
Chapter 10
Intensity-Difference Based Monocular Visual
Odometry for Planetary Rovers

Geovanni Martinez

Abstract. A monocular visual odometry algorithm is presented that is able to esti-
mate the rover’s 3D motion by maximizing the conditional probability of the inten-
sity differences between two consecutive images, which were captured by a monoc-
ular video camera before and after the rover’s motion. The camera is supposed to
be rigidly attached to the rover. The intensity differences are measured at obser-
vation points only that are points with high linear intensity gradients. It represents
an alternative to traditionally stereo visual odometry algorithms, where the rover’s
3D motion is estimated by maximizing the conditional probability of the 3D cor-
respondences between two sets of 3D feature point positions, which were obtained
from two consecutive stereo image pairs that were captured by a stereo video cam-
era before and after the rover’s motion. Experimental results with synthetic and real
image sequences revealed highly accurate and reliable estimates, respectively. Ad-
ditionally, it seems to be an excellent candidate for mobile robot missions where
space, weight and power supply are really very limited.

10.1 Introduction

Over the past two decades, robotic rovers have been extensively used for planetary
surface exploration and have demonstrated that unmanned missions are very practi-
cal and productive, as well as much cheaper and less risky than manned ones. Up to
date, the most successful planetary rovers have been the following six-wheel rocker-
bogie rovers developed at NASA Jet Propulsion Laboratory: the Mars Pathfinder
mission rover Sojourner [1], the Mars Exploration Rovers (MER) Spirit and Oppor-
tunity [2] and the Mars Science Laboratory (MSL) rover Curiosity [3]. In order to
increase the maximum exploration range from few tens of kilometers to hundreds of
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Kilometers, a Mars Airplane is also being investigated [4]. As opposite to the Mars
Airplane, flapping insect robots (entomopters) are also being studied due to their
potential to fly slow as well as safety land and take off on rocky planets with low
atmospheric pressure like Mars [5].

Since communication between Earth and Mars rovers only occurs once or twice
a day, and there is a significant delay from the time a command is sent to when
the rover receives it, they must be able to autonomously navigate to science targets
and to place instruments precisely against these targets, where any navigation error
could cause the loss of the entire day of scientific activity.

For reliable and precise autonomous navigation, the rovers need to be able to de-
termine its position and orientation at any time instant. Usually the current rover’s
position and orientation are estimated by integrating the rover’s motion (rover’s
change of position and orientation) from the time the motion began to the current
time, assuming that the initial rover’s position and orientation are known or previ-
ously estimated. In the MER rovers Spirit and Opportunity the rover’s change of
orientation (rover’s rotation) is estimated from measurements of three-axis angular
rate sensors (gyros) provided by an Inertial Measurement Unit (IMU) onboard the
rover [6]. The rover’s change of position (rover’s translation) is estimated from en-
coder readings of how much the wheels turned (wheel odometry). The initial rover’s
orientation is estimated from measurements of three-axis accelerometers provided
by the IMU, as well as a sun position vector provided by a sun sensor which is also
onboard the rover [7]. The initial position is reset by command at the beginning of
the rover’s motion.

One limitation of the rocker-bogie mobile rovers as observed on Mars is the ex-
cessive wheel slippage on steep slopes and soft soils, which causes large errors
particularly on the estimated rover’s position from wheel odometry. These position
errors can even bring the rover to get stuck, digging itself deeper and deeper into a
sand hole, from where it is difficult to get the rover back up on solid ground without
incurring some significant damage in the process.

To correct any position error due to wheel slippage, the rover’s 3D motion is
also estimated by using a stereo visual odometry algorithm. It estimates the rover’s
3D motion by maximizing the conditional probability of the 3D correspondences
between two sets of 3D feature point positions, which were previously obtained
from two consecutive stereo image pairs that were captured by a stereo video cam-
era before and after the rover’s motion, respectively. This feature based stereo vi-
sual odometry algorithm was first proposed by Moravec in [8] and then improved
in [9, 10]. Afterwards, it evolved to become more robust [11] until it was finally
implemented in real time to be used in the Mars Exploration Rover Mission [12].
Similar feature based stereo visual odometry algorithms have been also presented
in [13, 14, 15]. In [14] and [16] feature based visual odometry algorithms are also
described using a monocular standard video camera and an omnidirectional video
camera, respectively. In [17, 18] feature based monocular visual odometry is ex-
tended to a Simultaneous Localization and Mapping (SLAM).

In the stereo visual odometry algorithm used in the Mars Exploration Rover Mis-
sion [12], feature points are first selected on the left frame (image) of the first stereo
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pair. Next, the feature points are also found in the corresponding right frame by
correlation based template matching. Then, the 3D positions of the feature points
before rover’s motion are estimated from the 2D positions of the feature points in
both frames of the first stereo pair by stereo triangulation. Next, the feature points
are moved using an initial motion estimate provided by the onboard wheel odom-
etry, then they are projected into the left frame of the second stereo pair and their
positions refined by correlation based template matching. Then, the feature points
are also found in the corresponding right frame by correlation based template match-
ing. Next, the 3D positions of the feature points after rover’s motion are estimated
from the 2D positions of the feature points in both frames of the second stereo pair
by stereo triangulation. Next, the 3D correspondences (3D offsets) between the two
sets of 3D feature point positions before and after the rover’s motion are established.
Finally, those 3D motion parameters which maximize the conditional probability of
the established 3D correspondences are considered to be the stereo visual odome-
try 3D motion estimates. The conditional probability is computed by modeling the
3D position error at each feature point with Gaussian distributions and using a lin-
earized 3D feature point position transformation, which transforms the 3D position
of a feature point before motion into its 3D position after motion given the rover’s
3D motion parameters.

After evaluating the performance of the above stereo visual odometry algorithm
in both MER rovers Spirit and Opporttuniy on Mars, it was further improved in [19]
resulting in a more robust and at least four time more computationally efficient algo-
rithm, which can also operate with no initial motion estimate from wheel odometry.
This last updated version of the stereo visual odometry algorithm was planed to be
used in the MSL rover Curiosity.

In this paper, as an alternative to the traditional feature based stereo visual odome-
try, an intensity-difference based monocular visual odometry algorithm is described,
which will be able to estimate the rover’s 3D motion evaluating the intensity differ-
ences at different observation points between two intensity frames captured by a
monocular video camera before and after the robot’s motion, where an observation
point is an image point with high linear intensity gradient. This avoids establishing
feature points correspondences for rover’s 3D motion estimation and the problems
associate with it. The rover’s 3D motion will be estimated by maximizing the con-
ditional probability of the frame to frame intensity differences at the observation
points. The conditional probability is computed by expanding the intensity signal by
a Taylor series and neglecting the nonlinear terms, resulting the well known optical
flow constraint [20, 21], as well as using a linearized 3D observation point position
transformation, which transforms the 3D position of an observation point before
motion into its 3D position after motion given the rover’s 3D motion parameters.
Perspective projection of the observation points into the image plane and zero-mean
Gaussian stochastic intensity errors at the observation points are also assumed. Sim-
ilar approaches have been already implemented successfully in applications such as
video compression [22] and teleoperation of space robots [23].

Our approach differs from traditional optical flow approaches such as described
in [24, 25] because we do not follow the typical two-stage algorithm, where the
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optical flow vector field is first estimated and then the rover’s 3D motion is estimated
from the previously estimated optical flow vector field, instead we follow a similar
approach such as described in [26] by developing an one-stage estimation algorithm,
which is able to directly deliver the rover’s 3D motion parameters without estimating
the optical flow vector field, avoiding in this way solving the optical flow as an
intermediate step and the associate problems with the flow estimation.

This contribution is organized as follows. In section 10.2, the proposed monocu-
lar visual odometry algorithm is presented. In section 10.3, the experimental results
are presented. In section 10.4, a brief summary and the conclusions are given. Fi-
nally, in section 10.5, a short description of the future work is given.

10.2 Monocular Visual Odometry Algorithm

In this section, an algorithm to estimate the 3D motion of a rover between two
arbitrary time instants tk−1 and tk is presented. This is done by maximizing the con-
ditional probability of the intensity differences between two consecutive frames Ik−1
and Ik, which were captured at the same time instants by a monocular camera rigidly
attached to the rover. The intensity differences are measured at selected points called
observation points. The conditional probability is a function of the rover’s 3D mo-
tion, the frame to frame intensity differences and the covariance matrix of the in-
tensity errors at the observation points. To compute this conditional probability, a
mathematical relationship between the rover’s 3D motion and the frame to frame
intensity differences at the observation points is used. This relationship is based
on a number of assumptions about the world and how it is projected into the image
plane of the camera. This assumptions are reviewed in subsection 10.2.1. Subsection
10.2.2 explains what is an observation point and how the intensity differences are
measured at the observation points. In subsection 10.2.3, the conditional probabil-
ity of the intensity differences at the observation points is computed. In subsection

Fig. 10.1 Shape of the
planet’s ground surface
model. Currently, it is de-
scribed by a planar and rigid
mesh of two triangles with
coordinate system (X ,Y,Z).
The camera coordinate sys-
tem (q,r,s) is supposed
to coincide with the robot
coordinate system.
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10.2.4, the method to maximize the conditional probability for getting the rover’s
3D motion estimates is described. Finally, subsection 10.2.5 explains how the algo-
rithm is initialized at the beginning of the image sequence.

10.2.1 Planet’s Ground Surface Model

For rover’s 3D motion estimation from time tk−1 to time tk, it is assumed that the
monocular camera is looking down toward the planet’s ground surface, that the
planet’s ground surface is visible by the camera and that it covers the whole area of
the captured intensity images. Furthermore, it is assumed that at time tk−1 a model
of a visible portion of the planet’s ground surface is available or has been previously
computed as described in subsection 10.2.5, whose shape with coordinate system
(X ,Y,Z), texture and relative pose to the camera coordinate system (q,r,s) corre-
spond with those of the real portion of the planet’s ground surface at time tk−1.
For simplicity, from now on, this model will be referred as planet’s ground surface
model. The model’s shape is represented by a rigid mesh of triangles. Currently, the
mesh consists of only two triangles forming a rectangle (see Fig. 10.1). The model’s
texture is described by the intensity and chrominance values being reflecting from it.
The model’s pose is given by six parameters: the three components of a 3D position
vector and three rotation angles. In addition, the camera coordinate system (q,r,s) is
supposed to coincide with the rover coordinate system and an image is supposed to
be generated by perspective projection of the planet’s ground surface into the image
plane of the camera. Moreover, it is assumed that there are no moving objects on
the planet’s ground surface and that the illumination is diffuse as well as spatial and
time invariant. Thus, the frame to frame intensity differences are due to the frame to
frame rover’s 3D motion only.

The rover’s 3D motion from time tk−1 to time tk is described by a rotation fol-
lowed by a translation of its own coordinate system (q,r,s) respect to the ground sur-
face coordinate system (X ,Y,Z). The translation is described by the 3 components
of the 3D translation vector ΔT = (ΔTX ,ΔTY ,ΔTZ)

�. The rotation is described by
3 rotation angles: ΔωX , ΔωY ,ΔωZ . These six motion parameters are represented by
the vector B = (ΔTX ,ΔTY ,ΔTZ ,ΔωX , ΔωY ,ΔωZ)

� and estimated by maximizing
the conditional probability of the frame to frame intensity differences measured at
the observation points.

10.2.2 Observation Points

For estimating the rover’s 3D motion from time tk−1 to time tk, it is also assumed
that at time tk−1 a set of observation points is available. An observation point lies
on one of the triangles of the mesh of the planet’s ground surface model at barycen-
tric coordinates Av and carries the intensity value I, as well as the linear intensity
gradients g = (gx,gy)

� at position Av. The observation points are created and ini-
tialized at the beginning of the image sequence according to the method that is de-
scribed in subsection 10.2.5. Let A = (Aq,Ar,As)

� be the corresponding position of
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an observation point with respect to the rover coordinate system at time tk−1 and let
a = (ax,ay)

� be the position of its perspective projection into the camera plane (see
Fig. 10.2). Assuming that the shape, position and orientation of the planet’s ground
surface model correspond with those of the real portion of the planet’s ground sur-
face at time tk−1, the frame to frame intensity difference f d at the observation point
a is approximated as follows:

f d(a) = Ik(a)− Ik−1(a)≈ Ik(a)− I (10.1)

where Ik−1(a) and Ik(a) represent the intensity value of the images Ik−1 and Ik at
the position a, respectively. Since in general a lies outside of the image raster, the
intensity value Ik(a) is computed by bilinear interpolation of the intensity values of
the nearest four pixels of the intensity image Ik. Then, the frame to frame intensity
difference at N observation points is represented as follows:

FD = ( f d(a(N−1)), f d(a(N−2)), . . . , f d(a(0)))� (10.2)

Moreover, the mean squared frame to frame intensity difference at the observa-
tion points is given by:

msd =
1
N

N−1

∑
n=0

f d(a(n))2 (10.3)

10.2.3 Conditional Probability of the Intensity Differences

Let’s consider an arbitrary observation point at barycentric coordinates Av on the
surface of one of the triangles of the planet’s ground surface model. Let I and
g = (gx,gy)

� be its intensity value and linear intensity gradients, respectively. Due

Fig. 10.2 Observation point
A on the planet’s ground
surface model with respect
to the camera coordinate
system and its perspective
projection a into the image
plane
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to the robot’s motion from time tk−1 to time tk it moves from A to A′ with respect to
the camera coordinate system (see Fig. 10.3). The corresponding perspective projec-
tions into the image plane are a and a′, respectively. Expanding the intensity signal
Ik−1 at image position a by a Taylor series and neglecting the nonlinear terms as
proposed in [21], the following relationship between the unknown position a′ and
the frame to frame intensity difference is obtained:

f d(a) = Ik(a)− Ik−1(a)≈−g� (a
′ − a) (10.4)

which is known in the professional literature as Horn and Schunck optical flow con-
straint equation [20]. Expressing a with their corresponding coordinates at the cam-
era coordinate system using a perspective camera model with known focal distance
f results:

a =

[
f Aq
As

f Ar
As

]

(10.5)

Approximating the Eq. 10.5 at position A by using a Taylor series and neglecting
the nonlinear terms the following transformation for the unknown position a′ can be
obtained:

a′ ≈ a+

[
f

As
0 f Aq

As
2

0 f
As

f Ar

As
2

]

(A′ −A) (10.6)

where the known position A = (Aq,Ar,As)
� is related with the unknown position

A′ = (A′
q,A

′
r,A

′
s)
� according to:

A′ = ΔR (A+C)−C−ΔT (10.7)

Fig. 10.3 Translation ΔA
of an observation point due
to the rover’s 3D motion
with respect to the camera
coordinate system and its
perspective projection into
the camera plane
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In the previous equation C = (CX ,CY ,CZ)
� represents the origin of the robot co-

ordinate system respect to the ground surface coordinate system (see Fig. 10.1) and
ΔR a rotation matrix computed with the rotation angles −ΔωX ,−ΔωY ,−ΔωZ . As-
suming that the rotation angles −ΔωX , −ΔωY , −ΔωZ are small, thus cos(−Δω)≈
1 and sin(−Δω)≈−Δω , the Eq. 10.7 can be transformed into:

A′ ≈
⎡

⎣
Aq

′
Ar

′
As

′

⎤

⎦=

⎡

⎣
1 ΔωZ −ΔωY

−ΔωZ 1 ΔωX

ΔωY −ΔωX 1

⎤

⎦

⎡

⎣
Aq +CX

Ar +CY

As +CZ

⎤

⎦−
⎡

⎣
CX −ΔTX

CY −ΔTY

CZ −ΔTZ

⎤

⎦ (10.8)

Substituing Eq. 10.8 in Eq. 10.6, we obtain:

a′ ≈
[

f Aq
As

f Ar
As

]

+

[
f

As
0 f Aq

As
2

0 f
As

f Ar

As
2

]⎡

⎣
ΔωZ(Ar +CX)−ΔωY (As +CZ)−ΔTX

−ΔωZ(Aq +CX)+ΔωX(As +CZ)−ΔTY

ΔωY (Aq +CX)−ΔωX(Ar +CY )−ΔTZ

⎤

⎦

(10.9)
Finally, substituting Eqs. 10.9 and 10.5 in Eq. 10.4, the following linear equa-

tion that relates the unknown motion parameters and the frame to frame intensity
difference measured at the observation point position a is obtained:

f d(a) =
f gx

As
ΔTX +

f gy

As
ΔTY − f (Aqgx +Argy)

A2
s

ΔTZ +

− f [Aqgx (Ar +CY )+Argy (Ar +CY )+Asgy (As +CZ)]

A2
z

ΔωX +

+
f [Argy (Aq +CX)+Aqgx (Aq +CX)+Asgx (As +CZ)]

A2
z

ΔωY +

− f [gx (Ar +CY )− gy (Aq +CX)]

As
ΔωZ (10.10)

Eq. 10.10 can also be written in vector form as:

f d(a) = o� B+Δ I (10.11)

where

o =

⎡

⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎣

f gx
As

f gy
As

− f (Aqgx+Argy)

A2
s

− f [Aqgx(Ar+CY )+Argy(Ar+CY )+Asgy(As+CZ)]

A2
s

f [Argy(Aq+CX )+Aqgx(Aq+CX )+Asgx(As+CZ )]

A2
s

− f [gx(Ar+CY )−gy(Aq+CX )]
As

⎤

⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎦

(10.12)
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and the term Δ I represents the frame to frame intensity error caused by the cam-
era noise, the local or global temporal illumination changes, the shape error of the
planet’s ground surface model and the accumulated position error due to the motion
estimation errors occurred by the motion analysis of previous frames.

Evaluating Eq. 10.11 at N > 6 observation points the following system of linear
equations is obtained:

FD = O B+V (10.13)

where O is the observation matrix:

O =
[
o(N−1)�,o(N−2)�, . . . ,o(0)

�]�
(10.14)

and V is the vector with the N intensity errors:

V =
[
Δ I(N−1),Δ I(N−2), . . . ,Δ I(0)

]�
(10.15)

The latter can be computed solving for V in Eq. 10.13:

V = FD−O B (10.16)

Modeling the intensity error Δ I(n) with image coordinates a(n) by a stationary
zero-mean Gaussian stochastic process, the joint probability density of the intensity
errors at N observation points with image coordinates a(n), n = 0, ..,N − 1, can be
computed as:

p(V ) =
1

√
(2π)N |U |

e−
1
2 (V

� U−1 V) (10.17)

where |U | is the determinant of the covariance matrix U of the intensity errors at the
N observation points. Assuming that the variance of the intensity error Δ I(n) with
image coordinates a(n) is 1 and that the intensity errors are statistically independent,
this covariance matrix becomes the identity matrix:

U = E[V V�] =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 · · · 0
0 1 0 . . . 0
0 0 1 · · · 0
...

...
...

...
...

0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(10.18)

Substituting Eq. 10.16 in Eq. 10.17 the conditional probability of the frame to
frame intensity differences at the N observation points can be written as follows:

p(FD|B) = 1
√
(2π)N |U |e

− 1
2

(
(FD−O B)�U−1(FD−O B)

)

(10.19)
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10.2.4 Maximizing the Conditional Probability

The 3D motion parameters B=(ΔTX ,ΔTY ,ΔTZ ,ΔωX ,ΔωY ,ΔωZ)
�, which describe

the rover’s 3D motion from time tk−1 to time tk, are estimated by maximizing the
Eq. 10.19. To this end, the derivative of the natural logarithm of the Eq. 10.19 is first
computed and then set to 0 as follows:

∂ ln p(FD|B)
∂B

=
∂ ((FD−O B)�U−1(FD−O B))

∂B
= 0 (10.20)

Finally, the Maximum-Likelihood motion estimates are obtained by solving for
B in the above equation:

B̂ =
(

O�U−1O
)−1

O�U−1FD (10.21)

Due to the truncation errors caused by neglecting the nonlinear terms in all ap-
proximations done to obtain Eq. 10.10, the algorithm needs to be applied iteratively
to improve its reliability and accuracy [22, 23]. After each iteration i, the result-
ing estimates iB̂ are used to compensate the motion of the planet’s ground surface
model, as well as to update the motion estimates B̂ found by previous iterations. Due
to the motion compensation, the frame to frame intensity differences at the observa-
tion points decreases. The iteration ends when after two consecutive iterations the
mean square frame to frame intensity difference at the observation does not decrease
significantly. In each iteration i the following steps are carried out:

1. Evaluate Eq. 10.10 at each observation point
2. Compute the intensity differences iFD and observation matrix iO according to

Eq. 10.2 and Eq. 10.14, respectively
3. Obtain the motion estimates iB̂ using Eq. 10.21
4. Compensate the motion of the mesh of triangles by moving its vertices accord-

ing to Eq. 10.7 with the estimates iB̂
5. Compute the mean squared intensity difference imsd using Eq. 10.3
6. Update the rotation matrix: Δ̂R ← iΔ̂R Δ̂R
7. Update the translation vector: Δ̂T ← Δ̂T + iΔ̂T
8. If |imsd − i−1msd| ≥ δ2 goto step 1

10.2.5 Planet’s Ground Surface Model Initialization

As explained in subsections 10.2.1 and 10.2.2, to estimate the rover’s 3D motion
from time tk−1 to time tk, the shape, the pose and the observation points of a visible
portion of the planet’s ground surface need to be known at time tk−1. Here, they
are computed by compensating the motion of a planet’s ground surface model with
the accumulated motion estimates from time t0 to time tk−1. The planet’s ground
surface model is created and initialized at the beginning of the image sequence. The
motion compensation is gradually performed in the fourth step of each iteration of
the motion estimation algorithm described in the previous subsection.
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The initialization of the shape, the pose and the texture of the model along with
the observation points is carried out only once at the beginning of the image se-
quence, one after the other, as follows:

1. Shape initialization: The model’s shape is currently initialized as a flat and rigid
mesh of two triangles forming a rectangle. Thus, at present, it is only possible
to model the shape of a flat portion of the visible planet‘s ground surface. Here,
the image area of that portion is at least 20% of the total image area.

2. Pose initialization: Currently, the orientation of the model’s shape is initialized
manually so that it fairly corresponds to that of the surface portion being mod-
eled. The position is also set manually so that the perspective projection of the
mesh into the image plane covers the corresponding image region of the surface
portion being modeled. The focal lens f is assume to be 1. In this uncalibrated
case, the robot translation can only be estimated up to scale factor.

3. Texture initialization: The model’s texture is initialized by projecting the inten-
sity and chrominance values of the first image of the sequence onto its mesh of
triangles by using texture mapping.

4. Observation points initialization: The observation points are created and initial-
ized as follows. First, the gradient images G0x and G0y are computed by con-
volving the first intensity image I0 with the Sobel operator. Then, the 3D vertex
positions of all visible triangles of the ground surface model are perspectively
projected into the camera plane. In order to reduce the influence of the camera
noise and to increase the accuracy of the estimation, an arbitrary image point a
inside the image region of a projected triangle will be selected as an observa-
tion point only if the linear intensity gradient at position a satisfies |G0(a)|> δ1.
Next, the 3D position vector A with respect to the camera coordinate system of
each selected observation point is computed as the intersection of the a’s line
of sight and the plane containing the corresponding triangle’s vertex 3D posi-
tions. Then, the corresponding barycentric coordinates Av with respect to the
vertex 3D positions are also computed. Finally, each selected observation point
is rigidly attached to the triangle’s surface. Its position, intensity value I and lin-
ear intensity gradient g = (gx,gy)

� are set to Av, I0(a) and (G0x(a),G0y(a))�,
respectively. Since it is assumed that the illumination is diffuse as well as spa-
tial and time invariant, the intensity value I and the linear intensity gradient
g = (gx,gy)

� of at observation point at position Av remain constant during the
image sequence.

10.3 Experimental Results

In order to evaluate the estimation accuracy of the proposed monocular visual odom-
etry algorithm, we applied it to each image pair of a set of 1000 synthetically gener-
ated image pairs with the following image dimensions: 688 pixel ×544 pixel. Each
image pair consists of two images captured by a rover at time tk−1 and time tk, where
the camera is rigidly attached to the rover and its coordinate system coincides with
the rover’s coordinate system. For each image pair, the shape, the texture and the
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observation points of the ground surface, as well as its position and orientation at
time tk−1 with respect to the camera, including the rotation and translation param-
eters which describes the rovert’s 3D motion from time tk−1 to time tk are exactly
known. The rover’s rotation and the rover’s translation from time tk−1 to time tk are
different in all image pairs and their parameters are uniformly distributed in interval
(-10.0 to +10.0) m for the translation and in interval (-5.0 to +5.0)◦ for the rotation.
The experiment was performed on a iMac with an Intel Core i5 at 3.1 GHz and 12.0
GB RAM.

At a camera noise variance of 10, the Table 10.1 depicts the absolute estimation
error of the translation parameter along the X axis |EΔTX |, along the Y axis |EΔTY |
and along the Z axis|EΔTZ |. This gives an average of 0.00432 m and 0.00111 m for
the mean and the standard deviation of the absolute estimation error of the transla-
tion parameters, respectively. Taking into account that the rover’s translation along
each axis was uniformly distributed in interval (-10.0 to +10.0) m, an average of the
absolute estimation error of the translation parameters of approximately 0.005 m is
an excellent indicative of the high accuracy achieved by the proposed algorithm in
the estimation of the rover’s translation parameters.

At a camera noise of 10, Table 10.2 depicts the absolute estimation error of the
rotation parameter around the X axis |EΔωX |, around the Y axis |EΔωY | and around
the Z axis |EΔωZ |. This gives an average of 0.00337◦ and 0.00198◦ for the mean and
the standard deviation of the absolute estimation error of the rotation parameters,
respectively. Taking into account that the rover’s rotation around each axis was uni-
formly distributed in interval (-5.0 to +5.0)◦, an average of the absolute estimation
error of the rotation parameters of approximately 0.004◦ is also an excellent indica-

Table 10.1 Absolute estimation error of the translation parameter along the X axis
∣∣EΔTX

∣∣,
along the Y axis

∣
∣EΔTY

∣
∣ and along the Z axis

∣
∣EΔTZ

∣
∣ at a camera noise variance of 10

Absolute estimation error mean (m) standard deviation (m)
∣
∣EΔTX

∣
∣ 0.00203 0.00124∣

∣EΔTY

∣
∣ 0.00065 0.00033∣

∣EΔTZ

∣
∣ 0.01027 0.00177

Average 0.00432 0.00111

Table 10.2 Absolute estimation error of the rotation parameter around the X axis
∣∣EΔωX

∣∣,
around the Y axis

∣
∣EΔωX

∣
∣ and around the Z axis

∣
∣EΔωX

∣
∣ at a camera noise variance of 10

Absolute estimation error mean (◦) standard deviation (◦)
∣
∣EΔωX

∣
∣ 0.00537 0.00316∣

∣EΔωY

∣
∣ 0.00324 0.00234∣

∣EΔωZ

∣
∣ 0.00150 0.00042

Average 0.00337 0.00198
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tive of the high accuracy achieved by the proposed algorithm in the estimation of
the rover’s rotation parameters.

In a second experiment, we applied the proposed visual odometry algorithm to
6 different real image sequences with image size of 256 pixel × 256 pixel. They
were taken by the left navigation camera of the MER rover Opportunity at differ-
ent dark chocolate brown flat desolate martian landscapes. All original images are
courtesy of NASA/JPL-Caltech. Because in this experiment the shape, the texture
and the observation points of the planet’s ground surface model as well as its rel-
ative pose with respect to the camera are not known at the beginning of the image
sequence, they are first initialized as described in subsection 10.2.5. The experimen-
tal results revealed an average processing time of 0.1 sec/frame, as well as that the
tracking was never lost. We have also generated an image sequence where a virtual
planar object (triangle) has been integrated into the original image sequence and an-
imated in a way that it looks like it is rigidly attached to the ground surface using the

Fig. 10.4 aaPerspective
projection of a triangle
into (a) the first and (b)
the last image of the test
sequence #2 captured by
the rover Opportunity on
Mars. Since the triangle
is motion compensated
with the negative of the
accumulated rover’s 3D
motion estimates, it seems
to be glued to the ground
surface. All original images
are courtesy NASA/JPL-
Caltech.

(a) (b)

Fig. 10.5 Perspective pro-
jection of a triangle into
(a) the first and (b) the last
image of the test sequence
#3 captured by the rover Op-
portunity on Mars. Since the
triangle is motion compen-
sated with the negative of
the accumulated rover’s 3D
motion estimates, it seems
to be glued to the ground
surface. All original images
are courtesy NASA/JPL-
Caltech.

(a) (b)
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estimated frame to frame 3D motion parameters of the rover. Actually this is
achieved by compensating the motion of the triangle with the negative of the ac-
cumulated rover’s 3D motion estimates and then projecting the triangle into the
image plane for each image of the sequence. A subjective analysis of the results re-
vealed that the triangle really seems to be glued to the ground surface, which is also
an indicative of the excellent reliability of the proposed algorithm. Figs. 10.4.(a)-
10.7.(a) and Figs. 10.4.(b)-10.7.(b) depict the animated triangle projected into the
first image and into the last image of the test image sequence #2, #3, #4, and #6,
respectively. We have also achieved similar results by applying the proposed visual
odometry algorithm to both the 400 frames of a real aerial image sequence and the
400 frames of a real infrared aerial image sequence, the two with image size of 688
pixel × 544 pixel.

Fig. 10.6 Perspective pro-
jection of a triangle into
(a) the first and (b) the last
image of the test sequence
#4 captured by the rover Op-
portunity on Mars. Since the
triangle is motion compen-
sated with the negative of
the accumulated rover’s 3D
motion estimates, it seems
to be glued to the ground
surface. All original images
are courtesy NASA/JPL-
Caltech.

(a) (b)

Fig. 10.7 Perspective pro-
jection of a triangle into
(a) the first and (b) the last
image of the test sequence
#6 captured by the rover Op-
portunity on Mars. Since the
triangle is motion compen-
sated with the negative of
the accumulated rover’s 3D
motion estimates, it seems
to be glued to the ground
surface. All original images
are courtesy NASA/JPL-
Caltech.

(a) (b)
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10.4 Summary and Conclusions

In this contribution, we have showed that the rover’s 3D motion can be also precisely
estimated from measurements of frame to frame intensity differences provided by
a monocular video camera. Although a validation of its performance in a real rover
test bed is still missing, the experimental results so far revealed that it is promising
candidate to be used to improve long-range autonomous navigation of rovers on a
planetary surface. This because it could help when wheel odometry and traditionally
stereo visual odometry have failed, as well as it could be used to validate the stereo
visual odometry estimate or to generate a better estimate by statistically combining
the wheel odometry estimate, the stereo visual odometry estimate and the estimate
of the proposed algorithm using sensor fusion techniques. It is also an excellent
candidate for lighter rover systems or entomopters where space, weight and power
supply are really very limited. We even believe that the proposed algorithm could
have a similar error growth than that achieved with the stereo visual odometry al-
gorithm used by the MER rovers and the MSL rover and it could be more effective
when the distance to the scene is much larger than the stereo baseline. Additionally,
it has the advantage of being able to operate just with a single monocular video
camera, which consumes less energy, weight less and needs less space than a stereo
video camera. We are also convinced that the proposed algorithm could be compu-
tationally more efficient than the stereo visual odometry because it does not depend
at all on any correlation based template matching for operation.

Our intention is not to replace the stereo visual odometry but to show that monoc-
ular visual odometry based on frame to frame intensity differences is another reli-
able and precise way for odometry estimation that can be merged with other sensors
to improve the long rage autonomous navigation of the current and future rovers,
airplanes and flapping insect robots for planetary exploration.

10.5 Future Work

In the future work, the proposed algorithm will be implemented and tested in a
real rover platform Clearpath Robotics Husky A200 (see Fig.10.8 ), as well as a
set of experiments will be performed in a simulated Martian landscape to assess
its reliability, robustness, error growth, power consumption and overall size. The
obtained results will be compared with those achieved by the stereo visual odometry
and existing monocular SLAM algorithms.

Currently, we are working on the development of the rover’s real time image ac-
quisition system consisting of three IEEE-1394 cameras installed onto the rover’s
mast, each looking down toward the ground surface in three different directions: to
the front, rear and left side parts of the rover, respectively (see Figs. 10.8 and 10.9).
During the experiments only one of those three cameras will be used for monocular
visual odometry. The system is being developed under Ubuntu 12.04.2 LTS, ROS
Fuerte and the programing language C. The image acquisition system will also cor-
rect, in real time, the radial and tangential distortions due to the camera lens.
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Fig. 10.8 Real rover test
bed Clearpath Robotics
Husky A200, which is cur-
rently used to validate the
proposed monocular visual
odometry algorithm. The
rover’s real time image ac-
quisition system consists of
three IEEE-1394 cameras
installed onto the rover’s
mast, each looking down
toward the ground surface
in three different direc-
tions: to the front, rear and
left side parts of the rover,
respectively. During the
experiments only one of
those three cameras will be
used for monocular visual
odometry.

Fig. 10.9 First tests of the
real rover test bed Husky
A200 and its image acqui-
sition system on campus of
the University of Costa Rica
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