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Abstract. We analyze a two-player zero-sum game between a steganog-
rapher, Alice, and a steganalyst, Eve. In this game, Alice wants to hide
a secret message of length k in a binary sequence, and Eve wants to
detect whether a secret message is present. The individual positions of
all binary sequences are independently distributed, but have different
levels of predictability. Using knowledge of this distribution, Alice ran-
domizes over all possible size-k subsets of embedding positions. Eve uses
an optimal (possibly randomized) decision rule that considers all posi-
tions, and incorporates knowledge of both the sequence distribution and
Alice’s embedding strategy.

Our model extends prior work by removing restrictions on Eve’s
detection power. The earlier work determined where Alice should hide
the bits when Eve can only look in one position. Here, we expand Eve’s
capacity to spot these bits by allowing her to consider all positions. We
give defining formulas for each player’s best response strategy and mini-
max strategy; and we present additional structural constraints on the
game’s equilibria. For the special case of length-two binary sequences,
we compute explicit equilibria and provide numerical illustrations.

Keywords: Game theory · Content-adaptive steganography · Security

1 Introduction

In steganography, the objective of a steganographer is to hide a secret message
in a communication channel. The objective of her counterpart, the steganalyst,
is to detect whether the channel contains a message [12]. Digital multimedia
such as JPEG images are the most commonly studied communication channels
in this context; but the theory can be applied more generally to any data stream
having some irrelevant components and an inherent source of randomness [5].
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In contrast to random uniform embedding, where the steganographer chooses
her message-hiding positions along a pseudo-random path through the communi-
cation channel, content-adaptive steganography leverages the fact that different
parts of a communication channel may have different levels of predictability [1].
For example, digital images often have areas of homogeneous color where any
slight modification would be noticed, whereas other areas are heterogeneous in
color so that subtle changes to a few pixels would still appear natural. It fol-
lows that if a steganographer wants to modify image pixels to communicate a
message, she should prefer to embed in these heterogeneous areas.

Our model abstracts this concept of content-adaptivity, by considering a
communication channel as a random variable over binary sequences, where each
position in the sequence has a different level of predictability. The predictability
of each position is observable by both Alice, a content-adaptive steganogra-
pher, and Eve, a computationally-unbounded steganalyst; and we apply a game-
theoretic analysis to determine each player’s optimal strategy for embedding and
detection, respectively.

We show that if Alice changes exactly k bits of a binary cover sequence,
then Eve’s best response strategy can be expressed as a multilinear polynomial
inequality of degree k in the sequence position variables. In particular, when
k = 1, this polynomial inequality is a linear aggregation formula similar to what
is typically used in practical steganalysis, e. g., [6]. Conversely, given any strat-
egy by Eve to separate cover and stego objects, Alice has a best-response strat-
egy that minimizes a relatively-simple summation over Eve’s strategic choices.
We give formulas for both players’ minimax strategies, and explain why the
straightforward linear programming solution for computing these strategies is
not efficiently implementable for realistic problem sizes. We give structural con-
straints to the players’ equilibrium strategies; and in the case where there are
only two embedding positions, we classify all equilibria, resolving an open ques-
tion from [13]. Furthermore, we bridge the two research areas of game-theoretical
approaches and information-theoretic optimal steganalysis, and conjecture that
the main results of earlier works still hold when the steganalyst is conservatively
powerful.

The rest of the paper is organized as follows. In Sect. 2, we briefly review
related work. In Sect. 3, we describe the details of our game-theoretic model.
Section 4 contains our analysis of the general case; and in Sect. 5, we compute
and illustrate the game’s equilibria for the special case of sequences of length
two. We conclude the paper in Sect. 6.

2 Related Work

Game theory is a mathematical framework to investigate competition between
strategic players with contrary goals [15]. In content-adaptive steganography [1],
where Alice chooses the positions into which she embeds a message and Eve
tries to anticipate these positions to better detect the embedding, the situation
is naturally modeled using game theory.
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Practical content-adaptive steganography schemes, on the other hand, have
typically relied primarily on the notion of unpredictability to enhance the secu-
rity of embedded messages. In fact, the early content-adaptive schemes not only
preferred less predictable areas of images, but restricted all embedding changes
to the least predictable areas, e. g., [4]. Recent work on strategic embedding has
dubbed this strategy näıve adaptive embedding, and has shown it to be a non-
optimal strategy in progressively more general settings [2,8,13]. It was shown
in [2] that the steganalyst can leverage her knowledge about the specific adap-
tive embedding algorithm from [4] to detect it with better accuracy than even
random uniform embedding. In [13] it was shown for the first time that, if the
steganalyst is strategic, it is never optimal for the steganographer to determinis-
tically embed in the least predictable positions. The game-theoretic analysis in
[13] was restricted to a model with two embedding positions, where Eve could
only look in one position. A subsequent extension of that model [8] allowed the
steganographer to change multiple bits in an arbitrary-sized cover sequence, but
maintained limiting restrictions on the power of the steganlyst, by requiring
her to make decisions on the basis of only one position. This paper investigates
whether results from these earlier works, including non-optimality of näıve adap-
tive embedding, extend to the regime in which the steganalyst may consider all
positions.

Another extension of this research stream expanded the power of Eve but
required Alice to embed independently in each position [14]. Other authors have
studied steganography using game-theoretical models, e. g., [3,9], but none of
these works addressed content-adaptive embedding, the most common approach
in modern steganography, e. g., [7,11].

3 Game-Theoretic Model

To describe our game-theoretic model, we specify the set of players, the set of
states that the world can be in, the set of choices available to the players, and
the set of consequences as a result of these choices. Because our game is a ran-
domized extension of a deterministic game, we first present the structure of the
deterministic game, and follow up afterwards with details of the randomization.

3.1 Players

The players are Alice, a steganographer, and Eve, a steganalyst. Alice wants
to send a message through a communication channel, and Eve wants to detect
whether the channel contains a message. At times, we find it convenient to also
mention Nature, the force causing random variables to take realizations, and
Bob, the message recipient; although Nature and Bob are not players in a game-
theoretic sense because they are not strategic.
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Fig. 1. Block diagram of a steganographic communication system

3.2 Events

Our event space Ω is the set {0, 1}N × {C,S}. An event consists of two parts:
a binary sequence x ∈ {0, 1}N and a steganographic state y ∈ {C,S}, where
C stands for cover and S for stego. The binary sequence represents what Eve
observes on the communication channel. The steganographic state tells whether
or not a message is embedded in the sequence. In the randomized game, neither
of these two states is known by the players until after they make their choices.
To define payoffs for the finite game, we simply assume that some event has been
chosen by Nature so that the world is in some fixed state (x, y).

Figure 1 illustrates an event with player interaction as a block diagram. Fol-
lowing the diagram, Alice embeds a secret message of length k into the binary
sequence x; Nature determines whether the original cover or the modified stego
object appears on the communication channel; Eve observes the sequence appear-
ing on the channel and makes a decision as to whether or not it contains a
message; and (not relevant to our analysis but useful for narrative closure) Bob
extracts the message, if it happened to be there.

3.3 Choices

Alice’s (pure strategy) choice is to select a size-k subset I of {0, . . . , N − 1},
which represents the positions into which she embeds her encoded message, by
flipping the value of the given sequence at each of the positions in I.

Eve’s (pure strategy) choice is to select a subset ES of {0, 1}N , which rep-
resents the set of sequences that she classifies as stego objects (i.e., sequences
containing a secret message). Objects in EC := {0, 1}N

� ES are classified as
cover objects (i.e., sequences not containing a secret message).

3.4 Consequences

Suppose that Alice chooses a pure strategy I ⊆ {0, . . . , N − 1}, Eve chooses
a pure strategy ES ⊆ {0, 1}N , and Nature chooses a binary sequence x and a
steganographic state y. Then, Eve wins 1 if she classifies x correctly (i.e., either
she says stego and Nature chose stego, or she says cover and Nature chose cover),
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Table 1. Payoffs for (Eve, Alice)

The steganographic state
Eve’s decision for x C S

x ∈ EC (1,−1) (−1, 1)
x ∈ ES (−1, 1) (1,−1)

and she loses 1 if her classification is wrong. The game is zero-sum so that Alice’s
payoff is the negative of Eve’s payoff. Table 1 formalizes the possible outcomes
as a zero-sum payoff matrix.1

3.5 Randomization

In the full randomized game, we have distributions on binary sequences and
steganographic states. We also have randomization in the players’ strategies. To
describe the nature of the randomness, we start by defining two random variables
on our event space Ω. Let X : Ω → {0, 1}N be the random variable which takes
an event to its binary sequence and let Y : Ω → {C,S} be the random variable
which takes an event to its steganographic state. We proceed through the rest
of this section by first describing the structure of the distribution on Ω; next
describing the two players’ mixed strategies; and finally, by giving the players’
payoffs as a consequence of their mixed strategies.

Steganographic States. The event Y = S happens when Nature chooses the
steganographic state to be stego; and this event occurs with probability pS . We
also define PrΩ [Y = C] := pC = 1 − pS . From Eve’s perspective, pS is the prior
probability that she observes a stego sequence on the communication channel.
A common convention in steganography (following a similar convention in cryp-
tography) is to equate the prior probabilities of an attack occurring or not, so
that Eve observes a stego sequence with exactly 50 % probability. Our results
describing equilibria for this model carry through with arbitrary prior probabil-
ities; so we retain the notations pS and pC in several subsequent formulas. Note
however, that with highly unequal priors, the game may trivialize because the
prior probabilities can dominate other incentives. For this reason, we do require
equal priors for some structural theorems; and we also use equal priors in our
numerical illustrations.

Binary Sequences. The distribution on binary sequences depends on the value
of the steganographic state. If Y = C, then the steganographic state is cover,
and X is distributed according to a cover distribution C; if Y = S, then the
steganographic state is stego, and X is distributed according to a stego distrib-
ution S.
1 The payoff matrix and the zero sum property might be different if false positives

and false negatives result in different profits, respectively losses.



8 B. Johnson et al.

With this notation in hand, we may define, for any event (X = x, Y = y):

PrΩ [(x, y)] = PrΩ [Y = y] · PrΩ [X = x|Y = y]

=

{
pC · PrC [X = x] if y = C

pS · PrS [X = x] if y = S
. (1)

We will define the distributions C and S after describing the players’ mixed
strategies.

Players’ Mixed Strategies. We next describe the mixed strategy choices for
Alice and Eve. Recall that a mixed strategy is a probability distribution over
pure strategies.

In a mixed strategy, Alice can probabilistically embed into any given subset of
positions, by choosing a probability distribution over size-k subsets of {0, . . . , N−
1}. To describe a mixed strategy, for each I ⊆ {0, . . . , N − 1}, we let aI denote
the probability that Alice embeds into each of the positions in I.

A mixed strategy for Eve is a probability distribution over subsets of {0, 1}N .
Suppose that Eve’s mixed strategy assigns probability eS to each subset S ⊆
{0, 1}N . Overloading notation slightly, we define e : {0, 1}N → [0, 1] via

e(x) =
∑

S⊆{0,1}N :x∈S

eS . (2)

Each e(x) gives the total probability for the binary sequence x that Eve classi-
fies the sequence x as stego. Note that this “projected” representation of Eve’s
mixed strategy given in Eq. (2) requires specifying 2N real numbers, whereas
the canonical representation of her mixed strategy using the notation eS would
require specifying 22

N

real numbers. For this reason, we prefer to use the projec-
tion representation. Fortunately, the projected representation contains enough
information to determine both players’ payoffs; and the mapping from the canon-
ical representation to the projected representation is surjective2 so that we may
express results using the simpler representation without loss of generality.

Cover Distribution. In the cover distribution C, the coordinates of X are
independently distributed so that

PrC [X = x] =
N−1∏
i=0

PrC [Xi = xi]. (3)

The bits are not identically distributed however. For each i we have

PrC [Xi = 1] = fi, (4)

2 The proof of surjectivity follows directly from using induction on N .
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where 〈fi〉N−1
i=0 is a monotonically-increasing sequence from

(
1
2 , 1

)
. Note that this

assumption is without loss of generality because, in applying the abstraction of
a communication channel into sequences, we can always flip 0 s and 1 s to make
1 s more likely; and we can re-order the positions from least to most predictable.

For notational convenience, we define

f̃i = 2fi − 1. (5)

We construe fi as a measure of the predictability of position i. If the bias at some
position is close to zero, then the value of that position is not very predictable,
while if the bias is close to 1, the value of the position is very predictable.

Putting it all together, the cover distribution is defined by

PrC [X = x] =
∏

xi=1

fi ·
∏

xi=0

(1 − fi)

=
N−1∏
i=0

(
1 − fi + xif̃i

)
. (6)

Stego Distribution. The stego distribution S depends on Alice’s choice of
an embedding strategy. Let I ⊆ {0, . . . , N − 1}, and for each x ∈ {0, 1}N let
xI denote the binary sequence obtained from x by flipping the bits at all the
positions in I. The stego distribution is obtained from the cover distribution
by adjusting the likelihood that each x occurs, assuming that for each I, with
probability aI Alice flips the bits of x in all the positions in I.

More formally, suppose that Alice embeds into each subset I ⊆ {0, . . . , N−1}
with probability aI . We then have

PrS [X = x]

=
∑

I

aIPrC [X = xI ]

=
∑

I

aI ·
∏
i/∈I

PrC [Xi = xi] ·
∏
i∈I

PrC [Xi = 1 − xi]

=
∑

I

aI ·
∏
i/∈I

(
1 − fi + xif̃i

)
·
∏
i∈I

(
fi − xif̃i

)
. (7)

Player Payoffs. In the full game, the expected payoff for Eve can be written
as:

u(Eve) = PrΩ [X ∈ ES and Y = S] (true positive)
+ PrΩ [X ∈ EC and Y = C] (true negative)
− PrΩ [X ∈ ES and Y = C] (false positive)
− PrΩ [X ∈ EC and Y = S] (false negative) (8)
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and this can be further computed as:

u(Eve)= pSPrS [X ∈ ES ] + pCPrC [X ∈ EC ] −pCPrC [X ∈ ES ] − pSPrS [X ∈ EC ]

=
∑

x∈{0,1}N

[
e(x)pSPrS(a)[X = x]

+ (1 − e(x))pCPrC [X = x]
− (1 − e(x))pSPrS(a)[X = x]

− e(x)pCPrC [X = x]
]

=
∑

x∈{0,1}N

(2e(x) − 1)

· (pSPrS(a)[X = x] − pCPrC [X = x]). (9)

The terms PrC [X = x] and PrS(a)[X = x] are defined in Eqs. (6) and (7),
respectively. Note that we write S = S(a) to clarify that the distribution S
depends on Alice’s mixed strategy. In summary, Eve’s payoff is the probability
that her classifier is correct minus the probability that it is incorrect; and the
game is zero-sum so that Alice’s payoff is exactly the negative of Eve’s payoff.

4 Model Analysis

In this section, we present our analytical results. We begin by describing best
response strategies for each player. Next, we describe in formal notation the
minimax strategies for each player. Finally, we present several theorems which
give structural constraints on the game’s Nash equilibria.

4.1 Best Responses

To compute best responses for Alice and Eve, we assume that the other player
is playing a fixed strategy, and determine the strategy for Alice (or Eve) which
minimizes (or maximizes) the payoff in Eq. (9) as appropriate.

Alice’s Best Response. Given a fixed strategy e for Eve, Alice’s goal is to
minimize the payoff in Eq. (9). However, since she has no control over the cover
distribution C, this goal can be simplified to that of minimizing∑

x∈{0,1}N

(2e(x) − 1) · pSPrS(a)[X = x]

=pS

∑
x∈{0,1}N

(2e(x) − 1)) ·
∑

I⊆{0,...,N−1}
aIPrC [X = xI ]

=pS

∑
I⊆{0,...,N−1}

aI

∑
x∈{0,1}N

(2e(x) − 1)) · PrC [X = xI ].
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This formula is linear in Alice’s choice variables, so she can minimize its value
by putting all her probability on the sum’s least element. A best response for
Alice is thus to play a pure strategy I that minimizes∑

x∈{0,1}N

(2e(x) − 1)) · PrC [X = xI ]. (10)

Of course, several different I might simultaneously minimize this sum. In this
case, Alice’s best response strategy space may also include a mixed strategy that
distributes her embedding probabilities randomly among such I.

Eve’s Best Response. Given a fixed strategy for Alice, Eve’s goal is to max-
imize her payoff as given in Eq. (9). So, for each x, she should choose e(x) to
maximize the term of the sum corresponding to x. Specifically, if pSPrS(a)[X =
x] − pCPrC [X = x] > 0, then the best choice is e(x) = 1; and if the strict
inequality is reversed, then the best choice is e(x) = 0. If the inequality is an
equality, then Eve may choose any value for e(x) ∈ [0, 1] and still be playing a
best response.

Formally, her optimal decision rule is

e(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if PrΩ [Y =S|X=x]
PrΩ [Y =C|X=x] > 1 ,

0 if PrΩ [Y =S|X=x]
PrΩ [Y =C|X=x] < 1 ,

any p ∈ [0, 1] if PrΩ [Y =S|X=x]
PrΩ [Y =C|X=x] = 1 .

(11)

For a fixed sequence x, the condition for classifying x as stego can be rewritten
as:

1 <
PrΩ [Y = S|X = x]
PrΩ [Y = C|X = x]

=
PrΩ [X = x]
PrΩ [X = x]

· PrΩ [Y = S|X = x]
PrΩ [Y = C|X = x]

=
PrΩ [Y = S]
PrΩ [Y = C]

· PrΩ [X = x|Y = S]
PrΩ [X = x|Y = C]

=
pS

pC

PrS [X = x]
PrC [X = x]

=
pS

pC

∑
I aI · ∏

i�∈I

(
1 − fi + xif̃i

)
· ∏

i∈I

(
fi − xif̃i

)
∏N−1

i=0

(
1 − fi + xif̃i

)

=
pS

pC

∑
I

aI

∏
i∈I

(
fi − xif̃i

1 − fi + xif̃i

)

=
pS

pC

∑
I

aI

∏
i∈I

(
fi

1 − fi
− xi

f̃i

fi(1 − fi)

)
. (12)
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Note that Eve’s decision rule is written as a multilinear polynomial inequality
of degree at most k in the binary sequence x, and that the number of terms in
the formula is

(
N
k

)
. When k is a constant relative to N (as it typically is in

practical applications), then
(
N
k

)
is polynomial in N , and Eve’s optimal decision

rule can be applied for each binary sequence in time that is polynomial in the
length of the sequence.

4.2 Minimax Strategies

A minimax strategy in a two-player game is a mixed strategy of one player that
maximizes her payoff assuming that the other player is going to respond with
an optimal pure strategy [15].

Eve’s minimax strategy is given by

argmax
e

(
min

I

(∑
x∈{0,1}N

(2e(x) − 1)(pSPrC [X = xI ] − pCPrC [X = x])
))

; (13)

while Alice’s minimax strategy is given by

argmin
a

(
max
ES

( ∑
x∈ES

(pSPrS(a)[X = x] − pCPrC [X = x])

+
∑

x∈EC

(pCPrC [X = x] − pSPrS(a)[X = x])
))

. (14)

Each minimax strategy can be determined (recursively) as the solution to a
linear program involving the payoff matrix for Alice’s and Eve’s pure strategies.
Unfortunately, Eve’s pure strategy space has size 22

N

so it is computationally
intractable to find the minimax strategies using this method even for N = 5.

4.3 Nash Equilibria

In this subsection, we present structural constraints for Nash equilibria [10]. We
begin with a lemma showing that Eve’s classifier in a specific type of equilibrium
must respect the canonical partial ordering on binary sequences. We conclude
the section with a conjecture about Alice‘s equilibrium strategy.

Lemma 1. Define a partial ordering on {0, 1}N by x < z iff xi ≤ zi for i =
0, . . . , N − 1 and xi < zi for at least one i. Then whenever Alice’s embedding
strategy satisfies the constraint pS

pC

∑
I aI

∏
i∈I

(
fi

1−fi
− xi

f̃i

fi(1−fi)

)
�= 1 for the

sequence x, the following condition holds:

– If Eve classifies x as stego and z < x, then Eve classifies z as stego too.
– If Eve classifies x as cover and x < z, then Eve classifies z as cover too.
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Proof. Suppose Eve classifies x as stego. Then from the conditions on Eve’s best
response (Eqs. (11) and (12)), we have that pS

pC

∑
I aI

∏
i∈I

(
fi

1−fi
− xi

f̃i

fi(1−fi)

)
≥

1; and by the hypothesis of the lemma, the inequality is strict. Suppose z < x.
Then the value of pS

pC

∑
I aI

∏
i∈I

(
fi

1−fi
− zi

f̃i

fi(1−fi)

)
is at least the value of the

same expression with x replacing z. So this value is also greater than 1, and so
Eve also classifies z as stego. The proof of the reverse direction is analogous. 
�

This lemma implies that in any Nash equilibrium, the set of all binary
sequences can be divided into three disjoint sets, low sequences which Eve’s
likelihood test proscribes a clear value of stego, high sequences which Eve’s test
proscribes as clearly cover, and a small set of mid-level boundary sequences on
which Eve’s behavior is not obviously constrained. Furthermore, changing 0 s
to 1 s in a clearly-cover sequence keeps it cover, and changing 1 s to 0 s in a
clearly-stego sequence keeps it stego.

Next, we state a conjecture about Alice’s strategy in an equilibrium.

Conjecture 1. Assume equal priors, so that pS = pC = 1
2 and a reasonable

〈fi〉N−1
i=0 . In a Nash equilibrium, Alice uses every i ∈ {0, . . . , N − 1} with non-

zero probability.

The proscription that Alice flips each position with some positive probability
complements an analogous result proven in [8] for the case in which Eve is
restricted to look in only one position. We leave it to future work to characterize
the 〈fi〉N−1

i=0 for which Conjecture 1 holds. For homogeneous 〈fi〉 there are simple
counter-examples to the conjecture; however, it is important to note that for
homogeneous 〈fi〉 the definition of adaptive embedding itself is not sensible.

Here, we frame a proof outline for this conjecture. Assume a Nash equilib-
rium with a and e as the strategies of Alice and Eve, respectively. To obtain a
contradiction, suppose that i ∈ {0, . . . , N − 1} is such that aI = 0 for every I
containing i. If x is any sequence that Eve’s optimal decision rule classifies as
either clearly cover or clearly stego, then Eve’s behavior does not depend on the
value of x at position i. However, if there are “indifferent” sequences y that Eve’s
likelihood test proscribes as cover or stego with equal probability, we cannot rule
out that Eve may take the position i into account for y. This remains true even
though her likelihood test does not proscribe an outcome based on i, and even
though she is playing a best response to Alice who is not using position i. Our
avenue to proceed is to demonstrate a violation of the equilibrium condition by
showing how Alice can increase her payoff by using position i. Toward this end,
we can show that, by shifting her embedding probability to sets containing i
from sets not containing i, Alice will increase Eve’s misclassification probability
for sequences that are not on her “indifference boundary”. However, it is pos-
sible that Eve gains enough advantage from conditioning on i when the special
boundary sequences occur to offset this disadvantage. It seems to us that this
possibility hinges on structural properties of the sequence 〈fi〉.
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In the following section, we explicitly compute all equilibria in the case of
length-two sequences and a message length of k = 1. Note that in this special
case, Conjecture 1 is true.

5 Numerical Illustration

In this section, we instantiate our model with the special case of flipping a single
bit (k = 1) in sequences of length two (N = 2). In this setting, Alice’s pure
strategy space is {{0}, {1}}; and since a{1} = 1−a{0}, her mixed strategy space
can be represented by a single value a0 = a{0} ∈ [0, 1]. Eve’s pure strategy
space is represented by the set of all [0, 1]-valued functions on {(00), (01), (10), (11)}.
Throughout this section we assume that cover and stego objects are equally
likely, i.e., pC = pS = 1

2 .

5.1 Alice’s Minimax Strategy

To compute Alice’s minimax strategy, we first divide Alice’s strategy space into
three regions based on Eve’s best response:

Lemma 2. The following table gives Eve’s best response for each sequence x as
a function of a0.

where θ1 = (1−f0)f̃1
f0+f1−1 and θ2 = f0f̃1

f0+f1−1 .

Proof. We prove Eve’s optimal decision for the four realizations separately.(
0
0

)
: Eve always classifies

(
0
0

)
as stego.

PrC

[
X =

(
0
0

)]
=

(1 − f0)(1 − f1) < a0f0(1 − f1) + (1 − a0)(1 − f0)f1

= PrS(a0)

[
X =

(
0
0

)]
,

since (1 − f0)(1 − f1) < f0(1 − f1) and (1 − f0)(1 − f1) < (1 − f0)f1.
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(
0
1

)
: Eve classifies

(
0
1

)
as cover when a0 < (1−f0)f̃1

f0+f1−1 := θ1.

PrC

[
X =

(
0
1

)]
=

(1 − f0)f1
!
> a0f0f1 + (1 − a0)(1 − f0)(1 − f1)

= PrS(a0)

[
X =

(
0
1

)]
⇔

(1 − f0)(f1 − 1 + f1) > a0(f0f1 − 1 + f0 + f1 − f0f1) ⇔
(1 − f0)f̃1
f0 + f1 − 1

> a0

(
1
0

)
: Eve classifies

(
1
0

)
as cover when a0 > f0f̃1

f0+f1−1 := θ2.

PrC

[
X =

(
1
0

)]
=

f0(1 − f1)
!
> a0(1 − f0)(1 − f1) + (1 − a0)f0f1

= PrS(a0)

[
X =

(
1
0

)]
⇔

f0(1 − f1) − f0f1 > a0(1 − f0 − f1 + f0f1 − f0f1) ⇔
−f0f̃1

1 − f0 − f1
< a0

(
1
1

)
: Eve always classifies

(
1
1

)
as cover.

PrC

[
X =

(
0
0

)]
=

f0f1 > a0(1 − f0)f1 + (1 − a0)f0(1 − f1)

= PrS(a0)

[
X =

(
0
0

)]
,

since f0f1 > (1 − f0)f1 and f0f1 > f0(1 − f1).

Finally, θ1 < θ2 always holds, since (1 − f0) < f0. 
�
Theorem 1. The strategy (θ2, 1 − θ2) is a minimax strategy for Alice.

Proof. First, for each region, we compute the derivative of Alice’s payoff as a
function of a0 given that Eve always uses her best response. Then, we have that
Alice’s payoff is

– strictly increasing when a0 < θ1,
– strictly decreasing when a0 > θ2,
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(a) f0 = 0.7, f1 = 0.7
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Pr

(b) f0 = 0.7, f1 = 0.8

Fig. 2. Eve’s false positive rate (dashed line), false negative rate (dotted line) and her
overall misclassification rate (solid line) as a function of a1, assuming that Eve plays a
best response to Alice.

– and, when θ1 ≤ a0 ≤ θ2, it is strictly increasing if f0 �= f1, and it is constant
if f0 = f1.

Thus, we have that a0 = θ2 always attains the maximum. 
�
Note that embedding uniformly into both positions (a0 = 1

2 ) is optimal only
if the biases are uniform (f0 = f1); and embedding only in the first position
would be optimal only if the bias of the first position were zero (f̃0 = 0) or
if the bias of the second position were one (f̃1 = 1). This confirms the results
from [13], which also considers a two position game but allows Eve to look at
only one position.

Figure 2 depicts Eve’s error rates and the resulting overall misclassification
rate as a function of Alice’s strategy (a0, 1−a0). Figure 2(a) shows a homogeneous
f , while Fig. 2(b) shows a heterogeneous f . It can be seen that neither the false
positive rate (dashed line) nor the false negative rate (dotted line) is continuous
and that the discontinuities occur at the points θ1 and θ2, the points where Eve
changes her optimal decision rule. Nonetheless, the overall misclassification rate
(solid line) is continuous, which leads to the conclusion that this rate leverages
out the discontinuities and thus is a good measure of the overall accuracy of
Eve’s detector.

5.2 Eve’s Minimax Strategy

Theorem 2. Eve’s minimax strategy eminimax is eminimax

(
0
0

)
= eminimax

(
0
1

)
=

1, eminimax

(
1
1

)
= 0, and

eminimax

(
1
0

)
= p =

f̃0
f0 + f1 − 1

. (15)
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Proof. Since the game is zero sum, Eve’s strategy is a minimax strategy if Alice’s
minimax strategy is a best response to it [15]. Therefore, it suffices to show that
Alice has no incentives for deviating from her own minimax strategy when Eve
uses eminimax. Alice’s best response to eminimax is

argmax
a0∈[0,1]

{
− PrS(a0)

[
X =

(
0
0

)]
− PrS(a0)

[
X =

(
0
1

)]

+ (1 − 2p)PrS(a0)

[
X =

(
1
0

)]
+ PrS(a0)

[
X =

(
1
1

)] }

= argmax
a0∈[0,1]

{
− a0f0(1 − f1) − (1 − a0)(1 − f0)f1

− a0f0f1 − (1 − a0)(1 − f0)(1 − f1)

+ (1 − 2p)
[
a0(1 − f0)(1 − f1) + (1 − a0)f0f1

]
+ a0(1 − f0)f1 + (1 − a0)f0(1 − f1)

}
= argmax

a0∈[0,1]

{
a0 [2 − 4f0 − 2p (1 − f0 − f1)] + const(f, p)

}
.

If p = f̃0
f0+f1−1 , then the value of the above optimization problem does not

depend on a0. Consequently, Alice has no incentives for deviating from her mini-
max strategy. 
�

It follows immediately from the theorem that Eve’s minimax decision func-
tion is deterministic if and only if the cover is homogeneous (f0 = f1). This
is interesting from the perspective of practical steganography, as all practical
detectors are deterministic although embedding functions are pseudo-random
and covers are heterogeneous.

6 Conclusion

We analyzed a two-player game between Alice, a content-adaptive stegano-
grapher, and Eve, an unbounded steganalyst. In keeping with a strict applica-
tion of Kerckhoffs’ principle to steganography, we allowed Eve access to Alice’s
embedding strategy, the cover source distribution, and unbounded computa-
tional power. Under these assumptions, we formalized processes both for
constructing an optimal content-adaptive embedding strategy under the assump-
tion of an optimal classifier, and for constructing an optimal detector under the
assumption of an optimal embedding strategy.

Our formalism applies to arbitrary-sized cover sequences, although imple-
menting the formalism for large covers remains a computational challenge. For
the special case of a two-bit cover sequence, we exemplified an optimal classi-
fier/embedding pair, and illustrated its structure in terms of the classification
error rates.
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For the practical steganalyst, our results give direction to the optimal detec-
tion of strategic embedding. In particular, Eve’s optimal classifier should be
monotone in the cover’s predictability metric; and a deterministic classifier can
be sub-optimal for covers with heterogeneous predictability.

In our detailed analysis of length-two cover sequences, Alice’s optimal ran-
domized embedding strategy changed each part of the cover with some positive
probability, and we conjectured an analogous result for larger covers. It remains
for future work to prove our conjecture and more directly address the compu-
tational tractability of implementing optimal strategies. We seek to either find
computable mechanisms for implementing these strategies, or prove hardness
results showing that such mechanisms do not exist.
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