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Preface

The 9th International Conference on Large-Scale Scientific Computations
(LSSC 2013) was held in Sozopol, Bulgaria, during June 3–7, 2013. The conference
was organized and sponsored by the Institute of Information and Communication
Technologies at the Bulgarian Academy of Sciences.

Plenary Invited Speakers and Lectures:

– P. Bochev, Optimization-Based Modeling — a New Strategy for Predictive
Simulations of Multiscale, Multiphysics Problems

– M. Falcone, Recent Advances in the Approximation of Optimal Control Problems
via Dynamic Programming

– M. Mascagni, Monte Carlo Methods and Partial Differential Equations: Algorithms
and Implications for High-Performance Computing

– G. Haase, Multiple-GPU AMG Solver Environment for Biomedical Applications
– J. Pasciak, Variational Formulations of Problems Involving Fractional Order

Differential Operators

The success of the conference and the present volume are the outcome of the joint
efforts of many partners from various institutions and organizations. First thanks to all
the members of the Scientific Committee for their valuable contribution forming the
scientific face of the conference, as well as for their help in reviewing contributed
papers. We specially thank the organizers of the special sessions. We are also grateful
to the staff involved in the local organization.

Traditionally, the purpose of the conference is to bring together scientists working
with large-scale computational models in natural sciences and environmental
and industrial applications, and specialists in the field of numerical methods and
algorithms for modern high-performance computers. The invited lectures reviewed
some of the most advanced achievements in the field of numerical methods and their
efficient applications. The conference talks were presented by researchers from aca-
demic institutions and practical industry engineers including applied mathematicians,
numerical analysts, and computer experts. The general theme for LSSC 2013 was
Large-Scale Scientific Computing with a particular focus on the organized special
sessions.

Special Sessions and Organizers:

– Numerical Modeling of Fluids and Structures — J. Adler, X. Hu, P. Vassilevski,
L. Zikatanov

– Computational Electromagnetics — U. Langer
– Control and Uncertain Systems — M. Krastanov, V. Veliov
– Monte Carlo Methods: Theory, Applications and Distributed Computing — I. Dimov,

M. Nedjalkov, J.M. Sellier



– Recent Advances in High-Dimensional Approximation for PDEs with Random
Input Data — C. Webster

– Theoretical and Algorithmic Advances in Transport Problems — P. Bochev,
D. Ridzal

– Applications of Metaheuristics to Large-Scale Problems — S. Fidanova, G. Luque
– Modeling and Numerical Simulation of Processes in Highly Heterogeneous Media

— O. Iliev, R. Lazarov, J. Willems
– Large-Scale Models: Numerical Methods, Parallel Computations and Applications

— K. Georgiev, Z. Zlatev
– Numerical Solvers on Many-Core Systems — G. Haase
– Cloud and Grid Computing for Resource-Intensive Scientific Applications —

A. Karaivanova, T. Gurov, E. Atanassov

More than 150 participants from all over the world attended the conference
representing some of the strongest research groups in the field of advanced large-scale
scientific computing. This volume contains 74 papers by authors from more than 25
countries.

The 10th International Conference LSSC 2015 will be organized in June 2015.

January 2014 Ivan Lirkov
Svetozar Margenov

Jerzy Waśniewski

VI Preface
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Abstract. We present ideas and first results on a GPU acceleration
of a non-linear solver embedded into the biomedical application code
CARP. The linear system solvers have been transferred already in the
past and so we concentrate on how to extend the GPU acceleration to
larger portions of the code. The finite element assembling of stiffness
and mass matrices takes at least 50 % of the CPU time and therefore
we investigate this process for the bidomain equations but with focus
on later use in non-linear and/or time-dependent problems. The CUDA
code for matrix calculation and assembling is faster by a factor up to 90
compared to a single CPU core. The routines were integrated to CARP’s
main code and they are already used to assemble the FE matrices of the
bidomain model. Further performance studies are still required for the
bidomain-mechanics model.

1 Introduction

During the last years GPUs became very attractive to reduce simulation time
by porting linear solvers to the accelerator card. Due to the large problem size
multigrid methods have been preferred by parts of the community. GPU accel-
erated geometrical multigrid has been carefully investigated by several authors,
see [5,6] for structured grids and its further development for locally structured
grids in [3] as examples for success in a monolithic code. Starting from third
party demands and large unstructured discretizations, the algebraic multigrid
(AMG) has to be applied. Here, the authors proved one order of magnitude
acceleration by using GPUs [7,16] also in the multi-GPU context [13]. While the
AMG setup in our code still remains on the CPU there is an interesting attempt
to move also the AMG setup completely onto the GPU [1] but only with an
acceleration of two.

The situation changes when the linear solvers are embedded into a larger
framework. When solving the Bidomain equations to simulate cardiac electro-
physiology via the Finite Element Method, the stiffness and mass matrices have

I. Lirkov et al. (Eds.): LSSC 2013, LNCS 8353, pp. 3–14, 2014.
DOI: 10.1007/978-3-662-43880-0 1, c≥ Springer-Verlag Berlin Heidelberg 2014
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to be assembled only once, since the spatial domain is not modified during com-
putation. Thus, in this case, the assembly of the FE matrices it is not a bottle-
neck of computation. On the other hand, when solving the bidomain-mechanics
model, which involves non-linear elasticity, the FE matrices must to be updated
at each Newton step, as the spatial domain is deformed, which becomes very
expensive as the system increases in size. Therefore, it is the goal of this paper,
to implement a highly efficient FE assembly routine using CUDA [14] to increase
performance when solving this model. This paper investigates the GPU acceler-
ation for the FE matrix computation in the bidomain model in order to study
whether a GPU implementation might pay off for the real challenging bidomain-
mechanics equations [15].

We will introduce the bidomain model in Sect. 2 providing the equations for
the numerical tests. Section 3 starts with a brief primer on the simulation code
CARP and presents the strategy how to reduce critical data transfer between
CPU and GPU memory in the non-linear solver when AMG is used as linear
solver therein. The improvement of the FE matrix calculations by vectorization
and GPU acceleration is described in Sect. 4. The paper finishes with speedups
regarding the matrix computation and assembling on GPU and with some con-
clusions.

2 The Bidomain Model

The bidomain equations in the elliptic-parabolic form are given by
[−∇ · (σi + σe) ∇φe

−∇ · σb∇φe

]
=

[∇ · σi∇Vm + Ii
Ie

]
(1)

Im = (∇ · σi∇φi)

Im = Cm
∂Vm

∂t
+ Iion(Vm,η) − Ii (2)

dη

dt
= f(t,η) (3)

Vm = φi − φe (4)

where φi and φe are the intracellular and extracellular potentials, respectively,
Vm = φi − φe is the transmembrane voltage, σi and σe are the intracellular
and extracellular conductivity tensors, respectively, β is the membrane surface
to volume ratio, Im is the transmembrane current density, Ie are extracellular
stimuli applied in the extracellular space, Ii is an intracellular current stimulus,
Cm is the membrane capacitance per unit area, and Iion is the membrane ionic
current density which depends on Vm and a set of state variables, η which is
defined by f .

At tissue boundaries, no flux boundary conditions are imposed for φi, with
the potential φe and the normal component of the extracellular current being
continuous. At boundaries of the conductive bath surrounding the tissue, no flux
boundary conditions for φe are imposed.
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Combining the interstitial and bath spaces into the extracellular space, the
bidomain equations can be written as follows

− ∇ · σe∇φe = ∇ · σi∇φi + Ie (5)
βIm = ∇ · σi∇φi

Im = Cm
∂Vm

∂t
+ Iion(Vm,η) − Ii (6)

dη

dt
= f(t,η) (7)

Vm = φi − φe (8)

with no-flux boundary conditions imposed for φi and φe.
The matrix representation for the FE discretization for the bidomain equa-

tions, written for Vm and φe only, is given by

Kieφe = −P (KiVm) − MeIe (9)

KiVm = −βMiIm − Ki(PTφe) (10)

where K∗ and M∗ are stiffness and mass matrices, respectively, with ∗ = e|i
being either the extracellular space, Ωe, or the intracellular space, Ωi, P is a
prolongation operator from Ωi to Ωe and its transpose, PT , is a restriction
operator from Ωe to Ωi.

3 GPU Strategy for Non-linear FE Solvers

3.1 CARP Environment

The CARP environment [18,19] (Cardiac Arrhythmia Research Package) is a
collection of various contributors for the detailed simulation of cardiovascular
phenomena, see Fig. 1 for the software scheme. The gray box in the center con-
tains the kernel for the linear algebra that has to be combined with the non-linear
iteration in case of the bidomain-mechanics model. The FE assembly routine is
implemented within the CARP environment. The assembly involves the mod-
ule FEM, which comprises all the finite element computations, particularly the
stiffness and mass matrices assembly, and contains the “Matrix Market”, which
comprises matrix basic operations and is implemented within the Module FMa-
trix. This module is subject to GPU acceleration in this paper for the matrices
resulting from the bidomain equations (5). This is meant as a study whether a
GPU implementation might pay off for the real challenging bidomain-mechanics
equations, see [15]. We use unstructured tetrahedral FE meshes with linear test
functions.

3.2 Draft for a Non-linear Solver on GPUs

In the context of a non-linear setting where we have to solve frequently a linear
system as

K
⎧
uold

⎪
unew = f

⎧
uold

⎪
. (11)
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Fig. 1. Structure of the CARP code.

It makes not much sense to accelerate the application of the linear solver (cg with
AMG preconditioning) by a factor of 10 on the GPU when the setup of the
AMG solver as well as the re-calculation and the re-assembling of the stiffness
matrix K

⎧
uold

⎪
are still performed on the CPU. Additionally we have to avoid

costly data transfer between CPU and GPU memory. We should also take into
account that calculations are very fast on the GPU in contrast to the slow
performing search and reorder routines.

The CARP code does not use spatial adaptivity and therefore the topol-
ogy of the mesh will remain unchanged throughout the non-linear computation,
and even during the outer time integration. Therefore, we have to determine the
matrix pattern only once in a matrix setup on the CPU, afterwards transfer that
pattern once to the GPU and perform (re-)calculation and the (re-)assembling of
the stiffness on the GPU repeatedly. Clearly, that requires that the mesh infor-
mation and the material properties are also available in GPU memory. Section 4
will report on first experiences regarding the matrix calculation on GPU.

The AMG preconditioner setup contains parts which do not accelerate well
on a GPU [1] so a closer look at it is necessary. The AMG setup consists of the
following parts:

1. Find coarse/fine nodes.
2. Determine interpolation pattern.
3. Calculate interpolation matrix entries.
4. Determine coarse matrix pattern.
5. Calculate coarse matrix entries.
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Due to CPU performance issues items 2./3. as well as items 4./5. are handled
usually in one routine. In the CARP context we can again assume that material
anisotropies will not change dramatically, i.e., that the coarse/fine splitting will
remain the same in all (or many) non-linear steps. The same will be assumed for
the pattern determinations in items 2. and 4. This indicates a splitting of the
setup such that items 1., 2. and 4. are still performed once on the CPU while
items 3. and 5. can be handled very efficiently on the GPU. This splitting is still
subject to investigation.

4 FE Matrix Calculation on GPU

4.1 Stiffness Matrix

The entries of stiffness matrices K from (9) and (10) are computed as

K = {Ki,j} =
nElem−1⎨

e=0

Ke =
nElem−1⎨

e=0

⎧−Ce Ge CT
e vole

⎪
, (12)

where Ke is the stiffness matrix of element e, Ce is the matrix of basis coefficients,
G is the matrix of conductivity tensors and vol is the element volume [4,9,10].
Using tetrahedral elements, the basis coefficients of each element are given by
the inverse of the matrix

C−1
e =

⎡
⎢⎢⎣

1 x1 y1 z1
1 x2 y2 z2
1 x3 y3 z3
1 x4 y4 z4

⎤
⎥⎥⎦ (13)

The conductivity tensor of each element is computed as

G = gf f × f + gs s × s + gn n × n, (14)

for the orthotropic case, where f, s, n are the longitudinal, transverse and normal
eigenaxis, gf , gs, gn are the principal eigenvalues. The volume of each tetrahedra
is computed as vol = |det(Ce)|

6 .
The mass matrix M = {Mij} in (10) is also computed element wise and

simplifies to

Mij =

⎞⎟nElem−1
e=0 Me,ij = 2 factor vole, i = j⎟nElem−1
e=0 Me,ij = factor vole, i ∈= j

(15)

for linear elements with the factor depending on simple material coefficients.

4.2 The FMatrixArray Structure

The current interface between matrix element calculation and its accumulation
into the global matrix consists of a structure FMatrixArray containing a large
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array of size number of elements × number of nodes per element with some
additional information that stores all the element matrices. This allows to cal-
culate the elements matrices in parallel on many-core chips without fatal data
races. Additionally, all the information needed for element matrix calculation as
coordinates and material coefficients is also stored as FMatrixArray structures
with 1D arrays of appropriate size. Although this approach requires additional
temporal memory it outperforms the classical approach without redundant stor-
ing of input data and of accumulating the local entries directly into the global
matrix by a factor of 5 on a single CPU core.

Specialized explicit expressions were written to compute matrix determinant
and matrix inversion, which are the most expensive routines. An example of
the vectorized code using an FMatrixArray ent to compute the determinant
is shown below for a triangular element. The code for a tetrahedra looks the
same just much longer. Note that only local variables and explicit expressions
are used.

Listing 1.1. Code to compute matrix determinant (vole) for a triangular element

1 switch ( rows )
2 case 3 : {
3 for ( int i = 0 ; i < nmats ; i++) {
4 const Real a11 = ent [ i ∗matSize ] , a12 = ent [1+ i ∗matSize ] ,
5 a13 = ent [2+ i ∗matSize ] , a21 = ent [3+ i ∗matSize ] ,
6 a22 = ent [4+ i ∗matSize ] , a23 = ent [5+ i ∗matSize ] ,
7 a31 = ent [6+ i ∗matSize ] , a32 = ent [7+ i ∗matSize ] ,
8 a33 = ent [8+ i ∗matSize ] ;
9 det [ i ] = ( a12∗a23 − a13∗a22 )∗ a31

10 − ( a11∗a23 − a13∗a21 )∗ a32
11 + ( a11∗a22 − a12∗a21 )∗ a33 ;
12 }

This calculation of the determinant belongs to the volume computation in List-
ing 1.2. The code below gets the element list and the node list as input parameters
and computes all local stiffness matrices after the appropriate setup of volume,
Ce from (13) and G from (14) for each element. The Listing 1.1 is representative
for the data handling in all subroutines involved.

Listing 1.2. Code to compute element stiffness matrices Ke

1 int f l t e t F i l l L o c a l S t i f f n e s sMa t r i xA r r a y

2 ( const ElemList ∗ e l s t , const NodeList ∗n l s t ,

3 FMatrixArray ∗nodes , FMatrixArray ∗ c o e f f s ,

4 FMatrixArray ∗g , FMatrixArray ∗lK , Real ∗ vo l s )

5 {
6 f l f i l l N o d e s ( e l s t , nodes , n l s t ) ; // F i l l c o o r d i n a t e s

7 f l computeVolumes ( nodes , vo l s ) ; // Compute Volumes

8 FMatrix InvArray ( nodes , c o e f f s ) ; // Comp . Bas i s C o e f f i c i e n t s C e

9 Real pevs [ ] = {1 .0 , 1 . 0 , 1 . 0} ; // s imp l e ma t e r i a l parameters

10 fl getCondTensorGPU ( e l s t , g , pevs ) ; // Comp . Conduc t i v i t y Tensor G

11 f l i n t e g r a t e S t i f f n e s s ( lK , g , c o e f f s , vo l s ) ; // Comp . l o c a l ma t r i c e s

12 }

The calculation of the mass matrices is handled the same way.
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4.3 Implementation of the CUDA Kernels

Non-coalesced Memory Allocation and Access. Matrix entries (stored
linearly) are reordered as shown in Fig. 2, so that each thread has access to
the first element of its corresponding matrix in cache memory. In the GPU
implementation the stride value is 32, which is half the number of maximal
threads per block, i.e. 64 threads per block. When allocating memory for an
array in non-coalesced format the size of the memory chunk will depend also on
the size of this stride. Keeping arrays in both formats is important to obtain
maximum performance in both CPU and GPU, as the non-coalesced format is
inefficient in the CPU, but the most efficient in the GPU. Therefore, whenever
we copy data over to or from the GPU, a conversion routine has to be used.

Data Structure on the GPU. In order to copy data to the GPU, some
changes were required in the Element list and Nodes list structures implemented
in the standard code. In the standard code, this lists are implemented as general
structures holding detailed information about each element and node in the
mesh. In the CUDA version, this lists are implemented as one-dimensional arrays,
which size varies depending on the element type and number of elements in the
mesh. More detailed information is given below and in Fig. 3, where N and L
are the global and local indices describing each element, respectively; Lon, Sheet
and Sheet normal are the fiber orientation arrays; and Pts and Exp. Pts are the
arrays of points in regular and exploded format, respectively.

Element list: array of nodal (local or global) indices describing each element,
it is copied in non-coalesced form to the GPU.

Axes lists: arrays of longitudinal, sheet and sheet normal fiber orientations, it
is copied to the GPU in non-coalesced form.

Nodes list: an array of point coordinates is copied to the GPU in coalesced
form. Can be copied using the regular format, where each point is unique in the
list and the element list is used to access the nodes of each element, or in the
exploded format, where the points are duplicated and copied in element index
order. The latter one uses the nodal indices to describe the elements and the
nodes are duplicated in the array. In this case, the element list is not copied to
the GPU, as the nodes list can be accessed sequentially.

Fig. 2. Coalesced (top) versus non-coalesced (bottom) memory access. Matrix entries
are reordered using a predefined stride size.
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Fig. 3. Data structure organization in the GPU. Elements, axes and nodes lists are
structured as linear arrays.

Device Routines. For each kernel, an interface routine was implemented in C,
in which a structure with all kernel parameters is assembled before the kernel
is called. The kernel is then called with (p.nElem + N − 1)/ N blocks and N
threads per block. In this case, the total number of threads might be larger than
the number of elements, but only nElem threads execute the calculations.

In the device routines, i.e. the kernels, the start indexes are computed by
each thread for each array that is accessed in the routine. In the example below
(code 1.3), mStart, lStart and pStart stores the initial index of mPtr, dLon,
and pevs, respectively, for each thread. Local variables are used to access the
register directly. The calculations are done using explicit expressions to avoid
loops in the kernel routine. Again the following listing is representative for all
kernel routines needed in the element matrix calculations.

Listing 1.3. Kernel to compute conductivity tensor G

1 g l o b a l void
2 device f l getCondTensorGPU ( device f l getCondTensorGPU params p)
3 {
4 int mStart = p . msz∗ N∗blockIdx . x + ( threadIdx . x/ L )∗p . msz∗ L
5 + ( threadIdx . x% L ) ;
6 int l S t a r t = 3∗ N∗blockIdx . x + ( threadIdx . x/ L )∗3∗ L
7 + ( threadIdx . x% L ) ;
8 int pStart = 3∗ N∗blockIdx . x + 3∗ threadIdx . x ;
9 int maxsize = N∗blockIdx . x + threadIdx . x ;

10

11 i f ( maxsize < p . nElem) {
12 double f 1 = p . dLon [ l S t a r t ] ;
13 double f 2 = p . dLon [ l S t a r t+= L ] ;
14 double f 3 = p . dLon [ l S t a r t+= L ] ;
15

16 double g f = p . pevs [ pStart++];
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17 double gs = p . pevs [ pStart ] ;
18

19 // ( gf−gs )∗ f x f + gs ∗ I
20 p .mPtr [ mStart ] = f1 ∗ f 1 ∗( g f − gs ) + gs ;
21 p .mPtr [ mStart+= L ] = f1 ∗ f 2 ∗( g f − gs ) ;
22 p .mPtr [ mStart+= L ] = f1 ∗ f 3 ∗( g f − gs ) ;
23 p .mPtr [ mStart+= L ] = f1 ∗ f 2 ∗( g f − gs ) ;
24 p .mPtr [ mStart+= L ] = f2 ∗ f 2 ∗( g f − gs ) + gs ;
25 p .mPtr [ mStart+= L ] = f2 ∗ f 3 ∗( g f − gs ) ;
26 p .mPtr [ mStart+= L ] = f1 ∗ f 3 ∗( g f − gs ) ;
27 p .mPtr [ mStart+= L ] = f2 ∗ f 3 ∗( g f − gs ) ;
28 p .mPtr [ mStart+= L ] = f3 ∗ f 3 ∗( g f − gs ) + gs ;
29 }
30 }

Further Optimization. The computation of the matrix inverse for the
4 − by − 4 (tetrahedra) case exhibited register spilling, which was removed by
rearranging computations such that compiler generated temporary expressions
have been reused. Additionally we removed the asserting function, used to stop
the computations in case the determinant is zero. Memory (de)allocation over-
head was identified when computing the stiffness and mass matrix. Thus, the
memory (de)allocation calls were moved outside the main loop. Therefore, it is
only done once and it is not included in the final assembly times. When using
the nodes list with elemental indexing, as described in Sect. 4.3, the array with
the points was accessed via texture cache to compensate for the overhead of
accessing the nodes in non-sequential order. This approach saves memory, as
the points in the nodes list are not duplicated, and computation time is only
marginally affected.

4.4 Global Assembly

The accumulation of the element matrices stored in an FMatrixArray struc-
ture into one global matrices implemented within the parallel toolbox [12,13].
Therein the element matrix entries will be reordered according to their global
row and column indices such that these entries can be accumulated for each
global matrix entry in parallel afterwards. Again, the permutation vector for
this mapping is determined in an a priori setup. Another approach which would
save a lot of temporary memory requires the coloring of the finite elements
such that no data races will appear in the accumulation process. This has been
applied successfully on vector processors [17] as well as on GPUs [2] general
many-core environments [11]. Our own improved version of these parallel matrix
accumulations is still ongoing research.

5 Results

We used the following configuration for our experiments. The CPU was an Intel
Xeon E5645 with 6 cores (12 threads), clock Speed of 2.4 GHz, 12 MB of L2-
cache and 24 GB DDR3 memory with 32 GB/s of memory bandwidth. The GPU
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Table 1. Assembly time and speedup for two matrices in double precision.

n elements Time in seconds Speedup
Stiffness Mass Stiffness Mass
CPU GPU CPU GPU

12,500 0.007289 0.000216 0.002725 0.000131 33.74 20.80
50,000 0.034600 0.000517 0.013445 0.000239 66.92 56.25

112,500 0.078769 0.001038 0.030778 0.000439 75.88 70.11
450,000 0.312762 0.003712 0.124095 0.001373 84.26 90.38

1,250,000 0.745111 0.010108 0.300238 0.003620 73.71 82.93

is an NVidia GTX 680 with 1536 CUDA cores, 1006 MHz Base Clock and with
2048 GB GDDR5 memory with 192.2 GB/s of memory bandwidth. The Per-
formance was measured with one vectorized CPU core and compared to the
GPU CUDA code for tetrahedral meshes of different sizes. The .cu files, where
the GPU kernels are implemented, are compiled with NVCC using architecture
sm 20 and -O3 option. The .c files for the CPU are compiled with GCC, using
options -g -O3 -std=gnu99, but when compiling for the GPU, the output file of
the kernels and the CUDA libraries must be linked to the resulting output file
of the .c files.

The numerical tests have been performed for the bidomain equations (5)
and several discretization of the unit cube. The assembling process has been
performed 10 times in order to get average run times and all the data needed
have been initialized and transferred before the timing started. Table 1 presents
the assembly times of the CPU and GPU as well as the related speedups achieved
which are also depicted in Fig. 4. It can be concluded that the GPU speedup is
approximately 80 for larger numbers of tetrahedrals and up even 90 for the
assembling of the simpler mass matrices. If we assume a perfect speedup of 8
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Fig. 4. Speedup of GPU vs. one CPU core for assembling routines in double precision.
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when all 8 CPU cores are used then a quite good GPU speedup of 10 still
remains. Our algorithms are bandwidth limited and therefore the 8 CPU cores
sharing that bandwidth will perform worse. Therefore, even a (good) consumer
card as the GTX 680 achieves a significant speedup for matrix calculation and
assembling in double precision.

6 Conclusion

The implementation of the FE matrices assembly using vectorized code for the
CPU and CUDA for the GPU has proved to be highly efficient, with the CUDA
code reaching a maximum speedup of 90. On the other hand, it appears that
there is a limit in performance when using CUDA, as the speedup drops when
a mesh with more than 450000 elements is used. This might be due to memory
bandwidth limitation, as only a limited number of threads can have access to
the cache memory at the same time. The work presented is still ongoing.

Nevertheless, we expect that vectorized code as well as the CUDA codes will
increase performance when used within the mechanical model, where the matri-
ces have to be re-assembled at each step. Moreover, the modifications required
in the main branch to include the new implementation are minimized by mod-
ularity, and only a few routines within FEM and FMatrix have to be modified.
The next step will consist in applying the described methodology to mechanical
problems and test the bidomain-mechanical problem [15] on NVidia’s Tesla 20K
with eight time more double precision compute units available. Together with
the already available a priori calculation of the matrix patterns and the splitting
of the AMG preconditioner setup the whole non-linear iteration in the solution
process of the bidomain-mechanical problem should run on the GPU.
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Abstract. This survey paper presents recent advances for the numer-
ical solution of Hamilton-Jacobi-Bellman equations related to optimal
control problems. The Dynamic Programming approach suffers for the
“curse of dimensionality” and the solution of the nonlinear partial dif-
ferential equations characterizing the value function of optimal control
problems in high dimension is out of reach. However, a combination of
various techniques can circumvent this difficulty and find the solution
of optimal control problems up to dimension 10, a range of dimensions
which could be enough for many applications. We illustrate here some of
these techniques: patchy domain decomposition, fast marching and fast
sweeping and an acceleration method based on the coupling between
value and policy iteration. Numerical examples will illustrate the main
features of those methods.

1 Introduction

The numerical solution of partial differential equations obtained by applying the
Dynamic Programming Principle (DPP) to nonlinear optimal control problems
is a challenging topic that can have a great impact in many areas, e.g. robot-
ics, aeronautics, electrical and aerospace engineering. Indeed, by means of the
DPP one can characterize the value function of a fully nonlinear control prob-
lem (including also state/control constraints) as the unique viscosity solution
of a nonlinear Hamilton-Jacobi equation, and, even more important, from the
solution of this equation one can derive the approximation of a feedback control.
This result is the main motivation for the PDE approach to control problems
and represents the main advantage over other methods, such as those based on
the Pontryagin minimum principle. It is worth to mention that the characteriza-
tion via the Pontryagin principle gives only necessary conditions for the optimal
trajectory and optimal open-loop control. Although from the numerical point
of view the control system can be solved via shooting methods for the associ-
ated two point boundary value problem, in real applications a good initial guess
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for the co-state is particularly difficult and often requires a long and tedious
trial-error procedure to be found.

In this paper we focus our attention on efficient methods to implement the
DP approach for nonlinear control problems governed by ordinary differential
equations. In particular, our presentation will be centered on the minimum time
problem, which is associated to the following Hamilton-Jacobi-Bellman equation

{
max
a∗A

{−f(x, a) · ∇u(x)} − 1 = 0 , x ∈ R
d\T

u(x) = 0 , x ∈ T (1)

where d is the dimension of the state, A ⊂ R
m is a compact set defining the

admissible controls, T is the target set to be reached in minimal time and f :
R

d × A → R
d is the dynamics of the system. For this classical problem the

value function T : R
d → R at the point x is the minimal time to reach the

target starting from x (note that T (x) = +∞ if the target is not reachable).
For numerical purposes, the equation is solved in a bounded domain φ ⊃ T , so
that also boundary conditions on σφ are needed. A rather standard choice when
one does not have additional informations on the solution and deals with target
problems is to impose state constraints boundary conditions.

The techniques used to obtain a numerical approximation of the viscosity
solution of Eq. (1) have been mainly based on Finite Differences [12,22] and
Semi-Lagrangian schemes [15,17]. It is rather important to note that traditional
approximation schemes presented for example in [12] and [15] are based on a
fixed point iteration scheme, which computes the solution at each node of the
grid at every iteration. Denoting by M the number of nodes in each dimension
and considering that the number of iterations needed for convergence is of order
O(M), the total cost of this full-grid scheme is O(Md+1). We easily conclude
that this algorithm is very expensive when the state dimension is d ≥ 3, although
it is rather efficient for low dimensional control problems as shown in [15] (see
also the book [17]).

The “curse of dimensionality” is a typical drawback of Dynamic Program-
ming and can not be eliminated. However, several techniques have been intro-
duced in order to solve the DP equations in a rather high dimension (see [10] for
a first tentative in this direction). Typically 1 ≤ d ≤ 10 is an interesting range
which can allow to solve many problems coming from applications, moreover a
model reduction technique can be applied to the original dynamics in order to
get a new dynamical system of lower dimension still catching the behavior of the
dynamics. This remark is the main motivation which has driven the search for
new computational techniques aimed to accelerate convergence and/or to reduce
the memory allocation requirements.

Let us give some examples. One possible strategy is based on the decom-
position of the domain φ. The problem is actually solved in subdomains φj ,
j = 1, . . . , R, whose size is chosen in order to reduce the number of grid nodes to
a manageable size. Therefore, rather than solving a unique huge problem, one can
solve R smaller subproblems working simultaneously on several processors. This
produces a simple parallel algorithm. Depending on the choice of the subdomains
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φj we can have some overlapping regions or a number of interfaces between the
subdomains. The presence of interfaces and/or overlapping regions is a delicate
point, since at each iteration of the algorithm it will be necessary to exchange
information between processors to properly define the values at the interfaces.
Without this communication the result will not be correct. The interested reader
can find in the book [26] a comprehensive introduction to domain decomposition
techniques, whereas for an application to Hamilton-Jacobi equations we refer to
[8,18]. In this approach the choice of the division into subdomains is aimed
to choose rather simple boundaries and geometries (typically an hypercube is
divided into small hypercubes). A recent improvement has been made in [9] try-
ing to adapt the geometry to the optimal dynamics of the system in order to
obtain a subdivision made by “almost” invariant subdomains (the patches), this
allows to eliminate the transmission load due to the exchange of informations
between different processors. Previous patchy decompositions based on different
ideas have been proposed first by Navasca and Krener in [20].

Another proposal to reduce the computational effort is the so-called Fast
Marching method introduced in [25,27]. While the full-size grid is always allo-
cated, the computation is restricted to a small portion of the grid, thus saving
CPU time. The cost of this method is of order O(Md log Md). In the original
version, the Fast Marching method was derived for the Eikonal equation, corre-
sponding (under a suitable change of variable) to Eq. (1) with f(x, a) = a and
A = Bd(0, 1), the unit ball in R

d centred in 0 (see [14] for details). Despite
the efficiency of the Fast Marching method, at present its application to more
general equations of the form H(x, u(x),∇u(x)) = 0 is not an easy task and
it is still under investigation (see [7,11,13,23]) because the causality principle
which is behind the ordering of the grid nodes is not easy to detect for gen-
eral control problems. Other methods have been proposed exploiting the idea
that one can accelerate convergence by alternating the order in which the grid
nodes are visited giving rise to the so-called “sweeping methods”. These meth-
ods do not require a special ordering of the grid nodes and are somehow blind,
so it could be difficult to prove that they converge after a finite number of
sweeps. However, they are easy to implement and they have been shown to
be efficient for the Eikonal equation [28] and, more recently, for rather general
Hamiltonians [24].

The third method is based on a coupling between two classical methods:
value and policy iteration. It is well known that the value iteration is globally
convergent but the rate of convergence is rather slow, whereas the policy itera-
tion is locally convergent with a super-linear (or quadratic) rate of convergence.
Then, a natural idea is to combine these methods in order to obtain a glob-
ally convergent method which starts using the value iteration to switch into the
policy iteration when it reaches a “small” neighborhood of the solution.

The survey is organized as follows. Section 2 is devoted to the general presen-
tation of two computational methods: the value iteration and the policy iteration.
The semi-Lagrangian scheme associated to these methods will be the first build-
ing block for the following improvements. Section 3 is devoted to the patchy
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domain decomposition method. Section 4 will briefly sketch Fast Marching and
Fast sweeping methods. Finally, Sect. 5 is devoted to an acceleration method
based on the coupling between value iteration and policy iteration.

2 Two Classical Algorithms for Dynamic Programming

In this section we will summarize the basic results for the two methods as they
will constitute the starting point for our new algorithms. The essential features
will be briefly sketched, more details can be found in the original papers and in
some monographs, e.g. in the classical books by Bellman [6], Howard [19] and
for a more recent setting in the framework of viscosity solutions in [3,15]. Let us
present the method for the minimum time problem where the dynamics is

{
ẏ(t) = f(y(t), ∂(t))
y(0) = x

(2)

where y ∈ R
d, ∂ ∈ R

m and ∂ ∈ A ≡ {a : R+ → A, measurable}. If f is Lipschitz
continuous with respect to the state variable and continuous with respect to
(x, ∂), the classical assumptions for the existence and uniqueness result for the
Cauchy problem (2) are satisfied. To be more precise, the Carathéodory theorem
implies that for any given control ∂(·) ∈ A there exists a unique trajectory y(·;∂)
satisfying (2) almost everywhere. Changing the control policy the trajectory will
change producing a family of infinitely many solutions of the controlled system
(2) parametrized with respect to ∂.

In the minimum time problem one has to drive the controlled dynamical
system (2) from its initial state to a given target T . Let us assume that the
target is a compact subset of Rd with non empty interior and piecewise smooth
boundary. The major difficulty dealing with this problem is that the time of
arrival to the target starting from the point x and applying the control strategy
∂, denoted by t(x, ∂(·)), can be infinite at some points (if the strategy does not
bring to T ), i.e.

t(x, ∂(·)) :=

{
inf

α∗A
{t ∈ R+ : y(t, ∂(·)) ∈ T } if y(t, ∂(t)) ∈ T for some t ,

+∞ otherwise ,
(3)

As a consequence, the minimum time function defined as

T (x) = inf
α∗A

t(x, ∂(·)) (4)

is not defined everywhere if some controllability assumptions are not satisfied.
In general, this is a free boundary problem where one has to determine at the
same time, the couple (T,φ), i.e. the minimum time function and its domain.
Nevertheless, by applying the Dynamic Programming Principle and the so-called
Kruzkov transform

v(x) ≡
{

1 − exp(−T (x)) for T (x) < +∞
1 for T (x) = +∞ (5)
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the minimum time problem is characterized in terms of the unique viscosity
solution of {

v(x) + sup
a∗A

{−f(x, a) · Dv(x)} = 1 in R\T
v(x) = 0 on σT ,

(6)

The semi-Lagrangian scheme for the approximation of (6) is obtained coupling a
discretization in time along the trajectories with a local reconstruction in space
via interpolation. Several coupling are possible and the interested reader can
find in [17] all the details. Here we just sketch the one dimensional case where
the integration along the trajectory is obtained using the Euler method. We
introduce a grid G on φ with nodes xi, i = 1, . . . , N . Without loss of generality,
throughout this paper we will assume that the numerical grid G is a regular
equidistant array of points with mesh spacing denoted by Δx. We also denote
by G̊ the internal nodes of G and by σG its boundary, whose nodes act as
ghost nodes. We map all the values at the nodes onto a N -dimensional vector
U = (U1, . . . , UN ). Let us denote by hi,a > 0 a (fictitious) time step, possibly
depending on the node xi and control a, and by k = Δx > 0 the space step.
For every internal node of the grid we follow the dynamics using one step of the
Euler scheme [4,5] then we compute the values at the points xi +hi,af(xi, a) via
an interpolation operator denoted by I[U ] [15]. Finally, we obtain the following
scheme in fixed point form for of (6)

U = F (U) , (7)

where F : [0, 1]N → [0, 1]N (due to the Kruzkov change of variable) is defined
componentwise by

[F (U)]i =

⎧⎪⎨
⎪⎡

min
a∗A

{I [U ] (xi + hi,af(xi, a)) + hi,a} xi ∈ G̊ \ T ,

0 xi ∈ T ,
1 xi ∈ σG .

The interpolation operator I[U ] : φ → R extends the discrete value function
U to the whole space φ. In order to fix the ideas, one should think to the
linear interpolation in R

d described in [10] but other choices are possible [17].
We choose the time step hi,a such that |hi,af(xi, a)| = k for every i = 1, . . . , N
and a ∈ A, so that the point xi +hi,af(xi, a) falls in one of the first neighboring
cells. In the simplest case, the minimum over A is evaluated by direct comparison,
discretizing the set A with Nc points but other (more expensive and accurate)
methods are available. Note that defining F (U) = 1 on σG corresponds to impose
state constraint boundary conditions. The final iterative scheme reads

U (n+1) = F (U (n)) , U (0) =
{

0 on T
1 otherwise . (8)

We refer to [15,17] for details on the building blocks of this construction and for
the convergence analysis. With the discrete value function U in hand, we can
obtain a feedback map Ωh : φ → A just defining

Ωh(x) := arg min
a∗A

{I[U ](x + hx,af(x, a)) + hx,a} . (9)
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Under rather general assumptions (see [16]), it can be shown that this is an
approximation of the feedback map constructed for the continuous problem.
A detailed discussion on the construction of feedback maps via the value function
is contained in [3, p. 140–143]. It is important to note that weak convergence
results apply also for Lipschitz continuous value functions.

Then, the value iteration based on the semi-Lagrangian method leads to
following iterative scheme:

Data: Mesh G, Δt, initial guess V 0, tolerance δ.
forall the xi ∈ T do

set Vi = 0
end
forall the xi ∈ σG do

set Vi = 1
end

while ||V k+1 − V k|| ≥ δ do
forall the xi ∈ G do

V k+1
i = min

a∗A
{e−ΔtI

⎢
V k

⎣
(xi + Δtf (xi, a)) + 1 − e−Δt}

end
k = k + 1

end
Algorithm 1: (VI) Value Iteration method for minimum time problem

Here V k
i represents the values at a node xi of the grid at the k-th iteration and

I is an interpolation operator acting on the values of the grid.
Algorithm 1 is referred in the literature as the value iteration method because,

starting from an initial guess V 0, it modifies the values on the grid according
to the nonlinear rule in the loop. It is well-known that the convergence of the
value iteration can be very slow, since the contraction constant e−Δt is close to 1
when Δt is close to 0. This means that a higher accuracy will also require more
iterations. Then, there is a need for an acceleration technique in order to cut the
link between accuracy and complexity of the value iteration. Note that similar
ideas can be applied to other classical control problems with small changes [17].

A classical acceleration technique is the approximation in the policy space
(or policy iteration), it is based on a linearization of the Bellman equation.
This method is due to Howard [19] and dates back to the origin of dynamic
programming. First, an initial guess for the control for every point in the state
space is chosen. Once the control has been fixed, the Bellman equation becomes
linear (no search for the minimum in the control space is performed), and it is
solved as an advection equation. Then, an updated policy is computed and a
new iteration starts. This leads to the following algorithm.

Note that the solution of the policy evaluation step can be obtained either
by a linear system (assuming a linear interpolation operator) or as the limit

V k = lim
m→+∞ V k,m , (10)
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Data: Mesh G, Δt, initial guess V 0, tolerance ε.
forall the xi ∈ T do

set Vi = 0
end
forall the xi ∈ ∂G do

set Vi = 1
end

while ||V k+1 − V k|| ≥ ε do

Policy evaluation step:

forall the xi ∈ G do

V k
i = Δt + e−ΔtI

[
V k
] (

xi + Δtf
(
xi, a

k
i

))
end
Policy improvement step:

forall the xi ∈ G do

ak+1
i = arg min

a

{
Δt + e−ΔtI

[
V k
]
(xi + Δtf(xi, a))

}
end
k = k + 1

end

Algorithm 2: (PI) Policy Iteration method for the minimum time problem

of the linear time-marching scheme

V k,m+1
i = Δt + e−ΔtI

⎢
V k,m

⎣ ⎤
xi + Δtf

⎤
xi, a

k
i

⎥⎥
. (11)

Although this scheme is still iterative, the lack of a minimization phase makes
it faster than the original value iteration. The sequence {V k} turns out to be
monotone decreasing at every node of the grid. At a theoretical level, policy
iteration can be shown to be equivalent to a Newton method, and therefore,
under appropriate assumptions, it converges with quadratic speed (see [21]). On
the other hand, convergence is local and this may represent a drawback with
respect to value iterations.

3 The Patchy Domain Decomposition

In this section we introduce our new domain decomposition method for solving
equations of Hamilton-Jacobi-Bellman type, in particular (6). The main feature
of the new method is the technique we use to construct the subdomains of the
decomposition, which are approximate “patches” in a sense inspired by Ancona
and Bressan [2] in their study of feedback stabilization. They introduced and
investigate the properties of a particular class of discontinuous feedbacks, the
so-called patchy feedbacks.

The following definition gives the fundamental concept of a patch.

Definition 1. Let φ ⊂ R
d be an open domain with smooth boundary σφ and

f be a smooth vector field defined on a neighborhood of φ. We say that the pair
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(φ, f) is a patch if φ is a positive-invariant region for f , i.e. at every boundary
point y ∈ σφ the inner product of f with the outer normal n satisfies

∅f(y), n(y)〉 < 0.

By means of a superposition of patches, we get the notion of a patchy vector
field on a domain φ ⊂ R

d and they have shown that these can be used to
define discontinuous feedbacks stabilizing the system. However, their method is
not constructive so an effort has been made to transform this approach into
an algorithm. Clearly, from the numerical point of view, the approximation will
produce patches which will be “almost invariant” with respect to the optimal
dynamics driving the system. Their boundaries can be rather complicated, but
this has the advantage that we do not need to apply any transmission condition
between them.

Following [9], let us introduce two rectangular (structured) grids. The first
grid should be rather coarse because it is used for preliminary (and fast) com-
putations only. It will be denoted by ⎦G and its nodes by ⎦x1, . . . , ⎦x ˜N , where ⎦N
is the total number of nodes. We will denote the space step for this grid by⎦k := Δxcoarse and the approximate solution of the Eq. (6) on this grid by ⎦UP .

The second grid is instead fine, being the grid where we actually want to
compute the numerical solution of the equation. It will be denoted by G and its
nodes by x1, . . . , xN , where N is the total number of nodes (N>> ⎦N). We will
denote the space step for this grid by k := Δxfine and the solution of the Eq. (6)
on this grid by UP . We also choose the number R of subdomains (patches) to
be used in the patchy decomposition and we divide the target φ0 in R parts
denoted by φj

0, with j = 1, . . . , R.
The patchy method can be described as follows.

Patchy Algorithm

Step 1. (Computation on ⎦G). We solve the equation on ⎦G by means of the clas-
sical domain decomposition algorithm (e.g. where the subdomains are
rectangles). For coherence we choose the (static) decomposition made
by R subdomains (as the number of patches). This leads to ⎦UP .

Step 2. (Interpolation on G). We define the function U
(0)
P on the fine grid G

by interpolation of the values ⎦UP . Then, we compute the approximate
optimal control

⎦a∅(xi) = arg min
a∗A

{I[U (0)
p ](xi + hi,af(xi, a)) + hi,a} , xi ∈ G. (12)

Even if ⎦a∅ is defined on G, we still use the symbol “tilde” to stress that
optimal controls are computed using only coarse information. We delete⎦G and ⎦UP .

Step 3. (Main cycle) For every j = 1, . . . , R,
Step 3.1. (Creation of j-th patch). Using the (coarse) optimal control ⎦a∅, we

find the nodes of the grid G that have the part φj
0 of the target in
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their numerical domain of dependence. This procedure defines the
j-th patch, naturally following the (approximate) optimal dynamics.
This step will be detailed later in this section.

Step 3.2. (Computation in j-th patch). As initial guess we initialize the j-th
solution equal to +∞ on the j-th patch and equal to 0 on the part
φj

0 of the target. Then, we apply iteratively the scheme (8) in the
j-th patch until convergence is reached. Finally, the j-th solution is
copied in the matrix that will contain the global solution UP .

Details on Step 3.1. The basic idea we adopt here is to divide the whole
domain starting from a partition of the target only, and let the dynamics make
a partition of the rest of the domain. To this end we use the approximation of the
optimal control given by ⎦a∅ to obtain a domain decomposition fully compliant to
the dynamics. More precisely, we divide the target φ0 in R parts, each associated
to a colour indexed by a number j = 1, . . . , R. Assume for instance that φ0 is
a ball at the center of the domain and focus on the subset of the target with a
generic colour j, denoted by φj

0, see Fig. 1(a). The goal is to find the subset of
the domain φ which has φj

0 as numerical domain of dependence. To do that, we
initialize the grid nodes with the values λi as follows:

λi =
{

1 , xi ∈ φj
0

0 , xi ∈ G\φj
0

, i = 1, ..., N.

Then we solve the following ad hoc discrete equation,

λi = I[λ](xi + hif(xi,⎦a∅(xi))) , i = 1, ..., N, (13)

which is similar to the fixed-point scheme (7) for the main equation. Here hi > 0
is chosen in such a way that |hif(xi,⎦a∅(xi))| = k. Once the computation is
completed, the whole domain will be divided in three zones:

Λj
1 = {xi : λi = 1} , Λj

2 = {xi : λi = 0} , Λj
3 = {xi : λi ∈ (0, 1)} ,

see Fig. 1(b). Note that Λj
3 will be nonempty because the interpolation operator

I in the scheme (13) mixes the values λi through a convex combination, thus
producing values in [0, 1] even if the initial datum is in {0, 1}. Since we need a
sharp division of the domain, we “project” the colour j into a binary value

⎞λi =
{

1 , λi ≥ 1
2

0 , λi < 1
2

, i = 1, ..., N (14)

and then we define the subdomain φj = {xi ∈ G\φj
0 : ⎞λi = 1} as the j-th

patch, see Fig. 1(c). Once all the patches j = 1, . . . , R are computed, they are
assembled together on the grid G. Thus the grid results to be divided into R
patches, each associated to a different colour, as shown in Fig. 1(d). Note that
the boundaries of every patch are aligned with the coordinate axes.

The main point here is that the patches φj ’s are constructed to be invariant
with respect to the optimal dynamics, meaning that the solution of the equation
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(a) (b)

(c) (d)

Fig. 1. Creation of patches for a test dynamics, R = 4, Ω0 =small ball in the centre:
(a) Select a subdomain Ωj

0 of the target Ω0. (b) Find the nodes which depend, at least
partially, on Ωj

0. (c) Define Ωj projecting the color in a binary value. (d) Assemble all
patches.

in each patch will not depend on the solution in other patches. This is equivalent
to state that there is no crossing information through the boundaries of the
patches.

We stress that Step 3.1 of the algorithm is not expensive, even if it is
performed on the fine grid G. The reason for that is the employment of the
pre-computed optimal control ⎦a∅ in the Eq. (13), which avoids the evaluation
of the minimum (see the scheme (8)). Moreover, the stopping rule for the fixed
point iterations used to solve (13) can be very rough, since we project the colors
at the end and then we do not need precise values.

Numerical examples
We will test the method described above against two minimum time problems
of the form (1). The numerical domain is always φ = [−2, 2]2.
Test 1 (Eikonal) : d = 2 , f(x1, x2, a) = a , A = B2(0, 1) , Ω0 = B2(0, 0.5).

Test 2 (Fan) : d = 2 , f(x1, x2, a) = |x1 + x2 + 0.1|a , A = B2(0, 1) , Ω0 = {x1 = 0}.

In Fig. 2 we show the patchy decomposition for the two dynamics described
above in the case R = 8, Nc = 32, ⎦N = 50 and N = 100. We also superimpose
the optimal vector field f(x,⎦a∅) to show that patches are (almost) invariant with
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)b()a(

Fig. 2. Patchy decompositions with R = 8, Nc = 32, Ñ = 50 and N = 100. For
visualization purposes not all the arrows are shown. (a) Eikonal, (b) Fan.

respect to the optimal dynamics. Indeed, only a few arrows cross from a patch to
another. Note that patches cover the whole domain but they are not equivalent
in terms of area, even if the target φ0 was divided in R = 8 equal parts to
generate the decomposition.
It is interesting to compare the solution UP of the patchy algorithm with that of
the classical domain decomposition method UDD, both computed on the same
fine grid by means of the scheme (8). Let us denote by EP the difference EP :=
UP − UDD that in the following will be referred to as patchy error. In particular
we study the norms

‖EP ‖1 := kd
N⎟

i=1

|EP i| and ‖EP ‖∞ := max
i=1,...,N

|EP i|

depending on the space steps ⎦k and k. This error is exclusively due to the fact
that patches are not completely dynamics-invariant and then it will be considered
as a degree of the invariance of the patchy decomposition. Let us stress that we
apply state constraint boundary conditions on the patches.

We report the results for R = 16, which is the largest number of patches and
also the worst case we tested. Indeed, the error EP necessarily increases as R
increases because the number of boundaries increases. We present the results for
the Test 2 in Table 1, similar errors appear in other tests.

Table 1. Patchy error ‖EP ‖1 (‖EP ‖∞). Dynamics: Fan, Nc = 32, R = 16

k = 0.08 k = 0.04 k = 0.02 k = 0.01 k = 0.005

k̃ = 0.08 1.393 (3.023) 0.123 (1.507) 0.037 (0.315) 0.017 (0.263) 0.011 (0.263)
k̃ = 0.04 – 0.114 (1.502) 0.032 (0.149) 0.011 (0.095) 0.006 (0.095)
k̃ = 0.02 – – 0.032 (0.111) 0.011 (0.061) 0.004 (0.037)
k̃ = 0.01 – – – 0.011 (0.079) 0.004 (0.037)
k̃ = 0.005 – – – – 0.004 (0.037)
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We see that the first line of each table reports in many cases unsatisfactory
results, caused by the excessive roughness of the grid ⎦G (see the case ⎦k = 0.08,
corresponding to ⎦N = 50). Even the case ⎦k = k = 0.08 (i.e. the grid is not
refined at all) is not satisfactory. This can be explained by recalling that the
computations on the two grids are not identical because the second one employs
state constraints boundary conditions. If the grid is not fine enough, the error
due to the boundary conditions is large, and tends to propagate inside each
patch. Conversely, if ⎦G has at least 100 nodes per dimension (⎦k ≤ 0.04), the
behaviour of the error is surprisingly good because it decreases as k decreases
(for any fixed ⎦k) and ‖EP ‖1 is of the same order of k itself. Note that the L∞

error is always larger than the L1 error. Quite often we find a very small number
of nodes with a large error near the boundaries of the patches, especially at those
nodes where two patches and the target meet. This mainly affect the L∞ error
but not the L1 error.

4 Fast Marching and Fast Sweeping Methods

The second technique which has been proposed to reduce the computational
load and memory allocations is based on the localization of the algorithm. At
every iteration only a subset of the grid (the active region) is taken into account
and the solution is computed just on the nodes belonging to this region. An
important feature of this method is the fact that the value at a single node is
computed only a finite number of times and this allows to show that the solution
is obtained in a finite number of iterations. Here we list and briefly describe some
iterative and single-pass methods for solving HJ equations.

Let us sketch the Fast Marching Method (FMM) [25,27] introduced as a fast
solver for the eikonal equation. Despite the standard global iterative method, the
nodes are visited in a solution-dependent order, producing a single-pass method:
the algorithm itself finds a correct order for processing the grid nodes. The order
which is determined satisfies the causality principle, i.e. the computation of a
node is declared completed only if its value cannot be affected by the future
computation. To this end, at each step the grid is divided in three regions: ACC,
where computation is definitively done, CONS, where computation is going on
and FAR, where computation is not done yet. Then, the node in CONS with
the minimal value enters ACC, its first neighbours enter CONS (if not yet in)
and are (re)computed.

Following [23], we remark that this minimum-value rule corresponds to com-
pute the value function T step by step in the ascending order (i.e., from the
simplex containing −∇T ). It follows that CONS expands under the gradient
flow of the solution itself, which is exactly equivalent to say that CONS is, at
each step, an approximation of a level set of the value function. In the case of
isotropic eikonal Eq. (6), the gradient of the solution coincides with the char-
acteristic field of the HJ equation, hence FMM computes the correct solution.
Moreover, FMM still works for problems with mild anisotropy, where gradient
lines and characteristics define small angles and lie, at each point, in the same
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simplex of the underlying grid. On the other hand, when a strong anisotropy
comes into play, as for a general anisotropic eikonal equation, FMM fails and
there is no way to compute the viscosity solution following its level sets. Finally,
we remark that FMM is also a local method, since each node is computed by
means of first neighbors nodes only and CONS is one-cell thick. Moreover, FMM
computes the same solution of the global fixed point method (ITM), provided
the same scheme is employed.

The Fast Sweeping Method (FSM) [24,28] is similar to the global fixed point
iteration ITM , but the grid is visited in a multiple-direction predefined order.
Usually, a rectangular grid is iteratively swept along four directions: N → S,
E → W , S → N , and W → E, where N,S,E, and W stand for North, South,
East, and West, respectively. This method has been shown to be much faster than
ITM, but (as ITM) it is neither local nor single-pass. A well known exception is
given by the eikonal equation, for which it is proved that only 1 sweep (i.e. four
visits of the whole grid) is enough to reach convergence (see [28] for details).
FSM computes the same solution of ITM, provided the same scheme and the
same stopping rule are employed.

Numerical examples
Let us compare the methods in terms of velocity and accuracy.
Test 1. Let us choose T = (0, 0), f(x, y, a) ≡ a. We know the exact solution of
the corresponding eikonal equation which is T (x, y) =

⎠
(x2 + y2).

As one can see in Table 2 the two fast marching methods (FM-FD and FM-
SL, respectively based on a finite difference and a semi-Lagrangian solver) give a
big speed-up in the computation. The fast sweeping method (FS-SL) gives good
results but is generally slower than the fast marching methods.
Test 2: state constraint problem. T = (−1,−1).

f(x, y, a) =
{

0 (x, y) ∈ ([0, 0.5] × [−2, 1.5]) ∪ ([1, 1.5] × [−1.5, 2])
a elsewhere.

Table 2. Errors for Test 1.

Method Δx L∞ error L1 error CPU time (s)

FM-FD 0.08 0.0875 0.7807 0.5
FM-SL 0.08 0.0329 0.3757 0.7
SL (46 it) 0.08 0.0329 0.3757 8.4
FS-SL 0.08 0.0329 0.3757 0.8
FM-FD 0.04 0.0526 0.4762 2.1
FM-SL 0.04 0.0204 0.2340 3.1
SL (86 it) 0.04 0.0204 0.2340 60
FS-SL 0.04 0.0204 0.2340 3.2
FM-FD 0.02 0.0309 0.2834 9.4
FM-SL 0.02 0.0122 0.1406 14
SL (162 it) 0.02 0.0122 0.1406 443.7
FS-SL 0.02 0.0122 0.1406 12.5
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Fig. 3. Domain of the equation (left), value function T (center) and level sets of T
with one optimal trajectory (right).

In this test the dynamics has been set to 0 on the obstacles to enforce the
state constraint. The results are shown in Fig. 3.

5 An Accelerated Policy Iteration Algorithm with Smart
Initialization

Let us conclude with an accelerated iterative algorithm which is constructed
upon the building blocks previously introduced in Sect. 2. We aim to an effi-
cient formulation exploiting the main computational features of both value and
policy iteration algorithms. As it has been stated in [21], there exists a the-
oretical equivalence between both algorithms, which guarantees a rather wide
convergence framework. However, from a computational perspective, there are
significant differences between both implementations. A first key factor can be
observed in Fig. 4, which shows, for a two-dimensional minimum time prob-
lem, the typical situation arising with the evolution of the error measured with
respect to the optimal solution, when comparing value and policy iteration algo-
rithms. To achieve a similar error level, policy iteration requires considerable
fewer iterations than the value iteration scheme, as quadratic convergent behav-
ior is reached faster for any number of nodes in the state-space grid. Despite the
observed computational evidence, a second issue is observed when examining the
policy iteration algorithm in more detail. That is, the sensitivity of the method
with respect to the choice of the initial guess of the control field. It can be seen
that different initial admissible control fields can lead to radically different con-
vergent behaviors. While some guesses will produce quadratic convergence from
the beginning of the iterative procedure, others can lead to an underperformant
value iteration-like evolution of the error. This latter is computationally expen-
sive, because it translates into a non-monotone evolution of the subiteration
count of the solution of Eq. (2).

A final relevant remark goes back to Fig. 4, where it can be observed that
for coarse meshes, the value iteration algorithm generates a fast error decay
up to a higher global error. This, combined with the fact that value iteration
algorithms are rather insensitive to the choice of the initial guess for the value
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Fig. 4. Error evolution in a 2D problem: value iteration (left) and policy iteration
(right).

function, are crucial points for the construction of our accelerated algorithm.
The accelerated policy iteration algorithm is based on a robust initialization of
the policy iteration procedure via a coarse value iteration which will yield to a
good guess of the initial control field (see [1] for details).

Data: Coase mesh Gc and Δtc , fine mesh Gf and Δtf , initial coarse
guess V 0

c , coarse-mesh tolerance δc, fine-mesh tolerance δf .
begin

Coarse-mesh value iteration step: perform Algorithm 1
Input: Gc, Δtc, V 0

c , δc

Output: V ∅
c

forall the xi ∈ Gf do
V 0

f (xi) = I1[V ∅
c ](xi)

A0
f (xi) = argmin

a∗A
{e−ΔtI1[V 0

f ](xi + f(xi, a)) + Δt]

end
Fine-mesh policy iteration step: perform Algorithm 2
Input: Gf , Δtf , V 0

f , A0
f , δf

Output: V ∅
f

end
Algorithm 3: (API) Accelerated Policy Iteration

Numerical axamples
The next two cases are based on a two-dimensional eikonal equation. For both
problems, common settings are given by

f(x, y, a) =
(

cos(a)
sin(a)

)
, A = [−π, π] , Δt = 0.8Δx .

What differentiates the problems is the domain and target definitions.

Test 1: φ =] − 1, 1[2, target T = (0, 0).

Test 2: φ =] − 2, 2[2, T = {x ∈ R
2 : ||x||2 ≤ 1}.
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Fig. 5. Error evolution in 2D eikonal equations: Test 1 (left) and Test 2 (right).

Reference solutions are considered to be the distance function to the respective
targets, which is an accurate approximation provided that the number of possible
control directions is large enough. For Test 1, with a discretization of the control
space into a set of 64 equidistant points, it can be seen that API provides a
speedup of 8× with respect to VI over fine meshes despite the large set of discrete
control points. Figure 5 illustrates, for both problems, the way in which the
API idea acts: pre-processing of the initial guess of PI leads to proximity to a
“quadratic convergence neighborhood”; fast error decay that coarse mesh VI has
in comparison with the fine mesh VI is clearly noticeable.

In Test 2 we have a “fat” target. In general, larger or more complicated
targets represent a difficulty in terms of the choice of the minimizing control,
which translates into a larger number of iterations. In this case, the CPU time
spent in the pre-processing is significant to the overall CPU time, but increasing
this ratio in order to reduce its share will lead to an underperformant PI part of
the algorithm.

6 Conclusions

We illustrated some recent results concerning the numerical approximation of
optimal control problems governed by ordinary differential equations. The above
methods can be combined in order to obtain fast algorithms and accurate solu-
tions. Fo example one can use a patchy domain decomposition to set up a parallel
algorithm and inside every patch use an Accelerated Policy Iteration (API) or
a Fast Marching method. Several open problems still remain. For example, we
would like to prove error bounds for the patchy domain decomposition and for
the API acceleration method. Moreover, we continue our investigations to extend
these methods to differential games and to the control of partial differential
equations.
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Abstract. Atomistic-to-Continuum (AtC) coupling methods are a novel
means of computing the properties of a discrete crystal structure, such
as those containing defects, that combine the accuracy of an atomistic
(fully discrete) model with the efficiency of a continuum model. In this
note we extend the optimization-based AtC, formulated in [17] for linear,
one-dimensional problems to multi-dimensional settings and arbitrary
interatomic potentials. We conjecture optimal error estimates for the
multidimensional AtC, outline an implementation procedure, and pro-
vide numerical results to corroborate the conjecture for a 1D Lennard-
Jones system with next-nearest neighbor interactions.

1 Introduction

Solid materials have atomic configurations which are arranged as a crystalline
lattice, and the properties of these materials are derived from the underlying
structure of the lattice. Specifically, defects in the regular, repeating arrangement
of atoms such as a dislocation, or an extra plane of atoms, determine fundamental
mechanisms such as plastic slip. The presence of defects invalidates the central
hypotheses of continuum mechanics so models that recognize the discrete nature
of the material on the atomic scale must be used. Such methods can vary in their
complexity ranging from quantum mechanical models which incorporate nuclear
and electronic forces to empirical potential models that assume the existence of
a potential energy which is a function of the nuclear positions only. The latter
allows atoms to be considered as classical mechanical particles. Throughout this
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note, we assume that the exact mathematical problem we wish to solve is that
of minimizing the global potential energy of a set of N atoms or, equivalently,
of equilibrating the internal and external forces on the atoms.

The outstanding issue with empirical atomistic models is the complexity
involved in their applications. In even the smallest problems of material interest
on the nanoscale, there will be at least 109 and up to 1015 atoms meaning the
number of degrees of freedom in an atomistic model is often far outside the scope
of any current computational feasibility. A novel attempt at solving this problem
has been to keep the atomistic model only in a small region near the defect, while
employing a continuum model such as elasticity in the bulk of the material away
from the defect. Continuum models are well understood and can numerically be
solved in an efficient manner using finite elements. In effect, the atomistic model
provides a constitutive relation near the defect where the constitutive relation
of the continuum model fails to hold.

These so called atomistic-to-continuum (AtC) coupling methods have seen a
surge of interest in the last two decades, especially with the introduction of the
quasicontinuum method in [19]. The problem introduced in these AtC methods is
how to combine, or couple, the two different models. An informal way of carrying
this out is to divide the computational domain, say Ω, into an atomistic region,
Ωa, and a continuum region, Ωc. Then, a global hybrid energy or hybrid force
field is constructed from the atomistic and continuum models on Ωa and Ωc.
The resulting hybrid energy is then minimized, or alternatively, the internal and
external forces are equilibrated to find the equilibrium configuration of Ω.

In this note we continue the development of the optimization-based AtC
approach commenced in [17]. The core idea is to pose independent atomistic and
continuum subproblems on overlapping domains Ωa and Ωc and then couple the
models by minimizing an objective functional, which measures the difference
between the strains of the atomistic and continuum states on Ωa ∇ Ωc. In so
doing, our approach combines ideas from blending AtC methods [2–4,11–13,15]
with the optimization-based domain-decomposition approach for PDEs in [9,10].

The resulting optimization-based AtC method differs substantially from cur-
rent energy or force-based methods, and to the best of our knowledge [17] is the
first instance of using an objective functional of this form to effect atomistic-
to-continuum coupling. Conceptually, our AtC approach is similar to the het-
erogeneous domain decomposition method for PDEs developed in [6] with the
important distinction that we couple two fundamentally different material mod-
els rather than PDEs.

The main focus of this note is on the formulation of an optimization-based
AtC method for modeling material defects in two and three dimensions, while
allowing for arbitrary many-body terms in the potential energy. Section 2 quotes
the necessary background results and Sect. 3 presents the formulation of the
method. Solution of the optimization problem is discussed in Sect. 4. We con-
jecture error estimates and derive optimal parameters for our algorithm from
the complexity analysis of Sect. 5. Finally, Sect. 6 provides numerical evidence in
support of these conjectures.
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2 Preliminaries

We consider the problem of modeling a crystal occupying the infinite domain,
R

d, and take the reference configuration of the atoms to be the integer lattice,
Z

d, deformed by the macroscopic deformation gradient F. Deformations of the
material are thus described by functions y : FZ

d ∈ R
d. For any deformed con-

figuration, y, of the lattice, we assume the energy due to electronic and nuclear
interactions can be described by an empirical site potential Vα(y) where Vα rep-
resents the energy attributable to atom ξ ⊂ Z

d. As usual, we further assume that
each ξ interacts with only a finite number of other atoms. The set of atoms that
ξ interacts with is given by ξ+R → Z

d where R is the interaction neighborhood.
The interaction neighborhood can be defined through a cutoff radius, rcut, so
that

R =
{
ξ ⊂ Z

d | 0 < |Fξ| ∞ rcut
}

.

Figure 1 depicts R in 2D where F is the identity and rcut = 2. We model point
defects in the lattice by allowing Vα to depend on ξ while assuming that Vα = V
when ξ is far from a defect. An evident example is an impurity where atoms of
a different species have different interaction laws with the bulk atoms, but these
interactions are only limited to small neighborhoods of defect (impure) atoms.

ξ

r1−r1

Fig. 1. An atom site ξ and its interaction range R.

The presence of defects in the lattice generates elastic fields causing the atoms
to relax. The deformed configurations are generically given by

y(ξ) = Fξ + u(ξ),

where u : Z
d ∈ R

d is the displacement field. The energy of the deformed config-
uration associated to this displacement field is

E(u) :=
⎧
α∗Zd

Vα(Du(ξ)) (2.1)
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where Du(ξ) := (DΔu(ξ))Δ∗R is a collection of finite differences of u and
DΔu(ξ) := u(ξ + ρ) − u(ξ) defines the finite difference operator. We note that
Vα implicitly depends on the macroscopic deformation gradient F. Furthermore,
without loss of generality, we assume that Vα(0) = 0 so that the infinite sum in
E(u) is well-defined. For example, in the case of a Lennard-Jones potential, φ,
with next-nearest neighbor interactions in 1D, we can define

Vα(Du(ξ)) = φ(F + D1u) + φ(2F + D1u − D−1u) − (φ(F) + φ(2F))

where φ(F)+φ(2F) is subtracted from the usual Lennard-Jones potential (with-
out affecting the computed forces) so that Vα(0) = 0.

The problem we seek to solve is then

ū ⊂ arg min
u∗U

E(u), (2.2)

where arg min denotes the set of local minima of a functional and the admissible
displacement space is taken to be U =

{
u : Z

d ∈ R
d
}
. Typically, this energy

on an infinite domain is approximated by truncating to a finite domain (the
approach taken here) or by imposing periodic boundary conditions. However, the
complexity involved in computing the resulting energy may be intractable for
current computing capabilities due to the large number of atoms and interactions
so a more efficient stratagem is required.

One solution approach would be to use continuum hyperelasticity models, but
the elastic fields involved in modeling defects such as dislocations are singular at
the defect core and so do not belong to the function spaces required in a standard
continuum formulation. Atomistic-to-continuum models seek to overcome these
deficiencies by utilizing both models simultaneously: the atomistic model near
the defect and the continuum model far from the defect.

3 An AtC Method Formulation

3.1 Decomposition into Atomistic and Continuum Subdomains

Typical AtC methods require the decomposition of the computational domain
Ω into atomistic and continuum subdomains, Ωa and Ωc, respectively, with a
possible blending, or overlap, region Ωo := Ωa ∇ Ωc. The goal of these methods
is to create a globally defined hybrid energy or force field derived from using the
atomistic model in Ωa, the continuum model in Ωc, and some coupling of the
two in Ωo. The distinguishing feature of our algorithm is to pose the atomistic
and continuum problems independently on overlapping domains and then couple
them by minimizing a suitably defined norm of the difference between the sep-
arate atomistic and continuum states that exist simultaneously on the overlap
region. As we shall see, some care must be taken in the definitions of Ωa and Ωc

to account for the interaction range, R, from the previous section.
Truncation of the infinite domain, R

d, to a finite, regular polygonal domain,
Ω, inscribed in a sphere of radius Rc, is the first approximation in modeling (2.2).
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The boundary of Ω coincides with FZ
d, and the lattice corresponding to Ω

is defined as L := Ω ∇ FZ
d. Consequently, we denote the space of admissible

displacements which satisfy the far-field boundary condition u(ξ) = 0 whenever
ξ /⊂ L by

U0 := {u ⊂ U |u(ξ) = 0 ⊃ ξ /⊂ L}
and replace (2.2) by

ū ⊂ arg min
u∗U0

E(u). (3.1)

Remark 1. Though we have derived (3.1) with the idea of approximating an infi-
nite domain containing a defect, a second problem of practical interest is mini-
mizing an energy E on a fixed domain, Ω, subject to some prescribed boundary
conditions on ∂Ω and an imposed external force in Ω. In this case, we typically
separate Vα into an internal site energy V int

α and an external site energy V ext
α .

Aside from this notational convenience, the formulation of our AtC method is
identical for both of these problems.

Remark 2. For any domain, Ωt → R
d, (t = a, c, o, etc.) we define its (outer)

radius, Rt := 1
2diam(Ωt), and its associated discrete lattice, Lt = Ωt ∇ FZ

d.

We further decompose Ω into overlapping atomistic and continuum subdomains,
Ωa and Ωc, as follows. Let Ωa → Ω be a regular polytope of radius Ra with
Ra ≥ Rc, and take Ωcore to be another regular polytope of radius Rcore <
Ra. The continuum subdomain, Ωc, is defined as the closure of Ω\Ωcore. This
decomposition results in an annular overlap region Ωo := Ωa ∇ Ωc with width
Ra − Rcore. See Fig. 2 for an illustration in 2D. The atomistic interior of Ωa,

Fig. 2. Decomposition of Ω into atomistic and continuum subdomains.
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denoted by Ω→
a , is the set of atoms ξ ⊂ Ωa such that all neighbors of ξ are also

in Ωa. Thus

Ω→
a := {ξ ⊂ Ωa | ξ + R → Ωa} and Ω→→

a := {ξ ⊂ Ω→
a | ξ + R → Ω→

a}, (3.2)

where Ω→→
a can be interpreted as the atomistic interior of Ω→

a .
For these domains, we define the associated displacement spaces

Ua := {u : La ∈ R
n} and Ua

0 := {u ⊂ Ua |u = 0 outside Ω→→
a }.

The energy on these spaces is

Ea(u) :=
⎧

α∗L◦◦
a

Vα(Du(ξ)), (3.3)

where L→→
a := Ω→→

a ∇ L. The problem of finding local minima of this energy in
the space Ua subject to some prescribed boundary values on La\L→→

a is exactly
what has been described as the atomistic model on Ωa.

Remark 3. As previously mentioned, some care must be exercised in defining
Ωa and Ωc. Precisely, we must impose the requirement that Ωcore → Ω→→

a . This
ensures that the overlap width is at least twice the size of the interaction range;
a necessary condition is Ra − Rcore ≤ 2rcut.

Our next task is to define a continuum model on Ωc which is accomplished
by defining the Cauchy-Born continuum energy there. We momentarily assume
a finite element triangulation, Th, is given in Ωc. This triangulation will be
explicitly constructed in Sect. 5. Piecewise linear continuous finite elements are
employed, and the mesh is fully refined in Ωo so that a finite element node
exists at each ξ ⊂ Lo. We denote the space of finite elements as Uc while the
subspace of Uc satisfying homogeneous Dirichlet boundary conditions on the
“outer” boundary of Ωc is

Uc
0 := {u ⊂ Uc |u = 0 on ∂Ωc\∂Ωcore} .

The Cauchy-Born continuum approximation on Ωc is then

Ec(u) :=
⎪
Ωc

W (≡u) dx, (3.4)

where the Cauchy-Born strain energy density functional is W (G) := V (FR+GR).
This energy is evaluated at elements of the space Uc

0 so that we may write the
continuum energy as

Ec(u) =
⎧

T∗Th

|T | · W (≡u|T ), (3.5)

and the continuum model consists of finding local minima in Uc of this functional
subject to prescribed boundary conditions on ∂Ωc.1

1 In both the atomistic and continuum model, we have referenced some unknown,
prescribed boundary values. These can be interpreted as virtual controls as defined
in [7] and discussed in [17].



Optimization-Based Atomistic-to-Continuum Coupling Method 39

3.2 Coupling

Having decomposed the computational domain into atomistic and continuum
constituencies, we need to provide the mechanism by which these two models
are coupled together. This is done by minimizing the energy norm difference
between atomistic and continuum states resulting from the atomistic and con-
tinuum problems from the spaces Ua and Uc. Since an atomistic state, ua ⊂ Ua,
is a discrete function defined on a lattice, whereas a continuum state, uc ⊂ Uc, is
a continuous function, we define a continuous, piecewise linear nodal interpolant
of ua on Th restricted to Ωo by Iua, which allows us to compare the atomistic
and continuum states in the same function space on Ωo.

Our AtC method is to then solve the constrained minimization problem

find (ūa, ūc) such that ∅≡Iua − ≡uc∅L2(Ωo) is minimized

subject to
⎨ 〈δEa(ua), va〉 = 0 ⊃va ⊂ Ua

0

〈δEc(uc), vc〉 = 0 ⊃vc ⊂ Uc
0

and
⎪
Ωo

(Iua − uc) dx = 0 (3.6)

The objective in (3.6) ensures that the mismatch between ūa and ūc over Ωo

is as small as possible. The first two constraints in (3.6) imply that ūa and ūc

are equilibria of the atomistic and continuum subproblems defined on Ωa and
Ωc. The third constraint is necessary because the objective is a difference of two
gradients, and without it the optimal solution would be determined only up to
an arbitrary constant2. Finally, we define our AtC approximation by

ūatc(x) =

⎡
ūa(x), |x| ∞ Ra,

ūc(x), |x| > Ra.
(3.7)

4 Solution of the AtC Optimization Problem

The AtC formulation (3.6) is a constrained optimization problem. A standard
solution approach for such problems is to recast them into unconstrained opti-
mization problems through the Lagrange multiplier method. Setting the first
variations of the resulting Lagrangian with respect to the states and the adjoints
to zero yields an optimality system from which we can determine the optimal
solution of the original problem. This approach is know as a “one-shot method”
[8] because we solve simultaneously for the states, adjoints, and controls.

For the AtC formulation (3.6), we introduce the Lagrange multipliers (adjoint
variables) λa ⊂ Ua

0 and λc ⊂ Uc
0 for the first two constraints, the multiplier η ⊂ R

for the third constraint, and the Lagrangian functional

Ψ(ua, uc, λa, λc, η) =
1
2
∅≡Iua − ≡uc∅2L2(Ωo)

− 〈δEa(ua), λa〉 − 〈δEc(uc), λc〉 − η

⎪
Ωo

(Iua − uc) dx. (4.1)

2 In one dimension, or when there are multiple overlap regions associated with mod-
eling multiple defects, a constraint is specified for each individual overlap region.
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Setting the first-variations of the Lagrangian to zero yields the optimality system

find ua, uc, λa, λc, and η such that ≡Ψ(ua, uc, λa, λc, η) = 0, (4.2)

where

≡Ψ =
⎢

∂Ψ

∂ua
,

∂Ψ

∂uc
,

∂Ψ

∂λa
,

∂Ψ

∂λc
,
∂Ψ

∂η

⎣T

(4.3)

is the Jacobian3 of Ψ . The first-order necessary conditions (4.2) are a nonlin-
ear system of equations for the unknowns ua, uc, λa, λc, and η. To solve this
system, we employ Newton linearization. Specifically, for a given initial guess
z = [ua, uc, λa, λc, η]T we solve the linear equation

≡2Ψ(z)x = −≡Ψ(z) (4.4)

for the Newton increment x and set the new iterate to z = z + x.
It is not difficult to see that the Hessian ≡2Ψ(z) has the form

≡2Ψ =

⎤
⎥⎥⎥⎥⎥⎥⎦

∂2Ψ
∂(ua)2

∂2Ψ
∂uc∂ua

∂2Ψ
∂λa∂ua 0 ∂2Ψ

∂η∂ua

∂2Ψ
∂ua∂uc

∂2Ψ
∂(uc)2 0 ∂2Ψ

∂λc∂uc
∂2Ψ

∂η∂uc

∂2Ψ
∂ua∂λa

0 0 0 0
0 ∂2Ψ

∂uc∂λc
0 0 0

∂2Ψ
∂ua∂η

∂2Ψ
∂uc∂η 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

=:
⎢
A BT

B 0

⎣
, (4.5)

and so, (4.4) has the typical structure of a saddle-point problem.

5 Formal Error and Complexity Analysis

We measure the error in the energy (semi-)norm, ∅Dūatc − Dū∅2	2(L). Typically,
the error has several contributions: (1) the error of truncating the infinite domain,
(2) the error of modeling the atomistic interaction with the continuum interac-
tion on a finite element mesh, and (3) an error from coupling the two models.
The first error is expected to be ∅Du∅	2(Zd\L). For P1 (i.e., piecewise linear) ele-
ments, the second error is expected to be ∅hD2ū∅	2(Lc), where h is the element
size and D2u := (DΔDσu)Δ,σ∗R. The third error is usually dominated by the
second. For rigorous establishments of similar error estimates, see [5,14,18]. In
this note, we conjecture the following result,

Conjecture 1.

∅Dūatc − Dū∅2	2(L) � ∅Dū∅2	2(Zd\L) + ∅hD2ū∅2	2(Lc)
=: err2, (5.1)

where X � Y indicates that X is less than or equal to Y up to a multiplicative
constant (i.e., that ∪ c > 0 such that X ∞ cY ).

We note that this is the most “optimistic” conjecture and includes only the error
contributions (1) and (2) that cannot be avoided.
3 The notation ∂Ψ

∂ua is used to represent the vector ∂Ψ
∂ua

ξ
for ξ ∈ La with analogous

definitions for the remaining components.
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Optimal Approximation Parameters

A defect can be characterized by a far-field decay rate, γ > 0, of the elastic
displacement or stress fields. That is, we assume that |Dkū(ξ)| ∼ |ξ|1−k−γ (typ-
ically, γ = d for a point defect and γ = 1 for a dislocation [5,16]). We further
assume a finite element discretization, Th, with nodes in Lc and with a radial
mesh size function h(x) := diam(T ) for x ⊂ T , which will be chosen to formally
optimize the error bound in (5.1) subject to a fixed number of degrees of free-
dom. We fully resolve the mesh in Ωo so that each element of Lo is taken as a
node. The number of remaining degrees of freedom is then given by

#DoF =
⎧

T∗Th

T∞Ωo=∅

1 =
⎧

T∗Th

T∞Ωo=∅

|T |
|T | ∅

⎪ Rc

Ra

1
h̃d

rd−1 dr,

where h̃(|x|) ∅ h(x) is a mesh size function that depends only on |x| and X ∅ Y
indicates that X and Y are equal up to a multiplicative constant.

Recalling that |Dkū(ξ)| ∼ |ξ|1−k−γ , we thus carry out the optimization prob-
lem:

minimize
⎪ Rc

Ra

h̃2r−2−2γrd−1 dr +
⎪ ≤

Rc

r−2γrd−1 dr

subject to

⎡
#DoF =

∫ Rc

Ra

1
h̃d

rd−1 dr = C,

h̃(Ra) = 1

with respect to h̃ = h̃(r) and Rc. Notice that we optimize only a part of the error
bound, since the remaining contribution ∅hD2ū∅	2(Lo) ∅

∫ Ra

Rcore
h̃2r−2−2γrd−1 dr

cannot be optimized after we have fixed the mesh in Ωo.
Introducing Lagrange multipliers and taking the variation with respect to

h̃ we obtain h̃(|x|) = c|x| 1+γ
1+d/2 for some constant c, and the second constraint,

h̃(Ra) = 1, can then be used to see that h(x) = h̃(|x|) = (|x|/Ra)
1+γ

1+d/2 (refer
to [1] for a related example of mesh optimization for ODEs). Likewise, by dif-
ferentiating with respect to Rc and using the expression for h̃ we find that

Rc ∅ R
1+γ

γ−d/2
a , provided 2γ − d > 0. Finally, from the stability condition derived

in [17], we should choose Ra ∅ Rcore.
Since the number of degrees of freedom is

DoF ∅ Rd
a +

⎪ Rc

Ra

(
(r/Ra)

1+γ
1+d/2

)−d

rd−1dr ∅ Rd
a, (5.2)

we have
err2 ∅ (DoF)

−2−2γ+d
d . (5.3)

Remark 4 (Uniform norm). A more involved derivation can be used to optimize
the parameters for the conjecture ∅Dūatc − Dū∅	∞(L) � errinf, where the errors
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in (5.1) are now measured in the infinity norm. In this case, we would get

h(x) =
⎢ |x|

Ra

⎣1+γ

, Rc ∅ R
1+ 1

γ
a , errinf ∅ (DoF)− 1+γ

d .

For a dislocation (i.e., for γ = 1 and d = 2, cf. [5]), the energy norm is infi-
nite so optimizing approximation parameters for err is ill-posed. Nevertheless,
optimizing errinf is well-posed.

6 Numerical Experiments

In this section we report the results of numerical experiments conducted in 1D
(d = 1) using a next-nearest neighbor Lennard-Jones model as the underlying
atomistic model. These experiments are analogous to those run for various, pop-
ular AtC methods in [14], with the exception that the atomistic model chosen
there was the Embedded Atom Method. Numerical experiments for the blended
energy and blended force-based quasicontinuum methods using optimal approx-
imation parameters have been presented in [13,15]. Our results provide evidence
in support of the estimates conjectured in Sect. 5. We will also show how to incor-
porate external forces into the model as alluded to in Remark 1. We consider
the exact, atomistic energy on the infinite lattice, Z, to be

Ea(u) =
⎧
α∗Z

φ(1+D1u(ξ))+φ(2+D1u(ξ)−D−1u(ξ))−(φ(1)−φ(2))−f(ξ)u(ξ),

where f(ξ) is an external force at ξ. The Cauchy-Born continuum energy is

Ec(u) =
⎪
R

W (≡u) dx −
⎪

(If)u dx, where W (G) = φ(1 + G) + φ(2 + 2G),

and If is the continuous linear interpolant of the force. We assume the exact
atomistic solution that we wish to approximate is (as in [14])

ūa
α =

1
10

(
1 + ξ2

)−γ/2
ξ.

Given this solution, we compute the external forces on an atom ξ to ensure that
ūa is indeed a minimizer of the global atomistic energy. These forces are

fα = −∂Ea(u)
∂uα

∣∣
u=ūa .

This implies the Lagrangian from Sect. 4 is

Ψ(ua, uc, λa, λc, η) =
1
2
∅≡Iua − ≡uc∅2L2(Ωo)

+ 〈δEa(ua), λa〉
+ 〈δEc(uc), λc〉 + η1

⎪
Ωo∞R+

(Iua − uc) dx + η2

⎪
Ωo∞R−

(Iua − uc) dx
(6.1)
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where we use the continuous, piecewise linear interpolant of ua in this formu-
lation. (Recall also the need for two Lagrange multipliers to enforce the mean
value zero condition on the disconnected overlap region in one dimension.)

We select a value of Rcore from a range of interest, choose the mesh according
to the formal analysis from Sect. 5, and assign the rest of the approximation
parameters via the formal derivations of Sect. 5. Namely, we set Ra = 2Rcore

and recursively construct the nodes, Nh, of the triangulation, Th, as follows.
First, each ξ ⊂ BRa(0) is chosen as a node. Set ξ = maxζ∗Nh

ζ, and sequentially

add a new node at ± [ξ + h(ξ)] where h(ξ) := �(ξ/Ra)
1+γ

1+d/2 �. This is continued
until h(ξ) ≈ ξ, at which point we add two final nodes at ±RC .

Finally, we take the “defect” approximation parameter to be γ := 3/2 and
employ our optimization-based AtC algorithm to compute uatc for the range of
values Rcore ⊂ {10, 20, 40, 80, 160}. According to our estimate (5.3) in Sect. 5,
we expect the error to decay as err2 ∅ DoF−2. We have plotted the error involved
in each of these approximations versus the number of degrees of freedom in Fig. 3.
In particular, the error behaves like (DoFs)−2, which is truly optimal in the sense
of AtC methods because this is the rate of the continuum model. In other words,
the error of coupling atomistic and continuum models is dominated by the far
field error and the continuum modeling error, as assumed in Conjecture 1.

Fig. 3. Error of AtC approximation plotted against number of degrees of freedom.

7 Conclusion

We have formulated a new optimization-based AtC method for arbitrary inter-
atomic potentials in multiple dimensions. Numerical simulations using a next-
nearest neighbor Lennard-Jones atomistic model confirm a conjecture that the
coupling error is dominated by the modeling and the domain truncation errors,
i.e., that our AtC method behaves in an optimal fashion.
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Abstract. We construct an algorithm to investigate numerically
non-symmetric solitary wave-like solutions of an ordinary nonlinear dif-
ferential equation. We reformulate the bifurcation problem, introducing
a new parameter; and in such a way we expel the trivial solution of the
original problem. The Method of Variational Imbedding (MVI) is used
for solving the inverse problem. We illustrate the approach by compar-
ing the numerical solution with a known exact solution of the Boussinesq
equation.

1 Introduction

A special numerical technique for identification of symmetric solitary wave solu-
tions of Boussinesq and Korteweg–de Vries equations is proposed in [3]. This
method requires the sought solution to be an even function; hence, it can be
applied to problems that allow only symmetric solutions. However, not all equa-
tions admit only symmetric solutions, and methods for identification of general
type solutions are of interest, since they allow researchers to study solitons of any
type. The potential impact of results from the proposed work includes a wide
class of applications in many disciplines. Insights gained from the application of
a general numerical method for the identification of solitons to equations with
non-analytic solitary wave solutions could lead to new ideas about describing
tsunami waves, nerve signal propagation, and plasma.

2 Problem Formulation

Consider the soliton equation

L(u) = 0, (1)

where
L(u) = LKdV(u) = ut + γux + 2αuux + uxxx, (2)
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when we deal with the KdV equation, and

L(u) = LBsq(u) = −utt + γ2uxx + α(u2)xx + uxxxx, (3)

when we deal with the classical Boussinesq equation. These equations possess
special travelling wave solutions called solitary waves. Boussinesqs theory [1] was
the first to give a satisfactory and scientific explanation of the phenomenon of
solitary waves discovered by Scott Russell [5].

We consider the stationary waves in the moving frame ξ = x− ct. After inte-
gration (double for the operators (3)) with respect to ξ and taking into account
the localized character of the investigated solutions, we obtain the following
nonlinear ordinary differential equations

LKdV(u) = λu + αu2 + uξξ = 0 , λ ∇ γ − c , (4)

LBsq(u) = λu + αu2 + uξξ = 0 , λ ∇ γ2 − c2 . (5)

We are looking for solutions of the Eq. (5) with u ∈ 0 when ξ ∈ ⊂. Then
u2 → u in the tails and the linearized version of (5) coincides with its linear
part.

2.1 Even and Odd Functions

Every function u = u(ξ), where ξ ∞ (−a, a), a > 0, can be decomposed into a
sum of its even part and its odd part

u(ξ) = ϕ(ξ) + ψ(ξ), (6)

where ϕ(ξ) is an even function and ψ(ξ) is an odd function defined as

ϕ(ξ) =
u(ξ) + u(−ξ)

2
, ψ(ξ) =

u(ξ) − u(−ξ)
2

. (7)

The following basic facts that apply to even and odd functions are used in
the solution process:

– The product of two even functions is even.
– The product of two odd functions is even.
– The product of an even function and an odd function is odd.
– If an even function is differentiable, then its derivative is an odd function.
– If an odd function is differentiable, then its derivative is an even function.

Or, if ϕ is an even function and ψ is an odd function, both differentiable as many
times as necessary, then they satisfy the following conditions

ψ(0) = ϕ∗(0) = ψ∗∗(0) = ϕ∗∗∗(0) = 0. (8)

In addition, if a function is zero on a symmetric interval, then its even and odd
components must be zero.
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2.2 The Inverse Problem

Substituting u, defined with Eq. (6), into Eq. (5), and using the above properties
of the even and odd functions, we obtain the following system of two equations
for the functions ϕ and ψ:

λϕ + αϕ2 + αψ2 + ϕ∗∗ = 0, (9)
λψ + 2αϕψ + ψ∗∗ = 0. (10)

Because of the symmetry of the two functions ϕ and ψ, we consider the
problem on the half line by adding the following boundary conditions at the
point ξ = 0:

ϕ(0) = χ, ψ(0) = 0, ϕ∗(0) = 0, ψ∗(0) = μ, (11)

where χ and μ are unknown constants.
It is convenient to scale the functions ϕ and ψ by introducing two unknown

functions f and g and two unknown constants χ and μ as

ϕ(ξ) = χf(ξ), ψ(ξ) = μg(ξ). (12)

Evidently, f is an even function and g is an odd function.
The boundary conditions for the introduced functions f and g are

f(0) = 1, g(0) = 0, f ∗(0) = 0, g∗(0) = 1, (13)

and
lim

ξ→∞
f(ξ) = lim

ξ→∞
g(ξ) = 0. (14)

Therefore,
lim

ξ→∞
f (n)(ξ) = lim

ξ→∞
g(n)(ξ) = 0. (15)

The system for the functions f and g reads

λχf + αχ2f2 + αμ2g2 + χf ∗∗ = 0, (16)
λμg + 2αχμfg + μg∗∗ = 0. (17)

We divide the Eq. (17) by the unknown constant μ under the condition μ ⊃= 0.
This is a very strong restriction, because μ ⊃= 0 means that we do not consider
even functions u(ξ) as possible solutions of the Eq. (1).

After dividing by μ, the Eq. (17) adopts the form

λg + 2αχfg + g∗∗ = 0. (18)

Thus, we exclude the trivial solution u(ξ) ∇ 0. However, we arrive at a
problem for coefficient identification from overposed boundary data for solving
the system of two second order differential equations (16), (18) under the six
boundary condition (13), (14). At the same time, it is necessary to identify the
two unknown constants χ and μ.
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3 Method for Solving the Inverse Problem

Consider the problem for minimization of the functional

I(f, g, χ, μ) =
∫ ∞

0

(A2 + B2)dξ ∈ min, (19)

where

A(ξ) := λχf + αχ2f2 + αμ2g2 + χf ∗∗, (20)
B(ξ) := λg + 2αχfg + g∗∗. (21)

3.1 Euler-Lagrange Equations for f and g

The Euler-Lagrange equation for f reads
(
λχ + 2αχ2f

)
A + 2αχgB + χA∗∗ = 0, (22)

while the Euler-Lagrange equation for g is

2αμ2gA + (λ + 2αχf ] B + B∗∗ = 0. (23)

The system (22), (23) is of the fourth order with respect to each of the
functions f and g. There are three boundary conditions for each function from
the original problem. To close the system, we also use the following boundary
conditions

lim
ξ→∞

f ∗(ξ) = lim
ξ→∞

g∗(ξ) = 0. (24)

3.2 Euler-Lagrange Equations for χ and μ

Since χ and μ are constants, we integrate the functional (19) with respect to ξ.
Thus, the problem is to minimize the function

Φ(χ, μ) = a40χ
4 + a22χ

2μ2 + a04μ
4 + a30χ

3 + a12χμ2 + a20χ
2 + a02μ

2, (25)

with respect to χ and μ, where

a40 =
∫ ∞

0

α2f4dx, (26)

a30 =
∫ ∞

0

2αf2(λf + f ∗∗)dx, (27)

a22 =
∫ ∞

0

6α2f2g2dx, (28)

a20 = −
∫ ∞

0

(λf + f ∗∗)2dx, (29)
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a12 = 2α

∫ ∞

0

g [g(3λf + f ∗∗) + 2fg∗∗] dx, (30)

a04 = −
∫ ∞

0

α2g4dx, (31)

a02 = −
∫ ∞

0

(λg + g∗∗)2 dx. (32)

The necessary conditions for the minimization of Φ(χ, μ) with respect to χ and
μ are

Φχ = 4a40χ
3 + 3a30χ

2 + 2a22χμ2 + 2a20χ + a12μ
2 = 0, (33)

Φμ = 4a04μ
3 + 2a22χ

2μ + 2a12χμ + 2a02μ = 0. (34)

4 Numerical Scheme

To solve the boundary value problem (13), (14), (22), (23), and (24), we use a
finite difference scheme with the second order of approximation of the differential
operators and integrals. We use Newton’s method to solve the system (33), (34).

4.1 Finite Difference Scheme

The mesh (see Fig. 1) is regular and allows the approximation of all operators
using standard central differences.

• • • • . . . • • • •. . . . . . • • • •|
0

ξ1 ξ2 ξ3 ξ4 ξn−1

|
ξ∞

ξn

Fig. 1. The mesh

The grid spacing is

h ∇ ξ∞
n − 2

,

where n is the total number of grid points and ξ∞ is a sufficiently large number,
called ‘numerical infinity.’ Then, the grid points are defined as follows:

ξi = (i − 1.5)h for i = 1, . . . , n . (35)

It is important that the point ξ = 0 is the mid-point ξ1 1
2
.

Let us introduce the notation

yi = y(ξi), for i = 1, . . . , n . (36)
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We employ symmetric central differences for approximating the differential oper-
ators as follows:

y(4)(ξi) =
1
h4

(yi−2 − 4yi−1 + 6yi − 4yi+1 + yi+2) + O(h2) (37)

for i = 3, . . . , n − 2, and

y∗∗(ξi) =
1
h2

(yi−1 − 2yi + yi+1) + O(h2) (38)

for i = 2, . . . , n − 1.
The grid also allows the second order approximations of the boundary con-

ditions:

y(0) = 1 =≥ y1 + y2 = 2, (39)
y∗(0) = 0 =≥ y2 − y1 = 0, (40)

y(ξ) ∈ 0, ξ ∈ ⊂ =≥ yn + yn−1 = 0, (41)
y∗(ξ) ∈ 0, ξ ∈ ⊂ =≥ yn − yn−1 = 0. (42)

4.2 Estimation of χ and μ

We approximate the integrals in Eqs. (33) and (34) for evaluating χ and μ using
the so called ‘extended midpoint rule,’ where the error term is again of the
second order. After evaluating the coefficients in the Eqs. (33) and (34), we use
Newton’s method to solve the system.

4.3 Algorithm

(I) Solve the fourth-order boundary value problem (13), (14), (22), (23), and
(24), for the functions f and g with given χ and μ.

(II) With the newly computed f and g, the coefficients χ and μ are evaluated
from (33) and (34), respectively. If

∣∣χnew − χold
∣∣ < ε,

∣∣μnew − μold
∣∣ < ε, (43)

then the calculations are terminated. Otherwise, the index of iterations is
stepped up k := k + 1 and the algorithm is returned to step (I).

5 Numerical Experiments

Consider the case when λ = −4 and α = 6. Then, the Eqs. (2) and (3) become
the following equation

L(u) = u∗∗(x) + 6u2(x) − 4u(x) = 0. (44)
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Table 1. Obtained values of ||unum−uan||, and the rate of convergence for four different
values of the mesh spacing.

h ||unum − uan|| Rate of convergence

1/10 0.0015391100 —
1/20 0.0003865510 1.99337
1/40 0.0001010250 1.93595
1/80 0.0000260587 1.95488

0 1 2 3 4 5
0.002

0.001

0.000

0.001

0.002

Fig. 2. The shape of the numerical error for four different steps h = 0.1, 0.05, 0.025,
and 0.0125.

This problem has a non-even analytic solution

u(x) = sech2(x − 1), (45)

which can be used for validating the numerical scheme.
For the numerical results described here we use ξ∞ = 10 and the tolerance

ε = 10−8.
The discretization error is O(h2). The numerical results clearly demonstrate

these error orders. The values of the l2 norm of the difference ||unum − uan||,
computed using four different steps are given in Table 1. The rate of convergence,
calculated as

rate(u) = log2
||ynum

2h − yan||
||unum

h − uan|| (46)

is also shown in Table 1.
The distribution of the numerical error is given in Fig. 2. It is seen that the

discretization error term is O(h2), and the total error is O(h2). The numerical
results for the coefficients χ and μ presented in Table 2 demonstrate clearly these
error orders.



54 T.T. Marinov and R. Marinova

Table 2. Obtained values of the coefficients χ and μ, and the rate of convergence for
four different values of the mesh spacing.

h χ Rate μ Rate

exact 0.4199743416 — 0.6397000084 —
1/10 0.418352 — 0.637837 —
1/20 0.419562 1.97617 0.639233 1.99611
1/40 0.419866 1.92825 0.639584 2.00922
1/80 0.419946 1.93459 0.639674 2.15718

6 Conclusion

To summarize, we propose a generalization of the procedure for identifying sym-
metric solitons for the case when the solution is neither an even nor an odd
function. Instead of solving the original solitary wave equation, we solve two
equations – one for the even part, and one for the odd part of the solution.
To avoid the trivial solution, we introduce two additional unknown constants,
converting the original problem into an inverse problem for coefficient identifica-
tion from overposed boundary data. We use the so-called Method of Variational
Imbedding (MVI) to solve the inverse problem. The numerical results confirm
that the solution of the imbedding problem coincides with the direct solution
of the original problem within the order of approximation error O(h2). Future
work includes applying the method to problems of higher complexity such as
higher-order and/or two-dimensional equations such as in [2,4].

References

1. Boussinesq, J.: Theorie de l’intumescence liquide appelee onde solitaire ou de trans-
lation se propageant dans un canal rectangulare. C. R. Acad. Sci. 72, 755–759 (1871)

2. Camassa, R., Holm, D.: An integrable shallow water equation with peaked solitons.
Phys. Rev. Lett 71(11), 1661–1664 (1993)

3. Marinov, T.T., Christov, C.I., Marinova, R.S.: Novel numerical approach to solitary-
wave solutions identification of Boussinesq and Korteweg-de Vries equations. Int. J.
Bifurcat. Chaos 15(2), 557–565 (2005)

4. Lenells, J.: Traveling wave solutions of the Camassa-Holm equation. J. Differ. Equ.
217, 393–430 (2005)

5. Russell, J.S.: Report on waves. 14th Meeting of the British Association Report, York
(1844)



Control and Uncertain Systems



Improved Error Estimate for an Implicit
Discretization Scheme for Linear-Quadratic
Control Problems with Bang-Bang Solutions

Walter Alt(B) and Martin Seydenschwanz

Friedrich-Schiller-Universität Jena, Mathematische Optimierung,
07743 Jena, Germany

{walter.alt,martin.seydenschwanz}@uni-jena.de

Abstract. We analyze an implicit discretization scheme for a class of
linear-quadratic optimal control problems without mixed state-control
terms. Under the assumption that the optimal control has bang-bang
structure we show convergence of the discrete approximation and improve
existing error estimates to order O(h).

1 Introduction

We consider the following linear-quadratic control problem:

(OQ) min f(x, u)
s.t.
ẋ(t) = A(t)x(t) + B(t)u(t) a.e. on [0,T],
x(0) = a
u(t) ∇ U a.e. on [0,T],

where f is a linear-quadratic cost functional defined by

f(x, u) =
(
1
2Qx(T ) + q

)T
x(T ) +

⎧ T

0

(
1
2W (t)x(t) + w(t)

)T
x(t) + r(t)Tu(t) dt

Here, u(t) ∇ R
m is the control, and x(t) ∇ R

n is the state of the system at time t.
Further Q ∇ R

n×n, q ∇ R
n and the functions W : [0, T ] ∈ R

n×n, w : [0, T ] ∈ R
n,

r : [0, T ] ∈ R
m, A : [0, T ] ∈ R

n×n, B : [0, T ] ∈ Rn×m are Lipschitz continuous.
With bl, bu ∇ R

m, bl < bu the set U ⊂ R
m is defined by lower and upper bounds

U = {u ∇ R
m | bl → u → bu}

Moreover we define U =
⎪
u ∇ W 1

≥(0, T ;Rn) | u(t) ∇ U ∞∗ t ∇ [0, T ]
⎨
. The feasible

set of (OQ) is

F = {(x, u) ∇ X |u ∇ U , ẋ(t) = A(t)x(t) + B(t)u(t) a.e. on [0, T ], x(0) = a}.

In [5] we investigated an implicit discretization scheme for problem (OQ) with
mixed state-control terms in the cost functional. We showed that this method is

I. Lirkov et al. (Eds.): LSSC 2013, LNCS 8353, pp. 57–65, 2014.
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a practically usable, numerically robust alternative to the Euler-discretization,
which has severe difficulties in solving stiff problems. We presented error esti-
mates of order O(

⊃
h) for the control, state and adjoint state. Here we show that

these error estimates can be improved for problems without mixed
terms.

The organization of the paper is as follows. In Sect. 2 we recall the implicit
discretization scheme and the most important results from [5]. In Sect. 3 we prove
our main result.

We use the notations defined in [5]. In view of convexity of Problem (OQ) we
assume that the matrices Q and W (t), t ∇ [0, T ], are symmetric and uniformly
positive semidefinite. Therefore the cost functional is convex and continuous
on F . Moreover the feasible set F is nonempty, closed, convex and bounded and
this is why a minimizer (x∞, u∞) ∇ W 1

2 (0, T ;Rn) × L2(0, T ;Rm) of (OQ) exists
(see Ekeland/Temam [6], Chap. II, Proposition 1.2). Since U is bounded we have
(x∞, u∞) ∇ X = X1 × X2 := W 1

≥(0, T ;Rn) × L≥(0, T ;Rm). Let (x∞, u∞) ∇ F be
a minimizer of (OQ). Then there exists a function λ ∇ W 1

≥(0, T ;Rn) such that
the adjoint equation

−λ̇(t) = A(t)Tλ(t) + W (t)x∞(t) + w(t) a.e. on [0, T ],

with end condition
λ(T ) = Qx∞(T ) + q ,

and the minimum principle

⎡
r(t) + B(t)Tλ(t)

⎢T
(u − u∞(t)) ≥ 0 ∞u ∇ U ,

hold a.e. on [0, T ]. Denoting the switching function by

σ(t) := r(t) + B(t)Tλ(t), (1)

it is well-known that for each i ∇ {1, . . . , m}, (1) implies

u∞
i (t) =

⎣⎤⎤⎤⎥
⎤⎤⎤⎦

bl,i, if σi(t) > 0,

bu,i, if σi(t) < 0,

undetermined, if σi(t) = 0.

2 The Implicit Discretization Scheme

Given a natural number N , let hN = T/N be the mesh size. We approximate
the space X2 of controls by functions in the subspace X2,N ⊂ X2 of piecewise
constant functions and the state and adjoint state variables by functions in the
subspace X1,N ⊂ X1 of continuous, piecewise linear functions. These approxima-
tions are uniquely determined by the function values at the grid points. Moreover
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we define UN = U ≤ X2,N and XN = X1,N × UN . Using a collocation method to
approximate the system equation we get the following discretization of (OQ):

(OQ)N min
(x,u)∅X1,N×X2,N

fN (x, u)

s.t.⎞
I − hN

2 A(tj+ 1
2
)
⎟

xj+1 =
⎞
I + hN

2 A(tj+ 1
2
)
⎟

xj + hNB(tj+ 1
2
)uj ,

x0 = a, uj ∇ U, j = 0, 1, . . . , N − 1 ,

where fN is the linear-quadratic cost functional defined by

fN (x, u) =
1
2
xT

NQxN + qTxN + hN

⎠N−1

j=0

1
2
xT

j+ 1
2
W (tj+ 1

2
)xj+ 1

2

+ hN

⎠N−1

j=0

[
w(tj+ 1

2
)Txj+ 1

2
+ r(tj+ 1

2
)Tuj

]
.

Hereby uj = u(tj) and xj+ 1
2

= xj+1+xj

2 = x(tj+1)+x(tj)
2 . Compactness of U

implies that Problem (OQ)N has a solution (x∞
h, u∞

h), and, for any solution, there
exists a continuous, piecewise linear multiplier λh ∇ X1,N such that the discrete
adjoint equation

−λ̇h(tj+ 1
2
) = A(tj+ 1

2
)Tλh(tj+ 1

2
) + W (tj+ 1

2
)x∞

h,j+ 1
2

+ w(tj+ 1
2
) + φλh,j ,

with end condition
λh,N = Qx∞

h,N + q + hNφλh,N ,

and the discrete minimum principle

[
B(tj+ 1

2
)Tλh,j+1 + r(tj+ 1

2
)
]T

(u − u∞
h,j) ≥ 0 ∞u ∇ U

for j = 0, . . . , N−1, are satisfied (compare [12,13]). For further details concerning
the perturbations φλh,j see Remark 3 in [5] or [12].

By σh : [0, tN−1] ∈ R
m we denote the discrete switching function, which is

the continuous and piecewise linear function defined by the values

σh(tj) := B(tj+ 1
2
)Tλh,j+1 + r(tj+ 1

2
), j = 0, . . . , N − 1. (2)

From (2) we obtain for i = 1, . . . , m, j = 0, . . . , N − 1,

u∞
h,i(tj) =

⎣⎤⎤⎤⎥
⎤⎤⎤⎦

bl,i, if σh,i(tj) > 0,

bu,i, if σh,i(tj) < 0,

undetermined, if σh,i(tj) = 0.

In order to analyze the implicit scheme, in [5] we made the following assumptions:
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(A1) There exists a solution (x∞, u∞) ∇ F of (OQ) such that the set Σ of zeros
of the components σi, i = 1, . . . , m, of the switching function σ defined by
(1) is finite and 0, T /∇ Σ, i.e. Σ = {s1, . . . , sl} with 0 < s1 < . . . < sl < T .

(A2) There exist σ̄ > 0, τ̄ > 0 such that |σi(τ)| ≥ σ̄|τ − sj | for all j ∇ {1, . . . , l},
i ∇ I(sj) := {1 → i → m : σi(sj) = 0} and all τ ∇ [sj − τ̄ , sj + τ̄ ], and
moreover it holds σi(sj − τ̄)σi(sj + τ̄) < 0, i.e. σi changes sign in sj .

Under these assumption, that guarantee the strict bang-bang type of the solution
of (OQ), we have proven the following theorem.

Theorem 1. Let (x∞, u∞) ∇ X be a solution of (OQ), which satisfies Assump-
tions (A1) and (A2). Then for sufficiently large N and any solution (x∞

h, u∞
h) ∇

XN of (OQ)N we have the error estimates

≡u∞
h − u∞≡1 → cuh

1
2
N , ≡x∞

h − x∞≡≥ → cxh
1
2
N

with constants cu and cx independent of N . For the associated multipliers we
have

≡λh − λ≡≥ → cλh
1
2
N

with some constant cλ independent of N . ♦
For further details please take a look at [5] and the references specified therein.

3 Structural Stability and Improved Error Estimates

If there is no mixed term in the cost functional, we can improve the error esti-
mates by applying the techniques from [2]. Therefore we define ûh ∇ X2,N due
to ûh(tj) = u∞(tj) for j = 0, . . . , N − 1. Now we derive upper and lower bounds
for the term

JN = hN

N−1⎠
j=0

σh(tj)T(ûh(tj) − u∞
h(tj))

and can deduce convergence of order 1. First we prove a result concerning the
derivative of the switching functions analogous to Theorem 5.1. in [2], resp. The-
orem 2.8 in [4]. To this end we replace Assumption (A2) by the following slightly
stronger assumption:

(A3) The functions r and B are differentiable, ṙ and Ḃ are Lipschitz continuous,
and there exists σ̄ > 0 such that

min
1≤j≤l

min
i∅I(sj)

{|σ̇i(sj)|} ≥ 2σ̄.

Theorem 2. Let Assumptions (A1) and (A3) be satisfied. Let σ be defined by
(1) and σh by (2). Then, for sufficiently large N ,

|σ̇h(t) − σ̇(t)|≥ → c̃σ h
1
2
N ∞t ∇ [0, tN−1]

with a constant c̃σ independent of N . ♦



Improved Error Estimate for an Implicit Discretization Scheme 61

Proof. Let j ∇ {0, . . . , N − 2} and t ∇ [tj , tj+1) be arbitrary. Then we have

σ̇(t) = Ḃ(t)Tλ(t) + B(t)Tλ̇(t) + ṙ(t)

and

σ̇h(t) =
B(tj+1+ 1

2
)Tλh,j+2 + r(tj+1+ 1

2
) − B(tj+ 1

2
)Tλh,j+1 − r(tj+ 1

2
)

hN

From this we can conclude

σ̇h(t) − σ̇(t) =
B(tj+1+ 1

2
)Tλh,j+2 + r(tj+1+ 1

2
) − B(tj+ 1

2
)Tλh,j+1 − r(tj+ 1

2
)

hN

− Ḃ(t)Tλ(t) − B(t)Tλ̇(t) − ṙ(t)

=
r(tj+1+ 1

2
) − r(tj+ 1

2
)

hN
− ṙ(t)

+

[
B(tj+1+ 1

2
)T − B(tj+ 1

2
)T

hN
− Ḃ(tj+1)

]T

λh,j+2

+ Ḃ(tj+1)T(λh,j+2 − λh(t)) +
[
Ḃ(tj+1) − Ḃ(t)

]T
λh(t)

+ Ḃ(t)T(λh(t) − λ(t))

+ B(tj+ 1
2
)T

λh,j+2 − λh,j+1

hN
− B(t)Tλ̇(t).

Plugging in the continuous and discrete adjoint equation leads to

σ̇h(t) − σ̇(t) =
r(tj+1+ 1

2
) − r(tj+ 1

2
)

hN
− ṙ(t) + Ḃ(t)T(λh(t) − λ(t))

+

[
B(tj+1+ 1

2
)T − B(tj+ 1

2
)T

hN
− Ḃ(tj+1)

]T

λh,j+2

+ Ḃ(tj+1)T(λh,j+2 − λh(t)) +
[
Ḃ(tj+1) − Ḃ(t)

]T
λh(t)

− B(tj+ 1
2
)T

[
A(tj+1+ 1

2
)Tλh(tj+1+ 1

2
) + W (tj+1+ 1

2
)xh(tj+1+ 1

2
)
]

− B(tj+ 1
2
)T

[
w(tj+1+ 1

2
) + φλh,j+1

]

+ B(t)T
⎡
A(t)Tλ(t) + W (t)z(t) + w(t)

⎢
.

Now we can apply Theorem 1 and use the Lipschitz continuity of the func-
tions Ḃ, ṙ, A, W , w, x, xh, λ and λh. Moreover without mixed state-control
term, it holds |φλh,j | → cφhN for j = 1, . . . , N − 1, with a constant cφ inde-
pendent of N (see Remark 3 in [5]). Therefore the assertion follows after some
technical transformations. ♦
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Theorem 2 guarantees structural stability, i.e. the discrete switching function
has the same structure as the original switching function (compare Theorem 5.2
in [2]). In order to get a lower bound for JN we can therefore follow the argu-
mentation in [2]. After some technical derivations and transformations we obtain

JN ≥ σ̄

8γ
≡ûh − u∞

h≡1
(

≡ûh − u∞
h≡1 − 1

2
≡ûh − u∞

h≡1 − γhN

)

=
σ̄

16γ
≡ûh − u∞

h≡1 (≡ûh − u∞
h≡1 − 2γhN ) ,

where σ̄, γ are constants independent of N . Now we have to consider two cases.
If

≡ûh − u∞
h≡1 → 4γhN , (3)

we get a discrete error estimate of order 1. Otherwise, we have

2γhN <
1
2
≡ûh − u∞

h≡1
and therefore

JN ≥ σ̄

32γ
≡ûh − u∞

h≡21. (4)

We can now adapt known proof techniques (see e.g. [1,2,5,9,10]) to derive an
upper bound for JN . By Assumption (A1) the optimal control u∞ is piecewise
continuous. Therefore the minimum principle (1) holds for all t ∇ [0, T ] (see
e.g. [8]). With t = tj and u = u∞

h(tj) we obtain

JN = hN

⎠N−1

j=0
σh(tj)T(û(tj) − u∞

h(tj))

→ hN

⎠N−1

j=0
σh(tj)T(û(tj) − u∞

h(tj)) + hN

⎠N−1

j=0
σ(tj)T (u∞

h(tj) − û(tj))

= hN

⎠N−1

j=0
(σh(tj) − σ(tj))

T (û(tj) − u∞
h(tj))

= hN

⎠N−1

j=0

⎞
B(tj+ 1

2
)Tλ∞

h(tj+1) − B(tj)Tλ∞(tj)
⎟T

(û(tj) − u∞
h(tj))

+ hN

⎠N−1

j=0

⎞
r(tj+ 1

2
) − r(tj)

⎟T

(û(tj) − u∞
h(tj)).

Some simple transformations, estimates using the Lipschitz continuity of the
functions B, r, λ∞

h and λ̂ and plugging in the discrete system equation lead to
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JN → hN

2
(
Lr + ≡BT≡≥Lλ∗

h
+ LBTλ̂ + 2c2≡BT≡≥

) ≡û − u∞
h≡1

+ hN

⎠N−1

j=0

⎞
B(ti+ 1

2
)Tλ∞

h(ti+ 1
2
) − B(ti+ 1

2
)Tλ̂(ti+ 1

2
)
⎟T

(û(ti) − u∞
h(ti))

=
hN

2
(
Lr + ≡BT≡≥Lλ∗

h
+ LBTλ̂ + 2c2≡BT≡≥

) ≡û − u∞
h≡1

− hN

⎠N−1

j=0

⎞
λ∞

h(tj+ 1
2
) − λ̂(tj+ 1

2
)
⎟T⎞

A(tj+ 1
2
)(x̂(tj+ 1

2
) − x∞

h(tj+ 1
2
)
⎟

+ hN

⎠N−1

j=0

⎞
λ∞

h(tj+ 1
2
) − λ̂(tj+ 1

2
)
⎟T⎞

˙̂x(tj+ 1
2
) − ẋ∞

h(tj+ 1
2
)
⎟

.

With the help of the discrete adjoint equation we can write

JN → hN

2
(
Lr + ≡BT≡≥Lλ∗

h
+ LBTλ̂ + 2c2≡BT≡≥

) ≡û − u∞
h≡1 + cφhN≡x̂ − x∞

h≡≥

− hN

⎠N−1

j=0

⎞
x̂(tj+ 1

2
) − x∞

h(tj+ 1
2
)
⎟T

W (tj+ 1
2
)
⎞
x̂(tj+ 1

2
) − x∞

h(tj+ 1
2
)
⎟

− hN

⎠N−1

j=0

⎞ ˙̂
λ(tj+ 1

2
) − λ̇∞

h(tj+ 1
2
)
⎟T⎞

x̂(tj+ 1
2
) − x∞

h(tj+ 1
2
)
⎟

− hN

⎠N−1

j=0

⎞
λ̂(tj+ 1

2
) − λ∞

h(tj+ 1
2
)
⎟T⎞

˙̂x(tj+ 1
2
) − ẋ∞

h(tj+ 1
2
)
⎟

.

Now we can use the uniformly positive semidefiniteness of W and some telescop-
ing sums to get

JN → hN

2
(
Lr + ≡BT≡≥Lλ∗

h
+ LBTλ̂ + 2c2≡BT≡≥

) ≡û − u∞
h≡1 + cφhN≡x̂ − x∞

h≡≥

−
⎠N−1

j=0

⎞
λ̂(tj+1) − λ∞

h(tj)
⎟T

(x̂(tj+1) − x∞
h(tj+1))

−
⎠N−1

j=0

⎞
λ̂(tj) − λ∞

h(tj)
⎟T

(x∞
h(tj) − x̂(tj))

=
hN

2
(
Lr + ≡BT≡≥Lλ∗

h
+ LBTλ̂ + 2c2≡BT≡≥

) ≡û − u∞
h≡1 + cφhN≡x̂ − x∞

h≡≥

− (λ̂(T ) − λ∞
h(T ))T (x̂(T ) − x∞

h(T )) − (λ̂(0) − λ∞
h(0))T(x∞

h(0) − x̂(0)).

Plugging in the end condition of the discrete adjoint equation and applying some
technical transformations and estimates we obtain

JN → cuhN≡û − u∞
h≡1 + cxhN≡x̂ − x∞

h≡≥.

With Lemma 3.4 in [5] it finally follows

JN → c̃hN≡û − u∞
h≡1 (5)

with some constant c̃ independent of N .
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We can now state a first order error estimate for the discrete solutions of the
implicit discretization and thereby improve the results of Theorem1 under the
slightly stronger Assumption (A3) (compare Theorem 5.3 in [2]).

Theorem 3. Let (x∞, u∞) be a solution of Problem (OQ) for which Assump-
tions (A1) and (A3) are satisfied. Then, for sufficiently large N , any minimizer
(x∞

h, u∞
h) of Problem (OQ)N and associated multipliers can be estimated by

≡u∞
h − u∞≡1 + ≡x∞

h − x∞≡≥ + ≡λ∞
h − λ∞≡≥ → chN , (6)

where the constant c is independent of N . ♦

Proof. If (3) holds, then, by Theorem 3.3 in [5], we have

≡u∞
h − u∞≡1 → ≡u∞

h − ûh≡1 + ≡ûh − u∞≡1 → 4γhN + hNVT
0 u∞ ,

i.e. the estimate (6) is satisfied with cu = 4γ + VT
0 u∞. Otherwise, it follows

from (4) and (5) that

≡ûh − u∞
h≡21 → 32γ

σ̄
JN → 32γ

σ̄
hN c̃ ≡ûh − u∞

h≡1.
Dividing both sides by ≡ûh − u∞

h≡1, it follows that the estimate (6) is satisfied
with cu = 32γ

σ̄ c̃ + VT
0 u∞. The estimates for x∞

h and λh can now be derived as in
the proof of Theorem1. ♦

A numerical example, illustrating the theoretical findings, can be found in [5].
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Inclusions with Random Initial Data
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Abstract. Optimization problems for differential inclusions with convex
right-hand side are considered. The initial state of the inclusion being
a random vector is unknown, or, in the more general case, is contained
in some random closed set. We seek a trajectory of the inclusion which
minimizes the expectation of a function of the inclusion’s final state, or,
in the more general case, the similar trajectory which is a minimizer of an
max-(or Choquet) integral. The theorem is proved that gives necessary
conditions of optimality for the mentioned problems, conditions which
in certain cases are also sufficient.

Keywords: Differential inclusion · Choquet integral · Optimality
conditions · Numerical scheme

1 Problems Formulation

Let Q = {q1, q2, . . .} be a countable set in Rn, and m(·) be a Borelian measure
with supp(m) = Q such that m({qi}) = pi,

∑
i≥1 pi = 1. Consider the probabil-

ity space (Rn,B(Rn),m) and the identity random value q on this space. In this
paper, we investigate the following problem:

Minimize Eφ(x(b, q)) =
∑
i≥1

φ(x(b, qi))pi, (1)

where E is the mathematical expectation, over all the solutions x(·, qi) of a
differential inclusion

ẋ(t) ∇ F (x(t)), t ∇ T = [a, b], (2)

with initial conditions qi, i.e. x(a, qi) = qi. In (2), we have x(t) ∇ Rn, F (x) is
a multifunction with convex and compact values. Suppose that F (x) is globally
Lipschitzian and bounded, i.e.

∈K > 0, F (x) ⊂ F (y) + K|x − y|B, B = {x | |x| → 1}, F (x) ⊂ KB. (3)

I. Lirkov et al. (Eds.): LSSC 2013, LNCS 8353, pp. 66–73, 2014.
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Hereafter |·| is the Euclidean norm in Rn. An absolutely continuous function x(·)
is said to be a solution of (2) if its derivative ẋ(t) satisfy (1) almost everywhere
(a.e.) on T .

Denote by S(F, q) = {x(·, q)} the set of all solutions of (2) with the initial
state q. By S(F ) = {x(·, ·)} we denote the set of functions of two variables such
that x(·, q) ∇ S(F, q), ∞q, and x(t, ·) is Borelian, ∞t ∇ T . It is well known (see
Smirnov [1]) that the set S(F, q) under conditions (3) is nonempty compact in the
space C(T , Rn) and Lipshitzian: S(F, q1) ⊂ S(F, q2)+exp(K(b−a))|q1 −q2|BC ,
where BC = {x(·) ∇ C(T , Rn) | |x(·)|→ → 1}, and |x(·)|→ = max{|x(t)| | t ∇ T }.
Here C(T , Rn) is the Banach space of all continuous functions from T into Rn.

In what follows, the function φ(·) : Rn ⊃ R in (1) is supposed to be globally
Lipschitzian. The map x̄(·, ·) ∇ S(F ) is said to be a local minimizer for problem
(1) if there exists σ > 0 such that Eφ(x̄(b, q)) → Eφ(x(b, q)) for all x(·, ·) ∇ S(F )
satisfying the inequality E|x̄(·, q)−x(·, q)|→ → σ. Our goal is to find the necessary
conditions of optimality for the local minimizer.

A generalization of problem (1) consists in the following. Let a multifunction
Q : ∂ =≥ Rn with closed values be given on a probability space (∂,A, P ). Sup-
pose that the multifunction is measurable, i.e. the full inverse image Q−(B) =
{Δ | Q(Δ) ≤ B ≡= ∅} belongs to Ω-algebra A for any Borelian sets B. Such a
multifunction is called a closed random set, Molchanov [6]. Let us formulate the
problem

E sup
q∞Q

φ(x(b, q)) =
∫

Ω

sup{φ(x(b, q)) | q ∇ Q(Δ)}P (dΔ) ⊃ min
x(·,·)∞S(F )

. (4)

The left-hand side of (4) has a form of max-(or Choquet) integral with respect to
the random set Q(Δ). (See Molchanov [6], Choquet [7], Nguen [8].) We consider
below max-integral in more detail and reduce it to the ordinary one with respect
to some probability measure. If this measure appears discrete, we can reduce
problem (4) to (1).

The problems that we consider are motivated by control problems for an
ensemble of trajectories of dynamical systems with uncertain initial data. (See
Kurzhanski [2], Schmitendorf [3], Filippova [4].) On the other hand, the necessity
of study of control problems with the random data in the form of sets arises under
a solution of problems of movement correction, where the random set is naturally
appeared at the observation stage (Ananyev [5].)

2 Discrete-Time Inclusions

Let F : Rn =≥ Rn be a globally Lipschitzian (see (3)) multifunction with
compact values and let δk ∇ Rn×kn, k ∇ 1 : N , be matrices of the form δk =
[δ1,k, . . . , δk,k], where δi,k ∇ Rn×n, i ∇ 1 : k. Consider a discrete-time system
of inclusions, Smirnov [1],

vk+1 ∇ F (δ0,kq + δk(v1, . . . , vk)), k ∇ 0 : N − 1, (5)



68 B.I. Ananyev

where δk(v1, . . . , vk) =
∑k

i=1 δi,kvi, k ∇ 0 : N , δ0,k ∇ Rn. Introduce column-
vectors V (q) = [v1(q); . . . ; , vN (q)] ∇ RNn, where {vk(q)} is the set of solutions of
inclusion (5) with the initial vector q. We can describe the set of all the solutions
of system (5) as follows. Let L ∇ R2Nn×Nn and M ∇ R2Nn×n be block matrices
of the form

L = [0n×Nn;δ1, 0n×(N−1)n; . . . ;δN−1, 0n×n; INn],
M = [δ0,0; . . . ;δ0,N−1; 0Nn×n],

where In is the identity n × n matrix, 0n×k is the null n × k matrix, and

F = {[W ;V ] | vk ∇ F (wk), k ∇ 1 : N} ∇ R2Nn,

be the graph of the multifunction described as Cartesian product F (w1) × · · · ×
F (wN ). Then system (5) with the initial vector q is equivalent to the inclusion

LV (q) + Mq ∇ F . (6)

Let λ : Rn ⊃ R and Λk : Rn ⊃ R, k ∇ 1 : N , be globally Lipschitzian functions.
As above, let m(·) be the probability discrete measure on Rn with the additional
assumption

∑
i≥1 pi|qi|2 < ∞.

Let us form the functional

J(V (·)) =
∑
i≥1

pi(λ(δ0,Nqi + δNV (qi)) + Λ(V (qi))), (7)

where Λ(V ) =
∑N

k=1 Λk(vk), and consider the problem

J(V (·)) ⊃ min
V (·)

(8)

under constraints (6). We contemplate this problem in Hilbert space lNn
2 (m),

where the inner product is 〈V (·),W (·)∪ =
∑

i≥1 pi〈V (qi),W (qi)∪. In order to
prove the following theorem let us recall some notions from the theory of
nonsmooth analysis [1,9]. Let X, Y be Hilbert spaces, F : X =≥ Y be a mul-
tifunction, and J : X ⊃ R̄ be a Lipschitzian function. The conjugate map to
a multifunction F is defined as F ∅(x, y)(y∅) = {x∅ | (x∅,−y∅) ∇ NgrF (x, y)},
where grF is the graph of the multifunction. Hereafter NA(x) is the basic normal
cone to the set A at the point x and πJ(x) is the Mordukhovich subdifferential at
x. In general, these are nonconvex sets. From the other hand, they closely related
with convex proximal objects: NA(x) = {w-lim γk | γk ∇ NP

A (xk), xk
A⊃ x},

πf(x) = {w-lim γk | γk ∇ πP f(xk), xk
f⊃ x}. The definition of proximal objects

is given, for example, in [10]. Here w-lim is the weak limit; xk
f⊃ x ∼ xk ⊃

x, f(xk) ⊃ f(x).

Theorem 1. Let the trajectory V̄ (·) be a local minimizer for problem (8) and
V(q) = L−1(F − Mq) be the constraint set for V (·). Then there exist vectors
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x∅
k(q), sk(q), y∅

k(q), z∅(q) in Rn, k ∇ 1 : N , q ∇ Q, such that

z∅(q) ∇ πλ(δ0,Nq + δN (v̄1(q), . . . , v̄N (q))), sk(q) ∇ πΛk(v̄k(q)), (9)
x∅

k(q) ∇ F ∅(δ0,k−1q + δk−1(v̄1(q), . . . , v̄k−1(q)), v̄k(q))(−y∅
k(q)), (10)

−y∅
k(q) = δ∅

k,Nz∅(q) + sk(q) +
N−1∑
i=k

δ∅
k,ix

∅
i+1(q). (11)

Proof. We have to minimize functional (7) under constraints V (q) ∇ V(q) =
L−1(F − Mq), where L−1(F) = {V | LV ∇ F}. Let A = {V (·) ∇ lNn

2 (m) |
V (q) ∇ V(q), q ∇ Q}. Due to the theory of nonsmooth analysis, there exist
Z∅(·) ∇ πJ(V̄ (·)) and V ∅(·) ∇ NA(V̄ (·)) such that 0 = Z∅(·) + V ∅(·). Now we
need two lemmas.

Lemma 1. Let J(V (·)) =
∑

i≥1 piλ(V (qi)) be a functional defined on ln2 (m),
where λ is a globally Lipschitzian function on Rn. If ζ(·) ∇ πJ(V (·)), then
ζ(q) ∇ πλ(V (q)) for all q ∇ Q.

Proof (of Lemma1). Let ζ ∇ πP J(V (·)). Then, by definition, there exist σ > 0
and Ω > 0 such that J(W ) ≥ J(V )+〈ζ,W −V ∪−Ω‖W −V ‖2 for all W ∇ V +ςB,
where B is a unit ball in ln2 (m). It follows from this that for all q ∇ Q we have
λ(W (q)) ≥ λ(V (q)) + 〈ζ(q),W (q) − V (q)∪ − Ω|W (q) − V (q)|2, if pi|W (q) −
V (q)|2 → ς2, q = qi, i.e. ζ(q) ∇ πP J(V (q)). Note that w-lim ζk(·) = ζ(·)
iff ζk(q) ⊃ ζ(q), ∞q ∇ Q, and norms ‖ζk(·)‖ are bounded. Therefore, if the
sequence ζk(·) ⊃ ζ(·) weakly and ζk(·) ∇ πP J(Vk(·)), Vk(·) ⊃ V (·) strongly,
we obtain ζ(q) ∇ πλ(V (q)), ∞q ∇ Q. ≈⊇
Lemma 2. Let V(q) be closed sets in Rn, and A = {V (·) ∇ ln2 (m) | V (q) ∇
V(q), q ∇ Q}. If ζ(·) ∇ NA(V (·)), then ζ(q) ∇ NV(q)(V (q)) for all q ∇ Q.

For the proof of Lemma 2, we first note that the inclusion ζ(·) ∇ NP
A (V (·))

implies ζ(q) ∇ NP
V(q)(V (q)), ∞q ∇ Q. Then, using the same limiting reason-

ing as in Lemma 1, we obtain the statement. Due to the lemmas, we have
Z∅(q) ∇ π(λ(δ0,Nq+δN V̄ (q))+Λ(V̄ (q))) and V ∅(q) ∇ NV(q)(V̄ (q)). As πf(x) ⊂
L∅πf(Lx), where f(x) = f(Lx), and π(f1 + f2)(x) ⊂ πf1(x) + πf2(x), we get
the existence of vectors satisfying (9), such that Z∅(q) = δ∅

Nz∅(q) + S(q),
S(q) = [s1(q); . . . ; sN (q)]. At last, we use the equality NL−1(F−Mq)(V̄ (q)) =
L∅NF−Mq(LV̄ (q)) = L∅NF (LV̄ (q) + Mq) which holds under condition kerL∅ ≤
NF−Mq(LV̄ (q)) = {0} (See [1, Theorem 3.6].) Thus, we have (10), (11). ≈⊇

3 Continuous-Time Inclusions

In this section, let us return to problem (1) for continuous inclusions (2). Let
x̄(·, ·) be a local minimizer and N be a positive integer. Consider the following
auxiliary problem: minimize the functional

J(V (·)) =
∑
i≥1

pi

(
φ
(
qi + δN

N∑
k=1

vk(qi)
)

+
N∑

k=1

a+kδN∫
a+(k−1)δN

(vk(qi) − ˙̄x(t, qi))2dt

)
,
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where δN = (b − a)/N , over the variables V (q) = [v1(q); . . . ; vN (q)] ∇ RNn

satisfying the inclusions

vk(q) ∇ F
(
q + δN

k−1∑
i=1

vi(q)
)
, k ∇ 1 : N.

Due to global Lipschitzian conditions for φ and quadratic growth of integrals in
J , we can conclude that auxiliary problem has a minimum, for example, at Ṽ (·).
Therefore, according to Theorem 1 we obtain the existence of vectors x∅

k(q),
sk(q), y∅

k(q), z∅(q) in Rn, k ∇ 1 : N , such that

z∅(q) ∇ πφ
(
q + δN

N∑
k=1

ṽk(q)
)
, sk(q) = 2

∫ a+kδN

a+(k−1)δN

(ṽk(q) − ˙̄x(t, q))dt,

x∅
k(q) ∇ F ∅

(
q + δN

k−1∑
i=1

ṽi(q), ṽk(q)
)
(−y∅

k(q)),

−y∅
k(q) = δN

(
z∅(q) +

N−1∑
i=k

x∅
i+1(q)

)
+ sk(q).

Let a + kδN = tNk . First, define on [a, b] the piecewise-linear function x̃N (t, q) =
q + δN

∑k−1
i=1 ṽi(q) + (t − tNk−1)ṽk(q) if t ∇ [tNk−1, t

N
k ], k ∇ 1 : N . Second, define

on [a, b] the piecewise-constant function sN (t, q) = sk(q)/δN if t ∇ (tNk−1, t
N
k ],

k ∇ 1 : N . Put pk(q) = −z∅(q) − ∑N−1
i=k x∅

i+1(q) and consider on [a, b] the
piecewise-linear function pN (t, q) = pk−1(q) + δ−1

N (pk(q) − pk−1(q))(t − tNk−1) if
t ∇ [tNk−1, t

N
k ], k ∇ 1 : N . Observe that pN (·, q) satisfies the following inclusions:

pN (b, q) ∇ −πφ(x̃N (b, q)), ṗN (t, q) = pN (tNk ,q)−pN (tNk−1,q)

δN

∇ F ∅(x̃N (tNk−1, q), ˙̃xN (t, q)
)( − pN (tNk , q) + sN (tNk , q)

)
, t ∇ [tNk−1, t

N
k ].

(12)

Also as in [1, Theorem 7.2] one can prove that the sequence of functions ˙̃xN (·, q)
tends to ˙̄x(·, q) in the norm of Ln

2 [a, b]. In this proof one uses the optimality of
Ṽ (·). Without loss of generality the functions | ˙̃xN (·, q) − ˙̄x(·, q)| and |sN (t, q)|
tends to zero. From Gronwall inequality, differential inclusions (12), and the
Arzela-Ascoli theorem we can conclude that there exists a function p(·, q) for
which pN (·, q) ⊃ p(·, q) in the uniform metric. Using [1, Lemma 4.4] for any
q ∇ Q, we obtain

ṗ(t, q) ∇ coF ∅(x̄(t, q), ˙̄x(t, q))(−p(t, q)), p(b, q) ∇ −πφ(x̄(b, q)). (13)

From (13) we see that an optimal trajectory satisfies the maximum principle

〈p(t, q), ˙̄x(t, q)∪ = max
{〈p(t, q), y∪ : y ∇ F (x̄(t, q))

}
, a.e. t ∇ [a, b], (14)

where 〈·, ·∪ is the inner product in Rn, q ∇ Q.



On Optimization Problems for Differential Inclusions 71

Observe some properties of inclusions (14). As F is globally Lipschitzian,
we have coF ∅(x, y) (−p) ⊂ K|p|B, where K is Lipschitz constant and the set
B is defined in (3). Moreover, the multifunction (x, y, p) ⊃ coF ∅(x, y)(−p) is
upper semicontinuous. For globally Lipschitzian functions, the subdifferential
πφ(x) is bounded and upper semicontinuous in x. Using properties of differential
inclusions, we conclude that for optimal solution x̄(·, q) there exists at least one
solution p(t, q) of inclusions (14). Thus, summarizing the above consideration,
we come to the conclusion.

Theorem 2. Let x̄(·, ·) be a locally optimal trajectory in problem (1) under above
assumptions about F and φ. Then there exists a function p(t, q), absolutely con-
tinuous in t, such that it satisfies inclusions (13) and maximum principle (14)
for all q ∇ Q.

Remark 1. Suppose that the measure m(·) in (1) is not discrete, but absolutely
continuous with respect to Lebesgue measure. Then the assertion like Lemma 1
is not valid. Indeed, let n = 1 and J(V (·)) = − ∫ 1

0
|V (t)|dt. Then, in the space

L2[0, 1], we have 0 ∇ πJ(0), but 0 ≡∇ πλ(0) = {−1, 1}, where λ(x) = −|x|. (See
[10, P. 156].) Of course, 0 ∇ πCλ(0) = [−1, 1], where πC is Clarke’s subdifferen-
tial. Moreover, if J(V (·)) =

∫
Rn f(x)λ(x)dx, where f(·) is a probability density

function, λ(·) is a Lipschitzian function, then πJ(V (·)) = πC(V (·)) = {V (·) |
V (x) ∇ πCλ(x) a.e.}. This fact is proved in [10] for the case: n = 1, f has a com-
pact support. The general case also can be proved with the help of Aumann’s
theorem. It will be published.

Remark 2. Suppose, in addition to above assumptions, that the sets grF , domF
are convex and closed, and the function φ is convex on domF = domφ. Besides,
let the set S(F, x) ≡= ∅ for any x ∇ domF and the support of measure m(·) be
contained in domF . Then the theorem like Theorem 2 gives sufficient conditions
for a global minimum.

Example 1. Let n = 2, a = 0, b = 1, F (x, y) = {(y, v) | v ∇ [exp(−y), 1]} when
|x| < ∞, y ≥ 0, and F (x, y) = ∅ when y < 0, φ(x, y) = x+y. Then transversality
conditions give p(1) = q(1) = −1. We have p(t) ≡ −1, ẏ = exp(−y), q̇ =
1 + qẏ in the domain, where q(t) < 0. Then q(t) = −(

1/(1 + exp(y0)) + log((1 +
exp(y0))ẏ)

)
/ẏ, y(t) = log(t + exp(y0)), x(t) = x0 + (t + exp(y0))y(t) − (t +

exp(y0)y0). Therefore, for any probability measure m(dx0, dy0) with the support
from upper semiplane, for which Em(x(1, x0, y0) + y(1, y0)) is finite, the given
trajectory is optimal in problem like (1).

4 The Cost with Choquet Integral

Let f : Rn ⊃ R ∪ {+∞} be Borelian function bounded from below. Then
for any probability measure m the integral

∫
Rn f(x)m(dx) is properly defined.

Given a closed random set Q(Δ), we can define so called max-(orChoqeut) inte-
gral. First define the function fQ(Δ) = sup{f(x) | x ∇ Q(Δ)}. This function
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fQ : ∂ ⊃ R∪{+∞} is measurable with respect to Ω-algebra A and bounded from
below. Therefore, the value

∫
fdQ = EfQ, called max-integral over closed ran-

dom set Q(Δ), is properly defined for all Borelian functions bounded from below.
Note that the original definition consists in the following [7]. Let fd(x) = f(x)−d,
where d = inf{f(x) | x ∇ Rn}. Then fd

Q(Δ) = fQ(Δ) − d. Due to the equality
Eγ =

∫ +→
0

P{γ > t}dt for random value γ(Δ) (see [8]), we obtain

Efd
Q =

∫
Ω

fd
Q(Δ)P (dΔ) =

∫ +→
0

P{fd
Q > t}dt

=
∫ +→
0

P{f−1
Q (t + d,+∞]}dt =

∫ +→
0

P{Δ | Q(Δ) ≤ f−1(t + d,+∞] ≡= ∅}dt

=
∫ +→
0

TQ({x | f(x) > t + d})dt =
∫ +→

d
TQ({x | f(x) > t})dt.

Thus, ∫
fdQ = EfQ =

∫ +→

d

TQ(f−1(t,+∞])dt + d. (15)

Here and above TQ(B) = P{Δ | Q(Δ) ≤ B ≡= ∅} is Choquet capacity for closed
random set Q(Δ). The functional TQ defined on Ω-algebra B(Rn) is not additive,
but monotone: TQ(B1) → TQ(B2), if B1 ⊂ B2. Therefore, TQ(f−1(t,+∞]) is a
monotonically nonascending function in t, and integral in (15) is properly defined
Riemann integral. Let us accept

Assumption. The set Q0(Δ) = Argmax{f(x) | x ∇ Q(Δ)} = {x ∇ Q(Δ) |
f(x) = fQ(Δ)} ≡= ∅ is Borelian and does not equal empty set almost surely.
Besides, the multifunction Q0 : ∂ ⊃ B(Rn) is measurable: Q−

0 (B) ∇ A for any
set B ∇ B(Rn). There exists Borelian stochastic kernel m(dx|Δ) that is a measur-
able probability measure m : ∂ ⊃ PM(Rn), for which m−1(B(PM(Rn))) ⊂ A,
such that

∫
Ω

m(Q0(Δ)|Δ)P (dΔ) = 1. Here B(PM(Rn)) is Borelian Ω-algebra
on the complete separable metric space PM(Rn) of probability measures with
∗-weak topology [11].

Note that the equality m(Q0(Δ)|Δ) = 1 a.e. follows from the Assumption.
The following theorem is valid.

Theorem 3. Under the Assumption, the equality∫
fdQ =

∫
Rn

f(x)m(dx)

takes place for the function f and the closed random set Q, where the probability
measure m is defined for any B ∇ B(Rn) as m(B) =

∫
Ω

m(B|Δ)P (dΔ).

Let there exists a Borelian selection γ: γ(Δ) ∇ Q0(Δ), ∞Δ ∇ ∂.

Lemma 3. If there exists the Borelian selection, as above, the Assumption is
valid.

Proof. As a Borelian stochastic kernel we choose m(·|Δ) = δξ(ω)(·), that is the
composition of Dirac measure and the Borelian selection. All the measurability
requirements are fulfilled. ≈⊇
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Example 2. Let Q(Δ) has closed and convex values, and Q(Δ) ⊂ K, where K
is a convex compact set in Rn. The function f is strictly concave on K. Then
Q0(Δ) = {γ(Δ)}, and the function γ is measurable due to Filippov lemma. For
stochastic kernel m(·|Δ) = δξ(ω)(·), where δξ(·) is Dirac measure, our assumptions
are fulfilled.

Example 3. Let ∂ be the set of all finite sets Δ ⊂ Q, where Q is a countable
set in Rn. Consider the random set Q(Δ) = Δ with a distribution {p(Δ)}, such
that

∑
ω∞Ω p(Δ) = 1, p(∅) = 0. Here, it may be so that

∑
i≥1 p({qi}) < 1.

The measure m(·|Δ) on Q0(Δ) is defined arbitrarily by numbers qx
Q0(ω) ≥ 0,

for which
∑

x∞Q0(ω) qx
Q0(ω) = 1, qx

Q0(ω) = 0 if x ≡∇ Q0(Δ). Then, according to
Theorem 3, m(x) =

∑
ω∞Ω m(x|Δ)p(Δ), x ∇ Q, and we have

∑
ω∞Ω max{f(x) |

x ∇ Δ}p(Δ) =
∑

x∞Q f(x)m(x).

The situation described in Example 3 is applicable in foregoing Theorem 1
and 2. In practice for the set Q, we can take a countable set Q = {δ[i1; . . . ; in]},
where ij are integers, δ > 0. Then every compact set will have a finite intersection
with Q. This intersection can be taken as an approximation of the compact set.
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Abstract. In this note we review some problems typically encountered
in the theory of stability of switched systems. Moreover, we present some
recent achievements on this subject.
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Asymptotic controllability

1 Introduction

The study of hybrid systems is one of the most interesting and challenging topic
in the modern engineering literature [10]. A hybrid system is a system whose evo-
lution is determined by the combination of discrete time and continuous time
effects. Hybrid systems may exhibit unusual phenomena, like impulses (discon-
tinuous state evolution) and Zeno behavior (accumulation of discontinuities in
finite time). Here we are interested in a special family of hybrid systems, called
switched systems [13,18]. The evolution of a switched system is described by con-
tinuous trajectories: in other words, discontinuities are allowed in the velocity,
but not in the state evolution. Moreover, Zeno behavior is excluded by definition.
In spite of these simplifications, the dynamical behavior of a switched system can
be very complex. In the next section, the notion of switched system is formally
introduced. The subsequent sections illustrate some peculiar difficulties arising
in the study of stability of switched systems, and survey the way they have been
addressed in the recent literature.

2 Switching Signals and Switched Systems

Let N ∇ 2 be a fixed integer, and let N = {1, . . . , N} be equipped with the
discrete topology. Let UN be the set of switching signals, that is all the right
continuous, piecewise constant functions σ : [0,+∈) ⊂ N . The discontinuity
points of a switching signal σ form a finite or countable (possibly empty) subset
of the open half line (0,+∈). They are called switching times of σ. Let Iσ be
the set whose elements are t0 = 0 and all the switching times ti of σ, indexed
in such a way that 0 = t0 < t1 < t2 < . . .. If the set of switching times is
infinite, then clearly limi≥+∗ ti = +∈. If it is finite and max ti = ti∗ , then

I. Lirkov et al. (Eds.): LSSC 2013, LNCS 8353, pp. 74–80, 2014.
DOI: 10.1007/978-3-662-43880-0 7, c→ Springer-Verlag Berlin Heidelberg 2014
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we set ti∗+1 = +∈. The numbers θi = ti+1 − ti > 0 are called durations. A
switching signal σ is said to be periodic (of period T ) for F if there exists a
string of real numbers τ0, . . . , τH (where H is an integer, H ∇ 1) and a string of
indices n1, . . . , nH → N such that: 0 = τ0 < τ1 < · · · < τH = T ; σ(t) = nh for
t → [τh−1, τh), for each h = 1, . . . , H; and σ(t) = σ(t − T ) for t ∇ T . The points
τh +mT , with h = 1, . . . , H, and m = 0, 1, . . . coincide with the switching times,
provided that H > 1 and n1 ∞= n2, n2 ∞= n3 . . . nH ∞= n1. Note that σ is constant
when H = 1.

Let d ∇ 1 be a fixed integer, and let F = {fn}n∞N be a family of vector fields
of class C1 on Rd. For each n → N , the vector field fn is called the n-th component
of F . Assume that for each fn and each initial state x̄ → Rd there is a unique
differentiable curve ϕn(t, x̄) : [0,+∈) ⊂ Rd such that ϕ̇n(t, x̄) = fn(ϕn(t, x̄)) for
each t ∇ 0 and ϕn(0, x̄) = x̄. It is called the (positive) trajectory of fn issued from
x̄. Analogously, for each x̄ and each σ → UN , there exists a unique continuous
curve ϕF (t, x̄, σ) : [0,+∈) ⊂ Rd satisfying the condition ϕF (0, x̄, σ) = x̄, and
such that

ϕF (t, x̄, σ) = ϕσ(ti)(t − ti, ϕF (ti, x̄, σ)) , ⊃t → [ti, ti+1) , ⊃ti → Iσ .

We say that ϕF (t, x̄, σ) is the switched trajectory of F , issued from the initial
state x̄, corresponding to the switching signal σ. In the sequel, we will use the
simplified notations ϕ(t, x̄, σ) or ϕ(t, x̄), when the omitted terms are clear from
the context.

A switched system on Rd with index set N is defined by a family F =
{fn}n∞N of vector fields, together with a set-valued map Σ which assigns a
(nonempty) set of switching signals Σx̄ ≥ UN to each point x̄ → Rd, regarded as
initial state. A switched system will be denoted by (F , Σ); Σ is called a switching
map. Roughly speaking, a switching map specifies the set of inputs which is
admissible for every initial state, and allows us to take into account possible
constraints on the switching signals. A switched system (F , Σ) for which Σ is
single-valued and constant i.e., the same switching signal σ is applied for each
initial state x̄, will be simply denoted by (F , σ). A periodic switched system is a
pair (F , σ) such that σ is periodic for F .

A switched system (F , Σ) is said to be linear if all its components are linear
vector fields of Rd, that is fn(x) = Anx, where An is a d × d real matrix. For a
linear switched system, one has ϕn(t, x̄) = etAn x̄ and

ϕ(t, x̄, σ) = e(t−ti)Aσ(ti)ϕ(ti, x̄, σ) = e(t−ti)Aσ(ti)e(ti−ti−1)Aσ(ti−1) . . . et1Aσ(0) x̄

for each t → [ti, ti+1), ti → Iσ, and σ → Σx̄. We emphasize that in this case the
map x ≤⊂ Φ(t, σ)x = ϕ(t, x, σ) is linear and nonsingular for each t ∇ 0.

A switched trajectory of a family F of vector fields can be viewed as a tra-
jectory of a control system of the form ẋ =

∑N
n=1 unfn(x), where the input u

is piecewise constant and takes value on the set of the vectors of the canonical
basis of RN . Note that this system is affine, but the control set is not sym-
metric. A switched trajectory of a family of linear vector fields can be viewed
as a trajectory of a bilinear control system. The formalism introduced so far
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is basically the same used in geometric control theory to represent a control
system [12]. However, geometric control theory is especially concerned with the
controllability problem, and it is usually assumed Σx̄ = UN for each x̄ → Rd.
Here, we focus on stability and stabilization. Moreover, it is of great interest to
consider also cases where Σx̄ is a proper subset of UN . A switched system can
be also viewed as a differential inclusion. However, the notion of solution of a
differential inclusion is more general than the notion of switched trajectory.

3 Stability

The classical definitions of stability extend to switched systems in a natural way.
For simplicity, from now on we consider only switched systems (F , Σ) such that
fn(0) = 0 for each n → N .

Definition 1. The origin is said to be stable for (F , Σ) if:

⊃ε > 0 ≡δ > 0 s.t. : |x̄| < δ =∅ |ϕ(t, x̄, σ)| < ε , ⊃t ∇ 0 , ⊃σ → Σx̄ . (1)

The origin is said to be locally attractive for (F , Σ) if:

≡δ0 > 0 s.t. : |x̄| < δ0 =∅ lim
t≥+∗ ϕ(t, x̄, σ) = 0 , ⊃σ → Σx̄ . (2)

Moreover, we say that the origin is globally attractive if δ0 can be taken arbi-
trarily large; exponentially attractive if each switched trajectory decays exponen-
tially to zero when t ⊂ +∈; uniformly attractive if the limit in (2) is uniform
with respect to σ. Finally, we say that the origin is [locally, globally, exponen-
tially, uniformly] asymptotically stable for the switched system (F , Σ) if it is
both stable and [locally, globally, exponentially, uniformly] attractive for (F , Σ).

Even if all the individual components of a family F are asymptotically stable
at the origin, it is sometimes possible to construct switched trajectories of F
which do not converge to the origin. This phenomenon is called loss of stability.
Loss of stability is a well known, peculiar feature of systems whose behavior is
affected by discontinuous or discrete effects. It has been observed in early works
[19], and it is the motivation of recent studies [13,18]. The more popular examples
where loss of stability arises, involve families of linear vector fields defined by
matrices with complex conjugate eigenvalues: in [2], we give an example where
the vector fields have real eigenvalues. These remarks motivate the following
definition.

Definition 2. The family of vector fields F is said to be stable under arbitrary
switching when the switching system (F ,UN ) (i.e., with Σx̄ = UN for each
x̄ → Rd) is asymptotically stable at the origin.
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4 Lyapunov Functions

A common Lyapunov function for F is a function V : Rd ⊂ R of class C1 such
that V (0) = 0, V (x) > 0 for x ∞= 0, and ∇V (x)fn(x) < 0 ⊃x ∞= 0 and ⊃n → N . A
common Lyapunov function is said to be weak if the last inequality is replaced
by: ∇V (x)fn(x) ≤ 0 ⊃x → Rd and ⊃n → N .

Theorem 1. If there exists a common Lyapunov function for F then the origin
is uniformly asymptotically stable for F under arbitrary switching.

The existence of a common Lyapunov function implies that each single com-
ponent is asymptotically stable at the origin. The converse of Theorem 1 holds
[14] (see also [9]). However, in practice Theorem 1 does not help very much, due
to the difficulty of finding a common Lyapunov function. Another drawback of
the common Lyapunov function approach is the following. It is well known that
for a single asymptotically stable linear vector field it is always possible to find
a quadratic Lyapunov function: but this is not longer true for a family of linear
vector fields, asymptotically stable under arbitrary switching [9,13]. We now dis-
cuss an extension of the Lyapunov function approach. Let us assume that all the
fn’s are asymptotically stable, and let Vn(x) be a Lyapunov function for fn(x).
The family {Vn} is called a multiple Lyapunov function for F . Of course, the
existence of a multiple Lyapunov function is not sufficient to ensure stability of
F : one needs to add a compatibility condition, regulating the way the Lyapunov
functions of the singular components change their values when a switch arises.
The simplest condition of this type is:

Vni
(ϕ(ti, x̄, σ)) ≤ Vni−1(ϕ(ti, x̄, σ)) ⊃ x̄ → Rd, σ → UN , ti → Iσ . (3)

Theorem 2. Let {Vn} be a multiple Lyapunov function for F . Assume in addi-
tion that (3) is fulfilled. Then the origin is asymptotically stable for F under
arbitrary switching.

This Theorem can be found in [16]. A more sophisticated compatibility con-
dition can be found in [8]. Similar results can be obtained in the context of
topological dynamics [4]. The same idea can be used to prove asymptotic stabil-
ity of a switched system (F , Σ), with Σx̄ ∞= UN for some x̄ → Rd (constrained
switches). To this end, it sufficient to check the compatibility condition for each
σ → Σx̄ and x̄ → Rd.

5 Invariance Principle

Switched systems share many disadvantages of time-varying systems. In particu-
lar, the invariance principle is no more a so powerful tool for proving asymptotic
stability of an equilibrium position when only a weak Lyapunov function is avail-
able, as in the case of single time-invariant systems [3,11].
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Definition 3. We say that a switched signal σ admits a dwell time if the infi-
mum of the durations θi is positive. In this case, the number inf θi is called the
dwell time of σ. The set of all the switched signals σ → UN which admit a dwell
time (not necessarily the same) is denoted by D.

If we focus on switching maps satisfying Σx̄ ≥ D for each x̄ → Rd, then it
is possible to prove extended versions of the Invariance Principle. The following
is perhaps the simplest statement in this perspective [3]. The required notion
of weakly invariant set is adapted to the switching systems case. More general
results can be found in [11,15].

Theorem 3. Let V (x) : Rd ⊂ R be a weak common Lyapunov function for
(F , Σ), with Σx̄ ≥ D for each x̄ → Rd. Let l > 0 and let Ωl be the connected
component of the level set {x : V (x) < l} such that 0 → Ωl. Assume that Ωl

is bounded, and let Z = {x : ≡n → N s.t. : ∇V (x)fn(x) = 0}. Finally, let M
be the union of all the compact, weakly invariant sets which are contained in
Z ∪ Ωl. Then every switched trajectory ϕ(t, x̄, σ) with σ → Σx̄ and x̄ → Ωl is
attracted by M .

6 Asymptotic Controllability

The reversed time interpretation of loss of stability shows that even if all the
vector fields of a family F are completely unstable, it is sometimes possible to
construct trajectories converging to the origin. Given a family of vector fields
F , it is therefore interesting to characterize those switching maps Σ (if any)
such that

⊃x̄ → Rd ≡σ → Σx̄ : lim
t≥+∗ ϕF (t, x̄, σ) = 0 . (4)

Note that as far as we are interested in property (4), we can limit ourselves
to single-valued switching maps.

Definition 4. The family of vector fields F is said to be asymptotically con-
trollable if there exists a single-valued switching map Σ such that (4) holds. The
family of vector fields F is said to be consistently asymptotically controllable
if there exists a switched signal σ such that (4) holds with Σx̄ ∼ {σ}, for each
x̄ → Rd.

The notion of asymptotic controllability is classical: it means that all the
initial states can be eventually driven toward the origin, but different switching
signals might be required for different initial states. On the contrary, consistent
asymptotic controllability means that the same switching signal works for all the
initial states. Clearly, if F is consistently asymptotically controllable then it is
asymptotically controllable, but the converse is false in general: an example is
given in [18]. Asymptotic controllability has been merely defined here in terms
of the attraction property (4). However, if the vector fields of F are linear,
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(4) automatically implies stability. Asymptotic controllability has been deeply
investigated for pairs of linear vector fields in R2. But there is not so many
results for more general situations. One of these results reads as follows [5].

Theorem 4. Let F = {fn} be any family of vector fields of Rd. Assume that
there exist α1, . . . , αN (αn ∇ 0,

∑N
n=1 αn = 1) such that the origin is asymptoti-

cally stable for the vector field f(x) =
∑N

n=1 αnfn(x). Then, F is asymptotically
controllable.

Theorem 4 was originally proved in [20] for families of linear vector fields
using a common Lyapunov function approach. In fact, in [20] the authors find
out a discontinuous state-dependent switching rule, and introduce hysteresis in
order to counteract possible chattering phenomena. Alternatively, the stability
could be intended in the sense of Filippov solutions (see [1] and the so called
min-projection strategy proposed in [17]). On the other hand, resorting to Fil-
ippov solutions has a drawback: indeed in general Filippov solutions cannot be
reproduced by means of switched signals [6].

Next we point out that under a mild additional assumption, asymptotic con-
trollability can be achieved by means of switching (open-loop) maps with a very
special structure. A switching signal ρ is said to be eventually periodic if there
exist a periodic switching signal σ and a time t̄ > 0 such that ρ(t + t̄) = σ(t),
for all t ∇ 0. We say that σ is the periodic part of ρ and that ρ

∣∣
[0,t̄)

is the pre-
periodic part of ρ. We also say that t̄ is the pre-period. We denote by E(σ) the
set of all the eventually periodic switching signals having the same periodic part
σ. A single valued switching map Σ is called eventually periodic if there exists a
periodic switching signal σ such that Σx̄ → E(σ), for each x̄ → R2. The switched
system (F , Σ) is called eventually periodic if Σ is eventually periodic. Roughly
speaking, an eventually periodic switching map consists of two parts: an initial
transient interval (whose length can be predicted) followed by a periodic steady
state. During the transient, the control action depends on the initial state and
must be operated in open-loop. The advantages of an eventually periodic switch-
ing map become evident during the periodic steady state and can be resumed as
follows: (1) the periodic steady state is independent of the initial state; (2) the
periodic steady state can be constructed according to a systematic procedure;
(3) the periodic steady state can be interpreted as a state dependent control law,
so that it can be implemented in an automatic way.

To state the main result of this section, we need to introduce a new notion.
A family F of vector fields is said to be radially controllable if for each pair of
points x, y → Rd (x ∞= 0, y ∞= 0) there exist c > 0 and T > 0 such that cy is
reachable in time T from x along a switched trajectory of F . The following result
is proven in [6].

Theorem 5. Let F be a family of linear vector fields of Rd. Assume that F is
radially controllable and asymptotically controllable. Then there exists an even-
tually periodic switching map Σ such that the system (F , Σ) is asymptotically
stable.
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In general, the radial controllability assumption cannot be dropped out in the
previous statement. On the other hand, a family F can be consistently stabilized
by means of a periodic switching rule even if the radial controllability assumption
fails. It is reasonable to conjecture that the conclusion of Theorem 5 remains true
for homogeneous (not necessarily linear) vector fields.

References

1. Bacciotti, A.: Stabilization by means of state space depending switching rules.
Syst. Control Lett. 53, 195–201 (2004)

2. Bacciotti, A.: A remark about linear switched systems in the plane. In: Proceedings
of IFAC-NOLCOS Conference (2013)

3. Bacciotti, A., Mazzi, L.: An invariance principle for nonlinear switched systems.
Syst. Control Lett. 54, 1109–1119 (2005)

4. Bacciotti, A., Mazzi, L.: Stability of dynamical polysystems via families of Lya-
punov functions. Nonlin. Anal. TMA 67, 2167–2179 (2007)

5. Bacciotti, A., Mazzi, L.: Stabilisability of nonlinear systems by means of time-
dependent switching rules. Int. J. Control 83, 810–815 (2010)

6. Bacciotti, A., Mazzi, L.: Asymptotic controllability by means of eventually periodic
switching rules. SIAM J. Control Optim. 49, 476–497 (2011)

7. Boscain, U.: Stability of planar switched systems: the linear single input case.
SIAM J. Control Optim. 41, 89–112 (2002)

8. Branicky, M.S.: Multiple Lyapunov functions and other analysis tools for switched
and hybrid systems. IEEE Trans. Autom. Control 43, 475–482 (1998)

9. Dayawansa, W.P., Martin, C.F.: A converse Lyapunov theorem for a class of
dynamical systems which undergo switching. IEEE Trans. Autom. Control 44,
751–760 (1999)

10. Goebel, R., Sanfelice, R.G., Teel, A.R.: Hybrid Dynamical Systems. Princeton
University Press, Princeton (2012)

11. Hespanha, J.P.: Uniform stability of switched linear systems: extensions of LaSalle’s
invariance principle. IEEE Trans. Autom. Control 49, 470–482 (2004)

12. Jurdjevic, V.: Geometric Control Theory. Cambridge University Press, Cambridge
(1997)

13. Liberzon, D.: Switching in Systems and Control. Birkhäuser, Boston (2003)
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Abstract. We consider an optimal control problem described by a sec-
ond order elliptic partial differential equation, jointly nonlinear in the
state and control with high monotone nonlinearity in the state, with
control and state constraints, where the state constraints and the cost
functional involve also the state gradient. Since this problem may have
no classical solutions, it is also formulated in the relaxed form. The exis-
tence of an optimal relaxed control is proved in the relaxed case, without
convexity assumptions, and various necessary conditions for optimality
are established for the classical and the relaxed problem. For the numer-
ical solution of these problems, we propose a penalized gradient projec-
tion method generating classical controls, and a penalized conditional
descent method generating relaxed controls. Using also relaxation the-
ory, the behavior in the limit of sequences generated by these methods
is examined. Finally, numerical examples are given.

1 Introduction

Relaxation in Optimal Control has been studied by various authors, mainly
by Warga [10,11] and Roub́ıc̆ek [9]. It has been introduced, initially, in order
to prove existence of optimal controls, then to derive necessary conditions for
optimality, and recently for developing optimization and discretization methods.
Methods using relaxed controls have been considered in [2,4–6,8,11]. Relaxed
controls have been applied to elliptic PDEs in [3,4,7].

2 Classical and Relaxed Problems – Existence
and Optimality Conditions

Let Ω be a bounded domain in R
d, with Lipschitz boundary Γ . Consider the

nonlinear elliptic state equation

Ay + f(x, y(x), w(x)) = 0 inΩ, y(x) = 0 onΓ,
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DOI: 10.1007/978-3-662-43880-0 8, c≥ Springer-Verlag Berlin Heidelberg 2014
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where A is the formal second order elliptic differential operator

Ay := −
d∑

i,j=1

(∂/∂xi)[aij(x)∂y/∂xj ].

The state equation will be interpreted in the following weak form
y ∇ V := H1

0 (Ω) and a(y, v) +
∫

Ω
f(x, y(x), w(x))v(x)dx = 0, ∈v ∇ V,

where a(·, ·) denotes the usual bilinear form on V × V associated with A

a(y, v) :=
d∑

i,j=1

∫
Ω

aij(x) ∂y
∂xi

∂v
∂xj

dx.

We define the set of classical controls
W := {w : Ω ⊂ U |w measurable} ,

where U is a compact subset of Rν , and the functionals

Gm(w) :=
∫

Ω

gm(x, y(x),→y(x), w(x))dx, m = 0, ..., q.

The classical optimal control problem P is to minimize G0(w) subject to the
constraints

w ∇ W, Gm(w) = 0, m = 1, ..., p, Gm(w) ∞ 0, m = p + 1, ..., q.

It is well known that, even if the set U is convex, the problem P may have no
solutions. The existence of such a solution is usually proved under strong, often
unrealistic for nonlinear systems, convexity assumptions (e.g. Cesari property).
Reformulated in the so-called relaxed form, the problem has a solution in a larger
space under weaker assumptions.

Next, we define the set of relaxed controls (see [9,10])
R :={r : Ω⊂M1(U)| r weakly measurable}⊃L∗

w (Ω,M(U))≥L1(Ω,C(U))→,
where M(U) (resp. M1(U)) is the set of Radon (resp. probability) measures
on U .

The relaxed controls are thus probability measures defined on U and mea-
surably depended on x. Standard examples of relaxed controls are (i) the Dirac
controls and (ii) the probability measures depending on x and defined by a
probability distribution function on U .

The set R is endowed with the relative weak star topology, and R is con-
vex, metrizable and compact. If each classical control w(·) is identified with its
associated Dirac relaxed control r(·) := δw(·), then W may be regarded as a
subset of R, and W is thus dense in R. For φ ∇ L1(Ω̄;C(U)) (or φ ∇ B(Ω̄, U ;R),
where B(Ω̄, U ;R) is the set of Caratheodory functions bounded by an integrable
function) and r ∇ L∗

w (Ω,M(U)) (in particular, for r ∇ R), we shall use the
simplified notation

φ(x, r(x)) :=
∫

U
φ(x, u)r(x)(du),

and φ(x, r(x)) is thus linear (under convex combinations, for r ∇ R) in r since
the control r acts as an integration with respect to a probability measure on U .
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A sequence (rk) converges to r ∇ R in R if
lim

k∞∗
∫

Ω
φ(x, rk(x))dx =

∫
Ω

φ(x, r(x))dx,

for every φ ∇ L1(Ω;C(U)), or φ ∇ B(Ω̄, U ;R), or φ ∇ C(Ω̄ × U).
The relaxed optimal control problem P̄ is then defined by replacing w by r,

with the above notation, and W by R, in the problem P .
Assumptions 1: The coefficients aij satisfy the ellipticity condition

d∑
i,j=1

aij(x)zizj ≤ α0

d∑
i=1

z2i , ∈zi, zj ∇ R, x ∇ Ω,

with α0 > 0, aij ∇ L∗(Ω), and that the functions f and fy are defined on
Ω × R × U , measurable for fixed y, u, continuous for fixed x, and satisfy

|f(x, 0, u)| ∞ φ0(x), ∈(x, u) ∇ Ω × U,

where φ0 ∇ Ls(Ω), with s ≤ 2, s > d/2 (e.g. s = 2, for d ∞ 3), and

0 ∞ fy(x, y, u) ∞ φ1(x) η1(|y|), ∈(x, y, u) ∇ Ω × R × U,

where η1 is an increasing function from [0,+≡) to [0,+≡), φ1 ∇ L∗(Ω) if the
functionals Gm depend on →y, and φ1 ∇ Ls(Ω) otherwise. The above inequalities
remain valid after the relaxation of the data, since the relaxed controls act as a
mean value w.r.t. a probability measure.

It follows directly from Theorem 3.1 in [1] that, for every relaxed control
r ∇ R, the state equation has a unique solution y := yr ∇ V ∅ Cα(Ω̄), for some
α ∇ (0, 1). Moreover, there exists constants C, C̄ such that

‖yr‖1 + ‖yr‖∗ ∞ C, ‖yr‖Ca ∞ C̄, for every r ∇ R.

Assumptions 2: The functions gm are defined on Ω × R
d+1 × U, measurable

for fixed y, y∅, u, continuous for fixed x, and satisfy
|gm(x, y, y∅, u)| ∞ ψ0m(x) + β0m|y∅|2, ∈(x, y, y∅, u) ∇ Ω × R

d+1 × U with
|y| ∞ C ∅, where C ∅ > C, ψ0m ∇ L1(Ω), β0m ≤ 0.

Theorem 1. (i) Under Assumptions 1, the operator r ⊂ yr (resp. w ⊂ yw),
from R (resp. W with the relative topology of L2(Ω;Rν), hence of L∗(Ω;Rν))
to V , and to C0(Ω̄), is continuous.

(ii) Under Assumptions 1 and 2, the functionals r ⊂ Gm(r) on R (resp.
w ⊂ Gm(w) on W with the same topologies) are continuous.

(iii) Under Assumptions 1 and 2, if the problem P̄ has an admissible control,
then it has a solution.

Assumptions 3: The functions f, fu (resp. gm, gmy, gmy◦ , gmu) are defined on
Ω×R×U ∅ (resp. Ω×R

d+1×U ∅), where U ∅ is an open set containing U , measurable
on Ω for fixed (y, u) ∇ R× U (resp. (y, y∅, u) ∇ R

d+1 × U), continuous on R× U
(resp. Rd+1 × U) for fixed x ∇ Ω, and satisfy

|fu(x, y, u)| ∞ φ2(x), |gmy(x, y, y∅, u)| ∞ ψ1m(x) + β1m|y∅| 2(ρ−1)
ρ ,

|gmy◦(x, y, y∅, u)| ∞ ψ2m(x) + β2m|y∅|, |gmu(x, y, y∅, u)| ∞ ψ3m(x) + β3m|y∅|,
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∈(x, y, y∅, u) ∇ Ω × R
d+1 × U, with |y| ∞ C ∅,

where C ∅ < C, φ2, ψim ∇ L2(Ω), βim ≤ 0, 2 ∞ ρ < ≡ if d = 1 or 2, 2 ∞ ρ < 2d
d−2

if d ≤ 3.
The following Lemma 1 and Theorems 2 and 3 can be proved by using the

techniques of [4,9] (the weak relaxed minimum principle in Theorem 2 is proved
as in [6]).

Lemma 1. Under Assumptions 1, 2 and 3, where those containing the deriv-
atives in u are omitted, (resp. included) and dropping the index m in gm, Gm,
the directional derivative of the functional G defined on R (resp. W , with U
convex) is given by

DG(r, r̄ − r) = lim
α∞0+

G(r+α(r̄−r))−G(r)
α

=
∫

Ω
H(x, y(x),→y(x), z(x), r̄(x) − r(x))dx, for r, r̄ ∇ R,

(resp. DG(w, w̄ − w) = lim
α∞0+

G(w+α(w̄−w))−G(w)
α

=
∫

Ω
Hu(x, y(x),→y(x), z(x), w(x))(w̄(x) − w(x))dx, for w, w̄ ∇ W ),

where the Hamiltonian is defined by
H(x, y, y∅, z, u) := −z f(x, y, u) + g(x, y, y∅, u),

and the adjoint state z := zr ∇ V (resp. z := zw ∇ V ) satisfies the linear adjoint
equation

a(v, z) + (fy(y, r)z, v) = (gy(y,→y, r), v) + (gy◦(y,→y, r),→v),
(resp. a(v, z) + (fy(y, w)z, v) = (gy(y,→y, w), v) + (gy◦(y,→y, w),→v)),

∈v ∇ V, with y := yr (resp. y := yw).
Moreover, the operator r ⊂ zr, from R to V (resp. w ⊂ zw, from W to V ), and
the functional (r, r̄) ⊂ DG(r, r̄ − r), on R × R (resp. (w, w̄) ⊂ DG(w, w̄ − w),
on W × W ), are continuous.

Theorem 2. Under Assumptions 1, 2 and 3, where those containing the deriv-
atives in u are omitted, if r ∇ R is optimal for the problem P̄ or the problem
P , then r is strongly extremal relaxed, i.e. there exist multipliers λm ∇ R,

m = 0, ..., q, with λ0 ≤ 0, λm ≤ 0, m = p + 1, ..., q,
q∑

m=0
|λm| = 1, such that

(1)
q∑

m=0
λmDGm(r, r̄ − r) ≤ 0, for every r̄ ∇ R,

(2) λmGm(r) = 0, m = p + 1, ..., q (relaxed transversality conditions).
The condition (1) is equivalent to the strong relaxed pointwise minimum principle

H(x, y(x),→y(x), z(x), r(x)) = min
u≤U

H(x, y(x),→y(x), z(x), u), a.e. in Ω,

where the complete Hamiltonian and adjoint H, z are defined with g :=
q∑

m=0
λmgm.

If U is convex, then this principle implies the weak relaxed pointwise mini-
mum principle

Hu(x, y,→y(x), z, r(x))r(x)=min
φ

Hu(x, y,→y(x), z, r(x))φ(x, r(x)), a.e.in Ω,

where the minimum is taken over the set B(Ω̄, U ;U) of Caratheodory functions
(see [10]), which in turn implies the global weak relaxed condition
(3)

∫
Ω

Hu(x, y,→y(x), z, r(x))[φ(x, r(x)) − r(x)]dx ≤ 0, ∈φ ∇ B(Ω̄, U ;U).
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A control r satisfying the conditions (3) and (2) is called weakly extremal
relaxed . If there are only inequality state constraints and if we impose in addi-
tion the regularity condition Gm(r) + DGm(r, r∅ − r) < 0, m = p + 1, ..., q, for
some r∅ ∇ R, then we have λ0 > 0.

Theorem 3. Under Assumptions 1, 2 and 3, with U convex, if w ∇ W is opti-
mal for the problem P , then w is weakly extremal classical, i.e. there exist
multipliers λm ∇ R, m = 0, ..., q, with λ0 ≤ 0, λm ≤ 0, m = p + 1, ..., q,

q∑
m=0

|λm| = 1, such that

(4)
q∑

m=0
λmDGm(w, w̄ − w) ≤ 0, for every w̄ ∇ W ,

(5) λmGm(w) = 0, m = p + 1, ..., q (classical transversality conditions).
The condition (4) is equivalent to the weak classical pointwise minimum prin-

ciple

Hu(x, y(x),→y(x), z(x), w(x))w(x)=min
u≤U

Hu(x, y(x),→y(x), z(x), w(x))u, a.e.inΩ,

where the complete Hamiltonian and adjoint H, z are defined with g :=
q∑

m=0
λmgm.

3 Classical and Relaxed Optimization Methods

Let (M l
m), m = 1, ..., q, be positive increasing sequences such that M l

m ⊂ ≡ as
l ⊂ ≡, γ > 0, b, c ∇ (0, 1), and (βl), (ζk) positive sequences, with (βl) decreasing
and converging to zero, and ζk ∞ 1. Define first the penalized functionals on W

Gl(w) := G0(w) + {
p∑

m=1
M l

m[Gm(w)]2 +
q∑

m=p+1
M l

m[max(0, Gm(w))]2}/2.

It can be easily shown that the directional derivative of Gl is given by

DGl(w,w∅ − w) = DG0(w,w∅ − w) +
p∑

m=1

M l
mGm(w)DGm(w,w∅−w)

+
q∑

m=p+1

M l
m max(0, Gm(w))DGm(w,w∅−w).

The classical penalized gradient projection method is described by the fol-
lowing Algorithm, where U is assumed to be convex.

Algorithm 1.
Step 1. Set k := 0, l := 1, and choose an initial control w1

0 ∇ W .
Step 2. Find vl

k ∇ W such that
ek :=DGl(wl

k, vl
k −wl

k)+ γ
2

∥∥vl
k − wl

k

∥∥2= min
v̄≤W

[DGl(wl
k, v̄−wl

k)+ γ
2

∥∥v̄ − wl
k

∥∥2],

and set dk := DGl(wl
k, vl

k − wl
k).
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Step 3. If |dk| ∞ βl, set wl := wl
k, vl := vl

k, dl := dk, el := ek, wl+1
k := wl

k,
l := l + 1, and go to step 2.
Step 4. (Modified Armijo Step Search) Find the lowest integer value s ∇ Z, say
s̄, such that α(s) = csζk ∇ (0, 1] and α(s) satisfies

Gl(wl
k + α(s)(vl

k − wl
k)) − Gl(wl

k) ∞ α(s)bdk, and then set αk := α(s̄).

Step 5. Set wl
k+1 := wl

k + αk(vl
k − wl

k), k := k + 1, and go to step 2.

A (classical or relaxed) extremal (or weakly extremal) control is called
abnormal if there exist multipliers as in the corresponding optimality con-
ditions, with λ0 = 0. A control is admissible and abnormal extremal in rather
exceptional situations (see [10]).

With wl as defined in step 3, define the sequences of multipliers
λl

m :=M l
mGm(wl), m=1, ..., p, λl

m :=M l
m max(0, Gm(wl)), m=p+1, ..., q.

Theorem 4. We suppose that Assumptions 1, 2 and 3 hold and that U is
convex.

(i) In the presence of state constraints, if the whole sequence (wl(k)
k )k≤N gen-

erated by Algorithm 1 converges to some w ∇ W in L2 strongly and the sequences
(λl

m) are bounded, then w is admissible and weakly extremal for the classical prob-
lem. In the absence of state constraints, if a subsequence (wk)k≤K (no index l)
converges to some w ∇ W in L2 strongly, then w is weakly extremal classical for
the problem P .

(ii) In the presence of state constraints, if a subsequence (wl)l≤L of the
sequence generated by Algorithm 1 in step 3, regarded as a sequence of relaxed
controls, converges to some r in R, and the sequences (λl

m)l≤L are bounded,
then r is admissible and weakly extremal relaxed for the relaxed problem. In the
absence of state constraints, if a subsequence (wk)k≤K (no index l) converges to
some r in R, then r is weakly extremal relaxed for the problem P̄ .

(iii) In any of the convergence cases (i) or (ii) with state constraints, suppose
that the classical, or the relaxed, problem has no admissible, abnormal extremal,
controls. If the limit control is admissible, then the sequences (λl

m) are bounded,
and this control is also extremal as above.

Next, we define the penalized functionals on R

Gl(r) := G0(r) + {
p∑

m=1
M l

m[Gm(r)]2 +
q∑

m=p+1
M l

m[max(0, Gm(r))]2}/2.

The directional derivative of Gl is given by

DGl(r, r∅ − r) = DG0(r, r∅ − r) +
p∑

m=1

M l
mGm(r)DGm(r, r∅ − r)

+
q∑

m=p+1

M l
m max(0, Gm(r))DGm(r, r∅ − r).

The relaxed penalized conditional descent method is described by the follow-
ing Algorithm, where U is not necessarily convex.
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Algorithm 2.
Step 1. Set k := 0, l := 1, and choose an initial control r10 ∇ R.
Step 2. Find r̄l

k ∇ R such that dk := DGl(rl
k, r̄l

k − rl
k) = min

r◦≤R
DGl(rl

k, r∅ − rl
k).

Step 3. If |dk| ∞ βl, set rl :=rl
k, r̄l := r̄l

k, dl :=dk, rl+1
k :=rl

k, l := l+1, and go to
step 2.
Step 4. Find the lowest integer value s ∇ Z, say s̄, such that α(s) = csζk ∇ (0, 1]
and α(s) satisfies Gl(rl

k + α(s)(r̄l
k − rl

k)) − Gl(rl
k) ∞ α(s)bdk, and then set

αk := α(s̄).
Step 5. Choose any rl

k+1 ∇ R such that Gl(rl
k+1) ∞ Gl(rl

k + αk(r̄l
k − rl

k)), set
k := k + 1, and go to step 2.

If the chosen initial control r10 is classical, using Caratheodory’s theorem it
can be shown by induction that the control rl

k+1 in step 5 can be chosen, for
each iteration k, to be a Gamkrelidze relaxed control, i.e. a convex combination
of a fixed number of classical (Dirac) controls.

With rl as defined in step 3, define the sequences of multipliers
λl

m := M l
mGm(rl),m = 1, ..., p, λl

m := M l
m max(0, Gm(rl)),m = p + 1, ..., q.

Theorem 5. We suppose that Assumptions 1, 2 and 3 hold. The Assumptions
containing the derivatives in u are omitted.

(i) In the presence of state constraints, if a subsequence (rl)l≤L of the
sequence generated by Algorithm 2 in step 3 converges to some r ∇ R and the
sequences (λl

m) are bounded, then r is admissible and strongly extremal relaxed
for the relaxed problem. In the absence of state constraints, if a subsequence
(rk)k≤K (no index l) converges to some r in R, then r is strongly extremal
relaxed for the problem P̄ .

(ii) In case (i) with state constraints, suppose that the relaxed problem has
no admissible, abnormal extremal, controls. If r is admissible, then the sequences
(λl

m) are bounded and r is also strongly extremal relaxed for the problem P̄ .

Finally, Gamkrelidze relaxed controls computed by Algorithm 2, can be
approximated by classical controls using a standard procedure (see e.g. [9]).

4 Numerical Examples

Example 1. Let Ω := (0, 1)2. Define the reference control and state
ū(x) := v̄(x) := x1x2, ȳ(x) := 8x1x2(1 − x1)(1 − x2),

and consider the following classical optimal control problem, with state equation
−Δy + y3/3 + (1 + u − ū))y
−ȳ3/3 − ȳ − 16[x1(1 − x1) + x2(1 − x2)] − (v − v̄) = 0, in Ω,
y(x) = 0 on Γ ,

control constraints (u(x), v(x)) ∇ U := [0, 0.7]2, x ∇ Ω, cost functional
G0(u, v) := 0.5

∫
Ω

[(y − ȳ)2 + ‖→y − →ȳ‖22 + (u − ū)2 + (v − v̄)2]dx
and state constraint G1(u, v) :=

∫
Ω

(y − 0.22)dx = 0.
Algorithm 1 was applied to this problem using the finite element method with
continuous piecewise linear basis functions on triangular elements (half squares
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Fig. 1. Last control u

Fig. 2. Last relaxed control probability p1

of edge size h = 0.01) for solving the differential equations, with (not necessarily
continuous) elementwise linear classical controls, with γ = 0.5, Armijo parame-
ters b = c = 0.5. After 60 iterations in k we obtained the results
G0(ul

k, vl
k) = 2.292743040985·10−3, G1(ul

k, vl
k) = 8.679·10−6, dk = −4.449·10−5.

The last control uk is shown in Fig. 1.

Example 2. Let Ω := (0, 1)2 Define the reference control and state
w̄(x) := max(−1, 1 − 1.5(x1 + x2)), ȳ(x) := 8x1x2(1 − x1)(1 − x2),

and consider the following optimal control problem, with state equation
−Δy + y3/3 + (2 + w−w̄)y − ȳ3/3−2ȳ−16[x1(1−x1) + x2(1−x2)]=0 in Ω,
y(x) = 0 on Γ ,

nonconvex control constraint set U := {−1} ∪ [0.5, 1], nonconvex cost functional
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G0(w) :=
∫

Ω
{0.5 [(y − ȳ)2 + ‖→y − →ȳ‖22] − w2 + 1}dx

and state constraint G1(w) :=
∫

Ω
(y − 0.22)dx = 0.

Applying Algorithm 2, we obtained after 200 iterations in k the results
G0(rl

k) = 2.600332334904 · 10−4, G1(rl
k) = 1.552 · 10−6, dk = −2.619 · 10−6.

The last relaxed control probability function p1(x) := rl
k(x){1} is shown in

Fig. 2.
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apietrus@univ-ag.fr

Abstract. Although optimal control problems for linear systems have
been profoundly investigated in the past more than 50 years, the issue of
numerical approximations and precise error analyses remains challeng-
ing due the bang-bang structure of the optimal controls. Based on a
recent paper by M. Quincampoix and V.M. Veliov on metric regularity
of the optimality conditions for control problems of linear systems the
paper presents new error estimates for the Euler discretization scheme
applied to such problems. It turns out that the accuracy of the Euler
method depends on the “controllability index” associated with the opti-
mal solution, and a sharp error estimate is given in terms of this index.
The result extends and strengthens in several directions some recently
published ones.

1 Introduction

In this paper we revisit the Euler discretization method applied to the following
optimal control problem:

min g(x(T )) (1)

subject to

ẋ(t) = A(t)x(t) + B(t)u(t), x(0) = x0, (2)
u(t) ∇ U. (3)

Here x ∇ Rn, u ∇ U ∈ Rr, the time interval [0, T ] is fixed, g : Rn ⊂ R, and
A and B are matrix functions with appropriate dimensions. The initial state x0

is given. The control constraining set U ∈ Rr is a convex compact polyhedron.
The set of admissible controls, U , consists of all measurable selections of U . The
function x = x[u] : [0, T ] ⊂ Rn is a solution of (2) for a given u ∇ U if it is
absolutely continuous and satisfies (2) for a.e. t ∇ [0, T ].
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Utilization of the Euler discretization scheme for this problem results in the
following discrete-time optimal control problem:

min g(xN ) (4)

subject to

xi+1 = xi + h (A(ti)xi + B(ti)ui) , x0 − given, (5)
ui ∇ U, i = 0, . . . , N − 1, (6)

where N is a natural number, h = T/N , ti = ih. The unknown variables here
are x1, . . . , xN and u0, . . . , uN−1.

The error analysis of the above discretization is burdened by the fact that the
optimal control in problem (1)–(3) is typically discontinuous.

In the past few years a number of papers appeared that investigate the accu-
racy of discrete approximations of optimal control problems with a bang-bang
structure of the optimal control. The first one seems to be [10], followed by [1–3].
The main result in the present paper shows that the accuracy of the approxi-
mation (measured in the relevant metric defined in the next section) provided
by the Euler scheme is O(h1/k), where k is the so-called controllability index of
the optimal solution of problem (1)–(3). A comparison of this result with the
abovementioned ones is given in the end of Sect. 3.

We mention also that the error analyses of discrete approximations to control
problems for linear systems is facilitated by the recent papers [4–7]. However, our
analyses is based on the “companion” paper [9], which extends in an appropriate
way the concept of metric regularity of the optimality conditions for optimal
control of linear systems.

The organization of the paper is as follows. In the next section we present
some material from [9], which is needed for the proof of our main result. The
order of accuracy of the Euler scheme is proved in Sect. 3. In the last section we
give a numerical example that supports the theoretical result.

2 Assumptions and Preliminaries

In this section we present some necessary preliminary material from the “com-
panion” paper [9]. We begin with some assumptions for problem (1)–(3).

Assumption (A1): The functions A : [0, T ] ⊂ Rn×n and B : [0, T ] ⊂ Rn×r are
k̄ times, respectively k̄ + 1 times, continuously differentiable (for some natural
number k̄). Moreover, g : Rn ⊂ R is convex and differentiable with a locally
Lipschitz derivative.

The reachable set R = {x[u](T ) : u ∇ U} is a convex and compact subset of Rn,
hence problem (1)–(3) has at least one solution (x̂, û).
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Define the sequence of matrices

B0(t) = B(t), Bi+1(t) = −A(t)Bi(t) + Ḃi(t), i = 0, . . . , k̄ − 1. (7)

Moreover, denote by E the set of all (non-degenerate) edges of U , and by Ē –
the set of all vectors u2 − u1, where [u1, u2] ∇ E.

Assumption (A2): rank[B0(t) e, . . . , Bk̄(t) e] = n for every e ∇ Ē and every
t ∇ [0, T ]. Moreover, →g(x) ∞= 0 for every x ∇ R (→g denotes the gradient of g).

The rank condition in the above assumption is the well-known general position
hypotheses [8]. The second part of the assumption makes the problem meaningful,
since it rules out the possibility of infinitely many solutions.

The Pontryagin maximum principle claims that any optimal pair (x̂, û) together
with a corresponding absolutely continuous function p̂ : [0, T ] ⊂ Rn satisfies the
following (generalized) equations:

0 = ẋ(t) − A(t)x(t) − B(t)u(t), x(0) = x0, (8)
0 = ṗ(t) + A∗(t) p(t), (9)
0 ∇ B∗(t) p(t) + NU (u(t)), (10)
0 = p(T ) − →g(x(T )), (11)

where NU (u) is the normal cone to U at u. Notice that (10) is equivalent to
u(t) ∇ Argmin

w→U
⊃B∗(t) p(t), w≥.

The following lemma is well-known.

Lemma 1. Let the matrices A and B be measurable and essentially bounded,
and let g be differentiable and convex. Then (x̂, û) is a solution of problem (1)–
(3) if and only if the triple (x̂, p̂, û) (with an absolutely continuous p̂) is a solution
of system (8)–(11). If (A1) and (A2) hold, then the solution (x̂, û) of (1)–(3) is
unique, hence that of (8)–(11) is also unique. Moreover, û(t) is a vertex of U
for a.e. t ∇ [0, T ].

Let (x̂, û) be a solution of problem (1)–(3).

Definition 1. Controllability index of the solution (x̂, û) of problem (1)–(3) is
the minimal number k such that for every t ∇ [0, T ] and for every e ∇ Ē at least
one of the numbers

〈
B∗

i (t) p̂(t), e
〉
, i = 0, . . . , k, is not equal to zero. Here p̂ is

the solution of the equations (9), (11) with x = x̂ and u = û.

Clearly, if (A2) is fulfilled, then the number k ≤ k̄ exists.

The generalized equations (8)–(11) can be written in the form 0 ∇ F (x, p, u),
where

F (x, p, u) :=

⎧
⎪⎪⎨

ẋ − Ax − B u
ṗ + A∗ p

B∗ p + NU (u)
p(T ) − →g(x(T ))

⎡
⎢⎢⎣ . (12)
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Thus the inclusion 0 ∇ F (x, p, u) is equivalent to our original problem (1)–(3).
Namely, under (A1) and (A2) it has a unique solution (x̂, p̂, û) and (x̂, û) is the
unique solution of problem (1)–(3).

The norms in L1(0, T ) and L∞(0, T ) are denoted by ≡·≡1 and ≡·≡∞, respectively.
The notation W 1,s = W 1,s([0, T ];Rn) (with s = 1 or s = ∅) is used for the
space of all absolutely continuous functions x : [0, T ] ⊂ Rn with the derivative
ẋ belonging to Ls(0, T ). The norm in this space is ≡x≡1,s := ≡x≡∞ + ≡ẋ≡s.

The set of admissible controls U is viewed as a subset of L∞(0, T ) equipped
with the metric

d#(u1, u2) = meas {t ∇ [0, T ] : u1(t) ∞= u2(t)}.

This metric is shift-invariant and we shall shorten d#(u1, u2) = d#(u1−u2, 0) =:
d#(u1 − u2). Then the triple (x, p, u) is considered as an element of the (affine)
space

X = W 1,1
x0

× W 1,∞ × U ,

where W 1,1
x0

= {x ∇ W 1,1 : x(0) = x0}.
The image space of F will be Y = L1 × L∞ × L∞ × Rn with the norm

≡y≡ = ≡(ξ, π, ρ, ν)≡ := ≡ξ≡1 + ≡π≡∞ + ≡ρ≡∞ + |ν|.
We interpret the set NU (u) in (12) as {ρ ∇ L∞ : ρ(t) ∇ NU (u(t)) ∀ t ∇ [0, T ]}
(strictly speaking, we should use the notation NU (u) instead of the point-wise
NU (u(t)), but the overload of the latter does not lead to confusions).

The following is a simplified version of [9, Theorem 2].

Theorem 1. Let assumptions (A1) and (A2) be fulfilled, let (x̂, p̂, û) be a solu-
tion of the generalized equation 0 ∇ F (x, p, u) (with F given in (12)) and let k
be its controllability index. Then for every number b > 0 there exists a number
c such that for every y = (ξ, π, ρ, ν) ∇ Y with ≡y≡ ≤ b and for every solution
(x, p, u) ∇ X of the inclusion y ∇ F (x, p, u) it holds that

≡x − x̂≡1,1 + ≡p − p̂≡1,∞ + ≡u − û≡1 ≤ c ≡y≡ 1
k . (13)

3 Euler Discretization and Its Accuracy

Consider the discrete-time problem (4)–(6) as introduced in Sect. 1. The max-
imum principle for discrete-time optimal control problems claims that if xN =
(x0, . . . , xN ), uN = (u0, . . . , uN−1) is a solution of problem (4)–(6) then

−B(ti)∗pi+1 ∇ NU (ui), i = 0, . . . , N − 1, (14)

with pN = (p0, . . . , pN ) determined from the equations

pN = →g(xN ), (15)
pi = pi+1 + hA(ti)∗pi+1, i = N − 1, . . . , 0. (16)
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We identify any sequence uN := (u0, . . . , uN−1) with its piece-wise constant
extension: uN (t) = ui for t ∇ [ti, ti+1), i = 0, . . . , N − 1. Moreover, we identify
any sequence xN := (x0, . . . , xN ) with its piecewise linear interpolation:

xN (t) = xi +
t − ti

h
(xi+1 − xi), t ∇ [ti, ti+1), i = 0, . . . , N − 1.

Similarly for sequences pN := (p0, . . . , pN ). Then we can view such sequences
(xN , pN , uN ) as elements of the space X .

The main result in this paper follows.

Theorem 2. Let assumptions (A1), (A2) be fulfilled and let (x̂, û) be the unique
solution of problem (1)–(3). Let k be the controllability index of this solution.
Then there exists a number C such that for any natural number N and cor-
responding h = T/N , and for any solution (xN , uN ) of the discretized problem
(4)–(6) and for the corresponding adjoint functions p̂ and pN (given by equations
(9), (11) and (15), (16), respectively) it holds that

≡xN − x̂≡1,1 + ≡pN − p̂≡1,∞ + ≡uN − û≡1 ≤ C h1/k.

Moreover, if all ui, i = 0, . . . , N − 1, are vertices of U , then

≡xN − x̂≡1,1 + ≡pN − p̂≡1,∞ + d#(uN − û) ≤ C h1/k.

Proof. The proof is simple due to Theorem 1. Essentially, we only have to esti-
mate the residual y = (ξ, π, ρ, ν) of (xN , pN , uN ) in the inclusion 0 ∇ F (x, p, u).
That is, we have to ensure that there exists y = (ξ, π, ρ, ν) ∇ Y such that
y ∇ F (xN , pN , uN ), and to estimate its norm.

First we mention that due to the boundedness of U there exists a number
M (independent of N) such that any of the numbers |u|, |x̂(t)|, |p̂(t)|, |xi|, |pi|,
where u ∇ U , t ∇ [0, T ], i = 0, . . . , N , is smaller than M . Also, let K be such
that |A(t)| ≤ K and |B(t)| ≤ K for t ∇ [0, T ], where we use the operator norms
of matrices. Moreover, we denote by L a Lipschitz constant of A and B.

We define ξ(t) = ẋN (t) − A(t)xN (t) − B(t)uN (t). Clearly ξ ∇ L1 and for
t ∇ [ti, ti+1) we have

|ξ(t)| =
⎤⎤⎤⎤xi+1 − xi

h
− A(t)

⎥
xi +

t − ti
h

(xi+1 − xi)
⎦

− B(t)ui

⎤⎤⎤⎤
=

⎤⎤⎤⎤A(ti)xi + B(ti)ui − A(t)
⎥

xi +
t − ti

h
(xi+1 − xi)

⎦
− B(t)ui

⎤⎤⎤⎤
=

⎤⎤⎤⎤(A(ti) − A(t))xi + (B(ti) − B(t))ui − A(t)
⎥

t − ti
h

(xi+1 − xi)
⎦⎤⎤⎤⎤

≤ 2hLM + |A(t)| |(xi+1 − xi)| ≤ 2LMh + Kh|A(ti)xi + B(ti)ui|
≤ 2LMh + 2K2Mh = 2(L + K2)Mh.

Hence,
≡ξ≡1 ≤ 2T (L + K2)Mh.
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Now we consider π(t) := ṗN (t) + A(t)∗pN (t). Obviously π ∇ L∞ and using
(16) we obtain that for t ∇ [ti, ti+1]

|π(t)| =
⎤⎤⎤⎤pi+1 − pi

h
+ A(t)∗

⎥
pi +

t − ti
h

(pi+1 − pi)
⎦⎤⎤⎤⎤

=
⎤⎤⎤⎤−A(ti)∗pi+1 + A(t)∗

⎥
pi +

t − ti
h

(pi+1 − pi)
⎦⎤⎤⎤⎤

≤ ⎤⎤−A(ti)∗pi+1 + A(t)∗pi
⎤⎤ + K|pi+1 − pi|

≤ ⎤⎤−A(ti)∗pi+1 + A(ti)∗pi
⎤⎤ +

⎤⎤−A(ti)∗pi + A(t)∗pi
⎤⎤ + K|pi+1 − pi|

≤ K|pi+1 − pi| + LMh + K|pi+1 − pi|
≤ (2K2 + L)Mh.

In order to estimate the residual in (10) we define the function ρ(t) :=
B(t)∗pN (t) − B(ti)∗pN (ti+1), t ∇ [ti, ti+1), which obviously belongs to L∞.
First of all, for t ∇ [ti, ti+1) we have from (14) that

ρ(t) = ρ(t) + 0 ∇ ρ(t) + B(ti)∗pi+1 + NU (ui) = B(t)∗pN (t) + NU (uN (t)).

We estimate for t ∇ [ti, ti+1]

|ρ(t)| ≤ |(B(t)∗ − B(ti)∗)pN (t)| + |B(ti)| |pN (t) − pNi+1|
≤ LMh + K|pNi − pNi+1| ≤ LMh + MK2h = (L + K2)Mh.

The fourth residual is ν = 0 since (11) is exactly satisfied by pN (T ) = pN
and xN (T ) = xN due to (15).

Thus we have obtained so far that

≡y≡ ≤ 2T (L + K2)Mh + (2K2 + L)Mh + (L + K2)Mh ≤ (2T + 3)(L + K2)Mh.

Now we apply Theorem 1 with b = (2T + 3)(L + K2)MT and with the corre-
sponding number c from the formulation of this theorem. It claims that

≡xN − x̂≡1,1+≡pN − p̂≡1,∞+≡uN − û≡1 ≤ c ≡y≡ 1
k ≤ c((2T + 3)(L + K2)Mh)1/k

=: c1h
1/k.

This proves the first claim of the theorem with C = c1.
To prove the second claim of the theorem we assume that ui, i = 0, . . . , N−1,

are vertices of U . We remind that according to Lemma 1 the values of û are also
a.e. vertices of U . Then |uN (t) − û(t)| ≥ η whenever uN (t) ∞= û(t), where η > 0
is the minimal distance between different vertices of U . Then

η d#(uN − û) ≤
⎞ T

0

|uN (t) − û(t)|dt ≤ c1h
1/k.

This proves the second claim of the theorem with C := c1/η. Q.E.D.
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In the rest of this section we compare the above result with those in [1–3,10].
General Runge-Kutta schemes of (at least) second order global accuracy

(third order local consistency) were applied in [10] instead of the Euler scheme.
The accuracy of the approximation in the metric in X is proved to be O(h1/k),
where k is the controllability index of the optimal solution of problem (1)–(3).
In the present paper we show that the same order h1/k is achieved by the Euler
discretization (also the assumptions for g are relaxed).

In the recent paper [3] the authors consider linear problems with a linear
function g and with controllability index k = 1. The result is similar to the one
implied by Theorem 2 for the case k = 1. The control constraining set U is
assumed to be a coordinate box in [3], which is a technical simplification. The
linearity of g, however, is a substantial simplification, since the adjoint system
(9), (11) is independent of the state x and can be treated by the Euler scheme
separately from the rest of the equations in (8)–(11).

Papers [1,2] make a substantial progress by considering a quadratic function
g (also a quadratic in x integral term is present there). The O(h) error estimate
in this case (again with assumed k = 1) becomes nontrivial since the overall
interconnected system (8)–(11) has to be investigated. However, its analysis
is based on the structural stability of the switching structure of the optimal
control (obtained in [4]). Such a stability is no longer valid if k > 1, which case
is captured by Theorem 2. A different proof is needed in this case and in the
present paper it is based on the results of [9].

4 A Numerical Test

The following test example is a slight modification of [3, Example 2.10]. The
problem is

min x3(5)
ẋ1 = −x2 + u, x1(0) = 1,

ẋ2 = u, x2(0) = 1,

ẋ3 = x1 − 0.5u, x3(0) = 0,

u ∇ [0, 1].

The only difference with [3, Example 2.10] is the coefficient −0.5 in the last
equation, which equals 4 in the quoted paper. Here assumptions (A1) and (A2)
are fulfilled with k̄ = 2. Therefore, the controllability index of the unique optimal
pair (x, u) is k ≤ 2. In fact, for this example that k = 2. The numerical results
presented on the table below show that the accuracy of the Euler approximation
is O(h1/2), indeed.

The optimal control in this problem is easily seen (by applying the maxi-
mum principle) to be û(t) ∪ 1. However, the corresponding “switching function”
σ(t) = B(t)∗p(t) = 5−t−0.5(5−t)2−0.5 has a double zero at t = 4. Thus k = 2
for this problem and the theoretical error estimate is Err(h) := d#(uN − û) ≤
C

∼
h. In the table below we show the quantities Err(h), Err(2h)/Err(h), which
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is expected to be about C
∼

2h/C
∼

h =
∼

2, and Err(h)/
∼

h, which is expected
to be about the constant C.

h Err(h) := d#(uN − û) Err(2h)/Err(h) C = Err(h)/
√
h

0.01 0.28000000 1.4000 2.8000
0.01/2 0.20000000 1.4286 2.8284
0.01/22 0.14000000 1.4000 2.8000
0.01/23 0.10000000 1.4286 2.8284
0.01/24 0.07000000 1.4000 2.8000
0.01/25 0.05000000 1.4035 2.8284
0.01/26 0.03562500 1.4250 2.8500
0.01/27 0.02500000 1.4159 2.8284
0.01/28 0.01765625 1.4125 2.8250

0.01/29 0.01250000
√
2 ≈ 1.4142 2.8284
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Abstract. Problems of feedback terminal target control for linear uncer-
tain systems are considered. We continue the development of polyhe-
dral control synthesis using polyhedral (parallelotope-valued) solvability
tubes. New control strategies, which can be calculated on the base of
these tubes, are proposed. The cases without uncertainties, with addi-
tive parallelotope-valued uncertainties, and also with a bilinear uncer-
tainty (interval uncertainties in coefficients of the system) are considered.
Ordinary differential equations, which describe the mentioned tubes, are
presented for each of these cases. Numerical results are presented.
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1 Introduction

The paper deals with the problems of terminal target feedback control for linear
differential uncertain systems. There are known approaches to solving such prob-
lems, in particular, based on the notions of the Aumann integral (for the case
without uncertainty) and the Pontriagin alternated integral, and on the extremal
aiming strategies of N.N. Krasovskii [10]. The problem statement for linear con-
trol systems, approaches for solving, and the tight interconnections between
solvability tubes (Krasovskii’s bridges), the alternated integral, Hamilton-Jacobi-
Bellman equations, and funnel equations can be found in [12–14]. Since practi-
cal construction of the mentioned tubes may be cumbersome, different numerical
methods are devised for this cause, in particular, methods for approximating the
set-valued integrals and for numerical solving the mentioned equations, includ-
ing methods based on approximations of sets by arbitrary polytopes with a large
number of vertices, [2,3,17,18] (here and below, we note, as examples, only some
references from numerous publications; see also references therein). Such meth-
ods are devised to obtain approximations as accurate as possible. But they may
require much calculations, especially for large dimensional systems. Other tech-
niques are based on estimates of sets by domains of some fixed shape such as
ellipsoids and parallelepipeds, including boxes aligned with coordinate axes as in

I. Lirkov et al. (Eds.): LSSC 2013, LNCS 8353, pp. 98–106, 2014.
DOI: 10.1007/978-3-662-43880-0 10, c≥ Springer-Verlag Berlin Heidelberg 2014
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the interval analysis [3,5–9,11,12,14–16]. The main advantage of the mentioned
techniques is that they enable to obtain approximate/particular solutions using
relatively simple tools (up to explicit formulas). More accurate approximations
may be obtained by using the whole families (varieties) of such simple estimates
(as it was proposed by A.B. Kurzhanski) [7,12,14,15]. In particular, construc-
tive computation schemes for solving the feedback target control problems by
ellipsoidal techniques were proposed [12,14] and then expanded to a polyhedral
technique [7]. There are also many works devoted to other approaches to solving
different control problems under uncertainty, for example, [1,3,4,16].

Here we continue the development of polyhedral control synthesis using poly-
hedral (parallelotope-valued) solvability tubes. New control strategies, which can
be calculated on the base of these tubes, are proposed. In opposite to [7,12,14],
they are concretized by explicit formulas when the state belongs to a tube. The
cases without uncertainties, with additive uncertainties, and also with a bilinear
uncertainty (interval uncertainties in coefficients of the system) are considered.
Ordinary differential equations (ODE) for the mentioned tubes are presented.
Also polyhedral control synthesis for discrete-time systems is considered. Results
of computer simulations are presented too.

The following notation is used below: Rn is the n-dimensional vector space; ∇
is the transposition symbol; ∈x∈2 = (x∗x)1/2, ∈x∈→ = max1∞i∞n |xi| are vector
norms for x = (x1, x2, . . . , xn)∗ ⊂ R

n; e = (1, 1, . . . , 1)∗; Rn×m is the space of
real n×m-matrices A = {aj

i} = {aj} (with columns aj); I is the unit matrix;
0 is the zero matrix (vector); Abs A = {|aj

i |} for A = {aj
i}; diag π, diag {πi} are

the diagonal matrix A with ai
i = πi (πi are the components of the vector π);

det A is the determinant of A ⊂ R
n×n; tr A =

∑n
i=1 ai

i is the trace of A; intX is
the set of interior points of the set X → R

n; the notation k = 1, . . . , N is used
instead of k = 1, 2, . . . , N .

2 Problem Formulation

Consider the controlled system with a given terminal set M (x⊂Rn is the state):

ẋ = (A(t) + V (t))x + u(t) + v(t), t ⊂ T = [0, θ]. (1)

Here A(t) ⊂ R
n×n is a given matrix function, Lebesgue measurable functions

u(t) (a control), v(t) (an unknown but bounded disturbance), V (t)⊂Rn×n (which
describes the uncertainty in matrices) are subjected to given set-valued
constraints:

u(t) ⊂ R(t), v(t) ⊂ Q(t), a.e. t ⊂ T, (2)

V (t) ⊂ V(t) = {V ⊂ R
n×n|Abs (V − Ṽ (t)) ∞ V̂ (t)}, a.e. t ⊂ T. (3)

Matrix and vector inequalities (∞, <,⊃, >) here and below are understood com-
ponentwise. We presume the sets R(t), Q(t), and M to be parallelotopes and a
parallelepiped respectively:
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R(t) = P[r(t), R̄(t)], R̄(t) ⊂ R
n×n1 , Q(t) = P[q(t), Q̄(t)], Q̄(t) ⊂ R

n×n2 ,

M = P(pθ, Pθ, πθ) = P[pθ, P̄θ], P̄θ ⊂ R
n×n, det P̄θ ≥= 0,

(4)

where r(t), R̄(t), q(t), Q̄(t), as well as A(t), Ṽ (t), and V̂ (t) ⊃ 0 are given con-
tinuous vector and matrix functions; the parallelepiped M is nondegenerate.

By a parallelepiped P(p, P , π)→R
n we mean a set such that P = P(p, P , π) =

{x ⊂ R
n|x = p +

∑n
i=1 piπiξi, ∈ξ∈→∞1}, where p⊂Rn; P = {pi}⊂Rn×n is such

that det P ≥= 0, ∈pi∈2 = 11; π ⊂ R
n, π ⊃ 0. It may be said that p determines the

center of the parallelepiped, P is the orientation matrix, pi are the “directions”
and πi are the values of its “semi-axes”. We call a parallelepiped nondegenerate
if π > 0.

By a parallelotope P[p, P̄ ] → R
n we mean a set P = P[p, P̄ ] = {x ⊂ R

n| x =
p+P̄ ζ, ∈ζ∈→ ∞ 1}, where p ⊂ R

n and the matrix P̄ = {p̄i} ⊂ R
n×m, m ∞ n, may

be singular. We call a parallelotope P nondegenerate if m = n and det P̄ ≥= 0.
Each parallelepiped P(p, P , π) is a parallelotope P[p, P̄ ] with P̄ = P diag π;

each nondegenerate parallelotope is a parallelepiped with P = P̄ diag {∈p̄i∈−1
2 },

πi = ∈p̄i∈2 or, in a different way, with P = P̄ , π = e, where e = (1, 1, . . . , 1)∗.
For the above system we consider the following cases: (I) without uncertainty

when v and V ≤ 0 are given functions, i.e., Q̄ ≤ 0, Ṽ ≤ V̂ ≤ 0; (II) under uncer-
tainty including the following three subcases: (II, i) only additive uncertainty
(V ≤ 0); (II, ii) only bilinear uncertainty (Q̄ ≤ 0); (II, iii) both ones.

In [12–14], for cases (I) and (II, i) (without bilinear uncertainty), the following
problem of terminal target control synthesis under uncertainty was investigated.

Problem 1. Specify a solvability set W(τ, θ,M) = W(τ) and a set-valued feed-
back control strategy2 u = U(t, x), U(·, ·) ⊂ U c

R, such that all the solutions to the
differential inclusion ẋ ⊂ A(t)x+U(t, x)+Q(t), t ⊂ T , that start from any given
position {τ, xτ}, xτ = x(τ) ⊂ W(τ, θ,M), τ ⊂ [0, θ), would reach the terminal
set M at time θ: x(θ) ⊂ M.

The multivalued function W(t), t ⊂ T , is known as a solvability tube W(·).
The ellipsoidal synthesis was elaborated for solving Problem 1 [12,14]. In

[7], the families of external P+(·) and internal P−(·) parallelepiped-valued and
parallelotope-valued (shorter, polyhedral) estimates for W(·) were introduced.
The extremal aiming strategies of N.N. Krasovskii were used there (in [7], control
strategies were constructed in an analytical form on the base of a solution of some
specific mathematical programming problem). Now let us consider Problem 2,
which concerns all above cases (I), (II, i), (II, ii), and (II, iii). Unlike Problem 1,
it involves single-valued control strategies3.
1 The normality condition ∈pi∈2 = 1 may be omitted to simplify formulas.
2 Here the class Uc

R of feasible control strategies is taken to consist of all convex
compact-valued multifunctions U(t, x) that are measurable in t, upper semi-
continuous in x, being restricted by U(t, x) ≥ R(t), t ∈ T . The condition U(·, ·) ∈ Uc

R
ensures that the corresponding differential inclusion does have a solution.

3 This is possible because our strategies will be continuous and even linear with respect
to x. Moreover, they will be constructed in an explicit form.
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Problem 2. Find a polyhedral tube P−(t) = P[p−(t), P̄−(t)], t ⊂ T , with P−(θ)
= M and a corresponding feedback control strategy u = u(t, x) such that
u(t, x) ⊂ R(t) for x ⊂ P−(t), t ⊂ T , and each solution x(·) to the differen-
tial equation

ẋ = (A(t) + V (t))x + u(t, x) + v(t), t ⊂ T, (5)

with x(0) = x0 ⊂ intP−(0) would be defined on T and would satisfy x(t) ⊂
P−(t), t ⊂ T , whatever are v(·) and V (·) subjected to (2)–(4). Moreover, intro-
duce a whole family of such tubes P−(·).

3 Polyhedral Control Synthesis for Differential Systems

Let us consider the following ODE system for P−(t) = P[p−(t), P̄−(t)]:

ṗ− = (A(t) + Ṽ (t)) p− + r(t) + q(t), p−(θ) = pθ; (6)

˙̄P− = (A(t)+Ṽ (t)) P̄−+P̄−diag β(t, P̄−)+R̄(t) Γ (t)+P̄−diag γ(t, P̄−),
β(t, P̄−) = max{Abs ((P̄−)−1) V̂ (t) Abs (p−(t) + P̄−ξ) | ξ ⊂ E(C)},

γ(t, P̄−) = Abs ((P̄−)−1Q̄(t)) e, P̄−(θ) = P̄θ.

(7)
Here the operation of maximum is understood componentwise, E(C) denotes the
set of all vertices of C = P(0, I, e) (i.e., points ξ with ξj⊂{−1, 1}); Γ (t) ⊂ R

n1×n is
an arbitrary Lebesgue measurable matrix function satisfying Γ (t) ⊂ G, a.e. t ⊂ T ,
where G = {Γ = {γj

i } ⊂ R
n1×n | ∈Γ∈→ ∞ 1}, ∈Γ∈→ = max1∞i∞n1

∑n
j=1 |γj

i |. Let
G be the set of all such functions Γ (·). Let us consider the following control
strategy which is connected with the tube P−(·) from (6), (7):

u(t, x) = r(t) + R̄(t)Γ (t)P̄−(t)−1(x − p−(t)). (8)

Theorem 1. We consider system (1)–(4), where M is a nondegenerate paralle-
lepiped. Let Γ (·)⊂G. Then the system (6), (7) has a unique solution (p−(·), P̄−(·))
at least on some subinterval T1 = [τ1, θ] ≡ T , where 0 ∞ τ1 < θ. If T1 = T and
we have det P̄−(t) ≥= 0, t⊂T , then the tube P−(·) and the control strategy (8)
give a particular solution to Problem 2; in cases (I) and (II, i), all solutions
x(·) to (5) with x(0)⊂P−(0) (not only with x(0)⊂int P−(0)) satisfy x(t)⊂P−(t),
t⊂T .

Proof. Here we give a sketch. The existence and uniqueness follow from known
results similarly to [7,8]. Let x0 ⊂ int P−(0) (x0 ⊂ P−(0) for cases (I) and
(II, i)). Let x(·) be a corresponding solution to (5) with x(0) = x0 (i.e., x(0) =
x0 = p−(0) + P̄−(0)ζ0, where ∈ζ0∈→ < 1 (respectively, ∈ζ0∈→ ∞ 1)), the con-
trol u = u(t, x) from (8), and arbitrary admissible functions v(·) (such that
v(t) = q(t) + Q̄(t)χ(t), ∈χ(t)∈→ ∞ 1) and V (·) (which satisfies (3)). Let us rep-
resent x(t) − p−(t) in the form x(t) − p−(t) = P̄−(t)ζ(t). Then we have for
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the function ζ (here and below we omit functions arguments for shortening):
d
dtζ = −(P̄−)−1( d

dt P̄
−)ζ + (P̄−)−1 d

dt (x − p−). Taking into account (7) and the
relation d

dt (x − p−) = (A + Ṽ )(x − p−) + (V − Ṽ )x + u − r + v − q, which follows
from (5), (6), it is not difficult to see that

ζ̇ = −(diag β + diag γ)ζ − (P̄−)−1R̄Γζ + (P̄−)−1((V − Ṽ )x + u − r + v − q).

Let us denote b(t) = β(t, P̄−(t))+γ(t, P̄−(t)), c(t, ζ) = P̄−(t)−1((V (t)− Ṽ (t)) ·
(p−(t) + P̄−(t)ζ) + Q̄(t)χ(t)). Then, using (8), (3), (4), we have

ζ̇i = −bi(t)ζi + ci(t, ζ), i = 1, . . . , n, ζ(0) = ζ0; (9)

b(t) ⊃ 0, Abs c(t, ζ) ∞ b(t) for ζ ⊂ C = P(0, I, e). (10)

It is not difficult to verify that if ζ(·) satisfies (9), (10) and ζ(0) ⊂ int C, then
ζ(t) ⊂ int C, t ⊂ T ; if ζ(0) ⊂ C and, in addition, c(t, ζ) ≤ c(t) (i.e., does not
depend on ζ), then ζ(t) ⊂ C, t ⊂ T . Thus we obtain x(t) ⊂ P−(t), t ⊂ T . Also we
have u(t, x) ⊂ R(t) for x ⊂ P−(t) because for such x we have ∈Γ (t)P̄−(t)−1(x −
p−(t))∈→ ∞ ∈Γ (t)∈→∈P̄−(t)−1(x − p−(t))∈→ ∞ 1 · 1 = 1 due to Γ (·) ⊂ G. ∅�

Theorem 1 describes the whole family of tubes P−(·), where Γ (·) serves as a
parameter. Thus the set W0 =

⋃{int P−(0) |Γ (·) ⊂ G such that detP−(t) ≥= 0,
t⊂T} (for cases (I) and (II, i), the analogous set W0 =

⋃ P−(0)) provides the set
of initial positions which can be steered to the terminal set M during the time θ
by solving Problem 2. But, generally speaking, it is not true that detP−(0) ≥= 0
or even P−(0) ≥= ∅ for each Γ (·) ⊂ G. The attractive property of the control
strategies (8) is their explicit form. Generally speaking, the control law depends
on the initial state because it depends on P−(·), but it is the same for all x0

from a fixed P−(0). For cases (I) and (II, i), the above family of the tubes
P−(·) coincides with the family of internal estimates for W(·) introduced in [7].
It follows from [7,9] that for the case (I) we have T1 = T for each Γ (·) ⊂ G

and W(0) =
⋃{P−(0) |Γ (·) ⊂ G}. But we can not conclude from here that

W0 = W(0) because we can not exclude the situation when a cross section of a
tube may become a degenerate parallelotope and then (8) is not applicable.

Remark 1. One of the possible heuristic ways to construct a “good” parame-
ter Γ (·) is to apply arguments of a “local” volume optimization similarly to
[7]. Namely assume, without loss of generality, that det P̄θ > 0. Fix a nat-
ural number N and introduce a grid TN of times τk = khN , k = 0, . . . , N ,
hN = θN−1. Integrating the system (6), (7) from right to left, let us, for
each τ ⊂ TN , solve the optimization problem minΓ tr (Ξ(τ, P̄−(τ))Γ ), Γ ⊂ G,
where Ξ(τ, P̄−) = (P̄−)−1R̄(τ). This is equivalent to finding the maximal pos-
sible velocity of increasing (from right to left) det P̄−(τ) (therefore vol P−(τ))
at time τ , by the choice of the value Γ , when the value P̄−(τ) has already
been found. Thus we can sequentially construct the piecewise constant function
Γ (t) ≤ Γ (τk)⊂Argmin Γ∅Gtr (Ξ(τk, P̄−(τk))Γ ), t⊂(τk−1, τk], k = N, . . . , 1, and
find P̄−(·).
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For the case (I), it is also possible, similarly to [9], to construct Γ (·) by
minimizing tr (Ξ(τ, P̄−(τ))Γ ) over those Γ that satisfy not only to Γ ⊂ G, but
also to some additional constraints introduced to produce tight internal estimates
P−(t) to W(t), t ⊂ T . Note that solutions of both mentioned optimization
problems are known in explicit form [7,9].

Now let us briefly consider a problem of control synthesis, similar to Prob-
lem 2, for discrete-time systems. This is of independent interest and also may
be useful for constructing difference schemes for solving the system (6) and (7).

4 Control Synthesis for Discrete-Time Systems

Consider the controlled discrete-time system with a given terminal set M:

x[k] = (A[k] + V [k])x[k − 1] + u[k] + v[k], k = 1, . . . , N,

x[N ] ⊂ M = P[pθ, P̄θ], det P̄θ ≥= 0,
(11)

u[k] ⊂ R[k] = P[r[k], R̄[k]], v[k] ⊂ Q[k] = P[q[k], Q̄[k]], k = 1, . . . , N, (12)

V [k] ⊂ V[k] = {V ⊂ R
n×n|Abs (V − Ṽ [k]) ∞ V̂ [k]}, k = 1, . . . , N. (13)

Problem 3. Find a polyhedral tube P−[k] = P[p−[k], P̄−[k]], k = 0, 1, . . . , N ,
with P−[N ] = M, and a corresponding feedback control strategy u = u[k, x]
such that u[k, x] ⊂ R[k] for x ⊂ P−[k−1], k = 1, . . . , N , and each solution x[·]
to the equation x[k] = (A[k] + V [k])x[k − 1] + u[k, x[k − 1]] + v[k], k = 1, . . . , N ,
with x[0] = x0 ⊂ P−[0] would satisfy x[k] ⊂ P−[k], k = 1, . . . , N , whatever are
v[·] and V [·] subjected to (12), (13). Moreover, introduce a whole family of such
tubes P−[·].

Let us consider the following system of relations for P−[k] = P[p−[k], P̄−[k]]:

p−[k−1] = B[k]−1(p−[k]−r[k]−q[k]), B[k] = A[k]+Ṽ [k], k = N, . . . , 1, (14)

P̄−[k−1]=P 1[k]−P 0[k]diag β[k], P 1[k]=B[k]−1(P̄−[k]diag (e−γ[k])−R̄[k]Γ [k]),
P 0[k] = B[k]−1P̄−[k], γ[k] = (Abs (P̄−[k]−1Q̄[k]))e, k = N, . . . , 1,

(15)

p−[N ] = pθ, P̄−[N ] = P̄θ, (16)

β[k] satisfy one of the following systems of inequalities or equations or else
equalities:

H[k, β[k]] ∞ β[k] ∞ e − γ[k], k = N, . . . , 1,

H[k, β] = max
ξ∅E(C)

(Abs (P̄−[k]−1))V̂ [k] Abs (p−[k−1] + P 1[k]ξ−P 0[k]diag ξ · β);

(17)
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β[k] = H[k, β[k]], k = N, . . . , 1; (18)

β[k] = 0, k = N, . . . , 1. (19)

Theorem 2. We consider the system (11)–(13), where det B[k] ≥= 0, k = 1, . . . ,
N , and M is a nondegenerate parallelepiped. Let Γ [k] be arbitrary matrices such
that Γ [k] ⊂ G, k = N, . . . , 1, and the system (14)–(17) (the system (14)–(16),
(18)) has a solution (p−[·], P̄−[·]) such that we obtain det P̄−[k] ≥= 0 (and e −
γ[k] − β[k] ⊃ 0 respectively), k = N, . . . , 1. Then the tube P−[·] and the control
strategy

u[k, x] = r[k] + R̄[k]Γ [k]P̄−[k−1]−1(x − p−[k−1]), k = 1, . . . , N, (20)

give a particular solution to Problem 3. For cases (I) and (II, i), similar to ones
from Sect. 2, the above is also true if the system (14)–(16), (18) is replaced by
the system (14)–(16), (19) of explicit recurrent relations.

Remark 2. If the operator H[k, β] is contractive, i.e. ∈H[k, β1] − H[k, β2]∈→ ∞
L∈β1 − β2∈→ for any β1, β2 ⊂ R

n, where L = L[k] ⊂ (0, 1), then the equation
β = H[k, β] has a nonnegative solution β = β[k], which can be found by the
simple iteration βl+1 = H[k, βl], l = 0, 1, . . ., starting from arbitrary β0; if
β0 = 0, then we have ∈βl − β∈→ ∞ Ll(1 − L)−1∈(Abs (P̄−[k]−1)V̂ [k]∈→(∈p−[k −
1]∈→ + ∈P 1[k]∈→).

Remark 3. Let the system (11)–(13) be obtained by the Euler approximations
of (1)–(4) with the same M, A[k] = I + hNA(tk−1), R[k] = hNR(tk−1), Q[k] =
hNQ(tk−1), Ṽ [k] = hN Ṽ (tk−1), V̂ [k] = hN V̂ (tk−1), tk = khN , hN = θN−1.
Then it is convenient to use (18) or (19) because the relations L[k] < 1 , γ[k] +
β[k] < e for a fixed k are satisfied when det P̄−[k] ≥= 0 and the time step hN is
sufficient small.

5 Examples

We consider some examples, where we use the Euler approximations. Let θ = 2,

A(t) ≤
[

0 1
−8 0

]
, Ṽ (t) ≤ 0, V̂ (t) ≤ 0 or V̂ (t) ≤

[
0 0

0.1 0

]
, R(t) ≤ P(0, I, (0, 1)∗),

Q(t) ≤ P(0, I, 0) or Q(t) ≤ P(0, I, (0.2, 0)∗), M = P((−0.5, 0)∗, I, (0.5, 0.5)∗),
N = 200. We consider 3 cases: (I), (II, i), and (II, iii) (see Fig. 1). The first
two examples are the same as in [7], but we construct trajectories of two types,
which correspond to controls from [7] (dash lines) and to (8) (solid lines); in
the third example we put the “disturbance” V (t) ≤ Ṽ (t) + V̂ (t). As a rule, if
x0 ⊂ int P−(0), then trajectories of the first type turn out to be at the boundary
of P−(t) starting from some time while the ones of the second type turn out to
be nearer to p−(t).
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Fig. 1. Examples of polyhedral control synthesis (n = 2). (a) Case (I): the set M (dash
line), several parallelotopes P−[0] and controlled trajectories for x0 = (−0.5, −1)∗. (b)
Case (I): the suitable tube P−[·] and the controlled trajectory. (c) Case (II, i): M, P−[0]
corresponding to Γ [·] from Remark 1, and controlled trajectories for x0 = (−0.7, 2)∗.
(d) Case (II, iii): M, P−[0] corresponding to Γ [·] from Remark 1, and controlled
trajectories for two initial points x0 = (−0.7, 2)∗ and x0 = (−0.5, 1.2)∗.
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Abstract. The paper considers a class of hybrid control systems with
piece-wise linear dynamics and controls which are constrained in convex
closed cones. A necessary and sufficient condition for small-time control-
lability is proved. This result extends the classical Kalman controllability
criterion.

1 Introduction

We investigate the controllability problem for piece-wise time-invariant linear
systems with controls which are constrained in a cone. These systems belong to a
special class of hybrid control systems which comprises a collection of subsystems
described by linear dynamics together with a switching rule that specifies the
switchings between the subsystems. Such a system can be used to describe a
wide range of control systems in practice. Various natural biological and social
systems use switch strategies in accordance to environmental changes.

The controllability of linear systems in the presence of state constraints is
much less investigated despite the large class of potential applications. There are
only a few papers, where the directions of expansion of the reachable set of such
kind of control systems are studied (cf., for example, [5–7,14]).

Next we state the problem. Let I be a finite set of indices, Ci, i ∇ I, be
convex closed cones in R

n, and L be a linear subspace of Rn such that⋃
i≥I

Ci = Rnand
⋂
i≥I

Ci = L.
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We assume that the following linear control system is defined on each Ci:

ẋ(t) = Ai x(t) + u(t)

with u(t) ∇ Ui, i ∇ I. Here each Ai is an (n × n)-matrix and each Ui is a closed
convex cone in R

n.
These linear systems defined on the cones Ci, i ∇ I, determine a discontinuous

control system on the whole state space R
n which can be described in a shorter

way (cf., for example, [8]) as follows:

ẋ(t) ∇ co
⎧

Ai x(t) + Ui,
i ∇ Iand

x(t) ∇ Ci

⎪
, (1)

where co(X) denotes the closed convex hull spanned by the set X. By definition,
a trajectory of (1) defined on [0, T ] is any absolutely continuous function x :
[0, T ] ∈ R

n satisfying the inclusion (1) for almost every t ∇ [0, T ]. We denote
by R(x, T ) the reachable set of the system (1) at time T starting from x ∇ R

n

at t = 0, i.e.

R(x, T ) = {y ∇ R
n : there exists a trajectory x : [0, T ] ∈ R

nof (1) such
that x(0) = x and x(T ) = y}.

In the present paper we study the small-time controllability of (1):

Definition 1. The control system (1) is called small-time controllable (STC) at
the origin if R(0, T ) = R

n for each T > 0.

Remark 1. The small-time local controllability is a local property introduced by
H. Sussmann (cf., for example, [10]). Also, the concept for the so called large-
time local controllability is defined (cf., for example, [3], where this concept is
discussed and a sufficient condition for large-time local controllability is proved).

Remark 2. V. Veliov posed in 1984 the small-time controllability problem for
the case of a hybrid control system with piece-wise linear dynamics (cf. [14]),
where the case of one hyperplane is analyzed. Later we analyze in [6] a similar
controllability problem in the presence of two hyper-planes. Our main result
could be viewed as a nontrivial extension of [14]. The corresponding proof
is based on the so called differential-geometrical approach (cf., for example,
[2,3,9,11,13]). But to treat this more difficult case we need the so called conical
inverse mapping theorem (cf., for example, [1,4]).

2 An Approach for Studying Discontinuous Control
Systems

The original control system is discontinuous with respect to the state variables.
So, even the existence of a local trajectory is not guaranteed. In the present
paper we extend the approach proposed in [6,14] as follows: For each index i ∇ I
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we project the original system on the linear subspace L by using the admissible
velocities ±pi,j ∇ Ui, i ∇ I. To describe rigorously this projection procedure,
we introduce the following notations: if U is a convex closed cone in R

n, we
denote by Rec(U) the recessive subspace of U , i.e. the maximal linear subspace
contained in U . Also, R+ denotes the set of all nonnegative real numbers.

The following assumptions A and B ensure that the projection procedure is
possible:
Assumption A: For each index i ∇ I there exist a finite index set Ji and
admissible velocities pi,j ∇ Rec(Ui) and linear function αi,j , j ∇ Ji, such that

L +

⎨⎡
⎢

⎣
j≥Ji

αj pi,j : αj ⊂ 0, j ∇ Ji

⎤⎥
⎦ → Ci

Π(y) = y for each y ∇ L and

Πi(x) := x −
⎣
j≥Ji

αi,j(x) pi,j ∇ L

for each point x ∇ R
n, where αi,j(x) ⊂ 0 for each x ∇ Ci.

Assumption B: The map Π(x) := {Πi(x) : x ∇ Ci}, x ∇ R
n, is single valued.

Remark 3. Assumption B is technical. It ensures that the projection map Π is
well defined on the cones Ci, i ∇ I. According to this assumption, Π is a piece-
wise linear single-valued map, and thus it is Lipschitz continuous. We point out
that the map Π is explicitly constructed in [6] for a specific choice of four cones
defined by two hyperplanes.

For each index i ∇ I we define:

(1) the linear operators Bi : Ci ∈ L as follows:

Bi x := Π(Ai x) for each x ∇ Ci, i ∇ I;

(2) the vectors ri,j := Bi pi,j , j ∇ Ji, i ∇ I;
(3) the closed cones

Vi := {Π(u) : u ∇ Ui} , Wi := Vi +

⎨⎡
⎢

⎣
j≥Ji

αj ri,j : αj ⊂ 0,

⎤⎥
⎦ , i ∇ I.

One can directly check that Wi, i ∇ I, are convex closed cones whose elements
belong to the linear subspace L (remind that L = ∞i≥ICi), and that the linear
subspace L is invariant with respect to the linear operator Bi, i.e. Bi : L ∈ L.

Remark 4. We would like to point out that the closed convex cones Wi, i ∇ I,
are not just projections of the original cones Ui, i ∇ I, on L. They are enlarged
by adding the vectors ri,j , j ∇ Ji, i ∇ I, to ensure the best approximation of the
original system on L. We discuss below the relation between the trajectories of
the original system and the trajectories of the projected system.
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If the conditions A and B hold true, then we can define the following control
system

ẏ ∇ co {Bi y + Wi : i ∇ I} , y ∇ L, (2)

on the linear space L.

To show what is the relation between the original system and the projected
control system (2) we take an arbitrary trajectory x(t), t ∇ [0, T ], of (1) and set
y(t) := Π(x(t)). According to assumptions A and B, y(·) is well defined on [0, T ].
Moreover, it is absolutely continuous on [0, T ] and for almost each t ∇ [0, T ] we
have that

ẏ(t) =
d

dt
Π(x(t))

∇ co {Π (Ai x(t) + ui(t)) : ui(t) ∇ Ui, x(t) ∇ Ci}

⊃ co {Bi x(t) + Vi : x(t) ∇ Ci}

= co

⎨⎡
⎢Bi

⎞
⎟y(t) +

⎣
j≥Ji

αi,j(x(t)) pi,j

⎠
 + Vi : x(t) ∇ Ci

⎤⎥
⎦

⊃ co{Bi y(t) +
⎣
j≥Ji

αi,j(x(t)) Bi pi,j + Vi : x(t) ∇ Ci}

⊃ co{Bi y(t) +
⎣
j≥Ji

αj ri,j + Vi : αj ⊂ 0, x(t) ∇ Ci}

⊃ co{Bi y(t) + Wi : i ∇ I}.

Hence the projection of each trajectory of the original control system (1) is
a trajectory of the projected system (2). This is important for the proof of the
necessity of the main result.

3 A Necessary and Sufficient Controllability Condition

Let us remind that Rec(V ) stands for the maximal linear subspace contained
in the convex cone V ⊃ R

n. Also, we introduce notations that will be used
later on: cone (S) is the minimal convex cone containing the set S, relintL (Z)
denotes the relative interior of the set S with respect to the linear space L, int
(S) = relintRn(S) and Inv(S) is the minimal linear subspace of Rn that contains
the set S and is invariant with respect to all matrices Bi, i ∇ I. For each subset
S of Rn we define the following nondecreasing sequence of vector subspaces
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L1(S) := Inv(Rec(co(S))),
L2(S) := Inv(Rec(co(S ≥ L1(S)))),

. . . . . . . . . . . .

Lk(S) := Inv(Rec(co(S ≥ Lk−1(S))))
. . . . . . . . . . . .

At last we set

W :=
⋃
i≥I

Wi

and formulate the main result:

Theorem 1. The piece-wise control system (1) is small-time controllable at the
origin if and only if the following condition holds true

Ldim L (W ) = L. (3)

Proof of the necessity. Let us assume that the system Σ is small-time con-
trollable at the origin but the condition (3) does not hold true. Then for each
positive T there exist trajectories x1(·), x2(·), . . . , xd(·) of this system such that
xi(T ) ∇ L,

0 ∇ relintL(co{xi(T ), i = 1, 2 . . . d }).

If we set yi(t) := Π(xi(t)) for t ∇ [0, T ], i = 1, . . . , d, then each yi(·) is a
trajectory of the projected system (2) (this is shown in the previous section).
Since yi(T ) := Π(xi(T )), we obtain that there is no a half-space in L containing
all trajectories of the control system (2).

Because we have assumed that the condition (3) is not fulfilled, then there
exists m < dim L such that

Lm = Lm+1 ≤= L. (4)

Let L̄ be the orthogonal complement of Lm with respect to L, and let π :
L ∈ L̄ be the orthogonal projection onto L̄. Since Lm is invariant with respect
to all Bi, i ∇ I, we can define the linear operators B̄i on L̄ by

B̄i π(y) = π (Biy) , y ∇ L, i ∇ I,

as well as the control systems

˙̄y(t) ∇ co {B̄i ȳ(t) + W̄i, i ∇ I} (5)

where W̄i := π (Wi). We denote by R̄(0, T ) the reachable set of the system (5)
at time T and by S̄ be the unit sphere in L̄.
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We claim that

0 ≤∇ co

(⋃
i≥I

(
W̄i ∞ S̄

))
. (6)

We will argue by contradiction by assuming that

0 ∇ co

(⋃
i≥I

(
W̄i ∞ S̄

))
.

This means that there exist αi ⊂ 0 and ūi ∇ W̄i, i ∇ I, with ≡ūi≡ = 1, such
that

⎣
i≥I

αiūi = 0,
⎣
i≥I

αi = 1. (7)

The very definition of W̄i = π (Wi) implies the existence of elements li ∇ Lm

such that
ui := ūi + li ∇ Wi, i ∇ I.

Since ūi = π (ui) and ≡ūi≡ = 1, it follows that ui ∇ Wi \Lm. Taking into account
(7), we have

⎣
i≥I

αiui =
⎣
i≥I

αili ∇ Lm. (8)

Let us fix an index i0 for which αi0 > 0. If we set l :=
∑

i≥I αili ∇ Lm, then

−ui0 =
1

αi0

⎞
⎟ ⎣

i≥I,i →=i0

αiui − l

⎠
 .

Since ui0 ∇ Wi0 \ Lm, we obtain that ui0 ∇ Lm+1 \ Lm, which contradicts (4).
Hence we have proved our claim (6). By the Separation Theorem, we deduce
from (6) that there exists a nonvanishing vector h ∇ L̄ and a real number α > 0
such that for each ū ∇ W̄i∞S, i ∇ I, we have

〈
h, ū

〉 ⊂ α. This together with the
linearity of the considered control systems (cf., also, Theorem 1 in [12]) imply
that 〈

h, y
〉 ⊂ 0 for every y ∇ R̄(0, T ),

whenever T > 0 is sufficiently small. So, the system (5) is not small time con-
trollable. Because π (R(0, T )) → R̄(0, T ), one can easily deduce that the system
(2) is also not small time controllable. This is a contradiction and the proof of
the necessity is complete.

Proof of the sufficiency. This part of the proof is based on a general approach
for obtaining sufficient controllability conditions (cf. the Appendix at the end of
[6]). Let the condition (3) holds true. We have to prove that for each T > 0 the
reachable set R(0, T ) of (1) contains a neighborhood of the origin. For doing this
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it is enough to show that for every i ∇ I we have Ci ⊃ R(0, T ): Fix an arbitrary
index i ∇ I and T > 0. Let v be an arbitrary element of L. We define the vector
field Zv : Rn ∈ R

n as follows: Zv(x) = v for each point x ∇ R
n. We first claim

that each vector field Zv, v ∇ L, is contained in the set of high order variations
E+

L (for E+
L we refer to Definition 2 from the Appendix of [6]). For simplicity of

the exposition we just write L ⊃ E+
L .

The invariance of L with respect to each matrix Bi, i ∇ I, and the inclusion

Vi ⊃ L imply (according to Lemma 3 and Lemma 4 from [6]) that co

(⋃
i≥I

Vi

)

(considered as a set of constant vector fields) is also a subset of E+
L .

Let us fix a positive real t > 0, i ∇ I, j ∇ Ji, a point y0 from L and denote
by yi,j(·) the solution of the following system of differential equations

ẏi,j(s) = Bi yi,j(s) + α(s)pi,j , yi,j(0) = y0 ∇ L,

on the interval [0, 2
∅

t], where

α(s) =
⎧

1, if s ∇ [0,
∅

t);
−1, if s ∇ [

∅
t, 2

∅
t].

According to the definition of the linear operator Bi, we have that

Bi x = Π(Ai x) = Ai x −
⎣
j≥Ji

αi,j(Ai x) pi,j .

Since the vectors pi,j ∇ Rec (Ui), j ∇ Ji, we obtain that yi,j(·) is an admis-
sible trajectory for the original system. Moreover, one can directly check that
yi,j(2

∅
t) ∇ L.

According to the Campbell-Baker-Hausdorff formula we obtain that
yi,j(2

∅
t) =

= Exp(
∅

t(Bi(·) + pi,j)Exp(
∅

t(Bi − pi,j))

= Exp(2
∅

tBi(·) + tBipi,j + o(t))

= Exp(2
∅

tBi(·) + tri,j + o(t)).

So ri,j ∇ E+
L . Then Lemma 3 and Lemma 4 from [6] yield

co

(⋃
i≥I

Wi

)
⊃ E+

L .

Applying Lemma 3 from [6] again as well as Lemma 5 from [6], we obtain
successively that every subspace Li, i = 1, . . . ,dim L, is a subset of E+

L . At last,
the very definition of the vectors pi,j , j ∇ Ji, i ∇ I, imply that Ci ⊃ E+

Rn for
each index i ∇ I and for each T > 0. Denote respectively by S and B the unit
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sphere and the unit ball of Rn, respectively, centered at the origin. Define for
any integer m > 0 the compact convex set

Qm = co
⎧

w ∇ Ci ∞ 1
2
S, dist(w,Lin(Ci) \ Ci) ⊂ 1

m

⎪
,

where Lin (Ci) denotes the linear subspace of R
n generated by Ci. Also, we

denote by Rm denote the convex closed cone generated by the set Qm. Clearly
Rm \ {0} is contained in the relative interior of Ci. According to the conical
inverse mapping theorem (cf. for example Theorem 3.1 of [4] or Theorems 3.3
and 3.2 of [1]), there exists δ > 0 such that

Rm ∞ δB ⊃ R(0, T ).

This implies that Qm ⊃ R(0, T ) because the set R(0, T ) is a closed convex cone.
Since Ci ∞ 1

2S =
⋃
m>0

Qm ⊃ R(0, T ) we obtain that Ci ⊃ R(0, T ) for each i ∇ I

(here we use again the fact that R(0, T ) is a closed cone). From here we obtain
that

R
n =

⋃
i≥I

Ci ⊃ R(0, T )

which completes the proof of the theorem.

4 Conclusions

The paper gives a new necessary and sufficient condition for small-time control-
lability of a discontinuous control system consisting of finite number of linear
control systems with control values belonging to convex closed cones. Each of
these systems is defined on a convex closed cone. Our approach is based on a
projection of the original dynamics on a suitable linear subspace. The obtained
necessary and sufficient condition is checkable because it consists in constructing
a finite number of linear spaces. Its verification, however, requires determination
of the recessive subspace of a convex hull, which goes beyond the pure linear-
algebraic considerations typical for the case of unconstrained controls.
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1 Introduction

We study a class of upper semicontinuous functions f : Rd ∇ R whose hypograph
hypo f (see Definition 1) satisfies a geometric regularity property, namely: there
exist c > 0, θ ∈]0, 1] such that for each P on the boundary of hypo f there exists
a unitary Fréchet (outer) normal v ∈ NF

hypo f (P ) ⊂ S
d to hypo f with

→v, P − Q∞ ⊃ c≥P − Q≥1+θ for every Q ∈ hypo f. (1)

Geometrically speaking, this inequality expresses the fact that, in a neighborhood
of each point P on the boundary of hypo f , there exists a “subquadratic” smooth
hypersurface Γ (P ) whose intersection with hypo f reduces to P . One could also
say that Γ (P ) is supertangent to hypo f in a generalized sense. When θ = 1
condition (1) means that the open sphere of center P − v

2c and radius 1
2c lies

outside hypo f and touches the boundary of hypof at P . This property is also
called exterior sphere condition and was studied by several authors, mainly in
connection with regularity problems arising in the control theory.

If we strenghten the exterior sphere condition by requiring (1) to hold for
every v ∈ NF

hypo f (P ) ⊂ S
d (while in its formulation this is required just for at

least one normal) with θ = 1, we are in the class of functions whose hypograph
has positive reach in the sense of Federer. In finite dimension, sets of positive
reach were introduced by Federer in [13] as a generalization of convex sets and
sets with C2-boundary. If moreover we are also allowed to take c = 0, then the
set is convex.

Upper semicontinuous functions whose hypograph has positive reach share
several regularity properties with concave functions: it was proved in [6] that
around a.e. points of their domain they are actually Lipschitz continuous, and
twice differentiable a.e. In [8,9] and [10] some regularity results were proved for
the minimum time function of control problems; under suitable weak control-
lability assumptions, the latter is proved to have epigraph or hypograph with
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locally positive reach, thus generalizing the results of [4] and [5]. Further regular-
ity properties of this class of functions were proved in [7,16], from the nonsmooth
analysis and geometric measure theory viewpoints, respectively.

However, it is easy to give examples where the hypograph of the minimum
time function does not satisfy an exterior sphere property, so that the results of
[9,15] can not be applied. Let us consider the constant control system⎧

⎪
x∗(t) = 0,

y∗(t) = u(t) ∈ [0, 1],
(x(0), y(0)) = (x0, y0) ∈ R

2,

(2)

together with the target T = {(x, β) | β ≤ f(x)}, where f(x) = 1 if x ⊃ 0 and
f(x) = −x

2
3 if x > 0.

The minimum time to reach the target T subject to the above control system
is denoted by T . It can be proved (see the Appendix) that hypoT does not satisfy
an exterior sphere condition, but still enjoys the weaker uniformity regularity
property (1) with θ = 1/2.

The previous considerations motivate us to study the class F (Ω) of real
functions defined on Ω ≡ R

d satisfying condition (1) in order to provide a
new regularity class which, hopefully, will cover the regularity properties for
the minimum time function of certain classes of nonlinear control systems and
differential inclusions (see [3]) that do not satisfy an exterior sphere condition.
We will refer to this property as N-regularity (see Definition 2). We state our
first general result, whose main ideas were presented in our recent paper [14],
for closed set K ≡ R

d+1 concerning the structure and dimension of the set K(j)

of points on ∂K where the Fréchet normal cone to ∂K has dimension larger
than or equal to j. This result generalizes a similar result proved by Federer for
sets with positive reach. Indeed, it shows that K(j) can be covered by countably
many Lipschitz graphs of d − j + 1 variables.

Theorem 1. Let K ∅ R
d+1 be closed; then K(j) is countably H d−j+1-rectifi-

able. In particular, also K
(j)
± are countably H d−j+1-rectifiable.

The sets K
(j)
± are here defined in the same way of K(j) by taking the normal

cone to, respectively, K and Rd+1 \ K; see Definition 5. Concerning the differen-
tiability properties of functions, we denote by Sf the set of non-differentiability
points of f and prove the following result:

Theorem 2. Let Ω ∅ R
d be a nonempty open set and f : Ω ∇ R be an

upper semicontinuous function with f ∈ L→
loc(Ω). Assume that the closed set

K := hypo f is N -regular in Ω × R. Then f ∈ BVloc(Ω) and L d(Sf ) = 0. In
particular, f is differentiable a.e.

2 Notation

Let K be a closed subset of Rd, S ∅ R
d, x = (x1, . . . , xd) ∈ K, y = (y1, . . . , yd) ∈

R
d, r > 0. We denote by →·, ·∞, the usual scalar product in R

d; ∂S, int(S), S,
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the topological boundary, interior and closure of S, respectively; P(S) := {B ∅
R

d : B ∅ S}, the power set of S; Bd := {w ∈ R
d : ≥w≥ < 1}, the unit open ball

(centered at the origin); Sd−1 := {w ∈ R
d : ≥w≥ = 1} = ∂Bd, the unit sphere

(centered at the origin); B(y, r) := {z ∈ R
d : ≥z − y≥ < r} = y + rBd, the open

ball of center y and radius r; dK(y) := dist(y,K) = min{≥z − y≥ : z ∈ K}, the
distance of y from K; πK(y) := {z ∈ K : ≥z−y≥ = dK(y)}, the set of projections
of y onto K: if πK(y) contains an unique element ξ, we will write πK(y) = ξ.
H p(S) and dimH (S), the p-dimensional Hausdorff measure and the Hausdorff
dimension of S. The characteristic function χS : Rd ∇ {0, 1} of S is defined as
χS(x) = 1 if x ∈ S and χS(x) = 0 if x /∈ S. If V,W ∅ R

d are two subset of Rd,
we will write V ≡≡ W if V is bounded and V ∅ W . Given a set X, card(X)
denotes the number of its elements. The Fréchet normal cone and the Bouligand
tangent cone to K at x are defined respectively by

NF
K(x) :=

⎨
v ∈ R

d : lim sup
y∞x

y∅K\{x}

⎡
v,

y − x

≥y − x≥
⎢

⊃ 0
⎣

;

TF
K (x):=

⎨
λξ ∈ R

d :λ ≤ 0,∃{yn}n ∅ K \ {x}, yn ∇ x s.t. ξ= lim
n∞→

yn − x

≥yn − x≥
⎣

.

Definition 1. Let Ω ∅ R
d and f : Ω ∇ R ∪ {±∪} be a function. For x ∈ Ω

fixed we denote by f(x) := lim sup
y∞x
y ≤=x

f(y); ⎤f(x) := lim sup
y∞x

f(y) = max{f(x), f(x)};

f(x) := lim inf
y∞x
y ≤=x

f(y); f⎤(x) := lim inf
y∞x

f(y) = min{f(x), f(x)}; dom(f) := {z ∈

Ω : f(z) ∈ R}, the domain of f ; hypo f := {(z, β) ∈ Ω × R : β ⊃ f(z)},
the hypograph of f ; epi f := {(z, α) ∈ Ω × R : α ≤ f(z)}, the epigraph of f ;
∂F f(x) := {v ∈ R

d : (−v, 1) ∈ NF
hypo f (x, f(x))}; ∂F f(x) := {v ∈ R

d : (v,−1) ∈
NF

epi f (x, f(x))}. We say that f is upper (respectively, lower) semicontinuous if
f(x) ≤ f(x) (resp., if f(x) ⊃ f(x)) for any x ∈ Ω. The sets ∂F f(x) and ∂F f(x)
are called respectively the Fréchet superdifferential and the Fréchet subdifferen-
tial of f at x.

If Ω ∅ R
d is open, we denote by BV (Ω) the set of function of bounded

variation in Ω, and if u ∈ BV (Ω), we denote by ≥Du≥ the total variation of the
vector-valued measure Du. The perimeter of E in Ω is P (E,Ω) = ≥DχE≥(Ω).

Let A ∅ R
d and 0 ⊃ p ⊃ d. Let k ∈ N, we say that A ∅ R

d is countably

H k-rectifiable if A ∅ N ∪
→⎥

i=1

Si, where Si are suitable k-dimensional Lipschitz

surfaces and H k(N ) = 0. For a detailed introduction to BV functions and their
properties, we refer to [1,12]

3 Standing Hypothesis and First Consequences

Definition 2. Let U ∅ R
d+1 be open and K ∅ R

d+1 be nonempty and rela-
tively closed in U . We say that K is N -regular in U if there exists an upper
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semicontinuous multifunction N : ∂K ⊂ U ⇒ S
d such that for every x ∈ ∂K ⊂ U

the following two properties hold:

(N1) ∼ �= N(x) ∅ NF
K(x) ⊂ S

d;
(N2) there exist δx ∈ ]0, dist (x, ∂U)[ and a continuous function ωx : R+ ∇ R

+

with limr∞0+ ωx(r)/r = 0 and satisfying the following uniformity property:
for every y1 ∈ ⎦

x + δxB
d+1

⎞ ⊂ ∂K there exists ν(y1) ∈ N(y1) such that

→ν(y1), y2 − y1∞ ⊃ ωx(≥y2 − y1≥) for all y2 ∈ ⎦
x + δxB

d+1
⎞ ⊂ K.

We will say that K ∅ R
d+1 is N -regular if K is N -regular in R

d+1. Possibly
replacing the set-valued map N with x �∇ N(x), when K is N -regular in U we
can always assume that N has closed graph.

Example 1. Every set K that is the closure of an open C1 domain is N -regular,
moreover a closed convex set C is N -regular with N(x) = NF

C (x) ⊂ S
d

Definition 3. Let U ∅ R
d+1 be open and K ∅ R

d+1 be nonempty and relatively
closed in U ; let also z ∈ ∂K ⊂ U, θ ∈]0, 1] and C ≤ 0. We define

N C,θ,U
K (z) :=

⎟
ζ ∈ R

d+1 : →ζ, z∗ − z∞ ⊃ C · ≥ζ≥ · ≥z∗ − z≥1+θ (3)
for all z∗ ∈ K ⊂ U} .

If K is closed, U = R
d+1 and z ∈ ∂K we will simply write N C,θ

K (z) instead of
N C,θ,Rd+1

K (z). We notice that if ζ ∈ N C,θ,U
K (x), then μζ ∈ N C,θ,U

K (x) for all
μ ≤ 0 and the multifunction N C,θ,U

K : ∂K ⊂ U ⇒ R
d+1 has closed graph.

Let now Ω ∅ R
d be nonempty and open and f : Ω ∇ R be upper semicontinu-

ous. By adapting the previous definition, for (x, βx) ∈ ∂hypo f⊂(Ω×R) we define
N̂ C,θ

hypo f (x, βx) as the set of those (v, λ) ∈ R
d × R such that ≈(y, β) ∈ hypo f .

→(v, λ), (y − x, β − βx)∞ ⊃ C≥(v, λ)≥ ⎦≥y − x≥1+θ + |β − βx|1+θ
⎞

(4)

We notice that there exist constants c1, c2 > 0 depending only on d and θ such
that

N c1C,θ,Ω×R

hypo f (x, βx) ∅ N̂ C,θ
hypo f (x, βx) ∅ N c2C,θ,Ω×R

hypo f (x, βx).

It is clear from the definition that also N̂ c,θ
hypo f : ∂ hypo f ⊂ (Ω ×R) ⇒ R

d+1 has
closed graph.

We are ready now to introduce the classes of sets and functions subject of
our investigation.

Definition 4. Let U ∅ R
d+1 and Ω ∅ R

d be open. We define:

FU := {K ∅ U : K is relatively closed in U and ∃C ≤ 0, 0 < θ ⊃ 1 s.t.

N C,θ,U
K (z) �= {0} for all z ∈ ∂K ⊂ U}

F := FR
d+1

F (Ω) := {f : Ω ∇ R : f u.s.c., hypo f ∈ FΩ×R}
= {f : Ω ∇ R : f u.s.c., ∃C ≤ 0, 0 < θ ⊃ 1 such that

N̂ C,θ
hypo f (x, βx) �= {0} ≈(x, βx) ∈ ∂ hypo f ⊂ (Ω × R)}.
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If K ∈ FU , then there exist C > 0, 0 < θ ⊃ 1 such that K is N -regular in
U with

N(x) := N C,θ,U
K (x) ⊂ S

d ∅ NF
K(x), ωx(r) := r1+θ ≈x ∈ ∂K ⊂ U.

The upper semicontinuity of N follows from the fact that N C,θ,U
K (x) has closed

graph.
We refer the reader to [11,13] for a survey of the properties satisfied by sets

with positive reach, on which the class F is modeled.

4 Regularity Results for Sets

In this section we will prove regularity results for the boundary of a closed set
K ∅ R

d+1 in a quite general setting. They will be used later to prove fine
regularity properties for functions in the class F (Ω).

The first result extends an analogous result for the class of sets with positive
reach proved by Federer in Remark 4.15 of [13]. Roughly speaking it states that
points with large normal cone are relatively few.

Definition 5. Let K ∅ R
d+1 be closed; for j = 1, ..., d + 1 we define

K(j) :=
⎟
x ∈ ∂K : dim

⎦
NF

∂K(x)
⎞ ≤ j

⎠
, (5)

K
(j)
+ :=

⎟
x ∈ ∂K : dim

⎦
NF

K(x)
⎞ ≤ j

⎠
, (6)

K
(j)
− :=

{
x ∈ ∂K : dim

(
NF

Rd+1\K
(x)

)
≤ j

}
. (7)

We notice that K(j1) ⊇ K(j2), K
(j1)
+ ⊇ K

(j2)
+ , K

(j1)
− ⊇ K

(j2)
− if 1 ⊃ j1 ⊃ j2 ⊃

d + 1, and that K
(j)
± ∅ K(j). Clearly, K(1) = {x ∈ ∂K : NF

∂K(x) �= {0}}.
In order to use local arguments, we will need the following estimate which

gives some uniformity with respect to the elements of the normal cone, which
can be proved exploiting compactness of NF

∂K(x) ⊂ S
d: for every x ∈ K(1) and

0 < ε ⊃ 1 we have

δ(x, ε) :=
1

2
sup { δ ∈ R : ≥v, y − x〉 ≤ ε‖y − x‖, (8)

for all y ∈ ∂K ∩
(
x + δBd+1

)
, v ∈ NF

∂K(x) ∩ S
d
}

> 0

We are now ready to prove the first main result of the paper.

Proof (Proof of Theorem 1.). We begin by constructing a countable covering
{K

(j)
n,m,h,l}n,m,h,l∅N of K(j); we will prove later that each element of the covering

is rectifiable and this will establish our result.
Define the function w : (Rd+1)j ∇ [0, 1]

w(v1, . . . , vj) := min

{∥∥∥∥∥
j∑

i=1

αivi

∥∥∥∥∥ : αi ∈ R,

j∑
i=1

|αi| = 1

}
.
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We notice that w is continuous and invariant under permutations of its argu-
ments, so if V = {v1, . . . , vj} we will write w(V ) instead of w(v1, ..., vj). We have
that w(V ) = 0 iff the elements of V are linearly dependent.

Let {al}l∅N be a countable dense set in R
d+1. For every x ∈ K(j) choose

Vx ∅ NF
∂K(x)⊂S

d with cardVx = j and w(Vx) > 0, Vx = {v
(i)
x }i=1,...,j . Consider

the countable set

A(j) :=
⎟
V ∗ ∅ Q

d+1 : card(V ∗) = j, w(V ∗) > 0
⎠

,

Being A(j) countable, we can order its elements and write A(j) = {V ∗
n}n∅N.

We set V
(j)
n = Span(V ∗

n) and consider the countable set of j-dimensional planes
V(j) := {V

(j)
n }n∅N. Define also W

(j)
n := (V (j)

n )⊥, n ∈ N, and W (j) := {W
(j)
n }n∅N.

Given n,m, h, l ∈ N, let v1, . . . , vj ∈ Q
d+1 be such that V ∗

n = {v1, . . . , vj} and
set

K
(j)
n,m,h,l :=

⎧
⎪

x ∈ K(j) ⊂ ⎦
al + 1

2(h+1)B
d+1

⎞
:

w(Vx) ≤ 1
m+3 ,

δ
⎦
x, 1

2(m+3)2

⎞ ≤ 1
h+1 ,∥∥v

(i)
x − vi

∥∥ ⊃ 1
2(m+3)2

for i = 1, . . . , j




,

where δ(x, 1
2(m+3)2 ) is as in (8) with ε = (2(m + 3)2)−1.

It turns out that K(j) ∅
⎥

n,m,h,l∅N

K
(j)
n,m,h,l: given x ∈ K(j), we choose in this

sequence the indexes: m, n, h, l, to fulfill the properties yielding x ∈ K
(j)
n,m,h,l.

We prove now that for any x1, x2 ∈ K
(j)
n,m,h,l the orthogonal projection π

W
(j)
n

:

K
(j)
n,m,h,l ∇ W

(j)
n satisfies

≥π
W

(j)
n

(x2 − x1)≥2 ≤ m + 1
m + 3

≥x2 − x1≥2. (9)

Indeed, we notice that if V ∗
n = {v1, . . . , vj}, then each vi is near to a normal

vector both at x1, and at x2. By exploiting the definition of K
(j)
n,m,h,l, this fact

yields:

|→vi, x2 − x1∞| ⊃ 1
(m + 3)2

≥x2 − x1≥ for every i = 1, ..., j.

Given v ∈ V
(j)
n , v �= 0, we can find (in a unique way) αi ∈ R, i = 1, . . . , j such

that v =
∑j

i=1 αivi; therefore

∣∣∣∣
〈

v

≥v≥ , x2 − x1

〉∣∣∣∣ ⊃
∑j

i=1 |αi| · |→vi, x2 − x1∞|∥∥∑j
i=1 αivi

∥∥ ⊃ ≥x2 − x1≥
(m + 3)2

∑j
i=1 |αi|∥∥ ∑j
i=1 αivi

∥∥ .
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Set βi := αi/
∑j

s=1 |αs|; we have
∑j

i=1 |βi| = 1 and thus
∣∣∣∣
〈

v

≥v≥ , x2 − x1

〉∣∣∣∣ ⊃ ≥x2 − x1≥
(m + 3)2

1∥∥ ∑j
i=1 βivi

∥∥ ⊃ ≥x2 − x1≥
(m + 3)2

1
w(v1, . . . , vj)

⊃ 2
m + 3

≥x2 − x1≥

because w(v1, . . . , vj) ≤ (2(m + 3))−1. Therefore,

≥π
W

(j)
n

(x2 − x1)≥2 = ≥x2 − x1≥2 − →π
V

(j)
n

(x2 − x1), x2 − x1∞ ≤ m + 1
m + 3

≥x2 − x1≥2.

By (9), for each n,m, h, l the inverse map π−1

W
(j)
n

: π
W

(j)
n

(K(j)
n,m,h,l) ∇ K

(j)
n,m,h,l.

is Lipschitz continuous and, by Kirszbraun’s Theorem, it can be extended to a
Lipschitz function defined on the whole W

(j)
n . This ends the proof.

5 Application to Functions: BV Regularity
and Structure of Singular Set

In this section we will apply the results obtained in the previous one to closed sets
that can be written as hypographs of upper semicontinuous functions possessing
at least one normal direction at a.e. point of the boundary of their hypograph;
our goal is to obtain regularity results for such functions.

Definition 6. Let Ω be a nonempty open subset of R
d and f : Ω ∇ R be a

function. For each x ∈ Ω, we define

Jf := {x ∈ Ω : ⎤f(x) �= f

⎤
(x)} = {x ∈ Ω : f is not continuous at x},

Sf := {x ∈ Ω \ Jf :
⎦
S

d−1 × {0}⎞ ⊂ NF
hypo f (x, f(x)) �= ∼},

Sf := Jf ∪ Sf .

We begin with a trivial corollary of Theorem 1, dealing with the singularities
corresponding to large dimension of the normal cone.

Corollary 1. Let Ω be a nonempty open subset of Rd and f : Ω ∇ R be an upper
semicontinuous function. Set K = hypo f and assume that NF

K(x, β) �= {0} for
H d-a.e. (x, β) ∈ ∂K ⊂ (Ω × R). Then for L d-almost every x ∈ Ω there exists
ζx ∈ S

d such that NF
K(x, β) ∅ Rζx for all β with (x, β) ∈ ∂K ⊂ (Ω × R).

Proof. By Theorem 1, K(2) is H d−1-rectifiable and hence H d-negligible. If
π : Ω ×R ∇ Ω denotes the canonical projection on Ω, then Ω ⊂ ⎦

π(∂K \K(1))∪
π(K(2))

⎞
is L d-negligible, hence E := Ω \ ⎦

π(∂K \ K(1)) ∪ π(K(2))
⎞

has the
same measure of Ω. The results follows.

We recall the following result, proved in Theorem 1.2 of [14]:
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Theorem 3. Let Ω be a nonempty open subset of Rd and let f ∈ BVloc(Ω) be
an upper semicontinuous function; set K := hypo f . Assume that for H d-a.e.
(x, βx) ∈ ∂K ⊂ (Ω × R) it holds NF

K(x, βx) �= {0}. Then L d(Sf ) = 0.

We are going to study the regularity properties of upper semicontinuous
functions f such that hypof is N -regular. One of our primary goals is to estimate
the size of the singular set Sf ; to this aim it will be important to assume that
f is of class BV .

We can now prove the second main result of the paper:

Proof (of Theorem 2). Let us prove that f ∈ BV (U) for any open set U such
that U ≡≡ Ω. According to Theorem 1, we have that ∂K is rectifiable, whence
P (K,U × R) = P (K,U× ] − 2≥f≥L∞ , 2≥f≥L∞ [) < ∪. According to Theorem 4
in [2], we have that f ∈ BVloc(Ω), so we can apply Theorem 3.
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Abstract. The problem of estimating reachable sets of linear impulsive
dynamical control systems with uncertainty in initial data is considered.
It is assumed that the impulsive controls in the dynamical system belong
to the intersection of a special cone with a generalized ellipsoid both
taken in the space of functions of bounded variation. The algorithms for
constructing the ellipsoidal estimates of reachable sets for such control
systems are given. Numerical simulation results relating to the proposed
procedures are also given.

1 Introduction

We study here the estimation problem for a dynamic process with discontinuous
trajectories and generalized controls of impulsive type.

The problem is studied under uncertainty conditions [5–7,13] with set —
membership description of uncertain variables, which are taken to be unknown
but bounded with given bounds.

The main problem is to estimate the reachable set of the control system.
It is assumed that impulsive controls in the dynamical system must belong to
the intersection of a special cone with a generalized ellipsoid both taken in the
space of functions of bounded variation. The last constraint is motivated by
problems of impulsive control theory and by models from applied areas when
not every direction of control impulses is acceptable in the system. For example,
one can consider implementation of autonomous underwater vehicle systems for
oceanographic and environmental field studies [11].

The problem under some more complicated assumption related to the case
of state constraints is studied.

Based on the results of estimating the trajectory tubes of ordinary differen-
tial systems and using the techniques of ellipsoidal calculus [1,8] we present here
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a new state internal estimation method for the studied impulsive control prob-
lem. The external ellipsoidal estimates for impulsive systems were considered in
[2,3,9,15].

In this paper the reachable set is estimated internally by one ellipsoid [1,8].
In this formulation, the optimality of the internal approximation is understood
in terms of the maximum size of the inscribed ellipsoid. The accuracy of the
constructed ellipsoidal estimation is not considered for similar problems.

This paper continues previous research [3,4,10]. We present here the state
estimation algorithm and illustrate it by an example.

2 Problem Formulation

Let us start by introducing the following basic notations. Let Rn denotes
the n-dimensional Euclidean space. Denote by Rn×n the set of all n × n -
matrices and by R̃n×n ∇ Rn×n the set of all symmetric positive definite
matrices. Let us denote by the symbol ∗ stands for transposition, x∗y the
scalar product of vectors x, y ∈ Rn and by ⊂x⊂ = (x∗x)1/2 the Euclid-
ean norm of the vector x, and B(a, r) =

{
x ∈ Rn : ⊂x − a⊂ → r

}
. Let

E(y, Y ) =
{
x ∈ Rn : (x − y)∗Y −1(x − y) → 1

}
be the ellipsoid in Rn with cen-

ter y ∈ Rn and a matrix Y ∈ R̃n×n, and let I ∈ Rn×n be the identity matrix.
For a set A ∇ Rn we denote its closed convex hull [12] as co A.

Consider a control system with impulsive control (measure) u(·):
dx(t) = A(t)x(t)dt + du(t), x(t0 − 0) = x0, t ∈ [t0, T ], (1)

or in the integral form,

x(t) = x(t; u(·), x0) = Φ(t, t0)x0 +

t∫
t0

Φ(t, τ)du(τ). (2)

Here it is assumed that A(t) is a continuous n × n – matrix function, Φ(t) is
the Cauchy matrix [6], Φ(t, τ) = Φ(t)Φ−1(τ), u(·) ∈ V

n
p where V

n
p (1 → p < ∞)

means the space of n-vector functions u(·) such that u(t) is continuous from the
right on [t0, T ) with u(t0 − 0) = 0 and

Vp[u(·)] = sup
{ti}

k∑
i=1

⊂u(ti) − u(ti−1)⊂p → ∞, ⊂u⊂p =

(
n∑

i=1

|ui|p
) 1

p

,

where u = (u1, . . . , un), ti : t0 < · · · < tk = T .
Denote by Cn

q the space of continuous n-vector functions y(·) with the norm
⊂y(·)⊂→,q = max

t0∞t∞T
⊂y(t)⊂q. It is well known that the space V

n
p = Cn∅

q where

p = 1 if q = ∞, p = ∞ if q = 1 and 1 < p < ∞ if q = (1 − p−1)−1.
Let E0 = E(0, Q−1

0 ) be an ellipsoid in Rn with a center at the origin and
with Q0 ∈ R̃n×n. Consider the so-called generalized “ellipsoid” [12,15] E in Cn

q :

E = {y(·) ∈ Cn
q | y(t) ∈ E0 ⊃t ∈ [t0, T ]} (3)
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and its conjugate ellipsoid [12] E∅ in V
n
p such that

E∅ = {u(·) ∈ V
n
p |

T∫
t0

y(t)∗du(t) → 1 ⊃y(·) ∈ E}. (4)

Let introduce the following cone described as

K0 = {u ∈ Rn | u = (u1, . . . , un), u1 ≥ 0, ui ∈ R, i = 2, . . . , n},

K = {y(·) ∈ Cn
q | y(t) ∈ K0 ⊃t ∈ [t0, T ]},

its conjugate cone K∅ [12] will have the form

K∅ = {u(·) ∈ V
n
p |

T∫
t0

y(t)∗du(t) ≥ 0 ⊃y(·) ∈ K}. (5)

Definition 1. The function u(·) ∈ V
n
p will be called the admissible control if

u(·) ∈ U = E∅ ≤ K∅.

Remark 1. Let u(·) ∈ V
n
p be a piecewise constant function on [t0, T ] with dis-

continuity instants {ti ∈ [t0, T ]} and with “jump” vectors

Δui = u(ti+1) − u(ti) ∈ E(0, Q0) ≤ K0 =
{z ∈ Rn| z∗Q−1

0 z → 1, z = (z1, . . . , zn), z1 ≥ 0, zi ∈ R, i = 2, . . . , n}.
(6)

Then u(·) is admissible.

We will assume also that the initial state x0 for the system (1) is unknown
but bounded with a given ellipsoidal bound:

x0 ∈ X0 = E(r, R), (7)

where R ∈ R̃n×n and r ∈ Rn.
Assume that the state constraint (of terminal type) is imposed, so we have

x(T ) ∈ E(y0, D), (8)

where E(y0, D) is a given ellipsoid D ∈ R̃n×n, y0 ∈ Rn. We will assume that
there exists at least one trajectory x(T ) satisfying (1), (7), (8) and u ∈ U .

Denote

X(T ; U, X0) =
⋃

x0≤X0

⋃
u≤U

{x(T ; u(·), x0)}, (9)

where x(T ; u(·), x0) is defined in (2) under additional assumption (8).

Definition 2. The set X(T ; U, X0) (9) is called the reachable set of the impul-
sive differential system (1) from the initial set X0 (7) at the instant T under
controls u(·) ∈ U and ellipsoidal state bounds (8).

The main problem of the paper is to find the estimates of ellipsoidal type for
the X(T ; U, X0) basing on the special ellipsoidal structure of the data.
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3 Main Results

Consider first some auxiliary results. The following theorem is true.

Theorem 1. [3] The equality holds

X(T ; U, E(r, R)) = E(r1, R1) + X(T ; U, {0}), (10)

X(T ; U, {0}) = co
( ⋃

τ≤[t0, T ]

Φ(T, τ)(E(0, Q0) ≤ K0)
)
,

r1 = Φ(T, t0)r, R1 = Φ(T, t0)R(Φ(T, t0))∗.

Remark 2. From the Theorem 1 we conclude that if we find an ellipsoid E− such
that E− ≡ X(T ;U, {0}) then applying well-known formulas for calculating the
internal ellipsoidal estimate for the sum of two ellipsoids E(r1, R1) and E− [1,8]
we can find the resulting internal ellipsoid for X(T ; U, X0) in (10).

Thus the main difficulty is to construct internal estimates for the
X(T ; U, {0}).

The idea of constructing the internal estimates for X(T ; U, {0}) is basing on
results of ellipsoidal calculus [1,8] and on the procedures of internal approxima-
tion of a closed convex hull of the union of some ellipsoids.

First, we find the ellipsoid which is contained in the intersection E(0, Q0)≤K0.

Theorem 2. The following internal estimate is true

E(a, Q) ≡ E(0, Q0) ≤ K0,

a =
n

n + 1
· Q0ν(ν∗Q∗

0ν)− 1
2 ,

Q−1 = (n + 1) · (νν∗) · (ν∗Q∗
0ν)−1 +

n + 1
n

· Q−1
0 ,

(11)

where ν is the inner normal to the half-space K0 with ⊂ν⊂ = 1 and the ellip-
soid E(a, Q) (11) has the largest volume among all ellipsoids contained in the
E(0, Q0) ≤ K0.

Proof. The idea of the proof is as follows. First, using the affine transformation
[1] we transform the ellipsoid E(0, Q0) into the unit ball B(0, 1). It is easy to
check that under this transformation the cone K0 is not changed. Now we need to
construct an internal ellipsoidal estimate of the spherical segment B(0, 1) ≤ K0.

This ellipsoidal estimation E(ā, Q̄) ∇ B(0, 1) ≤ K0 can be found in the form
of the “rotation” ellipsoid [1]:

E(ā, Q̄) = {x ∈ Rn| (y − ξ)2

A2
+

z2

B2
→ 1, y = ν∗x, z = x − yν},

ξ = A =
∅

n

n + 1
, B =

√
n

n + 1
.

(12)
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Note that the ellipsoid E(ā, Q̄) has a maximal volume among all ellipsoids
contained in B(0, 1) ≤ K0.

Returning to the initial coordinates [1] we obtain the internal ellipsoidal esti-
mate E(a, Q) for the set E(0, Q0)≤K0, where parameters a and Q of the ellipsoid
E(a, Q) are defined in (11). This ellipsoid E(a, Q) has the largest volume among
all ellipsoids contained in the E(0, Q0) ≤ K0 [1]. �

Consider impulsive control system

dx(t) = A(t)x(t)dt + du(t), x(t0 − 0) = x0 ∈ X0 = E(r, R), t ∈ [t0, T ], (13)

with a new constraint

u(·) ∈ Ũ = Ẽ∅, (14)

where

Ẽ∅ = {u(·) ∈ V
n
p |

T∫
t0

y(t)∗du(t) → 1 ⊃y(·) ∈ Ẽ} ⊃ E∅,

Ẽ = {y(·) ∈ Cn
q | y(t) ∈ E(a, Q) ⊃ t ∈ [t0, T ]} ∇ E

and parameters a, Q are defined in (11).
We study first the case without state constraint (8). We denote the related

the reachable set X(T ; Ũ , {0}) in this case as X̃(T ; Ũ , {0}).
Consider the following auxiliary problem.

Auxiliary Problem AP. Find the ellipsoid Ẽ−(ã−, Q̃−) such that
Ẽ−(ã−, Q̃−) ≡ X̃(T ; Ũ , {0}).

Lemma 1. The following inclusion holds

X̃(t; Ũ , {0}) ≡ X̃(t; U, {0}). (15)

Proof. The proof of this lemma follows directly from (10). �

For the impulsive control system (13)–(14) and for any ε > 0 there exist
δ > 0 and finite set Tδ = {τ1, τ2, . . . , τm} ∇ [t0, T ] such that the inclusions are
true [4]:

co
( ⋃

τi≤Tδ

E(aτi
, Qτi

)
)≡X̃(T ; Ũ , {0}) ≡ co

( ⋃
τi≤Tδ

E(aτi
, Qτi

)
)

+ B(0, ε),

aτi
= Φ(T, τi)a, Qτi

= Φ(T, τi)Q(Φ(T, τi))∗,
(16)

Now we need to construct the internal ellipsoidal estimate for the closed
convex hull co

( ⋃
τi≤Tδ

E(aτi
, Qτi

)
)
.

Here we use the fact that the intersection and the union for overlapping
sets are dual operations [12]. For the convex compacts M, M1, M2 ∈ Rn the
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following properties holds [14]: if 0 ∈ M1≤M2 then (co(M1∪M2))∅ = M∅
1≤M∅

2

and if 0 ∈ M then (M∅)∅ = M.
Let us assume that 0 ∈ ⋂

τi≤Tδ

E(aτi
, Qτi

) (if it isn’t so we will change the

coordinates appropriately). According to the above remark on dual operations
we need to construct the upper ellipsoidal bound Ẽ+(ã, Q̃) for the intersection
of a finite number of transformed ellipsoids

⋂
τi≤Tδ

E∅(aτi
, Qτi

) ≡ Ẽ+(ã, Q̃).

For the fixed instances τi ∈ Tδ and for nondegenerate ellipsoid E(aτi
, Qτi

)
the E∅(aτi

, Qτi
) is calculated by the following rule [14]: if θ ∈ int E(aτi

, Qτi
)

then

(E(aτi
, Qτi

) − θ)∅ = E(a∅, Q∅),

a∅=− Q−1
τi

(aτi
− θ)

1 − (θ − aτi
)∗Q−1

τi (θ − aτi
)
, Q∅=

Q−1
τi

1 − (θ − aτi
)∗Q−1

τi (θ − aτi
)
+a∅(a∅)∗.

Consider first two ellipsoids E∅(aτ1 , Qτ1) and E∅(aτ2 , Qτ2) (τ1, τ2 ∈ Tδ).
There are some approaches for the ellipsoidal estimation of intersection of two
ellipsoids, e.g. [1,8,13]. Using one of these methods of estimation for E∅(aτ1 , Qτ1)
and E∅(aτ2 , Qτ2) we calculate the ellipsoid E1

+(a1, Q1). Then for a pair of
ellipsoids E1

+(a1, Q1) and E∅(aτ3 , Qτ3), τ3 ∈ Tδ we construct E2
+(a2, Q2),

and so on. After a finite number of steps we will find the resulting ellipsoid
Ẽ+(ã, Q̃).

Then we return to the original coordinates and so we get the internal ellip-
soidal estimate Ẽ−(ã−, Q̃−) =

(
Ẽ+(ã, Q̃)

)∅ of the co
( ⋃

τi≤Tδ

E(aτ , Qτ )
)

and

therefore Ẽ−(ã−, Q̃−) ≡ X̃(T ; Ũ , {0}).
So we have the following theorem.

Theorem 3. The following internal estimate is true

Ẽ−(ã−, Q̃−) =
(
Ẽ+(ã, Q̃)

)∅ ≡ X̃(T ; Ũ , {0}).

Now we study the case with state constraint (8).
To obtain the required estimate E−(a−, Q−) ≡ X(T ; U, {0}) we will to

construct the internal estimate for the intersection of two ellipsoids: first ellipsoid
Ẽ−(ã−, Q̃−) is found in Theorem 3 and second ellipsoid E(y0, D) is given in (8).
In order to find the ellipsoid E−(a−, Q−) ≡ E(y0, D)

⋂
Ẽ−(ã−, Q̃−) we may

use standard procedure of ellipsoidal estimates from [4,8,13,14]. At the end we
get the Theorem 4.

Theorem 4. The following internal estimate is true

E−(a−, Q−) ≡ X(T ; Ũ , {0}) ≡ X(T ; U, {0}).

Hence Theorems 1–4 allow us to construct the internal ellipsoidal estimate
of reachable sets X(T ; U, X0) of system (1) from the initial set X0 (7) at the
instant T under controls u(·) ∈ U and with state constraint (8).
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Fig. 1. (a) Ellipsoidal estimate of the E(0, Q0) ∩ K0. (b) Ellipsoidal estimate of the
reachable set X̃(T ;U,X0). (c) Ellipsoidal estimate of the reachable set X(T ;U,X0).

4 Numerical Simulation: Example

Consider the following control system:
{

dx1(t) = x2(t)dt + du1(t),
dx2(t) = du2(t),

t ∈ [0, 1]. (17)

We assume that X0 = {0}, the set U = E∅ ≤ K∅ and the state constraint is
defined as x(T ) ≡ E(0, D), where E∅ is generated by of the ellipsoid E(0, Q0)
(see details in formulas (3)–(4))

D =
(

2.25 0
0 6.25

)
, Q0 =

(
1 1
1 4

)
,

and K∅ is generated by of the cone K0 = {u ∈ R2 | u = (u1, u2), u1 ≥ 0},
according to the formula (5).

Here we have
E(a, Q) ≡ E(0, Q0) ≤ K0, (18)

where parameters a, Q are found according to formulas (11). The inclusion (18)
is illustrated at the Fig. 1(a). The ellipsoid E(a, Q) has the largest volume among
all ellipsoids contained in the intersection of the ellipsoid E(0, Q0) and the cone
K0. The cone constraint requires that the ellipsoid E(a, Q) lies in the right
half-plane.

The exact reachable sets X̃(T ; U, X0) and X̃(T ; Ũ , X0) are presented at
the Fig. 1(b), which also shows the internal ellipsoidal estimate Ẽ−(ã−, Q̃−)
(see Theorem 3). Here the set Ũ = Ẽ∅ is generated by the ellipsoid E(a, Q).
The exact reachable sets X(T ; U, X0) and X(T ; Ũ , X0) with state constraint
E(0, D) and resulting internal ellipsoidal estimate E−(a−, Q−) are shown at
the Fig. 1(c).
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5 Conclusion

The approach that allows to find the internal ellipsoidal estimate of the reachable
sets of linear impulsive control systems is presented here. Impulsive controls are
constrained by the intersection of a special cone with a generalized ellipsoid
(both taken in the space of functions of bounded variation). The example which
illustrates the techniques discussed in the paper is also given.
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Abstract. The probably biggest challenge for climate change mitiga-
tion is to find a secure low-carbon energy supply, which especially is
difficult as the supply of renewable sources underlies strong volatility
and storage possibilities are limited. We therefore consider the energy
sector of a small country that optimizes a portfolio consisting of fossil
and/or renewable energy to cover a given energy demand, considering
seasonal fluctuations in renewable energy generation. By solving these
non-autonomous optimal control models with infinite horizon, we inves-
tigate the impact of fossil energy prices on the annual optimal portfolio
composition shown by the obtained periodic solutions.

Keywords: Optimal control · Nonlinear dynamical systems · Resources
and environment · Renewable energy

1 Introduction

With a constantly increasing world-wide energy demand, the progressively obvi-
ous impacts of climate change and the energy sector as the main source of green
house gas emission, the possibly biggest challenge of the 21st century is to find a
low-carbon, secure and sustainable energy supply. Renewable energy generation
is already carried out, but technology and policy efforts are not yet sufficient.
Besides the high costs and the limited storage possibilities the possibly biggest
problem is the fluctuating supply of renewable sources.

To address this issue we investigate the decision of an energy sector in a small
country that optimizes a portfolio consisting of fossil and renewable energy. We
assume that this energy sector has full information about the energy demand
that has to be covered, which is postulated to be stationary, as done in [3], but
instead of assuming that the energy demand is dependent on the GDP of the
country (see also [2]) and on the electricity price, we follow [8] and consider the
energy demand to be exogenous. Given this demand as well as the mentioned
seasonal fluctuations and the fossil energy price, the energy sector optimizes its
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portfolio to find the most cost-effective solution. Following [1] we focus especially
on solar energy and omit storage completely, so that the generated energy has
to be used immediately or is lost.

Due to the seasonal fluctuations this optimal control problem with one state
and two controls exhibits a particular mathematical property by being non-
autonomous. We solve this problem by applying Pontryagin’s Maximum Prin-
ciple, but instead of the usual steady-state analysis of autonomous approaches
we are looking for a periodic solution that solves the non-autonomous canonical
system, which makes the problem numerically sophisticated.

2 The Model

While fossil energy is assumed to be constantly available and imported for the
price pF , the supply of renewable energy fluctuates over time but harvesting is
for free and the generation is possible within the country. To do so, however,
investments for proper energy generation capital are necessary. One important
implication of the (small) size of the country is that the energy sector is assumed
to be a price taker, which means that its decision does not impact the market
prices.

We especially focus in this paper on solar energy as renewable resource.
Figure 1a shows the average global radiation per month in Austria. One can
clearly observe the seasonal differences underlining the challenge of a constant
renewable energy supply over the whole year. To include such seasonal fluctua-
tions1 in our model, we use a deterministic time-dependent function

vR(t) = ν sin(tπ)2 + τ,

which can be seen in Fig. 1. The parameter τ defines the minimal supply in
winter and ν is the maximal increment during summer. The necessary capital

(a)
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t
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vR t in kWh m2

(b)

Fig. 1. (a) Average global radiation per month in Austria. (b) Deterministic function
to describe the varying global radiation over one year.

1 Note that we only consider annual fluctuations and do not include daily fluctua-
tions from day to night nor changes due to weather conditions. To get reasonable
parameter values we used Austrian data for the estimation (cf. [9]).
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KS(t) in form of photovoltaic (PV) cells is accumulated by investments IS(t) and
depreciates at a rate δS which later on will be set to δS = 0.03, implying that a
PV cell has a lifetime of about 33 years. With the current capital stock and the
given global radiation, renewable energy is generated as in Eq. (1b), where η is
the degree of efficiency, which for common PV cells is about 20 %. Note that this
function explicitly depends on time t which makes the problem non-autonomous.
As the required energy demand E that has to be covered is well known, it is
postulated that the demand has to be satisfied completely with the portfolio of
fossil, EF (t), and renewable, ES(KS(t), t), energy. This means that shortfalls are
not allowed while surpluses are in general possible but are simply lost as saving
options do not exist. This balance is included in the model by the mixed path
constraint in Eq. (1a). Given this restriction and the current market price for
fossil energy, the energy sector searches for the most cost-effective solution by
maximizing its profit as shown in Eq. (1), where p is the electricity price. Note
that we distinguish between linear investment and quadratic adjustment costs,
where the latter arise from installation efforts.

Summing up, we consider a non-autonomous optimal control model with
infinite horizon, two controls describing the capital investments and the imported
fossil energy, and one state for the capital stock,

max
EF (t), IS(t)

∫ ∗

0

e−rt

(
pE − IS(t)

⎧
b + cIS(t)

⎪
− pF EF (t)

⎨
dt (1)

s.t.: K̇S(t) = IS(t) − δSKS(t)

EF (t) + ES

⎡
KS(t), t

⎢ − E ∇ 0 (1a)

ES

⎡
KS(t), t

⎢
=

⎡
ν sin(tπ)2 + τ

⎢
KS(t)η (1b)

EF (t), IS(t) ∇ 0,

where the discount rate r and the parameters b and c are positive constants.

3 Solution

3.1 Canonical System and Necessary First Order Conditions

Let (K→
S(t), I→

S(t), E→
F (t)) be an optimal solution of the control problem in Eq. (1),

then, according to the maximum principle for infinite time horizon problems (cf.
[4]), there exists a continuous and piecewise continuously differentiable function
λ(t) ∈ R satisfying

L (K→
S(t), I→

S(t), E→
F (t), λ(t), t) = max

IS(t),EF (t)
L (K→

S(t), IS(t), EF (t), λ(t), t)

where L defines the Lagrangian which reads as

L (KS(t), IS(t), EF (t), λ(t), t) = pE − bIS(t) − cIS(t)2 − pF EF (t)
+ λ(t)(IS(t) − δSKS(t)) + μ1(t)(EF (t)

+ KS(t)η(ν sin(tπ)2 + τ) − E)
+ μ2(t)EF (t) + μ3(t)IS(t),
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with μ1(t), μ2(t), μ3(t) being the Lagrange multipliers for the mixed path con-
straint and the non-negativity conditions. Further on, at each point where the
controls are continuous

λ̇(t) = rλ(t) − ∂L (KS(t), IS(t), EF (t), λ(t), t)
∂KS

is given and the complementary slackness conditions

μ1(t)
⎡
E→

F (t) + E→
S

⎡
K→

S(t), t
⎢ − E

⎢
= 0, μ1(t) ∇ 0,

μ2(t)E→
F (t) = 0, μ2(t) ∇ 0,

μ3(t)I→
S(t) = 0, μ3(t) ∇ 0,

have to be satisfied. Hence, the necessary first order conditions and the adjoint
equation are given as follows:

∂L

∂EF (t)
= −pF + μ1(t) + μ2(t) = 0

∂L

∂IS(t)
= −b − 2cIS(t) + λ(t) + μ3(t) = 0 ⊂ IS(t) =

λ(t) + μ3(t) − b

2c

λ̇(t) = rλ(t) − ∂L

∂KS(t)
= (r + δS)λ(t) − μ1(t)η(ν sin(tπ)2 + τ).

Looking for an interior solution with both controls IS(t), EF (t) > 0 and the
mixed-path constraint of (1a) satisfied with strict inequality, it can be shown
that such a solution never can be optimal as costs could be reduced by lowering
the amount of fossil energy until the mixed path constraint is satisfied with
equality, which makes surpluses in fossil energy inefficient. Hence, we focus for
the following analysis on the three boundary cases, which are: the fossil case
with zero investments2, EF (t) > 0, IS(t) = 0 and EF (t)+ES(KS(t), t)−E = 0;
the mixed case where both types of energy are used for the coverage, EF (t),
IS(t) > 0 and EF (t) + ES(KS(t), t) − E = 0; and finally the renewable case,
where only renewable energy is used to cover the demand, EF (t) = 0, IS(t) > 0
and ES(KS(t), t)−E > 0. Inserting the corresponding values of the controls and
Lagrange multipliers yields the canonical systems for these boundary cases:

K̇S(t) = A − δSKS(t), with A =

{
0, fossil case,
λ(t)−b

2c
, mixed and renewable case,

(2)

λ̇(t) = (r + δS)λ(t) − B, with B =

{
pF η(ν sin(tπ)2 + τ), fossil and mixed case,

0, renewable case.
(3)

In what follows, we refer to these canonical systems as K̇S(t) = fK(t,KS(t), λ(t))
and λ̇(t) = fλ(t, λ(t)).
2 If the initial capital stock along the fossil solution arc is zero, the whole energy

demand is covered with fossil energy. If, however, the initial capital stock is positive,
also renewable energy contributes to the coverage of the energy demand, nevertheless
at a decreasing rate as no investments are done and depreciation reduces the stock.
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3.2 Periodic Solution

As the canonical system in (2)–(3) is non-autonomous we have to find a trajec-
tory with the property to be hyperbolic. Detailed theory about the existence,
the computation and the manifolds of such distinguished hyperbolic trajectories
can be found, e.g., in [5], [7], or [6]. Due to the periodicity of the dynamics
candidates for the long-run optimal solution of the problem in (1) are periodic
solutions with the period length of one year. In order to find such a periodic solu-
tion of the canonical system numerically, we first determine the instantaneous
equilibrium points KIEP

S (t) and λIEP (t) (cf. [5]) by setting (K̇S , λ̇)(t) = (0, 0),
and then solve the following boundary value problem using these instantaneous
equilibrium points as starting function,

K̇S(t) = fK(t,KS(t), λ(t)), with KS(0) = KIEP
S (0) and KS(1) = KS(0),

λ̇(t) = fλ(t, λ(t)), with λ(0) = λIEP (0) and λ(1) = λ(0).

Solving this BVP yields the periodic solution (K→
S(t), λ→(t)) that lies completely

within one of the three boundary cases. However, it can happen that the solution
at some point leaves the current admissible area before the course of the period
of one year is completed. In this case one has to switch to the corresponding
canonical system to get a periodic solution existing of several arcs. Therefore,
a multi-point boundary value problem has to be solved. At each point of time
where the constraints of the current region are violated a switch to the proper
region happens, meaning that the corresponding canonical system is used to
continue the solution. For n switching times τ0 := 0 < τ1 < τ2 < · · · < τn−1 <
τn < 1 =: τn+1, one has to calculate n + 1 arcs, for which the continuity at each
switching time has to be guaranteed. We introduce an index ai ∈ {1, 2, 3} that
distinguishes the canonical systems for the fossil, the mixed and the renewable
case, respectively, for each arc i with i = 1, . . . , n+1. If n switches are necessary
along the periodic solution and we use for simplicity the notation

K̇Si
(t) = fK

ai
(t,KSi

(t), λi(t)), t ∈ [τi−1, τi], i = 1, . . . , n + 1, (4)

λ̇i(t) = fλ
ai

(t, λi(t)), t ∈ [τi−1, τi], ai ∈ {1, 2, 3}, (5)

for the corresponding canonical system at arc i, it has to hold that ai →= ai−1 and
|ai−ai−1| = 1, which means that switches only can happen between fossil/mixed
or mixed/renewable cases. For the numerical solution of the system for each arc
i we use a time transformation so that it can be solved with fixed time intervals.
This means that, in order to solve an equation

ẋ(t) = f(t, x(t)), t ∈ [τi−1, τi], i = 1, . . . , n + 1, τ0 = 0, τn+1 = 1

as in (4)–(5), we are looking for a time transformation t = T (s) so that

ẏ(s) = f̃(s, y(s)), s ∈ [i − 1, i], with y(s) = x(T (s)).

It turns out that the linear transformation T (s) = (τi − τi−1)(s − i + 1) + τi−1

satisfies the required conditions. Hence, in terms of the original dynamics this
yields
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ẋ(s) =
dx(T (s))

ds
=

dx(T (s))
dT

dT (s)
ds

= f(s, x(s))(τi − τi−1).

Using this transformation, we have to solve for i = 1, . . . , n + 1, j = 1, . . . , n,
s ∈ [i − 1, i], τ0 = 0, τn+1 = 1 the multi-point boundary problem

K̇Si(s) = (τi − τi−1)f
K
ai

(T (s), KSi(s), λi(s)), λ̇i(s) = (τi − τi−1)f
λ
ai

(T (s), λi(s)),(
KSj (τj), λj(τj)

)
=
(
KSj+1(τj), λj+1(τj)

)
, (KSn(1), λn(1)) = (KS1(0), λ1(0)) ,(6)

(KS1(0), λ1(0)) =
(
KIEP

S (0), λIEP (0)
)

.

Equation (6) ensures that the continuity in state and controls at each switch is
given and, as a periodic solution is calculated, the beginning and the endpoint
coincide. The following Eq. (7) finally guarantees the necessary condition that
the Lagrangian is continuous as well, which depends on the involved regions as
well as on the direction of the switch and is given for j = 1, . . . , n as

0 = c(aj , aj+1) =

⎣⎤⎤⎤⎥
⎤⎤⎤⎦

b − λj(τj), if aj = 1, aj+1 = 2,
λj(τj)−b

2c , if aj = 2, aj+1 = 1,

ES(KSj
(τj), τj) − E, if aj = 2, aj+1 = 3,

EF (τj), if aj = 3, aj+1 = 2.

(7)

The periodic solution that solves this BVP then is given as

(

K
∗
S(t), λ

∗(t)
)

=

(

(

K
∗
S1

(t), λ
∗
1(t)

)

0≤t<τ1
,
(

K
∗
S2

(t), λ
∗
2(t)

)

τ1≤t<τ2
, . . . ,

(

K
∗
Sn

(t), λ
∗
n(t)

)

τn−1≤t<τn=1

)

.

Calculating the eigenvalues of the monodromy matrix for the obtained periodic
solution reflects the stability, which here are given as e1 = e−δS and e2 = er+δS .
As δS < 1 always is satisfied, one can see that e1 < 1 holds. For reasonable values
of the discount rate and the depreciation rate it further is supposed that r+δS<1
which implies that e2 > 1 in these cases. As the Jacobian is independent of the
state and the control variable, this means that every periodic solution that we can
find within one of the boundary regions is of saddle-type and, as no eigenvalue
ei = 1 occurs, it is a hyperbolic cycle which guarantees that the behavior of the
system near this periodic solution can be fully described by its linearisation (see
[4]).

Table 1. Parameter values used for the numerical analysis.

Interpretation Parameter Value Interpretation Parameter Value

Investment costs b 0.6 Discount rate r 0.04
Adjustment costs c 0.3 Depreciation rate δS 0.03
Energy demand E 1053.82 Maximal radiation increment ν 4.56
Electricity price p 0.1 Degree of efficiency η 0.2
Fossil energy price pF 0.08 Minimal radiation in winter τ 0.79
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Fig. 2. Periodic solution (left box), time paths for investments and capital over one
year (two boxes in the middle) and renewable energy generation (right box) for a fossil
energy price of pF = 0.08.

4 Results

For the following numerical analysis, we use the parameter values summarized in
Table 1. Figure 2 shows the long-run optimal periodic solution for this parameter
value set which corresponds to the mixed case where both types of energy are
used. While the initial capital stock in winter is quite low, it increases and
peaks during summer due to investments to accumulate new or maintain already
existing capital. Note, that the peak is exactly where also the global radiation is
maximal and hence, the generation of renewable energy reaches a peak during
this time as well. The investments, however, start to decline again even before
this period because a further increase of the capital stock in autumn would not be
beneficial due to the declining radiation. Therefore, the capital stock decreases
again after the summer peak and renewable energy generation goes down. The
proportion of renewable energy in this scenario’s portfolio with only 0.6 % is
very low, but this comes from the fact that fossil energy with pF = 0.08 is really
cheap and hence high investments in renewable energy are simply too costly.

5 Sensitivity Analysis

As the previous scenario has shown, not much is invested in renewable energy
in case of a low fossil energy price. This aspect raises the question how the port-
folio composition will change if fossil energy gets more expensive. We therefore
investigate in this section the impact of the fossil energy price on the long-run
optimal portfolio solution by increasing the price step by step and then using
numerical continuation. Figure 3 shows the results for different values of pF . The
two boxes on the left hand side contain the time paths for investments IS(t) and
capital stock KS(t), respectively, while the box on the right hand side depicts the
composition of the energy portfolio with renewable energy shown as gray line,
fossil energy as black line and the energy demand as black dashed line. While for
a very low price (below pF = 0.06785) fossil energy is so cheap that the whole
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energy demand is covered with fossil energy, meaning that no investments are
done and, consequently, no capital is accumulated, renewable energy very soon
is used as additional energy source for the portfolio if the fossil energy price
increases (see Fig. 3a). Here, a very interesting aspect can be observed. Due to
the high global radiation in summer and the low fossil energy price, it is only
worthwhile to do investments in the first half of the year to increase renewable
energy capital (or to do some maintenance to have it in a good condition) in
order to optimally utilize this productive period. During the rest of the year,
however, investments are again set to zero as a high capital stock would not be
cost effective. The periodic solution for this scenario therefore consists of two
arcs, the first one with positive (black dashed line in Fig. 3a) and the second
one with zero investments (black line in Fig. 3a). Note that the contribution of
renewable energy to cover the demand still is very low and hence the line for fos-
sil energy and the energy demand basically coincide. The price interval for which
this kind of result can be seen is, however, very small, pF ∈ [0.06785, 0.06897].
For a higher fossil energy price, investments are done over the whole year but
still with a peak before summer, the generation of renewable energy increases
and the additional fossil energy amount during the summer period is reduced.
During the winter period, however, fossil energy still is required. Figure 3b shows
the long-run optimal solution for pF = 1.4, which completely corresponds to the
mixed case. At an even higher fossil energy price of pF = 2.1025, the renewable
energy generation is so high that it reaches the demand at the peak in summer.
This is a certain point of interest because here a switch to the complete renew-
able case happens. Being only an osculation point at the beginning, it develops
to an interval if the price goes further up. In this interval, which always is around
the maximum of global radiation, the energy demand can be fully covered with
renewable energy and no additional fossil energy is needed. Figure 3c shows this
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Fig. 3. Periodic solution for (a) pF = 0.068: two arcs given by the mixed solution as
dashed line and the fossil solution as solid line, (b) pF = 1.4: mixed solution over the
whole year, (c) pF = 2.7: two arcs given by the mixed solution as black solid line and
the renewable solution as gray solid line.
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scenario for a fossil energy price of pF = 2.7. The energy portfolio in the right
box shows that surpluses are generated during summer which are lost as no stor-
age possibilities exist. The periodic solution in this scenario again consists of two
arcs, the mixed solution arc (black line) and the renewable solution arc (gray
line). The interval in which renewable energy is sufficient to cover the energy
demand increases the further the fossil energy price goes up. However, it turns
out that this happens at a decreasing speed, and during winter fossil energy
still is necessary to cover the shortfalls, even if the fossil energy price is already
unreasonably high.

6 Conclusions

We have investigated in this paper the impact of the fossil energy price on the
optimal portfolio composition consisting of fossil and renewable (solar) energy
in a small country. We postulated that the supply of the renewable source is
seasonally varying, the energy demand is well known and constant over the year.

Sensitivity analysis with respect to the fossil energy price pF showed that a
higher fossil energy price indeed is an incentive for more investments in renew-
able energy capital. However, an autarkic solar energy supply is not possible.
While independence of fossil energy can be achieved during some time interval
in summer in which global radiation is high and even surpluses can be generated,
the shortfalls in winter always have to be covered with fossil energy no matter
how high the fossil energy price is.

These results underline that the non-constant supply is one of the major
challenges of renewable energy generation. This not only concerns solar energy
but also other types of renewable energy like wind and water. Hence, probably
a combined portfolio of several types of renewable energy could compensate for
the fluctuations of each other and enable a more or less constant supply. Such a
portfolio is exactly what we want to study in some model extension in the near
future. In addition, also the effect of learning by doing on investment costs and
efficiency as well as a time-dependent energy demand will be a special matter of
interest.

References
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Abstract. The paper presents an optimality condition for a distributed
optimal control problem arising in economics, where the (one-dimen-
sional) spatial domain can be influenced by the control. The result enables
analytical and numerical investigation of a class of endogenous growth
models with investment-dependent technological frontier and heteroge-
neous capital stock.

1 Introduction

One direction in which the theory of endogenous economic growth develops dur-
ing the past few years is to take into account the heterogeneity of economic fac-
tors, such as productivity, emission levels, consumer preferences, etc., see e.g. [4].
Typically, this requires involvement of specific distributed optimal control mod-
els, where the spatial domain changes in accordance with the applied investment
policy, viewed as a control variable. A general class of such models was intro-
duced in [3], where additional motivations and references are given.1 However,
the optimality conditions obtained therein are not of Pontryagin’s type and are
not informative enough to provide a ground for analytic or numerical treatment,
unless the optimal control satisfies a certain regularity condition. The regularity
is not implied by the optimality conditions and turns out to be difficult to ensure
a priori. The main goal of the present paper is to verify the required regularity
condition for a specific model of endogenous economic growth and to obtain con-
structive optimality conditions of Pontryagin’s type for this model. The result
justifies the case study in [3] and opens the door for numerical approaches and
further economic analyses.
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Section 2 gives a precise formulation of the problem. The regularity of the
optimal control is proved in Sect. 3, then the Pontryagin’s optimality conditions
are presented in Sect. 4.

2 Formulation of the Problem and Preliminaries

Here we formulate a particular case, arising in economic growth theory, of the
general problem considered in [3]. Let [0, T ] be a fixed time-interval and let [0, Q̄]
be where the “parameter of heterogeneity”, q, takes values (T > 0 and Q̄ > 0
are given). Denote D = [0, T ] × [0, Q̄]. The state variables are

x : D ∇∈ R1, Q : [0, T ] ∇∈ [0, Q̄], y : [0, T ] ∇∈ R1,

while u : D ∇∈ [u, u] ⊂ R1 is a control function, u > 0, u > 0, being given. For
a given Q : [0, T ] ∇∈ [0, Q̄] we denote DQ := {(t, q) → D : t → [0, T ], q →
[0, Q(t)]}. The set of admissible controls is U = {u → L∗(D) : u(t, q) →
[u, u] for a.e. (t, q) → D}. The optimal control problem we consider is:

max
u→U

∫ T

0

e−rt

∫ Q(t)

0

(
L(q,Q(t), x(t, q), y(t)) − c(u(t, q))

⎧
dq dt, (1)

subject to the equations

Q̇(t) = g(t,Q(t))y(t), t → [0, T ], Q(0) = Q0, (2)

y(t) =
∫ Q(t)

0

d(t, q)u(t, q) dq, t → [0, T ], (3)

ẋ(t, q) = −δx(t, q) + u(t, q), (t, q) → DQ (4)

x(0, q) = x0(q), q → [0, Q0], (5)

x(t,Q(t)) = xb(t), t → (0, T ]. (6)

The interpretation is: At time t diverse goods, indexed by q → [0, Q(t)], are
produced using physical capital stock x(t, q). The capital depreciates with rate
δ and is replenished by investment, u(t, q). Part of the investment (y(t)) leads
to the invention of new products, thus increasing the amount of goods, Q(t).
The discounted profit is the aggregated revenue L(q, x,Q, y) minus the cost of
investment, c(u).
Standing Assumptions.

(i) L and g are differentiable in (Q,x, y), with Lipschitz partial derivatives,
uniformly with respect to (t, q) → D; L, Lx and d are continuous with respect
to q uniformly in the rest of the variables; g and d are measurable in t, g is
locally essentially bounded; L is concave in (x, y) and c is strongly convex
and twice continuously differentiable on an open set containing [u, u]; xb :
[0, T ] ∇∈ R1 is continuously differentiable, x0 : [0, Q0] ∇∈ R1 is continuous;
r > 0, δ > 0 and Q0 → (0, Q̄) are given numbers.
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(ii) There exist g ∞ g > 0 such that g ⊃ g(t,Q) ⊃ g for a.e. (t, q) → D.
(iii) There exist d ∞ d > 0 such that d ⊃ d(t, q) ⊃ d for a.e. (t, q) → D.
(iv) For every u → U a solution Q[u] of (2) exists on the whole interval [0, T ]

and takes values in [Q0, Q̄].

Since in the following equation the right-hand side is locally Lipschitz in Q:

Q̇(t) = g(t,Q(t))
∫ Q(t)

0

d(t, q)u(t, q) dq,

Q[u] is unique. Given u → U , we define for q → [0, Q̄]

θ[u](q) =

⎪⎨
⎡

0 if q → [0, Q0],
Q[u]−1(q) if q → (Q0, Q[u](T )),

T if q → [Q[u](T ), Q̄].
(7)

The definition is correct, since Q[u] is invertible according to Standing
Assumptions (ii) and (iii) and its image is [Q0, Q[u](T )].

We extend the definition of x0(q) to [Q0, Q̄] by defining x0(q) := xb(θ[u](q)).
Then, given Q(·) = Q[u](·) with u → U , we define the solution x of (4)–(6) as a
measurable and bounded function such that for a.e. q → [0, Q[u](T )] the function
x(·, q) is absolutely continuous on [θ[u](q), T ] and satisfies

ẋ(t, q) = −δx(t, q) + u(t, q), t → [θ[u](q), T ], (8)

x(θ[u](q), q) = x0(q). (9)

(We denote by ẋ the derivative of x with respect to t.) Thus (8)–(9) is a family
of ODEs (one for each q → [0, Q[u](T )]), where the functions y = y[u], Q = Q[u]
and θ = θ[u] are already defined in (2), (3) and (7) as described above.

The existence and uniqueness of optimal controls is a non-trivial issue and will
be considered in a follow-up paper. Below we assume that an optimal control
exists.

3 Regularity of the Optimal Control

It was shown in [3, Theorem 2] that Pontryagin’s type optimality conditions are
valid for any optimal control û of problem (1)–(6) under a “regularity condition”,
namely, that for almost every t the function û(t, ·) is continuous from the left at
q = Q(t). The next proposition implies the required regularity of any optimal û.

Proposition 1. Any optimal control û(t, q) of problem (1)–(6) is continuous in
q for a.e. t → [0, T ].
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Let (Q̂, x̂, ŷ, û) be a solution of problem (1)–(6). Before proving the proposi-
tion we introduce the following auxiliary problem for u → U and x:

max
u→U

∫ T

0

e−rt

∫ Q̂(t)

0

(
L(q, Q̂(t), x(t, q), ŷ(t)) − c(u(t, q))

⎧
dq dt (10)

subject to

ẋ(t, q) = − δx(t, q) + u(t, q), (t, q) → DQ̂ (11)

x(θ(q), q) = x0(q), q → [0, Q̂[u](T )], (12)

ŷ(t) =
∫ Q̂(t)

0

d(t, q)u(t, q) dq, t → [0, T ], (13)

u ⊃ u(t, q) ⊃ u, (t, q) → D. (14)

This is a reduced form of the original problem, with Q̂ and ŷ fixed. The meaning
of the solution of (11), (12) is the same as of (8), (9). Due to assumption (i),
(x̂, û) is the unique solution of this problem.

We introduce the following notational convention: dependencies on values
fixed at the optimal trajectory are suppressed. For example L(q, x(t, q)) :=
L(q, Q̂(t), x(t, q), ŷ(t)).

For each q → [0, Q̂(T )], let λ̂(·, q), be the unique solution of the following
equation on [θ̂(q), T ]:

˙̂
λ(t, q) = δλ̂(t, q) − e−rtLx(q), λ(T, q) = 0. (15)

Lemma 1. Let û be an optimal control of problem (10)–(14) and let λ̂ be the
solution to (15). Then for almost every t → [0, T ] the function û(t, ·) maximizes

∫ Q̂(t)

0

[λ̂(t, q)u(q) − e−rtc(u(q))] dq (16)

over the set of u(·) → L∗([0, Q̂(t)]) satisfying

∫ Q̂(t)

0

d(t, q)u(q) dq = ŷ(t), u ⊃ u(q) ⊃ u for a.e. q → [0, Q̂(t)]. (17)

Proof. Let û(t, q) be an optimal control and u(t, q) be any other control satisfying
(13)–(14). Denote by x̂(t, q) and x(t, q) the corresponding trajectories. Further,
define Δu(t, q) := u(t, q) − û(t, q), Δx(t, q) := x(t, q) − x̂(t, q) and ΔJ := J(u) −
J(û). Routine calculations lead to

ΔJ =
∫ T

0

e−rt

∫ Q̂(t)

0

[≥Lx(q),Δx(t, q)≤ − c(u(t, q)) + c(û(t, q))] dq dt + e(Δu),
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where

e(Δu) :=
∫ T

0

e−rt

∫ Q̂(t)

0

≥Lx(q, x̂(t, q) + s(t, q)Δx(t, q)) − Lx(q),Δx(t, q)≤ dq dt

and for some constant M

|e(Δu)| ⊃ M meas ({t → [0, T ] : u(t, ·) ≡= û(t, ·)})2 . (18)

The optimality of û implies ΔJ ⊃ 0. Then standard calculations yield

∫ T

0

∫ Q̂(t)

0

[λ̂(t, q)(û(t, q) − u(t, q))−e−rt(c(û(t, q)) − c(u(t, q)))] dq dt ∞ e(Δu).(19)

Assume that the assertion of the lemma is not true. Then there exists a subset
A ⊂ [0, T ] with positive measure, ut → L∗(0, Q̂(t)), for every t → A and an ε > 0
such that

∫ Q̂(t)

0

[λ̂(t, q)(ut(q) − û(t, q)) − e−rt(c(ut(q)) − c(û(t, q)))] dq ∞ ε. (20)

The function ut can be chosen in such a way that u(t, q) := ut(q) is measurable
in (t, q). The proof of this fact is based on [2, Theorem 8.2.9], but we omit the
details due to space restrictions.

Now choose m big enough such that M
m < ε and 1

m < meas(A), then choose
a subset Am of A with meas(Am) = 1

m and define

um(t, q) =
⎢

ut(q) if t → Am

û(t, q) if t → [0, T ]\Am

The so defined control um is admissible because û and ut are measurable and
satisfy (13)–(14). It differs only on a set of measure 1/m from the optimal control
and therefore, using (18), |e(Δum)| ⊃ Mm−2.

Using (20) and the definition of Am and um, it follows that

∫
Am

∫ Q̂(t)

0

[λ̂(t, q)û(t, q) − e−rtc(û(t, q))] dq dt +
ε

m

⊃
∫
Am

∫ Q̂(t)

0

[λ̂(t, q)um(t, q) − e−rtc(um(t, q))] dq dt

<

∫
Am

∫ Q̂(t)

0

[λ̂(t, q)û(t, q) − e−rtc(û(t, q))] dq dt +
ε

m
,

where the second inequality comes from (19), the choice of m and the estimation
for e(Δum). This contradiction completes the proof.
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Lemma 2. Let λ̂ be the solution of (15). The function

U(t, q, λ, ξ) :=

⎪⎨
⎡

u if ert(λ − ξ d(t, q)) < c∞(u)
(c∞)−1(ert(λ − ξ d(t, q))) if c∞(u) ⊃ ert(λ − ξ d(t, q)) ⊃ c∞(u)
u if ert(λ − ξ d(t, q)) > c∞(u)

(21)

is Lipschitz in λ, and there exists a measurable function ξ̂(t), t → [0, T ], such that
the optimal control û(t, q) of problem (1)–(6) fulfills û(t, q) = U(t, q, λ̂(t, q), ξ̂(t)).

Proof. Obviously (c∞)−1(ert(λ−ξd(t, q))) is the unique maximizer of the function
u ∈ λu−e−rtc(u)−ξd(t, q), which is Lipschitz continuous with respect to λ due
to the strong convexity of c. On the other hand, U(t, q, λ, ξ) is the projection of
(c∞)−1(ert(λ − ξd(t, q))) on [u, u], therefore it is also Lipschitz continuous in λ.

According to Lemma 1, for almost every t → [0, T ] the optimal control û(t, ·)
maximizes (16) subject to (17). Then for a.e. t there exists a Lagrange multiplier
ξt (see e.g. the theorem in Sect. 4.2 in [1]) such that û(t, q) maximizes in w

λ̂(t, q)w − e−rtc(w) − ξtd(t, q)w

subject to u ⊃ w ⊃ u. In other words, û(t, q) = U(t, q, λ̂(t, q), ξt). Then, due to
(17) we have that ξt for each t → [0, T ] belongs to the set

G(t) :=

⎣
ξ → R :

∫ Q̂(t)

0

d(t, q)U(t, q, λ̂(t, q), ξ) dq − ŷ(t) = 0

⎤
,

therefore G(t) is non-empty. Since ŷ(t) is measurable, from [2, Proposition 8.2.9],
it follows that G(t) is measurable, therefore it has a measurable selection, ξ̂(t).
We shall prove that U(t, q, λ̂(t, q), ξ̂(t)) = U(t, q, λ̂(t, q), ξt) on DQ̂, which implies
that U(t, q, λ̂(t, q), ξ̂(t)) = û(t, q) on DQ̂ and finalizes the proof.

From the definition of G we have
∫ Q̂(t)

0

d(t, q)U(t, q, λ̂(t, q), ξ̂(t)) dq =
∫ Q̂(t)

0

d(t, q)U(t, q, λ̂(t, q), ξt) dq. (22)

for t → [0, T ]. Obviously U(t, q, λ̂(t, q), ·) is monotone decreasing in ξ. Therefore,
if for some t an inequality

U(t, q, λ̂(t, q), ξ̂(t)) < (>) U(t, q, λ̂(t, q), ξ̂t)

holds on a subset of [0, Q̂(t)] of positive measure, then ξ̂(t) > (<)ξt, Since
d(t, q) > 0, we obtain a contradiction with (22). The proof is complete.

Proof of Proposition 1. Let λ̂(t, q) be the solution of (15). Lemma 2 implies
û(t, q) = U(t, q, λ̂(t, q), ξ̂(t)), with U and ξ̂(t) being defined as in the Lemma.
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Let us consider the following boundary value problem:

ẋ(t, q) = −δx(t, q) + U(t, q, λ(t, q), ξ̂(t)), x(θ̂(q), q) = x0(q) (23)

λ̇(t, q) = δλ(t, q) − e−rtLx(t, q, x(t, q)), λ(T, q) = 0. (24)

Obviously (x̂, λ̂) is a solution of this system. Our goal below will be to prove
that it is the only solution and that it depends continuously on q, hence also û
depends continuously on q.

Consider the initial value problem (23)–(24) with λ(θ̂(q), q) = p instead of
the end point condition for λ. Due to the standing assumptions and Lemma 2,
the right-hand side of the differential system in (23), (24) is Lipschitz continu-
ous in (λ, x). Then for every q the initial value problem has a unique solution
(x(t, q; p), λ(t, q; p)) on [θ̂(q), T ]. Let us fix q and suppress it, as well as ξ̂(t), in
the notations below.

To prove uniqueness of the solution of (23)–(24), assume that there are two
solutions, (x1, λ1) and (x2, λ2). If λ1(θ̂) = λ2(θ̂), then both solutions coincide
with (x(t; p), λ(t; p)) for p = λ1(θ̂). Therefore, let us assume that λ2(θ̂)−λ1(θ̂) >

ε for some ε > 0. Let τ be the maximal number in [θ̂, T ] such that λ2(t)−λ1(t) ∞
ε for all t → [θ̂, τ ]. Using that the function λ ∇∈ U(t, λ) is non-decreasing due to
its definition in (21) and the convexity of c, we obtain that for t → [θ̂, τ ]

ẋ2(t) − ẋ1(t) = −δ(x2(t) − x1(t)) + U(t, λ2(t)) − U(t, λ1(t)) ∞ −δ(x2(t) − x1(t)).

Since x1(θ̂) = x2(θ̂), the above inequality implies x2(t) − x1(t) ∞ 0 for all t →
[θ̂, τ ]. Using the last inequality and the fact that the function x ∇∈ Lx(t, x) is
non-increasing due to the concavity of L, we obtain

λ̇2(t) − λ̇1(t) = δ(λ2(t) − λ1(t)) − e−rt (Lx(x2(t)) − Lx(x1(t)))

∞ δ(λ2(t) − λ1(t)) ∞ 0, t → [θ̂, τ ],

which implies λ2(τ) − λ1(τ) > ε. This means that τ = T and, in particular,
λ2(T )−λ1(T ) ∞ ε. This contradicts the boundary condition in (24), and implies
that the solution of (23), (24) is unique (namely, (x̂(·, q), λ̂(·, q))).

Next, we shall prove the continuity of λ̂ with respect to q. Due to the bound-
edness of û it is easy to verify that there is a compact interval P ⊂ R containing
all values λ̂(θ̂(q), q), q → [0, Q̂(T )]. Let us prove the following property (P):
for every ε > 0 there exists δ > 0 such that for any q1, q2 → [0, Q̂(T )] and
p1, p2 → P satisfying |q1 − q2| < δ and λ(T, q1; p1) = λ(T, q2; p2) = 0, it holds
that |p1 − p2| ⊃ ε.

According to the continuous dependence of the solution of an ODE with
Lipschitz continuous right-hand side with respect to initial data and parameter
(see e.g. [5, Theorem 2], where the required continuity in t is not necessary.) the
mapping [0, Q̂(T )] ×R ∅ (q, p) ∈ λ(·, q; p) → C([θ̂(q), T ]) is continuous, hence it
is uniformly continuous on [0, Q̂(T )] × P .

Assume that property (P) does not hold. Then there exists ε > 0 such that for
every δ > 0 there exist q1, q2 → [0, Q̂(T )] and p1, p2 → P such that |q1 − q2| < δ,
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λ(T, q1; p1) = λ(T, q2; p2) = 0, and p2 − p1 > ε. Due to the (uniform) continuous
dependence we may choose δ > 0 so small that

|λ(T, q2; p2) − λ(T, q1; p2)| ⊃ ε/2.

We have

λ(θ̂(q1), q1; p2)−λ(θ̂(q1), q1; p1) = p2−p1 ∞ ε, x(θ̂(q1), q1; p2) = x(θ̂(q1), q1; p1).

Then we can prove in exactly the same way as a few paragraphs above that
λ(t, q1; p2) − λ(t, q1; p1) ∞ ε for all t → [θ̂(q1), T ]. Hence

λ(T, q2; p2) − λ(T, q1; p1) ∞ λ(T, q1; p2) − λ(T, q1; p1) − ε/2 ∞ ε/2.

This contradicts the equality λ(T, q1; p1) = λ(T, q2; p2) and proves property (P).
Applying property (P) for pi = λ̂(θ̂(qi), qi), i = 1, 2, we obtain that for

every ε > 0 there exists δ > 0 such that |q1 − q2| < δ implies |λ̂(θ̂(q1), q1) −
λ̂(θ̂(q2), q2)| < ε. Then using again the continuous dependence of the solution of
ODEs we conclude that q ∇∈ λ̂(·, q) is continuous. From the equality û(t, q) =
U(t, q, λ̂(t, q), ξ̂(t)) and the continuity of d(t, ·) we obtain the desired continuity
of û(t, ·). Q.E.D.

4 Pontryagin Maximum Principle

Theorem 2 in [3] claims that under the continuity of the optimal control û with
respect to q (proved in Proposition 1) Pontryagin type optimality conditions
hold. Below we formulate these conditions for the particular problem consid-
ered in the present paper. We use the so-called current-value adjoint variables
and current-value Hamiltonian, which differ from the ones used above by a
multiplier ert.

Let us introduce the following adjoint system for the variables (λ(t, q), μ(t),
ν(t)), where the meaning of the solution is as that of (4)–(6) in inverse time:

λ̇(t, q) = (δ + r)λ(t, q) − Lx(q) for a.e. (t, q) → DQ̂, λ(T, q) = 0 on [0, Q̄] (25)

μ̇(t) = μ(t)
(

− g
Q
(t) y(t) + r

⎧
− L(Q̂(t)) + c(u(t, Q̂(t))) (26)

− λ(t, Q̂(t))[−δxb(t) − ẋb(t) + u(t, Q̂(t))] − ν(t)d(t, Q̂(t))u(t, Q̂(t))

−
∫ Q̂(t)

0

L
Q
(q) dq for a.e. t → [0, T ], μ(T ) = 0,

ν(t) = μ(t) g(t) +
∫ Q̂(t)

0

Ly(q) dq. (27)

Define H : D × R × [0, Q̄] × R × [u, u] × R × R × R ∇∈ R as

H(t, q, x,Q, y, u, λ, μ, ν) = L(q, x,Q, y) − c(u) + λ(−δx + u) (28)
+μ g(t,Q) y + ν d(t, q)u.
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Theorem 1. Let û → L∗(D) be an optimal control for the problem (1)–(6) and
denote by ẑ := (x̂, Q̂, ŷ) the corresponding trajectory. Then the adjoint system
(25)–(27) has a unique solution π̂ := (λ̂, μ̂, ν̂) and for a.e. (t, q) → DQ̂ it holds
that

H(t, q, ẑ(t, q), û(t, q), π̂(t, q)) = max
u→[u,u]

H(t, q, ẑ(t, q), u, π̂(t, q)).

The maximization condition in the theorem means that knowing the adjoint
function λ̂ one can obtain the optimal control û by solving for (t, q) → DQ̂(·)

max
u→[u,u]

⎥
−c(u) + [λ̂(t, q) + ν̂(t) d(t, q)]u

⎦
.
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Abstract. The problem of approaching a target set in the phase state
space by controlled system at the fixed time moment is under considera-
tion. Algorithm for solving this problem is described in the paper. This
method is based on weak invariance property of problem solvability sets.

1 Introduction

In this paper the problem of approaching a compact target set in the Euclidean
space by controlled system at the fixed time moment is under consideration.
The method used for solving this problem is based on the weakly invariance
property of approaching problem solvability sets [1–5] and constructions with a
guide [3,5]. Here the guide is a finite set of points in a phase state space which
unfolds along the time and arrives to the target set at the fixed time moment.
The subject of this paper is closely connected with results provided in [6–15].

2 Problem Formulation

We consider a controlled system

dx

dt
= f(t, x, u), x ∇ R

n, u ∇ P ; (1)

on an interval [t0, ϑ], t0 < ϑ < ∈; here P is a compactum in the Euclidean space
R

p.
The right-hand side of the system (1) satisfies the assumptions

Assumption A.1. The vector function f(t, x, u) is defined and continuous in t,
x, u and for any bounded and closed domain D ⊂ [t0, ϑ]×R

n there exists a number
L = L(D) ∇ [0,∈) such that →f(t, x(1), u) − f(t, x(2), u)→ � L→x(1) − x(2)→,
(t, x(i), u) ∇ D × P, i = 1, 2.

Assumption A.2. A number γ ∇ (0,∈) exists such that →f(t, x, u)→ � γ(1 +
→x→), (t, x, u) ∇ [t0, ϑ] × R

n × P .

I. Lirkov et al. (Eds.): LSSC 2013, LNCS 8353, pp. 152–158, 2014.
DOI: 10.1007/978-3-662-43880-0 16, c≥ Springer-Verlag Berlin Heidelberg 2014
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Here → · → is the norm in R
n.

Together with system (1), the following differential inclusion is considered:

dx

dt
∇ F (t, x) = co{f(t, x, u) : u ∇ P}. (2)

Let t0 � t∗ � t∗ � ϑ and X∗ ⊂ R
n. We will consider motions x(t) of system

(1) generated by the control u(t) on [t0, ϑ]. The motions x(t) of inclusion (2) on
[t0, ϑ] will also be considered.

Definition 1. The attainability set X(t∗, t∗, x∗) (Y (t∗, t∗, x∗)) of controlled sys-
tem (1) (differential inclusion (2)) is the set of all x∗ ∇ R

n such that x∗ = x(t∗)
for some motion x(t), x(t∗) = x∗ ∇ X∗ of system (1) (differential inclusion (2)).

Definition 2. The set X(t∗,X∗) (Y (t∗,X∗)) is called integral funnel of con-
trolled system (1) (differential inclusion (2)) of the sets
X(t∗,X∗) =

⋃
t∗→[t∗,ϑ]

(t∗,X(t∗, t∗,X∗)) (Y (t∗,X∗) =
⋃

t∗→[t∗,ϑ]

(t∗, Y (t∗, t∗,X∗))) on

[t∗, ϑ] × R
n; here (t∗,X∗) =

{
(t∗, x∗) : x∗ ∇ X∗⎧.

We give definitions of invariant and weak invariant sets with respect to con-
trolled system (1) (differential inclusion (2)).

Let Φ be a nonempty closed set in [t0, ϑ] × R
n.

Definition 3. A set Φ is called invariant with respect to system (1) (inclusion
(2)) if for any (t∗, x∗) ∇ Φ and t∗ ∇ [t0, ϑ] one has X(t∗, x∗) ⊂ Φ (Y (t∗, x∗) ⊂ Φ).

Definition 4. A set Φ is called weakly invariant with respect to system (1)
(inclusion (2)) if for any (t∗, x∗) ∇ Φ there exists a solution x(t), x(t∗) = x∗
of system (1) (inclusion (2)) on [t∗, ϑ] that satisfies the inclusion (t, x(t)) ∇ Φ,
t ∇ [t∗, ϑ].

Question about (exact) calculation of attainability sets and integral funnels
or their effective analytical description often arises. At the same time the deter-
mination of analytical description can be an overwhelming affair. Therefore the
task of approximate calculation of attainability sets is especially relevant. There
exist number of methods and approaches aimed at effective solving the prob-
lem of approximate calculation of the attainability sets [5–15]. These methods
can be used for solving the control problems and, in particular, for solving the
approaching of a target set problem.

3 Particular Case of Solution for Problem of Approaching
a Compactum in R

n by System (1)

We formulate a problem of approaching a compact target set in the space R
n

by system (1) at the time moment ϑ. We will discuss method of solving this
problem based on employing weakly invariant sets.

Let M be a compactum in R
n, and x0 ∇ R

n.
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Problem 1. Find an admissible control u∗(t) on [t0, ϑ], that generates a motion
x∗(t), x∗(t0) = x0 of system (1) on the interval [t0, ϑ], such that x∗(ϑ) ∇ M .

There exist points x0 ∇ R
n for which problem 1 is not solvable. Moreover for

some x0 ∇ R
n it may be that M

⎪
X(ϑ, t0, x0) ∞= ∅ and M

⎪
Y (ϑ, t0, x0) ∞= ∅.

In this situation there is no control u∗(t) solving the problem 1 but there is
control u∗(t) on [t0, ϑ] that solves a problem of approaching of system (1) with
preassigned ε-neighborhood Mε of the set M .

Taking into account this circumstance we will formulate a problem of
approaching a set M by system (1) as the problem of finding an admissible
control u∗(t) on [t0, ϑ] that brings motion x∗(t) of system (1) into a preassigned
ε-neighborhood Mε (i.e. x∗(ϑ) ∇ Mε).

Let us assume that initial position (t0, x0), initial set M and a moment ϑ are
such that M∗ = M

⎪
Y (ϑ, t0, x0) ∞= ∅.

We associate the direct time interval t ∇ [t0, ϑ] with the reverse time interval
τ ∇ [t0, ϑ] : τ = t0 + ϑ − t. We also associate differential inclusion (2) with a
differential inclusion

dz

dτ
= F 0(τ, z), τ ∇ [t0, ϑ]; (3)

here F 0(τ, z) = co{f0(τ, z, v) : v ∇ P}, f0(τ, z, v) = −f(t0+ϑ−τ, z, v), (τ, z, v) ∇
[t0, ϑ] × R

n × P .
Motions of differential inclusions (2) and (3) are dual, i.e. any movement

x(t) of differential inclusion (2) may be associated with the movement z(τ) of
differential inclusion (3) in such way: z(τ) = x(t), τ = t0 + ϑ − t, t ∇ [t0, ϑ].

We associate integral funnel Z = Z(t0,M) of inclusion (3) with a set W ∇ D
by the formula W (t) = Z(τ), t = t0 + ϑ − τ, τ ∇ [t∗, ϑ].

The closed set W is the solvability set for inclusion (2) in problem of
approaching the set M by the inclusion movements at time moment ϑ.

The set W is weakly invariant with respect to inclusion (2) and (t0, x0) ∇ W .
Let us use the weak invariance property of W in the construction of control
u∗(t) on [t∗, ϑ] that brings movement of system (1) from x0 into the preassigned
ε-neighborhood Mε of the set M .

Let us describe step-by-step control procedure with a guide. This procedure
implements control u∗(t) on [t∗, ϑ].

On the axis t (on the axis τ) consider a finite mesh Γ = {t0, t1, . . . , tj , . . . ,
tN = ϑ} (Γ = {τ0 = t0, τ1, . . . , τi, . . . , τN = ϑ}) with equal steps Δi = ti+1−ti =
Δ > 0.

Assume that we can calculate the sets W (tj) = Z(τi), i = 0 − N, and they are
already calculated (precisely). But we can calculate Y (tj+1, tj , x

(j)), x(j) ∇ R
n

only approximately as

Ỹ (tj+1, tj , x
(j)) = x(j) + ΔF (tj , x(j));

here x(j) + ΔF (tj , x(j)) = {x(j) + Δf : f ∇ F (tj , x(j))}.
Under these assumptions let us begin the description of a step-by-step pro-

cedure for control with the guide.
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Assume that we have started at the time moment t0 from a point x0 ∇ W (t0)
and have implemented construction of movement x∗(t) of system (1) using step-
by-step control procedure with the guide up to the time moment tj ∇ Γ, tj < ϑ.

Suppose that at the time moment tj the system (1) is located at the point
x∗(tj). Also there are a guide’s point x̃(j) that corresponds to the time moment
tj and point x(j) on W (tj) nearest to x̃(j).

The function ω∗(ρ) > 0, ρ ∇ (0,∈) (ω∗(ρ) ⊃ 0 as ρ ⊃ 0) such that

d
⎨
F (t∗, x∗), F (t∗, x∗)

⎡ ≥ ω∗(|t∗−t∗|+→x∗−x∗→) as (t∗, x∗) and (t∗, x∗) from D∗
(4)

is used in considerations of paper [7].
Since W is weakly invariant with respect to inclusion (2) and taking into

account the inclusion x(j) ∇ W (tj) and inequality (4) we have

W (tj+1)ω(Δ)

⎢
Ỹ (tj+1, tj , x

(j)) ∞= ∅,

from which it follows that there exists a vector f (j) ∇ F (tj , x(j)) such that
x(j+1) = x(j) + Δf (j) ∇ W (tj+1)ω(Δ).

The relation holds

f (j) =
n+1⎣
k=1

αkf(tj , x(j), u(k)), (5)

where αk � 0, u(k) ∇ P for k = 1, n + 1,
n+1⎤
k=1

αk = 1.

The vector f (j) ∇ F (tj , x(j)) can be calculated according to the following
scheme:

1. Find the set W (tj+1)ω(Δ)

⎪
Ỹ (tj+1, tj , x

(j));
2. Choose a point x̃(j) ∇ W (tj+1)ω(Δ)

⎪
Ỹ (tj+1, tj , x

(j));
3. Calculate the vector f (j) according to formula

f (j) = Δ−1(x̃(j+1) − x(j)). (6)

For a given f (j) (6), we can consider (5) as an equation with respect to
αk, u(k), k = 1, n + 1, which satisfy also the conditions (αk � 0, u(k) ∇ P for

k = 1, n + 1 and
n+1⎤
k=1

αk = 1).

We suppose that we can solve equation (5) approximately, that is, we have

found βk, v(k), k = 1, n + 1 (βk � 0, v(k) ∇ P, k = 1, n + 1 and
n+1⎤
k=1

βk = 1) so

f̃ (j) =
n+1⎣
k=1

βkf(tj , x(j), v(k)), →f̃ (j) − f (j)→ � æ(j), (7)

where æ(j) = ω∗((1 + K)Δ).
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We introduce the numbers Δk = βkΔ, k = 1, n + 1 and a mesh Γ (j) =
{t

(j)
1 = tj , t

(j)
2 , . . . , t

(j)
k , t

(j)
k+1, . . . , t

(j)
n+1, t

(j)
n+2 = tj+1} in the segment [tj , tj+1];

here t
(j)
k+1 = t

(j)
k + Δk, k = 1, n + 1.

Consider also a control u∗(t), t ∇ [tj , tj+1), that is constant on the segments
[t(j)k , t

(j)
k+1) of the mesh Γ (j)

u∗(t) = v(k) for t ∇ [t(j)k , t
(j)
k+1), k = 1, n + 1. (8)

Let x∗(t0) = x(0) = x0 and we introduce the notation ρj = →x∗(tj) − x(j)→,
j = 0, N so that ρ0 = 0 holds.

The recurrent estimate holds

ρj+1 � eLΔρj + 3ω(Δ), j = 0, N − 1; (9)

here ω(Δ) = Δω∗((1 + K)Δ), Δ ∇ (0,∈).
We derive from (9)

ρ(x∗(ϑ),M) � ρN � 3eL(ϑ−t0)(ϑ − t0)ω∗((1 + K)Δ). (10)

Theorem takes place
Theorem. Let system (1) satisfies assumptions A.1, A.2 and problem 1 be solv-
able from the initial position (t0, x0) of system (1). Then for any ε > 0, one
can find a finite uniform mesh Γ on the segment [t0, ϑ] and an admissible finite-
constant control u∗(t) on [t0, ϑ] corresponding to the mesh Γ such that the motion
x∗(t), x∗(t0) = x0 of system (1) generated by this control satisfies the relation
x∗(ϑ) ∇ Mε.

4 Example: Inverted Pendulum System

We consider inverted pendulum fixed on a train. The train can move backward
and forward on a horizontal plane (Fig. 1).

Fig. 1. Inverted pendulum fixed on the train
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Fig. 2. Control u∗(t)

The train is affected by traction force
−≤
F . The pendulum is affected by grav-

itation −−≤mg applied at the pendulum center of gravity. Also horizontal force
−≤
H

and vertical force
−≤
V , which are the forces of reaction, affect the pendulum.

m — mass of the pendulum g — gravitational constant. L — distance between
pendulum center of gravity and support point, y — support point offset, ϑ —
pendulum angle, I — moment of inertia in relation to center of gravity, M —
mass of the train, k — friction coefficient.

Let us introduce variables x1 = ϑ, x2 = ϑ̇, y1 = y, y2 = ẏ. Using these
variables we can write down the system of equations⎥⎦⎦⎦⎦⎞
⎦⎦⎦⎦⎟

ẋ1 = x2

ẋ2 = − 1
Δ(x1)

{(m + M)mgL sin x1 − mL cos x1(F + mLx2
2 − ky2)}

ẏ1 = y2
ẏ2 = − 1

Δ(x1)
{−mL cos x1mgL sin x1 + (I + mL2)(F + mLx2

2 sin x1 − ky2}

here Δ(x1) = (I + mL2)(m + M) − m2L2 cos x1.
For this mechanical system u = F is a control.

Let X =

⎠


x1

x2

x3

x4


 — be the phase state vector of the system.

Example 1. We have interval [0;T ] = [0; 3], start point x0 =

⎠


1.582
2.006

−0.469
−0.403


 and

finish point xf =

⎠


0
0
1
0


 , which is a target set M . It is necessary to construct

admissible control u∗(t) that brings motion x∗(t) of the system to x∗(T ) = xf .

The solution of this problem is based on the scheme from 3. According to
this scheme time interval partition Γ = {t0 = 0, t1, . . . , tj , . . . , tN = ϑ = 3} with
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diameter Δ = 0.01 (N = 300) is introduced . Approximation sets {Wa(tj) :
j = 0, N} are constructed in the reverse time. The initial single-point set is
Wa(tN ) = M = {xf}. Using these sets piecewise constant admissible control is
calculated (Fig. 2).
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Abstract. Developing image reconstruction algorithms for diagnostic
medical devices requires physically accurate and effective simulation
tools. In this paper we present a hybrid Monte Carlo (MC) particle
simulation method for Computed Tomography (CT) scanners. To meet
the performance requirements, we combine several variance reduction
techniques and tailor the algorithms for effective GPU execution. Vari-
ance reduction methods include main part separation, sample weighting,
reuse, forced collision, next event estimation and table driven impor-
tance sampling. We show that the resulting method can deliver accurate
simulations orders of magnitude faster than direct physical simulation.

Keywords: GPU · CT · Image reconstruction · Photon transport

1 Introduction

In medical imaging, the 3D density field is generated with the reconstruction
algorithm from the measured data acquired by the scanner. MC particle simu-
lation has various applications in the context of medical imaging. First, during
the development of new equipment and reconstruction algorithms, we need to
simulate the transport process to obtain controllable “measured data”. On the
other hand, iterative reconstruction schemes involve a transport simulation and
an update of the model, so MC simulation is a part of an iterative process.
Finally, MC simulation can also be used to estimate the radiation dose imposed
on the patient.

In Computer Tomography (CT) an X-ray source emits photons in a spectrum
of energy levels, i.e. frequencies. Photons are scattered and absorbed in the
examined object. Some of the emitted photons arrive at detectors, generating
hit events that are the input of the reconstruction algorithm.

From mathematical point of view, we need to solve a Fredholm type integral
equation. Along a ray of direction ω at point x the intensity I(x,ω, E) of particle

I. Lirkov et al. (Eds.): LSSC 2013, LNCS 8353, pp. 161–169, 2014.
DOI: 10.1007/978-3-662-43880-0 17, c≥ Springer-Verlag Berlin Heidelberg 2014
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flow at energy level E satisfies

ω · ∇I(x,ω, E) = −(σa(x, E) + σs(x, E))I(x,ω, E)

+
∫
Ω

I(x,ω∗, E∗)σs(x, E∗)P (ω∗ · ω, E∗)dω∗, (1)

where σa is the absorption cross section, σs = σc + σi is the scattering cross
section that can be further decomposed into coherent and incoherent scattering,
σt = σa + σs is the total cross section, Ω is the directional sphere, E∗ and E
are the incident and scattered photon energies, respectively, and P (ω∗ · ω, E∗) is
the phase function, i.e. the probability density of the scatter direction. Energy
level E∗ is unambiguously determined by the scattered energy E and the angle
between incident direction ω∗ and scattered direction ω. The boundary condition
is given by a point source at s of a known directional and spectral characteristic
Φ(ω, E), which is the source intensity on energy level E.

We are interested in the measured value of detectors, where each detector d
is associated with a measuring function Md(y, E) that is non-zero if point y is
on the surface Ad of the detector and can be a non-linear function of photon
energy E. Thus, we need to determine a large number of measured values

md =

Emax∫
Emin

∫
Ad

∫
Ω

Md(y, E)I(y,ω, E)dωdydE.

The most straightforward way is the direct simulation of physical effects,
i.e. following the life cycle of photons from the source to the detectors [2,3]. As
physical processes describing photon–matter interaction are inherently random,
MC simulation mimics the phenomena of real life, including coherent, incoherent
scatter and photoelectric absorption. To obtain an accurate enough CT simula-
tion in this way, we need about 1012 photons. The industry standard MC simu-
lators such as GATE or GEANT (http://geant4.cern.ch/), can only handle 106

particles per second on a desktop computer, which means that such simulations
may require supercomputers to get the results in reasonable time.

To attack this problem, we exploit the massively parallel architecture of
graphics cards (GPU), and get rid of the concept of direct physical simula-
tion to allow the application of different variance reduction techniques. GPUs
are designed to solve data parallel problems, therefore they have substantially
more processing cores then CPUs. These cores are grouped into Streaming Mul-
tiprocessors (SMX) which can be considered as SIMD processors, so each core
in one SMX executes the same instruction, but on different data. The Monte
Carlo simulation tracks the particles individually, so it can be distributed into
thousands of threads. On the other hand, the algorithm contains a lot of con-
ditional statements and this is not optimal for GPUs. The classic ray marching
algorithm is not only data parallel, but is free from conditional statements. The
idea is to combine these different approaches into one algorithm.

http://geant4.cern.ch/
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2 CT Simulation with the MC Method

In direct physical simulation, we generate photons from the X-ray source and
track them individually. A photon life cycle starts with sampling the initial
photon energy E and direction ω by mimicking the power spectrum of the source
Φ(ω, E). Then, simulation continues with a sequence of free path travel and
scattering steps, and finishes either with absorption in the phantom or in the
detector, or with recognizing that the photon has left the volume of interest.

Generating a single step of the random path involves the sampling of the
free path traveled by the photon before scattering, deciding whether scattering
or absorption happens, and finally sampling the new scattering direction. The
cumulative probability density of the free path length L along a ray of origin x
and direction ω is

P (L) = 1 − exp


⎧−

L∫
0

σt(x + ωl, E)dl

⎪
⎨.

Thus, sampling length L with this distribution means the solution of the follow-
ing sampling equation for L:

rnd = 1− exp


⎧−

L∫
0

σt(x + ωl, E)dl

⎪
⎨ =⇒ − log(1− rnd) =

L∫
0

σt(x+ωl, E)dl

(2)
where rnd is a random number uniformly distributed in the unit interval. One
option is ray marching that approximates the integral by a Riemann sum and
finds L = nΔl where a running sum exceeds − log(1 − rnd). The other popular
free sampling method is the Woodcock tracking [4,6] which advances in the media
with random length steps based on the maximum cross section σmax to get
tentative interaction points:

Lt =
− log(1 − rnd)

σmax
. (3)

Tentative interaction points are either accepted or rejected with probability
σt/σmax and 1 − σt/σmax. In case of rejection, and the same sampling step
is repeated from there. If the interaction point is accepted, then we identify
the type of interaction (absorption, coherent (aka Rayleigh) and incoherent (aka
Compton) scattering randomly proportionally to their cross sections.

In coherent scattering the photon keeps its original energy, and the Rayleigh
phase function is:

PRayleigh(ω) =
3

16π

⎡
1 + (ω∗ · ω)2

⎢
. (4)

In incoherent scattering, the energy of the scattered photon is determined by
the Compton law:

Ei(E,ω · ω∗) =
E

1 + E
mec2 (1 − ω · ω∗)

, (5)
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where Ei is the scattered energy, E is the incident energy, and mec
2 is the energy

of the electron, ω is the scatter direction, and ω∗ is the incident direction. The
phase function is given by the Klein-Nishina formula [7]:

PKN(ω) ∝ Ei(E,ω · ω∗) + E3
i (E,ω · ω∗) − E2

i (E,ω · ω∗)(1 − (ω · ω∗)2). (6)

To sample the scatter direction with these phase functions, we used the idea
of [5], and calculate the solution of the sampling equation for many random
numbers and energy levels and store the results in two dimensional texture in
the GPU memory. During simulation when the random number and the energy
are available, the random scattering angle can be obtained by a texture lookup.

If a photon leaves the bounding box of the measured object, no more interac-
tion will be calculated. If the ray intersects the detector, a measurement function
is evaluated to determine the weight of the sample.

We implemented this algorithm and examined two different CT setups: a
preclinical one used for small animal imaging (e.g.: pharmacy industry), and a
clinical CT for human diagnostics. We found that the scattering is negligible
for preclinical solutions, but it can be significant for the clinical case. Despite
multi-GPU implementation generating a series of images with a noise statistic
similar to a real acquisition took too much time, which can be explained with
several problems. The detectors in a CT occupy just a smaller solid angle, so
photons shot from the source do not necessarily hit them. This is true even for
unscattered photons and becomes crucial for scattered photons. This means that
a detector gets just small number of photons, and consequently the variance
of its detected value will be high. The efficiency, i.e. the fraction of non-zero
contribution samples is rather law. The second problem is that — similarly
to nature — all photons are simulated independently, which means that we
cannot reuse knowledge gathered when other photons are traced. For example,
the simulation starts with the identification of the energy level of the source
photon since material properties like cross sections depend on this value. Thus
the generated path of this photon will correspond to only this initial photon
energy, and when another photon of different energy is born, its path should be
generated from scratch.

3 Hybrid Simulation

In order to speed up the physically motivated MC algorithm and improve its
efficiency, our hybrid simulation uses different variance reduction techniques,
which are discussed in the following subsections.

3.1 Main Part Separation

A significant part of detected values comes from the contribution of direct, i.e.
unscattered photons. These direct photons travel along a linear path between
the source and the detector and the probability that an emitted photon remains
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to be direct, i.e. it is neither absorbed nor scattered, can be expressed by an
analytical formula:

mdirect
d =

Emax∫
Emin

∫
Ad

Md(y, E) exp


⎧−

y∫
s

σt(l, E)dl

⎪
⎨Φ(ωs→y, E)

cos θs→y

|s − y|2 dydE,

where ωs→y is the direction vector from source s to point y on the detector, and
θs→y is the angle between this direction and the surface normal of the detector.
The integral is calculated with ray-marching. After separating the direct contri-
bution, MC simulation needs to concentrate only on scattered contribution.

3.2 Forced Interaction

A photon flying not into the direction of the detectors or leaving the volume
of interest without scattering is a loss from the point of view of efficiency of
scattered contribution estimation. Our random sampler should guarantee that
no such photon is generated, while the correct expectation is maintained by
weighting. This modification keeps the sampling unbiased but the variance is
significantly reduced. Interaction can be enforced by the modification of the free
path sampling (Eq. 2). Knowing the initial position and direction of the photon,
the maximum length Lmax the photon can travel in the volume of interest can be
determined by simple geometric calculations. This maximum traveling distance
corresponds to a maximum random value rmax in Eq. 2:

rmax = 1 − exp


⎧−

Lmax∫
0

σt(x + ωl, E)dl

⎪
⎨

Random values that are greater than rmax correspond to samples where the
photon leaves the space without interaction. The probability of this is 1 − rmax.
So, efficiency can be increased to 100% by modifying the sampling equation to

rmax · rnd = 1 − exp


⎧−

L∫
0

σt(x + ωl, E)dl

⎪
⎨,

and weighting the contribution of each photon by rmax. If the photon is already
close to the boundary of the volume of interest, the weight of this method can
be close to zero. Such cases can be handled with next event estimation, which
means that a detector point is sampled and the sample point is deterministically
connected to the interaction point. If the detector area is Ad, then the probability
density of finding a single point y with uniform distribution is 1/Ad, thus the
probability density of direction ωx→y is

p(ωx→y) =
|x − y|2

Ad cos θx→y
.
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3.3 Absorption Handling with Weighting

When a photon interacts with the material, it can get absorbed with probability
σa/σt. In case of absorption, the sample gets lost. The efficiency can be improved
if absorption is not sampled but the photon is weighted with 1 − σa/σt at each
interaction.

3.4 Polychromatic Particles

For a polychromatic X-ray source we should sample the spectrum of the source
to obtain the initial energy of photons because cross sections and phase functions
depend on this energy. However, when a complex particle path is established,
it is worth reusing this path for other energy levels as well without starting
the simulation from scratch. The possibility of reuse is provided by that cross
sections can be factorized to a material dependent but energy independent factor
and a material independent but energy dependent factor:

σ(x, E) = σ(x, Er) · ν(E)

where Er is an appropriate reference energy level. For example, the probability
of the absorption due to the photoelectric effect is inversely proportional to the
cube of the photon energy:

σa(x, E) =
σa(x, Er)
(E/Er)3

.

The energy dependence of the incoherent scattering cross section can be com-
puted from the scaling factor in the Klein-Nishina formula:

σi(x, E) = σi(x, Er) ·

1⎣
−1

Ei(E, c) + E3
i (E, c) − E2

i (E, c)(1 − c2)dc

1⎣
−1

Ei(Er, c) + E3
i (Er, c) − E2

i (Er, c)(1 − c2)dc

where c = cos θ = ω · ω∗.
During the simulation of direct and scattered paths, we use ray marching

to obtain the attenuation along line segments of a path. The attenuation is an
exponent of a line integral:

A(E) = exp
⎤

−
∫

σ(l, E)dl

⎥
= exp

⎤
−ν(E)

∫
σ(l, Er)dl

⎥
= [A(Er)]ν(E).

This means that computing the attenuation separately for absorption, coherent
and incoherent scatter on the reference energy level, the results can be trans-
formed to arbitrary energy levels without the lengthy ray marching process.
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4 Results and Future Work

We implemented the algorithms in CUDA, and used a GeForce GTX-590 in dual
GPU setup in performance measurements. One GPU thread tracked a large
amount of particles at the same time, and at least 512 threads are executed
in parallel. The cross section tables were stored in GPU shared memory, the
precalculated interaction tables were represented in 2D textures. The density
and material distribution were stored in 3D textures, the calculated projection
images and dose distribution were kept in GPU global memory.

For the preclinical scanner, the simulated phantom object was a 4 cm diam-
eter, homogeneous water cylinder. We generated 180 projection images at 256×
512 resolution. For the clinical study, we used the Zubal1 phantom. We computed
180 projection images at 128 × 1024 resolution.

This new combined method uses significantly less particles in the Monte
Carlo simulation, and executes ray marching where it is efficient on the GPU. We
achieved 11 times speed-up for the preclinical scanner and 43 times acceleration
for the human scanner. Figure 1 shows a slice from original Zubal phantom, a
simulated projection, and also the dose distribution. The reconstructed slices are
in Fig. 2.

Fig. 1. Original Zubal phantom (left upper), a simulated projection (right upper), and
simulated dose distribution (lower).

1 http://noodle.med.yale.edu/zubal/data.htm

http://noodle.med.yale.edu/zubal/data.htm
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Fig. 2. Reconstructed slices

5 Conclusion

This paper proposed a hybrid MC simulation algorithm for particle transport,
taking into account the special requirements of Computer Tomographs. Using
various variance reduction techniques, we could significantly increase the effi-
ciency of the algorithm.

Acknowledgement. This work has been supported by the OTKA K-104476 and by
TÁMOP -4.2.2.B-10/1–2010-0009.
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2. Légrády, D., Cserkaszky, A., Wirth A., Domonkos B.: PET image reconstruc-
tion with on the fly Monte Carlo using GPU. In: Proceedings of PHYSOR 2010,
American Nuclear Society, Pittsburgh, Pennsylvania (2010)
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Abstract. In inverse problems like tomography reconstruction we need
to solve an over-determined linear system corrupted with noise. The ML-
EM algorithm finds the solution for Poisson noise as the fixed point
of iterating a forward projection and a non-linear back projection. In
tomography we have several hundred million equations and unknowns.
The elements of the huge matrix are high-dimensional integrals, which
cannot be stored, but must be re-computed with Monte Carlo (MC)
quadrature when needed. In this paper we address the problems of how
the quadrature error affects the accuracy of the reconstruction, whether
it is possible to modify the back projection to speed up convergence
without compromising the accuracy, and whether we should always take
the same MC estimate or modify it in every projection.

1 Introduction

In Positron Emission Tomography (PET) we need to find the spatial density
of radioactive tracer materials [4]. The tracer density is computed from the
statistics of detected hits, which is the inverse problem of particle transport in
scattering and absorbing media. Inverse problems are usually solved iteratively,
by alternating the simulation of the forward problem and a correction step.

The output of the reconstruction is the activity density that is defined on a
3D voxel grid x = (x1, x2, . . . , xNvoxel

). The inputs of the reconstruction algo-
rithm are the measured coincident photon hits in detector pairs, called LORs:
y = (y1, y2, . . . , yNLOR

). Using maximum likelihood estimation (ML-EM), vec-
tor x is found by maximizing the probability of the actually measured data
y [5], alternating forward projection and back projection that together update
estimate x(n):

Forward: ỹ = A · x(n), Back:
x(n+1)

x(n)
=

AT · y
ỹ

AT · 1
where vector division is defined in an element-wise manner, ALV or A in short
is the System Matrix (SM ), which is the probability that a photon pair born in
voxel V is detected by LOR L of expected value ỹL.

I. Lirkov et al. (Eds.): LSSC 2013, LNCS 8353, pp. 170–177, 2014.
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The true solution x∗ of the reconstruction is the fixed point of this scheme,
which satisfies:

AT · y
A · x∗ = AT · 1. (1)

In tomography we have several hundred million LORs and voxels, thus an SM
may have more than 1016 elements. To handle the huge SM, it can be factored [3],
and simpler physical phenomena may be obtained by on-the-fly analytic approx-
imations. However, as these approximations are part of an iteration process, even
a small error can accumulate unacceptably. Accurate and consistent estimations
can be obtained with MC quadrature, but its computational burden is high [1].
There is an important difference between applying MC for estimating a quadra-
ture and using MC as a part of an iteration process [6]. While the goal is an
integral quadrature, the convergence rate is known and the error can be mini-
mized by variance reduction techniques and increasing the number of samples.
When MC is applied in an iteration, the accuracy of a single estimate is not so
relevant since later iteration steps may correct the error of an earlier estimate.
However, decreasing the samples in a single step means that we can make more
iterations under the given budget of samples or computation time.

This paper examines the process of iteration with random MC estimates.
Furthermore, we also investigate the potential of using simplified back projection
matrices to speed up the projection.

2 Error and Convergence Analysis

SM estimations may be different in forward projection and back projection, and
due to the numerical errors both differ from the exact matrix. Let us denote the
forward projection SM by F = A + ΔF and the back projection estimation by
B = A+ΔB. We use the following notations for the normalized back projectors

ĀLV =
ALV∑
L′ BL′V

, B̄LV =
BLV∑
L′ BL′V

=∇ B̄ = Ā + ΔB̄ and ΔB̄ · 1 = 0.

Note that ΔB̄ · 1 = 0 is the consequence of the normalization of matrix ΔB̄,
i.e. each element is divided by the row sum.

The question is how these approximations modify the convergence and the
fixed point of the iteration scheme. Let us express the activity estimate in step n
as x(n) = x∗ +Δx(n). Substituting this into the iteration formula and replacing
the terms by first order Taylor’s approximations we obtain:

Δx(n+1) ∈
(
1 − ⊂x∗

V → · B̄T · ⊂yL
ỹ2
L

→ · F
)

·Δx(n)+⊂x∗
V →·B̄T ·⊂yL

ỹL
→· Δỹ

ỹ
−ΔB̄

T · y
ỹ

.

where ⊂x∗
V → is an N2

voxel element diagonal matrix of true voxel values, ⊂yL

ỹα
L
→ is

an N2
LOR element diagonal matrix of ratios yL

ỹα
L
, and Δỹ = ΔF · x is the error

of the expected LOR hits made in the forward projection. Note that Taylor’s
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approximation is acceptable only if function 1/y can be well approximated by a
line in ỹL ± ΔỹL. The iteration is convergent if

T = 1 − ⊂x∗
V → · B̄T · ⊂yL

ỹ2
L

→ · F

is a contraction after certain number of iterations (note that T is not constant
but depends on x(n) via ỹL). Even for convergent iteration, the limiting value
will be different from x∗ due to the errors of the forward and back projections:

Δx(→) = S ·
(
ΔB̄T · y

ỹ
− AT · ⊂yL

ỹL
→ · dỹ

ỹ

)
where S =

(
AT · ⊂yL

ỹ2
L

→ · A
)−1

.

(2)
We can make several observations examining these formulae:

1. As measured hits yL are Poisson distributed with expectations ỹL, ratios
yL/ỹL have expected value 1 and variance 1/ỹL, thus E[ΔB̄T · y/ỹ] = 0
and even the variance caused by the back projector error diminishes when
the measurement is high dose and thus the result is statistically well defined.
Thus, for high dose measurement, the error made in forward projection is
mainly responsible for the accuracy of the reconstruction, which adds the
following error in each iteration step:

⊂x∗
V → · B̄T · ⊂yL

ỹL
→ · Δỹ

ỹ
= ⊂x∗

V → · B̄T · ⊂yL
ỹL

→ · ΔF · x
ỹ

(3)

2. If the back projection accuracy is not so important, it is worth using a modi-
fied normalized SM B̄ to increase the contraction of T and thus speeding up
the iteration.

3 ML-EM Iteration Using MC Quadrature

In tomography the size of the SM is enormous, thus matrix elements cannot be
pre-computed and stored, but must be re-computed each time with MC quadra-
ture when a matrix element is needed. It means that forward projector F and
back projector B̄ are random variables. We use unbiased MC estimates, i.e.

E[F] = A, E[B̄] = Ā.

As these estimates are re-made in every iteration, we can choose whether the
same random estimate is used in all iterations, the estimate is modified in each
iteration, or even between the forward projection and back projection. Note that
as we have to re-compute the matrix elements anyway, the computation costs of
different options are the same, the algorithms differ only in whether or not the
seed of the random number generator is reset.

The contribution to the error of a single iteration is defined by Eq. 3. Errors
of different iteration steps accumulate. However, the accuracy can be improved if
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Fig. 1. The measured function (left), the distribution of the hits in different LORs
for the high dose case (middle), and the MC estimate of the SM (1 column is shown)
obtained with 105 random samples.

we use an MC estimation where the expectation value of this contribution is zero
since it means that the error contributions of different iteration steps compensate
each other and we may get a precise reconstruction even with inaccurate SM
estimates. So, our goal is to guarantee that

E

[
⊂x∗

V → · B̄T · ⊂yL
ỹL

→ · ΔF · x
ỹ

]
= E

[
⊂x∗

V → · (ĀT + ΔB̄
T ) · ⊂yL

ỹL
→ · ΔF · x

ỹ

]
= 0

which, taking into account that both the forward projector and the back projec-
tor are unbiased estimators, is held if

E

[
ΔB̄T · ⊂yL

ỹL
→ · ΔF

]
= 0.

Note that this is true if the forward projector is statistically independent from
the back projector, but is false when they are correlated. This means that it is
worth using independent random samples in each iteration and re-sampling even
between forward projection and back projections.

To demonstrate this, we analyze a simple analytical problem, when an SM
of dimensions NLOR = 1000 and Nvoxel = 500 is defined as the sum of two
Gaussian density functions.

The ground truth activity is another simple function of the left of Fig. 1. The
measured values are obtained by sampling Poisson distributed random variables
setting their means to the product of the SM and the reference activity. We
examined a high dose and a low dose case, which differ in a factor of 10 of their
activities. The middle of Fig. 1 shows the measurement of the high activity case.
The error of the reconstruction is tested with random SM approximations, which
are obtained by replacing the 5 · 105 analytical SM elements by unbiased MC
estimates calculated with 104, 105, and 106 discrete samples in total, respectively.

In the first set of experiments we examine the L2 error of the reconstruction
process of the fixed case, i.e. when the same SM approximation is used in all
iteration steps (Fig. 2). These results indicate that working with the same MC
estimate during an EM iteration is generally a bad idea. Reconstructing with
a modified SM means that we altered the physical model, so the EM iteration
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Fig. 2. L2 error curves of different sampling strategies and the reconstructed results.
Fixed sampling takes the same samples in every projection. Matched sampling keeps
the samples of forward even for back projection of the same iteration step. Independent
sampling uses different random numbers in all projections.

converges to a different solution. Matched sampling takes the same samples in
the forward and back projections of a single iteration but regenerates samples
for each iteration. Matched sampling does not help, the error curves are quite
similar to those of generated with fixed SM.

Independent sampling, where samples of forward projection are independent
of the samples in back projection, has advantages and disadvantages as well. If
the sample number is small, then the error curves are strongly fluctuating. The
explanation is that matrix T is just probably a contraction, so the iteration have
convergent and divergent stages. If the number of samples is higher, then the
iteration gets similar to iterating with the analytic SM.

4 Speeding up the Convergence with Simplified Back
Projectors

We concluded that the reconstruction accuracy of high dose measurements is
just slightly affected by the accuracy of the back projector. In a special case
when B = A · P where P is an invertible square matrix of N2

voxel elements,
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the fixed point is preserved, which can be seen if both sides of Eq. 1 are multiplied
with matrix P. The convergence speed depends on the contraction of matrix T,
which is strong if

⊂x∗
V → · B̄T · ⊂yL

ỹ2
L

→ · A

is close to the identity matrix. We need to find matrix P so that for every voxel
V just the most significant ALV elements are kept while others are replaced
by zero during the multiplication with P. As the SM represents a sequence of
physical phenomena, this means ignoring voxel space blurring effects.

Using the example of the previous section, we examined the convergence
of the reconstruction for different activity levels (recall that back projection
accuracy becomes important only for low dose measurements).

The results are shown by Fig. 3. Note that simplified and original back pro-
jectors converge to the same result, the approximation is more accurate when
the measurement is of high dose. The initial convergence of the simplified back
projector is much faster and it becomes poorer only when the iteration overfits
the result and therefore the iteration is worth stopping anyway (such overfitting
may be avoided with regularization).

5 Application in 3D Positron Emission Tomography

To test the presented method with a realistic 3D PET reconstruction, we took
a LOR-centric, i.e. ray-based forward projection and a voxel-based back projec-
tion (Fig. 4). The forward projection samples are multiple rays or line segments
connecting two uniformly distributed points on the two crystals’ surfaces of the
LOR. The line integral is evaluated between the two endpoints by sampling
points being equal size but having a random starting offset. In back projec-
tion, a discrete point is sampled in each voxel and the solid angles subtended
from this point by the two crystals’ surfaces of each LOR are randomly sampled
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foward projection back projection

Fig. 4. Forward projection samples are line segments connecting uniformly distributed
sample points on the crystals. Back projection samples are points in voxels and then
points of detectors.
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Fig. 5. L2 error curves and reconstructions of the Derenzo phantom.

by a line. The SM element can then be computed from the solid angle, and the
total attenuation of the line between the two detectors.

We modeled the Mediso’s small animal nanoScan PET/CT [2], which consists
of twelve detector modules of 81 × 39 crystals detectors of surface size 1.12 ×
1.12 mm2, thus the total number of LORs is 180 million when crystals of a module
are connected by LORs to crystals of three opposite modules. We examined
the Micro Derenzo phantom with rod diameters 1.0, 1.1, . . . , 1.5 mm in different
segments. The Derenzo is virtually filled with 1.6 MBq activity and we simulated
a 1000 s measurement.

The error curves and slices of reconstructions when the random number
generator is reset in each iteration and when independent samples are gener-
ated are shown by Fig. 5. We considered the cases when integrals are estimated
with many and with fewer samples. Note that for low sampling density fixed
iteration diverges, while independent sampling oscillates. For higher sampling
density, both of them are stable and independent sampling has better results.
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Examining the reconstruction results we can observe that fixed sampling distorts
the uniform activity distribution in rods, while independent sampling better pre-
serves the ground truth.

6 Conclusion

This paper proposed the application of independent sampling and simplified back
projector in inverse problems when elements are re-computed in each iteration
step. The independent re-sampling has the advantage that it can gather more
information about the system, probably not in a single step but as iteration
proceeds. This additional information helps increase the accuracy. Independent
sampling in forward and back projectors has a drawback that solution oscillates
if the sample density is low, so sample numbers should be carefully selected.
We also shown that if back projector is properly simplified, then not only its
computation can be speeded up, but also the iteration can be made faster.
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Abstract. The theoretical equivalence of the Wigner and ballistic Boltz-
mann equations for up to quadratic electric potentials provides the con-
venient opportunity to evaluate stochastic algorithms for the solution of
the former equation with the analytic solutions of the latter equation
- Liouville trajectories corresponding to acceleration due to a constant
electric field. The direct application of this idea is impeded by the fact
that the analytic transformation of the first equation into the second
involves generalized functions. In particular, the Wigner potential acts
as a derivative of the delta function which gives rise to a Newtonian
accelerating force. The second problem is related to the discrete nature
of the Wigner momentum space. These peculiarities incorporate unphys-
ical effects in the approximate Wigner solution, which tends to the Boltz-
mann counterpart in a limiting case only.

Operator mechanics are the established representation of quantum mechanics,
where the evolution of expectation values of physical quantities are given by oper-
ators Â along with a commutator bracket and an Hamiltonian operator. This
is a departure from the classical descriptions of phase spaces where the Hamil-
tonian and the Poisson bracket impress the space’s geometry on the equations
of motion. The Wigner formalism [1] is a return to a phase space description of
quantum systems and their evolution. In the case of quantum systems the phase
space accommodates features not found in the classical case. Where the Liou-
ville component of the Boltzmann equation is governed by the first derivative of
the electric potential - the electric field, quantum evolution is determined by the
Wigner integral, which accounts for the entire potential in a nonlocal manner.
By performing a Taylor expansion of the Wigner integral it is possible to link
derivatives of the potential to powers of �. Classical systems then appear by a
limit of � ∇ 0, which in this case causes only the linear component, the electric
field, to remain. This also means that in the case of a linear potential the Wigner
equation reduces to the ballistic Boltzmann equation and the nature, classical
or quantum, is determined purely by the initial condition. From the multitude
of purely mathematically available solutions only a subset is physically viable.
In classical systems this requires all states to be nonnegative, which also allows
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for a direct interpretation as densities. In the case of a quantum system, on the
other hand, this means that a legitimate quantum state must conform to the
uncertainty relation [2,3].

Since the nature only depends on the initial state, it offers a test facility
where simulations for quantum simulations may be examined and tested. The
generalized functions required for the treatment of the Wigner transport have
made application difficult in direct numerical treatment.

Here, an ensemble particle algorithm for general transport regimes determined
by initial and boundary conditions and transients is presented. It uses annihilation
of indistinguishable particles at consecutive time steps and is rooted in the use
of a quantized momentum space. Force effects are introduced exclusively using
the Wigner potential, so that individual particles are unaccelerated as they evolve
according to the fieldless Liouville operator of the Wigner equation.

1 Monte Carlo Algorithm

The foundation of the algorithm is the reformulation of the problem as a Fred-
holm integral equation of the second kind, which can be solved by a Neumann
series. The series is evaluated using a Monte Carlo approach. Newton trajecto-
ries link the individual terms of the series, where the integral kernel is applied
repeatedly. Thus the scheme can be presented as comprised by the two major
components

– Evolve along a Newton trajectory
– Apply the kernel as a scattering event
– Record

The Newton trajectories used are exactly the same as in a purely classical setup
without force.

A representation of the kernel responsible for the scattering transitions, is
needed. We employ a discretized version [4] of the originally continuous Wigner
potential. Choosing a finite coherence length L also fixes a finite delta in
momentum space proportional ∈ 1/L. When using wave numbers to represent
momentum space, as is customary in the field of solid state physics, this yields
Δk = π/L. This discrete approach allows for the identification of momenta with
integers. The scattering introduced in this manner deviates greatly from classi-
cal transport simulations. Where the kernel in classical transport descriptions is
positive definite, this is no longer the case in the quantum setting. This requires
the introduction of opposing signs for the particles to accommodate the action of
the kernel on a particle. Where in a classical case the kernel will act on any given
particle and simply may change its state in a possibly discontinuous manner, the
Wigner kernel will spawn a pair of new particles from the initial particle. The
interaction with the Wigner potential occurs after traversing the trajectory for
a certain time. The interaction can be expressed as:

Γ (r,m,m∗) = V +
W (r,m − m∗) − V −

W (r,m∗ − m) + γ(r)δm,m′ (1)
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Fig. 1. The signs of the generated particles depend not only on the sign of the original
particle, but also on the sign of the Wigner potential at the generating location.

m and m∗ are integers representing the initial and final nodes in momentum
space, respectively. The antisymmetry of the Wigner integral, which acts as the
scattering source, enforces

V +
w = max

(
Vw, 0

)
, V −

W (m) = V +
W (−m) (2)

so that the generation of the two new particles is actually linked. A single choice
l remains, which is the offset of the new states from the original momentum
node m. When choosing the signs of the generated particles, the sign of VW

must be considered. In case VW is positive, the particle at the position of the
final node m + l retains the sign of the generating particle, while the particle
at m − l is constructed with the inverted sign. In case the Wigner potential is
negative, the signs of the newly spawned particles are flipped. This process of
generation is depicted in Fig. 1. The left side shows the case of VW > 0, while
the flip of the generated signs is shown in the right part of the figure.

The particles are of opposite signs and each moved in momentum space from
the original particle’s momentum. In addition to the two newly spawned particles
due to interaction with the Wigner potential, the original particle continues
along the original trajectory unperturbed, due to the δ function in Eq. 1, as is
also depicted in Fig. 1. Thus, after such an scattering event, instead of the single
original particle, now three particles must be processed, each of which not only
needs to be processed further but can also generate new particle in the same
manner. Thus the total number of particles increases exponentially. This makes
it essential to have a means of reducing the number of particles again.

The mechanism counteracting the generation of particles employed in the
presented algorithm is annihilation at the time of recording; which marks the
end of any chosen time step. Two particles at the same position at the same time
but of opposite sign not only have no net contribution to the value of a recording
estimator, they also annihilate each other. This means that neither of the two
opposing particles will continue to evolve. Thus the number of overall particles
is reduced by two. Since it is necessary for two particles to be at the same place
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at the same time, the phase space must be subdivided into cells in order to make
annihilation feasible, as otherwise the probability of two particles meeting would
be zero. The discrete momentum space is already inherently subdivided into a
finite set of cells identifiable by the integer indexed nodes. The number of nodes
in the momentum component is linked to the resolution selected in space. The
number of nodes required to fill the characteristic length L used to obtain VW

is identical to the number of nodes required for momentum quantization.

2 Numerical Analysis

The outlined algorithm for quantum transport is applied to a test configuration
consisting of a single peak in the centre of the phase space. It thus is a discrete
and finite model of a delta function. From a physical point of view this setting
violates the uncertainty relation inherent to quantum phenomena, but since
the setting is such that the nature of the system is determined entirely by the
condition placed within it, it is expected that this classical initial state should
also yield classical results, even as it is subjected to quantum evolution.

Figure 2 shows how the number of particles depends on the length of the
time step and how particles are generated not only from the initial particles.
The initial particles, comprising Generation 0, create an avalanche of subsequent
particles. As the time step is increased the number of generated particles and
with it the computational burden increases drastically. This can be attributed
not only to the fact, that for a fixed probability of interaction with VW , more
particles will be spawned by the primary particles, but also to the circumstance,
that the generated particles themselves have a long time span to again generate
new particles. The maximum of particles is reached in the 7th generation, after
which the number of new particles declines, since the average time remaining
until the end of the time step makes generation less probable.

Since the computational burden increases so dramatically when extending
the time step, the question arises, if calculations using a series of several shorter
time steps will produce results matching a single longer one. As can be seen in
Fig. 3, the agreement between the different strategies to reach an absolute time
is excellent.

This indicates that by substituting one long time step by several shorter ones
it is possible to save considerable computational effort, as after each time step
the number of particles is reduced by annihilation.

Figure 3 also shows oscillations of the distribution including negative values.
This nonphysical behaviour is attributed to the fact that the initial condition
used here is in violation of the uncertainty principal required in the quantum
setting.

Furthermore, Fig. 3 also shows the process of transition from the initially
occupied node at 0 to the node at 1. The transition is worth examining in more
detail, since it reveals that the transition now occurs as in cellular automata [5].

Figure 4 shows a particle’s transition from one node to another node. The
intermediate time regime, where the initial peak has already decreased, while
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Fig. 2. The length of a time step determines the number of generation before annihila-
tion. When tripling the length of the time step, the shorter time step’s number appears
almost negligible.

Fig. 3. Choosing a single long time step yields the same results as choosing several
shorter time steps, as can be observed for the case of a single 0.6 ps time step vs two
0.3 ps and three 0.2 ps time steps.
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Fig. 4. The densities at the Node 0, which holds the initial condition, and Node 1,
which is the first to be occupied. Particles are not transferred continuously from node
to node until all reach the destination node. Instead the node occupancy is controlled
by a generation of positive and negative particles.

the target has not yet fully formed, is entirely controlled by generation of pos-
itive and negative particles and a subsequent annihilation. An analysis of this
process will be presented in the sequel. We now point to Fig. 5 which shows the
reconstitution of the initial distribution at the target node: the momentum of
the particles increases, which corresponds to acceleration but this time without
an explicite action of the field. Another interesting physical aspect of the density
is the substantial reduction of the spurious oscillations observed in Fig. 3. The
quantum system is closest to the classical counterpart at dicrete points in time
and momentum. At the limit Δk ∇ 0 which corresponds to infinite L and thus
the continuous case the behaviour becomes classical.

Investigating the manner in which the algorithm moves particles in more
detail it is possible to elucidate how the force term is accommodated by purely
relying on the mechanism of the Wigner potential VW . Given a number of par-
ticles N0 located at a given node of a phase space grid a certain number will be
scattered as they evolve along a Newton trajectory. Even without knowing this
number it is possible to examine the ratios of how they will be distributed if we
know VW . In the case under investigation, VW at the nodes was calculated for a
constant electric field to the form of:

VW (n) =
(−1)n+1

n
⊂n →= 0, 0 n = 0 (3)
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Fig. 5. At times corresponding to Newton’s law, the peaks not only reappear but also
the nonphysical oscillations are dampened to a minimum.

By following the described algorithm the following table is obtained, which shows
how many particles are assigned to which node. The common factors are denoted
by Nx, where x gives the generation of the particle. The sign of the factor
indicates the signs assigned to the particles generated for the particular node.
The table reveals several peculiarities: The signs of the contribution to the
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originating node are negative, while they are all positive for the first node to
the right. For the remainder of the nodes, the signs are mixed. This supports
the conjecture that the algorithm indeed allows to model the effects of force
by purely relying on the interaction with VW . The initial peak is moved by
being annihilated by the particles of opposing sign and reconstructed at the
neighbouring node.
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3 Conclusion

An algorithm for quantum transport has been presented. Its main features
include the use of a quantized momentum space and discrete selection rules
for the scattering. The discrete nature of the momentum component works very
well in conjunction with the employed annihilation scheme, which helps to reduce
the number of generated signed particles.

It was shown numerically that it is possible to utilize short time steps to
iterate to a longer duration in a stable manner. This is important due to the
significant increase of particle generation with the extension of the time step.

Furthermore, an explanation has been provided, how this algorithm acceler-
ates particles without explicitly incorporating a force term.

Finally an interesting mixture of quantum and classical phenomena have
been observed in the behavior of the modeled transport process.
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Abstract. The Wigner equation provides an interesting mathematical
limit, which recovers the constant field, ballistic Boltzmann equation.
The peculiarities of a recently proposed Monte Carlo approach for solving
the transient Wigner problem, based on generation and annihilation of
particles are summarized. The annihilation process can be implemented
at consecutive time steps to improve the Monte Carlo resolution. We ana-
lyze theoretically and numerically this process applied to the simulation
of important quantum phenomena, such as time-dependent tunneling of
a wave packet through potential barriers.

1 Introduction

In the theory of carrier transport involving the concept of phase-space, there are
strong similarities between classical and quantum regimes. From this perspective,
the Wigner theory is a promising approach for the simulation of fully quantum
transport phenomena in semiconductor devices. Investigations of this approach
have been carried out in the recent past. Efforts have been performed to reuse
successful ideas of the semi-classical transport regime.

Eventually, two particle models were derived. The first model, an ensemble
Monte Carlo (MC) technique based on particles endowed with an affinity, has
proved to be a reliable method. Unfortunately it needs heavy computational
resources [1]. The second model is a single particle MC approach, based on the
ergodicity of the system and thus restricted to stationary regimes determined
by the boundary conditions [2]. As compared to the previous one, it has very
different attributes, related to the generation of particles endowed with a sign.
Particles are created in the phase space and are consecutively evolved to the
boundary.

A generalization of the second approach has been recently developed. This
new method exploits the concepts of momentum quantization and indistinguish-
able particles. These concepts treat properly quantum mechanics, entangled with
the notions of classical trajectories, particle ensemble, and particle-with-sign
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generation giving rise to a time-dependent, fully quantum transport model which
naturally includes both open and closed boundary conditions along with general
initial conditions.

Focusing on this model we introduce a recently developed technique, a time-
dependent renormalization by means of particles annihilation, which allows the
simulation of time-dependent quantum phenomena. We apply this novel
technique to the tunneling of a wave packet through a barrier.

2 Stochastic Aspects

The developed Monte Carlo algorithm aims to evaluate the expectation value
∇A∈(t) of a generic physical quantity A at given evolution time t.

2.1 Monte Carlo Algorithm

By reformulating the semi-discrete Wigner equation as a Fredholm integral equa-
tion of the second kind one can derive a proper adjoint equation, which allows
to express ∇A∈ as a series of terms:

∇A∈(t) =
∫ ∗

0

dt→
∫

dxi

∗∑
m◦=−∗

fi(xi,m
→)e− ∫ t◦

0 γ(xi(y))dyg(xi(t→),m→, t→) (1)

where x→(y) = xi(y) is the Newtonian trajectory of a field-less particle, g(x,m, t)
is solution of the adjoint equation, represented by its resolvent series [2]:

g(x→,m→, t→) = Aτ (x→,m→, t→) + (2)∫ ∗

t◦
dt

∗∑
m=−∗

g(x→(t),m, t)Γ (x→,m,m→)e− ∫ t
t◦ γ(x◦(y))dy

with

Aτ (x,m, t) = A(x,m)δ(t − τ)

γ(r) =
∗∑

m=−∗
V +

w (r,m)

Γ (r,m,m→) = V +
w (r,m − m→) − V +

w (r,m→ − m) + γ(r)δm,m◦

V +
w =

{
Vw if Vw > 0
0 otherwise.

The approach is a generalization of the stationary counterpart [2] for general
transient transport problems. The terms in the resolvent expansion of (1) are
ordered by consecutive applications of the kernel in (2), which is used to con-
struct the transition probability for the numerical Monte Carlo trajectories. The
latter consist of pieces of Newton trajectories linked by a change of the momen-
tum number from m to m→ according to Γ . Thus a numerical trajectory may be
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associated with a moving particle which undergoes scattering events. The expo-
nent gives the probability that the particle remains on its Newton trajectory
provided that the scattering rate is γ. If not scattered until time τ , the particle
contributes to < A >0 (τ) with the value fi(xi,m

→)g(xi(τ),m→). If scattered, the
particle contributes to a next term in the expansion. It may be shown that a
single particle contributes to one and only one term in the expansion and thus
is an independent realization of the random variable sampling the whole sum:
< A > (t) is then estimated by averaging over N particles.

It is possible to give another interpretation to the equations due to the special
appearance of Γ : after any free flight the trajectory forks into three contributive
terms, the initial trajectory and two new trajectories with wave-vector offset
equal to l = m − m→ and −l around the initial wave number. Thus, a particle
picture of a Monte Carlo branching process can be associated.

The process of creation of new couples is exponential [2]. The upper part
of Fig. 1 shows what happens for one particle which moves in a constant field.
The field magnitude is chosen to be 10339.2 V/m, so that the particle goes to
the next k-space cell after 1 ps, and the total length of the domain is 1μ m.
The following interpretation can be given: one initial particle evolves until, at
some given random time, it generates a couple of positive and negative particles
(recorded at 200 fs). Those particles evolve along with their parent particle, until
they also generate couples. In turn, couples generate other couples until the final
time is reached. This process triggers an avalanche of particle creations. From
one particle, one ends up with 111 new particles at a recording time of 650 fs.
We chose this final time since it is of the same order of typical final times
to reach stationary regimes of practical nanodevices. Now, realistic simulations
also involve several milions of initial particles. They rapidly generate a number
of particles, which is of the order of several billions, a daunting numerical task.

2.2 The Annihilation Technique

The renormalization technique by annihilation described below represents a way
to avoid this situation.

The renormalization technique is based on the fact that, in the Wigner for-
malism, particles are now mathematical objects deprived of any physical mean-
ing. They are independent realizations of certain probability distributions related
to the time-dependent solution of the Wigner equation. The unknown (and main
object) of our problem is the Wigner quasi-distribution function. Furthermore,
particles having the same wave number and position (i.e. being in the same cell of
the phase-space), with opposite signs, do not contribute in the calculation of the
average value for a macroscopic variable. They simply cancel the contribution of
each other reciprocally or, in other words, annihilate.

These observations highlight the possibility of removing, periodically, the
particles which do not contribute to the calculation of the Wigner function, i.e.
one can apply a renormalization of the numerical average of the Wigner quasi-
distribution by means of a particles annihilation process. This is in accordance
to the Markovian character of the evolution to progress at consecutive time steps
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so that the final solution at a given time step becomes the initial condition for
the next step. This method can be implemented as follows: one fixes a recording
time at which the annihilating particles are checked. Particles found to annihi-
late are immediately removed from the simulation. This considerably reduces the
number of particles at every recording time, as shown in the bottom of Fig. 1.
In this case, the simulation ends up with 35 particles instead of 111 particles.
This technique is advantageous since the reduction of the number of particles by
means of the renormalization process allows the simulation of time-dependent
technologically relevant cases with the Wigner formalism. Indeed, it is known

Fig. 1. Particle creation avalanche process with (bottom) and without (top) the anni-
hilation technique. * = positive sign particles, o = negative sign particles.
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Fig. 2. Total number of particles with (dots) and without (stars) applying the annihi-
lation technique.

that the particle’s number grows exponentially in time, which destroys the sim-
ulation feasibility after a few time steps (see Fig. 2 and [2]).

3 Computational Aspects

The numerical experiment presented here consists of the simulation of a Gaussian
wave packet tunneling through a barrier. The results have been obtained using
the HPC cluster deployed at the institute of information and communication
technologies of the Bulgarian academy of sciences. This cluster consists of two
racks which contain HP Cluster Platform Express 7000 enclosures with 36 blades
BL 280 C with dual Intel Xeon X5560 @ 2.8 Ghz (total 576 cores), 24 GB RAM
per blade. There are 8 storage and management controlling nodes 8 HP DL
380 G6 with dual Intel X5560 @ 2.8 Ghz and 32 GB RAM. All these servers are
interconnected via non-blocking DDR Infiniband interconnect at 20 Gbps line
speed. The theoretical peak performance is 3.23 Tflops.

The software run on this machine is a modified version of Archimedes, the
GNU package for the simulation of carrier transport in semiconductor devices
[3]. This code was first released in 2005, and, since then, users have been able to
download the source code under the GNU Public License (GPL). Many features
have been introduced in this package. In this particular project, our aim is to
include the quantum effects without recurring to quantum approximations such
as effective potentials which are not satisfying when applied to nanodevices. The
code is entirely developed in C and optimized to get the best performance from
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Fig. 3. Evolution at different times of a wave packet in proximity of a potential barrier.

the hardware [4]. The results of the new version will be, eventually, deployed on
nano-archimedes website, dedicated to the simulation of nanodevices (see [5]).

The wave packet moves in a domain that has a potential barrier in the center.
The domain is 200 nm long, and the barrier is 3 nm thick with an energy equal
to 0.2 eV. The corresponding initial Wigner function reads:

f0
W (r, n) = Ne− (r−r0)2

σ2 e−(nΔk−k0)
2σ2

(3)
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Fig. 4. Wigner distribution of a wave packet after 40 fs evolution.

N , k0, r0 and σ are, respectively, a constant of normalization, the initial wave
vector, the initial position, and the width of the wave packet. The parameters
defining the packet are chosen to make it collide with the potential barrier. The
initial wave vector is equal to 4 · 108 m−1, the initial position of the center wave
packet is at 68.5 nm, and the value for σ is 10 nm.

The rate of creation of particles depends on the shape of the function γ(x).
For the simulation of this particular transport problem, one needs at least 40 fs to
observe relevant quantum effects. This is achievable only by applying a renormal-
ization technique. Thus, we renormalize the Wigner quasi-distribution function
by annihilation of particles every 1 fs. In this way one can reach long final times
even equal to 80 fs.

Figures 3 and 4 show the wave packet at different evolution times, and the
Wigner distribution function, respectively. The density obtained from the Wigner
equation ressembles the time-dependent Schroedinger counterpart. A thorough
comparison between Wigner and Schroedinger models will be presented some-
where else. Furthermore, the smoothness of the solution indicates the low
stochastic noise of the method. Finally, Fig. 4 shows negative values in the calcu-
lated solution in the proximity of the barrier. This is a manifest of the quantum
nature of the Wigner function as compared to the non-negative semi-classical
distribution function.
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4 Conclusions

We presented a renormalization technique for the Wigner quasi-distribution func-
tion, which involves the annihilation of particles at chosen recording times. We
applied the method to the simulation of the tunneling process, where a Gaussian
wave packet interacts with an energetic barrier. We have shown that, due to this
renormalization technique, it is possible to calculate the time-dependent solution
of the Wigner equation in realistic transport problems governed by quantum
effects.
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Abstract. This paper presents an hp-adaptive flux-corrected transport
algorithm based on the reference solution approach. It features a finite
element approximation with unconstrained high-order elements in
smooth regions and constrained Q1 elements in the neighborhood of
steep fronts. The difference between the reference solution and its pro-
jection into the current (coarse) space is used as an error indicator to
determine the local mesh size h and polynomial degree p. The reference
space is created by increasing the polynomial degree p in smooth ele-
ments and h-refining the mesh in nonsmooth elements. The smoothness
is determined by a hierarchical regularity estimator based on discontinu-
ous higher-order reconstructions of the solution and its derivatives. The
discrete maximum principle for linear/bilinear finite elements is enforced
using a linearized flux-corrected transport (FCT) scheme. p-refinement
is performed by enriching a continuous bilinear approximation with con-
tinuous or discontinuous basis functions of polynomial degree p ≥ 2. The
algorithm is implemented in the open-source software package HERMES.
The use of hierarchical data structures that support arbitrary level hang-
ing nodes makes the extension of FCT to hp-FEM relatively straight-
forward. The accuracy of the proposed methodology is illustrated by
a numerical example for a two-dimensional benchmark problem with a
known exact solution.

Keywords: Hp-adaptation · Flux-corrected transport · Finite elements ·
Maximum principles

1 Introduction

The standard Galerkin finite element discretization of convection-dominated
problems is known to produce nonphysical oscillations in the neighborhood of
steep fronts. In the case of linear/bilinear finite elements the discrete maximum
principle can be enforced by using an algebraic flux correction scheme [4,5]. This
method has its origin in the multidimensional flux-corrected transport (FCT)

I. Lirkov et al. (Eds.): LSSC 2013, LNCS 8353, pp. 197–204, 2014.
DOI: 10.1007/978-3-662-43880-0 21, c© Springer-Verlag Berlin Heidelberg 2014
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algorithm [12] and limits the coefficients of the discrete transport operator in
order to make it local extremum diminishing. Since the design of FCT-like lim-
iters for higher-order elements is complicated [6], these elements may only be
used in smooth regions where no oscillations can occur and so the use of the
standard Galerkin method is safe.

In the present paper we construct the reference space by increasing p in
smooth elements of the coarse space and h-refining all others. Algebraic flux
correction of FCT type is only applied in matrix blocks corresponding to Q1
elements. The regularity of the solution and its derivatives is estimated using
a parameter-free smoothness indicator [3] which regards the p-th derivative as
smooth if the (discontinuous) high-order reconstruction is bounded by the orig-
inal values at the centers of surrounding elements. The difference between the
computed reference solution and its projection into the coarse space is used as
an error indicator for the hp-refinement of the coarse space.

The algorithm is implemented in the hp-adaptive finite element library Her-
mes [9] which provides hierarchical basis functions and supports the use of irreg-
ular meshes with arbitrary-level hanging-nodes [10,11]. A 2D test problem is
solved using hp-adaptivity with continuous and discontinuous p-enrichment. It
is shown that the proposed framework leads to a sharp resolution of steep fronts
and preserves the optimal order of accuracy at smooth peaks.

2 Algebraic Flux Correction

We consider the following unsteady linear convection equation

∂u

∂t
+ ∇ · (vu) = 0 in Ω, (1)

where u is the concentration of a conserved quantity, v is a given velocity and
Ω is a bounded domain. This equation (1) is of hyperbolic type and is endowed
with suitable initial and boundary conditions.

For the discretization in space we use the (continuous) Galerkin finite element
method. This yields a system of equations which can be written in generic form

MC
du

dt
= Ku, (2)

where u is the vector of unknowns, MC = {mij} is the consistent mass matrix
and K = {kij} is the discrete transport operator.

Since the standard Galerkin discretization can produce non-physical oscilla-
tions we enforce the discrete maximum principle by using algebraic flux correc-
tion [4]. For this reason, we replace the matrix MC with its lumped counterpart

ML := diag{mi}, mi =
∑

j

mij . (3)

Next, we fix K by adding a discrete diffusion operator D = {dij} with [4,5]
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dii := −
∑
j �=i

dij , dij = max{−kij , 0,−kji} = dji, ∈j ⊂= i (4)

so that K + D has no negative off-diagonal entries and D has zero row sums.
Using (3) and (4), we can split the semi-discrete Galerkin scheme (2) as

follows:
ML

du

dt
= (K + D)u + f(u), (5)

where f(u) is the sum of antidiffusive terms that may cause over- and under-
shoots

f(u) = (ML − MC)
du

dt
− Du. (6)

It can be shown [4] that each component of (6) admits a flux decomposition of
the form

fi =
∑
j �=i

fij , fij =
(

mij
d
dt

+ dij

)
(ui − uj), ∈j ⊂= i. (7)

Some fluxes may create undershoots or overshoots in proximity to troubled
cells. For this reason the contribution of these fluxes must be limited in order to
make the antidiffusive term local extremum diminishing. After this correction,
the generic form of the semi-discrete problem becomes

ML
du

dt
= (K + D)u + f̄(u), (8)

where f̄(u) is a vector containing the sums of limited antidiffusive fluxes

f̄i =
∑
j �=i

αijfij , 0 → αij → 1. (9)

A well-designed flux limiter produces αij ∞ 1 in smooth regions and αij = 0 in
troubled cells. For our computations we use a nonclipping version of Zalesak’s
limiter [4,12].

If we discretize (8) in time using the Crank-Nicolson method, we obtain a
nonlinear algebraic system

Aun+1 = Bun + f̄ , (10)

where f̄ is the fully discrete counterpart of the limited antidiffusive term,

A =
1

Δt
ML − 1

2
(K + D) and B =

1
Δt

ML +
1
2
(K + D). (11)

Since the implicit part of f̄ depends on the unknown solution un+1, it must be
linearized or calculated in an iterative way. In this paper, we use a flux-corrected
transport (FCT) algorithm [5] in which the raw antidiffusive fluxes

fij =
(

mij

Δt
+

dij

2

)
(uH

i − uH
j ) −

(
mij

Δt
− dij

2

)
(un

i − un
j ) (12)

are evaluated using the unconstrained Galerkin solution uH .
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3 Regularity Estimator

The restriction of uh to a single element K of the computational mesh Th is given
by a linear or multilinear shape function uh|K . To estimate the smoothness of
uh in a neighborhood of cell K, we consider a linear approximation of the form

ûh(x) = uh(xc) + Rhuh(xc) · (x − xc), (13)

where xc denotes the center of K and Rh : Vh ⊃ Vh × Vh is a gradient recov-
ery operator. In contrast to ∇uh, the reconstructed gradient is continuous, and
Rhuh(xc) depends on the data in all elements that share a vertex with K. In
this paper, we construct Rhuh = (R1

huh, R2
huh)T using an L2 projection.

The shape functions given by (13) define a discontinuous piecewise-linear
approximation ûh. The difference between uh and ûh may serve as a smoothness
indicator. We regard the solution on cell K as smooth if the value of ûh at each
vertex xi ≥ K is bounded by the values of uh at the centers of surrounding
elements

umin
i < ûh(xi) < umax

i , ∈xi ≥ K, (14)

where

umax
i := max{uh(xc) | ≤K ≥ Th : xi,xc ≥ K}, (15)
umin

i := min{uh(xc) | ≤K ≥ Th : xi,xc ≥ K}. (16)

Note that the inequalities in (14) are strict, which implies that a constant func-
tion is not regarded as smooth.

Since conditions (14)–(16) are violated at the local maxima and minima of
uh, all cells containing these extrema are marked as “troubled” [15]. To distin-
guish between smooth peaks and spurious undershoots/overshoots, the regularity
estimator must be applied to each component of the gradient ∇uh = (ux, uy)T .

Building on the analogy with [13,14], we use the derivatives of the recovered
gradient Rhuh = (R1

huh, R2
huh)T to define the linear reconstructions

ĝ1h(x) =
∂uh

∂x
(xc) + ∇(R1

huh)(xc) · (x − xc), (17)

ĝ2h(x) =
∂uh

∂y
(xc) + ∇(R2

huh)(xc) · (x − xc). (18)

Similarly to (14)–(16), the gradient is regarded as smooth if the values of ĝ1h
and ĝ2h at all vertices of K are bounded by the centroid values of ∂uh

∂x and ∂uh

∂y ,
respectively.

As shown in [13,14], no shock capturing is required if the finite element
solution uh and/or both components of its gradient are found to be smooth.

4 Reference Solution Approach

The reference solution approach [9–11] is based on the assumption that the ref-
erence solution is a better approximation to the exact solution than the solution
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in the current space. The reference space/mesh is usually created by increasing
the polynomial degree and refining the mesh size of the current (coarse) space.
Since the FCT limiter works only for linear/bilinear (P1/Q1) finite elements we
restrict the p-enrichment to smooth elements only and h-refine all non-smooth
elements. Here the smoothness is determined by the regularity estimator from
the last section which labels an element as smooth if the solution or both compo-
nents of its gradient are found to be smooth on this element. For the computation
of the reference solution we apply FCT only to matrix blocks associated with
the P1/Q1 approximation.

The algorithm works iteratively and we have to update an initial/coarse space
and the numerical solution in each time step in the following way [1]:

1. Adaptivity loop:
(a) Construct the reference space by increasing p in smooth elements and

h-refining non-smooth elements.
(b) Project the old solution un into the reference space and compute the

reference solution uref .
(c) Project the reference solution into the coarse space and calculate the

difference between the reference solution and its projection.
(d) Adjust the local mesh size and polynomial degree of the coarse mesh/space

according to the error indicator in (c). (Details can be found in [9]).
2. Set un+1 = uref .

Note that this algorithm doesn’t coarsen the mesh, so after a certain number of
time steps the coarse space is reset to the initial space. Furthermore we use a
constrained L2-projection [1,7] to transfer the previous timestep solution to the
reference space.

5 Numerical Examples

In our numerical study, we consider the solid body rotation problem [2,8]. We
solve equation (1) with the incompressible velocity field v(x, y) = (0.5−y, x−0.5)
that describes a counterclockwise rotation about the center of Ω = (0, 1)×(0, 1).

The exact solution to the solid body rotation problem reproduces the initial
state u0 exactly after each full revolution (t = 2πk, k ≥ N). Hence, the challenge
of this test is to preserve the shape of u0. Following LeVeque [8], we consider a
slotted cylinder, a sharp cone, and a smooth hump.

Figure 1 shows the hp-adaptive solution at t = 2π calculated using the ref-
erence solution approach. The regularity estimator labeled most elements of the
hump and the cone as smooth, so that p was increased in these elements. Note
that the maximal polynomial degree p = 2 was limited by the error indicator
which means that no higher polynomial degree was found necessary for a higher
accuracy. The elements at the top of the cone and inside the cylinder were han-
dled as non-smooth using p = 1.

Figure 2 compares the hp-adaptive solution with an h-adaptive solution at
t = 2π. Both solutions exhibit a similar resolution of the cylinder. In both cases
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Fig. 1. Solid body rotation: reference solution at t = 2π

h-adapted hp-adapted

Fig. 2. Solid body rotation: solution at t = 2π

Fig. 3. Solid body rotation: comparison of exact and numerical solution at x = 0.25
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Fig. 4. Solid body rotation: reference solution at t = 2π with discontinuous edge
functions

the peak of the cone is smeared. Since the FCT limiter is deactivated in Q2
elements, no peak clipping is visible at the hump of the hp-solution. This can
be seen in more detail in Fig. 3 where the profiles of the numerical and exact
solutions along the line x = 0.25 are presented.

Figure 4 shows the hp-adaptive reference solution at t = 2π using a new
approach for high-order elements (CG1-DG2) where we enrich continuous linear
finite elements with discontinuous higher-order basis functions. This leads to
discontinuities across the edges of Q2 elements but continuity is preserved at
the vertices. The result is comparable to the pure continuous solution of Fig. 1.

6 Conclusion

In this paper, we combined algebraic flux correction of FCT type with hp-
adaptivity for finite element approximations to convection-dominated trans-
port problems. In particular, we presented an hp-adaptivity algorithm based
on the reference solution approach. The proposed scheme enables hp-adaptivity
in smooth elements and h-refinement in non-smooth elements. The FCT lim-
iter is applied in low-order (Q1) elements, whereas the unconstrained Galerkin
approximation is used in high-order elements. The presented numerical results
illustrate the benefits of this approach in the context of a linear convection
equation. The possibility of enriching linear finite elements with discontinuous
higher-order basis functions was explored. The CG1-DG2 approach was found
to be as accurate as CG1-CG2. Future work will focus on the numerical analysis
of this promising new approach to hp-adaptivity.

Acknowledgements. The authors would like to thank Pavel Solin (University of
Nevada, Reno) for inspiring discussions. This research was supported by the German
Research Association (DFG) under grant KU 1530/6-1.
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Abstract. Transport algorithms are highly important for dynamical
modeling of the atmosphere, where it is critical that scalar tracer species
are conserved and satisfy physical bounds. We present an optimization-
based algorithm for the conservative transport of scalar quantities (i.e.
mass) on the cubed sphere grid, which preserves local solution bounds
without the use of flux limiters. The optimization variables are the net
mass updates to the cell, the objective is to minimize the discrepancy
between these variables and suitable high-order cell mass update (the
“target”), and the constraints are derived from the local solution bounds
and the conservation of the total mass. The resulting robust and effi-
cient algorithm for conservative and local bound-preserving transport on
the sphere further demonstrates the flexibility and scope of the recently
developed optimization-based modeling approach [1,2].

1 Introduction

We present a conservative, and monotone optimization-based transport algo-
rithm and its application to a cubed sphere grid. The method is based on an
incremental remap approach [6] with an optimization-based remap step at the
core. The efficient mass variable mass target (MVMT) algorithm [5] is used for
the remap step. In this approach a high-order mass update is used as the tar-
get for the optimization and local solution bounds and mass conservation are
guaranteed through the constraints.

Numerical results are shown for standard transport tests on the sphere.
A similar incremental remap transport algorithm in which the remap step is
implemented using the flux-corrected remap (FCR) [9] provides a benchmark
for the numerical studies. The studies show that the optimization-based algo-
rithm is computationally competitive with the benchmark and is more robust in
the case of complex flows.
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I. Lirkov et al. (Eds.): LSSC 2013, LNCS 8353, pp. 205–212, 2014.
DOI: 10.1007/978-3-662-43880-0 22, c≥ Springer-Verlag Berlin Heidelberg 2014



206 K. Peterson et al.

2 Optimization-Based MVMT Transport

We briefly review the MVMT optimization-based transport algorithm for the
scalar transport problem

∂ρ

∂t
+ ∇ · ρv = 0 on Ω × [0, T ] and ρ(x, 0) = ρ0(x). (1)

Our approach combines the incremental remapping idea [6] with an optimization-
based remap step [3–5].

Consider a partition C(Ω) of Ω into cells ci, i = 1, . . . , C. Let mi =
∫

ci
ρ(x, t)

dV , μi =
∫

ci
dV , and ρi = mi/μi denote the cell mass, the cell volume, and the

mean cell density, respectively. The algorithm is motivated by the fact that
mass is conserved within Lagrangian volumes and cell average density depends
only on the constant mass and the updated Lagrangian volume. Given a grid
configuration C(Ω(t)), cells masses (mi(t)), cell volumes (μi(t)), and cell average
densities (ρi(t)) at time t, the incremental remapping algorithm consists of three
steps:

1. Project the departure grid at time t to an arrival grid at time t + Δt using
the velocity field: C(Ω(t)) ∈⊂ C(Ω(t + Δt));

2. Update mass and cell average density on the arrival grid: mi(t+Δt) = mi(t),
ρi(t + Δt) = mi(t)/μi(t + Δt) for i = 1, . . . , C;

3. Remap mean cell density back to departure grid C̃ = C(Ω(t)): m(t+Δt) ∈⊂ m̃
and ρ(t + Δt) ∈⊂ ρ̃, for i = 1, . . . , C.

In the final remap step the mean density values on the arrival grid ρi(t+Δt)
are used to find approximations of the new masses m̃i and mean densities ρ̃i on
the departure grid. To formulate the remap as an optimization problem we write
the remapped mass in cell ci as

m̃i =
⎧

c̃i

ρ(x)dV =
⎧

ci

ρ(x)dV +
⎪⎧

c̃i

ρ(x)dV −
⎧

ci

ρ(x)dV

⎨
.

The quantity in the parentheses is the incremental mass update (⎡ui) on ci, which
is the optimization variable. The approximate mass update

uT
i :=

⎧
c̃i

ρh(x)dV −
⎧

ci

ρh(x)dV ; i = 1, . . . , C,

defined using a mean-preserving linear density reconstruction

ρh(x)|ci = ρi + gi · (x − bi), bi - barycenter of ci (2)

provides the optimization target. The conditions that the remapped values satisfy
conservation of mass and local bounds define the optimization constraints. Suc-
cinctly, we require that

⎢C
i=1 ⎡ui = 0 and m̃min

i → mi+⎡ui → m̃max
i for i = 1, . . . , C,
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where m̃
min/max
i = ρ

min/max
i μ̃i. Thus, we have the following MVMT optimiza-

tion formulation of remap:
⎣⎤⎤⎤⎥
⎤⎤⎤⎦

minimize
1
2
∞⎡u − uT∞2θ2 subject to

C⎞
i=1

⎡ui = 0 and m̃min
i → mi + ⎡ui → m̃max

i i = 1, . . . , C.
(3)

The inequality constraints guarantee that the remapped mean cell density sat-
isfies the local bounds ρmin

i → ρ̃i → ρmax
i . These bounds are sufficient to ensure

monotone solutions provided each arrival grid cell remains in the immediate
neighborhood of its departure grid parent. Note that the global inequality con-
straints are separable, which allows for an efficient implementation of the MVMT
algorithm. The approximation gi to the gradient of the density in (2) is obtained
by a least-squares fit from the mean cell densities in neighboring cells. The target
mass increment is computed by integrating the density reconstruction over the
intersections of the arrival mesh with the departure mesh. Rather than comput-
ing exact intersections we use a swept region approximation [3,4].

3 Extension of MVMT Transport to Cubed Sphere Grid

The cubed sphere grid, originally introduced by Sadournay [12], consists of six
faces or panels of a cube that are projected onto the surface of a sphere. This
configuration avoids the pole singularity that plagues latitude/longitude grids
and is in increasing use among the climate community. To define the grid par-
tition we use an equiangular gnomonic projection where α, β ⊃ [−π/4, π/4] are
central angles, which can be related to the local panel coordinates xp, yp by

xp = a tan α yp = a tan β p = 1, . . . , 6,

where a = R/
≥

3 and R is the radius of the sphere. Figure 1 shows a plot of
the six cube panels and an example cubed sphere grid. For mappings between
latitude/longitude coordinates and the cubed sphere coordinates we refer to [11].

(a) (b)

Fig. 1. (a) The six cube panels. (b) A cubed-sphere grid with 10 × 10 elements per
panel.
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Extension of the MVMT algorithm to a cubed-sphere grid requires modifica-
tions to the target computation, but does not affect the constraints or the opti-
mization algorithm. This is one of the key advantages of the optimization-based
approach, which has been exploited in [5] to formulate remap and transport
algorithms in spherical coordinates and to explore adaptive target definitions.

To compute the target mass increment the area integrals and linear density
reconstruction must be reformulated for the cubed sphere curvilinear coordi-
nates. In the incremental remap approach the area integrals are generally con-
verted to line integrals via Green’s theorem. Using Green’s theorem with the
nonorthogonal curvilinear cubed sphere panel coordinates, the area integral over
a cell can be expressed as

μi =
⎧

ci

dV = −
⎧

δci

yp

rp(1 + x2
p)

dxp ,

for rp =
⎟

1 + x2
p + y2

p. The linear density reconstruction additionally requires
barycenters of cells, which can be similarly written as

bxi =
1
μi

⎧
ci

xpdV = − 1
μi

⎧
δci

xpyp

rp(1 + x2
p)

dxp ,

and
byi =

1
μi

⎧
ci

ypdV = − 1
μi

⎧
δci

1
rp

dxp .

Using these expressions, the mean preserving density reconstruction on the cubed
sphere grid for a position s on a panel p is

ρh(s)|ci = ρi + g
xp

i (xp − bxi) + g
yp

i (yp − byi).

Once this density reconstruction is determined the MVMT algorithm as
described in [3,5] can be applied.

4 Results

To test the formulation on the cubed sphere grid, two standard test cases for
transport on the sphere described in [8,10] are used. In Example 1, we compute
the solid body rotation of a Gaussian distribution on the sphere to test the
convergence rate of the algorithm for the cubed sphere geometry. The tempo-
rally constant zonal flow field is given in terms of zonal (u) and meridional (v)
components of the velocity on a sphere with longitude (λ) and latitude (θ) as

u(λ, θ) = 2π (cos(θ) cos(α) + cos(λ) sin(θ) sin(α))
v(λ, θ) = 2π sin(λ) sin(α).

The rotation angle α provides the orientation of the flow. For this test α is
taken to be π/4, which is the most demanding orientation for the cubed-sphere
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Table 1. (1) Comparison of the computational costs of FCR and MVMT as mea-
sured by MatlabTM wall-clock times in seconds, on a single Intel Xeon X5450 3.0 GHz
processor, for the slotted-cylinder translation test on the sphere. (2) Comparison of the
L1 errors with respect to the initial condition.

Solid-body translation on the sphere (timings and L1 error)
FCR MVMT FCR MVMT

Mesh # steps Time (s) Time (s) L1 error Rate L1 error Rate

3◦ 240 18.1 17.6 1.33e-2 – 1.49e-2 –
1.5◦ 480 108.5 109.3 2.43e-3 2.45 2.65e-3 2.50
0.75◦ 960 816.5 811.0 5.17e-4 2.34 5.44e-4 2.39

geometry because the density distribution is transported over four of the corners
of the cubed-sphere grid. The smooth Gaussian density distribution is initially
centered at (λ1, θ1) = (3π/2, 0) and is defined in terms of three-dimensional
Cartesian coordinates (X,Y,Z) as

ρ(λ, θ) = exp(−5((X − X1)2 + (Y − Y1)2 + (Z − Z1)2)) (4)

where X1 = cos λ1 cos θ1, Y1 = sin λ1 cos θ1, and Z1 = sin θ1.
Three grids are used with 30 × 30, 60 × 60, and 120 × 120 elements per panel

corresponding to resolutions of 3∗, 1.5∗, and 0.75∗ along the equator. Results are
computed using the incremental remapping approach discussed in Sect. 2 with
the MVMT algorithm used for the remap step. For comparison, results from the
FCR algorithm are also given.

At the final time the density distribution returns to the initial position, which
allows for an error analysis. L1 errors are computed as in [8]. Timings as well
as L1 errors and rates for the MVMT and FCR solutions are given in Table 1.
For this simple translation of a smooth density distribution it is expected that
MVMT and FCR perform similarly. Slightly better than second-order conver-
gence is seen for both methods and the absolute errors are comparable. The

Initial MVMT t = 0.15 MVMT t = 1

Fig. 2. Transport results for the solid-body rotation test on the sphere at the time the
center of the density distribution passes over a cubed sphere corner (t = 0.15) and at
the final time (t = 1) after one revolution (960 time steps) on a mesh with 120 × 120
elements per panel. The rotation angle of π/4 determines the trajectory shown on the
plots as a white dashed line.
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computational costs of MVMT and FCR are virtually identical, owing to the
efficiency of the MVMT optimization scheme. Plots of the density distribution
at the initial time, at time t = 0.15 as the Gaussian hill is passing over a cubed
sphere corner, and at the final time t = 1 are shown in Fig. 2 for the MVMT
algorithm. Results for FCR are visually very similar and thus not shown here.

Example 2 is more demanding with an initial density distribution consisting
of two notched cylinders with radius r = 1/2, height h = 1, and initial positions
(λ1, θ1) = (5π/6, 0) and (λ2, θ2) = (7π/6, 0). Given the great circle distance
between an arbitrary point (λ, θ) and a cylinder center (λi, θi)

ri(λ, θ) = arccos (sin θi sin θ + cos θi cos θ cos(λ − λi)) ,

the initial configuration of the notched cylinders may be expressed in latitude-
longitude coordinates as

ρ(λ, θ) =

⎣⎤⎤⎥
⎤⎤⎦

h if ri < r and |λ − λi| ≤ r/6 for i = 1, 2
h if r1 < r and |λ − λ0| < r/6 and θ − θ0 < −5r/12
h if r2 < r and |λ − λ1| < r/6 and θ − θ1 > 5r/12
0 otherwise.

The cylinders are transported in the following deformational flow field with
superimposed rotation

u(λ, θ, t) = 2 sin2(λ − 2πt/T ) sin(2θ) cos(πt/T ) + 2π cos(θ)/T

v(λ, θ, t) = 2 sin
⎠
2(λ − 2πt/T )

)
cos(θ) cos(πt/T )

where the period T is set to 5.
Timings as well as L1 errors and rates for the MVMT and FCR solutions

are given in Table 2 and plots of the density distribution at the initial time,
at a time of maximum deformation t = 2.5 and a final time t = 5 are shown
in Fig. 3. Second-order convergence is not seen for either method in this case
due to the discontinuous density field, but the errors and convergence rates
appear comparable. Note, however that for this case with 2400 time steps and
a maximum Courant-Friedrichs-Lewy (CFL) number of 0.677 the FCR solution

Table 2. (1) Comparison of the computational costs of FCR and MVMT as mea-
sured by MatlabTM wall-clock times in seconds, on a single Intel Xeon X5450 3.0 GHz
processor, for the nondivergent deformational velocity test on the sphere. (2) Compar-
ison of the L1 errors with respect to the initial condition.

Deformational transport on the sphere (timings and L1 error)
FCR MVMT FCR MVMT

Mesh # steps Time (s) Time (s) L1 error Rate L1 error Rate

3◦ 600 45.9 45.0 9.38e-1 – 9.54e-1 –
1.5◦ 1200 274.1 277.5 6.17e-1 0.60 6.53e-1 0.55
0.75◦ 2400 2081.0 2071.5 4.16e-1 0.59 4.45e-1 0.55
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Initial FCR t = 2.5 FCR t = 5

MVMT t = 2.5 MVMT t = 5

Fig. 3. Transport results for the nondivergent deformational flow test on the sphere,
shown at the time of maximum deformation (t = 2.5) and at the final time (t = 5) for
a total of 2400 time steps on a mesh with 120 × 120 elements per panel.

has a minimum value of −0.0639 and a maximum value of 1.075, while the
MVMT solution remains within the physical bounds [0, 1]. This case illustrates
that fact that the low-order fluxes used in the FCR method are not guaranteed to
be monotone for relatively high CFL numbers if exact cell intersections are not
used. When the number of time steps is decreased to 1650, which corresponds to
a maximum CFL number of 0.985, the FCR solution blows up, but the MVMT
solution still remains monotone and appears reasonable visually (Fig. 4).

MVMT t = 2.5 MVMT t = 5

Fig. 4. Transport results for the nondivergent deformational flow test with rotation on
the sphere, shown at the time of maximum deformation (t = 2.5) and at the final time
(t = 5) for a total of 1650 time steps for a maximum CFL number of 0.985 on a mesh
with 120× 120 elements per panel. The FCR solution blows up for this long time step
case and is therefore not shown.
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5 Conclusion

A computationally efficient optimization-based transport algorithm detailed in
[3,5] has been modified for the cubed sphere geometry. The resulting formula-
tion has been tested on two standard transport cases for the sphere [7]. The
optimization-based transport is shown to be computationally competitive with
an algorithm based on flux-corrected remap and to exhibit similar errors for the
simplest test case. For the more challenging test case MVMT maintains positiv-
ity and is more robust for larger time steps.
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Abstract. In this paper we propose a general model for solving the
Transportation Network Design Problem (TNDP). Since in real-scale
networks the number of feasible solutions to be examined does not allow
an exhaustive search and objective functions are not convex, it is neces-
sary to adopt metaheuristic algorithms to obtain sub-optimal solutions
within suitable calculation times. Hence, we show and analyse some algo-
rithms proposed in the literature for solving TNDPs both in urban and
extra-urban contexts in order to highlight the importance of metaheuris-
tic algorithms in large-scale transportation problems.

Keywords: Transportation · Network design · Metaheuristic algorithms
· Real-scale networks

1 Introduction

The Transportation Network Design Problem (TNDP) consists in optimising the
features of a transportation network (such as timing of traffic lights or public
transport frequencies) so as to minimise the value of an objective function, taking
user behaviour and several constraints into account. It is worth noting that, in
the case of real-scale networks, the number of decision variables and their values
are such that the number of feasible solutions has an order of magnitude equal to
1010–1060. Hence, since the use of an exhaustive search has to be excluded and
objective functions are generally not convex, it is necessary to adopt or develop
metaheuristic algorithms in order to obtain sub-optimal solutions within suitable
calculation times.

In previous years, by means of metaheuristic algorithms, the authors pro-
posed the solution of several transportation problems in the case of real-scale
networks (see papers [1–4]). The aim of this paper is not to provide a comparison
among metaheuristic algorithms in order to identify the best but to show the
feasibility of adopting such algorithms for solving large-scale problems. Hence,
we propose an overview of the literature, recommending the above papers for
in-depth analysis. However, an extensive state-of-the-art review of the TNDP
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can be found in [5,6]. Generally, the TNDP can be decomposed into a Road
Network Design Problem (RNDP) or a Mass Transit Network Design Problem
(MTNDP). The RNDP, which consists of designing variables of the private car
system, has been widely studied elsewhere. The proposed models may be classi-
fied into discrete variable models, continuous variable models and mixed variable
models. Likewise, the MTNDP, which consists of designing variables of the pub-
lic transport system, has been explored by [7,8]. The models in question can
be classified into service frequency optimisation, joint design of frequencies and
routes or elastic demand approach models.

To show the validity of metaheuristic algorithms in solving large-scale trans-
portation problems, we compare algorithm frameworks and numerical results
obtained from the above literature. The paper is structured as follows: Sect. 2
provides the theoretical formulation of the TNDP; Sect. 3 describes the meta-
heuristic algorithms adopted and Sect. 4 shows numerical applications; finally,
Sect. 5 summarises the conclusions and outlines research prospects.

2 The Transportation Network Design Problem

In general, the TNDP can be formulated as:

ŷ = arg min
y∗Sy

Z (y,f∗) (1)

subject to:
f∗ = Λ (f∗,y,d) (2)

λ (y,f∗) ∈ Sλ (3)

where y is the vector of decision variables to be optimised; ŷ is the optimal value
of y; Sy is the feasibility set of vector y; Z (·) is the objective function to be
minimised; f∗ is the vector of equilibrium flows to be calculated by means of
(2); Λ (·) is the assignment function; d is the vector of travel demand; λ (·) is
a function which expresses transportation system features; Sλ is the feasibility
set of function λ (·).

In particular, constraint (2) represents the assignment constraint which pro-
vides equilibrium flows f∗ as a function of equilibrium flows f∗, decisional vari-
ables y and travel demand d. Indeed, transportation network performance gen-
erally depends on the number of users of transportation systems and on the
features of the considered project expressed by means of the decisional variable
value, that is:

C = C̃ (f ,y) (4)

where C represents the vector of network performance, generally indicated as
generalised cost; C̃ (·) represents the generalised cost function; f the vector of
generic transportation network flows.
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Likewise, user behaviour is affected by transportation systems performance
and travel demand, that is:

f = f̃ (C,d) (5)

where f̃ (·) represents the network loading function, i.e. a function which
describes user behaviour in terms of network flows.

By combining (4) and (5), we obtain a fixed-point formulation, that is:

f = f̃
(
C̃ (f ,y) ,d

)
(6)

whose aim is to determine a flow vector, indicated as equilibrium flow vector f∗,
which, together with the value of design variables y, yields network performance
C which, jointly with travel demand d, affects user behaviour such that they
generate flows equal to equilibrium flow vector f∗, that is:

f∗ = f̃
(
C̃ (f∗,y) ,d

)
(7)

Analytically, (7) represents the constraint (2) expressed in terms of net-
work loading and generalised cost functions, whose theoretical properties were
analysed by [9,10], and relative solution algorithms were proposed by [9–13]. In
particular, [12,13] are based on Ant Colony Optimisation.

Constraint (3) indicates that some transportation system features, whose
values depend on decisional variables y and equilibrium flows f∗, may have to
satisfy some conditions such as budget or technical constraints described by Sλ.

It is worth noting that the TNDP can be classified as a monomodal or a
multimodal problem according to the assumptions on analysed transportation
systems. Indeed, as shown by [14], if the designed intervention does not provide
relevant effects on all transportation systems, we may analyse only a single mode
by a monomodal approach; otherwise it is worth considering all influenced modes
by a multimodal approach. Moreover, if the modal share of travel demand can be
assumed independent from the analysed intervention scenarios, we may assume
that the travel demand for each analysed transportation system is constant and
the assignment model (2) is indicated as a rigid demand model. Otherwise the
assignment model (2) is indicated as an elastic demand model.

3 Metaheuristic Solution Algorithms

As shown in the introduction, some TNDPs have been analysed in the case of
large-scale networks by proposing and/or adopting the following solution algo-
rithms: the Neighbourhood Search Algorithm (NSA), a Heuristic Local Search
Algorithm (HLSA), the Scatter Search (SS) and the Genetic Algorithm (GA).

In this section the main features of the above algorithms are provided.
However, for a more detailed description of these algorithms, we suggest
reading [1–4].
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3.1 Neighbourhood Search Algorithm (NSA)

The NSA is a heuristic algorithm for solving discrete optimisation problems.
Each vector y has an associated set of vectors N (y) ⊆ Sy, called neighbourhood
of y, where the generic element y′ ∈ N (y) is obtained from solution y by an
operation consisting in changing only one component of vector y.

In the NSA, one of the most commonly adopted rules for generating the
next solution is the Steepest Descent Method (SDM) consisting in examining
all elements of the neighbourhood and identifying the solution with the best
objective function value. In managing large-scale networks, calculation times
may be reduced by adopting a Random Descent Method (RDM). It consists
in extracting randomly a solution from the neighbourhood and determining its
objective function value: if the new solution is better than the current one,
it becomes the current solution; otherwise, another neighbourhood solution is
randomly extracted until a better solution is found.

Obviously, the use of random draws, especially in the case of non-convex
functions, could provide different results both in terms of objective function
improvement (i.e. we may obtain different local optima) and calculation time
requirements.

In both approaches, the algorithm ends when a solution is a local optimum.
We used the NSA mainly as a subroutine of more complex algorithms.

3.2 Heuristic Local Search Algorithm (HLSA)

The HLSA is a metaheuristic algorithm consisting of five phases. In the first
phase, each component of vector y is optimised, assuming that the values of
other components are constant. This phase may be developed according to two
approaches: an exhaustive or a monodimensional NSA approach. In this phase,
constraint (3) is neglected. The second phase consists in determining the first
starting solution by setting each component of vector y at the optimal value
calculated in the previous phase. The third consists in performing an NSA with
an SDM or RDM approach. Also in this phase, constraint (3) is neglected. The
fourth phase entails analysing all solutions generated in the previous phases,
selecting the one that minimises the objective function and jointly satisfies con-
straint (3). Finally, the last phase performs NSA with an SDM approach by
considering constraint (3).

3.3 Scatter Search (SS)

The SS, as shown by [15], is a metaheuristic algorithm for solving complex com-
binatorial optimisation problems which consists of five phases. The first phase
consists in generating a set of solutions which should cover different parts of
the solution space. The second entails applying for each element of the current
reference set an improvement method for generating improved solutions. The
improvement method could be, for instance, the NSA or HLSA. In the third
phase, a reference set is generated by selecting all improved solutions generated
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in the previous phase or, if they are too numerous, only part of them. In the
fourth phase, some solution subsets are generated, consisting of some solutions
belonging to the reference set, which will be combined in the following phase
to generate other solutions. Finally, the solutions of each subset are combined
by associating a score (depending on the objective function value and the times
that the specific value is assumed by the variable in all solutions belonging to
the subset) to each value that can be assumed by a component of vector y. The
combined solution obtained from the subset will be that in which every variable
assumes the value with the best score.

The solutions obtained in the last phase are improved (phase 2), generating a
new reference set. The procedure ends when the reference sets in two successive
iterations are equal or when a fixed a priori number of iterations is reached.

3.4 Genetic Algorithm (GA)

The genetic algorithm is a metaheuristic evolutionary technique which explores
the solution space by mimicking natural evolution [16,17]. Each solution y
is indicated as a chromosome and each solution component as a gene. The
main phases of the algorithm are: initialisation, selection, reproduction and
termination.

The first phase of the algorithm consists in defining the starting population,
that is an initial set of solutions. In the second phase, for each element of the
population the objective function and the related fitness function are calculated.
Moreover, in this phase some pairs of members of the population are extracted
(parent selection), for instance, by adopting a roulette wheel selection scheme.
Once two elements have been selected as parents, the reproduction phase is per-
formed by means of two sub-phases: crossover and mutation. Crossover consists
of extracting randomly an integer number, x, in the interval [1;ny], where ny is
the dimension of vector y. The first offspring will have the first x genes which
are the same as the father’s and the others (ny − x) identical to the mother’s.
Likewise, it is possible to generate complementary offspring which have the first
x genes like the mother’s and the others (ny − x) just like the father’s. The
mutation consists in randomly selecting a gene for each offspring and randomly
selecting a number in the set of feasible values of that gene. The offspring are
added to the best solution in the previous population and the selection phase
will be once again performed. The procedure ends when the optimal values of
objective function in two successive iterations are equal or when a fixed a priori
number of iterations is reached.

4 Application to Real Scale Networks

In this section we describe some applications of the above-mentioned algo-
rithms proposed in the literature for solving the following TNDPs: the Urban
Road Network Design Problem (URNDP) [1], where link directions were opti-
mised with a rigid demand monomodal approach; the Extra-urban Road Network
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Table 1. Application contexts

Analysed problem Real-scale network Population Area (km2)

URNDP Benevento (Italy) 61,700 130
ERNDP Campania (Italy) 6,075,000 13,600
UTNDP Salerno (Italy) 132,000 59
ETNDP Campania (Italy) 6,075,000 13,600

Table 2. Variables and exhaustive approach features

Analysed
problem

Number of
variables

Type Feasible
values

Feasible
solutions

Exhaustive calculation
times (years)

URNDP 12 + 129 Integer 2/3 1.45e+65 3.57e+58
ERNDP 102 Binary 2 5.07e+30 4.18e+24
UTNDP 40 Integer 15 1.11e+47 4.82e+41
ETNDP 14 Integer 10 1.00e+14 3.30e+08

Design Problem (ERNDP) [2], where roads to be improved were optimised with a
rigid demand monomodal approach; the Urban Transit Network Design Problem
(UTNDP) [3], where bus line frequencies were optimised with an elastic multi-
modal approach; the Extra-urban Transit Network Design Problem (ETNDP) [4],
where rail line frequencies were optimised with an elastic multimodal approach.

Table 1 describes some features of the application contexts. Table 2 provides
details on the design variable numbers (12 + 129 and 2/3 means that there
are 12 variables with 2 feasible values and 129 variables with 3 values) and an
estimation of calculation times in the case of an exhaustive approach.

Table 3 provides numerical results obtained by testing different algorithms on
large-scale networks. In particular, SSn-k indicates the use of an SS algorithm
implemented n times with the use of algorithm k as an improvement method;
NSA(x) indicates the use of an NSA implemented with the x approach; and
HLSA(x) indicates the use of an HLSA algorithm obtained by implementing
the NSA phases with an x approach. Finally, the last column expresses the
improvement in objective function value obtained with the best solution with
respect to the initial solution.

Further details concerning the analysed application can be found in [1–4].
However, in terms of application results, it may be concluded that the adoption
of analysed metaheuristic algorithms allows sub-optimal solutions to be obtained
within suitable calculation times.

In detail, we may state that the use of an NSA with an RDM approach
provides similar results but with lower calculation times than the use of an
SDM approach (see URNDP, ERNDP and UTNDP). However, since the NSA
is based on random draws, results could be affected by the sequence of draws.
Hence, it may be useful, in terms of future research, to provide an analysis of
RDM approaches in the case of different draws.

Likewise, in the case of SS, we may highlight that an increase in the number of
implementations could provide a better value of objective function (see URNDP).
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Table 3. Numerical results

Analysed Implemented Number of Calculation Objective function
problem algorithms analysed solutions times (h) improvements (%)

URNDP SS1-NSA(SDM) 171,751 370 13.95
URNDP SS1-NSA(RDM) 26,851 58 13.82
URNDP SS2-NSA(RDM) 52,735 114 15.05
ERNDP NSA(SDM) 5,918 9 19.85
ERNDP NSA(RDM) 660 1 20.02
UTNDP HLSA(SDM) 2,946 113 1.93
UTNDP HLSA(RDM) 1,106 42 1.62
ETNDP HLSA(RDM) 1,075 31 1.42
ETNDP SS2-HLSA(RDM) 4,645 133 1.43
ETNDP GA 4,645 134 1.34

Hence, in terms of future research, it could be useful to provide an analysis of the
best compromise between the increase in calculation times and the improvement
in solutions.

Finally, we also provide a comparison between HLSA, SS, and GA (see
ETNDP). Obviously the analysis could be expanded by comparing described
algorithms in the case of different parameters such as population size for GA or
reference set for SS.

5 Conclusions and Research Prospects

Analysis of a large-scale transportation network requires the implementation
of a bi-level optimisation problem where the lower level consists in solving a
fixed-point problem. The huge number of feasible solutions and the non-convexity
of the objective function necessarily requires the adoption of metaheuristic
algorithms.

The paper proposed a brief description of algorithms applied by the authors
in previous years for solving transportation problems. In particular, initial results
show that the use of metaheuristic algorithms is actually one of the few
approaches for managing real-scale problems.

Future research will focus on comparing all described algorithms in all
analysed networks in order to provide a homogeneous field of analysis, comparing
each algorithm by varying implementation parameters and implementing other
metaheuristics in order to explore and show the actual power of metaheuristics.
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Abstract. Genetic algorithms, proved as successful alternative to
conventional optimization methods for the purposes of parameter identi-
fication of fermentation process models, search for a global optimal solu-
tion via three main genetic operators, namely selection, crossover, and
mutation. In order to determine their importance for finding the solution,
a procedure for significance assessment of genetic algorithms operators
has been developed. The workability of newly elaborated procedure has
been tested when simple genetic algorithm is applied to parameter iden-
tification of S. cerevisiae fed-batch cultivation. According to obtained
results the most significant genetic operator has been distinguished and
its influence for finding the global optimal solution has been evaluated.

Keywords: Simple genetic algorithm · Genetic operators · Parameter
identification · S. cerevisiae fed-batch cultivation

1 Introduction

Genetic algorithms (GA) [1] are a metaheuristic method based on biological
evolution. Some properties such as hard problems solving, noise tolerance, eas-
iness to interface and hybridize make GA a suitable and quite workable tool
especially for incompletely determined tasks. Such a task and a real challenge
for researchers is the parameter identification of fermentation processes (FP)
models [2–6]. FP are known as complex, dynamic systems with interdependent
and time-varying process variables, and their modeling is a specific task, rather
difficult to be solved. Failure of conventional optimization methods to reach to
a satisfactory solution for parameters identification of FP models [6] provokes
idea as an alternative technique genetic algorithms to be tested.

Inspired by natural genetics, Goldberg [1] initially presents the standard
single-population genetic algorithm (SGA) that searches a global optimal solu-
tion using three main genetic operators in a sequence selection, crossover and
mutation. When GA are applied for the purposes of model parameter identifi-
cation, there are many operators, functions, parameters and settings that may
vary depending on the considered problems [1,7]. In [7] three of the main GA
parameters, namely generation gap (GGAP), crossover (XOVR) and mutation
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Table 1. Range of investigated genetic algorithms parameters

(MUTR) rates have been investigated towards model accuracy and algorithm
convergence time with values shown in Table 1, according to some statements
[8]. Among them three, GGAP has been distinguished as the most sensitive GA
parameter. Up to almost 40 % of the algorithm calculation time can be saved in
the case of one of the considered in [7] SGA using GGAP = 0.5 instead of 0.9.
Exploring different values of XOVR no such time saving was realized but it was
pointed that value of 0.85 can be assumed as more appropriate. Only in MUTR
no tendency of influence was drawn, but for the same algorithm it was shown
that using MUTR = 0.1 instead of 0.05 leads to save up to 20 % of convergence
time without loss of model accuracy.

In general, the quality of GA performance might be assessed by some rep-
resentative criteria such as objective function value and algorithm convergence
time. But from biological, and even biotechnological, point of view it is valuable
to be known how the main GA parameters influent to model parameters. Going
further, such analysis might be worth to assess the GA operators significance.
As an alternative for such a purpose, intuitionistic fuzzy logic might be applied.

The aim of this study is to apply intuitionistic fuzzy estimations for assessing
the influence of the three main GA operators, namely selection, crossover and
mutation. For that purpose, the three main GA parameters - GGAP, XOVR
and MUTR are going to be evaluated towards the values of model parameters
when standard SGA is implemented to parameter identification of S. cerevisiae
fed-batch cultivation.

2 Background

2.1 Mathematical Model of S. cerevisiae Fed-Batch Cultivation

Experimental data of S. cerevisiae fed-batch cultivation is obtained in the Insti-
tute of Technical Chemistry - University of Hannover, Germany [6]. The culti-
vation of the yeast S. cerevisiae is performed in 1.5 l reactor, using a Schatzmann
medium. Glucose in feeding solution is 50 g/l. The temperature was controlled
at 30 ∗C, the pH at 5.7. The stirrer speed was set to 500 rpm.

Mathematical model of S. cerevisiae fed-batch cultivation is commonly
described as follows, according to the mass balance [6]:

dX

dt
= µX − F

V
X (1)
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dS

dt
= −qSX +

F

V
(Sin − S) (2)

dE

dt
= qEX − F

V
E (3)

dt = −qO2X + kO2
L a (O→

2 − O2) (4)

dV

dt
= F (5)

where X is the concentration of biomass, [g/l]; S - concentration of substrate
(glucose), [g/l]; E - concentration of ethanol, [g/l]; O2 - concentration of oxygen,
[%]; O→

2 - dissolved oxygen saturation concentration, [%]; F - feeding rate, [l/h];
V - volume of bioreactor, [l]; kO2

L a - volumetric oxygen transfer coefficient, [1/h];
Sin - glucose concentration in the feeding solution, [g/l]; µ, qS , qE , qO2 - specific
growth/utilization rates of biomass, substrate, ethanol and dissolved oxygen,
[1/h]. All functions are continuous and differentiable.

The fed-batch cultivation of S. cerevisiae considered here is characterized by
keeping glucose concentration equal to or below to its critical level, sufficient dis-
solved oxygen and availability of ethanol in the broth. This state corresponds to
the so called mixed oxidative state (FS II) according to functional state modeling
approach [6]. Hence, specific rates in Eqs. (1)–(5) are:

µ = µ2S
S

S + kS
+ µ2E

E

E + kE
, qS =

µ2S

YSX

S

S + kS

qE = − µ2E

YEX

E

E + kE
, qO2 = qEYOE + qSYOS (6)

where µ2S , µ2E are the maximum growth rates of substrate and ethanol, [1/h];
kS , kE - saturation constants of substrate and ethanol, [g/l]; Yij - yield coeffi-
cients, [g/g]; and all model parameters fulfill the non-zero division requirement.

As an optimization criterion, mean square deviation between the model out-
put and the experimental data obtained during cultivation has been used:

J =
∑

(Y − Y →)2 ∇ min, (7)

where Y is the experimental data, Y → - model predicted data, Y = [X,S,E,O2].

2.2 Intuitionistic Fuzzy Estimations

In intuitionistic fuzzy logic (IFL) [9,10] if p is a variable then its truth-value is
represented by the ordered couple

V (p) = ∈M(p), N(p)⊂ (8)
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so that M(p), N(p),M(p) + N(p) → [0, 1], where M(p) and N(p) are degrees of
validity and of non-validity of p. These values can be obtained applying different
formula depending on the problem considered.

For the purpose of this investigation the degrees of validity/non-validity can
be obtained, e.g., by the following formula:

M(p) =
m

u
, N(p) = 1 − n

u
, (9)

where m is the lower boundary of the “narrow” range; u - the upper boundary
of the “broad” range; n - the upper boundary of the “narrow” range.

If there is a database collected having elements with the form < p,M(p),
N(p) >, different new values for the variables can be obtained. In case of two
records in the database, the new values might be as follows:

Vopt = ∈max(M1(p),M2(p)),min(N1(p), N2(p))⊂ , (10)

Vaver = ∈(M1(p) + M2(p))/2, (N1(p) + N2(p))/2⊂ , (11)

Vpes = ∈min(M1(p),M2(p)),max(N1(p), N2(p))⊂ , (12)

Therefore, for each p: Vpes(p) ∞ Vaver(p) ∞ Vopt(p).

3 Procedure for Significance Assessment of Genetic
Algorithms Operators Applying IFL

The implementation of IFL for assessment the significance of GA operators steps
on the construction of validity and non-validity degrees. For that purpose, it
is required the algorithm to be performed in two different intervals of model
parameters variation. One interval could be determined as so-called “broad”
range known from the literature [4]. The other one, called “narrow” range, is
user-defined and might be obtained using different criteria — e.g. based on the
minimum and maximum values, or on the average ones, or some other.

In this study a procedure for significance assessment of GA operators apply-
ing IFL is proposed: at the beginning, a number of runs for each value of the GA
parameters, object of the investigation, have to be performed in both “broad”
and “narrow” ranges of model parameters. In this study, the “narrow” range is
constructed based on the average values of model parameters for the concrete
value of GA parameter. Further, the degrees of validity/non-validity are deter-
mined according to (9) for each value of GA parameters. Then, according to
(10)–(12), optimistic, average and pessimistic values are defined for each one
of the model parameters. Next, determined in such way values are assigned to
each of the model parameters for each of the ranges for each of GA parameters.
Finally, based on these assigns, the significance of GA operators is assessed.



Genetic Operators Significance Assessment in SGA 227

4 Significance of Genetic Algorithms Operators
in Standard SGA

Standard SGA [1] has been applied to parameter identification of S. cerevisiae
fed-batch cultivation. Following model (1)–(6) of S. cerevisiae fed-batch cultiva-
tion, nine model parameters have been estimated altogether. When one of GA
parameters GGAP, XOVR or MUTR is investigated according to Table 1, the
basic values for the other two are as follows, according to some statements [8]:
GGAP = 0.8, XOVR = 0.95 and MUTR = 0.05. These values are considered
as referent points. Based on the thorough investigations done in [7], the fol-
lowing values of three main GA parameters are suggested as more appropriate:
GGAP = 0.5, XOVR = 0.85 and MUTR = 0.1. These values are considered
as optimal. The type of genetic operators are as tuned in [7]. GA is terminated
when a certain number of generations is fulfilled, in this case 100. Parameter
identification of the model (1)–(6) has been performed using Genetic Algorithm
Toolbox [11] in Matlab 7 environment. All the computations are performed using
a PC Intel Pentium 4 (2.4 GHz) platform running Windows XP.

Table 2 presents previously used “broad” range with low (LB) and up (UB)
boundaries for each model parameter according to [4] as well as new “narrow”
range, proposed as presented above, alltogether for three GA parameters. Addi-
tionally, Table 2 consists of degrees of validity/non-validity, obtained by (9).

Table 3 presents the boundaries for the optimistic, average and pessimistic
prognoses for model parameters at different values of GA parameters, obtained
based on (10)–(12).

Since the average values of objective functions and convergence time have
been presented in [7], Table 4 lists only the average values of model parameters
when SGA has been executed at different values of GA parameters.

If one would like to go in details in the data presented in Table 4, it is worth
to note that there are few parameters that differ more than accepted as refer
point of 5 % deviation when model parameter values corresponding to referent
and optimal values have been compared. If one has a look at the GGAP, there
are only 2 parameters - kO2

L a and YOS that differ with, respectively, 11.96 %
and 11.29 % when GGAP = 0.5 (optimal value) is used instead of GGAP = 0.8
(referent value). Altogether 6 parameters differ more than 5 % when the referent
value of XOVR has been replaced with the optimal one: µ2E , kS and YOE increase
with, respectively, 5.50 %, 7.45 % and 72.92 %, while µ2S , YEX and YOS decrease
with, respectively, 11 %, 13.15 % and 5.97 %. In the case of MUTR only YOE

increases with 6.51 %. Nevertheless, all parameters are within acceptable from
biotechnological point of view limits.

Table 5 lists the number and type of the estimations assigned to model para-
meters when SGA is applied at referent and optimal values of GA parameters.

As seen from Table 5, there are 3 absolutely “winners” with only optimistic
prognoses - at optimal value of GGAP and both cases of MUTR - at optimal
and at referent values. But if anyone consideres Table 5 parameter by parame-
ter, when GGAP is changed from referent to optimal value, only 2 parameters
change with more than 5 % (see above) but namely they both “collapse” to the
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Table 2. Model parameters boundaries

Table 3. Prognoses for SGA performance

pessimistic prognoses and this is the case with the most pessimistic prognoses.
When XOVR is changed from referent to optimal value, altogether 6 parame-
ters change with more than 5 % (see above) but results in both cases might be
considered as similar: model parameters at the optimal value “lose” only one
of the optimistic prognosis that becomes average one. When MUTR is changed
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Table 4. Results from model parameter identification

Table 5. Model parameters estimations

from referent to optimal value, only one parameter changes with more than 5 %
(see above) but results remain only with the optimistic prognoses. That means
that the MUTR is with the less “sensitivity” to the changes. Thus, based on the
intuitionistic fuzzy estimations of the model parameters and further constructed
prognoses, GGAP is again distinguished as the most sensitive GA parameter,
due to even small changes (only 2 parameters exceeding 5 %) lead to signifi-
cant difference in the final outcome, namely reliable values of model parameters.
GGAP is followed by XOVR with more or less comparable results for referent
and optimal values and - at last - MUTR with no changes observed. In general,
these results confirm once again those reported in [7] towards model accuracy
and algorithm convergence time: GGAP is the most sensitive GA parameter,
followed by XOVR and MUTR. Since each of investigated here three GA para-
meters are closely associated to GA operators, it could be inferred that selection
is the operator with the most significant influence both on the model accuracy
and algorithm convergence time, as well as on the model parameters values.

Figure 1 shows results from experimental data and model prediction, respec-
tively, for biomass (top left), ethanol (top right), substrate (bottom left) and
dissolved oxygen (bottom right) when SGA has been applied with the optimal
values of three investigated GA parameters, namely GGAP = 0.5, XOVR = 0.85
and MUTR = 0.1.

The obtained results show the effectiveness of SGA applied with optimal
values for three investigated here GA parameters.
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Fig. 1. Model prediction compared to experimental data when SGA has been applied
with the optimal values

5 Conclusions

In this investigation intuitionistic fuzzy logic has been implemented in order to
assess the significance of GA operators for the purposes of parameter identifi-
cation of S. cerevisiae fed-batch cultivation. For that aim a procedure has been
developed and further applied to SGA for three main GA operators, namely
selection, crossover and mutation. After the procedure implementation and based
on the constructed optimistic, average and pessimistic prognoses for model para-
meters, results have been compared. This study confirms once again the state-
ment previously reported by authors: GGAP is again distinguished as the most
sensitive GA parameter, since even small changes lead to significant difference
in the results. Changes of XOVR do not have as strong influence and results are
more or less comparable, while changes of MUTR even do not reflect. Since the
three investigated GA parameters are closely related to GA operators, it could
be inferred that selection is the operator with the most significant influence.
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Presented here “cross-evaluation” based on IFL appears as an appropri-
ate tool and might be applied for reliable assessment of other GA parameters,
different optimization algorithms as well as to various objects of parameter iden-
tification.
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Abstract. Wireless sensor networks monitor physical or environmen-
tal conditions. One of key objectives during their deployment is full
coverage of the monitoring region with a minimal number of sensors
and minimized energy consumption of the network. The problem is hard
from the computational point of view. Thus, the most appropriate app-
roach to solve it is application of some metaheuristics. In this paper we
apply multi-objective Ant Colony Optimization to solve this important
telecommunication problem. The aim is to study the influence of the
number of the ants on the algorithm performance.

1 Introduction

A sensor is a device which can collect and transmit data. First the wireless
sensor networks were used by the military for reconnaissance and surveillance
[2]. Examples of possible applications are forest fire prevention, volcano eruption
study [14], health data monitoring [16], civil engineering [12], and others. Sensor
networks depend on deployment of sensors. The sensors can sense any various
phenomena or material such as temperature, voltage, or chemical substances.
A Wireless Sensor Network (WSN) allows automatic monitoring.

The energy for collecting data and its transmission comes from the battery of
a node. In battery-powered systems, higher data rates and more frequent radio
use consume more power. One of the nodes of the WSN has special role. It is
a High Energy Communication Node (HECN), which collects data from across
the network and transmits it to the main computer to be processed. The sensors
transmit their data to the HECN, either directly or via hops, using closest sensors
as communication relays. When deploying a WSN, the positioning of the sensor
nodes becomes one of major concerns. The coverage obtained with the network
and the economic cost of the network depends directly on it. Note that, the
WSN can have large numbers of nodes, and therefore the task of selecting the
geographical positions of the nodes for an optimally designed network can be very

I. Lirkov et al. (Eds.): LSSC 2013, LNCS 8353, pp. 232–239, 2014.
DOI: 10.1007/978-3-662-43880-0 25, c≥ Springer-Verlag Berlin Heidelberg 2014
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complex. Thus, it is unpractical to solve the problem with traditional numerical
methods. In this case, one of the best choices is to apply some metaheuristic
method.

The problem is multi-objective with two objective functions. They are (1)
minimizing the energy consumption of the nodes in the network, and (2) mini-
mizing the number of the nodes. The full coverage of the network and connectiv-
ity are considered as constraints. It is an NP-hard multi-objective problem. We
propose a multi-objective ant (ACO) algorithm, which solves the WSN layout
problem. Our aim is to study the influence of the number of ants on the algo-
rithm performance and quality of the achieved solutions and to find the minimal
number of ants which are enough to achieve good solutions.

Jourdan [8] solved an instance of the WSN layout using a multi-objective
genetic algorithm. In their formulation, a fixed number of sensors had to be
placed in order to maximize the coverage. In some applications the most impor-
tant is the network energy. In this context, in [7] an ACO algorithm was pro-
posed, while in [15] an evolutionary algorithm was applied to this variant of
the problem. In [4] an ACO algorithm was investigated that took into account
only the number of the sensors. In [10] several evolutionary algorithms to solve
the problem were proposed. Finally, in [9] a genetic algorithm, which achieves
similar solutions as the algorithms in [10] was studied, but tested on small test
problems.

The paper is organized as follows. In Sect. 2 the WSN is introduced and the
layout problem is formulated. Section 3 presents the ACO algorithm. In Sect. 4
we show the experimental results. Finally, Sect. 5 contains concluding remarks.

2 Problem Formulation

A wireless sensor network consists of spatially distributed autonomous sensors
that cooperatively monitor physical or environmental conditions, such as tem-
perature, sound, vibration, pressure, motion, or pollutants. The development of
wireless sensor networks was motivated by military applications such as bat-
tlefield surveillance, and are now used in many industrial and civilian applica-
tion areas, including industrial process monitoring and control, machine health
monitoring, environment and habitat monitoring, health-care applications, home
automation, and traffic control, etc.

Each node in a sensor network is equipped with wireless communications
device and an energy source, usually a battery. A sensor node might vary in size
and cost. Each sensor node sens an area around itself. The sensing radius deter-
mines the sensing area of the node. The nodes communicate among themselves
using wireless communication links, determined by a communication radius. The
HECN is responsible for the external access to the network. Therefore, every sen-
sor node in the network must have communication with the HECN. Since the
communication radius is often much smaller than the network size, direct links
are not possible for the peripheral nodes. A multi-hop communication path is
then established for those nodes that are far from the HECN. Overall, the quan-
tity of the transmitted data defines the used energy. The node with the highest
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energy defines the energy of the network. Note that an unspecified number of
sensor nodes has to be placed in a terrain to provide full coverage. Therefore, the
objectives are to construct a network, with minimal number of sensors (cheap-
est for construction) and with minimal energy (cheapest for exploitation), while
keeping the connectivity of the network.

3 Multi-objective ACO for WSN Layout

Multi-Objective Optimization (MOP) has his roots in the nineteenth century
in the work in economics, of Edgeworth and Pareto [11]. The optimal solution
for MOP is not a single solution as for mono-objective optimization problems,
but a set of solutions defined as Pareto optimal solutions. A solution is Pareto
optimal if it is not possible to improve a given objective without deteriorating
at least another objective. The main goal of the resolution of a multi-objective
problem is to obtain the Pareto optimal set and consequently the Pareto front.
One solution dominates another if minimum one of its component is better than
the same component of other solutions and other components are not worse.
The Pareto front is the set of non-dominated solutions. When metaheuristics
are applied, the goal becomes to obtain solutions close to the Pareto front.

We apply multi-objective ant colony optimization to solve the problem. The
idea for ant algorithm comes from the real ant behavior. When walking, they
put on the ground chemical substance called pheromone. The ants smell the
pheromone and follow the path with a stronger pheromone concentration. Thus
they find shorter path between the nest and the food. The ACO algorithm uses
a colony of artificial ants that behave as cooperating agents. With the help of
the pheromone they try to construct better solutions and to find the optimal
ones. The problem is represented by a graph and the solution is represented by
a path in the graph or by tree in the graph. Ants start from random nodes and
construct feasible solutions. When all ants construct their solution we update
the pheromone. Ants compute a set of feasible moves and select the best one,
according to the transition probability rule. The transition probability pij , to
chose the node j when the current node is i, is based on the heuristic information
ηij and on the pheromone level τij of the move, where i, j = 1, . . . , n.

pij =
τα
ij ηβ

ij∑
k∗{allowed}

τα
ik ηβ

ik

(1)

The ant selects the move with highest probability. The initial pheromone is
set to a small positive value τ0 and then ants update this value after completing
the construction stage [1,5]. In our implementation we use the MAX-MIN Ant
System (MMAS) [3,13], which is one of the most successful ant approach. The
main feature of the MMAS is using a fixed upper bound τmax and a lower bound
τmin of the pheromone. Thus the accumulation of big amounts of pheromone by
part of the possible movements and repetition of same solutions is partially
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prevented. In our case the graph of the problem is represented by a square grid.
The ants will deposit their pheromone on the nodes of the grid. We will deposit
the sensors on the nodes of the grid. The solution is represented by tree starting
by the high energy communication node. An ant starts to create the rest of
the solution from a random node, which communicates with the HECN. Using
transition probability (Eq. 1), the ant chooses the next node to visit. If there
is more than one node with the same probability, the ant chooses one of them
randomly. Construction of the heuristic information is a crucial point in ant
algorithms. Our heuristic information is a product of three values (Eq. 2).

ηij(t) = sij lij(1 − bij), (2)

where sij is the number of the new points which the sensor will cover, and

lij =

{
1 if communication exists ;

0 if there is not communication ,
(3)

b is the solution matrix and the matrix element bij = 1 when there is sensor
on this position otherwise bij = 0. With sij we try to increase the number of
points covered by one sensor and thus to decrease the number of sensors we
need. With lij we guarantee that all sensors will be connected. The search stops
when pij = 0 for all values of i and j.

The pheromone trail update rule is given by:

τij ← ρτij + Δτij , (4)

Δτij =

{
1/F (k) if (i, j) ∈ non-dominated solution constructed by ant k,

0 otherwise .

We decrease the pheromone with a parameter ρ ∈ [0, 1]. This parameter mod-
els evaporation in the nature and decreases the influence of old information in
the search process. After that, we add the new pheromone, which is proportional
to the value of the fitness function. If the pheromone of some node becomes less
than the lower bound of the pheromone we put it to be equal to the lower bound
and thus we prevent the pheromone of some nodes to become very low close to
0 (and to be undesirable). It is a kind of diversification of the search. The F is
the fitness function. The role of the fitness function is to estimate the achieved
solutions. The aim is to add more pheromone on non-dominated solutions and
thus to force the ants to search around them for new non-dominated solutions.
The fitness function is constructed as follows:

F (k) =
f1(k)

maxi f1(i)
+

f2(k)
maxi f2(i)

(5)

Where f1(k) is the number of sensors achieved by the kth ant and f2(k) is
the energy of the solution of the kth ant. These are also the objective functions
of the WSN layout problem. We normalize the values of two objective functions
with their maximal achieved values from the first iteration.
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4 Experimental Results

Every ant start to create its solution from random point. In our case it is such
point, which communicates with the HECN. Thus the ant algorithm uses small
number of agents (ants). Smaller number of ants means less memory, which is
important when we solve large problems. The aim of this work is to learn the
influence of the number of the ants on quality of the solution.

We have created a software which realizes our ant algorithm. Our software can
solve the problem at any rectangular area, the communication and the coverage
radius can be different and can have any positive value. The HECN can be fixed
in any point in the area. The program was written in C language and the tests
were run on computer with Intel Pentium 2.8 GHz processor. In our tests we use
an example where the area is square and consists of 500 points in every side. The
coverage and communication radii cover 30 points. The HECN is fixed in the
center of the area. We use this example for comparison, because other authors
use the same. We apply our algorithm on smaller test problem too. The area
consists of 350 × 350 points. The HECN is fixed in the center of the area, the
coverage and communication radii are as in a previous case.

In our previous work [6], we showed that our ant algorithm outperforms
existing algorithms for this problem. There, after several runs of the algorithm
we specify the most appropriate values of its parameters. We apply MAX-MIN
ant algorithm with the following parameters: α = β = 1, ρ = 0.5. In the ACO,
if we fix the number of iterations and double the number of ants the execution
time will be doubled. We study the influence of the number of ants on the quality
of the solutions. We fixed the number of the iterations to be 60 (H ant) and the
number of ants to have following values {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

We run our ACO algorithm 30 times for each number of ants. We extract
the Pareto front from the solutions of these 30 runs. In Tables 1 and 2 we show
the achieved non dominated solutions (Pareto fronts) for case 500 × 500 and
350×350 respectively. In the left column are the number of sensors and in other
columns is the energy corresponding to this number of sensors and the number
of ants. Analyzing the Table 1 (case 500 × 500) we observe that the Pareto front
achieved by 6 ants dominates the Pareto fronts achieved by 1, 2, 3, 4 and 5
ants. The is not dominance between Pareto fronts achieved by 6, 7, 8, 9 and
10 ants and we cannot say which of them is better. Analyzing the Table 2 (case
350 × 350) we observe that the Pareto front achieved by 3 ants is dominated by
other Pareto fronts. The Pareto fronts achieved by 1, 2, 4, 5, 6 and 9 ants are
part of the Pareto front achieved by 7, 8 and 10 ants. More ants leads to more
computational time. Thus the best Pareto front in the case 350×350 is achieved
by 7 ants.

We prepare a Pareto front achieved by all runs of the algorithm with any
number of ants (from 6 to 10) and we call it a common Pareto front. In the
case 500× 500 the common Pareto front is {(232, 48), (230, 52), (228, 54), (226,
56), (224, 57), (223, 81)} and for the case 350 × 350 it is {(111, 30), (113, 28),
(114, 26), (116, 25)}. Let us have a set of number of sensors from 223 to 244
for the case 500 × 500 and 111 to 116 for the case 350 × 350 respectively. If for
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Table 1. Pareto fronts, example 500× 500

Sensors Ants
1 2 3 4 5 6 7 8 9 10

244 52
243
242
241
240 53 53
239 56 50
238 53
237
236
235 54 50
234 53 48 53
233 51
232 55 51 54 50 52 51 48
231 55 55 53
230 57 52 54
229 58 55 56 56
228 54
227 57 57 57 56 57
226 59 95 73 57 59 57 56
225 58 60 58 57 58 57
224 61 88 65 61 59 57 71
223 89 81

some number of sensors there is not corresponding energy in the common Pareto
front, we put the energy to be equal to the point of the front with lesser number
of sensors. We can do this because, if we take some solution and if we include
a sensor close to the HECN it will not increase the value of the energy and will
increase by 1 only the number of the sensors. Thus, there is corresponding energy
to any number of nodes. This front we will call the Extended front. In the case
500 × 500 the Extended front is {(234, 48), (233, 48), (232, 48), (231, 52), (230,
52), (229, 54), (228, 54), (227, 56), (226, 56), (225, 57), (224, 57), (223, 81)}. In
the case 350 × 350 the Extended front is {(111, 30), (112, 30), (113, 28), (114,
26), (115, 26), (116, 25)}.

We have included additional criteria to decide which Pareto front is better
in the case when there are not dominance between Pareto fronts. We calcu-
lated the distance between a Pareto front and the Extended front. To calculate
the distance, we extend every element of Pareto fronts in a similar way as the
Extended front. The distance between a Pareto front and the Extended front
is the sum of distances between the points with a same number of sensors,
or it is the difference between their energy. These distances are always positive
because the Extended front dominates the Pareto fronts. Thus, by this criteria,
the best Pareto front will be the closest to the Extended front.
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Table 2. Pareto fronts, example 350× 350

Sensors Ants
1 2 3 4 5 6 7 8 9 10

111 30 30 30 30 30 30 30
112
113 28 35 28 28 28 28 28
114 26 26 26 26 26 26 26 26 26 26
115
116 25 25 25

Table 3. Distances from extended front case 500× 500

Ants 6 7 8 9 10

Distance 20 23 21 22 29

In Table 3 we show the distances between the Extended front and the Pareto
fronts achieved by 6, 7, 8, 9, and 10 ants. Analyzing the Table 3 we conclude
that the distance between the Extended front and the Pareto front achieved by
6 ants is the shortest. Thus, by our criteria, the Pareto front (solutions) achieved
by 6 ants in the case 500 × 500 is better.

5 Conclusion

In this paper we studied the influence of the number of ants on the performance
of the ACO algorithm, applied to the wireless sensor network. Smaller number
of ants leads to the shorter running time and minimizes memory use, which is
important for complex / large cases. We varied the number of ants, while fixing
the number of iterations. Furthermore, we included the concept of an Extended
front, as an additional tool to compare Pareto fronts that do not dominate each
other. The best Pareto front and the best performance were achieved when the
number of ants was equal in case 500 × 500 in the case 350 × 350.
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Abstract. Temporal data clustering is the process of grouping similar
patterns in a dataset together when the patterns change with time. This
change in patterns introduces the issue of loss of diversity in differential
evolution algorithms. The lack of re-diversification of the population lim-
its the exploration ability of differential evolution algorithms resulting in
early convergence around stale solutions. This paper describes and eval-
uates three algorithms that were applied to a temporal data clustering
problem, namely the standard data clustering DE, the reinitialising data
clustering DE, and the data clustering DynDE.

1 Introduction

Data clustering [8] refers to the process of grouping similar data patterns together,
where the data can be either static or dynamic. Static data refers to already
existing data which does not change, while dynamic data refers to frequently
changing data [7]. Temporal data [13], which refers to data that changes at some
frequency of time, can therefore be considered as a type of dynamic data due to
its frequent changes.

A clustering dataset may change in various ways and combinations [5]. Pat-
terns from one cluster may move to another cluster, clusters themselves may also
move around the search space as a whole and, lastly, old clusters may disappear
and new ones may appear due to migrating, disappearing or appearing patterns.

The differential evolution [16] algorithm is a population-based evolutionary
algorithm that uses selection, mutation, and crossover to adapt the individuals
of its population. The clustering of data using differential evolution has been
previously evaluated by a number of researchers [1,3,9,14,15,17].

When clustering dynamic data, the differential evolution algorithm suffers
from loss of diversity [12]. This occurs as individuals begin to converge. The
problem emerges when data is dynamic, as exploration of the search space is
necessary to evolve to the correct positions and the population needs to be
re-diversified in order to explore the search space. Unlike particle swarm opti-
mization algorithms, however, DEs do not have the issue of outdated memory
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[2] as they do not store any information about the population’s previous state.
This may make them more appropriate algorithms for clustering dynamic data.

This paper evaluates the temporal data clustering ability of the data clus-
tering DE proposed in [6]. The paper also adapts this algorithm to re-initialise
part of the population if a change in the data has occurred. Lastly, it adapts
the DynDE proposed in [10] to perform the clustering process. The three DEs
are compared using three measures [5], namely the inter-cluster distance, the
intra-cluster distance, and the Ray-Turi validity index. These results are then
ranked using the Friedman test.

2 Differential Evolution

The differential evolution [16] algorithm is a population-based evolutionary algo-
rithm guided by distance information about the current population [4]. Each
possible solution in the population is a vector, called an individual. Individu-
als adapt using three evolutionary processes, namely selection, mutation, and
crossover, where the mutation process is the one that mainly differentiates the
DE from all other evolutionary algorithms.

The mutation process uses a target vector selected from the population at
random, as well as distance information from the population to generate a new
vector called the trial vector. This is done by adding a scaled difference between
two random individuals of the population to a target vector selected at random.
The trial vector is created using [4]

ui(t) = xi1(t) + β(xi2(t) − xi3(t)) (1)

xi1(t) is the target vector, β is the scaling factor, xi2(t) is a randomly selected
individual from the population that is not xi1(t) and xi3(t) is a randomly selected
individual from the population that is not xi1(t) or xi2(t).

The current individual being adapted, xi, is then used by the crossover
process to produce a single offspring. The offspring is created by [4]

x∗
ij(t) =

{
uij if j is ∈ J
xij(t) if j is /∈ J

(2)

where ui is the trial vector, xi is the parent vector, and J is a set of crossover
points, which are determined by random selection. This paper uses binomial
crossover where a crossover probability is used to determine which dimensions
of the offspring will become part of the new solutions and which dimensions of
the parent vector will remain as part of the solution, ensuring that one randomly
selected dimension is forced to be within the set J .

Lastly, a selection algorithm is applied in order to determine which offspring
and which parents survive to the next generation. This paper uses an elitist
selection strategy, where the individual with the best fitness value between the
offspring and the parent survives to the next generation.



242 K.S. Georgieva and A.P. Engelbrecht

3 Data Clustering DE and Its Reinitialising Alternative

The solution to a data clustering problem consists of K vectors, where K is the
total number of clusters and each vector represents the position of the center of
one cluster. Due to the solution no longer being one vector, the representation
of individuals in a clustering DE needs to change. The clustering DE, therefore,
represents each solution as a set of centroid positions, where each dimension of
the solution is a vector holding the position of a cluster centroid.

The dataset has an influence on determining whether one solution is better or
worse than another solution. For this reason, the dataset needs to be used when
the fitness of an individual is calculated. This is done by using the quantization
error [11] as a fitness measure for the clustering problem. The quantization error
is minimised and it is calculated using

Je =

∑K
k=1

∑

∀zp∈Ck
d(zp,ck)

|Ck|
K

(3)

where z is a data pattern, Ck is the set of data patterns assigned to the cluster,
d(zp, ck) is the Euclidean distance between data pattern zp and cluster centroid
ck, |Ck| is the total number of patterns assigned to the centroid, and K is the
total number of centroids. This measure can divide by zero if a centroid is posi-
tioned far from all patterns leading to no patterns being assigned to it, making
|Ck| zero. To remedy this, if |Ck| was zero, the fitness value was approximated
to infinity, such bad fitness will, with time, filter out the bad solution.

The data clustering DE [6] performs the selection, mutation, and crossover
processes in the same manner as the DE described in Sect. 2. A target vector and
two difference vectors are selected at random, a trial vector is then created using
(1) on each cluster centroid position, the offspring and the parent individual are
then crossed over using (2) on each cluster centroid, and then the individual
with the best fitness is selected to survive to the next generation. The complete
algorithm is shown in Algorithm 1.

The reinitialising data clustering DE adapts the data clustering DE in an
attempt to re-diversify the population and overcome the loss of diversity problem
that the DE experiences. This adaptation is the addition of a re-initialisation
step, where part of the population is re-initialised if a change in the dataset has
been detected.

4 DynDE for Data Clustering

The DynDE algorithm proposed by Mendes and Mohais [10] adapts the original
DE described in Sect. 3 by adding an element of exclusion and Brownian individ-
uals in order to increase diversity. It is a multi-population algorithm where each
population searches for the optimal solution to a problem in a different area of
the search space. If two populations are optimising the same area of the search
space, the population with the worst global best solution is re-initialised.
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Brownian individuals are individuals that are not adapted using the standard
DE strategies discussed, but instead their new positions are generated based on
the global best position of their population and Gaussian noise. Gaussian noise
is added to the position of the global best individual of a sub-swarm using
bi = yi + N(0, σ) where bi is the new value for dimension i of the Brownian
individual, yi the value for dimension i of the global best individual and N(0, σ)
is Gaussian noise with mean 0 and standard deviation σ. Mendes and Mohais [10]
evaluated quantum individuals and entropic differential evolution, but concluded
that the Brownian individuals displayed the most successful results.

Algorithm 1 Data Clustering Differen-
tial Evolution
1: Initialize a population of N individuals

with K centroid positions each
2: while stopping condition has not been

reached do
3: for each individual xi do
4: for each data pattern zp do
5: Calculate the Euclidean dis-

tance d(zp,xij) to all clusters
6: Assign pattern zp to

cluster Cij , such that d(zp,xij) =
min∗k=1...Nk {d(zp,xik)}

7: end for
8: calculate the fitness using equa-

tion ( 3 )
9: Select a target entity and two

difference entities
10: Generate a trial entity ui(t) us-

ing equation ( 1 )
11: Generate the offspring x′

i using
equation ( 2 )

12: if f(x′
i) is better than f(xi)

then
13: add x′

i to the next popula-
tion

14: else
15: add xi to the next popula-

tion
16: end if
17: end for
18: end while

Algorithm 2 DynDE
1: Initialise M populations of individuals
2: Assign a percentage of each population

to be Brownian Individuals
3: Evaluate each population by perform-

ing the steps described in lines 4-9 of
Algorithm 1

4: Compare the global best individuals
from each population to each other

5: if One or more centroids of best indi-
viduals of two populations are within
an exclusion radius rexcl of each other
then

6: re-initialise the population with the
worst global best

7: else
8: for each population do
9: for each individual xi do

10: if xi is a normal individual
then

11: Update xi using lines 10-
12 of Algorithm 1

12: else if xi is a Brownian In-
dividual then

13: Update using bi = yi +
N(0, σ)

14: end if
15: end for
16: end for
17: Make the old Brownian Individuals

normal Individuals
18: Make a percentage of the weakest

individuals Brownian Individuals
19: end if

. .

The DynDE algorithm begins by initialising the sub-populations, making
a percentage of each sub-population Brownian individuals. It then calculates
the fitness of all the individuals in each sub-population. If two populations are
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within an exclusion radius rexcl from each other, the entire population with
the worst global best solution is re-initialised to random positions within the
search space. The populations that were not re-initialised update their normal
individuals by using the standard DE update methods described in Sect. 2 and
their Brownian individuals using the Brownian individual update. For this paper
an asynchronous approach was taken when updating the DynDE individuals,
where, instead of adding survivors to the next population, survivors replace
their parents in the current population.

What changes when the DynDE algorithm is used for data clustering is simple.
The representation of individuals described for the data clustering DE is used and
the fitness calculation takes the dataset into consideration. Inherently, the data
clustering DE updates are used instead of the DE updates described in Sect. 3.
This algorithm is shown in Algorithm 2, where the number of clusters is known.

5 Experimental Procedure

The migrating patterns cluster datasets used in [5] were used as the cluster-
ing problems in this paper. Datasets had 8 clusters, 80 patterns per timestep,
100 timesteps and combinations of severities of 1, 2, 3, 4, and 5, frequencies of
1, 2, 3, 4, and 5, and dimensions 3, 8, and 15. A window of 80 patterns was
used to slide from one timestep to the next. Higher severities refer to larger
changes while higher frequencies refer to less intervals of change, where the
iterationOfChange = f

10 ∗ totalIterations.
Fifty individuals were used and were initialised within the bounds of the

dataset. The averages of 30 individual simulations are reported in this paper,
where each simulation ran for 1000 generations with 8 populations. For the
reinitialising DE, 10 % of the population was re-initialised when a change took
place. A boundary constraint was also used, where individuals that pass the
boundaries were reset to stay on the boundary. Lastly, a scaling factor and
crossover probability of 0.5 were used.

6 Results and Discussion

The inter-cluster distance, intra-cluster distance and Ray-Turi validity index
were used as measures to compare the clustering ability of each of the three
DEs. Table 1 shows the average values and standard deviations for each of these

Table 1. Averages, standard deviation and chi-square values for inter-cluster distance,
intra-cluster distance and Ray-Turi validity for each algorithm’s last iteration. Where
the Chi-square was calculated with n = 75, k = 3, df = 2, α = 95%, showing a
statistical significant difference for all three measures where χ2 > 5.991

Algorithm Inter-cluster distance Intra-cluster distance Ray-Turi validity

Standard 9.029 ± 2.700 21.769 ± 1.191 1.084 ± 0.166
Standard Reinitialising 9.020 ± 2.688 21.772 ± 1.188 1.0716 ± 0.168
DynDE 3.262 ± 1.214 20.074 ± 1.316 0.902 ± 0.388
Chi-Square value χ2 112.6666667 21.94666667 10.90666667
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(a) Inter-cluster distance

per frequency

(b) Intra-cluster distance

per frequency

(c) Ray-turi validity per

frequency

(d) Inter-cluster distance

per severity
(e) Intra-cluster distance

per severity

(f) Ray-turi validity per

severity

(g) Inter-cluster distance

per frequency

(h) Intra-cluster distance

per severity

(i) Ray-turi validity per di-

mension

Fig. 1. Ranks of Inter-cluster distance, Intra-cluster distance and Ray-Turi validity
index per frequency, severity and dimension

three measures. On average, the standard and reinitialising data clustering DEs
have the best inter-cluster distances, showing that the clusters found by these
algorithms are further apart than the ones found by the DynDE. The DynDE,
however, has a more optimal average intra-cluster distance, showing that the
clusters found by the algorithm were more compact. Lastly, the DynDE’s Ray-
Turi validity value shows that the overall clustering capability of the DynDE
surpassed that of the standard and reinitialising DEs.
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Figure 1 illustrates the ranks resulting from the Friedman test performed for
the severity, frequency and dimension changes. Figure 1a, b, d, e, g, h shows that
the DynDE has the last-ranking inter-cluster distance, but the best intra-cluster
distance for all frequency and severity changes and most dimension changes. The
Ray-Turi validity value takes into account both inter- and intra-cluster distances
giving a more accurate representation of the clustering ability of an algorithm.
As shown in Fig. 1c, f, DynDE has the first-ranking Ray-Turi validity value for
all frequency and severity changes. Figure 1i, on the other hand, shows that
the DynDE struggled with higher dimensions by displaying the worst Ray-Turi
validity value out of the three algorithms as the dimension increased. Overall the
DynDE algorithm received the best resulting intra-cluster distance and Ray-Turi
validity values, while it received the worst inter-cluster distance values.

7 Conclusion and Future Work

This paper evaluated and compared the temporal clustering abilities of three
data clustering DEs. These three algorithms involve the standard data clustering
DE, the reinitialising data clustering DE, and DynDE.

The DynDE’s good intra-cluster distance showed that the DynDE found
clusters where the data patterns are close to each other, while the bad inter-
cluster distance shows that the clusters found were not as far from each other as
the ones found by the other two algorithms. According to the Ray-Turi validity
value, which combines the inter- and intra-cluster distances, the DynDE algo-
rithm performs the temporal data clustering tasks more effectively than the
standard and reinitialising data clustering DEs. The addition of repulsion in
order to re-diversify populations and the addition of Brownian individuals to
exploit good solutions had a positive effect on the performance of differential
evolution for clustering temporal data.

Future work includes implementing and evaluating a DynDE clustering solu-
tion where each population optimises one optimum instead of all, an algorithm
that does not require prior knowledge of the number of clusters and, lastly,
parameter tuning for these clustering DEs. Improvements to this algorithm in
order to make it less sensitive to dimension changes can also be considered for
future work.
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Abstract. The main aim of the present work is to combine Adaptive
Critic Design (ACD) approach that falls with the gradient optimization
techniques with the associative learning that is heuristic search algo-
rithm. The relatively new neural network structure — Echo state network
(ESN) — is used as critic network within ACD scheme. It is trained min-
imizing temporal difference error using Recursive Least Squares (RLS)
algorithm. The actor in ACD scheme is trained by associative learning.
The proposed approach is tested on optimization of a complex nonlin-
ear process for biopolymer production. The obtained previously results
using gradient descent algorithm for actor training are compared with
those obtained using heuristic search algorithm and the advantages and
shortcomings of both methods are discussed.

Keywords: Reinforcement learning · Hebbian learning · Adaptive critic
design · Echo state networks

1 Introduction

Reinforcement learning (RL) is introduced as a method of artificial neural net-
work training “by experience”, rather than “by examples”. Created initially to
mimic animal behavior in an attempt to explain Pavlovian conditioning, RL is
also recognized as an approximation of Bellman’s dynamic programming method
[2] that is well known in the control community. During the last thirty years
theoretical developments in this field (a very exhaustive retrospective can be
found in [9]) have lead to methodologies known as neuro-dynamic programming
[3] and adaptive critic designs (ACD) [12] also commonly known as Adaptive
Dynamic Programming. The core of the methods is the approximation of Bell-
man’s equation or value function (which is the discounted sum of future rewards)
using neural networks (also called “heuristic adaptive critic”). Having such well-
trained critic networks allows solving dynamic programming or RL tasks in a
forward manner. Different training schemes for adaptive critic design depend on
the presence or absence of a model of the environment [12]. In both cases the
critic’s training is done using temporal difference (TD) error [18] thereby mim-
icking the brain’s ability to learn how to predict future outcomes on the basis
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of previous experience without awaiting the final results from future actions.
The key component of ACD training and solving the optimization task is the
backpropagation method that is gradient method based on the chain rule of
derivative calculation [20]. Usually the critic is trained off-line since it needs a
collection of a variety of data from the beginning to the end of several process
runs. Combination between off-line and on-line learning is also considered [13].
True on-line applications of ACD approaches, however, needs very fast training
algorithms [14]. In highly non-linear environments the necessity for additional
feedback connections arises, which further complicates the on-line training. In
such cases the application of backpropagation trough time (BPTT) [20] is an
alternative. However, it is impossible to be used in an on-line mode. Instead of
that the Extended Kalman Filter (EKF) method [4] is usually applied, which is
more complicated and resource demanding. Hence it is crucial to work towards
finding simply trainable recurrent network structures for ACD schemes.

The recently proposed ESN structure [4,5,10] incorporates a dynamic reser-
voir generated randomly and easily trainable output neurons. The less complex
and much faster Recursive Least Square method (RLS) [4] can be applied for
their on-line training. Moreover, the derivative calculation with respect to the
ESN inputs (that is needed for gradient descent), requires much less computa-
tional effort, because of the ESN structure that naturally separates the reservoir
from its input and output connections. In our previous investigations we applied
this approach to a robot control task for obstacle avoidance [8]. In [6] on-line
training of ESN critic for solving the optimization task of a complex nonlinear
process of biopolymer production is investigated. From biological point of view
however, the gradient learning is considered as non-plausible. It is claimed that
associative learning algorithms like Hebbian law are closer to the biological neu-
rons behavior. In fact the ACD originate from the first actor-critic scheme [1]
that uses associative learning algorithms for both critic and actor. In [11] it was
proven that heuristic search algorithms arising from animal behavior such as
ant colony optimization can be considered as analog to the stochastic gradient
descent algorithms and to reinforcement learning techniques.

In the present study combination between non-associative training of critic
network and associative training of the actor is proposed. It combines the advan-
tage of on-line training of ESN critic using RLS and exploits biologically plausible
Hebbian law for the actor training. The results are compared with previous work
[6] using the gradient training of actor.

2 Problem Statement

2.1 ACD Approach

The ACD approach also called neural dynamic programming or heuristic
dynamic programming [3,12] is an approximation of the classical dynamic pro-
gramming in which the Bellman equation is approximated by a neural network
that is then used to predict the future utility function to be minimized by adjust-
ing control actions. The scheme for on-line training of ACD without known process
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Fig. 1. ACD scheme. Dashed lines represent the training cycle.

model (that is analog to the RL task) adopted with some changes from [16] is given
on Fig. 1. The vector State(k) represents the object state vector, a(k) is the con-
trol variable. The critic NN has to be trained to predict the utility function U(k)
by approximating Bellman’s equation as follows:

J(State(k), a(k)) =
k∑

t=0

γtU(State(t), a(t)) (1)

where γ is discount factor taking values between 0 and 1.
The value of control variable is adjusted by gradient descent algorithm as

follows:

ai(k) = ai−1(k) ± α
∂Ji(k)
∂ai(k)

(2)

Here i denotes the iteration number and 0 < α < 1 is learning rate. The sign
(±) in Eq. (2) depends on whether the optimization task is to maximize or to
minimize the utility function.

2.2 Associative Learning Approach

The fundamental law of Hebb states that stable pairing of pre- and postsynaptic
activity strengthens the weight of corresponding connection between neurons.
Based on it associative learning rule include product of presynaptic (or input
I(k)) and postsynaptic (or output O(k)) activities instead of the gradient and
by analogy with the Eq. (2), the Hebbian learning rule for a given connection
weight w at i-th training iteration is as follows:

wi(k) = wi−1(k) ± αIi(k)Oi(k) (3)

This learning rule is used also in the first actor/critic adaptive algorithm [1].
Here the training algorithm for the Adaptive Search Element (ASE) is applied
for action training as follows:

ai(k) = ai−1(k) ± αJi(k)ei(k) (4)
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where ei(k) denotes the eligibility trace of action. According to [1] and accounting
for specificity of the ACD scheme used here, the eligibility trace for control action
becomes:

ei(k) = δei−1(k) + (1 − δ)ai(k) (5)

where 0 < δ < 1 is decay rate of the trace.

2.3 Echo State Networks

ESNs are a kind of recurrent neural networks that arise from so called “reservoir
computing approaches” [10]. The basic ESN structure is shown in Fig. 2. The
ESN output vector denoted here by J(k) (since the ESN will be in the place
of critic network from Fig. 1) for the current time instance k is usually a linear
function of its input and current state:

J(k) = fout(W out[in(k),X(k)]) (6)

Here, in(k) is a vector of network inputs and X(k) a vector composed of the
reservoir neuron states; fout is a linear function (usually the identity), W out is
a nJ × (nin + nX) trainable matrix (here nJ , nin, and nX are the sizes of the
corresponding vectors J , in, and X). The neurons in the reservoir have a simple
sigmoid output function fres (usually hyperbolic tangent) that depends on both
the ESN input in(k) and the previous reservoir state X(k − 1):

X(k) = fres(W inin(k) + W resX(k − 1)) (7)

Here W in and W res are nin × nX and nX × nX matrices that are randomly
generated and are not trainable. There are different approaches for reservoir
parameter production [10]. A recent approach used in the present investigation
is proposed in [15]. It is called intrinsic plasticity (IP) and suggests initial adjust-
ment of these matrices, aiming at increasing the entropy of the reservoir neurons
outputs. For on-line training, the RLS algorithm [5] was used.

Fig. 2. Echo state network structure.
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2.4 PHB Production Process

The object under consideration here (PHB production process) is a kind of
mixed culture cultivation biotechnological process. Mixed culture systems are
quite common in nature: the human body, waste water treatment, ecosystems
are some well known examples. In such systems one microorganism assimilates
substrate A and converts it to metabolite B which is converted by another
microorganism to metabolite C. Since the change in culture conditions affects
all microorganisms differently it is difficult to control them in an optimal way.
That is why they are extremely difficult for dynamic analysis and control strate-
gies in typical industrial applications. A mixed culture system where sugars
(glucose) are converted to lactate by the microorganism L.delbrueckii and then
the lactate is converted to PHB (poly-β-hydroxybutyrate) by the microorgan-
ism R.euthropha is the subject of optimization here. The main product obtained
— PHB — is a biodegradable polymer used as thermoplastic in food and drug
industry. The main purpose of the process control strategy is to maximize the
final product of the process (PHB) accounting for the needs and mutual relations
of both microorganisms in the culture. Several approaches to this problem are
known by now. In [19] quite a complete mathematical model of the process has
been developed and different control strategies were exploited separately or in
combination. The PHB production process was modeled by seven nonlinear ordi-
nary differential equations. The model details can be found in [7,19]. In present
study the aim was to optimize set point time profiles of all three variables used
as control inputs — dissolved oxygen (DO∗), glucose (S∗), and nitrogen source
(N∗) concentrations. The previously developed model is used as process simula-
tor as it is difficult to make multiple real on-line experiments with such kind of
processes.

3 Results and Discussion

In the present investigation the action dependent heuristic dynamic program-
ming is applied. The main goal is to maximize the process outcome, i.e. the
target product PHB (denoted by Q here) by the end of the process. The utility
function is:

U(k) = Q(k)V (k) (8)

Vector State(k) includes all the main process state variables, i.e.:

State(k) = (X1(k), S(k), P (k),X2(k), N(k), Q(k)) (9)

where X1 and X2 denote concentrations of two microorganisms; P is the inter-
mediate metabolite (lactate) concentration; N is the nitrogen source concentra-
tion; S is sugar source concentration. The control vector consists of the three set
points that are subject of optimization:

a(k) = (S∗(k), N∗(k),DO∗(k)) (10)
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Fig. 3. Change of utility function value during iterative optimization. The discount
factor γ is increased by 0.001 each critic/actor training iteration. On the left is whole
run of 1000 iterations; on the right is a zoom of first 25 iterations.
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Fig. 4. Change of utility function value during iterative optimization. The discount
factor γ is increased by 0.01 each critic/actor training iteration. On the left is whole
run of 1000 iterations; on the right is a zoom of first 155 iterations.

Here DO is dissolved oxygen concentration in the cultural broth.
We suppose that all concentration controllers work properly and are able to

follow their set points. The applied control scheme is described in more detail
in [7,19]. For the ESN critic training and simulation a Matlab toolbox from [17]
with our improvements for IP training as in [15] was used. The critic network
has 9 inputs, 10 reservoir neurons and 1 output. The reservoir neurons have
hyperbolic tangent output function. Instead of a complex action network here
we have only time profiles of the set points of the sugar, nitrogen, and dissolved
oxygen concentrations that have to be adjusted during the training phase. The
initial set point profiles were taken from [7]. Detailed optimization algorithm can
be found in [6]. It consists of consecutive critic and actor training iterations. Here
for comparative purpose simple gradient algorithm without any improvement
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(such as momentum term or variable speed) was used. After every cycle of a
critic plus an action training iteration parameter γ is slightly increased until it
become equal to 0.5. Figures 3 and 4 represent the change of utility function
value during iterative optimization. It was observed that the procedure is too
sensitive to changes in discount factor. The smaller change (with step of 0.001)
led to slower convergence of algorithm; the bigger step of 0.01 however led to
unstable convergence and even after some number of iterations to falling in a
local maxima. In both cases it becomes clear that associative algorithm is much
slower and in spite of attempts to escape from the local optima, it is unable to
do this within reasonable number of iterations (see left part of Fig. 4).

4 Conclusions

The carried out initial investigations led to the following conclusions: the com-
bination of ACD approach with the associative learning of actor is a possible
alternative to the purely gradient ACD scheme; however, as it was expected, it
has much lower convergence speed; the expected ability of associative learning
algorithm to escape from local optima obviously possible but more investigations
are needed to prove it. Following these initial results, the future work needs to be
done on: proper choice of step change of the discount factor; usage of techniques
for escaping from local optima such as conjugate gradient approaches or variable
learning rate.

Acknowledgments. The research work reported in the paper is partly supported by
the project AComIn, grant 316087, funded by the FP7 Capacity Programme (Research
Potential of Convergence Regions).
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Abstract. This work presents a procedural content generation system
that uses an evolutionary algorithm in order to generate interesting maps
for a real-time strategy game, called Planet Wars. Interestingness is here
captured by the dynamism of games (i.e., the extent to which they are
action-packed). We consider two different approaches to measure the
dynamism of the games resulting from these generated maps, one based
on fluctuations in the resources controlled by either player and another
one based on their confrontations. Both approaches rely on conduct-
ing several games on the map under scrutiny using top artificial intelli-
gence (AI) bots for the game. Statistic gathered during these games are
then transferred to a fuzzy system that determines the map’s level of
dynamism. We use an evolutionary algorithm featuring self-adaptation
of mutation parameters and variable-length chromosomes (which means
maps of different sizes) to produce increasingly dynamic maps.

1 Introduction

Videogames, with a total consumer spent of 24.75 billion US dollars in 2011 [1], is
a very important pillar of the entertainment industry. Until the last decade, the
graphical quality of a game determined its quality but, since then, the attractive-
ness of video-games has fallen on additional features, such as music, interesting
stories and the player immersion into the game. It is difficult to measure how
much fun a game is since it depends on each player; however it is related to the
player satisfaction: the higher the satisfaction, the higher the fun.

This high satisfaction can be achieved via the automated adaptation of the
game in response to the player’s needs [7] using computational intelligence (CI)
techniques. Traditionally, CI has been applied to generate strategies that define
the behaviour of the non-player characters (NPC), but it can be also applied
to many other aspects of game development such as computational narratives,
player modelling, learning in games, intelligent camera control, and procedure
content generation (PCG), among other – see [6].

PCG involves algorithms and techniques devoted to create game content
automatically, providing several advantages to game developers, such as reduced

I. Lirkov et al. (Eds.): LSSC 2013, LNCS 8353, pp. 256–263, 2014.
DOI: 10.1007/978-3-662-43880-0 28, c≥ Springer-Verlag Berlin Heidelberg 2014
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memory consumption, the possibility of create endless video-games (i.e. the game
changes every time a new game is started) and a reduction in the expense of
creating the game content. This work focuses in PCG in the context of the real-
time strategy (RTS) game Planet Wars by means of evolutionary algorithms
(EAs).

Planet Wars is a real-time strategy game based on Galcon and used in the
Google AI Challenge 2010. The objective is to conquer all the planets on the
map or eliminate every opponent. Every game takes place on a map on which
several planets are scattered. These planets are able to host ships and they
can be controlled by any player or remain neutral if no player conquer them.
Moreover, planets have different sizes, a property that defines their growth rate
(i.e., the number of new ships created every time step, as long as the planet
belongs to some player). Players send fleets of ships from controlled planets to
other ones. If the player owns the target planet the number of fleet’s ships is
added to the number of ships on that planet, otherwise a battle takes place in
the target planet: ships of both sides destroy each other so the player with the
highest number of ships owns the planet (with a number of ships determined by
the difference between the initial number of ships). The distance between the
planets affects the required time for a fleet to arrive to her destination, which is
fixed during the flight (i.e., it is not possible to redirect a fleet while it is flying).

PCG for Planet Wars involves in this case generating the maps on which
the game takes place. The particular structure of these maps can lead to games
exhibiting specific features. In previous work [3,4] we focused on achieving bal-
anced games, i.e., games in which none of the players strongly dominates her
opponent. Such balanced games can be of little interest though, due to the lack
of action. For this reason, we turn our attention to the evolution of maps result-
ing in interesting, action-packed games. We use the label dynamism to refer
to this property of games. Next section is devoted to analyse the evolution of
dynamism-oriented games.

2 Evolution of Maps with Dynamism

To study the evolution of Planet Wars maps leading to dynamic games, let us
firstly analyse how to capture dynamism within an objective function. Subse-
quently, we focus on an evolutionary approach optimizing this objective function.

2.1 Capturing Dynamism

In order to evaluate the dynamism of the generated maps we had to specify which
are the characteristics that define a dynamic game. To do so, we consider two
groups of indicators. The first group reflects dynamism from a resource-based
perspective (i.e., we try to relate dynamism with the variation in the amount of
resources owned by either player); the second group focuses on confrontations
between the players (i.e., dynamism is tried to be captured by the extent to
which the players repeatedly clash). More precisely, the indicators for a game i
are the following:
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– Resource-based:
• Game length Ti: this is the ratio of the maximum number of turns allowed

τmax that have been played in the current game: Ti = τi/τmax.
• Conquering rate Ki: this is the ratio of planets which are not neutral at

the end of the game.
• Reconquering rate Zi: Let ζij be the number of planets that were owned

by a player in turn j − 1 and conquered by the other player in turn j.
Then Zi = 1

τi

∑τi
j=1 ζij/np, where np is the total number of planets.

• Peak difference: this is a family of variables measuring the maximal
amplitude of the variation in any of the resources accounted for, namely
planets (π), growth capacity (γ), and ships (ξ). Let φ

(a)
ij be the amount of

resource φ owned by player a in the j-th turn of the i-th game, we record
the two points in which the relative difference is best for one player and
the other one and sum both quantities, i.e., Δφ

i = max1�j�τi{(φ(1)
ij −

φ
(2)
ij )/(φ(1)

ij + φ
(2)
ij )} − min1�j�τi{(φ(1)

ij − φ
(2)
ij )/(φ(1)

ij + φ
(2)
ij )}

– Confrontation-based:
• Battle rate: Bi this is the ratio of planets under attack throughout the

game. Let βij be the number of planets that were under attack during
the j-th turn, then Bi = 1

τi

∑τi
j=1 βij/np.

• Destroyed ships Si: this is the ratio of the generated ships that have been
destroyed throughout the game. Let χi be the number of destroyed ships
and ψi the number of created ships, then Si = χi/ψi.

Since we use a tournament system whereby a number of bots are paired
and compete on the map under evaluation, the consider the average value of the
above indicators across the Ng total games. We drop the sub-index to denote this
average quantity. Subsequently, we have defined a set of fuzzy rules to express
dynamism as a function of these indicators. The fuzzy rule base is depicted in
Fig. 1. In general the underlying fuzzy sets (LO and HI) are defined so as to hit
a maximum at the corresponding end of the value range of the variable under
consideration, and decrease linearly towards the other end. The exceptions are
Z and B whose usual values are far from the theoretical maximal value 1.0. in
this case, we saturate the HI value to 1 when they reach the value 0.1 and 0.35
respectively (these values were empirically determined). For the output variable
dyn a middle triangular fuzzy set MED is defined, hitting a maximum at 0.5
and linearly decreasing towards both ends. In this case, both HI and LO reach
their minimum at this 0.5 value.

2.2 Evolutionary Approach

We have used a self-adaptive evolutionary approach in order to optimize the
dynamism of the generated maps. These maps have been encoded in mixed real-
integer vectors which define the characteristics of the planets (i.e. position, size
and number of ships) in a way that each gene represents a planet. The mutation
operator depends on the parameter’s type: Gaussian mutation for the real-valued
parameters and a method that generates suitable integer mutations [5,8] for the
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Resource-based:
1. if K is hi and Z is hi then dyn is hi
2. if Δπ is hi and Δγ is hi and Δξ is hi then dyn is hi
3. if Δπ is hi and (Δγ is lo or Δξ is lo) then dyn is med
4. if Δγ is hi and (Δπ is lo or Δξ is lo) then dyn is med
5. if Δξ is hi and (Δγ is lo or Δπ is lo) then dyn is med
6. if Δπ is lo and Δγ is lo and Δξ is lo then dyn is lo
7. if K is lo or Z is lo or T is very lo then dyn is lo

Confrontation-based:
1. if B is hi and S is hi then dyn is hi
2. if (B is hi and S is lo) or (B is lo and S is hi) then dyn is med
3. if B is lo and S is lo then dyn is lo

Fig. 1. Fuzzy rule bases for dynamism.

rest of the parameters. The parameters of these operators have been included into
the solutions, thus providing the means for self-adapting them. More precisely,
in the case of real-valued parameters ∇x1, ..., xn∈ mutation is done by having
σ∗

i = σi · exp(τ ∗ · N(0, 1) + τ · Ni(0, 1)) and x∗
i = xi + σi · Ni(0, 1) where σi

is the mutation parameter for xi, τ ∗ = 1/
⊂

2n, and τ = 1/
√

2
⊂

n. Likewise,
integer-valued parameters ∇z1, ..., zm∈ are mutated by having ς ∗

i = max(1, ςi ·
exp(τ · N(0, 1) + τ ∗ · N(0, 1))), ψi = 1 − (ς ∗

i/m)(1 +
√

1 + (ς ∗
i/m)2)−1 and z∗

i =
zi + →ln(1 − U(0, 1))/ln(1 − ψi)∞ − →ln(1 − U(0, 1))/ln(1 − ψi)∞ where ςi is the
mutation parameter for zi, τ = 1/

⊂
2m and τ ∗ = 1/

√
2
⊂

m, U(0,1) is a function
that returns a random number drawn from a uniform distribution in (0,1).

As for recombination, we have used a “cut and splice” operator that recom-
bines two individuals by swapping cut pieces with different sizes that provides
new maps which contain a different number of planets in relation to their parents,
hence adding again additional self-adapting capabilities to the algorithm.

3 Experimental Results

We have used the DEAP library [2] to implement the EA described previously.
The algorithm has employed a population size of 100 individuals and a (μ + λ)
generational scheme, with μ = 10, λ = 100. The bots used to evaluate the
individuals were obtained from the Google AI Challenge competition- These
bots (Manwe1, Flagscapper’s bot2 and fglider’s bot3) ranked in the top 100 (there
were over 4600 participants) and have their source code available. The duration
of the games was limited to τmax = 400 turns. Regarding the evaluation of fuzzy
rules, we have used the min t-norm, the max t-conorm, and the centre of mass
as defuzzification method.
1 https://github.com/Manwe56/Manwe56-ai-contest-planet-wars
2 http://flagcapper.com/?c1
3 http://planetwars.aichallenge.org/profile.php?user id=8490

https://github.com/Manwe56/Manwe56-ai-contest-planet-wars
http://flagcapper.com/?c1
http://planetwars.aichallenge.org/profile.php?user_id=8490
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We have run two sets of experiments focusing on the behaviour of the algo-
rithm when optimizing dynamism using either a confrontation-based (CB) or
a resource-based (RB) approach. The results are shown in Fig. 2. Let us firstly
focus on the middle and rightmost sub-figures which provide an indication on the
correlation of both objective functions when one of them is being optimized. It is
clear from these plots that both measures are fairly orthogonal, in the sense that
when one of them is optimized the other one follows a rather flat trajectory. Thus
they can be seen as truly complementary views on game dynamism. Notice also
that CB fitness seems to converge faster, likely indicating that confrontations can
be induced more easily than wide resource fluctuations by adjusting the map.
Another interesting fact is shown in the leftmost sub-figure. Therein we show
how balanced are the games when either objective function is being optimized.
The measure of balanced was defined elsewhere aiming to analyse its trade-off
with a RB version of dynamism, and essentially amounts to measure how the
three resources (planets, growth capacity and ships) remain balanced (i.e., their
absolute difference is small) for the two players throughout the game. While
balance seems to follow a flat trajectory when RB dynamism is being optimized,
there is an increasing trend in the case of optimizing CB dynamism. We believe
this can be due to the fact that continuous battles prevent the accumulation of
resources by either party and push towards their mutual cancellation.

Figure 3 shows the progress of the variables used to measure the dynamism
of the maps during evolution. Unsurprisingly, variables used in the function
under optimization in either case exhibit an increasing trend in general. It is
more interesting to note some cross-relationships. Firstly, the conquering rate

Balance Confrontation−based Resource−based
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0 2500 5000 7500 10000 0 2500 5000 7500 10000 0 2500 5000 7500 10000
evaluations

Resource−based Confrontation−based

Fig. 2. Evolution of the different objective functions. In the middle and rightmost
graph we depict the evolution of dynamism measured in both ways when one of them
is subject to optimization (the one indicated in the sub-graph title). The leftmost graph
indicates the evolution of balance when either objective function is being optimized.
Each line represents the average of 10 runs of the evolutionary algorithm and the
shaded area indicates the standard error of the mean.
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Fig. 3. Evolution of the different variables involved in the rules of the fuzzy sets.

K grows higher in the case of CB fitness than in RB fitness, despite the fact it
is only explicitly included in the latter. This is side effect of the optimization
of the battle rate B: in order to conquer a planet for the first time it must be
placed under attack; hence an increase in the number of conquered plants implies
another increase in the number of battles, a fact exploited by the evolutionary
algorithm. Likewise the reconquering rate is also higher in CB fitness since a
high number of battles can eventually lead to numerous planets changing hands
(note also that CB fitness heavily revolves around B whereas RB fitness involves
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Fig. 4. Several characteristics of the best generated map for every run and objective
function: number of planets in the map, average distance between these planets, corre-
lation between planets’ sizes and their initial number of ships and standard deviation
of the planets’ sizes.

a higher number of variables among which different trade-offs can be attained).
Both objective functions tend to produce longer games (i.e., higher T ); while this
is explicitly stated in the RB function, it emerges implicitly in CB fitness since
longer games increase the number of battles that take place. It also increases the
number of ships ever produced which again forces an increase in the number of
battles in order to keep a high ratio of ships destroyed.

Let us finally inspect the characteristics of the evolved maps (Fig. 4). As it can
be seen, the maps obtained from optimizing both functions are similar in terms
of having a similar correlation between the size of planets and the initial number
of ships placed on them, and in terms of the variability of planet sizes. They
do however differ in the number of planets and the mean distance among them.
The lower number of planets in CB fitness can be explained by the fact that
having a low number of planets reduce the expansion possibilities for players,
thus forcing them to focus on the same planets more often and hence leading to a
higher number of battles. Having a higher distance among planets has the effect
of increasing the time-lag between the moment decisions are taken (i.e., ships
are dispatched to a target) and the moment ships arrive to their destination.
We hypothesize that this larger time-lag introduces a factor of instability by
making it more difficult to hold positions and increasing the time of reaction
upon attacks, thus promoting more battles to regain control of planets.

4 Conclusion and Future Work

This paper presents a PCG method that is capable of generating maps for the
RTS game Planet Wars. These maps should fulfil some desirable requirements
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in terms of dynamism in order to obtain interesting and attractive games. This
dynamism has been tackled from two different approaches: a RB approach that
looks for a high level of dynamism in players’ resources, and a CB approach,
that focuses on battles and lost ships. Both approaches have been shown to
be orthogonal, thus suggesting their joint optimization (either in a single- or a
multi-objective scenario) as a potential line of future research. It is interesting
to note the higher correlation of CB fitness with balance. We plan to analyse
further this connection by introducing subjective evaluation of the generated
maps in a future work, so as to analyse the attractiveness of games for human
players.
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evolutionary algorithms made easy. J. Mach. Learn. Res. 13, 2171–2175 (2012)

3. Lara-Cabrera, R., Cotta, C., Fernández-Leiva, A.J.: Procedural map generation for
a RTS game. In: Leiva, A.F., et al. (eds.) 13th International GAME-ON Conference
on Intelligent Games and Simulation, Eurosis, Malaga (Spain), pp. 53–58 (2012)

4. Lara-Cabrera, R., Cotta, C., Fernández-Leiva, A.J.: A procedural balanced map
generator with self-adaptive complexity for the real-time strategy game planet
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Abstract. A straightforward natural iterative heuristic for correlation
clustering in the general setting is to start from singleton clusters and
whenever merging two clusters improves the current quality score merge
them into a single cluster. We analyze the approximation and complexity
aspects of this heuristic and its randomized variant where two clusters
to merge are chosen uniformly at random among cluster pairs amenable
to merge.

1 Introduction

Correlation clustering is nowadays a well known technique of partitioning doc-
uments, e.g., web pages [3], into groups on the base of their similarity and/or
dissimilarity. It has several useful applications, e.g., in combining the output
of different machine learning classifiers [2]. Correlation clustering can be also
viewed as an agnostic learning problem [3,7]. In contrast to such classic cluster-
ing problems as k-means, k-sum, and k-center, in case of correlation clustering
the number of clusters does not have to be specified. One assumes that there is a
classifier function that assigns to pairs of documents + if they are similar and −
if they are dissimilar. It can be modeled by a graph whose vertices correspond to
the documents and edges are labeled by + or −. In general setting, the classifier
function may be partial and real weights may be assigned to the + and − labels
so the corresponding graph is edge weighted and non-necessarily complete.

In their pioneering work [2], Bansal et al. introduced two objectives of corre-
lation clustering: minimizing the number of disagreements and maximizing the
number of agreements. A disagreement is a − edge within a cluster or a + edge
between clusters while an agreement is a + edge within a cluster or a − edge
between clusters. They showed both problems to be NP-hard even if the under-
lying graph is unweighted and complete (in fact both problems are equivalent in
the exact setting but different in the approximation setting). Bansal et al. also
provided a polynomial-time approximation scheme (PTAS) for the maximization
problem and a constant factor approximation for the minimization problem, in
both cases for complete unweighted graphs. This constant factor approximation
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was later improved by Charikar et al. [4], where a factor 4 approximation algo-
rithm is given for complete graphs based on linear programming relaxation. The
latter problem was also proved to be APX-hard.

The problems of maximizing agreements and minimizing disagreements were
subsequently studied in the general setting of non-necessarily complete graphs
with edge weights in [4–6,8]. More recently, Ailon et al. [1] have provided a
randomized expected 3-approximation algorithm for minimizing disagreements.

In our paper, we study simple iterative heuristics for correlation clustering for
unweighted graphs. A straightforward natural iterative heuristic for correlation
clustering in the general setting is to start from singleton clusters and when-
ever merging two clusters improves the current quality score (i.e., the number of
agreements or disagreements, respectively) merge them into a single cluster. The
heuristic has several refinements depending on the way in which two clusters to
merge are chosen. For example, the choice can be based on the degree of the
improvement of the current score and/or be random. We analyze the approxi-
mation and complexity aspects of the basic variant, termed as Simple Merging
heuristic (SM for short) and the random variant, termed as Random Merging
heuristic (RM for short), where two clusters to merge are chosen uniformly at
random among cluster pairs amenable to merge.

To begin with, we observe that the difference between the number of agree-
ments and the number of disagreements in the clustering of a graph with n
vertices and each edge labeled either with + or − produced by SM or RM is at
least n minus the number of clusters produced.

Next, we show that the clustering produced by SM and RM run for max-
imizing agreements on such a graph achieves an approximation factor strictly
smaller than 2. As for minimizing disagreements, we provide an upper bound
O(nq) on the approximation factor of SM and RM, where n is the number of
vertices of the input graph and q is the maximum number of vertices in a cluster
of the resulting SM or RM clustering.

On the other hand, we exhibit an infinite family of graphs for which the clus-
tering produced by SM run for maximizing agreements can be ∇1.172414 times
worse than the optimum. We also present another infinite family of graphs for
which the clustering produced by SM run for minimizing disagreements can be
n−3
2 times worse than the optimum. Furthermore, we show that SM in the maxi-

mization case (the minimization case, respectively) can produce a clustering with
the number of agreements additively smaller by (the number of disagreements
larger by, respectively) Ω(n2).

Finally, we observe that the SM and RM heuristics, run on an n-vertex graph,
admit a simple/practical O(n2)-time implementation.

2 Preliminaries

Merging two disjoint clusters Ci and Cj increases the number of agreements or
equivalently decreases the number of disagreements if and only if the number of
agreements between pairs of vertices in Ci × Cj is greater than the number of
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disagreements between pairs of vertices in Ci × Cj . Hence, we can define more
formally the SM and RM heuristics as follows.

Definition 1. Let G be a graph with each edge labeled either with + or
with −.

Simple Merging Heuristic (SM): Put all vertices of G into singleton clusters;
while there are two clusters Ci, Cj such that the number of + edges in Ci × Cj

is greater than the number of − edges in Ci × Cj then merge Ci with Cj .

Random Merging Heuristic (RM): Put all vertices of G into singleton clus-
ters; while there are two clusters Ci, Cj such that the number of + edges in
Ci × Cj is greater than the number of − edges in Ci × Cj then pick such a pair
uniformly at random and merge it.

3 Upper Bounds

Lemma 1. Let G be a graph with n vertices and each edge labeled either with +
or −. Next, let C be the clustering resulting from running SM or RM on G. Let t
be the number of clusters in C. The number of + edges whose endpoints belong to
different clusters in C is not greater than the number of − edges whose endpoints
are in different clusters in C. Also, the number of − edges whose endpoints are in
the same cluster of C is smaller than the number of + edges with both endpoints
in the same cluster of C by n − t.

Proof. For each pair Ci, Cj of clusters in C, let E+
i,j (E−

i,j , respectively) be the set
of + edges (− edges, respectively) connecting a vertex in Ci with a vertex in Cj .
Since the clusters Ci, Cj cannot be merged by SM or RM, we have |E+

i,j | ∈ |E−
i,j |.

By taking the summation over all pairs of clusters in C, we obtain the first part
of lemma.

We prove the second part by induction on the number of merging steps in SM
or RM, respectively. The induction hypothesis holds after step 0, where there
are only singleton clusters. Let 0 ∈ s ∈ n−1. Suppose that the hypothesis holds
for the clustering into s + 1 clusters resulting from the n − s − 1 merging steps,
and Ci and Cj are the clusters to be merged in the (n − s)-th step. The number
of + edges with one endpoint in Ci and the other in Cj has to be larger than the
corresponding number of − edges. This combined with the inductive hypothesis
yields the second part. ⊂→

Lemma 1 immediately yields the following theorem.

Theorem 1. Let G be a graph with n vertices and each edge labeled either with
+ or −. Next, let C be the clustering resulting from running SM or RM on G,
and let t be the number of clusters in C. The difference between the number of
agreements and the number of disagreements in C is at least n − t.
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Theorem 2. Let G be a graph with e++ edges and e− − edges. Next, let m+

be the cardinality of maximum matching in the subgraph G+ of G induced by
the + edges. The clustering resulting from running SM or RM for maximizing
agreements on G is within min{ e++e−

e+ , e++e−
e−+∗m+/2→} of an optimal clustering of G.

Proof. The start clustering into singletons already achieves e− agreements. Con-
sider an edge d of the maximum matching of G+. Note that its two endpoints
cannot belong to two singleton clusters in the clustering C produced by SM or
RM since such clusters would be merged. Hence, at least one of the two sin-
gleton clusters for the endpoints is merged with another cluster and we can
assign at least 1

2 agreement increase to d. We conclude that C achieves at least
e− +∞m+

2 ⊃ agreements which yields the approximation factor e++e−
e−+∗m+/2→ . On the

other hand, it follows from the first part of Lemma 1 that the resulting clustering
has at least e+ agreements which yields the approximation factor e++e−

e+ . ⊂→
Let us assume the notation of Theorem 2.

Corollary 1. The clustering resulting from running SM or RM for maximizing
agreements on G achieves an approximation strictly smaller than 2.

Proof. If e+ = 0 then the start singleton clustering is optimal. Hence, we may
assume w.l.o.g. e+ > 0 and consequently ∞m+/2⊃ > 0. If e− + ∞m+/2⊃ > e+

then we obtain an approximation factor strictly smaller than 2 by Theorem 2.
Otherwise, e− is strictly smaller than e+, and we again obtain an approximation
factor strictly smaller than 2 by Theorem 2. ⊂→

We can also derive a parametrized upper bound on the approximation factor
of the SM or RM clustering in the minimization case.

A bad cycle (or, an erroneous cycle [6]) in a graph with all edges labeled
either with + or − is a simple cycle that has exactly one − edge. Note that a
bad cycle incurs at least one disagreement in any clustering of the graph. Hence,
the cardinality of a set of pairwise edge-disjoint bad cycles is a lower bound on
the number of disagreements in an optimal clustering of the graph.

Lemma 2. For each cluster in the SM or RM clustering of a graph with all
edges labeled either with + or −, the subgraph induced by the + edges within the
cluster is connected and spans all vertices in the cluster.

Proof. The proof is by a straightforward induction on the number of merging
steps of SM or RM, respectively. It is sufficient to observe that two clusters
to merge have to have at least one + edge connecting them and then use the
inductive hypothesis. ⊂→
Lemma 3. Let G be a graph with each edge labeled either with + or −. In the
SM and RM clustering of G, each disagreement occurs on a bad cycle in G lying
within a subgraph of G induced by vertices of at most two clusters and using at
most two edges between a pair of clusters.
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Proof. If a disagreement is caused by an − edge whose both endpoints are in the
same cluster then the endpoints are connected by a path composed of + edges
within the cluster by Lemma 2 and jointly with the − edge form a bad cycle.
Otherwise, if the disagreement is caused by a + edge between two clusters then
there must be at least one − edge between the clusters and again by Lemma 2,
paths composed of + edges within each of the two clusters respectively connect
the endpoint of the − edge with the endpoint of the + edge sharing the same
cluster. ⊂→
Theorem 3. Let G be a graph with each edge labeled either with + or −. Suppose
that the maximum number of vertices in a cluster in the SM (RM, respectively)
clustering of G is q. The SM (RM, respectively) clustering of G has at most
O(nq) times more disagreements than the optimal clustering.

Proof. Let us assign to each disagreement a bad cycle containing it according to
the thesis of Lemma 3. Let B be the multiset of the assigned bad cycles. Each
cycle b in B lies within a subgraph of G induced by at most two clusters Ci, Cj

by Lemma 3. Note that a cluster cannot contain more than
(
q
2

)
disagreements

on − edges and between two clusters there can be at most 1
2q2 disagreements

on + edges. It follows that the part of b within Ci as well as the part of b within
Cj can overlap with at most O(nq × q2) bad cycles in B. Finally, if b contains
two edges between Ci and Cj , these edges can overlap only with the O(q2) bad
cycles in B that are contained in the subgraph of G induced by Ci and Cj . We
conclude that b can overlap with at most O(nq) bad cycles in B. Hence, the
optimal clustering has Ω( |B|

nq ) disagreements. ⊂→

4 Lower Bounds

Theorem 4. Let G be a graph with n vertices 1, . . . , n and each edge labeled
either with + or − such that vertex 1 is connected by + edges with vertices 2
and 3 and the + edges on vertices 2 through n form a (n − 1)-clique, see Fig. 1.
Next, let C be the clustering resulting from running SM on G. The ratio between
the number of disagreements in C and that in an optimal clustering can be at
least n−3

2 .

Proof. SM starting from singleton clusters can produce the cluster {1, . . . , i+1}
in the i-th iteration. Simply, merging {i+1} with {1, . . . , i} decreases the number
of disagreements at least by one. Hence, the resulting clustering C can be the
singleton cluster containing all the n vertices. Thus, the number of disagreements
can be as large as n− 3. On the other hand, the clustering consisting of {1} and
{2, . . . , n} has only 2 disagreements. ⊂→

We can also run SM for maximizing agreements on the graph G defined as in
Theorem 4. The ratio between the number of agreements in an optimal clustering
and that resulting from running SM can be even 17

15 ∇ 1.1333. However, we can
subsume this lower bound by pruning the set of + edges in G appropriately.
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1

2

3

Fig. 1. The subgraph of the graph from Theorem 4 induced by + edges.

Theorem 5. There is a graph with each edge labeled either with + or with −
such that the ratio between the number of agreements in an optimal clustering of
the graph and that number in the clustering of the graph produced by SM is at
least ∇1.172414.

Proof. We refine the construction of the graph G by removing some + edges.
We assume that the constructed graph has 2k vertices and denote it by Hk. For
l = 1, . . . , k, we iterate the following two steps in order to specify the subgraph
of Hk induced by the + edges:

1. connect the 2l-th vertex with l vertices of numbers smaller than 2l, avoiding
connection to vertex 1 for l > 1;

2. if l < k then connect the (2l + 1)-th vertex with l + 1 vertices of numbers
smaller than 2l + 1, avoiding connection to vertex 1 for l > 1.

All pairs of vertices not connected by + edges are connected by − edges.
Note that by the construction, SM can consecutively produce clusters {1, . . . ,

i} for i = 1, . . . , 2k, since merging i into {1, . . . , i − 1} for i > 1 will always
increase the number of agreements by 1. The final cluster {1, . . . , 2k} produced
by SM achieves 2(k(k + 1)/2) + k − (k + 1) = k(k + 1) − 1 agreements. On the
other hand, the two clustering {1}, {2, . . . , 2k} has k(k + 1) − 1 − 2 agreements
on + edges and 2k − 3 agreements on − edges, totally k(k + 3) − 6 agreements.
For k = 5, the ratio becomes at least 34

29 ∇ 1.172414. ⊂→
In fact, we can modify the graph construction from the proof of Theorem 5 in

order to show that SM can produce a clustering with an additive error quadratic
in the number of vertices.

Theorem 6. There is a graph with n vertices and each edge labeled either with
+ or with − such that:

– the number of disagreements in the clustering of the graph produced by SM is
larger than that in an optimal clustering by Ω(n2), or equivalently,

– the number of agreements in the clustering of the graph produced by SM is
smaller than that in an optimal clustering by Ω(n2).
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Proof. To simplify the proof arguments, let us assume that n is divisible by 2
and 3. Let n = 2k.

We modify the complete graph Hk from the proof of Theorem 5 to a complete
graph Fk by specifying the subgraph of Fk induced by the + edges as follows.
Let l = 1, . . . , k.

1. if l ∈ 2k/3 then connect the 2l-th vertex with l vertices of largest num-
bers smaller than 2l, otherwise connect the 2l-th vertex with all vertices in
{2k/3, 2k/3 + 1, . . . , 2l − 1};

2. if l ∈ 2k/3 then connect the (2l + 1)-th vertex with l + 1 vertices of largest
numbers smaller than 2l + 1, otherwise, if l < k then connect the (2l + 1)-th
vertex with all vertices in {2k/3, 2k/3 + 1, . . . , 2l}
It is easy to see that SM can cluster all vertices of Fk into one cluster.
The number of disagreements in the one clustering is at least (n/3 − 1)2 +

(n/6 − 1)2 + D, where D is the total number of − edges with both endpoints in
{1, . . . , n/3} or both endpoints in {n/3 + 1, . . . , n}. The first component of the
sum follows from the absence of + edges between the first n/3 − 1 vertices and
the last n/3 − 1 vertices of Fk. The second component follows from the absence
of + edges between the first n/6−1 vertices and the vertices 3n/6+1, . . . , 4n/6.
On the other hand, consider the two clustering {1, . . . , n/3}, {n/3 + 1, . . . , 2k}.
The number of disagreements in the two clustering is not larger than (n/3)2+D.

The second part of the theorem follows from the fact that the number of
agreements in a clustering of the complete graph Fk is equal to

(
n
2

)
decreased

by the number of disagreements in the clustering. ⊂→

5 Time Complexity of SM and RM

To implement the iterative steps of SM or RM, we shall maintain a simple data
structure keeping the number of + edges and − edges between pairs of current
clusters and listing candidate pairs of current clusters suitable for merging.

Theorem 7. The SM and RM heuristics run on an n-vertex graph with each
edge labeled with either + or − can be implemented in O(n2) time.

Proof. Let G be the input n-vertex graph. For each pair Ci, Cj of clusters in
the current clustering of G, we maintain the number e+i,j of + edges in G as well
as the number e−

i,j of − edges in G, connecting pairs of vertices in Ci × Cj . We
also maintain the set of candidate pairs of current clusters suitable for merging
in the next step, by using an 0 − 1 n × n array.

The initialization in both cases takes O(n2) time. When two clusters Ci and
Cj are merged, say to form a new cluster Ci, we simply update the aforemen-
tioned numbers by setting e+i,k to e+i,k + e+j,k and e−

i,k to e−
i,k + e−

j,k for all other
clusters Ck. This takes O(n) time. Also, forming a list or a 0 − 1 vector repre-
senting the new cluster can be done in O(n) time.

Having the numbers e+i,k and e−
i,k updated, we can easily update the set of

candidate pairs of current clusters suitable for merging, in O(n) time.
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Since the number of merging steps does not exceed n the upper bound stated
in the theorem follows. ⊂→

6 Final Remarks

Among other things, we have demonstrated that the SM heuristic for maximiz-
ing agreements behaves reasonably well (Theorem 2, Corollary 1) while the SM
heuristic for minimizing disagreements can be extremely bad (Theorem 4). It is
easy to observe that the RM heuristic for minimizing disagreements run on the
graphs from the proof of Theorem 4 would produce the optimal two clustering
with very high probability. Unfortunately, the RM heuristic seems much harder
to analyze generally than the randomized pivot heuristic of Ailon et al. shown to
achieve expected 3-approximation [1]. It is a challenging open problem to prove
a non-trivial approximation factor for the RM heuristic for minimizing disagree-
ments. The simplicity of implementations of the SM and RM heuristics makes
that especially the RM heuristic might be an interesting alternative to more
sophisticated approximation algorithms for correlation clustering with provable
low approximation factors.
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Abstract. This paper presents an evolutionary-based parameter esti-
mation procedure able to deal with the particularities of the constraints
arising in mathematical models of biological systems. A measure of the
constraint satisfaction degree and several feasibility-based ranking rules
are proposed and comparatively analyzed for the problem of estimating
the parameters involved in a model describing the dynamics of thymo-
cytes. The numerical results illustrate the effectiveness of the procedure
in inferring models which fit well the experimental data and also satisfy
the biological constraints.

Keywords: Population dynamics · Parameter estimation · Constrained
· Optimization · Differential evolution

1 Introduction

Inferring models from experimental data is an important task in computa-
tional biology and usually lead to difficult constrained optimization problems. As
the estimation of the model quality can involve simulation of complex systems
and the apriori knowledge on the parameters could be limited, local optimiza-
tion methods involving gradient computation are inapplicable. Therefore, meta-
heuristics proved to be viable methods for parameter estimation of such models
[7]. In this paper we focus on the problem of identifying computational mod-
els able to simulate the dynamics of thymocyte populations taking place in the
thymus, as part of the complex process through which the organisms defend
against infections [2]. Aiming to model transient perturbations of the normal
dynamics of thymocytes we arrived to the problem of estimating several dozens
of parameters such that some biologically motivated constraints are satisfied. As
these constraints are related to properties of some time-dependent functions they
require specific handling techniques. The paper is organized as follows. Section 2
presents the mathematical model and the components of the constrained opti-
mization problem. Section 3 shortly reviews evolutionary constraint optimiza-
tion while the proposed parameter estimation procedure, including the specific
constraint handling variants, is presented in Sect. 4. Results of a comparative
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analysis and the numerical validation of the estimation procedure are presented
in Sect. 5. Finally, Sect. 6 concludes the paper.

2 The Mathematical Model and the Parameter
Estimation Problem

One of the simplest models describing the dynamics of thymocyte populations,
proposed in [2], consists of four coupled differential equations (Eqs. (1)). Each
equation describes the evolution of the number of cells in the corresponding
population, controlled by proliferation, death, and transfer rates (denoted by
r, d, and s, respectively). Besides these rates, the model contains other three
parameters: b (inflow of progenitor cells), K and Kn (carrying capacities).

Ṅ(t) = rnN(t)(1 − N(t)/Kn) − dnN(t) − snN(t) + b(1 − N(t)/Kn)
Ṗ (t) = rpP (t)(1 − Z(t)/K) − dpP (t) − (s4 + s8)P (t) + snN(t)

Ṁ4(t) = r4M4(t)(1 − Z(t)/K) − d4M4(t) − so4M4(t) + s4P (t)
Ṁ8(t) = r8M8(t)(1 − Z(t)/K) − d8M8(t) − so8M8(t) + s8P (t)

Z(t) = N(t) + P (t) + M4(t) + M8(t) (1)

These equations proved to be appropriate in modelling the thymocyte dynamics
in a normal thymus [2]. However various pathological situations or the admi-
nistration of some substances can perturb the normal dynamics by inducing a
significant involution followed by a regeneration of the thymocyte populations.
Such a dynamics can be simulated by replacing the constant rate parameters
in Eqs. (1) with variable rates obtained by adding to the initial rates a time-
depending function which model the transient perturbation. A family of func-
tions appropriate to model a perturbation starting from a zero value at an initial
time moment and approaching again zero after a time interval is described in
Eq. (2), where C = {c1, c2, c3, c4, c5} denotes a set of positive parameters.

φ(C; t) =
c1

tc3 + c2
− c1c4/c2

tc5 + c4
(2)

By replacing each constant rate r with r+φ(C; t), five new parameters are intro-
duced for each of the thirteen rates, leading to a set of k = 71 parameters in the
model. Estimating the parameters values means finding x∗ ∇ Rk which mini-
mizes the mean squared error described in Eq. (3) and satisfies constraints related
to the positivity of all perturbed rates and the vanishing of the perturbation.

MSE(x) =
1
4n

∑
π→{N,P,M4,M8}


⎧ 1

maxj=1,n{σ̄2
j }

n∑
j=1

(σ(x; tj) − σ̄j)2

⎪
⎨ (3)

In Eq. (3) n denotes the number of experimental values available for each thy-
mocyte population, σ̄ denotes experimental values corresponding to each of the
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four populations and σ(x; t) denote numerically estimated solutions correspon-
ding to the given set of parameters and to the time moments of the experimental
measurements. These estimated solutions are obtained by numerically solving
Eqs. (1) for initial values compatible with the experimental data. The division
of the error terms corresponding to each population by the maximal measured
value ensures the balance between the errors corresponding to different thymo-
cyte populations and avoid the bias in the estimation process toward parameters
of the dominant population. For each perturbed rate the two constraints to be
satisfied are described in Eq. (4) where ta denotes the time moment when the
perturbation starts and tf the time moment when it should be small enough
(e.g. smaller than a given value ∂f > 0).

r + φ(C; t) ∈ 0 for all t ∇ [ta, tf ]; |φ(C; tf )| < ∂f (4)

3 Evolutionary Constrained Optimization

A constrained optimization problem usually requires to find x∗ ∇ Rk which
minimizes an objective function f : Rk ⊂ R and satisfies gj(x∗) ∈ 0 for each
j ∇ {1, . . . , q}. Evolutionary constrained optimization relies on using a con-
straint handling technique when applying the basic evolutionary operators (vari-
ation and/or selection). Most approaches interferes with the selection process by
changing either the fitness value computation (penalty method) or the com-
parison rule between two candidate solutions (feasibility rules, stochastic rank-
ing) [3]. Despite the differences between them, all these techniques uses the
so-called constraint violation amount which for a constraint gj(x) ∈ 0 is defined
by Δj(x) = min(0, gj(x))2. The overall violation of the constraints is defined as
the sum Δ(x) = Δ1(x) + . . . + Δq(x). While in the penalty function technique
the objective function and the constraint violation function are combined, in the
feasibility based rules they are separately used. The classical Deb’s rule [1] spe-
cifies that a candidate solution x is better than x∞ if one of following conditions
is satisfied: (i) x is feasible and x∞ is not feasible; (ii) both x and x∞ are feasible
and f(x) < f(x∞); (iii) both x and x∞ are infeasible and Δ(x) < Δ(x∞).

Using the objective function as comparison criterion only in the case of feasi-
ble solutions can lead to premature convergence [3]. Two variants which enlarges
the set of cases when the objective function is used as optimization criterion are
∂-feasibility [6] and stochastic ranking [5]. The ∂-feasibility rule is based on a
relaxation of the feasibility concept, i.e. x is considered better than x∞ if one
of following conditions is satisfied: (i) Δ(x) → ∂ and Δ(x∞) → ∂ (x and x∞ are
almost feasible) and f(x) < f(x∞); (ii) Δ(x) = Δ(x∞) (same constraints violation)
and f(x) < f(x∞); (iii) Δ(x) < Δ(x∞). On the other hand, the stochastic ranking
enhances the role of the objective function by involving it in the decision rule
not only when the solutions are feasible but also when a random event occurs.
However all these feasibility based rules use, when deciding if a solution is better
than another, either the objective function or the constraints violation function
but not both of them.
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4 The Proposed Parameter Estimation Procedure

The parameters of the model described in Sect. 2 which should be estimated can
be grouped in several sets: (C0;C1; . . . ;Cq). C0 denotes the parameters involved
in Eqs. (1) (i.e. C0 = (rn, rp, r4, r8, dn, dp, d4, d8, sn, s4, s8, so4, so8, b,Kn,K)).
The sets Cj correspond to the parameters involved in the functions used to
perturb the rates specified in C0 and should satisfy the constraints described in
Eq. (4). The first constraint is particularly difficult to check as, in the general
case, it requires the analysis of the values of r + φ(C; t) over a continuous time
interval. As a consequence it is neither easy to decide if a solution is feasible
nor to compute the constraint violation amount. However for smooth continu-
ous functions φ(C; t) one can estimate the degree of constraint satisfaction by
sampling the time interval and computing the proportion of cases when the con-
straint is satisfied. More specifically, by considering an uniform discretization
Th = {ta, ta + h, ta + 2h, . . . , tf} of [ta, tf ] we can compute an estimation of the
constraint satisfaction degree as given in Eq. (5).

Sj
p(Cj) =

card{t ∇ Th|rj + φ(Cj ; t) > 0} − Ω

card(Th)
(5)

The constant Ω > 0 in Eq. (5) has a small value and is used only to discriminate
the cases when the constraint satisfaction can be mathematically proved. For
instance in the particular case of constraints given in Eq. (4) a sufficient condition
ensuring the positivity is r ∈ max{c1/(c2 + c22), c1c4/(c2 + c2c4)}. Therefore this
condition is first checked and if it is satisfied then the positivity constraint is
considered satisfied and Sp is set to 1. Otherwise Sp is computed using Eq. (5).

For the second type of constraints the satisfaction degree can be computed
following a standard approach which leads to a value Sv as defined in Eq. (6).

Sj
v(Cj) =

⎡
1 if |φ(Cj ; tf )| → ∂f

1 − min{1, |φ(Cj ; tf )|} otherwise (6)

The overall degree of constraints satisfaction, S ∇ [0, 1] is defined as S(C) =⎢q
j=1 Sj

p(Cj)Sj
v(Cj). The values of S can be interpreted as follows: (i) if S(C) = 1

then C is surely feasible; (ii) if S(C) ∈ 1−Ω/card(Tf ) then C is probably feasible
(there is neither evidence that the first constraint is violated nor guarantees that
it is satisfied); (iii) if S(C) = 0 then at least one of the constraints is severely
violated (at least one perturbation is too large or for at least one perturbed rate
all sampled points are negative); (iv) in all other cases, the value of S offers
information about the degree of constraint satisfaction.

Examples of several cases of perturbed rates satisfying or violating the con-
straints and the corresponding S values are illustrated in Fig. 1. Having a value
in [0, 1], S can be used to penalize the value of the objective function or as
acceptance probability of infeasible configurations.

Constraints handling. There are several ways to use the satisfaction degree
S and the MSE value in order to decide which of two candidate solutions is
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Fig. 1. Illustration of the relationship between the properties of the perturbed rates
and the values of the constraint satisfaction degree, S. Continuous line: perturbed rate,
dashed line: initial value of the rate.

better. Starting from the existing feasibility and ranking rules [3] and using the
properties of S we identified several variants which we comparatively analyzed
with respect to their effectiveness in solving the addressed parameter estimation
problem.
Ranking rule A. Using the assumption that S(x) ∈ δ suggests that x is feasible,
while S(x) < δ means that it is infeasible (for a given threshold δ), the Deb’s
feasibility rule can be rewritten as follows. A candidate solution x is better than
x∞ if one of the following conditions is satisfied: (i) S(x) ∈ δ and S(x∞) < δ; (ii)
S(x) ∈ δ and S(x∞) ∈ δ and MSE(x) → MSE(x∞); (iii) S(x) < δ and S(x∞) < δ
and S(x) ∈ S(x∞).

Ranking rule B. One of the particularities of the previous rule is that the objec-
tive function and the constraint satisfaction degree are used in a decoupled way.
A variant which aggregates MSE and S states that x is better than x∞ if one
of the conditions is satisfied (checked in this specific order): (i) S(x) ∈ δ and
S(x∞) < δ; (ii) S(x)S(x∞) = 0 and MSE(x) → MSE(x∞); (iii) S(x) ∞= 0 and
S(x∞) ∞= 0 and MSE(x)/S(x) → MSE(x∞)/S(x∞).

Ranking rule C. The first two rules analyze first the cases when the constraints
are satisfied or close to be satisfied. By ruling out first the cases when the
constraints are severely violated one obtains a slightly different variant when
x is better than x∞ if: (i) S(x) > 0 and S(x∞) = 0; (ii) S(x) = 0 and S(x∞) = 0
and MSE(x) → MSE(x∞); (iii) S(x) ∞= 0 and S(x∞) ∞= 0 and MSE(x)/S(x) →
MSE(x∞)/S(x∞).

Ranking rule D. Instead of inferring the feasibility in a deterministic way from
the value of S one can do it in a probabilistic manner. In this case S(x) is
interpreted as a probability that x, if selected, can lead to a feasible configuration.
Thus, by denoting with U1 and U2 two independent random values uniformly



Evolutionary Estimation of Parameters in Computational Models 277

selected from [0, 1] one can say that x is better than x∞ if one of the following
conditions is satisfied: (i) U1 → S(x) and U2 > S(x∞); (ii) U1 > S(x) and
U2 > S(x∞) and MSE(x) → MSE(x∞); (iii) U1 → S(x) and U2 → S(x∞) and
MSE(x)/S(x) → MSE(x∞)/S(x∞).

Ranking rule E. Starting from the idea of stochastic ranking [5], which allows
in a probabilistic manner to use the objective function as comparison crite-
rion, even for infeasible solutions, we arrived at the following rule which states
that x is better than x∞ by sequentially checking the following conditions: (i)
S(x) ∈ δ, S(x∞) ∈ δ and MSE(x) < MSE(x∞); (ii) U < Pf , S(x)S(x∞) ∞= 0 and
MSE(x)/S(x) < MSE(x∞)/S(x∞); (iii) S(x) ∈ S(x∞).

Search method. As stated in [3] one of the most competitive evolutionary
metaheuristic in solving constrained optimization problems seems to be Differ-
ential Evolution (DE). On the other hand the effectiveness of DE for parameter
estimation in biological systems was reported in several comparative studies [7].
This motivated us to use JADE, an adaptive DE variant introduced in [8]. The
JADE overall structure is described in Algorithm 1 and its main features are:
(i) the elements used in the recombination rule described in Eq. (7) are cho-
sen such that a new candidate is created in a neighborhood of a good element
but away from a worse one (xrbest is selected from the p % elites of the cur-
rent population and xr2 is one of the inferior elements which were discarded
in a previous selection step and was stored in an archive); (ii) the scale factor
(F ) and the crossover probability (CR) are generated for each element of the
population using a probability distribution (Gaussian and Cauchy, respectively)
whose mean is recomputed at each generation using information from successful
elements.

zl
i =

⎡
xl

i + Fi · (xl
rbest − xl

i) + Fi · (xl
r1 − xl

r2) if rand() → CRi

xl
i otherwise ,

i = 1,m,

l = 1, k
(7)

The constraint handling techniques interfere with two of the JADE components:
(i) the ranking process used to select the top p % elements; (ii) the selection of
the survivor between the parent and the trial element.

Algorithm 1. JADE overall structure
1: Initialization step (population, control parameters, archive)
2: while ∈the stopping condition is false≥ do
3: Rank the population and identify the top p % elements
4: for i = 1, m do
5: Construct zi using Eq. (7); Choose the best between zi and xi

6: end for
7: Update the control parameters and the archive
8: end while
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Table 1. Quality of fit (MSE), constraints satisfaction (S) and feasibility probability
(FP, Δ1 = 0.999927 and Δ2 = 0.99) for JADE combined with the proposed ranking
rules.

Ranking rule MSE S FP (Δ1) FP (Δ2)

Rule A (Δ = 1) 0.0338 ± 0.0012 1 ± 0 1 1
Rule A (Δ = 0.99) 0.0270 ± 0.0010 0.9966 ± 0.0033 0.5 1
Rule B (Δ = 0.99) 0.0268 ± 0.0014 0.9999 ± 5 · 10−6 1 1
Rule C 0.0261 ± 0.0009 0.9878 ± 0.0119 0.45 0.45
Rule D 0.0290 ± 0.0017 0.9999 ± 3 · 10−6 1 1
Rule E (Pf = 0.45) 0.0250 ± 0.0005 0.9935 ± 0.0011 0.03 1
Unconstrained 0.0208 ± 0.0022 0.0468 ± 0.0776 0 0

Fig. 2. Left: Experimental data and simulated dynamics of N (MSE = 0.023, S =
0.993, ta = 20, tf = 35 days). Right: initial rates (dashed lines) and perturbed rates
(continuous lines) for N .

5 Numerical Results

The used experimental dataset consists of 232 estimates of the number of cells
in each of the four thymocyte populations collected from young and adult mice
thymus either before or after a treatment administration. Each of the five ranking
rules proposed in the previous section was combined with JADE leading to
a specific procedure to estimate all k = 71 parameters of the model which
satisfies q = 26 constraints. In each case, results from 30 independent runs
were collected. The results reported in Table 1 have been obtained by using
populations of m = 20 elements, 5000 generations, a percent p = 10% in defining
the set of top elements and 0.5 as initial mean of distributions used to provide
values for F and CR. A preliminary numerical study using several population
sizes (e.g. 20, 50 and 100) suggested that m = 20 leads to the best quality/cost
trade-off. For the variant inspired by stochastic ranking, the value of Pf was set
to 0.45, as suggested in [5]. The numerical solutions of system Eq. (1) required
for MSE estimation were obtained using the ODE solver from Mathematica 7.0.

Table 1 presents statistical values of MSE, the constrained satisfaction degree
S (with ∂f = Ω = 0.001) and the feasibility probability (FP ) defined as the ratio
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between the number of runs when the solution can be considered feasible (i.e.
S ∈ δ) and the total number of runs [4]. As feasibility threshold, any value δ
larger than 0.99 proved to lead to solutions satisfying the positivity constraint.
The value of the threshold corresponding to the cases when all sampled values
of the perturbed rates are positive is 1 − Ω/card(Th) = 0.999927 (for h = 0.1
and Ω = 0.001). The results in Table 1 show that the analyzed ranking rules are
characterized through different quality of fit vs. constraint satisfaction trade-offs.
The best trade-off is obtained by the variant inspired from stochastic ranking
(with respect to MSE it is superior to other ranking rules, as a Mann-Whitney
statistical test returns p-values less than 10−5 when rule E is compared with any
of the other ones). With respect to the constraint satisfaction the most effective
ones are rules B and D. Best behavior was observed for the ranking rules using
an aggregation of MSE and S.

The ability of the proposed procedure to lead to a model which fits well to
the data and satisfies the constraints on rates is illustrated (for one of the four
populations) in Fig. 2.

6 Conclusions

By combining an evolutionary algorithm with an appropriate constraint handling
technique we succeeded in inferring a model of the perturbed thymus dynamics
which is in accordance with the experimental data. The constraint satisfaction
degree and the proposed ranking rules, characterized by aggregating the qual-
ity of fit measure and the constraint satisfaction degree, can be used for other
optimization problems involving constraints which can be only partially checked.
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Mexico City, México
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Abstract. This paper presents an empirical study of a micro Differential
Evolution algorithm (micro-DE) performance versus a canonical Differ-
ential Evolution (DE) algorithm performance. Micro-DE is a DE algo-
rithm with reduced population and some other differences. This paper’s
objective is to show that our micro-DE outperforms the canonical DE
for large scale optimization problems by using a test bed consisting of
20 complex functions with high dimensionality for a performance com-
parison between the algorithms. The results show two important points;
first, the relevance of an accurate set of the optimization algorithms
parameters regarding the problem itself. Second, we demonstrate the
superior performance of our micro-DE with respect to DE in 19 out 20
tested functions. In some functions, the difference is up to seven orders
of magnitude. Also, we show that micro-DE is better statistically than a
simple DE and an adjusted DE for high dimensionality. In several prob-
lems where DE is used, micro-DE is highly recommended, as it achieves
better results and statistic behavior without much change in code.

Keywords: Micro-algorithm · Reduced population · Differential
evolution · High dimensionality

1 Introduction

A Differential Evolution (DE) algorithm using one hundred individuals over a
thousand generations requires (at least) one hundred thousand (1.0e+5) calls
to the objective function. For this reason, it is worth seeking new strategies
to achieve better performance with less labor. One of these strategies is a DE
algorithm with reduced population, with fewer individuals and fewer function
evaluations (FE’s) for similar or better results. Also, more objective function
evaluations, per individual, could lead to better performance for the same FE’s
than algorithms with bigger populations.
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In this study, we show the performance of our micro Differential Evolution
(micro-DE) algorithm with respect to a Differential Evolution algorithm in high
dimensional problems.

The strategy of small populations begins with the work of Goldberg [1]. In
his work, Goldberg presented experiments with different population sizes for
Genetic Algorithms and shows a relationship between size and errors. Later,
Krishnakumar used a population of five individuals and adopted an elitist strat-
egy [3]. Krishnakumar reported better and faster results for his micro-GA (micro
Genetic Algorithm) when tested as two static functions and two real world con-
trol problems.

Rahnamayan and Tizhoosh [5] developed a micro-DE and a micro-ODE for
image threshold where the micro-ODE outperformed the micro-DE as well a
traditional Kittler threshold method. Rahnamayan and Tizhoosh algorithms
(micro-DE and micro-ODE) used a five individual population, and test their
algorithms with sixteen challenging test images. Micro-DE achieves ten best
results out of sixteen test images.

Recently, Parsopoulos [4] developed a Cooperative micro-Differential Evo-
lution (COMDE) and proposed an approach that employs small cooperative
sub-populations to detect subcomponents of the original problem’s solution con-
currently. In his experiments, COMDE achieves, for all operators, better results
than a classical DE algorithm. However, he only used five functions for his experi-
ments with dimensions: 300, 600, 900, and 1200. The functions used were: Sphere,
Generalized Rosenbrock, Rastrigin, Griewank, and Ackley. We intend to go fur-
ther with a greater number of complex functions for high dimensional problems.

In this paper, we carry out an empirical study of the performance of our
micro-DE regards to DE by using a benchmark consisting of twenty functions
for high dimensionality, such as the special session LSGO (Large Scale Global
Optimization) from CEC2012. By using this benchmark and comparing the per-
formance of micro-DE against DE we have obtained remarkable results.

2 Micro Differential Evolution Algorithm (Micro-DE)

In this section we explain the basis of DE as background for, later, explain our
micro-DE algorithm.

2.1 Differential Evolution Algorithm (DE)

The original DE algorithm proposed by Storn and Price [6] starts by generating
a group of vectors with random values (Eq. 1), called initial population (Eq. 2).

xi,G = 1, 2, . . . ,D (1)

P0 = x1,x2, . . . ,xNp (2)
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Each P0 individual is evaluated with respect to its performance of the func-
tion to be optimized. In the next stage (mutation), with the aid of scale factor
(F ), it proceeds to perform a noisy vector generation,

v = xr1,G + F · (xr2,G − xr3,G), (3)

with I, r1, r2, r3 ∇ [1,Np], I ∈= r1 ∈= r2 ∈= r3 the recombination operator is
applied to vector v and the population selected vectors (r1, r2, r3), obtaining a
trial vector ui,G,

u = (u0, u1, . . . , uD−1) (4)

with

uij,G+1 =
{
vij,G+1, if Rj ⊂ CR or j = rk
xij,G, if Rj > CR and j ∈= rk

(5)

where CR ∇ [0, 1] is a crossover constant for the ui,G trial vector generation;
j = 1, 2, . . . , n; Rj is the j-th evaluation of a uniform random number generator
[0,1]; and rk ∇ [1, n] is the random individual index. Storn and Price highlighted
some common variants of DE algorithm; the most common used variant, as well
as the used in all our algorithms, is DE/rand/1/bin (for further reference see [6]).

2.2 Micro Differential Evolution Algorithm (Micro-DE)

To be fully functional, a DE algorithm must have at least four individuals (see
Eq. 3). However, in our tests we find that the best results for our micro-DE were
achieved by using five individuals.

Algorithm 1. Pseudocode for micro Differential Evolution
1: P0 ∈ GenerateRandomlyInitialPopulation i = 1. . .Np
2: ExtLim ∈ FunctionEvaluationsLimit
3: IntLim ∈ InternalGenerationsLimit
4: CR ∈ 0.001
5: for EG = 1 to ExtLim do
6: PG ∈GenerateWorkPopulation(PG−1);
7: EvaluateWorkPopulation(PG);
8: for IG = 1 to IntLim do
9: for n = 1 to Np do

10: Randomly select i ≥= r1 ≥= r2 ≥= r3
11: ui,G ∈ CalculateTrialVector(xi,G ,xr1 ,xr2 ,xr3);
12: xi,G+1 ∈ TestTrialVector(xi,G ,ui,G);
13: end for
14: IG ∈ IG + 1
15: end for
16: Sellite ∈SelectEllitist(PG);
17: EG ∈ EG + 1
18: end for
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Our micro-DE proposal uses two loops (one internal and one external). The
external loop runs until it reaches the stop criterion (Function Evaluations limit),
Algorithm 1, line 2. The internal loop has a generational stop criterion (five
generations), line 3. The work population generation, in the first generation, is
constructed by vectors with random values, but subsequently integrated with
elite and remaining individuals, line 7.

The internal loop is a DE algorithm of five generations, using five individuals,
lines 8–15. Here we obtain a nominal convergence and pass resulting population
to the SelectEllitist procedure, line 16.

The elitist individuals (best fitness) from the previous inner cycle are pre-
served to pass to the external cycle. The remaining individuals (worst fitness) are
generated with random values to maintain diversity in the GenerateWorkPopu-
lation procedure, line 6. In our micro-DE diversity is achieved, with the phases
of mutation and recombination, as well as the remaining individuals. The algo-
rithms go this way until the stop criterion is achieved.

3 Experiments

This section presents the experimental methodology used to evaluate and com-
pare the different versions of Differential Evolution. In this study there are three:
a canonical DE with CR = 0.9, an Adjusted DE with CR parameter for high
dimensionality (ADE), and our micro-DE with CR parameter for high dimen-
sionality. In the functions test bed used for this study, we can highlight their
heterogeneous nature as some of the most notable features including: separable,
not separable, rotated, and shifted. The detailed description of these functions
can be found in [2].

3.1 Experimental Configuration

The settings used for each algorithm are: same variant for all (DE/rand/1/bin),
population (60 individual for DE, ADE and 5 for micro-DE), as well as F para-
meter (the same for the all algorithms), CR parameter (0.9 for DE) and for high
dimensionality (0.001 for ADE and micro-DE), as shown in Table 1.

DE, ADE and micro-DE were programmed in C++ language and were com-
piled by using g++ as well as the CEC2012 C++ libraries given by Tang et al.

Table 1. Parameter settings

Parameter DE ADE micro-DE

Max runs number 100 100 100
FE’s 3 000 000 3 000 000 3 000 000
Population size 60 60 5
F [0.0, 1.0] [0.0, 1.0] [0.0, 1.0]
CR 0.9 0.001 0.001



Micro Differential Evolution Performance Empirical Study 285

Table 2. Median obtained for DE, ADE, and micro-DE

Function DE ADE micro-DE

F1 4,52E+10 1,06E+08 3,62E+06
F2 1,48E+04 6,02E+02 1,85E+02
F3 2,09E+01 2,00E+01 1,08E+00
F4 2,51E+14 1,09E+14 4,15E+13
F5 4,37E+08 5,97E+08 3,36E+08
F6 1,52E+07 2,10E+07 1,93E+07
F7 6,28E+10 8,54E+10 3,57E+10
F8 2,48E+13 3,50E+10 8,85E+08
F9 5,09E+10 1,89E+09 3,94E+08

F10 1,54E+04 8,41E+03 3,86E+03
F11 2,28E+02 2,32E+02 1,95E+02
F12 7,92E+06 1,28E+06 3,06E+05
F13 3,31E+11 1,59E+06 1,42E+04
F14 6,19E+10 3,85E+09 7,11E+08
F15 1,58E+04 1,69E+04 7,42E+03
F16 4,18E+02 4,24E+02 3,87E+02
F17 1,40E+07 2,71E+06 4,03E+06
F18 1,01E+12 4,70E+06 3,10E+04
F19 3,56E+07 1,20E+07 5,81E+06
F20 1,03E+12 4,86E+06 2,61E+04

in [7]. We proceeded to perform 100 independent runs of each function, and a
stop condition of 3 million function evaluations, (3.00e+06 FEs) for each algo-
rithm and for each function.

4 Results

This section reports the micro-DE algorithm performance with regards the other
two versions of DE, a canonical DE with a CR of 0.9, and a canonical DE with
adjusted CR of 0.001 for high dimensionality (named ADE).

The first set of results shows that ADE outperformed DE, having better
results than the classical DE only for the CR set to 0.001. The adjustment
improves the performance of the DE in 14 functions. In eleven out of twenty
functions, this improvement is significant by one or more orders of magnitude
(F1, F2, F8, F9, F10, F13, F14, F15, F17, F18, and F20). It is noteworthy that
in some cases performance improved by several orders of magnitude, as in the
case of F8 with 3 orders, F13, F18, and F20 with five orders of magnitude (see
Table 2).

With regard to our micro-DE, the best performance is obtained with four
elitist individuals and one remaining individual. By observing the behavior of our
micro-DE, one can see better performance in nineteen out of twenty functions,
relative to the ADE algorithm for dimensionality with CR for one thousand
variables. Our micro-DE performs even better, in terms of orders of magnitude,
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Table 3. Average rankings of the algorithms by applying the Friedman procedure

Algorithm Ranking

DE 2.65
ADE 2.25
micro-DE 1.10

with respect to the DE with CR 0.9, also with nineteen out of twenty functions
(see Table 2) micro-DE column. One can see that our micro-DE is better than
the enhanced feature set ADE in nineteen out of twenty functions, in some
cases by two orders of magnitude: F1, F8, F13, F18 and F20. Against DE, our
micro-DE showed improvements of up to eight orders of magnitude, as seen in
F18 and F20.

5 Analysis of Results

In this section we use a non-parametrical statistical test (Friedman) to verify
whether or not there is difference between algorithms (see [8]). As we can see
in Table 3, there is no significant difference between DE and ADE algorithms.
However, between DE and ADE relative to micro-DE, there is a significant differ-
ence. As we know, this result only means there is a statistical difference between
algorithms, but it does not tell us if micro-DE is better or not.

Once the Friedman test showed that there are statistical differences between
the algorithms studied, we performed a post-hoc test, to analyse in more detail
the behavior of the algorithms. So we started from the fact that the null hypoth-
esis indicates that the behaviour of the algorithm is not similar.

5.1 Post Hoc Comparisons

As Table 4 shows, the null hypothesis is rejected for all cases. This means all
the algorithms are different. Nevertheless, DE and ADE algorithm comparison
shows that, although the null hypothesis is rejected, the behavior of the two
algorithms is statistically similar; so there is no difference observed when using
DE or ADE. However, when the comparison is between DE and ADE relative to
micro-DE, the difference between the algorithms is very significant. This confirms

Table 4. p-values table for α = 0.05 and α = 0.10

i Algorithms z = (R0 − Ri)/SE p Holmα=0.05 Holmα=0.10

3 DE vs. micro-DE 4.901530 0.000001 0.017 0.033
2 ADE vs. micro-DE 3.636619 0.000276 0.025 0.050
1 DE vs. ADE 1.264911 0.205903 0.050 0.100



Micro Differential Evolution Performance Empirical Study 287

Table 5. Adjusted p-values

i Hypothesis Unadjusted p pHolm

1 DE vs. micro-DE 0.000001 0.000003
2 ADE vs. micro-DE 0.000276 0.000552
3 DE vs. ADE 0.205903 0.205903

the observations of the Friedman test, and allows us to conclude that, the micro-
DE algorithm is clearly superior to its two competitors.

As shown in Table 5, the behavior of the DE and ADE algorithms is statis-
tically similar, so there is no advantage to indiscriminate use of either, based
on the adjusted p-values. However, comparison between DE and micro-DE,
as well as ADE and micro-DE, shows that micro-DE is statistically better
than canonical DE and Adjusted DE (DE and ADE). The main result is that
micro-DE is a better option for optimization for the tested functions for high
dimensionality.

6 Conclusions

We have demonstrated that our micro-DE outperforms a canonical DE and a
high dimensional Adjusted DE in the Large Scale benchmark used. Also, we
know that the DE algorithm is a robust and fast algorithm; however, if it is used
without adjusted parameters (for the problem of optimization) it will perform
poorly, as we have demonstrated. Recently, DE algorithm has been used as a
reference (CEC2008), and got poor results relative to new algorithms, as it uses
a CR of 0.9. When we use a cross rate of 0.001 the results are vastly different in
orders of magnitude.

Moreover, our micro-DE provides superior performance than the classical and
adjusted DE. So it is likely to be improved in many ways in which the canonical
DE has been improved. This can impact its performance compared to other
state of the art algorithms. Also, our micro-DE algorithm behave differently
than canonical DE, and it is in our interest to investigate these issues and find
improvements for this algorithm (micro-DE) using strategies previously used in
DE, as well as other improvements and algorithms that we will develop.
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Abstract. One of the challenges for modern search methods is resolv-
ing multidimensional tasks where optimization parameters are hundreds,
thousands and more. Many evolutionary, swarm and adaptive methods,
which perform well on numerical test with up to 10 dimensions are suffer-
ing insuperable stagnation when are applied to the same tests extended
to 50, 100 and more dimensions. This article presents an original investi-
gation on Free Search, Differential Evolution and Particle Swarm Opti-
mization applied to multidimensional versions of several heterogeneous
real-value numerical tests. The aim is to identify how dimensionality
reflects on the search space complexity, in particular to evaluate rela-
tion between tasks’ dimensions’ number and corresponding iterations’
number required by used methods for reaching acceptable solution with
non-zero probability. Experimental results are presented and analyzed.

1 Introduction

This study focuses on multidimensional optimisation, where tasks parameters are
within the range of hundreds. Explored are real coded optimisation algorithms
Free Search [4], Differential Evolution [7] and Particle Swarm Optimisation [2].
In contrast to combinatorial optimisation the number of potential solutions in
real coded tasks could tend to infinity. Combined with multiple dimensions this
makes task difficult even for clarification of the optimal value with low precision.
Considerable research efforts are directed towards evaluation and improvement
of existing and design of new methods capable of resolving multidimensional
tasks [1,5,6,8–11].

According to the literature existing methods perform well on variety of prob-
lems. However when applied to multidimensional tasks with many parameters at
the range of hundreds variables and more well-known methods face difficulties
such as: - need for large number of evaluations per iteration - large populations
size; - need for large computational resources; - need for large period of time
for calculations; - inability to identify optimal solution with appropriate level of
precision. In summary identification of optimal solutions with acceptable level
of precision and within acceptable period of time seems a challenge.

The aim of this investigation is to evaluate Free Search, Differential Evolution
and Particle Swarm Optimisation abilities to avoid stagnation and trapping in
local suboptimal solution, to identify minimal number of iterations required to

I. Lirkov et al. (Eds.): LSSC 2013, LNCS 8353, pp. 289–296, 2014.
DOI: 10.1007/978-3-662-43880-0 32, c© Springer-Verlag Berlin Heidelberg 2014
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resolve multidimensional tasks with acceptable precision. For this purpose three
global numerical test are used - Bump test function [3], Michalewicz test function
[12] and Norwegian test function [13].

2 Test Problems

Criteria for tests selection for this investigation are: - must be for global optimisa-
tion with many local suboptimal solutions; - must not provide initial knowledge
for optimal solution value and location; - optimal solution must be dependent
on dimensions number. Chosen for this study numerical test, which meet the
above criteria are - Bump test function, Michalewicz test function and Norwe-
gian test function. From available publications is visible that existing optimisa-
tion methods faced difficulties to reach optimal solutions with appropriate level
of precision.

Michalewicz and Norwegian tests are explored for 100 dimensions by Free
Search, Differential Evolution and Particle Swarm Optimisation. Free Search is
tested additionally on Bump test for 50, 100, 200, 500, and 1000 dimensions.

2.1 Bump Test Function

This is hard constrained global optimisation problem [3] transformed in this
study for maximisation.

f(xi) =

∣∣∣∣∣
n∑

i=1

cos4(xi) − 2
n∏

i=1

cos2(xi)

∣∣∣∣∣ /

√√√√ n∑
i=1

ix2
i

subject to:
∏n

i=1 xi > 0.75 and
∑n

i=1 xi < 15n/2
for 0 < xi < 10, and i = 1, . . . , n start from xi = 5, i = 1, . . . , n, where xi are
the variables (expressed in radians) and n is the number of dimensions.

2.2 Michalewicz Test Function

The Michalewicz test function is described in the domain of Kyoto University
[12] as global optimisation problem. In this study test function is transformed
for maximization.

f(xi) =
n∑

i=1

sin(xi)(sin(ix2
i /π))2m

where search space is defined as 0 ≤ xi ≤ π, i = 1, . . . , n.

2.3 Norwegian Test Function

Norwegian test function is global test problem.

f(xi) =
n∏

i=1

(
cos(πx3

i )
(

99 + xi

100

))

where search space borders are defined by −1.1 < xi < 1.1, i = 1, . . . , n.
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3 Optimization Methods

In this study three optimization methods are used - Free Search, Differential
Evolution and Particle Swarm Optimisation.

3.1 Free Search

Free Search is adaptive heuristic method [4] for real coded optimisation. It is
based on a conceptual model, which is different from other evolutionary methods.
Free Search simulates behaviour of animals in nature. In Free Search animals
(individuals) explore continuous search space by taking exploration walks within
their continuous neighbouring area.

In contrast to other optimisation methods optimisation process in Free Search
is organised in explorations. For one exploration each individual performs cer-
tain number of steps. In this study steps number per exploration is five. In
order to guarantee equal number of objective function calculations Free Search
explorations are limited to 20000, 200000, and 2000000, multiplied to 5 steps
this correspond to 100000, 1000000, and 10000000 iterations for other methods.
Further in this article limitations are indicated in iterations.

Free Search is implemented with a population of 10 individuals and the explo-
rations are 5 steps, for all experiments. The sense is random in the highest 10%
of the sensibility, and the neighbouring space varies from 0.5 to 1.5 with step 0.1.

3.2 Differential Evolution

A main feature of Differential Evolution is the concept for generation of new
individuals. Individuals in DE are called vectors. DE selects from the current
population target, donor and differential vectors. From these vectors DE gener-
ates a new trial vector, which replaces the target vector, if it is better, in the
new population. The authors proposed several strategies for generation of a trail
vector [7].

Differential Evolution is implemented with a population of 10 individuals and
explored with strategy 5 [7]. All individuals from the population are involved in
modification and replacement. The crossover probability is 0.5. Differential factor
[7] varies from 0.5 to 1.5 with step 0.1.

3.3 Particle Swarm Optimisation

The Particle Swarm Optimisation is motivated from the simulation of social
behaviour of the group of individuals [2]. An original feature of PSO is generation
of new population. PSO generates new values for all particles (individuals) in the
swarm (population). It memorises the previous individual and social (swarm)
experience and it uses them for generation of new particles. This concept for
generation of new individuals differentiates PSO from other population-based
algorithms.
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The modification strategy of Particle Swarm Optimisation has been improved
by use of the original concept for the so called inertia parameter that increases
the overall performance of PSO [14].

Particle Swarm Optimisation is implemented and explored with the iner-
tia parameter. The inertia parameter varies from 0.5 to 1.5 with step 0.1. The
implemented PSO has a population of 10 individuals for all experiments. The
individual and the social learning factors are 2 for all experiments.

4 Experimental Results

Experimental methodology is organized to identify minimal number of iterations
required to achieve optimal result with acceptable level of precision. Norwegian
and Michalewicz test functions are implemented for 100 dimensions and evalu-
ated for three series of 320 experiments, with start from different random loca-
tions, limited to 100000, 1000000, and 10000000 iterations for all three methods
Free Search, Differential Evolution and Particle Swarm Optimisation. Achieved
experimental results are analysed and compared for maximal achieved result.

Free Search additionally is tested on Bump test function for 50, 100, 200,
500, and 1000 dimensions. Experimental results are summarised and compared
to results earlier published in the literature.

Achieved maximal results from Free Search (FS), Differential Evolution (DE)
and Particle Swarm Optimisation (PSO) experimental results on Norwegian
(denoted as F1) and Michalewicz test functions (denoted as F2) are presented
in Table 1.

Table 1. Maximal results on Norwegian and Michalewicz test functions

Iterations FS DE PSO

F1 100 000 0.750627 0.448729 0.220553
F1 1 000 000 0.967082 0.448729 0.224411
F1 10 000 000 1.00004 0.490885 0.225525
F2 100 000 99.5808 82.1164 79.2948
F2 1 000 000 99.6157 87.4321 79.2948
F2 10 000 000 99.6191 88.2164 79.2948

Free Search is tested additionally on Bump test function for 50, 100, 200,
500, and 1000 dimensions. Achieved results are presented in Table 4.

The variables values which correspond to the results in Table 2 are available
on request for evaluation or comparison. For experiments is used desktop PC
with motherboard ASUS Rampage VI, processor Intel i7 3960x overclocked to
4.895 GHz and memory G.Skill TridentX at 1866 MHz.
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Table 2. Mean results on Norwegian and Michalewicz test functions

Iterations FS DE PSO

F1 100 000 0.69120580 0.12018652 0.00747217
F1 1 000 000 0.92401156 0.20175355 0.00798572
F1 10 000 000 0.98937421 0.2493765 0.00836006
F2 100 000 99.5021065 52.1924515 31.9071906
F2 1 000 000 99.6109537 57.4708753 33.0173021
F2 10 000 000 99.618175 59.863695 34.2029145

Table 3. Standard deviation on Norwegian and Michalewicz test functions

Iterations FS DE PSO

F1 100 000 0.02712148 0.18597598 0.03091758
F1 1 000 000 0.01853559 0.20359603 0.03013784
F1 10 000 000 0.00843936 0.21503870 0.03148975
F2 100 000 0.11389434 19.591272 20.5197324
F2 1 000 000 0.00266902 19.2625445 20.9821918
F2 10 000 000 0.00048003 15.9760239 22.3544008

Table 4. Standard deviation on Bump test functions

Dimension 50 100 200 500 1000
FS 0.835262348358115 0.8456854 0.8506636 0.8512628 0.8514553

5 Discussion

Analysis of experimental results suggests that for Norwegian test function used
implementations of DE and PSO stagnate in suboptimal solutions for all experi-
ments limited to 100000, 1000000, and 10000000 iterations. Taking into that DE
and PSO had difficulties on 2 dimensional versions of Norwegian test [15] reasons
for this stagnation could be a subject of further research. In contrast FS confirms
its abilities to avoid stagnation and escape from trapping in suboptimal areas.
For the first two series of 320 tests on Norwegian test function limited to 100000
and 1000000 iterations FS does not reach optimal solution. However for tests
limited to 10000000 iterations from 320 runs with different start locations FS
reaches 117 times optimal solutions with acceptable precision (above 1.00002).

This is a good illustration of the effectiveness of FS modification strategy,
which guarantees non-zero probability for access to the whole search space during
entire optimization process. On Michalewicz test function DE and PSO stag-
nate in suboptimal solutions for all experiments limited to 100000, 1000000,
and 10000000 iterations. Reasons for this stagnation could be a subject of fur-
ther research. On Michalewicz test function FS achieves optimal solution for all
experiments limited to 100000, 1000000, and 10000000 iterations. Solving 100
dimensional Michalewicz test function for each run confirms good exploration
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abilities of FS. It indirectly suggests that this task could be resolved within less
number of iterations, which could be a subject of further research. FS results
on Bump test function are different from achieved by other methods and pub-
lished in the literature [1,5,6]. Table 3 compares FS and Asynchronous Parallel
Evolutionary Algorithm (APEA) [5,6] for 50, 100, 200, and 500 dimensions.

Table 5. Comparison of FS and APEA on Bump test function

Dimension 50 100 200 500
FS 0.835262348 0.8456854 0.8506636 0.8512628
APEA 0.8352620 0.8448539 0.8468442 0.8504975

Table 6. Period of time in minutes on Norwegian and Michalewicz test functions

Iterations FS (min) DE (min) PSO (min)

F1 10 000 000 4 15 35
F2 10 000 000 19 31 55

In order to clarify comparison of the results in Table 5 should be noted that
FS achieves these results running in single thread on single processor desktop PC.
Other essential issue is a period of time required for completion of optimization
task. For experiments limited to 10 000 000 iterations average period of time in
minutes, from 320 experiments, required for completion of one experiment on
Norwegian and Michalewicz test is presented in Table 6.

Table 7. Variables for Bump test Fmax50 = 0.835262348358115

x0 6.2835790261751 x17 2.9524114588141508 x34 0.46001886537952297
x1 3.169937677750014 x18 2.9379900975870918 x35 0.45827603976373454
x2 3.156074749723996 x19 2.9232836057447771 x36 0.45656222211455522
x3 3.1423609878041932 x20 0.48823744173286926 x37 0.45487684374388804
x4 3.1287695107543283 x21 0.48593392519529544 x38 0.45321821190663503
x5 3.1152747643628493 x22 0.4836826364813 x39 0.45158651639926856
x6 3.1018528645810473 x23 0.48148246973308972 x40 0.449980222959319
x7 3.088480538514534 x24 0.47932981475899472 x41 0.44839856026986158
x8 3.0751349167360189 x25 0.47722236395944401 x42 0.44684046137453542
x9 3.0617943894947892 x26 0.47515900821764157 x43 0.44530576420283136

x10 3.0484368235138755 x27 0.4731373982323247 x44 0.44379365517281105
x11 3.0350390366956366 x28 0.47115575813689387 x45 0.44230323452275311
x12 3.0215778555508499 x29 0.46921217893825617 x46 0.44083365158292653
x13 3.0080295243393778 x30 0.46730534146908231 x47 0.43938498943233062
x14 2.9943676920815716 x31 0.46543440391236818 x48 0.43795641918838452
x15 2.9805647610851183 x32 0.46359705504397125 x49 0.43654683784954496
x16 2.9665903794608957 x33 0.46179196398120126
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Time periods in Table 6 is measured on processor Intel i7 3960x overclocked
to 4.895 GHz and memory G.Skill TridentX at 1866 MHz, motherboard ASUS
Rampage VI and solid state disk - SanDisk Extreme SSD SATA III. Experiments
are completed simultaneously in hyper-treading processor mode. For verification
of archived optimal results and for comparison to other methods variables for
maximal value on 50 dimensional bum test are presented in Table 7. These vari-
ables could be used for start location for search of potential better value.

6 Conclusion

This article presents experimental evaluation of Free Search, Differential Evo-
lution and Particle Swarm Optimization on hard global multidimensional tests.
Identified are required number of iterations for which selected test could be
resolved with high probability. Experimental results are also summarized and
compared to results published in the literature. Further investigation could focus
on evaluation and measure of time and computational resources sufficient for
completion of 200 dimensional and other multidimensional tasks. Algorithms
analysis and improvement could be also subject of future research.

Acknowledgements. I would like to thank to my students Asim Al Nashwan,
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tion and overclocking of desktop PC used for completion of the experiments presented
in this article.
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Abstract. We present here an experimental Large Scale Flow/Multi-
commodity model for a routing and scheduling Transportation Problem.
We deal with this model through a mix of a GRASP scheme and of
Hierarchical Decomposition/Agregation techniques.

Keywords: Large scale dynamic networks · Multi-commodity flows

1 Introduction

We were asked to propose I.T tools for the management of a shuttle fleet which
operates on several sites inside a median suburban zone and help workers in mov-
ing between their home and their working place, while also performing internal
mail transportation. Of course, users ask this service to induce short trans-
portation times, while managers expect low running costs. Using I.T in order to
optimize such a system means dealing with some class of Pick Up and Delivery
problem (see [6,8,9]).

We modeled this problem as a flow/multi-commodity problem defined on a
specific dynamic network (see [2]), that is a network with time indexed vertices,
which helped us in handling temporal constraints. While this FMS model is
close to CFA (Capacitated Flow Assignment) models (see [1,4,5,7]) used in
telecommunication network design, we had to cope with the large scale of the
related dynamic network. So we handled this problem in a heuristic way, by
mixing a hierarchical decomposition/aggregation process with a GRASP scheme.

2 The FMS Model

Main definitions/notations: A network G, with vertex set X and arc set E,
is denoted by G = (X,E). A flow vector defined on G is an arc indexed vector
with values in Q (rational numbers) or Z (integral numbers), such that for every
vectex x, we have

∑
e enter into x fe =

∑
e comes out x fe (Kirshoff Law). A multi-

commodity flow vector f , defined on G, is a flow vector collection f = {f(k), k ∇
K} whose components f(k), k ∇ K are flow vectors. We denote by Sum(f) the
Aggregated Flow Sum(f) =

∑
k≥K f(k).
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The “Shuttle” Problem: The urban space is represented with a Urban Area
network H = (Z,U): nodes mean either production sites, labeled as specific
nodes y1, . . . , ym (m = 7 in our application), or a residential area, and every
arc means an elementary connection. A demand Dk, k ∇ K, is a 4-uple (ok:
origin node, dk: destination node, Lk: Load, tk: deadline): Lk users have to be
transported from ok to dk (at least one of both nodes being an production site)
and arrive (or start) before (after) time tk. Quality of Service (QoS) requires the
related trip not to last more than Tk time units. Users move by alternatively
walking and using the shuttle system; so, every arc e of H is endowed with a
walking length lp(e), and with a vehicle length lν(e). Our goal is to design and
schedule routes for the shuttle fleet which meet the demands, under a minimal
cost and a good QoS. Route preemption is allowed, which means that several
vehicles may be involved in meeting a given demand. For the sake of simplicity
we suppose that: every tour starts and ends into a unique Depot node; every
vehicle has capacity 1; coefficients Lk are rational; the economical cost linearly
depends on the number of vehicles (Fixed Investment Cost) and on their running
times (Running Cost).

The Dynamic Network H-Dyn = (X, E): we build it from H by associ-
ating, with any node x of Z, (N + 1) copies of x, indexed from 0 to N , which
represent the state of x at the instants 0, δ, . . . , Nδ; δ is an elementary time
unit, chosen between 3 mn and 6 mn in our application; N is a parameter which
fixes the planning period (between 2 and 3 h). We add a ficticious vertex DP
and set X = {xr, x ∇ Z, r ∇ 0, . . . , N} ∈ {DP}. As for the arc set E, we
round modulo δ the vehicle and walking lengthes of any arc u in U by setting:
l→p(u) = ⊂lp(u)/δ→, l→v(u) = ⊂lv(u)/δ→, and, for any k in K : t→k = ⊂tk/δ→, and we
define the labeled arc family E as containing:

• arcs (xr, xr+1), x ∇ Z, r ∇ 0, . . . , N − 1: such an arc is considered twice, with
walk and vehicle labels;

• arcs (DP,Depotr), (Depotr,DP ), r ∇ 0, . . . , N , with vehicle labels.
• arcs (xr, zr + l→v(u)), u = (x, z) ∇ U, r such that 0 ∞ r ∞ N − l→v(u), with vehicle

labels;
• arcs (xr, zr + l→p(u)), u = (x, z) ∇ U , r such that 0 ∞ r ∞ N − l→p(u), with walk

label.

We denote by A the subset of E defined by all the vehicle arcs and call it Vehicle
Set. We provide any arc e in E, with an Economical Cost ce and a QoS Cost pe

as follows:

– if e is a vehicle arc (xr, zr + l→v(u)) associated with an arc u = (x, y) of the
network H, then ce = lv(u) and pe = S.ce, where S is a fixed scaling coefficient;

– if e is a walk arc (xr, zr + l→v(u)), associated with u = (x, z) of the network H,
then ce = 0 and pe = S.lp(u);

– if e is any vehicle arc (xr, xr + 1) then ce = a fixed waiting cost μ and
pe = γ + S.δ where γ is a fixed cost;

– if e is any walk arc (xr, xr + 1), then ce = 0 and pe = S.δ
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– if e is an arc (DP,Depotr), then ce = a fixed cost α and pe = 0;
– pe and ce are equal to 0 elsewhere.

Size of the dynamic network: As a matter of fact, we need, in order to avoid
negative rounding effects, to consider as an arc of the Urban Area network H
any pair (x, y) such that a vehicle may move from x to y during a discrete time
unit δ. So, in the case of a 200 node Urban Area network, Card(U) may vary
between 2000 and 3000 and the dynamic network H-Dyn may contain up to
100000 arcs.

The Flow/Multi-commodity Shuttle Model (FMS): We must compute
the routes of the vehicles and users, together with their schedules. Aggregating
vehicle routes yields an integral flow vector F , while user’s routes may be
represented as a rational multi-commodity flow f = {f(k), k ∇ K} ⊃ 0, in
such a way that: (FMS)

• F is null on the walk arcs;
• f(k) expresses the moves of Lk users from ok to dk before (or after) time tk;
• Sum(f)e =

∑
k,e f(k)e ∞ Fe, for any arc of H-Dyn with vehicle label;

• The global cost Cost(F ) + QoS(f) = c.F + p.Sum(f) =
∑

e in E ce.Fe +∑
e in E pe.Sum(f)e is the smallest possible.

One easily checks that if F and f satisfy FMS constraints, then F may be
disaggregated into a solution of the Shuttle Problem. This flow model allows us
to cast temporal and synchronization constraints into the construction of the
network H-Dyn.

Size of the FMS Model: In the case of our application, the number of ori-
gin/destination pairs could vary between 200 and 300. So, the size of multi-
commodity flow vector f varies accordingly between 2.106 and 3.106, and the
resulting FMS model is a large scale Mixed Linear Programming problem. One
easily checks that FMS is NP-Hard and that relaxing the integrality constraint
on F yields poor bounds, since it means providing every user with a fraction of
vehicle for a shortest path trip.

3 The FMS Problem: General Resolution Scheme

Because of the size of the problem, we proceed in a heuristic way and consider
the aggregated flow Sum(f) as a Master object, which we handle through simple
path and cycle local transformation procedures. We say that a flow vector g
defined on the network H-Dyn is D-decomposable in relation to the demand set
D = {Dk, k ∇ K} if there exists a multi-commodity flow f = {f(k), k ∇ K},
such that:

– for every k ∇ K, f(k) routes the load Lk from ok to dk before (after) time tk;
– g = Sum(f).
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Then we restate the FMS Problem as follows (Aggregated Reformulation):

{Compute an integral flow vector F ⊃ 0, and a rational flow vector g ⊃ 0, such
that:

– g is D-decomposable;
– FA ⊃ ⊂gA→;
– the cost c.F + p.g is the smallest possible}
Given a D-decomposable flow vector g, we denote by FMSg the restriction
of FMS obtained by fixing g. The min cost integral flow problem FMSg is
polynomial.

3.1 A Randomized Initialization Procedure FMS-INIT

Let us recall that if γ is a cycle of H-Dyn, a cycle flow vector fγ is defined by
fγ

e = 1 if arc e of γ is oriented as γ, fγ
e = −1 if e is oriented opposite to γ,

and fγ
e = 0 if e is not in γ. So FMS-INIT works in a greedy way, by picking

up demands Dk, k ∇ K according to a randomly generated order, and inserting
them into the current aggregated flow g in such a way it induces the lowest
possible increase of the related cost c.⊂g→ + p.g:

FMS-INIT:
K-In ∈ Nil; K-Out ∈ K;
While K-Out ≥= Nil do

Randomly pick up k0 in K-Out ; Insert it in K-In and withdraw it from K-Out ;
Route Dk0 along a shortest path Γ for the length function h defined by:
- If arc e is oriented as Γ , then h(e) = Lk0.pe + ce.Sup(0, (�(fe + Lk0)≤ − �fe≤);
- If e is opposite to Γ , then h(e) = −Lk0.pe + ce.Sup(0, (�fe≤ − �(fe − Lk0)≤);
Add Lk0.fΓ to g (we identify path Γ and its natural completion as a cycle).

3.2 A Hierarchical Decomposition Scheme for FMS

Let (F, g) be some feasible solution of FMS, such that F is an optimal solution of
FMSg. We may associate with (F, g) a dual solution (μ = (μx, x ∈ X), α = (αe, e ∈
E) ∩ 0, λ = (λe, e ∈ A) ∩ 0). Then, improving the pair (F, g) means modifying g in
such a way that it remains D-decomposable and that λ.�g≤ + p.g decreases. So we set:

FMS-Aux(λ) Problem: {Compute a flow g ∩ 0, which is D-decomposable and such
that p.g + λ.(�g≤) is the smallest possible.}

Next Sect. 3.3 will describe a local search procedure P-FMS-Aux, which deals with
FMS-Aux. Being provided with this procedure leads us to the following general
GRASP resolution scheme GRASP-MSD (Master/Slave Decomposition):

Algorithmic Scheme GRASP-MSD (n: Number of Replications)
For i = 1..n do

Initialize g through FMS-INIT; Not Stop;
While not Stop do

Solve FMSg and compute the related dual component λ;
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Starting from g, perform iterations of P-FMS-Aux until Failure
or the λ.�g≤ + p.g decreases; (I1)
If Failure then Stop Else Solve FMSg; Update Stop;

Keep the best solution (F, g) ever obtained; Update Stop;

Remark: The While Loop is a kind of inverse Benders scheme, which uses FMSg

polynomiality, since Benders scheme usually sees integral vector as the master object.

3.3 Handling the FMS-Aux Problem

Key questions are here about the non linear p.g + λ.�g≤. cost and about the Decom-
posability Constraint.

Handling p.g + λ.�g≤: extended cycles. We deal with g through cycle procedures.
So, g being given, we search for a circuit γ and a number q in ]0, 1] such that turning
g into g + fγ improves g, which means that if we set, for any arc e:

– Dg(e, q) = q.pe + λe.(�(g)e + q≤ − �(g)e≤);
– D→

g(e, q) = −q.pe − λe.(�(g)e≤ − �(g)e − q≤).

then:

– length(γ) ∩ 3; (we do not want to use the same arc forth and back)
–
∑

e oriented as γ Dg(e, q) +
∑

e oriented opposite to γ D→
g(e, q) < 0.

Such a pair (γ, q) is called a good extended cycle for the current flow vector g.
One easily checks that the search for a good extended cycle is time-polynomial: only a
finite set Q of q values has to be tested, and for every value q, searching for a related
γ means searching for a negative circuit in some ad hoc network. Still, practically, the
search for a good extended cycle remains here a difficult problem, due to the scale of
Q and H-Dyn. So we deal with it through sampling, by iteratively randomly picking
up a source node x0 and performing a local BFS (Breadth First Search) CY GENx0

process from x0 onto a restricted area: at any time during this BFS, a visited node x
is provided with a boolean value Mark(x), a list L(x) = (q1..qs) of increasing q values,
and a list Γ (x) = (Γ1..Γs) of paths from x0 to x. Then a node x-pivot is chosen, such
that Mark(x) = 0 and

∑
i(qi − qi−1).Πi be minimal, where Πi is the length of Γi

in the sense of Dg(., qi). Mark(x-pivot) is set to 1 and x-pivot is expanded, as in BFS
Dijsktra Algorithm, which means that pairs (L(x), Γ (x)), x such that Mark(x) = 0,
are updated and that the existence of y in Γ (x − pivot) and qi in L(x − pivot) which
would induce a good extended cycle is tested.

CY GENx0 is tried N times (N = parameter), with N distinct starting nodes x0. It
is run as a local process, which means that, x0 being given, no more than M nodes (M
is a parameter) are going to be visited by CY GENx0 . This stems from the knowledge
that, practically, the length of a good extended cycle is usually rather small.

CYGEN Algorithmic Scheme (N, M: Integer)
Not Success: Counter ∈ 0;
While Not Success and Counter ≤ N do

Randomly pick up a source node x0; Apply the BFS CY GENx0(M) process;
If CY GENx0(M) yields a good extended cycle (γ, q)
then Success else Counter ∈ Counter + 1;
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Handling the Decomposability Constraint: Every time we modify g = Sum(f)
through CYGEN, we apply some update process in order to maintain the
D-decomposability of g. We do it by imposing that all the flow vectors f(k), k ∈ K,
be path flow vectors, which means that demand Dk is routed from ok to dk along a
single path, and by making in such a way that at any iteration of the P-FMS-Aux
iterative resolution process, we are provided with a current set Δ of metric cuts (see
[3]) MCUT (Z), Z ⊆ X :

∑
e has its origin in Z and destination in X−Z

ge ∩
∑

k in OD(Z)
Dk ,

where OD(Z) = k ∈ K such that ok ∈ Z and dk ∈ X − Z. So, P-FMS-Aux involves
two steps:

– Step 1: compute a good extended cycle (γ, q), such g + q.fγ does not violate any
constraint of Δ.

– Step 2: in case of success, replace g by g + q.fγ and redirect some of the paths
(f(k), k ∈ K) in order to minimize |Sum(f) − g + q.fγ |.

We may summarize this into the following procedure P-FMS-Aux:

P-FMS-AuxAlgorithmic Scheme:
Initialize g, current decomposition Σ = Γk, k ∈ K and Δ through FMS-INIT
(in case we start from nothing) or with the current g; Not Stop;
While Not Stop do

Apply CYGEN to g and Δ;
If CYGEN yields such a good extended cycle (γ, q) such that replacing
g by g + q.fγ does then violate any cut in Δ, then POSSIBLE; h ∈ g + q.fγ ;

While POSSIBLE and (h ≥= g) do (*Update current decomposition Σ*):
δ := Supe≥E |(g − h)e|; Look for k ∈ K and for a path Γ from ok to dk

such that replacing Γk by Γ in Σ induces a strict diminution of the
quantity Supe≥E |(g − h)e|;
If k and Γ exist then replace Γk by Γ in Σ and modify g accordingly

Else Not POSSIBLE ; Deduce a metric cut related to the failure
of the computation of Γ ;

Update Stop;
Keep the best aggregated flow vector g which appeared during
this “While” loop;

4 Numerical Experiments

We present here 3 experiments, performed on a LINUX server CentOS 5.4, Processor
Intel Xeon 3.6 GHZ, with help of the CPLEX 12 library, on both small instances,
in order to evaluate approximation levels, and on large scale instances with sparse
structures (Tables 1, 2).

4.1 First Experiment: The CYGEN Procedure on FMS-Aux
Instances

Vector g being given, we compare failure ratio which derive from the replacement of
a good extended cycle EXACT procedure by the fast search algorithm CYGEN.
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In every case, we also compare related CPU times. NA is the number of arcs of the
involved H-Dyn, EXACT-CPU and CYGEN-CPU are the respective mean CPU times
for EXACT and CYGEN, and FAILURE is the mean percentage of failure induced
by the use of CYGEN instead of EXACT-CYCLE. We get (in average):

Table 1. CYGEN Evaluation.

NA FAILURE EXACT-CPU (s) CYGEN-CPU (s)

148 0.2 % 0.04 0.01
1128 1.1 % 1.9 0.07
2354 2.7 % 5.2 0.15

Comment: as expected, FAILURE increases with the size NA.

4.2 Second Experiment: The P-FMS-Aux Procedure

Small instances: NOD is the number of origin/destination pairs. GAP (in %) =
(V AL − OPT )/OPT is the gap between the optimal cost value OPT computed by
CPLEX and VAL obtained through P-FMS-Aux.

Table 2. P-FMS-Aux Evaluation, Small Instances.

Instance NA NOD GAP (%)

1 80 5 5.7
2 128 10 10.5
3 156 5 7.6
4 204 20 6.7

Large instances: we test the relation between the size of the instances and the related
running costs (Tables 3, 4, and 5).

Table 3. P-FMS-Aux Evaluation, Large Instances.

Instance NA NOD CPU (s)

1 8088 30 36
2 20404 60 204
3 66256 100 1025
4 98468 250 59 mn
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Table 4. MSD Evaluation, Small Instances.

Instance NA OD MSD-GAP

1 80 5 4.5
2 128 10 10.3
3 156 5 7.4
4 204 20 11.2

Table 5. MSD Evaluation, Large instances.

Instance NA OD MSD-Time

1 8088 30 98
2 20404 60 678
3 66256 100 1635
4 98468 250 1 h 29

4.3 Third Experiment: Evaluation of the Global Scheme MSD

Small instances: same small networks as in 4.2; MSD-GAP = (MSD-VAL – OPT)/
OPT, where MSD-VAL is the cost value of the solution (F, f) induced by the MSD
scheme and OPT the optimal value. We get:

Large instances: As in 4.2; MSD-Time denotes induced CPU times. We get:

Comment: the approximation level of MSD is not so high, if we refer to real context
requirements, and it enables us to efficiently manage the large scale feature.
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Abstract. In this paper a hybrid genetic method for processor arrays
design dedicated to realization of linear algebra algorithm for banded
matrices is presented. The proposed method is a modification of previous
genetic algorithm which is characterized by few important advantages
relative to well-known linear projection methods. The main disadvan-
tages of this previous method are: long program runtime and problems
with obtaining acceptable allocation mapping results for huge informa-
tion dependency graphs. Linear projection methods don’t allow obtain-
ing better allocation mapping solutions but are characterized by shorter
program runtime. New hybrid algorithm combines these both linear and
genetic methods and merges their advantages. Summarizing, this new
proposed method is characterized by: a shorter program runtime, better
allocation mapping results in comparison with both previous methods,
possibly allocation mapping for large input linear algebra banded matri-
ces and possibility of defining the designed processor array structure.

1 Introduction

In recent years, a high popularity increase of using parallel architectures for com-
putation acceleration is still observed. The most popular platforms for parallel
computation include multicore PC processors and General Purpose Graphical
Processor Units. Another one, still undervalued hardware platform, are FPGA
devices. In comparison to alternative parallel hardware platforms FPGAs allow
adaptation of designed system architecture to the algorithm [1], are not expen-
sive, consume less power [2,3], support any data representation and thanks to this
provides higher calculations accuracy. Moreover, modern FPGA devices contain
huge number of Configurable Logic Blocks, built-in DSP and memory blocks that
allow implement whole complex systems in the form of System on Chip. Thanks
to this FPGAs are used for implementation of mobile system for example, which
are limited by physical dimensions and low power consumption. Unfortunately,
for efficient system design good knowledge of one of the hardware description
languages (HDL such as VHDL or Verilog) and design experience are needed. For
this reason and in order to increase the effectiveness of the design process, with
the rule “right first time”, complete functional block generators, called intel-
lectual property cores (IPCore), are used [4]. Presented processor array design
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method, based on the hybrid genetic algorithm, is the part of original IPCore
generator for linear algebra hardware accelerators and is a new modification of
previous design method presented in the following paper [5].

At present, there are few translators available from the C language to one of
the HDL languages, such as ImpuleC. Unfortunately, the architectures obtained
from these translators are not optimal [1]. There are also few well-known meth-
ods [6–9] or whole environment [10,11] for processor array design dedicated to
realization of recursive algorithms. For example, the method [6] is very fast
because involves projection matrices multiplication but generates a lot of non-
operation instructions for linear projection which cause longer runtime needed
for designed architectures. Only proposed method [5] provides exact definition
of the designed structure by a user. Moreover, the realization runtime needed for
designed architectures is often smaller in comparison with similar architectures
obtained with the use of linear and nonlinear design methods. The main disad-
vantage of method described in the paper [5] is problem with finding permissible
solutions of allocation mapping, which keeps connection locality constraint, in a
short program runtime (under 30 min) for large information dependency graphs
(with above 3000 nodes). For this reason the parallel realization of genetic algo-
rithm and information dependency graphs decomposition were applied. In this
method the solution “grows up” during the runtime of the designed method and
genetic operators worked at the next assumed limits of a position in a chromo-
some. The method presented in this paper combines the previous genetic method
and linear projection from method [6] for linear algebra algorithms for banded
matrices.

2 New Allocation Mapping Method for Processor
Array Design

In the allocation mapping for each node one processor was assigned from an
array. The graph projection process has one main limitation — a connection
locality. A condition is necessary for a local connection between the processors
in a complete processor array. The connection locality means that each graph
edge can connect two nodes only from neighbor processors. Thus, whole processor
array can work with a high clock frequency after an implementation in FPGA
device. After the allocation mapping process, the tact number for each oper-
ation in a whole processor element is estimated. In the optimization process,
the program minimized the maximum tact number needed for realization of the
complete given linear algebra algorithm.

In the first stage of proposed method the allocation mapping are computed
by genetic algorithm for a representative subgraph from information dependency
graph for linear algebra algorithms for banded matrices. The node number for
a pattern subgraph and the stage runtime are defined by a program user. After
the allocation mapping computation, in the second program stage, the computed
projection for a pattern subgraph is duplicated for the rest nodes from a whole
graph without nodes from a graph tail, which is characterized by another shape.
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In the third stage the allocation mapping for graph tail nodes is computed in the
runtime also defined by a program user. In the last, fourth stage the connection
locality constraint is checked for a whole information dependency graph. The
schedule mapping is computed then, which define a time projection in the form
of a tact number for all given algorithm operations (graph nodes) assigned to
the proper Processor Units from the designed array. The allocation mapping
for a pattern subgraph is computed with using a bigger computation subgraph
(usually the bigger subgraph additionally contains nodes from one addition graph
layer). The bigger subgraph is necessary because of the need to check connection
locality constrain for the nodes from the current and next pattern subgraph in
allocation mapping duplication process. Figure 1 presents the input information
dependency graph for Gauss LU decomposition with numbered nodes, where the
input matrix dimension N = 8 and band width L = 7.

Fig. 1. Information dependency graph for example Gauss LU decomposition algorithm
(dimension N = 8, band width L = 7) with their marked subgraph.
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Fig. 2. Example processor array structure designed to realization Gauss LU
decomposition algorithm described by information dependency graph from Fig. 1.

Thanks to the allocation mapping duplication the needed runtime is much
shorter and the allocation mapping program allows to computes graph projection
almost independent of input matrix dimension. The representative subgraph
(pattern) is hard to find in graphs for full rectangular matrices, then presented
allocation mapping method is dedicated to banded matrices, at least for today.

Figure 2 presents example the allocation mapping result for the information
dependency graph from Fig. 1 into example processor array, which contains four
Processor Units PUs. The allocation mapping solution achieves connection local-
ity constrain, that means that all nodes connected by a graph edge are placed
into a neighbor processor.

In the allocation mapping process the genetic algorithm assigned each graph
node to one processor. The processor array structure is defined by a user before the
allocation mapping process as an input data. Figure 3 presents the chromosome
for the allocation mapping result presented in the Fig. 2. For the assumed data
representation each number in the chromosome represents a single node from the
graph and chromosome values represents the number of assigned processors.

After the allocation mapping appointment the schedule mapping (time pro-
jection) is computing. In this process the tact number for all given algorithm
operations (graph nodes) are computed by the iterative method. The iterative
method is characterized by a large computation complexity for huge graphs but
supports minimal values for a computed tact number. Figure 4 presents schedule
mapping computations result for example processor array from Fig. 2.
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Fig. 3. Genetic algorithm chromosome which represents the allocation mapping
solution from Fig. 2.

Fig. 4. Schedule mapping result for processor array from Fig. 2.

3 Genetic Algorithm for Allocation Mapping Method

There are several well-known methods for a processor array design [6–10]. These
methods are not automatic and only experienced designers can use them. For
methods which use linear or non-linear functions of allocation mapping, it is dif-
ficult or impossible to design a processor array with a structure exactly defined
by a user. For most of these methods designer defines several projection direc-
tions and choose one more interesting architecture from the obtained solutions.
Some methods use graph transformations, but these transformations are specific
to the given input algorithm [11]. Proposed method and their previous version
[5] allows for the exact definition of the structure of the designed processor array
before the allocation mapping process. Thanks to use of genetic algorithm any
definitions of projection functions are not required and proposed method can
be used by designers without a strong experience in the parallel architectures
domain.

The main problem with the use of the genetic algorithm for a whole informa-
tion dependency graph projection is the graph size for larger input matrices [5].
For this reason the information dependency graph decomposition and parallel
realization of the genetic algorithm were proposed. This allowed to obtain a per-
missible solution of the graphs projection for larger input matrices dimensions
but the necessary runtime was proportional to the graph nodes. For example
graphs with nodes number under 1500 in the 30 min runtime program has found
permissible projection with accuracy near 50 percent. The proposed new app-
roach merges linear projection speed with advantages of the developed genetic
algorithm. The method proposed in this paper uses the genetic algorithm in the
allocation mapping process for pattern and tail subgraphs. The genetic algo-
rithm from the presented method is characterized by the same parameters like
the algorithm described in the paper [5] except runtime which for experiment
results presented in the next part of this article was equal to 1 or 3 min. The
main optimization goal is the tact number minimization necessary for realiza-
tion a given input linear algebra algorithm in designed processor array. In the
genetic algorithm a division of groups coding by using numbers in a chromo-
some is used, which means that each number in the chromosome represents a
single node from the information dependencies graph. The chromosome values
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represent the number of assigned processors in the array. The genetic algorithm
population contains 100 chromosomes and the initial population was generated
randomly. A standard one-point crossover operator with a fixed probability and
a mutation operator with a variable probability were used. After many experi-
ments with several kinds and dimensions of input graphs, the value of crossover
probability was experimentally chosen at the 0.2 level and a mutation operator
with a variable probability was used. Before the genetic computation the value
of the mutation probability was calculated, that exactly one position in a chro-
mosome was mutated. This caused a constant number of mutations for different
graph sizes. The described genetic algorithm, like in the previous version, was
operated in two stages: before and after finding a permissible solution. In the
first stage, before finding a permissible solution, objective function F1 depended
on the space projection errors. These errors depended on unfulfilled connection
locality conditions in the form of non local connections between the processors.
The objective function F1 in the first stage of the algorithm calculation is pre-
sented in the Eq. (1)

F1 = 1 + EN ∗ (EN − SE) (1)

where: EN - edges number, SE - space projection errors.
In the second stage of the algorithm computations, after finding a permissible

solution, the value of the objective function was calculated using two formulas.
For the permissible solutions the value of the objective function F2 was addi-
tionally dependent on the number of the clock cycles necessary to realization of
the current pattern or tail sugraph. For the other solutions the objective func-
tion F3 gives much lower values (penalty function). The detailed formulas for
the objective function in the second stage of the algorithm computations are
presented in the Eqs. (2) and (3).

F2 = 1 + EN2 + NN − T (2)
F3 = 1 + EN − SE (3)

where additionally: NN - nodes number, T - number of clock cycles.
In the proposed genetic algorithm, the standard elitist selection model was

used because of strict runtime limits and because of the mutation process, which
for this data representation, could easily change the chromosome into a non-
permissible solution. The same way as in the previous version of the genetic
algorithm the parallel fitness function computations were implemented with use
Microsoft ParallelFX extension, which allowed using all cores of PC processor
for allocation mapping computations.

4 Experiments. Designed Processors Arrays Parameters

For all the computational experiments the strict limits for described program
runtimes were assumed (1 or 3 min) and for all set of algorithms parameters
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Table 1. Processor arrays (2× 2) parameters designed for realization of Gauss LU
algorithm for banded matrices (bandwidth = 9) obtained for previous and current
design method.

Matrix size 30 40 50 60 70 80 90 100

Graph nodes number 520 720 920 1120 1320 1520 1720 1920

Graph edges number 1213 1683 2153 2623 3093 3563 4033 4503

previous method avg tacts 258 305 384 498 576 - - -

(30 min runtime) best 245 294 375 478 576 - - -

find 100% 100% 60% 80% 20% - - -

avg PU load 50% 59% 60% 56% 57% - - -

current method avg tacts 184 264 307 401 464 530 608 664

(1 min runtime) best 149 222 258 340 370 424 523 580

find 100% 100% 100% 100% 100% 100% 100% 100%

avg PU load 70% 68% 74% 69% 71% 71% 70% 72%

current method avg tacts 169 238 305 378 421 504 569 631

(3 min runtime) best 150 220 261 316 370 423 521 581

find 100% 100% 100% 100% 100% 100% 100% 100%

avg PU load 76% 75% 75% 74% 78% 75% 75% 76%

the program was running 10 times. Table 1 presents the parameters of processor
arrays, designed to realization the Gauss LU algorithm, like: a best and average
value of a tact number necessary to realization the all operations from the given
algorithm, an average Processor Unit loads and a percent value, which describes
algorithm runtimes number when the permissible solution was found.

Based on the results presented in Table 1, one can conclude that the new pro-
posed design method allows obtaining processor array architecture characterized
by better quality parameters in a much shorter program runtime. Additionally,
for the new proposed approach the program always generates permissible solu-
tions, even for large information dependency graphs, which contain over few
thousand nodes.

5 Conclusions and Future Research

In this paper, the new approach of genetic algorithm usage for a processor array
design is presented. The allocation mapping was calculated for a representative
subgraph and in the next stage this mapping was duplicated for the rest of graph
without a graph tail. In the last stage the allocation mapping for the tail was calcu-
lated. Thanks to this, the new method merges advantages of the genetic allocation
mapping with a linear projection speed. Additionally, the design processor array
architectures are characterized by a higher average processors load and a shorter
necessary runtime for realization of all input operations. Moreover, the new app-
roach allows designing processor arrays for huge information dependency graphs.
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In the future research the application of mix a selection operator [12] is considered
for steering of the genetic algorithm selection pressure which allows controlling
diversity index for genetic algorithm population.
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Abstract. The present work offers a novel approach to parameter iden-
tification of an E. coli cultivation process model, using a hybrid of two
metaheuristics, namely Ant Colony Optimization (ACO) and Genetic
Algorithms (GAs). Our basic idea is to generate initial solutions by the
ACO method, and then serve these solutions to the GA as its initial pop-
ulation of individuals. Thus, the GA will start with a population, which
is not randomly generated, as in the general case, but one rather closer to
an optimal solution. The motivation behind this hybridization is to com-
bine the benefits of both approaches, aimed at achieving commensurate
calculations precision with less computation resources, in terms of time
and memory. The proposed method is approbated with the estimation
of the parameters of a real E. coli fed-batch cultivation process model.
The presented results are affirmative of our goal to yield better perfor-
mance of the hybrid algorithm: almost twice less computational time and
approximately five times smaller populations needed, compared to both
ACO and GAs, as taken separately.

1 Introduction

Modeling approaches are central in system biology and provide new ways towards
the analysis and understanding of cells and organisms. A common approach
to model cellular dynamics is by using sets of nonlinear differential equations.
Real parameter optimization of cellular dynamics models has become a research
field of particularly great interest. A major deficiency is the lack of applica-
ble methods. Since the considered problem has been known to be NP-complete,
using metaheuristic techniques can solve this problem more efficiently than exact
or traditional methods whose can not solve the problem with reasonable com-
putational effort. Metaheuristics has become increasingly popular in different
research areas and industry. Most of them mimic natural metaphors to solve
complex optimization problems (evolution, ant colony, particle swarm, immune
system). In contrast to many classical methods, metaheuristics do not build a
model of the tackled optimization problem, but treat the problem as it is (black-
box optimization). Therefore, they are directly applicable to complex real-world
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problems with relatively few modifications. Two of the most successfully per-
forming metaheuristics are the Genetic Algorithms (GAs) and the Ant Colony
Optimization (ACO) [5]. Their effectiveness have been already demonstrated for
model parameter identification of bioprocesses [1,6,12,13].

In recent years, it has become evident that the concentration on a sole meta-
heuristic is rather restrictive. A skilled combination of a metaheuristic with other
optimization techniques, so called hybrid metaheuristic, can provide more effi-
cient behavior and higher flexibility when dealing with real-world and large-scale
problems. In general, hybrid metaheuristic approaches can be classified as either
“collaborative combinations” or “integrative combinations” [2].

Most of the authors combine some metaheuristics with local search proce-
dure or with some exact method. There are some applications of the hybrid
algorithms between different metaheuristics. For example, the superiority of the
hybrid algorithms between metaheuristics ACO and GA is shown in applications
in different areas and problems [3,8,10,11]. In these papers first GA is applied
and when it stagnates the ACO is used to go out of the stagnation and the
algorithm continue with GA.

In this paper, based on the idea in [2], a hybrid metaheuristics ACO-GA is
realized and applied for parameter identification of a cultivation process of the
bacteria E. coli model. Cultivation of recombinant micro-organisms e.g. E. coli,
in many cases is the only economical way to produce pharmaceutical biochemi-
cals such as interleukins, insulin, interferons, enzymes, and growth factors.

A system of ordinary nonlinear differential equations is proposed to model E.
coli biomass growth and substrate utilization. Model parameters optimization is
performed using real experimental data set from an E. coli MC4110 fed-batch
cultivation process [14].

The paper is organized as follows. In Sect. 2, after a brief description of ACO
and GA, the hybrid metaheuristics ACO-GA is introduced. Section 3 presents
the problem definition. The numerical results and a discussion are presented
in Sect. 4. Section 5 provides some conclusion remarks and ideas for further
research.

2 Hybridization of Ant Colony Optimization Method
and Genetic Algorithms

ACO is a stochastic optimization method that mimics the social behavior of real
ants colonies, which manage to establish the shortest route to feeding sources
and backwards to the nest [5]. Real ants foraging for food lay down quantities of
pheromone (chemical cues) marking the path that they follow. An isolated ant
moves essentially at random but an ant encountering a previously laid pheromone
will detect it and decide to follow it with high probability, thereby reinforcing it
with a further quantity of pheromone. The repetition of the above mechanism
represents the auto-catalytic behavior of a real ant colony where the more the
ants follow a trail, the more attractive that trail becomes. The original idea
comes from observing the exploitation of food resources among ants, in which
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Ant Colony Optimization
Initialize number of ants;
Initialize the ACO parameters;
while not end-condition do

for k = 0 to number of ants
ant k choses start node;
while solution is not constructed do

ant k selects higher probability node;
end while

end for
Update-pheromone-trails;

end while

Fig. 1. Pseudocode for ACO

ants’ individually limited cognitive abilities have collectively been able to find
the shortest path between a food source and the nest.

The structure of the ACO algorithm is shown by the pseudo-code in Fig. 1.
GAs originated from the studies of cellular automata, conducted by John

Holland and his colleagues at the University of Michigan [9]. The GA is a model
of machine learning which derives its behavior from a metaphor of the processes
of evolution in nature [7]. This is done by the creation within a machine of a
population of individuals represented by chromosomes. Depending on the spe-
cific problem, a chromosome could be an array of real numbers, a binary string,
a list of components in a database. The GAs are highly relevant to industrial
applications, because they are capable of handling problems with non-linear
constraints, multiple objectives, and dynamic components – properties that fre-
quently appear in the real-world problems [7]. Since their introduction and sub-
sequent popularization [9], the GAs have been frequently used as an alternative
optimization tool to the conventional methods [7] and have been successfully
applied to a variety of areas, and enjoy increasing acceptance.

The structure of the GA is shown by the pseudo-code in Fig. 2.
The population at time t is represented by the time-dependent variable P ,

with the initial population of random estimates being P (0). Here, each deci-
sion variable in the parameter set is encoded as a binary string (with precision
of binary representation). The initial population is generated using a random
number generator that uniformly distributes numbers in the desired range. The
objective function (see Eq. (4)) is used to provide a measure of how individuals
have performed in the problem domain.

Our idea is to combine two metaheuristics, ACO and GA. ACO is a con-
structive method which does not need initial solutions. GA is a population-based
method and in traditional GA’s initial population is randomly generated. In this
random generation the initial solutions can be very far from the optimal solu-
tions and may need a lot of iterations to draw close to it. Therefore, our idea is
to generate initial solutions by ACO and then use them as an initial population
in GA. Thus, the GA will start with a population, which is closer to optimal
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begin
i = 0
Initial population P (0)
Evaluate P (0)
while (not done) do (test for termination criterion)
begin

i = i + 1
Select P (i) from P (i− 1)
Recombine P (i)
Mutate P (i)
Evaluate P (i)

end
end

Fig. 2. Pseudocode for GA

solution. The best model parameters vector will be obtained by the genetic evo-
lution of ant colony.

3 Problem Formulation

The mathematical model is a tool that allows to be investigated the static and
dynamic behavior of the process without doing (or at least reducing) the number
of practical experiments. In practice, an experimental approach often has serious
limitations that make it necessary to work with mathematical models instead.
Development of adequate models is an important step for process optimization
and high-quality control. Application of the general state space dynamical model
[4] to the E. coli cultivation fed-batch process leads to the following nonlinear
differential equation system [6]:

dX

dt
= µmax

S

kS + S
X − Fin

V
X (1)

dS

dt
= − 1

YS/X
µmax

S

kS + S
X +

Fin

V
(Sin − S) (2)

dV

dt
= Fin (3)

where X is biomass concentration, [g/l]; S is substrate concentration, [g/l]; Fin

is feeding rate, [l/h]; V is bioreactor volume, [l]; Sin is substrate concentration
in the feeding solution, [g/l]; µmax is maximum value of the specific growth rate,
[h−1]; kS is saturation constant, [g/l]; YS/X is yield coefficient, [-].

For the model parameter identification problem the objective function is
presented as a minimization of a distance measure J between experimental and
model predicted values of state variables (X and S):

J =
m∑
i=1

(Xexp(i) − Xmod (i))2 +
m∑
i=1

(Sexp(i) − Smod (i))2 → min (4)
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where m is the number of experimental data; Xexp and Sexp are the known
experimental data for biomass and substrate; Xmod and Smod are the model
predictions for biomass and substrate with a given set of parameters (µmax, kS
and YS/X).

4 Numerical Results and Discussion

The theoretical background of the GA and ACO is presented in [13]. Parameters
of the GA and ACO were tuned based on several pre-tests according considered
here optimization problem. After tuning procedures the main algorithm parame-
ters are set to the optimal settings. The basic operators and parameters in GA
are summarized in Table 1. The parameter setting for ACO is shown in Table 2.

Table 1. Operators and parameters of GA

Operator Type Parameter Value

Fitness function Linear ranking ggap 0.97
Selection function Roulette wheel selection xovr 0.75
Crossover function Simple crossover mutr 0.01
Mutation function Binary mutation maxgen 200
Reinsertion Fitness-based nind 180

We perform 30 independent runs of the three metaheuristics: ACO, GA, and
hybrid ACO-GA. Computer specification to run all identification procedures are
Intel Core i5-2329 3.0 GHz, 8 GB Memory, Windows 7 (64bit) operating system
and Matlab 7.5 environment. For comparison of hybrid performance pure GA
and ACO are run with parameters shown in Tables 1 and 2. Hybrid ACO-GA
starts with 5 ants for 10 generation. To form population of chromosomes for
further improvement from GA, pure ACO repeat 30 times. We take the best ACO
solution from every one of the runs to form population. The obtained population
with 30 chromosomes (ACO best solutions) is used from GA to obtain the best
model parameters vector by the genetic evolution for 100 generations. The main
numerical results are summarized in Table 3. The obtained average values of the
model parameters (µmax, kS , and YS/X) are summarized in Table 4.

Table 2. Parameters of ACO algorithm

Parameter Value

Number of ants 20
Initial pheromone 0.5
Evaporation 0.1
Generations 200
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Table 3. Experimental results

Value Algorithm Algorithm performance

Time [s] J

Best GA 67.5172 4.4396
ACO 67.3456 4.9190
ACO-GA 35.5212 4.4903

Worst GA 66.5968 4.6920
ACO 66.6280 6.6774
ACO-GA 35.3498 4.6865

Average GA 67.1370 4.5341
ACO 69.5379 5.5903
ACO-GA 36.1313 4.5765

Table 4. Model parameters’ estimations

Value Algorithm Model parameters

µmax kS 1/YS/X

Average GA 0.4857 0.0115 2.0215
ACO 0.5154 0.0151 2.0220
ACO-GA 0.4976 0.0135 2.0221

Table 3 shows that our ACO-GA algorithm achieves similar to pure ACO and
pure GA solutions, but the running time is twice less. The pure GA algorithm
starts from randomly generated initial solutions (population) which can be very
fare from the optimal one. The ACO is a constructive method, which does not
need any initial solution. ACO can faster find solutions which are not very fare
from the optimal one. In our hybrid ACO-GA algorithm we explore the advan-
tages of the both ACO and GA. We run the ACO for several iterations only
and thus we generate initial solutions for GA which are closer to the optimal.
The GA starts from solutions which are not fare from the optimal and thus we
increase the convergence of the GA. More over in ACO-GA the population is
very small, only 5 ants for ACO and only 30 individuals for GA (vs. 20 ants and
180 individuals), which decreases the used memory. Thus our hybrid algorithm
has two advantages - less running time and less memory.

5 Conclusion

In this paper, a hybrid metaheuristic approach, which is a combination between
two metaheuristics, Ant Colony Optimization and Genetic Algorithms is applied
to the problem of parameter identification of an E. coli fed-batch cultivation
process model.

Combining the advantages of both approaches, better performance of the
hybrid algorithm was achieved in terms of computational time and memory, yet
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preserving the precision of the calculation. As shown in the detailed comparison
above, in the hybrid algorithm almost twice less computational time was con-
sumed. Moreover, approximately four times (in case of ACO – 20 vs. 5 individu-
als)) and six times (in case of GA – 180 vs. 30 individuals)) smaller populations
were required to achieve results, as compared to the ACO and GA approaches,
taken separately. Thus, the hybrid ACO-GA uses in times less memory for the
computation.

As a next step of this research, we would further elaborate the hybrid ACO-
GA algorithm, taking into consideration the possibility to have the GA stag-
nating after a number of iterations. For this reason, we intend to return the
obtained GA solutions back to the ACO algorithm, and then run the ACO with
the accordingly updated pheromone, thus generating a new population for fur-
ther GA execution. In this way, a bidirectional hybridization will take place: GA
is hybridized with ACO, and ACO is hybridized with GA. It is noteworthy that
we can use any variant of both ACO and GA methods, depending on the specific
problem being solved.
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Abstract. A mathematical model for predicting the spread of a fire
front in homogeneous and inhomogeneous forest is presented. It is based
on the application of the game method for modeling with hexagonal
lattice. The results of the modeling show the advantage of using hexag-
onal cells for the forest areas considered, thus avoiding the limitations
of spurious symmetries of the square cells used in previous studies. Fur-
ther validation of the model developed with a real case of forest fire is
foreseen.

Keywords: Game method · Modeling · Forest fire spread

1 Introduction

In a series of papers, the Game Method for Modeling (GMM) is described and
some of its applications are discussed. Some of these papers are related to fire
front in homogeneous forest (see, e.g. [4–6]). All these models are based on square
lattices. Here, for a first time, we use hexagonal lattice.

In Sect. 2, short remarks on GMM, following [1], are given and the main
results are described in Sect. 3.

In Sect. 4 we compare the models of homogeneous forest (with initial values
“9”) when the lattice is square and hexagonal.

Short discussion for the plans for future research are given in the Conclusion.

2 Short Remarks on GMM

Conway’s Game of Life (CGL, see, e.g. [2,3]), introduced by John Horton Conway
has a “universe”, which is an infinite two-dimensional orthogonal grid of square

I. Lirkov et al. (Eds.): LSSC 2013, LNCS 8353, pp. 321–328, 2014.
DOI: 10.1007/978-3-662-43880-0 36, c© Springer-Verlag Berlin Heidelberg 2014



322 E. Sotirova et al.

cells, each of which is in one of two possible states, alive or dead, or (as an
equivalent definition) in the square there is an asterisk, or there is not. The
first situation corresponds to the case when the cell is alive and the second
corresponds to the case when the cell is dead.

One of the modifications of the CGL is called “Game Method for Modeling”
(GMM) [1]. In this section, we give its short description.

Let us consider a set of symbols S and an n-dimensional simplex comprising
of n-dimensional cubes (when n = 2, a two-dimensional grid of squares).

We assume that material points (referred in brief as objects) can be found
in some of the centers of the n-dimensional cells. The GMM-grid can be either
finite or infinite. In the first case, for i-th dimension of the grid there is natural
number gi that corresponds to the number of the sequential cells of the grid in
the present dimension. Therefore, when the n-dimensional GMM-grid is finite,
there is a vector ∇g1, g2, ..., gn∈ of the lengths of its sides. Here, we use finite
grids. We also consider a set of rules A as follows:

1. rules for the motion of the objects along the vertices of the simplex;
2. rules for the interactions among the objects, e.g., when they are collected in

one cell.

Let the rules from the i-th type be denoted as i-rules, where i = 1, 2.
When S = {⊂}, we obtain the standard CGL.
We can call an initial configuration every set of (ordered) (n+2)-tuples with

an initial component being the number of the object; the second, third, etc. until
the (n + 1)-st – its coordinates; and the (n + 2)-nd – its corresponding symbol
from S.

We can call a final configuration the ordered set of (n + 2)-tuples having the
above form and being a result of the modifications that occurred during a certain
number of applications of the rules from A over a (fixed) initial configuration.

The single application of a rule from A over a given configuration K is called
an elementary step in the transformation of the model and is denoted by A1(K).

When we have some initial configuration, we obtain new configurations in a
stepwise manner. We must determine some constructive criteria for stopping the
process. For example, such a condition may be the following.

1. The rules of the GMM are applied over the initial configuration and its deriv-
atives for exactly n iterations.

2. A predefined configuration is obtained on the GMM-grid. For example, if we
model a process of interaction between some objects, the process should stop
when the grid contains only one of these objects.

3. A previous configuration is obtained on the GMM-grid, i.e., the process oscil-
lates. This criterion is applicable for deterministic processes.

Let us consider a rule P which juxtaposes to a set of configurations M a
single configuration P (M) being the mean of the given ones. We will call this
rule a concentrate rule. The concentration can be made either over the values of
the symbols from S for the objects, or over their coordinates (not over both of
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them simultaneously). In [1], different formulas for P are given. Here, we suppose
that as a result of applying the rule P over the set of configurations M , we will
obtain a new configuration P (M), for which the (ik; jk)-th place is occupied by
a digit calculated as:

di,j =

[
1
s

s∑
k=1

dki,j

⎧
,

where for any real number x = a+α, where a is a natural number and α → [0, 1):
[x] = a.

If K is an initial configuration, let A1(K) be the configuration, obtained in a
result of application of the rules from A over K (for one step). Let An+1(K) =
A1(An(K)) for every natural number n ∞ 1.

Let B be a criterion derived from physical or mathematical considerations.
For two given configurations K1 and K2, it answers to the question whether they
are close enough to each other or not. For two configurations K1 and K2 lying
in a planar rectangle with lengths p and q, we can use the following criterion:

B(K1,K2) =
1

p.q

p∑
i=1

q∑
j=1

|d1i,j − d2i,j | < C,

where C is a predefined constant. For the set of configurations M and the set of
rules A, we define the set of configurations

A(M) = {L|(⊃K → M)(L = A(K))}.

The rules A are called statistically correct, if for a large enough (from a statistical
point of view) natural number N :

(≥n > N)(≥M = {K1,K2, ...,Kn})(≥m ∞ 1)

(B(Am(P (M)), P ({Li|Li = Am(Ki), 1 ≤ i ≤ n})) < C).

3 GMM-Model of Forest Fire

We describe a finite grid, having the form of a hexagonal lattice, with size 11×11
in which we check the development of forest fire processes. We assume that in the
field there is a river (its territory being marked by letter R), stones (their terri-
tory being marked by S) and on the rest part of the field there is a homogeneous
forest. The digits correspond to the wood mass per one unit square. These digits
are specific for different types of forests, but here the forest is homogeneous and
initially, the digits are only “9”. After the beginning of the fire, the digits will
decrease by specific rules, described below.

If some rule determines that symbol Y must be changed with symbol Z, let
us denote this fact by Y ≡ Z.

Let everywhere r → [0, 1] be a random number that is generated for the
current procedure.
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Fig. 1. Hexagonal sells

In the present research, we discuss a scenario without a wind.
In our model, the fire will develop in concentric circles (see Fig. 1).
The rules for the GMM are the following.

1. R ≡ R;
2. S ≡ S;
3. 0 ≡ 0;
4. In the initial time-step, the fire starts from a fixed cell containing digit 9 that

represents the density of the trees in that cell of the forest. On the second
time-step, for the same cell 9 ≡ 8. On the third time-step, for the same cell
8 ≡ 7. In the same moment, all neighboring cells of the cell with the fire
change their digits with the previous digit.

5. On the next time-steps, for the cells with fire

n ≡
⎪⎨
⎡

0, if n = 1

n − 1, if n > 1

6. The process continues until all cells in the region contain only digit 0. In the
opposite case, go to 5.

The development of a forest fire is shown in Fig. 2.

4 Comparison of the Models of the Fire-Processes in
Square and Hexagonal Lattices

On Fig. 3, a diagram for the fire-processes in a hexagonal lattice is shown for 18
time-steps. On Fig. 4, the diagram corresponds to the case of a square lattice for
the same 18 time-steps.

It is obvious that both processes flow analogously and this is a non-formal
proof that the GMM gives correct results.
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Fig. 2. Fire spreed from time step 0 to time step 8
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Fig. 3. Fire-processes in a hexagonal lattice
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Fig. 4. Fire-processes in a square lattice
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5 Conclusion

On this work we receive very encouraging results. The hexagonal lattice presents
in more realistic way the spread of the fire. In the next research we will model the
fire-process in an inhomogeneous forest. We will develop a variants of scenarios.
After that, the process will flow with existing of a wind.

Using the results of the model, we can check the development of a real forest
fire, the occupation of new territories, the decrease in trees density, etc.
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Abstract. We present a Boundary Element Method (BEM)-based FEM
for mixed formulations of second order elliptic problems in two dimen-
sions. The challenge, we would like to address, is a proper construction
of H(div)–conforming vector valued trial functions on arbitrary polygo-
nal partitions of the domain. The proposed construction generates trial
functions on polygonal elements which inherit some of the properties of
the unknown solution. In the numerical realization, the relevant local
problems are treated by means of boundary integral formulations. We
test the accuracy of the method on two model problems.

Keywords: Mixed formulation · BEM-based FEM · Polygonal mesh

1 Introduction

Mixed Finite Element Methods (FEM) have been instrumental in the develop-
ment of flexible and accurate approximations of elliptic problems with hetero-
geneous coefficient on triangular and rectangular grids. Recent strategies, like
the BEM-based FEM [5,10,12], aim at extending classical Finite Element Meth-
ods to polygonal and polyhedral meshes. Such general cells are very desirable in
many applications, e.g. flows in heterogeneous porous media as models in hydrol-
ogy and reservoir simulation. Therefore, a variety of approximation and solution
methods on general grids, such as Mixed Finite Element Methods [8], Mimetic
Finite Difference Methods [3] and the Virtual Element Methods [1], have been
considered, studied, and tested in the last decade.

The goal of this note is to introduce a mixed formulation for the BEM-
based Finite Element Method which until now has been studied only for the
primal formulation of boundary value problems. The key idea is to construct
a finite dimensional approximation space by implicitly defined trial functions
which fulfill certain boundary value problems on a local, element-by-element-wise
level. These problems are treated by means of boundary integral formulations
which are discretized by Boundary Element Methods.

I. Lirkov et al. (Eds.): LSSC 2013, LNCS 8353, pp. 331–338, 2014.
DOI: 10.1007/978-3-662-43880-0 37, c≥ Springer-Verlag Berlin Heidelberg 2014
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Since these ideas are applied to the mixed formulation of the problem, we
need a suitable discretization of the Sobolev space H(div) on polygonal meshes.
This is done by implicitly generating trial functions by the BEM. A construction
of suitable trial function for the mixed FEM on polygonal meshes was done by
Kuznetsov and Repin in [8] by using subdivision of the polygonal cell into trian-
gular elements and subsequently generating the test functions locally by mixed
FEM. Also similar ideas were implemented in the Mixed Multiscale Finite Ele-
ment Method [4,7]. The novelty in our approach is that instead of treating the
local problem by the classical mixed FEM (as in [8]) or by the multiscale FEM
(as in [4]) the local problems are treated by Boundary Element Methods. Thus,
we avoid an additional triangulation of the polygonal elements. The Boundary
Element Method works directly on the discretization of the element boundaries
given naturally by their polygonal shapes. Therefore, the spacial dimension of
the local problems is reduced by one and the effort for local meshing is not
needed. The BEM-based FEM benefits from an elegant formulation and an effi-
cient handling of local boundary value problems, which could be implemented
as a stand-alone procedure.

2 Mixed Formulation

Let φ ∇ R
2 be a convex polygonal domain which is bounded, and let nΩ be the

outer unit normal vector to its boundary σ = ∂φ. The boundary σ = σD ∈ σN

is divided into σD (with non vanishing length) and σN where Dirichlet and
Neumann data is prescribed, respectively. We consider the problem

−div(a⊂p) = f in φ, nΩ · a⊂p = 0 on σN , p = gD on σD (1)

with right hand side f → L2(φ), Dirichlet data gD → H1/2(σD) and material
coefficient a → L∗(φ) which, for some positive constants amin and amax, fulfills

0 < amin ∞ a ∞ amax almost everywhere in φ.

The usual notation for Sobolev spaces Hs(D), s ⊃ 0 and the Lebesgue space
L2(D) is utilized for any domain D ∇ φ. Vector valued spaces are indicated by
bold face. We further assume that every interior angle at any transient point
between the boundary σD and σN is less than Δ, so that the solution of (1) with
a = 1, f = 0 and gD = 0 is in the space Hs(φ), s > 3

2 .
Next, a new unknown flux variable u = a⊂p is introduced and the boundary

value problem is presented in a mixed form: Find (u, p) → H0(div, φ) × L2(φ)
such that

a(u, v) + b(v, p) = (nΩ · v, gD)L2(ΓD) ≥v → H(div, φ),

b(u, q) = −(f, q)L2(Ω) ≥q → L2(φ),
(2)

where
a(u, v) = (a−1u, v)L2(Ω) and b(v, q) = (div v, q)L2(Ω)



Mixed FEM for Second Order Elliptic Problems on Polygonal Meshes 333

and

H0(div, φ) = {v → L2(φ) : div v → L2(φ) and nΩ · v = 0 on σN}.

The space H0(div, φ) is equipped with the norm

≤v≤2H(div,Ω) = ≤v≤2L2(Ω) + ≤div v≤2L2(Ω).

It is known that the bilinear forms a(·, ·) and b(·, ·) are bounded, i.e.

|a(u, v)| ∞ Ω1≤u≤H(div,Ω)≤v≤H(div,Ω) for u, v → H0(div, φ),

|b(v, q)| ∞ Ω2≤v≤H(div,Ω)≤q≤L2(Ω) for v → H0(div, φ), q → L2(φ),

the form b(·, ·) satisfies the inf-sup condition, the form a(·, ·) is coercive in
H0(div, φ) on Z = {v → H0(div, φ) : b(v, q) = 0 ≥q → L2(φ)} and thus,
the existence of a unique solution follows from the Babuska-Brezzi theory [2].

For the numerical treatment of problem (2) we shall need a splitting of φ into
finite elements as well as finite dimensional subspaces of H0(div, φ) and L2(φ).
For this we use a family of polygonal meshes {Kh} which satisfy the regularity
conditions specified below. Denote by Eh all edges of the elements in Kh which
are in the interior of φ or belong to σD, and let hK and hE be the diameter of
the element K and the edge length of E, respectively. We introduce the diameter
δK of the largest circle inscribed in K with center zK . If zK is not unique an
arbitrary but fixed one is chosen. Following [9], we call the mesh regular if

1. All elements K → Kh are convex polygons;
2. The aspect ratio is uniformly bounded from above by λ,

i.e. for all K → Kh we have hK/δK < λ;
3. There is a constant c1 > 0 such that for all elements K → Kh and all its edges

E ∇ ∂K we have hK ∞ c1hE .

When studying convergence, the constants λ and c1 have to be uniform over the
hole sequence of meshes and they do not depend on the mesh size.

The finite dimensional subspaces of H0(div, φ) are defined through their
basis functions ΛE associated with edges E → Eh. For any E → Eh, let nE be a
unit normal vector, which in the sequel is considered to be fixed. Furthermore,
let K1 and K2 be the two adjacent elements sharing the common edge E with the
outer normal vectors nK1 and nK2 , respectively. The functions πE are defined
implicitly as solution of the following local boundary value problems

div(a⊂πE) = γE(K)/|K| in K → {K1,K2},

nE · a⊂πE =

{
h−1

E on E,

0 on all other edges,

(3)

see Fig. 1. Here, γE(K) = nE ·nK = ±1, so that the solvability condition for the
Neumann problem is satisfied and (3) has a weak solution πE → H1(φ) which is
unique up to an additive constant. Now, for E ∇ K1 ≡ K2, we define

ΛE(x) =

{
a⊂πE(x) for x → K1 ∈ K2,

0 for x elsewhere.
(4)



334 Y. Efendiev et al.

nE

E

K2K1

Fig. 1. Adjacent elements to E for the definition of ψE .

By construction, ΛE has continuous normal flux across E and zero normal flux
along all other internal edges of φ so that ΛE → H0(div, φ). An edge E → σD has
only one neighboring element K, and therefore the basis function is constructed
in the same way by considering problem (3) solely on K.

We now define Xh, a finite dimensional subspace of H0(div, φ), as

Xh = span{ΛE : E → Eh}. (5)

In the standard finite element terminology the “degrees of freedom” in Xh are
associated with the edges E → Eh and defined by

wE =
∫

E

nE · w ds, E → Eh.

Then, the corresponding interpolation operator Δh : H0(div, φ) ∅ Xh is

Δhw =
∑

E→Eh

wE ΛE . (6)

Further, we introduce the approximation space for the pressure p as

Mh = {q → L2(φ) : q|K = const, K → Kh}. (7)

By the use of the previously introduced spaces, the discrete version of the vari-
ational formulation (2) reads: Find (uh, ph) → Xh × Mh such that

a(uh, vh) + b(vh, ph) = (nΩ · vh, gD)L2(ΓD) ≥vh → Xh,

b(uh, qh) = −(f, qh)L2(Ω) ≥qh → Mh.
(8)

To prove unique solvability of the discrete problem, we use a fundamental
theorem in the mixed finite element analysis, see [2]. This theory relies on the
space

Zh = {vh → Xh : b(vh, qh) = 0 ≥qh → Mh}
and the following two assumptions:

Assumption [A1] There exists a constant ζ∞ > 0 such that

a(vh, vh) ⊃ ζ∞≤vh≤2H(div,Ω) for vh → Zh.
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Assumption [A2] There exists a constant ς∞ > 0 such that

inf
qh→Mh

sup
vh→Xh

b(vh, qh)
≤vh≤H(div,Ω)≤qh≤L2(Ω)

⊃ ς∞.

The continuity of the bilinear forms a(·, ·) on Xh × Xh and b(·, ·) on Xh × Mh

and the assumptions A1 and A2 are sufficient for existence and uniqueness of
the solution of the discrete problem (8), cf. [2]. In order to use this theory we
have to show that Assumptions 1 and 2 are satisfied. This can be done by using
the projection operator Δh introduced in (6) through showing its stability in
H0(div, φ)–norm, see [6]. Then, using Babuska-Brezzi theory the main result of
this Section is proven.

Theorem 1. The problem (8) with Xh defined by (5) and Mh defined by (7)
has unique solution (uh, ph) → Xh ×Mh. Furthermore, there exists a constant c2
depending only upon ζ∞, ς∞, Ω1 and Ω2 such that

≤u − uh≤H(div,Ω)+≤p − ph≤L2(Ω)

∞ c2

{
inf

vh→Xh

≤u − vh≤H(div,Ω) + inf
qh→Mh

≤p − qh≤L2(Ω)

}
.

Analysing the approximation properties of the discrete space Xh and the inter-
polation operator Δh, the following estimate for the interpolation error can be
obtained.

Lemma 1. Let Kh be a regular mesh and v → Hs(φ), 1 ⊃ s > 1
2 . Then the

following estimate is valid

≤v − Δhv≤H(div,Ω) ∞ c3h
s |v|Hs(Ω) + inf

qh→Mh

≤div v − qh≤L2(Ω)

with h = max{hK : K → Kh}.

3 BEM Approximation of Trial Space

In Sect. 2, we have introduced a conforming subspace Xh of the Sobolev space
H0(div, φ). However, the trial functions ΛE rely on solutions of local boundary
value problems and thus, it is almost impossible to give an analytic formula for
these functions on arbitrary polygonal elements. To make this approach feasible,
we make use of the Boundary Element Method. Due to this choice, we have
two additional assumptions. First, we assume that the diffusion coefficient is
piecewise constant such that a(x) = aK for x → K ≥K → Kh, and second, we
assume that all elements have a diameter less than one. The second assumption
does not represent a serious restriction of the method, since it can always be
fulfilled by proper rescaling of the domain.

In the definition of ΛE , the boundary value problem (3) has to be solved
for πE . Due to the piecewise constant diffusion coefficient, it is possible to rewrite
this problem as

−∆πE = fE in K, nE · ⊂πE = gE on ∂K
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with appropriate data fE and gE . Furthermore, since fE is constant on K, there
is a polynomial πE,p with −∆πE,p = fE and we write πE = πE,0 + πE,p, where
πE,0 is obviously the solution of

−∆πE,0 = 0 in K, nE · ⊂πE,0 = gE,0 on ∂K

for some data gE,0. It is known, cf. [11], that the weak solution of this problem
in H1(K), which is unique up to an additive constant, can be expressed as

πE,0(x) =
∫

∂K

U∞(x, y)gE,0(y) dsy −
∫

∂K

γK
1,yU∞(x, y)γK

0 πE,0(x) dsy (9)

for x → K. Here, U∞(x, y) = − 1
2π ln |x − y| for x, y → R

2 is the so called funda-
mental solution and γK

0 : H1(K) ∅ H1/2(∂K) denotes the usual trace operator.
If the trace γK

0 πE,0 is known, the representation formula (9) can be used to eval-
uate πE,0 and thus πE inside of K. It is known, cf. [11], that this trace fulfills
the following variational formulation on the boundary of the element K: Find
γK
0 πE,0 → H1/2(∂K) such that(

D̃KγK
0 πE,0, ϑ

)
L2(∂K)

=
(
( 12I − K∅

K)g, ϑ
)
L2(∂K)

≥ϑ → H1/2(∂K), (10)

where (
D̃Kθ, ϑ

)
L2(∂K)

= (DKθ, ϑ)L2(∂K) + (θ, 1)L2(∂K)(ϑ, 1)L2(∂K),

and DK and K∅
K are the well studied hypersingular integral operator and the

adjoint double layer potential operator, respectively. The operator D̃K is bounded
and elliptic on H1/2(∂K) and thus, the variational formulation (10) admits a
unique solution γK

0 πE,0 → H1/2(∂K).
For the computer implementation, the space H1/2(∂K) is discretized by

piecewise linear and continuous functions over ∂K and a discrete Galerkin for-
mulation for (10) is used to approximate the trace γK

0 πE,0. Inserting this approx-
imation into the representation formula (9), we obtain an approximation π̃E,0

of πE,0 and therefore an approximation π̃E of πE . Finally, we replace πE by its
approximation in (4) to get an approximated trial function Λ̃E . This gives an
approximated trial space

X̃h = span{Λ̃E : E → Eh}.

Due to the approximation errors coming from the Boundary Element Method,
the space X̃h is not conforming any more. Therefore, the discrete version of the
initial problem now reads: Find (ũh, p̃h) → X̃h × Mh such that

ah(ũh, ṽh) + bh(ṽh, p̃h) = (nΩ · ṽh, gD)L2(ΓD) ≥ṽh → X̃h,

bh(ũh, q̃h) = −(f, q̃h)L2(Ω) ≥q̃h → Mh,

where ah(u, v) =
∑

K→Kh
(a−1u, v)L2(K) and bh(v, q) =

∑
K→Kh

(div v, q)L2(K).
The stability, error estimates, and number of numerical experiments for this
method are presented in our work [6].
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Fig. 3. Relative error (11) with respect to h in logarithmic scale

4 Numerical Experiments

To validate our theoretical results, we give the first numerical experiments for
the mixed formulation of the BEM-based Finite Element Method. Two model
problems are posed on the domain φ = (−1, 1)2 and we decompose its boundary
into σD = {(x1,−1)≤ : −1 ∞ x1 ∞ 1} and σN = ∂φ \ σD.

In the first example, we choose the data gD and gN in such a way that the
smooth function p(x) = exp(2Δ(x1 − 0.3)) cos(2Δ(x2 −0.3)), x → R

2 is the exact
solution of

−∆p = 0 in φ, nΩ · ⊂p = gN on σN , p = gD on σD.

Thus, (u, p) with u = ⊂p solves the corresponding mixed formulation (2). For
the second example, we take p(x) = sin(Δx1) sin(Δx2), x → R

2 as solution of

−∆p = f in φ, nΩ · ⊂p = gN on σN , p = 0 on σD

with corresponding data f and gN .
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The BEM-based FEM is applied on a sequence of uniformly refined polygonal
meshes, see Fig. 2, and we analyse the relative error

≤u − uh≤H(div,Ω) + ≤p − ph≤L2(Ω)

≤u≤H(div,Ω) + ≤p≤L2(Ω)
. (11)

According to Theorem 1, the interpolation error in Lemma 1 and known approx-
imation properties of the space Mh, we expect linear convergence of the relative
error (11) with respect to the mesh size h = max{hK : K → Kh}. The numerical
experiments confirm this fact, see Fig. 3.
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Abstract. The focus of this paper is on the applicability of multiscale
finite element coarse spaces for reducing the computational burden in
topology optimization. The coarse spaces are obtained by solving a set
of local eigenvalue problems on overlapping patches covering the compu-
tational domain. The approach is relatively easy for parallelization, due
to the complete independence of the subproblems, and ensures contrast
independent convergence of the iterative state problem solvers. Several
modifications for reducing the computational cost in connection to topol-
ogy optimization are discussed in details. The method is exemplified in
minimum compliance designs for linear elasticity.

Keywords: Topology optimization · Multiscale finite element method ·
High contrast media

1 Introduction

The aim of this work is to investigate and to demonstrate the applicability of the
recently developed multiscale finite element method (MsFEM) with local spec-
tral basis functions [8] in topology optimization. Topology optimization [4] is an
iterative process which finds a material distribution in a given design domain
by minimizing an objective and fulfilling a set of predefined constraints. The
material distribution is represented by a density field which takes value one, if
the material point is occupied with material, and zero if the material point is
void. In order to utilize gradient based optimization, the problem is relaxed to
take intermediate values between zero and one. The optimization algorithm con-
sists of alternating finite element analyzes, gradient evaluations, regularization
steps and math programming updates. Most of the computational efforts are
spent on solving the discretized physical problem and wider industrial adoption
requires reduction of the solution time. A promising direction is the development
of new scalable algorithms and codes for proper utilization of the modern paral-
lel machines [1]. Here, the MsFEM with local spectral basis functions is adopted
for achieving this goal.
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The main idea behind the MsFEM approach is to construct basis functions
which provide a good approximation of the solution on a coarse grid [9]. The
method has been applied mainly to scalar elliptic problems, and recently applica-
tions in linear elasticity [5] have been demonstrated as well. The original MsFEM
approach [9] constructs a single shape function per coarse node and the error
in the solution is controlled by the coarse mesh size. The MsFEM for high con-
trast problems [8] constructs several basis functions per coarse node which are
capable of representing the important features of the solution. The accuracy of
the approximation is controlled by the dimension of the coarse space and the
approach is briefly presented below.

2 Multiscale Finite Element Method - Linear Elasticity

The considered mechanical system is linear elastic with system response governed
by the Navier-Cauchy partial differential equation given as

−divσ (u) = f in Ω
σ (u) = C : ε (u) in Ω (1)

where σ is the stress tensor, ε is the strain tensor, C is an elastic material
properties tensor, u denotes the displacement field and f is the input sup-
plied to the system, i.e., distributed and concentrated forces. The mechani-
cal system occupies the bounded physical domain Ω ∇ R

2. The boundary
Γ = ΓDi

∈ ΓNi
, i = 1, 2, is decomposed into two disjoint subsets for each compo-

nent i = 1, 2, ΓDi
with prescribed displacements ui = 0, and ΓNi

with prescribed
traction ti. The material properties tensor is assumed to be isotropic and has
the following form C (x) = E (x) C0, where C0 is a constant elasticity tensor
obtained for predefined Poisson ratio ν and modulus of elasticity one, and E (x)
is a spatially varying modulus of elasticity E (x) ⊂ [Emin, Emax]. The variational
formulation of (1) is given as

a (u,v) = l (v) for allv ⊂ V0 (2)

with bilinear form a and linear form l defined by

a (u,v) =
∫

Ω

(C : ε (u)) : ε (v) dx for all u, v ⊂ V0

l (v) =
∫

ω

(f · v) dx +
∫

ΓN

(t · v) ds for all v ⊂ V0

where V0 =
{

v ⊂ [
H1 (Ω)

]2 : vi = 0on ΓDi , i = 1, 2
}

∇ V =
[
H1 (Ω)

]2. The
weak formulation is discretized using finite element space Vh ∇ V0 with vector
valued shape function defined on a uniform rectangular mesh T h. Each basis
function is a scalar linear Lagrange function in one of the components and zero
in the other. This leads to a linear system of equations in the form

Ku = f (3)
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where K is the so-called stiffness matrix of the system, u is the vector with
nodal displacements and f is the vector with the external forces.

In topology optimization the linear system (3) is solved on each iteration step.
Therefore, the solution cost of the optimization algorithm depends strongly on
the time necessary for obtaining the solution of the state equations. Solving
the linear system of equations can account for more than 99 % of the total
computational time [1]. As the discretization of realistic 3D industrial problems
often leads to linear system of equations with several million degrees of freedom,
the utilization of direct solvers becomes prohibitive and the state solution is
usually obtained by iterative methods. For multi-material physical systems with
high contrast between the material parameters arising in topology optimization
and classical preconditioning, the number of iterations increases with increasing
the contrast, e.g. [1].

In [8] it is demonstrated that the solution cost for the diffusion equation
with heterogeneous coefficients can be significantly reduced by using coarse space
approximations which contain important features of the solution. Here the same
approach is followed for the linear elastic case and the main steps are briefly
outlined. The mesh T h is assumed to be obtained as a refinement of a coarser
one T H = {K}, and K denotes a coarse grid block. The nodes of the coarse
mesh are denoted as {yi}Nc

i=1 and the neighborhood of node yi is defined as

ωi =
⋃ {

Kj ⊂ T H ;yi ⊂ Kj

}
(4)

A set of coarse basis functions {φi,j , j = 1 . . . Ni}, defined w.r.t. T h, with support
on ωi is introduced for each node yi in the coarse mesh. The solution in the coarse
space is sought as ua =

∑
i,j ci,jφi,j . A coarse discretization of the variational

formulation is given as Kcuc = f c, where the coarse stiffness matrix Kc and
the coarse right hand side f c are obtained as

Kc = RcKRT
c , f c = Rcf (5)

The vector uc contains the coefficients ci,j and RT
c = [φ1,φ2, . . . ,φNt

] , Nt =∑Nc

i=1 Ni is a matrix which describes mapping from the coarse to the fine space,
and consists of the nodal values of the coarse basis functions in the fine space.
Approximation of the nodal solution in the fine space is obtained as ua = RT

c uc.
Following [10], the coarse basis functions are obtained by solving the following

eigenvalue problem

−div (C (x) : ε (u)) = λE (x) u, x ⊂ ωi (6)

for each neighborhood ωi of node yi with the same boundary conditions applied
to (1) on ∂ωi → Γ ∞= ⊃, and homogeneous Neumann (t = 0) otherwise. By
using the subspace Vh (ωi) = {vh ⊂ Vh : suppvh ∇ ωi}, the eigenvalue problem
in discrete form is written as

Kωiψωi = λMωiψωi (7)
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The eigenvalues and the eigenvectors are denoted as {λωi

l } and {ψωi

l } respec-
tively, and the eigenvalues are ordered as λωi

1 ≥ λωi
2 ≥ λωi

3 ≥ · · · ≥ λωi
j ≥ . . . .

The set of coarse base functions {φi,j} associated with node yi is defined
as the fine space finite element interpolant of

{
χi (x) ψωi

j (x) , j = 1 . . . Ni

}
, e.g.

[6]. Where, {χi}Nc

i=1 is a partition of unity subordinated to {ωi}, such that χi ⊂
H1 (Ω) and |≤χi| ≥ 1/H, i = 1, . . . , Nc, and H is the characteristic length of a
coarse element K. For each ωi, Ni is determined as the number of the eigenvalues
smaller than a globally selected threshold λΩ.

The above procedure is a direct generalization of the coarse space construc-
tion procedure for scalar diffusion problem with high contrast coefficients [10].
Coarse spaces can be constructed by replacing the mass matrix in (7) with the
diagonal of Kωi as proposed in [7]. An alternative for general positive definite
bi-linear forms is analyzed in [6]. Numerical experiments performed on the high
contrast test problems considered here reveal that both alternatives lead to sim-
ilar convergence rate with respect to the number of coarse degrees of freedom
and, due to the limits on the size, they are not presented in the current work.

3 Topology Optimization

Topology optimization [4] is an iterative process which minimizes a predefined
objective function, e.g. structural weight or compliance, by distributing material
in a given design domain. The material distribution fulfills a predefined set of
constraints, e.g. volume or stress constraints. The design domain is discretized
using cells (voxels in 3D) and the design field is parametrized using constant
design variables associated with each cell. The discretization coincides with the
finite element mesh. The existence of the solution is ensured by filtering (see ref-
erences in [4]). The compliance minimization problem in discrete form is given as:

min
ρ

: c(ρ),

s.t. : K (ρ̃ (ρ)) u = f , (8)
: V (ρ̃ (ρ)) ≥ V ∗,
: 0 ≥ ρ ≥ 1

where ρ is a vector with design variables, ρ̃ is filtered density vector with ele-
ments ρ̃e (ρ) computed as weighted average of the design variables ρj in the
elements within radius Rf from the center of element e, e.g. [3]. The objec-
tive is given as c(ρ) = fTu and the material properties for each element e are
computed as

Ee = Emin + ρ̃p
e (Emax − Emin) (9)

where p = 3 penalizes the intermediate densities. The optimization problem is
non-convex and the design converges to a local minimum. In order to simplify
the notations the explicit dependence of ρ and ρ̃ will be omitted in the following
text.
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The gradients of the objective with respect to the filtered design variables are
obtained by adjoint sensitivity analysis, and with respect to the design variables
by employing the chain rule [4]. The sensitivities in discrete form with respect
to the filtered design variables ρ̃e, e = 1, . . . , Ne are given as

∂c

∂ρ̃e
= −uT ∂K

∂ρ̃e
u = −uT

e

∂Ke

∂ρ̃e
ue (10)

where Ne is the number of elements in the fine mesh. Following the same app-
roach, the sensitivities for the reduced coarse model are given as

∂c

∂ρ̃e
= −uT

c

∂Kc

∂ρ̃e
uc = −uT

c

Rc

∂ρ̃e
KRT

c uc − uT
c Rc

K

∂ρ̃e
RT

c uc − uT
c RcK

RT
c

∂ρ̃e
uc

(11)

where the matrices K and Rc are functions of the filtered densities ρ̃. The
gradients of all basis functions with support ωi →Ke = ⊃ are zero. Therefore, the
rows of ∂Rc

∂ρe
are zero everywhere except for the rows with indices corresponding

to the basis functions with support ωi→Ke ∞= ⊃. The gradients of an eigenvector ψ
can be obtained by adjoint sensitivity analysis [11]. For a large number of shape
functions/eigenvectors the computational cost becomes significant, therefore, in
the numerical examples presented later in the paper the optimization process is
driven by approximate sensitivities obtained by neglecting the first and last term
in (11). Numerical experiments, as well as analysis of the gradient expression,
reveal that the convergence rate of the gradient vector is slower than the energy
norm of the state problem solution. However, in-line with the observation in [2],
the larger relative difference has little effect on the optimization process.

4 Numerical Examples

The first set of numerical experiments demonstrates the convergence of MsFEM
for high contrast problems in linear elasticity. The test example is shown in
Fig. 1. The computational domain has dimensions 1m×3m. It represents half of
the so-called MBB (Messerschmitt–Bölkow–Blohm) beam problem and therefore
symmetric boundary conditions are applied to the left edge of the model as shown
in Fig. 1. The elastic modulus is set to Emax = 1.0GPa and unit force is applied
to the upper left corner. The test design is obtained by filtering 0/1 black and
white design. The filter radius is set to Rf = 0.015m. The reference solution is
obtained with a regular quadrilateral finite element mesh consisting of 320×960
elements, which corresponds to the fine mesh Th. Convergence of the solution
obtained using the presented spectral multiscale method to the reference solution
is shown in Fig. 2. The coarse discretization consists of 5 × 15 coarse elements
for all experiments. The partition of unity is obtained using standard finite
element interpolation on the internal coarse elements, linear interpolation along
the element edges aligned with the boundary of the computational domain and
constant value for the corner elements. It should be noted that the coarse sub-
domains are not aligned with the repetitive cells of the test structure. Spectral
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Fig. 1. Design domain and boundary conditions. The sample design is used as a base
for testing the convergence of MsFEM for high contrast problems. Black corresponds
to density one and white to Emin.
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Fig. 2. MsFEM convergence rate for different contrast values Emin/Emax =
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convergence can be observed with respect to both the eigenvalue threshold, and
to the number of coarse degrees of freedom. Furthermore, the convergence rate
is independent on the contrast ratio Emin/Emax.

The method is tested in Matlab environment utilizing a modified version
of the assembly process presented in [3]. The implementation of the MsFEM
solver for the 2D test problem is slower than the implementation based on the
standard Matlab sparse direct solver. The time consuming part in the MsFEM
algorithm is the construction of the coarse basis. Several techniques for reducing
the time spent on the small eigenvalue problems, like partial homogenization,
multilevel and multigrid coarsening, have been tested and have resulted in sig-
nificant reduction in both problem size and computational time. Efficient imple-
mentation requires full vectorization in Matlab or implementation in languages
like Fortran/C/C++, therefore, a detailed analysis, discussion and comparison
are left for future papers.

The topology optimization process is based on repetitive design updates and
solutions of the state equation (3). After the first several iterations the design
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changes are localized which is utilized here for further reduction of the computa-
tional effort. The coarse bases are updated only for agglomerates which exhibit
changes in the design. The update is triggered when a point of the local design
field becomes larger or smaller than a prescribed upper min{ρ+Δρ, 1} or lower
bounds max{ρ−Δρ, 0}, with Δρ = 0.1. For optimization steps within the lim-
its the changes in the design are taken into account by solving an eigenvalue
problem obtained by projection of (7) on reduced basis. The reduced basis for
neighborhood ωi consists of three sets of n eigenvectors. The first set is from
the latest update ψi = {ψωi

l }
l=1...n

. The second set ψd is orthogonal to ψi and
obtained from (7) written for the dilated bound, and the third set ψe is orthog-
onal to the previous two sets, and obtained by (7) written for the eroded bound.
This modification results in significant speed-up which for the 2D optimization
example presented here is faster than a standard implementation with direct
sparse solver [3].

An optimized topology obtained after 500 iterations using the above algo-
rithm is shown in Fig. 3. The initial design is uniform and the volume constraint
is set to 50 % of the total volume. The design is updated using the method of
moving asymptotes (MMA) [12]. In order to avoid early convergence to a local
minimum, the penalization parameter p in (9) is increased every 20 iterations
during the first 300 iterations, from one to its maximum p = 3. The number
of the coarse degrees of freedom varies from 4000 to 6000 during the optimiza-
tion, which corresponds to an average of 71 to 108 dofs per coarse node. The
maximal eigenvalue is set to be smaller than 800. Reducing the size of the basis
(decreasing λmax) results in a design with disconnected bars, isolated mater-
ial islands and checkerboard-like patterns, due to the stiffness averaging of the
coarse shape functions and the lack of uniqueness of the associated microstruc-
ture. The reduction of the solution basis as well as the utilization of inexact
objective gradients, provides additional regularization to the optimization prob-
lem. The effect is pronounced in the early stages when the initial design is formed
and the basis consists mainly of smooth solutions of the eigenvalue problem. For
topologies with good contrast the reduction does not have any significant influ-
ence on the optimization process. The regularization effect can be removed by
utilizing the coarse solver as a preconditioner. Preconditioned GMRES applied
to (3) with multigrid like preconditioner and one post-smoothing Gauss-Seidel
step converges with relative error 10−6 in 12 to 15 iterations (independent of the
contrast) with negligible increase of the computational time.

Fig. 3. Optimized MBB design with compliance c = 197.633 and mesh size 160× 480.
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5 Conclusions

MsFEM with local spectral basis provides a good alternative to the complex
re-meshing approaches used for reducing the computational burden in topology
optimization. It ensures good contrast independent convergence on a fixed mesh.
For large 3D examples the method is perfectly scalable as it relies on the solution
of a set of completely independent coarse grained tasks and it will excel in
realistic industrial problems. Reduction of the basis update frequency is a key for
decreasing the computational time. The multiscale coarse bases, in combination
with iterative solvers, provide the most robust and computationally effective
approach for topology optimization. A detailed study will be the subject of
future research.
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5. Buck, M., Iliev, O., Andrä, H.: Multiscale finite element coarse spaces for the
application to linear elasticity. Cent. Eur. J. Math. 11(4), 680–701 (2013)

6. Efendiev, Y., Galvis, J., Lazarov, R., Willems, J.: Robust domain decomposition
preconditioners for abstract symmetric positive definite bilinear forms. ESAIM:
Math. Model. Numer. Anal. 46, 1175–1199 (2012)

7. Efendiev, Y., Galvis, J., Vassilevski, P.: Spectral element agglomerate algebraic
multigrid methods for elliptic problems with high-contrast coefficients. In: Huang,
Y., Kornhuber, R., Widlund, O., Xu, J. (eds.) Domain Decomposition Methods
in Science and Engineering XIX. Lecture Notes in Computational Science and
Engineering, vol. 78, pp. 407–414. Springer, Heidelberg (2011)

8. Efendiev, Y., Galvis, J., Wu, X.H.: Multiscale finite element methods for high-
contrast problems using local spectral basis functions. J. Comput. Phys. 230(4),
937–955 (2011)

9. Efendiev, Y., Hou, T.Y.: Multiscale Finite Element Methods: Theory and Appli-
cations. Springer, New York (2009)

10. Galvis, J., Efendiev, Y.: Domain decomposition preconditioners for multiscale flows
in high-contrast media. Multiscale Model. Simul. 8(4), 1461–1483 (2010)

11. Lee, T.H.: Adjoint method for design sensitivity analysis of multiple eigenvalues
and associated eigenvectors. AIAA J. 45(8), 1998–2004 (2007)

12. Svanberg, K.: The method of moving asymptotes - a new method for structural
optimization. Int. J. Numer. Meth. Eng. 24, 359–373 (1987)



Numerical Homogenization of Heterogeneous
Anisotropic Linear Elastic Materials

S. Margenov, S. Stoykov, and Y. Vutov(B)

Institute of Information and Communication Technologies,
Bulgarian Academy of Sciences, Sofia, Bulgaria

yavor@parallel.bas.bg

Abstract. The numerical homogenization of anisotropic linear elastic
materials with strongly heterogeneous microstructure is studied. The
developed algorithm is applied to the case of trabecular bone tissue. In
our previous work [1], the orthotropic case was considered. The homoge-
nized anisotropic tensor is transformed according to the principle direc-
tions of anisotropy (PDA). This provides opportunities for better
interpretation of the results as well as for classification of the material
properties.

The upscaling procedure is described in terms of six auxiliary elas-
tic problems for the reference volume element (RVE). Rotated trilinear
Rannacher-Turek finite elements are used for discretization of the
involved subproblems. A parallel PCG method is implemented for effi-
cient solution of the arising large-scale systems with sparse, symmetric,
and positive semidefinite matrices. Then, the bulk modulus tensor is com-
puted from the upscaled stiffness tensor and its eigenvectors are used to
define the transformation matrix. The stiffness tensor of the material is
transformed with respect to the PDA which gives a canonical (unique)
representation of the material properties.

Numerical experiments for two different RVEs from the trabecular
part of human bones are presented.

1 Introduction

Many materials, including the human bone have a complex microstructure.
In recent years micro computed tomography (μCT) and micro finite element
method (μFEM) analysis proved to be a valuable tool for analyzing bone prop-
erties, see e.g. [2]. The macro level material properties strongly depend on their
microstructure. Nevertheless, the overall mechanical responses can be described
using multilevel techniques that are built upon basic conservation principles at
the micro level.

In our previous work [1], we studied a numerical homogenization algorithm
for computing the upscaled orthotropic stiffness tensor. This approach is further
developed to the general case of anisotropic materials. Here we obtain an effective
stiffness tensors of a reference volume element (RVE).
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The trabecular bone is a strongly heterogeneous composition of solid and fluid
phases. Its voxel representation obtained from μCT images is used to formulate
the problem. Our goal is to obtain upscaled material properties of trabecular
bone tissue. In this work, only the mechanical response of the solid phase is
considered. To this purpose a fictitious domain approach is used.

This paper is organized as follows. The applied numerical homogenization
scheme is described in Sect. 2. In Sect. 3 transformation to the principal directions
of anisotropy (PDA) is recalled. And finally the upscaled and transformed tensors
are presented and discussed in the last section.

2 Homogenization Technique

Let Ω be a parallelepipedal domain representing our reference volume element
(RVE) and u = (u1, u2, u3) be the displacements vector in Ω. Here, components
of the small strain tensor [3] are:

εij (u (x)) =
1
2

(
∂ui(x)
∂xj

+
∂uj(x)

∂xi

)
(1)

We assume that Hooke’s law holds. The stress tensor σ is expressed in the
form

σij = sijklεkl, (2)

where summation over repeating indexes is assumed. The forth-order tensor s is
called the stiffness tensor, and has the following symmetry [4]:

sijkl = sjikl = sijlk = sklij . (3)

Often, the Hooke’s law is written in matrix form:
⎧
⎪⎪⎪⎪⎪⎪⎨

σ11

σ22

σ33

σ23

σ13

σ12

⎡
⎢⎢⎢⎢⎢⎢⎣

=

⎧
⎪⎪⎪⎪⎪⎪⎨

s1111 s1122 s1133 s1123 s1113 s1112
s2211 s2222 s2233 s2223 s2213 s2212
s3311 s3322 s3333 s3323 s3313 s3312
s2311 s2322 s2333 s2323 s2313 s2312
s1311 s1322 s1333 s1323 s1313 s1312
s1211 s1222 s1233 s1223 s1213 s1212

⎡
⎢⎢⎢⎢⎢⎢⎣

⎧
⎪⎪⎪⎪⎪⎪⎨

ε11
ε22
ε33
2ε23
2ε13
2ε12

⎡
⎢⎢⎢⎢⎢⎢⎣

. (4)

The symmetric 6×6 matrix in (4) is denoted with S and. is called also the stiffness
matrix. For an isotropic material matrix S, and the tensor s have only two
independent degrees of freedom. For orthotropic materials (materials containing
three orthogonal planes of symmetry), the matrix S has nine independent degrees
of freedom. In the general anisotropic case, S has 21 independent degrees of
freedom [5].

The goal of our study is to obtain homogenized material properties of the
trabecular bone tissue. In other words – to find the stiffness tensor of a homoge-
neous material which would have the same macro-level properties as our RVE.
Our approach follows the numerical upscaling method from [1] (see also [6,7]).
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The homogenization scheme requires finding Ω-periodic functions ξkl = (ξkl
1 , ξkl

2 ,
ξkl
3 ), k, l = 1, 2, 3, satisfying the following equation in a week formulation:

⎤
Ω

⎥
sijpq(x)

∂ξkl
p

∂xq

⎦
∂φi

∂xj
dΩ =

⎤
Ω

sijkl(x)
∂φi

∂xj
dΩ, (5)

for an arbitrary Ω-periodic variational function φ ∈ H1(Ω). After computing
the characteristic displacements ξkl, from (5) we can compute the homogenized
elasticity tensor sH using the following formula:

sH
ijkl =

1
|Ω|

⎤
Ω

⎥
sijkl(x) − sijpq(x)

∂ξkl
p

∂xq

⎦
dΩ. (6)

From (5) and due to the symmetry of the stiffness tensor (3), we have the relation
ξkl = ξlk. Therefore the solution of only six problems (5) is required to obtain
the homogenized stiffness tensor.

The periodicity of the solution implies the use of periodic boundary condi-
tions. Rotated trilinear (Rannacher-Turek) finite elements [8] are used for the
numerical solution of (5). This choice is motivated by the additional stability of
the nonconforming finite element discretization in the case of strongly hetero-
geneous materials [9]. Construction of a robust non-conforming finite element
method is generally based on application of mixed formulation leading to a
saddle-point system. By the choice of non continuous finite elements for the
dual (pressure) variable, it can be eliminated at the (macro)element level. As
a result we obtain a symmetric positive semi-definite finite element system in
primal (displacements) variables. We utilize this approach, which is referred as
the reduced and selective integration (RSI) [10].

For the solution of the arising linear system, the preconditioned conjugate
gradient is used. For the construction of the preconditioner the isotropic variant
of the displacement decomposition (DD)[11] was used. We write the DD auxiliary
matrix in the form

CDD =

⎧
⎨A

A
A

⎡
⎣ (7)

where A is the stiffness matrix corresponding to the bilinear form

a(uh, vh) =
⎞

e∗Ωh

⎤
e

E

⎥
3⎞

i=1

∂uh

∂xi

∂vh

∂xi

⎦
de. (8)

Such approach is motivated by the second Korn’s inequality, which holds for
the RSI FEM discretization under consideration. More precisely, in the case of
isotropic materials, the estimate

κ(C−1
DDK) = O((1 − 2ν)−1)

holds uniformly with respect to the mesh size parameter in the FEM discretiza-
tion, where ν is the Poisson ratio.
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As the arising linear systems are large, the problems are solved in parallel.
Parallel MIC(0) preconditioner for scalar elliptic systems [12] is used to approx-
imate (7). Its basic idea is to apply MIC(0) factorization of an approximation
B of the stiffness matrix A. Matrix B has a special block structure. Its diagonal
blocks are diagonal matrices. This allows the solution of the preconditioning sys-
tem to be performed in parallel. The condition number estimate κ(B−1A) ≤ 3
holds uniformly with respect to mesh parameter and possible coefficient jumps
(see for the related analysis in [12]). This technique is applied three times – once
for each diagonal block of (7). Thus we obtain the parallel MIC(0) preconditioner
in the form:

CDDMIC(0) =

⎧
⎨CMIC(0)(B)

CMIC(0)(B)
CMIC(0)(B)

⎡
⎣ .

More details on applying this preconditioner for the proposed homogenization
technique can be found in [1].

3 Principal Directions of Anisotropy

We follow the procedure for determining the PDA described in [13]. A coordi-
nate system is said to coincide with the PDA of a material, when the material,
subjected to “all-around uniform pure extension state,” forms a “pure tension
state.”

Let us introduce the bulk modulus tensor

K =

⎧
⎨K11 K12 K13

K21 K22 K23

K31 K32 K33

⎡
⎣ . (9)

The elements of K are defined as

Kij =
3⎞

k=1

sijkk (10)

We write the “all-round uniform extension” as εij = ε̃δij , where ε̃ is a constant
reference strain and δij is the Kronecker delta. Then, the stress components are

σij = Kij ε̃. (11)

Hence the principal directions of the tensor K coincide with the stress principal
directions. The stress values in these principal directions are

σij = λiε̃δij , (12)

where λi are the eigenvalues of the tensor K. To ensure uniqueness of the trans-
formation, we order the eigenvalues λ3 ≥ λ2 ≥ λ1, i.e. the biggest eigenvalue is
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the third and the smallest is the first. With this order, we enforce the material
to orient its strongest direction in z axis and its weakest in x. The case of equal
eigenvalues, leads to equivalence of the material in two or more directions. The
transformation matrix T, which rotates the coordinate system to the one which
coincides with the PDA, is given by the corresponding normalized eigenvectors
vi of K:

T =

⎧
⎨v1

1 v1
2 v1

3

v2
1 v2

2 v2
3

v3
1 v3

2 v3
3

⎡
⎣ . (13)

Now we are able to rotate the stress tensor using formula

s̄klst = smnprTkmTlnTspTtr. (14)

Here summation over repeating indexes is assumed.

4 Numerical Experiments

To solve the above described upscaling problem, a portable parallel FEM code
is designed and implemented in C++. The parallelization has been facilitated
using the MPI library [14].

The analyzed test specimens are parts of trabecular bone tissue extracted
from a high resolution computer tomography image [15]. The voxel size is 37
μm. The trabecular bone has a strongly expressed heterogeneous microstructure
composed of solid and fluid phases.

Homogenized properties of two different RVEs with sizes of 128 × 128 × 128
are shown, see Fig. 1. The RVEs are different, but part of the same vertebra.
The Young modulus and the Poisson ratio of the solid phase, taken from [16],
are Es = 14.7GPa and νs = 0.325. Our intention is to obtain the homogenized
elasticity tensor of the RVE, taking into account the elastic response of the solid
phase only. We interpret the fluid phase as a fictitious domain. Thus, we set
Young modulus Ef = ζES for the voxels corresponding to the fluid phase. The
parameter ζ is set to 10−5. The choice of ζ is studied in [1]. We also set νf = νs.
The chosen values of Ef and νf practically do not influence the homogenization
result.

The iteration stopping criterion is ||rj ||C−1/||r0||C−1 < 10−6, where rj is
the residual at the j-th iteration step of the preconditioned conjugate gradient
method and C stands for the used preconditioner.

Numerical experiments are performed on a Blue Gene/P machine. It is a
massively parallel computer consisting of quad-core computing nodes. The Pow-
erPC based low power processors run at 850 MHz. Each node has 2 GB of RAM.
The nodes are interconnected with several specialized high speed networks—3D
mesh network for peer to peer communications and tree network for collective
communications, among others.

The computations were performed on 256 processors. The computations took
between 4 and 5 h for each of the auxiliary problems. This has notable increase
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First specimen Second specimen

Fig. 1. Structure of the two RVEs

from the case where a truly periodic media is considered [1]. In that case the
number of iterations (and thus the compute time) for similar problems was
around six times less.

The computed homogenized stiffness matrix for the first specimen is

SH
1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

802 218 212 −11.7 −1.31 72.8
218 566 167 −16.2 0.25 48.5
212 167 133 −71.4 31.8 22.8

−11.7 −16.2 −71.4 206 31.7 2.91
−1.31 0.25 31.8 31.7 313 −9.11

72.8 48.5 22.8 2.91 −9.11 197

⎤
⎥⎥⎥⎥⎥⎥⎦
, (15)

and for the second one —

SH
2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

372 127 74.6 −4.75 4.01 −20.0
127 436 81.3 −9.03 3.60 −16.2
74.6 81.3 606 −44.5 27.8 −11.8

−4.75 −9.03 −44.5 98.2 −21.0 1.68
4.01 3.60 27.8 −21.0 100 −6.17

−20.0 −16.2 −11.8 1.68 −6.17 120

⎤
⎥⎥⎥⎥⎥⎥⎦
. (16)

All values are measured in megapascals (MPa). The transformation procedure,
described in Sect. 3, is applied to the stiffness matrices SH

1 and SH
2 . As a result,

the stiffness matrices S̄H
1 and S̄H

2 , characterizing the properties of the considered
RVEs in the coordinate systems aligned with their PDA are obtained:

S̄H
1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

501 221 154 8.36 −14.0 −17.8
221 847 224 8.41 −6.89 18.1
154 224 1340 −16.7 20.9 −0.28
8.36 8.41 −16.7 320 14.2 9.20

−14.0 −6.89 20.9 14.2 196 1.64
−17.8 18.1 −0.28 9.20 1.64 204

⎤
⎥⎥⎥⎥⎥⎥⎦
, (17)
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First specimen Second specimen

Fig. 2. Structure of the two transformed stiffness matrices

S̄H
2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

343 121 848 31.7 3.75 5.45
121 372 139 38.8 −10.7 −3.90
84.8 139 573 −70.6 7.02 −1.54
31.7 38.8 −70.6 165 8.17 −9.42
3.75 −10.7 7.02 8.17 97.3 22.5
5.45 −3.90 −1.54 −9.42 22.5 119

⎤
⎥⎥⎥⎥⎥⎥⎦
. (18)

The matrices S̄H
1 and S̄H

2 are visualized on Fig. 2. The degree of anisotropy η
can be defined as the ratio

η = s̄3333/s̄1111. (19)

The degrees of anisotropy for the two RVEs η1 and η2 are 2.67 and 1.67. One can
see that although part of the same vertebra, the two specimens have different
degrees of anisotropy and different magnitudes of the elastic moduli. This demon-
strates the importance of the material microstructure for the elastic response.

It is well known, that the trabecular bone tissue adapts to the stresses it
experiences (a fact referred to as a Wolffs law) [17]. In agreement with this, the
presented homogenized stiffness tensors show considerable level of anisotropy.
Our results evidently confirm that the anisotropy cant be neglected in the sim-
ulations. As a next step in this study, the analysis of a representative set of CT
images is needed to provide data for correlation analysis of the homogenized
stiffness tensors. Then, the map of principle directions of the experienced loads
for a particular bone at the organ level will provide new opportunities for more
realistic patient specific simulations using the clinically available information for
the bone density.

In this context, let us remind that the presented results use very high reso-
lution X-ray CT scans. Due to the level of radiation intensity, such a full length
organ-level scanning is not applicable in-vivo. In this sense, the more standard
multiscale approach is not applicable due to the lack of data.

In addition, the fluid phase of the bone plays an important part in its elastic
response. One possible approximation of this two-phase system is to interpret the
fluid as an almost incompressible elastic material (see, e.g., [18]). One important
future goal is to verify the related results in a comparison with some more general
poroelastic (say Biot) models.
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Abstract. The simulation of processes in highly heterogeneous media
comes with many challenges. In particular many domain decomposition
methods do not perform well in this case, specially if the decomposi-
tion into subdomains does not accommodate the coefficient variations.
For three popular domain decomposition methods (two level additive
Schwarz, BDD and FETI) we have proposed a remedy to this problem
in previous work with coauthors. Here we present the strategy which was
used by applying it to the Hybrid Schwarz preconditioner. It is based on
identifying a bottleneck estimate in the proof of convergence which can-
not be satisfied for the entire solution space. Then the part of the solution
which is problematic is isolated via a generalized eigenvalue problem and
solved separately.

Keywords: Domain decomposition · Robustness · Heterogeneous
problems · Hybrid Schwarz

1 Introduction

The method presented here is a different application of a strategy devised in
[7,8], in collaboration with Victorita Dolean, Patrice Hauret, Frédéric Nataf,
Clemens Pechstein and Robert Scheichl, and generalized in [3] with Daniel J.
Rixen. It is also closely related to the work of [6] and many references therein.

Our objective is to develop black box domain decomposition methods which
are scalable and robust even for hard problems. The hybrid Schwarz method is
a preconditioner for the conjugate gradient (CG) iterative solver. Within each
application of the preconditioner smaller problems are solved using direct solvers
on each subdomain and on an additional space, V0, which is shared between
all subdomains. Our strategy is to take full advantage of the hybrid (itera-
tive/direct) framework: the solution space is divided into a space where the
preconditioner does a good job and a space where it does not give such a good
approximation. On the first we apply the CG (iterative) solver and theoretical
results guarantee fast convergence. On the second, CG will not perform well,
and so we set V0 to be this space. Since a direct solve is applied in V0 robustness

I. Lirkov et al. (Eds.): LSSC 2013, LNCS 8353, pp. 355–362, 2014.
DOI: 10.1007/978-3-662-43880-0 40, c≥ Springer-Verlag Berlin Heidelberg 2014
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will not be an issue. Of course it remains to define the meaning of the word
‘good’. We do this by using a generalized eigenvalue problem [5] which is built
just from the element matrices and connectivity graph. For this reason the range
of problems that we can solve is very wide. The requirements are stated in the
next subsection. In the final section we give an illustration for linear elasticity.

2 Two Level Schwarz Method with Projection
(also Known as Hybrid Schwarz)

2.1 One Level Schwarz Method

Maybe the most straightforward of the domain decomposition method is Addi-
tive Schwarz (see [4] and references therein). The information needed to build
the additive Schwarz preconditioner is the following:

– A set ω = {1, . . . , n} of degrees of freedom,
– A set of symmetric positive semi-definite element matrices {Aτ ∇ R

n×n; τ ∇
Th}, which give the weights of the connections between degrees of freedom,

– The connectivity graph for each connection τ ∇ Th which is the list dof(τ) ∈ ω
of degrees of freedom which are connected to others through τ .

If the problem stems from the finite element approximation of a partial differen-
tial equation, these have geometrical interpretations: Th is the mesh of the global
domain, τ is an element of this mesh and dof(τ) is the set of degrees of freedom
attached to τ , e.g. its vertices in the case of P1 Lagrange finite elements.

The global problem matrix is assembled as: A :=
∑

τ∗Th
Aτ . We assume that

A is symmetric positive definite (spd). Then, given a right hand side f ∇ R
n the

objective is to solve:
Find x→ ∇ R

n such that Ax→ = f. (1)

The idea behind the Additive Schwarz preconditioner is to approximate the
global inverse of A by a sum of local inverse A−1

j . The local inverses are based
on an overlapping partition of the set of degrees of freedom ω:

ω = ω1 ⊂ · · · ⊂ ωN ,

and on the corresponding interpolation matrices between global unknowns and
local unknowns: for any j = 1, . . . , N let nj be the cardinality of ωj , then the
restriction matrix Rj ∇ R

nj×n is the Boolean matrix with one 1 entry on each
line which corresponds to a degree of freedom in ωj . With this the one level
Schwarz preconditioner writes:

M−1 :=
N∑

j=1

R∞
j A−1

j Rj , Aj := RjAR∞
j . (2)

The matrices Aj are built by extracting the coefficients in the global matrix
A which correspond to degrees of freedom in ωj so they are also symmetric
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positive definite. Unfortunately, the conjugate gradient algorithm applied to (1)
and preconditioned with M−1 is usually not scalable and lacks robustness when
simulating many real life problems such as phenomena in heterogeneous media.
One way to improve this is to use a projected operator.

2.2 Adding Projection Steps

In [1] the idea to use a projection as a preconditioner for a Krylov method is
introduced. Having chosen a set V0 of vectors in R

n which are spanned by the n0

(linearly independent) columns of R∞
0 ∇ R

n×#V0 , the A-orthogonal projection
operator onto V0 is

P0 := R∞
0 (R0AR∞

0 )−1R0A. (3)

With this the original problem (1) rewrites as two independent problems:
Find x→

1 (= (I − P0)x→) and x→
2 (= P0x

→) such that

Ax→
1 = (I − P∞

0 )f, and Ax→
2 = P∞

0 f. (4)

The number of vectors in V0 is supposed to be sufficiently small so that the
projected part of the solution, x→

2 can be obtained by computing the inverse of
R0AR∞

0 with a direct solver. Conjugate gradient iterations are then used only
for the first equation in (4). The rationale behind this splitting of the solution
is that even if A is ill-conditioned, in many cases the ill-conditioning is caused
only by a small number of vectors. As long as these vectors can be identified
the projection framework allows to deal with them with a guaranteed success
(thanks to the direct solver) and reserve the iterative solver for the ‘easier’ part
of the solution on which it will perform efficiently.

In our case we use both preconditioning and projection. With M−1 as in (2),
the projected and preconditioned problem is: Find x→

1 ∇ range(I −P0) such that

M−1Ax→
1 = M−1(I − P∞

0 )f. (5)

The problem is now to find an estimate for the convergence rate of the projected
preconditioned conjugate gradient algorithm applied to (5). A well known result
[2, Theorem 6.29] is that the convergence rate of a conjugate gradient method
depends only on the condition number of the operator at stake (M−1A restricted
to range (I − P0) in this case). For this reason our objective is the following.

Identify a space V0 which is sufficiently small for R0AR∞
0 to be inverted

using a direct solver and such that the condition number of M−1A on range
(I − P0) does not depend on the number of subdomains (scalability) or on
any of the parameters in the original set of equations (robustness).

Intuitively, the ‘troublesome’ vectors which we are looking for are the parts of
the solution space where the preconditioner does not do a good job (M−1Ax is
very different from x).
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3 Choosing the Projection Space

3.1 Abstract Schwarz Theory

Fortunately the additive Schwarz preconditioner has already been thoroughly
analyzed and an abstract presentation of this theory can be found in [4] (see
Theorem 2.13 which relies on Assumption 2.12). We rely on this analysis.

Preconditioner M−1 is invertible (with its inverse denoted by M) and M−1A
is self adjoint with respect to the inner product induced by M and thus has real-
valued eigenvalues whose extrema can be characterised by Rayleigh quotients: if
there exist constants C1 and C2 such that

C1→Mx, x∞ ⊃ →Ax, x∞ ⊃ C2→Mx, x∞, ≥x ∇ range(I − P0) (6)

then λmax ⊃ C2, λmin ≤ C1 and the condition number of M−1A restricted to
range (I −P0) is bounded by C2/C1. The constants measure, on range (I −P0),
the difference between the energy norm with respect to the original operator A
and the energy norm with respect to its approximation M .

In practice we never need to compute the inverse M of the preconditioner.
In our analysis we will use the expression given in Lemma 2.5 of [4]1:

→Mx, x∞ = min
{xj∗R

nj ;x=
∑N

j=1 R�
j xj}

N∑
j=1

→Ajxj , xj∞. (7)

The energy norm of x with respect to M minimizes the sum, over all possible
decompositions of x onto the subdomains, of the local energies.

Next we recall the proof of an upper bound for λmax [4, Lemma 2.10 and
Theorem 2.13]. It depends on the maximal number N c of colors that are needed
to color each of the sets ωj in such a way that two subsets with the same color
are A-orthogonal. More precisely let color(j) ∇ {1, . . . ,N c} denote the color of
a subdomain j then

→AR∞
k uk, R∞

l ul∞ = 0, ≥uk ∇ ωk and ul ∇ ωl if color(k) = color(l).

Given the decomposition x =
∑N

j=1 R∞
j xj which realizes the minimum in (7) the

proof from [4] reads

→Mx, x∞ =
∑N

j=1→AR∞
j xj , R

∞
j xj∞ =

∑N c

c=1→A
∑

{i;color(i)=c}
R∞

i xi,
∑

{i;color(i)=c}
R∞

i xi∞

≤ 1
N c →A∑N

j=1 R∞
j xj ,

∑N
j=1 R∞

j xj∞ = 1
N c →Ax, x∞.

(8)
The argument for the second last inequality is Cauchy’s inequality in R

Nc . This
proves that λmax ⊃ Nc. We don’t need to work to improve this estimate because
it already does not depend on the number of subdomains and it holds indepen-
dently of the choice of the projection space.
1 In the book Pad = M−1A so AP−1

ad = M .
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3.2 Identifying the Bottleneck

Deriving a bound for λmin is a trickier job. We proceed by beginning to write
the proof of the convergence theorem from [4, Sect. 2.5.2] for a constant C to be
specified later on. We do not go to the end of the proof. Instead, we exhibit a
sufficient condition for the bound on λmin to be true which has the nice feature of
being local. Finally the projection space is built by identifying (via generalized
eigenvalue problems) the parts of the solution space that do not satisfy the
aforementioned condition.

Let x ∇ range(I − P0), lets reformulate the lower bound in (6) using (7):

→Ax, x∞ ≤ C→Mx, x∞
≡ →Ax, x∞ ≤ C min

{xj∗R
nj ;x=

∑N
j=1 R�

j xj}

∑N
j=1→Ajxj , xj∞

≡ →Ax, x∞ ≤ C min
{xj∗R

nj ;x=
∑N

j=1 R�
j xj}

∑N
j=1→A(I − P0)R∞

j xj , (I − P0)R∞
j xj∞.

(9)
The last equivalence is too long to prove here. The idea is to look at the pro-
jected Additive Schwarz preconditioner as the textbook additive Schwarz pre-
conditioner for the projected operator (I − P0)∞A(I − P0) with prolongation
operators R∞

j replaced by (I − P0)R∞
j .

A sufficient condition for (9) to be true is that this inequality hold for one
particular choice of the decomposition of x so we choose one. Let Dj ∇ R

nj×nj be
diagonal weighting matrices which form a partition of unity:

∑N
j=1 R∞

j DjRj = I

(I is the identity in R
n×n) and let xj := DjRjx then

∑N
j=1 R∞

j xj = x and

→Ax, x∞ ≤ C

N∑
j=1

→A(I − P0)R∞
j DjRjx, (I − P0)R∞

j DjRjx∞ ∅ (9).

The final step to make the condition local is to make the left hand side local.
We recall that A is assembled as a sum of element matrices A =

∑
τ∗Th

Aτ . Each
of these element matrices was supposed to be symmetric positive semi definite.
This means that if we assemble the element matrices over a subset T j

h of Th the
resulting energy norm will be bounded with respect to →A·, ·∞1/2. In particular, let
T j

h = {τ ; dof(τ) ∈ ωj} be the set of connections which are completely in subdo-
main j and define the corresponding local matrix as Ãj =

∑
τ∗T j

h
R∞

j AτRj then∑N
j=1→ÃjRjx,Rjx∞ ⊃ N c→Ax, x∞, and the sufficient condition becomes local:

→ÃjRjx,Rjx∞ ≤ C

N c
→A(I − P0)R∞

j DjRjx, (I − P0)R∞
j DjRjx∞ ∅ (9). (10)

We do not know how to simplify this condition further without using informa-
tion on the underlying set of partial differential equations and on the partition of
unity so this is the bottleneck estimate which discriminates between the ‘good’
vectors and the ones that need to be in the projection space V0. The bottleneck
estimate is not exactly the same as in [7,8] where the decomposition of u also
requires a component in the projection space. The generalized eigenvalue which
we propose is also slightly different.
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3.3 Building the Projection Space to Satisfy the Bottleneck

Definition 1. For any subdomain j = 1, . . . , N , find the eigenpairs (pk
j , λk

j ) ∇
R

nj × R
+ of

Ãjp
k
j = λk

j DjAjDjp
k
j . (11)

Then for a given threshold K let the coarse space be defined by

V0 =
∑

j=1,...,N

R∞
j Dj(V

j
0 ); V j

0 = span{pk
j ;λk

j < K}.

Let R∞
0 be the interpolation operator whose columns are the vectors R∞

j Djp
k
j

such that λk
j < K and let P0 be the A-orthogonal projection operator onto V0

introduced in (3).

This way we have completed the definition of our domain decomposition
method. All that is left to do is to make sure that the projection space introduced
in Definition 1 does indeed do its job in the sense that the bottleneck estimate
(10) holds for any x ∇ range(I − P0).

Suppose that the eigenvectors have been normalized so that →DjAjDjp
k
j , pk

j ∞
= 1. If P j

0 is the A-orthogonal projection onto the span of {R∞
j Djp

k
j ;λk

j < Kj}
then

→A(I − P0)u, (I − P0)u∞ ⊃ →A(I − P j
0 )u, (I − P j

0 )u∞, ≥u ∇ R
n. (12)

This is true in particular for u = R∞
j DjRjx.

Lets assume that the eigenvectors have been normalized so that →DjAjDjp
k
j ,

pk
j ∞ = 1. The (DjajDj)-orthogonal projection onto V j

0 is Πj : Rnj → R
nj such

that Πjxj =
∑

{k;λk
j <K}→DjAjDjxj , p

k
j ∞pk

j . This projection operator was already

introduced in [8, Lemma 2.11]. We notice that P j
0R∞

j Dj = R∞
j DjΠj so

→A(I −P j
0 )R∞

j DjRjx, (I −P0)R∞
j DjRjx∞ = →DjAjDj(I −Πj)Rjx, (I −Πj)Rjx∞.

(13)
Finally, we apply the abstract Lemma 2.11 from [8] and use the fact that
→Ãjp

k
j , pl

j∞ = 0, k = l, to get

→DjAjDj(I − Πj)Rjx, (I − Πj)Rjx∞ ⊃ 1
K →Ãj(I − Πj)Rjx, (I − Πj)Rjx∞

⊃ 1
K →ÃjRjx,Rjx∞. (14)

Putting (14) together with (12) and (13) proves the condition in (10) for C/N c =
K and thus the following theorem. This is the main contribution in this work.
Thanks to the projection steps, the condition number estimate is improved com-
pared to the fully Additive Schwarz algorithm considered in [7,8].

Theorem 1. The lowest eigenvalue of M−1A on range (I−P0) satisfies λmin ≤
K/N c so the condition number of the preconditioned operator is bounded by
(N c)2/K. Hence (according to [2, Theorem 6.29]) if x→ is the exact solution
of the original problem (1), x0 is the initial guess, and xm is the approximate
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solution given by the m-th step of the preconditioned conjugate gradient algorithm
with the projected Additive Schwarz preconditioner, the error decreases at least as

∪x→ − xm∪A

∪x→ − x0∪A
⊃ 2

[
N c − ∼K
N c +

∼K

]m

, (15)

where ∪ · ∪A = →A·, ·∞1/2, K is the chosen threshold used to select eigenvectors
for the projection space in Definition 1, and N c is the number of colors that are
needed to color the subdomains in such a way that two subdomains with the same
color are orthogonal.

4 Numerical Illustration

In this section for lack of space we have chosen to illustrate the way that the
method works rather than a set of performance tests. The implementation uses
matlab and Freefem++. We solve the two dimensional linear elasticity equations
discretized with P1 (piecewise linear) finite elements on a 121 × 16 regular mesh
with simplicial elements. More precisely, the problem is to find u = (u1, u2)T,
such that −div(σ(u)) = f where the stress tensor σ(u), the Lamé coefficients
λ and μ and the right hand side are

{
σij(u) = 2μεij(u) + λδijdiv(u), εij(u) = 1

2

(
∂ui

∂xj
+ ∂uj

∂xi

)
μ = E

2(1+ν) , λ = Eν
(1+ν)(1−2ν) , f = (0, g)T = (0, 10)T .

(16)

The domain is an 8 × 1 rectangle which we decompose into 8 side by side
unit squares. Then we add one layer of overlap to each. The medium is a soft
material (E = 107, ν = 0.4) with two layers of a harder material (E = 1012,
ν = 0.4). In Fig. 1 we have plotted the original configuration for one subdomain
as well as the first eigenmodes for eigenproblem (11). In Fig. 2 we show that the

Original λ1 = −1 · 10−14;λ2 = 1 · 10−15;λ3 = 7 · 10−15;λ4 = 1 · 10−5;λ5 = 7 · 10−5;

λ6 = 2 · 10−4 λ7 = 0.13; λ8 = 0.13; λ9 = 0.15; λ10 = 0.15; λ11 = 0.30;

Fig. 1. Original configuration and first eleven eigenvectors for a floating subdomain
(dark or red: hard material). With K = 0.1 we select six eigenvectors for the projection
space. Among these, the first three correspond to the rigid body modes (Ãjp

1,2,3
j = 0).

In total the size of the projection space is 46 (Color figure online).
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Fig. 2. Error versus the iteration count for three methods: no projection (blue full
line), projection onto the rigid body modes (red hashes), projection onto the space
from definition 1 (green hashes and dots). The new projections space does its job.
The condition number is reduced from 3576 to 13. With just the rigid body modes it
is 1808 (Color figure online).

new method converges very fast and that the projection step does its job since it
reduces the condition number from 3576 to 13 using only 46 projection vectors.
open question.
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Abstract. The European Union has developed an extensive body of
legislation which establishes health based standards and objectives for a
number of pollutants in air. An appropriate method for evaluating the
air quality of a certain EU-country is to contrast the actual air pollution
levels to the critical ones, prescribed in the legislative standards. This
study, which is part of greater one, is focused of the pollutants of most
concern - the ground level ozone, particulate matter, and the sulphur
dioxide, which is still a problem in Southeastern Europe. High-resolution
data from the Bulgarian chemical weather forecasting and information
system for the last three years are used to compute certain pollutant lev-
els, which are further compared with the critical ones, prescribed in the
EU-legislation directives. The obtained results can be treated as objec-
tive pattern of the situation over Bulgaria in the end of the first decade
of the present century.

Keywords: Air pollution simulation · High resolution · EC-directives ·
Air pollution levels · Pollutant exceedances

1 Introduction

The adverse health effects from short and long-term exposure to air pollution
range from premature deaths caused by heart and lung disease to worsening of
asthmatic conditions, which often leads to a reduced quality of life and increased
costs of hospital admissions. Poor outdoor air quality can be a contributing factor
also to reduced agricultural crop yields, changes in ecosystem species composi-
tion, damage to physical infrastructure and cultural heritage due to material
deterioration [3] and etc.. Despite of the emissions abatement, many European
countries still do not comply with one or more emission ceilings set under Euro-
pean Union (EU) and United Nations (UN) agreements. Furthermore, due to
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the complex links between emissions and air quality, emission reductions do not
always produce a corresponding drop in atmospheric concentrations, especially
for particulate matter (PM) and ozone (O3). The 2008 ambient air quality direc-
tive [7] sets legally binding limits for concentrations in outdoor air of major air
pollutants that impact public health and environment. An appropriate method
for evaluating the air quality of a certain area is to contrast the actual air pollu-
tion levels to the critical ones, prescribed in the legislative standards. The appli-
cation of numerical simulation models for assessing the real air quality status is
allowed by the legislation of the European Community (EC). In the presented
work we use most recent high-resolution modelling data for region centered over
Bulgaria to assess the compliance with the air quality limit and target values
set out in the current EU legislation. The study is focused on the PM and O3
which, at present, are Europe’s most problematic pollutants in terms of harm
to human health [14,15]. The sulphur dioxide (SO2) is also studied, because, in
contrast to the bigger part of Europe, still causes concern in the Southeastern
region of the continent [2].

2 Short Summary of the Air Quality Legislation
in the European Union

The principal driver of Bulgarian air quality legislation derives from EU Direc-
tives. Although various pieces of air quality legislation were produced within
the EU, historically the 1996 Air Quality Framework Directive (96/62/EC) [7]
was the first overarching strategy-level document. It is an important legal mile-
stone in the EU’s fight against air pollution. The Directive itself did not create
any precise air quality objectives, but rather it set out a framework and basic
principles for ambient air quality monitoring and management. These were to
go into effect once daughter directives for specific pollutants had been adopted.
The first daughter directive (1999/30/EC) [8] targets sulphur dioxide, nitrogen
dioxide, particulate matter and lead, and was adopted in 1999. The second direc-
tive (2000/69/EC) [10] targets benzene and carbon monoxide, and was adopted
in 2000. The third directive (2002/3/EC) [11] targets ground-level ozone and
was adopted in late 2001. Once agreed upon, EU directives must be transposed
into the legislation of Member States. It should be noted that individual Mem-
ber States may enact legislation, which is more stringent than required by an
EU Directive but cannot weaken any of the numerical limits laid down in any
Directive. In 2003, the European Commission proposed a policy for updating
and streamlining EU legislation. This arose as a result of the Better Regulation
initiative. In 2005, the European Commission, in collaboration with the Clean
Air For Europe (CAFE) team, presented a proposal for a Directive of The Euro-
pean Parliament and of The Council on Ambient Air Quality and Cleaner Air
for Europe. This is part of the wider implementation of the Thematic Strategy
on air pollution, itself one of the seven key pillars of the Sixth Environmental
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Action Plan. The final Directive (2008/50/EC) [13] was adopted on 21 May 2008
and includes the following key elements:

– that most of existing legislation (Framework Directive 96/62/EC, 1–3
daughter Directives 1999/30/EC, 2000/69/EC, 2002/3/EC, and Decision on
Exchange of Information 97/101/EC [9]) be merged into a single directive
(except for the fourth daughter directive [12]) with no change to existing air
quality objectives

– new air quality objectives for PM2.5 (fine particles) including the limit value
and exposure related objectives - exposure concentration obligation and expo-
sure reduction target

– the possibility to discount natural sources of pollution when assessing compli-
ance against limit values

– possibility for time extensions of three years PM10 (coarse particles) or up to
five years (NO2, benzene) for complying with limit values, based on conditions
and the assessment by the European Commission

Table 1. Synthesis table of the prescribed AQLV and AQTV (threshold concentration

in µg/m3/number of allowed exceedances) for the considerated pollutants

Av. period/parameter
pollutant

1 h Max. daily
8 h mean

1 day Winter
(1.10–31.03)

Calendar
year

PM10 50/35 50/7 40/0 20/0
PM2.5 25/0 25/0 20/0
O3 120/25
SO2 350/24 125/3 20/0 20/0

Quantitative expression of the air quality objectives are the air quality limit
(AQLV) and target values (AQTV) (Table 1). EU Limit values are legally binding
EU parameters that must not be exceeded. They are set for individual pollutants
and are made up of a concentration value, an averaging time over which it is
to be measured, the number of exceedances allowed per year, if any, and a date
by which it must be achieved. Some pollutants have more than one limit value
covering different endpoints or averaging times. For example the stricter 1 day
and calendar year AQLV (50µg/m3/7 occurrences and 20µg/m3/0 occurrences
respectively) for PM10 are, according [8], “Indicative limit values to be reviewed
in the light of further information on health and environmental effects, technical
feasibility and experience in the application of Stage 1 limit values in the Member
States”. Actually this intention is not reconfirmed in the newer ambient air
quality directive [13]. Similar, the second criterion for the PM2.5 is indicative
limit value, which have to be reviewed by the Commission in 2013.

The World Health Organization (WHO) has developed own air quality stan-
dardization, namely air quality guidelines (AQG), which for many pollutants are
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different, often stricter than the EU requirements. So the 1 day (24 h mean) for
PM2.5, shown in the table is such WHO AQLV. Nevertheless this criterion is
taken into account, because, from one site, there is not EU-alternative for this
averaging period, and from other, it is important milestone, similar to the above
mentioned indicative values, for the performed comparisons in the next chapter.
Target values are used in some EU Directives and are set out in the same way
as limit values. They are to be attained where possible by taking all necessary
measures not entailing disproportionate costs.

3 Methodology and Performed Computations

The harmful effects of the air pollution, mentioned in the previous section,
invokes a project financially supported by the National Science Fund with the
Ministry of Education and Science aiming at creating the Bulgarian Chemical
Weather Forecast and Information System (BgCWFS). It is intended to provide
timely, informative and reliable forecast products tailored to the needs of various
users and decision-makers. The system has nesting structure, starting from the
region of Bulgaria and nearest territories as a whole (background pollution) and
zooming to smaller and/or bigger areas of interest. The model grid consists of
54×40 grid cells with size 10×10 km and covers Bulgaria entirely, together with
the border regions of the neighboring countries and the most western part of the
Black sea. The country part of BgCWFS is designed in a way to fit the real-time
constraints and to deliver forecasts twice a day (00 and 12 UTC) for the next
48 hours. BgCWFS has a modular structure and all building blocks, operational
design and data flow are described in detail in [16,17]. To calculate the corre-
sponding statistical quantities is essential to know the value of the concentration
for each pollutant in every hour for at least one year, i.e. it is necessary to recon-
struct it’s time series. This is done in the following manner: the 12 h subset of
concentration data for the first day of the year, between the first and second
run is extracted. Then the second subset, between the second and third (i.e. the
first for the second day) run is extracted and so on until the end of the year. At
the end all subsets are pieced together to continuous series. Due to the validated
reliability and consistency of the BgCWFS from one site and to the nature of
the data, obtained in prescribed way (forecast data for very short range) from
other, is reasonable to expect that such sets do not differ significantly from the
reality. They are completely suitable for assessing the (background) air pollution
continuously over the whole model domain. On the next step we have to be able
to answer if the AQLV or AQTV for each pollutant under interest is breached
or not. This is done in the following manner: If, say, for a given pollutant the
directive allows m exceedances of the corresponding statistical average, we find
the (m+1)-th maximum from all possible values. If this value is greater than the
prescribed AQLV or AQTV, the legislation is breached. This task, namely to
find the (m+1)-th largest among n, where n is the number of all possible values,
has to be repeated many times in each grid cell and that’s why it is essential to
optimize the corresponding numerical routine. This is done by setting especially
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effective procedure for m ∇ n, because this condition is very well expressed. In
all cases we find the maximal value also due to its relevance as indicative of the
air pollution. According the requirements of the second daughter directive and
to exclude short time variations, input data for the last three years, 2010, 2011
and 2012, are used and the obtained annual results are finally averaged.

4 Results

The key manmade contributions to ambient SO2 derive from sulphur containing
fossil fuels and biofuels used for domestic heating, stationary power generation
and transport. Different studies suggest that the sulphur dioxide is the core
reason of variety of processes with deep environmental consequences [1]. These
processes span in the time scale from minutes to years and this is the main
reason for the fact, that in the contemporary directives this pollutant is with
the greatest number of defined AQLV. The calculated statistics are shown on
Figs. 1 and 2.

Particulate matter is partly directly emitted into the atmosphere and partly
formed in the atmosphere. The formation depends on a variety of chemical and

Fig. 1. 99.71 percentile (25th hourly maximum) of the hourly concentration of the sul-

phur dioxide (left panel, unit: µg/m3). The gridcells, where the hourly alert threshold
is bridged at least once for the whole period, are marked with crosses. 98.90 percentile

(4th daily maximum) of the daily mean concentration of the sulphur dioxide (right
panel, same unit)

Fig. 2. Winter (left panel) and annual mean concentration (units: µg/m3) of the sul-
phur dioxide
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Fig. 3. 97.81 percentile (8th daily maximum) of the daily mean concentration of the

PM10 (left panel, unit: µg/m3). The gridcells, where the daily mean AQLV is bridged

at least once (1th daily maximum), are marked with crosses. Annual mean concentra-
tion of the PM10 (right panel, same unit)

physical factors, such as the concentrations of the main precursors, the reactivity
of the atmosphere and meteorological conditions. Due to the interplay and vari-
ability of the above factors, it is difficult to relate ambient concentrations of
formed substances, present in ambient PM, to the emissions of precursor gases.
Epidemiological studies attribute the most severe health effects from air pollu-
tion to PM and, to a lesser extent, O3. Even at concentrations below current air
quality guidelines PM is expected to pose a health risk. Scientific evidence does
not suggest a threshold below which no adverse health effects would be antic-
ipated when exposed to PM [19]. PM can also have adverse effects on climate
change and ecosystems; it also contributes to soiling and can have a corrosive
effect on material and cultural heritage, depending on the PM composition. The
spatial distribution of the AQLV under consideration for the PM10 are shown
on Fig. 3.

It is well-known that the ozone is a secondary pollutant. In the lower tro-
posphere it is mainly formed through chemical reactions between nitrogen oxides
and volatile organic compounds (VOC) in the presence of short-wavelength radi-
ation from the sun during a timescale from hours to days. Second, it’s concen-
tration depends to a greater extent, then those of the others, on meteorological
conditions, especially the sunlight intensity and the temperature. Due to these
reasons the link between (precursor) emissions and concentration is much more
complicated [4,6]. Excessive O3 in the air can have a marked effect on human
health. Damage to agricultural crops caused by ozone is a well-documented prob-
lem in Southern Europe and can be catastrophic for farmers [18]. Exposure-based
ozone metrics are still a most used practical measure for summarizing ambient air
quality relating ground-level ozone. The most popular index, the AOT40 crops
(AOTc - see [11]), is limited on 18000µg/m3 h averaged over five (in this case
- three) years. In addition to effects on human health, plants (crops), the ozone
is a greenhouse gas (GHG), contributing to the warming of the atmosphere and
also increases the rate of degradation of buildings and physical cultural heritage.
The obtained results for this pollutant are shown on Fig. 4.
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Fig. 4. 92.88 percentile (26th maximum of this statistics) of the running 8 h mean con-

centration of the ozone (left panel, unit: µg/m3). AOTc on right panel (unit: µg/m3 h)

5 Comments and Conclusion

The presented study confirms the significant (in most drastic cases up to fac-
tor of 10) overrun of all AQLV for the sulphur dioxide over a large territory,
known from other studies [2,5]. The most polluted areas are in the vicinity of the
TPP “Maritsa-Istok” - a set of three coal burning thermal power plants, which
are the most relevant source in whole SE Europe at all. With broad maxima
(below, but close to the thresholds) around the strongest sources, the distribu-
tion of the PM-air pollution is also typical. Keeping in mind that the PM2.5 is
fraction of PM10 and analyzing Fig. 3, indirectly can be stated that the PM2.5
annual AQLV can be breached only in small vicinity of the TPP “Maritsa-Istok”.
Similar to the sulphur dioxide, the calculated results for the PM-air pollution are
generally in agreement with recent AirBase measurements [1]. The ozone pol-
lution is pronounced in regions with strong photochemical activity, such as the
Mediterranean basin and Balkan Peninsula. In the presence of volatile organic
compounds, the equilibrium favours the formation of higher levels of ozone, con-
firmed in previous works [5]. In this sense the calculated relatively low pollution
levels are surprising, formal reason for which are the unusual small concentra-
tions in the first and second year. Obviously the problem has to be investigated
further in detail.

Despite of the methodological conventionality of the applied approach, the
presented results can be treated as evidence of the need for further mitigation
efforts - keeping always in mind that any level of air pollution is a matter of
concern, and the existence of guideline values never means a license to pollute.
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Abstract. In this work we carry out an application of DEIM combined
with POD to provide dimension reduction of a system of two nonlinear
partial differential equations describing the spatio-temporal dynamics of
a predator-prey community, where the prey per capita growth rate is
damped by the Allee effect. DEIM improves the efficiency of the POD
approximation reducing the computational complexity of the nonlinear
term and regains the full model reduction expected from the POD model.
Numerical results show that the dynamics of the predator-prey model in
the full-order system of dimension 2048 can be captured accurately by
the POD-DEIM reduced system with the computational time reduced
by a factor of O(104).

1 Introduction

Proper Orthogonal Decomposition (POD) – see [2,4,7,8,10] and the references
therein – is probably the mostly used and most successful model reduction tech-
nique, where the basis functions contain information from the solutions of the
dynamical system at pre-specified time-instances, so-called snapshots. Due to
a possible linear dependence or almost linear dependence, the snapshots them-
selves are not appropriate as a basis. Hence a singular value decomposition is
carried out and the leading generalized eigenfunctions are chosen as a basis,
referred to as the POD basis.

Unfortunately, for nonlinear PDEs, the efficiency in solving the reduced-
order systems constructed from standard Galerkin projection with any reduced
globally supported basis set, including the one from POD, is limited to the linear
or bilinear part, both for finite volume and finite difference schemes. In the case
of quadratic nonlinearities a so-called precomputed POD technique achieves the
same level of reduction as in the case of linear terms.

A considerable reduction in complexity is achieved by DEIM – a discrete vari-
ation of Empirical Interpolation Method (EIM), proposed by Barrault et al. in [3].

I. Lirkov et al. (Eds.): LSSC 2013, LNCS 8353, pp. 373–381, 2014.
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According to this method, the evaluation of the approximate nonlinear term does
not require a prolongation of the reduced state variables back to the original high
dimensional state approximation required to evaluate the nonlinearity in thePOD
approximation.

In this study we carry out an application of DEIM combined with POD
to provide dimension reduction of a system of two nonlinear partial differential
equations describing the spatio-temporal dynamics of a predator-prey commu-
nity, where the prey per capita growth rate is damped by the Allee effect. This
model was introduced and analyzed in an infinite space by Petrovskii et al. [14],
together with properties of the solution and biologically significant dependence
on the parameter values.

2 The Predator-Prey Model with Allee Effect

The spatio-temporal dynamics of a predator-prey system can be described by
the equations [13]:

φU(X,T )
φT

= D
φ2U

φX2
+ f(U)U − r(U)V, (1)

φV (X,T )
φT

= D
φ2V

φX2
+ σr(U)V − g(V )V, (2)

where U and V are the densities of prey and predator, respectively, at position
X and time T . The function f(U) is the per capita growth rate of the prey and
the term r(U)V stands for predation. σ is the coefficient of food utilization, and
g(V ) is the per capita mortality rate of predator. Here, the first term on the
right-hand side of Eqs. (1) and (2) describes the spatial mixing caused either by
self-motion of individuals [15] or by properties of the environment, for example,
for plankton communities the mixing is attributed to turbulent diffusion [9].
D is the diffusion coefficient, which we assume to be the same for both prey and
predator.

For different species, functions f , r, and g can represent different functional
responses (logistic, Gompertz, Holling, etc.). We assume that the prey dynamics
is subjected to the Allee effect [1,6,12], so that its per capita growth rate is not
a monotonically decreasing function of the prey density, but possesses a local
maximum. In this model, the standard parametrization [11] is defined by

f(U) = ∂(U − U0)(K − U),

where K denotes the prey carrying capacity and U0 is a certain measure of the
Allee effect. Regarding the per capita predator mortality, one assumes that it is
described by the following function:

g(V ) = M + d0V
2

where M and d0 are positive parameters. Function g(V ) gives the so-called
closure term because it is supposed not only to describe the process taking place
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inside the predator population (such as natural mortality, competition, possibly
cannibalism, etc.) but also, virtually to take into account the impact of higher
predators that are not included into the model explicitly. We assume that the
predator shows a linear response to prey according to the classical Lotka-Volterra
model, that is, r(U) = μU . Then, Eqs. (1)–(2) take the form

φU(X,T )
φT

= D
φ2U

φX2
+ ∂U(U − U0)(K − U) − μUV, (3)

φV (X,T )
φT

= D
φ2V

φX2
+ σμUV − MV − d0V

3. (4)

A common procedure for solving the system of Eqs. (3)–(4) is to first nondi-
mensionalize the system, and then obtain the numerical solution by employing
a discretization scheme. We define the nondimensional variables and parameters
to be:

u =
U

K
, v =

ΔV

∂K2
, x = X

√
∂K2

D
, t = T∂K2.

From Eqs. (3) and (4) one obtains

ut = uxx − Ωu + (Ω + 1)u2 − u3 − uv, (5)

vt = vxx + kuv − mv − δv3, (6)

where Ω = U0K
−1, k = σΔ(∂K)−1, m = M(∂K2)−1 and δ = d0∂K2Δ−2 are

positive dimensionless parameters, subscripts x and t stand for the partial deriva-
tives with respect to dimensionless space and time, respectively. Here we consider
Eqs. (5) and (6) in a bounded domain λ with homogeneous Dirichlet boundary
conditions. The initial conditions given by u(x, 0) = u0(x) and v(x, 0) = v0(x)
will be specified in Sect. 4.

3 The POD and POD-DEIM Reduced Order System

In this section we provide some details for constructing the reduced-order sys-
tem of the full-order system (5)–(6) applying Proper Orthogonal Decomposition
(POD) and Discrete Empirical Interpolation Method (DEIM).

POD is an efficient method for extracting orthonormal basis elements that
contain characteristics of the space of expected solutions which is defined as
the span of the snapshots [7,8]. In this framework, snapshots are the sampled
(numerical) solutions at particular time steps or at particular parameter values.
POD gives an optimal set of basis vectors minimizing the mean square error
from approximating these snapshots. In this finite dimensional setting, POD is
closely related to the singular value decomposition (SVD).

The projected nonlinearities in Eqs. (5)–(6) are approximated by DEIM in
the form that enables precomputation, so that evaluating the approximate non-
linear terms using DEIM does not require a prolongation of the reduced state
variables back to the original high dimensional state approximation, as it is
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required for nonlinearity evaluation in the original POD approximation. Only a
few entries of the original nonlinear term, corresponding to the specially selected
interpolation indices from DEIM must be evaluated at each time step [3,5,16].
We give formally the DEIM approximation in Definition 1, and the procedure
for selecting DEIM indices is shown in Algorithm DEIM. Each DEIM index is
selected to limit growth of a global error bound using a greedy technique relating
the DEIM approximation to the full optimal POD approximation [5].

Definition 1. [5] Let f : D ∇∈ IRn be a nonlinear vector-valued function with
D ⊂ IRd, for some positive integer d. Let {u}m

θ=1 ⊂ IRn be a set of linearly
independent vectors, for m = 1, . . . , n. For Λ → D, the DEIM approximation of
order m for f(Λ) in the space spanned by {u}m

θ=1 is given by

f̂(Λ) := U(PTU)−1PT f(Λ), (7)

where the basis U = [u1, . . . ,um] → IRn×m can be constructed effectively
by applying the POD method on the nonlinear snapshots f(Λi), Λi → D and
P = [eδ1 , . . . , eδm

] → IRn×m with {π1, . . . , πm} being the output from Algorithm
DEIM with the input basis {ui}m

i=1.

Algorithm DEIM:
INPUT: {u}m

θ=1 ⊂ IRn linearly independent
OUTPUT: � = [π1, . . . , πm]T → IRm

1. [|γ| π1] = max{|u1|}
2. U = [u1], P = [eδ1 ], � = [π1]
3. for ζ = 2 to m do
4. Solve (PTU)c = PTuθ for c
5. r = uθ − Uc
6. [|γ| πθ] = max{|r|}
7. U ∞ [U uθ], P ∞ [P eδξ

], � ∞
[

�
πθ

]

8. end for

The notation max in Algorithm DEIM is the same as the function max in
Matlab. Thus, [|γ| πθ] = max{|r|} implies |γ| = |rδξ

| = maxi=1,...,n{|ri|}, with
the smallest index taken in case of a tie. According to this algorithm, the DEIM
procedure generates a set of indices inductively on the input basis in such a
way that, at each iteration, the current selected index captures the maximum
variation of the input basis vectors. The vector r can be viewed as the error
between the input basis {u}m

θ=1 and its approximation Uc from interpolating
the basis {u}m−1

θ=1 at the indices π1, . . . , πm−1. The linear independence of the
input basis {u}m

θ=1 guarantees that, at each iteration, r is a nonzero vector and
the output indices π1, . . . , πm are not repeating [5].
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4 Numerical Results

We shall present three numerical experiments. The system (5)–(6) was solved
numerically using a finite difference discretization. Let 0 = x0 < x1 < · · · < xn <
xn+1 = 1 be equally spaced points on the x-axis for generating the grid points
on the dimensionless domain λ = [0, 1], and take time domain [0, T ] = [0, 1].
The corresponding spatial finite difference discretized system of (5)–(6) becomes
a system of nonlinear ODEs. The semi-implicit Euler scheme was used to solve
the discretized system of full dimension, as well as the POD and POD-DEIM
reduced order systems.

Case 1. The parameters used here are m = Ω = 4, σ = 15, and δ = 0.25. The
initial conditions were set to u0(x) = sinx sin(ςx) exp(x), and v0(x) = x(1−x)3.
The number of spatial inner grid points on the x-axis – which defines the dimen-
sion of the full-order system – was successively taken as 16, 32, 64, 128, ...,
2048. It shows that POD-DEIM reduces more than 400 times in dimension
and reduces the computational time by a factor of O(104) as shown in Table 1.
From Table 1, the CPU time used in computing POD reduced system clearly
reflects the dependency on the dimension of the original full-order system. Table 1
also shows a significant improvement in computational time of the POD-DEIM
reduced system as compared to both the POD reduced and the full-order sys-
tems.

Table 1. CPU time of full-order system, POD and POD-DEIM reduced systems with
the corresponding average relative errors for u and v – Case 1.

Internal CPU Time CPU Time CPU Time Error rel Error rel Error rel Error rel

Nodes N Full Dim POD POD–DEIM POD – u POD – DEIM – u POD – v POD – DEIM – v

16 3.632462e-001 7.122489e-001 1.811141e-002 1.170196e-005 1.857876e-004 2.103251e-004 1.222462e-002

32 4.169362e-001 7.154559e-001 1.860040e-002 1.169715e-005 1.463095e-004 2.099999e-004 1.230968e-002

64 6.164471e-001 7.516708e-001 2.826825e-002 1.169587e-005 9.926064e-005 2.099146e-004 1.128253e-002

128 6.529374e-001 8.020902e-001 1.812896e-002 1.169554e-005 1.560804e-004 2.098927e-004 1.165304e-002

256 1.631008e+000 8.673314e-001 1.819947e-002 1.169545e-005 1.481253e-004 2.098871e-004 1.168835e-002

512 6.377997e+000 1.012015e+000 1.823390e-002 1.169543e-005 1.323507e-004 2.098857e-004 1.166019e-002

1024 2.924355e+001 1.291486e+000 1.827065e-002 1.169542e-005 1.330641e-004 2.098853e-004 1.172391e-002

2048 1.675980e+002 2.788567e+000 1.825973e-002 1.169542e-005 1.340120e-004 2.098852e-004 1.171443e-002

Table 2. CPU time of full-order system, POD and POD-DEIM reduced systems with
the corresponding average relative errors for u and v – Case 2.

Internal CPU Time CPU Time CPU Time Error rel Error rel Error rel Error rel

Nodes N Full Dim POD POD–DEIM POD – u POD – DEIM – u POD – v POD – DEIM – v

16 3.553413e-001 6.865113e-001 1.793760e-002 2.356905e-005 1.580829e-005 3.047587e-004 4.552821e-004

32 4.284408e-001 6.980146e-001 1.802235e-002 2.360341e-005 2.358619e-005 3.067127e-004 2.008601e-004

64 4.867406e-001 7.455845e-001 1.855140e-002 2.360549e-005 2.207394e-005 3.070870e-004 7.456335e-004

128 6.408845e-001 7.897221e-001 1.834978e-002 2.360580e-005 3.493150e-005 3.071769e-004 4.430065e-004

256 1.098676e+000 8.647706e-001 1.822993e-002 2.360586e-005 3.485313e-005 3.071994e-004 5.934588e-004

512 3.885919e+000 1.006938e+000 1.858914e-002 2.360588e-005 3.497038e-005 3.072050e-004 6.145148e-004

1024 1.917511e+001 1.256279e+000 1.878149e-002 2.360588e-005 3.495507e-005 3.072064e-004 6.035787e-004

2048 1.148451e+002 1.883425e+000 1.870667e-002 2.360588e-005 3.507343e-005 3.072068e-004 5.992118e-004
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Fig. 1. Solution plots of the model from the full-order system of dimension 2048.

Case 2. The numerical results obtained in this case (see Table 2 and Fig. 1)
were generated with parameters: m = Ω = 1.1, σ = 5, and δ = 1. In Figs. 2 and 3,
the solutions for state variables (u and v) from POD and POD-DEIM reduced
systems, with dimPOD= 10 and dimDEIM= 5, are depicted with the corre-
sponding ones from the full-order system, as well as the corresponding average
relative errors at the grid points. We used the following initial conditions: u0(x) =
10x(1−x)(1+0.8 sin(30x) cos(10x)), v0(x) = 10x(1−x)(1+0.8 sin(10x) cos(30x)).
In comparison with Case 1, here the densities of the species present initially large
fluctuations along the whole space domain, damped very fast by the Allee effect.

Case 3. In this experiment we use the same initial conditions and values of
the parameters as those indicated in Case 1. Here we performed the computa-
tions with dimPOD= 45 and dimPOD-DEIM= 90. The numerical results are
contained in Table 3. We note that the POD-DEIM relative errors for both state
variables, u and v, are 10 times smaller than those obtained in Case 1.

Table 3. CPU time of full-order system, POD and POD-DEIM reduced systems with
the corresponding average relative errors for u and v – Case 3.

Internal CPU Time CPU Time CPU Time Error rel Error rel Error rel Error rel

Nodes N Full Dim POD POD–DEIM POD – u POD – DEIM – u POD – v POD – DEIM – v

128 5.741809e-001 8.289299e-001 5.605313e-002 1.169554e-005 1.106775e-005 2.098927e-004 5.454479e-003

256 1.144514e+000 9.969025e-001 5.958563e-002 1.169545e-005 1.055126e-005 2.098871e-004 2.347417e-003

512 3.807256e+000 1.154277e+000 6.668969e-002 1.169543e-005 1.486580e-005 2.098857e-004 5.295462e-003

1024 1.886075e+001 1.411974e+000 6.400274e-002 1.169542e-005 1.264476e-005 2.098853e-004 5.813729e-003

2048 1.098164e+002 2.144956e+000 6.639338e-002 1.169542e-005 1.548229e-005 2.098852e-004 7.346586e-003
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Fig. 2. Solution plots of the model from POD reduced system (dimPOD= 10) with
the corresponding average relative errors at the inner grid points – Case 2.

Fig. 3. Solution plots of the model from POD-DEIM reduced system (dimPOD=10,
dimDEIM=5), with the corresponding average relative errors at the inner grid
points – Case 2.
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5 Conclusions

The model reduction technique combining POD with DEIM has been shown
to efficiently capture the spatio-temporal dynamics of a diffusive predator-prey
model with substantial reduction in both dimension and computational time.
The failure to decrease complexity with the standard POD technique was clearly
demonstrated by the comparative computational times shown in Tables 1, 2, and
3. DEIM was shown to be very effective in overcoming the deficiencies of POD
with respect to quadratic and cubic nonlinearities in the model under study. The
strong Allee effect for prey leads to a very rich dynamics [14], travelling fronts
of invasive species and sensitivity to parameter variations [14,17].

In order to increase the efficiency of the POD-DEIM approximation, a pos-
sible extension would consist in incorporating the POD-DEIM approach with
higher-order FD schemes to improve the overall accuracy.
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Abstract. Statistics for the southern memeber states in EU from 2007
show increasement of occurence of wildland fires for the last 25 years.
This is true also for Bulgaria. That is the reason a team from Bulgarian
Academy of Sciences to start experimenting with different type mod-
els for fire spread prediction. The models which have been applied in
Bulgaria in the last years for fire behaviour modelling range from typ-
ical mathematical approaches such as cell automata ones to the semi-
empirical models like WRF-Fire (Weather Research Forecast - Fire) and
FARSITE (Fire Area Simulator Model). Our article will focus on the last
two models where GIS tools are applied for territories in south Bulgaria
and we will show comparison between the time needed for calculation of
burned area. We will focus on places for which the needed input data for
both models is available and we will conclude with comparison between
the models in case either one is used in operational mode from fire fighter
brigades.

1 Introduction

Forest and field fires occur in nature mostly after thunder storms or single light-
ning hit on the ground. Such fires are considered as part of the life cycle in
the forests and they are good for the biological species renewal. In the fires of
this type there is a reduce of the accumulated organic matter in the autumn-
winter period. However most of the Bulgarian forest or field fires occur mainly
because of human mistake when working with fire in open space or as it is in the
last decade in Bulgaria the fires are artificially made for easier timber collection
afterwards. From official statistics published on the web-site of the ministry of
forests, food and agriculture written in Bulgarian [1] fires between 1970 and 2005
have huge incensement in the year 2000 (Fig. 1).

New official statistics has not been published on the same site for the years
from and after 2006 until present. That is why we have downloaded satellite
information from NASA official web site http://www.earthdata.nasa.gov/data/
nrt-data/firms/active-fire-data in GIS-point format and created statistics on
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Fig. 1. Forest fires in Bulgaria between 1970–2005.

Fig. 2. NASA satellite images information about fires on the Bulgarian territory.

what the satellites has registered as fires on the Bulgarian territory from the
period 2006 until 2012. The results are summarized on the diagram from Fig. 2.

From the two diagrams we can see that the wildland fire occurence on the
territory of Bulgaria has been increased after the year of 1990. The first figure
show the official statistics published by the Ministry of Agriculture, Food and
Forests in Bulgaria, while the second figure is overview information prepared by
the authors from sources of the NASA hotspots database for the territory of
Bulgaria. As outcome from the diagrams we think that there is need for better
development of the scientific research on the fire behavior modeling in Bulgaria
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for the different available models. In our article we focus on two models which
have different capacities for operational usage. The first is WRF-Fire which is
presenting the fire propagation from point of view of weather inputs, paying
less attention on burning materials and relief. The second is FARSITE, which is
stand alone model, used in US as decision support tool for incident commanders.
That tool is having more attention to the landscape of the simulated area, have
weather input for general weather parameters and wind as separate one and
include fuel models as either one of the 13 Anderson or 40 Scott-Burgan classes.
This second model gives also option for custom type of fuel input, which makes
it more flexible for operational needs.

2 WRF-Fire and FARSITE Basis

For both WRF-Fire and FARSITE models is used as basis the Rothermel Rate
Of Spread (ROS) equation, which presents in nominator the Heat Source and
in denominator the Heat sink for the fire movement [3,7]. Rothermel describe
with its equation how the released energy during the pyrolysis process is dis-
tributed in the nature. He shows how the burning materials release its energy
while burning and how the surrounding materials absorbed it by evaporating
its water quantities reaching the moment of setting their organic matter into
fire. His equation is revolutionary and gives base for most of the nowadays fire
propagation models. The equation is presented in formula (1):

R =
HeatSource

HeatSink
=

Ixig +
∫ 0

−∗
(

∂Iz
∂z

)
Zc

dx

ρbeQig
. (1)

where

R - is parameter for fire spread or the so called ROS (rate of spread),
Ixig - is the horizontal spread of the heat absorbed by the burning materials
evaporating their water content,
ρbe - is the density of the burning materials which are heated until the fire start,
Qig - is the absorbed energy by the burning materials while they are evaporating
their water content,
∂Iz
∂z

- is the gradient of vertical intensity in the plane, where the energy is released.

Horizontal and vertical coordinates are x and z [2]. All parameters are in
English system, where the spread rate is in ch/m, the fuels are in lb/ft3 and lb.

This equation is modified in WRF-Fire model in a way to present ROS as
domain where the fire is burning, there are also included level-set functions giving
sub-domains presenting the active burning and already burned areas in a fire.
In WRF-Fire ROS and the domains from the level-set functions are connected
to the weather part of the model WRF (Weather Research Forecasting) there is
constant feedback from the fire part to the meteorological one and that’s why the
fire part can not be externalized in order to be considered the surrounding area
weather conditions. That is how the fire propagation is presented in WRF-Fire.
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On the other hand FARSITE (Fire Area Simulator Model) incorporates exist-
ing models of surface fire, crown fire, point-source fire acceleration, spotting, and
fuel moisture, where the ROS idea is taken into consideration. It is a standalone
decision support tool, which is used by operational teams as fire growth simu-
lator. The models integrated in FARSITE are using vector propagation for fire
perimeter spread that is controlling both space and time resolution of fire prop-
agation over the landscape. FARSITE results are vector fire perimeters the so
called in GIS polygons at specified time intervals. The vertices of these polygons
contain information on the fire’s spread rate and intensity, from which can be
produced raster maps of fire behavior useful in wild land fire management.

3 WRF-Fire Input for Real Data Calibration

In order to apply WRF-Fire model for real data calibration purposes there is
a need for preprocessing of the input. The preprocessor compilation for real
data cases need to process the available data with setting up place on the earth
where the fire occurs. The location coordinates and all needed inputs are set
by using file called namelist.wps, where is written section geogrid defining the
weather domain from where the weather conditions will be taken during the
burning processes. In order to define also the place where the fire is running
there is a set up of smaller domain inside the weather one and that is done by
including section share in the input file namelist.wps. From this two sections
our simulation has weather and fire growth domains where the coordinates and
the time step of getting new weather input for fire spread prognosis is done.
The weather data is not available automatically for Bulgaria that is why is
preferable to be used the 1 degree resolution from U.S. National Center for
Environmental Protection (NCEP) as free source. Additional information which
is included in the input file is also the topology. It is available through the
Shuttle Radar Topography Mission (SRTM) for Bulgarian territory and is having
90 m resolution. Having this basis runs of simulations for the Bulgarian case
near by the village of Leshnikovo, Harmanly region has been done on US and
Bulgarian super computers. The US architecture used was the Janus cluster at
the University of Colorado. The computer consists of nodes with dual Intel X5660
processors (total 12 cores per node), connected by QDR InfiniBand. The results
there showed that runs using 360 and above as number computational cores can
give simulation results faster than real time, but the fire burned shape will not
match very well the real fire growth. This was reason of the data accuracy [3].

In Bulgaria runs of the same case simulated fire near by the village of Lesh-
nikovo were computed on the IBM Blue Gene/P wich configuration is consisted
of two racks with 2048 computational nodes connected by PowerPC 450 proces-
sors (32 bits, 850 MHz), 8192 cores and total 4 TB operational memory. The
simulation could run successfully on 100 processors and it took 7 h and 43 min
to run the case of Leshnikovo village. This result gives as real-time coefficient
the number of - 0,0054, which is much below 1, which is not good for operational
needs [4].
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Having these results we could say that WRF-Fire model has the abilities for
scientific fire investigation purposes of surface fires only, but as tool for opera-
tional fire growth predictions is very sophisticated and not every hardware can
support it easily.

4 FARSITE Input for Real Data Calibration

Fire behavior models used in wildland fire management are distinguished as four
main types - surface fires, crown fires, spotting and point-source fire acceleration.
FARSITE combines in its structure all of them. This approach makes FARSITE
more flexible than WRF-Fire because it does not focus only on surface fire type
behavior.

The inputs needed in FARSITE for Bulgarian fire behavior calibration sim-
ulation has not been enough for the case nearby Leshnikovo village that is why
we will describe how the model works with real data using as example the Ash-
ley Lakes Fire in US. FARSITE is a fire growth simulator and as such requires
spatial data that comprise the fuels, weather, and topographic information of
the fire behavior. A simulation with FARSITE weather and winds are input
as streams of data, whereas fuels and topography are GIS raster files for spa-
tial data incorporation. The raster data resolution should not be higher than
25–50 m, because above that level the details in heterogeneous landscapes are
not good for simulations.

The raster inputs can be divided in seven main categories, which we will
briefly describe. The first category is the elevation of the terrain used in both
meters and feet. It is used in a simulation for adjustment of temperature and
humidity according to elevation input of the weather stream. The slope and
aspect are presented in percents in the input data and are used directly for
computing the angle of incident solar radiation (along with latitude, date and
time of the day), which gives the spread rates on the surface. The third input
is the fuel model, which in FARSITE is possible to be inserted as fuel type
according to the Anderson 13 or Scott-Burgan 40 classes [5,6]. Also the fuels
can be represented as custom type if the needed measurements are done on the
field and the landscape coverage is determined correctly.

In Bulgaria fuel types division for the wild lands in the forests has never
been developed. That is why our team started such classification by adopting
the structures and ideas of the two main classes in US. That work is still ongoing
and this is the reason that a Bulgarian simulation case with FARSITE will not
be presented in this article. Canopy cover is the fifth element needed in the
raster input which is inserted as percent and determine the average shading of
the surface fuels that affects the moisture calculations. Also the canopy cover can
give wind decrease in cases of 6.1 m and above high vegetation. Crown height is
presented in meters or feet and it affects the wind profile that is extended above
terrain. Canopy cover and crown height are factors for wind reduction. Crown
base height and Crown bulk density are parameters in the raster input which
are related to crown fires and both are giving to the simulations the option of a
surface fire can go to a transition of active crown fire.



FARSITE and WRF-Fire Models, Pros and Cons for Bulgarian Cases 387

The third component for a simulation in FARSITE after we presented the
fuel types and landscape characteristics is weather and wind inputs as two sep-
arate files. The input for the weather provides daily observations on temper-
ature and humidity as well as precipitation that depicts a temporal weather
stream. The input counts the month and the day for which we need information
for daily amount of rain in hundredths of inch or millimeters as integer value.
For the same day and month we insert information also about minimum and
maximum temperatures of the day rounded to integers in degree Fahrenheit or
Celsius, along with minimum and maximum humidity in percentage. The last
information inserted is elevation in feet or meters above the sea level along with
minimum and maximum rain amount if any for the observed day. This format
of input for weather information allow limitation of the amount required data
for a simulation.

The wind as part of the weather is inserted in a simulation as a separate
file with its own characteristics, because of its importance for ROS components.
Winds are usually variable in space and time. FARSITE however, assumes winds
to be constant in space for a given wind stream but variable in time. That is
because, there is no topographic effects on winds. The input format of winds
is similar to that for a weather file. In wind file is needed information about
month and the observed day and the nearest hour to the fire start for which as
integer is presented the windspeed in 20 ft miles per hour or 10 m windspeed in
kilometers per hour. The other component is the wind direction clockwise from
north which is given as integer from 0 to 360. The last information in the wind
input is the cloud cover specified in percentage integer number from 0 to 100
according to [7].

The FARSITE simulator model is created to run on a various conditions, but
what is the best of it is that it could run also on personal computer. We will
test it with Ashley Lakes Fire input data on computer with configuration Intel
core Duo 1.40 GHz, 32-bit machine with 3 GB RAM with Operational system
Windows 7.

The first thing which has to be included in a FARSITE simulation is the
spatial data in landscape file. The landscape file can be generated if there are
available five raster files referring to — elevation, slope, aspect, fuel model and
canopy cover of the area for simulation. This file contains the main input for
the simulation and can be changed every time when we change the five initial
files as recreating it. The next step is to generate a project file which has all the
initial conditions for a simulation. It consist of landscape file, adjustment file
for the terrain, moisture file for the canopy cover, custom models for the fuel
types, weather and wind files along with the road and water streams shape files
which will give additional information when the simulation is running. We set
the simulation duration by having the month and day information, because this
is the required information from the FARSITE inputs. The weather always is
having for first day the day before the actual fire appearance. In our case we
set the simulation for August and the dates are 10th, 11th and 12th and the
hours while we are interested to run our Ashley Lakes Fire is from 12.00 h noon
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Fig. 3. Ashley Lake Fire - Burned area.

time on August 11th until 18.00 h on August 12th. The first day we simulate the
weather conditions before the fire occurrence, so we don’t set time for it. After
we set the duration we have to set the ignition type. In our Ashley case we set it
to ignition point and we get as fuel type 1, which is corresponding to short grass
and gives surface fire spread. For the outputs we set shape and raster GIS files
which will give the final picture of the simulation result. The simulation runs
for 1 min and 6 s and provide information about the intensity of fire spread with
GIS shape file, which gives the burned area in black and the non or less burned
area with lighter or white color on Fig. 3.

5 Conclusion

From the presented results we can say that for research needs WRF-Fire and
FARSITE models are very good options, but when it comes to operational
tool for real fire simulations the Fire Area Simulator (FARSITE model) has
better characteristics. Our work is still ongoing for meeting the hardware lim-
its of Blue Gene/P, the Bulgarian supercomputer for the additional runs of
WRF-Fire. For the FARSITE model we need to finish the fuel type categories
according to the two US classifications available, but we believe that in near
future in Bulgaria will be used more and different capacity models for oper-
ational need for the firebrigades and volunteer groups helping them in their
everyday job.
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Waśniewski, J. (eds.) LSSC 2011. LNCS, vol. 7116, pp. 291–298. Springer, Heidel-
berg (2012)

4. Dobrinkova, N., Jordanov, G., Vassilev, P.: Generalized net model of decision sup-
port system of wildland fire estimation. The Case of Harmanli Fire (Bulgaria) 2009.
In: Twelfth International Workshop on Intuitionistic Fuzzy Sets and Generalized
Nets, WIFSGN’2013, Warsaw, 11 October 2013 (accepted)

5. Anderson, H.E.: Aids to determining fuel models for estimating fire behavior. USDA
For. Serv. Gen. Techn. Rep. INT-122 (1982)

6. Scott, J.H., Burgan, R.E.: Standard fire behavior fuel models: a comprehensive set
for use with Rothermel’s surface fire spread model. Gen. Tech. Rep. RMRSGTR-
153. FortCollins, CO: U.S. Department of Agriculture, Forest Service, Rocky Moun-
tain Research Station, 72 p. (2005)

7. Finney, M.A.: FARSITE: Fire Area Simulator - model development and evaluation.
Res. Pap. RMRS-RP-4. Ft. Collins, CO: U.S. Department of Agriculture, Forest
Service, Rocky Mountain Research Station, 47 p. (1998)

http://www.bluelink.net/bg/bulletins/ecopolis12/1_os_1.html


Analysis of the Processes Which Form the Air
Pollution Pattern over Bulgaria

Georgi Gadzhev1, Kostadin Ganev1(B), Nikolay Miloshev1, Dimiter Syrakov2,
and Maria Prodanova2

1 National Institute of Geophysics Geodesy and Geography,
Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl.3, 1113 Sofia, Bulgaria

{ggadjev,kganev}@geophys.bas.bg
2 National Institute of Meteorology and Hydrology, Bulgarian Academy of Sciences,

“Tsarigradsko Shose” 66, 1784 Sofia, Bulgaria

Abstract. The air pollution transport is subject to different scale phe-
nomena, each characterized by specific atmospheric dynamics mecha-
nisms, chemical transformations, typical time scales etc. The air
pollution pattern is formed as a result of interaction of different processes.
The present study attempts to make some evaluations of the contribution
of different processes to the local to regional pollution over Bulgaria. The
US EPA Model-3 system is chosen as a modelling tool. As the NCEP
Global Analysis Data with one degree resolution is used as meteorolog-
ical background, the MM5 and CMAQ nesting capabilities are applied
for downscaling the simulations to a 3 km resolution over Bulgaria.

The TNO emission inventory is used as emission input. Special pre-
processing procedures are created for introducing temporal profiles and
speciation of the emissions. The biogenic emissions are estimated by the
model SMOKE.

The Models-3 “Integrated Process Rate Analysis” option is applied to
discriminate the role of different dynamic and chemical processes for the
pollution formation. The processes that are considered are: advection,
diffusion, mass adjustment, emissions, dry deposition, chemistry, aerosol
processes and cloud processes/aqueous chemistry.

The simulations are carried out for several years. The obtained results
make it possible to evaluate the impact of the above listed processes in
many different terms - spatial pattern, averaged over the country or for
selected points, seasonal behaviour.

Keywords: Atmospheric composition · Regional scale modelling · US
EPA Models-3 system · Integrated process rate analysis

1 Introduction

Recently extensive studies for long enough simulation periods and good resolu-
tion of the atmospheric composition status in Bulgaria have been carried out
using up-to-date modeling tools and detailed and reliable input data [5,7,8].
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The air pollution transport is subject to different scale phenomena, each
characterized by specific atmospheric dynamics mechanisms, chemical transfor-
mations, typical time scales etc. The air pollution pattern is formed as a result
of interaction of different processes, so knowing the contribution of each for dif-
ferent meteorological conditions and given emission spatial configuration and
temporal behavior is by all means important. That is why the one of the overall
study goals is to make some evaluations of the contribution of different processes
to the local to regional pollution over the Balkans and/or Bulgaria.

2 Approaches, Tools, Data, Domains and Nesting

All the simulations are based on the US EPA Model-3 system. The system
consists of three components: MM5 [4,8], used as meteorological pre-processor,
CMAQ [1,2], the Chemical Transport Model of the system and SMOKE [3] -
the emission pre-processor of Models-3 system.

The large scale (background) meteorological data used by the study is the
NCEP Global Analysis Data with 1◦×1◦ resolution. At the moment the created
database contains all the necessary information since year 2000.

The TNO high resolution emission inventory [9] is exploited. A more detailed
description of the emission modeling is given in [5].

As far as the background meteorological data is the NCEP Global Analysis
Data with 1◦ × 1◦ resolution, it is necessary to use MM5 and CMAQ nesting
capabilities as to downscale to 3 km step for the innermost domain (Bulgaria).

The Models-3 “Integrated Process Rate Analysis” option is applied to dis-
criminate the role of different dynamic and chemical processes for the air pollu-
tion pattern formation. The procedure allows the concentration change for each
compound for an hour ΔC to be presented as a sum of the contribution of the
processes, which determine the concentration. The processes that are considered
are: advection, diffusion, mass adjustment, emissions, dry deposition, chemistry,
aerosol processes and cloud processes/aqueous chemistry.

3 Some Examples of Process Analysys Simulations

Due to the limited volume of the present paper only few examples will be given
here, just to demonstrate the kind of information and knowledge that can be
gained from the process analysis. All the results are retrieved from a pretty
extensive (8 years) simulation ensemble, so they can be considered representative
for the atmospheric composition “climate” behaviour.

An example of the annually averaged special distribution of the processes
contribution to the surface ozone is given in Fig. 1. It can be seen that the
chemical processes have mostly negative impact. In particular the big cities and
the road network (powerful nitrogen oxide sources) can be clearly followed as
ozone sinks.

The vertical diffusion impact is mostly positive (turbulent transport of ozone
from the upper layers). The effect is very prominent in the big cities, where the
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Fig. 1. Horizontal distribution of the contributions [µg/hour] of different processes to
the hourly surface ozone changes at 06.00 GMT (08.00 local time)

very large nitrogen oxide surface sources cause big ozone deficiency (big negative
vertical gradients) and so the turbulent transport is more intensive. Some small
spots of vertical diffusion negative impact can be seen at the location of big power
plants. This is probably due to the fact that these are high sources of nitrogen
oxide, which cause ozone deficiency aloft, so the ozone vertical gradients near
surface are positive.

The horizontal and vertical advection contributions pattern is very complex
and clearly reflects landscape induced local circulation systems. The horizon-
tal and vertical advection contributions have mostly opposite signs, which is a
direct and apparent consequence of the atmosphere continuity equation.

The horizontal diffusion, as it should, acts for compensating the ozone defi-
ciency and so is generally in counter-phase with the chemical processes.

The same processes contribution to the surface SO2 changes are shown in
Fig. 2. What can be immediately seen from the plots is that the most prominent
SO2 sources - the thermal power plants (TPP) can be detected in the fields of
practically all the processes. The explanation of these effects is rather straight-
forward: the large SO2 sources form small areas of very high concentrations
around the TTP’s, thus zones with large positive vertical diffusion (high SO2
sources) and negative chemical processes (formation of sulfate radicals), hori-
zontal advection and diffusion contributions. To some extend these effects can
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Fig. 2. Horizontal distribution of the contributions [µg/hour] of different processes to
the hourly surface SO2 changes at 17.00 GMT (19.00 local time).

be observed also for the large cities with the difference that for the cities the
vertical diffusion is negative (low SO2 sources in the cities).

The landscape effects in the horizontal and vertical advection contributions
are again well manifested.

The averaged over the territory of Bulgaria contributions of some of the
processes to the surface ozone concentrations will be also demonstrated Fig. 3.
Very briefly the main characteristics, which can be seen from the plots, are the
following: (1) There are well manifested seasonal differences and diurnal vari-
ations; (2) The ozone concentration change is formed as a rather small sum
of processes with larger values and different signs; (3) Averaged for the terri-
tory of Bulgaria the impacts of horizontal diffusion and cloud processes/aqueous
chemistry are negligible; (4) For all the seasons, except winter, and annually the
vertical diffusion has a large positive impact, especially during the day (more
intensive turbulence) - ozone transport from higher atmosphere to ground level;
(5) The dry deposition has negative impact, but it is almost negligible during
winter and significant for spring, summer (in particular) and autumn during
daytime. This is easy to explain - the dry deposition is proportional to surface
concentration, and so is large when the surface concentrations are large; (6) For
all the seasons, except summer and especially in winter, and annually the hor-
izontal advection has large positive impact. In summer around noon there is a
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Fig. 3. Plots of the “typical” annual and seasonal diurnal course of the averaged for
the territory of Bulgaria contributions of vertical advection (ZADV), vertical diffusion
(VDIF), emissions (EMIS), dry deposition (DDEP), chemistry (CHEM), horizontal
advection (HADV), vertical advection (ZADV), cloud processes/aqueous chemistry
(CLDS) to the hourly changes (ΔC) of surface O3.

period of horizontal advection negative impact. All this means that for most of
the time there is ozone inflow trough the country boundary; (7) The impact of
chemical processes is always negative, except during daytime in the summer; (8)
The resulting hourly ozone surface concentration change ΔC is always negative,
except for some hours during the day in summer (most prominent), spring and
autumn.

The last four characteristic features of the processes behavior are sound evi-
dence that the ozone/ozone precursors in Bulgaria are mostly of foreign origin.

In order the local heterogeneities of the different processes behavior to be
demonstrated the annually averaged process contributions to SO2 surface con-
centration changes for 4 different points in Bulgaria, together with the averaged
for the country are shown in Fig. 4. It can be seen that the processes temporal
behavior and interaction is different for the different points. It is remarkable
how fast and chaotic the changes of the horizontal and vertical advection are
for Sofia and Burgas. The horizontal and vertical advection contributions have
mostly opposite signs, which effect had already been mentioned above. The diur-
nal course of horizontal and vertical advection contributions for Rojen is a very
typical and good example of the role of mountain circulation.



Analysis of the Processes Which Form the Air Pollution Pattern 395

Fig. 4. Plots of the “typical” annual diurnal course of the in some points and averaged
for the territory of Bulgaria contributions of vertical advection (ZADV), vertical diffu-
sion (VDIF), emissions (EMIS), dry deposition (DDEP), chemistry (CHEM), horizon-
tal advection (HADV), vertical advection (ZADV), cloud processes/aqueous chemistry
(CLDS) to the hourly changes (ΔC) of surface SO2

4 Conclusions

The numerical experiments performed produced a huge volume of information,
which can not be presented here. Some more general features of the processes
behavior could be mentioned, however:

– The spatial/temporal behavior of the processes is very complex;
– For some processes the contribution sign is obvious (like emissions or dry

deposition), but some can have different signs for different species, depending
also on the emission configuration and the meteorological conditions;

– For most of the compounds some of the advection/diffusion processes have a
significant role.

The analysis of the behavior of different processes does not give simple answers
to the question how the air pollution in a given point or region is formed. The
“Integrated Process Rate Analysis” is a fruitful approach, however and it would
be worthwhile to provide a more general discussion of the simulated processes.
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Abstract. Radio-frequency ablation is a low invasive technique for
treatment of liver tumors. This work concerns the mathematical mod-
eling and computer simulation of the heat transfer process. The core
is solving the time-dependent partial differential equation of parabolic
type. Instead of a uniform discretization of the considered time interval,
an adaptive time-stepping procedure is applied in an effort to decrease
the simulation time. The procedure is based on the local comparison
of the Crank Nicholson and backward Euler approximations. Results of
some preliminary numerical experiments performed on a selected test
problems are presented and discussed.

1 Introduction

The minimally invasive treatment called radio-frequency ablation (RFA), one of
several types of ablation therapy, may be the alternative when open surgery of
certain cancer types is not a good option. Guided by imaging techniques, the
doctor inserts a thin needle through the skin and into the tumor. High-frequency
electrical energy delivered through this needle heats and destroys the tumor. The
circuit is closed with a ground pad applied to the patient’s skin.

An important advantage of RF current (over previously used low frequency
AC or pulses of DC) is that it does not interfere with the muscles and can be
used without the need for general anaesthesia.

There is an ongoing research in RF probe design. The right procedure para-
meters are very important for the successful killing of all of the tumor cells with
minimal damage on the non-tumor cells.

Computer simulation on geometry obtained from a magnetic resonance imag-
ing (MRI) scan of the patient is performed. The influence of the position of the
ground pad to the ablated volume is of special interest, both from the medical
and simulation point of view. Often, in computer simulations reported in the
literature e.g. [1,4–6,10,11], the position of the ground pad is neglected and
a simple computational domain with a cubic shape is considered. In [12] the
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authors check the correctness of the assumption that when the pad is far from
the probe then zero potential condition can be applied on the whole boundary
of the domain and compare the resulting ablated volumes, when ground pads
are put in different positions.

In this work, an adaptive time stepping algorithm is applied to the simulation
in order to reduce the computational time.

The rest of the paper is organized as follows. In Sect. 2, the mathemati-
cal model is presented along with the space and time discretization schemes.
Section 3 describes the adaptive time-stepping algorithm. Section 4 is devoted
to the computer simulations and analysis of the results obtained on an IBM
Blue Gene/P supercomputer. Finally, some concluding remarks can be found in
Sect. 5.

2 The Model, Space and Time Discretization

As mentioned above, the RFA procedure destroys the unwanted tissue by heat-
ing, arising when the energy dissipated by the electric current flowing through a
conductor is converted to heat. The considered RF probe consists of a stainless
steel needle, insulated with polyurethane. The RFA procedure starts by placing
the probe inside the tumor. The surgeon performs this under computed tomog-
raphy (CT) or ultrasound guidance. The human liver has a complex structure,
composed of materials with unique thermal and electrical properties. There are
three types of blood vessels with different sizes and flow velocities. Here, a sim-
plified test problem, where the liver consists of homogeneous hepatic tissue and
only the large portal vein vessels is considered.

The bio-heat time-dependent partial differential equation [5,6] is the govern-
ing equation describing this process. It can be presented as follows:

ρcheat
∂T

∂t
= ∇ · k∇T + J · E − α hB (T − TB), (1)

where the thermal energy arising from the current flow is described by J · E in
(1) and α hB (T − TB) accounts for the heat loss due to blood perfusion in the
capillaries. The heat produced from metabolic functions of the liver is neglected.
The initial and boundary conditions which are used in this approach are as
follows:

T = 37∗C when t = 0 at Ω, (2a)
T = 37∗C when t ∈ 0 at ∂Ω\ΓR, (2b)

−k
∂T

∂n
= α(T − TB) when t ∈ 0 at ΓR (2c)

The notations which are used in (1) and (2) are given below:
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• Ω – the entire domain of the model;
• ∂Ω – the boundary of the domain;
• ΓR – the boundary of the blood

vessel;
• ρ – density [kg/m3];
• cheat – specific heat [J/kg K];
• k – thermal conductivity [W/m K];
• J – current density [A/m];
• E – electric field intensity [V/m];
• t – time [s];

• T – temperature [K];
• TB – blood temperature (37∗C);
• wB – blood perfusion coefficient

[s−1];
• hB = ρBcBwB – convective heat

transfer coefficient accounting for
the blood perfusion in the model;

• α – tissue state coefficient;
• n – the outward-pointing normal

vector of the boundary.

The cumulative damage integral Ψ(t) is used as a measure of ablated
region [1,12]:

Ψ(t) = ln
(

c(0)
c(t)

)
= A

∫
e− ΔE

RT (t) dt, (3)

where c(t) is the concentration of living cells, R is the universal gas constant, A is
the “frequency” factor for the kinetic expression [s−1], and ΔE is the activation
energy for the irreversible damage reaction [J mol−1]. The values used A =
7.39×1039 s−1 and ΔE = 2.577×105 J mol−1 are taken from [1]. Tissue damage
Ψ(t) = 4.6 corresponds to 99 % probability of cell death. The value of Ψ(t) = 1,
corresponding to 63 % probability of cell death is significant, because at this
point the tissue coagulation first occurs and blood perfusion stops.

The tissue state coefficient α is expressed as

α(t) =
{

e−Ψ(t) if Ψ(t) < 1,
0 if Ψ(t) ∈ 1.

In the presented algorithm the bio-heat problem (1) is solved in two steps
(see [12] for more details):

1. Finding the heat source J · E using that: (a) E = −∇V (V is the electric
potential in the computational domain Ω), and (b) J = σE, where σ is the
electric conductivity [S/m];

2. Finding the temperature T by solving the heat transfer Eq. (1) using the heat
source J · E obtained in the first step.

For the numerical solution of (1) the finite element method in space is used [7].
Linear conforming tetrahedral elements are used in this study. They are directly
defined on the elements of the used unstructured mesh. An algebraic multigrid
(AMG) preconditioner is used [3]. The time derivative is discretized via finite
differences and the both the backward Euler [8] and the Crank-Nicholson schemes
are used [9].

Let the matrices K and M be the stiffness and mass matrices from the finite
element discretization of (1):

K =
[∫

Ω

k∇Φi · ∇Φjdx
]N

i,j=1

, M =
[∫

Ω

ρcheatΦiΦjdx
]N

i,j=1

.
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Let us also denote with ΩB the subdomain of Ω where we account for the blood
perfusion (the liver tissue) and with MB the matrix

MB =
[∫

Ω

δBhBΦiΦjdx
]N

i,j=1

, where δB(x) =
{

α for x ⊂ ΩB,
0 for x ⊂ Ω\ΩB.

The influence of the Robin boundary conditions given in (2c) and the electric
field intensity is presented by:

MR =
[∫

ΓR

αΦiΦjdx
]N

i,j=1

, and F =
[∫

Ω

JEΦiΦjdx
]N

i,j=1

,

Than, the spatially discretized parabolic Eq. (1) can be written in matrix form
as:

M
∂T

∂t
+ (K + MB + MR)T = F + MBTB + MRTB. (4)

3 Adaptive Time-Stepping Algorithm

To ensure accuracy and not waste computational effort, it is important to adapt
the time steps to the behavior of the solution.

The time discretization for both backward Euler method and the Crank-
Nicolson one can be written in the form

(M + τnθ(K + MB + MR)) Tn+1 = (M − τn(1 − θ)(K + MB + MR)) Tn

+ (τnθ + τn(1 − θ))(F + MBTB + MRTB),
(5)

where the current (n-th) time-step is denoted with τn, the unknown solution at
the next time step – with Tn+1, and the solution at the current time step – with
Tn. If we set the parameter θ = 1, (5) gives a system for the backward Euler
discretization. When θ = 0.5 (5) becomes Crank-Nicolson one. The solution of
the linear system (5) with θ = 1 and θ = 0.5 gives us TBE and TCN respectively.

A suitable adaptive time-stepping procedure is based on a local comparison
of the backward Euler (TBE) and Crank-Nicolson (TCN) approximations for the
current timestep, and is controlled by the ratio

η =
→TCN − TBE→

→TBE→ . (6)

This approach has a down side, that solving two linear systems is required to
obtain TBE and TCN. This is, from the computational point of view, expensive.
Nevertheless overall decrease in computational time is expected.

The algorithm below, describing our adaptive time-stepping procedure, is
based on the one for adaptive time stepping for processes in spent nuclear fuel
repositories [2]. It has several parameters:
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1. τ1 – initial timestep;
2. NAdapt – a parameter showing how often the adaptive time stepping strategy

is applied, e.g. NAdapt = 1 shows that the adaptive time stepping is used on
each step while NAdapt = 3 – that the adaptive time stepping is performed
at every third time step, NAdapt = 0 indicates that all time steps are non-
adaptive.

3. λNonAdapt – a parameter showing whether and by how much the time step
is multiplied, in non-adaptive time steps, e.g. λNonAdapt = 1 means that the
time step is not changed, while λNonAdapt = 1.2 means that the time step on
the current level is multiplied by 1.2 for the next time level.

4. εmin and εmax are minimal and maximal thresholds for the error estimate η.

Algorithm 1 (Adaptive Time-Stepping Procedure).

1. for k = 1, 2, . . . until the end of time do
2. if CurrentStepIsAdaptive(NAdapt , k)
2. then
3. do
4. compute TBE , TCN with τk

5. compute η
6. if η < εmin then τk+1 = 2τk

7. if η > εmax then τk = 0.5τk

8. while η > εmax // if too big error, stay on the same timestep
9. T k+1 = TBE

10. else
11. compute TBE with τk

12. T k+1 = TBE

13. τk+1 = τkλNonAdapt

14. end if
15. end for

The last timestep is always truncated to the time of simulation.

Inner PCG iteration with the BoomerAMG [3] preconditioner, part of the
software package HYPRE, is used for the solution of (5). The preconditioner is
reconstructed if the number of inner iterations goes above 12. The reconstruction
takes place before the solution of the next timestep.

4 Computer Simulations and Analysis of the Output
Results

The IBM Blue Gene/P computer, located at the Bulgarian Supercomputing
Center, is used for the simulations and numerical experiments with the new
adaptive time stepping algorithm. This machine consists of two racks, 2048 Power
PC 450 based compute nodes, 8192 processor cores and a total of 4 TB random
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Table 1. Vol1 and Vol4.6 as functions of the thresholds in the adaptive time-stepping
algorithm

εmin εmin Vol1
[cm3]

Variation
in %

Vol4.6
[cm3]

Variation
in %

Without adaptive time stepping 22.15 - 15.60 -
5.0 × 10−3 5.0 × 10−2 23.72 7.08 16.37 4.90
5.0 × 10−3 1.0 × 10−2 23.69 6.99 16.36 4.83
1.0 × 10−3 5.0 × 10−3 23.01 3.89 16.06 2.91
5.0 × 10−4 2.5 × 10−3 22.94 3.57 16.05 2.84
2.5 × 10−4 1.25 × 10−3 22.72 2.57 15.93 2.08

access memory. Each processor core has a double-precision, dual pipe floating-
point core accelerator. Sixteen I/O nodes are connected via fiber optics to a
10 Gbps Ethernet switch.

The material properties which are used in the simulations are taken from [5].
The blood perfusion coefficient is wB = 6.4 × 10−3 s−1. The applied electrical
power is 15 W, and the simulation is done for 7 min.

We run several test to choose a suitable set of values for the threshold para-
meters εmin and εmax. As a quantitative criterion of quality of the solution we
used two volumes – the volume Vol1, which is the volume of the tissue, where
the cumulative damage integral Ψ is greater than 1, and Vol4.6 – the volume of
the tissue, where Ψ > 4.6. The results of the nonadaptive algorithm with step
τ = 1 s were compared with the ones from adaptive runs. Some of the output
results obtained on 128 processors on the IBM Blue Gene/P machine are pre-
sented in Table 1. Looking at the last four columns in this table one can see that
an acceptable variation in the two important volumes less than 3 % occurs when
the threshold interval is [2.5 × 10−4, 1.25 × 10−3] and this interval is used in the
computer simulations. Based on these preliminary tests, a number of runs were
done both using 128 and 1024 processors. Uniformly refined mesh was used for
the runs on 1024 processors. Some of the output results obtained during the
simulations are presented in Tables 2 and 3. Comparing the total CPU times for
128 and 1024 processors (see the fifth column in both tables) and taking into
account that we solve eight times bigger problems on eight times more proces-
sors we may conclude that the adaptive time stepping algorithm has excellent
scalability. One can see in both tables that the best results with regards to CPU
time and number of the inner iterations are obtained when the adaptive strat-
egy is applied at each second time step and meanwhile, at the intermediate time
steps τ is multiplied by 1.2. In this case, comparing the total CPU times of the
algorithm without the adaptive time-stepping and using this strategy, it is seen
that the time of the new algorithm is almost three times shorter.
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Table 2. Number of iterations and the CPU time in the adaptive time-stepping algo-
rithm in the Case of 128 processors.

NAdapt λNonAdapt No. of inner No. of outer CPU Vol1 cm3 Vol4.6 cm3

iterations iterations time [s]

0 1.0 2233 420 7608 22.14 15.60
1 1.0 917 102 3968 22.72 15.93

1.0 731 104 3137 22.63 15.87
2 1.2 535 71 2321 22.87 16.00

1.3 587 77 2624 22.87 16.02
1.0 700 113 3053 22.58 15.83

3 1.2 539 76 2329 22.88 16.03
1.3 592 77 2559 22.81 15.97

Table 3. Number of iterations and the CPU time in the adaptive time-stepping algo-
rithm in the Case of 1024 processors.

NAdapt λNonAdapt No. of inner No. of outer CPU Vol1 cm3 Vol4.6 cm3

iterations iterations time [s]

0 1.0 604 420 7259 22.21 15.65
1 1.0 777 101 4234 22.70 15.92

1.0 594 101 3488 22.70 15.92
2 1.2 478 71 2619 23.01 16.10

1.3 539 77 2982 22.94 16.07
1.0 549 104 3121 22.70 15.93

3 1.2 455 76 2530 22.85 16.01
1.3 514 75 2740 22.94 16.06

5 Conclusions

An adaptive time stepping algorithm for simulating the radio-frequency ablation
for treatment of liver tumors is presented. The procedure is based on the local
comparison of the Crank-Nicholson and the backward Euler approximations.
Results of some preliminary numerical experiments performed are presented and
discussed. The first experimental results show that the new algorithm is scalable.
The tests allowed us to find some suitable parameters and showed the practical
usefulness of the developed solver for such kind of computer simulations. One can
observe that the computing time is decreased more than three times, the number
of outer iterations is decreased from 420 to 71, and the number of inner iteration
decreases form 2233 to 535. This preliminary results are a good motivation for
further improving the algorithm and doing more simulations.

Acknowledgments. This research is supported in part by Grants DFNI I01/5 and
DCVP-02/1 from the Bulgarian NSF and the Bulgarian National Center for Super-
computing Applications (NCSA) giving access to the IBM Blue Gene/P computer.
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Abstract. Geometrically nonlinear forced vibrations of three dimen-
sional structures, due to harmonic excitations, are investigated in the
frequency domain. Structures of elastic materials are considered and the
discretized equation of motion is derived by the finite element method,
using Elmer software. The shooting and the continuation methods are
applied to the resulting large scale FEM system by using scalable parallel
solvers.

Periodic steady-state solutions are of interest and their computation
is achieved by two techniques: shooting and continuation methods. The
periodic solutions are obtained by shooting method, i.e. by solving a
two-point boundary value problem defined by the periodicity condition.
For that purpose, a time integration scheme, such as Newmark’s method
is used and the correction of the initial guess is accomplished through a
Newton-Raphson method. The next solution of the bifurcation diagram
is obtained by the arc-length continuation method. A prediction for the
new point from the bifurcation diagram is defined by using the previous
solution and the new solution is obtained by correcting the prediction,
i.e. by shooting method.

The main objective of the current work is to investigate the potential
of the proposed methods for the efficient computation of the bifurca-
tion diagrams of large-scale dynamical systems, which result from the
discretization in space of real-life structures, achieved by appropriate
numerical techniques and parallel algorithms.

1 Introduction

The modern engineering structures are of complex geometry and made from
composite materials. Many researchers have developed reduced order models,
such as beams, plates or shells, in order to model the engineering structures with
fewer degrees of freedom. Nevertheless, the efficient modeling of real structures
requires a fine mesh of three dimensional finite elements, which results into a
system of ordinary differential equations with large number of unknowns and
its solution becomes computationally expensive. The necessity of using parallel
algorithms and time effective solvers, for such large-scale problems is evident.
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Because nonlinear effects occur frequently in structural dynamics [1] and the
linear models have limited validity, the investigations of the dynamical behav-
ior of elastic structures, taking into account nonlinearity due to large displace-
ments or due to plasticity [2], is of great importance for their optimal and
successful modeling and performance. In nonlinear structural dynamics, the fre-
quency of vibration and the amplitude are dependent, and small changes of the
excitation frequency may lead to big changes of the amplitude of vibration or
even to chaotic, quasi-periodic or multimodal motions [3]. These phenomenon
appears due to bifurcations which arise when the excitation frequency pass a
certain value.

The parametric study of large-scale nonlinear dynamical systems is presented
at this work. Two techniques are implemented: shooting method [4], which finds
the periodic solution for a fixed excitation frequency due to initial guess of the
initial conditions, and arc-length continuation method [5], which defines a pre-
dictor for the initial conditions of the next point from the bifurcation diagram.
The equation of motion is derived by the Elmer software [6] and Newmark’s
method is used for the time integration. The shooting and continuation meth-
ods are implemented within Elmer. Most of the research related with shooting
method, which exists in the literature, is done for systems of first order ordinary
differential equations. However, in the current work, it was preferred to develop
the shooting method for systems of second order ordinary differential equations,
because, as will be seen in the next section, for second order ODE, the shoot-
ing method requires to solve 2N equations with N degrees of freedom (DOF)
each, while for first order ODE, the shooting method requires to solve 2N equa-
tions with 2N DOF each, which will significantly increase the computational
time. Furthermore, the solution of the equation of motion, which Elmer solves
for each time step, is obtained from the second order ODE and the same time
discretization, which is performed by Elmer, is used to find the variation of the
solution when the initial conditions are perturbed, for the same time step.

2 Numerical Computation of Periodic Steady-state
Responses

The equation of motion of any elastic structure [2], considering geometrical type
of nonlinearity, can be written in the following way:

F ≡ Mq̈(t) + Cq̇(t) + K(q(t))q(t) − F(t) = 0 (1)

with the initial conditions

q(0) = q0 (2a)
q̇(0) = q̇0 (2b)

where M is the mass matrix, C is the damping matrix, K is the stiffness matrix
which depends on the vector of generalized coordinates q, also called displace-
ment vector, and F is the vector of external forces. The dimension of these
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matrices and vectors is N , where N is the total number of DOF, which depends
on the type and the number of elements used for the discretization. The vectors
of generalized coordinates and the external forces depend on time t which will
be omitted.

In order to outline the dependence of the initial conditions on the displace-
ment vector and velocity, these vectors will be written as:

q = q(t,q0, q̇0) (3a)
q̇ = q̇(t,q0, q̇0) (3b)

The shooting method consists of finding, on iterative way, the initial conditions
that perform a periodic motion. The initial value problem is converged into a
two point boundary value problem [3]. One seeks initial conditions q(0) = q0,
q̇(0) = q̇0 and solution q(t,q0, q̇0), q̇(t,q0, q̇0) with period T such that:

q(T,q0, q̇0) = q0 (4a)
q̇(T,q0, q̇0) = q̇0 (4b)

It is assumed that the period of vibration T is known, and the initial conditions
q0 and q̇0, which define the steady-state response with period T , will be obtained.
Let s0 and ṡ0 are initial guess of the initial conditions. By application of the
shooting method, the initial guess is corrected by δs0 and δṡ0. The corrections
are obtained by minimizing the difference between the initial conditions and the
response of the system at time T :

q(T, s0 + δs0, ṡ0 + δṡ0) − (s0 + δs0) = 0 (5a)
q̇(T, s0 + δs0, ṡ0 + δṡ0) − (ṡ0 + δṡ0) = 0 (5b)

Applying Taylor’s formula to the above equations and neglecting quadratic and
higher order terms, the following equations are obtained:

q(T, s0 + δs0, ṡ0 + δṡ0) = q(T, s0, ṡ0) +
∂q(T, s0, ṡ0)

∂s
δs0 +

∂q(T, s0, ṡ0)

∂ṡ
δṡ0 (6a)

q̇(T, s0 + δs0, ṡ0 + δṡ0) = q̇(T, s0, ṡ0) +
∂q̇(T, s0, ṡ0)

∂s
δs0 +

∂q̇(T, s0, ṡ0)

∂ṡ
δṡ0 (6b)

Replacing Eqs. (6a, 6b) into Eqs. (5a, 5b), the following system for the corrections
δs0 and δṡ0 is obtained:

(
∂q(T, s0, ṡ0)

∂s
− I

)
δs0 +

∂q(T, s0, ṡ0)
∂ṡ

δṡ0 = s0 − q(T, s0, ṡ0) (7a)

∂q̇(T, s0, ṡ0)
∂s

δs0 +
(

∂q̇(T, s0, ṡ0)
∂ṡ

− I
)

δṡ0 = ṡ0 − q̇(T, s0, ṡ0) (7b)

It is necessary to evaluate the coefficients of the matrices ∂q(T,s0,ṡ0)
∂s and

∂q(T,s0,ṡ0)
∂ṡ , at time T , in order to proceed further. Equation (1) is differentiated

with respect to the initial conditions s0 and ṡ0:
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∂F
∂s0

≡ M
∂q̈
∂s0

+ C
∂q̇
∂s0

+ J
∂q
∂s0

= 0 (8a)

∂F
∂ṡ0

≡ M
∂q̈
∂ṡ0

+ C
∂q̇
∂ṡ0

+ J
∂q
∂ṡ0

= 0 (8b)

Differentiation of Eqs. (2a) and (2b), leads to the following initial conditions for
Eqs. (8a, 8b):

∂q
∂s0

(0) = I,
∂q̇
∂s0

(0) = 0 (9a)

∂q
∂ṡ0

(0) = 0,
∂q̇
∂ṡ0

(0) = I (9b)

In Eqs. (8a, 8b), J is the Jacobian of the system defined by:

J =
∂K(q)q

∂q
(10)

Once q(t) is obtained by time integration method, ∂q(T )
s0

and ∂q(T )
ṡ0

might also
be determined by applying the same time integration method for the systems
defined in Eqs. (8a, 8b) with initial conditions (9a, 9b). It should be noted that
the system of second order ordinary differential equations (8a, 8b) is linear, while
the system (1) is nonlinear. Equations (7a, 7b) are solved and the corrections
of the initial conditions δs0 and δṡ0 are obtained. After the corrections are
determined, it is verified if Eqs. (5a, 5b) are satisfied within desired accuracy.
If not, the initial guess is updated and the procedure is repeated.

Once the initial conditions, which lead to a periodic solution are obtained,
initial guess, for the next point from the bifurcation diagram, is defined by
applying the continuation method [5] and the shooting method is repeated.

The systems defined by Eqs. (8a) and (8b), have to be solved for N different
initial conditions defined in (9a) and (9b), for each time step, where N is the
total number of degrees of freedom of the equation of motion (1) and each system
consists of N equations. Often the discretization of the elastic structure leads
to enormous degrees of freedom, especially in the cases when three dimensional
finite elements are used. Thus, the process of correcting the initial conditions
becomes computationally expensive and the necessity of using parallel algorithms
is significantly important and may reduce the CPU time essentially.

3 Numerical Examples

The shooting method, for systems of second order ordinary differential equations,
presented in the previous section is implemented within Elmer [6]. Elmer is
an open source finite element software, it has modules for different physical
problems, including finite elasticity, and direct and iterative solvers of linear
systems suitable for sequential and parallel runs.

First, the proposed method is validated with a beam model, where the com-
putation of the bifurcation diagram was achieved by the harmonic balance and
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Fig. 1. Bifurcation diagram of beam due to external harmonic force, — results from
beam model and HBM method, • results from three-dimensional discretization and
shooting method, h - thickness, w - amplitude at the middle of the beam for t = 0,
ω - excitation frequency, ωl - fundamental linear frequency.

continuation methods [7]. At this stage, the shooting method is run on one
processor, but its implementation on parallel processors is considered. Thus,
the efficiency and the acceleration of Elmer is also investigated. The numerical
experiments are performed on GRID-cluster.

The beam structure from reference [7] is implements here, i.e. the dimen-
sions are l = 0.406m, b = 0.02m, h = 0.002m and the material is isotropic
and homogeneous with the following properties (aluminium): E = 7e10N/m2,
ρ = 2800 kg/m3, ν = 0.33, where l is the length of the beam, b is width, h is
height, E is Young modulus, ρ is density and ν is Poisson’s ratio. The beam
is with clamped-clamped boundary conditions. An external harmonic and uni-
formly distributed force is applied in transverse direction with amplitude of
0.134N/m2. The results from shooting method, obtained from the discretiza-
tion of the beam structure by three-dimensional finite elements are in very good
agreement with results from the beam model [7], based on Timoshenko’s the-
ory for bending and obtained by the harmonic balance method (HBM), where
harmonics up to third order were used. The comparison of the results is pre-
sented on Fig. 1. It can be seen that the hardening effect, which arise due to the
geometrical nonlinearity, can be successfully obtained by the shooting method
implemented with Elmer and considering three-dimensional finite elements. On
Fig. 2 are presented the time responses of the beam due to the initial conditions
obtained from the shooting method on each shooting iteration.

The usage of three-dimensional finite elements gives opportunities to model
complex structures, for which the reduced models, such as beams or plates, are
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Fig. 2. Time responses for one period due to excitation frequency of ω/ωl = 1.02, · · ·
response due to initial conditions obtained after the first iteration, - - - response after
the second iteration, - · - · - response after the third iteration, — periodic steady-state
solution, t - time, w - amplitude at the middle of the beam.

not appropriate. The future implementation of the shooting method will focus
on parallel computing, which will reduce the CPU time, when complex struc-
tures are investigated and systems of enormous degrees of freedom are obtained.
Because Elmer is used for solving the nonlinear equation of motion (1) in time
domain, as well for solving the linear time dependent equations (8a, 8b) and
for solving the linear system (7a, 7b), for correcting the initial conditions, it is
essential to investigate how the acceleration and efficiency of Elmer change with
increasing the number of parallel processors. The efficiency and acceleration of
the solvers implemented in Elmer are investigated in the next paragraphs.

The same beam structure is modelled with fine mesh of quadratic tetra-
hedrons. The mesh is generated by Gmsh [8], it has 384 735 elements, which
have 591 358 nodes, each node has 3 DOF, i.e. the resulting system has 1 774
074 DOF.

Three cases are studied for the generated mesh of the beam structure: solving
a linear static problem, solving a geometrically nonlinear static problem and
solving the eigenvalue problem to obtain the natural frequencies of the beam.
MUMPS library (MUltifrontal Massively Parallel Solver) [9] which is a parallel
direct sparse solver is used. The CPU time obtained with 16 parallel processors is
used as a reference time and it is compared with the CPU time for the equivalent
problems obtained with 32, 64 and 128 parallel processors.

The results of the linear static case, due to uniformly distributed external
load of 5 N applied in the transverse direction, are given in Table 1. By increasing
the number of processors, the CPU time decreases with very good acceleration.
For the case of 128 parallel processors, an efficiency of 90 % is achieved.
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Table 1. Strong scalability results of linear static problem.

P CPU (s) Speed up Efficiency %

16 1311.92 1 -
32 666.85 1.97 98.37
64 301.08 4.36 108.93

128 180.9 7.25 90.65

Table 2. Strong scalability results of nonlinear static problem.

P CPU (s) Speed up Efficiency %

16 4375.24 1 -
32 2213.03 1.98 98.85
64 1038.75 4.21 105.30

128 612.24 7.15 89.33

Table 3. Strong scalability results of eigenvalue problem.

P CPU (s) Speed up Efficiency %

16 766.53 1 -
32 395.10 1.94 97.00
64 270.92 2.83 70.73

128 243.96 3.14 39.27

Similar results, but for the nonlinear static case, due to uniformly distributed
external load of 30 N, are obtained and presented in Table 2. The results for the
nonlinear problem were obtained by solving 7 linear systems, which result from
application of Newton’s method. Again, an efficiency of about 90 % is achieved
when 128 parallel processors are used.

Finally, the acceleration and the efficiency is investigated for the natural
frequencies of the beam, i.e. for solving the eigenvalue problem. In that case, the
CPU time decreases with the number of parallel processors, but the solver is not
as efficient as in the linear and nonlinear static cases. The efficiency is about 40 %
for the case of using 128 parallel processors. The results are presented in Table 3.

It should be pointed out that the periodic solution is achieved mostly by
iterative solutions of linear systems, i.e. Newmark’s method, which is used for
time integration in the shooting method, is applied to the equation of motion (1)
and to the systems of Eqs. (8a, 8b) and finds the solution for each time step by
solving an algebraic system of nonlinear equations, which results from Eq. (1),
i.e. by solving several linear systems which result due to Newton’s linearisation,
and by solving an algebraic linear systems which result from Eqs. (8a, 8b). The
eigenvalue problem is used once, for the case of free vibration analysis only, i.e.
the eigenvector of the linear mode, which is scaled with appropriate amplitude
is used as initial guess of the first periodic solution, and each next solution from
the bifurcation diagram is obtained by defining an initial guess from the previous
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solution. Thus, the efficiency achieved by Elmer and MUMPS is appropriate for
such large-scale problems.

4 Conclusion

A numerical procedure for investigating the nonlinear forced vibrations of elastic
structures was developed and presented. The procedure which finds the periodic
steady-state solutions in frequency domain, is based on shooting and continua-
tion methods. The methods were implemented in Elmer software, which allows
to investigate the dynamics of structures with complex geometry and allows to
use parallel solvers.

The efficiency and the acceleration of the solvers within the Elmer’s environ-
ment was studied, it was shown that linear and nonlinear solvers are efficient
when the number of parallel processors is increased, while the solver for the eigen-
value problems is less efficient. The efficiency of the solvers guarantees successful
implementation of the proposed methods in parallel computations, which paves
the way for future investigation of the dynamics of complex real life structures.
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Abstract. Lately, together with the numerical weather forecast, in many
European countries Systems for Chemical Weather Forecast operate,
Chemical Weather being understood as concentration distribution of
key pollutants in a particular area and its changes during some fore-
cast period. In Bulgaria, a prototype of such a system was built in the
frame of a project with the National Science Fund. It covers a relatively
small domain including Bulgaria that requires using chemical boundary
conditions from similar foreign systems. As far as this data is prepared
abroad and transferred by Internet, many failures took place during the
operation of the system. To avoid this problem, a new version of the sys-
tem was built on the base of the nesting approach. This version is real-
ized on five domains: Europe, Balkan Peninsula, Bulgaria, Sofia-Region
and Sofia-City with increasing space resolution - from 81 km (Europe) to
1 km (Sofia-City). For the Mother domain (Europe) climatic boundary
conditions are applied. All other domains take there boundary condi-
tions from the senior one. Computations start automatically at 00 UTC
every day and the forecast period is 3 days. The System is based on the
well known models WRF (Meso-meteorological Model) and US EPA dis-
persion model CMAQ (Chemical Transport Model). As emission input
the TNO data is used for the two biggest domains. For the 3 Bulgarian
domains the current emission inventory prepared by Bulgarian environ-
mental authorities is exploited.

Keywords: Air pollution modeling · Chemical transport model · Nest-
ing approach

1 Introduction

The Air Quality (AQ) is a key element for the well-being and quality of life of
European citizens. There is increasing evidence for adverse effects of air pollu-
tion on both the respiratory and the cardiovascular system as a result of both
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acute and chronic exposure. There is considerable concern about air quality
conditions over many areas in Europe, especially in urbanized areas, in spite of
about 30 years of legislation and emission reduction. Current legislation, e.g. the
Ozone daughter directive 2002/3/EC [3], requires informing the public on AQ by
assessing air pollutant concentrations throughout the whole territory of Member
States. For the purpose, modeling tools must be used in parallel with air pollu-
tion measurements. In last years the concept of “chemical weather” arises and
in many countries respective forecast systems are being developed along with
the usual meteorological weather forecasts (see, for instance [9] and the COST
Action ES0602 web-portal http://www.chemicalweather.eu/Domains.

In Bulgaria, a prototype of such a System was created by the support of the
National Science Fund (BgCWFIS, ver.1, see [10]). It covers a relatively small
domain around Bulgaria that requires using chemical boundary conditions from
similar foreign systems. Such data has been prepared abroad and transferred by
Internet causing many failures during the System operation. Later on, partly
in the frame of EU FP7 project PASODOBLE, new versions (BgCWFIS, ver.2)
was elaborated on the base of the nesting approach that allowed downscaling the
service from resolution of 81 Km over Europe to resolution of 1 Km over Sofia
city. Here, the current level to which the BgCWFIS, ver.2, has been developed
will be described and its end-user products will be presented.

2 Models Used, Domains, Information Flow

BgCWFIS is designed on the base of Models-3 air quality modeling system
(US EPA):

CMAQ v.4.6 - Community Multi-scale Air Quality model,
http://www.cmaq-model.org/ [2], the Chemical Transport Model (CTM);
WRF v.3.2.1 - Weather Research and Forecasting Model,
http://www.wrf-model.org/, [7] the meteorological pre-processor to CMAQ;
SMOKE v.2.4 - Sparse Matrix Operator Kernel Emissions Modelling System,
http://www.smoke-model.org/, [6] the emission pre-processor to CMAQ.

In its mother domain, WRF is driven by the NCEP GFS (Global Forecast Sys-
tem) data that can be accessed freely from http://www.ftp.ncep.noaa.gov/data/
nccf/com/gfs/prod/. This data is global weather forecast in GRIB-2 format with
space resolution 1◦×1◦ and 6 h time resolution. Its downloading is invoked every
day at 00Z. 84 h forecast starting at 12Z of the previous day is exploited. The
first 12 h of this period are used for WRF spinning-up followed by 3-day forecast.
The chemical weather forecast duration is from 00Z of the current day to 00Z of
the forth day after (3-day forecast).

The nesting capabilities of WRF and CMAQ are used to downscale the fore-
casts from European region to Sofia-city area. The resolution of the mother
domain (Europe) is 81 km, big enough as to correspond to the GFS met-data
space resolution. Four other domains are nested in it and in each other - Balkan

http://www.chemicalweather.eu/Domains
http://www.cmaq-model.org/
http://www.wrf-model.org/
http://www.smoke-model.org/
http://www.ftp.ncep.noaa.gov/data/nccf/com/gfs/prod/
http://www.ftp.ncep.noaa.gov/data/nccf/com/gfs/prod/
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Fig. 1. Five computational domains of BgCWFIS, ver.2 (CMAQ domain nested in
WRF one)

Fig. 2. BgCWFIS, ver.2, information flow diagram

Peninsula (27 km resolution), Bulgaria (9 km), Sofia district (3 km) and Sofia
city (1 km) as shown in Fig. 1.

In version 2 of BgCWFIS, climatic data is used for chemical boundary con-
ditions following the presumption that the errors introduced by this assumption
will decrease quickly to the center of the domain due to the continuous acting of
the pollution sources. All other domains receive their boundary conditions from
the previous domain in the hierarchy.

The models indicated above are linked with a number of Linux scripts and
FORTRAN interface programs in a way to be able to calculate the future levels
of many air pollutants for each of system domains as indicated in Fig. 2.

The Models-3 elements are denoted with white boxes on the diagram. The
dark grey boxes present FORTRAN programs aimed at emission input modeling
of Area Sources (AS) and Large Point Sources (LPS) as well as data post-
processing (archiving, images). The light grey boxes present the different kinds
of input information. Those are: the NCEP GFS data drives the meteorological
pre-processor of the System (WRF) downloaded in real-time from NCEP’s GFS
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web-site; the climatic values of a number of air pollutants used as chemical
boundary conditions for the mother domain (no change with time); the emission
inventory data for 2005 provided by TNO, Netherlands [5], gridded according to
the System’s domains, and respective five sets of gridded land-use data (USGS
data base, http://landcover.usgs.gov/) as extracted by WRF (input to SMOKE’s
biogenic processor).

The data exchange in the System is denoted with arrows. The thick arrows
show the data exchange between computational domains - transfer of boundary
conditions for WRF (compact arrows) and for CMAQ (dotted arrows). The thin
arrows indicate the data exchange inside each one of the domains. Shortly, the
WRF outputs feed MCIP (Meteorology-Chemistry Interface Processor) module
of CMAQ which prepares the meteorology input to CMAQ used also by SMOKE
for calculating Biogenic Sources (BgS) emissions on the base of the respective
gridded LandUse data. The gridded inventory data (AInven, PInven) feed AEmis
and PEmis programs that produce the respective AS- and LPS-emission files.
SMOKE is used once more to merge AS-, LPS- and BgS-data in a common
emission input to CMAQ. Finally, the CMAQ output is post-processed in a way
to extract the most important pollutants, to archive them, to produce hourly
images with concentration distribution of 4 key pollutants and to upload them
to the respective web-sites. These procedures are repeated for all 5 domains of
the system.

3 Meteorological Modeling

The meteorological modeling is performed by two models: WRF and MCIP.
The Weather Research and Forecasting (WRF) Model is a next-generation

meso-scale numerical weather prediction system, an evolutionary successor
to the MM5 model. The WRF is a fully compressible and non-hydrostatic model
with terrain-following hydrostatic pressure coordinate. In BgCWFIS, ver.2,
WRF-ARW (Advanced Research WRF), version 3.2.1, is exploited. The vertical
structure consists of 27 levels. The Analysis Nudging option (Four-Dimensional
Data Assimilation) is switched on for the first computational domain (Europe),
only, nudging the WRF forecast to the meteorological driving data (GFS fore-
cast). WRF offers multiple physics options that can be combined in any way.
Here, well-tried schemes are used.

The coupling of meteorological and chemical transport models is not a trivial
issue because all meteorological models are not built for air quality modeling
purposes. Interface processing is needed and such an element in CMAQ system is
MCIP (Meteorology-Chemistry Interface Processor). Here, ver.3.6., is exploited.
MCIP deals with issues related to data format translation, diagnostic estimations
of parameters not provided by WRF (like dry deposition velocities), extraction
of data for appropriate window domains, and reconstruction of meteorological
data on different grid and layer structures. Here, MCIP interpolates the vertical
structure of WRF to those of CMAQ.

http://landcover.usgs.gov/
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4 Emission Modeling

CMAQ demands its emission input in specific format reflecting the time evo-
lution of all pollutants accounted for by the chemical mechanism used (CB-IV
in this case). Emission inventories are the row data for anthropogenic emissions
processing. The inventories are made on annual basis for big territories and
many pollutants are estimated as groups (Volatile Organic Compounds - VOC,
for instance). Three operations must be applied to this data, preliminary: grid-
ding, temporal allocation and speciation . Obviously, emission processors
are needed. Such component in Models-3 system is SMOKE but it is partly used,
here, because its strong relation to US emission sources specifics. In BgCWFIS,
SMOKE is used only for calculating BgS emissions and for merging AS-, LPS-
and BgS-files into a common emission input for CMAQ. The AS- and the LPS-
emission files are prepared by the interface programs AEmis and PEmis (Fig. 2).

For the moment, TNO inventory for 2005 is exploited for the two senior
domains (Europe and Balkans). The TNO has been produced several sets of
inventories for different years. The anthropogenic sources in this inventories are
distributed over 10 SNAPs (Selected Nomenclature for Air Pollution) classify-
ing them according to the processes leading to harmful material release to the
atmosphere [4]. This inventory has resolution of 0.125◦×0.0625◦ (about 7×8 km)
distributed as a comma-delimited text-file. Each line of the file contains data for
a single source, namely the mesh coordinates, the country abbreviation, the type
of source (A/P), the SNAP, and the yearly emissions of 8 pollutants. The SNAP
7 (road transport) is presented as 5 sub-SNAPs.

For Bulgarian domains the Bulgarian inventory for 2010, as provided by
Bulgarian Executive Environmental Agency, is used.

The first emission modeling procedure, the gridding , is recalculation of the
inventory data to the grids used (5 domains with different resolution, here). A
web-based GIS system is created for the purpose. Number of so-called custom
grids can be defined on the base of the standard grid description (projection,
window parameters, resolution). After the TNO data is introduced in the system,
it recalculates inventory values for each cell and for each type of source of the
current custom grid. Additional functionalities of the system are linked to the
Bulgarian inventory. A specific feature of this inventory is that the data for SNAP
1-6 is attributed to particular sources with there coordinates and the system
aggregates them to the custom grid’s cells. For SNAP 7-10 total country amounts
of the released pollutants are available. They are disaggregated to the same grid
cells using different GIS elements (surrogates) like road distribution, airports,
agriculture areas etc. The gridded inventories are introduced in the emission
processing programs AEmis and PEmis, where the remaining two procedures
are applied.

The temporal allocation is made on the base of temporal profiles, provided
by TNO [1]. According to the anthropogenic activity the profiles are divided in
three groups - Monthly, Weekly, and Hourly profiles. In addition TNO provides
a vertical profile for large point sources.
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The speciation is splitting of group pollutants (NOx, SOx, VOC, PM2.5) to
several simpler or “lump” pollutants required by the chemical mechanism. The
speciation profiles, used here, are elaborated following the US EPA ones on the
base of coincidence between US and European source categorization.

Both programs produce respective emission files. The AEmis output is
2-dimensional, the PEmis one - 3-dimensional. They contain hourly data for
the whole forecast period.

The biogenic emissions are prepared by SMOKE by the BEIS-3.13 mechanism
[8] on the base of the gridded LandUse data. SMOKE merges the 3 emission files
in a common CMAQ emission input in IO/API NetCDF format.

5 Operational Performance of BgCWFIS, Ver.2

Fourteen σ-levels with varying thickness determine the vertical structure of
CMAQ. The Planetary Boundary Layer (PBL) is presented by the lowest 8
of these levels.

The CMAQ v.4.6 input consists of various files containing concentration,
deposition, visibility and other variables. The concentration output is a NetCDF
file with 3-D hourly data for 78 pollutants - gases and aerosols.

The post-processing program XtrCON extracts part of the pollutants for
archiving and further handling. Only surface values of the most important pol-
lutants are saved - 8 gases and 11 aerosols (including PM10 and PM2.5). Part of
these pollutants is more or less monitored and they are referred in the European
legislation with the respective thresholds.

As to make the results of BgCWIS operation public, specialized web-site was
created on the NIMH server (http://www.meteo.bg/en/cw/). For the moment
it presents 4 main pollutants - Ozone, NO2, SO2 and PM10. It is fed by images

Fig. 3. View of BgCWFIS, ver.2.2. web-site

http://www.meteo.bg/en/cw/
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created using the PAVE package [11]. PAVE supports its own meta-language
that allows drawing plots in an automatic way invoking the respective scripts.

In Fig. 3, an example of BgCWFIS web site is displayed. A particular pol-
lutant is invoked by clicking in the list at the left side of the page. Note, that
together with ozone, two types of daily maxima can be visualized. The region
of forecast can be chosen by clicking one of the small images in the right. In the
center of the page, hourly concentration field of the chosen pollutant is situated.
Putting the mouse cursor on one of the points from the point column in the right
side of the image invokes the forecasted field for the respective hour. Putting the
cursor over “Play” invokes animation of the forecast. Under each pollutant’s
view, respective thresholds according to Bulgarian legislation (harmonized with
European one) are shown. At the bottom of pollutants a link to a pdf-file with
description of Bulgarian Chemical Weather Forecast and Information System,
version 2, is placed.

6 Conclusion

The Bulgarian Chemical Weather Forecast and Information System is designed
on the base of US EPA Models-3 System: WRF, SMOKE and CMAQ. The
meteorological input to the system is the NCEP Global Forecast data. At this
stage, the emission input exploits the high resolution inventory for year 2005
produced by TNO, The Netherlands. The Bulgarian national emission inven-
tory for 2010 is used as well. The system is realized on 5 nested domains with
increasing resolutions.

At the moment, the system is running automatically once a day (00Z). The
forecast period is 3 days (72 h). The results of each System’s run are post-
processed in a way to archive the most important pollutants. Part of these pol-
lutants is visualized as sequences of maps giving the evolution of the air quality
over Europe and Bulgaria and can be seen on the system’s web-site http://www.
meteo.bg/en/cw/.
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Abstract. The modern physics requires a large uninterrupted data for
advanced study. The research data must be reliable, precise, adequate
and available on time. Therefore advanced information systems should be
developed and used. These systems must implement the most advanced
technologies, algorithms and knowledge of informatics, programming and
mathematics. This article describes a neural network model of automatic
data quality control for large amount of real time uninterrupted data,
implemented in the Institute for Nuclear Research and Nuclear Energy
(INRNE) at the Basic Environmental Observatory (BEO) at Moussala.

1 Introduction

In recent years the amount of data acquired for research expanded to unobser-
vant quantity. However, the large part of it is not useful due to wrong measuring
process, mainly caused from technical glitches in equipment. This creates a lot of
data to useless and uninformative records. Moreover, the most of measurement
parameters are part of multivariate models and thus wrongness in only single
parameter has enormous influence on further results from the rest of parame-
ters usage. Likewise, the time reliance is critical for permanent daily operations
and requirements for maximizing effectiveness and implementing real-time mon-
itoring of data. But, the implementation and installation of the required data
and network systems is not enough for fulfill these requirements. And additional
upgrade with appropriate data quality mechanism and process scheduler for its
in-time operation and synchronization is crucial.

The neural networks are a possibility for modelling efficient solutions in which
these requirements are implemented. The most important advantage of this new
approach is it similarities to non-linear regression models for large number para-
meters, approximated to any continuous function. For this case, the parameters
are assumed to measure different data records, resent afterwards through several
intermediate computational or storage places, defined as layers, until reach final
destination of requirements. This data traffic is measured with cost function
and probability for possibility for failure of data acquisition or transfer through
any hidden layer. The decision for effectiveness of data quality network design
is based on cost minimizing. But because of the probabilistic nature of cost
function, the selected model is particle-like modelling the network and resulting
Entropy as measure for optimal cost function.

I. Lirkov et al. (Eds.): LSSC 2013, LNCS 8353, pp. 421–427, 2014.
DOI: 10.1007/978-3-662-43880-0 48, c≥ Springer-Verlag Berlin Heidelberg 2014
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2 Network Design

A neural network for real-time measurements and analysis is assumed an
infrastructure for data measurements, data storage, data quality classification
and if possible an event predicting and notify system. For model input para-
meters the raw measurement records are used. They are serial data records
different in size, precision, time intervals between consecutive time intervals and
meta data which holds additional information about process of measurement.
However, every record has probability for erroneous due to technical glitches
or wrong interrupting process contamination. Likewise, there is a possibility for
work interruptions, causing data serial line gaps.

The verification for error is process dedicated to be performed on hidden
layer. This is required intermediate step before adequate data analysis. How-
ever, the process of data filtering is unique, but dependent on every distinct
parameter property. Moreover, for the most of them it is multivariate process,
dependent on another parameter that require own filtering. Thus, data qual-
ity process may take several separated consecutive computational operations,
separated in different hidden layers. After filtering, the remained data is ready
for usage. How it is done depends on the purpose and parameter itself, but
in the most part of the cases are required additional multivariate computa-
tions before final output. The simplified graphics of neural network is shown in
Fig. 1. With implementation of multivariate data processing, every parameter is
allowed to take part in a different number of computation operations. This rises
a cost of reallocated and used resources in every hidden layer of neural network.

Fig. 1. The graphics shows schema of neural model from random generated connections
for 4 input parameters and 3 output ones. They are numbered and indexed respectively
with I and O. The hidden layers are named with prefix H. The constant values are
added to input and output for normalization. They are labeled with B. For graphic
generation free libraries from R are used, as shown in http://www.r-bloggers.com/
visualizing-neural-networks-from-the-nnet-package/

http://www.r-bloggers.com/visualizing-neural-networks-from-the-nnet-package/
http://www.r-bloggers.com/visualizing-neural-networks-from-the-nnet-package/
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The measure for computational cost is a utility function Ui - counting required
price of allocated memory, used CPU time or data as required traffic bandwidth
for specific data quantity proceeding. However, the resource costs are produced
from computations, based on repeating executions based on the same algorithm
with the same data size. Moreover, with permanent possibility for hardware
upgrade, the resource allocation is less problematic.

However, the reliability of such type of network system depends on its time
for result producing and minimizing the periods of standby caused by failure.
Synchronization between different parameters acquisition is with main impor-
tance for improvement and optimization of system performance, especially when
time resolution of them is different. With expanding number of hidden layers and
parameters, the complication of synchronization algorithm grows. Moreover, the
utility of every layer operation is a probabilistic function with decomposition on
deterministic part Vi and stochastic φi:

Ui = Vi + φi (1)

The probabilistic part is measure for uncertainties of measurement process, such
as probabilities for measurement interruption, erroneous measurement, missing
parameter in multivariate analysis, etc. Due to these uncertainties every activity j
of alternative i is estimated with probability function pi,j(x). These probabilities
are ratio of used and assigned resource R∗ units for activity j. However, available
connection between two activities is a binomial discrete value - P (xi = 1|j) = pi,j

and P (xi = 0|j) = 1 − pi,j . Thus, for optimization criteria is assumed the
Entropy [1]

Hi,j = −pi,j log2pi,j − (1 − pi,j)log2(1 − pi,j) (2)

3 Probability Distribution and Optimization

The most prominent statistics for this class of models is the Generalized Logistic
model with independently and identically distributed random components. Thus,
the probability of linear combination Vi,j = yi,j = x∗

i,jσj derived from (1) of
explanatory variable xi;j is equal to [2]:

P (yi = j) = ∂i,j =
eVi,j∑
k eVi,k

(3)

where the parameter σj is the corresponding vector for j-th alternative and not
dependent on alternative. Moreover, the explanatory vector xi,j consists of either
zero or xi value vectors and represents availability of the j-th alternative.

The probabilities in (3) are known functions for estimation that data from
subject i is valid because the j-th category. Thus, after summarizing probabil-
ities over all possible categories, the general probability,

∑
j ∂i,j , is equal to 1.

Moreover, the odds rates are derived directly from (1), (3) and equal to [2]:

ln
P (yi = j)
P (yi = n)

= Vi,j − Vi,n = x∗
i (4)



424 A. Tchorbadjieff

where n is a total number of all available alternatives. Thus, the log-likelihood,
similar to cross-Entropy for binary, is equal to [2]:

H(σ) =
∑

i

∑
j

yi,j ln∂i,j =
∑

i

⎧
⎪ n∑

j

yi,jx
∗
i,jσ − ln(

n∑
l

ex′
i,lβ)

⎨
⎡ (5)

Therefore, the yielded regression coefficients σ, denoted as weights or odds, from
derivatives of ΔH(σ)/Δσ are the maximum log-likelihood estimator. They are
usually initialized with random values derived from a standard normal distrib-
ution. Next, they are iterated recursively until weights are smaller than a given
threshold [3].

4 Real Test Scenario

For real test of a simplified model of data correction procedure for measure-
ments from two devices - atmosphere pressure and muon telescope, is selected.
The pressure is measured by meteorology equipment and is explanatory by itself -
it is real physical parameter. Conversely, the muon telescope measure secondary
muon particle flux in different coincidences. But their real meaning is depen-
dent on atmosphere in anti correlation relation. Thus, from 12 raw parameters
measured with telescope, the output consists of 5 real meaning values of fluxes
in different directions, corrected with atmosphere pressure. Therefore, the data
quality procedure requires two steps - first atmosphere pressure and muon data
filtering. Then, the results are ready for usage, one of which is correction of muon
parameters.

Thus, the neural model consists of two import parameters - atmosphere sta-
tion and telescope. The hidden layers are assumed 2, as many as filters are, and
output parameters are 6 - atmosphere pressure and 5 muon parameters. The
input parameters are ratios of real operational time to complete assigned time.
The outputs are merged ratios between input ratio and ratios of correctness after
data filtering. However, because muon output parameters are multivariate for
the input ratio the minimal one is taken. Likewise, the ratio of correctness for
every muon output parameter is different and depends on validity of pressure
measurements. Therefore, the output ratios are remained completely valid data
ratios normalized to all available measurements.

The test scenario compares two real cases - available network and proposed
improved model. For substitute model availability of additional atmosphere sen-
sor integrated in muon telescope is proposed. Thus, the pressure measurements
for muons corrections run in parallel with the rest 12 raw data series. Therefore,
muon data is independent from meteorological station failures, and dependent
only on telescope failures. As a result neural network adds an additional output
for added pressure sensor. The annual data for both cases for last 6 years are
shown in Tables 1 and 2.

The neural network odds are computed with R-statistical software and dedi-
cated neuralnet library [3]. At first, both cases are run with precise threshold of
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Table 1. Case 1 input and output parameters

Year Input ratios Output ratios

Pressure Muon Press V. WE EW SN NS

2006 0.94 0.95 0.931 0.876 0.93 0.93 0.917 0.912
2007 0.95 0.94 0.941 0.876 0.93 0.93 0.917 0.921
2008 0.855 0.955 0.847 0.797 0.846 0.845 0.834 0.83
2009 0.895 0.778 0.886 0.722 0.768 0.768 0.757 0.753
2010 0.987 0.952 0.978 0.889 0.942 0.942 0.929 0.924
2011 0.98 0.946 0.971 0.883 0.936 0.936 0.923 0.918

Table 2. Case 2 input and output parameters

Input ratios Output ratios

Year Pressure Muon PressI PressII V WE EW SN NS

2006 0.94 0.95 0.931 0.94 0.885 0.939 0.939 0.926 0.912
2007 0.95 0.94 0.941 0.94 0.876 0.939 0.93 0.917 0.921
2008 0.855 0.955 0.847 0.945 0.89 0.944 0.944 0.929 0.924
2009 0.895 0.778 0.886 0.768 0.723 0.767 0.767 0.757 0.753
2010 0.987 0.952 0.978 0.942 0.889 0.941 0.941 0.929 0.924
2011 0.98 0.946 0.971 0.936 0.882 0.935 0.935 0.923 0.918

0.01 for cross-entropy (5). The required recursive iterations for optimization are
respectively 261 and 30 (Fig. 2) and (Fig. 3). The smaller number of interactions
suggests that Case 2 is better optimized than currently working one. However,
due to large number of outputs the complete output error of case 2 (0.0757)
is larger than this of case 1 (0.0341). The main difference between two cases is
independence of computation of muon flux from meteorological station operation
ratio. This minimizes disorder in synchronization between data and support sug-
gestions that the waiting time and reliance of muon telescope is improved. This
assumption is supported in numerical data, derived from generalized weights
analysis [4]. The generalized weights (GW) estimates effect of each regression
coefficient in general model, but depending on all other covariates. It is equal
to [4]

wi =
Δlog( πi

1−πi
)

Δxi

(6)

As suggestions shows, the operation ratio of muon telescope and meteorological
station has almost linear effect for muons during Case 1 tests, confirmed with
generalized wights close to 1. But, this degrade the reliance due to double reliance
on two different data sources, with high level of divergence in periods of inter-
ruptions. Therefore, installing additional sensor in telescope, such as assumed in
Case 2, may improve reliance due to better time synchronization between input
parameters. This is derived from significantly higher level of outputs dependence
on added pressure sensor, than on independent one. The assumption follows from
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Fig. 2. The resulting neural network computed for Case 1 test for error threshold 0.01.
The regression intercepts are enumerated with 1. The every odd value is associated
with connection line between different layers.
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Fig. 3. The resulting neural network computed for Case 2 test for error threshold 0.01.
The regression intercepts are enumerated with 1. The every odd value is associated
with connection line between different layers.

very large values (>4) of GW for muons with exponential effect, while pressure
from independent meteo sensor almost preserve its close to linear GW due to
separate meaning as physical parameter (Fig. 4).
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Fig. 4. Graphics shows generalized wights for pressure station and muon telescope for
vertical muon flux responses. The upper row graphics shows weights of pressure and
telescope responses are below. The results for Case 1 test are on left side, whereas the
Case 2 tests are right sided.

5 Conclusion

The neural network models are reliable analytic tool for estimation of effective-
ness of complicated computational systems. Their successful implementation is
demonstrated in this paper as implementation of special case scenario - partial
analysis of real operational data quality system for operational data acquisi-
tion system. Moreover, it is shown that the neural network modelling is con-
venient, effective and easy to use tool for system effectiveness and reliability
improvements.
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Abstract. Explicit Runge-Kutta methods of order p with m stages,
m = 1, 2, 3, 4, are considered. It is assumed that p = m and that
Richardson Extrapolation is additionally used. It is proved that not only
are the combinations of the Richardson Extrapolation with the selected
explicit Runge-Kutta methods more accurate than the underlying numer-
ical methods, but also their absolute stability regions are considerably
larger. Sometimes this fact allows us to apply larger time-stepsizes dur-
ing the numerical solution when Richardson Extrapolation is used. The
possibility to achieve such a positive effect is verified by numerical exper-
iments carried out with a carefully chosen example. It is pointed out
that the application of Richardson Extrapolation together with explicit
Runge-Kutta methods might be useful when some large-scale mathemat-
ical models, including models that are arising in air pollution studies, are
handled numerically.

1 Selection of Numerical Methods

Consider the classical initial value problem for non-linear systems of ordinary
differential equations (ODEs):

y∇ = f(t, y), t ∈ [a, b], b > a, y ∈ D ⊂ Rs, s → 1, y(a) = η ∈ D, (1)

and assume that one of the following four explicit Runge-Kutta methods is used
in the numerical treatment of (1):

yn = yn−1 + hf(tn−1, yn−1), (2)

yn = yn−1 +
1
2
h (k1 + k2) , k1 = f (tn−1, yn−1) , k2 = f (tn−1 + h, yn−1 + h) .

(3)
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yn = yn−1 +
1
4
h (k1 + 3k3) , k1 = f (tn−1, yn−1) , (4)

k2 = f

(
tn−1 +

1
3
h, yn−1 +

1
3
hk1

)
, k3 = f

(
tn−1 +

2
3
h, yn−1 +

2
3
hk2

)
.

yn = yn−1 +
1
6
h (k1 + 2k2 + 2k3 + k4) , k1 = f (tn−1, yn−1) , (5)

k2 = f

(
tn−1 +

1
2
h, yn−1 +

1
2
hk1

)
,

k3 = f

(
tn−1 +

2
2
h, yn−1 +

1
2
hk2

)
, k4 = f (tn−1 + h, yn−1 + hk3) .

In the above formulae, yn−1 and yn are approximations of the values y(tn−1)
and y(tn) of the exact solution of (1) at the points tn−1 and tn which belong to
the grid:

t0 = a, tn = tn−1+h = t0+nh (n = 1, 2, . . . , N), tN = b, h =
b − a

N
. (6)

The numerical methods defined by (2)–(5) are one-, two-, three- and four-stage
explicit Runge–Kutta methods (see [3,6–9,12]). The order p of each of these
methods is equal to the number m of stages used.

2 Application of Richardson Extrapolation

Assume that some yn−1 ∞ y(tn−1) has been calculated by any of the listed
above four numerical methods. Perform one large step and two small steps with
stepsizes h and h/2 respectively. Let zn and wn be the computed approximations
and form

yn =
2pwn − zn

2p − 1
, (7)

where p is the order of the method applied to calculate zn and wn. The process
of obtaining yn by using (7) is called Richardson Extrapolation [5,10,18,19]. Its
order of accuracy, being p+1 is higher than the orders of both zn and wn. Thus,
the accuracy can be improved when (7) is used. In this paper we shall show that
also the stability of computations can be improved by applying the Richardson
Extrapolation.

3 Stability Considerations

The linear stability theory developed by Dahlquist [4] is commonly used (see
also [3,6–9,12,18,19]). It is based on the application of the scalar test-problem
y∇ = λy with λ = α + βi where it is assumed the real part α is non-negative.
Under this assumption the exact solution of the test problem y∇ = λy is bounded
and, therefore, it is desirable that the approximate solution produced by the
selected numerical method also remains bounded. The application of explicit
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Runge-Kutta methods in the solution of the test-problem leads to the recurrent
relationship yn = R(hλ)yn−1, where R(hλ) is called a stability polynomial. This
polynomial is of order m, where m is the number of stages used in the selected
method. Moreover, if m = p (i.e. when the number of stages is equal to the
order of the explicit Runge-Kutta method, which can only be achieved when
m = 1, 2, 3, 4), then as shown in [9] we have:

R(hλ) = 1 +
p∑

i=1

(hλ)i

i!
. (8)

Assume now that the selected explicit Runge-Kutta method with m = p is
combined with Richardson Extrapolation and the resulting numerical method
is applied in the solution of the Dahquist’s test-problem. Then a recurrent rela-
tionship yn = R̄(hλ)yn−1 can be obtained with

R̄(hλ) =
2pR(0.5hλ) − R(hλ)

2p − 1
(9)

where R(hλ) is defined in [8].
The computations carried out in the solution of the scalar equation y∇ = λy

with any of the methods (2)–(5) be stable for a given value of hλ if the condition
|R(hλ)| ⊃ 1 is satisfied. The set of all points for which this inequality is satisfied
forms the absolute stability region of the method.

It is clear that similar statements hold for the numerical procedure, which is a
combination of an explicit Runge-Kutta method and Richardson Extrapolation.
It will only be necessary to replace |R(hλ)| ⊃ 1 with |R̄(hλ)| ⊃ 1 in this case.

4 Drawing the Absolute Stability Regions

Consider the case where explicit Runge-Kutta methods are used directly. The
boundaries of the absolute stability regions are obtained in the following way.
Let λ̃ = hλ be equal to α + betai and ε be some small increment. Start with
α = 0 and test the values of the stability polynomial R(λ̃ for β = 0, ε, 2ε, 3ε, . . ..
Continue this process as long as R(λ̃) ⊃ 1 and denote by β0 the last value for
which the inequality)R(λ̃) ⊃ 1 was satisfied. Set α = −ε and repeat the same
computations with β = 0, ε, 2ε, 3ε, . . ., to obtain the largest value βε for which
R(λ̃) ⊃ 1 is satisfied. Continuing in this way it will be possible to calculate the
coordinates of a set of the points (0, β0), (−ε, βε), (−2ε, β2ε), . . . in the negative
part of the complex plane. More precisely, all of these points are located close to
the boundary of the part of the absolute stability region which is located over
the real axis and to the left of the imaginary axis. Moreover, all these points lie
inside the absolute stability region. Therefore, the curve connecting these points
will be a close approximation of the boundary of the part of the stability region
which is located over the real axis and to the left of the imaginary axis. It should
be mentioned here that ε = 0.001 was actually used in the preparation of all
plots that are presented in this section. It can easily be shown that the absolute
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stability region is symmetric with regard to the real axis. Therefore there is no
need to repeat the process that was sketched above for negative values of β.
Some people are drawing parts of the stability regions which are located to the
right of the imaginary axis (see, for example, [9]). In our opinion this is not
necessary and in the most of the cases it will not be desirable either. This can
be explained as follows. Consider y∇ = λy and let again λ̃ be equal to α +βi but
assume this time that α is positive. Then the exact solution of y∇ = λy is not
bounded and it is clearly not desirable to search for numerical methods which
will produce bounded approximate solutions (the concept of relative stability,
see [9], p. 75, is more appropriate in this situation, but this topic is beyond the
scope of the present paper).

The same principle can be applied when the explicit Runge-Kutta methods
are combined with Richardson Extrapolation. In this case, the polynomial R(λ̃)
should be replaced with R̄(λ̃).

The stability regions of the methods studied in this paper are given in
Fig. 1. Note that there exists only one first-order one-stage explicit Runge-Kutta
method (the Forward Euler Formula) which is given by (2). When m-stage
explicit Runge-Kutta methods of order p with p = m and p = 2, 3, 4 are used
for each p = m there exists a big class of explicit Runge-Kutta methods. Single
representatives of these classes are given by formulae (3), (4) and (5). However,
all numerical methods from any of these three classes have the same absolute
stability region, the stability given in Fig. 1.

The above remark and the plots drawn in Fig. 1 show clearly that the follow-
ing theorem holds:

Theorems 1. The use of Richardson Extrapolation together with the explicit
m-stage Runge-Kutta methods of order p leads always to larger absolute stabil-
ity regions than the absolute stability regions of the underlying method when
p = m.

5 Preparation of an Appropriate Numerical Example

Consider the problem defined by

y∇ = Ay, A ∈ R3×3, y = (y1, y2, y3)T ∈ R3, t ∈ [0, 13.1072], y(0) = (1, 0, 3)T ,
(10)

a11 = 741.4, a12 = 749.7, a13 = 741.7, (11)
a21 = 765.7, a22 = 758.0, a23 = 757.7, (12)
a31 = 725.7, a32 = 741.7, a33 = 734.0. (13)

The eigenvalues of the matrix A are (750, 0.3 + 8i, 0.3 − 8i), which means that
the problem defined by (10)–(13) is moderately stiff and the requirements for
achieving stable computations are much more restrictive than the requirements
for achieving sufficiently high accuracy. The solution of the example is given
in Fig. 2.
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Fig. 1. Absolute stability regions of explicit Runge-Kutta methods with m = p when
these are applied directly and together with Richardson Extrapolation.

6 Organization of the Computations

The integration interval [0, 13.1072] was divided into 128 equal sub-intervals and
the accuracy of the results obtained by any of the selected numerical methods
was evaluated at the end of each sub-interval. Let t̂j , j = 1, 2, . . . , 128, be the end
of any sub-interval. Then the following formula is used to evaluate the accuracy
achieved at this point:

ERRORI =

√∑k
i=1

(
yi(t̂j) − ŷij

)2
max

[√∑k
i=1

(
yi(t̂j)

)2
, 1.0

] . (14)

The global error is computed as

ERROR = max
j=1,2,...,128

(ERRORj) . (15)

Ten runs were performed with every numerical method. The first run is carried
out by using h = 0.00512. In each of the next nine runs the stepsize is halved
(which leads automatically to performing twice more time-steps). All calculations
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Fig. 2. Plots of the three components of the solution of the problem defined by
(10)–(13).

were carried out at the computers of the Centre of Scientific Computing at
Technical University of Denmark [11].

7 Numerical Results

Accuracy results, which are obtained when eight numerical methods for the
solution of systems of ODEs are used, are given in Table 1. Convergence rates
observed for the eight tested numerical methods are shown in Table 2.

Two important conclusions can immediately be drawn by investigating the
results presented in the two tables: (a) for the largest stepsize the methods
are producing unstable results (but the Richardson Extrapolation may succeed
where the original Runge-Kutta methods fail) and (b) the results show that the
calculated (as ratios of two consecutive error estimations) convergence rates of
the Runge-Kutta method of order p are about 2p while for the combinations of
the Runge-Kutta methods and the Richardson Extrapolation the corresponding
convergence rates are 2p+1 which means that the order of accuracy is increased
by one. Some more conclusions are given in [18].

8 Major Concluding Remarks and Plans for Future
Research

It is well known that the application of the Richardson Extrapolation leads
to an improvement of the accuracy of the underlying numerical method, not
only the explicit Runge-Kutta methods with p = m,m = 1, 2, 3, 4, see [5,10,
16]. In the present paper it was shown that the combined methods (any of the
explicit Runge-Kutta methods with p = m,m = 1, 2, 3, 4, plus the Richardson
Extrapolation) have additionally larger regions of absolute stability.

It should also be emphasized here that non-stiff systems of ODEs appear after
some kind of discretization and/or splitting of mathematical models appearing in
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Table 1. Accuracy results (error estimations) achieved when the first example from
Sect. 5 is run by using eight numerical methods on a SUN computer by using quadruple
precision. “N.S.” means that the numerical method is not stable for the stepsize used.
“ERKi”, i = 1, 2, 3, 4, means explicit Runge-Kutta method of order p=i. “ERKi+R”
refers to the explicit Runge-Kutta method of order p = i combined with the Richardson
Extrapolation.

Stepsize Steps ERK1 ERK1+R ERK2 ERK2+R ERK3 ERK3+R ERK4 ERK4+R

1 0.00512 2560 N.S. N.S. N.S. 2.39E-05 N.S. 6.43E-03 N.S. 4.49E-10

2 0.00256 5120 2.01E-01 4.22E-02 4.22E-02 2.99E-06 5.97E-06 7.03E-09 2.46E-08 1.41E-11

3 0.00128 10240 9.21E-02 2.91E-04 2.91E-04 3.73E-07 7.46E-07 4.40E-10 1.54E-09 4.39E-13

4 0.00064 20480 4.41E-02 7.27E-05 7.27E-05 4.67E-08 9.33E-08 2.75E-11 9.62E-11 1.37E-14

5 0.00032 40960 2.16E-02 1.82E-05 1.82E-05 5.83E-09 1.17E-08 1.72E-12 6.01E-12 4.29E-16

6 0.00016 81920 1.07E-02 4.54E-06 4.54E-06 7.29E-10 1.46E-09 1.07E-13 3.76E-13 1.34E-17

7 0.00008 163840 5.32E-03 1.14E-06 1.14E-06 9.11E-11 1.82E-10 6.71E-15 2.35E-14 4.19E-19

8 0.00004 327680 2.65E-03 2.84E-07 2.84E-07 1.14E-11 2.28E-11 4.20E-16 1.47E-15 1.31E-20

9 0.00002 655360 1.33E-03 7.10E-08 7.10E-08 1.42E-12 2.85E-12 2.62E-17 9.18E-17 4.09E-22

10 0.00001 1310720 6.66E-04 1.78E-08 1.78E-08 1.78E-13 3.56E-13 1.64E-18 5.74E-18 1.28E-23

Table 2. As Table 1 but convergence rates are given instead of accuracy results

Stepsize Steps ERK1 ERK1+R ERK2 ERK2+R ERK3 ERK3+R ERK4 ERK4+R

1 0.00512 2560 N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A.

2 0.00256 5120 N.A. N.A. N.A. 7.99 N.A. Very big N.A. 31.84

3 0.00128 10240 2.18 145.02 145.02 8.02 8.00 15.98 15.97 32.12

4 0.00064 20480 2.09 4.00 4.00 7.99 8.00 16.00 16.01 32.04

5 0.00032 40960 2.04 3.99 3.99 8.01 7.97 15.99 16.01 31.93

6 0.00016 81920 2.02 4.01 4.01 8.00 8.01 16.07 15.98 32.01

7 0.00008 163840 2.01 3.98 3.98 8.00 8.02 15.95 16.00 31.98

8 0.00004 327680 2.01 4.01 4.01 7.99 7.98 15.97 15.99 31.98

9 0.00002 655360 1.99 4.00 4.00 8.03 8.00 16.03 16.01 32.03

10 0.00001 1310720 2.00 3.99 3.99 7.98 8.01 15.98 15.99 31.95

different areas of science and engineering. As an example large-scale air pollution
models (see [1,2,13,15]) should be mentioned. Such models can be used in many
studies. The most important is perhaps the investigation of impact of climate
change on air pollution levels(for example, [14,17,19]). The advection terms
of the air pollution models can be treated with explicit methods (see again
[1,2,13,15]). An attempt to use the explicit Runge-Kutta methods discussed in
this paper will be carried out in the near future.
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Abstract. In this article we present a performance study of our finite
element package Hierarchical Hybrid Grids (HHG) on current European
supercomputers. HHG is designed to close the gap between the flex-
ibility of finite elements and the efficiency of geometric multigrid by
using a compromise between structured and unstructured grids. A coarse
input finite element mesh is refined in a structured way, resulting in
semi-structured meshes. Within this article we compare and analyze the
efficiencies of the stencil-based code on those clusters.

Keywords: Parallel multigrid · Performance analysis · HHG

1 Introduction

In electro-chemistry, density functional theory (DFT) plays an important role as
a class of models to calculate the electrical potential imposed by the charges of
an ensemble of atom nuclei and electrons [7,11]. One essential step in the DFT
is the solution of the potential equation that reduces to Poisson’s equation in
the case of a homogeneous dielectricity coefficient [12]. However, often effects of
an ionic solvent with varying dielectricity cannot be neglected. The governing
equation in this case is given as

−∇ · k(x, y, z)∇u(x, y, z) = f(x, y, z), (1)

where k denotes the dielectricity constant, u the potential field and f the right-
hand side. For the sake of simplicity, we assume Dirichlet conditions at the
boundaries of the simulation domain Ω. The paper is structured as follows:

The remaining part of this section introduces the software package HHG
(Hierarchical Hybrid Grids), and three peta-scale class HPC systems. The sec-
ond section describes a novel hybrid parallelization strategy implemented within
HHG to allow extreme scale simulations on the clusters JUQUEEN and Super-
MUC. Scalability experiments and performance analysis on different clusters are
presented.

I. Lirkov et al. (Eds.): LSSC 2013, LNCS 8353, pp. 439–447, 2014.
DOI: 10.1007/978-3-662-43880-0 50, c© Springer-Verlag Berlin Heidelberg 2014
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Fig. 1. Splitting of two triangle input elements into HHG grid primitives after two
steps of refinement. Additionally, the memory representation of a refined triangle with
a 7-point stencil for the lower left inner point is sketched [9].

1.1 Parallel Multigrid with Hierarchical Hybrid Grids

For solving partial differential equations (PDEs), finite elements (FE) meth-
ods are a popular discretization scheme, since they allow flexible, unstructured
meshes. The framework HHG [2,8] is designed to combine the flexibility of the
FE method and the superb performance of geometric multigrid [3,10] by using
a compromise between structured and unstructured grids. A coarse input FE
mesh is organized into the grid primitives vertices, edges, faces, and volumes.
The primitives are then refined in a structured way (see Fig. 1), resulting in semi-
structured meshes. The regularity of the resulting grids may be exploited in such
a way that it is no longer necessary to explicitly assemble the global discretiza-
tion matrix. In particular, given an appropriate input grid, the discretization
matrix may be defined implicitly using stencils for each structured patch. Here
a stencil represents a row of the global stiffness matrix. Within HHG, we have
implemented an MPI1-parallel geometric multigrid method that operates on the
resulting block-structured grid hierarchy. The settings of the multigrid compo-
nents and parameters used in this paper are three Gauss-Seidel iterations for
pre- and post-smoothing steps, linear interpolation between six multigrid levels,
parallel Conjugated Gradient algorithm to solve the coarsest grid problem, and
direct coarse grid approximation with coefficient averaging.

The stencils can be stored in registers when the dielectricity is piecewise con-
stant, or it can be assembled on-the-fly for a variable dielectricity. In both cases
this results in a so-called matrix-free implementation. This can have significant
performance benefits since it reduces memory traffic, possibly at the expense of
redundant computations.

1.2 Architectures

Within this article we compare the performance of HHG on three European
supercomputers: JUGENE, JUQUEEN are both located at FZ Jülich, and

1 www.mcs.anl.gov/mpi

www.mcs.anl.gov/mpi
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Table 1. System overview of the IBM clusters JUGENE, JUQUEEN, and SuperMUC.

JUGENE JUQUEEN SuperMUC

System BlueGene/P BlueGene/Q System x iDataPlex
Processor IBM PowerPC 450 IBM PowerPC A2 Intel Xeon E5-2680
Clock frequency 0.85 GHz 1.6 GHz 2.8 GHz
Number of nodes 73 728 24 576 9 216
Cores per node 4 16 16
HW threads per Core 1 4 2
Memory per HW thread 0.5 GB 0.25 GB 1 GB
Network topology 3D torus 5D torus Tree
Gflop/s per Watt 0.44 2.54 0.94

SuperMUC is located in the LRZ supercomputing center in Garching. Table 1
presents a system overview of these clusters.

JUGENE, was the largest BlueGene/P installation with 294 912 compute
cores and 1 petaflop/s peak performance. Each node was equipped with a Pow-
erPC 450 quadcore processor running at a low clock frequency. The archi-
tecture provided a very high main memory performance. A three-dimensional
torus network in combination with a tree-based collective network was available
for communication. We were able to solve FE systems with in excess of 1012

degrees of freedom on JUGENE with the HHG package. We use these three
year old performance results obtained on JUGENE as reference for our new
results.

The BlueGene/Q system JUQUEEN is the successor of the JUGENE with a
peak performance of 5.9 petaflop/s. Although the clock-frequency still remains
relatively low, it is nearly doubled. Each of the 16 cores available for user appli-
cations has four hardware (HW) threads. The memory bandwidth has not scaled
up accordingly, but in order to compensate this disadvantage in part, e.g. the
prefetching and speculative execution facilities have been improved. The torus
network is extended to five dimensions for shorter paths, and the collective net-
work was fused into the torus network. The ratio of peak network bandwidth
node performance and peak floating point performance is only 50 % of that of
BlueGene/P. On the other hand, the cores within each node and consequently
the intra-node communication performance has drastically increased.

SuperMUC is a 3.2 petaflop/s IBM x iDataPlex cluster. This machine consists
of 18 thin islands, carrying 97.5% of total performance, and one fat island for
moderately parallel, memory intensive applications. Each thin island is equipped
with 512 compute nodes. Two sockets with Sandy Bridge-EP Intel Xeon E5-
2680 8C provide 16 physical cores. The Xeon processors deliver a significantly
higher core and node performance than the PowerPCs in the IBM architec-
tures, at the price of higher power consumption. The nodes within an island are
linked by an Infiniband non-blocking tree, whereas a pruned 4:1 tree connects all
islands.
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2 Porting Hierarchical Hybrid Grids to BlueGene/Q

For the substantial changes that were necessary to use HHG on more than 30 000
parallel threads, we refer to [9]. This includes the design of data structures for
generating tetrahedral input grids efficiently in parallel. However, for the current
and upcoming systems, this alone proved not to be sufficient and thus this paper
will present a new hybrid parallelization strategy.

The new system architectures with more powerful and complex compute
nodes make a hybrid parallelization approach especially attractive and poten-
tially profitable, since they provide better opportunities for a shared memory
parallelization via OpenMP2. Thus a hybrid parallelization strategy, including
message passing for coarse grain parallelism, and shared memory parallelism
within a node for finer scale parallel execution, has been found essential for
exploiting the full potential of architectures like JUQUEEN or SuperMUC.

In a pure MPI parallel setting, the available main memory per process is only
256 MB per process on JUQUEEN. This is too small for the three largest runs
described in the next sections. In contrast, a hybrid parallelization increases the
available main memory for each process. On SuperMUC, the scaling breaks down
when too many MPI processes are being used. A hybrid parallelization helps to
limit the total number of MPI processes and this helps to maintain scalability
for extreme size simulations.

The current OpenMP implementation in HHG supports parallelism inside
kernel executions and copy of ghost layers on several primitives. However, the
MPI instructions are executed asynchronously, but not explicitly OpenMP-
parallel. Further, OpenMP introduces an additional overhead for spawning
threads, which is especially critical on the coarsest grids, where the workloads per
thread is small. The quality of the MPI/OpenMP parallel execution is reflected
in Table 2. All runs up to the last two are executed by four threads per compute
core. From the timings we conclude that serial fraction of the code is still between
1 − 2%. We will use a hybrid parallelization with up to eight OpenMP-threads
for the largest parallel run on JUQUEEN in the following scaling experiment as
the performance loss is still not too high.

Table 2. Efficiency of the hybrid parallelization compared to a pure MPI parallel
approach on JUQUEEN for moderate problem sizes.

MPI OpenMP Runtime Efficiency MPI OpenMP Runtime Efficiency

processes threads (%) processes threads (%)

4 096 1 3.09 64 64 5.22 59

2 048 2 3.10 99

1 024 4 3.21 96 2 Threads/Core:

512 8 3.45 90 64 32 5.77 54

256 16 3.95 78 1 Threads/Core:

128 32 4.33 71 64 16 8.36 37

2 www.openmp.org

www.openmp.org
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Table 3. Weak scaling experiment on JUQUEEN solving a problem on the full machine

Number Number Time per Number Number Time per
of threads of unknowns V-cycle (s) of threads of unknowns V-cycle (s)

64 1.33 · 108 2.34 16 384 3.43 · 1010 3.15
128 2.67 · 108 2.41 32 768 6.87 · 1010 3.28
256 5.35 · 108 2.80 65 536 1.37 · 1011 3.39
512 1.07 · 109 2.82 131 072 2.75 · 1011 3.56

1 024 2.14 · 109 2.82 262 144 5.50 · 1011 3.68
2 048 4.29 · 109 2.84 524 288 1.10 · 1012 3.76
4 096 8.58 · 109 2.96 1 048 576 2.20 · 1012 4.07
8 192 1.72 · 1010 3.09 1 572 864 3.29 · 1012 4.03

2.1 Weak Scaling on JUQUEEN

This section shows the scalability of the HHG approach on a current cluster. The
program is compiled with the IBM XL compiler suite on both BlueGene clusters.
As a test case we use a piecewise constant dielectricity, and thus can use constant
stencils within each HHG block and each geometric primitive. Consequently, the
numerical efficiency is extremely high and in a relative sense, the communication
is very intensive. Therefore, this is quite a challenging setup for maintaining the
parallel scalability as we will show in the performance study in the next section.
Table 3 shows the run-time results of a scaling experiment. The smallest test
run already solves a system of slightly more than 108 unknowns and one V-cycle
takes approximately 2.3 s. Note that this is performed on a single compute node
on JUQUEEN, demonstrating the high efficiency of the HHG approach. In each
further row of the table, the problem size is doubled as well as the number of
nodes. This is a classical weak scalability test. The full machine could eventually
solve a linear system with 3.3 · 1012 unknowns, corresponding to more than 1013

tetrahedral finite elements. In total, this computation uses 300, out of the almost
400TB of main memory during the solution process.

Four hardware threads are necessary to saturate the performance of one
processor core, leading to a parallel execution of more than one million threads.
Although, the computational time increases only moderately, we note that the
coarse grid solver is only a straightforward Conjugated Gradient (CG) iteration.
Therefore in large runs, more than half a second of the V-cycle execution time
is spent in the increasing number of CG iterations on the coarsest grid, that
is caused by larger and larger coarse grids. This shows clearly, that for perfect
asymptotic scalability a better coarse grid solver would be necessary. Never-
theless, we believe that our results with the CG solver indicate clearly that
the coarse grid solver performance is not as critical for scalability, as has been
discussed in the older literature on parallel multigrid methods.
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Fig. 2. Parallel efficiencies on different supercomputers in a weak scaling on three
different supercomputers. The largest runs required a hybrid parallelization strategy.
Some hardware structures (node card, midplane, island) of the clusters can be identified
by the gradient of the parallel efficiency.

2.2 Comparison of Scalability Results on Other Peta-scale Clusters

In this section, we compare the parallel efficiency of our code on different HPC
clusters. In contrast to the BlueGene systems, the program is compiled with the
Intel compiler suite and IBM MPI for SuperMUC with -O3 -xavx compiler flags.
As reference, one V-cycle takes 4.25 s for JUGENE, and 1.18 s on SuperMUC
on one compute node. Figure 2 shows strong efficiency drops when advancing
from one node to several nodes. This is especially prominent on both BlueGene
systems. However, from there onwards to larger parallel runs, the parallel effi-
ciency stays nearly constant. Only the transition from a single Midplane on
BlueGene/P, or one Node Card on BlueGene/Q to larger sub-portions of the
architecture, induce again more significant performance drops. On SuperMUC
the efficiencies up to a quarter island (2.6 · 1010 unknowns) differ between the
multigrid cycles. We believe that this is caused by perturbations due to other
applications running simultaneously on the same island. From quarter of an
island to half of an island (5.2 · 1010 unknowns) the performance even improves.
However, when leaving a single island of the architecture, the parallel efficiency
drops significantly. This is likely caused by the reduced communication perfor-
mance beyond each island in the pruned 4:1 tree. For more than two islands we
also disable hyperthreading to obtain substantially more reproducible run-times.
In contrast to this observation, the run-times of both BlueGene machines remain
more stable for all problem sizes. SuperMUC presents the best parallel efficiency.
However, we could not map our mesh onto the torus networks, since the coarsest
mesh is basically unstructured.

First scaling experiments on SuperMUC showed a breakdown at 65 536 MPI
processes, resulting in roughly four times longer run-times, as well as fluctuations
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Table 4. Single node and parallel efficiencies (scaling), as well as power consumptions
of used parts of the clusters while running HHG.

JUGENE JUQUEEN SuperMUC

Single node
Peak flop/s (constant dielectricity) 6% 7% 12 %
Peak flop/s (variable dielectricity) 9% 10% 13 %
Peak bandwidth (constant dielectricity) 11% 53% 60 %

Parallel efficiencies (at ≈ 0.8 Pflop peak)
Scaling (constant dielectricity) 65% 64% 72 %
Scaling (variable dielectricity) 94% 93% 96 %
Scaling – without CG (constant dielectricity) 75% 70% 79 %
Number of processes 262 144 262 144 32 768
Energy improvement compared to JUGENE (const.) 1 6.6 4.7
Energy improvement compared to JUGENE (var.) 1 6.4 3.2

in the timings of up to 15 s between the single V-cycles compared to runs with
32 768 MPI processes. Figure 2 displays that there have already been problems
on 32 768 MPI processes (corresponding to 4.1 · 1011 unknowns or 4 islands).

The results on larger machine sizes use the hybrid parallelization that allows
us to execute the largest two runs with only 16 384 MPI processes, leading to
a significantly improved parallel efficiency. The largest run was carried out on
16 islands of the cluster. Different from the behavior of SuperMUC, the hybrid
parallelization on JUQUEEN, as used for the largest runs, clearly decreases the
parallel efficiency. However a hybrid parallelization is still necessary as explained
above in order to have enough main memory available.

Table 4 shows the single node performance, parallel efficiencies, and energy
consumptions relatively to JUGENE. The runs were carried out for a node allo-
cation providing ≈ 0.8 Pflop/s nominal peak. Even though a major design goal
of the BlueGene/P was to have a low energy consumption, the next genera-
tion could improve the energy consumption by a factor between six to seven
for our application. The SuperMUC turns out not to be as energy efficient as
JUQUEEN, however it does not require such a high degree of parallelism from
the application.

2.3 Single Node Performance Analysis

This section will analyze the single node performance as given in Table 4. This
is for the case of constant dielectricity.

On JUGENE one MPI process is assigned to each compute core. Since the
processors provide high memory bandwidth, codes tend to be more limited by
instruction throughput than by memory bandwidth. However, the kernel that
applies the stencil is affected on JUGENE from a serialization within the Pow-
erPC multiply-add instructions. Additionally, a correct memory alignment for
vectorized loads (for the SIMD units) is not assured due to the varying loop sizes
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that are caused by the tetrahedral macro elements. The limited-issue width and
the in-order architecture of the processor leads to further performance limita-
tions and eventually result in a node performance of only 6.1% of the peak
performance (see Table 4). This is for a complete multigrid cycle.

For a comparison, we refer to results of Datta et al. who present auto-
tuning results for an averaging 29-point stencil on this architecture [5,6]. Their
baseline implementation achieves about 0.035 GStencil/s updates which corre-
sponds to 7.7% of the peak performance for a reference (in-cache) implementa-
tion. Basically two of eleven optimization techniques (e.g. padding, core blocking,
software pre-fetching) techniques can achieve a significant speedup: common sub-
expression elimination and register blocking. While the first inherently cannot be
applied for our stencil, since we do not have redundant calculations, the register
blocking results in our case roughly in a speedup of two. In principle we could
use this code optimization, but it leads to very small sub-blocks that will suffer
from non-constant loop sizes. Moreover, the issue with serialization remains a
bottleneck, which is not the case for the averaging stencil.

On JUQUEEN, we assign one MPI process to each HW thread. The stream
benchmark shows that it is possible to run at a high fraction of ≈ 85 % of
the effective maximal memory bandwidth of 27.8 GB/s by using one process per
node. Two or four threads per node saturate the effective bandwidth completely.
Going from one to two threads per core, HHG gives a factor of two improve-
ment in performance. In these cases, the code is still instruction bound like on
BlueGene/P. Going from two to four threads per core, the additional speedup
is only a factor 1.3. Overall, in this case, a multigrid cycle utilizes in average
about 18.1 GB/s of the main memory bandwidth. Only by reducing the main
memory footprint and possibly improving the core performance itself, we see a
chance for further reductions of the execution time.

Similarly to the situation on JUQUEEN, the code is mainly memory band-
width limited on the SuperMUC node architecture. However, the nodes can
saturate the bandwidth better and its machine balance suits better the charac-
teristics of our code. Thus we achieve with a better flop/s performance than on
JUQUEEN. However, hyperthreading improves the performance only insignifi-
cantly by at most a few percent.

3 Conclusion and Future Work

We presented a weak-scaling comparison of HHG on three different HPC petaflop
clusters. To reach the full potential of the recent architectures, a hybrid paral-
lelization approach turned out to be necessary for the growing node-level par-
allelism to compensate memory limitations and maintain scalability. Recently,
we designed a Stokes solver for Earth mantle convection simulations [1,4] within
HHG utilizing the presented multigrid performance.
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8. Gmeiner, B., Gradl, T., Köstler, H., Rüde, U.: Highly parallel geometric multigrid
algorithm for hierarchical hybrid grids. In: Binder, K., Münster, G., Kremer, M.
(eds.) NIC Symposium 2012. Publication series of the John von Neumann Institute
for Computing, vol. 45, pp. 323–330. Jülich (2012)
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dynamics using real space wavefunctions. Phys. Status Solidi B 243(5), 1001–1015
(2006)

http://dx.doi.org/10.1002/cpe.2968


Many–Core Sustainability by Pragma Directives

Andreas Kucher(B) and Gundolf Haase

Institute for Mathematics and Scientific Computing,
University of Graz, Graz, Austria
andreas.kucher@edu.uni-graz.at

Abstract. Many–core hardware is well adopted in scientific comput-
ing for a number of applications in an academic setting. Uncertainty
about upcoming architectures and large development times for this hard-
ware result in a modest acceptance in industry for commercial use. An
upcoming turn from language–based many–core programming towards
directive–based frameworks, similar to OpenMP, is an attempt to tackle
these issues.

We present a case study for a many–core acceleration of a large–scale
commercial CFD solver by means of such frameworks. We achieved a
local acceleration of up to 45 for hot spots with recent hardware but
the global speedup remains below 2. The main obstacle for an efficient
instrumentation is the design and the complexity of the original soft-
ware. Further, restrictions given by the hardware and the frameworks
exist. Based on the results we sketch a long term plan for a further
acceleration.

Keywords: Computational fluid dynamics · General purpose GPU ·
Many–core · Parallelization · OpenACC · OpenHMPP · Accelerator
frameworks

1 Introduction

Many–core processors such as GPUs can outperform recent CPUs with respect to
their compute power in a fine–grained parallel setting at the cost of a higher total
power consumption. However, for a successful application of many–core hardware
in numerical software, algorithms have to be modified and then implemented in
a distinct programming language like CUDA or OpenCL. This has been done for
a number of algorithms and the results are available as libraries giving good or
excellent performance (e.g. [6]). Without such libraries, a many–core migration
of algorithms and their implementation can be challenging.

This results in a good acceptance of many–core hardware in small and research
codes for certain applications, but in industry the acceptance is modest. The
migration of code to many–core hardware has to be profitable, i.e., the perfor-
mance gain must be high and the software has to be sustainable at a long term.
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The impact on CPU performance due to many–core support should be negli-
gible and a many–core migration must not affect regular code enhancements,
particularly for large groups of developers. Independence of the hardware used
and bit-compatibility to CPU results are of advantage.

There is a trend to move from language based many–core programming
(CUDA, OpenCL) towards directive–based frameworks (OpenACC, OpenHMPP)
similar to OpenMP. This paradigm shift is supposed to reduce development time
and allows programmers to invoke many–core hardware without having deep
knowledge on either hardware or language. The frameworks are expected to make
many–core hardware interesting for commercial use, as they meet the require-
ments listed above in parts.

In a case study we investigate the applicability and sustainability of directive–
based frameworks for a many–core acceleration of a commercial large–scale struc-
tured flow solver for CFD simulations. Flux computations on GPUs have been
investigated in [5]. The potential of GPUs for CFD with respect to performance
has been proven in [3] if the code can be fully matched with the GPU. The
rigidity of the solver design leaves little margin for modifications. Code com-
plexity is high and the period of vocational adjustment for modifications can be
up to several months. The level of complexity increases by integrating many–
core hardware support, mainly because CPU and many–core accelerator do not
share the same memory space.

The remaining paper is organized as follows: Sect. 2 gives a brief introduction
to directive–based hardware accelerator frameworks. Section 3 is an outline of the
case study. Section 4 and Sect. 5 are dedicated to results and remarks on a further
acceleration. The paper finishes with a conclusion in Sect. 6.

2 Directive–Based Hardware Accelerator Frameworks

Directive–based hardware accelerator frameworks allow many–core program-
ming by adding meta–information in form of directives to CPU code blocks.
The frameworks generate accelerator code based on this information. Figure 1
shows the basic concept and indicates that large parts of accelerator program-
ming are transparent to the programmer. An API and data–directives allow to
control the accelerator and data transfers between system memory and acceler-
ator. Membarth et al. performed an exhaustive evaluation of such frameworks
for a small scale code in image registration [4] obtaining good results.

As of today, two major frameworks are established. OpenACC is an open
standard by a consortium of numerous vendors [2]. It can be considered a con-
sequence of PGI Accelerator by the Portland Group. The PGI implementation
recently added support for Intel Xeon Phi processors. OpenHMPP is mainly
directed by CAPS Enterprise and one implementation is HMPP Workbench [1].
OpenACC is more intuitive and strongly relies on a sophisticated code generator
but lacks of flexibility compared to HMPP. The frameworks are accompanied by
a porting methodology for existing codes. Due to restrictions given by hardware
and frameworks, this methodology is applicable to a rather narrow class of code
without major changes in software architecture and coding style.
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Fig. 1. Basic operation mode of directive–based frameworks.

There are efforts to eventually adopt OpenACC in the OpenMP standard.
A recent technical report specifies accelerator directives proposed for a future
OpenMP standard [7].

3 The Case Study

Subject to our case study is a many–core acceleration of an industrial MPI–
based CFD solver for structured meshes and various CFD models. Restrictions
as presented in Sect. 1 make directive–based frameworks the best option for an
acceleration for now. The time frame for the case study was 10 months. It was
split in 3 months for the evaluation of the best suited framework and for code
analysis followed by 7 months for porting and testing.

3.1 Code Foundation

The solver has reached an advanced state of maturity and is in development
for 20+ years. It is based on finite volume schemes, multilevel methods and
distributed memory parallelization. It is implemented in the Fortran 77 language
and the full code size can be estimated to be 400 K lines. Each CFD model has
a separate, possibly redundant implementation.

Large initialization routines at program launch read in the configuration
such as CFD model, geometry and load distribution amongst multiple processes
for the simulation from the hard disk. A Fortran 77 work array gets allocated
based on this configuration. It contains all data required for the particular CFD
model. It further contains control flags for large mediator routines and space
for temporary data, which is managed on a stack in this array. This results in
spaghetti code. However, it can be considered representative for a number of
industrial codes.

The work array is argument to all mediator routines in the solver and data
within the array may be accessed by means of hash functions. The mediator
routines control the program flow, e.g., make decisions about the right compute
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routines for a CFD model and allocate/deallocated temporary data on up to
seven levels. Multi grid cycles within global iteration and time marching loops
are performed until convergence after initialization. The dependent variables are
advanced one time step per iteration in which fluxes and residuals are com-
puted and boundary elements are communicated to other processes in parallel
execution.

3.2 Approach and Work Done

An evaluation of HMPP Workbench and PGI Accelerator (similar to OpenACC)
based on a coupled 7-point-stencil computation, as it may arise in finite vol-
ume schemes, showed that HMPP Workbench gives better performance results
(Table 2). The compelling argument for excluding PGI Accelerator is the lack of
applicability to multi grid as data transfers cannot be avoided between levels.1

The solver prove to be sensitive to the many–core integration, resulting in side
effects hard to resolve on high level routines. Thus, a minimal invasive bottom–
up approach was chosen. We started instrumenting flux routines and established
data transfers before and after they are called. Constant data is transferred only
once. The flux computations are implemented in a face–centered scheme. In a
first step we compute the fluxes of the faces in two/three iterations. Each itera-
tion computes all faces of one spatial direction with a mapping of one thread per
face. In a second step we compute the residuals by summing up the fluxes. The
porting approach for these low–level routines is similar to the porting method-
ology indicated by framework vendors (e.g. [1]).

All code related to the accelerator was then offloaded to an external For-
tran 90 module. This allows to use pointers for data management and establishes
a separation from CPU code.

3.3 Confinements During the Porting Process

During the porting process we observed major difficulties. They can be charac-
terized in three categories: Software design, framework–related issues and limi-
tations given by the hardware. Crucial points are discussed below. Issues marked
with † are fundamental and related to technological limitations. Issues marked
with � are related to software design and may be resolved by manpower.

�The Solver Architecture does not implement a separation between logic/
program flow, data and algorithms. This can be resolved at the end of the call
tree, but not a priori for other routines. Hence, the percentage of code that
can be accelerated is limited. A reorganization is expensive. Adding additional
program logic to resolve this is error–prone and hard to maintain.

†Hardware Accelerator Frameworks like HMPP Workbench are a rather new
piece of technology. They have reached some maturity but cannot be com-
pared to well established compiler suites in terms of stability and functionality.
1 The same statement holds for OpenACC 1.0. A recent proposal for OpenACC 2.0

resolves this issue.
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This also holds for debugging. In our case, all accelerator related code is part of
a Fortran 90 module. A modification of one code line requires a recompilation of
the full module and results in large compilation times. Certain e.g. GPU specific
features are not supported. This has an impact on the performance achievable.

†Bit–compatibility as binary equivalence of arithmetic results to previous ver-
sions of the solver on the same hardware architecture is of big importance for the
vendor and demanded by some customers. For internal testing purpose it is con-
sidered to be valuable. By invoking many–core hardware it cannot be preserved.
Even minor code modifications, which are mandatory for a good many–core
performance, are likely to cause different results at bit–level.

†Compute Performance of one code targeting two different hardware architec-
tures is a tricky matter. A directive–based framework creates accelerator code by
means of CPU code. A compromise between CPU and many–core performance
is evident. Code redundancies for CPU and many–core hardware for large parts
of the solver reduce the application of directive–based frameworks to absurdity.
In general, CFD algorithms for CPU execution are well studied. This is not true
for many–core hardware, except for standard algorithms.

�Data Management and Data Transfers to accelerator memory have to be per-
formed explicitly and depend on the CFD model launched. An increasing number
of routines accelerated requires complicated if/else constructs to decide when and
which data has to be allocated/transferred.

Consequences are that the issues above may not be resolved by so called
workarounds. Doing so is error-prone, reduces the reliability and maintainability
of the solver and would result in fragile code.

4 Results

4.1 Framework Evaluation and Compute Routines

Table 1 shows the hardware used for benchmarking. We always use 1 core for
CPU execution. Table 2 shows a performance evaluation of hardware accelerator
frameworks for a coupled 7–point stencil arising from a CFD flux computation
on system (A). After familiarization with the frameworks, approximately one
man week was invested for each implementation. The better performance of
HMPP compared to CUDA for large grids can be explained by this time frame.
In CUDA the memory wall can be shifted for small grids by texture caches.
HMPP gives better results than PGI Accelerator. The table shows that memory
transfers are the main bottleneck reducing the best speedup from 21.7 to 1.6.

Table 3 shows timings for routines accelerated. An acceleration pays off only
if data transfers can be reduced between calls for several routines. This is not
true for routines with high arithmetic density. We could limit the CPU perfor-
mance loss to an acceptable level. The CPU run time of Flux 2 could be reduced
significantly.
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Table 1. Description of the
hardware platforms used.

(A) (B)

CPU Intel Core

i7 2600K

Intel Xeon

X5650

# CPUs 1 2

Cores used 1 1

Clock

[GHz]

3.40 2.67

Memory

[GB]

16 96

GPU GTX 580 Tesla

C2070

# GPUs 1 4

Compiler gcc 4.5 gcc 4.1

HMPP

Workb.

3.1 3.1

PGI Accel. 12.04 12.04

Table 2. CPU and GPU timings and speedups for
a coupled 7–point stencil (single precision).

Grid points CPU PGI HMPP CUDA PGI HMPP CUDA

[ms] speedup

Excluding data transfers

61 712 6.7 0.7 0.7 0.2 9.6 9.6 27.9

474 525 29.2 2.4 1.8 1.5 6.2 16.2 19.5

1 868 907 115.2 6.7 5.3 6.1 17.2 21.7 18.9

Including data transfers

61 712 6.7 38.8 4.6 n/a 0.2 1.5 n/a

474 525 29.2 53.6 22.3 n/a 0.5 1.3 n/a

1 868 907 115.2 96.4 72.9 n/a 1.2 1.6 n/a

Table 3. CPU and GPU timings and speedups for the accelerated routines excluding
and including data transfers with a block size of 149 × 113 × 113.

Routine CPU GPU Speedup
orig. mod. loss/gain excl. transf. incl. transf. CPU orig./GPU
[ms] [ms] [%] [ms] [ms] excl. transf. incl. transf.

Flux 1 115.2 118.0 −2.4 5.3 72.9 21.74 1.58
Flux 2a 133.0 49.9 +265.3 2.4 n/a 20.79 n/a
Flux 3 503.5 515.0 −2.3 13.7 43.4 36.75 11.60
Flux 4 1019.5 1034.5 −1.45 15.9 46.2 64.12 22.06
Flux 6b 2149.5 2195.6 −2.1 17.0 47.5 126.44 45.25
Flux 7 n/a 817.3 n/a 27.1 76.5 30.16 10.46
Precon. 1 n/a 273 n/a 10.0 51.0 27.30 5.35
Tridiag. 27.0 31.1 −15.1 2.3 24.0 11.74 1.13

aHere we calculate the GPU speedup based on the modified CPU implementation because we
could accelerate the CPU code by a factor of approx. 2.5.
bDense arithmetics with few memory accesses and few data transfers is performed in this
routine. Still, there may be room for improvements of the CPU code.

4.2 Test Case

Table 4 shows timings for a CFD computation for an annular tube based on a
steady–state laminar Navier–Stokes model. The mesh consists of seven blocks,
each having three levels of discretization (a total of 500 MB memory). The finest
discretization is computed on the GPU, the two remaining discretizations are
computed on the CPU because coarse discretizations penalize GPU performance
strongly. One can observe that the routines instrumented take approx. 65 %
(35 %) of the total run time of the solver for the original (modified) CPU code.
The maximal achievable speedup is less than 3 (1.5) compared to the origi-
nal (modified) CPU code. We could achieve an overall speedup of 1.66 for the
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Table 4. CPU and GPU timings for a sequential computation of an annular turbine
(laminar Navier-Stokes).

CPU orig. [s] CPU mod. [s] CPU Perf. GPU [s] Speedup
Loss/Gain [%] CPU orig./GPU

Total run time 1303 955 +36 784 1.66
Incl. data transfer
Flux 1 91.91 90.71 +1.32 74.76 1.23
Flux 3 134.89 132.80 +1.58 21.78 6.19
Precond. 1 415.08 140.91 +294.57 67.98 6.11

Excl. data transfer
Flux 1 91.91 90.71 +1.32 17.97 5.11
Flux 3 134.89 132.80 +1.58 9.45 14.27
Precond. 1 415.08 140.91 +294.57 11.43 36.31

computation compared to the original CPU code. The modified CPU code runs
faster than the original CPU code on (A).

A parallel execution of the test case on test system (B) with 1 master process
and three compute processes (each having 1 GPU attached) gave a total speedup
of 1.10. The MPI load–balancing strategy used for CPU execution did not prove
to be suitable for GPUs, as their performance has a highly nonlinear relation to
the size of domains processed.

5 Long Term Approach

The results show, that the acceleration of hot spots only results in a modest
performance gain. Data transfers between CPU and accelerator are the main
bottleneck. They can be reduced if all compute related routines are accelerated
and share data without passing it via CPU memory first. For this, these routines
must be prepared for many–core execution and reimplemented for a latter appli-
cation of HMPP directives. Then it suffices to only transfer boundary elements
within a multi grid cycle for MPI–based parallelism. We now outline an app-
roach for a full acceleration. It may be applicable for a many–core acceleration
of similar Fortran codes that use a work array for dynamic data management.

1. Implement automated accelerator data allocation and management based on
the compute configuration instead of a manual data allocation in mediator
routines. We consider this to be essential for the code integrity of the solver.

2. Perform a full many–core acceleration of a simple test case. I.e.:
– For each compute related routine invoked in the test case:

• Separate computations from logic and logging/error handling, i.e.,
define code parts for accelerator execution.

• Instrument the routine by means of HMPP Workbench.
• If the routine shares data with other routines already instrumented,

omit redundant CPU–accelerator data transfers.
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3. Enable asynchronous execution for independent compute routines to fully
occupy the accelerator.

4. Refine the support for MPI–based parallelism. (CPU–accelerator transfers of
boundary elements).

5. The repeated porting of code invoked for other test cases.

One consequence is the reimplementation of the solver in large parts for many–
core execution. Some of the fundamental aspects discussed in Sect. 3.3 still can
not be tackled. We estimate labor costs of approximately 24 man months for an
acceleration of a rather simple CFD model within the solver and a speedup for
this model of 20 at best.

6 Conclusion

We performed a case study for a many–core acceleration of a large–scale numer-
ical CFD code by means of directive–based frameworks. Hot spots could be
accelerated significantly, whereas the overall performance gain is modest.

The frameworks are convenient, as they reduce implementation time for accel-
erator code dramatically. But the major challenge in software engineering is not
necessarily implementation work, but also algorithm and software design. This
is particularly true for many–core hardware, as it is not fully compatible with
well–established software engineering techniques: Constraints due to solver archi-
tecture, complexity and technological limitations prevent from a further acceler-
ation of the solver without intricate work. In our case, many–core hardware and
large code complexity can be hardly combined.

The usability of the frameworks is high for new or small scale codes that
are primarily dedicated to many–core hardware. In such cases the limitations of
hardware and frameworks can be met, without having to consider aspects related
to CPU execution or existing code designs. For other cases, open questions have
to be answered by hardware and framework vendors.
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of the European Union.
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Abstract. EULAG (Eulerian/semi-Lagrangian fluid solver) is an
established computational model for simulating thermo-fluid flows across
a wide range of scales and physical scenarios. The multidimensional
positive definite advection transport algorithm (MPDATA) is among the
most time-consuming components of EULAG.

New supercomputing architectures based on multi- and many-core
processors, such as hybrid CPU-GPU platforms, offer notable advantages
over traditional supercomputers. In our previous works we considered
adaptation of 2-dimensional (2D) MPDATA computations to a single
CPU-GPU node. The main goal of this paper is to study tenets of opti-
mal parallel formulation of 3D MPDATA on heterogeneous CPU-GPU
cluster. Such supercomputer architecture requires not only a different
philosophy of memory management than traditional massively parallel
supercomputers, but also a comprehensive look at load balancing in the
heterogeneous co-processing computing model.

In this paper we propose an approach to implementation of 3D
MPDATA algorithm on hybrid CPU-GPU cluster, using a mixture of
MPI, OpenMP, and CUDA programming standards. This approach
focuses on the donor-cell numerical scheme, and is based on a hierarchical
decomposition including level of cluster, as well as distribution of com-
putations between CPU and GPU components of each node, and within
CPU and GPU devices. We discuss preliminary performance results for
the proposed approach running on a single cluster node consisting of two
AMD Opteron Interlagos CPUs and one or two NVIDIA Fermi GPUs.

1 Introduction

The Multidimensional Positive Definite Advection Transport Algorithm
(MPDATA) is among the most time-consuming calculations of the EULAG
model [8]. In our previous works [7,11] we proposed two decompositions of 2D
MPDATA computations, which provide adaptation to CPU and GPU archi-
tectures separately. The achieved performance results showed the possibility of
achieving high performance both on CPU and GPU platforms.

In this paper, we develop a hybrid CPU-GPU version of 2D MPDATA, to
fully utilize all the available computing resources by spreading computations
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across the entire machine. When adapting MPDATA to modern hybrid architec-
tures, consisting of GPU and CPU components, the main challenge is to provide
high performance for each component, taking into account their properties, as
well as efficient cooperation.

The proposed approach to parallelization of the 2D MPDATA algorithm is
the starting point for the implementation of 3D MPDATA on hybrid CPU-GPU
clusters. We propose a hierarchical decomposition including the level of clus-
ter, as well as distribution of computations between CPU and GPU components
of each node, and within CPU and GPU devices. Hybrid clusters offer a fast
solution, but understanding the parallel trade-offs is crucial for providing effi-
ciency of computations. These architectures allow for creating many thousands
of threads, which has a significant influence on performance of parallel codes [3].

2 Architecture Overview

In our research we use the Cane cluster located at the Poznan Supercomputing
and Networking Center, Poland [1]. This machine includes 227 nodes, connected
with each other by the InfiniBand QDR network. Each node consists of two
AMD Opteron 6234 CPUs (codenamed Interlagos) and one or two NVIDIA
Tesla M2050 GPUs, as well as 64 GB of the main memory. The architecture of
a single CPU-GPU node is shown in Fig. 1.

Each of AMD Opteron 6234 CPUs [1] includes two dies, each containing 6
cores and 8 MB of L3 cache. All dies are connected by AMD HyperTransport
links. For the clock frequency of 2.4 GHz, the peak performance of these two
CPUs is respectively 460.8 GFlop/s and 230.4 GFlop/s in a single and double
precision.

The NVIDIA Tesla M2050 GPU [5] is based on the Fermi architecture, and
includes 14 streaming multiprocessors, each consisting of 32 CUDA cores with
48 KB of shared memory and 16 KB of L1 cache. It gives a total number of 448
available CUDA cores with the clock rate of 1147 MHz. It provides the peak
performance of 1.03 TFlop/s and 512 GFlop/s in a single and double precision,
respectively. This graphics accelerator card includes 3 GB of global memory with
the peak bandwidth of 148.4 GB/s. All the accesses to the global memory go
through the L2 cache of size 512 KB.

3 Introduction to MPDATA Algorithm

The MPDATA algorithm belongs to the group of nonoscillatory forward in time
algorithms [8]. The 2D MPDATA is based on the first-order-accurate advection
equation:

∂Ψ

∂t
= − ∂

∂x
(uΨ) − ∂

∂y
(vΨ), (1)

where x and y are space coordinates, t is time, u, v = const are flow velocities,
and Ψ is a nonnegative scalar field. Equation (1) is approximated according to
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Fig. 1. Architecture of hybrid CPU-GPU node

the donor-cell scheme, which for the (n + 1)-th time step (n = 0, 1, 2, . . .) gives
the following equation:

Ψ∗
i,j = Ψn

i,j − [F (Ψn
i,j , Ψ

n
i+1,j , Ui+1/2,j) − F (Ψn

i−1,j , Ψ
n
i,j , Ui−1/2,j)]

− [F (Ψn
i,j , Ψ

n
i,j+1, Vi,j+1/2) − F (Ψn

i,j−1, Ψ
n
i,j , Vi,j−1/2)]. (2)

Here the function F is defined in terms of the local Courant number U :

F (ΨL, ΨR, U) ≡ [U ]+ΨL + [U ]−ΨR, (3)

U ≡ uδt

δx
; [U ]+ ≡ 0, 5(U + |U |); [U ]− ≡ 0, 5(U − |U |). (4)

The same definition is true for the local Courant number V .
The first-order-accurate advection equation can be approximated to the sec-

ond-order in δx, δy and δt, defining the advection-diffusion equation:

∂Ψ

∂t
= − ∂

∂x
(uΨ) +

(δx)2

2δt
(|U | − U2)

∂2Ψ

∂x2

− ∂

∂y
(vΨ) +

(δy)2

2δt
(|V | − V 2)

∂2Ψ

∂y2
(5)

− UV δxδy

δt

∂2Ψ

∂x∂y
.

The antidiffusive pseudo velocities ũ and ṽ in respectively x and y directions are
defined according to the following equations:

ũ =
(δx)2

2δt
(|U | − U2)

1
Ψ

∂Ψ

∂x
− UV δxδy

2δt

1
Ψ

∂Ψ

∂y
, (6)
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ṽ =
(δy)2

2δt
(|V | − V 2)

1
Ψ

∂Ψ

∂y
− UV δxδy

2δt

1
Ψ

∂Ψ

∂x
. (7)

Therefore, in order to compensate the first-order error of Eq. (1), once again
the donor-cell scheme is used but with the antidiffusive velocity ũ = −ud in
place of u, and with the value of Ψ∗ already updated in Eq. (2) in place of Ψn.
It allows us to compute values of Ψ for the (n + 1)-th time step.

4 2D MPDATA Decomposition

In this section, we shortly present adaptation of the 2D MPDATA algorithm to
the hybrid CPU-GPU architecture, providing trade-off between communication
and computation within its components. This approach is based on the efficient
use of a single node.

The MPDATA algorithm is based on updating each point of the grid with
values from neighboring grid points. Typically the neighborhood structure is
fixed, in which case it is called a stencil [2,9]. Our previous research show that
MPDATA is a memory-bound algorithm [7,12].

The main task here is the decomposition of MPDATA grid into CPU and
GPU domains. We propose the basic strategy of grid partitioning, that assigns
two stripes of grid rows to CPU and GPU. Data transfers between CPU and GPU
domains are minimized by providing extra computations within both domains.
Therefore, the CPU has to compute more rows, because some rows, which orig-
inally were assigned to the GPU domain only, are now duplicated in the CPU
domain, and vice versa. This approach allows us to avoid communication between
CPU and GPU domains within each time step of the MPTADA algorithm, since
CPU and GPU components compute their domains separately. As is shown in
Fig. 2, the CPU-GPU cooperation, including communication and synchroniza-
tion, is required only after each time step.

When adapting MPDATA to the hybrid CPU-GPU architecture, the next task
is to provide efficient performance for each component. Hence, two different adap-
tations of the MPDATA algorithm to CPU and GPU processors are required. Each
of these adaptations takes into account constraints for the memory bandwidth.

Fig. 2. Scheme of cooperation between CPU and GPU components running the
MPDATA algorithm
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For CPU, this goal can be achieved by taking advantage of cache memory
reusing, as high as possible. This requires to apply an appropriate block decom-
position strategy, when the intermediate results of computations for a single
block are placed in the cache memory. Only the final results are returned to
the main memory. Such an approach is commonly called the temporal blocking
[4,10]. Computations within each block are distributed across available CPU
cores, and the SIMD processing is applied inside each core. Each AMD Inter-
lagos CPU contains groups of cores (or dies) connected each other by AMD
HyperTransport links [1]. Dies have direct access to their own cache memory,
and indirect access to caches of other dies. To eliminate inter-cache communi-
cations among dies, at the cost of extra computations, we use exactly the same
grid decomposition as in the case of adaptation of MPDATA to CPU-GPU archi-
tecture. Another advantage of this approach is possibility to apply the NUMA
“first-touch” policy.

For GPUs, their global memory allows us to decrease the intensity of access to
the main memory, since results of GPU computations performed within a single
time step can be stored in GPU only. As a result, performance restrictions due
to the memory bandwidth saturation can be alleviated, and the high density of
computing resources is better utilized.

The GPU parallelization of MPDATA is based on three levels of GPU par-
allel hierarchy: (i) overlapping data transfers between the host memory and
GPU global memory with GPU computations; (ii) parallel computations across
threads running on GPU cores; (iii) vectorization within a GPU thread. The
first level requires to apply an appropriate decomposition of data domain into
streams, in order to use the streams processing mechanism. It allows us to alle-
viate bandwidth constraints of PCIe connection between CPU and GPU. The
second level concerns parallel processing of GPU threads, which are assembled
into CUDA blocks. The last level allows for increasing the amount of compu-
tations within a single GPU thread, and reducing overheads of access to GPU
global and shared memories.

5 2D MPDATA Performance Results

Table 1 presents execution times of the 2D MPDATA algorithm for 500 time
steps and different sizes of grid, using a single node of the target cluster. The
achieved performance results correspond to different configuration including the
basic serial version running on a single CPU core without using block decompo-
sition and SIMD vectorization, and parallel versions using configurations with
1CPU, 2CPUs, 1GPU, and 2GPUs, as well as hybrid configuration with 2CPUs
and 2GPUs. In all the parallel versions, the block decomposition and SIMD vec-
torization techniques are applied to speedup MPDATA computations over the
basic serial version, which does not use these techniques. The speedup of parallel
versions over the basic serial version is shown in Fig. 3. For all the grid sizes,
the hybrid version allows us to achieve the highest performance. In particular,
for the grid of size 4096 × 4096, it gives speedup of 93.46 over the serial version.
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Table 1. Execution times of 2D MPDATA for 500 time steps

size serial 1CPU 2CPUs 1GPU 2GPUs 2CPUs+2GPUs

1024 × 1024 99.24 5.21 2.55 2.81 1.47 1.38
2048 × 2048 384.68 19.14 9.66 10.83 5.48 4.74
3072 × 3072 869.91 40.91 20.78 26.12 13.07 9.45
4096 × 4096 1568.22 74.50 37.81 53.99 22.43 16.78

Fig. 3. Speedup of parallel versions over basic serial version

For the largest grid size, the hybrid version is about 2.25 times faster in com-
parison with using 2CPUs, and about 1.33 times faster than the 2GPUs version.

6 3D MPDATA Decomposition

The achieved performance results show a high perspectives of using the hybrid
architecture to the MPDATA algorithm in the 3D case, as well. Following these
results, in this section we propose an approach to adaptation of 3D MPDATA
to the CPU-GPU cluster, employing both CPU and GPU computing resources.
Our approach is based on a hierarchical decomposition including level of cluster,
as well as distribution of computations between CPU and GPU components of
each node, and within CPU and GPU devices. To take advantage of CPU-GPU
cluster, the MPI standard is used across nodes, while OpenMP and CUDA are
applied within each node.

This adaptation consists of two basic steps. The first step (Fig. 4a) takes into
account the decomposition on the cluster level, and provides data distributions
across a 2D mesh of nodes. Each node consists of a group of components, which
include CPU and GPU resources. The second step takes into account the data
decomposition within a single CPU-GPU node (Fig. 4b). This step is based on
the approach previously developed for 2D MPDATA.

The 3D MPDATA algorithm performs simulations determined by size n×m×
l of the grid. In case of simulations in the EULAG numerical weather prediction
[6], the size of grid is usually specified by the following constraints: n = 2 ∗ m,
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Fig. 4. Grid decomposition of 3D MPDATA onto CPU-GPU cluster

l ≤ 128, and n,m >> l. Such a 3D grid is mapped on a 2D mesh of CPU-GPU
nodes of size r×c. As a result, the MPDATA grid is partitioned into subdomains
of size np ×mp × l, where each node is responsible for computing within a single
subdomain, and:

np =
n

r
; mp =

m

c
. (8)

Every subdomain is further partitioned into two parts, assigned to CPU and
GPU resources separately. This partitioning is given by the following equations:

SGPU = (G ∗ np) × mp × l, (9)

SCPU = (C ∗ np) × mp × l, (10)

where parameters G and C characterize GPU and CPU parts, respectively, sat-
isfying the following constraints:

G + C = 1; G,C ∈ [0; 1]. (11)

Currently, to provide the load balancing between CPU and GPU components,
values of G and C parameters are evaluated in an empirical way. However, a
dynamic load balancing model will be developed in future work, allowing us to
increase the portability of MPDATA code across a variety of hybrid clusters.

7 Conclusions and Further Work

New strategies for memory and computing resources management allow us to
ease memory bounds, and better exploit the theoretical floating point efficiency
of hybrid architectures. The hybrid computing is a promising approach for
increasing performance of numerical simulations of geophysical flows using the
EULAG model.

We propose the basic strategy of partitioning the MPDATA grid, that assigns
two stripes of grid rows to CPU and GPU components. Thus, data transfers
between CPU and GPU domains are minimized by providing extra computa-
tions within both domains. Moreover, two separate adaptations of MPDATA
algorithm to CPU-GPU hybrid architecture are required, to better utilize fea-
tures of hybrid architectures.
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For 2D grids, the hybrid version gives the best results for all the grid sizes,
providing speedup of 93.46 over the serial version of the MPDATA algorithm.
The achieved performance of 2D MPDATA gives a high perspectives of using
the hybrid programming model to the 3D MPDATA case, as well.

Our parallelization of the EULAG model is still under development. The
future work will focus on investigation of MPDATA parallelization based on the
proposed 3D grid decomposition. Apart from GPU architectures, the particular
attention will be paid to other accelerators such as Intel Xeon Phi.

Acknowledgments. This work was supported by the Polish National Science Centre
under grant no. UMO-2011/03/B/ST6/03500.

References

1. AMD and GPGPU cluster, https://hpc.man.poznan.pl/modules/resourcesection/
item.php?itemid=61

2. Datta, K., Kamil, S., Williams, S., Oliker, L., Shalf, J., Yelick, K.: Optimization
and performance modeling of stencil computations on modern microprocessors.
SIAM Rev. 51(1), 129–159 (2009)

3. Kurzak, J., Bader, D., Dongarra, J.: Scientific Computing with Multicore and
Accelerators. Chapman & Hall/CRC , Boca Raton (2010). (Chapman & Hall/CRC
Computer and Information Science Series)

4. Nguyen, A., Satish, N., Chhugani, J., Changkyu, K., Dubey, P.: 3.5-D blocking opti-
mization for stencil computations on modern CPUs and GPUs. In: Proceedings of
the 2010 ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis, pp. 1–13 (2010)

5. NVIDIA Best Practices Guide, http://developer.nvidia.com/
nvidia-gpu-computing-documentation

6. Piotrowski, Z., Wyszogrodzki, A., Smolarkiewicz, P.: Towards petascale simula-
tion of atmospheric circulations with soundproof equations. Acta Geophys. 59,
1294–1311 (2011)

7. Rojek, K., Szustak, L.: Parallelization of EULAG model on multicore architec-
tures with GPU accelerators. In: Wyrzykowski, R., Dongarra, J., Karczewski, K.,
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Abstract. When using Grid resources, usually a specific type of middle-
ware is deployed. For example the European infrastructure is based on
EMI-GLite and GLOBUS. The deployment of this middleware enforces
a number of limitations concerning the OS, libraries and software pack-
ages. On the other hand the typical Grid middleware does not provide
elasticity in the way Cloud services do. In our system we propose an
entirely Java-based solution designed with elasticity in mind, providing
distributed processing of queries from a single endpoint. The system is
lightweight and easy to deploy on Cloud resourced and depends only
on a few EMI packages. In this paper we describe the architecture and
workflow of the system, providing benchmarks which show the effective-
ness of our solution during processing of queries related to monitoring
computational jobs in the Grid, using a distributed Cassandra database.

1 Introduction

1.1 Grids and Clouds

The Grid is a computational infrastructure which ensures transparent access to
geographically and institutionally distributed computational resources and data.
The Grid has been studied extensively during the last two decades, here we refer
to some works of Foster and Kesselman, and also to the description of the largest
grid (the European Grid Infrastructure) [2–5]. Ian Foster and coauthors gave a
three point checklist [5] to help determine what the Grid is, and what is not:

1. The Grid coordinates resources that are not subject to centralized control,
2. The Grid uses standard, open, general-purpose protocols and interfaces, and
3. The Grid delivers non-trivial qualities of service.

Although Cloud Computing is a relatively newer technology, it has an intrinsic
connection to the Grid Computing paradigm. There is little consensus on how to
define the Cloud and here we accept the definition of Foster in [6]: “A large-scale
distributed computing paradigm that is driven by economies of scale, in which a
pool of abstracted, virtualized, dynamically-scalable, managed computing power,
storage, platforms, and services are delivered on demand to external customers
over the Internet.”
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In the same paper [6], Foster et al. compare Grid and Cloud and conclude
that only point 3 from the above check-list holds true for Cloud computing, but
neither point 1 nor point 2 are valid for Clouds. Common characteristics of Grid
and Cloud include: utility computing, aggregation of heterogeneous resources,
access transparency for the end user, reconfigurability, service negotiation based
on SLA, capacity provisioned on demand, continuous availability, single sign on.

In Europe there is a strong tradition in using Grids for scientific applications,
especially in the domain of High Energy Physics, while Clouds are an attractive
option for development of new applications or porting the existing ones due to
expected economies of scale and certain usability advantages.

That is why the combined use of Grid and Cloud resources is an interesting
topic from both theoretical and practical viewpoint [9]. In our previous work
[7] we studied the security issues which arise when using both of them as part
of a scientific application. Some of the use cases and conclusions from there
motivated our desire to develop a lightweight framework, that can facilitate easy
development and deployment of Grid services using distributed resources that
are local or Cloud-based.

The authentication and authorization mechanism of the framework is based
on the usage of X.509 certificates and proxy certificates, thus being easily acces-
sible from both Grid jobs and users from their local machine. In this paper we
describe our framework and an efficient approach of deploying it on multiple,
possibly not publicly accessible machines, with the usage of a load balancer.
A natural use case for such a distributed service would be to provide access
to a distributed database organized around the NoSQL paradigm with a single
point of entry. We provide benchmarks of an example application based on our
framework, which grants access to a distributed Cassandra database with Grid
authentication enabling storing and collection of statistics of the usage of the
infrastructure.

1.2 Authentication and Authorization in Grids

The main authentication mechanism in Grids is based on the use of X.509 cer-
tificates. Certain Certification Authorities (CA) are recognized throughout the
international research community. The EUGRIDPMA organization [8] is respon-
sible for vetting the certification authorities that support researchers from Euro-
pean countries. As an example, the Bulgarian certification authority is called
BG.ACAD CA and provides certificates for Bulgarian scientists and students,
that can be used to access the resources of the European Grid Infrastructure.

Traditionally, as a way to introduce a level of indirection and to mitigate
the dangers that a stolen certificate may pose to the whole infrastructure, proxy
certificates are first generated and then used instead of the full user certificates.
Proxy certificates have shorter validity and may also be limited in what can be
done with them - the so-called “limited certificates”.

The cornerstone of the authorization part of security management in Grid is
the notion of the so-called Virtual Organization (VO), which enable their mem-
bers to share resources through the Grid. Multiple institutions may provide the
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resources of the virtual organization, which become available to all members
of the VO. It is important to note that only the biggest VOs, comprising of
thousands of scientists, define groups inside the virtual organization and enforce
different priorities and access rights for members of these groups and the respec-
tive job priorities. It is important to note that in most practical cases a user of
the VO has access to all the data files of the VO and can not only retrieve data,
but also delete data, even if the file has been created by another user. Although
X.509 certificates are the main authentication mechanism, other authentication
mechanisms are also used. For example, it may be possible to use an identity
provider to obtain an X.509 certificate on-the-fly, thus allowing more decentral-
ized management of the authentication process.

The protocols that are used in the Grid are mostly relaying on transport-
level security provided by SSL. The proxy certificates may also carry information
about the VO membership of the user through a mechanism called “VOMS
extensions”. The VOMS extensions in a X.509 proxy certificate also provide the
Grid services with the finer-grained authorization information, related to groups
and roles within the VO. This authorization information is available if one has
access to the full stack of X509 certificates sent by the client when opening the
SSL connection.

On the other hand, the Grid services authenticate themselves with X.509
certificates, corresponding to their names in DNS. Traditionally, the clients check
not only forward, but also reverse DNS resolution, which is a hindrance if the
provider of a service can not ensure that the IP address maps back to the same
server name that is presented to the client. In practice this means that there will
be a problem if the provider uses Cloud service like Amazon EC2 [1], because
the reverse DNS will not work as required.

In practical terms we should either relax this requirement on the client side, or
provide an entry point that is under control of the service provider, for example
from the campus network, using Cloud resources only as a back-end.

2 Description of the Framework

2.1 Main Considerations

In our system, the security is based on X.509 certificates and proxy certifi-
cates, with support for VOMS extensions. The certification authorities that we
support are defined by the EGI International Grid Trust Federation (IGTF)
release, which contains all the Certification Authorities (CAs) accredited by the
IGTF. Naturally, specific deployments may contain only a subset of these CAs
or organization-specific CAs as per the users’ and provider’s requirements. We
assume that one entry point for the Grid service is necessary and it will be a
server with proper X.509 certificate, issued by some of these CAs. The Grid
service operations are described via the Web Services Description Language
(WSDL). In this way we can leverage the established mechanisms for devel-
opment of web services, adding the necessary bits for Grid authentication and
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authorization. Behind this entry point we can have either single server or a dis-
tributed load-balanced server farm. The client software is based on the WSDL
template of the service. It can be developed using any language and web service
framework that can incorporate the Grid-specific authentication mechanism. We
should note that it is allowed for the certificate of the Grid server to be a proxy
certificate, something that general frameworks may reject.

2.2 Basic Implementation of the Framework

If a grid service running on a single server is to be implemented, we can follow
the natural approach of enhancing the Apache Tomcat servlet container with
support for the Grid Security Infrastructure (GSI) by using GSI implementations
supported by the Europeam Middleware Initiative (EMI – [14]). EMI provides
two main packages for processing secured web-requests based on GSI proxies -
EMI Trustmanager and EMI GridSite. The EMI Trustmanager is a Java-based
authentication solution, which contains client libraries, along with Tomcat and
Axis integration classes. On the other hand the GridSite package provides an
efficient Apache HTTP module [10] written in C, which can be used for both
authentication and authorization. As we mentioned above, our client is entirely
based on the Trustmanager, while for the server we compared two approaches -
secured Apache Tomcat [11] using the EMI Trustmanager, and Apache Tomcat
with security offloaded to a GridSite-enabled Apache HTTP server.

While the first approach is easier to setup, after extensive stress-testing, the
second approach showed superior performance, providing a substantial difference
in the achieved throughput of requests. However, if performance is not critical,
the use of EMI Trustmanager Tomcat library may be a better approach as it is
faster to set-up and provides simpler control over the client credentials.

Integrating Apache HTTP server with Apache Tomcat can also be done in
several ways. The most popular approaches include the Apache modules mod jk,
mod proxy http and mod proxy ajp, which all make possible the passing of
SSL attributes, but differ greatly in their configuration and installation. Using
mod proxy http, necessitates a lot of effort for configuration, as it requires SSL
attributes to be inserted in the HTTP header and then extracted in Tomcat via a
specially configured “valve”. Its main advantage over the other approaches is that
it provides an easy mechanism for encrypting traffic between HTTP and Tom-
cat. However, since in our system the HTTP server and Tomcat run on the same
machine and Tomcat is running on a port which is not accessible from outside
the machine, this is unnecessary. On the other hand, mod proxy ajp and mod jk
both provide proxying to Tomcat by using the Apache JServ Protocol (AJP).
While both provide almost the same functionality, mod proxy ajp is compliant
with the mod proxy API and thus is easier to configure than mod jk. How-
ever, one major feature of mod jk is not yet implemented in the mod proxy ajp
official releases - forwarding of the complete SSL chain. Additionally, a slight
improvement is noticeable when using mod jk, which is often credited to its lack
of compliance to the mod proxy API. Based on these differences between the
three approaches we chose to use mod jk because it is relatively easy to install
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Fig. 1. Schematic representation of a single-server deployment.

from source, can pass SSL attributes to an AJP connector and forwarding of the
SSL chain is implemented in the official release. GridSite [13] may be installed
from the EMI repository either as a binary package or as a source package to
be built on the target system. Configuration of the GridSite Apache module is
straight-forward - since mod gridsite internally uses mod ssl it also inherits most
of its configurations. Along with authentication, GridSite offers also authoriza-
tion mechanisms, based on Grid Access Control List (GACL), but we used trivial
GACL and relayed on the Java servlet to implement its own authorization logic
based on the forwarded SSL attributes.

Our Java servlet was developed in a WSDL-first manner. Using Apache CXF
[12] the created WSDL is translated to abstract Java classes which are inher-
ited in the web service in order to implement the defined Remote Procedure
Calls (RPC). This approach, often called contract-driven, is widely preferred as
it allows easier requirements management. On Fig. 1 one can see a graphical
representation of the software pieces and their interactions.

2.3 Implementation of the Framework in Distributed Setting

Setting up multiple instances of our system on different machines is organized
along the idea of load-balancing at the level of TCP. In our system we used
Balance [15], a lightweight TCP balancing proxy, written in C, which utilizes
heavily the available Linux system calls. On the client side, instead of directly
addressing an instance, the client sends requests to the machine running Bal-
ance, which forwards traffic in a round-robin manner. This approach enables the
execution servers to be deployed on non-public resources and requires only the
balancer to be accessible via Internet.

The underlying Java servlet can implement any RPC that requires Grid
authentication. In our example system, we implemented a distributed query
processing engine that can be easily accessed from both users and Grid jobs
running on a given site. The engine can be used to store and access statistics,
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input and even output of Grid jobs. Naturally, this assumes large quantities of
data and a large number of queries. One can imagine situations when traditional
databases will not suffice.

It has been observed that while traditional relational database management
systems (RDBMS) are easy to scale up, they eventually reach the limits set by
the high-end hardware currently available on the market. The problems of effec-
tive query distribution turns databases into a common bottleneck when the usage
of a system reaches certain values. Distributed databases aim to mitigate this
issue by providing reliable mechanisms for data and query distribution among
multiple servers, similar to the mirroring approach used in web servers and in
scalable services in general. Naturally such approaches have some drawbacks,
for example replacing database consistency with the weaker eventual consis-
tency. In our example system we chose Apache Cassandra [16] for our database
management system as it provides several important features. Unlike most of the
available solutions, Cassandra is completely decentralized and every instance in
a Cassandra cluster has the same role. This allows Tomcat servers to query
the instance running on the same machine, thus needing only Cassandra inter-
cluster communications. Additionally, by setting a replication factor, each entry
will be written on multiple Cassandra nodes, mitigating the single point of failure
problem. Additionally, the Cassandra Thrift API grants the ability to request
different levels of consistency before a write or a read, thus allowing fine-tuning

Fig. 2. Representation of a multiple-server deployment scheme along with the
associated protocols at the different layers.
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Table 1. Benchmark results for simple authenticated request-reply, measured in
number of messages per second

Single node Two nodes Three nodes

7211 messages 14054 messages 20840 messages

queries even at runtime. On Fig. 2 one can see a graphical representation of the
interactions of the components, described above.

Using persistent HTTP connections, i.e., reusing a TCP connection for multi-
ple HTTP requests and replies, provides a substantial improve in the throughput,
when clients initiate a number of sequential requests with no or relatively small
time in-between. Apart from the obvious speedup due to the reduced latency,
network congestion and usage of CPU and memory, a substantial speedup is
achieved by reusing the initial SSL/TLS handshake. Reusing TCP connections
also causes the balancer to redirect sequential requests originating from the same
client to the same server, thus reducing the overall load on Balance. Since each
write and read request spawns a new connection to the Cassandra database, nat-
urally the same approach is not applicable here. Instead Cassandra is explicitly
configured to destroy all TCP connection after the execution of the query. This
results in a massive speedup, due to using a small pool of connections.

3 Benchmarking

Our benchmarks were performed on several HP ProLiant BL280c G6 blades, each
equipped with two Intel Xeon 5560 processors and 24 GB RAM. Each processor
has 4 physical (8 logical) CPUs for a total of 16 logical CPUs per node. All
nodes are interconnected via non-blocking DDR InfiniBand. In our experiments
we benchmarked several aspects of our application. The first tests, consisting
of a simple authenticated request-reply, allowed us to evaluate the throughput
of our distributed system. The tests ran on one to three nodes show excellent
scaling in terms of throughput, see Table 1.

Due to the low-level approach adopted in Balance, it can handle a large
amount of connections, while also allowing a massive throughput of packets. The
second benchmark tested the writing capabilities of our system, with replication
factor of 1 and 2. In the presented results Table 2, a write consists of 5 insertions
in different column families (the rough equivalent of an SQL table) in Cassandra.

Table 2. Benchmark results for the writing capabilities of the system, measured in
number of writes per second

Replication factor Single node Two nodes Four nodes

1 393 writes 774 writes 1480 writes
2 N/A 472 writes 964 writes
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Table 3. Benchmark results for peak performance, measured in number of writes per
second

Replication Single node Two nodes Four nodes
factor peak performance peak performance peak performance

1 3786 writes 7462 writes 15233 writes
2 N/A 3913 writes 7790 writes

Table 4. Benchmark results for processing reads with a fixed consistency requirement,
measured in number of messages per second

Single node Two nodes Four nodes

896 messages 1656 messages 3312 messages

It is important to note, however, that these benchmarks were obtained during
12 h period of heavy load. A similar benchmark, which simulates peaks in the
client activity, was used to measure the peak performance of our system and its
ability to handle rapid changes in load, see Table 3.

The ability of our system to process reads was tested in a similar manner,
with a fixed consistency requirement i.e. data confirmation from different nodes
in Cassandra of 1, see Table 4.

In a way similar to the tests of the writing capabilities, these numbers were
obtained after several hours of heavy load. Using the same technique to simulate
peaks in the load, we noticed an increase in the throughput of the reads, although
with a smaller factor of 4.2.

A more sophisticated load-balancing strategy may be applied to our system,
as Balance often requires live resetting of the maximal connections per chan-
nel to ensure a proper balancing of long TCP sessions. An approach using the
balancer included in mod jk might be considered, although it relies on a sin-
gle HTTP server as a front-end. Fine-tuning Cassandra and the way Tomcat
connects to Cassandra, may also result in a significant speed up in the query
processing. A more sophisticated approach for placing Tomcat servers and Cas-
sandra instances may be considered. Separating them to different machines and
increasing the number of Cassandra instances compared to Tomcat servers seems
like a promising approach.

4 Conclusions and Future Work

In this work we presented an easy to install and lightweight framework for aggre-
gating resources, possibly hidden behind firewalls or coming from outside cloud
providers and offering access to them via Grid interface. Our approach is rather
generic, follows established best practices and achieves acceptable scalability.
The use of a Cassandra database as a back-end was provided rather as an exam-
ple of using the framework to provide access to data, since replacing it with
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other databases or simply providing load-balanced computational capabilities
is another option. We noticed some problems and limitations both in our use
of Balance and in the particular way we have deployed Cassandra, so in our
future efforts we will attempt to mitigate these problems or to employ alterna-
tive approaches.
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Abstract. Cloud computing, and IaaS cloud services in particular suit
well to resource-intensive applications by offering on-demand allocation
of computing power, storage space and network bandwidth together with
pay-as-you-go billing system.

Typical cloud applications consist of several interdependent compo-
nents, all residing on one or more dedicated virtual computers. In order
to be able to accurately estimate the resource requirements of a specific
component, one must carry out detailed performance analysis.

In this paper, we present the general concepts and pitfalls of perfor-
mance analysis in the cloud environment. Then we present a lightweight
distributed framework that is capable of generating load to and collect-
ing performance metrics from the component instances. The capabilities
of our framework will be demonstrated on a case study of the scala-
bility analysis of a distributed MySQL relational database management
system.

Keywords: Cloud computing · Performance analysis · Load genera-
tion · Test framework

1 Introduction

From an emerging buzzword that it was a few years ago, cloud computing has
became a more widely accepted solution for cost-effective provisioning of com-
putational resources. The technology behind cloud computing is not completely
new, it links and wraps existing technologies such as hardware virtualization, grid
computing and service-oriented architectures. There is no universally acceptable
definition of cloud computing, in general we could say that it covers computing
power, storage capacity and software appearing as services. There is some dis-
tinguishing features that differentiates it from the aforementioned existing tech-
nologies like self-service operation, pay-per-use billing, elasticity, and options for
customization [6].

There are researches that investigate the possibility of using infrastructure
(IaaS) cloud computing services for resource-intensive scientific applications that
demonstrated practical examples of use [12], involved financial [7], and perfor-
mance [10] analysis of the field.

I. Lirkov et al. (Eds.): LSSC 2013, LNCS 8353, pp. 476–483, 2014.
DOI: 10.1007/978-3-662-43880-0 54, c≥ Springer-Verlag Berlin Heidelberg 2014
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1.1 Performance Analysis in the Cloud

Being it a scientific or standard multi-tier web application, we believe that per-
formance testing and analysis plays an important role in resource and operational
cost planning. Popular public IaaS cloud providers, like Amazon [2] offer several
types of virtual resources each with a different pricing. To be able to make a well
established choice regarding the types and the number of virtual machines that
the application requires, resource consumption must be correctly measured for
its designed capacity and even beyond.

However, there are many difficulties that have to be addressed when perform-
ing performance tests for applications that are hosted on the cloud environment
compared to the traditional deployment model on physical servers. In the vir-
tualized environments the properties of the host system are usually completely
hidden from the end users, and it is not possible to obtain exact performance
metrics for virtualized resources like CPU and memory utilization or I/O usage,
or even deduce the status of the host system from the performance metrics
regarding the virtual machine.

Applications deployed into the cloud are often a subject to performance
degradation caused by the lack of resources which itself is caused by the behav-
ior of other virtual environments hosted on the same physical server, which is
called the noisy neighbor problem. Typical benchmarks are performed in sterile
environments and do not take this kind of background load into consideration.

The remainder of the paper is organized as follows. In Sect. 2 we introduce
our test framework for performance analysis of distributed systems. In Sect. 3
we present a case study to demonstrate the applicability of our framework on
a practical example. Section 4 contains an overview of related commercial and
academic solutions. The paper is closed with Sect. 5 presenting our conclusions
and future plans regarding the test framework.

2 Framework for Performance Testing

In this section we present a distributed test framework that aims to overcome the
difficulties discussed above by allowing the test engineer to generate various types
of artificial workloads on large number of remote computers simultaneously.

2.1 Architecture and Operation

The framework consists of highly autonomous software components called agents
that are deployed on all the virtual machines involved in the test. They form a
homogenous distributed framework, every target machine runs exactly the same
piece of agent software. To prevent unnecessary interference with the system
under test, the agents are designed to have low resource footprint when they
are idle. Basically, during their lifetime the agents are performing two kind of
operations, messaging and job execution, which are discussed in details below.
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Messaging. The agents are exchanging information regarding their knowledge
about the statuses of the active agents and the currently executing jobs in
the system by sending and receiving messages to and from other agents.
Messages can be directed at a specific agent or a job within the agent, but
can be broadcasted to every agents and/or every jobs within an agent.

Job execution. The main task of the agents is to execute various types of jobs
determined by the user. Jobs are not scheduled, they are run parallel on
their own thread of execution. Jobs can be started or stopped dynamically
by sending an appropriate message to the agent. A special job called watchdog
is automatically started on all agents by default. The watchdog is responsible
for periodically connecting all known other agents and keeping their status
information up to date.

The agent continuously maintains a list of known peer agents based on status
information obtained from other agents. Upon startup, the agent connects to
an arbitrary agent on the network, signals its presence and requests peer infor-
mation. By propagating their peer list to each other, eventually all agents will
become aware of the complete network status, forming a fully connected net-
work of agents. The maximum number of peer requests needed for this process
is O(n2).

Suppose we have a fully connected network of N agents labelled a1, a2, . . . , an

and a new agent a0 joins the network by connecting to agent a0 and requesting
the peer information about all other agents. At this point (after one peer request)
only agents a0 and a1 are aware of the correct network status. Now the watchdog
job on an arbitrary agent a2 starts scanning all peers known to it (a1, a3, . . . , an)
one by one in unspecified order. In the worst case it takes N − 2 requests to
reach agent a1 and obtain information about the new agent a0. Now perform
this procedure on agent a3. This time there are 3 agents (a0, a1, a2) with up to
date information, thus it takes a maximum of N − 3 peer request for agent a3

to became up to date itself. If we repeat the procedure for all remaining agents,
the number of peer request in the worst case is

1 + (N − 2) + (N − 3) + . . . + 2 + 1 = 1 +
N−2∑
i=1

i = 1 +
(N − 2)(N − 1)

2
= O(N2)

This number could be greatly reduced using a more sophisticated algorithm
for peer status propagation – our ongoing work aims to employ an O(log N)
algorithm –, but it was not in focus upon design. The test framework only
requires a vertex-connectivity (κ) of 1 for correct operation, fully connected
agent network only serves fault tolerance purposes in case of one or more virtual
machines hosting the agents become unavailable.

After the initialization phase described above, any agent can serve as a gate-
way for sending control (e.g. starting and stopping jobs) or informational (e.g.
querying job status) messages to other agents in the network. The agents and
jobs are controlled via a command-line client interface which is built into the
agent software or can be run standalone.
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2.2 Implementation

The framework was implemented in Java programming language. The main rea-
son we chose Java was the platform independence it provides, the agents run-
ning on different operating systems are able cooperate seamlessly. Java also
provides an easy-to-use, lightweight remote method invocation (RMI) library,
which serves as a basis of the messaging subsystem used in the test framework.
Request and response messages are transferred as arguments and return values
of standard RMI remote procedure calls.

Since it would be impossible to prepare for all existing test scenarios and load
generators, extensibility was key concern upon designing the test framework.
RMI ensures extensibility via dynamic classloading and class serialization. Test
authors are able to define new jobs and message types as standard Java classes
and utilize them in the test framework even without recompiling the agents.

2.3 Features and Benefits

When designing the test framework, our primary goal was to make it possible
to apply artificial load on several virtual machines simultaneously and have fine-
grained control over each load generator component. We distinguish two types
of artificial workloads:

In-band. In-band load is caused by the normal functionality of the application
being under test. Request numbers approximating or exceeding the designed
capacity may cause heavy load on the application. A practical example for
this is issuing a large number of HTTP requests towards a web server from
many clients.

Out-of-band. This type of load is independent of the application under test,
but it still affects its performance by using up shared resources on the vir-
tual host machine. For the hypothetic web server from above, a high I/O
demanding backup process run by the operating system is an example of
out-of-band load.

Our test framework supports generation of both load types. It features built-
in job types with either CPU-intensive or memory-consuming operations and
jobs that induce high disk or network I/O traffic. Built-in job types can be
parameterized which allows fine-grained control over the generated load volume.
Because of their dependence on the actual application under test, there are no
built-in jobs for generating in-band load, but the test framework is designed to
be easily supplemented with new job and message types that can be adapted for
a specific application domain.

These properties of the test framework allows us to effectively perform load
and stress tests on various cloud applications as it is demonstrated in the next
section.
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3 Case Study — Performance Test of MySQL Cluster

In this section we present an example case study on the performance analysis
of a distributed application which employs the test framework for generating
in-band requests and collecting performance metrics.

3.1 MySQL Cluster

The MySQL Cluster is an open source distributed database management sys-
tem, which is a development branch of the popular MySQL database. The main
difference is the database engine, in the MySQL Cluster the NDB engine is used
instead of the usual InnoDB or MyISAM engines. MySQL Cluster offers high
availability, redundancy and increased performance for large number of parallel
transactions. One of the main distinguishing features of NDB is that it stores
all data in memory by default and only the transaction logs are written to the
disk.

A MySQL Cluster deployment consists of three different software compo-
nents which are usually deployed on separate physical or virtual servers that
are interconnected via high-speed TCP/IP network links. The three software
components are as follows.

Management node. This component is responsible for the entire system
administration. Its task is to register and manage all the other components
in the system and administer any changes in the architecture or the config-
uration parameters. It is required to run at configuration time but it does
not have any jobs during normal operation of the cluster besides monitoring
other nodes and receiving node logs.

Data node. This components stores all the actual data. A maximum of 48 data
nodes can be present in a cluster. The number of servers is defined by the
degree of redundancy and the amount of data that needs to be stored. For
an R-times redundancy a number of P × R servers are needed, where P is
a positive integer. The MySQL cluster divides the data to 2 × P partitions,
where every two partition is served by a node group containing R instances
as shown on the following figure. This structure provides the scalability and
high availability property of the database system, as it is able to serve SQL
request when one or more data nodes are down, provided that one data node
in each partition is still operational.

SQL node. This component acts as a traditional SQL server, it provides an
interface for the clients. This node interprets the incoming queries, com-
putes SQL execution plans and retrieves data from the data nodes. For load
balancing, higher throughput and fault tolerance purposes this component
could also be multiplied.

3.2 Configuration of the Test Framework

The performance test discussed in this section was intended to provide
performance and scalability metrics for the MySQL Cluster database manage-
ment system by measuring query execution times at various different system
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Fig. 1. Schematic configuration of the MySQL Cluster performance test showing the
virtual servers hosting each software component

configurations. Figure 1 shows an overview of the test configuration, which con-
sisted of several virtual machines hosted on the Amazon Elastic Compute Cloud
(EC2) [2]. Besides the virtual machines that hosted software components of the
MySQL Cluster, we have allocated multiple instances to act as database clients.
We have also implemented new specialized job types for performing different
types of SQL queries using the Java Database Connectivity (JDBC) API. These
jobs and related message classes were included in the test framework agents that
were deployed on the client nodes.

Upon initialization a sample database was created on the MySQL
Cluster, then all client nodes began to execute the query jobs simultaneously.
The client jobs selected a random SQL node for each query and measured the
execution time of it. A total of six query types were implemented, and they
were performed repeatedly by the corresponding jobs to minimize the effects
of transient errors: (a) inserting rows; selecting rows from a single table on (b)
indexed; or on (c) unindexed columns; (d) selecting rows from joined tables;
performing aggregation functions on (e) a single; or on (f) multiple joined
tables.

After the test run finished, the query execution time metrics were gathered
from the agents by the controller machine for further analysis.
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3.3 Results

In order to comprehend scalability behavior of MySQL Cluster and identify key
factors on database performance, we have repeated the tests described above
with a total of 17 different configurations of MySQL Cluster. They consisted of
8–21 virtual machines and differed in redundancy level, partition count – these
two are directly affected by the number of data nodes –, and the number of SQL
nodes, and each were tested with a wide range of database sizes.

The output of the whole test procedure were performance metrics for over
350 000 SQL queries, a result which could have been hardly achieved without the
help of the test framework. The analysis of the resulting dataset showed that
database performance scales well with server number, but not with database
size. Further discussion of the results are out of the scope of this paper.

4 Related Work

There are many commercial test frameworks that are capable of load generation,
however, most of them focus on web applications specifically. AgileLoad [1] sim-
ulates end user activity and behavior that can even be automatically captured
instead of manual specification. Similarly to our solution, AgileLoad load injec-
tors are separate software components deployed on physical or virtual machines.
LoadImpact [4] is a SaaS solution for load testing websites, it runs entirely from
the cloud and does not employ any deployable client-side software. Keynote [3]
offers a similar service with an addition of geographically distributed load gen-
eration network.

This area is also the target of many academic research. Dumitrescu et al.
developed and used DiPerF [9,11], a distributed performance evaluation frame-
work with great success for performance analysis of client/server applications
running on various grid computing environments. DiPerF uses an approach very
similar to our framework, allowing users to submit workload generator jobs to
a pool of client agents and it also provides clock synchronization between the
clients, a feature which is not supported by our solution yet. However, unlike
our fully distributed and homogenous test framework, DiPerF relies on a single
central component to manage and control client components.

The CLIF [8] project aims to provide a generic, scalable, and user-friendly
platform for performance testing. Besides load injector components similar to
the jobs in our test framework, it features so called probes that can be deployed
either on the workload generator or the test target system and are constantly
collecting performance metrics.

5 Conclusions and Future Work

In this paper we have discussed that obtaining accurate performance metrics
for virtual machines and applications hosted on an IaaS cloud service has many
difficulties. Then we have presented a lightweight, distributed framework that is
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capable of generating artificial load to simulate the cases that may cause perfor-
mance degradation of an application, caused by either normal operation or an
environmental factor unrelated to the application. As we have demonstrated on
a case study, our test framework suits well to perform load testing and perfor-
mance testing of practical applications.

Our ongoing work involves improving the messaging subsystem using peer-
to-peer (P2P) technologies, to avoid unnecessary network communications and
adding performance monitoring capabilities similarly to the idea presented by
Bizenhöfer et al. [5] to offer a more complete solution for performance analysis.

Acknowledgements. The work reported in the paper has been developed in the
framework of the project “Talent care and cultivation in the scientific workshops of
BME”. This project is supported by the grant TÁMOP-4.2.2.B-10/1–2010-0009.

References

1. AgileLoad website. http://www.agileload.com/ (2013). Accessed 15 Mar 2013
2. Amazon Elastic Compute Cloud website. http://aws.amazon.com/ec2/ (2013).

Accessed 15 Mar 2013
3. Keynote Internet Testing Environment website. http://kite.keynote.com/ (2013).

Accessed 15 Mar 2013
4. Load Impact website. http://loadimpact.com/ (2013). Accessed 15 Mar 2013
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Abstract. The present work aims at studying the local to regional
atmospheric pollution transport and transformation processes over Bul-
garia and at tracking and characterizing the main pathways and processes
that lead to atmospheric composition formation in the region.

The US EPA Models-3 system is chosen as a modelling tool. As the
NCEP Global Analysis Data with 1 degree resolution is used as meteoro-
logical background, the MM5 and CMAQ nesting capabilities are applied
for downscaling the simulations to a 9 Km resolution over Balkans and
3Km over Bulgaria. The TNO emission inventory is used as emission
input. Special pre-processing procedures are created for introducing tem-
poral profiles and speciation of the emissions.

The study is based on a large number of numerical simulations carried
out day by day for years 2000–2007 and five emission scenarios - with
all the emissions and with biogenic emissions, emissions from energetics,
road transport and none industrial combustion reduced. Results from the
numerical simulations concerning the main features of the atmospheric
composition in Bulgaria and the contribution of the different emission
categories are demonstrated in the paper.

Keywords: Atmospheric composition · Regional scale modelling · US
EPA Models-3 system · Grid computing

1 Introduction

Recently extensive studies for long enough simulation periods and good resolu-
tion of the atmospheric composition status in Bulgaria have been carried out
using up-to-date modeling tools and detailed and reliable input data [7,9–11].

The simulations aimed at constructing of ensemble, comprehensive enough
as to provide statistically reliable assessment of the atmospheric composition cli-
mate of Bulgaria - typical and extreme features of the special/temporal behavior,
annual means and seasonal variations, etc.
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Fig. 1. Surface concentrations of NO2, SO2 and O3 [μg/m3] averaged annually in
05.00 and 17.00 GMT

The present paper will focus on two important characteristics of the
atmospheric composition climate of Bulgaria - the concentrations of different
compounds and the evaluation of the contribution of different emission cate-
gories to the overall air pollution in the country. The problem of the role of
different processes for the atmospheric composition formation will not be con-
sidered here, because it is a subject of a separate paper [9,10].

2 Approaches, Tools, Data, Domains, and Nesting

All the simulations are based on the US EPA Model-3 system. The system
consists of three components: MM5 [5,11] used as meteorological pre-processor,
CMAQ [2,3], the Chemical Transport Model of the system and SMOKE [4] -
the emission pre-processor of Models-3 system.

The large scale (background) meteorological data used by the study is the
NCEP Global Analysis Data with 1°× 1° resolution. The MM5 and CMAQ
nesting capabilities are used to downscale the problem to a 3 Km horizontal
resolution for the innermost domain (Bulgaria).

The TNO high resolution emission inventory [12] is exploited. A more detailed
description of the emission modeling is given in [9].
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Fig. 2. Plots of the “typical” diurnal course of the averaged for the territory of Bulgaria

concentrations of NO2, SO2, O3 and PM2.5 [μg/m3] averaged annually, for the spring,
summer, autumn, and winter.

The study is based on a large number of numerical simulations carried out
day by day for years 2000–2007 and five emission scenarios - with all the emis-
sions and with biogenic emissions, emissions from energetics, road transport
and none industrial combustion reduced. This makes it possible to evaluate
the contribution of different emission categories to the formation of the overall
atmospheric composition pattern. Performing extensive simulations of this kind
with up to date highly sophisticated numerical models obviously requires large
computer resource. That is why grid computing [1,6] was applied for the present
simulations. Details about the performance of this grid application can be seen
in [9].

3 Some Examples of the Numerical Simulation Results

The most simple atmospheric composition evaluations are, of course, the sur-
face concentrations. By averaging over the 8-year simulated fields ensemble the
mean annual and seasonal surface concentrations can be obtained and treated as
respective “typical” daily concentration patterns. Plots of some of these “typical”
annual surface concentrations are shown in Fig. 1 for some of the most popular
compounds - NO2, SO2, ozone. What can be seen from the plots is not surpris-
ing: the big cities and the road network are clearly outlined in the NO2 surface
concentrations, the big power plants in the SO2 surface concentrations.

The ozone fields are much more complex. What should be mentioned is the
expected effect of ozone minimums over big cities. The road network can also be
followed in the plots as lines with lower ozone concentrations. This is in a good
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Fig. 3. Plots of the “typical” diurnal course of the concentrations of NO2, SO2, O3
and PM2.5 [μg/m3] in Sofia, averaged annually, for the spring, summer, autumn, and
winter.

agreement with the ozone chemistry scheme. The averaged over the ensemble 2D
concentration fields can be themselves averaged over the territory of Bulgaria
and thus some more easy to comprehend plots of the “typical” diurnal course of
the concentrations for the year and the four seasons to be obtained. Such plots
are given in Fig. 2 for several compounds.

The behavior of the same compounds for a chosen point - the city of Sofia
(Fig. 3) is not qualitatively much different. Of course, as it should be expected,
the values of NO2, SO2, and PM2.5 in the city are significantly larger than the
averaged over the country.

Five emission scenarios will be considered in the present paper: Simulations
with all the emissions, simulations with biogenic emissions and the emissions of
categories 1 (energetics), 2 (none industrial combustion) and 7 (road transport)
for Bulgaria reduced by a factor of 0.8. This makes it possible, according to (1), to
evaluate the contribution of emission categories to the atmospheric composition
in Bulgaria. These relative contributions were calculated day by day and then,
by averaging over the 8-year ensemble the “typical” contributions for the four
seasons and annually were obtained.

2D plots of the diurnal evolution of the “typical” relative emission contri-
butions are given in [9]. Plots of this kind are rather spectacular and can give
a good qualitative impression of the spatial complexity of the emission contri-
bution. In order to demonstrate the emission contribution behavior in a more
simple and easy to comprehend way, the respective fields can be averaged over
some domain (in this case the territory of Bulgaria), which makes it possible to
jointly follow and compare the diurnal behavior of the respective contributions
for different species. Such plots for some of the compounds are given in Fig. 4.
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Fig. 4. Plots of the “typical” annual diurnal course of the averaged for the territory
of Bulgaria relative contributions [%] of emissions from categories 1 (001), 2 (002) and
7 (007) and of the biogenic emissions (BBB) to the concentrations of NO2, SO2, O3
and PM2.5.

There is no need to describe the plots in details, but some comments on
them could be made. First of all it could be seen that the different emissions
relative contribution to the concentration of different species could be rather
different. The contributions of different emission categories to different species
surface concentrations have different diurnal course and different importance.
The energetics is the major contributor to SO2 and PM2.5 concentrations, while
the biogenic emissions have near zero or even negative contributions. The major
contributors to the NO2 concentrations are the road transport and biogenic emis-
sions. Their diurnal courses are in counter- phase, which can be easily explained
by the ozone photochemistry cycle.

One can not help but notice the small contribution of biogenic emissions to
surface ozone. This fact was extensively discussed in [9] and was explained by the
fact that for Bulgaria the local O3 production rate is limited by the availability of
NOx concentration, a regime which is called NOx-limitiation. The contribution
of the emission from categories 1 and 7, which are the major sources of the other
ozone precursor - nitrogen oxides, is also small. This, once again is an indirect
indicator, that the surface ozone in Bulgaria is to a small extend due to domestic
sources, but is mostly imported.

The picture is completely different for the city of Sofia. The NO2 concen-
trations are totally dominated by road transport emissions. The none indus-
trial combustion has big contribution in SO2 formation (probably mostly from
the city heating plants and domestic heating). The NO2 also has dominating
(negative) contribution to the surface ozone. It is particularly large in morning
and late afternoon, when the city traffic is most intensive. In the afternoon the
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Fig. 5. Plots of the “typical” annual diurnal course of the relative contributions [%] of
emissions from categories 1 (001), 2 (002) and 7 (007) and of the biogenic emissions
(BBB) to the concentrations of NO2, SO2, O3 and PM2.5 for the city of Sofia.

contribution of road transport to the PM2.5 levels becomes even bigger than the
contribution of the energetics.

4 Conclusions

The numerical experiments performed produced a huge volume of information,
which have to be carefully analyzed and generalized so that some final conclu-
sions could be made. Simulations for emission scenarios concerning the contri-
bution of the other emission categories have to be performed.

The obtained ensemble of numerical simulation results is extensive enough
to allow statistical treatment - calculating not only the mean concentrations
and different emission categories contribution mean fields, but also standard
deviations, skewness, etc., with their dominant temporal modes (seasonal and/or
diurnal variations). Some advanced and sophisticated methods for statistical
treatment of the results should also be appropriately applied.
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Abstract. Nowadays more and more general purpose workstations
installed in a student laboratory have a built in multi-core CPU and
graphics card providing significant computing power. In most cases the
utilization of these resources is low, and limited to lecture hours. The
concept of utility computing plays an important role in technological
development. In this paper, we introduce a cloud management system
which enables the simultaneous use of both dedicated resources and
opportunistic environment. All the free workstations are allocated to
a resource pool, and can be used like ordinary cloud resources. Our solu-
tion leverages the advantages of HTCondor and OpenNebula systems.
Modern graphics processing units (GPUs) with many-core architectures
have emerged as general-purpose parallel computing platforms that can
dramatically accelerate scientific applications used for various simula-
tions. Our business model harnesses the computing power of GPUs as
well, using the needed amount of unused machines.

Keywords: Cloud · GPGPU · Grid · HTC · Utility computing

1 Introduction

In universities there is a huge demand for high performance computing, but
the smaller research groups can not afford buying a supercomputer or a large
compute cluster. However significant unused computing capacity is concentrated
in the student laboratories, as most of our student labs have quite new PCs
with modern multi-core CPUs and high performance graphics cards. The total
computing performance of the laboratory resources could be significant. The
open questions are: (a) how can we collect and use these resources; (b) what is
the time limit of the usage; (c) what happens if one or more jobs are not finished
during the given time slot; (d) what management software and management
rules are needed to support the various software environments which must be
flexible and on demand.

In this paper we are investigating these problems and we introduce a solution
based on a new approach. We show that the cloud technology, based on hardware
accelerated virtualization, can be the right answer to these questions. First of all
the management of the cloud based systems is easier and they are more flexible.

I. Lirkov et al. (Eds.): LSSC 2013, LNCS 8353, pp. 491–498, 2014.
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According to the literature [12] and our experiences the modern virtualization
has minimal overhead compared to the native systems and has more advantages
than disadvantages.

Our basic idea is to run only a minimal host operating system on the bare
metal and virtualize everything else. In this manner we can easily solve the
questions raised up. We do not need a time consuming cloning process for con-
figuration management. We can save an ongoing scientific computing process at
any time, and we can restore and continue it even on another host machine.
One can say, yes, these goals are solved already by various cloud management
systems in corporate environment. So what is the novum on this?

The main difference between the corporate cloud infrastructure running 24/7
and our laboratory environment is that the corporate infrastructure is used only
for serving the virtual machines. However, functions of our student laboratory
are twofold: (1) During the scheduled lab exercises, the workstations act as a
cloud host which serves only the virtual machines owned by the student sitting
in front of the workstation or act as a simple cloud client. (2) While the lab is not
used for teaching, the workstations are acting as a normal cloud host running
computing intensive jobs like a normal HTCondor executing machine.

Our solution, CIRCLE (Cloud Infrastructure for Research and Computer
Labs in Education) is not only harnessing the idle CPU cycles for scientific
computing, but it provides an easy and flexible web-portal for the usage and
the management as well. The user can easily manage their virtual machines and
access the files stored on the online storage. Nevertheless the lecturers can easily
customise a new virtual machine image and share this image with the students.
In this way all the students have the same and clean learning environment which
enables to concentrate on the real task.

In the following sections we present the applied technologies and components
used in our pilot system.

2 Virtualization

Most IaaS (infrastructure as a service) cloud systems are based on virtual
machines. Although the technique is available since the end of 1960’s [3], wide-
spread adoption of x86 based systems in the server segment made it almost
entirely disappear. Later, some vendors started implementing different software
based solutions for virtualizing operating systems or even emulating CPUs.
The renaissance of virtualization began with manufacturers extending the x86
instruction set to support low-overhead virtualization. The currently available
such extensions are Intel VT-x and AMD-V.

Current popular techniques are operating system virtualization and full hard-
ware accelerated virtualization. The former typically takes shape in chroot envi-
ronments and in namespacing of some kernel resources. This does not even
allow running different kernels, nor different kinds of operating systems. The
latest technique is full hardware accelerated virtualization, which is based on the
CPU support for isolating the concurrently running instances. This approach is
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normally extended with paravirtualized device drivers, which eliminate the need
for emulating real world storage and network controllers.

Hardware accelerated virtualization requires CPU support, however it is not
available currently on the low-end product line of the main x86 CPU manu-
facturers: some models of Intel Atom, Celeron, and Pentium. This hardware
acceleration provides a near-native performance for HPC applications [12].

Currently there are many competing full virtualization solutions. The most
notable free ones are KVM and XEN. At the time of our decision, the installation
of a XEN hypervisor required modifications to the Linux kernel, and it was
unacceptable for us. This is no longer the case, but we are satisfied with KVM.

Additionally, we use all KVM functions through the libvirt library, which
provides an abstract interface for managing virtual machines [9]. This has the
benefit of theoretically flawless migration to other hypervisors like XEN, ESXi,
or Hyper-V [1].

Physically accessible computers are normally used with directly attached
devices like display and keyboard. These devices are emulated by KVM, and
you can access virtual machines’ consoles via the VNC protocol. This is useful
for installing the operating system or troubleshooting, but Windows and Linux
both provide better alternatives for remote access.

We use the remote desktop protocol (RDP) for accessing Windows hosts, and
secure shell (SSH) for text-based Linux machines. Remote graphical login to X11
servers has always been available, but this is not reliable even on local network
connections because it is stateless. We use NoMachine NX [8] instead.

3 Networking

Most virtual machines in a cloud have a network connection. On the physical
layer, the KVM hypervisor provides a virtual network interface controller, which
is an emulated or paravirtualized NIC on the side of the guest operating sys-
tem, and a virtual NIC on the host side. The communication between the two
endpoints is KVM emulating the PCI signals to the virtual machine (emulated
case), or the virtio protocol, which is optimized for software implementation
(paravirtualized case).

Virtual machines are connected to virtual networks provided by manageable
virtual switches (Fig. 1). The Open vSwitch [7], what we are using, is a high
performance multi-layer virtual switch with VLAN, QoS and OpenFlow support,
merged into the mainline Linux kernel.

Virtual networks do not necessarily differ from physical ones in the upper
layers. The most important different condition is the frequency of changes. Our
system from the point of traditional physical networks’ view is like someone
changes the cabling hundred times in the middle of the day. The developed
CIRCLE networking module consists of an iptables gateway, a tinydns name
server and an ISC DHCP server. All of these are configured through remote
procedure calls, and managed by a relational database backed object model.
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Fig. 1. The structure of the network Fig. 2. Technologies used for CIRCLE

Our solution groups the VMs to two main groups. The public vm-net is for
machines which provide public services to more people, the private vm-net is
for those which are used only by one or two persons. Public vm-net machines
have public IPv4 and IPv6 addresses, and are protected with a simple ipset-
based input filter. On the private vm-net, machines have private IPv4 and public
IPv6 addresses. The primary remote connection is reached by automatically
configured IPv4 port forward, or directly on the IPv6 address. As connecting
to the standard port is a more comfortable solution, users who load our web
portal from an IPv6 connection, get a hostname with public AAAA and private
A records. If the user has no IPv6 connection, we display a common hostname
with a single A record, and a custom port number. As IPv6 is widely available in
the central infrastructure of our university, IPv6-capable clients are in majority.
Users can open more ports, which means enabling incoming connections, and
setting up IPv4 port forwarding in the background.

4 Storage

Virtual machines’ hard drives are provided for the hypervisors as read-write
NFS shares managed by OpenNebula. Our cluster has a legacy InfiniBand SDR
network, which is despite its age much faster than the gigabit Ethernet network.
InfiniBand has its own data-link protocol, and Linux has mainline support for
remote direct memory access (RDMA) over it, which provides near-local access
times and no CPU load [2]. Unfortunately this kernel module causes random
cluster-wide kernel panics, which is unacceptable in a production system. We
decided to use NFS4 over IP over InfiniBand, which also provided near-local
timing. One problem remained: intensive random writes made the local file access
on the NFS server slow (both with RDMA and IP over IB). Switching to the
deadline scheduler solved this.
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Disk images are stored in qcow2 (QEMU copy on write) format, which allows
images with large free space to be stored in a smaller file, and also supports
copy-on-write differential images. The latter feature is used for virtual machines,
which eliminates the need of copying the whole base image file before launching
a new instance. Saving a template consists of merging the base and differential
images to a single one.

Since our usual virtual machines have temporary disks, there is a common
need for a permanent online storage that can be easily accessed. It allows the
user to use the same resources from different virtual computers or even from
home, and it helps sharing data between virtual machines and local computers
on a simple interface.

Our solution—CIRCLE File Server—is a multi-protocol file server, that runs
on a virtual machine. Each user gets an amount of disk space, which is auto-
matically mounted on our prepared appliances.

Windows VMs access the storage over SMB/CIFS. The authentication is han-
dled by CIRCLE with automatically generated passwords. For security reasons
we do not allow SMB access outside vm-net. Linux guests mount the remote files
with SSHFS [6], a userspace SSH/SFTP virtual file system. For virtual machines
the manager automatically generates key-pairs. SFTP service is also accessible
over the internet. Users can set public keys on the web portal and immediately
access their folder.

It is also possible to manage files on the cloud portal with an AJAX based
web interface. Its backend consists of a Celery worker and an Nginx httpd.

5 Putting It Together

The main goal was to give a self-service interface to our researchers, lecturers,
and students. Cloud management frameworks like OpenNebula and OpenStack
promise this, but after learning and deploying OpenNebula, we found even its
Self-Service portal’s abstraction level too low.

Our solution is a new cloud management system, called CIRCLE, built up
from various open source software components (Fig. 2). It provides an attractive
web interface where users can do independently all the common tasks including
launching and managing/controlling virtual machines, creating templates based
on other ones, and sharing templates with groups of users.

This cloud management system is based on Django [5]. This popular Python
framework gives us among other things a flexible object-relational mapping sys-
tem. Although the Django framework is originally designed for web applications,
the business logic is not at all web specific. That’s why it is easy to provide com-
mand line or remote procedure call interfaces to the model.

As the primary interface is web, which is in some aspect a soft real-time
system, the model can not use synchronous calls to external resources, nor exe-
cute system commands. This is the reason why all remote procedure calls are
done asynchronously through a standard task queue. Our choice is the Celery
distributed task queue. This is the most popular among such systems, which
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are integrated with Django. Celery is configured to use an implementation of
AMQP [10] protocol—called RabbitMQ—as its message broker.

Celery workers set up the netfilter firewall, the domain name and DHCP
services, the IP blacklist, execute file server operations, and also communicate
with OpenNebula. This distributed solution enables to dynamically alter the
subsystems.

In the opposite direction, some subsystems notify others of their state tran-
sitions through Celery. Based on this information further Celery tasks are sub-
mitted, and the models are updated.

CIRCLE manages the full state space of the resources. Some of it is also
stored by the underlying OpenNebula, but most of this redundant information
is bound to its initial value as OpenNebula does not handle changes in meta
information. This behavior arises of design decisions, and not expected to be
improved. The thin slice of OpenNebula used by our system is continuously
shrinking, and we intend dropping OpenNebula in favor of direct bindings to
libvirt and the also considerably customized storage and network hooks.

6 Execution on Workstations

The cloud system at our institute takes a big role in education and in general
R&D infrastructure, but there is a significant demand for high-throughput scien-
tific computing. This requirement usually appears in form of many long-running,
independent jobs. On most parts of the world there is no fund to build dedicated
HPC clusters with enough resources for these jobs.

The highest load on the cloud takes place during office hours and the evenings,
in more than half of the time we have many free resources, so it is possible to
run these jobs on low priority virtual machines in the cloud. If interactive load
is increasing, we can even suspend these machines, and resume them later.

Running scientific batch jobs on student laboratory computers also has a long
history. Our idea is to run some of these jobs on virtual machines in the computer
laboratories overnight and on weekends. We can suspend in the morning all
virtual machines to a memory image, and resume on the same or some other
hypervisor next evening. This solution makes possible to run individual jobs
virtually continuously through months or a year, without any specific efforts.
This is important because of our observation that the runtime of similar jobs have
a high standard deviation, and it also protects against losing the partial result
of months long computations in case of hardware or power failure. HTCondor
has a similar result with its checkpoint support, but it needs to modify the
software, which is often impossible or sometimes the users are not able to do
this modification by themselves.

To be able to resume suspended machines, we have to copy back the differ-
ential image and the memory dump. Our choice for this is rsync.

The lab network is exposed to unauthorized access, so we have to limit access
to confidential material. As a physically accessible general purpose workstation
does not currently provide a way to reliably authenticate itself to a server, nor
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to protect the stored data, we can not employ any solution against these attacks
other than security through obscurity and not using these systems for any con-
fidential executions.

Another important aspect is energy efficiency. We have successfully used
HTCondor to automatically turn on and off the compute nodes of a HPC cluster.
This is also working with Wake on LAN and SSH on the workstations.

7 GPUs in the Cloud

The most significant HPC performance in our student laboratories is provided by
the mid-level GPUs in all the workstations used for teaching computer graph-
ics. There is a technology we applied successfully to use GPGPUs from the
dedicated cluster’s virtual machines: PCI passthrough [11]. However, this tech-
nology requires both CPU and motherboard support of IOMMU, which is a
high-end feature nowadays. The implementations are called Intel VT-d and
AMD-Vi technologies, and they appear in the server- and high-end workstation
segments.

As none of our laboratory computers support IOMMU, we have to find a
different solution. The first one is using rCUDA, which is a small framework
makes possible to run the host and device side of a CUDA program on different
hosts, communicating over TCP/IP or InfiniBand network [4]. With this, we can
launch user-prepared virtual machines on each host, and run the device code via
local (virtio-based) network on the hypervisor. rCUDA is also capable to serve
more clients with a single device. This is useful if the host code uses the GPU
only part time.

The other option is using directly the host machine to execute GPGPU jobs.
This is a simpler approach, but necessarily involves a more complicated sched-
uler. Our choice for this type of problems is HTCondor, which can manage this
scenario without much customization. The disadvantage is that the user can not
customize the host-side operating system.

8 Conclusions and Future Plans

Our cloud system is built up in a modular manner. We have implemented all
the main modules which enabled us to set up a production system. The system
is now used as an integral part of our teaching activity, and also hosts several
server functions for our department to use. At the time of writing this paper,
there are 70 running and 54 suspended machines, using 109 GiB of memory and
producing not more than 3 % cumulated host cpu load on the cluster. In the
first two months’ production run, more than 1500 virtual machines have been
launched by 125 users.

The students found the system useful and lecturers use it with pleasure
because they can really set up a new lab exercise in minutes. The feedbacks from
the users are absolutely positive, which encourages us to proceed and extend the
system with the GPGPU module. We are working on making it fully functional,
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and releasing the whole system in an easily deployable and highly modular open
source package. We are planning to finish the current development phase until
the end of August.
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Abstract. Windows Azure provides an IaaS cloud service with virtual
machines, web and worker roles and practically unlimited, pay-as-you-go
storage options which can be used for applications requiring big data or
parallel computing which is important in many fields including biology,
astronomy, nuclear physics and economics.

When moving an application or computation task to the cloud it
is very important to perform proof of concept performance testing and
to carefully choose the proper building blocks for the given tasks. Win-
dows Azure provides multiple data management options with a relational
SQL database for transactional data access, Azure Tables for auto scal-
able storage of unstructured data, and a blob storage for storing large
amounts of binary data which is easily mountable to a given virtual
machine.

In this paper we present a general performance analysis of the Win-
dows Azure cloud with focus on cloud storage options. We present an
environment to perform automated testing of the major features of Azure
storage and we also present the preliminary results and suggestions
regarding the usage of the different services.

1 Introduction

Recently the cloud computing paradigm [2] has led to novel solutions for stor-
ing and processing data both in the industry and in the academic world. Any
resource-intensive task may be moved to the cloud which provides scalable and
practically unlimited resources where the provisioning of 1000 virtual machines
for one hour costs as much as provisioning one instance for 1000 hours. Many
companies including Amazon, Google, HP, IBM and Microsoft offer public cloud
infrastructures available to anyone providing virtual machine instances, novel
storage services and traditional database solutions among other enterprise
solutions.

The use of public cloud for scientific calculations in many fields is a logical
consequence of the requirement of both large scale data storage options and par-
allel computing. Clouds provide a cheap alternative to specialized clusters and
supercomputers. Amazon Web Services provides public data sets in a form of
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a centralized repository which can be accessed in a few minutes and are com-
pletely free [1]. These datasets contain terabytes of data from a wide spectrum of
domains including biology, astronomy, economics, chemistry, mathematics and
geography and are freely available with pre-configured Amazon EC2 instances.

The Windows Azure cloud provides Infrastructure as a Service (IaaS) and
Platform as a Service (PaaS) components that support parallel computing and
storage of large data. The platform provides novel storage options for large binary
data in blob storage, Tables storage with NoSQL capabilities for unstructured
data, and a queue service for asynchronous communication between elements of
a distributed system. Besides the large and scalable solutions Azure also provides
a full featured traditional database-as-a-service, which is built on technologies of
SQL Server and provides a traditional interface. The Azure platform is already
used in various scientific projects, [8] but the proper storage solution must be
carefully chosen for any application.

In this paper we introduce the storage options for the Azure cloud and provide
a solution to benchmark the PaaS components of the Azure platform and present
our first results and recommendations for the use of storage options.

The rest of the paper is organized as follows. In the second section, related
work is examined. In the third section, the Azure platform is introduced, the
measurement architecture is shown and finally the evaluation of the results is
provided. The fourth section summarizes the results.

2 Related Work

In the past few years cloud computing has drawn attention from many researchers.
Back in 2008 Vaquero et al. analyzed 22 different definitions for cloud computing
and compared the paradigm with Grid technology [11].

Performance of cloud computing has been studied by many research groups.
Many investigated the low level performance of virtualization in general and the
performance of Xen, which is used for virtualization by many public and private
cloud providers [3,7].

Others compared the performance of major public IaaS cloud providers in
terms of network capabilities, memory, disk and CPU utilization, binary object
storage and queue access [6]. Li et al. focused on comparing the common services
provided by the public providers with an application that could be deployed on
a virtual machine of the cloud. We present a distributed testing application that
is freely scalable and provides testing of big parallel workloads on Azure.

Jackson et al. provide a comparison of the performance of Amazon EC2 and
the standard supercomputing centers and showed that there is a correlation
between the amount of time a given application spends communicating through
network and its performance on Amazon EC2 [5]. The use of Amazon EC2 for
scientific calculations was analyzed in aspects of virtual machine performance,
resource acquisition and virtualization by Ostermann et al. [9].

There are papers about the performance of Windows Azure, [4] but storage
services over went a major performance change in December of 2012 so none of
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them provide up to date information about the capabilities of the PaaS storage
service. Additionally our goal was to compare the performance of SQL Database
with Azure Tables storage.

Windows Azure has been used in scientific computation in many fields includ-
ing biology [10], where it has been shown that moving computation to data,
supporting large data sets by the cloud simplify the implementation of some
problems over traditional systems.

3 Performance Measurements in Windows Azure

This section introduces the Azure platform, the measurement architecture and
the results of the measurements.

3.1 Windows Azure

The Windows Azure platform is the public cloud provider of Microsoft. It offers
both Linux and Windows based virtual machines as well as scalable compute
instances, known as roles. The role instances can be categorized into Web Roles,
which have a public interface, run a preconfigured IIS and are accessible via
HTTP or HTTPS and Worker Roles that typically run background computation
tasks. Azure also provides components that aid communication between roles
and solutions to store terabytes of data as well as an SQL database as a service
component for relational data.

The Azure Blob storage provides storage for binary data and metadata in
containers. The container provides a logical grouping and defines the level of
sharing. There first of the two types of supported blobs, block blobs are targeted
for streaming workloads, have a maximum size limit of 200 GB and are updated
with commit-based semantics. Each blob consists of a list of blocks, which can be
modified by first uploading the new uncommitted blocks for the blob file, then
a single call with the list of the new blocks will commit all changes on the blob.
Page blobs may be files up to 1 TB of size and support random write workloads.
Each page blob consists of an array of pages, which can be immediately updated
and support change in only a portion of the file.

The Azure Tables service allows storage of enormous amounts of data with
efficient querying and insertion. Each created table contains a set of entities
which can hold up to 255 properties where the size of the entities must be under
1 MB. A single table may contain different types of entities the only restriction
is that each entity within a table must have a unique PartitionKey and RowKey.
These are the only two columns in a table that are indexed, further on the
partition key is used by the Tables service to distribute data across the storage
instances automatically. Entities with the same PartitionKey within a table will
always be stored on the same instance.

The Windows Azure SQL Database is a relational database with size up to
150 GB with almost full Transact-SQL support, including creating and execut-
ing stored procedures, functions, transactions and triggers, supporting security
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via multiple logins and users, and a configurable firewall. The database pro-
vides federation via data partitioning to support larger data set sizes, but lacks
transaction support over multiple databases.

3.2 Measurement Architecture

When choosing the proper environment for testing the Azure service it was very
important to keep certain requirements in mind. For testing the capabilities of
Azure storage it is very important for the network connection to be sufficient,
because it could easily become a bottleneck when testing. It is also important
to have multiple instances to run tests to provide multiple endpoints. Otherwise
load balancers, firewalls or other network components may throttle connections
or filter traffic in order to defend against denial of service based attacks. Another
important aspect is for the clients to store all measurement data persistently
and in a way that does not limit the measurement itself. The measurement data
should be collected independently and should be converted to in an easy to
process form.

Our constructed measurement system is built from three layers of components
(see Fig. 1). The input layer consists of a scheduler role, which is an Azure Web
Role which provides a web service interface and accepts a set of queries and
tasks that are to be run on the system under test. The virtual machine places
these received tasks in an Azure Queue and are later processed and executed by
one or all of the tester roles with given amount of execution counts.

The number of tester roles can be scaled up from the Azure Management
Portal dynamically during the execution of the test. The results of the given test
(elapsed time, query identifier, number of results) are logged using Windows
Azure Diagnostics. The data this way will be automatically stored in memory
or on the local computer and will be periodically transferred to a given storage
account by a different process. Data here is stored in a standard form in Azure
Tables.

The third layer (containing the report role) reads this table and parses the
log entries. It also puts the entries in chronological order and converts the data
to a standard csv form. The test results are stored in merged and consolidated

Fig. 1. Measurement architecture
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format on a blob storage and are downloadable for later processing. It is not
required to run the input and the output layer on the same cloud environment
as the tester roles.

3.3 Azure Storage Evaluation

The first goal of our research was to test the capabilities of Azure Tables storage
compared to Azure SQL Database. Azure Tables promises to provide a scalable
NoSQL service which is simultaneously accessible by many clients. The known
advantage of SQL Database is the full potential of a relational database and
the ability to add additional indexes and constraints on the dataset. The other
advantage is the power of SQL query language, with aggregate functions, wild-
cards and joins. The disadvantages are that in SQL only less than 100 GB data,
has limitations in parallel executable queries and costs more in Azure. For the
Tables storage one must choose the PartitionKey and RowKey carefully, because
it determines the indexes, the placement of data and implicitly the performance
of queries.

In our first experiment we converted a free flight database containing 10 million
records of world-wide flight data to a proper Azure Tables and an SQL table for-
mat. We filled the database continuously with batch insertions and queried the
database with four different types of queries simultaneously. The first type of query
selected a single row from the database which was identified by the primary key in
SQL and by the PartitionKey in Azure Tables. The second type of query selected
rows via a portion of the primary key (PartitionKey) and via a portion of an other
indexed row (the RowKey in Azure Tables). The third query selects multiple rows
based only on an indexed row (in the case of Azure Tables only the RowKey). The
fourth query selects rows based on a portion of the primary key and a non-indexed
column.

The test was executed multiple times with different storage accounts across
regions and we got similar results with each run. One instance was continuously
inserting entities with multiple threads into the given data provider while other
10 instances where executing queries parallel. The experiments showed that in
case of Azure tables the insert operation is slightly faster than in case of the
SQL database (see Table 1). The first, second and the last query ran with no
significant difference in case of a few rows and millions of rows. Both Azure SQL
and tables performed well with few million rows.

Based on only these numbers only there is no real gain in using Azure Tables
over SQL Database. But there is one more aspect that must be examined.

Table 1. SQL and Tables performance (Milliseconds/Returned row)

Insert 1. Query 2. Query 3. Query 4. Query

Azure Tables 4 102 620 274399 56
SQL database 17 995 1015 14767 7.16
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Fig. 2. Left: The 3. Query in SQL, horizontal: number of entities in database, vertical:
retrieval time for a single row (in milliseconds), Right: The 3. Query in Azure Tables,
horizontal: number of entities in database, vertical: retrieval time for a single row (in
milliseconds)

The percent of failed requests in case of the SQL database was close to 10 %
while the number of failed requests in case of the Tables test was under 0.1 %.
One SQL Database can only execute 180 worker threads simultaneously, so all
other connection attempts will be rejected. Based on the documentation Azure
Tables detects denial of service attacks, so it may filter incoming requests, but
in case of a slowly growing load it is able to server 20,000 entities per second,
though we where not able to get near this limit (our maximum value was 9,000
entities per second) due to the lack of instances in our tests.

The other significant difference was the round trip times of the third query.
The execution of this query required a full table scan and the size of the returned
data is also significant. Azure Tables stores data on multiple servers and can only
return data in batches containing a maximum of 1000 entries. A single query
is executed relatively fast (within a few seconds), but with more requests the
runtime of the query linearly grows with the number of parallel requests. If we
look at the results when calling the SQL Database there is a significant difference.
After a certain amount of data is in the database the retrieval time per row is
relatively constant (see Fig. 2). The exact cause of the phenomenon requires
more research, but it is highly probable that it’s due to the fact that only 180
parallel queries are served by the database simultaneously, while during the high
response times Tables was serving more than 2,000 concurrent requests.

4 Conclusion

In this paper we presented a framework that may be generally used to exe-
cute any kind of performance tests in the Azure cloud. The application may be
deployed in the same data center as the system under test thus providing low
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network latency. The architecture provides option to scale to virtually any num-
ber of instances and can execute various types of tasks queued by a scheduler.
The results are stored persistently in Azure Tables and are later processed by a
different virtual machine.

By executing tests we ascertained that storing data in the novel storage
options of Azure can be very efficient, the throughput of 20,000 entities per sec-
onds can be reached with enough parallel endpoints with an ingress bandwidth
of 10 GB/s and egress bandwidth of 15 GB/s. The greatest challenge is to choose
a proper PartitionKey and RowKey for stored data. The format of the stored
data specifies the queries that will run efficiently on the table service due to
the fact that additional indexes can not be added to the entities. It is also very
important to consider the PartitionKey in particular, because entities with dif-
ferent values may be stored on different instances, so queries that affect multiple
PartitionKeys may have to call multiple server instances. The other important
factor when choosing Azure Tables over SQL may be the fact that it supports
extremely high values of simultaneous requests. On the other hand the Azure
SQL Database provides multiple indexes, stored procedures and database con-
straints. If our dataset needs these kinds of capabilities then we should consider
using a federated database to achieve higher degree of parallelism.

Acknowledgments. The work reported in the paper has been developed in the frame-
work of the project “Talent care and cultivation in the scientific workshops of BME”
project. This project is supported by the grant TÁMOP-4.2.2.B-10/1–2010-0009.
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Abstract. The speed of execution of resource intensive application
depends mostly on the performance of the underlying hardware and
network infrastructure. The overall performance of complex Grid appli-
cations that include different types of processing in the same Grid job
is difficult to predict reliably. In this paper we define several key per-
formance indicators and collect data from the execution of a resource
intensive environmental modeling application on the regional resources
of the European Grid Infrastructure. The application is based on the
Models-3 system, consisting of three components: meteorological pre-
processor MM5, chemical transport model CMAQ and emission pre-
processor SMOKE. The computations are resource intensive with respect
to the input and output data which stress both the computational and
data capabilities of the resource centers. In the paper we analyze the
relative importance of these indicators and draw conclusions, regarding
the optimal use of available resource centers.

1 Introduction

The speed of execution of resource intensive application in Grid environment
depends mostly on the performance of the underlying hardware and network
capacities. Even more, the overall performance of the complex Grid applications
that include different types of processing (MPI processing, I/O data transfer
processing, etc.) in the same Grid job is difficult to predict reliably. The compu-
tations of the resource intensive application can stress both the computational
and data capabilities of the underling infrastructure. Example of resource inten-
sive application is presented in [1]. The application requires “extensive simu-
lations with up to date highly sophisticated numerical models” and therefore
strongly rely on the computer resources of the Grid infrastructure. But is the
Grid infrastructure well-balanced for resource intensive application? The answer
of this question motivates us to analyze the performance of the regional Grid
resources, especially for resource intensive applications. For the study we use an
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Table 1. Computer requirements for 3-day real time simulations [6]

Domain Computational time HDD(input/output) (GB)

CMAQ on 4 CPUS 8 h 00 min 28.84
CMAQ on 8 CPUS 6 h 00 min 28.84
CMAQ on 16 CPUS 4 h 00 min 28.84
CMAQ on 32 CPUS 3 h 00 min 28.84

environmental modeling application and the regional SEE-Grid infrastructure
which is a part of the global European Grid Infrastructure. The environmental
modeling application [2] is based on the Models-3 system, which consists of three
components:

– MM5 [3] a fifth generation PSU/NCAR Meso-meteorological Model, used as
meteorological pre-processor;

– CMAQ (Community Multiscale Air Quality System) [4] the Chemical Trans-
port Model (CTM) of the system;

– SMOKE (Sparse Matrix Operator Kernel Emissions Modelling System) [5]
the emission pre-processor of the Models-3 system.

The CMAQ component processes the input meteo data (MM5) and the input
emission data (SMOKE) to produce output data. The CMAQ is the resource
intensive part of the application with respect to the computational resources;
the MM5 and the SMOKE are resource intensive with respect to the storage.
In [6] the computer requirements are presented for 3-day real time simulations
for the application (Table 1). This experimental data are achieved from running
the application locally on the HPC cluster of IICT-BAS. The capabilities of
the HPC cluster are described in [7]. The application was tested on 4, 8, 16,
and 32 CPUs in parallel mode. The total input/output data of the application
are 28.84 GB. As it can be seen, the computer resource requirements are quite
big. In [6] the authors also conclude that “the successful execution of the jobs
on the Grid is quite probable”. However, such tests were not done. In order to
test the performance of the regional Grid infrastructure we define several key
performance indicators for the environmental modeling application and collect
data from its execution into the Grid. The key performance indicators (KPI) [8]
are key indicators that are used to monitor the overall performance of a system.
In the paper we analyze the relative importance of the defined indicators and
draw conclusions, regarding the optimal use of available resource centers.

2 Running Application on the Regional Grid

The environmental modeling application is compiled and implemented with MPI
and requires Intel compiler and MPI libraries in order to be run. The MPI
implementation is used to achieve better performance for the application. The
application requires:
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– mpiexec-0.83-intel a replacement program for the mpirun script. It is used to
initialize a parallel job from within a PBS batch [9];

– NetCDF (network Common Data Form) a set of software libraries and
machine-independent data formats that support the creation, access, and shar-
ing of array-oriented scientific data;

– Intel Compiler (Version 11.1) a Intel compiler for Linux that includes C com-
piler, C++ compiler, and Fortran compiler;

– Intel MPI Library for Linux (Version 4.0.0.028).

Taking into account these requirements an appropriate JDL file and bash scripts
were developed. Because of the resource intensity of the application, especially
for the input/output data operations, the traditional job submission cannot be
applied for the application. The maximum size of the InputSandbox and the
OutputSandbox files for a job usually is limited to 100 MB. The size can vary
according to the WMS settings, but nevertheless it is far away from 8 GB (which
is the approximate size of the archive with all necessary data and libraries for
the application). In order to submit the environmental modeling application into
the Grid we use the following approach:

1. Finding appropriate Grid sites, satisfying the requirements of the application
2. Creating archive with all necessary data and libraries (approximate size of

the archived file is 8 GB)
3. Copy the archived file to the site storage (SE)
4. Arrange the KPIs into a bash script
5. Submit the script into the Grid
6. Copy the archived file from site storage to the worker node (WN)
7. Execute the application
8. Collect data for the KPIs
9. Archive the output data and copy them back to the site storage (SE)

10. Get the output data

As it can be seen the essential part of the successful job execution is the successful
file transfer.

The Grid sites in the regional Grid infrastructure that respond to the above
JDL requirements are:

Table 2. Sites’ grid resources

Site name Computing element (CE) Storage element (SE)

AEGIS01-IPB-SCL ce64.ipb.ac.rs:8443/cream-pbs-seeGrid dpm.ipb.ac.rs
BG01-IPP cr1.ipp.acad.bg:8443/cream-pbs-envir se001.ipp.acad.bg
GR-10-UOI cream01.grid.uoi.gr:8443/cream-pbs-

envir
se01.grid.uoi.gr

HG-06-EKT cream02.athena.hellasgrid.gr:8443/
cream-pbs-envir

se01.athena.hellasgrid.gr

MK-03-FINKI ce.hpgcc.finki.ukim.mk:8443/cream-
pbs-env

se.hpgcc.finki.ukim.mk
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– AEGIS01-IPB-SCL - Located in Belgrade, Serbia;
– BG01-IPP - Located in Sofia, Bulgaria;
– GR-10-UOI - Located in Ioannina, Greece;
– HG-06-EKT - Located in Athens, Greece;
– MK-03-FINKI - Located in Skopje, Macedonia;

The overall information for the Grid resources of the sites is shown in Table 2.
For the job submission we are using the env.see-grid-sci.eu virtual organization.

3 KPIs Definition

The key performance indicators (KPI) are key indicators that are used to monitor
the overall performance of a system. The KPIs are extremely useful for detecting
and distinguishing the performance issues in a system or in an infrastructure.
Usually, KPIs measure the performance of the system according to previously
defined metrics. In the context of the Grid infrastructure, example KPIs could
be the average time for job submission, the average time for job execution, the
number of failed jobs on a given site, etc. Taking into account the approach men-
tioned above we define KPI measurement for each subtask of the approach. The
subtask description and according KPI measurement are presented in Table 3.

For each subtask we measure the average time necessary for task finalization.
Different scenarios are possible. For the purposes of the current investigation we

Table 3. KPIs definitions

Subtask description KPI measurement

Copy the archived file to the site storage AVG time to transfer
Copy the archived file from site storage AVG time to transfer
to the worker node
Unzip the archived file AVG time to unzip the file
Execute the CMAQ application AVG time for execution
Archive the output data AVG time for archived
Copy the archived data back to the site storage AVG time to transfer
Get the output data AVG time to transfer

Table 4. KPIs scenarios

KPI name KPI measurement Scenarios

UI FT SE AVG time for file transfer From UI to the site SE
UI NT SE AVG speed for file transfer From UI to the site SE
SE FT WN AVG time for file transfer From site SE to the WN
WN UTAR AVG time to unzip the file Unzip the file on WN
WN EX JB AVG time for execution CPU 4, CPU 8, CPU 16
WN TAR AVG time for archived Make archive on data output
WN FT SE AVG time for file transfer From WN to the site SE
SE FT UI AVG time for file transfer From site SE to the UI
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Table 5. Average time for each KPI in minutes

N Site name AEGIS01-IPB-SCL BG01-IPP GR-10-UOI HG-06-EKT MK-03-FINKI

1 UI FT SE 4 7 5 14 7
2 SE FT WN 5 5 4 3 13
3 WN UTAR 13 7 15 14 4
4 WN TAR 13 29 30 15 22
5 WN FT SE 11 14 10 12 13
6 SE FT UI 5 6 4 3 15

use the KPIs and the scenarios presented in Table 4. All of the measurements in
each scenario, except UI NT SE are in minutes, rounded to integer. Also other
KPI’s can be defined, for example measuring the time for application execution
on 16 CPUs and compare it with the time for execution on 2 WN with 8 CPUs.
This however is a matter of further investigation.

4 Performance Analysis of the Regional Grid

In Table 5 the results from measurement of all KPIs are shown: for file transfer
from the UI - gw.ipp.acad.bg to the site storage of each sites (UI FT ST), for
file transfer from the site storage to the site WN of each site (SE FT WN), for
the time which is needed to unzip the archived file of the application on the
WN of each site (WN UTAR), for the time which is needed to create archive of
the output file on the WN (WN TAR), for file transfer from the WN to the site
storage of each sites (WN FT ST) and for the file transfer from the site storage
to the UI - gw.ipp.acad.bg (SE FT UI).

The general observations are that the average time for file transfer from
the UI to the site storage of each site is around 7 min. The file transfer is an
operation that depends on the network and the site storage state. Very slow file
transfer can be caused by some temporary network issues or storage problems.
An example for detected temporary network issues is the site HG-06-EKT. The
average time for file transfer from the UI to the SE of the site is around 14 min
(UI FT ST). From the second indicator (SE FT WN) however, we can see that
the time for file transfer from the SE to the WN for the site is around 3 min.
These values show that SE issues seem unlikely. In order to prove network issues
we do further tests and measure the speed for file transfer from the UI to the
site storage of each site. The results (Table 6) shows us that at the time the test
were done the network transfer from UI to the SE of the site HG-06-EKT indeed
was slower than the network transfer to the other sites.

Furthermore, the average time for file transfer of each SE to the according
WN of the site (SE FT WN) is around 6 min (Table 5). However, this is not the
case for the site MK-03-FINKI. This is another indication for existing temporary
network or HDD problems. The difference from the previous case is that these
issues concerns the local sites’ infrastructure. They are three possible reasons
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Table 6. Network performance (MB/sec)

Site Name AEGIS01-IPB-SCL BG01-IPP GR-10-UOI HG-06-EKT MK-03-FINKI

UI NT SE 60 22 25 12 20

Table 7. Overall time - I/O operations

Time AEGIS01- BG01-IPP GR-10-UOI HG-06-EKT MK-03-
IPB-SCL FINKI

Overall from UI to WN 22 19 24 31 24
Overall to WN from UI 29 49 44 30 50
Overall Time 51 68 63 61 74

for that: SE issue, WN issue or network connectivity problem between the SE
and the WN of the site. The values for the third KPI (WN UTAR) for the site
show that temporary WN problem of the site seems unlikely. From the first KPI
(UI FT SE) value for the site we can conclude that SE issues also is not the
reason. Therefore, temporary network connectivity problems between the SE
and the WN of the site are very likely.

The measured values for indicators (3) and (4) show us that the process of
archiving and unzipping the archive file to the site WNs is time consuming. We
cans say that on the same WN, the time for creating archive is approximately
twice more than the time which is needed to unzip the archive. From the results -
values for the indicators (1), (2) and (6) for all the sites, except the two ones with
detected issues, we can conclude that the SE file transfer is well-balanced.

If we analyze the overall times in Table 7 we can say that the file transfer
from the WN of each site to the UI is around 40 min (twice more than the overall
time for file transfer from the UI to the WN). The whole overall time for the
transfer from the UI to the WN and back is around 63 min. If we reconsider the
data from Table 1 and the time of 63 min, we can see that the I/O operations
are essential part of the application processing into the Grid. For the case of 32
CPUs we can say that it is 25 % from the whole time, which is needed for job
execution. This is an indication that the current grid infrastructure is not well
balanced for resource intensive applications with respect to the I/O data.

5 Detected Issues

All the issues that were detected during the test can be due to the temporarily
problems in the Grid infrastructure. Nevertheless, they are mentioned in this
section in order to show the relative importance of the KPIs defined in previous
sections. During the tests we come across on two problems. The first problem
the time which have to wait in order to submit a job in to the Grid. The results
are generalized for each site in Table 8. From the data we can say that the sites
GR-10-UOI and HG-06-EKT are most overloaded. We have to mention that all
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Table 8. Waiting time for job submission issue

Site name AEGIS01-IPB-SCL BG01-IPP GR-10-UOI HG-06-EKT MK-03-FINKI

Waiting time 50 2 73 100 74

Table 9. Detected HDD issues

WN (HG-06-EKT) SE FT WN WN UTAR

wn126 12 39
wn126 6 38
wn118 6 14
wn126 4 43
wn138 13 23

of the tests were done with env.see-grid-sci.eu credentials, which can affect the
result. The second problem we detect is that two or more jobs were scheduled
on the same WN. This problem is more essential and can reflect mostly on
the HDD performance, but also and to the network performance. The results
are shown in Table 9. We can see that three of the same application jobs are
scheduled on the same WN. Respectively, this reflects on the KPIs (WN UTAR)
and (WN TAR). Compared with the KPIs for the other WNs (wn118, wn138)
the time for (WN UTAR) on the WN (wn126) is two times more - around
40 min.

6 Conclusions

The defined indicators have their meaning in the terms of Grid computing.
They have been selected for the specific application, taking into account its
specific structure, but could be applied with minor modifications to other sim-
ilar applications. The measurement of the KPIs gives the idea of the current
state of the considered Grid sites, and thus provides guidelines to avoid prob-
lems, associated with the instability of the infrastructure. The current regional
Grid infrastructure is not well balanced for resource intensive applications
with respect to the I/O data. Nevertheless, we can conclude that the over-
all performance of the regional Grid for resource intensive applications is
satisfactory.
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Abstract. The performance of Grid applications may be very unstable,
especially when using workflows for job distribution. This is mainly due
to the Grid overheads, like scheduling and queuing, introduced before the
job is executed on a worker node. Optimization problems using Genetic
Algorithms (GAs) can be easily and efficiently implemented on Grids
using Grid workflows. Due to the file dependencies introduced in the
Grid workflows for GAs, mainly for genetic material interchange, these
overheads are cumulative and thus very noticeable. This problem is also
very evident when the jobs are short compared to the Grid overheads,
i.e. the job spends more time waiting in a queue to be executed than the
execution itself.

In this paper we introduce a framework that enables users to easily
utilize the Grid infrastructure for their optimization using GAs. It allows
a user to preallocate certain number of pilot jobs, and also to dynamically
manage their number for optimal availability of resources during the
optimization process. In this way, once an application starts to execute
the workloads, it will have at least one available pilot for execution of
pooled tasks. This introduces better utilization of the Grid resources, as
well boost the confidence in the infrastructure from users point of view.

Keywords: Parallel genetic algorithms · Grid infrastructure · Pilot jobs

1 Introduction

The Genetic Algorithms (GAs) are widely used for problems which can be solved
by simulation of the process of natural evolution. One feature of these GAs is
that they can run in parallel. This makes them suitable for implementation on a
Grid infrastructure [2]. A Grid computing allows us to use resources from mul-
tiple administrative domains in order to get better performances for executing
complex tasks. But naturally, the resources are shared by many users and appli-
cations and always there are large number of tasks waiting to use these resources.
For this purpose, there are several layers of schedulers at different levels: Cluster,
Grid and Workflow. Because of this, one task might spend more time waiting
to be executed in queues, than its execution time. In cases where applications
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consist of many tasks (dependent or independent), and most of the tasks are
spending their time waiting instead of executing, the overall application is very
inefficient.

Our previous research was focused on overcoming this problem of efficient
execution of Grid Genetic Algorithms (GGAs) by using adaptive workflows
[5,10]. In this paper we further optimize the performance of the Adaptive GGAs
(AGGAs) by introducing a framework that enables an easy implementation of
pilot jobs [3] for its execution. Pilot jobs are increasingly used to improve schedul-
ing and reliability on production grids [11,12]. For performance and reliability
reasons, pilot jobs install the user’s own job management system on the resources
provisioned from the grid, and then execute user tasks through this system. Some
of the common pilot job tools are DIANE [13], glideinWMS [14], GridBot [15]
and DIRAC [12]. Pilot jobs are very useful for achieving better execution times
in several cases of Grid usage, one being workflow applications that have large
number of consecutive small jobs. These applications are mainly parallel algo-
rithms having very coarse level of parallelism, implemented as Workflow grid
applications with large number of small jobs. Due to the need for inter job com-
munication, these jobs need to finish, exchange files and then start all over again.
The pilot job execution of such scenario helps to avoid the subsequent Grid job
overheads when inter job communication is needed.

AGGAs are such applications where pilot jobs can be successfully utilized.
When we submit an optimization problem, we know the number of tasks that
will be executed in parallel at one time. This helps us to plan to occupy a
sufficient number of worker nodes, so before the optimization tasks of the GGAs
are executed, we submit a certain number of pilot jobs. This makes the resource
allocation fairness and efficiency better and easier to manage.

The rest of this paper is organized as follows. Section 2 describes how GGAs
can run using adaptive workflow. In Sect. 3 we present an architecture of the
initial framework. Section 4 presents the results produced by using this frame-
work and comparison between time required for execution of the program with
and without pilot jobs. The last section, Sect. 5, concludes this paper and gives
future development issues.

2 Background Work

The Parallel GAs (PGAs) are extensions of the single population GAs. The well-
known advantage of PGAs is their ability to perform speciation, a process by
which different subpopulations evolve in diverse directions simultaneously. This
kind of PGA is suitable for message passing parallel environments. Another
implementation of PGAs is to implement them as GGAs using Grid workflows
for distribution and file transfer for chromosome migration. Grid workflows repre-
sent a network of interconnected Grid jobs. Interconnected jobs are data depen-
dent, i.e. data output from one job is fed into the dependent jobs for further
processing. This model of parallel execution allows easy and efficient use of the
Grid for data parallelization problems that can be easily divided into parallel
independent jobs [5].
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As shown in [10] the workflow execution performance is very influenced by the
Grid non-deterministic behaviour. Grid represents an environment that behaves
very chaotically, and neither users nor services can predict its behaviour regard-
ing the job queuing times. In [6] they identify waiting times at batch schedulers
as “the most relevant and prevalent source of performance variability”. This
means that big Grid job overheads due to queuing times and Grid heterogene-
ity influences greatly on workflow execution by forcing dependent jobs to wait
for the slowest job (job that due to Grid overheads finishes the latest on an
overloaded cluster). This greatly impacts the level of concurrency, and thus the
speed-up factor of the parallelization.

In our previous research regarding GGAs [5] we have elaborated the differ-
ent approaches for overcoming the problem of Grid overheads. Our solutions
has evolved in several phases, every time obtaining better performance and new
knowledge regarding the Grid workflow execution. The first GGA implementa-
tion was by using DAG workflows, very soon followed by the second implemen-
tation that improved the DAG by optimization of the job description in the
GGA resulting in twice as less dependant jobs. The third implementation used
the High-Level Petri nets (HLPN) for the description of Grid Workflows [1], that
enabled more flexibility in the definition of the workflow [1,8]. The HLPN imple-
mentation of GGA was named Adaptive GGA (AGGA). This paper focuses on
better execution model for AGGA by using Pilot jobs.

The main advantage that the HLPN model gives is the ability to define a non-
deterministic connection between jobs, as opposed to the rigid DAG workflows.
This means that in the AGGA after the submission of the initial wave of Breeder
jobs, the workflow does not need to specify which particular jobs need to finish,
for the migration to take place. Hence the new submission of Migration/Breeder
jobs will not be influenced by the stalling jobs which was the case in DAG
workflows. This kind of non-determinism in the execution strategy can be used
due to the specific nature of the PGAs to be able to produce output and continue
to work with partial or out of order results.

Another ability of the PN workflow model is the availability of conditional
loops, which can enable optimizations to be executed until certain threshold is
met, as opposed to DAGs that have very static nature. In this paper we used a
simpler finishing condition, counting number of finished islands, in order to be
able to compare the performance of the pilot and regular job submission. The
execution of the algorithm is described in detail in [5].

3 The Framework

As mentioned in the introduction, there are several projects that enable users
to use Pilot jobs. We have decided to implement a lightweight, per user Pilot
system in order to be able to better integrate with the Adaptive workflow. Exist-
ing systems are VO oriented, and give small and limited workflow execution
possibilities.

The system is made from three internal parts: Pilot job, Task, and Manager,
and one external module (not part of the framework), an Application.
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A Pilot job [3] is a job which is submitted to the Grid, that is intended
to occupy a computational resource (worker node) and does not execute any
computational task. It is a job that serves as an already allocated worker node
that waits for a task for execution. When a task is assigned to a pilot job, it is
immediately executed, bypassing queuing and workload management services.

An Task is a computational task that is part of a bigger problem that needs
to be executed on the Grid. It is equivalent to a Grid job, for the computational
part, but is executed on the Grid using a Pilot job. It can be defined as a single
“Job” type JDL [4] Grid job and has the following attributes: InputSandbox,
OutputSandbox and ApplicationID.

An Application is the real problem that needs to be solved on the Grid.
It consists of many Tasks, that need to be submitted and computed on the
Grid. Users can submit multiple Applications at the same time. The Application
workflow is independent from the framework and is defined by the problem.

The last part of the framework is the Manager. The Manager is the core of
the system and it is responsible for creation of pilot jobs, monitoring pilot jobs,
matchmaking of tasks and pilot jobs, and the applications. It consists of three
parts: web services, database service, and matchmaker. The web services are
the interface of the Manager with the other components. The database service
is used for application, pilot and task persistence into a database. The third
part, the matchmaker, is used as a gateway between applications and pilots.
It is currently implemented to work as per Application matchmaking using the
policy last come - first served.

The framework is implemented in Java as a Java web application and all
communications are implemented as Web Services (WS). There are 3 main user
oriented scenarios in the framework: Pilot job creation, Task submission, and
Results retrieval. All scenarios are depicted in Fig. 1. As previously mentioned,
and also from the picture, the Application acts as a client in the framework and
initiates all three web services.

The first web service, Pilot job creation, is depicted as the scenario createPi-
lots(number). This web service contacts the Manager as an asynchronous call,
and instructs the Manager to create number pilot jobs for the purpose of the
running application. As a consequence, the Manager starts the creation of the
pilot jobs by contacting the Grid infrastructure using the gLite WMS service.
As a result it retrieves a Grid job identifier that is later used for monitoring pur-
poses. The Pilot jobs that are submitted by the WMS service, run the Pilotjob
part of the Framework. When it starts on a Grid Worker Node (WN), it imme-
diately reports to the Manager using a WS. At this moment, the Manager marks
this pilot job as “available”, and the Pilot can be mapped with a pending Task.

The second web service Task submission is depicted as the scenario submit-
Task. This is also an asynchronous call to the Manager and carries a single task
that needs to be executed by the “available” Pilot jobs. The Manager collects all
submitted tasks and pools them for execution to the specified Application. The
matching between the pilots and the tasks are done only by application ID that
is specified both at Pilot job creation and at Task submission. The Pilot jobs
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Fig. 1. The Sequence diagram of the operations that are performed in the framework

pull Tasks from the Manager. This operation is initiated by the “available”
pilot jobs, and they contact the Manager on a fixed time interval. If there are
no tasks to be executed, the manager instructs the pilot job to try again later.
Otherwise it returns the web service call by sending a selected Task.

The Tasks are represented by a single .zip file which must include .jdl file.
The Manager does not manipulate the task. It only resubmits it to the Pilot
job for execution. Once the Pilot job receives the Task, it unpacks the content
and parses the .jdl file in order to know which files to execute and which files
it should send back as a result from that execution process. Then the Pilot job
starts the execution and reports its new status to the Manager as “running”.
When the execution finishes with success, the results are packed together, and
the achieve is sent back to the Manager, the Task is marked as “done”, and
the Pilot reports again to the Manager as “available”.

The third web service Results retrieval is depicted as the scenario getResults.
This scenario can be used for both for Task status retrieval, and for results
retrieval. The Application submits to the WS the task ID and application ID
and retrieves the results.

The Application implements all workflow logics. It can be a Grid Workflow
Management System that executes the Application workflow and instead of sub-
mitting jobs directly to the Grid WMS, it can utilize the Pilot job framework
for its execution.

4 Experimental Results

In this section we present the results obtained by execution of the framework
on a real problem. The evaluation is based on real optimization problem for
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finding an optimal data warehouse design [10]. To measure the performance
gain of pilot Grid jobs over regular Grid jobs for Adaptive GGAs, the focus of
the evaluation is the measurement of the overall execution time, having fixed
total population size (sum of all islands) and fixed total number of generations.
This approach will guarantee that both executions will be evaluated for the same
computational load. The quality of the solution is disregarded since it will be the
same for both approaches. The tests are performed by using the Java Genetic
Algorithm Framework (JGAP) [7] on the SEE-GRID [9] infrastructure.

In order to better understand the performance gain of the pilot jobs, the
experiments are submitted with two parameters. The first parameter is the pop-
ulation size per job (island). This parameter influences the job execution time
and will give an information regarding the optimal job size for GGA over the
infrastructure. The second parameter is the number of concurrent jobs (num-
ber of islands). This parameter is important for the parallelism of the entire
optimization problem. A higher number of concurrent jobs should give a better
speed-up, but also more jobs introduces more overhead from the Grid. Finding
an optimal level of concurrency is crucial for achieving best performance.

For the performance comparison, we have chosen to solve the optimization
problem having a total population of 1000 chromosomes iterated for 3000 gen-
erations over the population. In order to find the best performance of the opti-
mization process, we keep the product of the two parameters, population size
per island and number of islands, to be always 1000. We have evaluated the
problem for the following cases: 5 jobs with 200 chromosomes per job, 10 jobs
with 100 chromosomes per job, 20 jobs with 50 chromosomes per job and 40
jobs with 25 chromosomes per job. The experiments for all cases are executed in
parallel at the same time, for both pilot and regular jobs. Using this approach
for experiment execution, we will evaluate the performance gain between both
approaches having the same Grid resources, and also the jobs in all cases will
compete for the same resources at the same time.

In Fig. 2 we can see the mean time for execution, and its standard deviation,
of the optimization of 1000 chromosomes in all cases, for both pilot and regular
jobs. The results obtained, depict an evident performance gain when using pilot
jobs. As expected, the overall time of the executions for regular jobs decreases
until it reaches a point where waiting time is longer than the execution time.
At this point the overall execution time start to increase as the concurrency
increases. What is even more important, is that using pilot jobs, the deviation
of execution time is dramatically much smaller than the regular job cases. For
the pilot jobs, the deviation is approximately 4 min as opposed to 3 hours for
the regular jobs.

In order to see the pilot jobs influence of the execution time, in Fig. 3 we
represent the cumulative time in respect to the number of finished jobs. The
depicted experiments presents the cases with 10 concurrent jobs each having
100 chromosomes and 20 concurrent jobs each having 50 chromosomes. The
total number of jobs is 30 for the first case and 60 for the second case. As it can
be concluded, the execution time for the pilot jobs is very close to a straight line,
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Fig. 2. Execution time with and without pilot jobs: (a) mean time (b) stdev

Fig. 3. (a)10 parallel jobs, 100 gen. per job (b)20 parallel jobs, 50 gen. per job

without big jump, that results in more stable and predictable total optimization
time. On the other hand, the regular jobs line experiences large jumps from time
to time, that finally result in less predictable overall time and the final results
have large standard deviation.

The nature of the pilot jobs is to occupy resources on the infrastructure and
wait for the tasks, this leads to inefficient utilization of resources. For this reason,
we have measured the average idle time per pilot job. The results show that the
average idle time for each of the four testing cases (5, 10, 20 and 40 concurrent)
pilot jobs are 7 min, 1 min, 20 s and 1 min respectively. This is very low compared
to the overall execution time, or on average 5 %.

5 Conclusions and Future work

In this paper we have shown an implementation of GGA using Pilot jobs in
Adaptive Grid Workflows. We have defined a Framework for easy implementation
of pilot jobs, and used it to implement the GGAs. The experimental results are
very promising and show that the new approach using pilot jobs gives both
better results in relation to the overall performance of the optimizations and
better stability and predictability of the execution time. Also we have analysed
the dependence of the execution time on the number of the parallel tasks and
the job size (single task execution time). Even though these parameters are very
influenced by the current load on the Grid infrastructure, one can easily predict
the state of the infrastructure and dynamically adjust the parameters.

Our future work will be focused on defining a model for adaptive parame-
ter adjustment depending on the past execution statistics of a single workflow.
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We believe that such models will allow users to achieve best performance of
GGAs and also will relieve the users from dealing with Grid related details and
focus on their optimization problems.
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Abstract. The anharmonic CH stretching vibrational frequency was
calculated for a dilute solution of fluoroform (CF3H) in liquid kryp-
ton at 131 K from classical Monte Carlo (MC) simulations followed by
electronic structure calculations (at various levels of theory, including
B3LYP, MP2 etc.) for small clusters including fluoroform and few sol-
vent atoms residing in its neighborhood. Nuclear dynamics calculations
were also quantum mechanical, i.e. the vibrational Schrodinger equa-
tion was solved at grid of points representing an intersection through
the vibrational potential energy surface of fluoroform, corresponding to
the CH stretching motion. The calculated Raman bands are compared
with experimental results, and an in-depth physical insight is gained
into the factors influencing the CH stretching frequency shifts upon sol-
vation. On the basis of Kitaura-Morokuma and RVS SCF analysis of the
vibrational potentials, it was concluded that the solvent electrostatics
influence (both classical and non-classical) would induce frequency red
shifts, while the exchange Pauli repulsion induces frequency blue shifts.
This robust and complex computational methodology was implemented
in a HPC environment.

Keywords: Monte Carlo · Condensed phases · Liquids · Fluctuating
environments · Fluoroform · Liquid krypton · Intermolecular interaction
potentials · Hybrid statistical physics - quantum mechanical approach

1 Introduction

Properties of molecules in condensed phases have always attracted interdiscipli-
nary scientific attention due to numerous reasons. First, nearly all of the relevant
processes to both chemistry and chemical engineering, as well as in biomedical
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sciences occur in condensed phases (liquids in particular). Second, understand-
ing of the solute-solvent interactions on a profound quantum-theoretical level is
of certain fundamental significance. The simplest, but perhaps still most widely
used approach to study such systems has been based on exploration of poten-
tial energy surfaces of clusters containing a solute and several solvent molecules,
which mimic the condensed phase. However, it has certain drawbacks and inher-
ent limitations. One of the most relevant gross errors inherent to this “supermole-
cular” approach lies in the fact that considering only the PES of such complex
system actually implies a complete neglect of its dynamical properties. If one is
primarily focused on technological applications of condensed-phase systems, then
it is important to be able to understand their properties at finite temperatures.
This is so since virtually all devices operate at finite temperatures. As mentioned
before, however, virtually all studies based on PES explorations actually refer
to 0 K, and the models do not explicitly include the molecular motions in the
description of the system of interest. The present paper aims to implement a dif-
ferent, robust methodology that accounts for the molecular motions within the
mentioned systems. Our approach is based on a general hybrid statistical physics
quantum mechanical methodology which explicitly accounts for the dynamical
phenomena in the description of the condensed phases. In the present paper we
study the solvation of fluoroform in liquid Kr at cryogenic conditions, through
the intramolecular C-H stretching vibrational frequency shift of the fluoroform
moiety upon solvation.

2 Computational Details and Algorithms

The methodology that we implement for the purpose of the present study is a
hybrid statistical physics - quantum mechanical one. Statistical physics phase in
the present paper was based on the Monte Carlo (MC) approach [1]. Rigid body
MC simulations of fluoroform in liquid Kr at cryogenic conditions were carried
out. Intermolecular interactions were described by a sum of Lennard-Jones 12-6
site-site interaction energies plus Coulomb terms:

Uab =
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j
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where i and j are sites in interacting molecular systems a and b, rij is the inter-
atomic distance between sites i and j, while e is the elementary charge. The
“geometric mean” combination rules were used to generate two-site Lennard-
Jones parameters εij and σij from the single-site ones. Model potential para-
meters σ = 3.895 Å and ε = 0.308 kcal mol−1 were used for Kr, while the
charge distribution in the case of fluoroform was computed as follows. The cal-
culated MP2/6-31++G(d,p) electronic density (corresponding to the minimum
on the MP2/6-31++G(d,p) PES) was fitted to a set of point charges placed at
the nuclear positions with the CHelpG point-selection algorithm [2]. Fitting to
the molecular electrostatic potential was carried out imposing a constrain that
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the derived point-charge distribution reproduces the “correct” dipole moment
of fluoroform, as computed from the MP2/6-31++G(d,p) electronic density.
The mentioned geometry corresponding to the minimum on MP2/6-31++G(d,p)
PESs of fluoroform was used throughout the rigid-body Monte Carlo simulations.
Non-bonded LJ parameters for fluoroform were taken from the OPLS-AA force
field [3]. MC simulations were performed in the canonical (NV T ) ensemble, with
the Metropolis sampling algorithm, at T = 131 K. Experimental density of liq-
uid Kr of 2.3406 g cm−3 at these conditions was used throughout the current
study. The simulation conditions have actually been chosen to correspond to
the experimental ones under which the Raman spectra of CF3H in liquid Kr
cryosolutions were recorded [4]. In particular, MC simulations were done for one
fluoroform molecule surrounded by 1249 Kr atoms placed in a cubic box with side
length of 42.04 Å, imposing periodic boundary conditions. Thermalization phase
of simulations consisted of 6.25 · 107 MC steps. It was subsequently followed by
averaging (simulation) phase of 2.50 · 108 MC steps. All MC simulations in the
present study were performed with the DICE statistical mechanics Monte Carlo
code [5].

Subsequent quantum mechanical phase of the computational methodology
consisted of several steps, each of which was required in order to finally compute
the anharmonic C-H Stretching frequencies of fluoroform in liquid Kr and to
generate the corresponding probability distribution functions. For that purpose,
first, series of snapshots from the equilibrated MC runs were chosen as “represen-
tative configurations”, aimed to be used to calculate frozen-field “in-liquid” C-H
stretching potential of the fluoroform molecule. Due to the high computational
cost of the sequential QM phase, a method of choice is to use a relatively small
number of structures generated by MC simulations. The statistical correlation
between MC-generated configurations which are sufficiently close to each other
is high. Therefore, performing QM calculations on such configurations would be
a waste of time, as new statistically relevant contribution wont be added to the
results. A much better approach is to choose configurations with low mutual
statistical correlation and perform the QM computational part only on these
configurations [6]. In the present study, we have chosen statistically uncorre-
lated configurations on the basis of computation and subsequent analysis of the
energy autocorrelation function C(n):

Cn =
∇δEiEi+n∈

∇δE2∈ =

∑
i

(Ei − ∇E∈)(Ei+n − ∇E∈)
∑
i

(Ei − ∇E∈)2
(2)

This parameter may serve as a clear indicator for mutual statistical correla-
tion between subsequent MC-generated configurations [6]. The computed C(n)
from the MC simulation phase of CF3H and 1249 Kr atoms, together with the
least-squares fit to exponential decay function of the form:

Cn =
k∑

i=1

Aiexp(−n/τi) (3)
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Fig. 1. The computed C(n) from the MC simulation phase of CF3H and 1249 Kr atoms,
together with the exponential decay function fit

is shown in Fig. 1. The presented fit in Fig. 1 is actually based on only 2 exponen-
tial functions in (3). Test calculations were, however, done with various numbers
of exponentials in (3). Integrating the energy autocorrelation function from 0 to
⊂, correlation step of 111 was obtained. Therefore, MC configurations mutually
separated by 500 steps (> 4τ) are correlated less than 10 %, and for sequen-
tial QM calculations, we have chosen 50 uncorrelated configurations from the
equilibrated MC runs, separated by as much as 3500 MC steps. The mutual
correlation between these configurations is negligible (less than 0.01 %).

Subsequent computations were performed by a quantum-mechanical (QM)
approach, denoted as QMelectronic + QMnuclei. Such notation has been adopted
since both the electronic and nuclear subsystems are treated quantum mechan-
ically [7]. Series of QMelectronic + QMnuclei calculations were carried out for 50
supermolecular clusters containing one fluoroform molecule and a representative
part of the first solvation shell around it. A given Kr atom was included in the
relevant part of the first solvation shell if the distance between the Kr atom
and the fluoroform H atom was smaller than 4.0 Å. In the QMelectronic phase of
calculations, vibrational potential energy function (V = f(rCH)) for each cho-
sen CH oscillator was computed performing a series of 20 pointwise HF, DFT
(B3LYP) or MP2 energy calculations. To generate the V (rCH) function, C-H
distances were varied from 0.900 to 1.375 Å, keeping the center-of-mass of the
vibrating C-H fragment fixed. The obtained energies were least-squares fitted to
a fifth-order polynomial in ΔrOH , the resulting potential energy functions were
subsequently cut after fourth order and transformed into Simons-Parr-Finlan
(SPF) type coordinates [8]. 1D vibrational Schrödinger equation was subse-
quently solved variationally and the fundamental anharmonic C-H stretching
frequency was computed from the energy difference between the ground and
first excited vibrational states. All QMelectronic calculations were carried out
with the 6-31++G(d, p) basis set for orbital expansion, with the Gaussian03
series of codes [9].
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3 Results and Discussion

Analysis of the C-Kr radial distribution function for CF3H in liquid Kr, com-
puted from the equilibrated MC run revealed existence of clearly pronounced
five solvation shells. The first one, which is most relevant to our study, starts at
about 3.5 Å and ends at about 6 Å, containing 14 Kr atoms on average. Theoreti-
cal Raman C-H stretching bands of fluoroform dissolved in liquid Kr under cryo-
genic conditions (i.e. the vibrational density of states histograms generated from
the computed anharmonic in-liquid C-H stretching frequencies) at the employed
theoretical levels are shown in Fig. 2. Solving the vibrational Schrödinger equa-
tion for a free fluoroform molecule, a value of 3227.5 cm−1 is obtained for the
fundamental anharmonic C-H stretching frequency at the HF level of theory,
3002.9 cm−1 at B3LYP and 3110.7 cm−1 at MP2 level. The corresponding exper-
imental value is 3035.2 cm−1 [10]. One can therefore conclude that the advanced
computational method applied in the present study predicts a blue shift of the
fluoroform CH stretching frequency (Table 1) upon its solvation in liquid Kr. This
is in contrast with the experimental data, according to which the CH stretch-
ing frequency experiences a small red shift (→ −2 cm−1). Our further focus in
the study will therefore be to explain such apparent discrepancy. As intuitively
expected, the fluoroform CH stretching frequency shift is mostly dependent on
the presence of Kr atoms residing on the vibrating H-atom side.

Fig. 2. Theoretical Raman CH stretching bands of fluoroform dissolved in liquid Kr
under cryogenic conditions computed at different employed levels of theory

The computed C-H stretching frequency shifts with respect to the gas phase
value as a function of the radial coordinate (i.e. C. . . Kr distance R) at B3LYP
level of theory for a CF3H. . . Kr dimer upon a collinear approach of Kr atom
with the C-H bond are schematically presented in Fig. 3. As can be seen, B3LYP
level of theory predicts a very small red shift of the CH stretching frequency as
the Kr atom approaches CF3H along the C-H axis, up to a distance of about
6 Å. After this point, the frequency shift experiences certain fluctuations and
afterwards changes its sign (i.e. becomes a blue shift). Upon further diminishing
of the R coordinate, the shift becomes larger (in absolute value) as the distance
R decreases. At much smaller values of R it starts to rise abruptly. The maximum
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Table 1. Anharmonic C-H stretching frequencies of free fluoroform, as well as of fluoro-
form solvated in liquid Kr under cryogenic conditions, together with the corresponding
frequency shifts with respect to the free molecule.

Level of theory Free CF3H CF3H in liquid Kr

ν/cm−1 〈ν〉/cm−1 〈Δν〉/cm−1

MP2 3110.7 3120.2 +9.5
B3LYP 3003.5 3017.6 +14.1
HF 3234.6 3257.0 +22.4
Exp. 3035.2 3033.1 -2.1

of the C. . . Kr radial distribution function computed from MC simulation falls at
about 4.15 Å. It is therefore obvious that most of the Kr atoms within the first
shell are located at such positions at which the CH frequency shifts has either
small negative or small positive values according to Fig. 3. So, even the actual
sign of the frequency shift is strongly dependent on the actual value of R. This
parameter, on the other hand, depends critically on the correct description of
the atomic positions of solvent molecules within the first solvation shell around
CF3H generated by the statistical physics approach. This depends crucially on
the type and quality of the intermolecular interaction potentials. Though the
interaction potentials on which we relied in the present study could be considered
as sufficiently accurate for numerous other purposes, one is undoubtedly led to
a conclusion that particularly correct description of the distribution of solvent
molecules around solute is crucial for a correct prediction of the vibrational
frequency shifts. Therefore, its description needs to be much more accurate that
in the case of protocols for computing some other in-liquid properties.

Even a more in-depth insight into the main reasons determining whether the
overall frequency shift of the fluoroform CH stretching frequency will be blue or
red could be acquired by performing a series of Kitaura-Morokuma (KM [11])

Fig. 3. Anharmonic C-H stretching frequency shift as a function of the CKr distance
(R) for the CF3H . . . Kr dimer upon a collinear approach of Kr atom with the C-H
bond, computed at B3LYP level of theory.
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Fig. 4. Dependence of selected interaction energy components on rCH as computed by
Kitaura-Morokuma (KM) energy partitioning analysis at two values of R(C. . . Kr).

and RVS-SCF [12] energy partitioning analyses for each of the sampling points at
which the C-H stretching potentials were computer at two values of R(C. . . Kr):
4.20 Å and 4.75 Å. At R = 4.20 Å, the frequency shift is +7.3 cm−1, while at R
= 4.75 Å the frequency shift exhibits a red shift of −2.2 cm−1. Selected results
are summarized in Fig. 4. While the electrostatic (ES), polarization (POL) and
charge-transfer (CT) energy components all favor a frequency red shift (stabi-
lization of the system by C-H bond stretching), the exchange (EX) and mixed
(MIX) terms favor a blue shift. These conclusions are valid for both of the con-
sidered R(C. . . Kr) values (4.20 Å and 4.75 Å). The derivatives ∂Ei/∂rCH have
been found to be significantly larger at smaller R, along with the absolute values
of each ΔEi. The ratio (∂Ei/∂rCH)R1/(∂Ei/∂rCH)R2 is largest for the polar-
ization, electrostatic and exchange terms. As the absolute value of the exchange
interaction energy component is significantly higher than the other ones and the
derivative ratio (∂Ei/∂rCH)R1/(∂Ei/∂rCH)R2 for the exchange is close to that
for the electrostatic term, it is the enhanced exchange interaction energy com-
ponent that determines the sign of frequency shift (blue-shift) at lower values
of R.

At higher values of R, it is the electrostatic (+ polarization) terms that
induce a small frequency red shift. The relative smallness of the electrostatic
contribution to frequency redshift, which is due to the negative permanent dipole
moment derivative of fluoroform with respect to the C-H stretching vibrational
coordinate (∂μ0/∂rCH < 0), enables the electronic exchange effects to come into
play and cause a more significant frequency blue shift at smaller R values.

The computational methodology that we use is a hybrid one. It consists
of several steps, each of which demands computational resources to a various
extent, and scales differently with the number of processors/cores. As the pro-
cedure has not been fully automated yet, and due to the need to check certain
results manually, it is best to judge on its overall scalability on the basis of
scalability of its component phases. Such analysis, as explained below, provides
a good overview of the overall scalability of the method. The first phase of
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the hybrid methodology (the MC computation) is based on a code which has
not been parallelized. However, if the statistical physics simulations are done
e.g. by CPMD simulation, in such case the scalability in both wave function
optimization and molecular dynamics simulation itself is significant. Computa-
tions involved in the phase of MC trajectory analyses are generally not much
time-and resource-consuming, and therefore not much would be gained by their
parallelization. The next phase of the methodology involves quantum mechanical
computations of the vibrational potential energy curve or surface, or single-point
computations of other type. So, the effectiveness of this phase heavily depends
on the parallelization. Further computation of e.g. the vibrational frequencies
involves either standard diagonalization procedures or Fourier-transform - based
techniques. In the case of one-dimensional problems, diagonalization and FFT
computations are quick, and do not benefit much from parallelization. However,
in the case of multi-dimensional vibrational problems the scalability could be
significant.

4 Conclusions and Directions for Future Work

Implementing a hybrid statistical physics - quantum mechanical methodology,
in the present work we have gained certain physical insights into the reasons
behind the magnitude and direction of the fluoroform CH stretching frequency
shift upon its solvation in liquid krypton under cryogenic conditions. Following
the implications concerning the quality of the intermolecular interaction poten-
tials acquired in the present study, our further efforts will be directed towards
development of a new class of intermolecular potentials for statistical physics
simulations, allowing more accurate description of the structure of the first sol-
vation shell around the solute molecule.
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Abstract. Generic image classification methods are not performing well
on tissue images. Such software solutions are producing high number of
false negative and positive results, which prevents their clinical usage.
We have created the MorphCeck high resolution tissue image process-
ing framework, which enables us to collect morphological and morpho-
metrical parameter values of the examined tissues. Size of such tissue
images can easily reach the order of 100MB–1 GB. Therefore, the image
processing speed and effectiveness is an important factor. Our main goal
is to accurately evaluate high resolution H-E (hematoxilin-eozin) stained
colon tissue sample images, and based on the parameters classify the
images into differentiated sets according to the structure and the surface
manifestation of the tissues. We have interfaced our MorphCheck tissue
image measurement software framework with the WND-CHARM general
purpose image classifier and tried to classify high resolution tissue images
with this combined software solution. The classification is by default ini-
tiated with a large training set and three main classes (healthy, adenoma,
carcinoma), however the new image classification process’ wall-clock time
was intolerably high on single core PC. The processing time is depending
on the size/resolution of the image and the size of the training set. Due to
the tissue specific image parameters the classification effectiveness was
promising. So we have started a development process to decrease the
processing time and further increase the accuracy of the classification.
We have developed a workflow based parallel version of the MorphCheck
and WND-CHARM classifier software. In collaboration with the MTA
SZTAKI Application Porting Centre the WND-CHARM has been ported
to some distributed computing infrastructure (DCI). The paper intro-
duces the steps that were taken to optimize WND-CHARM applications
running faster using DCIs and some performance results of the tissue
image classification process.

Keywords: Application porting · Medical image processing workflow ·
HP-SEE · gUSE · Scalability · MorphCheck · WND-CHARM
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1 Introduction

High resolution tissue image analysis and classification is a hot research topic
nowadays. Main examples of the existing, widely used state-of-the-art high-
resolution tissue image analyzer software solutions are: 3DHistech’s Histo-,
Nuclear- and MembraneQuant [1] (which are capable to do colorization based
segmentation, analyze cell nucleus and analyze membrane structures between
the cellular matrix) Aperio’s [2] ePathology, Definiens’s Tissue Studio [3] and
Visiopharm’s Visio/TissuemorphDPTM [4] (which are providing tissue image
analysis and cell population analysis). High-resolution image processing using
large image databases/training sets is a highly data-, and compute-intensive
challenge. Parallelization of such applications can decrease the computational
time significantly [7]. This paper shows how we have created an image classifi-
cation service using the grid and cloud User Support Environment (gUSE [5])
to evaluate images processed by our Morphcheck (MC) software and evaluated
it by “Weighted Neighbor Distance Using Compound Hierarchy of Algorithms
Representing Morphology” (WND-CHARM [6]) software.

1.1 MorphCheck

MorphCheck (MC) is a high resolution tissue image analyzer framework, which
processes high resolution digital tissue images. MorphCheck software framework
is capable to effectively recognize -with its extendable algorithm repository- large
number of differentiated tissue structures (such as surface epithelium, gland
structures, lamina muscularis, submucosa etc.), and measure their morpholog-
ical and morphometrical properties. The software supports both some vendor
specific tissue scanner image formats and regular image standards (such as
Tagged Image File Format /tiff/, Joint Photographic Experts Group /jpg/). It
supports various colorization schemes like: HE (Hematoxilin-Eozin), DAB (3,3’-
Diaminobenzidin), multi-color FISH. It contains various texture-based
algorithms, furthermore intensity and structure-based algorithms (such as K-
means, region growth, etc.) [8] (Fig. 1).

Fig. 1. MorphCheck tissue image analyzer framework GUI
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1.2 WND-CHARM

WND-CHARM is an acclaimed open source image classifier application devel-
oped at National Institute of Aging (NIA, NIH) [9] that supports generic image
analysis methods. WND-CHARM extracts a large set of (normal: 1025, or
extended: 2873) image features including polynomial decompositions, high con-
trast features, pixel statistics, and textures. These features are computed on:
the raw image; transforms of the image; and second transforms of the image.
The feature values are then used to classify test images into a set of pre-defined
image classes. WND-CHARM is using WND-5 as image classifier. We are using
recently the v1.30.227 as the baseline application for our MC-WND image clas-
sification service and for performance measurements as well. We have modified
the original WND-CHARM software to include our MC tissue parameters. We
have modified both the training and the classification part of the software.

1.3 gUSE

gUSE is basically a virtualization environment providing large set of high-level
DCI (Distributed Computing Infrastructure, such as supercomputers, grids or
clouds) services by which interoperation among classical service and desktop
grids, clouds and clusters, unique web services and user communities can be
achieved in a scalable way. gUSE has a graphical user interface, which is called
WS-PGRADE. All part of gUSE is implemented as a set of Web services. gUSE
supports various DCIs, and its execution concept is heavily based on workflows.
The definitions (graph, etc.) of workflows and their jobs are stored in a local
storage. Job executions on DCIs requires user level authentication, and this can
be managed transparently via the WS-PGRADE.

HP-SEE’s Life Science Portal (Bioinformatics eScience Gateway). The
Bioinformatics eScience Gateway is based on gUSE and operates within the Life
Science VO of the HP-SEE [10] infrastructure. We have used this facility to
implement our workflow and create the MC-WND tissue image classification
service (Fig. 2).

Fig. 2. HP-SEE Bioinformatics eScience Gateway
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1.4 MC-WND Tissue Image Classification Service

The close collaboration between John von Neumann Faculty of Informatics,
Obuda University and 2nd Department of Internal Medicine, Semmelweis Uni-
versity enabled us to define 75 tissue parameters of the human colonic region.
Identified main tissue parameter groups:

– morphological and morphometrical properties of surface epithelium,
– morphological and morphometrical properties of gland structures,
– morphological and morphometrical properties of lamina muscularis,
– morphological and morphometrical properties submucosa,
– morphometrical properties of the cells.

We have extended our generic MorphCheck medical (tissue) image analysis
framework to accurately measure these tissue image parameters. The objec-
tive numerical values of the pre-defined tissue parameters calculated by Mor-
phCheck enables us to integrate and adapt a generic image classifier software
solution, which can do effective tissue image classification automatically based
on our parameter set. The two software solutions (MorphCheck and WND-
CHARM) have been loosely coupled together to realize a single tissue image
classification service (MC-WND). Data exchange between the two software solu-
tions is realized with simple file exchange mechanisms. The MC-WND (Fig. 3)
tissue image classification service allows researchers to process and categorize
medical high resolutions tissue images using HPC infrastructure in a fast and
easy way.

Fig. 3. MC-WND tissue image classification service schematic overview
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1.5 MC-WND Tissue Image Classification Workflow

We have defined the image classification tasks within a single workflow.

– Inputs of the MC-WND workflow are:
• Fragment of the high resolution tissue image:

* size: (512 × 512), in TIFF format,
* resolution/zoom level is the same which was defined during (auto-

matic/manual) ROI definition/annotation,
• MC calculated parameter results exported into a csv file.

– Output of the MC-WND workflow are:
• WND-CHARM calculated image parameter results stored in a csv file

classification process results, , stored in a html file (contains all the cal-
culated statistical results)

1.6 MC-WND Training Set

The modified WND-CHARM application is using our tissue image specific para-
meter as classifier parameters both during the training phase and during the
image classification phase. The training phase is using the 2873 internal (WND-
CHARM) parameters plus 75 tissue parameters measured by MorphCheck (MC).
The results of the training phase are dumped into a single file (with WND-
CHARM’s internal coding format), and can be reused as an offline file for all
the classification processes. Our tissue image training set contains more than
90 annotated HE (Hematoxilin-Eozin) colon tissue image samples with the fol-
lowing main categories: healthy, malignant (adenoma and carcinoma). All tissue
image annotations are done by pathologist experts at 2nd Department of Inter-
nal Medicine, Semmelweis University. The training phase should be re-launched
each time the annotated training image set or the parameter set are extended.
Luckily this is a rare event, because a single training phase lasts about 10 h nor-
mally. In our recent implementation of the service it generates a report in html
format, which contains all the calculated statistical results of the classification
process (accuracy, prediction, interpolation). We are using the stdout to monitor
the process and receive status information.

1.7 Workflow Implementation

An image processing and classification workflow has been defined. This workflow
contains two consecutive jobs implemented in WS-PGRADE workflow language.
The first job is a pre-processor, the second job utilizes WND-CHARM in a
parametric manner. The second job contains the WND-CHARM execution and
it is launched in parallel as many times the service receives tissue images from
outside. WND-CHARM is installed and launched in the so called user space,
which was a hard task to realize. We are using LibTIFF [11] and FFTW [12]
as external software packages inside our service. We are collecting the results
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Fig. 4. Average MC-WND service execution time using HPC infrastructure (in min)

from all the WND-CHARM instances both from the stdout (as a file) and the
generated html files. We have done performance evaluation to see how the WND-
CHARM can run on HPC infrastructure. The workflow has been executed on
one of the HPC centers operated by NIIF called “Budapest”, which is an HP
fat-node cluster using CP4000BL blades, consisting of 32 nodes with 24 Magny
Cours CPU cores each (i.e. total number of CPU cores: 768). It has a mesh like
topology with an Infiniband internal network. It has 1.96 TB memory and the
total performance of the system is about 5,48 TFlops. Each measurement was
executed 10 times, the average of the 10 executions was taken as the final result.

2 Performance Measurement Results

A single run of the image classification process is about 10 min for a 512×512 px
tissue image size.

Nowadays a normal high resolution tissue image size (whole size) is about
4096× 4096. This is about 64 times larger than our 512× 512 unit size. We have
launched 991 tissue image units against the HPC infrastructure. The following
graphs show the result of the multiple executions of WND-CHARM on the HPC
infrastructure. Figure 4 shows the processing time result. Average queuing over-
head was 20 min. Average execution time was 10 min per image. The average
total Wall Clock time was 3.02 h for the whole image set (991 images), which
means 11,503 s was the average processing time for the whole image set. Figure 5
shows the WND-CHARM wall clock (execution) time compared to a single CPU.
We gain significant speedup with parallel execution of the WND-CHARM, even
if the average queuing time and result collection took us some negligible time.
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Fig. 5. MC-WND service execution time (HPC vs. single PC) (for 991 images in min)

2.1 Classification Accuracy

To create a usable classification procedure for colonic tissue images based on
automatic pre-filtering solution we have introduced a cut-off number which
defines a tolerance level of the classification certainty. Below this certain numeri-
cal value the image marked automatically as malignant and forwarded to manual
evaluation. In our large-scale tissue image classification tests with more than 200
tissue images and with the cut-off value below 60 % we are able to distinguish
between healthy and malignant colonic tissue images with 100 % accuracy at
healthy category (that means healthy category strictly contains only healthy
patient’s images).

3 Conclusion

In this paper we have described how we have ported the modified WND-CHARM
image classification software to work on distributed computing infrastructure
(on HP-SEE supercomputing infrastructure) as a service. The parameter field
of the WND-CHARM application is extended with our high resolution tissue
image analysis parameter field (+75 tissue image parameters). We have created
the workflow structure for the MC-WND image classification service. The ser-
vice is tested with HE stained tissue images and capable to separate healthy
and malignant tissue images automatically with a high accuracy. The service
and the internal workflow was developed at Obuda University and hosted on
the HP-SEE Life Science/Bioinformatics eScience Gateway. The service can be
used to do tissue image classification of the colonic region against our large tissue
training databases in a short time using the HP-SEE supercomputing infrastruc-
ture at NIIF, Hungary. We also describe the performance analysis has been done
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on the applications. As a future work we are trying to include other image clas-
sifier solutions into our MC-WND service portfolio in a plug-in like manner. We
are planning to open up our image classification service for the wider research
community. So far the tissue image classification service can only be executed
from the MorphCheck software. We are planning to create a portlet-based web
user interface to let pathologists manually upload and evaluate tissue images.
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Abstract. Cloud computing is a new enabler for scientific discovery.
The current barriers in adopting it on large scale are including low code
portability and low availability of the proper support tools. This paper
discuss the special needs of the scientific applications consuming Cloud
services and how they are supported by the Multi-Cloud middlewares.
A recent developed middleware for managing the consumption of Multi-
Cloud services is considered as case study.

Keywords: Multi-Cloud · Service management · Scientific applications

1 Introduction

The availability of Cloud resources to everyone with a credit card is changing
not only the society perspective on the e-infrastructure availability, but also
how research and innovation is expected to perform. Small research groups
can now initiate experiments using customizable services for e-infrastructure
and software. The current preferences are clearly in favor for Infrastructure-as-
a-Service (IaaS) and Software-as-a-Service (SaaS), and less for Platform-as-a-
Service (PaaS). At a first look, this is surprising, since the PaaS offers the tools
for programming applications on Clouds and releases the developer from the
burden of managing the e-infrastructure resources. At a closer look, we see that
most of current PaaS are mainly targeting the web applications, not compliant
in structure with most of research codes. Small steps have been made in the
last two years to attract the research community to use also PaaS, including
Multi-Cloud services.

In this context, we discuss here the challenges and requirements at PaaS level
to offer support for scientific communities. Moreover, we point towards a recent
Multi-Cloud middleware, namely mOSAIC, that has prove its usefulness in the
context of several research experiments. Therefore, the main contribution of this
paper can be resumed in highlighting the expectations at PaaS level to support
scientific applications and measurement of the degree in which mOSAIC’s PaaS
fulfills these expectations.

The paper is organized as follows. First we identify when the Cloud resources
are proper to be used for research, highlighting also the specific needs of the
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research community and gaps in fulfilling them. Secondly, we point towards the
need of the usage of multiple Clouds and current technical barriers. Thirdly,
we resume mOSAIC’s approach for multiple Cloud for scientific applications.
Finally, we position this approach in the context of related work.

2 Consuming Cloud Resources by Scientific Applications

Peaks in the usage of scientific codes are more often encountered then in pro-
duction codes. Moreover, most of the codes are not running continuously. Often
e-infrastructures in research and academic institutions are under-utilized. There-
fore, at a first glance, a pay per use model for consuming e-infrastructure or
software services, as in the case of Cloud computing, is more adequate than an
investment in e-infrastructure or software licenses with fast depreciation rate.

The take-up by the scientific community of the Cloud computing paradigm
is very slow. The reasons are various: the specificity of the codes, the knowledge
needed, the appropriateness of the tools, the administrative issues. The scientific
codes have often special requirements related to parallel processing, particular
libraries, or large data sets. The comparative studies of the performance on
parallel computers versus the Cloud resources, are still disappointing (e.g. [1,2]).
Fortunately, recent tests using the cluster-on-demand services are more positive.

Special services are usually offered by data centers (by humans) to their
clients to set the environments for proper execution. The degree of customization
of Cloud services is quite limited. The preference for IaaS is a consequence of
this fact. Using an IaaS the scientist can set the environment and import the
needed libraries (time consuming task, possible only if elementary knowledge
about system administration is available).

The costs of local services or of a virtual organization (like in Grids) are not
directly charged to a certain research project or initiative (indirect costs). When
accessing the external services of a Cloud, the cost are measurable and directly
chargeable. Compute resources, storage resources, as well as applications, are
dynamically provisioned on a pay per use basis (moreover, these resources can
be released when they are no more needed). Data transfers are also chargeable, as
not done usually before. However most of the institutions and research agencies
have not yet adopted the proper cost models to allow such acquisitions.

A particular issue is the vendor lock-in: the fact that the Cloud providers
have not yet adopted standards in their service offers or agree upon similar
access mechanisms and interfaces, is leading to the lock of the applications with
the Cloud provider interfaces for which they have been written. This is not
compliant with the expected free market of the services for public procurement.

Despite the above mentioned barriers, several positive reports in consuming
Cloud resources appeared in the last three years (e.g. as reported in [3], medium
sized parallel compute problems, typically present in industrial engineering appli-
cations, are successfully using CFD codes on Clouds). Most successful stories
on using Cloud services in scientific applications are related to bio-informatics
(like in [4]). In this field and others, the Cloud applications are small-memory-
footprint embarrassingly parallel or loosely coupled, and are requiring little to no
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inter-processor communication (e.g. for Many-Task Computing: loosely coupled
applications comprising many tasks). Moreover, according [5] Cloud offers better
performance and value for processor- and memory-limited applications than for
I/O-bound applications.

Data-intensive applications are also profiting from the availability of Cloud
services. Simplifying the processing of large-scale distributed data volumes, the
MapReduce programming paradigm has been embraced by a large number of
researchers, from social sciences to high energy physics (e.g. the experiments
from [6]). In the transition phase towards a data-intensive science, the Cloud
can play an important role as enabler of research and innovation.

3 The Need for Multiple Clouds in Scientific Applications

As stated in the previous section, the vendor lock-in is hindering the freedom in
a Cloud service market. This is not only a problem for the public procurement,
but also for a long life of the scientific codes, as well as for the reproductivity
of the experiments by other scientists. Moreover, it is not only a problem of the
Cloud vendor, who can find an interest in the lock-in of its clients, but of the
middleware tools that should cover the heterogeneity not only to the low level of
the infrastructure or operating system, but to the level of services. Such middle-
ware should ensure the seamless migration of the scientific codes consuming the
services from one Cloud to another Cloud. Resource monitoring, analysis, and
configuration tools are expected to be developed to offer the ability to dynami-
cally provide and respond to information about the application state [7].

A particular use case is the Cloud bursting. The developer of an scientific
application expects to be able to deploy and debug it on his desktop or a local
cluster and then, to a certain moment in time, to port the application into the
Cloud, or use extra resources from the Cloud when the local one are not sufficient.
This scenarios is not matching the business model of most of the Cloud services,
that are requiring from the start the consumption of remote resources. There are
only few deployable tools that are assisting the developer to design and debug
the application locally, and are allowing Cloud bursting.

The open-source code production, common for scientific applications, is
affected also by the licenses of the interfaces to the Cloud services that are
consumed. Only few Cloud providers are offering their application programming
interfaces as open-source code. Moreover, the property protection rights are stop-
ping the development of exactly same interfaces for the Cloud services hindering
therefore the migration from one Cloud to another.

The variety of services offered by Cloud providers has also a positive aspect:
a high probability to find the proper one. However, two new challenges are also
generated. One is related to the complexity of the selection procedure and its
semi-automatizing. The second is the architectural design of applications that
are consuming simultaneously services from at least two different Clouds.

The use of services from multiple Clouds either sequentially (in the case of
migration for example) or simultaneously (as described above) is the subject
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for Cloud Federation or Multi-Cloud. In the first case, the Cloud user expects
to consume the resources of a certain Cloud, while the selected Cloud is sub-
contracting the services of another Cloud, based on an agreement between them.
Interoperability between the Clouds involved in the agreement is the main barrier
to be overcome [8]. In the second case, a third party is helping the Cloud client to
find the proper service to be consumed (e.g. using some brokerage mechanisms),
is offering service management for the selected services, and is watching for the
fulfillment of the service level agreements. Portability between the Clouds that
are registered to the third party is the main barrier to be overcome. While the
interoperability is not a concern for the scientific application developer (but of
the Cloud provider), the portability and service level agreements should be.

Another issue is the non-availability of a market for specific services for the
scientific applications. Marketplaces for Cloud service are slowly developing, hin-
dering also the development of the Multi-Cloud third-party middleware.

The Multi-Cloud is expected to overcome the issues related to the variety
of Cloud services that are registered by providing extra services for search,
brokerage, selection, customization, monitoring, registering, authentication,
migration, scheduling, load balancing and so on. All of these extra services are
associated to technical challenges. Note that currently virtual machines images
are rarely replicable in other Clouds, the format of the data store varies, and the
network setting are different from one Cloud to another.

Cloud management systems to support a Multi-Cloud are now in early stages
of development. A such system, in its simplest form, is a library offering uniform
APIs (like jclouds, libcloud, δ-cloud). In a more complex one, it can take the
form of a service, hosted (like enStratus, Kaavo or Rightscale) or deployable
(like Aoleus). What most the current management services for Multi-Clouds
are offering is a uniform view of the infrastructure resources that are available
or are already consumed. A basic functionality is to provision infrastructure
resources.

From the point of view of the developer or user of an scientific applications
the unique interface to many Clouds in a Multi-Cloud is essential (one-click far
from the Cloud). Moreover, such interface is expected to be a web-based one
as are the scientific portals used earlier. The management systems of service
type are therefore preferable to the libraries. For reasons related to the openness
and testing in own environment, the deployable ones are highly recommended.
However their number is limited. We point in the next section to one of them.

4 mOSAIC’s Approach for Science in Multi-Cloud

mOSAIC has started as a multi-national collaborative project partially funded
by the European Commission in the frame of FP7 programme, and has run
from Autumn 2010 until Spring 2013. One of the main results is a deployable
platform, named mOSAIC PaaS, that offers services for Multi-Cloud. The open-
source codes are available at https://bitbucket.org/mOSAIC. The main target
is to ensure portability of codes that are consuming infrastructure services. The

https://bitbucket.org/mOSAIC
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decision which Cloud to use is postponed until the deployment phase, in oppo-
sition to the usual request to take the decision at design phase.

Several scientific reports about various architectural components, as well as
about their usage in the context of scientific applications are already available: a
complete list of them is available at the project site (http://www.mosaic-cloud.
eu, link to scientific publications). We point here to the support for scientific
applications.

The hosting services of several IaaS providers are currently accessible through
the deployable middleware: Amazon, Flexiant, GoGrid, CloudSigma and OnApp.
Several deployable services for Private Clouds on own premises can be used in
conjunction with the PaaS: OpenStack, CloudStack, Eucalyptus, OpenNebula,
VMware and δ-cloud. A Cloud vendor template is available for further develop-
ments. The services of the same type, e.g. for data stores or communications,
are represented in the programming libraries (for Java, Python, Erlang) by the
same connector (e.g. one for key-value stores, one for distributed file systems).

A scientific application which can profit from full set of services is expected
to be a component-based application. Component-based programming has been
earlier applied, e.g. in [9], to address the requirements of large scale applications
from sciences and engineering (in particular in [10] is described an experiment in
bioinformatics involving a Hybrid Cloud). The main reason in mOSAIC to use
components is to enable their elasticity (lowering the level of elasticity from the
virtual machine to the application component) – details can be found in [11].
Moreover, components written in different languages can be composed into a
loosely coupled applications. Furthermore, scientific work-flows can be easily
seen as component-based applications – the mOSAIC application descriptor is
allowing to specify the order of execution of the components as well as the
dependences between them.

One of the particularity is the compliance with just-in-time Clouds: the
resources are allocated only when demanded until there is use for them. This is
possible due to the fact that the user is controlling the life-cycle of the appli-
cation and the PaaS ensures that the resources are allocated at the deployment
phase only for that application and are stopped when the application is stopped.
Moreover, targeting long-time running applications, mOSAIC is suited to build
and control Research-as-a-Service (exposing research services).

Subscribing to the PaaS idea to eliminate the burden of system administra-
tion encountered at IaaS level, mOSAIC is providing several application deploy-
ment tools. One such tool is the Personal Testbed Cluster (PTC) which can be
installed on the own desktop or notebook to simulate the Cloud in the develop-
ment phase of the application, and which allows together with a resource alloca-
tor to seamless deploy the final application on a selected Cloud if the credentials
for that Cloud are available. Moreover, several Eclipse plug-ins are available for
various editors (e.g. for the call of proposals for Cloud service offers).

The middleware is featuring the specific services for a Multi-Cloud. In par-
ticular, a broker based on service level agreements and multi-agent technologies
has been implemented [12]. Semantic processors are assisting in discovering the

http://www.mosaic-cloud.eu
http://www.mosaic-cloud.eu
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features of the platform, the associated libraries, or the new services offered by
the providers beyond the currently connected ones [13].

The first proof-of-the-concept applications developed in the frame of the
project are related to various fields of research: information extraction, civil
engineering, Earth observation, sensor data mining, and social simulations. Early
reports about these applications are provided in [14–17]. Several codes are open-
source and available in the mOSAIC repository, e.g. related to the information
extraction service from batches of scientific papers for indexing purposes, and the
Matlab-in-Cloud solution for the analysis of the building structure. Fortunately,
the overhead introduced by the Multi-Cloud middleware compared with the one
of the virtualization layer is considerable smaller. Most of the applications have
been re-designed to be adapted to the component-based approach, and to be
fully deployed on the Clouds, and by this, to benefit from the elasticity pro-
perties. On the opposite situation is the Earth observation application that had
from a start a high degree of complexity, restrictions in moving part of the codes
and data in the Cloud, and special requirements for specific libraries and tools;
in this case, Hybrid Clouds were build based on in-premises data catalogs and
data processing in Public Clouds selected using the broker; manual intervention
for the special libraries and tools was necessary (one time, to prepare the virtual
machine image; the mOSAIC platform is installed on top a such machine).

Scheduling, load balancing, monitoring, and model-driven code generation
are Multi-Cloud services under development.

Drawbacks in conjunction with scientific applications are related to the avail-
ability of the libraries only for Java, Python, Erlang and Node.js, the event-
driven programming style for interaction with the Cloud services (that has a
higher complexity than the REST-based interaction for example), the communi-
cation system based on a message queuing system (AMQP compliant), the lack
of single sign on, and hands-on when special libraries are requested.

5 Related Work

As earlier stated, the PaaS are less used for scientific research. Few reports are
related to experiments made with a PaaS, like mOSAIC. In [18] Microsoft Azure
is successfully used for a genomics application, while in [19], Google Application
Engine is used for a Monte Carlo simulations with a large middleware overhead.

In what concerns the Multi-Cloud management tools, we already mentioned
in Sect. 3 several libraries and hosted services. Few others are added here. Future-
Grid [20] aims to offer access to a number of IaaSs, including Nimbus, Eucalyp-
tus, OpenStack, and OpenNebula, with a catalog and repository to store virtual
images. ViteraaS [21] is a PaaS, based on OpenNebula, that allows to dynami-
cally create a cluster of virtual machines on idle resources or dedicated servers;
it uses single sign-on and a quality of service monitoring module to monitor
the performance and status of these virtual machines. In [22] an experimental
Hybrid Cloud is reported capable of utilizing both local and remote computa-
tional services for single large embarrassingly parallel applications.
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The Helix Nebula team (http://www.helix-nebula.eu) is currently building
a strategic plan for a Scientific Cloud Computing Infrastructure in Europe,
the long term goal being to create a multi-tenant open market place for sci-
ence. EGI’s architecture proposal for Federated Cloud for science (www.egi.eu/
infrastructure/cloud/) is relying upon standards (OCCI, CDMI, GLUE) and is
connecting OpenNebula, OpenStack, WNoDeS, StratusLab, Okeanos; monitor-
ing is done with Nagios SAM, image management with Marketplace vmcatcher,
accounting with APEL, AAI with VOMS, and message bus with ActiveMQ.

In executing scientific applications on a Cloud environment, it will clearly
desirable to exploit its elasticity, by increasing or decreasing the number of
instances or components during the execution, to meet time or cost constraints.
Elasticity is a propriety that the scientific applications are not usually able to
profit from. The paper [23] describes a preliminary work towards making existing
applications elastic, while the paper [24] introduces the Elastic Cluster.

Another potential for enhancing scientific application consists in adding
Cloud-based interactivity. The paper [25] proposes to build a user-interactive
service: the adaptive method computes the completion times and prices of on-
going jobs in real-time, which enables users to start same jobs with different
configurations simultaneously and select the best one at an early stage.

6 Conclusions

The support for developing, deploying and control the scientific applications on
Clouds is currently incomplete. We have try in this paper to identify the needs
and the state-of-the-art in fulfill them, in particular for the case of Multi-Cloud.
This study is done also to identify the missing pieces for a particular open-
source and deployable middleware for Multi-Cloud, namely mOSAIC, in order
to improve it in the near future to better support the scientific community needs.
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frame of the grant FP7-ICT-2009-5-256910 (mOSAIC).

References

1. Jackson, K.R., Ramakrishnan, L., Muriki, K., Canon, S., Cholia, S., Shalf, J.,
Wasserman, H.J., Wright, N.J.: Performance analysis of high performance com-
puting applications on the Amazon web services cloud. In: CloudCom 2010, pp.
159–168 (2010). doi:10.1109/CloudCom.69

2. Iosup, A., Ostermann, S., Yigitbasi, M.N., Prodan, R., Fahringer, T., Epema,
D.H.J.: Performance analysis of cloud computing services for many-tasks scientific
computing. IEEE Trans. Parallel Distrib. Syst. 22(6), 931–945 (2011). doi:10.1109/
TPDS.2011.66

3. Zaspel, P., Griebel, M.: Massively parallel fluid simulations on Amazon’s HPC
cloud. In: NCCA 2011, pp. 73–78 (2011). doi:10.1109/NCCA.2011.19

http://www.helix-nebula.eu
www.egi.eu/infrastructure/cloud/
www.egi.eu/infrastructure/cloud/
http://dx.doi.org/10.1109/CloudCom.69
http://dx.doi.org/10.1109/TPDS.2011.66
http://dx.doi.org/10.1109/TPDS.2011.66
http://dx.doi.org/10.1109/NCCA.2011.19


On the Management of Cloud Services in Multi-Clouds 547

4. Ekanayake, J., Gunarathne, T., Qiu, J.: Cloud technologies for bioinformatics appli-
cations. IEEE Trans. Parallel Distrib. Syst. 22(6), 998–1011 (2011). doi:10.1109/
TPDS.2010.178

5. Berriman, G.B., Juve, G., Deelman, E., Regelson, M., Plavchan, P.: The application
of cloud computing to astronomy: a study of cost and performance. In: e-Science
Workshops 2010, pp. 1–7 (2010). doi:10.1109/eScienceW.2010.10

6. Ekanayake, J., Pallickara, S., Fox, G.: MapReduce for data intensive scientific
analyses. In: eScience 2008, pp. 277–284 (2008). doi:10.1109/eScience.59

7. Brandt, J., Gentile, A., Mayo, J., Pebay, P., Roe, D., Thompson, D., Wong, M.:
Resource monitoring and management with OVIS to enable HPC in cloud com-
puting environments. In: IPDPS 2009, pp. 1–8 (2009). doi:10.1109/IPDPS.2009.
5161234

8. Petcu, D.: Portability and interoperability between clouds: challenges and case
study. In: Abramowicz, W., Llorente, I.M., Surridge, M., Zisman, A., Vayssière, J.
(eds.) ServiceWave 2011. LNCS, vol. 6994, pp. 62–74. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-24755-2 6

9. Heron de Carvalho, J.F., Rezende, C.A.: Component-based refactoring of parallel
numerical simulation programs: a case study on component-based parallel program-
ming. In: SBAC-PAD 2011, pp. 199–206 (2011). doi:10.1109/SBAC-PAD.2011.28

10. Malawski, M., Meizner, J., Bubak, M., Gepner, P.: Component approach to compu-
tational applications on clouds. Procedia Comput. Sci. 4, 432–441 (2011). doi:10.
1016/j.procs.2011.04.045

11. Petcu, D., Macariu, G., Panica, S., Craciun, C.: Portable cloud applications - from
theory to practice. Future Gener. Comput. Syst. 29(6), 1417–1430 (2012). doi:10.
1016/j.future.2012.01.009

12. Venticinque, S., Aversa, R., Di Martino, B., Petcu, D.: Agent based cloud pro-
visioning and management. In: Design and Prototypal Implementation, CLOSER
2011, pp. 184–191 (2011). doi:10.5220/0003395901840191

13. Cretella, G., Di Martino, B.: Towards a semantic engine for cloud applications
development. In: CISIS 2012, pp. 198–203 (2012). doi:10.1109/CISIS.2012.159

14. Cossu, R., Di Giulio, C., Brito, F., Petcu, D.: Cloud computing for earth observa-
tion. In: Data Intensive Storage Services for Cloud Environments. IGI Global (in
print, 2013)

15. Panica, S., Neagul, M., Craciun, C., Petcu, D.: Serving legacy distributed applica-
tions by a self-configuring cloud processing platform. In: IDAACS 2011, vol. I, pp.
139–145 (2011), doi:10.1109/IDAACS.2011.6072727

16. Skoda, P., Sperka, S., Smrz, P.: Extracting information from scientific papers in
the cloud. In: CISIS 2012, pp. 775–780 (2012). doi:10.1109/CISIS.2012.176

17. Stankovski, V., Konig, M.: A sustainable building application design based on the
mOSAIC API and platform. In: SKG 2012, pp. 249–252 (2012). doi:10.1109/SKG.
2012.13

18. Simmhan, Y., van Ingen, C., Subramanian, G., Li, J.: Bridging the gap between
desktop and the cloud for eScience applications. In: CLOUD 2010, pp. 474–481
(2010). doi:10.1109/CLOUD.2010.72

19. Prodan, R., Sperk, M., Ostermann, S.: Evaluating high-performance computing on
Google App Engine. IEEE Softw. 29(2), 52–58 (2012). doi:10.1109/MS.2011.131

20. von Laszewski, G., Diaz, J., Wang, F., Fox, G.C.: Comparison of multiple cloud
frameworks. In: CLOUD 2012, pp. 734–741 (2012), doi:10.1109/CLOUD.2012.104

21. Doelitzscher, F., Held, M., Reich, C., Sulistio, A.: ViteraaS: virtual cluster as a
service. In: CloudCom 2011, pp. 652–657 (2011). doi:10.1109/CloudCom.101

http://dx.doi.org/10.1109/TPDS.2010.178
http://dx.doi.org/10.1109/TPDS.2010.178
http://dx.doi.org/10.1109/eScienceW.2010.10
http://dx.doi.org/10.1109/eScience.59
http://dx.doi.org/10.1109/IPDPS.2009.5161234
http://dx.doi.org/10.1109/IPDPS.2009.5161234
http://dx.doi.org/10.1007/978-3-642-24755-2_6
http://dx.doi.org/10.1109/SBAC-PAD.2011.28
http://dx.doi.org/10.1016/j.procs.2011.04.045
http://dx.doi.org/10.1016/j.procs.2011.04.045
http://dx.doi.org/10.1016/j.future.2012.01.009
http://dx.doi.org/10.1016/j.future.2012.01.009
http://dx.doi.org/10.5220/0003395901840191
http://dx.doi.org/10.1109/CISIS.2012.159
http://dx.doi.org/10.1109/IDAACS.2011.6072727
http://dx.doi.org/10.1109/CISIS.2012.176
http://dx.doi.org/10.1109/SKG.2012.13
http://dx.doi.org/10.1109/SKG.2012.13
http://dx.doi.org/10.1109/CLOUD.2010.72
http://dx.doi.org/10.1109/MS.2011.131
http://dx.doi.org/10.1109/CLOUD.2012.104
http://dx.doi.org/10.1109/CloudCom.101


548 D. Petcu

22. Brock, M., Goscinski, A.: Execution of compute intensive applications on hybrid
clouds. In: CISIS 2012, pp. 995–1000 (2012). doi:10.1109/CISIS.2012.109

23. Raveendran, A., Bicer, T., Agrawal, G.: A framework for elastic execution of exist-
ing MPI programs. In: IPDPSW 2011, pp. 940–947 (2011). doi:10.1109/IPDPS.
2011.240

24. Mateescu, G., Gentzsch, W., Ribbens, C.J.: Hybrid computing - where HPC meets
grid and cloud computing. Future Gener. Comput. Syst. 27(5), 440–453 (2011).
doi:10.1016/j.future.2010.11.003

25. Li, X., Palit, H., Foo, Y.S., Hung, T.: Building an HPC-as-a-Service toolkit for
user-interactive HPC services in the cloud. In: WAINA 2011, pp. 369–374 (2011),
doi:10.1109/WAINA.2011.116

http://dx.doi.org/10.1109/CISIS.2012.109
http://dx.doi.org/10.1109/IPDPS.2011.240
http://dx.doi.org/10.1109/IPDPS.2011.240
http://dx.doi.org/10.1016/j.future.2010.11.003
http://dx.doi.org/10.1109/WAINA.2011.116


GPU Calculations of Unsteady Viscous
Compressible and Heat Conductive Gas Flow

at Supersonic Speed

Kiril S. Shterev1(B), Emanouil I. Atanassov2, and Stefan K. Stefanov1

1 Institute of Mechanics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str.,
Block 4, 1113 Sofia, Bulgaria

{kshterev,stefanov}@imbm.bas.bg
http://www.imbm.bas.bg

2 Institute of Information and Communication Technologies,
Bulgarian Academy of Sciences,

Acad. G. Bonchev Str., Block 25A, 1113 Sofia, Bulgaria
emanouil@parallel.bas.bg

http://www.iict.bas.bg

Abstract. The recent trend of using Graphics Processing Units (GPUs)
for high performance computations is driven by the high ratio of price
performance for these units, complemented by their cost effectiveness.
Such kinds of units are increasingly being deployed not only as accelera-
tors for supercomputer installations, but also in GPU-enabled nodes in
Grid and Cloud installations. At first glance computational fluid dynam-
ics (CFD) solvers match perfectly to GPU resources, because these
solvers make intensive calculations and use relatively small memory. Nev-
ertheless, there are scarce results about the practical use of this serious
advantage of GPU over CPU, especially for calculations of viscous, com-
pressible, heat conductive gas flows with double precision accuracy. In
our work we present calculation of unsteady, viscous, compressible and
heat conductive gas with double precision accuracy using GPU-enabled
version of the algorithm SIMPLE-TS, written on standard OpenCL. As a
test case we model the flow past a square in a microchannel at supersonic
speed with Mach number M = 2.43 on AMD Radeon HD 7950 GPU and
achieve 90 GFlops, which is 46 times faster than the CPU serial code
run on Intel Xeon X5560.

Keywords: GPU · OpenCL · SIMPLE-TS · First order upwind scheme ·
Unsteady · Viscous · Compressible and heat conductive gas flow

1 Introduction

Computational analysis of fluid dynamics problems depends strongly on the
computational resources [10]. The computational demands are related mainly to
the floating point performance and the memory size.
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In the last few years the performance of Graphics Processing Units (GPUs)
overcame significantly the performance of Central Processor Units (CPUs). At
first glance computational fluid dynamics (CFD) solvers match perfectly to GPU
resources, because these solvers make intensive calculations and use relatively lit-
tle memory. Nevertheless, there are scarce results about the practical use of this
serious advantage of GPU over CPU, especially for calculations of viscous, com-
pressible, heat conductive gas flows with double precision accuracy. The reported
speedups of GPU code to CPU code strongly depend on the mathematical model
and the precision of floating point operations. The calculation of Euler flow with
single precision in [3] demonstrates speedup of over 40x when comparing GPU
NVIDIA 8800GTX and CPU Intel Core 2 Duo. The calculation of incompress-
ible fluid demonstrates speedup of 4.0x when comparing GPU Nvidia C2050 and
two Intel Xeon X5650 (six cores CPU) [11], which is equivalent to a speedup of
48x when the GPU code is compared to one CPU core (serial code). The calcu-
lation of compressible fluid demonstrates speedup of 11x when comparing GPU
NVIDIA Tesla S2070 and serial code executed on Intel Xeon X5650, [6].

The main idea in presented approach is minimization of data transfers
between memories. We copy all simulation data to the GPU once at the begin-
ning of the application. Therefore, almost no GPU ↔ CPU data transfers are
necessary during the simulation, similar as [11]. Data transfers between global
and local device memories is other possible bottleneck. GPU version of algorithm
SIMPLE-TS is developed so that an entire iteration of the iterative process for
the calculated time step is calculated by one run of a kernel (see Fig. 3). The cal-
culation of entire loop in a single kernel is a new approach, according to authors
knowledge. The algorithm SIMPLE-TS is developed to be easily parallel orga-
nized, which makes possible realization of this single kernel concept. As a result
data transfers between memories of host ↔ device and global ↔ local/private
memories of the device are minimized.

The portability of the code and lower price of hardware are important.
OpenCL (Open Computing Language) is royalty-free standard for cross-platform,
parallel programming of modern processors found in personal computers, servers
and handheld/embedded devices (see [4]). OpenCL is supported from wide range
of devices, because implementers of OpenCL are: Intel, QUALCOMM, ARM,
AMD, Apple Inc., Vivante Corporation, STMicroelectronics International NV,
IBM Corporation, Imagination Technologies, Creative Labs, NVIDIA and Sam-
sung Electronics, while CUDA is supported only by NVIDIA. On the other hand
performance of AMD Radeon HD 7900 series GPU (AMD Radeon HD GHz edi-
tion double precision performance is 1 Tflop) corresponds to NVIDIA GTX Titan
(double precision performance is 1 Tflop) and Tesla series (Tesla K20X double
precision performance is 1.31 Tflop), while AMD’s GPUs are cheaper compared
to NVIDIA’s GPUs. The portability of application written on OpenCL and
performance/cost of AMD’s GPUs motivate us to use OpenCL standard and
AMD GPU.

In this paper we consider the problem of calculation of a two-dimensional
unsteady state gaseous flow past a particle moving with supersonic speed in
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Fig. 1. Horizontal velocity (upper part) and temperature (lower part) fields calculated
by GPU version of SIMPLE-TS.

a planar microchannel. We consider an unsteady supersonic flow with Mach
number equal to 2.43. The shock wave formed in front of the particle reflects
from the channel walls and interacts with the Karman vortex street (see Fig. 1)
behind it. The shock wave has significant gradients of velocities, pressure and
temperature. Thus, an accurate calculation of the flow requires the use of a
very fine mesh, when first order upwind scheme is used for approximation of
convective terms and density in middle points. The steady state calculations
have been carried out for a set of gradually refined meshes. Finally, a mesh with
8000×1600 cells was found to give stable and accurate enough results [8]. Second
order total variation diminishing (TVD) scheme SUPERBEE [5] reduces mesh
nodes to 1000 × 200 cells [7], which is 64 times less. At the moment in GPU
code we use 1st order upwing approximation scheme and present results and
comparison using this scheme.

2 Continuum Model Equations

A two dimensional system of equations describing the unsteady flow of viscous,
compressible, heat conductive fluid can be expressed in a general form as follows:
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u is the horizontal component of velocity, v is the vertical component of velocity,
p is pressure, T is temperature, σ is density, t is time, x and y are coordinates
of a Cartesian coordinate system. The parameters A, B, gx, gy, CT1, CT2, CT3

and diffusion coefficients ∂ and ∂λ, given in Eqs. (1)–(5), depend on the gas
model and the equation in non-dimensional form. A first order upwind scheme
is used for the approximation of the convective terms and a second order central
difference scheme is employed for the approximation of the diffusion terms.

The Navier-Stokes-Fourier equations (1)–(5) are given in general form. For
gaseous microflow description we use the model of a compressible, viscous hard
sphere gas with diffusion coefficients determined by the first approximation of
the Chapman-Enskog theory for low Knudsen numbers [9]. The Knudsen number
(Kn), a nondimensional parameter, determines the degree of appropriateness of
the continuum model. It is defined as the ratio of mean free path Ω0 to macro-
scopic length scale of the physical system L (Kn = Ω0/L). For the calculated
case the Knudsen number is equal to Kn = 0.01. For a hard-sphere gas, the vis-
cosity coefficient μ and the heat conduction coefficient δ (first approximations
are sufficient for our considerations) read as follows:

μ = μh

√
T , μh = (5/16)σ0Ω0Vth

√
λ (7)

δ = δh

√
T , δh = (15/32)cpσ0Ω0Vth

√
λ (8)

The Prandtl number is given by Pr = 2/3, Λ = cp/cv = 5/3. The dimen-
sionless system of Eqs. (1)–(5) is scaled by the following reference quantities,
as given in [9]: molecular thermal velocity V0 = Vth =

√
2RT0 for velocity, for

length - square size a (Fig. 1), for time - t0 = a/V0, the reference pressure (p0)
is pressure at the inflow of the channel, the reference temperature (T0) is equal
to the channel walls, reference density (σ0) is calculated using equation of state



GPU Calculations of Unsteady Viscous Compressible 553

Fig. 2. Flow geometry for a square-shaped particle with size a confined in a channel
with length Lch and height Hch.

(5). The corresponding non-dimensional parameters in the equation system (1)
–(5) are computed by using the following formulas:
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3 Test Case Formulation

As a test case we use flow past a square particle in a microchannel at supersonic
speed M = 2.43. Fig. 2 shows the geometry. The blockage ratio B = a/Hch is
equal to B = 10, channel length is Lch = 176. The problem is considered in
a local Cartesian coordinate system, which is moving with the particle. Thus
for an observer moving along with the particle the problem is transformed to a
consideration of a gas flow past a stationary square confined in a microchannel
with moving walls. Velocity-slip and temperature-jump boundary conditions [2]
are imposed on the walls of the channel and the square. The velocity-slip BC is
given as:

vs − vw = π
φv

φn

∣∣∣∣
s

, (10)

where vs is velocity of the gas at the solid wall surface, vw is velocity of the wall,
π = 1.1466.Knlocal = 1.1466.Kn/σlocal, Knlocal is the local Knudsen number,
σlocal is the local density, ∂v

∂n

∣∣
s

is the derivative of velocity normal to the wall
surface. The temperature-jump boundary condition is:

Ts − Tw = γ
φT

φn

∣∣∣∣
s

, (11)
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where Ts is temperature of the gas at the wall surface, Tw is temperature of the
wall, γ = 2.1904.Knlocal = 2.1904.Kn/σlocal, ∂T

∂n

∣∣
s

is the derivative of tempera-
ture normal to the wall surface.

4 Parallel Implementation

The algorithm SIMPLE-TS [8] is developed with idea of easy parallel implemen-
tation. The algorithm SIMPLE-TS is an iterative Jacobi method. The entire
loop 2 in the serial version of SIMPLS-TS, where all variables are calculated, is
executed as a single kernel on the GPU (Fig. 3). A conditional of the form if-
then-else generates branching (see [1]). To reduce branching (code serialisation)
we used the Kronecker delta function Fig. 4. Thus the number of floating point
operations in the GPU code becomes 917, while the CPU code has nearly 1.5

CPU (serial) [8]
Initialize variables.
Start loop 1:

Set the initial condition for the
calculated time step.

Start loop 2 (calculating a state for a
new time step):
Calculate convective and diffusion

fluxes.
Calculate pseudo velocities

(velocities, without pressure
term), coefficients for pressure
equation.

Start loop 3:
Calculate the coupled equations

for energy and pressure.
Stop loop 3. In most cases two

iterations are sufficient.
Calculate velocities using pseudo

velocities and pressure
(calculated within loop 3).

Compute density, using pressure and
temperature calculated within
loop 3.

Convergence of loop 2: Check for
convergence of the iteration
process for the current time step.

Convergence of loop 1: If the final
time is not reached continue.

GPU code
Initialize variables.
Start loop 1:

Set the initial condition for the
calculated time step.

Start loop 2 (calculating a state for a
new time step):
Run a kernel on GPU:

Calculate equation for energy.
Calculate pseudo velocities

(velocities, without pressure
term), coefficients for
pressure equation and store
data in local memory.

Calculate equation for pressure.

Calculate velocities using
pseudo velocities and
pressure.

End kernel.

Convergence of loop 2: Check for
convergence of the iteration
process for the current time step.

Convergence of loop 1: If the final
time is not reached continue.

Fig. 3. Algorithm SIMPLE-TS for CPU (serial) and GPU.
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CPU code

if(0>u(i,j)) rho_u(i,j)=rho(i-1,j);

else rho_u(i,j)=rho(i,j);

GPU code

rho_u(i,j)=(0>u(i,j))*rho(i-1,j)

+(!(0>u(i,j)))*rho(i,j);

Fig. 4. Correspondence of if/else statement for CPU code and Kronecker delta expres-
sion for GPU code.

Fig. 5. Domain decomposition of computational domain.

times less floating point operations. At least two or three iterations of loop 2 are
needed for the GPU algorithm SIMPLE-TS to become convergent.

A domain decomposition (data partitioning) approach is used. Each work
group corresponds to a subdomain, Fig. 5. All threads of a work group calculate
the same j. Threads calculate nodes in a subdomain from bottom to top. Some
preliminary calculations of a subdomain have to be done.

5 Speedup Analysis

The mesh of the test case is 3528 × 200 points. A first order upwind scheme is
used for the approximation of the convective terms, and a second order central
difference scheme is employed for the approximation of the diffusion terms.

Computational domain is divided to 28 subdomains, which correspond to
number of compute units of AMD Radeon HD 7950. Each work group has 256
threads, calculates 252 nodes on OX axis and 4 threads calculate halo region of
subdomain.

We compare serial CPU code and GPU code running on AMD Radeon HD
7950 with 717 GF/s maximum performance, when using double precision floating
point calculations. GPU code reached 90 GF/s, which is 1/8th of the maximum
performance of the device and requires 50 % more floating point operations than
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the CPU serial code. Nevertheless the GPU code is 46 times faster than the CPU
serial code run on Intel Xeon X5560.

6 Conclusions

SIMPLE-TS algorithm calculates Navier-Stokes-Fourier system of partial differ-
ential equations describing unsteady, viscous, compressible, heat-conductive gas
flows. When we compare the performance of double precision floating point cal-
culations of flow past a square in a microchannel at supersonic speed M = 2.43,
the GPU device AMD Radeon HD 7950 reached 90 GF/s, which is 1/8th of
maximum performance of device (717 GF/s) and is 46 times faster than serial
CPU code run on Intel Xeon X5560.
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Abstract. In this work we present a new filtering variant of pseudo-
random bit generation which combines a 2-adic Feedback with Carry
Shift Register and the Editing bit-search generator, based on I. Erguler
and E. Anarim research. The generated algorithm uses dynamic blocks
for data encryption. Shrinking the block is necessary if low memory is
available. The algorithm divides the data block among the cores (the
processors) and every core encrypts part of the data file. We show the
advantage of using parallel implementation. The experimental statistical
results establish the time difference of performance on serial and parallel
encryption.

The security of the generated bit streams are proven by using NIST,
DIEHARD and ENT testing systems.

Keywords: Feedback with carry shift register · Editing generator ·
Parallel implementation

1 Introduction

Over the last few years, Feedback Shift Registers (FSR) in combination with
different filtering rules have been used broadly in the pseudorandom bit gener-
ation. The most used FSRs are the Linear Feedback Shift Register (LFSR) [5]
and the Feedback with Carry Shift Registers (FCSR) [9–11]. The registers offers
an additional security by implementing more nonlinearity in the cipher schemes.

2 Previous Research

The Self-shrinking generator [15] is a well studied scheme. Its algorithm clocks
two bits (a2i, a2i+1) from a single LFSR; if the second bit is 1 the output is the
first bit. In [21] the Self-shrinking scheme is applied on FCSR.

In [1] another variant of the self-shrinking generator is introduced, where
if a generated bit pair (a2i, a2i+1) equals the value (1, 0) or (0, 1) the scheme
produces 0 or 1 respectively. It is performed a LFSR based simulation with this

I. Lirkov et al. (Eds.): LSSC 2013, LNCS 8353, pp. 557–564, 2014.
DOI: 10.1007/978-3-662-43880-0 64, c≥ Springer-Verlag Berlin Heidelberg 2014
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algorithm. This rule is combined with a FCSR in [19]. The Bit-Search Gener-
ator (BSG), based on a single input infinite sequence, is presented in [6]. Its
decimation type construction is closely related to the Self-shrinking generator.

ABSG and MBSG are the improved versions of the BSG scheme which were
proposed in [7]. MBSG stands for Modified Bit Search Generator, ABSG stands
for Another Bit Search Generator.

The scheme of the Editing bit-search generator is investigated in [4]. The
algorithm is a new bit inserting technique and increases balancing in the input
sequence.

A novel hardware-oriented filtered FCSR stream cipher is presented in [2].
Two variants of the software oriented FCSR-based ciphers are proposed in [3].

In the past few years many researchers have proposed symmetric ciphers
with parallel encryption/decryption parts. The schemes of two transformations
of the FCSR into sub-sequences generators are investigated in [12]. In [20] new
multi-threaded model for stream cipher algorithm is presented. Implementations
of the Advanced Encryption Standard algorithm using parallel computing are
introduced in [8] and [17]. Parallel encryption algorithms for dual-core processor
based on chaotic maps are proposed in [13] and [23].

3 Basic Primitives

3.1 Feedback with Carry Shift Registers

FCSR is a FSR with a small amount of auxiliary memory. Let us fix an odd pos-
itive integer q, so named connection integer, q ∇ Z, and let r = ∈log2(q + 1)⊂
(where ∈ ⊂ denotes the integral part). Write q = q12 + q222 + · · · + qr2r − 1
for a binary representation of the integer q + 1 (so qr = 1). The feedback con-
nections are given by the numbers from q1 to qr. The shift array uses ∈log2(r)⊂
additional bits of memory, denoted initially mn−1, and r elements, denoted by
an−1, an−1, . . . , an−r+1, an−r. On every clock the shift array forms the integer sum

σn =
r∑

k=1

qkan−k + mn−1 (1)

and shifts the contents one step to the right, outputting the rightmost binary
value an−r. Then it assigns an = σn (mod 2) into the leftmost cell of the shift
register and replaces the memory integer mn−1 with mn = ∈σn/2⊂.

The output sequence a = (a0, a1, a2 . . . ) is strictly periodic if the following
conditions are satisfied [2,11]:

• q is a prime number of r + 1 bits.
• 2 is a primitive root modulo q.
• q = 2d + 1 with d prime number.
• The Hamming weight wt(q) of the binary representation of q is greater than

r/2.
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3.2 Editing Bit-Search Generator

The Editing bit-search generator is a new algorithm which is a modified version
of ABSG. Assume that we have a binary input string s and the corresponding
output string z. Lets denote the inserted memory bit as t with initial loading of
0. The generator searches the codeword ēeiē for i → 0 and the inserted bit is t.
If i is odd, then value of t is changed to its complementary as t = t̄, otherwise
nothing changes.

The EBSG produces bit strings with high period, perfect linear complexity
and good randomness for the input sequence generated by a maximum length
LFSR.

4 The Proposed Pseudorandom Bit Generator

Taking into account their positive features we introduce new scheme which com-
bines a single feedback with carry shift register and the Editing bit-search rule.

The algorithm of the proposed scheme begins with choice of a big connection
integer q, following the conditions from Subsect. 3.1, which defines the feedback
taps. The initial filling of the FCSR is from the key K of r + 1 bitsize. The first
r bits are directly used to initialize the shift register and the last one is stored in
the auxiliary memory. The next step is clock the created FCSR 4× r times. The
last step is regularity clock of automation and filter the output with the Editing
bit-search rule.

Due to the software experiments we have used our previously generated 256
bit connection number [19]:

q = 691404278904591653883944868566267941284354665391020334
45742564143918333689939. (2)

The binary expansion form of the number is:

10011000110111000001100001101011111011001010110011011101
01111100011111011001000001110111011111011101101011101011
10100101011110101100110011101010001011111101111011101010
11110101001010010110100010011010100001111111001100010001
10110111011100100000000001010011. (3)

The Hamming weight of the number is 142. There are 141 feedback connections
and 255 stages in the shift register.

5 Security Analysis

5.1 Resistance Against Attacks

The attacks against the Editing bit-search rule applied on the LFSR will be
unrealistic in the new combined scheme. Because of the nonlinear output, it is
impossible to apply directly the rational approximation attack [11].
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Table 1. NIST statistical test results

NIST statistical tests P-value Pass rate

Frequency (monobit) 0.012128 990/1000
Block-frequency 0.818343 994/1000
Cumulative sums (Forward) 0.823725 991/1000
Cumulative sums (Reverse) 0.496351 993/1000
Runs 0.500279 993/1000
Longest run of ones 0.160805 988/1000
Rank 0.693142 994/1000
FFT 0.190654 989/1000
Non-overlapping templates 0.511966 990/1000
Overlapping templates 0.794391 987/1000
Universal 0.217857 989/1000
Approximate entropy 0.749884 994/1000
Random-excursions 0.401045 608/614
Random-excursions variant 0.637757 610/614
Serial 1 0.435430 986/1000
Serial 2 0.099513 989/1000
Linear complexity 0.881662 986/1000

5.2 Statistical Analysis

To determine the randomness of arbitrary long binary strings produced by a
new proposed scheme the NIST [18], DIEHARD [14] and ENT [22] test packages
are used.

The NIST statistical test suite includes 15 tests, which focus the attention
on a variety of different types of non-randomness that could exist in a string.
For the NIST tests, we generated 1000 keystreams of length 106 bits. We tested
all outputs using the 15 tests with default parameters. The probability P-value
should be →0.0001 and the Pass rate should be >980. The results are given
in Table 1.

The minimum pass rate for each statistical test with the exception of the
Random-excursion Variant test is larger than 980 for a sample size = 1000 binary
sequences. The minimum pass rate for the Random-excursion Variant test is
approximately = 600 for a sample size = 614 binary sequences. All tests are
passed successfully. The result shows that the binary sequences generated by
the new scheme have properties like a truly random sequence.

The DIEHARD package consists of 18 different statistical tests. For the
DIEHARD tests, we generated a file with 80 million bits. The results are given
in Table 2. All P-values are in acceptable range of (0, 1). All tests passed.

The ENT package performs 6 tests to sequences of bytes stored in files and
outputs the results of those tests. We tested output string of 125000000 bytes of
the proposed scheme. The results are summarized in Table 3. It is obvious that
the entropy value and the arithmetic mean value are very close to the theoretical
ones of 8 and 127.5. The proposed generator passed all the tests of ENT.
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Table 2. DIEHARD statistical test results

DIEHARD statistical tests P-value

Birthday spacings 0.220956
Overlapping 5-permutation 0.588574
Binary rank (31 × 31) 0.625575
Binary rank (32 × 32) 0.552443
Binary rank (6 × 8) 0.630167
Bitstream 0.491649
OPSO 0.507526
OQSO 0.420654
DNA 0.456384
Stream count-the-ones 0.529472
Byte count-the-ones 0.426509
Parking lot 0.928680
Minimum distance 0.942912
3D spheres 0.021456
Squeeze 0.417780
Overlapping sums 0.837666
Runs up 0.522235
Runs down 0.589728
Craps 0.554436

Table 3. ENT statistical test results

ENT statistical tests Results

Entropy 7.999998 bits per byte
Optimum compression OC would reduce the size of this

125000000 byte file by 0 %.
σ2 distribution For 125000000 samples is 267.00,

and randomly would exceed this
value 29.02 % of the times.

Arithmetic mean value 127.5001
Monte Carlo π estimation 3.141471026 (error 0.00 %)
Serial correlation coefficient −0.000028 (totally uncorrelated

= 0.0)

Table 4. Parallel performance comparison with one or more processors with different
block sizes in seconds

Number of processors Bytes of a block
100 500 1000

1 62.02 64.31 61.54
2 64.04 54.24 52.27
4 90.30 57.07 55.20
8 104.40 54.19 51.94
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6 Experimental Multicore Encryption

The parallel experiments were performed on a computer consisting of Pentium
(R) Dual-Core T4400, with 4 GB of RAM. The operating system is Windows 7.
Tests were run with Open MPI [16], release 1.6.1.

The source code provides solution for both sequential and parallel realization
by checking available processors. The parallelization scheme is plaintext based
which divides the input file into equal blocks first and then assigns the blocks
to available processors. The sequential pseudorandom generation begins on a
master processor. When enough pseudorandom bits are generated a block of data
is being sent for encryption to one of the slave processors. The slave processors
combine the pseudorandom bits with the plaintext using exclusive or operation
(XOR) by keeping the offsets. When the encryption of the block is done the slave
processor sends the cryptext back to the master processor. The master processor
receives the data blocks in the same order as sent and combines the crypted data
blocks into the encrypted file. These operations are repeated until the end of file
is reached.

The experiments were made using 1, 2, 4, and 8 processors, testing file size
100 MB and block size 100, 500, and 1000 Bytes. The advantages of paral-
lel implementation compared with sequential implementation is demonstrated
in Table 4.

Table 4 indicates that using more processors reduces the time necessary for
generating the bit streams. The use of larger size of the memory blocks also
has positive effect on the performance. In the cases of 500 and 1000 bytes of
block the performance of the pseudorandom generator is improved. Although
the improvements are small under 20 %, we can summarize that the parallelizing
has a positive result.

7 Conclusion

We have presented a novel pseudorandom cryptographic scheme constructed
from Feedback with Carry Shift Register, filtered by the Editing Bit-Search
Generator. The security analysis results show that the proposed pseudorandom
derivative system can assure security in digital communications.
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Abstract. Ontology engineering, despite considerable progress, is still
relatively new and dynamically evolving discipline. As a result, the uni-
versal standards for creating and/or editing an ontology, have not been
established. This leads to problems with reusing and updating exist-
ing ontologies. It also makes writing an ontology from scratch seem like
a good idea. The aim of this paper is two-fold. First, to discuss key
issues encountered during re-engineering of an existing ontology. Second,
to show how the good practices of ontology development were applied
to model the area of computational linear algebra. Here, special atten-
tion is paid to the application of this ontology in the user support
system.

1 Introduction

The context for this paper is provided by the Agents in Grid project (AiG ;
[2,5,8]), which aims at development of an agent-based infrastructure for intel-
ligent resource management in the Grid. The AiG project combines software
agents and semantic data processing. Specifically, all knowledge in the system
is stored in/represented as an ontology, while communication protocols utilize
messages with ontological content [4]. During the development of the system,
three ontologies were designed to provide concepts necessary for: (i) resource
and Grid structure description, (ii) contract and requirements specification, and
(iii) content of messages exchanged in the system.

As the development of the system progressed, the ontological structures
started to become complex (ontology consisting of 401 entities). Furthermore,
when reasoning moved beyond simplistic examples (ontologies with a few con-
cepts), we have been confronted with recurring errors generated by the reasoners.
Therefore, the ontology reengineering became a necessity.
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2 AiG Ontology Reengineering

The original AiG grid ontology was created on the basis of the Core Grid Ontol-
ogy (CGO ; 217 entities). The CGO was extended (adding 88 entities) and mod-
ified to match the needs of the AiG project (see, [4,8]). During this process,
features identified as most problematic, from the point of view of the AiG
project, have been modified. Furthermore, constraints and messaging ontolo-
gies have been created (96 additional entities). However, no major “checking”
of the CGO has been performed at that stage. Let us, therefore, summarize key
issues encountered when such check was performed for the complete set of AiG
ontologies.

2.1 Documentation Standards

It is crucial that the ontology is intuitive enough and that the intended use of
its entities is clear. In OWL [10], this can be achieved through proper documen-
tation, clear naming scheme, and overall consistency. The ontology should be
uniform when representing the real world concepts and objects as OWL classes,
properties and individuals. However, as we have found, the original CGO had
problems in this area, and some of them carried over to the AiG ontology.

General ontology engineering standards state that names of OWL classes
should be capitalized, whereas OWL property names should start with a lower-
case letter, preferably in the format of “has[Property]” or “is[Property]”. This is
particularly important for a hierarchy of ontologies, because the naming schemes
carry over to all ontologies that import a given ontology. If ontologies in a hier-
archy use diffierent naming conventions, the overall naming scheme is broken.

Here, an example is the operatingSystem property that not only conflicted the
naming scheme (it applied to properties such as hasCPU and hasFileSystem),
but also could be easily confused with the OperatingSystem class. Recall that
in OWL, IRIs should be unique in the scope of an ontology, regardless of the
type of the entity. To solve the problem, the property has been renamed to
hasOperatingSystem. The remaining (similar) problems have also been fixed.

Proper documentation should help reusability, e.g. by explaining how the
ontology is intended to be used. While the OWL annotations can be used as the
documentation, this was not the case with the CGO (only 7 classes had comment-
ing annotations). The AiG ontologies are constantly updated with annotations
that are to serve both as guidelines for the users and as reminders for the devel-
opers. In the future, we plan to use annotations in the dynamic user interface
(see [3] for more details). Here, the GUI, in addition to adjusting to the ontology
structure, would also display information (contained in annotations) to explain
to the users (a) the entities in the ontology, and (b) their intended meaning.

2.2 Ontology Hierarchy

Recall, that the AiG grid ontology extended the CGO ontology to better fit
the needs of the AiG system. When analyzing the interplay between these two
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Fig. 1. Hierarchy of ontologies in AiG

ontologies it becomes clear that they are “conceptually” on the same level. Enti-
ties defined in the CGO could be transferred to the AiG grid ontology and
vice-versa. This could be done without disturbing the main ideas underlying
both ontologies and the AiG system. Furthermore, this could be done without
impacting the work of the AiG system. However, this means that the AiG grid
ontology must be used together with the CGO. This demonstrates a more gen-
eral issue that is rarely discussed. The typical ontology hierarchy does not take
into account the fact that, on each conceptual level, there may exist multiple
ontology files. In the AiG system, the ontological base consists of the CGO and
the AiG ontologies, with the messaging (AigMessagingOntology), the contract
constraints (AiGConstraintsOntology), and the domain (expert, AiGExpertOn-
tology) ontologies placed deeper in the hierarchy. Figure 1 presents the relation
of ontology files within the actual ontology hierarchy.

The reengineering that started with the CGO involved changes that had
to be immediately reflected in the AiG grid ontology, in order to preserve the
connection between them, and to prevent introducing (new) errors. An exam-
ple of how the original CGO was unsuitable for being extended was the clock-
Speed property. It’s original use, in the CGO, is summarized by two constructs:
the restriction on the CPU class, and the domain specification on itself. The
first states that every CPU needs a defined property clockSpeed. The latter
restricts the clockSpeed to the CPUs only. The AiG grid ontology introduced the
GPUs that had also to be described by the clock speed. Because of the domain
restriction it was impossible to use the clockSpeed property from the CGO. Any
GPU that used this property would be inferred to be a CPU. While technically
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correct, such inference was against our intentions. To avoid changing the CGO
file, a hasClockSpeed property was introduced in the AiG grid ontology. There,
it had the same interpretation as the clockSpeed from the CGO, only with the
GPU, as well as the CPU, in its domain.

This is an example of a “too specific” upper ontology. When narrowing the
domain, one might come to a false conclusion that the CPUs are the only objects
characterized by clock speed. Furthermore, it serves no purpose in the scope of
the ontology itself. Associating clock speed with CPUs is the suggested use,
not the only use and, therefore, it should be put in annotations. Similarly, the
extension of the domain (in the original AiG grid ontology) was incorrect. Note
that, if we added some Accelerated Processing Unit to the ontology, we would
face the same problem, and could end with three properties, each representing
clock speed, but for diffierent entities and with diffierently scoped domains.

During the reengineering, we put the hasClockSpeed property in place of the
clockSpeed, with the domain specification set to Thing or CPU or GPU . In
other words, we use the CGO defined property (not defining our own) and add
suggested use in both annotation and domain definition (without narrowing it
down). In this way we fixed similar problems associated with other properties.

2.3 Cleaning Conceptual Inconsistencies

A number of entities with the same intended meaning were present (at the
same time) in both in the CGO and the AiG ontologies. For example, both
ontologies included a CPU class. They had a diffierent IRI base and a diffierent
definition (e.g. one had the clockSpeed property in the definition). Individuals
that should belong to a single CPU class were divided between them. As a result,
the reasoning about individuals in the CPU class never gave a complete result
(unless done in the scope of the IRI bases of both ontologies and then combined).
As a consequence, multiple reasoners (tried in the system) had problems with
creating an inferred hierarchy, or classifying the ontology. Note that, these errors
became apparent only after reasoners started to be used in a working system
on the full-blown ontology (400+ entities) rather than on mini-examples (10–20
entities) used in testing the agent infrastructure.

We have found that this problem resulted from a misconception (or a bug)
in earlier versions of the Protegé platform that assumed that classes of newly
created individuals belong to the active ontology, and asserted their existence
(if they were not present). The newer versions of Protegé do not suffier from this
problem. This shows that growth of knowledge about “ontologies in practice”
leads to development of better tools, but leaves behind ontologies with limited
usability. All such problems were fixed, which also solved the reasoning errors.

3 Lessons Learned

Here, let us note that literature considers mostly ontology creation, rather than
long-term (re)use (see, for instance [1]). Furthermore, ongoing research concerns
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ontology merging, alignment, mapping, but almost nothing concerns “software
engineering like” principles for ontology re-use. This being the case let us sum-
marize the most important lessons learned from our work.

First, one should be mindful of the existing (or planned) ontology hierarchy,
and how a new/modified ontology would fit into it. Hierarchies can vary but it’s
always good to remember that upper ontologies should contain “general con-
cepts” and avoid introducing unnecessary conditions that would restrict usage
of upper entities. Consequently, the hierarchy level should be reflected in the
level of ontological specialization, when moving deeper into the imports chain.

Second, ontologies are meant to be reused. Thus, it is crucial to clearly com-
municate their intended use (e.g. by providing complete annotations and adher-
ing to the naming standards). As seen in the examples above, this can help
prevent misusing a concept or (re)defining it more times than intended.

Finally, the crucial lesson is that applying an ontology in practice is an indis-
pensable for identifying the problems that exist in its design. It also helps to
understand the importance of developed standards and best practices.

4 Adding a Domain Ontology

During the development of the AiG system, the need to add a new (created from
scratch) ontology arose. Note that the AiG system is to provide support beyond
the functionalities found in the existing Grid middlewares. Specifically, ontolog-
ical representation of domain knowledge is to be a part of the decision support
provided to the user. For instance, it should help the user to choose optimal algo-
rithm and/or resource to solve her problem. Hence, this is another attempt (using
modern tools) to achieve goals summarized in [6,7]. While work completed in
1990’s did not gain traction, we believe that with help of ontologies and semantic
data processing we may have more success. As a starting point, we have focused
on computational linear algebra. The ontology under development is extending
the existing AiG ontologies, and created taking into account the lessons learned
from the reengineering of the AiG ontologies. The main goal of the AiGExpertOn-
tology is to provide concepts necessary to capture three aspects of the domain:
(i) problems to be solved, (ii) algorithms to solve them, (iii) objects that these
algorithms operate on. Additionally, classes DomainExpert and ExpertOpinion
where introduced to represent experts knowledge (recommendations) allowing
matching of problems and algorithms. Therefore, the ExpertOpinion class has
property hasRecommendedResource, which points to a resource that is most suit-
able for solving a specific problem (according to the expert). Obviously, resources
originate from the AiG ontology. Let us now present the preliminary hierarchy
of problems in computational linear algebra (Fig. 2). Here, we distinguished five
types of problems represented with OWL classes: eigenproblem that can be fur-
ther categorized into eigenvalue or eigenvector problem, least squares problem,
solution of a system of linear equations, and calculation of a matrix norm.

The second part is the Algorithm; a superclass for classes (in Fig. 3, we
present a fragment of this hierarchy) representing algorithms that can be used
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Fig. 2. Hierarchy of problems in AiGExpertOntology

Fig. 3. Part of hierarchy of algorithms in AiGExpertOntology

to solve problems from Fig. 2, for a given input data (represented in the Matrix
class). This part of the ontology is going to be most complex and is being devel-
oped based on domain expert knowledge.

Finally, we develop Matrix and MatrixProperty classes (Fig. 4) and the
property hasMatrixProperty that defines their relationship. The MatrixProperty
class is a superclass for a hierarchy of properties that describe the matrix (e.g.
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symmetricity, density, structure, etc.). Obviously, in Fig. 4 we present only frag-
ments of the ontology that is being extended on the basis of expert opinions.

Fig. 4. Part of hierarchy of matrix properties in AiGExpertOntology

To illustrate how we plan to use the AiGExpertOntology ontology, let us
consider a scenario, where the user is looking for a team to commission a job.
Here, she could specify only requirements for resources needed to execute the job
(assuming that she is certain about her needs). However, she could also indicate
an individual of a subclass of the Problem class (Fig. 2), e.g. SystemOfLinearE-
quationsProblem. Such individual may have (optional) properties that specify (i)
the input, e.g. individual of class Matrix with values of hasProperty being indi-
viduals of classes PositiveDefiniteMatrix and SymmetricMatrix, and (ii) algo-
rithm, e.g. individual of class CholeskyFactorization. The first use case is to
validate user request for a resource against resources recommended by experts
for a combination of problem, input data, and algorithm. User’s resource specifi-
cation is evaluated against experts suggestions using Saaty’s Analytical Hierar-
chy Process (AHP) for multicriterial assessment. The way to combine ontologies
and the AHP method was introduced in [9].

Here, two use cases can be distinguished. First, when user requirements are
significantly disjoint from the expert suggestions (e.g. request for GeneralSolver
is made for a SymmetricMatrix ), he will be provided with alternative sugges-
tion(s) and thus may modify his request. Second, when user requirements are
not very detailed, they will be made more specific by accommodating experts
opinions. For instance, when user specified the problem, the matrix type (and
size), and the algorithm, the system can additionally suggest the CPU / GPU
type, and/or memory, and/or number of processors. Similarly, when the user
specified only the problem and the matrix type, the expert knowledge and the
AHP shall be utilized to suggest the algorithm and resources to be used.

In the AiGExpertOntology we follow, earlier specified, guidelines for ontology
engineering, e.g. naming conventions for classes and properties, filling annota-
tions for ontology elements. Moreover, we decided that new ontology has to
become a new module (separated from previously designed ones).
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5 Concluding Remarks

The aim of this paper was, first, to discuss important issues involved in ontology
reengineering, based on our experiences with the AiG ontology. Here, we have
discussed problems that one can encounter when ontology has been created using
earlier state of the art knowledge and tools and has to be extended and modern-
ized. Second, to introduce a new ontology that is going to be used in the user
decision support in the AiG system. This ontology has been developed follow-
ing the guidelines established during the reengineering process. The reengineered
ontology is available at: http://gridagents.sourceforge.net/AiGGridOntology.
Our current goal is to continue development of the ontology of computational
linear algebra and apply it in a prototype of the user decision support subsystem.
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DCVP 02/1 of the Bulgarian NSF.
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Abstract. In this paper, we present a study of fitting discrete data with
Generalized Expo-rational B-splines. We investigate different ways to
determine interpolation knots and generate GERBS local curves by par-
titioning the parametric space and solving a corresponding least-squares
fitting problem. We apply our technique to discrete evaluations of contin-
uous synthetic benchmark functions and compare the resulting GERBS
to the original data with respect to errors and performance.

Keywords: Discrete data · Fitting · Interpolation · Significant point ·
Curvature · Inflection · GERBS

1 Introduction

In this work we investigate the properties of fitting Generalized Expo-Rational
B-Spline (GERBS), introduced in [1], to regular discretized data. GERBS is a
family of blending type spline constructions, where local functional coefficients
are blended by GERBS basis functions. The choice of basis functions and the
local enrichment functions determines the local and hence the global approxi-
mation properties of the resulting space.

One of the intrinsic properties of the GERBS bases are the minimal support
of the basis functions, which allows for a simple approximation technique; instead
of storing the individual data points, and then blending the corresponding local
functions together, node by node, we can choose the interpolation knots and the
accompanying local functions freely, depending on the data itself.

Using this, we investigate various techniques to partition the parametric space
of the GERBS across the discrete data by changing the interpolation knots and
simultaneously adjusting the corresponding coefficient functions. In addition, we
look at the performance of the different constructions with respect to approxi-
mation.

Many papers have been published on the topic of data fitting, data reduction,
compression and smoothing with B-splines using various methods. We mention
here the knot removal technique presented by Lyche and Mørken in [4] and with
a different approach by Eck and Hadenfeld in [2], and the shape-preserving knot

I. Lirkov et al. (Eds.): LSSC 2013, LNCS 8353, pp. 577–584, 2014.
DOI: 10.1007/978-3-662-43880-0 66, c≥ Springer-Verlag Berlin Heidelberg 2014
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removal method by Schumaker and Stanley in [7]. We also mention the work
done by Saux and Daniel in [5,6] on estimating criteria for fitting and data
reduction of polygonal curves using B-splines. We leave these topics for now and
focus on a few simple methods for constructing GERBS local functions.

In Sect. 2 we start by giving a brief introduction to GERBS and its construc-
tion, as well as the partitioning and fitting setup we use throughout the article.
Then in Sect. 3 we describe the different partitioning algorithms and then follows
the description of the fitting method in Sect. 4. Finally in Sect. 5 we give some
concluding remarks where we discuss our findings and future work.

2 Preliminaries

2.1 GERBS Basis Functions

Consider a strictly increasing knot vector t = {tk}n+1
k=0 , t0 < t1 < · · · < tn+1,

n ∇ N. The definition of the j-th GERBS is defined in [1] as follows.

Bj(t) =


⎧

Fj(t), if t ∇ (tj−1, tj ],
1 − Fj+1(t), if t ∇ (tj , tj+1),
0, if t ∇ (−∈, tj−1] ⊂ [tj+1,+∈),

(1)

j = 1, . . . , n,

where {Fi}n+1
i=1 is a system of cumulative distribution functions such that for

Fi, i = 1, . . . , n,

1. the right-hand limit Fi(ti−1+) = Fi(ti−1) = 0,
2. the left-hand limit Fi(ti−) = Fi(ti) = 1,
3. Fi(t) = 0 for t ∇ (−∈, ti−1],
4. Fi(t) = 1 for t ∇ [ti,+∈), and F (t) is monotonously increasing, possibly

discontinuous, but left-continuous for t ∇ [ti−1, ti].

2.2 GERBS Curves

Generalized expo-rational B-splines provide a blending type construction, where
local functions at each knot are blended together by sufficiently smooth basis
functions

s(t) =
n⎪

i=1

φi(t − ti)Bi(t), (2)

where t = {tk}n+1
k=0 is a strictly increasing knot vector, and each basis function

Bj(t) is supported on (tj−1, tj+1) while possessing a Dirac property Bj(ti) = σij .
The local functions φi throughout this paper shall be Taylor expanding poly-

nomials up to a multiplicity μi

φi(t − ti) =
µi⎪
j=0

ci,j
(t − ti)j

j!
, (3)
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and the corresponding GERBS base Bi(t) is required to have vanishing deriv-
atives of order up to, including, μi. For the rest of the paper we will use the
Expo-rational B-spline basis described in [3] which is capable of transfinite Her-
mite interpolation, i.e. all of its derivatives vanish at all knots.

The knots (t) and the multiplicities (µ) together define a spline space, where
the coefficients (c) have a natural meaning corresponding to a Hermite interpo-
lation problem.

2.3 Partitioning and Fitting

In digital systems we often have to deal with continuous (analogue) input data.
The way it is handled is that the analogue signal is converted to digital by
sampling and quantizing (digitizing) and the resulting raw digital data is being
used instead of the original data. Often it is a requirement to produce outputs
which are either continuous or sampled at a higher rate than that of the input
data, this problem translates into interpolation/extrapolation or approximation
problems depending on the requirements.

In the current article, we are interested in comparing different strategies for
representing uniformly sampled uni-variate functions with the use of GERBS
based approximation, see Fig. 1. The partitioning algorithms work on a sampled
data of two benchmark functions, given by

f1(t) =
⎨

ln(t + 1)
−t sin(2t + 1))

⎡
, t ∇ [0, 1], (4)

f2(t) =
⎨

t
t sin(1t )

⎡
, t ∇ [0.01, 0.5], (5)

and their task is to select the knot configuration and the corresponding local
multiplicities of the spline space.

Then a fitting algorithm obtains the coefficients to the spline representation,
finally we compare the resulting splines with both the original continuous bench-
mark functions f1(t), f2(t) and their sampled discrete versions F1[k], F2[k] and
discuss some properties of the resulting transformations.

Sampler F [k] Partition t

Fitting

Spline
f(t) s(t)

Fig. 1. Partitioning and fitting data
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3 Partitioning Algorithms

In order to fit a GERBS construction (see Sect. 2.2) to discrete data, it is nec-
essary to decide where to place the interpolation knots (t) and to decide the
corresponding multiplicities (µ) of the local functions. This can be done in a
number of different ways. We describe three different algorithms for construct-
ing local curves.

3.1 Uniform Partitioning

As a starting point with uniform sampling we define a knot for each discrete data
point in F [k]. Next, the number of knots is reduced by selecting a subset of F in
order to define the spline space. We add as a note here that the data is assumed
to be appropriate for selection. (In some cases it is common to smooth the
data before selecting to reduce errors or avoid problems related to oscillation.)
It is possible to increase the degree by selecting derivatives for each knot. We
illustrate uniform partitioning with three different examples:

1. Fixed sample rate
2. Specified number of knots
3. Parametric stride

In the first case, the sample rate simply states how many knots to skip between
the selected knots. Hence, a sample rate of two selects every second knot, whereas
a sample rate of 10 selects every 10th knot.

The number of knots in the second case defines the size of the resulting
knot vector. This implies a computation of the sampling rate depending on the
number of elements in F .

We consider parametric stride, where we select knots equidistant in paramet-
ric space, in the current article.

3.2 Curvature Based Partitioning

Moving away from uniform partitioning, we describe in brief a naive, curva-
ture extrema based partitioning approach. From the discrete function F [k],
k = 1, . . . , M , we compute for each interior knot ti, i = 2, . . . , M − 1 the radius
of circumscribed circle of triangle R[i] = Rcirc→(F [i − 1], F [i], F [i + 1]). These
values correspond to the curvature of the curve at the corresponding interior
points. Next, we select the extrema of these values as they, together with the
two endpoints constitute the points of interest (for more details on feature point
selection consult [6,8]).

To be able to scale the method, the resulting set of feature points is processed
further. Feature points that are too close are filtered out and new feature points
are introduced uniformly between feature points that were too far away.
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3.3 Partitioning Based on Inflexion

We look at two different approaches based on relative angular changes in the
discrete data set. In both cases we consider the angle between the two vectors
spanning a sample point. Where we in the first approach consider the change
in the angle by tracing the curve, we start by sorting the angles into different
buckets in the other.

Inline Traced Partitioning. In the first variation we look at an approach
where we consider the linear interpolation between two neighboring data points
to be a vector which provides a first derivative in one point. Given a and b, two
vectors, we use the dot product between vectors and the angular difference, ∂,
of a and b

cos(∂) =
< a, b >

|a| |b| (6)

Given the discrete data set F [k], and an empty set q to store the detected
feature points. Apply (6) to the vectors a = p1 − p0 and let b “run” along the
curve, starting with b = p2 − p1, then b = p3 − p2, and so on. By comparing the
results of applying (6), whenever the sign of the gradient of the resulting “curve”
changes, we find a point of inflection on the curve given by linear interpolation
between points in p.

Bucket Based Partitioning. The second approach is to do an angular dif-
ference based partitioning by segmenting knots into buckets, each bucket corre-
sponding to a range subset of possible angular differences between the forward
and the backward edge. From the discrete function F [k], k = 1, . . . , M − 1, we
compute for each interior knot the angle between the two adjacent vectors, a
and b, where a = F [k +1]−F [k] and b = F [k +2]−F [k +1]. We sort the angles
and divide the knots into equal sized buckets, this can be seen in Fig. 2. Next we
run along the curve selecting feature knots, where if following knots is belonging
to the same bucket, only the first is kept as a feature knot.

p1

p2
p3

p4 p5

p6

p7

p8 p9

p10

(a) The ten sample points. Interior sam-
ple points sorted into three different
buckets.

p1

p2

p4

p7

p9

p10

(b) The interior feature points kept after
partitioning.

Fig. 2. Ten points and the linear interpolation in-between drawn as vectors.
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In addition to the found interior knots the end-point knots are also kept as
feature knots. Finally, the resulting set of feature points is processed further,
feature points that are too close are filtered out.

4 Fitting

Once the interpolation space is set up, by defining the knot vectors (t) and
the multiplicities (µ) the problem of finding the coefficients to best match the
given discrete data set F [k], k = {k1, k2, . . . , kM} of M points remains. For this
purpose we will use the best L2 approximant, given by the coefficient minimizing
the mean squared errors

∞S − F∞2 =
M⎪
i=1

|s(ki) − F [ki]|2, (7)

the coefficients are obtained by the usual technique of solving least squares prob-
lems. We restrict our investigation to cases where the fitting problem is not
ill-posed.

Figure 3 shows the performance of the considered methods introduced in
Sect. 3. The x-axis shows the percentage of the original data that is being used
while the y-axis displays the Signal to Noise Ratio (SNR) measured in dB, defined
as

SNR = 10 log10

⎨ ∞F∞2
∞F − S∞2

⎡
, (8)

where F stands for the original discrete data and S represent the reconstructed
data and ∞ · ∞2 stands for the square of the usual L2 norm.

5 Concluding Remarks

Our technique is local, hence there is a small bandwidth in the resulting matrix
in the least squares fitting, which in turn gives a computational advantage over
global methods, i.e. classical polynomial B-splines.

The computational complexity of each feature detection method is linear and
readily parallelizable, similarly since the splines are local the reconstruction and
evaluation can also be done parallel.

We note that there is a trade-off between smoothing and interpolation which
can be adjusted depending on how confident we are in the data and the condition
number of the fitting. Furthermore, the smoothness of the resulting curve can
be easily adjusted e.g. to fulfill a smoothness criteria of the underlying physics
of the discrete sample points.

The primary utilization is to reduce an original data set and use GERBS
type splines to represent the final data. From the two synthetic benchmarks we
can conclude that the two types of feature extraction coupled with the coloring
or the refining extension allowed for a construction of a series of tune-able spline
spaces which performed at least as good as the least squares fitting for smooth
inputs and proved to be much more stable for oscillating irregular input data.
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(a) Smooth synthetic benchmark
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(b) Oscillating synthetic benchmark

Fig. 3. Error rates for the smooth (a) and oscillating (b) synthetic benchmarks. The
teal lines U0,U1,U2 represent the uniform algorithm, the purple lines C0,C1,C2, stand
for the curvature based refining method, while the orange marks I0,I1,I2, show the
performance of the bucketing algorithm based on angles. The lower indices correspond
the applied uniform multiplicity, µi in (2).

5.1 Future Work

Future work related to applications includes the extension of the current study
to applications in cartography and animation data, including the adaptation of
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the presented ideas to industry standard representations used there, i.e. Catmull-
Rom splines in animations and Bézier curves in cartography.

The locality of the method makes it a suitable candidate for streaming data,
one particular potential area of use can be in Massively Multiplayer Online
(MMO) games within the computer games industry, where large amounts of
data of similar structure has to be handled real time. Transferring data over a
limited bandwidth, especially for relatively large discrete data sets, translates to
simply transferring coefficients via the networks, since the coefficient alone are
enough to reconstruct data from a sender on the receiver’s end.

Finally, to put a last note for future work, we believe more sophisticated
methods for partitioning of the parametric space could enhance the results much
further. It could be interesting to apply well studied principles for data reduction,
such as (shape-preserving) knot removal or those based on features and criteria
of the original data.
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Abstract. We study the application of Lorentz thresholding and com-
posite Besov-Lorentz shrinkage to coefficients of wavelet-transformed dis-
cretized expo-rational B-spline (ERBS) data. ERBS constructions are
well suited for interpolation in cases where a given continuity is required;
including, but not limited to, applications within control theory, simu-
lations and various interactive modeling. We provide different examples,
which highlight the adaptivity features of the two methods. We show the
performance with respect to compression rates and approximation errors
for the two test cases.

Keywords: Compression · ERBS · Wavelets · Fitting · Shrinkage ·
Thresholding · Besov-Lorentz

1 Introduction

A comparison of Besov-Lorentz shrinkage to firm thresholding for use in wavelet
compression of curves was investigated in [6]. One finding showed that it is
possible to control the trade-off between error of approximation and rate of
compression in the case of Besov-Lorentz shrinkage, whereas no such control
was available with firm thresholding. In addition, Besov-Lorentz shrinkage was
found to provide better fitting of singularities under the penalty of over-fitting
smooth parts of the signal neighboring the isolated singularity. In the present
paper we investigate the general application of the above mentioned methods
to discretized expo-rational B-spline (ERBS) data, as well as principal charac-
teristics between Lorentz type thresholding and Besov-Lorentz type shrinkage
applied to ERBS.

In Sect. 2 we give a brief overview of the wavelet transform, coefficient shrink-
age, compression and ERBS. Then in Sect. 3 we present an overview of the
ERBS compression setup and the synthetic test surfaces. Finally in Sect. 4 we
present findings, provide some concluding remarks and suggest topics for future
work.
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2 Preliminaries

2.1 Wavelet Transform

The wavelet transform [3] is a technique to represent any arbitrary function
f as wavelets, generated by dilations and translations from one single mother
function φ:

φa,b(t) = |a|−1/2φ

(
t − b

a

)
, (1)

where a and b are constants defining dilatation and translation, respectively. It
is required that the mother function has mean zero:

⎧
φ(t)dt = 0, (2)

which typically implies at least one oscillation of φ(t) across the t-axis. Following
from the dilations of a single function, compared with the mother function, low
frequency wavelets (a > 1) are wider in the t-direction, whereas high frequency
wavelets (a < 1) are narrower.

For application within signal analysis, the parameters a and b in Eq. (1) are
usually restricted through discretization. A dilation step a0 > 1 and a translation
step b0 ∇= 0 are fixed, leading to the wavelets for j, k ∈ Z:

φjk(t) = a
−j/2
0 φ(a−j

0 t − kb0). (3)

The discrete wavelet transform (DWT), T , associated with the discrete
wavelets in Eq. (3), maps functions f to sequences indexed by Z

2:

(Tf)jk = ⊂φjk, f→ = a
−j/2
0

⎧
φ(a−j

o t − kb0)f(t)dt. (4)

Following the principle of decomposition, f can be reconstructed from its wavelet
coefficients σjk = ⊂φjk, f→:

f =
⎪
j,k

σjkφjk(t). (5)

An algorithm for indexing of discrete orthogonal wavelet spaces of different
dimensions was introduced in [4]. We utilize this to perform discrete wavelet
transforms efficiently on the graphical processing unit (GPU) by applying low-
pass and high-pass filters iteratively.

2.2 Wavelet Shrinkage

Two types of wavelet shrinkage – thresholding and non-thresholding type of
shrinkage rules – were discussed in [5]. With a thresholding rule, coefficients σ
whose absolute value is less than a given threshold, such that |σ| < ∂ where the
threshold value ∂ ∞ 0, are “eliminated” by setting them to zero, whereas in the
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case of a non-thresholding rule, all coefficients are shrunk towards zero without
actually setting any of them to zero.

Soft and hard thresholding are two classic thresholding rules for smooth func-
tions, proposed by Donoho and Johnstone in [9–11]. They consist of a continuous
function (‘shrink’ or ‘kill’) or a discontinuous function (‘keep’ or ‘kill’), respec-
tively. An improved version combining the properties of both thresholding rules,
firm shrinkage, was introduced by Gao and Bruce in [13] as a function taking
two threshold parameters. It can be considered as a first example of a composite
shrinking strategy [5].

According to [5], threshold type shrinkage methods are the preferred choice
when estimating relatively regular functions, while non-threshold type methods
are better suited for estimation of spatially in-homogeneous functions. However,
there are down-sides with non-adaptive methods. Thresholding tends to over-
smooth near singular points, whereas non-threshold methods tend to over-fit in
regular points.

To improve on the above mentioned limitations, Dechevsky, Gundersen and
Grip proposed an adaptive composite estimator in [5]: Lorentz-type thresholding
based on decreasing re-arrangement of the wavelet coefficients, as outlined in [8],
combined with the non-threshold shrinkage procedures for functions belonging
to Besov spaces, also described in [8]. The regularity of a signal is there discussed
in terms of the size of its semi-form in the homogeneous Besov spaces. Notably
in [5], following from a criterion to use the real interpolation spaces, in which the
Besov scale is closed, i.e., (Bσ

ππ, Bs
pp)θ,p(θ) = B

s(θ)
p(θ)p(θ), was the announcement of

a parameter Δ determining to which degree the composite estimator is of Lorentz-
type and Besov shrinkage-type, when 0 ⊃ Δ ⊃ 1, where 1

p(θ) = 1−θ
π + θ

p . Since
general Lorentz shrinkage is a threshold method, while Besov shrinkage is of
non-threshold type, Δ can be used as a parameter to control the compression
rate. (For details, see [5,8] and the references therein). Preliminary experiments
on this new type of shrinkage for use in wavelet compression was explored in [6].
We will adapt the proposed, general 1D method to 2D surfaces by considering
the whole signal as a general Besov space.

2.3 Wavelet Compression

Compressing a wavelet-transformed signal is essentially a two-step process:

1. Quantify the wavelet coefficients
2. Code-word assignment for the quantified coefficients

Errors are introduced in the quantification step, e.g. through shrinkage. We note
that in order to achieve loss-less compression, that step has to be omitted. Thus,
the compression we consider here is lossy.

The wavelet transformed and possibly quantified signal can be “packed” using
error-free compression of the coefficients σ. One such method is to encode the
most frequent symbols with fewer bits rather than coding all symbols with an
identical number of bits. A commonly used version of this technique is called
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Huffman code [14]. Another method, which is effective on signals with less vari-
ations, is to apply run-length encoding (RLE). With RLE, whenever a symbol is
repeated N times in a sequence, it is stored once together with the number N .

We investigate compression in this case with respect to quantification only
by counting the relative number of coefficients which are set to zero.

2.4 Expo-rational B-splines

Expo-rational B-splines, as defined in [16], provide a blending type construction
where local functions at each knot are blended together by C∗-smooth basis
functions:

f(t) =
n⎪

k=1

Ωk(t)Bk(t) (6)

where t = {tk}n+1
k=0 is an increasing knot vector, Ωk(t) are local (scalar or vector-

valued) functions defined on (tj−1, tj+1), and each basis function Bj(t) is sup-
ported on (tj−1, tj+1) with Bj(tk) = δjk (Kronecker’s delta). We consider the
scalable subset of the ERBS basis (see [7]) with default set of intrinsic parame-
ters, proposed by Laks̊a in [15]:

Bk(t) =

⎨⎡⎡⎢
⎡⎡⎣

S
⎤ wk−1(t)

0
φ(s)ds, tk−1 < t ⊃ tk

S
⎤ 1

wk(t)
φ(s)ds, tk < t < tk+1

0, otherwise,

(7)

where wk(t) = t−tk
tk+1−tk

, φ(s) = e
−

(

s− 1
2

)2

s(1−s) , and S =
⎥⎤ 1

0
φ(s)ds

⎦−1

≥ 1.6571.
The motivation to explore Besov-Lorentz shrinkage applied to ERBS func-

tions is due to their Hermite interpolation property, which facilitates represen-
tation of curves and surfaces with prescribed smoothness. Interestingly, this
property encompass modeling of sharp edges, since an ERBS function com-
pletely interpolates values and all existing derivatives of its local functions in
their respective knots (see the ERBS Hermite interpolation theorem described
in [15] for details).

3 Wavelet Compression of ERBS Data

We consider parametric tensor product surfaces,

S(u, v) =
nu⎪
i=1

nv⎪
j=1

sij(u, v)Bi(u)Bj(v), (8)

where sij(u, v), i = 1, . . . , nu, j = 1, . . . , nv are nu×nv local Bézier patches, and
Bi(u), Bj(v) are the respective ERBS basis functions. We present two surfaces,
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one with less local variations (smooth) and another with sharp local variations
(spikes).

The “smooth” data set is an ERBS approximation of a cubic Bézier surface
representing a “hump”. It is constructed from 3 × 3 local patches, where each
local patch is a cubic Bézier surface.

The “spiked” data set is also an ERBS approximation of a cubic Bézier
surface. However, in this case it is representing a “dip”. Now, every second local
patch, in u and v, is pulled through the surface and reduced to degree 0. This
creates “spikes” and local irregularities. Plots of the two ERBS surface data sets
can be seen in Fig. 1a and b, respectively.

It was noted in [6] that smooth parts of the signal neighboring isolated sin-
gularities were over-fitted due to the relatively large support of the orthonormal
Daubechies 6 wavelet used. For this reason we apply the bi-orthogonal Cohen -
Daubechies - Feauveau 5/3 wavelet, described in [2], also known as the LeGall
5/3 wavelet (see [12]). It forms the shortest symmetrical bi-orthogonal pair of
order 2, hence, it combines sufficient smoothness with narrower support.

Using the notation from [5] to represent a signal as discrete orthonormal
wavelets,

f(x) =
⎪
k→Zd

λ0kΛ
[0]
0k(x) +

∗⎪
j=0

⎪
k→Zd

2d−1⎪
l=1

σ
[l]
jkφ

[l]
jk(x), a.e. x ∈ R

d, (9)

where λ0k =
⎞
Λ
[0]
0k, f

⎟
=

⎤
Rd Λ

[0]
0k(x)f(x)dx and σ

[l]
jk =

⎞
φ
[l]
jk, f

⎟
are the scaling

and wavelet coefficients, respectively, surface fitting by wavelet shrinkage is per-
formed here by shrinking the wavelet coefficients σjk towards zero in the wavelet
domain. We compare pure Lorentz thresholding (without invoking Besov-type
non-threshold shrinking) with the composite Besov-Lorentz shrinkage outlined
in [5].

The present wavelet implementation is based on the lifting scheme proposed
by Sweldens in [17]. In the test case we apply two DWT levels on discretized 2D
ERBS data of size 256 × 256.

Figure 2 shows the performance for the two cases of shrinkage applied to the
considered ERBS surfaces. The horizontal axis displays the compression rate
while the vertical axis shows the Signal to Noise Ratio (SNR) measured in dB,
defined as

SNR = 20 log10

( ≤ F ≤2
≤ F − S ≤2

)
, (10)

where F is the original ERBS surface, S denotes the compressed (shrunk) surface
and ≤ · ≤2 stands for the square of the L2 norm. Compression is measured in
terms of how many of the wavelet coefficients which are set to zero relative to
the size of the signal. The scaling coefficients λ0k in Eq. (9) remain un-touched.
In the case of 2D data with 2n ×2n resolution, the number of scaling coefficients
is

⎠
1
2ln

)2. Thus, the highest possible compression rate with two DWT levels is
93.75% when all wavelet coefficients σjk in Eq. (9) are set to zero, since 6.25%
(or 1

16 ) of all coefficients are λ0k.
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(a) Smooth surface with less local (b) Spiked surface, with sharp local
variations.variations.

Fig. 1. Visual representation of the synthetic ERBS surface test data.
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Fig. 2. Error rates for the synthetic benchmarks, as seen in Fig. 1. The locally smooth
surface S is represented as teal lines with triangle markers (at the top), whereas the
two purple lines with square markers further down show the performance for the spiked
surface T with sharp local variations. Rates for Lorentz thresholding and composite
Besov-Lorentz shrinkage are indicated with solid and dashed lines, respectively.
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4 Concluding Remarks

Invoking Besov-type non-threshold shrinking reduces error when compressing
ERBS surfaces with sharp local variations, despite the smoothness properties
provided by the ERBS. In the case of “smoother” surfaces, in terms of less local
variations, applying non-threshold shrinking has opposite effect. The compres-
sion rates are relatively high in both cases.

ERBS constructions are well suited for interpolation when a given continu-
ity is required, which allows for modeling complex geometry as continuously
evaluable functions. The flexibility provided by the composite shrinking seems
to accommodate these possibly challenging properties well.

The primary utilization is to compress (and re-construct) ERBS data. There
is obviously a potential use within data transferring and storage.

We note that there is a trade-off between compression rates and accuracy of
data fitting which can be controlled efficiently by adjusting the control parame-
ters. This may be useful in interactive applications, where user-guided compres-
sion is suitable, such as animation modeling.

The current study is performed on signals that belong to the general scale
of Besov spaces. The wavelet transform is already a local method which is com-
puted in parallel on the GPU. We note several advantages with extending the
computation of composite shrinkage parameters to adapt to the local smooth-
ness properties prescribed on large data sets, by analyzing the local sparseness
or non-sparseness of the vector of wavelet coefficients. First of all, the compres-
sion performance would increase. In addition, the computation can be done in
parallel. Moreover, a pure local method is suitable for data streaming, which is
applicable to computer games, various controllers and simulations, among others.

On the topic of performance, it could be beneficial to apply well-known meth-
ods such as code-word assignment or packing for the quantified coefficients addi-
tional to shrinkage.

As a final remark, we note that according to [1], the LeGall 5/3 based on lift-
ing is used also to obtain reversible or loss-less image compression in JPEG2000
since this particular wavelet, which has rational coefficients, can be implemented
with integer operations only.
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Abstract. In this paper a mortgage contract with a given duration and
a fixed mortgage interest rate is considered. The borrower is allowed
to terminate the contract at any time at his choice by paying off the
outstanding sum to the issuer. The mathematical model leads to a free
boundary problem where the moving boundary is the optimal time of
termination. A new numerical method, based on the immersed interface
method (IIM) and integral representation of the solution is proposed.
Using Thomas algorithm the nonlinear equation for the free boundary
position is obtained and solved iteratively. Numerical analysis is pre-
sented and discussed.

1 Introduction

Mortgages are one of the most popular financial instruments in today’s financial
markets. A mortgage loan is a contract which allows the borrower to obtain funds
from a financial instrument using a risky asset as collateral. The most common
variety of mortgages, known as fixed rate mortgages, have a fixed contract rate
and a fixed monthly payment. Residential mortgage contract typically grants
the borrower several options to facilitate his reacting to the market movement,
among which very important are the options of prepayment and refinancing.
In this paper we are interested in the problem of whether it is better for the
borrower to terminate the mortgage by prepaying it with a lump sum and the
optimal time to do so.

Mortgages like many derivative securities can be valued using partial differ-
ential equations. As a variant of derivative securities of American style, there is
no exact analytical solution to these free boundary problems. Explicit analysis
from an option-theoretic viewpoint of such financial derivatives have been done
by many researches in the last three decades [1,3,4,14,15].

The mortgage contract has a duration T and a fixed interest rate c. At any
time t during the term of the mortgage, the outstanding balance owed M(t), is
reduced in the time period [t, t + dt) by

dM(t) = cM(t)dt − mdt, ∇t ∈ T,

where cM(t)dt is the interest accrued on the balance and mdt is a payment
resulting from a constant continuous rate of payment of m. In order for the

I. Lirkov et al. (Eds.): LSSC 2013, LNCS 8353, pp. 593–601, 2014.
DOI: 10.1007/978-3-662-43880-0 68, c≥ Springer-Verlag Berlin Heidelberg 2014
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mortgage to be retired at t = T , the condition M(T ) = 0 applies so that M(t) =
m
c (1 − exp(c(t − T ))) . The borrower is allowed to terminate the contract at any
time t (t < T ) of his choice by paying off M(t) or invest in the market with the
amount M(t) less the current obligatory payment of m per unit time, earning an
instantaneous return rate rt. We assume that this short term market return rate
rt follows Vasicek model [13], described by the stochastic differential equation

dr = κ(θ − r)dt + σdWt ,

where κ is the mean reverting speed, θ is the long term mean of r, σ is the
volatility of r and Wt is the standard Wiener process. In this model the market
price of risk has been incorporated into the drift κ(θ − r).

In [2], the function V (r, t), being the expected value of the contract at time
t and current market return rate r, is introduced and the following problem is
obtained:

∂V

∂t
+

σ2

2
∂2V

∂r2
+ κ(θ − r)

∂V

∂r
+ m = rV if V (r, t) < M(t), t < T, (1)

0 ∈ V (r, t) ∈ M(t) :=
m

c

(
1 − ec(t−T )

)
∇t ∈ T, r ⊂ R.

The value V is calculated according to the borrower’s optimal decision to ter-
minate the contract at the first time that the short term market return rate
r is below R(t). We call r = R(t) the optimal boundary of mortgage contract
termination.

The problem (1) has been studied analytically by Jiang et al. [4]. They proved
that the problem is well-posed, i.e. there exist a unique solution which is smooth
up to the free boundary r = R(t). Also, the free boundary R(t) is a smooth
function, strictly increasing on (−→, T ) and has the asymptotic behavior

R(t) ∞ c − σκ
⊃

T − t as t ≥ T, κ = 0.47386....

Many methods are used for solving free boundary problems, arising in finan-
cial mathematics. Some of them transform the free boundary to the strait line
[6,10–12]. On the other hand, an algorithm using integral equations was pro-
posed in [2,14]. In this paper a new numerical method, based on the IIM (see
[5,7]) and integral representation of the solution is developed. Using Thomas
algorithm a nonlinear equation for the free boundary position is obtained and
solved iteratively. Numerical analysis is presented and discussed.

2 Mathematical Problem

Using a number of transformations (for more details see [2]) the Black-Scholes
equation in problem (1) is reduced to a heat equation. First, a new variables time
to expiry τ := T − t and dimensionless quantity ψ(r, τ) := c/m(M(t) − V (r, t))
are introduced. Second, dependent variable change is made:

h(r, τ) :=
κ

σ2
(r +

σ2

κ2
− θ)2 + (κ +

σ2

κ2
− θ)τ, φ(r, τ) := e−h(r,τ)ψ(r, τ).
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Finally, independent variable change is done:

x =
⊃

κeκτ

σ
(r +

σ2

κ2
− θ), s = e2κτ , u(x, s) =

2
⊃

πκ3/2

σ
φ(r, τ).

After these transformations the following problem for the function u and the
free boundary X(s) is obtained:

us − 1
4
uxx = f(x, s)H(X(s)) x ⊂ R, s > 1

u(x, s) > 0 ∇x > X(s), s > 1 (2)
u(x, s) = 0 ∇x < X(s), s > 1
u(x, 1) = 0 ∇x ⊂ R,

where H(X(s)) is right-continuous Heaviside function

H(X(s)) = 1[X(s),∗)(x) =
⎧

1 if x ≤ X(s),
0 if x < X(s).

The right hand side function f(x, s) is given by

f(x, s) =
⊃

π(sγ − 1)s−ν−1(x − β
⊃

s)e−
(

x√
s
−α
)2

, (3)

where

α =
σ

2κ3/2
, β =

⊃
κ

σ

⎪
c − θ +

σ2

κ2

⎨
, γ =

c

2κ
, ν = 1 +

σ2

4κ3
+

c − θ

2κ
.

Let G(x, s) be the Green’s function, associated with the heat operator ∂s −
1/4∂xx:

G(x, s) =
e−x2/s

⊃
πs

.

Then the solution u(x, s) to the problem (2) can be expressed as

u(x, s) =
⎡ s

1

dξ

⎡ ∗

X(ξ)

G(x − y, s − ξ)f(y, ξ)dy ∇x ⊂ R, s ≤ 1. (4)

We call the free boundary interface curve. Also, let us denote by [·]X(s) the
jump of the corresponding function across the position of the free boundary
X(s). From the problem (2) we have the following interface conditions:

[u(x, s)]X(s) = 0, (5)

[ux(x, s)]X(s) = 0. (6)

Differentiating (5) with respect to s we obtain

[ux(x, s)]X(s)Ẋ(s) + [us(x, s)]X(s) = 0, (7)
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and (6) leads to
[us(x, s)]X(s) = 0. (8)

From (2) and (8) we have

[uxx(x, s)]X(s) = −4f(X(s), s). (9)

For the free boundary X(s) in [2] the following estimates are proved:

X(s) < β
⊃

s, ∇s, (10)

X(s) = β − (0.334... + o(1))
⊃

s − 1, s ≥ 1. (11)

The optimal boundary r = R(t) for terminating the mortgage is given by

R(t) = c +
σ⊃
κ

⎪
X(s)⊃

s
− β

⎨
. (12)

3 Finite Difference Scheme

In order to solve the problem (2) numerically for given positive integers N and
M we define the uniform meshes: ωh = {0} ≡ {L} ≡ ωh, ωh = {xi = ih, i =
1, . . . , (N − 1), h = L/N} and ωk = {0} ≡ {T} ≡ ωk, ωk = {sj = jk, j =
1, . . . , (M −1), k = T/M}. Our goal is to apply a finite difference method which
is suitable for computing uj

i ∅ u(xi, s
j) for (xi, s

j) ⊂ ωh×ωk and associated front
position Xj ∅ X(sj) for sj ⊂ ωk. With Ij and Ij + 1 we denote the numbers of
the mesh points on the time layer sj , closely situated to the free boundary Xj :
xIj ∈ Xj < xIj+1.

For discretization of the problem (4) we use Crank-Nicolson scheme with
combination of the IIM [7]. The standard central finite difference approximation
for the second derivative in space is corrected near the interface curve, using
the interface jump conditions to improve the local truncation error. Then the
difference scheme is:

uj
i − uj−1

i

k
=

1
8

⎢
uj

i+1 − 2uj
i + uj

i−1

h2
+ Kj

i +
uj−1

i+1 − 2uj−1
i + uj−1

i−1

h2
+ Kj−1

i

⎣

+
1
2

⎤
f j

i + f j−1
i

⎥
, i = 1, ..., N − 1, j = 1, ...,M, (13)

where the correction terms Kj
i depend on the free boundary position:

Kj
i =

⎦⎞⎟
⎞⎠

0 i �= Ij , Ij + 1
2(xi+1−Xj)2

h2 f(Xj , sj) i = Ij

− 2(xi−Xj)2

h2 f(Xj , sj) i = Ij + 1
(14)

We set also initial and boundary conditions for the discrete system:

u0
i = 0 for i = 0, 1, ..., N ; uj

0 = 0, uj
N = P (L, sj) for j = 1, ...,M.

(15)
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The term P (L, sj) is the approximation of u(L, sj) and will be explained
later. Next, we rewrite the scheme (9) in the following form [9]:

Aiu
j
i−1 − Ciu

j
i + Biu

j
i+1 = −F j

i , i = 1, ..., N − 1, j = 1, ...,M (16)

where
Ai =

1
8h2

, Bi =
1

8h2
, Ci =

1
k

+
1

4h2
,

and

F j
i =

1
8

(
uj−1

i+1 − 2uj−1
i + uj−1

i−1

h2
+ Kj−1

i + Kj
i

)
+

uj−1
i

k
+

1
2

(
f j−1

i + f j
i

)
.(17)

For solving the obtained difference scheme we go from time layer j − 1 to j
and use on every stage a variant of Thomas algorithm [9]. We seek the solution
uj

i in the form

uj
i+1 = ζj

i+1u
j
i + ηj

i+1, i = 0, 1, ..., N − 1,

ζj
N = 0, ζj

i =
Ai

Ci − ζj
i+1Bi

, i = N − 1, ..., 1,

ηj
N = P (L, sj), ηj

i =
Biη

j
i+1 + F j

i

Ci − ζj
i+1Bi

, i = N − 1, ..., 1.

For a fixed j we require the solution uj
i to be equal to zero for all i ∈ Ij . It

follows that ηj
Ij = 0 and hence

Φ(Xj) := BIj ηj
Ij + F j

Ij = 0. (18)

In this equation both ηj
Ij and F j

Ij depend on the position of the free boundary
Xj . This is a nonlinear equation for the unknown value Xj . To complete the
difference scheme we set also X0 = β, see (10).

Then the Newton method is applied to equation (18):

0

Xj = 2Xj−1 − Xj−2,

l+1

Xj =
l

Xj − Φ(
l

Xj)

Φ→(
l

Xj)
, (19)

Xj =
l+1

Xj if

∣∣∣∣∣
l+1

Xj −
l

Xj

∣∣∣∣∣ < ε, a given tolerance.

Initial guess for
0

X1 is obtained by (11), putting s = 1 + k.
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We focus on the term P (L, sj), the approximation of u(L, sj) which involves
a double integral over for y ⊂ (X(ξ),→) and ξ ⊂ (1, s). To reduce the amount of
calculations we make a simplification in the following way:

u(x, s) =
⎡ s

1

dξ

⎡ ∗

X(ξ)

G(x − y, s − ξ)f(y, ξ)dy

=
⎡ s

1

dξ

⎡ ∗

X(ξ)

e− (x−y)2

s−ξ⊃
s − ξ

(ξγ − 1)ξ−ν−1(y − β
√

ξ)e−
(

y√
ξ
−α
)2

dy

=
⎡ s

1

(ξγ − 1)ξ−ν−1

⊃
s − ξ

e− (x−α
√

ξ)2

s dξ

⎡ ∗

X(ξ)

(
(y − ξ) + (ξ − β

√
ξ)

)
e− s(y−ξ)2

(s−ξ)ξ dy,

where

ξ =
ξx + (s − ξ)α

⊃
ξ

s
.

The inner integral is decoupled into two integrals. The first is solved exactly and
the second one is solved by using co-error function:

J1 =
⎡ ∗

X(ξ)

(y − ξ)e− s(y−ξ)2

(s−ξ)ξ dy =
1
2

ξ(s − ξ)
s

e− s(X(ξ)−ξ)2

ξ(s−ξ) ,

J2 =
⎡ ∗

X(ξ)

(ξ − β
√

ξ)e− s(y−ξ)2

(s−ξ)ξ dy

=
⊃

π

2
(ξ − β

√
ξ)

√
ξ(s − ξ)

s
Errc

(√
ξ(s − ξ)

s
(X(ξ) − ξ)

)
.

Finally we obtain

u(L, sj) =
1
2

⎡ sj

1

(ξγ − 1)ξ−ν−1
√

sj − ξ

sj
e− (L−α

√
ξ)2

sj e
− sj(X(ξ)−ξ)2

(sj−ξ)ξ dξ

+
⊃

π

2

⎡ sj

1

(ξγ − 1)ξ−ν−1/2(ξ − β
⊃

ξ)⊃
sj

e− (L−α
√

ξ)2

sj Errc

(√
ξ(sj − ξ)

sj
(X(ξ) − ξ)

)

This two integrals are computed by the trapezoidal rule.

Remark 1. The first integral is singular at ξ = sj but it is easy to see that the
integral function goes to zero as ξ ≥ sj , so that in the computation on the last
stage we take ξ ⊂ [sj−1, sj − eps], where eps is the precision number.

Also, in the Newton method we need of the following expression

Φ→(Xj) = BIj (ηj
Ij )→ + (F j

Ij )→

= BIj ζj
Ij+1ζ

j
Ij+2...ζ

j
N−1(η

j
N )→ + ζj

Ij+1(F
j
Ij+1)

→ + (F j
Ij )→ ,
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Table 1. Mesh-refinement analysis and comparison with the upgraded method pro-
posed by Xie et al. [2].

Our method Upgraded method of Xie et al. [2]
N M X(T ) difference ratio M X(T ) difference ratio

10 8 0.245147766 - - 8 0.2436451 - -
20 16 0.244189707 0.000958058 - 16 0.2438225 1.8e-4 -
40 32 0.243992434 0.000197273 4.856 32 0.2439030 8.1e-5 2.2
80 64 0.243981988 1.04459e-05 18.885 64 0.2439357 3.3e-5 2.5

160 128 0.243961767 2.02213e-05 0.516 128 0.2439484 1.3e-5 2.6
320 256 0.243957111 4.65578e-06 4.343 256 0.2439531 4.7e-6 2.7
640 512 0.243955917 1.19425e-06 3.898 512 0.2439548 1.7e-6 2.7

1280 1024 0.243955797 1.19739e-07 9.973 1024 0.2439555 6.3e-7 2.8

where (·)→ is differentiation with respect to X(sj) and then set X(sj) ∅ Xj .
Differentiation under the integral sign gives (we follow again Remark 1):

(ηj
N )→ = −

⎡ sj

1

(ξγ − 1)ξ−ν−1√
sj − ξ

e− (L−α
√

ξ)2

sj

(
(X(sj) − β

√
ξ)

)
e

− sj(X(sj)−ξ)2

(sj−ξ)ξ dξ .

4 Numerical Experiments

We consider problem (1) with parameter values c = 0.055, θ = 0.05, σ = 0.015
and k = 0.15, T = 1, see [2]. Since there exists no analytical solution to the
proposed free boundary problem, we use the mesh refinement analysis with dou-
bling the mesh sizes h and k. In Table 1 we give the results for the free boundary
position X(s) at different number of grids N and M and final time T . Also,
the difference between two consecutive values and the ratio are presented. The
results show nearly second order of accuracy for the moving boundary at final
time. The results obtained by the upgraded method of [2] are also presented,
where the rate of convergence is near one and half. The number of iterations
in our method is a little more, but only at first several time layers. Next, the
free boundary becomes nearly straight line and the method needs of zero or 1
iteration on every layer. The oscillations in the Ratio are frequently phenom-
enon for the IIM, see [7], but in global the rate of convergence of our method is
approximately two.

In Fig. 1 the numerical solutions of the curve (t, R(t)) obtained for M = 32
by the present method (solid line) and by the upgraded method of Xie et al. [2]
(circles) are presented.

Notes and Comments. We have investigated a new numerical method for valua-
tion of fixed rate mortgage contract which allows the mortgage holder to prepay
the outstanding balance of the mortgage. The mathematical model is a free
boundary problem, which is solved by the IIM, combined with Crank-Nicolson
method and Newton method. The results show second order of convergence for
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Fig. 1. The numerical solutions of the curve (t, R(t)) obtained for M = 32 by the
present method (solid line) and by the upgraded method of Xie et al. (circles).

the unknown free boundary. However, the method is a little more computation-
ally cost, but it gives a good results and it is appropriate for the problems in
which not only the free boundary but also the value of some portfolio function
is of interest for the researchers.
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Abstract. We present and analyze a splitting numerical scheme for two
non-linear models of mathematical finance. Each of the problems is split
into two parts: a hyperbolic equation solved numerically by using a flux
limiter technique and a parabolic equation computed by implicit-explicit
finite difference scheme. We show that the presented splitting numerical
schemes are convergent and positivity preserving. Numerical results are
also discussed.

1 Introduction

Modelling financial derivative prices by PDE has been introduced in 1973, when a
simple linear model was derived by F. Black and M. Scholes and independently by
R. Merton, read for example [13]. Its simplicity is obtained by imposing a couple
of limiting assumptions [13] which are too restrictive in practice. Therefore,
further work has been done to relax one or more assumptions which lead to
non-linear PDEs. A great part of the known non-linear modifications of the
Black-Scholes equation can be summarized in the form [2,3]:

Vt = A(·)VSS + rSVS − rV, A(·) =
1

2
σ̃2(S, t, V, VSS)S2, S ∈ Ω ≥ R

+, 0 ≤ t ≤ T, (1)

where φ̃ is the volatility function, r is the constant short rate and T is the
maturity. The unknown function V (S, t) is the option price, which depends on
time t and spot price S of the underlying.

We will study (1) for European Call/Put option, i.e. the value V (S, t) is the
solution to (1), with the following initial and boundary conditions (E > 0 is the
exercise price):

Call option Put option

V (S, 0) = max{0, S − E}, V (S, 0) = max{0, E − S}, 0 ∇ S < ∈,

V (0, t) = 0, V (0, t) = Ee−rt, 0 ∇ t ∇ T, (2)
V (S, t) = S − Ee−rt, V (S, t) = 0, S ⊂ ∈.

I. Lirkov et al. (Eds.): LSSC 2013, LNCS 8353, pp. 602–610, 2014.
DOI: 10.1007/978-3-662-43880-0 69, c≥ Springer-Verlag Berlin Heidelberg 2014
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A quite different financial model was derived in [14]

vtvSS + rSvSvSS − σv2
S = 0, S → ∂ ∞ R, 0 ∇ t ∇ T

v(S, T ) = g(S), S → ∂, vSS < 0, g∗(S) > 0,
(3)

where v = v(S, t) is a value function of the market model presented in
[14, Chap. 2]. The coefficient σ = (c − r)/Δ > 0, where the positive constants r,
c and Δ are the interest rate, the appreciation rate and the volatility (c − r > 0),
respectively. The model (3) describes the simple market model in the case of one
asset. In a typical case, function g(S) is given by g(S) = 1 − e−μS , μ > 0.

Changing the “terminal condition” into the “initial condition” by setting
v(S, T − t) = v(S, t) and then substituting [12]

V (S, t) = − vS(S, t)
vSS(S, t)

, S → ∂, 0 ∇ t ∇ T,

we get the following initial-value (Cauchy) problem

Vt = σV 2VSS + rSVS − rV, S → ∂ ∞ R, 0 ∇ t ∇ T

V (S, 0) = − g∗

g∗∗ > 0, S → ∂, (4)

In [10], a splitting numerical method is proposed for the quasi-linear heat
equation

wt −(wmwx)x = wp, m > 0, p ⊃ m+1, t > 0, w(x, 0) = w0(x), x → R, (5)

where w0 is a function with compact support. Problem (5) is written as

ut − 1
m

u2
x − uuxx = muq+1, t > 0, u(x, 0) = u0(x) = wm

0 (x), x → R,

with u = wm, q = (p − 1)/m, m > 0, q ⊃ 1. This problem is splitted into two
parts: a hyperbolic problem, the discrete version of which is solved explicitly on
the new time level by the Hopf and Lax formula and a parabolic problem, which
is solved by backward linearized Euler method. Different splitting method was
applied in [11] to solve an optimal replication problem in incomplete markets,
where the parabolic part is a linear Black-Scholes equation.

There exists many numerical methods and algorithms for different versions
of the non-linear Black-Scholes equation [2,3,6,8]. In this work, having in mind
maximum principle discussed in [1], we will present efficient, second order (in
space), positivity preserving (i.e. the non-negativity of the numerical solution to
be guaranteed) algorithms for solving the non-linear model problems
(1)–(2) and (4). We develop the idea of [10] to split the problems (1)–(2) and (4)
on two-parts: hyperbolic part and parabolic part. Then the hyperbolic problem
is solved using van Leer flux limiter [5] and a parabolic part is solved by an
implicit-explicit finite difference scheme.

The remaining part of this paper is organized as follows. In Sect. 2, we develop
the numerical method. In the next section the properties of the presented algo-
rithm are investigated. Finally, in Sect. 4 we discuss numerical examples.
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2 Numerical Method

In order to solve the model problems, we separate them into two parts: a hyper-
bolic problem

0.5Vt = rSVS , S → ∂, t > 0, (6)

and a parabolic problem

0.5Vt = A(S, t, V, VSS)VSS − rV, S → ∂, t > 0. (7)

We denote by LH and LP the exact solution operator associated with the corre-
sponding hyperbolic part (6) and parabolic subproblem (7), respectively. Then,
introducing a time step Ωn, the solution of the original model problems is evolved
in time in two substeps. First (6) is solved on the time interval (tn, tn + Ωn/2]:
V̂ (S) = LH(Ωn)V (S) and then the parabolic solution operator is applied to V̂ ,
which results in the following approximate solution at time tn+1 = tn + Ωn:

V (S, tn + Ω) = LP V̂ (S) = LP (Ωn)LH(Ωn)V (S). (8)

In general, if all solutions involved in the two-step splitting algorithm are smooth,
the operator splitting method is second-order accurate at each time step and
first-order accurate when it is applied for advancing the solution from t = 0 to
the final time T , see [5].

In application, the exact solution operators LH and LP are replaced by their
numerical approximations. The main advantage of the operator splitting tech-
nique is the fact that the hyperbolic, (6), and the parabolic, (7), subproblems,
which are of different nature, can be solved numerically by different methods.

Instead of ∂, we consider a large enough computational interval [L−, L+],
where L+ > 0, L− = 0 for model (1)–(2) and L− < 0 for (4) and define the
mesh

δh = {Si+1 = Si+hi+1, i = 0, . . . , N −1, S0 = L−, SN = L+}, ∅i =
hi+1 + hi

2
.

Next, we denote by un
i the approximate solution at point (Si, tn). Similarly

un := [un
0 , un

1 , . . . , un
N ]T . Further, for clarity of the exposition we set u := un,

û := un+1/2, ˆ̂u := un+1.

2.1 Hyperbolic Problem

In order to preserve the non-negativity of the numerical solution, we compute
(6), implementing a flux limiter technique. In this paper we are going to use van
Leer limiter [4,5]

λ(Λ) = (|Λ| + Λ)/(1 + |Λ|), (9)

where λ(Λ) is Lipschitz continuous, continuously differentiable for all Λ ≥= 0, and

λ(Λ) = 0, if Λ ∇ 0 and λ(Λ) ∇ 2min(1, Λ). (10)
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Following [4], the numerical flux Fi+1/2 = F (ui+1/2) = ui+1/2 is constructed
in a nonlinear way

Fi+1/2 = ui +
1
2
λ(Λi+1/2)(ui − ui−1) with Λi+1/2 =

ui+1 − ui

ui − ui−1
. (11)

Greek π = VS in (6) is approximated by ux̊,i = [ui+1/2 − ui−1/2]/∅i. Next,
reflecting the indices that appear in ui (see (11)) about i+1/2 [4] and using the
symmetry property λ(Λ) = Λλ(Λ−1), we modify ux̊,i, depending on the sign of
Si, such that

Siux̊,i = S+
i γ+

i (ui+1 − ui)/∅i − S−
i γ−

i (ui − ui−1)/∅i, where

γ+
i := 1 +

1
2
λ(Λ−1

i+1/2) − 1
2
λ(Λi+3/2), γ−

i := 1 +
1
2
λ(Λi+1/2) − 1

2
λ(Λ−1

i−1/2),

S± = max{0,±S}, and 0 ∇ γ+
i , γ−

i ∇ 2, i = 1, . . . , N in view of (9), (10).

For values u−1 and uN+1 at outer grid nodes S−1 and SN+1 respectively,
a second order extrapolation will be used: u−1 = 3u0 − 3u1 + u2 and uN+1 =
3uN − 3uN−1 + uN−2 [4].

Thus, the numerical approximation of (6) is

û0 = V (L−, tn+1), ûi = ui + τrSiux̊,i, i = 1, . . . , N − 1, ûN = V (L+, tn+1). (12)

2.2 Parabolic Problem

Consider the case A(·) ⊃ 0, independently of the approximation. For example,
(4) and (1) with φ̃2 = φ2(1 + sin πV

E ), see [9] and the lecture of C.H. Lai in
[3], or with Leland volatility function φ̃2 = φ2(1 + Le sign(VSS)), where 0 <
Le ∇ 1 is the Leland number, φ > 0 is the historical volatility, or Boyle-Vorst
volatility φ̃2 = φ2(1 + Le

√
ζ/2 sign(VSS)), or Avellaneda-Parás volatility φ̃2 ={

φ2
min, VSS > 0;

φ2
max, VSS < 0 , or stochastic volatility φ̃2 = φ2/(1 − σVSS)2, where σ(S) ⊃ 1

depends on the pay-off function of the financial derivative, and s.o., see [3].
In this case, the finite difference approximation of (7) is

ˆ̂ui − ûi

Ω
− Âi

(
ˆ̂ui+1 − ˆ̂ui

∅ihi+1
−

ˆ̂ui − ˆ̂ui−1

∅ihi

)
+ r ˆ̂ui = 0, i = 1, . . . , N − 1.

Âi = A(Si, t
n+1, ûi, ûxx,i), ˆ̂u0 = V (L−, tn+1), ˆ̂uN = V (L+, tn+1).

(13a)

Next, let A = A1 + A2VSS |VSS |p, A1, A2 > 0. To this group belong Barles-
Soner model ((1)–(2), φ̃ = φ2(1 + ς(erta2S2VSS))S2, ς(s) solves an ODE [3],
but often chosen ς(s) = s), i.e. A1 = 1

2φ2S2, A2 = 1
2φ2erta2S4, p = 0, where

a is a parameter measure transaction cost and risk aversion, and Jandačka-
Ševčovič model (1)–(2) [3], i.e. A1 = 1

2φ2S2, A2 = 1
2φ2μS8/3, p = −2/3,

μ = 3(C2M/(2ζ))1/3, where M ⊃ 0 is the transaction cost measure, C ⊃ 0
is the risk premium measure.
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As before, we will use the notation u±
xx,i = max{0,±uxx,i}, where uxx,i =

[(ui+1 − ui)/hi+1 − (ui − ui−1)/hi]/∅i. Then, the discretization of (7) is

ˆ̂ui − ûi

Ω
− [Â1i + Â2i(û

+
xx,i)

p+1]ˆ̂uxx,i + r ˆ̂ui = Â2i(û
−
xx,i)

p+2,

i = 1, . . . , N − 1, ˆ̂u0 = V (L−, tn+1), ˆ̂uN = V (L+, tn+1). (13b)

Finally, the two-stage algorithm (TSA) for solving problems (1)–(2) and (4) is:
stage 1. Knowing u, compute û from the difference scheme (12).
stage 2. Knowing û, compute ˆ̂u from the numerical scheme (13).
For the model problem (4) we impose V (L−, tn+1) = V (L−, 0), V (L+, tn+1) =
V (L+, 0) just as in [7].

3 Properties of the Numerical Method

The aim of this section is to investigate some properties of the numerical solu-
tions. We deal with classical solutions of the differential problems, cf. [1,12].
Comparison and maximum principle for problem (1)–(2) are presented in [1,12].

Proposition 1 (Positivity preserving). If V (S, 0) ⊃ 0 and

τ ≤ min
1→i→N−1

{
∅i

2r|Si|

}
, or Φ(θ−1

i+1/2) ≤ 2∅i

rτ |Si|
− 2, τ ≤ min

1→i→N−1

{
∅i

r|Si|

}
, (14)

then un ⊃ 0 for all time levels n = 0, 1, 2, . . . .

Proof. We apply the induction method. Let V (S, 0) ⊃ 0 and suppose that u =
un ⊃ 0. We will proof that if the conditions (14) are fulfilled, then un+1 = ˆ̂u ⊃ 0.
Next, applying the same consideration at each time level, we will conclude that,
starting with non-negative initial condition, the time integration procedure by
TSA preserves the non-negativity of the numerical solution.

Hyperbolic part in TSA is approximated explicitly

ûi = (1 − B+
i − B−

i )ui + B+
i ui+1 + B−

i ui−1, where B±
i =

Ω

∅i
rS±

i γ±
i ⊃ 0,

and the non-negativity of the numerical solution û for u ⊃ 0 is guaranteed if
1 − B+

i − B−
i ⊃ 0, which leads to inequalities (14).

Next, it is not difficult to verify that, if we rewrite the approximation (13)
in equivalent matrix form M̂ˆ̂u = K̂û, the coefficient matrix M̂ is an M-matrix
(it guaranties that its inverse is non-negative) and K̂û = û/Ω ⊃ 0 (for (13a))
or K̂û = û/Ω + Â2(û−

xx,i)
p+2 ⊃ 0 (for (13b)), which is sufficient and necessary

condition for the non-negativity of the numerical solution ˆ̂u. �

Note that in the second conditions in (14) the time step restriction is relaxed
(two times) at the expense of the restriction of the flux limiter.
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Proposition 2 (First derivative sign-preserving). Let the conditions of
Proposition 1 are fulfilled and u0 is non-decreasing (u0

x̊,i ⊃ 0) or decreasing
(u0

x̊,i < 0) function, then un
x̊,i ⊃ 0 (< 0), respectively for all time levels tn,

n = 0, 1, . . . .

Proof (outline). Again we use induction method: suppose that ux̊,i = un
x̊,i ⊃

0 (<0), then subtracting from (12) and (13) at Si+1 the Eqs. (12) and (13),
respectively, divide by ∅i and presenting ûx̊,i in (12) by ux̊,i, ux̊,i±1 and then ˆ̂ux̊,i,
ˆ̂ux̊,i±1 in (13a) by ûx̊,i and ûx̊,i±1 in (13b), we conclude that un+1

x̊,i = ˆ̂ux̊,i ⊃ 0
(< 0). Estimating (13b) we use Taylor expansion of power function (û−

xx)p+2

around û−
xx,i and take into account that û−

xx,i > 0, if û−
xx,i ≥= 0, i = 0, . . . , N . �

On the base of (8), at each step the L∞ - error of our method is a sum of three
errors: the operator splitting error ES(Ω) = O(Ω2), the error of hyperbolic and
parabolic substeps: EH(Ω) = O(Ω + h2) and EP (Ω) = C3(Ω + h2), h = max

i
hi.

Let un
h denote the Lagrange interpolation of the numerical solution on the

n-th time level. We define the function uhτ by

uhτ (t) = un
h +

t − tn

Ω
(un+1

h − un
h), tn ∇ t ∇ tn+1.

Theorem 1 (Convergence). Assume that the hypotheses of Propositions 1, 2
are satisfied. The sequence uhτ (constructed on the base of scheme (12)–(13))
converges uniformly to the classical solution of (1)–(2) (respectively (4)).

Proof (outline). The proof consists of two stages. On the first stage a number of
estimates in L∞ norm for the discrete solutions are obtained. Then, it is shown
that one can extract from the sequence {uhτ} a subsequence which converges
uniformly on any compact subset of (L−, L+) × [0, T ] to a function u that is a
weak solution of the differential problem. Finally, conditions on which the weak
solution can serves as a classical solution are found.

4 Numerical Experiments

We will test the efficiency of the presented TSA for model problems (1)–(2)
and (4). The error Ei = V (Si, T ) − uT

i , i = 1, . . . , N in maximal discrete norm
is given by ≤EN≤∞ = max

1→i→N
|Ei| and the convergence rate is calculated using

double mesh principle CR∞ = log2(≤EN≤∞/≤E2N≤∞).
The option and mesh parameters are: a = 0.01, σ = 1, φ = 0.2, φmax = 0.25,

φmin = 0.15, Le = 0.5, E = 5, uniform mesh δh with step h, Ω = h2, T = 1.
We add a small positive number (≡10−30) to both numerator and denominator
of the gradient ratio in (11) in order to avoid division by zero in uniform flow
regions.

Example 1 (Problem (1)–(2)). Consider the case of Call option with A(·) =
0.5φ2(1 + sin πV

E )S2, r = 0.1, L− = 0, L+ = 10. In order to test the accuracy of
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Table 1. Errors and convergence rates in maximal discrete norms, Example 1

Solution Greek delta Greek gamma

N ≤EN≤∞ CR∞ ≤EΔN≤∞ CR∞ ≤EΓN≤∞ CR∞
40 1.28364e-2 1.04754e-2 2.13922e-2
80 3.23238e-3 1.9896 2.65308e-3 1.9813 5.20567e-3 2.0389

160 8.13878e-4 1.9897 6.63108e-4 2.0004 1.29354e-3 2.0088
320 2.04151e-4 1.9952 1.65840e-4 1.9995 3.23613e-4 1.9990

Table 2. Errors and convergence rates in maximal discrete norms, Example 1

Leland model Avellaneda-Parás model Barles-Soner model

N ≤EN≤∞ CR∞ ≤EN≤∞ CR∞ ≤EN≤∞ CR∞
40 1.38147e-2 1.91471e-3 7.98768e-3
80 3.45198e-3 2.0007 3.85852e-4 2.3110 1.96466e-3 2.0235

160 7.36847e-4 2.2280 1.42664e-4 1.4354 4.82159e-4 2.0267
320 1.81721e-4 2.0196 2.51395e-5 2.5046 1.16608e-4 2.0478

the method for non-smooth initial data (2), as exact solution we take the solu-
tion of linear Black-Scholes equation, adding appropriate function in the right
hand-side of (1). We denote by Eπi = VS(Si, T )−uT

x,i, ux,i = (ui+1−ui−1)/(2h)
and EΓi = VSS(Si, T ) − uT

xx,i the errors of Greeks π = VS and Γ = VSS , com-
puted by TSA (i.e. generating ux,i and uxx,i from the computed ui) and the
one obtained by implemented in MATLAB blsdelta and blsgamma packages
for solving π and Γ of linear Black-Scholes equation. Errors (in max. discrete
norm) and convergence rates of TSA for solution and Greeks are listed in Table 1.
Results show that the presented TSA is efficient even for uniform mesh in space
and the method needed no special meshes. In Table 2 results from exact solu-
tion test for Leland, Avellaneda-Parás and Barles-Soner models are listed. The
accuracy is better than those in [6] for the same mesh and model parameters.

Example 2 (Problem (4)). We compare the efficiency of TSA with O(Ω + h2)
scheme (12) (Λ = 0), based on Picard linearization (A(V ) is computed on the
old time level) and Gauss-Seidel type iteration scheme (11), developed in our
previous work [7] for model problem (4). Note that the above mentioned methods
(scheme (11) and scheme (12) in [7]) preserve the positivity property of the
numerical solution under additional restriction: h ∇ (σ/r) min

1→i→N−1
[(ui)2/Si].

In Table 3 we list error, convergence rate and CPU time for TSA, r = 0.5,
L− = −3, L+ = 3 and V (S, t) = e−t(−x2 + x + 12), such that to compare
the results with those in Table 1 in [7]. The accuracy for one and the same
CPU of TSA for Ω = h2 is more closer to the ones obtained by Gauss-Seidel
scheme (12), than the ones obtained by scheme (11) in [7]. Regarding to positivity
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Table 3. Errors, convergence rates and CPU time, Example 2

N ≤EN≤∞ CR∞ CPU

20 7.47049e-2 0.073
40 2.08905e-2 1.8384 0.347
80 5.33727e-3 1.9687 2.301

160 1.33766e-3 1.9964 17.024
320 3.35002e-4 1.9975 130.427

preserving, the schemes in [7] are much more time consuming than TSA, because
the additional restriction for the space step size.

5 Conclusions

In this paper we have presented positivity preserving, second order (in space)
algorithm for solving two nonlinear models in mathematical finance. To this aim
a splitting method, combined with flux limiter technique is used. The result-
ing two-stage algorithm attains an optimal accuracy and preserves the non-
negativity of the numerical solution if the time step restriction is fulfilled. The
schemes proposed can be generalized to higher dimensional problem.
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Abstract. We consider the simulation of the thermal and electrical
processes, involved in the radio-frequency (RF) ablation procedure. RF
ablation is a low invasive technique for the treatment of hepatic tumors,
utilizing AC current to destroy the tumor cells by heating. The procedure
consists of inserting an RF probe in the patients liver and attaching a
ground pad to the skin. After that the AC current is initiated and main-
tained for a prescribed duration.

We have conducted experiments with a pork liver and an RF abla-
tion apparatus capable of measuring and recording some of the proce-
dure parameters. Those include the applied power, the effective electrical
impedance, and the temperature around the tip of the probe. A history
of the values at each second of the test is obtained at the end.

Our aim is to adjust the material properties and other model para-
meters for the simulation to fit the experimentally obtained results. The
electrical conductivity of the tissue can be deduced from the measured
power and impedance. After that, we need to determine suitable heat
conductivity and capacity coefficients. This is achieved via temperature
curves comparison.

1 Introduction

RF ablation is an alternative, low invasive technique for the treatment of hepatic
tumors, utilizing AC current to destroy the tumor cells by heating [8,9]. The
destruction of the cells occurs at temperatures of 45 ≥C–50 ≥C. The procedure is
relatively safe, as it does not require open surgery.

The considered RF probe consists of a stainless steel needle, insulated with
polyurethane. The RF ablation procedure starts by placing the RF probe inside
the tumor. The surgeon performs this under computed tomography (CT) or
ultrasound guidance. Once the probe is in place, RF current is initiated. The
surface area of the uninsulated part of the needle conducts RF current.

The human liver has a complex structure, with varying thermal and electrical
properties – there are three types of blood vessels with different sizes and flow
velocities. Here, we consider a simplified test problem, where the liver consists
of one homogeneous hepatic tissue.

I. Lirkov et al. (Eds.): LSSC 2013, LNCS 8353, pp. 611–618, 2014.
DOI: 10.1007/978-3-662-43880-0 70, c∗ Springer-Verlag Berlin Heidelberg 2014
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Fig. 2. Measurement data obtained during the experiment

2 Physical Experiment

We have conducted experiments with a pork liver and an RF ablation apparatus
capable of measuring and recording some of the procedure parameters. The setup
is illustrated on Fig. 1.

The pork liver was placed inside a metal plate, to which the ground pad
was applied. The RF ablation probe was inserted in the liver. After that a
temperature sensor was inserted in the hole, created by the probe, parallel to it,
and the RF current was initiated. The apparatus measured the applied power,
the effective electrical impedance, and the temperature. A history of the values
at each second of the test can be seen on Fig. 2. Due to limitations of the used
temperature sensor, only temperatures below 110 ≥C could be measured.

As can be seen, with the increase of the tissue temperature to a certain level, a
steep increase of the electrical impedance is observed. This is attributed to tissue
charring and vapor formation, which forms an isolating layer around the probe.
As a result the electrical power quickly drops to zero and the ablation process
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stops. In this paper, we are concentrating on the ablation process before the
impedance jump occurs, in order to check how well the simulation approximates
the temperature field. Therefore we are considering the measurement data from
the moment electrical current was initiated up to the moment the temperature
at the sensor passed 110 ≥C.

3 Radio-Frequency Tumor Ablation Model

Let us turn our attention to the considered numerical simulation. The RF abla-
tion procedure destroys the unwanted tissue by heating, arising when the energy
dissipated by the electric current flowing through a conductor is converted to
heat. A simplified bio-heat time-dependent partial differential equation [8,9]

s
∂T

∂t
= ∇ · k∇T + J · E (1)

is used to model the heating process during the RF ablation. The simplification
is due to the fact there is no blood perfusion and no metabolic heat production,
as the experiment was performed on a dead pork liver. The term J · E in (1)
represents the thermal energy arising from the current flow.

The following initial and boundary conditions are applied

T = T0 when t = 0 at Ω,

T = T0 when t ≥ 0 at ∂Ω. (2)

The following notations are used in (1) and (2): Ω is the entire domain of
the model, ∂Ω – the boundary of the domain, s – the volumetric heat capacity
(J/m3 K), k – the thermal conductivity (W/m K), J – the current density
(A/m), E – the electric field intensity (V/m), and T0 – body (or in this case
room) temperature (≥C).

The bio-heat problem is solved in two steps. The first step is finding the
potential distribution V of the current flow. With the considered RF probe
design, the current is flowing from the conducting electrodes to a dispersive
electrode on the patient’s body. The electrical flow is modeled by the Laplace
equation

∇ · σ∇V = 0, (3)

with boundary conditions

V = 0 at ∂Ωgr,

V = V0 at ∂Ωel,

where V is the potential distribution in Ω, σ – the electric conductivity (S/m),
V0 – the applied RF voltage, ∂Ωgr – the part of the boundary connected to the
ground pad, and ∂Ωel – the surface of the conducting part of the RF probe.

After determining the potential distribution, the electric field intensity can
be computed from

E = −∇V,
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and the current density from
J = σE.

The second step is to solve the heat transfer Eq. (1) using the heat source
J · E obtained in the first step.

For the numerical solution of both of the above discussed steps of the simu-
lation the Finite Element Method (FEM) in space is used [2]. Linear conforming
elements are chosen in this study. The domain is represented by a voxel image
with a resolution of 256 × 256 × 256. To apply the linear FEM discretization to
the voxel domain, each voxel is split into six tetrahedra. To solve the bio-heat
equation, after the space discretization, the time derivative is discretized via
finite differences and the backward Euler scheme is used [4,5].

Let us denote with K→ the stiffness matrix coming from the FEM discretiza-
tion of the Laplace Eq. (3). It can be written in the form

K→ =
[∫

Ω

σ∇Φi · ∇Φjdx
]N

i,j=1

,

where {Φi}N
i=1 are the FEM basis functions.

The system of linear algebraic equations

K→X = 0 (4)

is to be solved to find the nodal values X of the potential distribution.
The electric field intensity and the current density are then expressed by the

partial derivatives of the potential distribution in each finite element. This way,
the nodal values F for the thermal energy E ·J arising from the current flow are
obtained.

Let us now turn our attention to the discrete formulation of the bio-heat
equation. Let us denote with K and M the stiffness and mass matrices from the
finite element discretization of (1). They can be written as

K =
[∫

Ω

k∇Φi · ∇Φjdx
]N

i,j=1

,

M =
[∫

Ω

sΦiΦjdx
]N

i,j=1

.

Then, the parabolic Eq. (1) can be written in matrix form as:

M
∂T

∂t
+ KT = F. (5)

If we denote with τ the time-step, with Tn+1 the solution at the current time
level, and with Tn the solution at the previous time level and approximate the
time derivative in (5) we obtain the following system of linear algebraic equations
for the nodal values of Tn+1

(M + τK)Tn+1 = MTn + τF. (6)
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The matrices of the linear systems (4) and (6) are ill-conditioned and large.
Since they are symmetric and positive definite, we use the PCG [1] method,
which is the most efficient solution method in this case.

A parallel AMG implementation – BoomerAMG [6,10] is used to precondi-
tion the linear systems. The matrix A = M + τK from (6) is assembled only
once on the first time step and not varied after that. The corresponding AMG
preconditioner is also constructed only on the first time step. Additional details
concerning the parallelization approach can be found in our paper [7].

4 Model Parameters Calibration

Our aim is to identify (tune) the liver tissue parameters, such that the simulation
results better fit the results from the physical experiment. We start with the
material properties in Table 1, taken from the literature [8].

Before we can calibrate the thermal properties sl and kl of the liver, we need
to calibrate it’s electrical conductivity σl in accordance with the experimental
data. Since the electrical field in the model is static, we first computed the
average values for the electrical power and impedance – P = 6.653 W and
R = 111.8 Ω respectively.

In order to match the electrical power P , we need to determine the potential
V0 for the second boundary condition of (3) that will yield the desired value.
To do this, the Laplace equation is initially solved with a boundary condition
V = 1 V at ∂Ωel. Then, E→ and J→ are obtained from the solution and the
corresponding electrical power P → can be computed as

P → =
∫

Ω

E→ · J→dx.

Since the solution and all the components of E and J are proportional to the
value of V0 we can scale the obtained solution, instead of recomputing it, in the
following way

V0 = λ, E = λE→, J = λJ→, where λ =
√

P/P →.

Now we compute the effective electrical impedance R→ = V 2
0 /P and then by

setting σl = 0.333R→/R ≈ 0.2494 and repeating the procedure we obtain a good
match of both P and R with a potential V0 ≈ 27.28 V.

Table 1. Thermal and electrical properties of the materials

Material s (J/m3 K) k (W/m K) σ (S/m)

Stainless steel 2.838 × 106 71 4 × 108

Liver 3.816 × 106 0.512 0.333
Polyurethane 73150 0.026 10−5
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After obtaining an electrical field matching the experimental data, we are
now ready to calibrate the thermal properties of the tissue. In order to compare
the numerical results to the measurement, we run the simulation with a time step
of 1 s and consider the results in a single point that is selected on the boundary
between the probe and the tissue around the middle of the uninsulated part of the
needle. Let us denote the physically measured temperature on the i-th second of
the procedure with Tm

i and the temperature from the simulation with T s
i (kl, sl)

respectively. Note that we treat the simulated temperature as a function of the
thermal properties of the tissue. Now we can formulate the calibration problem
as a least-squares optimization problem

min
∑

i

(T s
i (kl, sl) − Tm

i )2 .

Since in the physical experiment the temperature sensor was not firmly attached
to the ablation probe, we can attribute drops in the measured temperature to a
displacement of the sensor with respect to the probe. Because of this, and also
because the selected point normally has the highest temperature we add the
following constraints

T s
i (kl, sl) ≥ Tm

i , ∀i.

In order to enforce the constraints we use a penalty method, which consists
of solving a series of unconstrained minimization problems

min Ψ j(kl, sl), for j = 1, 2, . . .

where

Ψ j(kl, sl) =
∑

i

(T s
i (kl, sl) − Tm

i )2 + θj

∑
i

min (0, T s
i (kl, sl) − Tm

i )2 , (7)

until the minimum stops increasing. The penalty coefficient on the j-th iteration
is selected as {θj}∞

j=1 = {0, 1, 10, 100, . . .}. Each minimization result is used as
an initial guess for the next minimization problem. We use the coefficients from
the literature as an initial guess for the first unconstrained minimization. The
iterations of the penalty method are illustrated on Fig. 3.

For the solution of each unconstrained minimization problem, we selected the
principal axis method [3]. It is a derivative-free algorithm, where an approximate
model is built up using only values from function evaluations. This algorithm
consists of a series of linear searches, with directions, chosen in a way that ensures
they are well aligned to the principal directions of a local quadratic model.

In our case each function evaluation meant running an RF ablation simulation
with the corresponding material properties and evaluating Ψ j(kl, sl) from (7) with
the resulting temperature samples. For the initial and boundary conditions (2) the
value T0 = 18 ≥C from the measurement before starting the RF procedure is used.

Each unconstrained minimization required around 150 simulation runs. The
constrained minimization had 10 steps. The implementation was run on 512
cores of the IBM Blue Gene/P computer and the maximum job duration of one
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Fig. 4. Simulation results with different coefficients

week was not enough to complete the calibration. However, it was easy to restart
the calibration procedure from where it finished and one restart was enough.

The simulation results with the literature coefficients, the unconstrained fit,
and the constrained fit can all be seen on Fig. 4 along with the corresponding
material properties.

5 Concluding Remarks

We have described a feasible, albeit time consuming, procedure for calibration
of model parameters. No specific assumptions are made, therefore we think the
procedure can be applied to any parameters fitting different measurements. In
theory, we can calibrate more than two parameters at the same time with the
developed implementation, although, this was not tested in practice and the
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performance might be prohibitive. The developed implementation should be very
useful as we further complicate our model.

Our next steps would be fitting the simulation to measurements, taken from
real patients in clinical trials and also creating a model which includes the exper-
imentally observed impedance increase.
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Abstract. Barycentric coordinates are coordinates in which a position
is provided by a blending of a weighted point set where the weights sum
up to 1. Bezier-triangles and ERBS-triangles are typical examples of use
of Barycentric coordinates.

We look at the framework for the description of curves on surfaces that
are described in Barycentric coordinates and how we define surfaces in a
Coons Patch like framework with the use of these curves on surfaces. The
framework also includes pre-evaluation and other optimization technics
for evaluation.

The background is to construct large complex surfaces. Given a sur-
face constructed by a connected set of non-planar triangular surfaces.
If the triangular surfaces are generalized expo-rational B-spline based,
constructed by blending of triangular sub-surfaces from Bezier-patches,
then the surface is smooth at the vertices but only continuous over the
edges between the triangular surfaces. If we introduce a second set of
vertices defined by the midpoint of each triangular surface, we can intro-
duce a new set of edges constructed by straight lines from a vertex to
the midpoint in the parameter plane of the respective triangular surface.
In addition we also have information about the derivatives across these
edges. This gives us the data to make a connected and smooth set of
surfaces that are strongly connected to the set of triangular surfaces.
The triangle based surface is easy to manipulate and reshape and then
the smooth dual set of squared surfaces will automatically be updated.

Keywords: Curve · Surface · Barycentric coordinates · Blending

1 Introduction

A Bezier triangle is a surface parameterized with barycentric coordinates with
the expression

s(u, v, w) =
n∑

i=0

ci bd,i(u, v, w)

where the coordinates ci are points that describe a triangular control polygon.
The basis functions bd,i(u, v, w) follow from expanding (u v w)d where d is the
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DOI: 10.1007/978-3-662-43880-0 71, c≥ Springer-Verlag Berlin Heidelberg 2014
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Fig. 1. A GERBS triangular surface, constructed by blending three Bezier triangles of
degree 2 (but planar as we can see in the picture).

polynomial degree and n =
∑d+1

i=1 i. Bezier triangles and in general splines on
triangulation are treated by many authors, see [4,6].

A GERBS triangle is a blending of triangular surfaces (see [2,5]), i.e.

s(u, v, w) =
3∑

i=1

ci(u, v, w) bi(u, v, w),

where ci(u, v, w), i = 1, 2, 3 are three triangular surfaces and bi(u, v, w), i = 1, 2, 3
are GERBS blending functions for triangular patches. In Fig. 1 we can see a
GERBS triangle-surface constructed by blending three Bezier triangles. In the
figure the control points that define the Bezier triangles are marked. We can see
6 control points on each Bezier triangle, which indicates that the degree of the
Bezier triangles are 2, although the triangles seems to be planar.

A GERBS triangle interpolates the three local triangles in their respective
vertices, not only the value but also with all derivatives up to a given order,
depending on the choice of blending functions.

1.1 Surfaces over Triangular Structures

To make surfaces of all genius, it is convenient to use a set of connected triangular
patches. The surface construction using GERBS-blending is as follows:

1. Given a point set where for each point is given surface normal and curvature.
2. The points must be ordered by a triangulation.
3. In each point we create a “local” Bezier-patch from the given surface normal

and curvature. Each patch must cover the first neighborhood of points (points
that are connected to the central point by an edge).
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Fig. 2. The parameter plane of a surface constructed by a connected set of triangular
surfaces (bold edges) and the dual set of squared patches over each internal edge.

4. Each of these Bezier surfaces are then divided into a series of contiguous
triangular faces (sub-triangles). This is done by finding closest point from
each of the neighboring points.

5. One sub-triangle from each of three neighboring points (the one that is con-
nected to all three points) are then blended together to form one GERBS-
triangular surface.

The resulting surface, that is a connected set of triangular surfaces, is smooth
on the vertices but unfortunately only continuous over the edges.

To make a smooth surface, we would, related to the set of triangular patches,
introducing a dual set of (this time) square patches. First, we introduce an
additional set of vertices that are in the middle of each of the triangular patches.
So, with the starting point of the two vertices defining an edge and the two new
internal vertices in the inner of the corresponding triangular patches, we create
a square surface over each internal edge. We use a Coons patch method where
we get the needed boundary curves from curves in the triangular patches, i.e.
from an original vertex to one new vertex. This can be seen in Fig. 2.

In Fig. 3 there is an example where we approximate a sphere at six vertices,
using four point around equator and one at each poles. The Bezier patches at
each vertex is then moved and rotated. We now have six Bezier patches, each
connected to a specific vertex. This gives eight GERBS triangular patches that
are smooth at the vertices, but only continues over the totally twelve edges that
connect the triangular GERBS patches. On left hand side in Fig. 3 this is shown.
On right hand side we can see the dual set of twelve squared patches that are
covering and smoothing the twelve edges.

2 Barycentric Coordinates on a Bezier Patch

The domain of a Bezier patch S(p) is U = [0, 1] × [0, 1] ∇ R
2, commonly using

Cartesian coordinates p = (μ, ν).
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Fig. 3. On left hand side, we see a surface which consist of 8 GERBS triangular patches.
The surface is made by approximating a sphere at 6 vertices. The local Bezier patches
are then moved and rotated. On right hand side we see the dual set of 12 squared
patches. The cubes in the figure are marking the position and orientation of the vertices.

We define a point set pi, i = 0, 1, ..., n on U describing a fan of n triangles.
Each triangle ∈i, i = 1, 2, ..., n is defined by the three points p0, pi, pi+1 (where
pn+1 = p1) which is the control polygon to a first degree Bezier triangle. The
formula, including the partial derivatives, for ∈i in barycentric coordinates is

∈i(u, v, w) = S(up0 + vpi + wpi+1),
Du∈i(u, v, w) = dSup0+vpi+wpi+1(p0),
Dv∈i(u, v, w) = dSup0+vpi+wpi+1(p1),
Dw∈i(u, v, w) = dSup0+vpi+wpi+1(p2),

u + v + w = 1.

The second order derivatives follow from that the columns of the matrix dS
are the partial derivatives, i.e. dS = [Su Sv] : R2 ⊂ R

3,

Duu∈i(u, v, w) = [d(Sμ)(p0) d(Sν)(p0)] (p0),
Duv∈i(u, v, w) = [d(Sμ)(p0) d(Sν)(p0)] (pi),
Duw∈i(u, v, w) = [d(Sμ)(p0) d(Sv)(p0)] (pi+1),
Dvv∈i(u, v, w) = [d(Sμ)(pi) d(Sν)(pi)] (pi),
Dvw∈i(u, v, w) = [d(Sμ)(pi) d(Sν)(pi)] (pi+1),
Dww∈i(u, v, w) = [d(Sμ)(pi+1) d(Sν)(pi+1)] (pi+1),

where the matrices dSμ = [Sμμ Sμν ] and dSν = [Sμν Sνν ].
If we want more freedom in the local parameterization, we can use second

degree Bezier triangles in the domain of the Bezier patches associated with the
vertices.
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Fig. 4. The figure shows the parameter plane of a Bezier patch. In the parameter
plane we can see 6 triangles located in a fan around point p0. There is also a sketch of
a squared patch (p0, pb, p2, pa), covering the edge (p0, p2).

2.1 Transferring Coordinates between Different Barycentric
Coordinate System

Given two triangles, ∈1(p0, p1, p2) and ∈2(p0, p2, p3), in the domain of a Bezier
patch and given a point p̄a = (ū, v̄, w̄) in barycentric coordinates with respect
to triangle ∈1 (the situation is described in Fig. 4).

Lemma 1. The change of coordinate system to a point pa in triangle ∈1 to
triangle ∈2 is: (ū, v̄, w̄) ⊂ (u, v, w), where

u = (pa−p3)∗(p2−p3)
(p0−p3)∗(p2−p3)

,

v = (pa−p3)∗(p0−p3)
(p2−p3)∗(p0−p3)

,

w = 1 − u − v,

(1)

and where
pa = ū p0 + v̄ p1 + w̄ p2 (2)

Proof. Changing coordinate system is as following using barycentric coordinates,

u p0 + v p2 + w p3 = ū p0 + v̄ p1 + w̄ p2.

Reorganizing, using expression (2) and w = 1 − u − v, we get,

u (p0 − p3) + v (p2 − p3) = pa − p3,

where we now have three vectors instead of points. Further, a wedge product of
a vector with itself is zero, and therefore (1) follows.
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2.2 Points and Vectors on Triangular Surfaces

To make a squared surface over an edge, it is necessary to have the four boundary
curves and four vector valued functions describing the derivatives across the
boundary curves. This can be solved in the following way.

We first find the endpoints and vectors at the endpoints in the parameter
plane of the two neighboring GERBS triangles. In Fig. 4 we can see the points
and vectors.

– The points in triangle ∈1 and their values:
p0 = (1, 0, 0), pb = (13 , 1

3 , 1
3 ), p2 = (0, 1, 0) and pa.

– The points in triangle ∈2 and their values:
p0 = (1, 0, 0), pa = (13 , 1

3 , 1
3 ), p2 = (0, 0, 1) and pb.

The points pa in triangle ∈1 and pb in triangle ∈2 has to be computed according
coordinate change formula from expression (1). The computation (initially in the
parameter space to the two GERBS triangles) has to be done in the parameter
space of the Bezier patch connected to the central vertex. It is important to
observe that there are two Bezier patches involved, one where the central vertex
is p0 and one where the central vertex is p2. It follows that the points and thus
vectors must be computed in the parameter plane of the Bezier patch where the
vectors are connected to the central vertex.

We must find all four vectors in both triangular surfaces. For vectors we thus
have:

– The vectors in triangle ∈1:
v1 = pa − p2, v2 = p0 − pb, v3 = pb − p2, v4 = p0 − pa,

– The vectors in triangle ∈2:
v5 = pa − p2, v6 = p0 − pb, v7 = pb − p2, v8 = p0 − pa,

where pa in v1 and pb in v3 has to be computed in the parameter plane to the
surface where p2 is the central vertex, while pa in v2 and pb in v4 has to be
computed in the parameter plane to the surface where p0 is the central vertex.
The reason for this is that the surface over triangulation is smooth in the vertices
and not over the edges (described in more detail in [5]).

Barycentric coordinates can be made more general so that it is possible to
express a vertex, in a planar triangulation, as a convex combination of its neigh-
boring vertices. This is called mean value coordinates and can be used to cal-
culate the coordinates in the parameter plane of a Bezier patch for barycentric
coordinates, see [3].

3 Curves and Vector Valued Functions on Triangular
Surfaces

The general formula for a curve or a vector valued functions is,

⎧c(t) =
d∑

i=0

ci bi(t),
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where ci, i = 0, 1, ...d are points or vectors, and bi(t), i = 0, 1, ..., d are basis
functions spanning the function space.

If the basis functions are Bernstein polynomials, they sum up to 1, and the
derivatives,

j∑
i=0

b
(j)
i (t) = 0, j = 1, 2, ..., d.

If the curve ⎧c is in the parameter space of a surface S, then the formula for the
space curve on the surface is,

c(t) = S → ⎧c(t)
and the derivative is,

c→(t) = dS(⎧c→(t)).

If the curve is on a triangular surface using barycentric coordinates then,

dS = [Su Sv Sw]

is a 3 × 3 matrix, and it follows that the second derivative is,

c→→(t) = [dSu(⎧c→(t)) dSv(⎧c→(t)) dSw(⎧c→(t))] (⎧c→(t)) + dS(⎧c→→(t)).

Now ⎧c(t) is a point in barycentric coordinates where the sum of the coordi-
nates is 1, and ⎧c→(t) is a vector in barycentric coordinates where the sum of the
coordinates is 0.

In the example shown in Fig. 4 the curve is linear in the parameter plane of
the GERBS triangle. It follows that ⎧c(t) = (1 − t)pi + tpj where i, j are indices
of two points defining a boundary curve on the squared patch covering an edge.
The derivative ⎧c→(t) = pj − pi.

The vectors across an edge in the parameter plane are defined by the vectors
describing the direction for the derivatives across the boundary curve at each
end of a boundary curve vi and vj ,

h(t) = vi + b(t)(vj − vi),

where b(t) is a GERBS basis function, i.e. b(0) = 0, b→(0) = 0, b(1) = 1, b→(1) = 0
(see [2] for the properties of a GERBS function).

A vector valued function describing the derivatives across the boundary
curves will be on the form:

g(t) = dS(h(t))

and the derivative

g→(t) = [dSu(⎧c→(t)) dSv(⎧c→(t)) dSw(⎧c→(t))] (h(t)) + dS (h→(t)) .
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4 Surfaces over Edges in a Triangular Structure

One way to construct the surfaces over the edges is to use a Coons patch
Bicubically Blending like procedure, [1]. In Fig. 4 we have a gray area cover-
ing an edge. If we name the boundary curves ci(t), i = 1, 2, 3, 4 we get,

c1(t) = ∈1(⎧c1(t)), where ⎧c1(t) = p2 + t(pb − p2)
c2(t) = ∈2(⎧c2(t)), where ⎧c2(t) = pa + t(p0 − pa)
c3(t) = ∈2(⎧c3(t)), where ⎧c3(t) = p2 + t(pa − p2)
c4(t) = ∈1(⎧c4(t)), where ⎧c4(t) = pb + t(p0 − pb),

(3)

where pa = pb = (13 , 1
3 , 1

3 ) and the points else are defined in Sect. 2.2. The
functions for the derivatives across the edges are

g1(t) = d∈1(h1(t)), where h1(t) = v1 + b(t)(v2 − v1)
g2(t) = d∈2(h2(t)), where h2(t) = v5 + b(t)(v6 − v5)
g3(t) = d∈2(h3(t)), where h3(t) = v7 + b(t)(v8 − v7)
g4(t) = d∈1(h4(t)), where h4(t) = v3 + b(t)(v4 − v3)

(4)

and the vectors vi are defined in Sect. 2.2.
The surface construction is, to make three surfaces:

S1(u, v) = [c1(u) c2(u) g1(u) g2(u)]

⎪
⎨⎨⎡

H1(v)
H2(v)
H3(v)
H4(v)

⎢
⎣⎣⎤ ,

S2(u, v) = [H1(u) H2(u) H3(u) H4(u)]

⎪
⎨⎨⎡

c3(v)
c4(v)
g3(v)
g4(v)

⎢
⎣⎣⎤ ,

S3(u, v) = [H1(u) H2(u) H3(u) H4(u)]

⎪
⎨⎨⎡

c1(0) c1(1) g1(0) g1(1)
c2(0) c2(1) g2(0) g2(1)
g3(0) g3(1) g→

1(0) g→
1(1)

g4(0) g4(1) g→
2(0) g→

2(1)

⎢
⎣⎣⎤

⎪
⎨⎨⎡

H1(v)
H2(v)
H3(v)
H4(v)

⎢
⎣⎣⎤ ,

where Hi(t), i = 1, 2, 3, 4 are the third degree Hermite basis functions. The
resulting surface is,

S(u, v) = S1(u, v) + S2(u, v) − S3(u, v).

To create surfaces covering all internal edges, as described here, will result in a
composite surface that is C1-smooth all over, as we can see on right hand side
in Fig. 3.
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Abstract. This study presents the construction of a robust multilevel
preconditioner for systems evolving from bicubic FEM discretizations
of the second order elliptic boundary value problem. Robustness of the
hierarchical two-level splitting of the FE space of continuous piecewise
bicubic functions is achieved via the application of the balanced semi-
coarsening technique. Behavior of the corresponding CBS constant which
qualifies the hierarchical two-level splittings of the FEM stiffness matri-
ces is analyzed and new uniform estimates are given. On the basis of
the latter and the theory of the Algebraic Multilevel Iteration (AMLI)
methods an optimal order multilevel algorithm is constructed whose total
computation cost is proportional to the size of the discrete problem with
a proportionality constant independent of the anisotropy ratio.

1 Introduction

Consider the linear system of algebraic equations

Ahuh = Fh, (1)

which has been derived from the application of finite element discretization with
conforming bicubic elements to the elliptic boundary value problem

− ∇ · (a(x)∇u(x)) = f(x) in φ, (2a)
u = 0 on σD, (2b)

(a(x)∇u(x)) · n = 0 on σN . (2c)

In (2a) φ ∈ R2 is a domain composed of rectangles with a boundary σ =
σD ⊂ σN , f(x) → L2(φ), a(x) = (aii(x)), i = 1, 2 is a diagonal positive definite
(SPD) coefficient matrix, uniformly bounded in φ and n is the outward unit
vector normal to σ . In (1) Ah denotes the global stiffness matrix, Fh is the given
right hand side and h is the mesh parameter of the underlying partition Th of
φ.

It is assumed that an initial mesh T0 has been introduced in φ such that
aii, i = 1, 2 are constants over each element of T0 and a recursive balanced semi-
coarsening refinement procedure has been applied to it. As a result the nested

I. Lirkov et al. (Eds.): LSSC 2013, LNCS 8353, pp. 628–635, 2014.
DOI: 10.1007/978-3-662-43880-0 72, c≥ Springer-Verlag Berlin Heidelberg 2014
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meshes T0 ∈ T1 ∈ ... ∈ Tθ = Th are constructed where ∂ is an even number.
The objective is to find a solution of (1) over the finest mesh Tθ = Th best
approximating (2a)–(2c).

Let Ae be the element stiffness matrix, then

Ah =
∑
e∗Th

RT
e AeRe, (3)

where the operators Re restrict a global vector to a given element e → Th.
If the length and the height of an arbitrary element e from Tk are denoted

by h
(k)
x and h

(k)
y respectively, the anisotropy ratio at the level k is given by

Δ := (a22/a11)
(
h(k)

x /h(k)
y

⎧2

. (4)

2 Balanced Semi-coarsening AMLI Algorithm

The AMLI preconditioner, e.g. [2,3,7], M = M (θ) is defined recursively by

M (0) = A(0), P (k)−1
= [I − pδk

(M (k)−1
, A(k))]A(k)−1

(5)

M (k+1) = J (k+1)−T

⎪
A

(k+1)
11 0

Ã
(k+1)
21 P (k)

⎨⎪
I A

(k+1)−1

11 Ã
(k+1)
12

0 I

⎨
J (k+1)−1

, (6)

where Ωk is the degree of the stabilization Chebyshev polynomial pδk
which can

be cyclicly varied resulting in the hybrid V-cycle AMLI algorithm, cf. [6], see
also [3], p. 200, Theorem 9.1.

Theorem 1. The PCG iteration method defined by the AMLI preconditioner is
of optimal order if the properly scaled approximation C

(k+1)
11 satisfies the estimate

δ(C(k+1)−1

11 A
(k+1)
11 ) = O(1),

solving systems with C
(k+1)
11 requires O(Nk+1 − Nk) arithmetic operation and

Ωk = 1 if (k mod k0) ∞= 0,
1⎡

1 − λ(k0)2
< Ωk < Λk0 if (k mod k0) = 0, (7)

where Nk is the number of unknowns from Tk, Λk0 is the mesh refinement ratio of
k0 consecutive mesh refinement steps while λ(k0) is the constant in the strength-
ened CBS inequality related to the nested FE spaces V(j+1)k0 and Vjk0 .

3 FEM Matrices in Balanced Semi-coarsening Refinement

During the balanced semi-coarsening procedure lines parallel to the vertical edges
at the odd steps (k = 1, 3, 5, ...) and lines parallel to the horizontal edges at the
even steps (k = 2, 4, 6, ...) are added. Each element e → Tk is therefore split into
Λ congruent subelements, Fig. 1. If we set
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− level (k), level (k+1) and level (k+2)
− level (k+1) and level (k+2)

− level (k+2)

Fig. 1. Balanced semi-coarsening macroelement for ρ = 2

π(k)e := (a11/45)(h(k)
y /h(k)

x ), (8)

the related element stiffness matrix then can be written in the block form

A(k)
e = π(k)e

⎢
⎣⎣⎣⎤

A
(k)
e:11 A

(k)
e:12 A

(k)
e:13 A

(k)
e:14

A
(k)
e:21 A

(k)
e:22 A

(k)
e:23 A

(k)
e:24

A
(k)
e:31 A

(k)
e:32 A

(k)
e:33 A

(k)
e:34

A
(k)
e:41 A

(k)
e:42 A

(k)
e:43 A

(k)
e:44

⎥
⎦⎦⎦⎞ , (9)

where1

A
(k)
e:11 =

1

7

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

148(1 + ε)

3

1221

32
− 63ε −111

8
+ 18ε

703

96
− 13ε

3

1221

32
− 63ε

999

4
+ 144ε −999

32
− 99ε −111

8
+ 18ε

−111

8
+ 18ε −999

32
− 99ε

999

4
+ 144ε

1221

32
− 63ε

703

96
− 13ε

3
−111

8
+ 18ε

1221

32
− 63ε

148(1 + ε)

3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

A
(k)
e:12 = 3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−3 +
407ε

224
−297

128
(1 + ε)

27

448
(14 + 11ε) −399 + 143ε

896

−297

128
(1 + ε)

27

112
(−63 + 22ε)

27

896
(63 − 121ε)

27

448
(14 + 11ε)

27

448
(14 + 11ε)

27

896
(63 − 121ε)

27

112
(−63 + 22ε) −297

128
(1 + ε)

−399 + 143ε

896

27

448
(14 + 11ε) −297

128
(1 + ε) −3 +

407ε

224

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

1 Mathematica software tool is used in the derivation of the stiffness matrix.
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A
(k)
e:13 =

1

56

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

144 − 111ε
81

8
(11 + 14ε) −81

2
(1 + ε)

3

8
(57 + 26ε)

81

8
(11 + 14ε) 81(9 − 4ε)

81

8
(−9 + 22ε) −81

2
(1 + ε)

−81

2
(1 + ε)

81

8
(−9 + 22ε) 81(9 − 4ε)

81

8
(11 + 14ε)

3

8
(57 + 26ε) −81

2
(1 + ε)

81

8
(11 + 14ε) 144 − 111ε

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

A
(k)
e:14 =

1

112

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−416 + 703ε

6
−3(143 + 399 ε)

8

3(26 + 57ε)

4
−247(1 + ε)

24

−3(143 + 399ε)

8
9(−39 + 38ε) −9(−39 + 209ε)

8

3(26 + 57ε)

4

3(26 + 57ε)

4
−9(−39 + 209ε)

8
9(−39 + 38ε) −3(143 + 399ε)

8

−247(1 + ε)

24

3(26 + 57ε)

4
−3(143 + 399ε)

8

−416 + 703 ε

6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

A
(k)
e:22 =

1

7

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

144 +
999ε

4

81

16
(22 − 63ε)

81

8
(−4 + 9 ε) − 9

16
(−38 + 39ε)

81

16
(22 − 63ε) 729(1 + ε) −729

16
(2 + 11ε)

81

8
(−4 + 9ε)

81

8
(−4 + 9ε) −729

16
(2 + 11ε) 729(1 + ε)

81

16
(22 − 63ε)

− 9

16
(−38 + 39ε)

81

8
(−4 + 9ε)

81

16
(22 − 63ε) 144 +

999ε

4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

A
(k)
e:23 =

1

112

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−9

2
(352 + 111ε)

81

8
(−121 + 63ε) −81

4
(−22 + 9ε)

9

8
(−209 + 39ε)

81

8
(−121 + 63ε) −729(11 + 2ε)

8019(1 + ε)

8
−81

4
(−22 + 9ε)

−81

4
(−22 + 9ε)

8019(1 + ε)

8
−729(11 + 2ε)

81

8
(−121 + 63ε)

9

8
(−209 + 39ε) −81

4
(−22 + 9ε)

81

8
(−121 + 63ε) −9

2
(352 + 111ε)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

A
(k)
e:11 = A

(k)
e:44, A

(k)
e:22 = A

(k)
e:33, A

(k)
e:12 = A

(k)
e:21 = A

(k)
e:34 = A

(k)
e:43, (10)

A
(k)
e:14 = A

(k)
e:41, A

(k)
e:23 = A

(k)
e:32, A

(k)
e:13 = A

(k)
e:31 = A

(k)
e:24 = A

(k)
e:42.

As aii, i = 1, 2 are piece-wise constant over e0 → T0, the matrices A
(k)
e depend

only on the level (k) and on the coarse element e0 for which e ∈ e0. By performing
∂ refinement steps the element e is split into Λθ number of subelements which
have equal heights h

(θ)
y and equal lengths h

(θ)
x . Denote the coarsest mesh sizes
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along the y-axis and x-axis by h
(0)
y and h

(0)
x respectively. Then for the odd values

of ∂, h
(θ)
y = Λ−(θ−1)/2h

(0)
y , h

(θ)
x = Λ−(θ+1)/2h

(0)
x while for even h

(θ)
y = Λ−θ/2h

(0)
y ,

h
(θ)
x = Λ−θ/2h

(0)
x . In the following two coupled consecutive refinement steps will

be considered at once for the purposes of the analysis.
The macroelement stiffness matrix for E → T (k+2), Fig. 1, can be agglomer-

ated from the matrices A
(k+2)
e and further written in a two by two block form

A
(k+2)
E =

⎟
A

(k+2)
E:11 A

(k+2)
E:12

A
(k+2)
E:21 A

(k+2)
E:22

⎠
. (11)

The first diagonal block in (11) corresponds to the unknowns from Tk+2\Tk while
the second is a (16 × 16) matrix, related to the nodes from Tk.

Let Ã
(k+2)
E be the hierarchical macroelement stiffness matrix correspond-

ing to the two-level hierarchical nodal basis. It relates to the standard nodal
macroelement matrix A

(k+2)
E via the equation

Ã
(k+2)
E = JT A

(k+2)
E J, (12)

where the transformation matrix J between the standard and the hierarchical
nodal bases has the form

J =
(

Ik Z
0 I16

)
, k = (3γ + 1)2 − 16. (13)

In accordance with the introduced splitting of the unknowns Ã
(k+2)
E can also

be written in a two by two block form

Ã
(k+2)
E =

⎟
Ã

(k+2)
E:11 Ã

(k+2)
E:12

Ã
(k+2)
E:21 Ã

(k+2)
E:22

⎠
. (14)

Then the assembled global standard and hierarchical nodal basis matrices
after an appropriate ordering of the degrees of freedom are similarly expressed
by

A(k+2) =

⎟
A

(k+2)
11 A

(k+2)
12

A
(k+2)
21 A

(k+2)
22

⎠
, Ã(k+2) =

⎟
Ã

(k+2)
11 Ã

(k+2)
12

Ã
(k+2)
21 Ã

(k+2)
22

⎠
(15)

where the first diagonal blocks are related to the nodes from Tk+2\Tk while the
second diagonal blocks are associated with the unknowns that belong within Tk.
Ã(k+2) is related to A(k+2) via the equation

Ã(k+2) = J (k+2)T A(k+2)J (k+2) =

⎟
A

(k+2)
11 Ã

(k+2)
12

Ã
(k+2)
21 A(k)

⎠
,

where J (k+2) is the global transformation matrix between the standard and the
hierarchical nodal bases.
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4 Uniform Estimates of the Constant in the Strengthened
CBS Inequality

In the hybrid V-cycle AMLI algorithm k0 = 2 in (7) for the balanced semi-
coarsening mesh procedure. Set λ(k0) as λ(2). Importantly, λ(2) can be estimated
by the local CBS constants λ

(2)
E , E → Tk+2, e.g. [1,3], i.e.

λ(2) ⊃ max
E∗Tk+2

λ
(2)
E where (λ(2)

E )2 = 1 − μ1. (16)

In (16) μ1 is the minimal generalized eigenvalue of the macroelement Schur
complement S

(k+2)
E with respect to the element stiffness matrix A

(k)
e

S
(k+2)
E vE:2 = μA(k)

e vE:2, vE:2 ∞= const. (17)

Due to the size of the parameter dependent bicubic element matrices solving
directly (17) becomes a very difficult task. Therefore, introduce the matrix

B :=

⎪
A

(k+2)
E:11 A

(k+2)
E:12

A
(k+2)
E:21 A

(k+2)
E:22 − μA(k)

e

⎨
, (18)

and use the fact that the constant μ > 0 for which B is symmetric positive
semi-definite provides a lower bound for μ in (17) and consequently an estimate
for (λ(2))2, e.g. [3]. Now the next lemma can be formulated.

Lemma 1. Consider the balanced semi-coarsening AMLI algorithm with Λ = 2.
The constant λ(2) in the strengthened CBS inequality corresponding to bicubic
conforming finite elements is uniformly bounded with respect to the anisotropy
ratio and the following estimate is valid

(λ(2))2 ⊃ 203 + 5
≥

46
288

≤ 0.823, γ = 2. (19)

Proof. First note the relations

h(k+2)
x =

h
(k)
x

∂
, h(k+2)

y =
h
(k)
y

∂
, π(k)e = π(k+2)

e , A(k+2)
e ≡ A(k)

e . (20)

Therefore, the parameter π
(k)
e appearing on both sides of (17) can be skipped

from further consideration without loss of generality.
From (9), (18) and (20) it is evident that the matrix B can be written in the

linear form
B = B0 + μBμ + ΔBω + ΔμBωμ, (21)

where the matrices B0, Bω, Bμ and Bωμ are symmetric and do not depend on
any parameters. Therefore, B is a symmetric matrix independently of μ and Δ.
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By performing an eigenvalue analysis on the right hand side matrices in (21)
it is concluded that B0 and Bω are positive semi-definite while Bμ and Bωμ are
negative semi-definite matrices. Equation (21) is then rewritten in the form

B = (B0 + μBμ) + Δ(Bω + μBωμ). (22)

As B has to remain semi-positive definite for any parameter Δ > 0, then
determine the values of μ guaranteeing the semi-positivity of both (B0 + μBμ)
and (Bω + μBωμ) by first considering the generalized eigenvalue problem2

B0v = ζ(−Bμ)v.

Its minimal eigenvalue is therefore

ζ→
min = 135/(32(17 +

≥
46)). (23)

Then for any nonnegative μ ⊃ 135/(32(17 +
≥

46)), (B0 + μBμ) is semi-positive
definite. Analogously, the generalized eigenvalue problem

Bωv = ζ(−Bωμ)v

is solved and its minimal eigenvalue is again found to be

ζ→→
min = 135/(32(17 +

≥
46)). (24)

Then the necessary condition (Bω + μBωμ) to be semi-positive definite is also
μ ⊃ 135/(32(17+

≥
46)). In conclusion, 135/(32(17+

≥
46)) is the sharp uniform

lower bound of μ1 in (17). Combining with (16)

(λ(2))2 ⊃ max
E∗Tk+2

λ
(2)2

E ⊃ 1 − μ1 ⊃ 1 − 135/(32(17 +
≥

46)) = (203 + 5
≥

46)/288

and the proof is completed. �

5 Solving Systems with the Pivot Block A
(k+1)
11

By solving (1) via an AMLI algorithm the FE problem is reduced to a sequence
of smaller subproblems with the pivot block matrices A

(k+1)
11 . While δ(A(k+1)

11 ) is
uniformly bounded with respect to the related number of unknowns for isotropic
problems, in the case of anisotropy the condition number deteriorates with the
anisotropy ratio. Therefore, special robust preconditioning techniques are devel-
oped for the pivot blocks, e.g. [4], when uniform refinement is used in the AMLI
methods for parameter dependent ill-conditioned elliptic problems.

However in a balanced semi-coarsening setting the unknowns of the bicubic
FEM systems can be ordered such that the blocks A

(k+1)
11 are block diagonal

with uniformly bounded semi-bandwidth [5]. Consequently, the computational
complexity of any direct solver for banded matrices is of optimal order, i.e.

N (A(k+1)
11

−1
v) = O(N (k+1) − N (k)).

2 Mathematica software tool is used in the presented computations.
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Fig. 2. Vertical numeration of the pivot block unknowns for ρ = 2

If the pivot block unknowns are numerated as depicted on Fig. 2, for the
semi-bandwidth d(Λ) of A

(k+1)
11 the next relations will hold true

d(Λ) = 9(Λ − 1) + 2 for Λ = 2, 3, d(Λ) = 9(Λ − 1) + 3 for Λ ∅ 4.

Note that the ordering of the pivot block unknowns switches from vertical to
horizontal direction and vice versa depending on whether k is odd or even.

From Theorem 1, the uniform estimates (19) and the last result, the main
contribution of this paper is obtained.

Theorem 2. The balanced semi-coarsening AMLI preconditioner (6) with para-
meters Λ = 3, 3 ⊃ Ω ⊃ 8 and even k has an optimal order of computational com-
plexity. The estimate is uniform with respect to mesh and coefficient anisotropy.
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Abstract. Temperature stabilization of oil and gas wells is used to
ensure stability and prevent deformation of a subgrade estuary zone.
In this work, we consider the numerical simulation of thermal stabiliza-
tion using vertical seasonal freezing columns.

A mathematical model of such problems is described by a time-
dependent temperature equation with phase transitions from water to
ice. The resulting equation is a standard nonlinear parabolic equation.

Numerical implementation is based on the finite element method using
the package FEniCS. After standard purely implicit approximation in
time and simple linearization, we obtain a system of linear algebraic
equations. Because the size of freezing columns are substantially less than
the size of the modeled area, we obtain mesh refinement near columns.
Due to this, we get a large system of equations which are solved using
high performance computing systems.

Keywords: Stefan problem · Finite element method · FEniCS · Ther-
mal stabilization · High performance computing systems

1 Mathematical Model

We consider a mathematical model that describes the distribution of temperature
with phase transitions at a given temperature T ≥ in a domain Ω = Ω− ∪ Ω+.
Here Ω+(t) is a domain with liquid phase, where the temperature is above the
phase transition temperature

Ω+(t) = {x|x ∈ Ω, T (x, t) > T ≥}

and Ω−(t) stands for a domain with solid phase,

Ω−(t) = {x|x ∈ Ω, T (x, t) < T ≥}.

The phase transition occurs at a phase change boundary S = S(t).

I. Lirkov et al. (Eds.): LSSC 2013, LNCS 8353, pp. 636–643, 2014.
DOI: 10.1007/978-3-662-43880-0 73, c∗ Springer-Verlag Berlin Heidelberg 2014
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For simulation of heat transfer with phase transitions, the classical Stefan
model is used [1,2]. This model describes the thermal processes accompanied by
a phase change media, absorption and release of latent heat. We use

(
α(φ) + ρ+Lφ→) ∂T

∂t
− div (λ(φ) grad T ) = 0. (1)

For the coefficients of the equation, we have the following relations

α(φ) = ρ−c− + φ(ρ+c+ − ρ−c−),

λ(φ) = λ− + φ(λ+ − λ−),

and

φ =
⎧

0, T < T ≥,
1, T > T ≥,

where ρ+, c+, ρ−, c− are the density and specific heat capacity of the melt and
frozen zone, respectively.

Since we consider the process of heat propagation in porous media, then for
the coefficients we have:

c−ρ− = (1 − m)cscρsc + mciρi,

c+ρ+ = (1 − m)cscρsc + mcwρw,

where m is the porosity. Indexes sc, w, i denote the skeleton of the porous
medium, water and ice. For the coefficients of thermal conductivity in the melt
and frozen zone, we have similar relationships

λ− = (1 − m)λsc + mλi,

λ+ = (1 − m)λsc + mλw.

Note that, generally filtration processes must be considered in the soil. Further-
more, in some cases the effects of salinization also is important to take into
account. In this paper, we consider a model without these effects.

In practice, phase transformations do not occur instantaneously and can
occur in a small temperature range [T ≥ − Δ,T ≥ + Δ] [1]. As the φ-function, we
can take φΔ:

φΔ =

⎪⎨
⎡

0, T ≤ T ≥ − Δ,
T−T ∗+Δ

2Δ , T ≥ − Δ < T < T ≥ + Δ,
1, T ≥ T ≥ + Δ,

φ→
Δ =

⎪⎨
⎡

0, T ≤ T ≥ − Δ,
1
2Δ , T ≥ − Δ < T < T ≥ + Δ,
0, T ≥ T ≥ + Δ.

Then we obtain the following equation for the temperature in the domain Ω:

(α(φΔ) + ρlLφ→
Δ)

∂T

∂t
− div(λ(φΔ) grad T ) = 0. (2)
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The resulting equation (2) is a standard nonlinear parabolic equation.
The equation (2) is supplemented with the initial and boundary conditions

T (x, 0) = T0, x ∈ Ω,

T = Tc, x ∈ ΓD,

−k
∂T

∂n
= 0, x ∈ Γ/ΓD.

(3)

Here ΓD is a place of contact with the freezing columns.

2 Finite Element Realization

The equation (2) is approximated using a finite element method. We multiply
the temperature equation by a test function v, and integrate it using the Green
formula

⎢
Ω

(α(φΔ) + ρlLφ→
Δ)

∂T

∂t
v dx

+
⎢

Ω

(λ(φΔ) grad T, grad v) dx = 0, ∀v ∈ H1
0 (Ω).

(4)

Here H1(Ω) is a Sobolev space, which consists of the functions v such that v2

and |∇v|2 has a finite integral in the Ω and H1
0 (Ω) = {v ∈ H1(Ω) : v|ΓD

= 0}.
To approximate in time, we apply the standard fully implicit scheme. We use

a simple linearization by setting the coefficients from the previous time layer.
Let tn = n τ , n = 0, 1, ..., where τ – constant time step. The solution at time tn
is denoted by Tn. According to Eq. (4) we can write

⎢
Ω

(α(φn
Δ) + ρlLφ→n

Δ)
Tn+1 − Tn

τ
v dx

+
⎢

Ω

(
λ(φn

Δ) grad Tn+1, grad v
)
dx = 0.

(5)

In such a way, we arrive at the following classical variational formulation of the
problem: find T ∈ H1(Ω), [T (x, t) − Tc(x, t)] |ΓD

∈ H1
0 (Ω) such that

1
τ

⎢
Ω

(α(φn
Δ) + ρlLφ→n

Δ)Tn+1 v dx +
⎢

Ω

(
λ(φn

Δ) grad Tn+1, grad v
)
dx

=
1
τ

⎢
Ω

(α(φn
Δ) + ρlLφ→n

Δ) Tn v dx, ∀v ∈ H1(Ω).
(6)

To solve this equation numerically, we transform the continuous variational prob-
lem (6) to a discrete variational problem: find Th ∈ Vh such that

1
τ

⎢
Ω

(α(φn
Δ) + ρlLφ→n

Δ)Tn+1
h v dx +

⎢
Ω

(
λ(φn

Δ) grad Tn+1
h , grad v

)
dx

=
1
τ

⎢
Ω

(α(φn
Δ) + ρlLφ→n

Δ) Tn
h v dx, ∀v ∈ V̂h.

(7)
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Fig. 1. The computational domain

Fig. 2. Domain decomposition

Table 1. Problem parameters

Notation Value Metrics Description

Tcyl 20.0 degree Temperature of oil in the well
T0 −5.0 degree Initial temperature
T∗ 0.0 degree Phase change temperature
L 1.04e8 J/kg Latent heat of the phase transition
cρsc 2.17e6 J/m3 Volumetric heat capacity of soil
cρl 2.42e6 J/m3 Volumetric heat capacity of water
cρsa 1.34e6 J/m3 Volumetric heat capacity of sand
cρpe 0.20e6 J/m3 Volumetric heat capacity of polystyrene
cρce 0.8e6 J/m3 Volumetric heat capacity of cement
λsc 2.43 W/(mdegree) The thermal conductivity of soil
λl 2.22 w/(mdegree) The thermal conductivity of water
λsa 0.47 W/(mdegree) The thermal conductivity of sand
λpe 0.03 W/(mdegree) The thermal conductivity of polystyrene
λce 0.21 W/(mdegree) The thermal conductivity of cement
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Here Vh ⊂ H1
0 and V̂h ⊂ H1 – finite-dimensional test and trial spaces. The choice

of Vh, V̂h follows directly from the kind of finite elements. For our problem we
use the first-order basis functions on the tetrahedral element. Using higher order
approximations for the considered problems is unjustified.

The process of solving Eq. (7) can be represented as follows. While tcur <
tmax:

1. Calculate tcur: tcur = tcur + τ ;
2. Save a previous time level values Tprev = T ;
3. Recalculate the ambient temperature Tair:

Tair = 41 sin((2π(tcur/86400 + 250))/365) − 10.2;

4. If the temperature of the soil is less than Tair, then the freezing columns turn
on, else turn off;

5. The temperature at the new time level are solved by a linear solver;
6. Write the results to a file.

Parameters of the problem are given in Table 1. The computational grid
contains 10,903,946 cells.

Numerical implementation is performed using the FEniCS package [5]. For
results visualization, the values at each time level were recorded in vtk file format
that was visualized using ParaView program.

3 Numerical Results

As a model problem, we consider the process of thermal stabilization of the
mouth of the oil or gas wells [3,4]. The geometric domain was built using the

Fig. 3. The temperature distribution after 5 years
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Fig. 4. Temperature after five years without freezing columns. Slice x = 20.

Netgen mesher. The computational domain is shown in Fig. 1 and has a length
of 40 m in each direction, the well (radius 0.1 m) is located in the middle of a
field, where oil flows with a given positive temperature. A cement layer with
the thickness of 0.2 m is used for well heat insulation. 8 freezing columns with a
radius of 0.05 m are deepened to 14 m around the well. The top sand layer has
the thickness of 2 m. Near the well, there is laid penopleks (10 by 10 m, thickness
of 200 mm).

The numerical results are presented in Fig. 3. Figure 4 illustrates the efficiency
of the seasonal cooling devices, which accumulate the winter chill in the ground
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Fig. 5. Temperature after five years with freezing columns. Slice x = 20

and provide additional bearing capacity in the summer. By numerical simulation
of the temperature stabilization of soils using freezing system, we can conclude
that the presence of freezing columns can reduce soil thawing around wells.
The calculations were performed using the NEFU computational cluster Ariane
Kuzmin. The computation time using 64 processors (see Fig. 2) was about 14 min,
with 32 processors - about 21 min, and with 16 processors - about 40 min, which
shows good efficiency of parallelization (Fig. 4).



Mathematical Modeling of Thermal Stabilization 643

References

1. Samarskii, A.A., Vabishchevich, P.N.: Computational Heat Transfer. Wiley, Chich-
ester (1995)

2. Vasilyev, V.I., Maksimov, A.M., Petrov, E.E., Cipkin, G.G.: Heat and Mass Transfer
in Freezing and Thawing Soils. Nauka, Moscow (1996)

3. SNIP 2.02.04-88 Foundations on permafrost. State Construction Committee of Rus-
sia (2005)

4. Tishchenko, T.I., Gusev, A.Y.: Technical solutions for the thermal stabilization of
soils mouths of oil and gas wells. In: Proceeding of the International Scientific-
Practical Conference on Permafrost Engineering (2011)

5. Logg, A., Mardal, K.-A., Wells, G.: Automated solution of differential equations by
the finite element method (2011). http://Fenicsproject.org

http://Fenicsproject.org


Large-Scale Simulation of Non-uniform Load
Traffic in Studying the Throughput

of a Crossbar Packed Switch

Tasho Tashev(B) and Vladimir Monov

Institute of Information and Communication Technologies,
Bulgarian Academy of Sciences, Acad. G. Bonchev, bl. 2,

1113 Sofia, Bulgaria
{ttashev,vmonov}@iit.bas.bg

http://www.iict.bas.bg

Abstract. In the present paper we propose a family of patterns for
non-uniform traffic simulating. The results from computer simulations
of the throughput of a crossbar packet switch with these patterns are
presented. The necessary computations have been performed on the
grid-cluster of IICT-BAS. Our simulations utilize two algorithms for
non-conflict schedule: the well known PIM-algorithm and an algorithm
(MiMa-algorithm) proposed by the first author of the paper. Both algo-
rithms are specified by the apparatus of Generalized Nets. It is shown
that the throughput of the PIM-algorithm with the suggested family of
patterns approaches 77.5 % while the throughput of the MiMa-algorithm
tends to 100%.

Keywords: Large-scale simulation · Generalized nets · Switch node

1 Introduction

A crossbar switch node routes traffic from the input to output where a message
packet is transmitted from the source to the destination. The randomly incoming
traffic must be controlled and scheduled to eliminate conflict at the crossbar
switch. The goal of the traffic-scheduling for the crossbar switches is to maximize
the throughput of packet through a switch and to minimize packet blocking
probability and packet waiting time [1].

The problem of calculating of non-conflict schedule is NP-complete [2]. Algo-
rithms are suggested which solve the problem partially such as PIM [3], iSLIP
[4], etc. [1]. The latter is efficient enough for size of the matrix switch up to
32 × 32 lines. However, progress in optic fibers utilization as well as increasing
the number of personal computers require larger size. One part of the inves-
tigations represent developing of modifications still using input buffering with
VOQ (Virtual Output Queuing). The obtained results are effective when the
size is 64 × 64 and larger, for example CTC(N) algorithm [5]. The approach of
Birkhoff-von Neumann is very interesting, too [6]. Another group of researchers

I. Lirkov et al. (Eds.): LSSC 2013, LNCS 8353, pp. 644–651, 2014.
DOI: 10.1007/978-3-662-43880-0 74, c© Springer-Verlag Berlin Heidelberg 2014
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use input and intermediate buffering (CICQ), by applying a buffer associated
with commutation field in different combinations, for example [7]. Of course,
more investigations are directed to a completely optical commutation [8].

For description of switch algorithms many authors use different formal appa-
ratus such as cellular automata, neural networks, queue theory, etc. [1]. We apply
Generalized Nets (GN) apparatus [9,10] to specify our new algorithm: MiMa
(Minimum from Maximal Matching). We have already used GN to describe the
PIM-algorithm and the results were successful [11,12].

The efficiency check of the algorithms always begins with throughput mod-
eling of the switch node with uniform load traffic. We have already studied the
MiMa-algorithm with this traffic in [13]. The next step is the efficiency check for
non-uniform traffic [5]. In the present paper, we propose a family of patterns for
non-uniform load traffic simulation, based on the Rojas-Cessa unbalanced traffic
model [14]. The aim is to use this family as a point of quick reference for variety
of algorithms. For a correct comparison with results obtained with own MiMa-
algorithm, we will use results for the well known PIM-algorithm. Therefore, we
performed computer simulations for throughput of both algorithms by using the
proposed patterns for non-uniform load traffic.

The paper is structured as follows. Section 2 briefly describes the MiMa-
algorithm. Section 3 presents a GN-model of the MiMa-algorithm. Section 4
describes our patterns for non-uniform load traffic. Results from simulations
using grid-resources are presented in Sect. 5, while Sect. 6 outlines the conclu-
sions and some possible lines of future research.

2 MiMa-Algorithm of Non-conflicts Schedule

The requests for packet transmission through switching n × n line switch node
is presented by an n × n matrix T , named traffic matrix (n is integer) [1]. Every
element tij , (tij ∇ {0, 1, 2, . . .}) of the traffic matrix represents a request for a
packet from input i to output j. For example tij = q means that q packets from
the i-th input line have to be send to j-th output line of the switch node.

A conflict situation arises when in any row of the T matrix the number of
requests is more than 1. This corresponds to the case when one source declares
connection with more than one receiver. If any column of the T matrix hosts more
than one elements different from zero, this also indicates a conflict situation.
Avoiding conflicts is related to the switch node efficiency. In order to obtain
a non-conflict schedule it is necessary to compute a sequence of non-conflict
matrices Q1, Q2, . . . , Qr such that their sum is equal to the traffic matrix T .
Each row and column of every matrix Qi, i = 1, 2, . . . , r has no more than one
element equal to 1 and the rest of elements are equal to 0.

We will give a concise description of the MiMa-algorithm.
Initially, matrix T is introduced. A vector-column, which consists of the

number of conflicts in each row (row conflict weights) is calculated. A vector-
row, which consists of the number of conflicts in each column (column conflict
weights), is calculated too. In the vector-row we choose the maximal element
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Fig. 1. Graphical form of GN model of the MiMa-algorithm

which determines the column with the most conflicts. In the vector-column we
choose the maximal element which determines the row with the most conflicts.
If there is a request in the place of intersection of the column and row with most
conflicts, we take this request as an element of the non-conflict matrix Q1. If
there is no request, we choose the element in the vector-column which is clos-
est in value to the maximal element. The element in the vector row remains the
same. Again, we check if there is a request in the intersection, etc. As a result for
the chosen column of T we will have a request selected for commutation (if such
a request exists at all). The row and column containing the selected request are
excluded from the computation of Q1. The next elements of Q1 are computed
by repeating the above procedure.

As a result the first matrix Q1 will consists of elements (requests) with max-
imal weight of conflicts in T . The next non-conflict matrices Q2, . . . , Qr are
computed analogously. The last matrix Qr will contain only the non-conflict
requests in matrix T .

3 Generalized Net Model of MiMa-Algorithm

The algorithm MiMa can be described formally by the means of Generalized
Nets. A model of the algorithm is developed for switch node with n inputs and
n outputs. Its graphic form is shown on Fig. 1.

The descriptions of input and output places are: l1 - start; l20 - non-conflict
matrices; l21 - stop; l22 - error;

The token α comes into place l1 with initial characteristic: ∈size⊂ :=
n, ∈trafficmatrix⊂ := T, ∈iteration⊂ := 1 (i = 1). The parameter ∈size⊂ has
size n ∇ N for a communication field (n × n) of matrix T and matrix Q.
The parameter ∈traffic matrix⊂ shows the traffic matrix T. The parameter
∈iteration⊂ shows the number of iterations (decisions) i. The token α comes
into place l21 with final characteristic ∈size⊂ := n, ∈traffic matrix⊂ := T,
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(T = 0), ∈iteration⊂ := r, (i = r). The tokens βi come into place l20 with char-
acteristic ∈size⊂ := n, ∈non-conflict matrix⊂ := Qi, ∈iteration⊂ := i, (i ∇ [1, r]).
The parameter ∈non-conflict matrix⊂ shows the sequence of switching matrices:
Q1, Q2, . . . , Qr.

Each of the transitions has one and the same priority. The same refers to the
tokens. The model has possibilities to provide information about the number
of switchings in the crossbar matrix. An analysis of the GN-model proves that
we are obtaining a non-conflict schedule. Calculation complexity of the solution
depends on the third power of the dimension n of the matrix T, (O(n3)). Com-
puter simulations should provide us with an answer to the question: do we have
a better solution with this algorithm in comparison with existing ones?

4 Family of Patterns for Non-uniform Traffic

The matrix T defines a traffic demand matrix if the total number of packets in
each row and each column are equal [1]. For our large-scale computer simulation
we suggest several types of traffic matrices T , which will be called a family of
patterns. They possess the following properties:

– easy generation for any size of the switch (n × n);
– generation does not depend on the type of hardware used, compiler and oper-

ation system;
– their exact, optimal, non-conflict schedule is known.

The proposed family of patterns is based on an unbalanced non-uniform traffic
model [14] which we shall call Rojas model. This model is given by λij = ρ(ω +
(1−ω)/n) for i = j and λij = ρ(1−ω)/n for i →= j. Here, ρ is the load intensity of
each input (i.i.d. Bermoulli), ω is the probability for unbalanced load (ω ∇ [0, 1]).
In our research, we work with ω = 0.5 as the most informative value [5].

The first type matrix is called Rojas1. It’s optimal schedule requires 2n
switchings of crossbar matrix for n × n switch. In general, this type matrix is
denoted by Ri. It’s optimal schedule requires (2in) switchings of crossbar matrix
for n × n switch. This type of matrices is shown in Fig. 2.

Fig. 2. Matrices of types Rojas1 and Rojasi
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5 Result of Grid-Simulations

The transition from a GN-model to executive program is performed as in [15].
The program package Vfort of the Institute of mathematical modeling of Russian
Academy of Sciences is used [16]. The source code has been tested on Vfort and
then compiled by means of the grid-structure of the IICT-BAS. The resulting
executive code is executed in the grid-structure. A main restriction is the time
for execution.

In the figures, Rojasi is denoted as R-i for i = 1, 2, . . . .
Figure 3 shows the results from computer simulation of the PIM-algorithm

with input data Rojas1,5,10,15,20. Sizes of the crossbar matrix from 2 × 2 to
130×130 are simulated. The resulting throughput and time of execution are the
average for 10,000 simulations for each size. Figure 3 (left) shows that there is
an upper bound of the throughput for this family of patterns. The right part of
the figure indicates a linear dependence of the time of execution on the number
of the pattern.

Fig. 3. Results for throughput and time with Rojas1 to Rojas20

Fig. 4. Results for throughput with Rojas1 to Rojas1000
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Figure 4 (left) presents the results with input data Rojas1,10,100,1000. Sizes of
the crossbar matrix from 2×2 to 130×130 are simulated. This simulation enables
us to obtain a more precise value of the upper bound. Approximately, this bound
is 0.775. Figure 4 (right) shows the difference in the throughput of Rojas1000 for
1000 simulations and 100 simulations for each size of the commutation field n.
This difference indicates that the upper bound can be estimated as 0.775±0.001.

Both Figs. 3 and 4 show the relevance of Rojasi with the conclusion that a
larger input buffer produces a larger throughput. This simulations will be used
as a basis for comparison of the simulation results obtained with the MiMa-
algorithm. These results are shown in Figs. 5, 6, and 7.

Figures 5 and 6 show that the throughput of the MiMa-algorithm with the
family of patterns Rojasi approaches 100 %. For values of the commutation field
n equal to powers of 2, the throughput is exactly 100 %. The price of this result
is approximately 2 times increased time for execution. This can be seen in Fig. 7
(left).

Fig. 5. Results for throughput of MiMa-algorithm with Rojas1 and Rojas10

Fig. 6. Results for throughput of MiMa with Rojas100 and Rojas1000
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Fig. 7. Results for throughput and time with Rojas1 and Rojas100

Figure 7 (right) shows the execution time of the MiMa-algorithm with pat-
terns Rojas1 and Rojas100. The picks of time coincide for the same values of the
commutation field n. Thus, the increased time of execution for these values of n
does not depend on the volume of input buffer. Also, the approximated time of
execution increases linearly with increasing of the pattern index i.

6 Conclusion

In the present paper we have developed a family of patterns for non-uniform
demand traffic simulating based on Rojas-Cessa unbalanced model. A compar-
ison is made between the results of computer simulations of two algorithms
performed on the grid-cluster of IICT-BAS.

The main results of the paper include determining of an upper bound of the
throughput for both algorithms under the specified family of patterns. In the case
of the PIM-algorithm this bound is determined to be 77.5 ± 0.1%. The bound
of the throughput of the second algorithm approaches the maximal possible
throughput value of 100 % which is achieved at the expense of an increased time
of the algorithm execution.
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