly studied the adaptive synchronization of complex network with
time-varying delay, which relates to both nodes and coupling. Based on Lyapunov
stability theory, the sufficient condition and Corollary of adaptive synchronization
were also given to guarantee that the dynamical network synchronizes at individual
node state in arbitrary specified network. Finally, the numerical simulations results
showed the validity of theory.
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