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Abstract We study n-point correlation functions for a vertex operator algebra V
on a Riemann surface of genus 2 obtained by attaching a handle to a torus. We
obtain closed formulas for the genus two partition function for free bosonic theories
and lattice vertex operator algebras VL and describe their holomorphic and modular
properties. We also compute the genus two Heisenberg vector n-point function
and the Virasoro vector one point function. Comparing with the companion paper,
when a pair of tori are sewn together, we show that the partition functions are not
compatible in the neighborhood of a two-tori degeneration point. The normalized
partition functions of a lattice theory VL are compatible, each being identified with
the genus two Siegel theta function of L.

1 Introduction

In previous work [17–20, 34] we developed the general theory of n-point functions
for a Vertex Operator Algebra (VOA) on a compact Riemann surface S obtained
by sewing together two surfaces of lower genus, and applied this theory to obtain
detailed results in the case that S is obtained by sewing a pair of complex
tori—the so-called �-formalism discussed in the companion paper1 [20]. In the

1Reference [20] together with the present paper constitute a much expanded version of [21].
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present paper we consider in detail the situation when S results from self-sewing
a complex torus, i.e., attaching a handle, which we refer to as the �-formalism. We
describe the nature of the resulting n-point functions, paying particular attention to
the 0-point function, i.e., the genus 2 partition function, in the �-formalism. We find
the explicit form of the partition function for the Heisenberg free bosonic string and
for lattice vertex operator algebras, and show that these functions are holomorphic
on the parameter domain defined by the sewing. We study the generating function
for genus two Heisenberg n-point functions and show that the Virasoro vector
1-point function satisfies a genus two Ward identity. Many of these results are
analogous to those found in the �-formalism discussed in [20] but with significant
technical differences. Finally, we compare the results in the two formalisms, and
show that the partition functions (and hence all n-point functions) are incompatible.
We introduce normalized partition functions, and in the case of VL show that they
are compatible; in both formalisms the normalized partition function is the genus
two Siegel theta function �.2/L .

We now discuss the contents of the paper in more detail. Our approach to genus
two correlation functions in both formalisms is to define them in terms of genus one
data coming from a VOA V . In Sect. 2 we review the �-formalism introduced in
[18]. There, we constructed a genus two surface by self-sewing a torus, and obtained
explicit expressions for the genus two normalized 2-form of the second kind !.2/, a
basis of normalized holomorphic 1-forms �1; �2, and the period matrix ˝, in terms
of genus one data. In particular, we constructed a holomorphic map

F � W D� �! H2

.�;w; �/ 7�! ˝.�;w; �/ (1)

Here, and below, Hg .g � 1/ is the genus g Siegel upper half-space, and D� �
H1 � C

2 is the domain defined in terms of data .�;w; �/ needed to self-sew a torus
of modulus � . Sewing produces a surface S D S.�;w; �/ of genus 2, and the map
F � assigns to S its period matrix. We also introduce some diagrammatic techniques
which provide a convenient way of describing !.2/; �1; �2 and˝ in the �-formalism.

Section 3 consists of a brief review of relevant background material on VOA
theory, with particular attention paid to the Li-Zamolodchikov or LiZ metric. In
Sect. 4, motivated by ideas in conformal field theory [6, 29, 31, 32], we introduce
n-point functions (at genus one and two) in the �-formalism for a general VOA with
nondegenerate LiZ metric. In particular, the genus two partition function Z.2/

V W
D� ! C is formally defined as

Z
.2/
V .�;w; �/ D

X

n�0
�n

X

u2VŒn�
Z
.1/
V .u; u;w; �/; (2)

where the inner sum is taken over any basis for a homogeneous space VŒn� of weight

wt Œn�,Z.1/
V .u; u;w; �/ is a genus one 2-point function and u is the LiZ metric dual of

u. In Sect. 4.1 we consider an example of self-sewing a sphere (Theorem 6), while in
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Sect. 4.2 we show (Theorem 7) that a particular degeneration of the genus 2 partition
function of a VOA V can be described in terms of genus 1 data. Of particular interest
here is the interesting relationship between the quasiprimary decomposition of V
and the Catalan series.

In Sects. 5 and 6 we consider in detail the case of the Heisenberg free bosonic
theory Ml corresponding to l free bosons, and lattice VOAs VL associated with a
positive-definite even lattice L. Although (2) is a priori a formal power series in
�;w and q D e2� i� , we will see that for these two theories it is a holomorphic
function on D�. We expect that this result holds in much wider generality. Although
our calculations in these two sections generally parallel those for the �-formalism
[20], the �-formalism is far from being a simple translation. Several issues require
additional attention, so that the �-formalism is rather more complicated than its
�-counterpart. This arises in part from the fact that F � involves a logarithmic term
that is absent in the �-formalism. The moment matrices employed are also more
unwieldy.

We establish (Theorem 8) a fundamental formula describing Z.2/
M .�;w; �/ as a

quotient of the genus one partition function for M by a certain infinite determinant.
This determinant was already introduced in [18], and its holomorphy and nonvan-
ishing in D� (loc. cit.) implies the holomorphy of Z.2/

M . We also obtain a product
formula for the infinite determinant (Theorem 9), and establish the automorphic
properties ofZ.2/

M2 with respect to the action of a group 	1 Š SL.2;Z/ (Theorem 11)

that naturally acts on D�. In particular, we find that Z.2/

M24 is a form of weight
�12 with respect to the action of 	1. These are the analogs in the �-formalism
of results obtained in Sect. 6 of [20] for the genus two partition function ofM in the
�-formalism.

We also calculate some genus two n-point functions for the rank one Heisenberg
VOA M , specifically the n-point function for the weight 1 Heisenberg vector and
the 1-point function for the Virasoro vector Q!. We show that, up to an overall factor
of the genus two partition function, the formal differential forms associated with
these n-point functions are described in terms of the global symmetric 2-form !.2/

[33] and the genus two projective connection [11] respectively. Once again, these
results are analogous to results obtained in [20] in the �-formalism.

In Sect. 6.1 we establish (Theorem 14) a basic formula for the genus two partition
function for lattice theories in the �-formalism. The result is

Z
.2/
VL
.�;w; �/ D Z.2/

Ml .�;w; �/�
.2/
L .˝/; (3)

where �.2/L .˝/ is the genus two Siegel theta function attached to L [7] and ˝ D
F �.�;w; �/; indeed, (3) is an identity of formal power series. The holomorphy
and automorphic properties of Z.2/

VL;�
follow from (3) and those of Z.2/

Ml and 
.2/
L .

Heisenberg n-point functions and a genus two Ward identity involving the Virasoro
1-point function are also discussed.
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Section 7 is devoted to a comparison of genus two n-point functions, and
especially partition functions, in the �- and �-formalisms. There are strong formal
similarities between Z.2/

Ml ;�
.�1; �2; �/ and Z.2/

Ml ;�
.�;w; �/ so it is natural to ask if they

are equal in some sense.2 In the very special case that V is holomorphic (i.e., it has a
unique irreducible module), one knows (e.g., [33]) that the genus 2 conformal block
is one-dimensional, in which case an identification of the two partition functions
might seem inevitable. On the other hand, the partition functions are defined on quite
different domains, so there is no question of them being literally equal. Indeed, we
argue in Sect. 7 that Z.2/

Ml ;�
.�1; �2; �/ and Z.2/

Ml ;�
.�;w; �/ are incompatible, i.e., there

is no sensible way in which they can be identified.
We therefore introduce normalized partition functions, defined as

OZ.2/
V;�.�;w; �/ WD

Z
.2/
V;�.�;w; �/

Z
.2/

Ml ;�
.�;w; �/

; OZ.2/
V;�.�1; �2; �/ WD

Z
.2/
V;�.�1; �2; �/

Z
.2/

Ml ;�
.�1; �2; �/

;

associated to a VOA V of central charge l . For Ml , the normalized partition
functions are equal to 1. The relation between the normalized partition functions
for lattice theories VL .rkL D l/ in the two formalisms can be displayed in the
diagram

D� F ��! H2

F � � D�

OZ.2/V;�
& # �.2/L

OZ.2/V;�
.

C

(4)

That this is a commuting diagram combines formula (3) in the �-formalism,
and Theorem 14 of [20] for the analogous result in the �-formalism. Thus, the
normalized partition functions for VL are independent of the sewing scheme. They
can be identified, via the sewing maps F �, with a genus two Siegel modular form
of weight l=2, the Siegel theta function. It is therefore the normalized partition
function(s) which can be identified with an element of the conformal block, and
with each other. It would obviously be useful to have available a result that provides
an a priori guarantee of this fact. A partial confirmation of this fact is described in
[12] where it is shown that the normalized partition functions for any VOA V agree
in the degeneration limit where one torus is pinched down to a Riemann sphere.
Section 8 contains a brief further discussion of these issues in the light of related
ideas in string theory and algebraic geometry.

2Here we include an additional subscript of either � or � to distinguish between the two formalisms.
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2 Genus Two Riemann Surface from Self-sewing a Torus

In this section we review some relevant results of [18] based on a general sewing
formalism due to Yamada [36]. In particular, we review the construction of a
genus two Riemann surface formed by self-sewing a twice-punctured torus. We
refer to this sewing scheme as the �-formalism. We discuss the explicit form of
various genus two structures such as the period matrix ˝. We also review the
convergence and holomorphy of an infinite determinant that naturally arises later
on. An alternative genus two surface formed by sewing together two tori, which we
refer to as the �-formalism, is utilised in the companion paper [20].

2.1 Some Elliptic Function Theory

We begin with the definition of various modular and elliptic functions [17, 18]. We
define

P2.�; z/ D }.�; z/CE2.�/

D 1

z2
C

1X

kD2
.k � 1/Ek.�/zk�2; (5)

where � 2 H1, the complex upper half-plane and where }.�; z/ is the Weierstrass
function (with periods 2� i and 2� i� ) and Ek.�/ D 0 for k odd, and for k even is
the Eisenstein series. Here and below, we take q D exp.2� i�/. We define P0.�; z/,
up to a choice of the logarithmic branch, and P1.�; z/ by

P0.�; z/ D � log.z/C
X

k�2

1

k
Ek.�/z

k; (6)

P1.�; z/ D 1

z
�
X

k�2
Ek.�/z

k�1: (7)

P0 is related to the elliptic prime form K.�; z/, by [27]

K.�; z/ D exp .�P0.�; z// : (8)

Define elliptic functions Pk.�; z/ for k � 3

Pk.�; z/ D .�1/k�1

.k � 1/Š
dk�1

d zk�1 P1.�; z/: (9)
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Define for k; l � 1

C.k; l/ D C.k; l; �/ D .�1/kC1 .k C l � 1/Š
.k � 1/Š.l � 1/ŠEkCl .�/; (10)

D.k; l; z/ D D.k; l; �; z/ D .�1/kC1 .k C l � 1/Š
.k � 1/Š.l � 1/ŠPkCl .�; z/: (11)

2.2 The �-Formalism for Self-sewing a Torus

Consider a compact Riemann surface S of genus 2 with standard homology basis
a1; a2; b1; b2. Let

!.x; y/ D
�

1

.x � y/2 C regular terms

�
dxdy (12)

be the normalized differential of the second kind [4, 36] for local coordinates x; y
with normalization

H
ai
!.x; �/ D 0 for i D 1; 2. Then

�i .x/ D
I

bi

!.x; �/; (13)

for i D 1; 2 is a basis of holomorphic 1-forms with normalization
H
ai
�j D 2� iıij .

The genus 2 period matrix ˝ 2 H2 is defined by

˝ij D 1

2� i

I

bi

�j : (14)

We now review a general method due to Yamada [36], and discussed at length
in [18], for calculating !.x; y/, �i .x/ and ˝ij on the Riemann surface formed by
sewing a handle to an oriented torus S D C=� with lattice � D 2� i.Z� ˚ Z/ and
� 2 H1. Consider discs centered at z D 0 and z D w with local coordinates z1 D z
and z2 D z � w, and positive radius ra < 1

2
D.q/ with 1 � a � 2. Here, we have

introduced the minimal lattice distance

D.q/ D min
.m;n/¤.0;0/

2�jmC n� j > 0: (15)

Note that r1; r2 must be sufficiently small to ensure that the discs do not intersect on
S. Introduce a complex parameter � where j�j � r1r2 and excise the discs fza; jzaj �
j�j=rag to obtain a twice-punctured torus (illustrated in Fig. 1)

OS D Snfza; jzaj � j�j=rag .1 � a � 2/:
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Fig. 1 Self-sewing a torus

Here, and below, we use the convention

1 D 2; 2 D 1: (16)

Define annular regions Aa D fza; j�jr�1
a � jzaj � rag 2 OS .1 � a � 2/, and

identify A1 with A2 as a single region via the sewing relation

z1z2 D �: (17)

The resulting genus two Riemann surface (excluding the degeneration point � D 0)
is parameterized by the domain

D� D ˚.�;w; �/ 2 H1 � C � C W jw � �j > 2j�j1=2 > 0 for all � 2 �� ; (18)

where the first inequality follows from the requirement that the annuli do not
intersect. The Riemann surface inherits the genus one homology basis a1; b1. The
cycle a2 is defined to be the anti-clockwise contour surrounding the puncture at w,
and b2 is a path between identified points z1 D z0 to z2 D �=z0 for some z0 2 A1.
!; �i and ˝ are expressed as a functions of .�;w; �/ 2 D� in terms of an infinite

matrix of 2 � 2 blocks R.�;w; �/ D .R.k; l; �;w; �// .k; l � 1/ where [18]

R.k; l; �;w; �/ D ��
.kCl/=2
p
kl

�
D.k; l; �;w/ C.k; l; �/

C.k; l; �/ D.l; k; �;w/

�
; (19)

for C;D of (10) and (11). I �R and det.I �R/ play a central rôle in our discussion,
where I denotes the doubly-indexed identity matrix and det.I �R/ is defined by

log det.I �R/ D Tr log.I �R/ D �
X

n�1

1

n
TrRn: (20)

In particular (op. cit., Proposition 6 and Theorem 7)
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Theorem 1. We have

(a)

.I �R/�1 D
X

n�0
Rn (21)

is convergent in D�.
(b) det.I �R/ is nonvanishing and holomorphic in D�. ut

We define a set of 1-forms on OS given by

a1.k; x/ D a1.k; x; �; �/ D
p
k�k=2PkC1.�; x/dx;

a2.k; x/ D a2.k; x; �; �/ D a1.k; x � w/; (22)

indexed by integers k � 1. We also define the infinite row vector a.x/ D .aa.k; x//
and infinite column vector a.x/T D .aa.k; x//

T for k � 1 and block index 1 �
a � 2. We find (op. cit., Lemma 11, Proposition 6 and Theorem 9):

Theorem 2.

!.x; y/ D P2.�; x � y/dxdy � a.x/.I �R/�1a.y/T : ut (23)

Applying (13) results in (op. cit., Lemma 12 and Theorem 9)

Theorem 3.

�1.x/ D dx � �1=2
 �.a.x/.I �R/�1/.1/�

�2.x/ D .P1.�; x � w/ � P1.�; x// dx � a.x/.I �R/�1dT : (24)

d D .da.k// is a doubly-indexed infinite row vector3

d1.k/ D ��
k=2

p
k
.Pk.�;w/ �Ek.�// ;

d2.k/ D .�1/k �
k=2

p
k
.Pk.�;w/ �Ek.�// ; (25)

with da D da. .1/ refers to the .k/ D .1/ entry of a row vector and 
.M/ denotes
the sum over the finite block indices for a given 1 � 2 block matrix M . ut
˝ is determined (op. cit., Proposition 11) by (14) as follows:

3Note that d is denoted by ˇ in [18].
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Theorem 4. There is a holomorphic map

F � W D� ! H2;

.�;w; �/ 7! ˝.�;w; �/; (26)

where ˝ D ˝.�;w; �/ is given by

2� i˝11 D 2� i� � �
 �.I �R/�1.1; 1/� ; (27)

2� i˝12 D w � �1=2
 �d.I �R/�1.1/� ; (28)

2� i˝22 D log

�
� �

K.�;w/2

�
� d.I �R/�1dT : (29)

K is the elliptic prime form (8), .1; 1/ and .1/ refer to the .k; l/ D .1; 1/,
respectively, .k/ D .1/ entries of an infinite matrix and row vector respectively.

.M/ denotes the sum over the finite block indices for a given 2 � 2 or 1 � 2 block
matrix M . ut

D� admits an action of the Jacobi group J D SL.2;Z/ Ë Z
2 as follows:

.a; b/:.�;w; �/ D .�;wC 2� ia� C 2� ib; �/ ..a; b/ 2 Z
2/; (30)

�1:.�;w; �/ D .a1� C b1
c1� C d1 ;

w

c1� C d1 ;
�

.c1� C d1/2 / .�1 2 	1/; (31)

with 	1 D
��

a1 b1
c1 d1

��
D SL.2;Z/. Due to the branch structure of the logarithmic

term in (29), F � is not equivariant with respect to J . (See Sect. 6.3 of [18] for
details.)

There is a natural injection 	1 ! Sp.4;Z/ defined by

�
a1 b1
c1 d1

�
7!

0

BB@

a1 0 b1 0

0 1 0 0

c1 0 d1 0

0 0 0 1

1

CCA ; (32)

through which 	1 acts on H2 by the standard action

�:˝D .A˝ C B/.C˝ CD/�1;
�
� D

�
A B

C D

�
2 Sp.4;Z/

�
: (33)

We then have (op. cit., Theorem 11, Corollary 2)

Theorem 5. F � is equivariant with respect to the action of 	1, i.e. there is a
commutative diagram for �1 2 	1,
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Fig. 2 Doubly-indexed cycle

D� F �! H2

�1 # # �1
D� F �! H2

ut

2.3 Graphical Expansions

We present a graphical approach to describing the expressions for !; �i ;˝ij

reviewed above. These also play an important rôle in the analysis of genus two
partition functions for the Heisenberg vertex operator algebra. A similar approach
is described in [20] suitable for the �-sewing scheme. Here we introduce doubly-
indexed cycles construed as (clockwise) oriented, labelled polygons L with n nodes
for some integer n � 1, nodes being labelled by a pair of integers k; a where k � 1
and a 2 f1; 2g. Thus, a typical doubly-indexed cycle looks as in Fig. 2.

We define a weight function4 � with values in the ring of elliptic functions and
quasi-modular forms CŒP2.�;w/; P3.�;w/; E2.�/; E4.�/; E6.�/� as follows: if L is

a doubly-indexed cycle then L has edges E labelled as
k;a� ! l;b� , and we set

�.E/ D Rab.k; l; �;w; �/; (34)

with Rab.k; l/ as in (19) and

�.L/ D
Y

�.E/;

where the product is taken over all edges of L.
We also introduce doubly-indexed necklaces N D fN g. These are connected

graphs with n � 2 nodes, .n � 2/ of which have valency 2 and two of which have
valency 1 together with an orientation, say from left to right, on the edges. In this
case, each vertex carries two integer labels k; a with k � 1 and a 2 f1; 2g. We define
the degenerate necklace N0 to be a single node with no edges, and set �.N0/ D 1.

4Denoted by ! in Sect. 6.2 of [18].
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We define necklaces with distinguished end nodes labelled k; aI l; b as follows:

�
k;a
�! �

k1;a1
: : : �

k2;a2
�! �

l;b
(type k; aI l; b)

and set5

N .k; aI l; b/ D fisomorphism classes of necklaces of type k; aI l; bg: (35)

We define

�.1I 1/ D
X

a1;a2D1;2

X

N2N .1;a1I1;a2/
�.N /;

�.d I 1/ D
X

a1;a2D1;2

X

k�1
da1.k/

X

N2N .k;a1I1;a2/
�.N /;

�.d I d/ D
X

a1;a2D1;2

X

k;l�1
da1.k/da2.l/

X

N2N .k;a1Il;a2/
�.N /: (36)

Then we find

Proposition 1 ([18], Proposition 12). The period matrix is given by

2� i˝11 D 2� i� � ��.1I 1/;
2� i˝12 D w � �1=2�.d I 1/;

2� i˝22 D log

�
� �

K.�;w/2

�
� �.d I d/: ut

We can similarly obtain necklace graphical expansions for the bilinear form
!.x; y/ and the holomorphic one forms �i .x/. We introduce further distinguished
valence one nodes labelled by x 2 OS, the punctured torus. The set of edges fEg is
augmented by edges with weights defined by:

�.
x� �! y�/ D P2.�; x � y/dxdy;

�.
x� �! k;a� / D aa.k; x/;

�.
k;a� �! y�/ D �aa.k; y/; (37)

for 1-forms (22).
We also consider doubly-indexed necklaces where one or both end points are

x; y-labeled nodes. We thus define for x; y 2 OS two isomorphism classes of oriented

5Two graphs are isomorphic if they have the same labelled vertices and directed edges.
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doubly-indexed necklaces denoted by N .xIy/, and N .xI k; a/ with the following
respective typical configurations

fx� �! k1;a1� : : :
k2;a2� �! y�g; (38)

fx� �! k1;a1� : : :
k2;a2� �! k;a� g: (39)

Furthermore, we define the weights

�.xIy/ D
X

N2N .xIy/
�.N /;

�.xI 1/ D
X

aD1;2

X

N2N .xI1;a/
�.N /;

�.xI d/ D
X

aD1;2

X

k�1

X

N2N .xIk;a/
�.N /da.k/: (40)

Comparing to (23) and (24) we find the following graphical expansions for the
bilinear form !.x; y/ and the holomorphic one forms �i .x/

Proposition 2. For x; y 2 OS

!.x; y/ D �.xIy/; (41)

�1.x/ D dx � �1=2�.xI 1/; (42)

�2.x/ D .P1.�; x � w/ � P1.�; x//dx � �.xI d/: (43)

3 Vertex Operator Algebras and the Li-Zamolodchikov
Metric

3.1 Vertex Operator Algebras

We review some relevant aspects of vertex operator algebras [8, 9, 13, 15, 22, 23]. A
vertex operator algebra (VOA) is a quadruple .V; Y; 1; !/ consisting of a Z-graded
complex vector space V DL

n2Z Vn, a linear map Y W V ! .EndV /ŒŒz; z�1��, for
formal parameter z, and a pair of distinguished vectors (states), the vacuum 1 2 V0 ,
and the conformal vector ! 2 V2. For each state v 2 V the image under the Y map
is the vertex operator

Y.v; z/ D
X

n2Z
v.n/z�n�1; (44)
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with modes v.n/ 2 EndV where ReszD0z�1Y.v; z/1 D v.�1/1 D v. Vertex
operators satisfy the Jacobi identity or equivalently, operator locality or Borcherds’s
identity for the modes (loc. cit.).

The vertex operator for the conformal vector ! is defined as

Y.!; z/ D
X

n2Z
L.n/z�n�2:

The modes L.n/ satisfy the Virasoro algebra of central charge c:

ŒL.m/;L.n/� D .m � n/L.mC n/C .m3 �m/ c
12
ım;�n:

We define the homogeneous space of weight k to be Vk D fv 2 V jL.0/v D kvg
where we write wt.v/ D k for v in Vk . Then as an operator on V we have

v.n/ W Vm ! VmCk�n�1:

In particular, the zero mode o.v/ D v.wt .v/ � 1/ is a linear operator on Vm.
A non-zero vector v is said to be quasi-primary if L.1/v D 0 and primary if
additionally L.2/v D 0.

The subalgebra fL.�1/; L.0/; L.1/g generates a natural action on vertex opera-
tors associated with SL.2;C/ Möbius transformations [2, 3, 9, 13]. In particular, we
note the inversion z 7! 1=z, for which

Y.v; z/ 7! Y �.v; z/ D Y
 

ezL.1/

�
� 1

z2

�L.0/
v;
1

z

!
: (45)

Y �.v; z/ is the adjoint vertex operator [9].
We consider in particular the Heisenberg free boson VOA and lattice VOAs.

Consider an l-dimensional complex vector space (i.e., abelian Lie algebra) H
equipped with a non-degenerate, symmetric, bilinear form . ; / and a distin-
guished orthonormal basis a1; a2; : : : al . The corresponding affine Lie algebra is the
Heisenberg Lie algebra OH D H˝ CŒt; t�1�˚ Ck with brackets Œk; OH� D 0 and

Œai ˝ tm; aj ˝ tn� D mıi;j ım;�nk: (46)

Corresponding to an element � in the dual space H� we consider the Fock space
defined by the induced (Verma) module

M.�/ D U. OH/˝U.H˝CŒt �˚Ck/ C;

where C is the one-dimensional space annihilated by H˝ tCŒt � and on which k acts
as the identity and H ˝ t 0 via the character �; U denotes the universal enveloping
algebra. There is a canonical identification of linear spaces



196 G. Mason and M.P. Tuite

M.�/ D S.H˝ t�1CŒt�1�/;

where S denotes the (graded) symmetric algebra. The Heisenberg free boson VOA
Ml corresponds to the case � D 0. The Fock states

v D a1.�1/e1 :a1.�2/e2 : : : :a1.�n/en : : : :al .�1/f1 :al .�2/f2 : : : al .�p/fp :1; (47)

for non-negative integers ei ; : : : ; fj form a basis of Ml . The vacuum 1 is canoni-
cally identified with the identity of Ml

0 D C, while the weight 1 subspace Ml
1 may

be naturally identified with H. Ml is a simple VOA of central charge l .
Next we consider the case of a lattice vertex operator algebra VL associated to a

positive-definite even lattice L (cf. [2, 8]). Thus L is a free abelian group of rank l
equipped with a positive definite, integral bilinear form . ; / W L˝L! Z such that
.˛; ˛/ is even for ˛ 2 L. Let H be the space C ˝Z L equipped with the C-linear
extension of . ; / to H˝ H and let Ml be the corresponding Heisenberg VOA. The
Fock space of the lattice theory may be described by the linear space

VL DMl ˝ CŒL� D
X

˛2L
Ml ˝ e˛; (48)

where CŒL� denotes the group algebra ofLwith canonical basis e˛ , ˛ 2 L.Ml may
be identified with the subspace Ml ˝ e0 of VL, in which case Ml is a subVOA of
VL and the rightmost equation of (48) then displays the decomposition of VL into
irreducibleMl -modules. VL is a simple VOA of central charge l . Each 1˝ e˛ 2 VL
is a primary state of weight 1

2
.˛; ˛/ with vertex operator (loc. cit.)

Y.1˝ e˛; z/ D Y�.˛; z/YC.˛; z/e˛z˛;

Y˙.˛; z/ D exp

 
	
X

n>0

˛.˙n/
n

z�n
!
: (49)

The operators e˛ 2 CŒL� obey

e˛eˇ D �.˛; ˇ/e˛Cˇ (50)

for a bilinear 2-cocycle �.˛; ˇ/ satisfying �.˛; ˇ/�.ˇ; ˛/ D .�1/.˛;ˇ/.

3.2 The Li-Zamolodchikov Metric

A bilinear form h ; i W V � V�!C is called invariant in case the following identity
holds for all a; b; c 2 V [9]:

hY.a; z/b; ci D ˝b; Y �.a; z/c˛ ; (51)
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with Y �.a; z/ the adjoint operator (45). If V0 D C1 and V is self-dual (i.e. V is
isomorphic to the contragradient module V 0 as a V -module) then V has a unique
non-zero invariant bilinear form up to scalar [16]. Note that h ; i is necessarily
symmetric by a theorem of [9]. Furthermore, if V is simple then such a form is
necessarily non-degenerate. All of the VOAs that occur in this paper satisfy these
conditions, so that normalizing h1; 1i D 1 implies that h ; i is unique. We refer
to such a bilinear form as the Li-Zamolodchikov metric on V , or LiZ-metric for
short [20]. We also note that the LiZ-metric is multiplicative over tensor products
in the sense that LiZ metric of the tensor product V1 ˝ V2 of a pair of simple
VOAs satisfying the above conditions is by uniqueness, the tensor product of the
LiZ metrics on V1 and V2.

For a quasi-primary vector a of weight wt.a/, the component form of (51)
becomes

ha.n/b; ci D .�1/wt.a/ hb; a.2wt.a/ � n � 2/ci : (52)

In particular, for the conformal vector ! we obtain

hL.n/b; ci D hb;L.�n/ci: (53)

Taking n D 0, it follows that the homogeneous spaces Vn and Vm are orthogonal if
n 6D m.

Consider the rank one Heisenberg VOA M D M1 generated by a weight one
state a with .a; a/ D 1. Then ha; ai D �h1; a.1/a.�1/1i D �1. Using (46), it is
straightforward to verify that the Fock basis (47) is orthogonal with respect to the
LiZ-metric and

hv; vi D
Y

1�i�n
.�i/ei ei Š: (54)

This result generalizes in an obvious way to the rank l free boson VOAMl because
the LiZ metric is multiplicative over tensor products.

We consider next the lattice vertex operator algebra VL for a positive-definite
even lattice L. We take as our Fock basis the states fv ˝ e˛g where v is as in (47)
and ˛ ranges over the elements of L.

Lemma 1. If u; v 2Ml and ˛; ˇ 2 L, then

˝
u˝ e˛; v˝ eˇ

˛ D ˝
u; vih1˝ e˛; 1˝ eˇ

˛

D .�1/ 12 .˛;˛/�.˛;�˛/hu; viı˛;�ˇ:

Proof. It follows by successive applications of (52) that the first equality in the
lemma is true, and that it is therefore enough to prove it in the case that u D v D 1.
We identify the primary vector 1 ˝ e˛ with e˛ in the following. Then

˝
e˛; eˇ

˛ D˝
e˛.�1/1; eˇ˛ is given by
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.�1/ 12 .˛;˛/ ˝1; e˛..˛; ˛/ � 1/eˇ˛

D .�1/ 12 .˛;˛/ ReszD0z.˛;˛/�1
˝
1; Y.e˛; z/eˇ

˛

D .�1/ 12 .˛;˛/�.˛; ˇ/ReszD0z.˛;ˇ/C.˛;˛/�1
˝
1; Y�.˛; z/:e˛Cˇ˛ :

Unless ˛ C ˇ D 0, all states to the left inside the bracket h ; i on the previous line
have positive weight, hence are orthogonal to 1. So he˛; eˇi D 0 if ˛Cˇ 6D 0. In the
contrary case, the exponential operator acting on the vacuum yields just the vacuum
itself among weight zero states, and we get he˛; e�˛i D .�1/ 12 .˛;˛/�.˛;�˛/ in this
case. ut
Corollary 1. We may choose the cocycle so that �.˛;�˛/ D .�1/ 12 .˛;˛/ (cf. (132)
in Appendix). In this case, we have

˝
u˝ e˛; v˝ eˇ

˛ D hu; viı˛;�ˇ: (55)

4 Partition and n-Point Functions for Vertex Operator
Algebras on a Genus Two Riemann Surface

In this section we consider the partition and n-point functions for a VOA on
Riemann surface of genus one or two, formed by attaching a handle to a surface
of lower genus. We assume that V has a non-degenerate LiZ metric h ; i. Then for
any V basis fu.a/g, we may define the dual basis fu.a/gwith respect to the LiZ metric
where

˝
u.a/; u.b/

˛ D ıab: (56)

4.1 Genus One

It is instructive to first consider an alternative approach to defining the genus one
partition function. In order to define n-point correlation functions on a torus, Zhu
introduced [37] a second VOA .V; Y Œ ; �; 1; Q!/ isomorphic to .V; Y. ; /; 1; !/ with
vertex operators

Y Œv; z� D
X

n2Z
vŒn�z�n�1 D Y �qL.0/z v; qz � 1

�
; (57)

and conformal vector Q! D ! � c
24

1. Let

Y Œ Q!; z� D
X

n2Z
LŒn�z�n�2; (58)
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and write wtŒv� D k if LŒ0�v D kv, VŒk� D fv 2 V jwtŒv� D kg. Similarly, we define
the square bracket LiZ metric h ; isq which is invariant with respect to the square
bracket adjoint.

The (genus one) 1-point function is now defined as

Z
.1/
V .v; �/ D TrV

�
o.v/qL.0/�c=24

�
: (59)

An n-point function can be expressed in terms of 1-point functions [17, Lemma 3.1]
as follows:

Z
.1/
V .v1; z1I : : : vn; znI �/

D Z.1/
V .Y Œv1; z1� : : : Y Œvn�1; zn�1�Y Œvn; zn�1; �/ (60)

D Z.1/
V .Y Œv1; z1n� : : : Y Œvn�1; zn�1n�vn; �/ ; (61)

where zin D zi � zn .1 � i � n � 1/. In particular, Z.1/
V .v1; z1I v2; z2I �/ depends

only one z12, and we denote this 2-point function by

Z
.1/
V .v1; v2; z12; �/ D Z.1/

V .v1; z1I v2; z2I �/
D TrV

�
o.Y Œv1; z12�v2/q

L.0/
�
: (62)

Now consider a torus obtained by self-sewing a Riemann sphere with punctures
located at the origin and an arbitrary point w on the complex plane (cf. [18,
Sect. 5.2.2]). Choose local coordinates z1 in the neighborhood of the origin and
z2 D z � w for z in the neighborhood of w. For a complex sewing parameter �,
identify the annuli j�jr�1

a � jzaj � ra for 1 � a � 2 and j�j � r1r2 via the sewing
relation

z1z2 D �: (63)

Define

� D � �
w2
: (64)

Then the annuli do not intersect provided j�j < 1
4
, and the torus modular

parameter is

q D f .�/; (65)

where f .�/ is the Catalan series

f .�/ D 1 �p1 � 4�
2�

� 1 D
X

n�1

1

n

 
2n

nC 1

!
�n: (66)
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f D f .�/ satisfies f D �.1Cf /2 and the following identity, which can be proved
by induction on m:

Lemma 2. f .�/ satisfies

f .�/m D
X

n�m

m

n

 
2n

nCm

!
�n .m � 1/: ut

We now define the genus one partition function in the �-sewing scheme (63) by

Z
.1/
V;�.�;w/ D

X

n�0
�n
X

u2Vn
Resz2D0z�1

2 Resz1D0z�1
1 h1; Y.u;wC z2/Y.u; z1/1i ;

(67)

where the inner sum is taken over any basis for Vn. This partition function is directly
related to the standard one Z.1/

V .q/ D TrV
�
qL.0/�c=24

�
as follows:

Theorem 6. In the sewing scheme (63), we have

Z
.1/
V;�.�;w/ D qc=24Z.1/

V .q/; (68)

where q D f .�/ is given by (65).

Proof. The summand in (67) for u 2 Vn is

h1;Y.u;w/ui D ˝
Y �.u;w/1; u

˛

D .�w�2/n
˝
Y.ewL.1/u;w�1/1; u

˛

D .�w�2/n
D
ew�1L.�1/ewL.1/u; u

E
;

where we have used (45) and Y.v; z/1 D exp.zL.�1//v (e.g [13,22,23]). Hence we
find that

Z
.1/
V;�.�;w/ D

X

n�0

	
� �

w2


n X

u2Vn

D
ew�1L.�1/ewL.1/u; u

E

D
X

n�0
�n TrVn

	
ew�1L.�1/ewL.1/



:

Expanding the exponentials yields

Z
.1/
V;�.�;w/ D TrV

0

@
X

r�0

L.�1/rL.1/r
.rŠ/2

�L.0/

1

A ; (69)

an expression which depends only on �.
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In order to compute (69) we consider the quasi-primary decomposition of V .
Let Qm D fv 2 VmjL.1/v D 0g denote the space of quasiprimary states of weight
m � 1. Then dimQm D pm�pm�1 with pm D dimVm. Consider the decomposition
of V into L.�1/-descendents of quasi-primaries

Vn D
nM

mD1
L.�1/n�mQm: (70)

Lemma 3. Let v 2 Qm for m � 1. For an integer n � m;

X

r�0

L.�1/rL.1/r
.rŠ/2

L.�1/n�mv D
 
2n � 1
n �m

!
L.�1/n�mv:

Proof. First use induction on t � 0 to show that

L.1/L.�1/tv D t .2mC t � 1/L.�1/t�1v:

Then by induction in r it follows that

L.�1/rL.1/r
.rŠ/2

L.�1/n�mv D
 
n �m
r

! 
nCm � 1

r

!
L.�1/n�mv:

Hence

X

r�0

L.�1/rL.1/r
.rŠ/2

L.�1/n�mv D
n�mX

r�0

 
n �m
r

! 
nCm � 1

r

!
L.�1/n�mv;

D
 
2n � 1
n �m

!
L.�1/n�mv;

where the last equality follows from a comparison of the coefficient of xn�m in the
identity .1C x/n�m.1C x/nCm�1 D .1C x/2n�1. ut

Lemma 3 and (70) imply that for n � 1;

TrVn

0

@
X

r�0

L.�1/rL.1/r
.rŠ/2

1

A D
nX

mD1
TrQm

0

@
X

r�0

L.�1/rL.1/r
.rŠ/2

L.�1/n�m
1

A

D
nX

mD1
.pm � pm�1/

 
2n � 1
n �m

!
:
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The coefficient of pm is

 
2n � 1
n �m

!
�
 
2n � 1

n �m � 1

!
D m

n

 
2n

mC n

!
;

and hence

TrVn

0

@
X

r�0

L.�1/rL.1/r
.rŠ/2

1

A D
nX

mD1

m

n

 
2n

mC n

!
pm:

Using Lemma 2, we find that

Z
.1/
V;�.�;w/ D 1C

X

n�1
�n

nX

mD1

m

n

 
2n

mC n

!
pm;

D 1C
X

m�1
pm

X

n�m

m

n

 
2n

mC n

!
�n

D 1C
X

m�1
pm.f .�//

m

D TrV
�
f .�/L.0/

�
;

and Theorem 6 follows. ut

4.2 Genus Two

We now turn to the case of genus two. Following Sect. 2.2, we employ the �-sewing
scheme to self-sew a torus S with modular parameter � via the sewing relation (17).
For x1; : : : ; xn 2 S with jxi j � j�j=r2 and jxi � wj � j�j=r1, we define the genus
two n-point function in the �-formalism by

Z
.2/
V .v1; x1I : : : vn; xnI �;w; �/ D

X

r�0
�r
X

u2VŒr�
Resz1D0z�1

1 Resz2D0z�1
2 Z

.1/
V .u;wC z2I v1; x1I : : : vn; xnI u; z1I �/ ; (71)

where the inner sum is taken over any basis for VŒr�. In particular, with the notation
(62), the genus two partition function is



Free Bosonic Vertex Operator Algebras on Genus Two Riemann Surfaces II 203

Z
.2/
V .�;w; �/ D

X

n�0
�n

X

u2VŒn�
Z
.1/
V .u; u;w; �/ : (72)

Next we consider Z.2/
V .�;w; �/ in the two-tori degeneration limit. Define, much

as in (64),

� D � �
w2
; (73)

where w denotes a point on the torus and � is the genus two sewing parameter. Then
one finds that the two-tori degeneration limit is given by �;w! 0 for fixed �, where

˝ !
�
� 0

0 1
2� i log.f .�//

�
(74)

and f .�/ is the Catalan series (66) (cf. [18, Sect. 6.4]).

Theorem 7. For fixed j�j < 1
4
, we have

lim
w;�!0

Z
.2/
V .�;w; �/ D f .�/c=24Z.1/

V .q/Z
.1/
V .f .�//:

Proof. By (62) we have

Z
.1/
V .u; u;w; �/ D TrV

�
o.Y Œu;w�u/qL.0/

�
;

where u 2 VŒn�. Using the non-degeneracy of the LiZ metric h ; isq in the square
bracket formalism we obtain

Y Œu;w�u D
X

m�0

X

v2VŒm�
hv; Y Œu;w�uisq v;

summing over any basis for VŒm�. Arguing much as in the first part of the proof of
Theorem 6, we also find

hv; Y Œu;w�uisq D .�w�2/n
˝
Y ŒewLŒ1�u;w�1�v; u

˛
sq

D .�w�2/n
D
ew�1LŒ�1�Y Œv;�w�1�ewLŒ1�u; u

E

sq

D .�w�2/n hEŒv;w�u; uisq ;

where

EŒv;w� D exp
�
w�1LŒ�1��Y Œv;�w�1� exp.wLŒ1�/:
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Hence

Z
.2/
V .�;w; �/ D

X

m�0

X

v2VŒm�

X

n�0
�n

X

u2V Œn�
hEŒv;w�u; uiZ.1/

V .v; q/

D
X

m�0

X

v2VŒm�
TrV

�
EŒv;w��LŒ0�

�
Z
.1/
V .v; q/:

Now consider

TrV
�
EŒv;w��LŒ0�

� D

wm
X

r;s�0
.�1/rCm 1

rŠsŠ
TrV

�
LŒ�1�rvŒr � s �m � 1�LŒ1�s�LŒ0�� :

The leading term in w is w0 (arising from v D 1) and is given by

TrV
�
EŒ1;w��LŒ0�

� D f .�/c=24Z.1/
V .f .�//:

This follows from (69) and the isomorphism between the original and square bracket
formalisms. Taking w! 0 for fixed � the result follows. ut

5 The Heisenberg VOA

In this section we compute the genus two partition function in the �-formalism
for the rank l D 1 Heisenberg VOA M . We also compute the genus two n-point
function for n copies of the Heisenberg vector a and the genus two one-point
function for the Virasoro vector !. The main results mirror those obtained in the
�-formalism in Sect. 6 of [20].

5.1 The Genus Two Partition Function Z
.2/

M
.�; w; �/

We begin by establishing a formula for Z.2/
M .�;w; �/ in terms of the infinite matrix

R (19). Recalling that the genus zero partition function is Z.1/
M .�/ D 1=�.�/ where

�.�/ D q1=24Qn�1.1 � qn/ is the Dedekind �-function, we find

Theorem 8. We have

Z
.2/
M .�;w; �/ D

Z
.1/
M .�/

det.1 �R/1=2 : (75)
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Remark 1. From Remark 2 of [20] it follows that the genus two partition function
for l free bosons Ml is just the l th power of (75).

Proof. The proof is similar in structure to that of Theorem 5 of [20]. From (72) we
have

Z
.2/
M .�;w; �/ D

X

n�0

X

u2MŒn�

Z
.1/
M .u; u;w; �/ �n; (76)

where u ranges over any basis of MŒn� and u is the dual state with respect to

the square-bracket LiZ metric. Z.1/
M .u; v;w; �/ is a genus one Heisenberg 2-point

function (62). We choose the square bracket Fock basis:

v D aŒ�1�e1 : : : aŒ�p�ep1: (77)

The Fock state v naturally corresponds to an unrestricted partition � D f1e1 : : : pep g
of n D P

1�i�p iei . We write v D v.�/ to indicate this correspondence. The Fock
vectors form an orthogonal set from (54) with

v.�/ D 1Q
1�i�p.�i/ei ei Š

v.�/:

The 2-point function Z.1/
M .v.�/; v.�/;w; �/ is given in Corollary 1 of [17] where

it is denoted by FM.v;w1; v;w2I �/. In order to describe this explicitly we introduce
the set ˚�;2 which is the disjoint union of two isomorphic label sets ˚.1/

� , ˚.2/

�

each with ei elements labelled i determined by �. Let � W ˚.1/

� $ ˚
.2/

� denote the
canonical label identification. Then we have (loc. cit.)

Z
.1/
M .v.�/; v.�/;w; �/ D Z.1/

M .�/
X

�2F.˚�;2/
	 .�/; (78)

where

	 .�;w; �/ D 	 .�/ D
Y

fr;sg
�.r; s;w; �/; (79)

and � ranges over the elements of F.˚�;2/, the fixed-point-free involutions in
˙.˚�;2/ and where fr; sg ranges over the orbits of � on ˚�;2. Finally

�.r; s/ D �.r; s;w; �/ D
(
C.r; s; �/; if fr; sg � ˚.a/

� ; a D 1 or 2;
D.r; s;wab; �/ if r 2 ˚.a/

� ; s 2 ˚.b/

� ; a ¤ b: ;

where w12 D w1 � w2 D w and w21 D w2 � w1 D �w.

Remark 2. Note that � is well-defined since D.r; s;wab; �/ D D.s; r;wba; �/.
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Fig. 3 A doubly-indexed edge

Using the expression (78), it follows that the genus two partition function (76)
can be expressed as

Z
.2/
M .�;w; �/ D Z.1/

M .�/
X

�Dfi ei g

E.�/Q
i .�i/ei ei Š

�
P
iei ; (80)

where � runs over all unrestricted partitions and

E.�/ D
X

�2F.˚�;2/
	 .�/: (81)

We employ the doubly-indexed diagrams of Sect. 2.3. Consider the ‘canonical’
matching defined by � as a fixed-point-free involution. We may then compose � with
each fixed-point-free involution � 2 F.˚�;2/ to define a 1-1 mapping �� on the
underlying labelled set ˚�;2. For each � we define a doubly-indexed diagram D

whose nodes are labelled by k; a for an element k 2 ˚.a/

� for a D 1; 2 and with
cycles corresponding to the orbits of the cyclic group h��i. Thus, if l D �.k/ for

k 2 ˚.a/

� and l 2 ˚.b/

� and � W b 7! b with convention (16) then the corresponding
doubly-indexed diagram contains the edge (Fig. 3).
Consider the permutations of ˚�;2 that commute with � and preserve both ˚.1/

� and

˚
.2/

� . We denote this group, which is plainly isomorphic to ˙.˚�/, by ��. By
definition, an automorphism of a doubly-indexed diagram D in the above sense
is an element of �� which preserves edges and node labels.

For a doubly-indexed diagramD corresponding to the partition � D f1e1 : : : pep g
we set

�.D/ D
Q

fk;lg �.k; l;w; �/Q
.�i/ei �

P
iei (82)

where fk; lg ranges over the edges of D. We now have all the pieces assembled to
copy the arguments used to prove Theorem 5 of [20]. First we find

X

�Dfi ei g

E.�/Q
i .�i/ei ei Š

�
P
iei D

X

D

�.D/

jAut.D/j ; (83)

the sum ranging over all doubly-indexed diagrams.
We next introduce a weight function � as follows: for a doubly-indexed diagram

D we set �.D/ D Q
�.E/, the product running over all edges. Moreover for an

edge E with nodes labelled .k; a/ and .l; b/ as in Fig. 3, we set



Free Bosonic Vertex Operator Algebras on Genus Two Riemann Surfaces II 207

�.E/ D Rab.k; l/;

for R of (19). We then find

Lemma 4. �.D/ D �.D/.
Proof. From (82) it follows that for a doubly-indexed diagram D we have

�.D/ D
Y

fk;lg
��.k; l;w; �/�

.kCl/=2
p

kl
; (84)

the product ranging over the edges fk; lg of D. So to prove the lemma it suffices

to show that if k; l lie in ˚.a/

� ; ˚
.b/

� respectively then the .a; b/-entry of R.k; l/
coincides with the corresponding factor of (84). This follows from our previous
discussion together with Remark 2. ut

From Lemma 4 and following similar arguments to the proof of Theorem 5 of
[20] we find

X

D

�.D/

jAut.D/j D
X

D

�.D/

jAut.D/j

D exp

 
X

L

�.L/

jAut.L/j

!
;

where L denotes the set of non-isomorphic unoriented doubly indexed cycles.
Orient these cycles, say in a clockwise direction. Let fM g denote the set of
non-isomorphic oriented doubly indexed cycles and fMng the oriented cycles with
n nodes. Then we find (cf. [20, Lemma 2]) that

1

n
TrRn D

X

Mn

�.Mn/

jAut.Mn/j :

It follows that

X

L

�.L/

jAut.L/j D
1

2

X

M

�.M/

jAut.M/j

D 1

2
Tr

0

@
X

n�1

1

n
Rn

1

A

D �1
2

Tr log.I �R/

D �1
2

log det.I �R/:

This completes the proof of Theorem 8. ut
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We may also find a product formula analogous to Theorem 6 of [20]. Let
R denote the rotationless doubly-indexed oriented cycles i.e. cycles with trivial
automorphism group. Then we find

Theorem 9.

Z
.2/
M .�;w; �/ D

Z
.1/
M .�/Q

R.1 � �.N //1=2
: ut (85)

5.2 Holomorphic and Modular-Invariance Properties

In Sect. 2.2 we reviewed the genus two �-sewing formalism and introduced the
domain D� which parametrizes the genus two surface. An immediate consequence
of Theorem 1 is the following.

Theorem 10. Z.2/
M .�;w; �/ is holomorphic in D�. ut

We next consider the invariance properties of the genus two partition function
with respect to the action of the D�-preserving group 	1 reviewed in Sect. 2.2. Let
� be the character of SL.2;Z/ defined by its action on �.�/�2, i.e.

�.��/�2 D �.�/�.�/�2.c� C d/�1; (86)

where � D
�
a b

c d

�
2 SL.2;Z/. Recall (e.g. [30]) that �.�/ is a twelfth root of

unity. For a function f .�/ on H1; k 2 Z and � 2 SL.2;Z/, we define

f .�/jk� D f .��/ .c� C d/�k; (87)

so that

Z
.1/

M2.�/j�1� D �.�/Z.1/

M2.�/: (88)

At genus two, analogously to (87), we define

f .�;w; �/jk� D f .�.�;w; �// det.C˝ CD/�k: (89)

Here, the action of � on the right-hand-side is as in (18). We have abused notation
by adopting the following conventions in (89), which we continue to use below:

˝ D F �.�;w; �/; � D
�
A B

C D

�
2 Sp.4;Z/ (90)
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where F � is as in Theorem 4, and � is identified with an element of Sp.4;Z/ via
(32) and (33). Note that (89) defines a right action of G on functions f .�;w; �/. We
then have a natural analog of Theorem 8 of [20]

Theorem 11. If � 2 	1 then

Z
.2/

M2.�;w; �/j�1� D �.�/Z.2/

M2.�;w; �/:

Corollary 2. If � 2 	1 with Z.2/

M24 D .Z.2/

M2/
12 then

Z
.2/

M24.�;w; �/j�12� D Z.2/

M24.�;w; �/:

Proof. The proof is similar to that of Theorem 8 of [20]. We have to show that

Z
.2/

M2.�:.�;w; �// det.C˝ CD/ D �.�/Z.2/

M2.�;w; �/ (91)

for � 2 	1 where det.C˝11CD/ D c1˝11Cd1. Consider the determinant formula
(75). For � 2 	1 define

R 0
ab.k; l; �;w; �/ D Rab

�
k; l;

a1� C b1
c1� C d1 ;

w

c1� C d1 ;
�

.c1� C d1/2
�

following (31). We find from Sect. 6.3 of [18] that

1 �R 0 D 1 �R � ��
D .1 � �S/:.1 �R/;

where

�ab.k; l/ D ık1ıl1;
� D �

2� i

c1

c1� C d1 ;

Sab.k; l/ D ık1
X

c2f1;2g

�
.1 �R/�1�cb .1; l/:

Since det.1 �R/ and det.1 �R 0/ are convergent on D� we find

det.1 �R 0/ D det.1 � �S/: det.1 �R/:

Indexing the columns and rows by .a; k/ D .1; 1/; .2; 1/; : : : .1; k/; .2; k/ : : : and
noting that S1b.k; l/ D S2b.k; l/ we find that
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det.1 � �S/ D

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

1 � �S11.1; 1/ ��S12.1; 1/ ��S11.1; 2/ � � �
��S11.1; 1/ 1 � �S12.1; 1/ ��S11.1; 2/ � � �

0 0 1 � � �
:::

:::
:::

: : :

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

D 1 � �S11.1; 1/ � �S12.1; 1/;
D 1 � �
 �.1 �R/�1� .1; 1//;

where 
.M/ denotes the finite sum over the block labels for a 2 � 2 block matrix
M . Applying (27), it is clear that

det.1 � �S/ D c1˝11 C d1
c1� C d1 :

The theorem follows from (88). ut
Remark 3. Z.2/

M2.�;w; �/ can be trivially considered as function on the covering

space OD� discussed in [18, Sect. 6.3]. Then Z.2/

M2.�;w; �/ is modular with respect

to L D OH	1 with trivial invariance under the action of the Heisenberg group OH
(loc. cit.).

5.3 Some Genus Two n-Point Functions

In this section we calculate some examples of genus two n-point functions for
the rank one Heisenberg VOA M . We consider here the examples of the n-point
function for the Heisenberg vector a and the 1-point function for the Virasoro
vector Q!. We find that, up to an overall factor of the partition function, the formal
differential form associated with the Heisenberg n-point function is described in
terms of the global symmetric two form ! [33] whereas the Virasoro 1-point
function is described by the genus two projective connection [11]. These results
agree with those found in [20] in the �-formalism up to an overall �-formalism
partition function factor.

The genus two Heisenberg vector 1-point function with the Heisenberg vector
a inserted at x is Z.2/

M .a; xI �;w; �/ D 0 since Z.1/
M .Y Œa; x�Y Œv;w�v; �/ D 0 from

[17]. The 2-point function for two Heisenberg vectors inserted at x1; x2 is

Z
.2/
M .a; x1I a; x2I �;w; �/ D

X

r�0
�r

X

v2MŒr�

Z
.1/
M .a; x1I a; x2I v;w1; v;w2I �/ : (92)

We consider the associated formal differential form

F .2/
M .a; aI �;w; �/ D Z.2/

M .a; x1I a; x2I �;w; �/ dx1dx2; (93)

and find that it is determined by the bilinear form ! (12):
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Theorem 12. The genus two Heisenberg vector 2-point function is given by

F .2/
M .a; aI �;w; �/ D !.x1; x2/Z.2/

M .�;w; �/: (94)

Proof. The proof proceeds along the same lines as Theorem 8. As before, we let
v.�/ denote a Heisenberg Fock vector (77) determined by an unrestricted partition
� D f1e1 : : : pep g with label set ˚�. Define a label set for the four vectors
a; a; v.�/; v.�/ given by ˚ D ˚1[˚2[˚.1/

� [˚.2/

� for ˚1;˚2 D f1g and let F.˚/
denote the set of fixed point free involutions on ˚ . For � D : : : .rs/ : : : 2 F.˚/ let
	 .x1; x2; �/ DQ.r;s/ �.r; s/ as defined in (80) for r; s 2 ˚.2/

� D ˚.1/

� [ ˚.2/

� and

�.r; s/ D
(
D.1; 1; xi � xj ; �/ D P2.�; xi � xj /; r; s 2 ˚i ; i ¤ j;
D.1; s; xi � wa; �/ D sPsC1.�; xi � wa/; r 2 ˚i ; s 2 ˚.a/

� ;
(95)

for i; j; a 2 f1; 2g with D of (11). Then following Corollary 1 of [17] we have

Z
.1/
M .a; x1I a; x2I v.�/;w1I v.�/;w2I �/ D Z.1/

M .�/
X

�2F.˚/
	 .x1; x2; �/:

We then obtain the following analog of (80)

F .2/.a; aI �;w; �/ D Z.1/
M .�/

X

�Dfi ei g

E.x1; x2; �/Q
i .�i/ei ei Š

�
P
iei dx1dx2; (96)

where

E.x1; x2; �/ D
X

�2F.˚/
	 .x1; x2; �/:

The sum in (96) can be re-expressed as the sum of weights �.D/ for isomorphism
classes of doubly-indexed configurations D where here D includes two distin-
guished valency one nodes labelled xi (see Sect. 2.3) corresponding to the label sets
˚1;˚2 D f1g. As before, �.D/ D Q

E �.E/ for standard doubly-indexed edges E
augmented by the contributions from edges connected to the two valency one nodes
with weights as in (37). Thus we find

F .2/.a; aI �;w; �/ D Z.1/
M .�/

X

D

�.D/Q
i ei Š

dx1dx2;

Each D can be decomposed into exactly one necklace configuration N of type
N .xIy/ of (38) connecting the two distinguished nodes and a standard configu-
ration OD of the type appearing in the proof of Theorem 8 with �.D/ D �.N /�. OD/.
Since jAut.N /j D 1 we obtain
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F .2/.a; aI �;w; �/ D Z.1/
M .�/

X

OD

�. OD/
jAut. OD/j

X

N2N .xIy/
�.N /

D Z.2/
M .�;w; �/�.x1I x2/

D Z.2/
M .�;w; �/!.x1; x2/;

using (41) of Proposition 2. ut
Theorem 12 can be generalized to compute the n-point function corresponding

to the insertion of n Heisenberg vectors. We find that it vanishes for n odd, and for
n even is determined by the symmetric tensor

Symn ! D
X

 

Y

.r;s/

!.xr ; xs/; (97)

where the sum is taken over the set of fixed point free involutions  D : : : .rs/ : : :
of the labels f1; : : : ; ng. We then have

Theorem 13. The genus two Heisenberg vector n-point function vanishes for odd
n even; for even n it is given by the global symmetric meromorphic n-form:

F .2/
M .a; : : : ; aI �;w; �/
Z
.2/
M .�;w; �/

D Symn !: (98)

�

This agrees with the corresponding ratio in Theorem 10 of [20] in the �-formalism,
and also with earlier results in [33] which assume an analytic structure for the n-
point function.

Using this result and the associativity of vertex operators, we can compute all
n-point functions. In particular, the 1-point function for the Virasoro vector Q! D
1
2
aŒ�1�a is as follows (cf. [20], Proposition 8):

Proposition 3. The genus two 1-point function for the Virasoro vector Q! inserted
at x is given by

F .2/
M . Q!I �;w; �/
Z
.2/
M .�;w; �/

D 1

12
s.2/.x/; (99)

where s.2/.x/ D 6 limx!y

	
!.x; y/ � dxdy

.x�y/2



is the genus two projective connec-

tion [11]. ut
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6 Lattice VOAs

6.1 The Genus Two Partition Function Z
.2/

VL
.�; w; �/

Let L be an even lattice with VL the corresponding lattice theory vertex operator
algebra. The underlying Fock space is

VL DMl ˝ C ŒL� D ˚ˇ2LMl ˝ eˇ; (100)

where Ml is the corresponding Heisenberg free boson theory of rank l D dim L

based on H D C ˝Z L. We follow Sect. 3.1 and [17] concerning further notation
for lattice theories. We utilize the Fock basis fu˝ eˇg where ˇ ranges over L and u
ranges over the usual orthogonal basis for Ml . From Lemma 1 and Corollary 1 we
see that

Z
.2/
VL
.�;w; �/ D

X

˛;ˇ2L
Z
.2/

˛;ˇ .�;w; �/ ; (101)

Z
.2/

˛;ˇ .�;w; �/ D
X

n�0

X

u2Ml
Œn�

Z
.1/

Ml˝e˛

�
u˝ eˇ; u˝ e�ˇ;w; �

�
�nC.ˇ;ˇ/=2:

(102)

The general shape of the 2-point function occurring in (102) is discussed extensively
in [17]. By Proposition 1 (op. cit.) it splits as a product

Z
.1/

Ml˝e˛

�
u˝ eˇ; u˝ e�ˇ;w; �

� D
Q
ˇ

Ml˝e˛
.u; u;w; �/Z.1/

Ml˝e˛

�
eˇ; e�ˇ;w; �

�
; (103)

where we have identified eˇ with 1˝ eˇ , and where Qˇ

Ml˝e˛
is a function6 that we

will shortly discuss in greater detail. In [17, Corollary 5] (cf. the Appendix to the
present paper) we established also that

Z
.1/

Ml˝e˛

�
eˇ; e�ˇ;w; �

� D �.ˇ;�ˇ/q.˛;˛/=2 exp..˛; ˇ/w/

K.w; �/.ˇ;ˇ/
Z
.1/

Ml .�/; (104)

where, as usual, we are taking w in place of z12 D z1 � z2. With cocycle choice
�.ˇ;�ˇ/ D .�1/.ˇ;ˇ/=2 (cf. Appendix) we may then rewrite (102) as

6Note: in [17] the functional dependence on ˇ, here denoted by a superscript, was omitted.
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Z
.2/

˛;ˇ.�;w; �/ D Z
.1/

Ml .�/ exp

�
� i
	
.˛; ˛/� C 2.˛; ˇ/ w

2� i
C .ˇ; ˇ/

2� i
log

� ��
K.w; �/2

�
�

�
X

n�0

X

u2Ml
Œn�

Q
ˇ

Ml
˝e˛

.u; u;w; �/�n: (105)

We note that this expression is, as it should be, independent of the choice of
branch for the logarithm function. We are going to establish the precise analog of
Theorem 14 of [20] as follows:

Theorem 14. We have

Z
.2/
VL
.�;w; �/ D Z.2/

Ml .�;w; �/�
.2/
L .˝/; (106)

where �.2/L .˝/ is the genus two theta function of L [7].

Proof. We note that

�
.2/
L .˝/ D

X

˛;ˇ2L
exp .� i..˛; ˛/˝11 C 2.˛; ˇ/˝12 C .ˇ; ˇ/˝22//: (107)

We first handle the case of rank 1 lattices and then consider the general case. The
inner double sum in (105) is the object which requires attention, and we can begin
to deal with it along the lines of previous sections. Namely, arguments that we have
already used several times show that the double sum may be written in the form

X

D

�.D/

jAut.D/j D exp

 
1

2

X

N2N
�.N /

!
:

Here, D ranges over the oriented doubly indexed cycles of Sect. 5, while N ranges
over oriented doubly-indexed necklaces N D fN .k; aI l; b/g of (35). Leaving aside
the definition of �.N / for now, we recognize as before that the piece involving
only connected diagrams with no end nodes splits off as a factor. Apart from a
Z
.1/
M .�/ term this factor is, of course, precisely the expression (83) for M . With

these observations, we see from (105) that the following holds:

Z
.2/

˛;ˇ.�;w; �/

Z
.2/
M .�;w; �/

D exp

�
i�

�
.˛; ˛/� C 2.˛; ˇ/ w

2� i
C .ˇ; ˇ/

2� i
log

� ��
K.w; �/2

�

C 1

2� i

X

N2N
�.N /

!)
: (108)

To prove Theorem 14, we see from (107) and (108) that it is sufficient to establish
that for each pair of lattice elements ˛; ˇ 2 L, we have
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Z
.2/

˛;ˇ.�;w; �/

Z
.2/
M .�;w; �/

D exp .� i ..˛; ˛/˝11 C 2.˛; ˇ/˝12 C .ˇ; ˇ/˝22// : (109)

Recall the formula for ˝ in Proposition 1. In order to reconcile (109) with
the formula for ˝, we must carefully consider the expression

P
N2N �.N /. The

function � is essentially (82), except that we also get contributions from the end
nodes which are now present. Suppose that an end node has label k 2 ˚.a/; a 2
f1; 2g. Then according to Proposition 1 and display (45) of [17] (cf. (133) of the
Appendix to the present paper), the contribution of the end node is equal to

�˛;ˇ.k; a/ D �˛;ˇ.k; a; �;w; �/ D
8
<

:

�k=2p
k
.a; ık1˛ C C.k; 0; �/ˇ CD.k; 0;w; �/.�ˇ// ; a D 1

�k=2p
k
.a; ık1˛ C C.k; 0; �/.�ˇ/CD.k; 0;�w; �/ˇ/ ; a D 2 (110)

together with a contribution arising from the �1 in the denominator of (82) (we will
come back to this point later). Using (cf. [17], displays (6), (11) and (12))

D.k; 0;�w; �/ D .�1/kC1Pk.�w; �/ D �Pk.w; �/;
C.k; 0; �/ D .�1/kC1Ek.�/;

we can combine the two possibilities in (110) as follows (recalling that Ek D 0 for
odd k):

�˛;ˇ.k; a/ D .a; ˛/�1=2ık1 C .a; ˇ/da.k/; (111)

where da.k/ is given by (25). We may then compute the weight for an oriented
doubly-indexed necklace N 2 N .k; aI l; b/ (35). Let N 0 denote the oriented
necklace from which the two end nodes and edges have been removed (we refer
to these as shortened necklaces). From (111) we see that the total contribution to
�.N / is

� �˛;ˇ.k; a/�˛;ˇ.l; b/�.N 0/ D � �.˛; ˛/�ık1ıl1 C .ˇ; ˇ/da.k/db.l/
C.˛; ˇ/�1=2 �da.k/ıl;1 C db.l/ık;1

��
�.N 0/;

(112)

where we note that a sign �1 arises from each pair of nodes, as follows from (82).
We next consider the terms in (112) corresponding to .˛; ˛/; .˛; ˇ/ and .ˇ; ˇ/

separately, and show that they are precisely the corresponding terms on each side
of (109). This will complete the proof of Theorem 14 in the case of rank 1

lattices. From (112), an .˛; ˛/ term arises only if the end node weights k; l are
both equal to 1. Hence

P
�.N 0/ D �.1I 1/ (cf. (36)), where the sum ranges over
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shortened necklaces with end nodes of weight 1 2 ˚.a/ and 1 2 ˚.b/. Thus using
Proposition 1, the total contribution to the right-hand-side of (109) is equal to

2� i� � ��.1I 1/ D 2� i˝11: (113)

Next, from (112) we see that an .˛; ˇ/-contribution arises whenever at least one
of the end nodes has label 1. If the labels of the end nodes are unequal then the
shortened necklace with the opposite orientation makes an equal contribution. The
upshot is that we may assume that the end node to the right of the shortened necklace
has label l D 1 2 ˚.b/, as long as we count accordingly. We thus find

P
�.N 0/ D

�.d I 1/ (cf. (36)), where the sum ranges over shortened necklaces with end nodes of
weight k 2 ˚.a/ and 1 2 ˚.b/. Then Proposition 1 implies that the total contribution
to the .˛; ˇ/ term on the right-hand-side of (109) is

2w � 2�1=2�.d I 1/ D 2˝12;

as required.
It remains to deal with the .ˇ; ˇ/ term, the details of which are very much

along the lines as the case .˛; ˇ/ just handled. A similar argument shows that
the contribution to the .ˇ; ˇ/-term from (112) is equal to the expression ��.d I d/
of (36). Thus the total contribution to the .ˇ; ˇ/ term on the right-hand-side of
(109) is

log

� ��
K.w; �/2

�
� �.d I d/ D ˝22;

as in (29). This completes the proof of Theorem 14 in the rank 1 case.
As for the general case—we adopt the mercy rule and omit details! The reader

who has progressed this far will have no difficulty in dealing with the general case,
which follows by generalizing the calculations in the rank 1 case just considered.

ut
The analytic and automorphic properties of Z.2/

VL
.�;w; �/ can be deduced from

Theorem 14 using the known behaviour of �.2/L .˝/ and the analogous results for

Z
.2/

Ml .�;w; �/ established in Sect. 5. We simply record

Theorem 15. Z.2/
VL
.�;w; �/ is holomorphic on the domain D�. ut

6.2 Some Genus Two n-Point Functions

In this section we consider the genus two n-point functions for nHeisenberg vectors
and the 1-point function for the Virasoro vector Q! for a rank l lattice VOA. The
results are similar to those of Sect. 5.3 so that detailed proofs will not be given.
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Consider the 1-point function for a Heisenberg vector ai inserted at x. We define
the differential 1-form

F .2/

˛;ˇ.ai I �;w; �/ D
X

n�0

X

u2Ml
Œn�

Z
.1/

Ml˝e˛

�
ai ; xI u˝ eˇ;wI u˝ e�ˇ; 0; �

�
�nC.ˇ;ˇ/=2dx:

(114)

This can be expressed in terms of the genus two holomorphic 1-forms �1; �2 of (24)
in a similar way to Theorem 12 of [20]. Defining

�i;˛;ˇ.x/ D .ai ; ˛/�1.x/C .ai ; ˇ/�2.x/;
we find

Theorem 16.

F .2/

˛;ˇ.ai I �;w; �/ D �i;˛;ˇ.x/Z.2/

˛;ˇ.�;w; �/: (115)

Proof. The proof proceeds along the same lines as Theorems 12 and 14 and
Theorem 12 of (op. cit.). We find that

F .2/

˛;ˇ.ai I �;w; �/ D Z.1/
M .�/

X

D

�.D/

jAut.D/jdx;

where the sum is taken over isomorphism classes of doubly-indexed configurations
D where, in this case, each configuration includes one distinguished valence one
node labelled by x as in (37). Each D can be decomposed into exactly one
necklace configuration of type N .xI k; a/ of (39), standard configurations of the
type appearing in Theorem 12 and necklace contributions as in Theorem 106. The
result then follows on applying (111) and the graphical expansion for �1.x/; �2.x/
of (42) and (43). ut

Summing over all lattice vectors, we find that the Heisenberg 1-point function
vanishes for VL. Similarly, one can generalize Theorem 13 concerning the n-point
function for n Heisenberg vectors ai1 ; : : : ; ain . Defining

F .2/

˛;ˇ.ai1 ; : : : ; ain I �;w; �/ D
nY

tD1
dxt

X

n�0

X

u2Ml
Œn�

�nC.ˇ;ˇ/=2 �

Z
.1/

Ml˝e˛

�
ai1 ; x1I : : : I ain ; xnI u˝ eˇ;wI u˝ e�ˇ; 0; �

�
;

we obtain the analogue of Theorem 13 of (op. cit.):

Theorem 17.

F .2/

˛;ˇ.ai1 ; : : : ; ain I �;w; �/ D Symn

�
!; �it ;˛;ˇ

�
Z
.2/

˛;ˇ.�;w; �/; (116)
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the symmetric product of !.xr ; xs/ and �it ;˛;ˇ.xt / defined by

Symn

�
!; �it ;˛;ˇ

� D
X

 

Y

.r;s/

!.xs; xs/
Y

.t/

�it ;˛;ˇ.xt /; (117)

where the sum is taken over the set of involutions  D : : : .ij / : : : .k/ : : : of the
labels f1; : : : ; ng. �

We may also compute the genus two 1-point function for the Virasoro vector
Q! D 1

2

Pl
iD1 ai Œ�1�ai using associativity of vertex operators as in Proposition 3.

We find that for a rank l lattice,

F .2/

˛;ˇ. Q!I �;w; �/ 

X

n�0

X

u2Ml
Œn�

Z
.1/

Ml˝e˛

� Q!; xI u˝ eˇ;wI u˝ e�ˇ; 0; �
�
�nC.ˇ;ˇ/=2dx2

D
 
1

2

X

i

�i;˛;ˇ.x/
2 C l

2
s.2/.x/

!
Z
.2/

˛;ˇ.�;w; �/

D Z.2/

Ml .�;w; �/

�
DC l

12
s.2/
�

ei�..˛;˛/˝11C2.˛;ˇ/˝12C.ˇ;ˇ/˝22/:

Here, we used (109) and the differential operator [5, 20, 35]

D D 1

2� i

X

1�a�b�2
�a�b

@

@˝ab
: (118)

Defining the normalized Virasoro 1-point form

OF .2/
VL
. Q!I �;w; �/ D F .2/

VL
. Q!I �;w; �/

Z
.2/

Ml .�;w; �/
; (119)

we obtain

Proposition 4. The normalized Virasoro 1-point function for the lattice theory VL
satisfies

OF .2/
VL
. Q!I �;w; �/ D

�
DC l

12
s.2/
�
�
.2/
L .˝/: (120)

�

(The Ward identity (120) is similar to Proposition 11 in [20] in the �-sewing
formalism.)

Finally, we can obtain the analogue of Proposition 12 (op. cit.), where we find
that OF .2/

VL
enjoys the same modular properties as OZ.2/

VL
D �.2/L .˝.�;w; �//. That is,



Free Bosonic Vertex Operator Algebras on Genus Two Riemann Surfaces II 219

Proposition 5. The normalized Virasoro 1-point function for a lattice VOA obeys

OF .2/
VL
. Q!I �;w; �/jl=2� D

�
DC l

12
s.2/
�	 OZ.2/

VL
.�;w; �/jl=2�



; (121)

for � 2 	1. �

7 Comparison Between the � and �-Formalisms

In this section we consider the relationship between the genus two boson and
lattice partition functions computed in the �-formalism of [20] (based on a sewing
construction with two separate tori with modular parameters �1; �2 and a sewing
parameter �) and the �-formalism developed in this paper. We write

Z
.2/
V;� D Z.2/

V;� .�1; �2; �/ D
X

n�0
�n
X

u2VŒn�
Z
.1/
V .u; �1/Z

.1/
V .u; �2/;

Z
.2/
V;� D Z.2/

V;�.�;w; �/ D
X

n�0
�n

X

u2VŒn�
Z
.1/
V .u; u;w; �/ :

Although, for a given VOA V , the partition functions enjoy many similar properties,
we show below that the partition functions are not equal in the two formalisms. This
result follows from an explicit computation of the partition functions for two free
bosons in the neighborhood of a two-tori degeneration points where ˝12 D 0. It
then follows that there is likewise no equality between the partition functions in the
�- and �-formalisms for a lattice VOA.

As shown in Theorem 12 of [18], we may relate the �- and �-formalisms in
certain open neighborhoods of the two-tori degeneration point, where ˝12 D 0. In
the �-formalism, the genus two Riemann surface is parameterized by the domain

D� D
�
.�1; �2; �/ 2 H1�H1�C j j�j < 1

4
D.q1/D.q2/

�
; (122)

with qa D exp.2� i�a/ and D.q/ as in (15). In this case the two-tori degeneration
is, by definition, given by � ! 0. In the �-formalism, the two torus degeneration is
described by the limit (74). In order to understand this more precisely we introduce
the domain [18]

D� D
�
.�;w; �/ 2 H1 � C � C j .�;w;�w2�/ 2 D�; 0 < j�j < 1

4

�
; (123)

for D� of (18) and � D � �

w2
of (73). The period matrix is determined by a 	1-

equivariant holomorphic map
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F � W D� ! H2;

.�;w; �/ 7! ˝.2/.�;w;�w2�/: (124)

Then

D�
0 D

�
.�; 0; �/ 2 H1 � C � C j 0 < j�j < 1

4

�
; (125)

is the space of two-tori degeneration limit points of the domain D�. We may
compare the two parameterizations on certain 	1-invariant neighborhoods of a two-
tori degeneration point in both parameterizations to obtain:

Theorem 18 (op. cit., Theorem 12). There exists a 1-1 holomorphic mapping
between 	1-invariant open domains I� � .D� [ D�

0 / and I� � D� where I�
and I� are open neighborhoods of a two-tori degeneration point. ut

We next describe the explicit relationship between .�1; �2; �/ and .�;w; �/ in
more detail. Firstly, from Theorem 4 of [18] we obtain

2� i˝11 D 2� i�1 CE2 .�2/ �2 CE2 .�1/E2 .�2/2 �4 CO.�6/;
2� i˝12 D �� �E2 .�1/E2 .�2/ �3 CO.�5/;
2� i˝22 D 2� i�2 CE2 .�1/ �2 CE2 .�1/2 E2 .�2/ �4 CO.�6/:

Making use of the identity

1

2� i

d

d�
E2.�/ D 5E4.�/ �E2.�/2; (126)

it is straightforward to invert ˝ij .�1; �2; �/ to find

Lemma 5. In the neighborhood of the two-tori degeneration point r D 2� i˝12 D
0 of ˝ 2 H2 we have

2� i�1 D 2� i˝11 �E2.˝22/r
2 C 5E2.˝11/E4.˝22/r

4 CO.r6/;
� D �r CE2.˝11/E2.˝22/r

3 CO.r5/;
2� i�2 D 2� i˝22 �E2.˝11/r

2 C 5E2.˝22/E4.˝11/r
4 CO.r6/:

�

From Theorem 4 we may also determine ˝ij .�;w; �/ to O.w4/ in a neighbor-
hood of a two-tori degeneration point to find

Proposition 6. For .�;w; �/ 2 D� [D�
0 we have
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2� i˝11 D 2� i� CG.�/
2 CG.�/2E2.�/
4 CO.w6/;

2� i˝22 D logf .�/CE2.�/
2 C
�
G.�/E2.�/

2 C 1

2
E4.�/

�

4 CO.w6/

2� i˝12 D 
 CG.�/E2.�/
3 CO.w5/;

where 
 D w
p
1 � 4�, G.�/ D 1

12
C E2.q D f .�// D O.�/ and f .�/ is the

Catalan series (66).

This result is an extension of [18, Proposition 13] and the general proof proceeds
along the same lines. For our purposes, it is sufficient to expand the non-logarithmic
terms to O.w4; �0/. Since R.k; l/ D O.�/ and da.k/ D O.�1=2/ then Theorem 4
implies

2� i˝11 D 2� i� CO.�/; (127)

2� i˝22 D log�C 2
X

k�2

1

k
Ek.�/w

k CO.�/; (128)

2� i˝12 D wCO.�/; (129)

to all orders in w. In particular, we can readily confirm Proposition 6 to O.w4; �0/.
Substituting (127)–(129) into Lemma 5 and using (126) and (136) we obtain

Proposition 7. For .�;w; �/ 2 D� [D�
0 we have

2� i�1 D 2� i� C 1

12
w2 C 1

144
E2.�/w

4 CO.w6; �/;

2� i�2 D log.�/C 1

12
E4.�/w

4 CO.w6; �/;

� D �w � 1

12
E2.�/w

3 CO.w5; �/:

�

Define the ratio

T�;�.�;w; �/ D
Z
.2/

M2;�
.�1; �2; �/

Z
.2/

M2;�
.�;w;�w2�/

; (130)

for �1; �2; � as given in Proposition 7. From Theorems 8 of [20] and Theorems 11
and 18 above we see that T�;� is 	1-invariant. From Theorem 7 for V D M2, we
find in the two tori degeneration limit that

lim
w!0

T�;�.�;w; �/ D f .�/�1=12;
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i.e., the two partition functions do not even agree in this limit! The origin of this
discrepancy may be thought to arise from the central charge dependent factors of
q�c=24 and q�c=24

1 q
�c=24
2 present in the definitions of Z.2/

V;� and Z.2/
V;� respectively

(which, of course, are necessary for any modular invariance). One modification
of the definition of the genus two partition functions compatible with the two tori
degeneration limit might be:

Z
new.2/
V;� .�1; �2; �/ D ��c=12Z.2/

V;�.�1; �2; �/; Z
new.2/
V;� .�;w; �/ D ��c=24Z.2/

V;�.�;w; �/:

However, for V D M2, we immediately observe that the ratio cannot be unity due
to the incompatible 	1 actions arising from

� ! �

c1�1 C d1 ; �! �

.c1� C d1/2 ;

as given in Lemmas 8 and 15 of [18] (cf. (31)).
Consider instead a further 	1-invariant factor of f .�/�c=24 in the definition of

the genus two partition function in the �-formalism. Once again, we find that the
partition functions do not agree in the neighborhood of a two-tori degeneration
point:

Proposition 8.

f .�/1=12T�;�.�;w; �/ D 1 � 1

288
E4.�/w

4 CO.w6; �/:

Proof. As noted earlier, R.k; l/ D O.�/ so that we immediately obtain

f .�/�1=12Z.2/

M2;�
.�;w;�w2�/ D 1

�.�/2�.f .�//2
CO.�/;

to all orders in w. On the other hand, Z.2/

M2;�
.�1; �2; �/ of Theorem 5 of [20] toO.�4/

is given by

1

�.�1/2�.�2/2

�
1CE2.�1/E2.�2/�2C

�
E2.�1/

2E2.�2/
2C 15E4.�1/E4.�2/

�
�4
� CO.�6/:

(131)

We expand this to O.w4; �/ using Proposition 7, (126) and

1

2� i

d

d�
�.�/ D �1

2
E2.�/�.�/;

to eventually find that
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Z
.2/

M2;�
.�1; �2; �/ D 1

�.q/2�.f .�//2

�
1 � 1

288
E4.�/w

4

�
CO.w6; �/: ut

8 Final Remarks

Let us briefly and heuristically sketch how our results compare to some related ideas
in the physics and mathematics literature. There is a wealth of literature concerning
the bosonic string e.g. [10, 29]. In particular, the conformal anomaly implies that
the physically defined path integral partition function Zstring cannot be reduced to
an integral over the moduli space Mg of a Riemann surface of genus g except for
the 26 dimensional critical string where the anomaly vanishes. Furthermore, for the
critical string, Belavin and Knizhnik argue that

Zstring D
Z

Mg

jF j2 d�;

where d� denotes a natural volume form on Mg and F is holomorphic and
non-vanishing on Mg [1, 14]. They also claim that for g � 2, F is a global section
for the line bundle K ˝ ��13 (where K is the canonical bundle and � the Hodge
bundle) on Mg which is trivial by Mumford’s theorem [26]. In this identification,
the ��13 section is associated with 26 bosons, the K section with a c D �26 ghost
system and the vanishing conformal anomaly to the vanishing first Chern class for
K˝��13 [28]. More recently, some of these ideas have also been rigorously proved
for a zeta function regularized determinant of an appropriate Laplacian operator
�n [24]. The genus two partition functions Z.2/

M2;�
.�1; �2; �/ and Z

.2/

M2;�
.�;w; �/

constructed in [20] and the present paper for a rank 2 Heisenberg VOA should
correspond in these approaches to a local description of the holomorphic part of	

det0 �1
detN1


�1
of [14, 24], giving a local section of the line bundle ��1. Given these

assumptions, it follows that T�;� D Z.2/

M2;�
=Z

.2/

M2;�
¤ 1 in the neighborhood of a two-

tori degeneration point where the ratio of the two sections is a non-trivial transition
function T�;�.

In the case of a general rational conformal field theory, the conformal anomaly
continues to obstruct the existence of a global partition function on moduli space
for g � 2. However, all CFTs of a given central charge c are believed to share the
same conformal anomaly e.g. [6]. Thus, the identification of the normalized lattice
partition and n-point functions of Sect. 6 reflect the equality of the first Chern class
of some bundle associated to a rank c lattice VOA to that for ��c with transition
function T c=2�;� . It is interesting to note that even in the case of a unimodular lattice
VOA with a unique conformal block [25, 33] the genus two partition function can
therefore only be described locally. It would obviously be extremely valuable to find
a rigorous description of the relationship between the VOA approach described here
and these related ideas in conformal field theory and algebraic geometry.
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Appendix

We list here some corrections to [17] and [18] that we needed above.

(a) Display (27) of [17] should read

�.˛;�˛/ D �.˛; ˛/ D .�1/.˛;˛/=2: (132)

(b) Display (45) of [17] should read

�.�/ D .a; ır;1ˇ C C.r; 0; �/˛k C
X

l¤k
D.r; 0; zkl ; �/˛l /: (133)

(c) As a result of (a), displays (79) and (80) of [17] are modified and now read

FN .e
˛; z1I e�˛; z2I q/ D �.˛;�˛/q

.ˇ;ˇ/=2

�l .�/

exp..ˇ; ˛/z12/

K.z12; �/.˛;˛/
; (134)

FVL.e
˛; z1I e�˛; z2I q/ D �.˛;�˛/ 1

�l .�/


˛;L.�; z12=2� i/

K.z12; �/.˛;˛/
: (135)

(d) The expression for �.�;w; �/ of display (172) of [18] should read

�.�;w; �/ D �w
p
1 � 4�

�
1C 1

24
w2E2.�/.1 � 4�/CO.w4/

�
(136)
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