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Abstract. In this article we present a performance study of our finite
element package Hierarchical Hybrid Grids (HHG) on current European
supercomputers. HHG is designed to close the gap between the flex-
ibility of finite elements and the efficiency of geometric multigrid by
using a compromise between structured and unstructured grids. A coarse
input finite element mesh is refined in a structured way, resulting in
semi-structured meshes. Within this article we compare and analyze the
efficiencies of the stencil-based code on those clusters.
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1 Introduction

In electro-chemistry, density functional theory (DFT) plays an important role as
a class of models to calculate the electrical potential imposed by the charges of
an ensemble of atom nuclei and electrons [7,11]. One essential step in the DFT
is the solution of the potential equation that reduces to Poisson’s equation in
the case of a homogeneous dielectricity coefficient [12]. However, often effects of
an ionic solvent with varying dielectricity cannot be neglected. The governing
equation in this case is given as

−∇ · k(x, y, z)∇u(x, y, z) = f(x, y, z), (1)

where k denotes the dielectricity constant, u the potential field and f the right-
hand side. For the sake of simplicity, we assume Dirichlet conditions at the
boundaries of the simulation domain Ω. The paper is structured as follows:

The remaining part of this section introduces the software package HHG
(Hierarchical Hybrid Grids), and three peta-scale class HPC systems. The sec-
ond section describes a novel hybrid parallelization strategy implemented within
HHG to allow extreme scale simulations on the clusters JUQUEEN and Super-
MUC. Scalability experiments and performance analysis on different clusters are
presented.
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Fig. 1. Splitting of two triangle input elements into HHG grid primitives after two
steps of refinement. Additionally, the memory representation of a refined triangle with
a 7-point stencil for the lower left inner point is sketched [9].

1.1 Parallel Multigrid with Hierarchical Hybrid Grids

For solving partial differential equations (PDEs), finite elements (FE) meth-
ods are a popular discretization scheme, since they allow flexible, unstructured
meshes. The framework HHG [2,8] is designed to combine the flexibility of the
FE method and the superb performance of geometric multigrid [3,10] by using
a compromise between structured and unstructured grids. A coarse input FE
mesh is organized into the grid primitives vertices, edges, faces, and volumes.
The primitives are then refined in a structured way (see Fig. 1), resulting in semi-
structured meshes. The regularity of the resulting grids may be exploited in such
a way that it is no longer necessary to explicitly assemble the global discretiza-
tion matrix. In particular, given an appropriate input grid, the discretization
matrix may be defined implicitly using stencils for each structured patch. Here
a stencil represents a row of the global stiffness matrix. Within HHG, we have
implemented an MPI1-parallel geometric multigrid method that operates on the
resulting block-structured grid hierarchy. The settings of the multigrid compo-
nents and parameters used in this paper are three Gauss-Seidel iterations for
pre- and post-smoothing steps, linear interpolation between six multigrid levels,
parallel Conjugated Gradient algorithm to solve the coarsest grid problem, and
direct coarse grid approximation with coefficient averaging.

The stencils can be stored in registers when the dielectricity is piecewise con-
stant, or it can be assembled on-the-fly for a variable dielectricity. In both cases
this results in a so-called matrix-free implementation. This can have significant
performance benefits since it reduces memory traffic, possibly at the expense of
redundant computations.

1.2 Architectures

Within this article we compare the performance of HHG on three European
supercomputers: JUGENE, JUQUEEN are both located at FZ Jülich, and

1 www.mcs.anl.gov/mpi

www.mcs.anl.gov/mpi
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Table 1. System overview of the IBM clusters JUGENE, JUQUEEN, and SuperMUC.

JUGENE JUQUEEN SuperMUC

System BlueGene/P BlueGene/Q System x iDataPlex
Processor IBM PowerPC 450 IBM PowerPC A2 Intel Xeon E5-2680
Clock frequency 0.85 GHz 1.6 GHz 2.8 GHz
Number of nodes 73 728 24 576 9 216
Cores per node 4 16 16
HW threads per Core 1 4 2
Memory per HW thread 0.5 GB 0.25 GB 1 GB
Network topology 3D torus 5D torus Tree
Gflop/s per Watt 0.44 2.54 0.94

SuperMUC is located in the LRZ supercomputing center in Garching. Table 1
presents a system overview of these clusters.

JUGENE, was the largest BlueGene/P installation with 294 912 compute
cores and 1 petaflop/s peak performance. Each node was equipped with a Pow-
erPC 450 quadcore processor running at a low clock frequency. The archi-
tecture provided a very high main memory performance. A three-dimensional
torus network in combination with a tree-based collective network was available
for communication. We were able to solve FE systems with in excess of 1012

degrees of freedom on JUGENE with the HHG package. We use these three
year old performance results obtained on JUGENE as reference for our new
results.

The BlueGene/Q system JUQUEEN is the successor of the JUGENE with a
peak performance of 5.9 petaflop/s. Although the clock-frequency still remains
relatively low, it is nearly doubled. Each of the 16 cores available for user appli-
cations has four hardware (HW) threads. The memory bandwidth has not scaled
up accordingly, but in order to compensate this disadvantage in part, e.g. the
prefetching and speculative execution facilities have been improved. The torus
network is extended to five dimensions for shorter paths, and the collective net-
work was fused into the torus network. The ratio of peak network bandwidth
node performance and peak floating point performance is only 50 % of that of
BlueGene/P. On the other hand, the cores within each node and consequently
the intra-node communication performance has drastically increased.

SuperMUC is a 3.2 petaflop/s IBM x iDataPlex cluster. This machine consists
of 18 thin islands, carrying 97.5% of total performance, and one fat island for
moderately parallel, memory intensive applications. Each thin island is equipped
with 512 compute nodes. Two sockets with Sandy Bridge-EP Intel Xeon E5-
2680 8C provide 16 physical cores. The Xeon processors deliver a significantly
higher core and node performance than the PowerPCs in the IBM architec-
tures, at the price of higher power consumption. The nodes within an island are
linked by an Infiniband non-blocking tree, whereas a pruned 4:1 tree connects all
islands.
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2 Porting Hierarchical Hybrid Grids to BlueGene/Q

For the substantial changes that were necessary to use HHG on more than 30 000
parallel threads, we refer to [9]. This includes the design of data structures for
generating tetrahedral input grids efficiently in parallel. However, for the current
and upcoming systems, this alone proved not to be sufficient and thus this paper
will present a new hybrid parallelization strategy.

The new system architectures with more powerful and complex compute
nodes make a hybrid parallelization approach especially attractive and poten-
tially profitable, since they provide better opportunities for a shared memory
parallelization via OpenMP2. Thus a hybrid parallelization strategy, including
message passing for coarse grain parallelism, and shared memory parallelism
within a node for finer scale parallel execution, has been found essential for
exploiting the full potential of architectures like JUQUEEN or SuperMUC.

In a pure MPI parallel setting, the available main memory per process is only
256 MB per process on JUQUEEN. This is too small for the three largest runs
described in the next sections. In contrast, a hybrid parallelization increases the
available main memory for each process. On SuperMUC, the scaling breaks down
when too many MPI processes are being used. A hybrid parallelization helps to
limit the total number of MPI processes and this helps to maintain scalability
for extreme size simulations.

The current OpenMP implementation in HHG supports parallelism inside
kernel executions and copy of ghost layers on several primitives. However, the
MPI instructions are executed asynchronously, but not explicitly OpenMP-
parallel. Further, OpenMP introduces an additional overhead for spawning
threads, which is especially critical on the coarsest grids, where the workloads per
thread is small. The quality of the MPI/OpenMP parallel execution is reflected
in Table 2. All runs up to the last two are executed by four threads per compute
core. From the timings we conclude that serial fraction of the code is still between
1 − 2%. We will use a hybrid parallelization with up to eight OpenMP-threads
for the largest parallel run on JUQUEEN in the following scaling experiment as
the performance loss is still not too high.

Table 2. Efficiency of the hybrid parallelization compared to a pure MPI parallel
approach on JUQUEEN for moderate problem sizes.

MPI OpenMP Runtime Efficiency MPI OpenMP Runtime Efficiency

processes threads (%) processes threads (%)

4 096 1 3.09 64 64 5.22 59

2 048 2 3.10 99

1 024 4 3.21 96 2 Threads/Core:

512 8 3.45 90 64 32 5.77 54

256 16 3.95 78 1 Threads/Core:

128 32 4.33 71 64 16 8.36 37

2 www.openmp.org

www.openmp.org
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Table 3. Weak scaling experiment on JUQUEEN solving a problem on the full machine

Number Number Time per Number Number Time per
of threads of unknowns V-cycle (s) of threads of unknowns V-cycle (s)

64 1.33 · 108 2.34 16 384 3.43 · 1010 3.15
128 2.67 · 108 2.41 32 768 6.87 · 1010 3.28
256 5.35 · 108 2.80 65 536 1.37 · 1011 3.39
512 1.07 · 109 2.82 131 072 2.75 · 1011 3.56

1 024 2.14 · 109 2.82 262 144 5.50 · 1011 3.68
2 048 4.29 · 109 2.84 524 288 1.10 · 1012 3.76
4 096 8.58 · 109 2.96 1 048 576 2.20 · 1012 4.07
8 192 1.72 · 1010 3.09 1 572 864 3.29 · 1012 4.03

2.1 Weak Scaling on JUQUEEN

This section shows the scalability of the HHG approach on a current cluster. The
program is compiled with the IBM XL compiler suite on both BlueGene clusters.
As a test case we use a piecewise constant dielectricity, and thus can use constant
stencils within each HHG block and each geometric primitive. Consequently, the
numerical efficiency is extremely high and in a relative sense, the communication
is very intensive. Therefore, this is quite a challenging setup for maintaining the
parallel scalability as we will show in the performance study in the next section.
Table 3 shows the run-time results of a scaling experiment. The smallest test
run already solves a system of slightly more than 108 unknowns and one V-cycle
takes approximately 2.3 s. Note that this is performed on a single compute node
on JUQUEEN, demonstrating the high efficiency of the HHG approach. In each
further row of the table, the problem size is doubled as well as the number of
nodes. This is a classical weak scalability test. The full machine could eventually
solve a linear system with 3.3 · 1012 unknowns, corresponding to more than 1013

tetrahedral finite elements. In total, this computation uses 300, out of the almost
400TB of main memory during the solution process.

Four hardware threads are necessary to saturate the performance of one
processor core, leading to a parallel execution of more than one million threads.
Although, the computational time increases only moderately, we note that the
coarse grid solver is only a straightforward Conjugated Gradient (CG) iteration.
Therefore in large runs, more than half a second of the V-cycle execution time
is spent in the increasing number of CG iterations on the coarsest grid, that
is caused by larger and larger coarse grids. This shows clearly, that for perfect
asymptotic scalability a better coarse grid solver would be necessary. Never-
theless, we believe that our results with the CG solver indicate clearly that
the coarse grid solver performance is not as critical for scalability, as has been
discussed in the older literature on parallel multigrid methods.
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Fig. 2. Parallel efficiencies on different supercomputers in a weak scaling on three
different supercomputers. The largest runs required a hybrid parallelization strategy.
Some hardware structures (node card, midplane, island) of the clusters can be identified
by the gradient of the parallel efficiency.

2.2 Comparison of Scalability Results on Other Peta-scale Clusters

In this section, we compare the parallel efficiency of our code on different HPC
clusters. In contrast to the BlueGene systems, the program is compiled with the
Intel compiler suite and IBM MPI for SuperMUC with -O3 -xavx compiler flags.
As reference, one V-cycle takes 4.25 s for JUGENE, and 1.18 s on SuperMUC
on one compute node. Figure 2 shows strong efficiency drops when advancing
from one node to several nodes. This is especially prominent on both BlueGene
systems. However, from there onwards to larger parallel runs, the parallel effi-
ciency stays nearly constant. Only the transition from a single Midplane on
BlueGene/P, or one Node Card on BlueGene/Q to larger sub-portions of the
architecture, induce again more significant performance drops. On SuperMUC
the efficiencies up to a quarter island (2.6 · 1010 unknowns) differ between the
multigrid cycles. We believe that this is caused by perturbations due to other
applications running simultaneously on the same island. From quarter of an
island to half of an island (5.2 · 1010 unknowns) the performance even improves.
However, when leaving a single island of the architecture, the parallel efficiency
drops significantly. This is likely caused by the reduced communication perfor-
mance beyond each island in the pruned 4:1 tree. For more than two islands we
also disable hyperthreading to obtain substantially more reproducible run-times.
In contrast to this observation, the run-times of both BlueGene machines remain
more stable for all problem sizes. SuperMUC presents the best parallel efficiency.
However, we could not map our mesh onto the torus networks, since the coarsest
mesh is basically unstructured.

First scaling experiments on SuperMUC showed a breakdown at 65 536 MPI
processes, resulting in roughly four times longer run-times, as well as fluctuations
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Table 4. Single node and parallel efficiencies (scaling), as well as power consumptions
of used parts of the clusters while running HHG.

JUGENE JUQUEEN SuperMUC

Single node
Peak flop/s (constant dielectricity) 6 % 7 % 12 %
Peak flop/s (variable dielectricity) 9 % 10 % 13 %
Peak bandwidth (constant dielectricity) 11 % 53 % 60 %

Parallel efficiencies (at ≈ 0.8 Pflop peak)
Scaling (constant dielectricity) 65 % 64 % 72 %
Scaling (variable dielectricity) 94 % 93 % 96 %
Scaling – without CG (constant dielectricity) 75 % 70 % 79 %
Number of processes 262 144 262 144 32 768
Energy improvement compared to JUGENE (const.) 1 6.6 4.7
Energy improvement compared to JUGENE (var.) 1 6.4 3.2

in the timings of up to 15 s between the single V-cycles compared to runs with
32 768 MPI processes. Figure 2 displays that there have already been problems
on 32 768 MPI processes (corresponding to 4.1 · 1011 unknowns or 4 islands).

The results on larger machine sizes use the hybrid parallelization that allows
us to execute the largest two runs with only 16 384 MPI processes, leading to
a significantly improved parallel efficiency. The largest run was carried out on
16 islands of the cluster. Different from the behavior of SuperMUC, the hybrid
parallelization on JUQUEEN, as used for the largest runs, clearly decreases the
parallel efficiency. However a hybrid parallelization is still necessary as explained
above in order to have enough main memory available.

Table 4 shows the single node performance, parallel efficiencies, and energy
consumptions relatively to JUGENE. The runs were carried out for a node allo-
cation providing ≈ 0.8 Pflop/s nominal peak. Even though a major design goal
of the BlueGene/P was to have a low energy consumption, the next genera-
tion could improve the energy consumption by a factor between six to seven
for our application. The SuperMUC turns out not to be as energy efficient as
JUQUEEN, however it does not require such a high degree of parallelism from
the application.

2.3 Single Node Performance Analysis

This section will analyze the single node performance as given in Table 4. This
is for the case of constant dielectricity.

On JUGENE one MPI process is assigned to each compute core. Since the
processors provide high memory bandwidth, codes tend to be more limited by
instruction throughput than by memory bandwidth. However, the kernel that
applies the stencil is affected on JUGENE from a serialization within the Pow-
erPC multiply-add instructions. Additionally, a correct memory alignment for
vectorized loads (for the SIMD units) is not assured due to the varying loop sizes
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that are caused by the tetrahedral macro elements. The limited-issue width and
the in-order architecture of the processor leads to further performance limita-
tions and eventually result in a node performance of only 6.1% of the peak
performance (see Table 4). This is for a complete multigrid cycle.

For a comparison, we refer to results of Datta et al. who present auto-
tuning results for an averaging 29-point stencil on this architecture [5,6]. Their
baseline implementation achieves about 0.035 GStencil/s updates which corre-
sponds to 7.7% of the peak performance for a reference (in-cache) implementa-
tion. Basically two of eleven optimization techniques (e.g. padding, core blocking,
software pre-fetching) techniques can achieve a significant speedup: common sub-
expression elimination and register blocking. While the first inherently cannot be
applied for our stencil, since we do not have redundant calculations, the register
blocking results in our case roughly in a speedup of two. In principle we could
use this code optimization, but it leads to very small sub-blocks that will suffer
from non-constant loop sizes. Moreover, the issue with serialization remains a
bottleneck, which is not the case for the averaging stencil.

On JUQUEEN, we assign one MPI process to each HW thread. The stream
benchmark shows that it is possible to run at a high fraction of ≈ 85 % of
the effective maximal memory bandwidth of 27.8 GB/s by using one process per
node. Two or four threads per node saturate the effective bandwidth completely.
Going from one to two threads per core, HHG gives a factor of two improve-
ment in performance. In these cases, the code is still instruction bound like on
BlueGene/P. Going from two to four threads per core, the additional speedup
is only a factor 1.3. Overall, in this case, a multigrid cycle utilizes in average
about 18.1 GB/s of the main memory bandwidth. Only by reducing the main
memory footprint and possibly improving the core performance itself, we see a
chance for further reductions of the execution time.

Similarly to the situation on JUQUEEN, the code is mainly memory band-
width limited on the SuperMUC node architecture. However, the nodes can
saturate the bandwidth better and its machine balance suits better the charac-
teristics of our code. Thus we achieve with a better flop/s performance than on
JUQUEEN. However, hyperthreading improves the performance only insignifi-
cantly by at most a few percent.

3 Conclusion and Future Work

We presented a weak-scaling comparison of HHG on three different HPC petaflop
clusters. To reach the full potential of the recent architectures, a hybrid paral-
lelization approach turned out to be necessary for the growing node-level par-
allelism to compensate memory limitations and maintain scalability. Recently,
we designed a Stokes solver for Earth mantle convection simulations [1,4] within
HHG utilizing the presented multigrid performance.
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