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Preface

After a brief lull in the 1990s, robotics has become resurgent thanks to advancements
in robotic autonomy made implementable through hyper fast, cheap, multithreaded
computing. Interestingly, different parts of the world have made leaps in different
research directions, e.g., military robotics has made rapid progress in the US, while
assistive robots have been ascendant in Japan. However, the underlying technolo-
gies driving the various facets of robotics research are inter-transferable such that
these advancements with seemingly different application areas are synergistically
contributing to the rapid evolution of robotics as a whole.

Recently, robotic vision as a research area has advanced dramatically,especially
with the development of new range sensors. A multitude of techniques have been
developedwith impact on areas such as robotic navigation, scene/environment un-
derstanding, and visual learning, which are essential to the goal of bringing robots
into our dailylives. This edited collection is drawn from a selection of topics that
were first presented at the 2013 IEEE Workshop on Robot Vision held at the Sher-
aton Sand Key in Clearwater, Florida. The material presented in this book is an
extended version of ten selected original workshop articles and represents some of
the most recent important advancements in the field of robotic vision.

Chapter 1, Multi-modal Manhattan World Structure Estimation for Domestic
Robots, by Kai Zhou, Karthik Mahesh Varadarajan, Michael Zillich and Markus
Vincze, presents a novel approach based on Jensen-Shannon Divergence to estimate
multi-plane structures in a 3D scene without any prior knowledge of the scene.

Chapter 2, RMSD: A 3D Real-time Mid-Level Scene Description System, byKris-
tiyan Georgiev and Rolf Lakaemper, introduces a real-time system that extracts 2D
geometric features from 3D range data to form candidate sets of 3D models, which
are then used to represent 3D objects.

Chapter 3, Semantic and Spatial Content Fusion for Scene Recognition, by Elahe
Farahzadeh and Cham Tat-jen and Wanqing Li, presents a framework that uses not
only discriminative features, but also their spatial and semantic relationships to cat-
egorize a scene.

Chapter 4, Improving RGB-D Scene Reconstruction Using Rolling Shutter Rec-
tification, by Hannes Ovrn, Per-Erik Forssn, and David Trnqvist, describes a new
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technique to use a gyroscope to rectify the depth scans sufferingfrom rolling shutter
distortions.

Chapter 5, Modeling paired objects and their interaction, by Yu Sun and Yun Lin,
presents a human-object-object (HOO) interaction affordance learning approach
that models the interaction motions between paired objects in a human-object-object
way and uses the motion models to improve the object recognition reliability.

Chapter 6, Probabilistic Active Recognition of MultipleObjects using Hough-
based Geometric Matching Features, by Natasha Govender and Jonathan Warrell,
proposes an advanced active object recognition approach that recognizes multiple
objects simultaneously even with occlusions by incorporating object viewpoint fea-
tures into Bayesian object models.

Chapter 7, Incremental Light Bundle Adjustment (iLBA): Probabilistic Analy-
sis and Application to Robotic Navigation by Vadim Indelman and Frank Dellaert,
presents probabilistic analysis of a structure-less bundle adjustment (BA) method
for camera pose estimation which is followed by extension of the iLBA approach to
robotic navigation.

Chapter 8, Online Learning of Vision-Based Robot Control during Autonomous
Operation, by Kristoffer fjll and Michael Felsberg, presents two different strategies
for activation of online learning, namely, (a) an autonomous strategy where the robot
switches to a learning mode and generates training data via exploration, and (b) a
semi-autonomous strategy in which an operator/supervisor provides training data
via manual control as needed.

Chapter 9, 3D Space Automated Aligning Task Performed by A Microassembly
System Based on Multi-channel Microscope Vision Systems, by Zhengtao Zhang,
De Xu, and Juan Zhang,presents an alignment approach for mm-sized complex mi-
cro parts based on information from 3 cameras. Position- and Image-based visual
servoing methods are utilized. For speed and accuracy, a coarse-to-fine alignment
strategy is proposed along with active zooming.

Chapter 10, Intensity-Difference Based Monocular Visual Odometry for Plane-
tary Rovers, by Geovanni Martinez, proposes a method to estimate the 3D motion
of a rover by maximizing the conditional probability of intensity differences at key
observation points between successive images captured by a single video camera
rigidly attached to the rover.

Yu Sun, Aman Behal, and Chi-Kit Ronald Chung (Editors) would like to express
their gratitude to all the authors for their contributions to this collection and thank
Springer for their support and assistance in the publishing process.

June, 2014 Yu Sun
Tampa, FL, U.S.A.

Aman Behal
Orland, FL, U.S.A.

Chi-Kit Ronald Chung
Hong Kong, China
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Chapter 1
Multi-modal Manhattan World Structure
Estimation for Domestic Robots

Kai Zhou, Karthik Mahesh Varadarajan, Michael Zillich, and Markus Vincze

Abstract. Spatial structure, typically dealt with by robots in domestic environments
conform to Manhattan spatial orientations. In other words, much of the 3D point
cloud space conform to one of three primal planar orientations. Hence analysis of
such planar spatial structures is significant in robotic environments. This process has
become a fundamental component in diverse robot vision systems since the intro-
duction of low-cost RGB-D cameras such as the Kinect, ASUS and the Primesense
that have been widely mounted on various indoor robots. These structured light/
time-of-flight commercial depth cameras are capable of providing high quality 3D
reconstruction in real-time. There are a number of techniques that can be applied
to determination of multi-plane structure in 3D scenes. Most of these techniques
require prior knowledge modality of the planes or inlier scale of the data points in
order to successfully discriminate between different planar structures. In this paper,
we present a novel approach towards estimation of multi-plane structures without
prior knowledge, based on Jensen-Shannon Divergence (JSD), which is a similar-
ity measurement method used to represent pairwise relationship between data. Our
model based on the JSD incorporates information about whether pairwise relation-
ships exist in a model’s inlier data set or not as well as the pairwise geometrical
relationship between data points.

Tests on datasets comprised of noisy inliers and a large percentage of outliers
demonstrate that the proposed solution can efficiently estimate multiple models
without prior information. Experimental results shown using our model also demon-
strate successful discrimination of multiple planar structures in both real and syn-
thetic scenes. Pragmatic tests with a robot vision system also demonstrate the
validity of the proposed approach. Furthermore, it is shown that our model is not
just restricted to linear kernel models such as planes but also be used to fit data
using non-linear kernel models.

Kai Zhou · Karthik Mahesh Varadarajan · Michael Zillich · Markus Vincze
Automation and Control Institute, Vienna University of Technology, A-1040, Vienna, Austria
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1.1 Introduction

Robots in domestic environments have to deal with a variety of structured as well as
unstructured scene types. The algorithms required to handle this uncertainty in scene
information are usually embedded in intelligent decision schema. Nevertheless, de-
pending on the level of uncertainty in the scene content, the required complexity of
the decision system can be quite high. The knowledge accumulation necessary for
this purpose can be done through data prior models as well as incremental knowl-
edge accumulation. The trade-off between the level of intelligence embedded in the
form of data prior models by robot designers and that obtained by autonomous oper-
ation by interactively analyzing the information that the robot percepts, is a big chal-
lenge in the design of modern service robots. Therefore, there is a large literature
of algorithms on designing efficient, orderly and polished rule priors to summarize
robotic knowledge as comprehensive as possible.

Fortunately, the real world in which robots perform tasks is not in a state of com-
plete disorder or chaos that can prevent any form of modeling. In 1999, Coughlan
and Yuille published a landmark paper verifying a general observation that most in-
door and outdoor (city) scenes are designed on a Manhattan three-dimensional grid
[4]. Although they originally design the ”Manhattan world” with statistical regu-
larities for the sake of inferring the viewer orientation relative to the Manhattan
grid and detecting targets unaligned to the grid, Manhattan constraints have turned
out to be an important prior in the systematic design of most indoor robot vision
systems[11][5]. Spatial knowledge demonstrates how the intrinsic orderliness of the
real world can be used to help robots perform tasks more effectively.

Manhattan worlds can essentially be decomposed into a set of planar structures
oriented along three primal directions. Hence, domestic robots working in indoor
environments typically need to deal with regular structure typically in the form of
planes. Analysis of such structure using perception systems on the domestic robots
is crucial to performing a number of tasks such as environment mapping, local-
ization, navigation, obstacle detection, occupancy grid estimation, salient region or
outlier estimation, object recognition, scene understanding, spatial scaffolding, se-
mantic scene processing etc. Some of the scenarios are described in fig. 1.1. In fig.
1.1a, the visual perception system on the robot has to determine the salient regions
in the scene. Outliers to the planar structure as described by the table in the scene
form the primal components for salient or attention regions. In this case, the key-
board on the table forms one such outlier. In fig. 1.1b, the visual perception system
on the robot is required to determine the multiple planes of the multi-level shelf
structure. This is necessary in order to estimate the perform spatial scaffolding and
semantic analysis of the scene to determine the relative locations and pose of vari-
ous interesting objects for further processing such as object recognition, classifica-
tion followed by manipulation and other forms of robotic interaction. In fig. 1.1c,
the vision system is required to identify walls, cupboards and the flooring which
again can be modeled using multiple planes. This helps a robot in mapping its en-
vironment and determining optimal navigation strategies through path planning as
well as in localization. In fig. 1.1d, the perception shown has to deal with a similar
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scenario with added constraints rendered by obstacles in the path of the robot. Again
structural modeling of the scene using a Block-World paradigm and estimation of
outliers helps in obstacle avoidance and successful robot navigation. This process
also involves occupancy grid determination. Fig. 1.1e shows that robot navigation
can be further hindered by spurious scene structure such as staircases and stairwells.
Again multi-modal plane estimation comes in handy for determining such structure
resulting in appropriate course of action, which in the case of a wheeled robot is
obstacle avoidance and in the case of a biped robot involves suitable motion schema
to ascend or descend the stairs as appropriate. Robots might also have to deal with
other objects of interest mounted on vertical planar structures such as walls and cup-
boards. For example, a robot equipped with an arm and hand can be used to interact
with the handle of doors, cupboards and windows for navigation and other tasks.
This test case scenario also involves operating circuit breaker switches and other
fixtures mounted on planar structures as shown in fig. 1.1f. In all such cases, deter-
mination of the planar structures in the scene is a key component of the embodied
visual perception algorithms. It should be noted that typical scenes do not just have
one planar structure, but are composed of multiple planes in different orientations.
Furthermore, 3D scene points corresponding to the multi-planar structure typically
occupy a large area of the visual scene to be processed. Hence, it is necessary to
design efficient approaches towards regularized and structured 3D scene processing
which can handle a large number of data points while being capable of determining
multi-modal scene content.

As one of the most common spatial structures that exist in the man-made world,
planar surfaces have been widely studied and extracted for robots to analyze and
understand their surrounding environments. Conventional approaches such as the
RANSAC [6] family show limitations when dealing with data containing multiple
models, high percentage of outliers or sample selection bias, commonly encoun-
tered in robot vision applications. Therefore, applying the RANSAC family in a
robot vision system requires the use of many unstable, non-adaptive and hard-tuned
parameters, such as numbers of planes and inliers scale that changes with the dis-
tance from the camera to the plane.

In this paper, we propose a novel multiple plane estimation algorithm, which
does not require any prior parameters, and employ it on our robotic vision system to
autonomously detect all planar structures in a variety of scenes. The key technique
in the proposed algorithm is to select the inliers from the data set directly through
the analysis of the pairwise relations between data points using Jensen-Shannon Di-
vergence (JSD) [7], which is frequently used for similarity measurement in various
contexts. Fig. 1.3 summarizes the proposed mechanism with synthetic data. The
input data contains 100 points per line to modeled from the data points (All the syn-
thetic data for 2D line fitting tests in this paper are corrupted with Gaussian noise
with a standard deviation of σ = 0.01) and with 600 gross outliers (outlier rate of
90%). Colors ranging from red to blue, while cycling through orange, yellow and
cyan, illustrate the order of data point selection.

The paper is organized as follows. In section 1.2, we present the background and
review the state-of-the-art in multi-model estimation algorithms as well we their
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(a) (b) (c)

(d) (e) (f)

Fig. 1.1 Variegated test scenes to be handled by the perception systems in typical domestic
robots.(a) Task salient objects on a desk (b) Salient objects on a shelf (c) Navigation with
walls, floor and cupboards as bounds (d) Navigation with obstacles (e) Navigation constrained
by a staircase (f) Handling of circuit breakers.

application to robot vision solutions. Section 1.3 gives the preliminary definition and
data structure used for the proposed algorithm. In section 1.4, we describe the inlier
selection mechanism used for filtering the gross outliers. The details of utilization
of the selected inliers to form the final estimated planes, as well as the experimental
setting with our mobile robot in an indoor environment, are outlined in section 1.5.
Subsequent sections present experimental results and evaluation. Conclusions are
given at the end of the paper and the future work is shortly discussed as well.
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Fig. 1.2 The first row shows a typical scene in a domestic environment - object on a single
plane. The second row shows a more challenge scene where robot needs to deal with the
complex multiple planar structures. Note that the circular markers in the images on the left
show locations of back-projected down-sampled 3D points. On the right, the markers are
color coded to indicate the sequence in which they are added to the kernel model, while
points corresponding to objects or outliers to the model are encoded as white pentagrams.

1.2 Related Work

The first sub-section deals with a review of recent developments in multiple planes
estimation. The next sub-section discusses applications of planar structure estima-
tion in robotic vision systems.

1.2.1 Multi-modal Plane Estimation

The traditional RANSAC algorithm has been designed to handle only a single mode.
In other words, for the case of plane estimation, only a single planar can be effi-
ciently extracted using RANSAC from data points corrupted by noise. However,
there exist several extensions of RANSAC that are capable of tackling the prob-
lem of multi-modal plane estimation, such as [15][22], but these algorithms require
the number of models to be specified by the user beforehand and therefore are less
robust in real environments. These RANSAC based algorithms, which focus on hy-
pothesis evaluation, generate hypothetical models, then the selection of the best
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Fig. 1.3 2D line fitting of 4 lines using the proposed method. Left images show inlier selection
process and result. Right images demonstrate the JSD between two continuous data points as
well as the accumulative mean values of the JSD.

hypothesis is solved as a verification process which calculates every hypothesis’s
residual distribution (the normalized histogram that is generated with the distances
from all the data points to this hypothesis).

A change of perspective to multi-modal estimation has been presented in [20],
where they researched on the residual distribution for each point instead of studying
the residual distribution per hypothesis since the modes (e.g. numbers of the peaks)
in the former distribution reflect the numbers of the models - or the modality. This
method concentrates on the inlier selection, i.e. clustering/labeling the data points
to obtain the inlier sets of models directly instead of evaluating hypotheses, and
iteratively discovers the number of models through analysis of data w.r.t the each
chosen model. Since the direct analysis of data points is not plausible in practice (a
large number of hypotheses are required for valid modeling), the relationship among
data elements are investigated for identifying inliers indirectly.

Recently, more generic conceptual representations of relationship among data,
have been proposed for solving the multi-modal estimation task by fusing the studies
in both hypothesis evaluation and data selection [19][16][2][17][18][8]. The prefer-
ence matrix [16], Mercer kernel matrix [2][19] and energy functions [8] have been
utilized to provide global representations of relationship between data points. How-
ever, all of these methods either need a user to specify the inlier scale [16][8], or
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introduce new user-dependent parameters (step h in computing the ordered residual
kernel [2], weighting factors α,β in the objective function to be optimized [19]).
Similar parameters are found in other approaches [17][18]. These parameters are
required in order to estimate the multiple models using the relationship between
data points, by means of a series of procedures. The scale estimation substep used
in the algorithm focuses on scoring the hypotheses to select good hypotheses fol-
lowed by the model fitting substep which identifies inliers using the estimated inlier
scale. The sequential processing results in inter-dependence in computation and re-
sults, leading to reduced robustness and flexibility of the algorithms.

1.2.2 Multi-modal Planar Modeling for Robotics

Domestic robots are, in general, expected to perform a variety of perception, grasp-
ing and manipulation tasks. In general, the design of the robot vision system varies
with respect to the various tasks that the robot needs to perform. Recently, re-
searchers have introduced 3D cues into the robot vision system as a fundamental
information channel since low-cost RGB-D cameras, which provide real time 3D
reconstruction, have been commonplace. The mechanisms for analysis of 3D spa-
tial structures have also been updated from that used for traditional static scenes
(e.g. detecting the dominant plane in the scene for enabling the robot to grasp the
objects which pop out from the planar surface [12]) to challenging dynamic scenes
(e.g. searching multiple objects on various supporting surfaces [14][1] or to learn the
properties of the objects with respect to the dominant plane [21]). However, these
robotic vision systems are all built upon the RANSAC family to detect the planar
structure, therefore only one dominant plane in the scene can be detected and only
the objects on this plane can be found by the robots. This limitation of RANSAC can
be eliminated by the sequential use of RANSAC (however, the number of times it
can be used is still an open issue) or other multi-modal robust regression algorithms
(which decide the number of the models as an internal parameter).

1.3 Relationship between Pairwise Data

This section describes the theory of our approach. The modeling of the relationship
between pairwise data points using JSD is then discussed.

Relationship between pairwise data points have been used recently in several al-
gorithms to cluster/label data points since, in practice, it is almost impossible to find
a representation function that can be used to evaluate the data points directly. In
[16], the Jaccard distance is used to represent the relations between pairwise data,
these pairwise relations are then utilized as linkage measurement for a connectivity
based clustering algorithm. Similarly, [2] uses the ordered residual kernel to measure
the similarities between pairwise data points. Their tailored kernel satisfies Mercer
condition, thus it can be considered as the inner product of two data points. The
kernel trick can be built upon it for use with statistic learning methods. However,
when these two methods construct the relationship between data points, either the
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Fig. 1.4 The generalized distance matrix generated for a sample synthetic linear plane fitting
with gaussian noise, before (left) and after (right) point sort

inlier noise scale [16] or the step size h for generating the difference of intersection
between residuals [2] is required and this is crucial to the performance of the algo-
rithm. On the contrary, the proposed JSD-based method does not require any user
input parameters.

1.3.1 Generalized Distance Matrix

Given the input data L = {xi}i=1,...,N and model hypotheses H = {θ j} j=1,...,M

which are generated by randomly sampling from L , we calculate the distance vec-
tor di of all the hypotheses to each data point xi in L , di = {di

1, . . . ,d
i
M}, where di

m
is the distance of point xi to hypothesis θm. Note in particular that we do not truncate
the distances therefore no inlier scale specification or estimation is required.

The distance matrix DN×M = {d1;d2; . . . ;dN} is a N-by-M data matrix, each row
is a distance vector d. For each row, we calculate the sum of the distances as,

si =
M

∑
j=1

di
j (1.1)

Then sorting the rows according to the si to generate the sorted distance ma-
trix D̃ = {dλ1

;dλ2
; . . . ;dλN

}, where the permutation {λ1,λ2, . . . ,λN} is obtained
such that sλ1

≤ sλ2
≤ . . . ≤ sλN

. Defining the sorted normalization vector S =
{1/sλ1

,1/sλ2
,

. . . ,1/sλN
} we can formulate the generalized distance matrix (GDM) G as

G = D̃ ·S = {g1; . . . ;gN}= {dλ1

sλ1

; . . . ;
dλN

sλN

} (1.2)
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1.3.2 Jensen-Shannon Divergence (JSD)

Jensen-Shannon divergence, which is based on Kullback-Leibler divergence (KLD)
[9], is widely used in probability theory and statistics for measuring the similarity
between two distributions. The superiority of JSD over KLD in handling the zero
values in distributions and elimination of constraints in the use of KLD arising from
its asymmetry has been demonstrated in [10].

Since the row vectors in the generalized distance matrix G have already been
normalized (sum to 1), the Jensen-Shannon divergence (JSD) between gi and g j can
be directly calculated by

Fig. 1.5 The original data points (top) and the illustration of distance vector examples
(bottom)
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JSD(i, j) =
1
2

KLD(gi||m)+
1
2

KLD(g j||m)

KLD(gi||m) =
M

∑
k=1

rk
i gk

i log
gk

i

mk

(1.3)

where m =
1
2
(gi+g j). We utilize a Gaussian-weighted KLD (GKLD with Gaussian

kernel rk) to reinforce the influence of JSD for data points close to the hypothesis,
and to weaken the effect caused by the parallel model. The JSD values between data
points in Fig. 1.5 are 3.86×10−7 (blue-red points), 6.99×10−6 (blue-green points)
and 1.17× 10−4 (blue-magenta points). The difference in JSD between the inlier-
inlier pairs (blue-red and blue-green pairs) and inlier-outlier pair (blue-magenta) are
significant enough to distinguish the outliers while inliers that are close to each other
produce relatively small JSD. C = {c1,c2, . . . ,cM} is a discrete kernel function for
weighting hypotheses. The weights can be computed using any hypothesis evalu-
ation methods such as [3] or simply adopt discrete Gaussian kernel to the sorted
hypotheses, i.e.

ci =
2

σ
√

2π
e
− i2

2σ2 (1.4)

where σ = M/4 makes the sum of C approximate to 1. The sorting of hypotheses is
performed at every step of data point selection and this is elaborated in section 1.4.

1.4 Modeling and Selection of Inliers

The JSD value measures the pairwise similarity between data points in the general-
ized distance matrix, and it encodes the following information about the relationship
between these pairwise data points, 1) Data points that are in the same geometric
neighborhood will generate small JSD. 2) Two data points belonging to the same
’true’ model will produce relatively smaller JSD than that between one inlier and
one outlier. 3) Significantly large JSD will be generated by an outlier-outlier pair.

Considering these three effects of the proposed JSD-based measurement method,
we design an inlier discovery algorithm which attempts to identify the inliers. The
algorithm sorts the points such that every point pi is followed by the point which has
the minimum JSD minJSD(i) in the set {JSD(i, i+1),JSD(i, i+2), . . .,JSD(i,N)}.
Algorithm 1 illustrates the inlier discovery scheme.

If the initial point is the endpoint (inlier that exists at the border of the structure)
of the ’true’ model, the search scheme could generate the perfect order of the inliers
and outliers. However, this condition cannot be satisfied in practice since this prior
information may not available or in multi-model case, the endpoint of one model
may not necessarily be the start point of another one. Therefore, various alternat-
ing inlier and outlier clusters will be generated using this search scheme (In fig.
1.3 color varies from red (inliers) to yellow (inliers of another model) through or-
ange (outliers)). Since the JSD between outliers are significantly larger than the JSD
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between inliers, we can monitor the accumulative mean value of minJSD to detect
the outliers. The accumulative mean value of minJSD is defined as,

meanMin(i) =

i
∑
j=1

minJSD( j)

i
(1.5)

Within the selected inliers, any robust fitting method such as LMedS [13] can be
utilized to estimate the parameters of the structures since most of the gross outliers
are omitted from the dataset.

1.5 Experiments

The JSD-based inlier discovery algorithm is first tested using synthetic data for both
single model and multi-model (linear or non-linear) estimation, and then we demon-
strate the application of our method to estimate multiple planes in various scenarios
in which the robot needs to perform scene exploration tasks. All results for the syn-
thetic data processing were obtained on an Intel Quad Core 2.4 GHz CPU, 4 GB
RAM machine and the plane estimation tasks were performed on an Intel Mobile
Core i7 2720QM CPU, 8 GB RAM laptop connected to a Microsoft Kinect.

Fig. 1.6 depicts the inlier selection processes and results. All the test cases con-
tained 100 inliers per line/circle and 400 outliers (the outlier rates these cases are
80%, 83.3%, 88.9% and 85.7%, respectively). The distance of a data point to circle
model is defined as the distance between the data point and the point on the circle
closest to the data point along the radial direction. These distances have been nor-
malized from 0 to 1 and then been input into a generated distance matrix (GDM)
which is displayed in fig. 1.4.

Algorithm 1. Inlier discover scheme

1: input: GDM G = {g1; . . . ;gN}= {g1, . . . ,gM}
2: while Point index i < N do
3: ∀g j, j ∈ (i+1,N], calculate JSD(i, j).
4: find jmin make JSD(i, jmin)≤ ∀JSD(i, j).
5: store JSD(i, jmin) into minJSD(i)
6: swap gi+1 and g jmin .
7: sort G as {gμ1 ,gμ2 , . . . ,gμM } that satisfies gμ1

i+1 ≤ gμ2
i+1 ≤, . . . ,≤ gμM

i+1
8: i = i+1
9: end while

10: for l = 2, . . . ,N do
11: calculate meanMin(l) using eq. 1.5
12: if meanMin(l −1) ≥ meanMin(l) then
13: label point l as inlier
14: end if
15: end for
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Fig. 1.6 Linear and non-linear fitting results - lines and circles. Results in each row demon-
strate fitting for piecewise linear shapes and circles, namely, an inclined line, inverted V
(roof), a pentacle and multiple circles. Color ranges from red to blue, passes through orange,
yellow, green and cyan, illustrates the order of data point selection. Each test data set contains
100 inliers per line/circle and 400 gross outliers.
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Fig. 1.7 Precision and recall of the test case in fig. 1.3, i.e. 4 lines with 100 inliers per line.
200 gross outliers are added for the test case shown in the image on the left, inliers are
corrupted with Gaussian noise with standard deviation σ = 0.01 for the image on the right).
Comparation with the J-linkage method [16] is also shown in the figure. Note that we use the
default set of J-linkage method, i.e. 25 inliers for clustering a model, inlier noise scale is 0.01.

Fig. 1.8 Algorithm is applied for a mobile robot in two scenes, i.e. a typical office table (top)
and a water tank in the kitchen (bottom)



14 K. Zhou et al.

(a) Multi-layer shelf scenario

(b) Circuit breaker panel on the wall

(c) Fire extinguisher at the corner

(d) Staircase scenario

Fig. 1.9 A mobile robot performing multiple planes fitting and object detection tasks when
faced with four typical indoor scenarios. Demonstration of detection of (from top to bottom)
(a) multi-level shelf (b) circuit breaker panel on the wall (c) fire extinguisher on the floor and
(d) staircase
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Figure 1.7 illustrates the precision and recall curves generated using various inlier
and outlier rates. The chart on the left in fig. 1.7 shows that the proposed method
can provide an inlier selection accuracy which is similar or better than the J-linkage
method when the outlier rate is not too high - for instance, at an outlier rate of 83.3%
as shown in the chart on the left, while in most practical scenarios, the outlier rate
is much smaller than this value. The advantage of the proposed method is that it
doesn’t requires any information about inlier noise scale which usually varies with
the observation distances. Although the recall of the proposed method is worse than
J-linkage method, i.e. too many inliers belonging to the model have been removed,
the model still can be recovered with the inliers left (see pentacle and circles fitting
result in Fig. 1.6).

Fig. 1.8 illustrates an indoor mobile robot detecting various planar surfaces in
two typical scenes using the proposed algorithm. The back-projected points on the
images demonstrate the process of the point selection with color labels. From the
figure, we can observe that the multiple planar surfaces in the scenes are success-
fully distinguished, even the table surface and keyboard surface, which have very
small distance between each other are identified independently. For the sake of com-
putational efficiency, 3D point clouds in all the tests in fig 1.9 and 1.8 have been
down-sampled to 1000 points.

Fig. 1.9 displays the plane estimation results on RGB-D point cloud data. All
point clouds were down-sampled to 1000 points and the orders of the planes being
searched are demonstrated using color labels. Animations that show the line/plane
estimation processes using the proposed method can be seen at our website1.

1.6 Conclusion

We have presented a new method for multiple planar structure estimation, which is
one of the fundamental components in all robot vision system. We use the Jensen-
Shannon Divergence (JSD) to represent the pairwise relations between data points
and order the data points according to the calculated JSD, followed by an inlier dis-
covery scheme that monitors the change of the JSD value for filtering the outliers.
Our experimental results on a large number of synthetic data clearly demonstrate
how the proposed algorithm works and its performance. Also, several planar struc-
ture estimation scenarios using an indoor mobile robot mounted with RGB-D cam-
era validate that the proposed approach could provide superior performance in real
robotic tasks.

Acknowledgements. The research leading to these results has received funding from the
European Community’s Seventh Framework Programme [FP7/2007-2013] under grant agree-
ment No.215181, CogX, No. 600623, STRANDS, No. 610532, SQUIRREL, and by the Aus-
trian Science Foundation under grant agreement TRP 139-N23 InSitu.
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Chapter 2
RMSD: A 3D Real-Time Mid-level Scene
Description System

Kristiyan Georgiev and Rolf Lakaemper

Abstract. This paper introduces a system for real-time, visual 3D scene descrip-
tion. A scene is described by planar patches and conical objects (cylinders, cones
and spheres). The system makes use of sensor’s natural point order, dimensionality
reduction and fast incremental model update (in O(1)) to first build 2D geometric
features. These features approximate the original data and form candidate sets of
possible 3D object models. The candidate sets are used by a region growing algo-
rithm to extract all targeted 3D objects. This two step (raw data to 2D features to
3D objects) approach is able to process 30 frames per second on Kinect depth data,
which allows for real-time tracking and feature based robot mapping based on 3D
range data.

2.1 Introduction

In recent years, most range-sensing based algorithms in robotics, e.g. SLAM and
object recognition, were based on a low-level representation, using raw data points.
The drawbacks of such a representation (high amount of data, low geometric infor-
mation) limits the scalability when processing of 3D data is required. The goal of
our work is to produce a fast visual scene-description system that uses 3D range data
and works in real time. A major difficulty in producing such a system comes from
the massive amount of data (ex. MS Kinect has 307200 points at 30 fps). We solve
this problem with a two step approach: first, the raw point set is approximated by 2D
geometric primitives, which are then combined to form the final 3D primitives, see
Figure 2.1. This approach has the advantage that the raw points are only processed
once (in an O(N) procedure to detect 2D features), then, the final detection of 3D
objects is performed on a significantly smaller set of 2D objects. Due to the large
amount of points, computing the 2D primitives has to be fast. We are using an O(1)
model update (independent of number of points already part of the model).

Kristiyan Georgiev · Rolf Lakaemper
Temple University, CIS Department, 1800 N Broad St, Philadelphia, USA
e-mail: {georgiev,lakamper}@temple.edu

c© Springer-Verlag Berlin Heidelberg 2014 19
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Fig. 2.1 RMSD system flow diagram. 1) Input; 2) Mid-Level features generated from 1); 3)
Scene description using features from 2).

Another key feature of our approach is the use of the points’ natural order, as
defined by the sensor, to traverse and perform model updates resulting in a total
complexity of O(N) for N points. Previous approaches in the attempt to perform
scene description need to introduce a nearest neighborhood structure, such as k-d
trees, which requires a higher time complexity for N points. Specifically, these al-
gorithms do not make any use of the data initial order of points as they come from
3D sensors, but assume general, unordered point clouds to generate their neighbor-
hood structure. In contrast to such approaches, we take advantage of the data order,
to gain information about geometric properties of the data points.

This order depends on the sensor, which seems to be a strong condition. However,
most current 3D sensors do offer a certain, similar order of data. Examples of such
sensors are 3D Lasers, stereo cameras and Microsoft Kinect.

In general 3D laser scan is gained by a ’sweep’ (a move of a 2D laser scanner)
of single, plane 2D scans. [9] explains different ways to obtain 3D laser scans with
similar arrangements. Independent of the actual physical data arrangement, it is al-
ways possible to generate a data representation consisting of an ordered sequence
(’vertical order’) of 2D sub-scans, which themselves consist of an ordered sequence
(’horizontal order’) of data points. With this assumption our system implements the
straightforward approach of substituting data points in 2D sub-scans with 2D ge-
ometric features. Using the index-order of raw data as given by the sensor gives a
significant speed improvement and defines a neighborhood structure.
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In general index structures are only given for single 3D scans; the structure is lost
when multiple scans are combined to a global scan (via alignment/registration). That
can be remedied by re-creating the order of points via re-scanning using a virtual
sensor.

Fig. 2.2 Results of the algorithm. Top: 3D point cloud from MS Kinect (307200 points);
Middle: extracted ellipses(purple) and line segments (blue); Bottom: at fitted conic objects
and planar patches together with the 3D point cloud. The cylinder in the picture is a cylindrical
trash can with radius=0.2m and height=0.7m.

2D features are extracted by traversing each data point once and adding it to a
model in constant time O(1) until the accumulated model error reaches a threshold.
Therefore at the end of a 3D scan traversal, all 2D features are found in O(N) time
complexity, see section 3.3 for more details. This is equivalent to finding necessary
conditions for describing a higher dimension geometric models. For example, planes
can be represented as a set of co-planar line segments, instead of a set of coplanar
points. Same rule also applies to a lower dimension; lines can be represented as co-
linear points. Using these rules we define a three step approach to fitting a object
model to data points; points to candidate segments (lines or ellipses); candidate
segments to sets of segments that form valid objects; sets of segments to objects
(planar patches and conic objects), see Figure 2.3.
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Fig. 2.3 Results of the algorithm. Top: RGB image; Bottom: described scene with fitted conic
objects and planar patches together with the 3D point cloud.

Depending on the type of object the rules will be different as described in ([3, 4]).
The main advantages of such representation are:

• High data compression rate, which in the case of representing a ball, for example,
as a sphere means storing center point and radius. This is in contrast to represent-
ing a sphere by thousands of 3D data points.

• Higher geometric information level, when storing data using mid level geomet-
ric elements simplifies further processing steps. For example, finding boxes or
corners in a map is significantly more simple if the map data consists of planar
patches, not of 3D data points, since basic geometric information (e.g. normal-
directions) is already given.

Transformation of raw data to a higher representation can be seen as an estimate
of hypothetical properties of the scanned environment and it is a pre-processing step
which augments the information of the data, yet assuming certain conditions of the
environment. Note that the mid level representation is an approximation of the orig-
inal data set, it comes with loss of precision. The precision of the original data set
often represents noise. In case the assumptions of properties (e.g., co-planarity) are
justified, precise point-wise representation can lead to over-fitting of the hypotheti-
cal structures.

Our system lays out a framework that utilizes natural order of data points to
form mid-level geometric features that are used to describe 3D geometric objects
(planes and conical objects) in real time. Such type of scene description can be used
as a real-time pre-processing module for 3D feature based tasks in robotics. This
includes scene analysis, SLAM, etc. based on 3D data. The framework, which sug-
gests the two step approach, is currently implemented for planes and conic objects,
see Figure 2.1 .

Real-time processing is achieved by using incremental model fitting approach
with an O(1) model update and dimensionality reduction from 2.5D to 1.5D (a 1D
height-field, i.e. a single scan row of a range scan). In total, this algorithm achieves
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O(N)+O(M) complexity, with N number of data points and M 2D geometric prim-
itives (N >> M), resulting in a total complexity of O(N). Note that the extraction
of 2D primitives can be parallelized. The implemented JAVA version of this system
can process 30 frames per second on 320x240 Kinect data on a 2.8GHz desktop
computer.

The paper is organized as follows: after comparison to related work (section 2.2),
we give an overview of the approach (section 3.3). We prove the applicability to
lighter level robotic tasks and highlight some properties of the algorithms in the
experiment section (section 4.4) and conclude in (section 2.6).

2.2 Related Work

Object detection and tracking has been long performed in robot-vision, yet most
approaches process 2D RGB images. We will not compare to these approaches, but
limit the related work to detection based on range data. The problem of sphere de-
tection has been solved in a variety of different ways. To the best of our knowledge,
all previous approaches work on point clouds directly. However none of these ap-
proaches make use of a two step solution (points to ellipses, ellipses to spheres).
The advantage of the two step solution is, that the higher scale of data, that comes
e.g. with 3D data, is immediately reduced: the data is decomposed into sets of lower
dimensional spaces, a pre-analysis is performed in this lower dimensionality. The
transition to higher dimensions is then performed on mid-level representation, sig-
nificantly reducing the data elements to be analyzed.

An approach that works directly on 3D point data is described in [12] and uses
surface normal vectors and forms clusters of points with similar direction. But its
clustering decomposition stays in the 3D space of the original data, which is a major
difference to our approach.

In general, data modeling with pre-defined structures can also be solved by the
Expectation Maximization (EM) approach. The system in [7] uses a split-and-merge
extended version of EM to segment planar structures (not conic elements) from
scans. It works on arbitrary point clouds, but it is not feasible for real time op-
eration. This is due to the iterative nature of EM, including a costly plane-point
correspondence check in its core. An extension to conic elements would increase
the complexity even further.

Random Sample Consensus (RANSAC) can achieve near-optimal results in many
applications, including linear fitting (which is the standard RANSAC example).
However, RANSAC fails to model detailed local structures if applied to the entire
data set, since, with small local data structures, nearly the entire point set appears as
outliers to RANSAC. In the approach of [14] RANSAC is used on regions created
by a divide and conquer algorithm. The environment is split into cubes (a volume-
gridding approach). If precise enough, data inside each volume is approximated
by planes, and coplanar small neighboring planes are merged. This approach has
similarities to ours, in the sense that it first builds small elements to create larger
regions. However, their split stays in the third dimension, while our split reduces the



24 K. Georgiev and R. Lakaemper

dimensionality from 3D to 1.5D, which makes the small-element generation, i.e.
ellipse, a faster operation.

Ellipse extraction is a crucial step in our solution. There are many different meth-
ods for detection and fitting ellipses. [5] has done an extensive overview of different
methods for detection and fitting ellipses. Theses methods range from Hough trans-
form [17, 16], RANSAC [15], Kalman filtering [11], fuzzy clustering [2], to least
squares approach [6]. In principle they can be divided into two main groups: vot-
ing/clustering and optimization methods. The methods belonging to the first group
(Hough transform, RANSAC, and fuzzy clustering) are robust against outliers yet
they are relatively slow, require large memory and their accuracy is low. The second
group of fitting methods are based on optimization of an objective function which
characterizes a goodness of a particular ellipse with respect to the given set of data
points. The main advantages of these methods are their speed and accuracy. On the
other hand the methods can fit only one primitive at a time (i.e. the data should
be pre-segmented before the fitting). Also the sensitivity to outliers is higher than
in the clustering methods. An analysis of the optimization approaches was done in
[1]. There were many attempts to make the fitting process computationally effective
and accurate. Fitzgibbon et al. proposed a direct least squares based ellipse-specific
method in [1].

Our approach to ellipse extraction belongs to the second group as a type of op-
timization, yet with the advantage of finding multiple objects at one time. It was
motivated by the work of [3, 10, 4]. In there, a region growing algorithm is pro-
posed on point clouds, testing an optimal fit of updated planes to the current region.
This paper extends and unifies the work of [3, 4] for planes, spheres, cylinders and
cones.

2.3 Method Overview

Mid-level elements are lower dimensional objects(here: 2D objects, eg. lines, el-
lipses) serving the purpose of intermediate step between raw data and targeted 3D
objects. The guiding principal of our work is to look for mid-level geometric ele-
ments (MLEs) in lower dimensional subspaces and then to extend the data analysis
to the missing dimensions using these MLEs. The advantage is, that the number of
MLEs is significantly smaller than the number of data points. In addition modeling
of mid level elements in lower dimensions is in general an easier and computation-
ally less intensive task. Planar patches are found by performing a region growing
algorithm on all candidate sets of line segments. Each of the candidate sets consist
of co-planar segments, which are part of the neighborhood structure. Similarly in
the case of conical objects, all sets of ellipses that can form conical objects are tra-
versed as 1.5-dimensional subsets (horizontal scan lines with distance data) of 3D
data. For example, the intersection of conical objects with the scanning plane con-
sists of ellipses. Therefore for each scan line, we traverse its data points iteratively,
and try to fit ellipses. This way we can determine maximal connected subsets of
each scan line, such that it fits ellipses within a certain radius interval, and under an
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Fig. 2.4 Flow diagram showing: 1) Input data, 2) Result of ellipse fitting, 3) After removal
of elongated ellipses, 4) Ellipse candidate sets based on proximity. The blue line shows con-
nected components. 5) Resulting sets of ellipses forming different conical objects 6) Fitted
3D models.

error threshold Tε . Similarly, in an iterative line segment model update, all lines seg-
ments are found. Traversing each scan line therefore leaves us with a set of ellipses
L = {Ls

i} and a set of line segments E = {Es
i }, see figure 2.4.

After ellipse detection, it holds for cylinders and cones, that the center points of
participating ellipses’ center points are collinear, and concyclic for spheres. Cones,
spheres and cylinders are characterized by the change of radius along the vertical
axis. Hence we can determine, if a connected component of ellipses constitutes one
of the models. It is therefore sufficient, to scan the connected components for be-
ing collinear or concyclic in order to find model candidates. Please note, that this
approach reduces the effort to a simple line or ellipse fitting, this time even in the
significantly smaller space of center points. Such lines and ellipses from center point
space are again found with an iterative O(1) update approach.

In conclusion, we find simple geometric models, ellipses and lines, in a subspace
of reduced dimensionality (1.5D), then perform low dimensional fitting again in
a 1.5D space determined by the model. This split leads to an addition instead of
multiplication of run times, which makes the approach fast. Please see Figure 2.4
for an illustration of the approach.

2.3.1 Line Segment Extraction

We apply an incremental line extraction which works in O(N), similar to [13], and
[8], yet implemented optimally using a line-update technique, see Algorithm 1.
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Algorithm 2. getMidLevelPrimitive(Points, THRESHOLD)
while (nextPoint = Points.next()) �= NULL do

addPoint(nextPoint)
f itModel()
calculateError()
if error > T HRESHOLD then

removeLastPoint()
saveCurrentModel()
startNewModel()

end if
end while

Please note that the line extraction processes point-sets from single 2D scans only
(usually less than 1000 points), hence even algorithms with asymptotic complexity
greater than O(N) would be feasible for real-time applications.

2.3.2 Ellipse Extraction

A well known non-iterative approach for fitting ellipses on segmented data (all
points belong to one ellipse) is Fitzgibbon’s approach described in [1]. And a nu-
merically more stable version [5] which is also an optimization approach. However,
both algorithms only fit a single ellipse on a given set of pre-segmented points. For
this system we used a solution based on [4] that can find multiple ellipses in non
segmented data in O(N). This is done by performing an ellipse model update in
O(1) and making use of the natural point order defined by the range sensor, see
Algorithm 1.

2.3.3 System Limitations

Being based on finding ellipses from the conical intersection of a scanning plane
with cylinders, cones and spheres it is limited with respect to tilting angles that lead
to non-elliptical intersection patterns. In practice, our system performs robustly on
tilting angles of greater than 45◦, see Figure 2.5, yet is naturally limited when the
angle becomes significantly larger. One remedy of this problem (for tilts resulting
from rotation around the z axis), is to also use ellipses found by intersection of
vertical instead of horizontal scanning planes(i.e a 90◦rotated sight of the scene),
which turns tilts of greater than 45◦into tilts of less than 45◦. An example of tilted
objects is illustrated in Figures 2.6 and 2.5.

2.4 3D Object Extraction

The plane extraction used in this system implements a region growing algorithm
described in [3], which works in real-time with O(N) time complexity.
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Fig. 2.5 Results of the algorithm. Top left: 3D point cloud from MS Kinect (307200 points);
Top right: extracted ellipses after the pre-filter; Bottom: fitted conic objects and 3D point
cloud. The cylinder in the picture is a cylindrical trash can.

Conical objects are formed by ellipses which centers are co-linear(cylinder and
cone) or lie on a circle (in the case of sphere). All candidate sets of ellipses are
ordered by the order of their corresponding 2D sub-scan, which imposes a neigh-
borhood structure. For more details on the algorithm please refer to [4].

Due to this order, we can extract collinear center-points using an O(|E |) line fit-
ting algorithm, which in its core again has an O(1) update. For details on incremen-
tal O(n) line detection, please see [3]. Please note that |E | is significantly smaller
than n, in practice it is connected to the number of scan-lines

√
n. Similarly, ellipse

Fig. 2.6 A tilted (rotation around x-axis, tilted towards camera) parking cone, and ellipses
detected (red). Top Left: tilt=5 degrees, Top Right: tilt=20 degrees, Bottom: tilt=40 degrees.
In all cases, the algorithm is able to fit a cone model (not explicitly shown in figure).



28 K. Georgiev and R. Lakaemper

models fitting the center points are extracted, using the method described in Section
2.3.2.

The detection of objects and collinear sequences is performed in parallel, again
using incremental line (and ellipse) fitting procedures, yet in different spaces: while
the center-collinearity is detected by a line fitting algorithm in the (x,y,z) space, the
detection of 3D objects is performed by a line fitting (for cylinders and cones) and
ellipse fitting (for spheres) in the (z,r) space. The incremental order in z reduces
the collinearity finding to a 1.5D problem. Please note that the same concept of
incremental line/ellipse fitting is utilized to solve tasks not only in different phases
of the algorithm (first, ellipse finding in scan rows, then line/ellipse finding on ellipse
center points), but also in different spaces, the decomposed 1.5D data space, and the
(z,r) space. Using the O(1) update principle in all cases is the main reason for the
fast performance of the algorithm. In addition, the nature of the fitting procedures
automatically separates objects in composed scenes, see e.g. Figure 2.7, cylinder
and sphere.

Fig. 2.7 Results of the algorithm showing fitted 3D geometric models. The sphere placed on
top of a cylinder is successfully recognized as a separate object.

2.5 Experiments

2.5.1 3D Kinect Experiments

We used 3D range data from a Microsoft Kinect sensor to test how accurate the
algorithm recognizes 3D Objects, using the methods described in Section 2.4. The
scene consist of a trash can (cylinder), parking cone and exercise ball (sphere) on the
floor next to each other, see Figure 2.5. The algorithm successfully finds the correct
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conical objects in the scene in real-time with a rate of 30fps for 320× 240 Kinect
depth data, implementation in JAVA on Dell 2.8GHz desktop with 8GB Ram.

2.5.2 Object Tracking

In this set of experiments we tested how fast the algorithm can track a moving object.
A ball was chosen as the object of interest and two separate tests were performed.
First test used a large exercise ball (radius = 27cm) thrown in a straight line, and
after a several bounces continues to roll. The second test used a much smaller ball
(radius = 10cm) that bounces in forward direction, see Figure 2.8.

Fig. 2.8 Results of tracking a ball. The blue line connects center points of all spheres found
while the ball was bouncing.

2.5.3 Mobile Robot Experiment

For the last experiment we mounted a Microsoft Kinect sensor on a Pioneer mobile
robot to test how accurate the robot can recognize and navigate towards conical
objects (Cylinder, Cone and Sphere). All computations were done on a notebook
(2.3GHz, 2GB Ram) on the robot. The setup for the experiment is as follows: the
robot has to track a ball and navigate towards it until the sphere is a meter away. In
the first test the ball was held by a walking human. During the second test the ball
was thrown over the robot bouncing in the desired direction. In both tests the robot
detected and navigated towards the ball while moving, see Figure 2.9.
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Fig. 2.9 Our robot tracking a ball in real-time only using only 3D range data from MS Kinect
(307200 points)

2.6 Conclusion and Future Work

We presented RMSD, a real-time mid-level scene description system that can
describe a 3D scene using planar patches and conical objects using a three step
approach (points to mid0level primitives (ellipses, line segments) to objects). It pro-
vides fast O(n), n number of points and robust in extracting all planar patches and
conic objects. The algorithm is well behaved towards noise and can aid higher level
tasks, for example, autonomous robot navigation by providing more robust land-
mark features. This system can be extended to include other geometric based mod-
els, based on the specific task.

Acknowledgements. The project is sponsored by the grant ARRA-NIST-10D012 of the Na-
tional Institute of Standards and Technology (NIST).
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Chapter 3
Semantic and Spatial Content Fusion
for Scene Recognition

Elahe Farahzadeh, Tat-Jen Cham, and Wanqing Li

Abstract. In the field of scene recognition, it is usually insufficient to use only one
visual feature regardless of how discriminative the feature is. Therefore, the spatial
location and semantic relationships of local features need to be captured together
with the scene contextual information. In this paper we proposed a novel framework
to project image contextual feature space with semantic space of local features into
a map function. This embedding is performed based on a subset of training images
denoted as an exemplar-set. This exemplar-set is composed of images that describe
better the scene category’s attributes than the other images. The proposed framework
learns a weighted combination of local semantic topics as well as global and spatial
information, where the weights represent the features’ contributions in each scene
category. An empirical study was performed on two of the most challenging scene
datasets 15-Scene categories and 67-Indoor Scenes and the promising results of
89.47 and 45.0 were achieved respectively.

3.1 Introduction

The aim of scene classification is typically to assign scene labels (such as library,
kitchen, highway) to images. It is a difficult task due to the variation of scene
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structures, scales and illumination. Although many proposed scene recognition
frameworks attempt to learn an optimal classifier based on low-level visual features,
these features alone are often not able to offer sufficient discriminative power.

For example, while local features may be very useful in classifying scene images,
the classification accuracy can drop dramatically when key objects are not suffi-
ciently large, or if the objects are occluded. Previous literature has demonstrated
that exploiting semantic relationships of local features [7, 5] and their spatial loca-
tions [10, 3] can lead to promising results, but inadvertently affect the classification
of indoor scene where the interclass variation is very high. In order to address this is-
sue, global or contextual information in the images must be used since it can capture
the inherent context.

There have been several attempts in integrating contextual information with lo-
cal features [19, 25, 8]. Quattoni and Torralba [19] combined image Regions-of-
Interest(ROIs) and global GIST features together in a prototype-based framework,
where the ROIs were extracted through segmentation or manual annotation. A well-
known method for feature fusion is Multiple Kernel Learning (MKL) [9]. This
method was also implemented for scene recognition in [25, 8] using a number of
visual features, such as multiple local features and global contextual features. The
method involves having a separate kernel associated with each feature, after which
a linear combination of these kernels is learned for SVM classification. Although
MKL is an effective method for feature combination, computational cost is often
very high. This is especially the case when the kernels are complex since the param-
eters for every kernel have to be tuned.

In this paper we propose a novel distance learning method which combine se-
mantic relationships and the location information of local features with contextual
global features. Opposed to Xiao et al. [25] where many different features are re-
quired to obtain higher accuracies in scene recognition, our proposed method uses
fewer features and more effective fusion model to achieve robust scene recognition.
Since feature extraction is one of the most time consuming steps in scene recog-
nition, our method has advantage in this this perspective. Specifically, image local
information is represented by a histogram of local semantic topics, after embedding
the visual bag-of-words [4] histograms into a Probabilistic Latent Semantic Space
(pLSA) [7]. In contrast to kernel combination methods that perform feature fusion
globally, our method carries this out locally by weighting each of the local semantic
patches individually. It differs from the previous pLSA-based methods [20, 2, 5]
where all the semantic topics had the same discriminative power. In our framework,
semantic topics that have higher relevance in identifying a particular category are
more heavily weighted. Besides the novelty of the proposed distance function, an-
other contribution of this work is the category-dependent map function, which is
learned based on a special subset of training images, called an exemplar-set, that
embeds the proposed distance function. In this map function, the dissimilarity of
each exemplar image and the training image is weighted to determine its relevance
to the scene category.

The rest of the paper is organized as follows. Section 6.2 provides a review of re-
lated work on scene recognition. The overview of our proposed model for integrating
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the visual features is described in Section 3.3. The image visual representations and
models which we incorporate into our framework are detailed in Section 3.4. Sec-
tion 3.5 explains the Spatial-Semantic Feature Fusion framework. The experimental
evaluation and discussion are presented in Section 3.6. The final section concludes
the paper.

3.2 Related Work

In this section, we review some recently proposed methods in scene recognition. The
bag-of-words framework has been shown to be useful in scene categorization [4].
In this approach, the images are quantized based on a visual vocabulary. The main
drawbacks of this method are that (i) the semantic relations between features are not
considered, and (ii) this method does not include spatial information. Some other
approaches [20, 2, 5] consider each image as a mixture of semantic hidden variables
using either pLSA or the Latent Dirichlet Allocation (LDA) [1] model, or build a
semantic vocabulary by co-clustering the visual words [12, 13, 21].

There are also methods that capture the spatial information of features, the most
effective method so far being the Spatial Pyramid Matching(SPM) by Lazebnik et
al. [10]. This method divides the image into regions with several resolution lev-
els and the histogram of visual words is computed over the resulted subregions.
Frameworks have been developed to incorporate SPM and better classification accu-
racy was reported [3, 24]. Bosch et al. [3] add position information into their pLSA
framework using three different approaches, xy-pLSA, ABS-pLSA and SP-pLSA. In
xy-pLSA position information is concatenated to feature vector. ABS-pLSA quan-
tize location information into one of the embedded bins for feature positions and SP-
pLSA convey location information by incorporation SPM. Highest results achieved
in [3] for SP-pLSA. To capture the image contextual layout, the global GIST fea-
ture [15] was proposed. However, this method does not perform well for indoor
scene classification. Wu and Rehg [24] proposed a new descriptor called CENsus
TRansform hISTograms(CENTRIST) for scene recognition to capture image struc-
ture. CENTRIST can be applied on the whole image and used as a global feature.
There is also a spatial representation of CENTRIST called sPACT descriptor which
is constructed by employing the CENTRIST to image blocks and constructing the
spatial pyramids over them.

There are approaches that try to deal with scene recognition challenges by im-
posing high level concepts [11, 19, 17]. In [19] the images are first segmented,
after which the ROIs and global information are combined together in a prototype-
based model. Since every single parameter in their learning model is based on the
prototype images, an excessive number of parameters has to be optimized, which
increases computational complexity. In [11], the images are represented by a vo-
cabulary of objects called object-bank. Pandey and Lazebnik [17] suggested using
Deformable Part-based Models (DPM) with latent SVM [16]. By applying DPM
on scene images, salient objects and visual elements of scenes are captured. After-
wards, DPMs and global features are combined together to achieve more promising
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results. Despite their high computational complexity, these methods do not offer
much increase in recognition accuracy. Other works [8, 25] suggested feature fu-
sion by Multiple Kernel Learning [9], to improve the recognition accuracy in scene
classification. In these works, various visual features are combined together and a
separate kernel is associated for each feature.

Weighting latent semantic topics. In contrast to kernel combination methods that
perform feature fusion by combining histogram representations of image with-
out considering the importance of each histogram bin, our method carries this
out by weighting each of the semantic topics individually. It differs from the pre-
vious pLSA-based methods [20, 2, 5] where all the semantic topics had the same
discriminative power. In our framework, semantic topics are weighted based on
their significance level in identifying a particular category.

Exemplar-based distance learning. A special subset of training images, called an
exemplar-set which include the most discriminative images in each category are
selected. We use weighted Exemplar-set as a basis to assign a scalar measure to
each image. The scalar value shows the level of confidence in belonging image
xi to category Ci.

Category-dependent map function. Besides the novelty of the proposed distance
function, another contribution of this chapter is the category-dependent map
function. In this map function the degree of membership for each Exemplar im-
age Ei to the categoryCi should be determined; to this end the proposed map
function embeds the learned distances.

3.3 Overview of the Proposed Framework

The objective of our scene recognition system is to learn a model which maps
images x to scene categories y. The scene model presented in this paper uses a
training set T = {(x1,y1),(x2,y2), . . . ,(xn,yn)} to learn the model parameters. The
training set T consists of n pairs of image xi and label yi, wherein each scene label
yi ∈ {−1,1} is a binary label indicating whether the image xi belongs to a scene
category or not. Based on a one-versus-all strategy, we compute a mapping function
h(x) for each scene category that quantitatively estimates the affinity of a test image
x to that scene category. The scene category that best describes image x can simply
be determined by the h(x) that returns the largest value.

According to the learning model’s block diagram in Figure 3.1 after extracting
the visual features, to perform the scene recognition modeling, we retain a subset
of training images called the exemplar-set: E =

{
E1,E2...Ep

}
. The exemplar im-

ages are chosen for each category in the dataset. The selection is done such that
for each category the most discriminative images are chosen. Exemplar-set selec-
tion is described in detail in Section 3.5.1. The exemplar-set is used as a basis to
measure the distances. After defining appropriate distance functions, the exemplars
again are used to embed the distances into their relevant map functions. Afterwards
the functions parameters are tuned by performing a parameter learning.
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Fig. 3.1 Block diagram for the proposed learning model

3.4 Feature Extraction and Representation

In this paper we use three kinds of low level features: SIFT [14], GIST [15] and
CENTRIST [24].

To capture semantic representation of SIFT and spatial representation of SIFT
and CENTRIST, initially the local feature topics have to be exploit. According to
literature [2], dense features are more discriminative than interest points for scene
recognition. Therefore by following the settings of [10, 24] images are divided into
16× 16 patches with 50% overlapping both horizontally and vertically. SIFT and
CENTRIST descriptors [14, 24] are extracted from each patch.

3.4.1 Capturing Semantic Information

The pLSA [7] is a statistical model which employs hidden variables together with
a bag-of-words representation of the image. Suppose we have the co-occurrence
matrix, n, of Nx by Mw where Nx is the number of images and Mw is the size of
visual vocabulary. n(wi,x j) indicates word wi appears n times in image x j.

The pLSA models each image as a mixture of topics. It assumes there is an
unobserved latent variable zk ∈ {z1, z2 . . . , zK} which is associated with each ob-
servation (wi,x j). The probability of co-occurrence wi in x j is represented by
P(wi,x j) = P(wi|x j)P(x j). In order to find the conditional probability P(wi|x j), the
joint probability is marginalized over latent topics zk :

P(wi|x j) =
K

∑
k=1

P(wi|zk)P(zk|x j) (3.1)

where P(zk|x j) is the probability of occurring topic zk in document x j and P(wi|zk)
is the probability of visual word wi occurrence in latent topic zk.

It should be noted that the number of semantic topics K can be much higher
than the number of scene categories, unlike in unsupervised frameworks [23]. In
our experiments, the number of semantic topics for the 15-Scene dataset is set to 70,
same as in [21].



38 E. Farahzadeh, T.-J. Cham, and W. Li

The pLSA model parameters are learned by maximum likelihood estimation us-
ing the Expectation Maximization(EM) algorithm. Thus the objective function to be
maximized is:

S =
Mw

∏
i=1

Nx

∏
j=1

P(wi|x j)
n(wi,x j) (3.2)

P(wi|x j) is obtained from (3.1). Consequently what we use in our model is the image
representation of P(zk|x j)k=1,2,...,K .

3.4.2 Capturing Contextual Information

In this paper we used two holistic features that are applied on the whole image to
extract the image contextual information.

GIST. The GIST descriptor is computed by applying 4 × 4 Gabor filters on 4
scales and in 6 different orientations on spatial blocks of image.

CENTRIST. In this visual descriptor, each pixel value is replaced by its Census
Transform(CT) [26] value. In Census Transform, the intensity value of center
pixel in compared to the values of Surrounded pixels in a 3× 3 neighborhood, if
the value of neighboring pixels is bigger that the center pixel, bit 0 is assigned to
the corresponding location otherwise the value is set to 1. Finally the CT value
is obtained by decoding the generated binary code to a base-10 number. Af-
terwards the CENsus TRansform hISTograms(CENTRIST) are computed from
these transformed CT values.

3.4.3 Capturing Spatial Location Information

Spatial pyramids are constructed over two features SIFT and CENTRIST. We
used the same number of visual words and level of resolution as the original
papers [10, 24].

SPM. The spatial pyramid of bag-of-words is build using the SIFT local features.
To construct this spatial pyramid histograms the extracted dense features are
quantized into 400 visual words in three levels of resolution (L=2 in SPM im-
plementation by Lazebnik et al. [10]). These histograms are computed on the
image grids of 1× 1, 2× 2 and 4× 4.

sPACT. This spatial representation is also based on the spatial pyramid matching
schema but the splitting of the image at each level is different. In level 2, the
image is divided into 4× 4 regions. To prevent artifacts of this non-overlapping
division, the division is shifted to form 9 more regions. There are a total of 31
blocks, comprising 25 from level 2, five from level 1 and one from level 0. A
CENTRIST descriptor is applied on each of these blocks, followed by PCA to
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reduce the dimensionality of the features to 40. The Spatial Principal compo-
nent Analysis of Census Transform Histogram (sPACT) is build by concatenating
these block representations.

3.5 Spatial Semantic Feature Fusion (SSFF)

To better describe the SSFF method, it is divided into three main blocks, Exemplar-
Set selection (Section 3.5.1), learning phase (Section 3.5.2) and scene type recogni-
tion phase (Section 3.5.3).

3.5.1 Exemplar-Set Selection

Similarity-based classification methods compute pairwise distances between the
images, in this paper we are proposing a new similarity space which indicates a
base-set for distance measurements. This base-set is called an exemplar-set and is
obtained by downsampling of the training set to choose the most robust images
of each category. Utilizing the exemplar-set to find distances will decrease time
and memory cost due to the reduced number of distance measurements. The pro-
posed SSFF method weights every exemplar based on its relevance to the scene
category, therefore, reducing the size of exemplar-set will decrease the complexity
because the number of parameters to be learned are decreased. Besides the reduc-
tion in computational complexity, use of the exemplar-set also results in improved
accuracy, especially in more complex datasets with high intra-class diversity (e.g.
67-Indoor Scenes). Since the corresponding set consists of the most representative
images from each category, hence, when sufficient number of exemplars are chosen,
it prevents from less-relevant images to affect our learning.

Figure 3.2 shows the diagram of exemplar-set selection. The goal is to select a
robust set of exemplars E =

{
E1,E2...Ep

}
from the scene dataset. This exemplar-

set is a composition of image subsets from each category. These subsets consist of
images that capture the specific characteristics of their classes more effectively than
the other images in the same category E =

{
E1,E2...Epc

}
.

To this end (see figure 3.2), for each category Ci an initially smaller subset of
training images is randomly chosen and fixed as a basis. The rest of the training
images in category Ci is then considered as candidates for the exemplar set. A clas-
sifier is trained for each of these exemplar candidates by adding this image to the
initial basis, and then we determine how well these classifiers perform on the re-
mainder of the training images that are not in the basis. The recognition accuracies
for all of the exemplar candidates within category Ci are measured and a selected
number of exemplar candidates that resulted in the highest accuracies become the
exemplar subset for class Ci. In this paper, each category employs a fixed number of
exemplars, denoted by pc.
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Fig. 3.2 Exemplar-set selection

3.5.2 Learning Phase for SSFF Method

In the learning phase (see figure 3.3), the holistic contextual features of GIST and
CENTRIST are extracted from the whole image, while the feature descriptors of
SIFT SF = {SF1,SF2...SFn} are applied on the local patches, semantic and spatial
representation are captured from the SIFT features. Although CENTRIST visual
feature is a contextual global feature, it could also be applied on the image patches
(denoted by CF = {CF1,CF2...CF31}) after spatial partitioning of the image to build
the CENTRIST-based spatial representation.

As mentioned the purpose of SSFF method is to project every image x within the
C class scene dataset, to C real numbers where each number shows the affinity of
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Fig. 3.3 Block diagram of learning phase in our Feature Fusion method

the image x to one of the categories. To perform this mapping we use an adoptive
category-dependent method, in this method for each Ci category the mapping is
consist of learning two separate map functions f (x) and fs(x), while the final h(x)
map function is summation of normalized f (x) and fs(x) functions, h(x) = f (x)+
fs(x).

The f (x) function is used to map image x based on its contextual and semantic
representations. To this end the exemplar-set is used as a basis for measurement,
therefore the weighted dissimilarity of image x to exemplar-set is computed using
their semantic and contextual features, while the weights indicates the relevance of
each exemplar images to Ci category. There are as well parameters which present
the amount of contribution for the features meet in this measurement(the importance
of GIST (λ ) and CENTRIST (μ) contextual features also the significance of each
latent topic in semantic representation explicitly (B1,B2...Bk)). Consequently these
weights and parameters are assigned during the parameter learning.

On the other hand fs(x) mapping relies on spatial description of image x. In the
parameter learning for this function importance of SIFT spatial structure (γ) and
CENTRIST spatial structure (ψ) are balanced. The exemplar images are as well
weighted during the learning.

The basic distance metric to measure dissimilarity for f (x) function, is eu-
clidean distance while fs(x) function utilize Histogram Intersection Kernel (HIK).
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The different essence of euclidean space and HIK kernel space justifies utilizing
two separate map functions, therefore the distances in f (x) are embedded into a
Gaussian radial basis function (RBF) kernel while HIK distances in fs(x) have to be
followed by a linear kernel.

3.5.2.1 Formulation of Distance Functions

Our distance function Di(x) measures the contextual-semantic dissimilarity between
image x and exemplar image Ei and is defined by

Di(x) = λ Gi(x)+ μCti(x)+Li(x) (3.3)

where Gi(x), Cti(x), Li(x) are component distances that are respectively related to
GIST, CENTRIST and local semantic features. They are positive and normalized
such that ∑i Gi(x) = 1, ∑iCti(x) = 1 and ∑i Li(x) = 1. This normalization balances
the distribution of image x over the whole exemplar-set. The parameters λ and μ
control how discriminative the contextual features are for a particular scene cate-
gory. Gi(x) is the distance function measuring the dissimilarity of GIST contextual
features between image x and exemplar image Ei using l2 norm:

Gi(x) = ‖gist(x)− gist(Ei))‖ . (3.4)

Cti(x) is associated with the distance between the CENTRIST representation of im-
age x and exemplar image Ei:

Cti(x) = ‖centrist(x)− centrist(Ei))‖ . (3.5)

Li(x) measures the dissimilarity of the semantic topics of image x and exemplar
image Ei using l2 norm::

Li(x) = β [P(z|x)−P(z|Ei)] (3.6)

where vector β = [b1 b2 . . . bK ]
T represents the relevance of all the K semantic top-

ics of image x for predicting that scene category. In (3.6), P(z|x) and P(z|Ei), are
vectored probability representations of x and Ei (corresponding to image x and ex-
emplar Ei) by latent topics z, referred to image representation in latent semantic
space which is defined in Section 3.4.1.

Thus (3.6) expands as

Li(x) =b1(P(z1|x)−P(z1|Ei))+ b2(P(z2|x)−P(z2|Ei))

+ . . .+ bK(P(zk|x)−P(zk|Ei)).
(3.7)

Contextual-semantic distances, given by D(x) = (D1(x),D2(x), . . . ,Dp(x)), are eval-
uated between the image x and all images in exemplar-set E .

The spatial distance function Dsi(x) is defined as follows:

Dsi(x) = γSi(x)+ψPi(x) (3.8)
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where γ and ψ are the weights on distances between image x and exemplar Ei with
respect to the spatial representations of SIFT-related SPM features and CENTRIST-
related sPACT features.

The function Si(x) is the distance between image x and exemplar Ei using their
SPM representations. The function Pi(x) on the other hand computes the distance
between the corresponding sPACT features. Si(x) and Pi(x) are positive and normal-
ized such that ∑i Si(x) = 1 and ∑i Pi(x) = 1. As in previous work, the similarity of
histograms at each level of resolution in the spatial pyramids representation, whether
using SIFT or CENTRIST, is based on histogram intersection. Therefore to obtain
the overall HIK distance between two spatial features, the weighted sum of these
histogram intersections are computed, as in Pyramid Match Kernel(PMK) [6].

Spatial distances, given by Ds(x) =
{

Ds1(x),Ds2(x), ...,Dsp(x)
}

, are evaluated
between the image x and all images in exemplar-set E .

3.5.2.2 Formulation of Map Functions

As mentioned before, each image is mapped to a real number which represent the
confidence score of belonging the image x to category y, using the h(x) map func-
tion. The defined distance functions in Section 3.5.2.1 are embedded into the map
functions, therefore in addition to the proposed feature weights, αi / αsi parameters
are learned for each exemplar Ei to measure that exemplar’s contribution for each
scene category.

The various distance functions computed in Section 3.5.2.1 are embedded in a
non-linear map function f (x), formulated as:

f (x) =
p

∑
i=1

αi exp(−Di(x)) (3.9)

In the proposed mapping, αi ∈ R, are parameters that indicate how discriminative
each of the exemplars are in that scene category.

The spatial distance vector Ds(x) on the other hand is embedded into a linear map
function fs(x):

fs(x) =
p

∑
i=1

αsiDsi(x) (3.10)

where αsi as before indicates the discriminativeness of each exemplar Ei.
The final map function for image x is:

h(x) = f (x)+ fs(x) (3.11)

where the f (x) and fs(x) functions are standard normalized such that they have
zero mean and unit norm. The assigned parameters λ ,μ ,β ,α,γ,ψ ,αs are estimated
during parameter learning as discussed in Section 3.5.2.
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3.5.2.3 Parameter Learning

According to definition of the map functions f (x) and fs(x). for semantic-contextual
function f (x) the distances are measured using euclidean distance and they are em-
bedded into a RBF kernel, for spatial function fs(x) on the other hand, we use a
HIK kernel (HIK distance followed by a linear kernel). Since these functions and
their parameters are independent, the parameters could be learned by defining two
separate objective function. The advantage of this learning is the time and memory
cost saving and its simple implementation.

The objective of our supervised learning is to determine the optimal values for the
parameters, so as to best capture the relationship between image features and scene
categories. We optimize the parameters λ ,μ ,β ,α by minimizing the error loss in
estimating the scene category using the contextual-semantic map function f (x). To
solve this optimization problem l2-regularized log-loss is employed. During this
optimization, non-negativity constraints are applied on λ , μ and βk parameters to
keep the definition of “distances” meaningful.

To measure the error loss, each training image within the training set T is mapped
into a real number through map function f (x) defined in (3.9).

We employ the logistic loss function φ(mt) for the error-rate measurement:

φ(mt) =
1

ln2
ln(1+ e−mt ) (3.12)

where
mt = yt fλ ,μ,β ,α(xt) (3.13)

in which yt ∈{−1,1}. Substituting the log-loss with other mainstream loss functions
such as hinge-loss and (0-1) loss does not make any significant difference.

The optimal parameter values are obtained by minimizing the standard regular-
ized classification objective, which is consist of the objective loss function with a
regularization term R to prevent overfitting:

(λ ,μ ,β ,α)∗ = arg min
(λ ,μ,β ,α)

T

∑
i=1

φ(mt )+R (3.14)

The regularization term R is defined like:

R =Cgλ 2 +Cmμ2 +Cb‖β‖2 +Ca‖α‖2 (3.15)

where Cg, Cm, Cb, Ca indicate the amount of regularization that limit the size of the
parameters.

Finally, by substituting the map function f (x), the objective function is:

φ(λ ,μ ,β ,α) =

R+
1

ln2

n

∑
i=1

ln(1+ e−yt ∑p
i=1 αi exp(−λ Gi(xt )−μCti(xt )−Li(xt ))) (3.16)
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In this equation, the distance functions Gi(x), Cti(x) and Li(x) are based on (3.4),
(3.5) and (3.6), while n and p are the sizes of training set and exemplar-set re-
spectively. To obtain the best parameter values subject to minimize our objective
function, an iterative gradient-based optimization is applied.

To learn optimal values for the γ,ψ ,αs parameters related to the spatial features,
a similar procedure is followed for map function fs(x). The objective function in
this case is:

φs(γ,ψ ,αs) =

Rs +
1

ln2

n

∑
i=1

ln(1+ e−yt ∑p
i=1 αsi(γSi(xt )+ψPi(xt ))) (3.17)

where the Rs regularization term is defined as follows:

Rs =Csγ2 +Cpψ2 (3.18)

3.5.3 Scene Type Recognition for SSFF Method

As shown in figure 3.4, given a test image, features are extracted to form the seman-
tic and spatial models. The values for D(x) and Ds(x) distance functions are then
computed and utilized in the map functions f (x) and fs(x) to get h(x). These are
computed with respect to every image in the overall exemplar-set.

As mentioned previously, there is a unique h(x) function for each scene category.
Each such function generates an affinity value for image x to the corresponding
scene category. The image is then categorized as the class with the highest h(x)
value.

3.6 Experimental Results

To demonstrate the efficiency of our feature fusion method, we have evaluated our
method on two of the most challenging scene datasets: the 15-Scene dataset and the
MIT 67-Indoor Scenes.

15-Scene dataset. This popular database consists of both indoor and outdoor
classes(see figure 3.5).

It contains 13 categories first reported in [5] and 2 more categories were added
to it by Lazebnik et al. [10]. Eight of the categories are common with the Oliva
and Torralba outdoor scene dataset [15] but in gray scale.

MIT 67-Indoor Scenes. This dataset is the most challenging scene dataset (see
Fig. 3.6) that contains 67 different indoor scene classes, this dataset is introduced
by Oliva and Torralba [19]. To conduct the experiments on this dataset we used
the exact same partitions as used in [19] which contain 80 images for training
and 20 images for testing, so that all results are directly comparable.
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Fig. 3.4 Block diagram of Scene Recognition for test input image

Fig. 3.5 Sample images from the 15-Scene dataset

In both datasets, all of the images are rescaled to 256× 256 and the codebook size
is fixed at 1500 during the experiments. For the 15-Scene dataset, the results were
averaged over five times random splitting of training and testing images. For 67-
Indoor Scenes, we used the determined split by [19].



3 Semantic and Spatial Content Fusion for Scene Recognition 47

Fig. 3.6 Sample images from the 67-Indoor Scenes dataset

3.6.1 Results on 15-Scene Dataset

The first experiment involves finding the optimal size of the exemplar-set. In this ex-
periment we increased the number of exemplar images, starting with 10 images per
category. This experiment is performed on validation-set of 10 randomly selected
images of each category. As seen in figure 3.7, the accuracy increases with the num-
ber of exemplars until we reach a certain point, after which the accuracy drops due
to over-fitting. The number of exemplars at that point is the optimal number. Con-
sidering the low variance of the accuracies, there is no reason for fine-tuning of the
number of exemplars, hence this number is increased by 10 per step. The optimum
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Fig. 3.7 Recognition accuracy vs. exemplar images per category in 15-Scene dataset

number of exemplars for the 15-scene dataset is 50 images per category. Therefore
the number of exemplar images to achieve the best accuracy is 50 exemplar images
per category. We validate our method on the test data using 50 exemplar per category
and obtained the recognition accuracy of 89.4%. The confusion matrix is shown in
figure 3.8.

Fig. 3.8 Confusion matrix for the best result in 15-Scene dataset
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Table 3.1 Comparison with recently reported results for 15-Scene

Method Accuracy(%)

SSFF 89.47
Xiao et al. [25] 88.1
Wu&Rehg [24] 83.88
Bosch et al. [3] 83.7

Lazebnik et al. [10] 81.4
Li et al. [11] 80.9

Parizi et al. [18] 78.6
Liu&Shah [12] 75.16
Liu et al. [13] 74.9

Oliva&Torralba [15] 74.10
Bosch et al. [2] 73.30

Quelhas et al. [20] 71.24
Fei-Fei&Perona [5] 65.2

Table 3.1 shows the effectiveness of our proposed method by comparing the eval-
uation results with recently published results on this dataset. As seen in this table,
our method achieved the state-of-the-art result of 89.47% on the 15-Scene dataset.
This has verified that our method performs better than proposed MKL method
in [25] despite the fact that our method used less number of visual features. The
recognition accuracies for all of the features that we embedded into our framework
is shown in figure 3.9. Please note that the accuracies shown in this figure are slightly
different from the ones reported in the original papers, because in our case, all the
images were resized to 256× 256.

In [2] the images are considered as a mixture of semantic topics. If followed
by SVM classification, the classification rate is lower than our method. Oliva and
Torralba [15] and Wu and Rehg [24] use GIST and CENTRIST global features re-
spectively, bypassing object-centered and local information. Although the recogni-
tion rates in these holistic methods were higher than those for purely local methods,
they were still much lower than our reported results. Capturing the spatial location
of local patches in [10] and [24] significantly improved the recognition accuracy
for scene recognition. Nevertheless, spatial pyramid models were also less accu-
rate compared to our feature fusion method which comprehensively accounts for
semantic, contextual and spatial information within the scene.

3.6.2 Results on MIT 67-Indoor Scenes Dataset

To find the optimal size of the exemplar-set for the 67-Indoor Scenes dataset we per-
formed a similar experiment which increase the number of exemplar images by 10
images per category in each step started from 10 images per category and stopped
when the accuracy began to decline. In this experiment the size of validation-set is
random splitting of training set for 10 images per category for validation. shown
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Fig. 3.9 SSFF Recognition rate Vs. Baseline frameworks for 15-Scene dataset

Fig. 3.10 Recognition accuracy vs exemplar images per category for 67-Indoor Scenes

in figure 3.10 the optimal number of exemplars is 30 images per category for the
67-Indoor Scenes dataset. Hence the experiments performed on 67-Indoor Scene
dataset while number of exemplars are fixed to 30/category. To show the perfor-
mance of our feature fusion method, we compared our results with recently reported
results on this dataset. As seen in Table 3.2, our method achieved the promising re-
sult of 45.0%. According to this table our FF method(SSFF)’s result is comparable
to the state-of-the-art results in 67-Indoor Scenes.

In [17] Pandey and Lazebnik used the popular Deformable Part-based
Model(DPM) [16] for scene recognition and achieved the accuracy of 30.08%.
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Table 3.2 Comparison with recently reported results for 67-Indoor Scenes

Method Accuracy(%)

SSFF 45.0
Singh et al. [22] 38.1/49.4

Pandey&Lazebnik [17] 30.08/43.1
Parizi et al. [18] 37.93

Li et al. [11] 37.6
Wu&Rehg [24] 36.9

Lazebnik et al. [10] 34.4
Quattoni&Torralba [19] 26.00

Quelhas et al. [20] 21.17
Oliva&Torralba [15] 22.0

Bosch et al. [2] 20

Subsequently they formed the color-GIST feature by applying the GIST descrip-
tor over the color channels and concatenating the GIST vectors together. Eventually
the combined use of the color-GIST feature together with SIFT spatial pyramids and
DPM results achieved an accuracy of 43.1%.

The discriminative mid-level patches in [22] achieved 38.1% accuracy while
combining these mid-level patches with color-GIST,DPM and SIFT spatial pyra-
mids they obtained 49.4% recognition accuracy.

Fig. 3.11 SSFF Recognition rate Vs. Baseline frameworks for 67-Indoor Scenes dataset

The accuracy per class for this dataset is illustrated in Table 3.3.
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Table 3.3 Recognition Accuracy per class for 67-Indoor Scenes

Accuracy Accuracy Accuracy Accuracy
inside airport 10 computer room 44 inside subway 47 pantry 55
art studio 30 concert hall 66 jewelery shop 31 inside pool 75
auditorium 83 corridor 61 kinder garden 30 prison cell 55
bakery 26 deli 5 kitchen 28 restaurant 20
bar 33 dental office 38 laboratory 18 restaurant kitchen 39
bathroom 72 dining room 33 laundromat 22 shoe shop 15
bedroom 23 elevator 76 library 32 stairs case 40
bookstore 15 fast food restaurant 29 living room 20 studio music 63
bowling 75 florist 63 lobby 50 subway 57
buffet 80 game room 15 locker room 38 toy store 27
casino 42 garage 38 mall 50 train station 55
children room 44 green house 95 meeting room 59 tv studio 38
inside church 84 grocery store 23 movie theater 70 video store 27
classroom 55 gym 50 museum 26 waiting room 14
cloister 80 hair salon 23 nursery 60 warehouse 38
closet 83 hospital room 20 office 33 wine cellar 33
clothing store 61 inside bus 78 operating room 26

3.7 Conclusion

In this paper an innovative method is proposed to integrate global contextual features
together with the semantic and spatial information of local features. The features
are embedded into a map function based on a novel distance function. A parameter
learning model is used to determine the relative importance weights of global infor-
mation and the latent variables in the latent semantic space. An empirical study has
been performed on the 15-Scene and 67-Indoor scenes datasets in order to demon-
strate the impact of appropriately incorporating both local and global information
for the purpose of scene recognition, with promising results.
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Chapter 4
Improving RGB-D Scene Reconstruction Using
Rolling Shutter Rectification

Hannes Ovrén, Per-Erik Forssén, and David Törnqvist

Abstract. Scene reconstruction, i.e. the process of creating a 3D representation
(mesh) of some real world scene, has recently become easier with the advent of
cheap RGB-D sensors (e.g. the Microsoft Kinect).

Many such sensors use rolling shutter cameras, which produce geometrically dis-
torted images when they are moving. To mitigate these rolling shutter distortions we
propose a method that uses an attached gyroscope to rectify the depth scans. We also
present a simple scheme to calibrate the relative pose and time synchronization be-
tween the gyro and a rolling shutter RGB-D sensor.

For scene reconstruction we use the Kinect Fusion algorithm to produce meshes.
We create meshes from both raw and rectified depth scans, and these are then com-
pared to a ground truth mesh. The types of motion we investigate are: pan, tilt and
wobble (shaking) motions.

As our method relies on gyroscope readings, the amount of computations re-
quired is negligible compared to the cost of running Kinect Fusion.

This chapter is an extension of a paper at the IEEE Workshop on Robot Vision
[10]. Compared to that paper, we have improved the rectification to also correct for
lens distortion, and use a coarse-to-fine search to find the time shift more quicky. We
have extended our experiments to also investigate the effects of lens distortion, and
to use more accurate ground truth. The experiments demonstrate that correction of
rolling shutter effects yields a larger improvement of the 3D model than correction
for lens distortion.

4.1 Introduction

RGB-D sensors, such as the Microsoft Kinect have recently become popular as a
means for dense real-time 3D mapping. Dense RGB-D mapping was introduced
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(a) Pan (left to right) (b) Tilt (upwards)

Fig. 4.1 Synthetic visualization of rolling shutter effects on reconstructed meshes. The solid
shape is the correct mesh and the wireframe is the distorted mesh.

in the Kinect Fusion algorithm [9], which is aimed at augmented reality. Recently
the Kinect Fusion algorithm has also been adapted to simultaneous localisation and
mapping (SLAM) [19], and to odometry and obstacle avoidance [14].

As pointed out in [12], RGB-D sensors that use the structured-light sensing prin-
ciple, e.g. the Kinect, are built using CMOS image sensors with rolling shutters
(RS). A sensor with a rolling shutter has a line-by-line exposure, and this will cause
geometric distortions in both the colour images and the depth maps from an RGB-D
sensor, whenever either the sensor or objects in the scene are moving. Illustrations
of the rolling shutter effect on meshes reconstructed using an RGB-D sensor can be
found in Figure 4.1.

In this chapter we investigate how the influence of rolling shutter distortions in
dense SLAM can be mitigated, by equipping an RGB-D sensor with a 3-axis MEMS
gyro sensor. Gyro sensors for consumer electronics are inexpensive and can provide
angular velocity measurements at rates well above most camera frame rates. The use
of a gyro sensor means that the extra computational burden of optical flow, and non-
linear optimisation used for RS rectification in [12] need not be added to the already
high cost of SLAM computation. An additional benefit is that the gyro provides
angular velocity also in scenes with low texture, where optical flow computation is
difficult.

Our experiments use the Kinect Fusion algorithm [9] to do scene reconstruction.
Kinect Fusion has gained popularity in part due to the open source KinFu imple-
mentation in PCL [15]. We characterize the situations where RS distortions occur,
and investigate to what extent a rotation-based RS rectification can improve the out-
put of Kinect Fusion. We also investigate the effects of removing the Kinect lens
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distortion, and compare the improvement of lens distortion correction to that of
rolling shutter correction.

The source code for the tools used to rectify the depth scans will be made avail-
able on the author’s website.

4.1.1 Related Work

As our system makes use of an external gyroscope sensor, we require the clocks
of the camera and the gyroscope to be synchronized, and their relative pose to be
known. Several methods for camera-IMU calibration have been proposed in the
past. A recent example is [7]. Such methods typically compute the full relative pose
between IMU and camera (both translation and rotation). In our approach we have
instead chosen to introduce a new calibration scheme, for two reasons: Firstly, all
current algorithms assume global shutter geometry, which means that their appli-
cation to a rolling shutter camera needs to be done with care. Secondly, when only
gyro measurements are to be used, the translation component is not needed, and this
allows us to simplify the calibration considerably.

Our time synchronization procedure uses the same cost-function as [5, 8]. Just
like [5] we only search for the time shift, but instead of performing gridding on
the cost-function, we solve for the time shift in two steps: Firstly we find a coarse
alignment using correlation of the device motion function, secondly we refine this
estimate using derivative free search. In contrast to [5, 8], our method also deals
with finding the unknown time scaling factor.

A dataset for evaluation of RGB-D SLAM accuracy was recently introduced by
TU Münich and University of Freiburg [18]. Evaluation using this dataset consists
of comparing a camera motion trajectory against ground truth from a motion cap-
ture system. As we rely on gyro measurements, we cannot use these datasets, and
instead we demonstrate the effectiveness of our algorithm by comparing obtained
3D models with, and without applying our depth-map rectification.

The rolling shutter problem has been extensively studied in the past [3, 13, 1, 12].
Most closely related to our work is [12], on which we base our rectification scheme.
In [12], the RGB-D device motion is computed using a sparse optical flow that
is obtained from Kinect NIR images. Instead of using optical flow, we rectify the
depth maps using the angular velocity provided by a 3-axis MEMS gyro sensor. This
makes the resultant system more robust, as we can easily deal with two cases that
are challenging for optical flow based techniques: 1. Scenes with large untextured
regions 2. Scenes where the amount of ambient light present in the scene is too low.

4.1.2 Structure

This chapter is divided into three parts: Section 4.2 describes the gyro and rolling
shutter camera calibration. Section 4.3 describes our approach to depth map rolling
shutter rectification. In Section 4.4 we perform a number of experiments that show
the effect of rolling shutter rectification for RGB-D cameras.
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4.1.3 Notation

We use superscripts to denote the used frame of reference where needed. tg and
tc denote time in the gyro and RGB-D camera frames of reference respectively. A
relation between frames is expressed as combinations, e.g. Rcg is the rotation from
the gyro frame to the camera frame of reference. Vectors and matrices are expressed
in bold (x, Ω ).

4.2 Sensor Calibration

The gyro provides angular velocity measurements for each of its three axes as the
angular velocity vector ω(tg) = (ωx,ωy,ωz). The RGB-D camera provides us with
RGB images I(tc) and depth images D(tc).

To associate the data from the two sensors we must know the relation between
their timestamps, tg and tc, as well as the relative pose, Rgc, between their coordinate
frames.

Our proposed pose calibration method only requires that the combined sensors
are rotated at least once around two non-parallel axes. The time synchronization
method only requires that the observed motion is not periodic, since it is based on
correlation.

4.2.1 Synchronizing the Timestamps

Assuming that both timestamp generators provide timestamps that are linear in time,
the two timestamps will be related via a linear function

tg = mgc · tc + dg . (4.1)

The multiplier mgc will be constant when both timestamp generators are stable
and do not drift. The time offset dg depends on when each timestamp generator was
initialized. Typically reinitialization can occur at any time due to e.g. a hardware
reset, which makes it necessary to recompute dg for every experiment.

Although the multiplier has to be known in order to calculate the offset, we will
start by describing how to calculate the latter.

4.2.1.1 Finding the Offset

Since the offset, dg, has to be computed for every experiment it should be fast to
compute. To achieve this we divide the task into first finding a rough estimate which
is then refined.

The rough offset is found based on the assumption that a rotation of the sensor
platform will in some way be observable by both sensors. For the gyro this is trivial.
For the RGB-D sensor we assume that the rotation is manifested in the optical flow
magnitude between consecutive frames.
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We begin by defining the gyro speed at sample n as

W (n) = ‖ωn‖ . (4.2)

For convenience we will sometimes refer to W (n) as the continuous function
W (tg) where tg is a timestamp expressed in the gyro time frame. When necessary
this implies interpolation of W (n).

The optical flow displacement magnitude for frame j is calculated as

F( j) =
1
N

N

∑
n
‖xn, j − xn, j+1‖ , for j ∈ [1,J− 1] , (4.3)

which is the average optical flow at the frame j, where N is the total number of
points tracked between frames j and j+1, and xn, j are the image coordinates of the
tracked point n in frame j. Like with the gyro speed, we define a continuous version
of the flow magnitude, F(tc).

The assumed proportionality between F(tc) and W (tg), after mapping through
(4.1), then becomes

W (tg) ∝∼ F(
tg − dg

mgc ) . (4.4)

Note that as the flow F( j) is computed between frames, it is on average offset
by half a frame compared to the image coordinate times. This offset is implicitly
handled by the refinement step and can be safely ignored.

After applying the multiplier mgc and resampling the signal with the lowest sam-
pling rate to match the other, we can use cross-correlation to find the offset dg.

An example of the proportionality between the optical flow magnitude and gyro
speed can be seen in Figure 4.2.

It is important to note that the signal used for correlation must not be periodic, as
this could make the cross-correlation fail. If we start the data collection from both
sensors at approximately the same time, we can extract slices of the original signals
which are known to contain a suitable motion.

4.2.1.2 Pyramid Speedup

The correlation that finds the offset dg can be sped up by orders of magnitude, by
using a coarse-to-fine search. This has the added benefit of allowing a larger set of
samples to use for correlation. By using a larger part of the signal, the need for a
dedicated synchronization movement decreases. We do still have to be careful as the
non-periodicity constraint must still be met.

To do the course-to-fine search, we first successively sub-sample W (n) and F( j),
by averaging neighbouring pairs of samples. This yields two scale pyramids {Fk}K

0 ,
and, {Wk}K

0 , where:

Fk( j) = 0.5(Fk−1(2 j)+Fk−1(2 j+ 1)) and F0( j) = F( j) . (4.5)
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The pyramid for {Wk}K
0 is computed in the same way. We stop generating higher

levels in the pyramids whenever the length of either Fk or Wk drops below 100. We
then proceed by finding the offset at the coarsest scale by full correlation. As we
only have about 75 samples in each sequence, this is very fast.

An offset at a coarse scale, dk, can be converted to an offset at the next finer scale
using the expression dk−1 = 2dk +0.5. To propagate the result through the pyramid,
we use this as an initial guess, which we refine at each successive scale by trying a
few neighbouring offsets. We use the range dk−1 ∈ [2dk − 1,2dk + 2], and we have
found that in practise this always finds the same final offset as a full search at the
finest scale.

Using the pyramid approach described above also allows us to replace plain cor-
relation with the more expensive, but also more robust zero-mean normalised cross
correlation (ZNCC).

4.2.1.3 Refining the Time Offset

The correlation-based time offset was found to be accurate to about ±2 frames.
Since we need sub-frame accuracy, the time offset must be refined further.

In [5] Hanning et al. describe a method to find an unknown offset between image
timestamps and gyro timestamps. Points are tracked through an image sequence,
and a grid search is used to find the time offset that best removes the rolling shutter
effects.

Since we know that the offset is off by at most a few frames, our starting guess
will be in the convex basin around the minimum of the cost function. This allows us
to replace grid search with the much more efficient Brent’s method [11].

4.2.1.4 Finding the Multiplier

To find the multiplier, the sensor platform is kept still except for two short and
distinct movements, where the second movement is delayed sufficiently long.

� =

Fig. 4.2 Optical flow and
gyro speed comparison.
From top to bottom: Optical
flow displacement mag-
nitude F(tc), gyro angular
speed W (tg), and correlation
response. Correlation is cal-
culated from slices known to
contain the synchronization
movement (highlighted).
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We generate two short rotations of the sensor platform which will both be observ-
able in both W (tg) and F(tc

j ). The time between the two rotations, T , is measured in
each sensor’s frame of reference and the multiplier is calculated as the average of N
such sequences

mgc =
1
N

N

∑
n

T g
n

T c
n
. (4.6)

The calculated multiplier is then assumed to be valid for sequences of at least
length T .

4.2.2 Relation of Coordinate Frames

No matter how carefully the IMU and camera are joined there will likely be some
alignment error which could disturb the results [7].

A relative pose consists of a rotation and a translation from one coordinate frame
to another. For our implementation only the gyro is used so the translation is not
needed.

The basic idea of the relative pose estimation is that if we have two or more
orientation vectors in one coordinate frame, and corresponding orientation vectors
in the other coordinate frame we can find uniquely the rotation between them.

By rotating the sensor platform around at least two non-parallel axes we find the
axes of rotation as seen by the camera coordinate frame and the IMU coordinate
frame.

4.2.2.1 Gyro Coordinate Frame

Given a sequence where the gyro is rotating, we want to find the axis of rotation r̂.
We do this by defining the following maximization problem:

r̂ = argmax
r

J(r) (4.7)

J(r) =
N

∑
n=1

‖rT ωn‖2 (4.8)

J(r) =
N

∑
n=1

rT ωnωT
n r = rT

(
N

∑
n=1

ωnωT
n

)

︸ ︷︷ ︸
Ω

r (4.9)

Here N is the total number of gyro samples in the chosen sequence.
The rationale of this cost function is that the principal axis of rotation should be

parallel to ω , and large velocities should have a larger influence on the result. The
solution r̂ is the eigenvector of Ω with the largest eigenvalue.
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We are however not certain if we have found r̂ or −r̂ as both will give the same
cost. The sign can be determined by testing whether the scalar product between the
acquired r̂ and all ωn is positive or negative such that

r̂ ← sgn

(
N

∑
n=1

r̂T ωn

)

r̂ . (4.10)

4.2.2.2 Camera Coordinate Frame

The problem of finding the rotation axes of the camera can be formulated as an
Orthogonal Procrustes problem [16, 4]. For a given rotation sequence we track a
number of points from the first image frame to the last. To make sure the resulting
point correspondences are of high quality the points are retracked from the last im-
age to the first. Points are discarded if the distance from the original point is larger
than 0.5 pixels. It is very important that the first and last frame of the sequence are
captured when the sensor platform is not moving, otherwise rolling shutter effects
would bias the result.

Using the camera calibration matrix K, and a depth map z(u,v) the 2D points are
back projected to 3D using the equation

⎛

⎝
x
y
z

⎞

⎠= z(u,v)K−1

⎛

⎝
u
v
1

⎞

⎠ . (4.11)

If we denote the set of 3D points from the first and last image X = (X1,X2, ...)
and Y = (Y1,Y2, ...) respectively, the problem of aligning them can be formulated
as

argmin
R,t

‖X− (RY+ t)‖2 s.t. RRT = I (4.12)

where R is a rotation matrix and t is a translation.
Procrustes now gives us an estimate of R and t using the SVD

UDVT = SVD[(X− μX )(Y− μY )
T ] (4.13)

R = U

⎛

⎝
1 0 0
0 1 0
0 0 det(UVT )

⎞

⎠VT (4.14)

t = μX −RμY . (4.15)

Here μX and μY are the means of the vectors X and Y respectively.
Although the Procrustes solution provides us with both rotation and translation,

only the rotation is needed in our implementation.
The rotation matrix R can be written on axis-angle form as ϕn̂ where n̂ is the

principal axis of the rotation that we want to find.
To convert from matrix form to axis-angle form we use the method described by

Hartley and Zisserman [6]
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2cosϕ = trace(R)− 1 (4.16)

2sinϕ n̂ =

⎛

⎝
R32 −R23

R13 −R31

R21 −R12

⎞

⎠ . (4.17)

It is worth noting that this representation forces the rotation angle ϕ to only take
positive values. Therefore, if we have two rotations about the same axis ϕ1n̂ and
ϕ2n̂ where ϕ2 = −ϕ1 we would measure the latter as ϕ1(−n̂) which is a positive
angle and a flipped rotation axis. This makes the result consistent with the behaviour
of the gyro rotation axis calculation in (4.10).

4.2.2.3 Calculating the Relative Pose

Using the methods in sections 4.2.2.1 and 4.2.2.2 we can collect a set of corre-
sponding rotation axes, Xg and Xc, in the gyro coordinate frame and RGB-D camera
coordinate frame respectively.

Once again we can formulate an Orthogonal Procrustes’s Problem to find the
relative sensor pose

Rcg, tcg = argmin
R,t

‖Xc − (RXg + t)‖2

s.t. RRT = I
(4.18)

We typically use two forward-backward sequences, along two approximately or-
thogonal axes. This gives us four measurements in total, from which the relative
pose may be determined.

4.3 Depth Map Rectification

4.3.1 Gyro Integration

We obtain the rotation of the sensor platform (relative to some initial orientation)
by integrating the gyro angular velocity measurements. This accumulated rotation
is later used for depth map rectification.

The accumulated rotation at time t is denoted by the unit quaternion

q(t) = [cos
ϕ
2

; sin
ϕ
2

n] , (4.19)

where the unit vector n is the axis of rotation and ϕ is the magnitude of the rotation.
Using the timestep Δ t and angular velocity measurements ω, the integration be-

comes
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q(0) = [1; 0] and (4.20)

q(t +Δ t) = q(t)
w(ω;Δ t) , where (4.21)

w(ω ;Δ t) =

⎡

⎣cos

(‖ω‖Δ t
2

)
;

sin
( ‖ω‖Δ t

2

)

‖ω‖ ω

⎤

⎦ . (4.22)

Here 
 is the quaternion multiplication operator. q is kept as a unit quaternion
by renormalizing after each step.

4.3.2 Rectification

Once the camera and IMU are synchronized and their relative pose is known, we can
perform the rectification. We are only measuring rotations, so the update equation
for image coordinates from [12] simplifies to

x′ = KR(tmid)R
T (trow)K−1φ(x;λ ) , where (4.23)

trow = t0 + tr
x2

Nrows
and (4.24)

tmid = t0 +
tr
2
. (4.25)

Here trow and tmid are the times when the current row and middle row were cap-
tured given the start of frame time, t0, and readout time, tr. R(t) is the rotation of
the camera at time t, which is constructed as R(t) = RcgM(q(t)), where

M(q) =

⎛

⎝
1−2q2

2 −2q2
3 2q1q2 +2q0q3 2q1q3 −2q0q2

2q1q2 −2q0q3 1−2q2
1 −2q2

3 2q2q3 +2q0q1
2q1q3 −2q0q2 2q2q3 −2q0q1 1−2q2

1 −2q2
2

⎞

⎠ , (4.26)

transforms a unit quaternion to a rotation matrix [17]. x and x′ are homogenous
image coordinates before and after rolling shutter rectification. φ(x;λ ) is a function
that removes lens distortion given the lens distortion parameters λ .

A way to interpret (4.23) is that a 2D point is back-projected to a 3D point, which
is rotated back to the initial camera position, then rotated back to the time the middle
row was captured, and finally projected again to a 2D point.

The inevitable drift accumulated in q(t) in previous frames is effectively can-
celled out, as the combined rotation in (4.23) is relative to the middle row, and not
to the start of the sequence. For online applications you can avoid integrating over
the entire sequence, and instead calculate the rotation ΔR = R(tmid)RT (trow) using
only the necessary samples.

Note that the fact that we are neglecting translations also means that the depth
z(x) can be ignored in the projections as it is now simply a scale factor in a homoge-
nous equation.

Using (4.23) we can construct a forward mapping for each pixel coordinate in the
original image. We use this to forward interpolate new rectified depth images.
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In order to propagate also the the valid/invalid status of pixels each depth image
is interpolated twice. First an interpolation using a weighted gaussian 3x3 kernel is
used on all pixels that have valid depth values. Second we interpolate using near-
est neighbour interpolation all pixels with invalid depth values. This avoids having
invalid pixels become valid due to interpolation.

4.4 Experiments

We demonstrate the gain of using our method by examining three different types
of sensor motions. These are pan, tilt, and wobble motions. By wobble we mean
shaking the sensor to simulate the kind of motion you can expect if the sensor is,
for example, handheld or attached to a moving vehicle. Another basic motion which
we do not consider here, is roll. Our method can handle roll motions, but measuring
and visualizing the effect is difficult.

As our method neglects translations, rolling shutter effects from translations are
not handled. However, these effects appear only when the image plane is moving at
high speeds which makes the impact much weaker than rotational movements.

We divide the three types of motions in two groups with two different evaluation
strategies. For pan and tilt we measure features in the resulting meshes and compare
to a ground truth mesh. In the case of wobble we instead make a visual evaluation
of the resulting meshes.

For the pan and tilt experiments we also investigate the effect of compensating
for lens distortion.

For each experiment we first recorded a scene while our sensor platform (RGB-D
camera and gyroscope) was moving. The depth scans were then rectified to com-
pensate for rolling shutter and/or lens distortion. For each set of data, the scene was
reconstructed to a 3D mesh on which comparisons and evaluation was performed.
To make time synchronization simpler, we began each recording by performing a
short panning motion. This synchronization motion was cut from the recorded data
before being used for reconstruction.

4.4.1 Experiment Setup

Our sensor platform consists of one Kinect RGB-D camera, to which is attached an
ArduIMU gyro and accelerometer. The Kinect captures depth images at 29.97 Hz
and RGB images at 30 Hz, while the ArduIMU provides gyroscope measurements
at approximately 170 Hz. The discrepancy between the frame rates of the RGB
and depth camera can safely be ignored during 3D reconstruction, since only depth
images are used here. To capture the Kinect data we wrote a data logging application
that makes sure that no frames are skipped and also uses the raw timestamps from
the clock on board the Kinect. Using the raw timestamps is important, as it ensures
that the timestamps of the depth images are consistent and not distorted by e.g.
latencies due to the USB-transfer. It also has the added benefit that the depth and
the RGB timestamps are in the same frame of time. This means we only have to
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synchronize using one of the cameras, because that result will be valid also for the
second camera. The Kinect timestamps are 32-bit unsigned integers generated by a
60 MHz clock.

The intrinsic camera parameters and lens distortion parameters where calibrated
using the method described in [20]. We chose to correct only for the radial lens
distortion (three parameters) and ignored tangential distortions. To carry out the
calibration we used the calibrateCamera function in OpenCV.

To construct the meshes from the depth scans we used the implementation of
Kinect Fusion that is available in the Point Cloud Library under the name KinFu
[15]. The reconstruction was run in offline mode, which means that every available
frame of the recorded Kinect data was used. This means we get the same result
(same mesh) every time we run KinFu. A small modification was made to make
KinFu use our intrinsic camera parameters, instead of the default parameters.

4.4.2 Pan and Tilt Distortions

The scene we used is pictured in Figure 4.3. It consisted of a flat desk with objects of
different sizes. Screens were placed on the edges of the scene to avoid background
clutter.

With pan and tilt motions we expect the meshes to be distorted in a deterministic
way. For panning motions we expect objects to become slanted, and for tilt we
expect them to become either elongated or shortened. This is visualized in Figure
4.1. To measure these effects we looked at the reconstructed mesh of the large black
box. The slant was measured by looking at the upper angles of the box, and the
elongation by measuring its height. As ground truth we imaged the scene with a very
slow motion of the sensor platform, to avoid rolling shutter effects, and repeated the
same type of measurements. The ground truth measurements are available in Table
4.1a, for both original and lens corrected data.

The measurements on the reconstructed mesh (two upper angles and height of
the box) were made in the following way: First we fit a plane to the front of the

Fig. 4.3 Scene used for ex-
periments. The large black
box was used for measure-
ments.
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box using RANSAC. The user then clicks at the corner points of the box, and the
corresponding points on the front plane are chosen. This plane restriction scheme
is helpful since the actual corner is not always present in the mesh due to mesh
distortions. Since clicking on a visualization of the mesh is prone to error, each
measurement was performed five times. We then take the mean as the actual mea-
surement, with the standard deviation providing some information about the size of
the measurement error.

We did three pan and two tilt motion experiments to see how the results differ
depending on the angular speed. For pan motions the sensor platform was panned
from left to right. For tilt motions it was tilted from down to up. The recorded data
was then processed to produce four sets:

1. Original set (no lens correction, no RS correction)
2. Lens correction only
3. RS correction only
4. RS and lens correction

4.4.2.1 Pan and Tilt Results

The results for the pan and tilt experiments can be found in Tables 4.1b and 4.1c
respectively. Looking at the measurements it is clear that as the angular speed in-
creases, so does the slant and height of the box. We can also clearly see that our
method manages to rectify the mesh to a satisfactory result. Note that at angular
speeds of about 2 rad/sec and above, the reconstructed meshes are bad due to large
amounts of motion blur, which explains the overall bad result for the second angle
in the last pan experiment.

Looking at the impact of correction of lens distortion, we can see that there is no
clear trend. The reason for this is that, except for the experiment with the highest pan
speed, any positive effects of lens distortion correction are smaller than the accuracy
of our ground truth.

In Figure 4.4 we visualize the result of one pan motion experiment. The original
and rectified meshes were aligned, and the outline of each mesh was drawn on top
of the other mesh. Figure 4.5 shows a tilt experiment where you can see how the
rectification effectively shrinks the mesh to get closer to its true size. To align the
meshes we used the iterative closest point algorithm (ICP) [2]. The meshes are not

Fig. 4.4 Visualization of
one pan experiment. The
green mesh is from the
original scans, and the red
from rolling shutter rectified
scans. The white border
is the outline of the other
mesh. The slant produced
by rolling shutter is clearly
visible.
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Fig. 4.5 Visualization of
rectification on tilt motion
experiment to show that the
rectified mesh (red) shrinks
compared to the original
mesh (green).

Table 4.1 Measurements for different angular speeds (in rad/sec). The raw data is expressed
as μ ±σ where μ is the mean and σ is the standard deviation of the measurement. The error
columns of tables (b) and (c) are deviations from the ground truths in table (a). Errors marked
in bold are the smallest errors for a particular experiment.

(a)

Original Lens corrected

Pan
89.8◦ ±0.1 89.4◦ ±0.1
90.1◦ ±0.1 90.4◦ ±0.2

Tilt 42.8±0.1 43.0±0.1

(b)

‖ω‖ Original Error Lens only Error RS only Error RS + lens Error

0.5
89.2◦ ±0.2 −0.6◦ 88.9◦ ±0.4 −0.6◦ 90.0◦ ±0.2 0.2◦ 89.6◦ ±0.2 0.1◦
91.4◦ ±0.2 1.3◦ 90.8◦ ±0.4 0.4◦ 90.2◦ ±0.1 0.2◦ 90.7◦ ±0.2 0.3◦

1.1
88.5◦ ±0.1 −1.4◦ 88.1◦ ±0.2 −1.4◦ 90.0◦ ±0.2 0.2◦ 89.8◦ ±0.4 0.4◦
91.8◦ ±0.2 1.7◦ 92.2◦ ±0.2 1.8◦ 89.8◦ ±0.3 −0.2◦ 90.1◦ ±0.4 −0.3◦

2.5
86.9◦ ±0.3 −2.9◦ 86.3◦ ±0.7 −3.1◦ 90.5◦ ±0.2 0.7◦ 90.2◦ ±0.5 0.7◦
98.0◦ ±0.2 8.0◦ 97.7◦ ±0.6 7.3◦ 94.2◦ ±0.2 4.2◦ 94.1◦ ±0.2 3.7◦

(c) Tilt measurements. Height of rectangular box, measured in cm.

‖ω‖ Original Error Lens only Error RS only Error RS + lens Error
0.7 43.8±0.2 1.0 44.2±0.1 1.2 43.0±0.0 0.2 43.4±0.1 0.4
1.3 43.6±0.3 0.8 42.5±0.1 −0.5 42.5±0.2 −0.3 43.2±0.4 0.1

related through a simple rigid transformation, so the entire mesh can not be used for
ICP alignment. Since our scene had a flat ground surface we instead opted to align
the meshes such that this ground plane was aligned as well as possible. We selected
points on the desk surface and close to distinct objects in both meshes, and applied
ICP to this smaller point set.
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Fig. 4.6 Wobble experiment. Zoom in on raycasted mesh. Top row: Original mesh (left),
rectified mesh (right). Bottom row: one selected RGB image from the sequence (left), and
gyro measurements (right).

4.4.3 Wobble Distortions

The wobble experiment was carried out by keeping an object (in our case, a tele-
phone) in view of the sensor while shaking the sensor platform. In contrast to the
pan and tilt experiment, with wobble we do not expect the general shape of the ob-
jects in the scene to change. However, since the Kinect Fusion algorithm integrates
measurements over time, we do expect rolling shutter wobble to blur out smaller
details. In Figure 4.6 we show a zoomed in view of the telephone, and one can see
that e.g. the buttons and cables are more pronounced in the rectified version than in
the original version.

We examined the frequency of the wobble by applying the FFT to each axis, and
calculated a conservative estimate of the combined frequency content as

G( f ) =
√
|ωx( f )|2 + |ωy( f )|2 + |ωz( f )|2 . (4.27)
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Fig. 4.7 Composite frequency content, G( f ), during the wobble experiment
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The result in Figure 4.7 shows that the frequency of our handheld wobble was
approximately 4 Hz. We can also see that the energy beyond 15 Hz is negligible,
which implies that our sampling rate of 170 Hz is sufficient.

4.5 Concluding Remarks

In this chapter we have shown that the rolling shutter effect will create notable errors
in 3D reconstructions from the Kinect Fusion algorithm. We also show that these
errors can be mitigated by applying rolling shutter rectification on the depth data
before 3D reconstruction.

As for lens distortion, we could see no clear improvement when using it. The
lens distortion on the Kinect is however quite small. It is likely that even though
lens distortion correction will improve the results, our ground truth measurements
are simply not accurate enough to see such small improvements.

We have also introduced a simple scheme for calibrating the time synhronization
and relative orientation between a gyroscope and a rolling shutter RGB-D sensor.

In the future we would like to improve the depth map rectification scheme. Our
current approach, while avoiding interpolation of bad depth values, sometimes pro-
duces jagged edges due to nearest neighbour interpolation.

We would also like the to investigate the possibility of performing the sensor
synchronization and calibration in a less constrained fashion, without the need for
special synchronization motions.
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Chapter 5
Modeling Paired Objects and Their Interaction

Yu Sun and Yun Lin

5.1 Introduction

Object categorization and human action recognition are two important capabilities
for an intelligent robot. Traditionally, they are treated separately. Recently, more
researchers started to model the object features, object affordance, and human action
at the same time. Most of the works build a relation model between single object
features and human action or object affordance and uses the models to improve
object recognition accuracies [16, 21, 12].

In our daily life, it is natural that we not only pay our attentions to the objects
we hold and manipulate, but also the interactive relationship between the objects.
We also select our motions according to the intended interaction we want, which
is mostly defined by both objects. For example, when a person holds a pen, there
could be many different kinds of motions. However, if the pen is associated to a
piece of paper, the human motion with the pen is significantly confined. Most likely,
a writing motion will occur. Likewise, if we want to detect the type of object in a
human hand, and we have detected a human writing motion and a piece of paper, we
have more confidence to believe that the object is a pen than without detecting the
writing motion or the paper. There are many similar examples such as a book and a
schoolbag, and a teapot and a cup. The interactive motions performed by the humans
have strong relationship with both objects. Therefore, the motion information can
enhance our belief of the recognition results of the objects. If we can detect a stirring
motion and recognize a cup, we can enhance our belief that the object in the human’s
hand is a spoon. Figure 5.1 shows several objects on a table that have inter-object
relationship: a CD and a CD case, a pen and a piece of paper, a spoon and a cup,
and a cup and a teapot.
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Fig. 5.1 Several objects on a table have inter-object relationships: pen-paper, teapot-cup, cup-
spoon, CD-CD case

The connection between the visual recognition and motor action has been stud-
ied in neuroscience and cognitive science recently. The concept of objects’ affor-
dance has been around since 1977 [14]. Only lately studies on objects’ affordance
[28, 29, 24] indicated that the mirror neurons in human brains congregated visual
and motor responses. In the studies, the researchers found that mirror neurons in the
F5 sector of the macaque ventral premotor cortex fired both during observation of
interacting with an object and during action execution, but did not discharge in re-
sponse to simply observing an object [9, 13]. More close to the human-object-object
interaction affordance idea, Yoon et al. [32] studied the affordances associated to
pairs of objects positioned for action and found an interesting so-called “paired ob-
ject affordance effect.” The effect was that the response time by right-handed par-
ticipants was faster if the two objects were used together when the active object
(supposed to be manipulated) was to the right of the other object. Borghi et al. [3]
further studied the functional relationship between paired objects and compared it
with the spatial relationship and found that both the position and functional context
were important and related to the motion; however, the motor action response was
faster and more accurate with the functional context than the spatial context. The
study results in neuroscience and cognitive science indicate that there are strong
connections between the observation and the motion, and functional relationships
between objects are directly associated with the motor actions.

Based on the new findings in neuroscience and cognitive science, we propose to
link a pair of objects with their interaction motion directly and we call the interaction
motion instead of the functionalities of the object as the inter-object affordance. In
this chapter, we attempt to capitalize the strong relationship between paired objects
and interactive motion by building an object relation model and associating it to
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human action model in the human-object-object way to characterize inter-object
affordance.

In robotics and related fields, object affordance has only been explored recently
in limited works that mainly model the object affordance with the interaction be-
tween single object and a human user, and then use the mutual relation to improve
the recognition of each other. For example, Gupta and Davis [16] recently achieved
inspiring success in using single object action to improve the recognition rate of
both the object and human motion. Kjellstrom et. al. [21] used conditional random
field (CRF) and factorial conditional random field (FCRF) to model the relationship
between object type and human action, in which the 3D hand pose was estimated to
represent human action including open, hammer, and pour actions. Most recently,
Gall, et. al. [12] have recovered the human action from a set of depth images and
then represented object’s function and affordance with the human action. In their
work, objects were classified according to the involved human action in an unsuper-
vised way base on high-level features.

Another recent approach in literature is to derive the objects’ affordance from
their low level features or 3D shapes. Stark et. al. [30] obtained the object affor-
dance cues from human hand and object interaction in the training images, and then
they detected an object and determine the objects functions according to the objects
affordance cue features. Grabner et. al. [15] proposed a novel way to determine
object affordance using computer graphical simulation. The system ’imagines’ or
simulates an actor performing actions on the objects to compute the objects affor-
dances from the object’s 3D shape.

In robotics community, there are several existing works on obtaining and us-
ing object-action relation. In [1], objects were categorized solely according to ob-
ject interaction sequences (motion features), but the geometry appearance features
of the objects was not considered. First, the objects were segmented out from the
background in a number of video sequences, then the space interaction relationship
between objects were represented with an undirected semantic graph. Their work
was able to represent the object temporal and spatial interactions in an event with a
sequence of such graphs.

In summary, most of the existing works focus on object-action interaction, or ob-
ject geometry-related affordance features. This chapter based on our previous publi-
cations [27, 31], introduces our new works on modeling the affordance relationship
between objects for object recognition and presents a way to model the inter-object
affordance, and then use the inter-object affordance relationship to improve object
recognition.

In this chapter, we describe a design of a graphical model that composes of two
objects and the human motions that relate both objects. The graphical model con-
tains the inter-object affordance that can be learned to represent the interaction re-
lationship between paired objects, such as teapot-cup, and pen-paper. A Bayesian
Network is structured to integrate the paired objects, their interaction, and the con-
sequence of the object interaction. After the description of the Bayesian Network
graphical model, we introduce an approach to recognize the paired objects by ana-
lyzing and classifying the interactive motions with the statistical knowledge learned
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Fig. 5.2 The workflow of building the human-object-object interaction model starts with ob-
ject detection, human hand tracking, and object reaction estimation. In the end the likelihoods
are used to build a Bayesian inference network.

from training data. In addition, at the end of the chapter, we extend this approach
to leverage the object recognition accuracy from videos with the interactive motion
recognition and demonstrate the benefit of the approach with results in several ex-
periments, which show that the detection accuracy of the interactive objects was
significantly improved with the introduced approach.

5.2 Human-Object-Object-Interaction Modeling

The workflow to build the human-object-object interaction model is illustrated in
Figure 5.2. First, the initial likelihood of the objects’ manipulation and reaction is
computed. The object initial likelihoods were estimated with a sliding window ob-
ject detector, which is based on the Histogram of Oriented Gradients (HoG). The
initial likelihood of human action is estimated based on the feature of human hand
motion trajectory. The human hand was tracked in the whole process, and the hand
motion was segmented according to the velocity changing. With motion segmenta-
tion and possible object locations, the interactive object pairs were detected in the
step of key reach motion detection. The start time of the manipulation was estimated
based on the object pair locations and hand motion trajectory. Then, the initial belief
of the manipulation was computed.

Object interaction usually leads to a state change of the associated objects. For
example, if a CD is put into a CD case, the color of the CD case probably will
change. The likelihood of object reaction was estimated by comparing with the
training datasets. Finally, the belief in each node was updated with the inference
algorithm for Bayesian Networks.
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Fig. 5.3 The Bayesian network model used to represent objects, actions and object interac-
tions. O1 and O2 represent the two interacting objects, A denotes hand manipulation motion,
and OR is the object reaction.

5.2.1 Bayesian Network Model for HOO Interaction

P(O1,O2,A,OR|e) ∝ P(O1|eO1)P(O2|eO2) (5.1)

P(A|O1,O2)P(A|eA)

P(OR|O1,O2,A)P(OR|eOR)

Bayesian network is chosen to model the HOO interaction because it is a powerful
inference tool for decision making in the observation of several or many interrelated
factors. As illustrated in Figure 5.3, the Bayesian network introduced here has eight
nodes. The two interactive objects are represented as node O1 and node O2. Node A
denotes hand manipulation action, also represents the inter-object affordance. The
node OR represents the object reaction that reflects the change of object state after
the interaction. The rest notes are the evidences e = {eO1 ,eO2 ,eA,eOR}, and they
represent the evidence for O1, O2, A, and OR respectively. The nodes are connected
according to their conditional dependencies. Since node A is determined by the two
interacting objects (O1 and O2), they are the parents of node A. Similarly, since
the object reaction is the consequence of the two objects and the manipulation, it
is the child of those three nodes. The belief for each node can be updated with
the messages from the corresponding evidence node. According to the Bayesian
rule and conditional independence relations, the joint probability distribution of the
paired objects, inter-action, and reaction can be represented with Equation 5.1.

The Bayesian network model can be scaled up by increasing the number of vari-
ables for object and action in each node without changing the graphical model
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structure. Alternatively, we can combine multiple Bayesian networks to form a
large-scale graphical model if there are inter-connections between different pairs
of objects.

5.2.2 Object Detection

To estimate the initial likelihood of the objects, a detector similar to [7] was de-
signed. The detector works in the sliding window manner, and uses a variant of the
HoG feature from [10] to represent the object local features. At each pixel, the color
channel with the largest gradient magnitude was used to represent the gradient ori-
entation and magnitude. In each detecting window, the image was divided into 8x8
pixel cells and, for each cell, the pixel level feature was aggregated to a feature map.

Objects were modeled as object type and object location. We computed the ob-
ject likelihoods:

P(O1 = {ob j1, lO1}|eO1) and
P(O2 = {ob j2, lO2}|eO2)

for each sliding window with the SVM estimation, in which lO1 is the location of
start object and lO2 is the location of the end object . Figure 5.4 shows a sample
of the detection results using training image images from the Image-Net [8] and
Google Image Search. All of the training images were labeled. For each object, 50
positive and 70 negative examples were used to train an SVM (Support Vector Ma-
chine) classifier. The window size and aspect ratio were learned from the training
data set. The LibSVM library [4] was used to obtain the probability of the classifi-
cation for each window.

Fig. 5.4 Example result of object detection with SVM classifier using HoG features. Dots
indicate detected object centers.
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5.2.3 Motion Analysis

The object detector in the previous section can only give us the possible object loca-
tions with their types. Since the inter-object affordance is represented by the object
interaction, that affordance should be modeled with motion features. To represent
the inter-object action – the affordance of the pair, it is necessary to detect and an-
alyze the hand motion that is associated with one of both of the objects. Here the
trajectories are segmented and the motion segments are used to represent and rec-
ognize the motion types. Generally, there are two kinds of object interactive motion
– putting an object into a container and manipulating one of the objects relative to
the other [18, 19]. In this chapter, these two kinds of motion are treated the same,
although they are considered different in cognition science.

5.2.3.1 Human Hand Tracking in 2D

It is difficult to track an arbitrary hand in a daily-living environment with various
background solely based on the hand’s shape as a hand can have many different
shapes for different gestures. To simplify the discussion, this chapter describe an
approach using the human skin color as tracking features since it is much more sta-
ble and has been used successfully in previous works [2]. In addition, the skin color
model in [5] and the TLD object tracker [20] are combined to build a stable hand
tracker. In this approach, the hands in the initial several frames are located using
optical flow and the skin color. Then for each additional frame, the hand location is
updated according to the color information around the previous hand location and
the shape features from TLD tracker. Figure 5.5(a) shows one example of the track-
ing result and the Figure 5.5(b) shows the tracked trajectory for a whole inter-action
motion – putting a CD into its case.

5.2.3.2 Motion Segmentation

From the tracked hand motion trajectory, motion features should be extracted to
represent the motion. Here, the obtained trajectories can then be segmented into
several pieces according to the velocity and represented with the motion features
in the segments. According to [26], there are two kinds of human limb motions:
ballistic motion and mass spring motion. In those two kinds of motions, the velocity
provides natural indications of the motion segments. The local minimal points in
their velocity curves are used to segment the trajectories, and then these small pieces
can be either merged or segmented further into possible ballistic and mass spring
segments. Similar to the method in [26], the segments are classified into ballistic
and mass sprint types according to their velocity features. The features used in this
chapter include the maximum velocity, average velocity, number of local minimum
point, standard deviation, and motion distance etc. Figure 5.5(c) shows the motion
segments in velocity for one motion that is putting a pencil into a pencil case. Similar
motion analysis approaches exist in neuroscience and cognitive science to classify
and represent motion segments with action chains [11, 17].
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(a) (b)

(c)

Fig. 5.5 Hand tracking and motion segmentation: (a) right-hand motion tracking; (b) right-
hand motion trajectory; (c) motion segmentation with velocity – horizontal axis is time (frame
number), and vertical axis represents velocity (pixels per frame). Red circles are detected
motion segment boundaries.

5.2.3.3 Key Reach Motion Detection

In each object interaction process, a human hand carries one object to the location
of another object. For example, in the stirring water example, a human hand carries
a spoon and moves it to the cup. This reach motion is called the key reach motion.
There could be several reach motions in one action. For example, in a process of
putting a book into a schoolbag, there are three reach motions. A person first opens
the schoolbag, the first reach motion; reach to the book, the second reach motion;
and then take the book to the schoolbag to put into it, the third reach motion. How-
ever, only the taking the book to the schoolbag is defined as the key reach motion
for this interaction as only this reach motion involves both objects. Therefore we
name the book as the start object and the schoolbag as the end object as object1 and
object2 respectively in the graphical model.

The ballistic segments are then further classified into reach motion and non-reach
motion according to motion features including the velocity during acceleration and
deceleration, time duration, average velocity, and stand deviation of the velocity.
However, it is difficult to segment out the key reach motion only based on the hand
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Fig. 5.6 Key reach motion detection: (a) red velocity segment represents key reach motion
in velocity graph. The red circles are detected motion segment boundaries; (b) The red curve
shows key reach motion in image.

motion and to detect if a hand is carrying object or not if the object is small. Instead,
we rely on the motion of the object since it is easy to detect the object state around
the start and end location of the reach motion. The key reach motion starts from one
location (la

r1), and ends at another location (la
r2). The distance between the location

of start object (lO1 ) and the start of the key reach motion location la
r1 is modeled

with a normal distribution, N(|la
r1lO1 |,μO1

r ,σO1
r ). Likewise, the distance between the

location of the end object (lO2 ) and la
r2 is modeled with N(|la

r2lO2 |,μO2 ,σO2
a ). The

start and end locations for each reach motion are obtained in the tracking. Then,
the start object, end object, and the key reach motion are detected at the same time,
according to the two distributions values. Here μO1

r , σO1
r , μO2

a , and σO2
a are learned

from the training data set. In the key reach motion, human hand carries object1
from location lO1 to location lO2 , so the belief of the key reach motion can be
further enhanced by checking if the detected start object (object1) is removed or
not. This can be carried out by comparing the likelihood value of object1 at location
lO1 before and after the key reach motion. Figure 5.6 shows the key reach motion
segment detected (marked as red) from the entire motion that put a pencil into a
pencil case.
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5.2.3.4 Manipulation Motion Estimation

A manipulation action can be modeled with the features in the human hand tra-
jectory. The features are the start time (ta

s ), the end time (ta
e ), the two reach lo-

cations (la
r1, l

a
r2), and the manipulation type (T a). According to Equation 1, we

model the conditional probability P(A|O1O2), and the initial likelihood of A,
P(A|eA). P(A|O1O2) can be computed with Equation refeq:moo1. If we define
la
s as the hand location for the start time ta

e , we can model P(ta
s , t

a
e |O1O2) with

N(|la
s lO|,μO

r ,σO
r ), and O is either O1 or O2. μO

r is the mean of the grasping dis-
tance for the object O, while σO

r is the variance, which can be learned from
the training data. P(la

r1|O1) and P(la
r2|O2) are modeled as normal distributions

N(|la
r1lO1 |,μO1

r ,σO1
r ) and N(|la

r2lO2 |,μO2
a ,σO2

a ), which have been discussed in Sec-
tion 5.2.3.3. P(T A|ob j1,ob j2) is computed according to the occurrence of manipu-
lation type and object type in the training data.

P(A|O1O2) = P(ta
s , t

a
e |O1O2)P(l

a
r1|O1) (5.2)

P(la
r2|O2)P(T

a|ob j1,ob j2)

We estimate the likelihood P(A|eA) with the features from the hand motion tra-
jectory. Based on the segmentation results in Section 5.2.3.2, the ballistic and mass
spring segments are replaced with labels. The manipulation motions are classified
according to the numbers of ballistic and mass spring segments, the translation rate
of the two segments, and time duration etc. Linear SVM is trained as the classifier
and gives the likelihood of the manipulation.

5.2.4 Object Reaction

The object reaction node is modeled with two parameters: reaction type (T R) and
reaction location (lR). It is difficult to fully model the object reaction. There-
fore, we only consider the state change of the object2 after the interaction. Sim-
ilar to [4], we use the color histogram at the object2 to represent the object
reaction. We estimate P(OR|eOR) by comparing the histogram of the object2 with
the histogram of the training instances from the training data set. Then we model
the prior P(OR|O1,O2,A) according to Equation (5.3). P(lR|O2) is model with
N(|lRlO2 |,μR,σR), and parameters μR and σR are learned from the training data.
P(T R|O1,O2,A) is learned from the training data set by counting the occurrence of
T R, O1, O2 and A.

P(OR|O1,O2,A) = P(lR|O2)P(T
R|O1,O2,A) (5.3)

5.2.5 Bayesian Network Inference

After getting the key reach motion and the interaction object pair locations, we
estimate the parameters for A and OR according to Sections 5.2.3.3 and 5.2.3.4. We
perform the inference with Pearls algorithm [25] once all of the initial likelihoods
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for O1, O2, A, and OR are estimated. The Bayesian Network, the object classifier
and the manipulation classifier are trained with fully-labeled data.

5.3 Experiments and Results

The following experiment and evaluation results demonstrate how this approach
is used and its performance. A dataset was collected from six subjects who per-
formed five types of interactions of five pairs of objects. The interaction object pairs
included teapot-cup, pencil-pencil case, bottle cap-bottle, CD-CD case and spoon-
cup. The actions for these object pairs were pouring water from a teapot to a cup,
putting a pencil into a pencil case, screwing on a bottle cap, putting a CD into the
CD case and stirring a spoon in a cup. All of these objects and actions were chosen
because they are very common in everyday life, and they are representative for dif-
ferent inter-object affordance relationships. The data from four subjects were used

(a)

(b)

Fig. 5.7 Results comparison: (a) Object1 likelihood confusion matrix. The left one shows
the result using HoG detector. The right shows the result using the described approach; (b)
Object2 likelihood confusion matrix. The left one shows the result using HoG detector. The
right shows the result using our framework.
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for training, and the data from the rest two subjects were used for testing. Each
subject performed every action for two or three trials.

The object classifier, the action classifier and the Bayesian Network were trained
in supervised manner. As stated before, the training images for the object classifier
were collected from the ImageNet [8] and Google Image Search. The training data
for the action classifier and the Bayesian Network were collected from manually
labeled video sequences taken in our experiments. Fifty videos sequences that per-
formed by four subjects were used for training. In each training video sequence,
object locations, reach locations and action type and the start frame of the manipu-
lation were manually labeled.

The test data set are video sequences that contain the action sequences performed
by the other two subjects. Figure 5.7(a) shows the object classification confusion
matrixes for object1 for the testing data, which is the object at the beginning of
the key reach motion. Figure 5.7(b) presents the likelihood confusion matrixes for
object2 that is the object at the end of the key reach motion. In each of the confusion
matrices, the ith row represents the likelihood value when the ith type of object
presents. For object1, as we can see from the confusion matrices, it was difficult to
distinguish a pencil from a spoon only based on the appearance, which is consistent
with the fact that they have the similar shape and both of them are small. With our
approach, by including the context of human-object-object interaction, our Bayesian
network was able to distinguish and recognize the spoon and the pencil more much
accurately. The average recognition success rate of our approach for object1 was
improved from 72.6% to 86.0% and improved from 75.3% to 82.8% for object2.

Among the five actions studied, if based only on motion features, it was difficult
to distinguish putting a CD into a CD case, putting a pencil into a pencil case, pour-
ing water into a cup, and stirring water in a cup because they had the similar motion
patterns. With the human-object-object interaction framework, they could be dis-
tinguished. Figure 5.8(a) shows the likelihood confusion matrix that was estimated

(a) (b)

Fig. 5.8 Action likelihood confusion matrix: (a) result using only motion features; (b) result
using framework. The ith row shows likelihood value when ith action is categorized.
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with only hand motion features. Figure 5.8(b) shows the action confusion matrix us-
ing human-object-object interaction framework. We can see that the overall average
recognition rate across all objects improved from 42.6% to 83.0%.

5.4 Conclusions

This chapter described a recent investigation on modeling the human-object-object
interaction with Bayesian network. The object categorization and action recogni-
tion are linked using human-object-object-interaction affordance framework. The
knowledge of object affordance is learned from labeled video sequences, and rep-
resented with a Bayesian Network. The elements of the Bayesian Network include
objects, human action and object reaction. The experiments with six subjects and
about 70 video sequences have shown that with human-object-object-interaction af-
fordance knowledge, the object classification rate, and especially the action recog-
nition rate were significantly improved.

The learned affordance knowledge represented in the Bayesian network can also
help us to learn affordance motion more precisely and apply the learned motion to
guide and control robot motions in a learning from demonstration framework such
as in [22], since the interaction affordance knowledge can suggest proper actions
that the robot should perform. The interaction motion can also be used to compute a
feasible and stable manipulation-task oriented grasp planning [23] with the help of
the object categorization. The motion analysis presented in this chapter is only one
of many approaches. A functional motion analysis could be applied (similar to [6])
to capture more dynamic features and represent the motion in a lower dimensional
space.
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Chapter 6
Probabilistic Active Recognition of Multiple
Objects Using Hough-Based Geometric
Matching Features

Natasha Govender, Philip Torr, Mogomotsi Keaikitse,
Fred Nicolls, and Jonathan Warrell

6.1 Introduction

3D Object recognition is an important task for mobile platforms to dynamically in-
teract in human environments. This computer vision task also plays a fundamental
role in the areas of automated surveillance, Simultaneous Localization and Map-
ping (SLAM) applications for robots and video retrieval. The recognition of objects
in realistic circumstances, where multiple objects may appear together with signifi-
cant occlusions and clutter from distracter objects, is a complicated and challenging
problem. Particularly in such situations multiple viewpoints are necessary for recog-
nition [17] as single viewpoints may be of poor quality and not contain sufficient
information to reliably recognise or verify all objects’ identities unambiguously.

Here, we consider the restricted task of recognizing which of a set of known ob-
jects are present in a small isolated circular test area. A mobile platform may take
images from a set of evenly spaced viewpoints around the perimeter of this area.
This task forms a multi-object extension of the single-object 1 degree-of-freedom
(1 DoF) active recognition tasks investigated in [1] and [10]. A challenge particular
to our setting is to find an effective object representation that will be robust to oc-
clusions and clutter. Further challenges for both single and multiple object settings

Natasha Govender · Mogomotsi Keaikitse
Mobile Intelligent Autonomous Systems, CSIR, South Africa
e-mail: {ngovender,mkeaikitse}@csir.co.za
Philip Torr
Department of Engineering Science, Oxford University
e-mail: philip.torr@eng.ox.ac.uk

Fred Nicolls
Department of Electrical Engineering, University of Cape Town, South Africa
e-mail: fred.nicolls@uct.ac.za

Jonathan Warrell
Biosciences, CSIR, South Africa
e-mail: jwarrell@csir.co.za

c© Springer-Verlag Berlin Heidelberg 2014 89
Y. Sun et al. (eds.), New Development in Robot Vision,
Cognitive Systems Monographs 23, DOI: 10.1007/978-3-662-43859-6_6



90 N. Govender et al.

involve providing a means of combining data across viewpoints, while maintaining
information about uncertainty; and choosing a mechanism for selecting the order in
which to capture new data, typically depending on the expected informativeness of
a new viewpoint. We introduce our own dataset specifically to explore this multiple
object recognition task.

With respect to representation, a number of previous methods have sought to rec-
ognize 3D objects in cluttered environments by matching features extracted at sparse
interest points to training images of an object at multiple viewpoints [12][6][14].
This approach naturally allows for the matching of both local features and global
geometric relations under rigid transformations. We build on such work in our ap-
proach to create an image representation suitable for our active recognition setting.
Particularly, we use the Scale Invariant Feature Transform (SIFT) [13] detector and
descriptor to extract relevant object features, and match each test viewpoint to all
training viewpoints seen at training time by allowing matching SIFT features to
vote for rigid transformations in a Hough-voting scheme similar to [12]. We show
how representing a test image by a feature vector containing the best matching
counts from all training views under this process contains sufficient information
to build effective probabilistic models for active recognition in the multi-object sce-
nario above, and further develop efficient viewpoint selection strategies. We are also
able to outperform existing active recognition methods which are similarly based on
SIFT-features, but which do not incorporate geometric matching [10].

With respect to data integration, we build on a number of works which have ex-
plored Bayesian methods of integration across a range of active sensing tasks. These
include both general frameworks for active sensing as in [5], as well as specific mod-
els for scene exploration and tracking from surveillance videos [18], medical diag-
nostics [19], and object recognition from a mobile platform [1][3]. In many of these
cases however, attention is paid to the general problems of optimal methods for fus-
ing data (using Bayes Theorem) and planning sensing strategies while assuming that
a probabilistic model for the phenomenon of interest (object/environment/diagnostic
features) is given. Particularly in the case of active object recognition[1][3], simple
probabilistic models and highly controlled datasets are used in order to highlight
general approaches to data fusion. While adopting a Bayesian framework for data
fusion similar to those mentioned, we explore a number of probabilistic models
based on the Hough-matching feature representation specifically designed to repre-
sent hypotheses about the presence of both single and multiple objects, as well as
the poses of all objects that are present. This allows us to cope effectively with more
complex test data of the kind discussed. In the case of matching multiple objects,
we show how effective probabilistic models can be built by using empirical distri-
butions of matching counts for each object/viewpoint. We demonstrate empirically
the gains that can be achieved through using such multi-object models over simpler
single-object models (both ours and other methods) in our test scenario.

Finally, we provide an extensive evaluation of a viewpoint selection mechanism
introduced in our previous work [7] for the case of active recognition of single
objects, extended here to the multiple-object case. This algorithm uses a vocabulary
tree data structure [15] to cluster all SIFT vectors from our training set, and builds
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a uniqueness map for each object which summarizes the uniqueness of each object
viewpoint by summing a Term Frequency Inverse Document Frequency (TFIDF)
metric across the counts of the leaf-node clusters appearing at that viewpoint. These
uniqueness maps are then used to select the next viewpoint in an active scenario,
based on the current belief about which object/objects are present. The approach
is particularly efficient compared to mutual information, as is commonly used in
Bayesian models [5][18][11][19], since it does not require the averaging of entropy
scores for every possible outcome. Further, it can also be used in non-Bayesian
active contexts, such as the model of [10], where it is more efficient to evaluate
than the expected activation. We compare this selection mechanism with previous
methods in both Bayesian and non-Bayesian contexts, showing it to perform well
in terms of efficiency and accuracy in the multi-object setting compared to mutual
information and expected activation.

In summary, we develop an active recognition pipeline specifically to handle the
realistic situation of simultaneously recognizing multiple objects in close proximity,
which may be subject to extensive occlusions and clutter from distracter objects.
Within our approach, we highlight three main contributions:

• We propose an image representation based on Hough-based geometric matching
counts to exemplar images to cope with clutter and occlusions.

• We develop a Bayesian model for data fusion which maintains a distribution over
multiple object and pose hypotheses.

• We extend the viewpoint selection mechanism in [7] to multiple objects, and
provide an extensive evaluation, comparing it with alternative mechanisms.

The structure of the chapter is as follows. Section 6.2 begins by discussing re-
lated work. Section 6.3 uses the scenario of a single object/pose hypothesis to in-
troduce our Hough-based geometric matching features and the viewpoint selection
mechanism of [7] in the context of a simpler probabilistic model. Section 6.4 then
extends the approach outlined to the multiple-object scenario, detailing the proba-
bilistic model used, and associated adaptations to other elements of the algorithm. In
Section 6.5 we compare the complexity of our proposed viewpoint selection mech-
anism with the use of mutual information as applied to our model. We then demon-
strate the efficiency and accuracy of our approach as detailed above in Section 6.6,
comparing our approach as a whole using both single and multiple object hypothe-
ses to that of [10], and further comparing our viewpoint selection mechanism with
mutual information [5][18] and expected activation [10] mechanisms. Finally, we
conclude with a discussion in Section 6.7.

6.2 Related Work

A number of methods have considered feature representations similar to ours
outside of the active vision setting. Our Hough-based matching feature represen-
tation is inspired by [12], who adopt a similar matching process for locating 3D-
object views in single images. Our Hough-voting procedure has slight differences
to [12] (we do not construct a full multi-dimensional vote space and neglect the final
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least-squares validation step). Also, [12] use matching counts along with a variety
of other features to build a probabilistic model to accept or reject the presence of
an object in a image while we construct a variety of distributions for active recog-
nition scenarios using the matching counts alone as features. Our simpler represen-
tation however proves sufficient for the active setting. Further non-active methods
using geometric SIFT-based matching to cope with cluttered scenes include [6], who
consider both single and multiple viewpoints from static cameras at test time, and
[14], who consider the matching of isolated pairs of viewpoints.

A wide range of general frameworks for active vision and active sensing have been
explored, including information theoretic and Bayesian approaches [5][3][18][1],
discriminative approaches [10][9], and approaches based on other theoretical mod-
els such as possibilistic and Dempster-Shafer theory [8],[2]. In Borotschnig et. al.
[2] a comparison was conducted between probabilistic (Bayesian), possibilistic and
Dempster-Shafer theory approaches to data fusion. They concluded that the prob-
abilistic approach worked best for 3D active object recognition, although all these
methods use test images with a single object in an uncluttered environment with no
occlusions.

Our framework follows that of [5] and [1] in terms of the general Bayesian form
of our updates. However, [5] and [1] consider only recognizing single objects in
uncluttered environments, allowing them to use a global eigenspace model as their
image representation (which is sensitive to clutter). Further, [5] and [1] consider
only the case of a single object/pose hypothesis, and do not consider the Bayesian
updates that are required in the multiple object/pose hypothesis case we consider.
In addition, [5] proposes the mutual information criterion as a viewpoint selection
mechanism, which has been subsequently used/proposed by [18][11][19]. As noted,
this is expensive to calculate, and requires the collection of extensive statistics at
training time, although as [5] discuss, it provides the optimal strategy provided the
underlying models are correct.

Although not a fully Bayesian method, the active recognition approach of [10]
resembles ours in terms of underlying representations, where [10] extract SIFT fea-
tures at sparse interest points in both test and training images, and match test points
to training points using nearest neighbour matching. An activation score for each
object/viewpoint hypothesis is formed based on the counts of the test points match-
ing to the corresponding training image. The main differences from our method are
that we also incorporate a Hough-based geometric matching step when calculating
the matching counts; we estimate probabilistic models using these counts instead of
summing them directly; and that we provide a framework for updating multiple ob-
ject/pose hypotheses in place of a single hypothesis. We show empirically that these
factors provide advantages for our method over [10] in our test scenario. Further,
[10] propose a viewpoint selection strategy based on expected increase in the best
activation score for their method. We show empirically that our proposed selection
method outperforms this strategy, thus showing the utility of our mechanism in a
non-Bayesian context.

Other related active recognition methods include Callari et. al.[3], who esti-
mate Bayesian probabilities with neural nets and minimize the expected ambiguity
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measured by Shannon entropy, and the boosting and support vector machines strat-
egy of [9]. Both approaches use substantially uncluttered test data, and estimate only
a single object hypothesis (in the case of [3] without a pose estimation).

Finally, we make use of a vocabulary tree representation [15] in our proposed
viewpoint selection strategy. This has been shown to be effective in both 2D and 3D
recognition tasks [15], and also in Simultaneous Localization and Mapping (SLAM)
approaches for matching similar images and for loop closure [16].

6.3 Active Recognition of a Single Object

We first describe a Bayesian approach to active recognition of a single object at
unknown orientation. Although we give specific forms for the image representation,
likelihood model and viewpoint selection rules below, the framework is general, and
different choices can be substituted for these.

Problem Statement: The active recognition task for a single object can be defined as
follows. At training time, for each object o ∈ {1...No}=O we capture set of images,
one at each of a series of Nθ regularly spaced training views around the object indexed
by their viewing angle, for example θ ∈ {0◦,20◦,40◦, ...340◦} = V , Nθ = |V |. For
simplicity, we consider only varying the viewing angle around one axis (e.g. verti-
cal), although minimal changes are necessary to incorporate viewpoints from across
a viewing sphere. We thus have a training image Itrain

o,θ for each object/view pair.
At test time, we are presented again with one of the training objects, and must

identify a) the object present o�, and b) the orientation of the object, which may
be specified by the training viewpoint θ � corresponding to a reference test view.
We are allowed to capture images of the test object at a sequence of test views,
δ1,δ2, ... ∈ V , where the angles δt can be in any order. We label the image cor-
responding to the t’th test view Itest

δt
, and treat δ1 = 0◦ as a reference view (i.e.

Itrain
o�,θ� will denote the training view we believe corresponds to Itest

δ1
). Typically, an

active object recognition algorithm will include the following components: an up-
date strategy for incorporating new information from each viewpoint as it is seen
and using it to update a belief/score for the correct o� and θ �; a viewpoint selection
strategy for choosing the sequence of test views δ1,δ2, ...; and a stopping criterion
to decide when to stop capturing further viewpoints and generate the output. We
outline a Bayesian algorithm below for single object active recognition which in-
corporates these elements. These are listed in turn, following a description of our
image representation.

Image Representation: For a given test image, Itest
δ , we apply the method of [13]

to generate a sparse set of SIFT descriptors to represent the image. We index these
by J test

δ = {1...Ntest
δ }, where Ntest

δ is the number of descriptors found for test image
Itest
δ . Each descriptor index is associated with a 128-dimensional SIFT descriptor, a

location, scale and orientation, as can be expressed by introducing functions dtest
δ :

J test
δ → R

128, xtest
δ : J test

δ → R, ytest
δ : J test

δ → R, stest
δ : J test

δ → R and φ test
δ :

J test
δ → [0 360). Similarly, we can form a sparse representation for a given training
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image, Itrain
o,θ , by introducing the functions dtrain

o,θ , xtrain
o,θ , ytrain

o,θ , strain
o,θ and φ train

o,θ over

index set J train
o,θ .

We now consider the set of matched pairs of descriptors between training im-
age Itrain

o,θ and test image Itest
δ . which we write M o,θ

δ . This consists of all pairs of

descriptors whose distance falls below a certain threshold, τmatch:

M o,θ
δ = {(n1,n2) ∈J train

o,θ ×J test
δ |

|dtrain
o,θ (n1)− dtest

δ (n2)|2 < τmatch} (6.1)

These matches are then inputted to a Hough transform voting procedure to assist
in removing any randomly occurring SIFT matches. This is achieved by allowing
each match to vote for an approximate translation, scaling and rotation of the ob-
ject. Given B1 (x-translation), B2 (y-translation), B3 (rotation) and B4 (scale) for
the sets of bins used in the Hough transform, for each m ∈M o,θ

δ we generate votes

v1(m) : M o,θ
δ → B1 ... v4(m) : M o,θ

δ → B4 as follows. For the scale and rota-
tion votes, we simply quantize the rotation/scale differences/ratios of the matched
pair of descriptors to the nearest bin: v3(m) = v3(n1,n2) = roundB3(φ

test
δ (n2)−

φ train
o,θ (n1)) and v4(m) = v4(n1,n2) = roundB4(s

test
δ (n2)/strain

o,θ (n1)) (writing roundB3

and roundB4 for functions which return the corresponding bin for a given rota-
tion/scale differences/ratios). To generate the translation votes, we solve for the
similarity transform that will map (xtrain

o,θ (n1),ytrain
o,θ (n1)) to (xtest

δ (n2),ytest
δ (n2)) us-

ing the known scaling and rotation above with an unknown translation (txm, tym)
(details of this calculation are given in [12]). We then set v1(m) = roundB1(txm)
and v2(m) = roundB2(tym), with roundB1 , roundB2 defined similarly to above.

Having generated the required votes, we find:

b∗1 = argmaxb∈B1 ∑
m
[v1(m) = b]

...

b∗4 = argmaxb∈B4 ∑
m
[v4(m) = b] (6.2)

that is, the bins which separately accumulated the most votes (where [.] is 1 for a true
condition and 0 otherwise). We then define the Hough-matching score for Itrain

o,θ and
Itest
δ to be the number of matched descriptors voting simultaneously for these bins:

Ho,θ
δ = |{m ∈M o,θ

δt
|

∧

n=1..4

vn(m) = b∗n} (6.3)

We then form a feature vector for a given test image ftest
δ by concatenating these

scores across all training images:

ftest
δ = [[Ho1,θ1

δ ;Ho1,θ2
δ ; ...]; [Ho2,θ1

δ ;Ho2,θ2
δ ; ...]; ...] (6.4)

where [.; .] denotes vertical concatenation.
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Update Strategy: We outline here a Bayesian update strategy which maintains a
distribution over object and pose random variables, O and Θ0 (taking values in O
andV respectively), given the images observed up to a given time-step t. This can be
expressed as Pt(o,θ0) = P(o,θ0|ftest

δ1
, ...ftest

δt
), where ftest

δt
is as above, and we denote

by Pt(o,θ0) the probability at time-step t that the test object is o and the test view
at the reference test viewpoint δ1 = 0◦ corresponds to training view θ0 ∈ V . For
simplicity, we assume that the images we see at different viewpoints are generated
independently given o and θ0. In general, this will not be the case, since we expect
there to be high correlations between the images we see for instance at neighboring
viewpoints. However, granting this assumption allows us to build a separate prob-
ability model for each object/viewpoint combination P(ftest

δ |o,Θδ = θδ ), where the
random variable Θδ corresponds to the training view seen at a particular δ , which
stands in the deterministic relation to Θ0, Θδ =Θ0 +δ modulo 360◦. Treating these
probabilities as likelihood terms, we can recursively estimate Pt(o,θ0) as:

Pt(o,θ0) =
P(ftest

δt
|o,θ0 + δt)Pt−1(o,θ0)

∑o,θ0
P(ftest

δt
|o,θ0 + δt)Pt−1(o,θ0)

(6.5)

By default, a uniform prior can be selected for P0(o,θ0). If we are primarily inter-
ested in identifying the correct test object, we can further calculate:

Pt(o) = ∑
θ0

Pt(o,θ0). (6.6)

It remains to specify fully the likelihood model. Our model depends on three
parameters, pa, pb ∈ R (pa > pb), and M ∈ N:

P(ftest
δ |o,θδ ) ∝

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if maxo′,θ ′( f test
δ (o′,θ ′))≥ M

pa if maxo′,θ ′( f test
δ (o′,θ ′))< M and

(o,θδ ) ∈ argmaxo′,θ ′( f test
δ (o′,θ ′))

pb otherwise

(6.7)

where argmax returns the subset of arguments attaining the maximum value. The
parameter M may be set arbitrarily high, and simply allows the model to be nor-
malized (specifying a number of matches that cannot be exceeded). By specifying
pa > pb, we ensure that when we are looking at object o and viewpoint θ , we expect
to see feature vectors generated where f test

δ (o,θ ) takes the maximum value in the
vector.

Viewpoint Selection Strategy: The viewpoint selection strategy determines the
‘next best viewpoint’, δt+1, that will provide the most relevant information to com-
plete the recognition process in an optimal manner given the previous views we have
visited δ1...t , and our current belief about the object/pose, Pt(o,θ0). For our view-
point selection strategy, we use a uniqueness map wo(θ ) which takes values in R

+,
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specifying the uniqueness of the viewpoint θ for object o on some scale. We specify
how this is assigned below. Assuming we have such a uniqueness map, we set:

δt+1 = argmaxδ ′∈V \{δ1...δt} ∑
o,θ0

ωt(o,θ0) ·wo(θ0 + δ ′) (6.8)

Here, the factors ωt(o,θ ) allow us to specify how the uniqueness maps are to be
combined. We use a simple additive combination based on our current best guess
for the orientation of each possible object:

ωt(o,θ0) =

{
1 if θ0 ∈ argmaxθ ′

0
f test
δt

(o,θ ′
0)> 0

0 otherwise.
(6.9)

To set the uniqueness maps, wo(θ ), we first build offline a vocabulary tree data
structure. Starting with all the extracted SIFT descriptors from the training set, we
cluster these using hierarchical K-means clustering where each group of descriptors
at a particular level consists of descriptors closest to a particular cluster centre at
the level above, which are then clustered to form cluster centres at the current level.
Full details of this process can be found in [15]. The vocabulary tree consists of
a collection of nodes N , with each node associated with a cluster center (SIFT
vector), c(n) : N →R

128, a root node rt ∈N , parent and children functions pa(n) :
N →N , ch(n) : N →P(N ) (with P(.) the powerset operator) with the usual
tree-structure constraints on rt, pa and ch. An arbitrary given SIFT descriptor d is
associated with a path from the root to a leaf node in the tree Nd ⊂N formed by
starting at root, and successively adding the child node to Nd whose cluster center
is closest, ni+1 = argminn∈ch(ni)

|c(n)− d|, where ni is the node added to Nd at the
i’th step along the path, and n1 = rt.

For each node n in the tree a TFIDF-like (Term Frequency Inverse Document
Frequency) metric is calculated to capture the node’s uniqueness:

qn = ln
N
Nn

(6.10)

where N is the total number of images in the database and Nn is the number im-
ages in the database with at least one feature that passes through node n (Nn =

∑o,θ [∑i∈J train
o,θ

[n ∈Ndtrain
o,θ (i)]> 0]).

We use this TFIDF metric to calculate an arbitrary feature’s uniqueness. The
feature’s path through the vocabulary tree is determined as above. A measure of
uniqueness is then given by the sum of all the TFIDF numbers, or weights, of the
nodes it passes through. The higher the weighting, the more unique we rate the
feature. The uniqueness of each viewpoint is then calculated by summing these
totals for all the SIFT features extracted from that viewpoint. Hence,

wo(θ ) = ∑
n∈J train

o,θ

∑
i∈N

dtrain
o,θ (n)

qi. (6.11)
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Stopping Criterion: As our stopping criterion, we consider when our belief that
we are observing a particular object reaches a certain threshold, τstop: for the first
t at which maxo(Pt(o)) > τstop, we halt, and output o∗ = argmax(Pt(o)) and θ ∗ =
argmaxθ0

(Pt(o�,θ0)).

6.4 Active Recognition of Multiple Objects

The algorithm outlined in Section 6.3 assumes that we are viewing a single object
at test time from a variety of angles. However, in natural scenes we rarely encounter
single objects isolated from each other, and more typically see collections of ob-
jects which occlude each other, and may contain cluttering objects that we are not
trained to recognize. The Bayesian framework presented above is readily adapted to
recognize collections of objects (and their orientations) in place of single objects as
above.

Problem Statement: We assume that we have access to similar training data to Sec-
tion 6.3, including uncluttered images of each of the objects we wish to recognize
captured from a set of viewing angles. As before, we write Itrain

o,θ for the training im-
age of object o at viewing angle θ . Instead of being presented with a single object at
test time, we now assume we are viewing a collection of objects, which may include
objects from our training set, and unknown objects. Our task is to identify a) which
out of the set of known objects are present and how often, and b) for every object
present, its orientation with respect to a reference viewpoint. This output may be ex-
pressed by an No ×Nθ matrix, Z∗, with entries in Z

+, whose entry Z∗(o,θ0) denotes
the number of occurrences of object o at orientation θ0 in the test collection. As in
the single object case, we are allowed to capture a sequence of images of the test col-
lection at viewing angles δ1,δ2, ... ∈ {0◦,20◦,40◦, ...340◦} (with respect to rotation
about the center of the collection) and we treat δ1 = 0◦ as the reference viewpoint
to label the orientation of the objects present. As in the single object case, we spec-
ify our algorithm in terms of the image representation we use, our update strategy,
viewpoint selection strategy and stopping criterion, which are outlined below.

We make two simplifying assumptions in the model presented (which are re-
spected in our experimental data). First, that the camera positions when viewing the
test collection are such that all object centers project close to the center of the image
(i.e. the collection is not too dispersed), and thus that we do not need to compen-
sate for projection effects when identifying the orientations of objects at different
positions in the collection (implying that we have approximately an orthogonal pro-
jection over the collection). Second, we assume the same object does not occur
more than once at the same orientation, and thus that the matrix Z to be estimated is
binary.1

1 Our experimental data in fact allows the stronger assumption that the same object does not
occur more than once. This can easily be incorporated, although for simplicity we outline
the model here without this assumption, which we did not find to provide significant gains
in practice.



98 N. Govender et al.

Image Representation: We use the same image representation as in the single ob-
ject recognition case. Hence, given a new test image, Itest

δ , we calculate the match-

ing descriptor sets M o,θ
δ (Equation 6.1) for each (o,θ ) pair, and the corresponding

Hough-matching scores Ho,θ
δ (Equation 6.3). The feature representation ftest

δ is again
formed by concatenating the Hough scores as in Equation 6.4.

Update Strategy: Since we are interested in estimating a collection of objects and
associated poses under the assumption that no object appears multiple times at the
same pose, we introduce a binary random variable, Z0(o,θ0) for each (o,θ0) pair,
which will take the value 1 if object o is present in the test collection at orienta-
tion θ0, and 0 otherwise. Making the simplifying assumption that appearances of
object/orientation pairs in the test collection are independent, we maintain a sep-
arate distribution for each of these binary variables, indicating our belief that ob-
ject o is present at orientation θ0 in the test collection given the images observed
up to time-step t, which may be expressed: Pt(z0(o,θ0)) = Pt(z0(o,θ0)|ftest

δ1
, ...ftest

δt
),

where z0(o,θ0) ∈ {0,1} is the value taken by Z0(o,θ0). We update in parallel each
of these distributions using a Bayesian update strategy. As in Section 6.3, we as-
sume that images at different test viewpoints are generated independently given
the test collection. We thus require a likelihood model for the generation of a fea-
ture vector given a collection of objects at specific offsets. We can express this as
P(ftest

δ |{Zδ (o,θδ ) = zδ (o,θδ ),o = 1...No,θ ∈ Nθ}), where we have the determinis-
tic relation Zδ (o,θδ ) = Z0(o,θ0 +δ ). We will assume that this likelihood factorizes
as follows (and give a form below that does so):

P(ftest
δ |{zδ (o,θδ ),o = 1...No,θ ∈ Nθ}) =
∏
o,θ

P( f test
δ (o,θδ )|zδ (o,θδ )). (6.12)

This allows us to express the required Bayesian updates as:

Pt(z0(o,θ0)) =

P( f test
δt

(o,θδt )|zδt (o,θδt ))Pt−1(z0(o,θ0))

∑
z0(o,θ0)={0 1}

P( f test
δt

(o,θδt )|zδt (o,θδt ))Pt−1(z0(o,θ0))

(6.13)

To estimate the probability that a particular object is present at any orientation, we
can evaluate:

Pt(z(o)) = 1−∏
θ0

Pt(z0(o,θ0) = 0). (6.14)

By Equation 6.12, we can express our likelihood model directly in terms of
P( f test

δ (o,θδ )|zδ (o,θδ )). For this purpose, we assume we have access to counts
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(from a sample of validation images with statistics similar to our test data) κ0
o,n, κ1

o,n,
κ0

o,θ ,n, κ1
o,θ ,n, n = 0...M, where M is a maximum value used for normalization as in

Section 6.3. The counts κ1
o,θ ,n indicate how many times we observe a Hough-score

of n between a validation image containing viewpoint θ of object o and training
image I train

o,θ , while κ0
o,θ ,n indicates how many times we observe a Hough-score of

n between such a validation image and all other training images. Similarly, κ1
o,n in-

dicates how many times we observe a Hough-score of n between a validation image
containing o and any training image containing o regardless of orientation, while
κ0

o,n indicates how many times we observe a Hough-score of n between such a val-
idation image and training images not containing o. We also introduce a smoothing
constant β , and a constant M′ < M (which is used to pool together less frequently
occurring larger values of n). Our general likelihood model can then be expressed
as:

P( f test
δ (o,θδ )|zδ (o,θδ )) ∝
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if f test
δ (o,θδ )≥ M

λ zδ (o,θδ )
o,θδ , f

test
δ (o,θδ )

+β if f test
δ (o,θδ )< M′

(∑n=M′ ...M λ
zδ (o,θδ )

o,θδ ,n
)+β

M−M′ otherwise

(6.15)

We consider two cases. For the first (which we call likelihood model 1) we let
λ b

o,θ ,n = κb
o,n, where b ∈ {0 1}. This allows a different distribution of Hough match-

ing scores for each object, but does not distinguish between different viewpoints.
For the second, (likelihood model 2) we let λ b

o,θ ,n = κb
o,θ ,n, hence giving a different

distribution of Hough matching scores for each viewpoint and orientation.

Viewpoint Selection Strategy: The same viewpoint selection strategy may be ap-
plied as in Section 6.3, since it depends only on the feature vector representation, and
not on the probability model. Implicitly, this selection strategy respects an assump-
tion that the same object is not present in the collection at multiple orientations. This
is appropriate in our experimental setting, but may not be appropriate in general.

Stopping Criterion: We adapt the stopping criterion of Section 6.3 to cope with
the multiple object hypothesis. Here, we fix a value Nobj, and stop when at least Nobj

objects reach a belief of τstop of being present: for the first t at which ∑o[Pt(z(o))>
τstop]≥ Nobj, we halt, and output Z∗, where Z∗(o,θ0) = 1 if Pt(Z0(o,θ0) = 1)> 0.5
and Z∗(o,θ0) = 0 otherwise. This stopping criterion implicitly assumes at least Nobj

objects will be present in a collection, which is appropriate in our experimental
setting, but may not be in general.
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Fig. 6.1 Comparing Single and Multiple Object Recognition Algorithms:Figure 6.1 shows
the average number of primary objects recognized after a given number of viewpoints for our
single and multi-object algorithms, and the approach of Kootstra et al. [10]

Fig. 6.2 This graph plots the average precision and recall curves for both primary and sec-
ondary objects for our single and multi-object algorithms after 3,5 and 7 viewpoints respec-
tively
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Fig. 6.3 This graph displays the average precision and recall curves for both primary and
secondary objects for our single and multi-object algorithms after 9,11 and 13 viewpoints
respectively

6.5 Relationship to Mutual Information

We briefly discuss here the relationship between our uniqueness map viewpoint se-
lection algorithm introduced in Section 6.3 and an approach to viewpoint selection
based on mutual information. As we note, our approach is typically more efficient
in terms of complexity.

The use of mutual information for data selection in active sensing tasks has been
proposed by [5], and again more recently in [18] and [11]. In the terms of our mul-
tiple object problem, this approach would direct us to select the next test viewpoint
on the basis of which has the highest mutual information with the random variables
Z0(o,θ0) we are interested in. Hence, we search for:

δt+1 = argmaxδ ′∈V \{δ1...δt} MI(ftest
δ ′ ;z0) (6.16)

where the mutual information is defined as:

MI(ftest
δ ′ ;z0) = H(z0)−H(z0|ftest

δ ′ ) (6.17)

with H(.) the Shannon entropy, and H(.|.) the conditional entropy. Given that H(z0)
is independent of δ ′, maximizing Equation 6.16 is equivalent to minimizing the
conditional entropy:

δt+1 = argmin
δ ′∈V \{δ1...δt}

H(z0|ftest
δ ′ ) (6.18)
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Given the factorization of the likelihood function in Equations 6.12 and 6.15, we
can evaluate the conditional entropy as:

H(z0|ftest
δ ) = − ∑

ftest
δ ,z0

P(z0)P(ftest
δ |zδ ) · log(P(zδ |ftest

δ ))

= − ∑
o,θ0

∑
f test
δ (o,θδ ),z0(o,θ0)

P(z0(o,θ0)) ·

P( f test
δ (o,θδ )|zδ (o,θδ )) ·

log(P(zδ (o,θδ )| f test
δ (o,θδ ))) (6.19)

For Equation 6.15 with likelihood model 1 (λ b
o,θ ,n = κb

o,n), we have that

• P( f test
δ ′ (o,θδ ′)|zδ ′(o,θδ ′)) = P( f test

δ ′′ (o,θδ ′′)|zδ ′′(o,θδ ′′)) when
• f test

δ ′ (o,θδ ′) = f test
δ ′′ (o,θδ ′′) and

• zδ ′(o,θδ ′) = zδ ′′(o,θδ ′′),

and thus MI cannot be used with this model as all viewpoints will give rise to the
same conditional entropy. A similar problem affects the single object model in Sec-
tion 6.3, since Equation 6.7 is symmetrical across o and θ . However, since Equation
6.15 with likelihood model 2 (λ b

o,θ ,n = κb
o,θ ,n) results in distinct matching score dis-

tributions for each object/orientation combination, the MI selection strategy above
can be applied with this model.

The fact that we can only apply an MI selection strategy when we have distinct
distributions for each viewpoint highlights the reliance of the MI strategy on ex-
tensive training/validation statistics. By contrast, our uniqueness map can be used
in cases where we do not estimate these. Further, the evaluation of the required
conditional entropies in Equation 6.18 is O(NoNθ K), where K is the complexity
of evaluating the expectation across the feature space (in general K = |F |, where
ftest
δ ∈F , and for our likelihood model 2 we have K = M′ due to the form of Equa-

tion 6.15). In contrast, our uniqueness map requires only O(NONθ ) using the se-
lection rule described in Equations 6.8 and 6.9. We note though that, if accurate
probability models are available for each viewpoint, the MI selection rule is opti-
mal in the sense of achieving the lowest expected misclassification loss for a given
number of viewpoints [5].

6.6 Experimentation

Dataset: For our experiments, we use the active recognition dataset introduced by
[7]. The training data consists of 23 everyday objects such as cereal boxes, orna-
ments, and spice bottles. The full list of training objects is: All bran box, Battery,
Can 1, Can 2, Curry 1, Curry 2, Elephant, Handbag 3, Jewelry box 1, Jewelry box 2,
Lemon bottle, Mr Min, Robotcop, Salad, Sauce 1, Sauce 2, Spice 1, Spice 2, Spice
3, Spray can, Teddy, Toy and Wall E. Images were captured at every 20 degrees for
each object against a plain background on a turntable using a Prosilica GE1900C
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Fig. 6.4 Comparing Viewpoint Selection Algorithms 1: Graph (a) shows the average number
of primary objects recognized for our single and multi-object algorithms, comparing the per-
formance using the uniqueness map viewpoint selection strategy, and the performance with
a random selection strategy. Graph(b) compares performance of our multi-object algorithm
with likelihood model 2 using the uniqueness map, a random, and a mutual information-based
viewpoint selection strategy.

Fig. 6.5 Comparing Viewpoint Selection Algorithms 2: Graph (a) shows the average num-
ber of primary objects recognized for the approach of Kootstra et al. [10], comparing the
performance using the original expected activation viewpoint selection strategy (from [10]),
and with our uniqueness map strategy substituted. Graph(b) compares average precision and
recall curves across all primary and secondary objects for the same methods when highest
ranking 1-4 objects are selected.

camera. This means that there were 18 training images captured for each object in
the database. Example images from the training set are shown in Figure 6.6.

For the test set, the same objects used in the training data were captured at every 20
degrees in a cluttered environment with significant occlusion by other objects. A ‘pri-
mary’ object was placed in the centre of the turntable with ‘secondary’ objects, which
or may not belong to the training set, surrounding it. The distracter objects include
other everyday objects such as towel, pencil box, thyme bottle and bracelet. Example
images from the test set are shown in Figure 6.7. These images are used in the exper-
iments for testing either the performance against a single object hypothesis, where
we desire recognition of the central object, or multiple objects hypotheses, where we
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Table 6.1 Comparing Timing and Stopping Criteria: The table compares average performance
of various methods with different stopping criteria. Shown are: the average number of view-
points, average time taken (s), average primary object score, average precision/recall across
primary and secondary objects when taking the top ranked object, and the top 4 ranked ob-
jects, and the stopping criterion applied.

Method Views time(s) score prec(1) recall
(1)

prec(4) recall(4) Stopping criteria

Kootstra 6.2 587.1 12.3 0.901 0.334 0.430 0.639 stopping ratio 1.5
Kootstra+our
viewpoint

6.7 636.5 12.6 0.901 0.334 0.444 0.659 stopping ratio 1.5

Ours (single) 8.9 439.7 14.1 0.919 0.341 0.354 0.525 threshold 0.5
Ours(single) 11.6 573.0 14.1 0.916 0.340 0.376 0.558 threshold 0.8
Ours (multiple) 9.7 479.2 13.5 0.835 0.310 0.509 0.756 threshold 0.5, 2 objs
Ours (multiple) 11.0 543.4 13.6 0.844 0.313 0.530 0.786 threshold 0.6, 2 objs

desire recognition of all objects appearing in the training set. For both training and
test data, images are captured around the y-axis, which represents 1 DoF.

Experiment 1: Comparing Single and Multiple Object Recognition Algorithms
Our first experiment compares the performance of the two algorithms outlined, us-
ing single and multiple object hypotheses. We consider two tasks: recognizing the
primary objects in the test sequences, and recognizing all objects. For the primary
object task, we take the object with highest probability for both single and multi-
ple object hypotheses (argmaxo Pt(o) and argmaxo Pt(z(o)) respectively). For the all
object task, we generate precision recall curves by thresholding both the single ob-
ject and multi-object posteriors (Pt(o) and Pt(z(o))). We note that these operations
are valid probabilistically only for the primary-task/single-object and all-object-
task/multi-object combinations respectively. We also compare the performance of
our algorithms with the method of Kootstra et al. on the primary object task. For the
multi-object algorithm we use the likelihood 1 model. We select 3 evenly spaced
viewpoints (5, 11 and 17) from all test sequences to form the validation set from

which to record the counts κ{0,1}
o,n used in this model. We restrict all models to the 15

remaining viewpoints at test time for a fair comparison. We record the performance
of the algorithms on both tasks after 1...15 viewpoints, and we average across all 15
starting viewpoints for all performance measures to generate a robust comparison.
Results are shown in Figures 6.1 6.2 and 6.3 (error bars are shown at 1 standard
deviation).

As shown in Figure 6.1, both the single and multiple object algorithms outper-
form Kootstra’s method on the primary-object recognition task, validating our claim
that the geometric matching step of our algorithm is important in cluttered scenes.
The single and multiple object hypothesis models perform comparably here, which
seems to indicate that the bias towards the primary object is similar in both these
methods: as more data is seen, the single object model latches onto the primary ob-
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ject hypothesis in over half the cases , while this hypothesis becomes the highest
scoring in the multi-object model. Figures 6.2 and 6.3 show that the two models have
different performance characteristics, though, when we consider recognition of all
objects present (the second task). The single object hypothesis approach generally
has higher precision when the recall is low i.e. < 0.5. The multiple object hypoth-
esis approach, though, has higher recall when the precision is low. This appears to
indicate that we can only take advantage of the more accurate probabilistic model
in the lower precision range on our test data. The single object model looses out in
this range, as it will tend to suppress hypotheses if they are significantly weaker than
the most dominant hypothesis. In contrast, this behaviour seems to help in the high
precision range, since it is more likely to suppress spurious hypotheses. As shown
by comparing Figures 6.2 and 6.3, the latter effect becomes less pronounced as more
data are gathered, and the range in which the multi-object model dominates expands.

Experiment 2: Comparing Viewpoint Selection Algorithms
Our second experiment runs several tests to compare our proposed viewpoint selec-
tion strategy based on the uniqueness map with alternative strategies.

First, we test this strategy against a random selection mechanism (simply choos-
ing at random one of the remaining viewpoints at each time-step). We use the same
set-up as above, and compare the primary object recognition rate for single and
multi-object algorithms with uniqueness map and random viewpoint selection rules
in all combinations. As shown in Figure 6.4(a), the single and multiple object hy-
pothesis approaches using our viewpoint selection algorithm outperform those using
random selection across a large range of viewpoints.

Second, we test our uniqueness map strategy against random selection and mu-
tual information using the multi-object algorithm with likelihood model 2. The set-
up is as above, but we now select all even numbered viewpoints as our validation

set to gather the statistics κ{0,1}
o,θ ,n , and treat the remaining 9 odd numbered view-

points as our test set (we let κ{0,1}
o,θ ,n = 0.5 ∗∑m={n−1 n+1modNθ } κ{0,1}

o,θ ,m) for odd n. As
noted, these more extensive statistics (compared to likelihood model 1) are neces-
sary in order to evaluate the mutual information per viewpoint. Figure 6.4(b) com-

Fig. 6.6 Example images from our training set
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pares the performance of likelihood model 2 with 3 viewpoint selection rules: ran-
dom, mutual information and our uniqueness map. As shown, both the uniqueness
map and mutual information outperform random selection across most viewpoints.
The graph also shows that our uniqueness map performs competitively with mutual
information, and in fact outperforms it on a range of viewpoints. This is despite the
fact that the mutual information can be shown to be the optimal strategy if the proba-
bilistic model is accurate [5]. The low performance of mutual information may thus
be taken to indicate that insufficient data was available to estimate accurate statistics
for likelihood model 2 in this setting (indeed, the performance is in general compa-
rable to likelihood model 1, as can be seen by comparing graphs (a) and (b), despite
having access to more fine-grained validation statistics). The results however gen-
erally support our claim that the uniqueness map provides an effective alternative
to previous viewpoint selection mechanisms, which is robust to inaccuracies in the
underlying model.

Finally, we test our uniqueness map strategy in a non-Bayesian context against
the expected increase in activation strategy used in [10]. We substitute the
weighting:

ωt(o,θ0) =

{
1 if θ0 = argmaxθ ′

0
atest

δt
(o,θ ′

0)

0 otherwise.
(6.20)

for Equation 6.9, where atest
δt

(o,θ0) is the activation for object o at orientation θ0 and
time t in the method of [10]. Figure 6.5 compares the performance of [10] with the
original expected activation selection mechanism, and with our proposed mecha-
nism substituted. Graph (a) shows the average number of primary objects identified,
and graph (b) shows the precision/recall curves for all objects present at a range of
viewpoints. In (b), the curves are generated from 4 points, found by successively
selecting the 1-4 objects with the highest ranked activations summed across view-
points. As shown, our viewpoint selection mechanism performs better across most
viewpoint ranges than the expected activation in graph (a). In graph (b) when the
recall is higher than approximately 0.5, [10] with our viewpoint selection algorithm
has higher precision. When the recall falls below 0.5, the precision values for both
methods are comparable. The results thus validate our method’s effectiveness in a
non-Bayesian context.

Experiment 3: Comparing Timing and Stopping Criteria
In our final experiment, we compare the performance of our single and multi-object
algorithms along with the method of Kootstra [10] under various settings of the
stopping condition. In general, we can use the stopping criteria to manipulate the
trade-off between the overall accuracy of each algorithm and its expected overall
timing. Table 6.1 gives a number of performance measures for all algorithms under a
variety of settings of the stopping criterion (the criterion for [10] is the ratio between
largest and second largest activations, and for our methods we manipulate τstop for
both methods and Nobj for the multi-object method). The timings for [10] are derived
from our own implementation of the method. The performance measurements are
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averaged across all 15 starting viewpoints, with ‘score’ being the average number of
objects recognized in the primary object setting, and precision/recall values given
when the top 1 and 4 ranked objects are selected.

As shown, we can achieve similar or better performance metrics to [10] at faster
absolute timings, although in general our methods use a larger average number of
viewpoints to achieve this. Further, in agreement with the results of Experiment
1, we see that our single object method has slightly better performance than the
multi-object method in the high-precision/low-recall range, while the multi-object
model is substantially better in the low(er)-precision/high-recall range (as seen by
comparing the results across methods in the prec(4) and rec(4) columns). We note

Fig. 6.7 Example images from our testing set. Shown below are the ground truth objects
in the sequence, the highest ranking objects predicted by our single object and multi-object
algorithms, along with the approach of Kootstra et al. [10] using the stopping criteria from
rows 1, 3 and 5 of Table 6.1. The final probabilities/scores of the predicted objects are shown,
along with +/- to indicate if the object is present or not, and the time taken (in seconds) to
process the sequence.
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that these results are only suggestive, since they may be affected by our particular
implementations, and also in a realistic active vision situation factors other than
processing time may be involved (such as time to move to a new viewpoint). Outputs
corresponding to rows 1, 3 and 5 for two test sequences are shown in Figure 6.7.

6.7 Discussion

In summary, we have investigated active object recognition in the context of identi-
fying groups of objects in cluttered scenes. We have shown that features formed from
Hough-based geometric matching counts provide sufficient information to perform
object recognition in this context, and that using geometric information allows us
to achieve better performance against methods such as [10] which do not. Further,
we have developed a Bayesian framework which accurately models the assumptions
of this testing context, and have shown that providing such an accurate probabilistic
model can provide enhanced performance in certain circumstances. Finally, we have
provided an extensive empirical evaluation of a multi-object version of the unique-
ness map viewpoint selection strategy introduced in [7], and shown this to provide an
efficient and accurate alternative to strategies such as mutual information, and non-
Bayesian approaches.

In general, our results suggest that techniques for coping with object recognition
amongst clutter in 2D can be used effectively in an active vision context. Indeed,
our results show that the added robustness of the active vision setting allows simpler
overall representations to be used, as seen by comparing our count-based features with
the approach of [12]. The incorporation of additional statistics into our representation,
as in [12], as well as more complex object models, including for instance texture
and shape, are promising directions for future work. Further, our results suggest that
further refining our overall probabilistic models to accurately reflect the assumptions
of the test data can provide performance gains in a Bayesian active vision setting. A
slight caveat here, though, is that we must have access to sufficient training/validation
data in order to accurately estimate such models to see significant effects. Possibilities
for future work along these lines include investigation of probabilistic active vision
models which incorporate knowledge of correlations between objects (which objects
are seen often/seldom together) and enhanced occlusion reasoning.

References

1. Borotschnig, H., Paletta, L., Prantl, M., Pinz, A.: Active object recognition in parametric
eigenspace. In: British Machine Vision Conference (BMVC), pp. 629–638 (1998)

2. Borotschnig, H., Paletta, L., Prantl, M., Pinz, A.: A comparison of probabilistic, possi-
bilistic and evidence theoretic fusion schemes for active object recognition. Computing,
293–319 (1999)



6 Probabilistic Active Recognition of Multiple Objects 109

3. Callari, F., Ferrie, F.: Active object recognition: Looking for differences. International
Journal of Computer Vision, 189–204 (2001)

4. Collet, A., Berenson, D., Srinivasa, S., Ferguson, D.: Object recognition and full pose
registration from a single image for robotic manipulation. In: IEEE International Con-
ference on Robotics and Automation (ICRA), pp. 48–55 (2009)

5. Denzler, J., Brown, C.M.: Information theoretic sensor data selection for active object
recognition and state estimation. IEEE Transactions on PAMI, 145–157 (2002)

6. Ferrari, V., Tuytelaars, T., Gool, L.: Simultaneous object recognition and segmentation
from single or multiple views. International Journal of Computer Vision, 159–188 (2006)

7. Govender, N., Claassens, J., Torr, P., Warrell, J.: Active object recognition using vocab-
ulary trees. IEEE Workshop on Robot Vision (2013)

8. Hutchinson, S.A., Kak, A.C.: Planning sensing strategies in a robot work cell with multi-
sensor capabilities. IEEE Transactions on Robotics and Automation, 765–783 (1989)

9. Jia, Z.: Active view selection for object and pose recognition. In: International Confer-
ence on Computer Vision (ICCV) 3D Object Recognition Workshop, 641–648 (2009)

10. Kootstra, G., Ypma, J., de Boer, B.: Active exploration and keypoint clustering for object
recognition. In: IEEE International Conference on Robotics and Automation, 1005–1010
(2008)

11. Krause, A., Singh, A., Guestrin, C.: Near-optimal sensor placements in Gaussian Pro-
cesses: Theory, efficient algorithms and empirical studies. Journal of Machine Learning
Research, 235–284 (2008)

12. Lowe, D.: Local feature view clustering for 3d object recognition. In: International Con-
ference on Computer Vision and Pattern Recognition (CVPR), pp. 682–688 (2001)

13. Lowe, D.: Distinctive image features from scale invariant keypoints. International Jour-
nal of Computer Vision, 91–110 (2004)

14. Moreels, P., Perona, P.: Evaluation of feature detectors and descriptors based on 3d ob-
jects. International Journal of Computer Vision, 263–284 (2007)

15. Nister, D., Stewenius, H.: Scalable recognition with a vocabulary tree. In: Interna-
tional Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2161–2168
(2006)

16. Sabatta, D., Scaramuzza, D., Siegwart, R.: Improved appearance-based matching in sim-
ilar and dynamic environments using a vocabulary tree. In: IEEE International Confer-
ence on Robotics and Automation (ICRA), pp. 1008–1013 (2010)

17. Selinger, A., Nelson, R.: Appearance-based object recognition using multiple views. In:
Conference on Computer Vision and Pattern Recognition (2001)

18. Sommerlade, E., Reid, I.: Information-theoretic active scene exploration. In: IEEE Con-
ference on Computer Vision and Pattern Recognition (2008)

19. Yu, S., Krishnapuram, B., Rosales, R., Rao, R.: Active Sensing. In: IEEE International
Conference on Artificial Intelligence and Statistics (AISTATS), pp. 639–646 (2009)



Chapter 7
Incremental Light Bundle Adjustment:
Probabilistic Analysis and Application
to Robotic Navigation

Vadim Indelman and Frank Dellaert

Abstract. This paper focuses on incremental light bundle adjustment (iLBA), a re-
cently introduced [13] structureless bundle adjustment method, that reduces com-
putational complexity by algebraic elimination of camera-observed 3D points and
using incremental smoothing to efficiently optimize only the camera poses. We con-
sider the probability distribution that corresponds to the iLBA cost function, and
analyze how well it represents the true density of the camera poses given the im-
age measurements. The latter can be exactly calculated in bundle adjustment (BA)
by marginalizing out the 3D points from the joint distribution of camera poses and
3D points. We present a theoretical analysis of the differences in the way that light
bundle adjustment and bundle adjustment use measurement information. Using in-
door and outdoor datasets we show that the first two moments of the iLBA and the
true probability distributions are very similar in practice. Moreover, we present an
extension of iLBA to robotic navigation, considering information fusion between
high-rate IMU and a monocular camera sensor while avoiding explicit estimation of
3D points. We evaluate the performance of this method in a realistic synthetic aerial
scenario and show that iLBA and incremental BA result in comparable navigation
state estimation accuracy, while computational time is significantly reduced in the
former case.

7.1 Introduction

Bundle adjustment (BA) plays a key role in many applications in mobile vision and
robotics. The basic problem can be described as follows: given a sequence of im-
ages, determine the maximum a posteriori (MAP) estimate of camera poses and the
observed 3D points (or another representation of the observed structure). Fast and
reliable calculation of this MAP estimate is important in particular in mobile robotic
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applications and has been continuously addressed by the research community in re-
cent years.

This paper1 focuses on the recently developed incremental light bundle adjust-
ment (iLBA) approach [13], that belongs to “structure-less” BA methods [34, 31, 10,
13], in which the camera poses are optimized without including structure parameters
into the iterative optimization procedure. iLBA reduces computational complexity
by algebraic elimination of 3D points and using an efficient incremental optimiza-
tion that is based on incremental smoothing (iSAM2) [17, 18].

This paper presents a probabilistic analysis of iLBA, analyzing how well the
probability distribution corresponding to the iLBA cost function agrees with the
true probability distribution of the camera poses. Accurate and reliable maximum
a posteriori and uncertainty estimates are important in many structure from motion
and robotic applications, yet to the best of our knowledge this is the first time that
such an analysis is conducted for structure-less BA methods. This theoretical analy-
sis, which is also valid for other structure-less BA methods, reveals the root effects
that cause the iLBA distribution to be an approximation of the true distribution. Us-
ing real imagery datasets (see Figures 7.1 and 7.2) we show that in practice the two
distributions are close to each other.

In the second part of the paper an extension of iLBA to robotic navigation is pre-
sented. We argue that iLBA is in particular suitable for navigation problems, as it fa-
cilitates estimation of the navigation state without explicit 3D reconstruction, which
is typically not required in the navigation context. Furthermore, it supports loop
closure observations (re-observations of 3D points) that are essential for maintain-
ing accurate performance over time. We consider state estimation in the challeng-
ing configuration of a monocular camera and high-rate inertial navigation sensors
(IMU) and use incremental smoothing to fuse information from these sensors. Sim-
ilarly to [16], we adopt a recently developed technique [26] for IMU pre-integration
to summarize IMU information, significantly reducing the number of variables in
the optimization. Finally, we analyze the performance of the proposed method in a
synthetic aerial scenario.

Consequently, this paper makes three contributions: 1) probabilistic analysis of
iLBA; 2) extension of iLBA to robotic navigation; 3) Evaluation of thereof using
real-imagery datasets and a synthetic aerial scenario.

The remainder of this paper is organized as follows. After discussing related
work, Section 7.3 overviews the main component of iLBA. Section 7.4 presents
a probabilistic analysis of iLBA and evaluation using real-imagery datasets. In Sec-
tion 7.5 iLBA is extended to robot navigation; this section also includes performance
evaluation in a realistic synthetic aerial scenario. Section 7.6 concludes the discus-
sion and suggests directions for future research.

1 Part of the material discussed in this paper was presented in the conference papers [14]
and [12].
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(a) Top view

(b) Zoom in on the stairway area

Fig. 7.1 Estimated camera trajectory and sparse 3D reconstruction in the Outdoor dataset that
is used for evaluating LBA and BA probability distributions
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Fig. 7.2 Estimated camera poses and sparse 3D reconstruction in the Indoor dataset that is
used for evaluating LBA and BA probability distributions

7.2 Related Work

We organize this section into two parts, discussing first research related to computa-
tional efficient bundle adjustment and then reviewing related methods from simul-
taneous localization and mapping (SLAM) and vision-aided navigation literature.

7.2.1 Computationally Efficient Bundle Adjustment

Development of computationally efficient bundle adjustment approaches, in partic-
ular for large-scale scenarios, has become an active research area in the past few
years. The developed approaches include methods that exploit sparsity of the in-
volved matrices in the optimization [24, 21], decoupling the BA problem into sev-
eral submaps that can be efficiently optimized in parallel [30], constructing a skeletal
graph using a small subset of images and incorporating the rest of the images using
pose estimation [33], solving a reduced version of the non-linear system [22], and
finding a coarse initial solution using a discrete-continuous optimization followed
by a BA refinement [2].
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Another family of recently suggested methods is structure-less BA [34, 31, 10,
13], in which the camera poses are optimized without including structure parame-
ters into the iterative optimization procedure. The first structure-less BA method was
introduced, to the best of our knowledge, by Steffen et al. [34] who optimized the
corrections of image observations subject to satisfying trifocal tensor constraints [7].
A similar concept was developed in [10] using three-view constraints [11] instead
of the trifocal tensor. Rodrguez et al. [31] obtained reduced computational complex-
ity by reformulating the optimized cost function and refraining from correcting the
pixels. Another significant gain in computational complexity was obtained in incre-
mental light bundle adjustment [13], that applied a recently developed technique for
incremental smoothing [17, 18] to structure-less BA.

7.2.2 SLAM and Vision-Aided Navigation

Current SLAM algorithms can be divided into two main categories: feature- and
view-based SLAM. In feature-based SLAM, both the observed 3D points and the
robot’s past and current poses are optimized. Several efficient optimization methods
that exploit the sparsity of typical structure from motion and SLAM problems have
been developed in recent years, some of which are discussed in Section 7.2.1.

The second SLAM category is view-based SLAM [25, 4], or pose-SLAM, in
which, similar to iLBA, only the current and past robot’s poses are maintained. In
pose-SLAM approaches, pairs of poses are linked using relative pose constraints
that are straightforward to estimate in a stereo camera setup [8, 22], but become
more challenging when relying only on a single camera. In the latter case, the rel-
ative constraints can be estimated only up to a scale, which encodes the magnitude
of the relative translation [4]. This scale parameter can be set based on the previous
frames as in [1]. However, to avoid scale drift the scale parameters should be part of
the optimization as well [6]. In contrast to conventional pose-SLAM, iLBA formu-
lates multi-view geometry constraints for each feature match, thereby not requiring
uncertainty estimates from an intermediate (and separate) process of image-based
relative-pose constraints estimation.

In the context of navigation-aiding, despite the close relation to SLAM, only a
few methods have been presented in recent years that are capable of incorporat-
ing loop closure measurements. These include [28] where visual observations are
incorporated into the navigation solution using an EKF formulation with a slid-
ing window of past poses. In a later work [29], the authors applied a conventional
batch BA that involved explicit structure estimation in order to handle loop closure
measurements. More recently, incremental smoothing [18] was proposed for inertial
navigation systems in [15, 16] and a method was developed to incorporate loop clo-
sures while maintaining a real time navigation solution [20]. The extension of iLBA
to robotic navigation that is described in this paper is formulated within the same
framework of [20, 15, 16] but replaces the explicit estimation of 3D points with a
set of 2-view and 3-view constraints.
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7.3 Incremental Light Bundle Adjustment

Incremental light bundle adjustment (iLBA) [13] combines the following two key-
ideas: algebraic elimination of 3D points, and incremental smoothing. In this section
we review each of these concepts, first introducing notations and standard bundle
adjustment formulation.

7.3.1 Bundle Adjustment

Consider a sequence of N views observing M 3D points, and denote the ith camera
pose by xi and the measured image observation of the jth 3D point l j by z j

i . Let also

X
.
=

{
xT

1 , . . . ,x
T
N

}T
and L

.
=

{
lT
1 , . . . , l

T
M

}T
.

The joint pdf p(X ,L|Z) can be explicitly written in terms of the prior information
and the actual measurement models:

p(X ,L|Z) = priors ·∏
i

∏
j∈Mi

p
(

z j
i |xi, l j

)
, (7.1)

where p
(

z j
i |xi, l j

)
is the measurement model corresponding to the probability den-

sity of observing the 3D point l j from a camera pose xi at the pixel location z j
i , and

Mi represents the indices of all 3D points observed from the ith camera. Assuming
Gaussian distributions, the maximum a posteriori (MAP) estimation

X∗,L∗ = argmax
X ,L

p(X ,L|Z) ,

corresponds to minimizing the following nonlinear cost function (omitting prior
terms for clarity)

JBA (X ,L) = ∑
i

∑
j∈Mi

∥
∥∥z j

i −π (xi, l j)
∥
∥∥

2

Σ
, (7.2)

where π (·) is the projection function [7] for a standard pinhole camera model, and
‖a‖2

Σ
.
= aT Σ−1a is the squared Mahalanobis distance with the measurement covari-

ance matrix Σ . Each term in the cost function JBA corresponds to the re-projection
error between the measured and predicted image observations (see Figure 7.3).

xi

lj
3D point

zji

Fig. 7.3 Illustration of re-projection error: difference between projection of the 3D point l j

onto the camera frame using camera pose xi, and the image observation z j
i
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7.3.2 Algebraic Elimination of 3D Points Using Three-View
Constraints

Performing inference over the joint pdf p(X ,L|Z) involves optimizing 6N + 3M
variables, with N and M denoting camera frames and observed 3D points, respec-
tively. Instead, in this section we reduce the number of variables to only 6N by
algebraically eliminating all the 3D points.

Considering all the camera frames that observe some 3D point l j and writing
down all the appropriate projection equations, it is possible to algebraically elim-
inate l j, leading to multiple view constraints that involve up to triplets of cameras
[27, 35]. One possible formulation of these constraints, recently developed in the
context of vision-aided navigation [9, 11], is the three-view constraints. The close
relation between these constraints and the well-known trifocal tensor was reported
in [13]. The three view constraints, for a triplet of camera frames k, l and m are given
by (see Figure 7.4)

g2v

(
xk,xl ,z

j
k,z

j
l

)
= qk · (tk→l × ql) (7.3)

g2v

(
xl ,xm,z

j
l ,z

j
m

)
= ql · (tl→m × qm) (7.4)

g3v

(
xk,xl ,xm,z

j
k,z

j
l ,z

j
m

)
= (ql × qk) · (qm × tl→m)− (qk × tk→l) · (qm × ql) (7.5)

where qi is the line of sight expressed in a global frame, qi
.
= RT

i K−1
i z, for any view

i and image observation z, Ki is the calibration matrix of this view, Ri represents
the rotation matrix from the global frame to the ith view’s frame, and ti→ j denotes
the translation vector from view i to view j, expressed in the global frame. The
first two constraints are the two-view constraints g2v between appropriate pairs of
views, also known as the epipolar constraints. Given matching image observations,

xk

lj
3D point

zjk

xl

View l xm

View
mViewk

zjl

zjm

Fig. 7.4 Three camera frames k, l and m observing the same 3D point l j . Explicit estimation
of l j can be avoided by algebraic elimination using three-view constraints (7.3)-(7.5).
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these constraints allow to recover the relative rotation and up-to-scale translation
motion between camera pairs. The third constraint, g3v, involves all the three views
and enforces a consistent scale of the translation vectors tk→l and tl→m. Thus, if the
magnitude of the former is known, the magnitude of the later can be determined.

When a 3D point is observed by more than three views, a single two-view and
three-view constraint between each new view m and past views k, l is added [10].
Determining which past views to use is still an open question that we currently
investigate. In the results reported in this paper, we heuristically choose the past
views to be the earliest camera frame k observing the 3D point and set l to be the
middle camera frame such that the translation vectors tk→l and tl→m are of similar
magnitudes2.

In practice, in order to avoid the trivial solution of zero translation, we normalize
each of the constraints g2v and g3v by a translation vector and modify the Jacobian
matrices accordingly.

Algebraically eliminating all the 3D points using the three-view constraints (7.3)-
(7.5) leads to the following cost function that is expressed in terms of these con-
straints, instead of re-projection errors as in bundle adjustment (Eq. (7.2)):

JLBA(X)
.
=

Nh

∑
i=1

‖hi(Xi,Zi)‖2
Σi
, (7.6)

where hi ∈ {g2v,g3v} represents a single two- or three-view constraint that is a func-
tion of several camera poses Xi ⊂ X and image observations Zi in the appropriate
views, and Nh is the overall number of such constraints. One can observe that the
cost function JLBA does not contain any 3D points as variables.

Note that an exact marginalization of 3D points p(X |Z) = ∫
L p(X ,L|Z)dL is an-

other alternative, however, as discussed in the sequel, it densifies the matrices and
therefore will not necessarily result in computational gain. Algebraic elimination
of 3D points following the approach discussed above avoids some of this densifi-
cation by discarding a certain amount of information. As a result, the inference is
performed only over the camera poses and is typically significantly faster than con-
ventional bundle adjustment at the cost of a certain degradation in accuracy. The
analysis of this tradeoff is further discussed in Section 7.4.

7.3.3 Incremental Smoothing

The second component in iLBA is the recently-developed incremental smoothing
[19, 18], an efficient nonlinear optimization technique that exploits sparsity and re-
uses calculations when possible. Below we review the main concepts of this tech-
nique, and refer the reader to [19, 18] for further details.

2 When adding a new camera into the optimization we initialize its pose using a three-view
constraint g3v, while keeping the poses of the other two cameras fixed.
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7.3.3.1 Factor Graph Representation

The incremental smoothing technique uses the factor graph graphical model [23]
to represent a given factorization of the joint probability distribution function (pdf).
Formally, a factor graph is a bipartite graph G = (X ,F ,E ) with X ,F being vari-
able and factor nodes and E consisting of edges that connect between these two
variable groups. Each ith probabilistic term p(.) in the factorization of the joint pdf
is represented by a factor node f ∈F that is connected by edges e ∈ E to variable
nodes Xi ⊂X that are involved in p(.).

In case of bundle adjustment, the factorization of the joint pdf p(X ,L|Z) is given
by Eq.(7.1), and defining the projection factor for some view x, landmark l and
image observation z as

fpro j (x, l)
.
= exp

(
−1

2
‖z− pro j (x, l)‖2

Σ

)
,

the factor graph formulation can be trivially written as

p(X ,L|Z) ∝ ∏
i

∏
j∈Mi

fpro j (xi, l j) .

In order to represent LBA in a factor graph, a suitable joint probability distribution
function pLBA (X |Z) should be formulated first. Since the residual errors of three-
view constraints (7.3)-(7.5) have been shown [13] to be of Gaussian distribution,
the LBA pdf and the two- and three-view factors can be defined as

pLBA (X |Z) ∝
Nh

∏
i=1

f2v/3v (Xi,Zi) , (7.7)

and

f2v (xk,xl)
.
= exp

(
−1

2
‖g2v (xk,xl ,zk,zl)‖2

Σ2v

)
(7.8)

f3v (xk,xl ,xm)
.
= exp

(
−1

2
‖g3v (xk,xl ,xm,zk,zl ,zm)‖2

Σ3v

)
, (7.9)

where the covariance matrices Σ2v and Σ3v are given in [13].
Figure 7.5b illustrate factor graphs that represent p(X ,L|Z) and pLBA (X |Z) in a

simple case of 4 camera poses observing 2 different 3D points. Each method uses
different factors as discussed above.

7.3.3.2 Incremental Inference

Computing a MAP estimate of a given joint pdf typically involves a nonlinear opti-
mization, where in each iteration a linearized system of the form Δ∗ = argminΔ (AΔ −
b) is solved. To that end, the large sparse Jacobian matrix A is factorized, e.g. us-
ing QR factorization, and an equivalent system RΔ − d, with d

.
= QT b is obtained.
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x1 x2 x3 x4

projection
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Views:

Landmarks: l1

(a)

x1 x2 x3 x4
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3-view factor3-view factor

Views:
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(b)

x1 x2 x3 x4
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Views:

Landmarks: l1

(c)

Fig. 7.5 Factor graph formulation for (a) BA and (b) LBA. (c) Factor graph after marginaliz-
ing out the landmark l1.

Since R is upper triangular, this system can be easily solved, in a process known as
back-substitution.

Instead of calculating a factorization of the Jacobian A from scratch, the matrix R
from the previous factorization can be updated with new information. Incremental
smoothing performs this operation very efficiently using graphical models [19, 18]:
The factor graph is eliminated into a Bayes net using a calculated elimination or-
der, and can be also converted into Bayes tree. Both graphical models represent the
sparse factorized matrix R (which is the square root information matrix). Updating a
factorization involves identifying what parts in the Bayes net (tree) are affected and
re-eliminating only these variables. Additionally, tracking the validity of lineariza-
tion point of each variable allows to perform selective re-linearization, instead of
always re-linearizing all variables, while still recovering the MAP estimate up to a
tolerance [19, 18].

7.4 Probabilistic Analysis of Light Bundle Adjustment

This section analyzes how well the LBA distribution pLBA (X |Z) represents the true
density p(X |Z). An exact calculation of the latter would marginalize the landmarks
from the joint p(X ,L|Z)

p(X |Z) =
∫

L

p(X ,L|Z)dL.
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While in practice, LBA represents a similar probability density over cameras as
BA, there are two root effects that cause the LBA distribution to be an approxi-
mation of the true density: First, LBA discards some mutual information in large
camera cliques, by considering only the mutual information between camera pairs
and triplets introduced by them observing the same landmark. Bundle adjustment,
on the other hand, induces mutual information between all cameras observing the
same landmark. Second, LBA duplicates some information for image measurements
used in multiple factors, double-counting measurements that appear in multiple two-
or three-view factors.

As an example of both of these effects, consider observing a landmark l by four
views x1,x2,x3 and x4, as illustrated in Figure 7.5. The joint pdf is given by

p(X4, l|Z4) ∝
4

∏
i=1

fpro j (xi, l) , (7.10)

where X4 and Z4 denote the four camera poses and the four image observations,
respectively. On the other hand, the LBA pdf is

pLBA (X4|Z4) ∝ f2v (x1,x2) f2v (x2,x3) f3v (x1,x2,x3)

f2v (x3,x4) f3v (x2,x3,x4) (7.11)

which corresponds to the set of two- and three-view factors, as shown in Figure 7.5.
The first effect, discarding of mutual information, can be seen when comparing

the LBA pdf with the pdf resulting from eliminating the landmarks from the BA pdf,

p(X4|Z4) =

∫

X4

p(X ,L|Z)dX4 = p(x1,x2,x3,x4|z1,z2,z3,z4) (7.12)

The result in the case of BA is a single clique over all cameras. In general, there
is no way to exactly factor such a dense clique in a way that reduces complexity.
The multiple factors of LBA over pairs and triplets (Eq. (7.11)) reduce complexity
instead by discarding some “links” that would otherwise be introduced between
cameras.

The second effect, duplication of some image measurement information, can be
seen in the sharing of cameras between LBA factors in Eq. (7.11). Any two fac-
tors sharing a camera in common both use the information from the shared camera,
effectively duplicating it. For example, f2v (x1,x2) and f2v (x2,x3) both use the in-
formation from the measurements in camera 2.

This duplication of information happens since the two- and three-view factors
were assumed to have independent noise models, represented by the covariance
matrix Σi for the ith factor, and therefore could be separately written in the LBA
pdf (7.7). This assumption is violated for factors that share measurements, as in
the example above. One approach to avoid double counting is therefore to aug-
ment such factors, while accounting for the fact that the same measurement is in-
volved by appropriate cross-covariance terms in the (augmented) covariance matrix.
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For example, for any two factors representing constraints ga and gb, we can define

faug
.
= exp

(
− 1

2

∥
∥gaug

∥
∥2

Σaug

)
, with gaug

.
=

[
ga gb

]T and the augmented covariance

matrix Σaug :

Σaug
.
=

[
Σa Σab

Σba Σb

]
(7.13)

where the cross-covariance terms Σab are non-zero when the constraints share
measurements. However, since multiple factors are combined into a single multi-
dimensional factor that involves all the variables in these individual factors, the
factor graph becomes denser. Therefore, such an approach is expected to have con-
siderable impact on computational complexity.

As we show in the next section, despite the above two aspects, the actual LBA
distribution is very similar to the true distribution p(X |Z). It is worth mentioning
that the presented probabilistic analysis is valid for other existing structure-less BA
methods [34, 31, 10] as well.

7.4.1 Datasets for Evaluation and Implementation

We use two datasets to evaluate how well the iLBA distribution pLBA (X |Z) rep-
resents the true density p(X |Z). In the first dataset (Cubicle) the camera observes
a cubicle desk in an open space environment from different viewpoints and dis-
tances (see Figure 7.2). In the second dataset, Outdoor, the camera follows a trajec-
tory encircling a courtyard and building and performing loop closures as shown in
Figures 7.1 and 7.6. Figure 7.7 shows typical images from these two datasets, while
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Fig. 7.6 Estimated trajectory in Outdoor dataset. LBA and conventional BA produce very
similar results.
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Table 7.1 Dataset details and performance of iLBA and BA: Re-projection errors and com-
putational cost using incremental smoothing in all methods

Dataset N, M, #Obsrv Avg. reproj. error [pix] Overall time [s]

iLBA iBA iLBA iBA

Cubicle 148, 31910, 164358 0.552 pix 0.533 pix 581 6024

Outdoor 308, 74070, 316696 0.418 pix 0.405 pix 3163 26414

(a) (b)

Fig. 7.7 Typical images in the Cubicle (a) and Outdoor (b) datasets

Table 7.1 provides further details regarding the number of views (N) and 3D points
(M), as well as the number of total observations in the two datasets.

All methods were implemented using the GTSAM factor graph optimization li-
brary3 [3, 18]. Incremental smoothing was used in all cases, denoted by the prefix
i (i.e. iLBA and iBA). Image correspondences, as well as the camera calibration
matrices, were obtained by first running Bundler4 [32] on each dataset. Additional
implementation details can be found in [13].

7.4.2 Evaluation

In this section we compare the distributions of iLBA and incremental BA using two
real imagery datasets. We first discuss how this comparison is made, present MAP
estimate and computational cost of each method in Section 7.4.2.2 and then focus
on estimated uncertainties by the two approaches in Section 7.4.2.3.

3 https://borg.cc.gatech.edu/.
4 http://phototour.cs.washington.edu/bundler.

https://borg.cc.gatech.edu/.
http://phototour.cs.washington.edu/bundler.
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7.4.2.1 Method for Comparing the PDFs of LBA and BA

Because computing the true marginal over cameras for BA p(X |Z) is not tractable
in closed form, we use an alternate method to compare the pdfs of LBA and BA.
This method evaluates how well LBA and BA agree in both the absolute uncertainty
of each camera in a global frame, and the relative uncertainty between all pairs of
cameras.

In order to compare uncertainties, we first assume that pLBA (X |Z) and p(X |Z)
both are well-approximated as multivariate Gaussian distributions about their MAP
estimates

pLBA (X |Z) = N (μLBA,ΣLBA)

p(X |Z) = N (μ ,Σ) .

In order to compare relative uncertainty between cameras, we compare conditional
densities p(xi|x j,Z) between all pairs of cameras. This calculation quantifies how
well LBA agrees with BA in relative uncertainty, while avoiding calculating the
full covariance matrix on all cameras, which quickly becomes intractable for large
numbers of cameras. The conditionals are obtained by integrating out all variables
other than xi and x j,

p(xi|x j,Z) =
∫

X\{xi ,x j},L
p(X ,L|Z)/p(x j|Z) .

In practice, we do this analytically by approximating the joint as a Gaussian around
its MAP estimate, and applying sparse factorization,

p(X ,L|Z) = p
(
X\{xi,x j

}
,L|xi,x j,Z

)
p(xi|x j,Z) p(x j|Z) (7.14)

from which the desired conditional p(xi|x j,Z) can be read off.

7.4.2.2 MAP Estimate and Computational Cost

Before discussing probabilistic aspects, we show performance results, in terms of
accuracy of the MAP estimate and computational complexity. As seen in Table 7.1
and Figure 7.6, while iLBA yields a similar, but a bit degraded accuracy, the com-
putational cost of iLBA is 8-10 times faster than incremental BA.

7.4.2.3 Estimated Camera Pose Uncertainty

We compare the probability density of the cameras estimated by iLBA to that of
incremental BA by comparing their discrepancy both in the marginal uncertainty
of each camera, and in relative uncertainty between each camera pair, as described
in Section 7.4.2.1. We provide details as to how this comparison was made in the
Appendix.
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A comparison of the absolute uncertainty for the Cubicle dataset is given in Fig-
ure 7.8 and Figures 7.9a-7.9b. Figure 7.8a compares, for each camera pose i, be-
tween the covariance trace of Σ i

LBA and Σ i
BA. As seen, the initial uncertainty is very

small and it increases as the camera moves around the cubicle deck and drops to
low values when the camera captures previously-observed areas thereby providing
loop-closure measurements. Figure 7.8b describes the interaction between the un-
certainty of each view and the number of factors that involve this view. As expected,
it can be seen that the covariance is higher when less factors are involved and vice
versa.
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Fig. 7.8 Cubicle dataset: (a) Covariance trace of each camera pose. (b) Trace of covariance
and number of factors in LBA formulation, both are normalized to 1.
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Overall, the absolute uncertainties in LBA and BA are very similar. This can
be also observed in Figures 7.9a-7.9b that show a histogram of the discrepancy
(7.19) both for position and orientation terms. Typical position discrepancies are
near −10−4 meters. The discrepancies for relative uncertainties are given in Figures
7.9c-7.9d for position and orientation terms.

Figure 7.10 shows the discrepancy histograms for the Outdoor dataset. The ab-
solute and relative discrepancies between LBA and BA are small, e.g. less than 5
centimeters in the absolute position for a trajectory that spans an area of 120× 150
meters (cf. Figure 7.6), and on the order of 10−4 radians for the absolute rotation
uncertainty.

Our conclusion from this evaluation is that the uncertainties estimated using
iLBA represent well the uncertainties of incremental BA and therefore can be used
instead of the later, e.g. in the context of establishing data association.
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Fig. 7.9 Discrepancy histograms for the Cubicle dataset: Absolute position (a) and orientation
(b); Relative position (c) and orientation (d) between every camera pair in the sequence
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Fig. 7.10 Discrepancy histograms for the Outdoor dataset: Absolute position (a) and orienta-
tion (b); Relative position (c) and orientation (d) between every camera pair in the sequence

7.5 Application iLBA to Robotic Navigation

While incremental light bundle adjustment has been discussed thus far in the con-
text of structure from motion problems, it is particularly attractive also to robotic
navigation where different sensors are often available.

In this section we extend iLBA to robotic navigation and consider the challeng-
ing configuration of a robot equipped only with high-rate inertial navigation sensors
(IMU) and a monocular camera. We show that this information fusion problem can
be solved using incremental smoothing and adapt a recently-developed technique
[26] for summarizing consecutive IMU measurements to obtain high-rate perfor-
mance. We present proof-of-concept results using a synthetic aerial scenario.

Slightly abusing the previous notation, we redefine x to be the navigation state,
comprising robot pose (position and orientation) and velocity. The IMU calibration
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parameters are denoted by b; although in this section no specific parametrization is
assumed, we will refer to b as IMU bias.

7.5.1 Formulation

As standard in navigation literature [5], we use the probabilistic motion model

p
(

xk+1|xk,bk,z
IMU
k

)
∝ exp

(
−1

2

∥
∥
∥xk+1 −hIMU

(
xk,bk,z

IMU
k

)∥∥
∥

2

ΣIMU

)
.
= f IMU (xk+1,xk,bk)

(7.15)

to represent the distribution over the state xk+1 given previous state xk, an IMU
measurement zIMU

k and IMU calibration, that we will refer to as bias, bk. The func-
tion hIMU represents the nonlinear discrete inertial navigation equations [5]. The
time evolution of IMU bias is modeled using some dynamics function hb and is
expressed probabilistically as

p(bk+1|bk) ∝ exp

(
−1

2

∥
∥∥bk+1 − hb (bk)

∥
∥∥

2

Σb

)
.
= f bias (bk+1,bk) . (7.16)

Fusing information from IMU and camera sensors using LBA framework then in-
volves calculating the MAP estimate of the following joint probability distribution
function:

p(Xk,Bk|Zk) ∝
k−1

∏
s=0

[

f IMU (xs+1,xs,bs) f bias (bs+1,bs)
ns

∏
i=1

f2v/3v (Xsi)

]

, (7.17)

where we used the IMU and bias factors f IMU and f bias defined in Eqs. (7.15)-
(7.16), with ΣIMU and Σb representing the corresponding process covariance matri-
ces, and the overall set of IMU biases denoted by Bk

.
=

[
bT

1 · · · bT
k

]T
; in practice,

since these tend to only have slow dynamics, it makes sense to describe this process
in some lower rate [15, 16]. In Eq (7.17), ns+1 is the number of two- and three-
view factors that are added between each current state xs+1 and past states. Thus, if
xa ∈ Xsi then a ≤ s+ 1.

While the MAP estimate X∗
k ,B

∗
k = argmaxXk,Bk p(Xk,Bk|Zk) can be calculated

using incremental smoothing, high-rate performance becomes infeasible: Number
of variables in the optimization rapidly increases as a new navigation state is intro-
duced at IMU rate (for each new IMU factor). Moreover, number of variables that
need to be re-calculated rapidly increases when new two- and three-view factors are
added to the graph.

To get a better understanding of this aspect, it is beneficial to first consider only
IMU observations. Adding new IMU and bias factors involve only re-eliminating the
two past navigation and bias states regardless to the graph size. This is illustrated
in Figure 7.11 for two consecutive time instances t4 and t5. The figure shows both
factor graphs and bayes nets with the latter representing the square root information
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matrix R. The nodes that were modified from the previous Bayes net are shown in
Figure 7.11d in red.

Considering now also a camera sensor, adding two- and three-view factors (or
projection factors for bundle adjustment) would require re-eliminating many more
variables. While the exact number depends on variable elimination ordering, typ-
ically at least the variables in between the variables involved in the new factors
will have to be re-eliminated. For example, adding a single two-view factor (Fig-
ure 7.12a) most probably will involve re-eliminating the majority of the variables
x1 − x5 and b1 − b4. Adding other multi-view factors that involve additional nav-
igation states will require re-eliminating many more variables, and thus high-rate
performance is only possible for a limited time.

In the next section we discuss a solution to this problem.
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Fig. 7.11 (a)-(b) Factor graphs and (c)-(d) Bayes nets for the pure-IMU case in two consecu-
tive time instances. Adding IMU and bias factors involves re-eliminating only 2 past nodes.
Modified parts are marked in red.

7.5.2 Equivalent IMU Factor

In this section we adopt a recently-developed technique [26] for IMU measurements
pre-integration that allows to reduce the number of variables and factors in the opti-
mization, resulting in significantly improved computational complexity.

The idea is to integrate consecutive IMU measurements between two time in-
stances ti and t j into a single component, denoted by Δxi→ j , comprising the accu-
mulated change in position, velocity and orientation, represented respectively by
Δ pi→ j,Δvi→ j and the rotation matrix Ri

j:

Δxi→ j
.
=

{
Δ pi→ j,Δvi→ j ,R

i
j

}
= η

(
ZIMU

i→ j ,bi
)
,

where ZIMU
i→ j is the set of IMU measurements between the time instances ti and t j, that

are corrected using the bias bi, and η is a known non-linear function that describes
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Fig. 7.12 (a) Factor graph with a single two-view factor with IMU and bias factors; (b) The
corresponding factor graph using an equivalent IMU factor; (c) Factor graph with many two-
and three-view factors as well as equivalent IMU and bias factors

the IMU measurements pre-integration process. One can now use Δxi→ j to predict
x j based on the current estimate of xi. Let hEquiv represent this predicting function.

We can then define an equivalent IMU factor [16] f Equiv as

f Equiv (x j,xi,bi)
.
= exp

(
−1

2

∥
∥x j − hEquiv (xi,bi,Δxi→ j)

∥
∥2

Σ

)
, (7.18)

which involves only the variables x j,xi and bi for any reasonable5 two time instances
ti and t j. Figure 7.12b illustrates the conceptual difference between the conventional
and equivalent IMU factors.

The approach for calculating Δxi→ j involves pre-integrating the IMU measure-
ments while expressing them in the navigation frame. However, this will require
re-calculating Δxi→ j from scratch each time the rotation estimate changes, i.e. each
re-linearization of xi. To resolve this, as proposed in [26], the different components
in Δxi→ j are expressed in the body frame of the first time instant (i.e. ti), which
allows re-linearizing the factor (7.18) without recalculating Δxi→ j . The reader is
referred to [26] for further details.

5 The original derivation in [26] neglects Earth curvature and Earth rotation, however it can
be extended to the more general case which assumes the gravity vector and the rotation rate
of the navigation frame with respect to an inertial frame are constant. The time instances
ti, t j should be chosen such that these assumptions are satisfied.
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The equivalent IMU factor allows to significantly reduce the number of vari-
ables and factors in the optimization, and enables high-rate performance while us-
ing efficient optimization techniques. This is illustrated in Figure 7.12c, that shows
a factor graph with two- and three-view factors and the equivalent IMU factor bridg-
ing between navigation states (variables) from different time instances. Note that a
conventional IMU factor would require adding consecutive navigation states to the
graph.

Furthermore, since in typical navigation systems a navigation solution xt is re-
quired in real time, i.e. each time an IMU measurement is obtained, one can predict
xt using the accumulated component Δxi→ j and the current estimates x̂i, b̂i of xi

and bi, in a parallel process and without incorporating xt into the optimization, i.e.
hEquiv

(
x̂i, b̂i,Δxi→ j

)
.

7.5.3 Evaluation in a Simulated Aerial Scenario

In this section we present an evaluation of the described extension of LBA to robotic
navigation in a realistic aerial scenario covering an area of about 2× 1.5 km as
shown in Figure 7.13a. We also compare LBA to the BA approach, both using the
equivalent IMU factors and incremental smoothing. A statistical study of the ap-
proach using a smaller scenario is reported in a conference version of this paper
[12].

In the simulated scenario, the aerial vehicle gradually explores different areas and
occasionally re-visits previously observed locations thereby providing loop closure
measurements. The flight is at a constant height of 200 meter above mean ground
level, with a 40 m/s velocity. The aerial vehicle travels a total distance of about 13
km in 700 seconds. A medium-grade IMU and a single downward-facing camera,
operating at 100 Hz and 0.5 Hz, were used.

The 100 Hz ideal IMU measurements were corrupted with a constant bias and a
zero-mean Gaussian noise in each axis. Bias terms were drawn from a zero-mean
Gaussian distribution with a standard deviation of σ = 10 mg for the accelerometers
and σ = 10 deg/hr for the gyroscopes. The noise terms were drawn from a zero-
mean Gaussian distribution with σ = 100 μg/

√
Hz and σ = 0.001 deg/

√
hr for the

accelerometers and gyroscopes. Visual observations of unknown 3D points were
corrupted by a zero-mean Gaussian noise with σ = 0.5 pixels.

The estimated trajectory by LBA and BA, compared to ground truth and to pure
IMU integration, is shown in Figure 7.13a, with position estimation errors given in
Figure 7.13b. One can observe the fast drift of IMU-based dead reckoning, while
both LBA and BA yield estimates close to ground truth with similar levels of ac-
curacy. Note that only IMU and monocular cameras are used, without GPS or any
additional sensors, producing position estimates with a typical estimation error of
5− 10 meters, with a highest estimation error of 20 meters.

While a similar estimation accuracy was obtained both by LBA and BA, pro-
cessing time is different. The latter depends on the number of feature observa-
tions per frame γ , which affects the number of observed landmarks. We therefore



132 V. Indelman and F. Dellaert

Table 7.2 Average processing time per camera frame

#Features
#Landmarks #Observations

Ave. Time [sec]
per frame BA LBA Ratio

200 9.5k 66k 0.59 0.27 2.19
500 23k 165k 1.95 0.57 3.42
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Fig. 7.13 (a) Top view of estimated trajectory. Inertial navigation quickly drifts while both
LBA and BA result in bounded navigation errors over time; (b) Position estimation errors
(norm).
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discuss processing time for two different values of feature observations per frame,
γ = {200,500}, while performing exactly the same trajectory. In the former case,
number of landmarks is 9.5k with total number of image observations of about 66k,
while in the latter case, number of landmarks and total number of image observa-
tions are 23k and 165k, respectively.

Processing time for these two cases is shown in Figures 7.14a-7.14b and sum-
marized in Table 7.2. As seen, while BA exhibits lower processing time now and
then, in particular when far from loop closure frames, the overall processing time is
much smaller in the LBA case. One can clearly observe the spikes in BA, that are
the result of massive variable re-elimination and re-linearization triggered by loop

0 100 200 300 400 500 600 700
0

1

2

3

4

5

6

Scenario Time [sec]

P
ro

ce
ss

in
g 

tim
e 

[s
ec

]

 

 

LBA + IMU

BA + IMU

(a)

0 100 200 300 400 500 600 700
0

5

10

15

20

25

Scenario Time [sec]

P
ro

ce
ss

in
g 

tim
e 

[s
ec

]

 

 

LBA + IMU

BA + IMU

(b)

Fig. 7.14 (a) and (b) Processing timing comparison between the proposed method and bundle
adjustment for 200 and 500 features per frame. Both methods use incremental smoothing and
equivalent IMU factors.



134 V. Indelman and F. Dellaert

closures and proceeds for many frames afterwards. Overall, the average processing
time per frame in the shown scenario for γ = 200 features is 0.27 and 0.59 seconds
for LBA and BA, respectively. Increasing number feature observations per frame to
γ = 500, leads to further difference in average processing time, as shown in Figure
7.14b: 0.57 and 1.95 seconds for LBA and BA. Thus, LBA is about 2 times faster,
on average, than BA for γ = 200 features, and almost 5 times faster for γ = 500
features.

7.6 Conclusions and Future Work

This paper focused on incremental light bundle adjustment (iLBA) [13], a structure-
less bundle adjustment approach that reduces computational complexity by alge-
braically eliminating the 3D points using multiple view geometry constraints and
utilizing an efficient incremental optimization - incremental smoothing. Our first
contribution is a theoretical probabilistic analysis of iLBA, where we identified the
root effects that may cause the underlying probability distribution of iLBA to be
somewhat different from the probability distribution over camera poses that is cal-
culated from full bundle adjustment. Using two real-imagery datasets we demon-
strated that, in practice, these two probability distributions are very close in terms
of the maximum a posteriori estimate and the estimated uncertainty.

The second contribution of this paper is an extension of iLBA to robotic naviga-
tion, where besides a camera sensor, additional sensors operating at different rates
typically exist. In particular, we considered the problem of fusing information be-
tween high-rate inertial navigation sensors (IMU) and vision observations. Following
the iLBA concept, our formulation avoids explicit estimation of camera-observed 3D
points, and utilizes a recently developed technique for IMU pre-integration to signif-
icantly reduce the number of variables in the optimization. We demonstrated, based
on a realistic synthetic aerial scenario, that iLBA for robotic navigation produces
comparable state estimation accuracy to bundle adjustment formulation, where 3D
points are explicitly inferred, while reducing average computational time by a factor
of 2-3.5.

Future research will focus on developing approaches for optimally choosing past
camera frames when adding new multi-view geometry constraints and on extensive
experimental evaluation of the described application of iLBA to robotic navigation.

Appendix

This appendix presents further details regarding the metric used to compare esti-
mated camera pose uncertainty in Section 7.4.2.

To compare two covariance matrices Σ1 and Σ2, we define a discrepancy measure
of the square roots of the traces of each covariance matrix,

discrepancy(Σ1,Σ2)
Δ
= c

(√
tr(Σ1)−

√
tr(Σ2)

)
, (7.19)



7 Incremental Light Bundle Adjustment 135

where c is a scale factor that converts the unit-less 3D reconstructions into meters,
which we determined by physically measuring the dataset collection area, or su-
perimposing the trajectory onto a satellite image. We compute this separately for
the blocks of the covariance matrices corresponding to rotation and translation. The
units of the discrepancy are radians for rotation (c = 1) and meters for translation,
with c properly determined to correct the reconstruction scale.

For example, to compare the Gaussian-approximated conditional density of LBA
pLBA (xi|x j,Z) with covariance Σ i| j

LBA with that of BA p(xi|x j,Z) with covariance

Σ i| j
BA, we compute discrepancy

(
Σ i| j

LBA,Σ
i| j
BA

)
. Similarly for marginals pLBA (xi|Z) and

pBA (xi|Z), we compute discrepancy
(
Σ i

LBA,Σ
i
BA

)
. A positive discrepancy value

means that the uncertainty estimate of LBA is conservative, whereas a negative
discrepancy value means that the uncertainty estimate of LBA is overconfident.
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Chapter 8
Online Learning of Vision-Based Robot Control
during Autonomous Operation

Kristoffer Öfjäll and Michael Felsberg

Abstract. Online learning of vision-based robot control requires appropriate activa-
tion strategies during operation. In this chapter we present such a learning approach
with applications to two areas of vision-based robot control. In the first setting, self-
evaluation is possible for the learning system and the system autonomously switches
to learning mode for producing the necessary training data by exploration. The other
application is in a setting where external information is required for determining the
correctness of an action. Therefore, an operator provides training data when re-
quired, leading to an automatic mode switch to online learning from demonstration.
In experiments for the first setting, the system is able to autonomously learn the
inverse kinematics of a robotic arm. We propose improvements producing more in-
formative training data compared to random exploration. This reduces training time
and limits learning to regions where the learnt mapping is used. The learnt region
is extended autonomously on demand. In experiments for the second setting, we
present an autonomous driving system learning a mapping from visual input to con-
trol signals, which is trained by manually steering the robot. After the initial training
period, the system seamlessly continues autonomously. Manual control can be taken
back at any time for providing additional training.

8.1 Introduction

Perception-action learning for robotic systems is a challenging problem. Preferably,
both learning and autonomous operation as well as switching of operational mode
should be online such that new training data can be provided if and when previous
training data is insufficient. Switching to training mode, obtaining training data and
finally switching back to autonomous mode should be possible to perform without
taking the system out of operation.

Kristoffer Öfjäll · Michael Felsberg
Department of Electrical Engineering, Linköping University, SE-581 83 Linköping, Sweden
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There are two primary classes of problems, one class where sufficient information
for self-evaluation is present in the learning scenario and one complementary class
where it is not, that is, additional information is needed to determine the correctness
of an action. In the first class, the system is able to observe and assess the success
of its actions itself, without external intervention; in the second class, an external
supervisor (typically human) provide the system with feedback on its performance.
Online learning in the two classes are similar with respect to mode switching and
request of new training data, the difference lies in what entity initiates the mode
switch and from where training data is provided.

One typical problem from the first class is reaching, where the system has re-
ceived a stimuli somewhere in the visual field and tries to position a manipulator at
the position of the stimuli. An example from the second class is autonomous driv-
ing, where typical driving behaviors such as staying on the roads are not inherently
available in the learning situation but have to be acquired from external sources. In
the application presented here, not even the notion of a road is present in the sys-
tem initially. The two learning concepts are related to two major modes of learning
in biological systems: random exploration and mirroring. Problems in the first class
are typically solved by random exploration such as small children randomly moving
their arms, first for identification of the visual stimuli generated by arm movements
and later for learning of the inverse kinematics: how desired positions in the visual
field can be reached.

This chapter presents a perception-action learning system for robotics where the
training data is either generated by modulated motor babbling (random exploration)
or by demonstration. The proposed learning system is incremental and real-time
capable during both learning and autonomous operation.

In experiments, the proposed method shows its capabilities of learning from ex-
ploration (inverse kinematics) and learning from demonstration (autonomous driv-
ing). For learning of the inverse kinematics of a robotic arm, training data may be
self-generated by random exploration. However, as is shown in the experiments, an
exploration scheme biased towards minimizing the pose error provides for faster
convergence to previously unknown poses and produces training data more relevant
for the problem at hand. For the autonomous driving experiment, the system is not
given a-priori knowledge on the type of visual event it should expect or the driving
rules it should follow, but rather learns them from a human. After manually piloting
the robot 1.5 laps around a track, the controls are released and the robot success-
fully continues around the track. The system demonstrates ability to generalize to
changes of the track. Correction of unwanted behavior is demonstrated in the exper-
iments by reclaiming manual control during a fraction of a lap. Switching between
autonomous driving and demonstration is performed without stopping the robot. A
video demonstrating the applications in this chapter is available.1

1 http://users.isy.liu.se/cvl/ofjall/onlinePerceptionAction
LearningSmaller.mp4

http://users.isy.liu.se/cvl/ofjall/onlinePerceptionActionLearningSmaller.mp4
http://users.isy.liu.se/cvl/ofjall/onlinePerceptionActionLearningSmaller.mp4
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8.2 Previous Work

The general Perception-Action learning field is far too wide for a comprehensive pre-
sentation in the current scope. Here we concentrate on the two application examples
presented in the introduction and provide some references to learning approaches
previously applied to problems regarding inverse kinematics and autonomous
navigation.

With online learning methods, the robot model can adapt to changes while the
system is in operation. This has shown to be useful, especially in cases where the
controlled system tends to change properties within short time frames such as in [10].
Online learning enables immediate switching between learning mode and
autonomous mode. All experience gathered during a training session is directly avail-
able for use when switching back to autonomous mode. In contrast, for offline learn-
ing systems, the system has to be taken out of service while processing training data.

First, the inverse kinematics problem is briefly presented (Sect. 8.2.1), which is
used as an application for demonstration of learning from exploration (Sect. 8.2.2).
Learning from demonstration is applied on a visual autonomous navigation
(Sect. 8.2.3) task. Finally, two components used in the proposed method are
presented, locally weighted projection regression (Sect. 8.2.4) and Levenberg-
Marquardt minimization (Sect. 8.2.5).

8.2.1 Inverse Kinematics

The inverse kinematics of a robotic arm is a mapping from the desired pose (posi-
tion and orientation) of the end effector to a set of angles for the joints of the robot
(the joint configuration) which makes the end effector attain the desired pose. The
classical approach uses handcrafted geometric models of the robotic arms [32]. The
accuracy depends on the complexity of the model and any changes of the robot be-
havior due to wear are disregarded. Control models based on learning systems have
the possibility to adapt to individual differences between robots of the same manu-
facturer and type as well as being able to learn different robot setups. By retraining
the system, also changes in the robot can be handled. Different variations of neural
networks have been popular approaches to this problem [21]. The results have been
improved by using modular neural networks [17, 18], where several different neural
networks are trained and the output from the locally most suitable network is used.

The neural network approaches mostly use offline training and require training
points in the order of millions. Depending on the physical layout of the robotic
arm, the mapping can be decomposed into one mapping from orientation of the
end effector to a subset of the joints and another mapping from position to the re-
maining joints [1]. Any changes of the robot in these examples still require offline
retraining.
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8.2.2 Active Learning and Exploration

Active learning generally means that the learning system can affect the generation or
selection of training data, the term is not clearly defined but [29] provides a survey.
Active learning is mostly interesting in the case where training data is generated by
the system itself, not by an external teacher. Here, this applies to the inverse kine-
matics learning application where the system has the possibility to actively control
the robotic arm. This can be used to generate training data that maximizes informa-
tion gain given the current state of the learnt model.

One fundamental requirement of online self-learning is the availability to the
system of an estimate of its error immediately after an action. In the case of vision-
based robotic manipulation, the actual pose achieved by the system can be inferred
from the visual sensor data and compared with the desired pose to estimate the
error in the last action of the system. This visual feedback is fundamental in visual
servoing and in combination with online kinematics learning this enables continuous
improvement of the kinematics model.

In cases where the current learnt model does not provide any clue regarding re-
ducing the pose error, an exploration strategy is required for training data generation.
Motor babbling is a popular approach where random motions around the current
configuration are carried out. In some cases this would provide information on how
to proceed towards the desired pose, but as described in [27], falling down might
not tell us much about the forces needed in walking. That is, motor babbling may
generate training data that does not affect the predictions of the learnt model.

Approaches which address this issue to some extent are proposed by [25, 3],
where goals are used to direct the babbling and exploration of the available motion
space. The work by [4] use a statistical foundation for presenting a more general
and theoretical framework for this type of active learning.

When the space of possible movements is large, exploring the whole space can
be very time consuming and depending on the application, only a small subset of
these movements may be used. The Shifting Setpoint Algorithm [26] is a method
where models are built along tubes in the motion space between desired points. As
the name suggests, a setpoint is shifted towards the desired point and motor babbling
is carried out around it. When the model is good enough locally (as determined by
the algorithm), the setpoint is shifted again. This solves a similar problem but robot
movement iterations and time are unnecessarily spent generating accurate models
in between desired poses where a coarser model would suffice.

8.2.3 Visual Autonomous Navigation

One of the earliest successful learning approaches to vision based autonomous nav-
igation systems was ALVINN (Autonomous Land Vehicle In a Neural Network)
[19]. Like the work presented in this chapter, ALVINN learns how to control a ve-
hicle by observing a human driving. The learning is based on a single hidden layer
back-propagation network. A more recent work from LeCun et al. focuses on learn-
ing vision based obstacle avoidance for off-road robots [11]. The learning algorithm
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in [11] requires very large collections of data and is based on a large 6-layer convolu-
tional network. The system learns features that predict traversable areas. The convo-
lutional network approach has also been used to create a track-following robot [28].
All these examples use offline learning, where training data has to be processed for
hours or days before the system can operate autonomously.

Here an autonomous driving challenge is used as an example application where
correct behavior is not apparent from the problem itself. The problem of autonomous
navigation has been approached in a number of different ways in the literature,
which can be roughly divided between the classical control–based approaches [6,
35, 34] and the learning–based approaches [19, 20, 23] (we refer to [12] for an in–
depth review). The approach used in this chapter belongs to the second category,
where perception is visual and the correct action is demonstrated by manual control
of the robot, learning from demonstration.

The visual perception consists of a generic, holistic representation of the whole
visual field, using so-called Visual Gist [16]. Visual Gist provides a compact and
generic approach to image description, and has been used successfully for scene
identification [24], image search [7], indoor vs. outdoor detection [30, 31], road
type detection [9] and driver action prediction [22].

8.2.4 Locally Weighted Projection Regression

Locally Weighted Projection Regression [36], LWPR, has successfully been applied
to learning problems related to robotics applications [2, 26, 8, 15]. The general idea
is to use the output from several local linear models, distributed in the input space,
weighted together to form the output.

The output ydk for each local model k for dimension d consists of rk linear re-
gressors

ydk = β 0
dk +

rk

∑
i=1

βdkiu
T
dki(xdki − x0

dk) (8.1)

along different directions udki in the input space. Each projection direction and cor-
responding regression parameter βdki and bias β 0

dk are adjusted online to fit the train-
ing examples. Variations in the input explained by each regression i is removed from
the input x generating the input to the next regressor xdk(i+1).

The total prediction ŷd in one output dimension d

ŷd =
∑K

k=1 wdkydk

∑K
k=1 wdk

(8.2)

depends on the distance from the center cdk of each of the local models. Normally a
Gaussian kernel is used, generating the weights

wdk = exp

(
−1

2
(x− cdk)

T Ddk(x− cdk)

)
(8.3)
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where the metric Ddk is updated while the model centers cdk remain constant. Even
though the regression is performed in a low dimensional projected space, the local
models still live in the full input space. An advantage of LWPR which is useful for
self-learning, is the possibility to derive analytic Jacobians of the learnt model [13].

8.2.5 Numerical Optimization

For inverse kinematics, minimizing a suitable distance between the current and de-
sired poses will generate a solution to the given problem. There are many different
algorithms available from the field of optimization [33]. Especially numerical op-
timization methods geared towards reaching a minimum using as few iterations as
possible will avoid unnecessary movements of the robot.

If the kinematics of the robotic arm is not explicitly known, a numerical method
has to be used. This implies iterative or grid based methods, where the former is ex-
pected to require fewer movements of the arm. One popular numerical algorithm is
the Levenberg-Marquardt method [14]. For fast convergence, the algorithm requires
a good initial solution and the derivative of the distance function at the iteration
points. One possibility is to use the current pose of the robot as initial solution and
estimating the derivatives using finite differences. As will be shown (Sect. 8.3.1),
there are more efficient (in terms of time to find a solution) ways of choosing the
initial solution as well as obtaining derivatives.

In Gauss-Newton optimization, the update qΔ in each step is obtained by solving
a linearized problem

JT JqΔ =−JT e (8.4)

where J is the Jacobian at the current point and e is the current residual vector. In
LM, the joint space update qΔ in each step is obtained by solving

(JT J+λ diag(JT J))qΔ = JT (xd − x(q)) (8.5)

where J is the Jacobian at the current configuration q, x(q) is the pose of the current
configuration and xd is the desired pose. The method is a weighted (by λ ) combina-
tion of Gauss-Newton and weighted gradient descent.

8.3 Proposed Method

We provide an online learning system with applications to inverse kinematics
(Sect. 8.3.1) and autonomous navigation (Sect. 8.3.2). These examples represent
the self learning case and the case where external information is required. In the
first case, the mode switch is initiated by a pose error larger than a fixed accuracy
threshold and training data is provided by numerically minimizing the pose error. In
the second case, a mode switch is initiated manually by activating manual control
of the robot. While under manual control, the learning system is trained.
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8.3.1 Learning Inverse Kinematics by Exploration

The inverse kinematics represent the system’s knowledge of which control signals
are required to reach any desired state. In the case of a robot reaching for an object,
this means predicting joint angles for attaining a specified desired pose of the end
effector.

If the system can obtain an estimate of the current pose of the end effector, it
can also estimate performance (pose error) autonomously by comparing actual and
desired poses—assuming a distance measure in pose space. This provides for self-
learning by exploration.

We propose that by combining an online learning approach with a numerical
optimization method, the desired pose is reached quicker on average. The current
learnt inverse kinematics model can be used to provide an initial solution as well as
estimated Jacobians as required by numerical optimization methods. In return, the
iterations of the numerical method serves as excellent training data along the lines
of active learning.

In this chapter, a combination of Locally weighted projection regression, LWPR,
and Levenberg-Marquardt,LM, is evaluated. The proposed integration of both meth-
ods is compared with a naı̈ve combination of the two algorithms. In the baseline
implementation, only outputs from the two algorithms are used. For the integrated
method, internal data is shared.

Initial Solution

In the LWPR algorithm, the weight of each local model (8.3), is compared to a
threshold wcut to determine which local models should be used when predicting
the output of a given input. This can also be used to determine where reasonable
predictions can be expected. We propose using this information for determining an
initial solution. Given the weight of each local model (8.3), using the notation of
(8.3), reasonable predictions can be expected within the set

Xp =
⋂

d

(
⋃

k

{x : (x−cdk)
T Ddk(x−cdk)≤− lnwcut}

)

(8.6)

as at least one local model k in each output dimension d should provide a useful
prediction. Given a desired pose xd it is thus possible to find an initial pose xt ∈ Xp

such that no other pose x ∈ Xp is closer to the desired pose.
An approximation of the optimal initial pose xt still within Xp can easily be found

by starting in the desired pose xd and using gradient ascent on

min
d

(
max

k
exp

(−(x− cdk)
T Ddk(x− cdk)

)
)

(8.7)

to improve the dimension with the worst response of the best fitting model. The
ascent is continued until the value of the expression reaches wcut where the learnt
inverse kinematics model is expected to be accurate enough. The model can then be
used to move the arm directly close to this pose. As the initial pose may be on the
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border of Xp (the set of poses where inverse kinematic predictions can be made) the
accuracy of the inverse kinematics model can not be expected to be perfect.

If the robotic arm has previously moved close to the desired pose, the initial pose
will be very close to the desired pose. In areas where the inverse kinematics model
is accurate, the desired pose will be reached directly.

8.3.2 Learning Autonomous Driving from Demonstration

For the autonomous navigation application, a mobile robot is supposed to navigate
along a track. However, the problem specification does not specify what kind of
track or what kind of visual features that defines the track. This is to be learnt by
the system along with appropriate steering actions for staying on the track. Since
the track appearance or layout is not known beforehand, the learning system can not
evaluate its own performance.

We propose an online learning system which is trained by demonstrating correct
behavior (manually driving the robot) and which is supposed to be able to follow the
track immediately and autonomously after the initial training sequence. Specifically,
assuming consistency in track markings, we want to learn a mapping f : Φ →Θturn

(where Φ denotes the visual features extracted from images P and Θturn the steering
angles) that will keep the vehicle driving on the track indefinitely, for any track
layout. Our aim is then to learn f from N example pairs (φ i,θ i

turn)
N
i=1, sampled from

a demonstration by a human driving around the track.
The chosen approach has the following characteristics: (i) the steering is esti-

mated directly from the visual input, frame by frame and is therefore not affected
by previous errors; (ii) the system does not have or build a model of the track,
allowing for navigation on potentially infinite paths; (iii) the system’s visual input
encompasses the whole visual information, and it is the learning that specifies which
aspects of the visual scene are relevant for steering control; (iv) it learns and runs
real-time; and (v) any misbehavior or lack of training data can be corrected by ad-
ditional manual control without stopping the system.

The system’s visual perception consists of a generic, holistic representation of the
whole visual field, using so-called visual Gist [16]. This encodes the whole visual
field into one feature vector, using multiscale filtering to encode the visual scene.
There exists different versions of the Gist features. In this work, we compute the
image Gist by filtering a downscaled (128× 128 pixels) version of the image P
with Gabor filters Gλ ,θ (P) tuned at different scales (λi) and orientations (θi), and
averaging the filters’ responses over Gaussian channels Ci, j regularly spaced over
the image. We use 4 scales, 8 orientations and 8× 8 channels, resulting in a feature
vector of dimension 2048.

In this case, LWPR is unable to handle an input space of dimension 2048 as
every local model contains the center of the local model and a matrix representing
the size of the local in the input space. The input space dimension is reduced to
256 by means of PCA where the principal components are obtained from the Gist
feature vectors from manually controlling the robot one lap clockwise and one lap
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counter clockwise on the track in Fig. 8.7. Note that the same principal components
calculated from the indoor track also is used for the outdoor forest road in Fig. 8.11.

8.4 Evaluation

The proposed systems, learning from exploration or from demonstration are eval-
uated. Evaluation is performed both in controlled environments and under realistic
conditions.

8.4.1 Learning from Exploration

The explorative approach of obtaining training data is evaluated in a reaching sce-
nario with a robotic manipulator. The evaluated system is sequentially presented
with desired poses of the end effector and the task is to set the joint angles of the
arm such that the desired pose is obtained. The evaluated system obtains measure-
ments of the current pose of the end effector. For better accuracy in performance
comparisons and as common in literature [5, 18, 13, 33], the presented methods are
primarily evaluated on a simulated, planar robotic arm. The learning system has also
been used to control a 7-DoF KUKA LWR, however it was not possible to obtain
objective performance data from the latter experiment.

The simulated arm has three joints and the desired pose is the two dimensional
position of the tip of the last link. The evaluated method controls the arm by spec-
ifying the three joint angles and the simulation returns the position of the final link
with added Gaussian noise. The pose error pe = pd −pc is used in the quadratic error
function of the Levenberg-Marquardt algorithm (lsqnonlin implementation in Mat-
lab). For LWPR, the implementation by Klanke, Vijayakumar and Schaal is used [36].

0

0

x
 [d

m
]

x
1

 [dm]
0

0

x
 [d

m
]

x
1

 [dm]

Fig. 8.1 (Left) The simulated robotic arm reaching for the red diamond marker. The blue
circle indicates the initial position, the blue crosses are the iterations and the green crosses
are the initial training data. (Right) The evaluation points marked with red crosses.
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An initial training set with 15 points distributed in a small part of the reachable
space of the robot is generated. Evaluation points are generated in four clusters with
50 points in each cluster. The training and evaluation points are shown in Fig. 8.1.

For evaluation, each LWPR model is trained using the training points. Each
method is then used to move to the first evaluation point in the first cluster and
the number of iterations required to reach the point is counted. This is repeated for
the first point in the second cluster and so on until all evaluation points are reached.

When the first evaluation point in a cluster far from the training data is to be
reached, the system is expected to require some iterations to move from the closest
previously visited area to the desired position. When the arm is supposed to return
to the second point within the same cluster, the number of iterations required is
expected to be lower. After visiting a few points within the cluster, the system is
expected to be able to move directly to the desired pose.

This behavior is expected both for systems using numerically estimated Jaco-
bians (naı̈ve) and for systems using Jacobians from the learnt model (integrated).
For the Jacobians from the learnt model, the accuracy is expected to be low during
the first runs but increasing as more points are visited within each cluster. For the
numerically estimated Jacobians, the arm has to be moved for Jacobian estimation.
Thus, if the system does not move the arm to the correct position in the first iteration,
at least four additional movements of the arm are required.

In contrast to the learning approaches, using a numerical optimization method
alone, always starting at the current arm pose, the number of iterations required to
reach each point could be expected to stay constant as no information regarding the
behavior of the robot is kept.

8.4.1.1 Results

The evaluation results are shown in Fig. 8.3. The graphs show the number of itera-
tions required to reach each test point for the naı̈ve combination and the proposed
integrated method respectively. We expect real measurements to be noisy so inde-
pendent zero mean Gaussian noise with standard deviation 0.03 was added to the
position estimates. This corresponds to 0.2% of the diameter of the space reachable
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Fig. 8.2 Quartiles of the number of iterations
required to reach each of the last 100 evalu-
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Fig. 8.5 Mean number of iterations re-
quired to reach each evaluation point with
increased measurement noise. (Left) Inte-
grated method; (Right) Naı̈ve combination.

by the robot. The shown results are the average of ten runs. As expected, the num-
ber of iterations required to reach a point decays with increasing number of visited
points in the same cluster.

If the Jacobians from the learnt model were perfect, the method using these
should require about one fourth of the iterations required by the naı̈ve method. Us-
ing Jacobians from the learnt model requires significantly fewer iterations than us-
ing numerically estimated Jacobians, but the theoretically possible reduction is not
achieved. This is due to errors in the learnt model and to the implementation of the
numerical solver not needing to estimate the Jacobian at every step.

Additionally, to assess the effect of the noise, simulations were run with reduced
and increased noise variance. Reducing the standard deviation to one sixth of the
original noise, the results in Fig. 8.4 are obtained. In Fig. 8.5 the standard deviation
of the noise is doubled.

In the case of reduced noise, both methods perform better. The integrated method
is better than using numerically estimated Jacobians. Increasing the noise, the nu-
merical method performs significantly worse. Here, the averaging introduced by the
learning method is a great advantage. In Fig. 8.2 evaluation results for the last 100
points in each session are presented more compactly. For each noise level, t-tests
on this data indicate significant improvements (pH0 < 0.01) where H0: Equal mean
error for naı̈ve and integrated methods. One example of iterations for reaching a
desired pose is shown in Fig. 8.1.

8.4.1.2 Learning Inverse Kinematics on the KUKA Robot

The proposed learning system is implemented on a 7 DoF KUKA LWR robotic
arm. With this system, the 6 DoF pose of the cameras and tools can be controlled
directly instead of controlling the joint angles of the robot. The online self learning
algorithm enables increasing pose precision over time and self-recalibration after
hardware changes or maintenance. The inverse kinematics solver shipped with the
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Fig. 8.6 Explorative learning of inverse kinematics for reaching on a 7 DoF robotic arm
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arm is based on a geometric model and has issues with singularities. This poses a
problem in the intended active vision applications where all desired poses are not
known in advance and thus can not be checked for singularities before deploying
the system.

In Fig. 8.6, a desired pose for a general view is selected. The desired pose is
outside the region of known inverse kinematics solutions and the pose is reached
by numerical minimization of the pose error. Intermediate poses provide training
data. The figure shows time-equidistant frames from a video. Note that the desired
pose is close to a singularity, as the desired pose is approached the rotational axes
of the fifth and the seventh joints (counted from the base) are close to parallel. This
configuration would not be well handled by the inverse kinematics solver shipped
with the arm.

8.4.2 Learning from Demonstration

For evaluation of the learning from demonstration capabilities, a mobile robot is
used based on a radio controlled car fitted with a laptop and a single grayscale
camera. The laptop interfaces to the servo control on the car, so that controls gen-
erated by either the teacher (during training) or the software are actuated. The au-
tonomous navigation module generates control signals from visual input from the
camera. There is also a low-resolution color camera on the platform, however it is
not used in the experiments.

This work uses teleoperation to gather the examples, i.e. the robot is operated by a
teacher while recording both the control signals and the sensor readings. The teacher
controls the car with a standard remote control transmitter. Training examples are
processed online onboard the mobile robot. When the robot is able to generate con-
trol signal predictions from the visual input, the teacher is notified via an indication
on the robot display and the remote controller can be released. The robot control
can be manually overridden at any time for providing additional training examples.
In the experiments, steering is predicted by the system while throttle is kept at a
constant level.

The evaluation environment is a reconfigurable circuit made of tiles of carpet
with sections of road markings. Different circuits can be made by placing tiles in
the desired configuration, see fig. 8.9 for example circuit configurations. To evaluate
the quality of a trajectory of the robot around the circuit, the robot is tracked. Very
accurate tracking trajectories were obtained by tracking a red marker attached to
the robot. Fig. 8.9e show results of this red marker tracking (the dashed lines). An
homography is computed (by manually marking corresponding positions) from the
position of the red marker to the ground plane, the result being the solid lines. Finally
a second homography is computed to project both the images and the trajectories
into a planar view, see fig. 8.9d for the projection of Fig. 8.9e. Since the red marker
is not visible while behind the red beam, trajectories are linearly interpolated in that
region.
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Fig. 8.7 Trace of first five clock-wise laps for a previously untrained system overlaid on an
image of the track reprojected onto the ground coordinate system, with coordinates in meters

8.4.2.1 Autonomous Navigation Performance

Fig. 8.7 shows the trajectory for the first five laps of a previously untrained system.
The robot is manually controlled through six corners (dashed blue line) whereafter
the controls are released and the robot continues autonomously around the track
(solid magenta line). As the trajectory in the lower part of the track was not con-
sidered accurate enough, manual control was used to override steering predictions
through two corners (dashed black line). The new training data corrects the unde-
sired behavior and during the following laps, the robot stays on the road (solid cyan
line).

After the five first clockwise laps, the robot is manually turned around for counter
clockwise laps. These are shown in Fig. 8.8. The robot is manually controlled
through three corners whereafter the robot is able to generalize and make the forth
turn autonomously. Steering control signals are plotted in Fig. 8.10. The switches to
manual control for initial training, path correction and training for counter clockwise
driving are clearly visible.
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Fig. 8.8 Trace of the four laps following Fig. 8.7 where the robot runs counter clockwise

The robot continues to run autonomously while the track is changed, Fig 8.9.
Road side markers are changed (Figs. 8.9a, 8.9b) and the robot generalizes, that is
it successfully continues to navigate the track without additional training. Similarly,
when restoring the initial road sides and changing the road itself, the robot is still
able to follow the track with a tendency to cut the upper left corner compared to the
autonomous trajectories from the unaltered track (Figs. 8.9c, 8.9d). This behavior
of cutting corners was introduced in the training data for counter clockwise driving
(dashed blue line in Fig. 8.8).

Additionally, the robot is evaluated in an outdoor environment, Fig. 8.11. In this
environment, tracking is unavailable however the robot successfully follows the
road. Note that no changes has been made to the robot for this evaluation, neither in
software nor hardware. The robot is manually driven for approximately two minutes
whereafter it drives autonomously.
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(e) Part 10, original view with red marker trajectory (dashed) and the corresponding
ground projection (solid).

Fig. 8.9 Autonomous trajectories by the robot while reconfiguring the track (cyan), with last
laps on unmodified track for comparison (magenta)
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Fig. 8.10 Steering control during initial sequence, −1 is max right, 1 is max left

Fig. 8.11 Robot driving autonomously on a forest road

8.5 Conclusions

We have presented an online perception-action learning system capable of immedi-
ate and online switching between autonomous and learning mode. Two applications
have been presented, one where the learning system is provided with enough infor-
mation for self-evaluation and self-learning (inverse kinematics using explorative
learning) and one where external information is required for determining the correct
action (autonomous driving using learning from demonstration).

For learning of inverse kinematics, experiments have shown (i) that self-learning
of inverse kinematics is possible using minimization of pose error as the explorative
component, and (ii), that learning improves if utilizing information available from
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the already learnt model when performing exploration. The main experiments have
been performed on a simulated robotic arm, however the proposed system has been
able to perform successfully on a real 7 DoF robotic arm and has been implemented
and used in the GARNICS demonstrator system.

The system has also shown its capability of learning a mapping from visual per-
cepts to steering actions on a mobile robot platform. In this case, the correct action
(depending on factors such as road type and desired driving style) is not available
from the problem specification but is provided by means of demonstration. The same
system has shown ability to learn to drive on different types of roads in different en-
vironments (indoor/outdoor).

For the indoor track, 1.5 laps of demonstration is sufficient for autonomous oper-
ation. After turning the robot around, additional demonstration during three quarters
of one lap is enough for successful autonomous driving counter clockwise around
the track. The robot generalizes to the last part of the track as well as to changes of
the track. The outdoor experiment provides further examples of generalization ca-
pabilities, the robot is manually controlled for two minutes whereafter the robot im-
mediately and autonomously continues along a previously unseen part of the road.
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Chapter 9
3D Space Automated Aligning Task Performed
by a Microassembly System Based on
Multi-channel Microscope Vision Systems

Zhengtao Zhang, De Xu, and Juan Zhang

Abstract. In this chapter, a microassembly system based on 3-channle microvision
system is proposed which achieves the automatic alignment of the mm sized com-
plex micro parts. The design of the system is described firstly. Then two different
alignment strategies are presented including position based and image Jacobian based
methods. Also, a coarse-to-fine alignment strategy in combination with active zoom-
ing algorithm is proposed. In the coarse alignment stage, alignment process is con-
ducted with maximum field of view (FOV). In the fine alignment stage, the micro-
scope is of maximum magnification to ensure the highest assembly accuracy. For
the image based control, the image jacobian based on several microscope vision sys-
tems controlling the micro part movement is derivation based on microscope vision
model. It is proved that the image jacobian is a constant when controlling position
movement. As active movement of the micro part, the image jacobian is online self-
calibration. The PD controller is adopted to control the micro part movement quickly
and effectively. The experiment verifies the effectiveness of the proposed algorithms.

9.1 Introduction

Microassembly techniques can be widely used in biology, semiconductor industry
and so on. Microscope vision is the important sensing method in the microassembly.
Compared to traditional vision, it has several characteristics, such as short depth of
view and limited field of view (FOV), especially for high-resolution microscopes
used in microassembly. Surely, there are still many problems remain unresolved,
such as the contradiction between accuracy of measurement and the FOV, system
calibration, control method in high precision and the online assembly parameter
detection in 3D space.
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Fortunately, more and more researchers focus on the key problems aforemen-
tioned [1, 2, 3, 4, 5, 6]. Aimed at contradiction between accuracy of measurement
and the FOV, reference [7] used two cameras with different magnifications. But this
method makes the continual visual tracking be more difficult, increases system com-
plexity and limits workspace apparently. An active zooming strategy was proposed
in [8, 9], which is based on artificial potential field (APF) and applied to the assem-
bly task on plane. Visual servoing methods were proposed in [10] focusing on the
assembly on plane.

In this chapter, we design a microvision assembly system which can realize the
two mm size micro parts alignment with 3 microscopies [11]. Coarse-to-fine assem-
bly strategy is explored to solve the contradiction between FOV and the depth of
field for microscope. Two different alignment strategies are realized and compared
which are image Jacobian based and position based alignment control method [12].

The reminder of this chapter is organized as follows. Section 2 introduces the
hardware of the proposed microassembly system. The feature selection and rela-
tive pose calculation given in Section 3. In Section 4 the coarse-to-fine assembly
strategy is presented in detail. The visual servo control based on image Jacobian is
also discussed in Section 5. Experiments are given to verify the effectiveness of the
algorithms in Section 6. Finally, the chapter is concluded in Section 7.

9.2 System Structure

The task for the microassembly system is to assemble two microparts together. The
structure design of the system is shown in Fig. 1, which contains three microvision
systems. The degree of freedom (DOF) for each subsystem is shown in table 1.

Optical path

Camera B

Camera A

Camera C

Camera C
adjust device

Micro-part B
adjust device

Camera A adjust
device

Camera B
adjust device

Micro-part A
adjust device

Micro-part B
Micro-part A

X

Y
Z

 

Fig. 9.1 Structure design of microassembly system
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Table 9.1 DOF of subsystems

Adjustment device Total DOFs Electrical DOFs 
Camera C Tx, Ty, Tz, θx, θy Tx, Ty, Tz 
Camera A Tx, Ty, Tz, θx, θz Tx, Ty, Tz 
Camera B Tx, Ty, Tz, θy, θz Tx, Ty, Tz 
Micro-part A Tx, Ty, Tz, θx, θy, θz Tx, Ty, Tz 
Micro-part B Tz, θx, θy, θz Tz, θx, θy, 

The Tx, Ty, Tz are the translational DOF along the X, Y and Z axis, respectively.
The θ x, θ y, θ z denote the rotation DOF around the X, Y and Z axis, respectively.

The microassembly task is shown in Fig. 2(a). The shape of micro-part B is
shown in Fig. 2(b). Its outside diameter is about 55mm, height is 56mm and wall
thickness is 0.2mm. The shape of micro-part A is also shown in Fig. 2(c). Both
microparts have 16 small holes which are used to align each other.

 
(a) 

 

 
 

(a) 

   
(b)                                                      (c) 

micro-part A 

micro-part B 

Fig. 9.2 Two micro-parts Assembly, (a) assembly schematic diagram, (b) structure of micro-
part A, (c) structure of micro-part B
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9.3 Features Selection and Relative Pose Calculation

Before the alignment, some image features need to be extracted by image process
algorithm as shown in Fig. 3. The feature lines are extracted by RANSAC algorithm
[13]. A subpixel algorithm introduced in [14] is employed. The lines L1 and L2are
the top and right edges of micro-part B in image plane captured by camera B. The
lines L3 and L4are the bottom and right edges of micro-part A in image plane. PAl is
the point of intersection between L1 and L2. PSi is the point of intersection between
L3 and L4. As it is shown in Fig. 3(b), 16 circles which are served as flags to align
in the top surface of micro-part A and micro-part B will be extracted. The sixteen
centers of 16 circles in micro-part A and micro-part B construct another two big
circles, CSi in micro-part A and CAl in micro-part B, respectively. The two centers
OSi and OAl of two big circles are used to compute the distance error in X-Y plane
for two microparts.

The main parameters to define the relative pose between micro-part A and micro-
part B are δ T x, δ Ty,δ T zand δ θx, δ θy, δ θz. δ T x, δ Ty,δ T z are calculated by equation
(1). ⎧

⎨

⎩

δT x = (UOsi −UOAl) · ε
δTy = (VOsi −VOAl) · ε
δT z = (VPSi −VPAl) · ε

(9.1)

Where UOsi and UOAl are the X-axis coordinates of OSi and OAl measured from
Camera C. VOsi and VOAl are the Y-axis coordinates of OSi and OAl.VPSi and VPAl

are the Y-axis coordinates of PSi and PAl measured from Camera A.. ε is pixel
equivalence and its unit is μm/pixel.

{
L2 : y2 = k2 · x2 + b2

L4 : y4 = k4 · x4 + b4
(9.2)

L1

L3

PAl

PSi

L4

L2

 

OSi

OAl

O

CSiCAl

 
(a)                                                                                    (b) 

Fig. 9.3 The features used to compute the relative pose, (a) horizontal view from camera B,
(b) vertical view from camera C
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δθx = arctan
|k2 − k4|

1+ k2 · k4
(9.3)

The expression of L2 and L4 are shown in equation (2). k2, k4 are the slope and b2,
b4 are the intercept of the lines L2 and L4. δ θx calculated by equation (3) denotes the
angle between L2 and L4.δ θy is computed in the same way from the view of camera
A.

δθz =
1

nsi

nsi

∑
i=1

Δθi (9.4)

δ θz is calculated by equation (4). nsi is the number of the holes and equals 16.
Connections from centers of the 16 holes in micro-part A to the center of CSi con-
struct 16 line segments. Also, Connections from centers of the 16 holes in micro-part
B to the center of CAl construct another 16 line segments. Δθ i is the angle between
two adjacent line segments in micro-part A and micro-part B.

9.4 Coarse-to-Fine Alignment Strategy with Active Zooming
Algorithm

9.4.1 Coarse Alignment

The assembly schematic diagram is shown in Fig. 2 (a) and the alignment order
is executed sequentially in the guide of camera A, B and camera C. In the coarse
alignment phase, the micro-part A is in the view of three cameras and the micro-part
B is further away.

Because the adjustment process in guide of camera A is similar to the one in
camera B as shown in Fig. 4, we take the alignment process in camera B for example.
When micro-part A is focused in camera B, its bottom and right edges are extracted
and fitted as shown in Fig. 3(a). Then, the micro-part B moves into the views of
camera B as shown in Fig. 5(a). The right side edge of micro-part B is extracted
and fitted by RANSAC algorithm.δ Tz and δ θx is calculated by equation (1) and (3).
After the adjustment of δ θx by micro-part B adjust device, the relative pose of two
microparts is shown in Fig.5 (b). At last, by translational adjustment, the two parts
become closer as shown in Fig.5 (c).

The alignment in camera C is shown in Fig. 6. Firstly, the micro-part A moves out
of the view, leaving Al alone as shown in Fig. 6(a). Then, the camera C is focused
on the top side of the micro-part B and 16 small circles and the center of circle
OAl are extracted. Afterwards, the micro-part A moves into the view of camera C
as shown in Fig 6(b). Another 16 circles are extracted with the center of circle OSi.
δ T x, δ Ty are calculated according to equation (1) and δ θz is computed with equation
(4). Finally, the pose of micro-part B is adjusted with δ T x, δ Ty, δ θz.
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Fig. 9.4 Alignment flowchart

9.4.2 Active Zooming

The proportional relationship between image plane and Cartesian coordinate is rep-
resented by μm/pixel called pixel equivalent. The magnification factor has an effect
on the pixel equivalent which is calibrated and shown in Fig.7. The horizontal axis
of Fig.7 is denoted by pulse because of the zooming driver of microscopy is stepping
motor. It can be seen from Fig.7 that the pixel equivalent decreases from 4.9 to 3.13
for camera A. Therefore, with greater magnification factor has higher resolution.
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(a)                                                                           (b) 

(c)

Fig. 9.5 Schematic diagram of coarse alignment in camera B, (a) δθx calculation (b) δθx
adjustment (c) translational adjustment

When the two microparts become closer, the active zooming strategy is employed
to improve the accuracy of measurement. The schematic diagram is shown in Fig.8
and the right edge of the micro-part A is chosen as the features to be traced. Firstly,
the feature area S1 is saved as template. The search area is Se for next frame de-
pending on the zooming step. The area S2 is found based on the template S1 in the
process of zooming.

The normalized correlation matching method (NCMM) is employed. The search-
ing algorithm is shown in equation (5).

R(x,y) =
∑x′,y′ [T (x′,y′) · I(x+ x′,y+ y′)]

√
∑x′,y′ T (x′,y′)2·∑x′,y′ I(x+ x′,y+ y′)2

(9.5)

where (x,y) means the image coordinate in the sampled frame, I(x,y) means the grey
value in (x,y). (x’,y’) means the coordinate in template area. T(x’,y’) means the grey
value in (x’,y’). R(x,y) means the match result.

If equation (6) is 0 which means the feature point F shown in Fig.8 reaches the
safe margin, the zooming process stops.
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(a)                                                                         (b) 

 
(c) 

Fig. 9.6 Schematic diagram of coarse alignment in camera C, (a) micro-part B features ex-
traction (b) micro-part A features extraction (c) adjustment with δ T x, δ Ty, δ θz

0 50 100 150 200 250 300 350 400 450
1.5

2

2.5

3

3.5

4

4.5

5

Magnification factor/pulse

P
ix

el
 E

qu
iv

al
en

t/
m

/p
ix

el

 

 
camera A
camera B

Fig. 9.7 Relationship between magnification factor and pixel equivalent
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{
0
1

i f x f − ζ ≤ 0,x f + ζ ≥U,y f − ζ ≤ 0,y f + ζ ≥V
other

(9.6)

where (x f , y f ) is the coordinate of the feature point, ζ is the distance between safe
margin and the frame margin. U is the width of the frame and V is the height of the
frame.

Micro-part A

F

Se

S1

S2

safe margin

Fig. 9.8 Zooming strategy

9.4.3 Fine Alignment

In the fine alignment stage, the flowchart is nearly the same as it is in the coarse
stage but with higher magnification and without complex zooming action. There
are two important factors influence the accuracy of measurement for the assembly
system except the magnification factor shown in Fig.7. At coarse alignment stage,
microparts are far away from each other. The camera has to do focus movement as
shown in Fig. 9(a). The movement Δ l of motion mechanism will bring more error
into the measurement.

The other factor can be seen from Fig. 10 which shows the principle of zoom for
microscopy. The adjusting part inside the microscopy is some optical lenses. The
motion of the lenses will cause the change of optical path and optical axis. Then,
the change of the imaging decreases the accuracy of the measurement.

However, after the alignment of coarse phase, the center Osi and OAl are nearly
coincides as shown in Fig. 9(b). The features can be extracted without repeated
focusing. Then the two important factors can be evitable. So, higher magnification
without complex focus movement and zooming adjustment increase the accuracy of
the measurement.
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OSi OAl

focus movement

l
(a) 

OSi

OAl

Depth of focus
Edge of Si arm

Edge of Al shell

(b) 

Fig. 9.9 Focus in coarse and fine stage, (a) The movement during focusing, (b) focusing
without movement in fine stage

adjust part

Camera

Object

Fig. 9.10 Principle of zoom for microscopy

9.5 Vision Servo Control Based on Jacobian

During coarse alignment stage, the position-based vision servo method is employed.
However, image-based vision servo is more suitable for the micro-assembly system.
This section the image Jacobian which describes the relationship between changes
of image features and the motion of micro-part in Cartesian space is deduced. Then
the online calibration method is described and the controller is designed finally.
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9.5.1 Image Jacobin Matrix Derivation

Micro-part A has 3 translational DOF and it is measured by 3 microscopes. So,
its Jacobian matrix denotes the relationship between translational speed of micro-
part A and its image features changing. The coordinate of micro-part A in world
coordinate is defined as (7). Image feature space of Micro-part A is defined as (8).
[ui(t), vi(t)] is the image features change in i-th channel microscope and i =1,2 3.
Their relationship is shown in (9).JG(p) is the Jacobian matrix of the motion control
for the micro-part A.

p(t)=[xb(t), yb(t), zb(t)]T (8.7)

s(t)=[u1(t), v1(t), u2(t), v2(t), u3(t), v3(t)]T (8.8)

ṡ = JG(p)ṗ (9.9)

Micro-vision system is comprised of microscope lens and CCD which is differ-
ent from normal camera imaging principle. The projection imaging relationship is
shown in (10). Because of the limited depth of field, if the object keep clear on the
image plane after the automatic focusing, zic can be regard as constant. The transfor-
mation relation for the micro-part A from word coordinate to i-th camera coordinate
is shown in (11). [xic, yic, zic] is the coordinate of micro-part A in i-th camera. δ i is
the proportionality coefficient.

{
ui = δi

xic
zic

vi = δi
yic
zic

(9.10)

⎡

⎣
xic

yic

zic

⎤

⎦= Ri

⎡

⎣
xb

yb

zb

⎤

⎦+Ti (9.11)

where,

Ri =

⎡

⎣
ri11 ri12 ri13

ri21 ri22 ri23

ri31 ri32 ri33

⎤

⎦ , Ti =

⎡

⎣
Tix

Tiy

Tiz

⎤

⎦

Set λ i=δ i/zic, (12) can be deduced by (10) and (11). Then, the Jacobian matrix used
to control the motion of micro-part A based on single camera is shown in (13).

[
u̇i

v̇i

]
=

[
λiẋic

λiẏic

]
=

[
λiri11 λi ri12 λi ri13

λiri21 λi ri22 λi ri23

]
⎡

⎣
ẋb

ẏb

żb

⎤

⎦ (9.12)

Ji =

[
λiri11 λi ri12 λi ri13

λiri21 λi ri22 λi ri23

]
(9.13)

If the rotation relationship between world coordinate and camera coordinate re-
mains unchanged, Ri is constant. Also, if the magnification of the microscope keeps
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unchanged, λ i is constant. It can be seen from (13) that Ji is constant under these
two conditions. The Jacobian matrix based on three cameras is shown in (14). J1,
J2, J3are according Jacobian matrixes for camera A, B and C.

JG = [J1,J2,J3]
T (9.14)

Similarly, the Jacobian matrix for micro-part B can be deduced which is shown in
(15) when it rotates in the world coordinate. ∂̇ , β̇ are the differential of α , β which
are shown in Fig.11. θ̇x, θ̇y are the differential of θ x and θ y. θ x and θ y are the angles
of micro-part B around X and Y axis in world coordinate.

[
α̇
β̇

]
=

[
JT 11 JT12

JT 21 JT22

][
θ̇x

θ̇y

]
(9.15)

9.5.2 Feature Select for the Image Jacobian Control

The image features used to adjust the pose of micro-part B are shown in Fig.11. The
edge lines La1 and La2 are chosen as features. α , β are the angle of the two lines.
The desired attitude of micro-part B is computed according to the lines Lb1 and Lb2.
which is shown in (16). kb1, kb2 are the slope of Lb1 and Lb2. θe1,θe2 are the image
angle errors in microscope A and B in image plane.

{
θe1 = arctan(kb1)+

π
2 −β

θe2 = arctan(kb2)+
π
2 −α

(9.16)

Image features related to micro-part A position adjustment are shown in Fig.12.
Image corners A and B in microscope A and B in image plane are chosen as im-
age features. Feature point C is the center of the micro-part A in image plane. The

  
(a) Features in microscope A                   (b) Features in microscope B 

 

La1 

Lb1 

X 

Z Z 

Y 

α 

La2 

Lb2 

Fig. 9.11 Image features related to micro-part B pose adjustment
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(a) Features in microscope A                   (b) Features in microscope B 

 
(c) Features in microscope C 

Fig. 9.12 Image features related to micro-part A position adjustment

desired positions in image plane can selected according to the feature points D, E
and F. D, E is feature points and F is the center of micro-part B in image plane
observed from microscope C.

9.5.3 Online Self-calibration for Jacobian

By the linear independent movement of motion axis, the Jacobian matrix can be
calibrated autonomously. Let the micro-part B rotate around X and Y axis separately
and linear independently with dθ x1, dθ y2. The image Jacobian of micro-part B JT is
shown in (17). (Δα1, Δβ 1), (Δα2, Δβ 2) are the image feature errors when micro-
part B rotates around X and Y axis.

JT =

[
Δα1 Δα2

Δβ1 Δβ2

][
dθx1 0

0 dθy2

]−1

(9.17)
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The computation of image Jacobian for micro-part A is shown in (18). dTx1, dTy2,
dTz3 are 3 linear independence translational motion. (Δui j, Δvi j) is the image feature
errors in the j-th microscope in the i-th movement (i,j=1,2,3).

JG =

⎡

⎢
⎢⎢
⎢
⎢
⎢
⎣

Δu11 Δu21 Δu31

Δv11 Δv21 Δv31

Δu12 Δu22 Δu32

Δv12 Δv22 Δv32

Δu13 Δu23 Δu33

Δu13 Δu23 Δu33

⎤

⎥
⎥⎥
⎥
⎥
⎥
⎦

⎡

⎣
dTx1 0 0
0 dTy2 0
0 0 dTz3

⎤

⎦

−1

(9.18)

9.5.4 Controller Design for Image Servo Based on Jacobian

Take the motion control of micro-part A for example, its control block diagram is
shown in Fig.13. By the image processing, the image features can be easily obtained.
Compared with the expected image position, the image errors can be acquired.
The errors can be transferred to from image plane to the 3D Cartesian space. By
the PD controller, the motion of micro-part A can be controlled. The adjustment of
the micro-part B is similar.

Image
Jacobian PI Stepping

Motor
Micro-part

A

Image
capture

Feature
extraction

_
+ e

Fig. 9.13 The block diagram of micro-part A movement control

The control law based on the feedback error is shown in (19).

Δu(k) =

{
KP((JT J)−1JT e(k))+KD((JT J)−1JT Δe(k))|e(k)| ≥ eT

0 |e(k)|< eT
(9.19)

Where,

Δu(k) is current motion control value;
KP, KD are the proportional and differential coefficient;
JI is the image Jacobian matrix calibrated by the online method;
e(k) is the current image error;
Δe(k) is the variation of the image error;
eT I is the given error range.
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9.6 Experiments and Results

9.6.1 Hardware Setup

The experimental system is shown in Fig. 14(a) which contains 25 degree of free-
doms with 3-channels microvision systems. The control cabinet is shown in Fig.
14(b). The image size of the camera is 2440×2050 pixel with 15 Frames/s. The
magnification of microscope is 0.71∼4.5X according field of view is 15.6∼2.44mm.
The depth of field is 0.43∼0.04mm. The motion resolution of each adjust device is
1μm.

   
(a)                                                                 (b) 

Fig. 9.14 Experimental device, (a) assembly platform, (b) control cabinet

9.6.2 Error Analysis for the Position-Based Method

The angle and position error analysis is conducted. The precision of micro-part B
and micro-part A adjustment device is higher than the vision detection system. The
translational accuracy is 1μm and angular accuracy is 0.02 degree. On this condi-
tion, the movement of the motion is considered as true value. The measurement of
the vision system is regarded as measurement value.

The micro-part B adjustment device moves 1000μm along the X axis. Then,
sixteen holes of micro-part A and micro-part B with the center of CSi are extracted
as shown in Fig. 15. δ T x is computed according to equation (1). The measurement
errors of 20 times for δ T x are shown in Fig. 16(a). The error data is shown in Table
2. It can be seen that the maximum error is 4.9μm, average value is 1.7μm and
variance is 1.6163.

In the same way, the measurement errors for δ θz are shown in Fig. 16(b). The
error data is shown in Table 3. It can be seen that the maximum error is 0.2o, average
error is 0.1o and variance is 0.0043.
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(a) 

 
(b) 

Fig. 9.15 Feature extraction (a) Sixteen holes of micro-part A and center of CSi, (b) Sixteen
holes of micro-part B and center of CAl

Table 9.2 Error date for δ T x

times  Error (μm) times  Error (μm) times  Error (μm) 
1  -0.6 8 0.4 15 -2.7 
2 -0.2 9 1.5 16 -1.8 
3  2.1 10 0.5 17 -0.8 
4 -1.7 11 -2.0 18 -1.0 
5 2.4 12 -4.9 19 -0.8 
6 0.9 13 -0.2 20 -1.5 
7 3.9 14 -3.2   
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Fig. 9.16 Error of δ T x and δ θz, (a) errof of δ T x, (b) error of δ θz
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Table 9.3 Error data for δ θz

times  Error (μm) times  Error (μm) times  Error (μm) 
1  -0.1 8 0.1 15 -0.1 
2 0.2 9 0.0 16 -0.1 
3  0.1 10 0.0 17 0.1 
4 -0.1 11 0.1 18 -0.0 
5 0.0 12  -0.2 19 0.1 
6 0.0 13 -0.0 20 -0.1 
7 -0.0 14 -0.0   

The feature extraction is shown in Fig.17 which is used to compute the relative
pose of two microparts as shown in Fig. 3(a). The red line denotes the estimated
object area and the green line denotes the feature lines.

The measurement error of δ θx is shown in Fig.18(a) and error data is shown in
Table 4. It can be seen from that the maximum error is 0.4o, average error is 0.2o

and variance is 0.0087. The measurement error of δ T z without zooming is shown
in Fig.18(b). The error data is shown in Table 5. It can be seen that the maximum
error is 7.0μm, average value is 4.9μm and variance is 0.9734. In order to improve
the accuracy of the measurement in Z axis, the camera zoomed with the strategy
described in Part 4.B. The measurement error of δ T z after active zooming is shown
in Fig.18(c) and error data is shown in Table 6. It can be seen that the maximum
error is 3.9μm, average value is 2.9μm and variance is 0.2617. The accuracy of
measurement is improved obviously.

Table 9.4 Error data for δ θx

times  Error (degree) times  Error (degree) times  Error (degree) 
1  0.2 8 0.4 15 0.1 
2 0.3 9 0.3 16 0.2 
3  0.2 10 0.3 17 0.3 
4 0.3 11 0.1 18 0.1 
5 0.1 12  0.4 19 0.3 
6 0.3 13 0.2 20 0.2 
7 0.2 14 0.2   
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(a)                                                              (b) 

 
(c)

Fig. 9.17 Image process and feature extraction in camera B, (a) calculation of δ T z without
zooming, (b) calculation of δ θx, (c) calculation of δ T z after active zooming

Table 9.5 Error data for δ Tz without zoom

times 1 2 3 4 5 6 7 8 9 10 
Error (μm) 4.5 7.0 5.2 4.3 4.3 4.2 4.5 4.1 6.0 3.8 
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Fig. 9.18 Error of δ θx and δ T z, (a) Error of δ θx, (b) error of δ T z without zooming, (c) error
of δ T z after zooming
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Table 9.6 Error data for δ Tz after zooming

times  Error (μm) times  Error (μm) times  Error (μm) 
1  -1.5 8 -2.7 15 -2.7 
2 -3.2 9 -2.9 16 -3.3 
3  -2.7 10 -3.3 17 -3.2 
4 -3.7 11 -2.4 18 -3.3 
5 -2.8 12  -3.3 19 -3.9 
6 -2.7 13 -2.7 20 -3.2 
7 -2.5 14 -2.8   

9.6.3 Image Servo Control Based on Jacobian Matrix

During the attitude adjust for the micro-part A, the calibration result of Jacobian
matrix and B are shown in (20), (21). and B. The parameters for PD controller is
set Kp=0.5, Kd=0.1and eT is 0.2 degree. The experiment result is shown in Fig.19.
During the position adjust for micro-part B, the calibration result of Jacobian matrix
is shown in (21). The parameters for PD controller is set Kp=0.7, Kd=0.1 and eT is
5μm. The experiment result is shown in Fig. 20. It can be seen from Fig. 19 and
20 that, the pose errors converge to the given error range rapidly. Fig. 21 shows the
images of the two micro-parts before and after alignment. Experiments shows that
the method proposed in this chapter can adjust the pose in 3D space very fast and
effectively.

JG =

⎡

⎢
⎢⎢
⎢
⎢
⎢
⎣

−0.0010 −0.2070 0
−0.0070 −0.0010 −0.1990
0.3210 0 0
0.0040 0.0030 −0.3270
0.2550 0.0140 −0.0110
−0.0040 −0.1950 −0.0010

⎤

⎥
⎥⎥
⎥
⎥
⎥
⎦

(9.20)

JT =

[
1.0 0.0
−0.2 1.2

]
(9.21)

Compared the two alignment methods, the position based algorithm is more ac-
ceptable. But the control time is much longer than the Jacobian method, because of
the coupling of motion axes. The image Jacobian matrix based alignment method is
more fast and effectively with the same precision.
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Fig. 9.19 Error in the micro-part B movement control process
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Fig. 9.20 Error in the micro-part A movement control process
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(a) 

   
(b) 

Fig. 9.21 Images before and after alignment process, (a) Before alignment, (b) After
alignment

9.7 Conclusion

In this paper, a microvision assembly system which can realize the two mm size
micro parts alignment with 3 microscopies is introduced. A kind of coarse-to-fine
assembly strategy is proposed in the guide of 3 cameras. Position based alignment
strategy is presented. It can realize the alignment task in the coarse alignment stage
when the two microparts is far away from each other at first. Then the system can
achieve better accuracy at final alignment stage in combination with active zooming.
Also, the image Jacobian based 3D space control method is proposed including the
Jacobian matrix deduce, self-calibration method and the controller design. With the
features selected, the microvision assembly system can measure the assembling pa-
rameters online precisely. The experiment results show that the measurement error
for position is less than 5μm and the error for angle is less than 0.5o based on this
system.
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Chapter 10
Intensity-Difference Based Monocular Visual
Odometry for Planetary Rovers

Geovanni Martinez

Abstract. A monocular visual odometry algorithm is presented that is able to esti-
mate the rover’s 3D motion by maximizing the conditional probability of the inten-
sity differences between two consecutive images, which were captured by a monoc-
ular video camera before and after the rover’s motion. The camera is supposed to
be rigidly attached to the rover. The intensity differences are measured at obser-
vation points only that are points with high linear intensity gradients. It represents
an alternative to traditionally stereo visual odometry algorithms, where the rover’s
3D motion is estimated by maximizing the conditional probability of the 3D cor-
respondences between two sets of 3D feature point positions, which were obtained
from two consecutive stereo image pairs that were captured by a stereo video cam-
era before and after the rover’s motion. Experimental results with synthetic and real
image sequences revealed highly accurate and reliable estimates, respectively. Ad-
ditionally, it seems to be an excellent candidate for mobile robot missions where
space, weight and power supply are really very limited.

10.1 Introduction

Over the past two decades, robotic rovers have been extensively used for planetary
surface exploration and have demonstrated that unmanned missions are very practi-
cal and productive, as well as much cheaper and less risky than manned ones. Up to
date, the most successful planetary rovers have been the following six-wheel rocker-
bogie rovers developed at NASA Jet Propulsion Laboratory: the Mars Pathfinder
mission rover Sojourner [1], the Mars Exploration Rovers (MER) Spirit and Oppor-
tunity [2] and the Mars Science Laboratory (MSL) rover Curiosity [3]. In order to
increase the maximum exploration range from few tens of kilometers to hundreds of
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Escuela de Ingenierı́a Eléctrica, Universidad de Costa Rica, 2060 San José, Costa Rica
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Kilometers, a Mars Airplane is also being investigated [4]. As opposite to the Mars
Airplane, flapping insect robots (entomopters) are also being studied due to their
potential to fly slow as well as safety land and take off on rocky planets with low
atmospheric pressure like Mars [5].

Since communication between Earth and Mars rovers only occurs once or twice
a day, and there is a significant delay from the time a command is sent to when
the rover receives it, they must be able to autonomously navigate to science targets
and to place instruments precisely against these targets, where any navigation error
could cause the loss of the entire day of scientific activity.

For reliable and precise autonomous navigation, the rovers need to be able to de-
termine its position and orientation at any time instant. Usually the current rover’s
position and orientation are estimated by integrating the rover’s motion (rover’s
change of position and orientation) from the time the motion began to the current
time, assuming that the initial rover’s position and orientation are known or previ-
ously estimated. In the MER rovers Spirit and Opportunity the rover’s change of
orientation (rover’s rotation) is estimated from measurements of three-axis angular
rate sensors (gyros) provided by an Inertial Measurement Unit (IMU) onboard the
rover [6]. The rover’s change of position (rover’s translation) is estimated from en-
coder readings of how much the wheels turned (wheel odometry). The initial rover’s
orientation is estimated from measurements of three-axis accelerometers provided
by the IMU, as well as a sun position vector provided by a sun sensor which is also
onboard the rover [7]. The initial position is reset by command at the beginning of
the rover’s motion.

One limitation of the rocker-bogie mobile rovers as observed on Mars is the ex-
cessive wheel slippage on steep slopes and soft soils, which causes large errors
particularly on the estimated rover’s position from wheel odometry. These position
errors can even bring the rover to get stuck, digging itself deeper and deeper into a
sand hole, from where it is difficult to get the rover back up on solid ground without
incurring some significant damage in the process.

To correct any position error due to wheel slippage, the rover’s 3D motion is
also estimated by using a stereo visual odometry algorithm. It estimates the rover’s
3D motion by maximizing the conditional probability of the 3D correspondences
between two sets of 3D feature point positions, which were previously obtained
from two consecutive stereo image pairs that were captured by a stereo video cam-
era before and after the rover’s motion, respectively. This feature based stereo vi-
sual odometry algorithm was first proposed by Moravec in [8] and then improved
in [9, 10]. Afterwards, it evolved to become more robust [11] until it was finally
implemented in real time to be used in the Mars Exploration Rover Mission [12].
Similar feature based stereo visual odometry algorithms have been also presented
in [13, 14, 15]. In [14] and [16] feature based visual odometry algorithms are also
described using a monocular standard video camera and an omnidirectional video
camera, respectively. In [17, 18] feature based monocular visual odometry is ex-
tended to a Simultaneous Localization and Mapping (SLAM).

In the stereo visual odometry algorithm used in the Mars Exploration Rover Mis-
sion [12], feature points are first selected on the left frame (image) of the first stereo
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pair. Next, the feature points are also found in the corresponding right frame by
correlation based template matching. Then, the 3D positions of the feature points
before rover’s motion are estimated from the 2D positions of the feature points in
both frames of the first stereo pair by stereo triangulation. Next, the feature points
are moved using an initial motion estimate provided by the onboard wheel odom-
etry, then they are projected into the left frame of the second stereo pair and their
positions refined by correlation based template matching. Then, the feature points
are also found in the corresponding right frame by correlation based template match-
ing. Next, the 3D positions of the feature points after rover’s motion are estimated
from the 2D positions of the feature points in both frames of the second stereo pair
by stereo triangulation. Next, the 3D correspondences (3D offsets) between the two
sets of 3D feature point positions before and after the rover’s motion are established.
Finally, those 3D motion parameters which maximize the conditional probability of
the established 3D correspondences are considered to be the stereo visual odome-
try 3D motion estimates. The conditional probability is computed by modeling the
3D position error at each feature point with Gaussian distributions and using a lin-
earized 3D feature point position transformation, which transforms the 3D position
of a feature point before motion into its 3D position after motion given the rover’s
3D motion parameters.

After evaluating the performance of the above stereo visual odometry algorithm
in both MER rovers Spirit and Opporttuniy on Mars, it was further improved in [19]
resulting in a more robust and at least four time more computationally efficient algo-
rithm, which can also operate with no initial motion estimate from wheel odometry.
This last updated version of the stereo visual odometry algorithm was planed to be
used in the MSL rover Curiosity.

In this paper, as an alternative to the traditional feature based stereo visual odome-
try, an intensity-difference based monocular visual odometry algorithm is described,
which will be able to estimate the rover’s 3D motion evaluating the intensity differ-
ences at different observation points between two intensity frames captured by a
monocular video camera before and after the robot’s motion, where an observation
point is an image point with high linear intensity gradient. This avoids establishing
feature points correspondences for rover’s 3D motion estimation and the problems
associate with it. The rover’s 3D motion will be estimated by maximizing the con-
ditional probability of the frame to frame intensity differences at the observation
points. The conditional probability is computed by expanding the intensity signal by
a Taylor series and neglecting the nonlinear terms, resulting the well known optical
flow constraint [20, 21], as well as using a linearized 3D observation point position
transformation, which transforms the 3D position of an observation point before
motion into its 3D position after motion given the rover’s 3D motion parameters.
Perspective projection of the observation points into the image plane and zero-mean
Gaussian stochastic intensity errors at the observation points are also assumed. Sim-
ilar approaches have been already implemented successfully in applications such as
video compression [22] and teleoperation of space robots [23].

Our approach differs from traditional optical flow approaches such as described
in [24, 25] because we do not follow the typical two-stage algorithm, where the
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optical flow vector field is first estimated and then the rover’s 3D motion is estimated
from the previously estimated optical flow vector field, instead we follow a similar
approach such as described in [26] by developing an one-stage estimation algorithm,
which is able to directly deliver the rover’s 3D motion parameters without estimating
the optical flow vector field, avoiding in this way solving the optical flow as an
intermediate step and the associate problems with the flow estimation.

This contribution is organized as follows. In section 10.2, the proposed monocu-
lar visual odometry algorithm is presented. In section 10.3, the experimental results
are presented. In section 10.4, a brief summary and the conclusions are given. Fi-
nally, in section 10.5, a short description of the future work is given.

10.2 Monocular Visual Odometry Algorithm

In this section, an algorithm to estimate the 3D motion of a rover between two
arbitrary time instants tk−1 and tk is presented. This is done by maximizing the con-
ditional probability of the intensity differences between two consecutive frames Ik−1
and Ik, which were captured at the same time instants by a monocular camera rigidly
attached to the rover. The intensity differences are measured at selected points called
observation points. The conditional probability is a function of the rover’s 3D mo-
tion, the frame to frame intensity differences and the covariance matrix of the in-
tensity errors at the observation points. To compute this conditional probability, a
mathematical relationship between the rover’s 3D motion and the frame to frame
intensity differences at the observation points is used. This relationship is based
on a number of assumptions about the world and how it is projected into the image
plane of the camera. This assumptions are reviewed in subsection 10.2.1. Subsection
10.2.2 explains what is an observation point and how the intensity differences are
measured at the observation points. In subsection 10.2.3, the conditional probabil-
ity of the intensity differences at the observation points is computed. In subsection

Fig. 10.1 Shape of the
planet’s ground surface
model. Currently, it is de-
scribed by a planar and rigid
mesh of two triangles with
coordinate system (X ,Y,Z).
The camera coordinate sys-
tem (q,r,s) is supposed
to coincide with the robot
coordinate system.
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10.2.4, the method to maximize the conditional probability for getting the rover’s
3D motion estimates is described. Finally, subsection 10.2.5 explains how the algo-
rithm is initialized at the beginning of the image sequence.

10.2.1 Planet’s Ground Surface Model

For rover’s 3D motion estimation from time tk−1 to time tk, it is assumed that the
monocular camera is looking down toward the planet’s ground surface, that the
planet’s ground surface is visible by the camera and that it covers the whole area of
the captured intensity images. Furthermore, it is assumed that at time tk−1 a model
of a visible portion of the planet’s ground surface is available or has been previously
computed as described in subsection 10.2.5, whose shape with coordinate system
(X ,Y,Z), texture and relative pose to the camera coordinate system (q,r,s) corre-
spond with those of the real portion of the planet’s ground surface at time tk−1.
For simplicity, from now on, this model will be referred as planet’s ground surface
model. The model’s shape is represented by a rigid mesh of triangles. Currently, the
mesh consists of only two triangles forming a rectangle (see Fig. 10.1). The model’s
texture is described by the intensity and chrominance values being reflecting from it.
The model’s pose is given by six parameters: the three components of a 3D position
vector and three rotation angles. In addition, the camera coordinate system (q,r,s) is
supposed to coincide with the rover coordinate system and an image is supposed to
be generated by perspective projection of the planet’s ground surface into the image
plane of the camera. Moreover, it is assumed that there are no moving objects on
the planet’s ground surface and that the illumination is diffuse as well as spatial and
time invariant. Thus, the frame to frame intensity differences are due to the frame to
frame rover’s 3D motion only.

The rover’s 3D motion from time tk−1 to time tk is described by a rotation fol-
lowed by a translation of its own coordinate system (q,r,s) respect to the ground sur-
face coordinate system (X ,Y,Z). The translation is described by the 3 components
of the 3D translation vector ΔT = (ΔTX ,ΔTY ,ΔTZ)

�. The rotation is described by
3 rotation angles: ΔωX , ΔωY ,ΔωZ . These six motion parameters are represented by
the vector B = (ΔTX ,ΔTY ,ΔTZ ,ΔωX , ΔωY ,ΔωZ)

� and estimated by maximizing
the conditional probability of the frame to frame intensity differences measured at
the observation points.

10.2.2 Observation Points

For estimating the rover’s 3D motion from time tk−1 to time tk, it is also assumed
that at time tk−1 a set of observation points is available. An observation point lies
on one of the triangles of the mesh of the planet’s ground surface model at barycen-
tric coordinates Av and carries the intensity value I, as well as the linear intensity
gradients g = (gx,gy)

� at position Av. The observation points are created and ini-
tialized at the beginning of the image sequence according to the method that is de-
scribed in subsection 10.2.5. Let A = (Aq,Ar,As)

� be the corresponding position of
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an observation point with respect to the rover coordinate system at time tk−1 and let
a = (ax,ay)

� be the position of its perspective projection into the camera plane (see
Fig. 10.2). Assuming that the shape, position and orientation of the planet’s ground
surface model correspond with those of the real portion of the planet’s ground sur-
face at time tk−1, the frame to frame intensity difference f d at the observation point
a is approximated as follows:

f d(a) = Ik(a)− Ik−1(a)≈ Ik(a)− I (10.1)

where Ik−1(a) and Ik(a) represent the intensity value of the images Ik−1 and Ik at
the position a, respectively. Since in general a lies outside of the image raster, the
intensity value Ik(a) is computed by bilinear interpolation of the intensity values of
the nearest four pixels of the intensity image Ik. Then, the frame to frame intensity
difference at N observation points is represented as follows:

FD = ( f d(a(N−1)), f d(a(N−2)), . . . , f d(a(0)))� (10.2)

Moreover, the mean squared frame to frame intensity difference at the observa-
tion points is given by:

msd =
1
N

N−1

∑
n=0

f d(a(n))2 (10.3)

10.2.3 Conditional Probability of the Intensity Differences

Let’s consider an arbitrary observation point at barycentric coordinates Av on the
surface of one of the triangles of the planet’s ground surface model. Let I and
g = (gx,gy)

� be its intensity value and linear intensity gradients, respectively. Due

Fig. 10.2 Observation point
A on the planet’s ground
surface model with respect
to the camera coordinate
system and its perspective
projection a into the image
plane
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to the robot’s motion from time tk−1 to time tk it moves from A to A′ with respect to
the camera coordinate system (see Fig. 10.3). The corresponding perspective projec-
tions into the image plane are a and a′, respectively. Expanding the intensity signal
Ik−1 at image position a by a Taylor series and neglecting the nonlinear terms as
proposed in [21], the following relationship between the unknown position a′ and
the frame to frame intensity difference is obtained:

f d(a) = Ik(a)− Ik−1(a)≈−g� (a
′ − a) (10.4)

which is known in the professional literature as Horn and Schunck optical flow con-
straint equation [20]. Expressing a with their corresponding coordinates at the cam-
era coordinate system using a perspective camera model with known focal distance
f results:

a =

[
f Aq
As

f Ar
As

]

(10.5)

Approximating the Eq. 10.5 at position A by using a Taylor series and neglecting
the nonlinear terms the following transformation for the unknown position a′ can be
obtained:

a′ ≈ a+

[
f

As
0 f Aq

As
2

0 f
As

f Ar

As
2

]

(A′ −A) (10.6)

where the known position A = (Aq,Ar,As)
� is related with the unknown position

A′ = (A′
q,A

′
r,A

′
s)
� according to:

A′ = ΔR (A+C)−C−ΔT (10.7)

Fig. 10.3 Translation ΔA
of an observation point due
to the rover’s 3D motion
with respect to the camera
coordinate system and its
perspective projection into
the camera plane
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In the previous equation C = (CX ,CY ,CZ)
� represents the origin of the robot co-

ordinate system respect to the ground surface coordinate system (see Fig. 10.1) and
ΔR a rotation matrix computed with the rotation angles −ΔωX ,−ΔωY ,−ΔωZ . As-
suming that the rotation angles −ΔωX , −ΔωY , −ΔωZ are small, thus cos(−Δω)≈
1 and sin(−Δω)≈−Δω , the Eq. 10.7 can be transformed into:

A′ ≈
⎡

⎣
Aq

′
Ar

′
As

′

⎤

⎦=

⎡

⎣
1 ΔωZ −ΔωY

−ΔωZ 1 ΔωX

ΔωY −ΔωX 1

⎤

⎦

⎡

⎣
Aq +CX

Ar +CY

As +CZ

⎤

⎦−
⎡

⎣
CX −ΔTX

CY −ΔTY

CZ −ΔTZ

⎤

⎦ (10.8)

Substituing Eq. 10.8 in Eq. 10.6, we obtain:

a′ ≈
[

f Aq
As

f Ar
As

]

+

[
f

As
0 f Aq

As
2

0 f
As

f Ar

As
2

]⎡

⎣
ΔωZ(Ar +CX)−ΔωY (As +CZ)−ΔTX

−ΔωZ(Aq +CX)+ΔωX(As +CZ)−ΔTY

ΔωY (Aq +CX)−ΔωX(Ar +CY )−ΔTZ

⎤

⎦

(10.9)
Finally, substituting Eqs. 10.9 and 10.5 in Eq. 10.4, the following linear equa-

tion that relates the unknown motion parameters and the frame to frame intensity
difference measured at the observation point position a is obtained:

f d(a) =
f gx

As
ΔTX +

f gy

As
ΔTY − f (Aqgx +Argy)

A2
s

ΔTZ +

− f [Aqgx (Ar +CY )+Argy (Ar +CY )+Asgy (As +CZ)]

A2
z

ΔωX +

+
f [Argy (Aq +CX)+Aqgx (Aq +CX)+Asgx (As +CZ)]

A2
z

ΔωY +

− f [gx (Ar +CY )− gy (Aq +CX)]

As
ΔωZ (10.10)

Eq. 10.10 can also be written in vector form as:

f d(a) = o� B+Δ I (10.11)

where

o =

⎡

⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎣

f gx
As

f gy
As

− f (Aqgx+Argy)

A2
s

− f [Aqgx(Ar+CY )+Argy(Ar+CY )+Asgy(As+CZ)]

A2
s

f [Argy(Aq+CX )+Aqgx(Aq+CX )+Asgx(As+CZ )]

A2
s

− f [gx(Ar+CY )−gy(Aq+CX )]
As

⎤

⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎦

(10.12)
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and the term Δ I represents the frame to frame intensity error caused by the cam-
era noise, the local or global temporal illumination changes, the shape error of the
planet’s ground surface model and the accumulated position error due to the motion
estimation errors occurred by the motion analysis of previous frames.

Evaluating Eq. 10.11 at N > 6 observation points the following system of linear
equations is obtained:

FD = O B+V (10.13)

where O is the observation matrix:

O =
[
o(N−1)�,o(N−2)�, . . . ,o(0)

�]�
(10.14)

and V is the vector with the N intensity errors:

V =
[
Δ I(N−1),Δ I(N−2), . . . ,Δ I(0)

]�
(10.15)

The latter can be computed solving for V in Eq. 10.13:

V = FD−O B (10.16)

Modeling the intensity error Δ I(n) with image coordinates a(n) by a stationary
zero-mean Gaussian stochastic process, the joint probability density of the intensity
errors at N observation points with image coordinates a(n), n = 0, ..,N − 1, can be
computed as:

p(V ) =
1

√
(2π)N |U |

e−
1
2 (V

� U−1 V) (10.17)

where |U | is the determinant of the covariance matrix U of the intensity errors at the
N observation points. Assuming that the variance of the intensity error Δ I(n) with
image coordinates a(n) is 1 and that the intensity errors are statistically independent,
this covariance matrix becomes the identity matrix:

U = E[V V�] =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 · · · 0
0 1 0 . . . 0
0 0 1 · · · 0
...

...
...

...
...

0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(10.18)

Substituting Eq. 10.16 in Eq. 10.17 the conditional probability of the frame to
frame intensity differences at the N observation points can be written as follows:

p(FD|B) = 1
√
(2π)N |U |e

− 1
2

(
(FD−O B)�U−1(FD−O B)

)

(10.19)
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10.2.4 Maximizing the Conditional Probability

The 3D motion parameters B=(ΔTX ,ΔTY ,ΔTZ ,ΔωX ,ΔωY ,ΔωZ)
�, which describe

the rover’s 3D motion from time tk−1 to time tk, are estimated by maximizing the
Eq. 10.19. To this end, the derivative of the natural logarithm of the Eq. 10.19 is first
computed and then set to 0 as follows:

∂ ln p(FD|B)
∂B

=
∂ ((FD−O B)�U−1(FD−O B))

∂B
= 0 (10.20)

Finally, the Maximum-Likelihood motion estimates are obtained by solving for
B in the above equation:

B̂ =
(

O�U−1O
)−1

O�U−1FD (10.21)

Due to the truncation errors caused by neglecting the nonlinear terms in all ap-
proximations done to obtain Eq. 10.10, the algorithm needs to be applied iteratively
to improve its reliability and accuracy [22, 23]. After each iteration i, the result-
ing estimates iB̂ are used to compensate the motion of the planet’s ground surface
model, as well as to update the motion estimates B̂ found by previous iterations. Due
to the motion compensation, the frame to frame intensity differences at the observa-
tion points decreases. The iteration ends when after two consecutive iterations the
mean square frame to frame intensity difference at the observation does not decrease
significantly. In each iteration i the following steps are carried out:

1. Evaluate Eq. 10.10 at each observation point
2. Compute the intensity differences iFD and observation matrix iO according to

Eq. 10.2 and Eq. 10.14, respectively
3. Obtain the motion estimates iB̂ using Eq. 10.21
4. Compensate the motion of the mesh of triangles by moving its vertices accord-

ing to Eq. 10.7 with the estimates iB̂
5. Compute the mean squared intensity difference imsd using Eq. 10.3
6. Update the rotation matrix: Δ̂R ← iΔ̂R Δ̂R
7. Update the translation vector: Δ̂T ← Δ̂T + iΔ̂T
8. If |imsd − i−1msd| ≥ δ2 goto step 1

10.2.5 Planet’s Ground Surface Model Initialization

As explained in subsections 10.2.1 and 10.2.2, to estimate the rover’s 3D motion
from time tk−1 to time tk, the shape, the pose and the observation points of a visible
portion of the planet’s ground surface need to be known at time tk−1. Here, they
are computed by compensating the motion of a planet’s ground surface model with
the accumulated motion estimates from time t0 to time tk−1. The planet’s ground
surface model is created and initialized at the beginning of the image sequence. The
motion compensation is gradually performed in the fourth step of each iteration of
the motion estimation algorithm described in the previous subsection.
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The initialization of the shape, the pose and the texture of the model along with
the observation points is carried out only once at the beginning of the image se-
quence, one after the other, as follows:

1. Shape initialization: The model’s shape is currently initialized as a flat and rigid
mesh of two triangles forming a rectangle. Thus, at present, it is only possible
to model the shape of a flat portion of the visible planet‘s ground surface. Here,
the image area of that portion is at least 20% of the total image area.

2. Pose initialization: Currently, the orientation of the model’s shape is initialized
manually so that it fairly corresponds to that of the surface portion being mod-
eled. The position is also set manually so that the perspective projection of the
mesh into the image plane covers the corresponding image region of the surface
portion being modeled. The focal lens f is assume to be 1. In this uncalibrated
case, the robot translation can only be estimated up to scale factor.

3. Texture initialization: The model’s texture is initialized by projecting the inten-
sity and chrominance values of the first image of the sequence onto its mesh of
triangles by using texture mapping.

4. Observation points initialization: The observation points are created and initial-
ized as follows. First, the gradient images G0x and G0y are computed by con-
volving the first intensity image I0 with the Sobel operator. Then, the 3D vertex
positions of all visible triangles of the ground surface model are perspectively
projected into the camera plane. In order to reduce the influence of the camera
noise and to increase the accuracy of the estimation, an arbitrary image point a
inside the image region of a projected triangle will be selected as an observa-
tion point only if the linear intensity gradient at position a satisfies |G0(a)|> δ1.
Next, the 3D position vector A with respect to the camera coordinate system of
each selected observation point is computed as the intersection of the a’s line
of sight and the plane containing the corresponding triangle’s vertex 3D posi-
tions. Then, the corresponding barycentric coordinates Av with respect to the
vertex 3D positions are also computed. Finally, each selected observation point
is rigidly attached to the triangle’s surface. Its position, intensity value I and lin-
ear intensity gradient g = (gx,gy)

� are set to Av, I0(a) and (G0x(a),G0y(a))�,
respectively. Since it is assumed that the illumination is diffuse as well as spa-
tial and time invariant, the intensity value I and the linear intensity gradient
g = (gx,gy)

� of at observation point at position Av remain constant during the
image sequence.

10.3 Experimental Results

In order to evaluate the estimation accuracy of the proposed monocular visual odom-
etry algorithm, we applied it to each image pair of a set of 1000 synthetically gener-
ated image pairs with the following image dimensions: 688 pixel ×544 pixel. Each
image pair consists of two images captured by a rover at time tk−1 and time tk, where
the camera is rigidly attached to the rover and its coordinate system coincides with
the rover’s coordinate system. For each image pair, the shape, the texture and the
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observation points of the ground surface, as well as its position and orientation at
time tk−1 with respect to the camera, including the rotation and translation param-
eters which describes the rovert’s 3D motion from time tk−1 to time tk are exactly
known. The rover’s rotation and the rover’s translation from time tk−1 to time tk are
different in all image pairs and their parameters are uniformly distributed in interval
(-10.0 to +10.0) m for the translation and in interval (-5.0 to +5.0)◦ for the rotation.
The experiment was performed on a iMac with an Intel Core i5 at 3.1 GHz and 12.0
GB RAM.

At a camera noise variance of 10, the Table 10.1 depicts the absolute estimation
error of the translation parameter along the X axis |EΔTX |, along the Y axis |EΔTY |
and along the Z axis|EΔTZ |. This gives an average of 0.00432 m and 0.00111 m for
the mean and the standard deviation of the absolute estimation error of the transla-
tion parameters, respectively. Taking into account that the rover’s translation along
each axis was uniformly distributed in interval (-10.0 to +10.0) m, an average of the
absolute estimation error of the translation parameters of approximately 0.005 m is
an excellent indicative of the high accuracy achieved by the proposed algorithm in
the estimation of the rover’s translation parameters.

At a camera noise of 10, Table 10.2 depicts the absolute estimation error of the
rotation parameter around the X axis |EΔωX |, around the Y axis |EΔωY | and around
the Z axis |EΔωZ |. This gives an average of 0.00337◦ and 0.00198◦ for the mean and
the standard deviation of the absolute estimation error of the rotation parameters,
respectively. Taking into account that the rover’s rotation around each axis was uni-
formly distributed in interval (-5.0 to +5.0)◦, an average of the absolute estimation
error of the rotation parameters of approximately 0.004◦ is also an excellent indica-

Table 10.1 Absolute estimation error of the translation parameter along the X axis
∣∣EΔTX

∣∣,
along the Y axis

∣
∣EΔTY

∣
∣ and along the Z axis

∣
∣EΔTZ

∣
∣ at a camera noise variance of 10

Absolute estimation error mean (m) standard deviation (m)
∣
∣EΔTX

∣
∣ 0.00203 0.00124∣

∣EΔTY

∣
∣ 0.00065 0.00033∣

∣EΔTZ

∣
∣ 0.01027 0.00177

Average 0.00432 0.00111

Table 10.2 Absolute estimation error of the rotation parameter around the X axis
∣∣EΔωX

∣∣,
around the Y axis

∣
∣EΔωX

∣
∣ and around the Z axis

∣
∣EΔωX

∣
∣ at a camera noise variance of 10

Absolute estimation error mean (◦) standard deviation (◦)
∣
∣EΔωX

∣
∣ 0.00537 0.00316∣

∣EΔωY

∣
∣ 0.00324 0.00234∣

∣EΔωZ

∣
∣ 0.00150 0.00042

Average 0.00337 0.00198
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tive of the high accuracy achieved by the proposed algorithm in the estimation of
the rover’s rotation parameters.

In a second experiment, we applied the proposed visual odometry algorithm to
6 different real image sequences with image size of 256 pixel × 256 pixel. They
were taken by the left navigation camera of the MER rover Opportunity at differ-
ent dark chocolate brown flat desolate martian landscapes. All original images are
courtesy of NASA/JPL-Caltech. Because in this experiment the shape, the texture
and the observation points of the planet’s ground surface model as well as its rel-
ative pose with respect to the camera are not known at the beginning of the image
sequence, they are first initialized as described in subsection 10.2.5. The experimen-
tal results revealed an average processing time of 0.1 sec/frame, as well as that the
tracking was never lost. We have also generated an image sequence where a virtual
planar object (triangle) has been integrated into the original image sequence and an-
imated in a way that it looks like it is rigidly attached to the ground surface using the

Fig. 10.4 aaPerspective
projection of a triangle
into (a) the first and (b)
the last image of the test
sequence #2 captured by
the rover Opportunity on
Mars. Since the triangle
is motion compensated
with the negative of the
accumulated rover’s 3D
motion estimates, it seems
to be glued to the ground
surface. All original images
are courtesy NASA/JPL-
Caltech.

(a) (b)

Fig. 10.5 Perspective pro-
jection of a triangle into
(a) the first and (b) the last
image of the test sequence
#3 captured by the rover Op-
portunity on Mars. Since the
triangle is motion compen-
sated with the negative of
the accumulated rover’s 3D
motion estimates, it seems
to be glued to the ground
surface. All original images
are courtesy NASA/JPL-
Caltech.

(a) (b)
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estimated frame to frame 3D motion parameters of the rover. Actually this is
achieved by compensating the motion of the triangle with the negative of the ac-
cumulated rover’s 3D motion estimates and then projecting the triangle into the
image plane for each image of the sequence. A subjective analysis of the results re-
vealed that the triangle really seems to be glued to the ground surface, which is also
an indicative of the excellent reliability of the proposed algorithm. Figs. 10.4.(a)-
10.7.(a) and Figs. 10.4.(b)-10.7.(b) depict the animated triangle projected into the
first image and into the last image of the test image sequence #2, #3, #4, and #6,
respectively. We have also achieved similar results by applying the proposed visual
odometry algorithm to both the 400 frames of a real aerial image sequence and the
400 frames of a real infrared aerial image sequence, the two with image size of 688
pixel × 544 pixel.

Fig. 10.6 Perspective pro-
jection of a triangle into
(a) the first and (b) the last
image of the test sequence
#4 captured by the rover Op-
portunity on Mars. Since the
triangle is motion compen-
sated with the negative of
the accumulated rover’s 3D
motion estimates, it seems
to be glued to the ground
surface. All original images
are courtesy NASA/JPL-
Caltech.

(a) (b)

Fig. 10.7 Perspective pro-
jection of a triangle into
(a) the first and (b) the last
image of the test sequence
#6 captured by the rover Op-
portunity on Mars. Since the
triangle is motion compen-
sated with the negative of
the accumulated rover’s 3D
motion estimates, it seems
to be glued to the ground
surface. All original images
are courtesy NASA/JPL-
Caltech.

(a) (b)
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10.4 Summary and Conclusions

In this contribution, we have showed that the rover’s 3D motion can be also precisely
estimated from measurements of frame to frame intensity differences provided by
a monocular video camera. Although a validation of its performance in a real rover
test bed is still missing, the experimental results so far revealed that it is promising
candidate to be used to improve long-range autonomous navigation of rovers on a
planetary surface. This because it could help when wheel odometry and traditionally
stereo visual odometry have failed, as well as it could be used to validate the stereo
visual odometry estimate or to generate a better estimate by statistically combining
the wheel odometry estimate, the stereo visual odometry estimate and the estimate
of the proposed algorithm using sensor fusion techniques. It is also an excellent
candidate for lighter rover systems or entomopters where space, weight and power
supply are really very limited. We even believe that the proposed algorithm could
have a similar error growth than that achieved with the stereo visual odometry al-
gorithm used by the MER rovers and the MSL rover and it could be more effective
when the distance to the scene is much larger than the stereo baseline. Additionally,
it has the advantage of being able to operate just with a single monocular video
camera, which consumes less energy, weight less and needs less space than a stereo
video camera. We are also convinced that the proposed algorithm could be compu-
tationally more efficient than the stereo visual odometry because it does not depend
at all on any correlation based template matching for operation.

Our intention is not to replace the stereo visual odometry but to show that monoc-
ular visual odometry based on frame to frame intensity differences is another reli-
able and precise way for odometry estimation that can be merged with other sensors
to improve the long rage autonomous navigation of the current and future rovers,
airplanes and flapping insect robots for planetary exploration.

10.5 Future Work

In the future work, the proposed algorithm will be implemented and tested in a
real rover platform Clearpath Robotics Husky A200 (see Fig.10.8 ), as well as a
set of experiments will be performed in a simulated Martian landscape to assess
its reliability, robustness, error growth, power consumption and overall size. The
obtained results will be compared with those achieved by the stereo visual odometry
and existing monocular SLAM algorithms.

Currently, we are working on the development of the rover’s real time image ac-
quisition system consisting of three IEEE-1394 cameras installed onto the rover’s
mast, each looking down toward the ground surface in three different directions: to
the front, rear and left side parts of the rover, respectively (see Figs. 10.8 and 10.9).
During the experiments only one of those three cameras will be used for monocular
visual odometry. The system is being developed under Ubuntu 12.04.2 LTS, ROS
Fuerte and the programing language C. The image acquisition system will also cor-
rect, in real time, the radial and tangential distortions due to the camera lens.
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Fig. 10.8 Real rover test
bed Clearpath Robotics
Husky A200, which is cur-
rently used to validate the
proposed monocular visual
odometry algorithm. The
rover’s real time image ac-
quisition system consists of
three IEEE-1394 cameras
installed onto the rover’s
mast, each looking down
toward the ground surface
in three different direc-
tions: to the front, rear and
left side parts of the rover,
respectively. During the
experiments only one of
those three cameras will be
used for monocular visual
odometry.

Fig. 10.9 First tests of the
real rover test bed Husky
A200 and its image acqui-
sition system on campus of
the University of Costa Rica
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