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Abstract. Visual Cryptography (VC) and Random Grids (RG) are both visual
secret sharing (VSS) techniques, which decode the secret by stacking some
authorized shares. It is claimed that RG scheme benefits more than VC scheme
in terms of removing the problems of pixel expansion, tailor-made codebook
design, and aspect ratio change. However, we find that the encryption rules of
RGS are actually the matrices sets of probabilistic VCS. The transformation
from RGS to PVCS is proved and shown by means of giving theoretical
analysis and conducting some specific schemes. The relationship between
codebook and computational complexity are analyzed for PVCS and RGS.
Furthermore, the contrast of PVCS is no less than the one of RGS under the
same access structure, which is shown by experimental results.
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1 Introduction

Visual secret sharing (VSS) techniques encrypt a secret image into several mean-
ingless share images, and decrypt the secret by overlapping the some authorized
shares. Due to the ease of decoding, VSS provides some new and secure imaging
applications, e.g., visual authentication, steganography, and image encryption.

Visual cryptography scheme (VCS) was introduced by Naor and Shamir in Euro-
crypt’94 [1]. The difference between visual cryptography and the traditional secret
sharing schemes [2, 3] is the decryption process. Most secret sharing schemes are
mainly realized by the computer, while visual cryptography schemes can decrypt
secrets only with human eyes. In recent years, the studies of VCS focus on the general
access structure [4], the optimization of the pixel expansion and the relative difference
[5–8], and the grey and color images [9–12], etc.

In order to design the unexpanded shares, Ito et al. [13] firstly introduced a scheme
without pixel expansion. Yang et al. [14, 15] provided a new model of visual cryp-
tography scheme, in which the reconstruction of the secret image was probabilistic. In
probabilistic model, the secret pixel is correctly reconstructed with probability. Thus,
the quality of the reconstructed images depends on how big the probability is. The
probabilistic scheme differs from the traditional VCS, which is now called deter-
ministic scheme. The deterministic means that a white (black) original pixel can be
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represented in the reconstructed image by a set of subpixels with certain whiteness
(blackness). Cimato et al. [16] introduced how to trade pixel expansion for the
probability of a good reconstruction, which can be seen as a generalization of both the
classical deterministic model and the probabilistic model.

Another VSS scheme is realized by Random Grids, which was proposed by Kafri
and Keren in 1987 [17]. A binary secret image is encoded into two meaningless grids,
which have the same size as the secret image. RG scheme (RGS) is mainly realized by
using three different functions (fran, fequ, fcom) recursively, and has no requirement of
codebook which is the basis of VCS. Inspired of Kafri and Keren [17], Shyu [18]
presented the other two RGSs to encrypt gray-level and color images in 2007. Later,
Shyu [19] and Chen et al. [20, 21] proposed (2, n), (n, n) and (k, n) RGSs, which made
further research.

In this paper, we mainly analyze the relationship between VCS and RGS, which is
considered for the first time. It is found that the encryption rules of RGS are actually
the set of distribution matrices in PVCS. In other words, there always exists a PVCS
corresponding to every RGS. On the other hand, the corresponding RGS for every
PVCS can not been guaranteed. Furthermore, the cost and contrast comparisons
between RGS and PVCS are discussed in detail.

The rest of this paper is organized as follows. Section 2 briefly reviews RGS and
PVCS. As the main part of this paper, Sect. 3 analyzes how to transform RGS into
PVCS. Section 4 shows experimental results and discussions about the parameters of
RGS and PVCS. Section 5 concludes the paper.

2 Related Studies

Prior to describing the proposed scheme, the reviews of RGS and PVCS are briefly
introduced.

2.1 Random Grids Scheme

RGS mainly consists of three operations: (1) randomization, (2) complement, and (3)
equivalence. The detailed definitions are given below.

Definition 1 (randomization) [20]. A random bit generation function

franð:Þ ¼
0 with the probability 0:5
1 with the probability 0:5

�

is used to create the pixel of cipher-grid. Precisely, a certain pixel r of a grid R is
assigned the value 0 or 1 to represent the color white or black with the same prob-
ability 1/2. In other words, r = fran(.) means P(r = 1) = P(r = 0) = 1/2.

Definition 2 (complement) [20]. According to a pixel r1 of grid, say R1, the com-
plement function
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fcomðxÞ ¼
0 if x ¼ 1
1 if x ¼ 0

�

turns r1 inversely and assigns the inversed pixel value to a pixel r2 of the other grid,
say R2. For instance, if r1 is 0, the pixel value r2 = 1 is obtained, i.e.,
r2 = fcom(r1 = 0) = 1.

Definition 3 (equivalence) [20]. The equivalence function

fequðxÞ ¼
0 if x ¼ 0
1 if x ¼ 1

�

referring to a pixel r1 of grid R1 assigns the same pixel value to a pixel r2 of the other
grid R2. For instance, if r1 is 0, the pixel value r2 = 0 is obtained. In other words,
r2 = fequ(r1 = 0) = 0.

Definition 4 (Representation of corresponding area) [20]. Assume that A(0) (resp.
A(1)) is the corresponding area of all the white (resp. black) pixels in the secret image
A, where A = A(0) [ A(1) and A(0) \ A(1) = [. Hence, B[A(0)] (resp. B[A(1)]) is
the corresponding area of all the white (resp. black) pixels in the binary image B,
which is reconstructed by the VSS scheme based on RG, with respect to the secret
image A.

Definition 5 (Average light transmission) [20]. For a certain pixel r in a binary image
B, the light transmission of a white (resp. black) pixel is defined as t(r) = 1 (resp. 0).
In addition, for B with the size of h 9 w, the average light transmission of B is
defined as

TðBÞ ¼ 1
h� w

�
Xh

i¼1

Xw

j¼1

tðr½i; j�Þ:

Definition 6 (Contrast) [20]. The contrast of the superimposed binary image B with
respect to the original secret image A is,

a ¼ TðB½Að0Þ�Þ � TðB½Að1Þ�Þ
1þ TðB½Að1Þ�Þ :

a would be as large as possible. In other words, the larger the value of a, the more
recognizable the superimposed secret will be.

Since the recovery of the secret images depends on the human visual system, the
contrast of superimposed secret images plays a critical role in guaranteeing that the
superimposed image can be visually recognized as the exact secret message. Conse-
quently, the following definition is given.

Definition 7 (Visually recognizable) [20]. The reconstructed binary image B with
respect to the original secret A by superimposing two RG is visually recognizable in
the sense, at least, that its contrast is greater than or equal to a threshold value which is
greater than zero. In principle, if the reconstructed binary image can be recognizable,
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a must be greater than zero. The numerator of a is T(B[A(0)]) - T(B[A(1)]) that
causes a to be a non-zero value. Therefore, if T(B[A(0)]) is greater than T(B[A(1)]),
B is visual recognizable. On the contrary, if T(B[A(0)]) is equal to or less than
T(B[A(1)]), B is meaningless.

2.2 Probabilistic Visual Cryptography Scheme

In a probabilistic scheme, the recovery property cannot be guaranteed. Each pixel can
be correctly reconstructed only with a probability given as a parameter of the scheme.
Given a qualified set of participants Q, let pi|j denote the probability of having a
reconstructed pixel i, and the corresponding pixel in the secret image is j, where i,
j [ {0, 1}. Then p0|0 (Q) denotes the probability of correctly reconstructing a white
pixel when stacking the shares of Q, and p1|0 (Q) is the probability of incorrectly
reconstructing a white pixel. In a similar way p1|1 (Q) and p0|1 (Q) can be defined. The
formal definition of a b-probabilistic visual cryptography scheme is as follow.

Definition 8 (Probabilistic VCS) [15]. A (CQual, CForb, m, b) -PVCS consists of two
collections of n 9 m binary matrices, C0 and C1, satisfying the following properties:

1. (Contrast property) For any set Q = {i1, i2, …, iq} [ CQual, there exists b[ 0
such that p1|1 (Q) - p1|0 (Q) C b and p0|0 (Q) - p0|1 (Q) Cb

2. (Security property) For any set F = {i1, i2, …, if} [ CForb, the two collections
of f 9 m matrices Dt, with t [ {0, 1}, obtained by restricting each n 9 m matrix in Ct

to rows i1, i2, …, ip are indistinguishable in the sense that they contain the same
matrices with the same frequencies.

In this paper, we mainly use PVCS scheme with no pixel expansion, that is having
m = 1. Suppose C0 ¼ fM1

0 ;M
2
0 ; � � � ;Mc0

0 g, C1 ¼ fM1
1 ;M

2
1 ; � � � ;Mc1

1 g, S[i, j] is the i-th
row and j-th column pixel in secret image S, n shares denoted as {R1, R2, …, Rn}. The
secret sharing algorithm of PVCS only needs two steps: select and distribute.

Select: if S[i, j] = 0, generate a random number k [ [1, …, c0], M ¼ Mk
0.

else S[i, j] = 1, generate a random number k [ [1, …, c1], M ¼ Mk
1.

Distribute: (R1[i, j], R2[i, j], …, Rn[i, j])T = M.

Example 1. (2, 2) -PVCS

C0 ¼
1
1

� �
;

0
0

� �� �
,C1 ¼

1
0

� �
;

0
1

� �� �
. For this scheme, m = 1, p1|1 = 1,

p1|0 = 1/2, p0|0 = 1/2, p0|1 = 0, and = p1|1 - p1|0 = p0|0 - p0|1 = 1/2.

3 A Transformation from RGS to PVCS

In RGS, the random grids are with the same size of the original secret image. The
sharing algorithm of RGS relies on iterations and loops, which has no requirement of
designing a codebook. Although RGS is called removing the problems of pixel
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expansion, tailor-made codebook design, and aspect ratio change in VCS [20], we find
that the encryption rules of RGS are actually the matrices sets of PVCS. In this section
we will show how to transform a RGS into a PVCS with the same contrast and security.

Definition 9. (sets of encryption rules). Let E0 = {f1, f2, …, fe0} and E1 = {g1, g2,
…, ge1} be two sets, where fi and gj are both n 9 1 Boolean vector (i [ [1, …, e0],
j [ [1, …, e1]). fi denotes the i-th encryption rule by which a white pixel is encrypted,
while gj denotes the j-th encryption rule by which a black pixel is encrypted. We call
E0 and E1 the sets of encryption rules, which represent all of the encryption rules of a
RGS.

Definition 10. r denotes a random Boolean number, where r = 0 or 1 with the same
probability 1/2. Let [r] denote two 1 9 1 matrices [1] and [0]. Suppose x is a Boolean

number, let
r

x

" #
denote two 2 9 1 matrices

0

x

" #
and

1

x

" #
. Suppose r1 is another

random Boolean number which is independent with r, let
r

r1

" #
denote four 2 9 1

matrices
0

0

" #
,

0

1

" #
,

1

0

" #
and

1

1

" #
. Suppose M = {M1, M2, …, Mm} is a set of

n 9 1 matrices, let
r

M

" #
denote 2m (n + 1) 9 1 matrices

0

M1

" #
,

1

M1

" #
,

0

M2

" #
,

1

M2

" #
,…,

0

Mm

" #
,

1

Mm

" #
.

3.1 (2, 2)-RGS

Chen et al. proposed three different kinds of (2, 2)-RGSs, which were the basic model
of RGS. In this section, we firstly analyze the sets of encryption rules of (2, 2)-RGS,
and then prove that E0 and E1 are also the sets of distribution functions.

Algorithm 1. (2, 2)1-RGS [20]
Input: A binary secret image S = {S[i, j]| S[i, j] [ {0, 1}, i [ [1, 2,…, h], j [

[1, 2, …, w]}
Output: Two cipher-grids R1 = {R1[i, j]| R1[i, j] [ {0, 1}, i [ [1, 2,…, h],

j [ [1, 2, …, w]} and R2 = {R2[i, j]| R2[i, j] [ {0, 1}, i [ [1, 2,…, h], j [ [1, 2, …, w]}
Step 1. R1[i, j] = fran(.), for all i and j. // Create R1 as a cipher-grid
Step 2. R2[S(0)] = fequ(R1[S(0)]). // Create the white area of R2 corresponding to

S by R1

Step 3. R2[S(1)] = fcom(R1[S(1)]). //Create the black area of R2 corresponding to
S by R1

The construction of encryption rules of Algorithm 1 will be described in detail,
which is in accordance with the steps in Algorithm 1. The construction is as follows.
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Step 1. E0 ¼ ½r�f g;E1 ¼ ½r�f gR1, where r is a random Boolean number.

Step 2. E0 ¼
r

r

" #( )
R1

R2
.

Step 3. E1 ¼
r

�r

" #( )
R1

R2
, where �r is the complement of r.

Since r [ {0,1}, we have E0 ¼
1

1

" #
;

0

0

" #( )
;E1 ¼

1

0

" #
;

0

1

" #( )
R1

R2
finally.

Theorem 1. E0 and E1 of (2, 2)1-RGS are the sets of distribution functions of (2, 2)-
PVCS.

Proof. (1) Contrast property. For two participants, p1|1 = 1, p1|0 = 1/2, p0|0 = 1/2
and p0|1 = 0. There exist b = 1/2 satisfying p1|1 - p1|0 C b and p0|0 (Q) - p0|1

(Q) C b. Therefore, E0 and E1 satisfy the contrast property of Definition 2.
(2) Security property. For single participant, let Dt (t [ {0, 1}) denote the set of

matrices, obtained by restricting each n 9 1 matrix in Et to the single row. Since
D0 = D1 = {[0], [1]}, E0 and E1 satisfy the security property of Definition 2.

To sum up, E0 and E1 are the sets of distribution functions of (2, 2)-PVCS. j

Algorithm 2. (2, 2)2-RGS [20]
Input and Output are as same as Algorithm 1.
Step 1. R1[i, j] = fran(.), for all i and j. // Create R1 as a cipher-grid
Step 2. R2[S(0)] = fequ(R1[S(0)]). // Create the white area of R2 corresponding to

S by R1

Step 3. R2[S(1)] = fran(.), for all i and j. // Create the black area of R2 corre-
sponding to S

The construction of encryption rules of Algorithm 2 is as follows.
Step 1. E0 ¼ ½r�f g;E1 ¼ ½r�f gR1, where r is a random Boolean number.

Step 2. E0 ¼
r

r

" #( )
R1

R2
.

Step 3. E1 ¼
r

r1

" #( )
R1

R2
, and r1 is another random number, which is indepen-

dent with r.

Since r [ {0,1} and r1 [ {0,1}, E0 ¼
1

1

" #
;

0

0

" #( )
;E1 ¼

1

0

" #
;

0

1

" #
;

1

1

" #
;

(

0

0

" #)
R1

R2
can be gotten.

Theorem 2. E0 and E1 of (2, 2)2-RGS are the sets of distribution functions of (2, 2)-
PVCS.
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Proof. (1) Contrast property. For two participants, p1|1 = 3/4, p1|0 = 1/2,
p0|0 = 1/2 and p0|1 = 1/4. There exist b = 1/4 satisfying p1|1 - p1|0 C b and p0|0
(Q) - p0|1 (Q) C b. Therefore, E0 and E1 satisfy the contrast property of
Definition 2.

(2) Security property. For single participant, let Dt (t [ {0, 1}) denote the set of
matrices, obtained by restricting each n 9 1 matrix in Et to the single row. Since
D0 = {[0], [1]} and D1 = {[0], [0], [1], [1]}, D0 and D1 contain the same matrices
([0], [1]) with the same frequencies (1/2). Therefore, E0 and E1 satisfy the security
property of Definition 2.

To sum up, E0 and E1 are the sets of distribution functions of (2, 2)-PVCS. j

Algorithm 3. (2, 2)3-RGS [20]
Input and Output are as same as Algorithm 1.
Step 1. R1[i, j] = fran(.), for all i and j. // Create R1 as a cipher-grid
Step 2. R2[S(0)] = fran(R1[S(0)]). // Create the white area of R2 corresponding to

S by R1

Step 3. R2[S(1)] = fcom(.), for all i and j. // Create the black area of R2 corre-
sponding to S

The construction of encryption rules of Algorithm 3 is as follows.
Step 1. E0 ¼ ½r�f g;E1 ¼ ½r�f gR1, where r is a random Boolean number.

Step 2. E0 ¼
r

r1

" #( )
R1

R2
, and r1 is another random number, which is indepen-

dent with r.

Step 3. E1 ¼
r

�r

" #( )
R1

R2
, where �r is the complement of r.

Since r [ {0,1} and r1 [ {0,1}, E0 ¼
1

0

" #
;

0

1

" #
;

1

1

" #
;

0

0

" #( )
;E1 ¼

1

0

" #
;

(

0

1

" #)
R1

R2
can be gotten.

Theorem 3. E0 and E1 of (2, 2)3-RGS are the sets of distribution functions of (2, 2)-
PVCS.

The proof is like as the proof of Theorem 2.

3.2 (n, n)-RGS

In this section, the n-out-of-n RGS is discussed. It is extended from the (2, 2)-RGS to
form a general model. When encrypting the secret image into n cipher-grids, the (n,
n)-RGS will recall the (2, 2)1-RGS (n - 1) times.

Algorithm 4. (n, n)-RGS [20]
Input: A binary secret image: S = {S[i, j]| S[i, j] [ {0, 1}, i [ [1, 2,…, h],

j [ [1, 2, …, w]} and a number of cipher-grids: n.
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Output: n cipher-grids: Rk = {Rk[i, j]| Rk[i, j] [ {0, 1}, i [ [1, 2,…, h], j [ [1, 2,
…, w]}, where k = 1, 2,…, n

Step 1. R1||<2 = (2, 2)1-RGS(S). // Create R1, <2 as two cipher-grids
Step 2. If (n [ 2) { for k = 2 to n - 1 Rk || <k+1 = (2, 2)1-RGS(<k)} // Create

R2 * Rn - 1 as cipher-grids recursively
Step 3. Rn = <n. // Create Rn as the last cipher-grid

The construction of encryption rules of Algorithm 4 is as follows.

Step1. E2
0 ¼

1

1

" #
;

0

0

" #( )
; E2

1 ¼
1

0

" #
;

0

1

" #( )
R1

<2
.

Step2. E0 ¼
1

E2
1

" #
;

0

E2
0

" #( )
; E1 ¼

1

E2
0

" #
;

0

E2
1

" #( )
R1

<2
:

) E0 ¼
1

1

0

2
64
3
75;

1

0

1

2
64
3
75;

0

1

1

2
64
3
75;

0

0

0

2
64
3
75

8><
>:

9>=
>;; E1 ¼

1

1

1

2
64
3
75;

1

0

0

2
64
3
75;

0

1

0

2
64
3
75;

0

0

1

2
64
3
75

8><
>:

9>=
>;

R1

R2

<3

:

Step2’.

E0 ¼
1

1

E2
0

2
64

3
75;

1

0

E2
1

2
64

3
75;

0

1

E2
1

2
64

3
75;

0

0

E2
0

2
64

3
75

8><
>:

9>=
>;; E1 ¼

1

1

E2
1

2
64

3
75;

1

0

E2
0

2
64

3
75;

0

1

E2
0

2
64

3
75;

0

0

E2
1

2
64

3
75

8><
>:

9>=
>;

R1

R2

<3

) E0 ¼

1

1

1

1

2
666664

3
777775
;

1

1

0

0

2
666664

3
777775
;

1

0

1

0

2
666664

3
777775
;

1

0

0

1

2
666664

3
777775
;

0

1

1

0

2
666664

3
777775
;

0

1

0

1

2
666664

3
777775
;

0

0

1

1

2
666664

3
777775
;

0

0

0

0

2
666664

3
777775

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

R1

R2

R3

<4

;

E1 ¼

1

1

1

0

2
666664

3
777775
;

1

1

0

1

2
666664

3
777775
;

1

0

1

1

2
666664

3
777775
;

1

0

0

0

2
666664

3
777775
;

0

1

1

1

2
666664

3
777775
;

0

1

0

0

2
666664

3
777775
;

0

0

1

0

2
666664

3
777775
;

0

0

0

1

2
666664

3
777775

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

R1

R2

R3

<4

:

……
Step 3. E0 is the set of all Boolean vectors of length n with an even number of

ones, and E1 is the set of all Boolean vectors of length n with an odd number of ones.
Hence, | E0| = | E1|= 2n - 1.

Theorem 4. E0 and E1 of (n, n)-RGS are the sets of distribution functions of (n, n)-
PVCS.

Proof. (1) Contrast property. For n participants, p1|1 = 1, p1|0 = 1 – 21 - n,
p0|0 = 21 - n and p0|1 = 0. There exist b = 21 - n satisfying p1|1 - p1|0 C b and p0|0

(Q) - p0|1 (Q) C b. Therefore, E0 and E1 satisfy the contrast property of Definition 2.
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(2) Security property. Let B0 (resp. B1) be a n 9 2n - 1 matrix, which is con-
structed by connecting all vectors of E0 (resp. E1). It is interesting that B0 and B1 are
the basis matrices of (n, n)-VCS proposed by Naor and Shamir [1]. Therefore, E0 and
E1 satisfy the security property of Definition 2.

To sum up, E0 and E1 are the sets of distribution functions of (n, n)-PVCS. j

3.3 (2, n)-RGS

In this section, the 2-out-of-n RGS is analyzed. Assume a secret image S will be
encrypted into n cipher-grids R1, R2, …, Rn. The decryption process is superimposing
directly any pair of cipher-grids and the original secret can be disclosed.

Algorithm 5. (2, n)-RGS [20]
Input: A binary secret image: S = {S[i, j]| S[i, j] [ {0, 1}, i [ [1, 2,…, h],

j [ [1, 2, …, w]} and a number of cipher-grids: n.
Output: n cipher-grids: Rk = {Rk[i, j]| Rk[i, j] [ {0, 1}, i [ [1, 2,…, h], j [ [1,

2, …, w]}, where k = 1, 2,…, n
Step 1. R1[i, j] = fran(.), for all i and j. // Create R1 as a cipher-grids
Step 2. For k = 2 to n // Create R2 * Rn as cipher-grids repeatedly

Rk½S 0ð Þ� ¼ fequðRk� 1½S 0ð Þ�Þ ==Create the white area of Rk

Rk½S 1ð Þ� ¼ fran :ð Þ for all i and j ==Create the black area of Rk

The construction of encryption rules of Algorithm 5 is as follows.
Step1. E0 ¼ r½ �f g;E1 ¼ r½ �f gR1

Step2. E0 ¼
r

r

" #( )
; E1 ¼

r

r1

" #( )
R1

R2

) E0 ¼
1

1

" #
;

0

0

" #( )
; E1 ¼

1

0

" #
;

1

1

" #
;

0

0

" #
;

0

1

" #( )
R1

R2

Step3. E0 ¼

r

r

r

2
664
3
775

8>><
>>:

9>>=
>>;
; E1 ¼

r

r1

r2

2
664

3
775

8>><
>>:

9>>=
>>;

R1

R2

R3

) E0 ¼
1

1

1

2
64
3
75;

0

0

0

2
64
3
75

8><
>:

9>=
>;;

E1 ¼

1

0

1

2
664
3
775;

1

0

0

2
664
3
775;

1

1

1

2
664
3
775;

1

1

0

2
664
3
775;

0

0

1

2
664
3
775;

0

0

0

2
664
3
775;

0

1

1

2
664
3
775;

0

1

0

2
664
3
775

8>><
>>:

9>>=
>>;

R1

R2

R3

……
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Step n. E0 ¼

r

r

. . .

r

2
6664

3
7775

8>>><
>>>:

9>>>=
>>>;
;E1 ¼

r

r1

. . .

rn�1

2
6664

3
7775

8>>><
>>>:

9>>>=
>>>;

R1

R2

. . .
Rn

. r, r1, …, rn - 1 are random

Boolean numbers, where any one of them is independent with others. Hence, | E1| = 2
and | E1| = 2n.

Theorem 5. E0 and E1 of (2, n)-RGS are the sets of distribution functions of (2, n)-
PVCS.

Proof. (1) Contrast property. For two participants, p1|1 = 3/4, p1|0 = 1/2, p0|0 = 1/
2 and p0|1 = 1/4. There exist b=1/4 satisfying p1|1 - p1|0 C b and p0|0 (Q) - p0|1
(Q) C . Therefore, E0 and E1 satisfy the contrast property of Definition 2.

(2) Security property. For single participant, let Dt (t [ {0, 1}) denote the set of
matrices, obtained by restricting each n 9 1 matrix in Et to the single row. Since
D0 = {[0], [1]} and D1 consists of 2n-1 [0] and 2n-1 [1], D0 and D1 contain the same
matrices ([0], [1]) with the same frequencies (1/2). Therefore, E0 and E1 satisfy the
security property of Definition 2.

To sum up, E0 and E1 are the sets of distribution functions of (2, n)-PVCS. j

3.4 (k, n)-RGS

In this section, (k, n)-RGS can encode a binary secret image S with the size of
h 9 w into n random grids, denoted as {R1, R2, …, Rn}, which are so noise-like that
no one can recognize the original secret information by any set of less than k random
grids. In the decoding process, if participants collect and superimpose k or more
random grids, denoted as {Ri1, Ri2, …, Rik} where {i1, i2,…, ik} ( {1, 2,…, n}, the
secret information can be disclosed by human visual system without extra computa-
tion cost.

Algorithm 6. (k, n)-RGS [21]
Step 1. Exploit traditional RGS to encode a pixel S[i, j] [ S so that two bits R1 and

<2 are obtained, [i, j] being the pixel position in the secret image (i [ [1, … , h] and
j [ [1, … , w]). Encode <2 in the same way to generate two bits R2 and <3. Repeat this
operation until R1, R2, …, <k are generated (the final bit <k represented as Rk).

Step 2. The generated k bits are dispatched into k randomly selected random grid
pixels { Ri1[i, j], Ri2[i, j], … , Rik[i, j]}, a subset of { R1[i, j], R2[i, j], … , Rn[i, j]};
these k bits are arranged at the same spatial location, say [i, j], in the individual
random grids Ri1, Ri2 , …, and Rik .

Step 3. Lastly, the (n - k) bits located in the same location [i, j] of the remaining
(n-k) random grids { R1, R2, … , Rn} - { Ri1, Ri2 , …, Rik } are generated by the
function fran(.) used to randomly select ‘‘0’’ or ‘‘1’’, representing a transparent or
opaque pixel, respectively.

Step 4. Repeat Steps 1*3 until all pixels S[i, j] of secret image S are done.
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The construction of encryption rules of Algorithm 6 is as follows.

E0 ¼

Ek
0

r1;1

r1;2

. . .

r1;n�k

2
666666664

3
777777775
;

r2;1

Ek
0

r2;2

. . .

r2;n�k

2
666666664

3
777777775
; . . .;

rCðn;kÞ;1

rCðn;kÞ;2

. . .

rCðn;kÞ;n�k

Ek
0

2
6666666664

3
7777777775

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

; E1 ¼

Ek
1

r1;1

r1;2

. . .

r1;n�k

2
666666664

3
777777775
;

r2;1

Ek
1

r2;2

. . .

r2;n�k

2
666666664

3
777777775
; . . .;

rCðn;kÞ;1

rCðn;kÞ;2

. . .

rCðn;kÞ;n�k

Ek
1

2
6666666664

3
7777777775

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

:

Ek
0 and Ek

1 are the encryption rules of (n, n)-RGS in Algorithm 4.
| E0| = | E1| = C(n, k) 9 2k - 1 9 2n - k = C(n, k) 9 2n- 1.

Theorem 6. E0 and E1 of (k, n)-RGS are the sets of distribution functions of (k, n)-
PVCS.

Proof. (1) Contrast property. For k participants, p1|1 - p1|0 = 1
Cðn;kÞ�2n�1. Since

p0|1 = 1 - p1|1 and p0|0 = 1 - p1|0, we have b = p0|0 - p0|1 = p1|1 -

p1|0 = 1
Cðn;kÞ�2n�1. Therefore, E0 and E1 satisfy the contrast property of Definition 2.

(2) Security property. For k - 1 participant, let Dt (t [ {0, 1}) denote the set of
matrices, obtained by restricting each n 9 1 matrix in Et to the k - 1 rows. Every
matrix of D0 (resp. D1) has the character that i (i [ [0,…, k - 1]) rows are from
Ek

0(resp. Ek
1) and the other k – 1 - i rows are random Boolean numbers. According to

the security of Ek
0 and Ek

1, we have Di
0 ¼ Di

1 for any i (i [ [0,…, k–1]) participants.
Therefore, D0 = D1, which means that E0 and E1 satisfy the security property of
Definition 2.

To sum up, E0 and E1 are the sets of distribution functions of (k, n)-PVCS. j

4 Experimental Results and Discussions

4.1 Codebook and Computational Complexity

The encryption of PVCS relies on codebook C0 and C1, which is easy to generate
shares but needs more storage space costs than RGS. The encryption of RGS is
realized by several recursive computing steps, which does not need codebook but
requires more computing resources than PVCS.

Generally speaking, the complexity evaluation of an algorithm contains two
aspects: space and time. PVCS and RGS are just good at one point, respectively. In
some sense, PVCS and RGS are complementation for each other.

4.2 Contrasts of PVCS and RGS

The evaluation of contrast property in PVCS is b = p0|0 - p0|1. In RGS, the recovery

image is evaluated by a ¼ TðB½Að0Þ�Þ�TðB½Að1Þ�Þ
1þTðB½Að1Þ�Þ . a is used for measuring decrypted image

as a whole. Since each pixel in original image is encrypted independently, we have
TðB½Að0Þ�Þ ¼ p0j0 and TðB½Að1Þ�Þ ¼ p0j1. Therefore,
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a ¼
p0j0 � p0j1
1þ p0j1

¼ b
1þ p0j1

:

The recovery effects of PVCS and RGS can be compared under the same
parameter a or b. For each RGS, there always exists a PVCS corresponding to it.
However, transforming any PVCS to RGS can not be guaranteed, since some PVCSs
can not be expressed by just fequ, fran and fcom. Therefore, for (k, n) scheme, we have
the following equations:

aRGS� aPVCS or bRGS� bPVCS:

Taking (3, 4) scheme for example, a secret image S of size 512 9 512 pixels is
encrypted. RGS is realized according to Algorithm 6. For PVCS, we construct C0 and
C1 as follows.

a b c

d e f

g h i

Fig. 1. The experimental results of the (3, 4)-RGS and (3, 4)-PVCS: (a) secret image S, (b)
single grid of RGS with aRGS ¼ 0, (c) single share of PVCS with aPVCS ¼ 0, (d) two overlapped
grids of RGS with aRGS ¼ 0, (e) two overlapped shares of PVCS with aPVCS ¼ 0, (f) three
overlapped grids of RGS with aRGS ¼ 2=35, (g) three overlapped shares of PVCS with
aPVCS ¼ 1=7, (h) four overlapped grids of RGS with aRGS ¼ 1=8, (i) four overlapped shares of
PVCS with aPVCS ¼ 1=3.
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C0 ¼

0

0

0

0

2
666664

3
777775
;

0

0

0

0

2
666664

3
777775
;

0

1

1

1

2
666664

3
777775
;

1

0

1

1

2
666664

3
777775
;

1

1

0

1

2
666664

3
777775
;

1

1

1

0

2
666664

3
777775

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
; C1 ¼

0

0

0

1

2
666664

3
777775
;

0

0

1

0

2
666664

3
777775
;

0

1

0

0

2
666664

3
777775
;

1

0

0

0

2
666664

3
777775
;

1

1

1

1

2
666664

3
777775
;

1

1

1

1

2
666664

3
777775

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
:

Figure 1 shows the results of (3, 4)-RGS and (3, 4)-PVCS, which encrypt secret
S (Fig. 1(a)) into four random grids and shares, respectively. Nobody can recognize
the original secret from single grid (Fig. 1(b)) or single share (Fig. 1(c)). Figure 1(d)–
(e) show the noise-like decoding effects of two grids and two shares, respectively. The
secret information can be recognized by stacking three grids or three shares, shown in
Fig. 1(f)–(g) with contrast aRGS ¼ 2=35 \ aPVCS ¼ 1=7. All grids or shares stacked,
the reconstructed secrets are shown in Fig. 1(h) and Fig. 1(i) with contrast aRGS ¼ 1=8
\ aPVCS ¼ 1=3.

5 Conclusion

The relationship between VCS and RGS is analyzed for the first time. It is interesting
that the encryption rules of RGS are actually the set of distribution matrices in PVCS.
Considering the costs of algorithms, PVCS is good at the computational complexity
while RGS has advantage in no codebook needed. Generally speaking, the contrast of
PVCS is better than RGS under the same access structure. Our future work is how to
improve the contrast of RGS.
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