
Performance Analysis
of Cloud-Based Application

Peter Budai(B) and Balazs Goldschmidt

Department of Control Engineering and Informatics,
Budapest University of Technology and Economics, Budapest, Hungary

{budai,balage}@iit.bme.hu

Abstract. Cloud computing, and IaaS cloud services in particular suit
well to resource-intensive applications by offering on-demand allocation
of computing power, storage space and network bandwidth together with
pay-as-you-go billing system.

Typical cloud applications consist of several interdependent compo-
nents, all residing on one or more dedicated virtual computers. In order
to be able to accurately estimate the resource requirements of a specific
component, one must carry out detailed performance analysis.

In this paper, we present the general concepts and pitfalls of perfor-
mance analysis in the cloud environment. Then we present a lightweight
distributed framework that is capable of generating load to and collect-
ing performance metrics from the component instances. The capabilities
of our framework will be demonstrated on a case study of the scala-
bility analysis of a distributed MySQL relational database management
system.

Keywords: Cloud computing · Performance analysis · Load genera-
tion · Test framework

1 Introduction

From an emerging buzzword that it was a few years ago, cloud computing has
became a more widely accepted solution for cost-effective provisioning of com-
putational resources. The technology behind cloud computing is not completely
new, it links and wraps existing technologies such as hardware virtualization, grid
computing and service-oriented architectures. There is no universally acceptable
definition of cloud computing, in general we could say that it covers computing
power, storage capacity and software appearing as services. There is some dis-
tinguishing features that differentiates it from the aforementioned existing tech-
nologies like self-service operation, pay-per-use billing, elasticity, and options for
customization [6].

There are researches that investigate the possibility of using infrastructure
(IaaS) cloud computing services for resource-intensive scientific applications that
demonstrated practical examples of use [12], involved financial [7], and perfor-
mance [10] analysis of the field.

I. Lirkov et al. (Eds.): LSSC 2013, LNCS 8353, pp. 476–483, 2014.
DOI: 10.1007/978-3-662-43880-0 54, c© Springer-Verlag Berlin Heidelberg 2014



Performance Analysis of Cloud-Based Application 477

1.1 Performance Analysis in the Cloud

Being it a scientific or standard multi-tier web application, we believe that per-
formance testing and analysis plays an important role in resource and operational
cost planning. Popular public IaaS cloud providers, like Amazon [2] offer several
types of virtual resources each with a different pricing. To be able to make a well
established choice regarding the types and the number of virtual machines that
the application requires, resource consumption must be correctly measured for
its designed capacity and even beyond.

However, there are many difficulties that have to be addressed when perform-
ing performance tests for applications that are hosted on the cloud environment
compared to the traditional deployment model on physical servers. In the vir-
tualized environments the properties of the host system are usually completely
hidden from the end users, and it is not possible to obtain exact performance
metrics for virtualized resources like CPU and memory utilization or I/O usage,
or even deduce the status of the host system from the performance metrics
regarding the virtual machine.

Applications deployed into the cloud are often a subject to performance
degradation caused by the lack of resources which itself is caused by the behav-
ior of other virtual environments hosted on the same physical server, which is
called the noisy neighbor problem. Typical benchmarks are performed in sterile
environments and do not take this kind of background load into consideration.

The remainder of the paper is organized as follows. In Sect. 2 we introduce
our test framework for performance analysis of distributed systems. In Sect. 3
we present a case study to demonstrate the applicability of our framework on
a practical example. Section 4 contains an overview of related commercial and
academic solutions. The paper is closed with Sect. 5 presenting our conclusions
and future plans regarding the test framework.

2 Framework for Performance Testing

In this section we present a distributed test framework that aims to overcome the
difficulties discussed above by allowing the test engineer to generate various types
of artificial workloads on large number of remote computers simultaneously.

2.1 Architecture and Operation

The framework consists of highly autonomous software components called agents
that are deployed on all the virtual machines involved in the test. They form a
homogenous distributed framework, every target machine runs exactly the same
piece of agent software. To prevent unnecessary interference with the system
under test, the agents are designed to have low resource footprint when they
are idle. Basically, during their lifetime the agents are performing two kind of
operations, messaging and job execution, which are discussed in details below.



478 P. Budai and B. Goldschmidt

Messaging. The agents are exchanging information regarding their knowledge
about the statuses of the active agents and the currently executing jobs in
the system by sending and receiving messages to and from other agents.
Messages can be directed at a specific agent or a job within the agent, but
can be broadcasted to every agents and/or every jobs within an agent.

Job execution. The main task of the agents is to execute various types of jobs
determined by the user. Jobs are not scheduled, they are run parallel on
their own thread of execution. Jobs can be started or stopped dynamically
by sending an appropriate message to the agent. A special job called watchdog
is automatically started on all agents by default. The watchdog is responsible
for periodically connecting all known other agents and keeping their status
information up to date.

The agent continuously maintains a list of known peer agents based on status
information obtained from other agents. Upon startup, the agent connects to
an arbitrary agent on the network, signals its presence and requests peer infor-
mation. By propagating their peer list to each other, eventually all agents will
become aware of the complete network status, forming a fully connected net-
work of agents. The maximum number of peer requests needed for this process
is O(n2).

Suppose we have a fully connected network of N agents labelled a1, a2, . . . , an

and a new agent a0 joins the network by connecting to agent a0 and requesting
the peer information about all other agents. At this point (after one peer request)
only agents a0 and a1 are aware of the correct network status. Now the watchdog
job on an arbitrary agent a2 starts scanning all peers known to it (a1, a3, . . . , an)
one by one in unspecified order. In the worst case it takes N − 2 requests to
reach agent a1 and obtain information about the new agent a0. Now perform
this procedure on agent a3. This time there are 3 agents (a0, a1, a2) with up to
date information, thus it takes a maximum of N − 3 peer request for agent a3

to became up to date itself. If we repeat the procedure for all remaining agents,
the number of peer request in the worst case is

1 + (N − 2) + (N − 3) + . . . + 2 + 1 = 1 +
N−2∑

i=1

i = 1 +
(N − 2)(N − 1)

2
= O(N2)

This number could be greatly reduced using a more sophisticated algorithm
for peer status propagation – our ongoing work aims to employ an O(log N)
algorithm –, but it was not in focus upon design. The test framework only
requires a vertex-connectivity (κ) of 1 for correct operation, fully connected
agent network only serves fault tolerance purposes in case of one or more virtual
machines hosting the agents become unavailable.

After the initialization phase described above, any agent can serve as a gate-
way for sending control (e.g. starting and stopping jobs) or informational (e.g.
querying job status) messages to other agents in the network. The agents and
jobs are controlled via a command-line client interface which is built into the
agent software or can be run standalone.



Performance Analysis of Cloud-Based Application 479

2.2 Implementation

The framework was implemented in Java programming language. The main rea-
son we chose Java was the platform independence it provides, the agents run-
ning on different operating systems are able cooperate seamlessly. Java also
provides an easy-to-use, lightweight remote method invocation (RMI) library,
which serves as a basis of the messaging subsystem used in the test framework.
Request and response messages are transferred as arguments and return values
of standard RMI remote procedure calls.

Since it would be impossible to prepare for all existing test scenarios and load
generators, extensibility was key concern upon designing the test framework.
RMI ensures extensibility via dynamic classloading and class serialization. Test
authors are able to define new jobs and message types as standard Java classes
and utilize them in the test framework even without recompiling the agents.

2.3 Features and Benefits

When designing the test framework, our primary goal was to make it possible
to apply artificial load on several virtual machines simultaneously and have fine-
grained control over each load generator component. We distinguish two types
of artificial workloads:

In-band. In-band load is caused by the normal functionality of the application
being under test. Request numbers approximating or exceeding the designed
capacity may cause heavy load on the application. A practical example for
this is issuing a large number of HTTP requests towards a web server from
many clients.

Out-of-band. This type of load is independent of the application under test,
but it still affects its performance by using up shared resources on the vir-
tual host machine. For the hypothetic web server from above, a high I/O
demanding backup process run by the operating system is an example of
out-of-band load.

Our test framework supports generation of both load types. It features built-
in job types with either CPU-intensive or memory-consuming operations and
jobs that induce high disk or network I/O traffic. Built-in job types can be
parameterized which allows fine-grained control over the generated load volume.
Because of their dependence on the actual application under test, there are no
built-in jobs for generating in-band load, but the test framework is designed to
be easily supplemented with new job and message types that can be adapted for
a specific application domain.

These properties of the test framework allows us to effectively perform load
and stress tests on various cloud applications as it is demonstrated in the next
section.



480 P. Budai and B. Goldschmidt

3 Case Study — Performance Test of MySQL Cluster

In this section we present an example case study on the performance analysis
of a distributed application which employs the test framework for generating
in-band requests and collecting performance metrics.

3.1 MySQL Cluster

The MySQL Cluster is an open source distributed database management sys-
tem, which is a development branch of the popular MySQL database. The main
difference is the database engine, in the MySQL Cluster the NDB engine is used
instead of the usual InnoDB or MyISAM engines. MySQL Cluster offers high
availability, redundancy and increased performance for large number of parallel
transactions. One of the main distinguishing features of NDB is that it stores
all data in memory by default and only the transaction logs are written to the
disk.

A MySQL Cluster deployment consists of three different software compo-
nents which are usually deployed on separate physical or virtual servers that
are interconnected via high-speed TCP/IP network links. The three software
components are as follows.

Management node. This component is responsible for the entire system
administration. Its task is to register and manage all the other components
in the system and administer any changes in the architecture or the config-
uration parameters. It is required to run at configuration time but it does
not have any jobs during normal operation of the cluster besides monitoring
other nodes and receiving node logs.

Data node. This components stores all the actual data. A maximum of 48 data
nodes can be present in a cluster. The number of servers is defined by the
degree of redundancy and the amount of data that needs to be stored. For
an R-times redundancy a number of P × R servers are needed, where P is
a positive integer. The MySQL cluster divides the data to 2 × P partitions,
where every two partition is served by a node group containing R instances
as shown on the following figure. This structure provides the scalability and
high availability property of the database system, as it is able to serve SQL
request when one or more data nodes are down, provided that one data node
in each partition is still operational.

SQL node. This component acts as a traditional SQL server, it provides an
interface for the clients. This node interprets the incoming queries, com-
putes SQL execution plans and retrieves data from the data nodes. For load
balancing, higher throughput and fault tolerance purposes this component
could also be multiplied.

3.2 Configuration of the Test Framework

The performance test discussed in this section was intended to provide
performance and scalability metrics for the MySQL Cluster database manage-
ment system by measuring query execution times at various different system



Performance Analysis of Cloud-Based Application 481

Agent Agent

Agent Agent

Agent

Client nodes Data nodesSQL nodes

Management node

Controller

Fig. 1. Schematic configuration of the MySQL Cluster performance test showing the
virtual servers hosting each software component

configurations. Figure 1 shows an overview of the test configuration, which con-
sisted of several virtual machines hosted on the Amazon Elastic Compute Cloud
(EC2) [2]. Besides the virtual machines that hosted software components of the
MySQL Cluster, we have allocated multiple instances to act as database clients.
We have also implemented new specialized job types for performing different
types of SQL queries using the Java Database Connectivity (JDBC) API. These
jobs and related message classes were included in the test framework agents that
were deployed on the client nodes.

Upon initialization a sample database was created on the MySQL
Cluster, then all client nodes began to execute the query jobs simultaneously.
The client jobs selected a random SQL node for each query and measured the
execution time of it. A total of six query types were implemented, and they
were performed repeatedly by the corresponding jobs to minimize the effects
of transient errors: (a) inserting rows; selecting rows from a single table on (b)
indexed; or on (c) unindexed columns; (d) selecting rows from joined tables;
performing aggregation functions on (e) a single; or on (f) multiple joined
tables.

After the test run finished, the query execution time metrics were gathered
from the agents by the controller machine for further analysis.



482 P. Budai and B. Goldschmidt

3.3 Results

In order to comprehend scalability behavior of MySQL Cluster and identify key
factors on database performance, we have repeated the tests described above
with a total of 17 different configurations of MySQL Cluster. They consisted of
8–21 virtual machines and differed in redundancy level, partition count – these
two are directly affected by the number of data nodes –, and the number of SQL
nodes, and each were tested with a wide range of database sizes.

The output of the whole test procedure were performance metrics for over
350 000 SQL queries, a result which could have been hardly achieved without the
help of the test framework. The analysis of the resulting dataset showed that
database performance scales well with server number, but not with database
size. Further discussion of the results are out of the scope of this paper.

4 Related Work

There are many commercial test frameworks that are capable of load generation,
however, most of them focus on web applications specifically. AgileLoad [1] sim-
ulates end user activity and behavior that can even be automatically captured
instead of manual specification. Similarly to our solution, AgileLoad load injec-
tors are separate software components deployed on physical or virtual machines.
LoadImpact [4] is a SaaS solution for load testing websites, it runs entirely from
the cloud and does not employ any deployable client-side software. Keynote [3]
offers a similar service with an addition of geographically distributed load gen-
eration network.

This area is also the target of many academic research. Dumitrescu et al.
developed and used DiPerF [9,11], a distributed performance evaluation frame-
work with great success for performance analysis of client/server applications
running on various grid computing environments. DiPerF uses an approach very
similar to our framework, allowing users to submit workload generator jobs to
a pool of client agents and it also provides clock synchronization between the
clients, a feature which is not supported by our solution yet. However, unlike
our fully distributed and homogenous test framework, DiPerF relies on a single
central component to manage and control client components.

The CLIF [8] project aims to provide a generic, scalable, and user-friendly
platform for performance testing. Besides load injector components similar to
the jobs in our test framework, it features so called probes that can be deployed
either on the workload generator or the test target system and are constantly
collecting performance metrics.

5 Conclusions and Future Work

In this paper we have discussed that obtaining accurate performance metrics
for virtual machines and applications hosted on an IaaS cloud service has many
difficulties. Then we have presented a lightweight, distributed framework that is



Performance Analysis of Cloud-Based Application 483

capable of generating artificial load to simulate the cases that may cause perfor-
mance degradation of an application, caused by either normal operation or an
environmental factor unrelated to the application. As we have demonstrated on
a case study, our test framework suits well to perform load testing and perfor-
mance testing of practical applications.

Our ongoing work involves improving the messaging subsystem using peer-
to-peer (P2P) technologies, to avoid unnecessary network communications and
adding performance monitoring capabilities similarly to the idea presented by
Bizenhöfer et al. [5] to offer a more complete solution for performance analysis.

Acknowledgements. The work reported in the paper has been developed in the
framework of the project “Talent care and cultivation in the scientific workshops of
BME”. This project is supported by the grant TÁMOP-4.2.2.B-10/1–2010-0009.

References

1. AgileLoad website. http://www.agileload.com/ (2013). Accessed 15 Mar 2013
2. Amazon Elastic Compute Cloud website. http://aws.amazon.com/ec2/ (2013).

Accessed 15 Mar 2013
3. Keynote Internet Testing Environment website. http://kite.keynote.com/ (2013).

Accessed 15 Mar 2013
4. Load Impact website. http://loadimpact.com/ (2013). Accessed 15 Mar 2013
5. Binzenhöfer, A., Tutschku, K., Graben, B., Fiedler, M., Arlos, P.: A P2P-based

framework for distributed network management. In: Cesana, M., Fratta, L. (eds.)
Euro-NGI 2005. LNCS, vol. 3883, pp. 198–210. Springer, Heidelberg (2006)

6. Buyya, R., Broberg, J., Goscinski, A.: Cloud Computing: Principles and Para-
digms. Wiley, New York (2010). (Wiley Series on Parallel and Distributed Com-
puting)

7. Deelman, E., Singh, G., Livny, M., Berriman, B., Good, J.: The cost of doing
science on the cloud: the montage example. In: Proceedings of the 2008 ACM/IEEE
Conference on Supercomputing, SC ’08, pp. 50:1–50:12. IEEE Press, Piscataway,
NJ, USA (2008)

8. Dillenseger, B.: CLIF, a framework based on fractal for flexible, distributed load
testing. Ann. Telecommun. 64(1), 101–120 (2009)

9. Dumitrescu, C., Raicu, I., Ripeanu, M., Foster, I.: DiPerF: an automated distrib-
uted performance testing framework. In: Proceedings of 5th IEEE/ACM Interna-
tional Workshop on Grid Computing, pp. 289–296 (2004)

10. Ostermann, S., Iosup, A., Yigitbasi, N., Prodan, R., Fahringer, T., Epema, D.: A
performance analysis of EC2 cloud computing services for scientific computing. In:
Avresky, D.R., Diaz, M., Bode, A., Ciciani, B., Dekel, E. (eds.) Cloudcomp 2009.
LNICST, vol. 34, pp. 115–131. Springer, Heidelberg (2010)

11. Raicu, I., Dumitrescu, C., Ripeanu, M., Foster, I.: The design, performance, and
use of DiPerF: an automated distributed performance evaluation framework. J.
Grid Comput. 4(3), 287–309 (2006)

12. Vecchiola, C., Pandey, S., Buyya, R.: High-performance cloud computing: a view
of scientific applications. In: 2009 10th International Symposium on Pervasive Sys-
tems, Algorithms, and Networks (ISPAN), pp. 4–16. IEEE (2009)

http://www.agileload.com/
http://aws.amazon.com/ec2/
http://kite.keynote.com/
http://loadimpact.com/

	Performance Analysis of Cloud-Based Application
	1 Introduction
	1.1 Performance Analysis in the Cloud

	2 Framework for Performance Testing
	2.1 Architecture and Operation
	2.2 Implementation
	2.3 Features and Benefits

	3 Case Study --- Performance Test of MySQL Cluster
	3.1 MySQL Cluster
	3.2 Configuration of the Test Framework
	3.3 Results

	4 Related Work
	5 Conclusions and Future Work
	References


