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Preface to the Series

Contributions to Mathematical and Computational Sciences

Mathematical theories and methods and effective computational algorithms are
crucial in coping with the challenges arising in the sciences and in many areas of
their application. New concepts and approaches are necessary in order to overcome
the complexity barriers particularly created by nonlinearity, high-dimensionality,
multiple scales and uncertainty. Combining advanced mathematical and computa-
tional methods and computer technology is an essential key to achieving progress,
often even in purely theoretical research.

The term mathematical sciences refers to mathematics and its genuine sub-
fields, as well as to scientific disciplines that are based on mathematical concepts
and methods, including sub-fields of the natural and life sciences, the engineering
and social sciences and recently also of the humanities. It is a major aim of this
series to integrate the different sub-fields within mathematics and the computational
sciences, and to build bridges to all academic disciplines, to industry and other fields
of society, where mathematical and computational methods are necessary tools for
progress. Fundamental and application-oriented research will be covered in proper
balance.

The series will further offer contributions on areas at the frontier of research,
providing both detailed information on topical research, as well as surveys of the
state-of-the-art in a manner not usually possible in standard journal publications. Its
volumes are intended to cover themes involving more than just a single “spectral
line” of the rich spectrum of mathematical and computational research.

The Mathematics Center Heidelberg (MATCH) and the Interdisciplinary Center
for Scientific Computing (IWR) with its Heidelberg Graduate School of Mathemat-
ical and Computational Methods for the Sciences (HGS) are in charge of providing
and preparing the material for publication. A substantial part of the material will be
acquired in workshops and symposia organized by these institutions in topical areas
of research. The resulting volumes should be more than just proceedings collecting
papers submitted in advance. The exchange of information and the discussions
during the meetings should also have a substantial influence on the contributions.
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vi Preface to the Series

This series is a venture posing challenges to all partners involved. A unique
style attracting a larger audience beyond the group of experts in the subject areas
of specific volumes will have to be developed.

Springer Verlag deserves our special appreciation for its most efficient support in
structuring and initiating this series.

Heidelberg University, Germany Hans Georg Bock
Willi Jäger

Otmar Venjakob



Preface

This volume reports on recent developments in the theory of vertex operator
algebras (VOAs) and their applications to mathematics and physics. Historically the
mathematical theory of VOAs originated from the famous monstrous moonshine
conjectures of J.H. Conway and S.P. Norton, which predicted a deep relationship
between the characters of the largest simple finite sporadic group, the Monster,
and the theory of modular forms inspired by the observations of J. MacKay and
J. Thompson.

Although perhaps implicitly present earlier in conformal field theory, the precise
mathematical notion of vertex algebras first emerged from the work of I. Frenkel,
J. Lepowsky and A. Meurman and their purely algebraic construction of a vertex
algebra with a natural action of the Monster group, laying the foundations for
Borcherds’ later proof of the moonshine conjectures. Indeed, by isolating the under-
lying mechanism from analytical aspects, physical field theories and the explicit
examples thus shaped the axiomatic definition of vertex algebras as purely algebraic
objects, opening a rich new field. By studying them for their own sake, R. Borcherds
not only gave the theory its precise form, but also succeeded in proving the
moonshine conjectures with the aid of these new concepts. So, it is quite interesting
that unlike other algebraic structures like fields, rings, algebras or Lie algebras,
the concept of vertex algebras appeared comparatively late in the mathematical
literature. However, looking back, even today the underlying mechanism played
by vertex operator algebras connecting representations of certain simple groups
and modular forms remains to be mysterious. Altogether, Borcherds’ results on the
monstrous moonshine conjecture relating the representation theory of the monster
group with modular forms using the construction of the vertex algebra V ], whose
graded dimensions are the Fourier coefficients of j.q/� 744, are a major landmark
in the theory. They have led to many subsequent investigations of the structure of
VOAs, some of which are addressed in this volume. Another theoretical milestone
was Y. Zhu’s finding that for rational VOAs (essentially those vertex operator
algebras whose category of admissible modules is semisimple), every irreducible
representation of a rational VOA gives rise to an elliptic modular form. Hence
rational VOAs and certain generalizations have since been studied intensively.

vii



viii Preface

Independently from Zhu’s work it should be mentioned that also more general
types of modular forms, defined by their Fourier expansion as counting functions,
naturally arise in the theory of vertex algebras via the Kac denominator formula of
generalized Kac-Moody Lie algebras derived from certain distinguished VOAs and
derived generalized Lie algebras. In fact, thereby not only elliptic modular forms
seem to appear naturally in the theory, but also modular forms of several variables.
Of course there are other interesting circumstances under which modular forms of
higher genus naturally occur, some of which will be addressed in this volume.

In a remarkable development, A. Beilinson succeeded in further generalizing the
concept of vertex algebras by stressing the importance of the underlying geometric
space. Thanks to the combined achievements of Beilinson and V. Drinfeld we
now know that vertex algebras are a special case of chiral algebras, where these
chiral algebras are certain sheaves on algebraic varieties. It seems, at least if the
underlying geometry comes from a Riemann surface, that this new aspect indicates
deep connections between conformal field theories, class field theory and various
other branches of mathematics.

Quite recently, the study of representations of vertex algebras has produced sur-
prising new developments for simple groups G other than the Monster group. Here,
especially the Mathieu groups play a prominent part, with interesting applications
to the theory of black holes, which has since become a very active field.

The contributions to this volume are based on lectures held in September 2011
during a conference on Conformal Field Theory, Automorphic Forms and Related
Topics, organized by W. Kohnen and R. Weissauer. The conference was part of
a special program offered at Heidelberg University in summer 2011 under the
sponsorship of the MAThematics Center Heidelberg (MATCH).

We wish to extend our sincere thanks to all contributors to this volume and
all conference participants, with special thanks to Geoffrey Mason and Miranda
Cheng for their excellent preparatory courses that were held prior to the conference.
Geoffrey’s course entitled Vertex Operator Algebras, Modular Forms and Moon-
shine is included as an appendix to this volume.

We are grateful to Sabine Eulentrop for the perfect handling of numerous
logistical problems and her help in preparing the final manuscript. Finally, we
would like to express our sincere gratitude to MATCH and especially Otmar
Venjakob, whose generous support made the conference and the special Heidelberg
Automorphic Semester possible.

Heidelberg, Germany Winfried Kohnen
Heidelberg, Germany Rainer Weissauer
May 2014
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Characters of Modules of Irrational Vertex
Algebras

Antun Milas

Abstract We review several properties of characters of vertex algebra modules in
connection to q-series and modular-like objects. Four representatives of conformal
vertex algebras: regular, C2-cofinite, tamely irrational and wild, are discussed from
various points of view.

1 Introduction

Unlike many algebraic structures, vertex algebras have for long time enjoyed
natural and fruitful connection with modular forms. This connection came first
to light through the monstrous moonshine, a fascinating conjecture connecting
modular forms (or more precisely the Hauptmodulns) and representations of the
Monster, the largest finite sporadic simple group. This mysterious connection was
partially explained first in the work of Frenkel et al. [37] who constructed a vertex
operator algebra V \, called the moonshine module, whose graded dimension is
j.q/ � 744 and whose automorphism group is the Monster. The connection with
McKay-Thompson series was later proved by Borcherds [21] thus proving the full
Conway-Norton conjecture. What is amazing about the vertex algebra V \ is that on
one hand it is arguably one of the most complicated objects constructed in algebra,
yet it has an extremely simple representations theory (that of a field!).

Another important closely related concept in vertex algebra theory (and two-
dimensional conformal field theory) is that of modular invariance of characters.
This property, proposed by physicists as a consequence of the axioms of rational
conformal field theory, was put on firm ground first in the seminal work of Zhu
[62]. Among many applications of Zhu’s result we point out its power to “explain”

A. Milas (�)
Department of Mathematics and Statistics, University at Albany (SUNY),
1400 Washington Avenue, Albany, NY 12222, USA
e-mail: amilas@albany.edu

W. Kohnen and R. Weissauer (eds.), Conformal Field Theory, Automorphic Forms
and Related Topics, Contributions in Mathematical and Computational Sciences 8,
DOI 10.1007/978-3-662-43831-2__1, © Springer-Verlag Berlin Heidelberg 2014
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2 A. Milas

modular invariance of characters of integrable highest weight modules for affine
Kac-Moody Lie algebras, discovered previously by Kac and Peterson [48]. As
rational vertex algebras (with some extra properties) give rise to Modular Tensor
Categories [45], this rich underlying structure can be used for to prove the general
Verlinde formula [45] (see [20] for definition). This formula, discovered first by
Verlinde [61], gives an important connection between the fusion coefficients in the
tenor product coefficients of the S -matrix coming from both categorical and analytic
SL.2;Z/-action on the “space” of modules. In addition, it also gives a fascinating
link between analytic q-dimensions and the coefficients of the S -matrix.

There are other important connections between two subjects such as ADE
classification of modular invariant partition functions, vertex superalgebras and
mock modular forms, orbifold theory, elliptic genus, generalized moonshine, etc.

Everything that we mentioned so far comes from a very special class of vertex
algebras called C2-cofinite rational vertex algebras [62], the moonshine module
being a prominent example. In this note we do not try to say much about rational
vertex algebras (although we do give some definition and list known results) and
almost nothing about the moonshine. Our modest goal is simply to argue that even
non-rational (and sometimes even non C2-cofinite) vertex algebra seem to enjoy
properties analogous to properties of rational VOA, but much more complicated,
yet reach enough that exploring them leads to some interesting mathematics related
to modular forms and other modular-like objects. Another pedagogical aspect of
these notes is to convey some ideas and aspects of the theory rarely considered in
the literature on vertex algebras. We focus on four different types of vertex algebras:

• rational C2-cofinite or regular (the category of modules has modular tensor
category structure, q-dimensions are closely related to categorical dimensions).

• irrational C2-cofinite (tensor product theory and a version modular invariance are
available, a Verlinde-type formula is still to be formulated and proved)

• non C2-cofinite, mildly irrational (there is evidence of braided tensor category
structure on the category of module, or suitable sub-category. A version of
modular invariance holds with continuous part added. Usually involve atypical
and typical modules, the latter parametrized by continuous parameters. q-
dimensions of irreps are finite and nonzero).

• non C2-cofinite, badly irrational (not likely to have good categorical structure.
For example two modules under fusion can give infinitely many modules.
Consequently, q-dimensions may be infinite).

As a working example of rational C2-cofinite vertex algebra we shall use the
lattice vertex algebra VL, where L is an even positive definite lattice. This is, from
many different points of view, the most important source of vertex algebras, and in
particular leads to the moonshine module via the Leech lattice and orbifolding.

When we move beyond rational vertex algebras, many difficulties arise, and this
transition really has to be done in two steps. The nicest examples worth exploring
are of course C2-cofinite vertex algebras. These vertex algebras admit finitely-many
inequivalent irreducible modules. Here the most prominent example is triplet vertex
algebra [4, 33, 39, 50] being a conformal vertex subalgebra of the rank one lattice
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vertex algebra of certain rational central charge. Another prominent example is
the symplectic fermion vertex superalgebra [1, 50, 59]. As we shall see the triplet
vertex algebra enjoys many interesting properties including a version of modular
invariance, even a conjectural version of the Verlinde formula.

If we move one step lower in the hierarchy this leads us to non C2-cofinite vertex
algebras. There are at least several candidates here. One is of course the vertex
algebra associated to free bosons, called the Heisenberg vertex algebra [37, 49, 51].
Because this algebra has a fairly simple representation theory [37] we decided to
consider another family of irrational vertex algebras—certain subalgebras of the
Heisenberg vertex algebra. As we shall see this so-called “singlet” vertex algebras
involve two types of irreducible representations: typical and atypical, something
that persists for many W -algebras. Quite surprisingly, there is a version of modular
invariance for the singlet family, including a Verlinde-type formula inferred from
the characters [24].

Finally, at the bottom of the barrel sort of speaking, we are left with badly
behaved irrational conformal vertex algebra, namely those that are vacuum modules
for the Virasoro algebra (or more general affine W -algebras [18]) or for affine
Lie algebras [49, 51]. One reason for this type of vertex algebra not being very
interesting is due to lack of modular-like properties. Also, their fusion product is
somewhat ill behaved. For example, two irreducible modules can produce infinitely
many non-isomorphic modules under the fusion.

Four examples representing four types entering our discussion are connected with
a chain of VOA embeddings:

At the end of the paper we show that this diagram can be extended to an arbitrary
ADE type simple Lie algebra, the above diagram being the simplest instance coming
from sl2.

2 Vertex Algebras and Their Characters

We begin by recalling the definition of a vertex operator algebra following primarily
[51] (cf. [37, 49]).

Definition 1. A vertex operator algebra is a quadruple .V; Y; 1; !/ where V is a
Z-graded vector space

V D
M

n2Z
V.n/



4 A. Milas

together with a linear map Y.�; x/ W V ! .End V /ŒŒx; x�1�� and two distinguished
elements 1 and ! 2 V , such that for u; v 2 V we have

Y.u; x/v 2 V..x//;

Y.1; x/ D 1;

Y.v; x/1 2 V ŒŒx�� and lim
x!0

Y.v; x/1 D v;

ŒL.m/;L.n/� D .m � n/L.mC n/C m3 �m
12

ımCn;0c

for m; n 2 Z, where

Y.!; x/ D
X

n2Z
L.n/x�n�2;

and c 2 C (the so-called central charge); we also have

L.0/w D nw for n 2 Z and v 2 V.n/;

and the L.�1/-axiom

Y.L.�1/u; x/ D d

dx
Y.u; x/

and the following Jacobi identity

x�1
0 ı

�
x1�x2
x0

�
Y.u; x1/Y.v; x2/ � x�1

0 ı

�
x2�x1�x0

�
Y.v; x2/Y.u; x1/ (1)

D x�1
2 ı

�
x1�x0
x2

�
Y .Y.u; x0/v; x2/ : (2)

If we omit the Virasoro axiom and the grading the structure is called vertex
algebra, but we have to replace L.�1/-axiom with the D-derivative axiom [51].
In some constructions it is useful to have another VOA structure on the same space.
This is important when we pass to a different coordinate system on the torus E�
discussed below. With Y.u; x/ as above and u homogeneous, we let

Y Œu; x� D Y.exdeg.u/u; ex � 1/;

which is well-defined if we expand 1=.ex�1/m, form � 0, in finitely many negative
powers of x. Then it can be shown [62] that .V; Y Œ�; x�; 1; ! � c

24
1/ is also a vertex

operator algebra isomorphic to the original one. We also define bracket modes of
vertex operator
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Y Œu; x� D
X

n2Z
uŒn�x�n�1I uŒn� 2 End.V /:

Definition 2 (Sketch). We say that a vector space W together with a linear map

YW .�; x/ W V ! .End W /ŒŒx; x�1��

is a weak V -module if YW satisfies the Jacobi identity, and “all other defining
properties of a vertex algebra that make sense hold”. If in addition the space is
graded by L.0/-eigenvalues such that the grading is compatible with that of V , we
say that M is an ordinary module.

Not all vertex algebra modules are of interest to us right now.

Definition 3. An admissible V -module is a weak V -module M which carries a
Z�0-grading

M D
M

n2Z�0

M.n/

satisfying the following condition: if r;m 2 Z; n 2 Z�0 and a 2 Vr then

amM.n/ �M.r C n �m � 1/: (3)

We call an admissible V -module M irreducible in case 0 and M are the only
submodules. An ordinary module is an admissible module where the above grading
is decomposition into finite-dimensional L.0/-eigenspaces.

A vertex algebra V is called rational if every admissible V -module is a direct
sum of simple admissible V -modules. That is, we have complete reducibility of
admissible V -modules. Observe that the definition of rationality does not seem
to involve any internal characterization or property of vertex algebras. The next
definition is analogous to “finite-dimensionality” for associative algebras.

Definition 4 (C2-cofiniteness). A vertex algebra V is said to be C2-cofinite if the
space generated by vectors fa�2b; a; b 2 V g is of finite codimension (in V ).

An important consequence of this definition is that a C2-cofinite vertex algebra
has finitely many irreducible modules up to equivalence, which explains “finite-
dimensionality” hinted earlier. It is a conjecture that every rational vertex algebra is
C2-cofinite, but the converse is known not to be true (see below).

2.1 One-Point Functions on Torus

To an admissible V -module M with finite dimensional graded subspaces we can
associate its modified graded dimension or simply character [62]:

chM.q/ WD trMq
L.0/�c=24; � 2 H;
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where c is the central charge. Strictly speaking this function does not necessarily
converge so it should be viewed only formally, but in almost all known examples it
is holomorphic in the whole upper half-plane.

We are also interested in related graded traces that can be computed on M :

trMo.a/q
L.0/�c=24;

where o.a/ D a.deg.a/ � 1/ is the zero weight operator and a is homogeneous, in
the sense that it preserved graded components.

As usual we denote by

G2k.�/ D B2k

.2k/Š
C 2

.2k � 1/Š
X

n�1

qnn2k�1

1 � qn

(k � 1) slightly normalized Eisenstein series as in [62] given by their q-expansions.
Denote by Oq.V / the CŒG4;G6�-submodule of V ˝ CŒG4;G6� generate by

aŒ0�b

aŒ�2�b C
1X

kD2
.2k � 1/aŒ2k � 2�b ˝G2k.�/

Definition 5. Let V be a VOA. A map S.�;�/ W V ŒG2;G4��H! C satisfying the
following conditions is called a one-point function on the torus E� D C=.ZC �Z/:
(1) For any a 2 V ˝ CŒG4;G6� the functions S.a; �/ is holomorphic in � 2 H.
(2) S.

P
i vi ˝ fi .�/; �/ DPi fi .�/S.ai ; �/ for all ai 2 V and fi 2 CŒG4;G6�.

(3) S.a; �/ D 0 for all a 2 Oq.V /,
(4) S.LŒ�2�a; �/ D .q d

dq
/S.a; �/CP1

kD1 G2k.�/S.LŒ2k � 2�a; �/.
We denote the space of one-point functions by C .V /. Then any element of the

form S.1; �/, where S 2 V , is called a (virtual) generalized character. It is possible
to show [62], that graded traces trMo.a/qL.0/�c=24 give a one-point function on
the torus. So in particular an (ordinary) character can be viewed as a generalized
character.

Let us explain results pertaining rational vertex algebras first. We denote by Mi ,
i 2 I irreducible V -modules (so I is finite). Later we shall also assume that i D
0 2 I is reserved for the VOA itself, which is also assumed to be simple. We shall
also use Irrep.V / to denote the set of equivalence classes of irreducible V -module.

Theorem 1 (Zhu). Let V be a rational C2-cofinite vertex algebra. Then for every
homogeneous a 2 V with respect to LŒ0�, the expressions ftrMi o.a/q

L.0/�c=24g,
i 2 I defines a vector valued modular form of weight deg.a/. In particular, for
a D 1 this weight is zero. Moreover, the space of one point functions on torus is
jI rrep.V /j-dimensional and a 7! trMi o.a/q

L.0/�c=24, i 2 I , is a basis of C .V /.
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Observe that another consequence of this result is that for rational C2-cofinite
vertex algebras every generalized character is an ordinary character.

Because the category of modules of rational vertex algebras has a semisimple
braided tensor category structure [47], we have the fusion product:

Mi �Mj D
X

k2I
N k

ijMk;

whereNk
ij 2 Z�0 are the fusion coefficients and � is Huang, Lepowsky and Zhang’s

tensor product [47]. On the other hand, the previous theorem furnishes us with a
jI rrep.V /j-dimensional representations of SL.2;Z/ acting on the space of ordinary
characters. In particular, we have the special matrix S 2 SL.2;Z/, called the S -
matrix, corresponding to � ! � 1

�
. If in addition, the vertex algebra is C2-cofinite

the category of V -Mod is a modular tensor category (an important result of Huang
[45]), so it also admits a categorical action of SL.2;Z/ on the space generated by the
equivalence classes of irreducible modulesMi , i 2 I . In particular � ! � 1

�
induces

a matrix called the s-matrix. In turns out that S D s [29], after suitable rescaling
of s. One important property of MTCs is the Verlinde formula [20] (first formulated
in [61]) that allows us to express fusion coefficients simply from the coefficients
of the s (and hence S ) matrix. The precise statement is: Denote by Nk

ij the fusion
coefficients, then we have

Nk
ij D

X

r

SirSjrSk�r

S0r
; (4)

where r 7! r� is the map on indices induced by taking dual of irreducible modules
Mi 7!M �

i .
Another related important notion in two-dimensional conformal field theory is

that of (analytic) q-dimension. For a V -module M we let

qdim.M/ D lim
y!0C

chM.iy/

chV .iy/
(5)

Of course, such a quantity may not need even exist. But again, for V rational and
C2-cofinite, it is known to be closely related to categorical q-dimension dimq.M/,
computed as the trace of the identity endofunctor, which also equals si0

s00
[20]. Under

some favorable conditions on the vertex algebra, this categorical version of the
q-dimension coincide with the analytic (see [29], conditions (V1) and (V2) and
formula (3.1)):

Proposition 1. Let V be a rational C2-cofinite VOA with lowest conformal weights
of irreducible modules positive expect for i D 0, then

dimq.Mi/ D Si0

S00
D qdim.Mi/:
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This proposition is known to hold
Categorical q-dimensions are known to have good properties with respect to

tensor products and direct sums:

dimq.M �N/ D dimq.M/ � dimq.N /;

dimq.M ˚N/ D dimq.M/C dimq.N /:

If V is only C2-cofinite, we shall see in the next sections that Zhu’s modular
invariance theorem fails and not every one point function on the torus is an ordinary
trace. This is closely related to non-semisimplicity of Zhu’s algebra A.V / D
V=O.V /, where O.V / is spanned by Resx

.1Cx/deg.a/

x2
Y.a; x/b. Rationality implies

that the space of one-point functions on the torus is isomorphic to the vector space
of symmetric functions on A.V /:

SV D .A.V /=ŒA.V /; A.V /�/�:

But in general this space does not carry a precise description of one-point functions.
Still, there is a satisfactory result essentially due to Miyamoto [56]. Assume for
completeness that the central charge of the vertex algebra is non-zero (so finite-
dimensional V -modules are excluded—these only appear for c D 0). Then there is
a connection between one-point functions and the Zhu algebra (Miyamoto).

Theorem 2. The vector space C .V / admits a finite basis B such that each S 2 B
admits an expansion

S.a; �/ D
dX

jD0

1X

kD0
Sjk.a/q

r�cc=24Ck.2�i�/j

for all a 2 V , where r 2 C and S00 2 SV , a symmetric linear functional on
A.V /. Moreover, S 7! S00 is an embedding. In particular, the dimension of C .V /
is bounded by the dimension of SV .

This version of the theorem is proven in [19], but something similar is implicitly
used in [56] (see also [6]). One striking feature of the theorem is the appearance of
� -powers, so no q-expansion of one point functions exists in general. This is closely
tied to existence of L.0/ non-diagonalizable modules, called logarithmic modules
[40,53]. For more about this subject and connection to Logarithmic Conformal Field
Theory we refer the reader to another review paper [13,40,44], as we do not discuss
this subject here. In the aforementioned paper of Miyamoto, he constructs S.a; �/
via certain pseudotraces maps � expressed as tr�;Mo.a/qL.0/�c=24 where M is a
particular module “interlocked” with �. We should point out that in many examples
of interest this object is hard to construct explicitly. A slightly more efficient way
of constructing one-point functions was obtained by Arike-Nagatomo’s paper [19],
although it is not clear whether their construction works in general.
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3 Rational VOA: Lattice Vertex Algebras

We review the construction of a vertex operator algebra coming from an even lattice
following [51] (see also [37, 49]). Let L be a rank d 2 N even positive definite
lattice of rank d 2 N with an integer valued nondegenerate symmetric Z-bilinear
form h�; �i W L � L! Z.

Form the vector space

h D L˝Z C (6)

so that dim.h/ D d and extend the bilinear form fromL to h. Now we shall consider
the affinization of h viewed as an abelian Lie algebra

Oh D
M

n2Z
h˝ tn ˚ Ck; (7)

with bracket relations

Œ˛ ˝ tm; ˇ ˝ tn� D h˛; ˇimımCn;0k

Œk; Oh� D 0
(8)

for ˛, ˇ 2 h and m, n 2 Z. Consider

OhC D h˝ tCŒt � and Oh� D h˝ t�1CŒt�1�: (9)

We now form a vertex operator algebra associated to Oh with central charge 1, M.1/,
by adding structure to the symmetric algebra of Oh�. As vector spaces we have

M.1/ D U.Oh�/ D S.Oh�/: (10)

If we let fu.1/; : : : ; u.d/g be an orthonormal basis of h we define the conformal vector

! D 1

2

dX

iD1
u.i/.�1/u.i/.�1/1: (11)

So we have the Virasoro algebra operators

L.n/ D Resxx
nC1Y.!; x/ D 1

2

dX

iD1

X

m2Z
ı

ı
u.i/.m/u.i/.n �m/ı

ı
: (12)

It is easy to construct irreducible M.1/-modules. Those are simply Fock spaces F�
where � 2 h�. This is again just an induced module such that h 2 h acts on the
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highest weight vector as multiplication by �.h/, so as a vector space F� Š M.1/

and F0 DM.1/. This space will again become relevant in later sections.
The space S.Oh�/ makes up one part of the vertex operator algebra associated

with L. The other portion is related to the group algebra CŒL�. In order to ensure
the Jacobi identity we need to modify the product associated to CŒL� so that

e˛eˇ D .�1/h˛;ˇieˇe˛; (13)

for ˛; ˇ 2 L. To accomplish this we use a central extension, . OL; N/, of L by the
cyclic group h�j�2 D 1i. For ˛; ˇ 2 L define the map

c0 W L � L! Z=2Z (14)

as follows:

c0.˛; ˛/ D 0C 2Z;
c0.˛; ˇ/ D h˛; ˇi C 2Z and;

c0.ˇ; ˛/ D �c0.˛; ˇ/:
(15)

This is indeed the commutator map associated to the central extension of the lattice.
It may also be uniquely defined by the condition ab D �c0. Na; Nb/ba for a; b 2 OL.
Define a section of OL, e W L! OL, so that ˛ 7! e˛ . So e is such that N ı e D idL. Let

�0 W L � L! Z=2Z (16)

be the corresponding 2-cocyle, defined by

e˛eˇ D ��0.˛;ˇ/e˛Cˇ (17)

Let 	 W h�i ! C
� be defined by 	.�/ D �1. View C as a h�i-module where � acts

as �1 and denoted this module as C	. Define

CfLg D Ind OL
h�iC	 D CŒ OL�˝CŒh�i� C	 D CŒ OL�=.� � .�1//CŒ OL�: (18)

Let 
 be the inclusion OL ,! CfLg such that 
.a/ D a ˝ 1. Notice our section e
allows us to view CfLg and CŒL� as isomorphic vector spaces with 
.e˛/ 7! e˛ for
˛ 2 L.

Now define maps c; � W L � L ! C
� by c.˛; ˇ/ D .�1/c0.˛;ˇ/ and �.˛; ˇ/ D

.�1/�0.˛;ˇ/. Now we can see the action of OL on CŒL�, for ˛; ˇ 2 L

e˛ � eˇ D �.˛; ˇ/e˛Cˇ

� � eˇ D �eˇ
e˛ � 1 D e˛

(19)
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Now set

VL DM.1/˝ CfLg (20)

and

1 D 1˝ 
.1/ 2 VL: (21)

We now add more structure to the space VL. First we will view M.1/ as a trivial
OL-module, so that for ˛ 2 L, e˛ acts as 1 ˝ e˛ 2 End.VL/. Also view CfLg as a
trivial Oh�-module and for h 2 h, define

h.0/ W CfLg ! CfLg so that 
.a/ 7! hh; Nai 
.a/ (22)

for a 2 OL. By making the identification M.1/ Š S.Oh/ ˝ e0 we can transport the
structure of a Virasoro algebra module to VL with the grading given by the action of
L.0/

L.0/ � 
.e˛/ D .wt 
.e˛// 
.e˛/ D 1

2
h˛; ˛i 
.e˛/: (23)

We keep the same conformal vector so the central charge of VL is rank.L/.
In order to define the vertex operator Y.
.e˛/; x/ we need the following operator

for h 2 h,

E˙.�h; x/ D exp

 
X

n2˙Z

�h.n/
n

x�n
!
2 .End VL/ŒŒx; x

�1��: (24)

and define

Y.
.e˛/; x/ D E�.�˛; x/EC.�˛; x/e˛x˛ 2 .End VL/ŒŒx; x
�1��: (25)

where x˛ acts on VL as

x˛.v˝ 
.a// D xh˛; Nai.v˝ 
.a//: (26)

This explains how to construct lattice vertex algebra structure on VL. If the lattice
is of rank one, no central extension is needed. Thus CŒL� D CfLg. Also, to simplify
the notation we shall write e˛ instead of 
.e˛/, where no confusion arise. Everything
about representation theory of lattice vertex algebras can be summarized in the
following elegant result by Dong (see [27] and [51] for instance):

Theorem 3. The vertex algebra VL is rational. Moreover, the set

fVLC�I�C L 2 Lı=Lg
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(where L0 is the dual lattice) is a complete set of inequivalent irreducible
VL-modules (strictly speaking, we never defined VLC� but this is easily done by
replacing CŒL� in the definition with CŒLC ��. For a full account on this see [51]).

Characters of VL-modules are easily determined (keep in mind c D rank.L/).
We have

chVLC�
.q/ D

X

˛2LC�
qh˛;˛i=2

�.�/c
:

By using a well-known formula for the modular transformation formula for the
higher rank theta function, we infer

chVLC�
.�1
�
/ D

X

N�2Lı=L

S��chVLC�
.�/;

where S�� denote the S -matrix of the transformation. Observe that S0� D 1p
det.S/

,
where S is the Gram matrix of L. This modular invariance part also follows from
Zhu’s theorem (the vertex algebra VL is C2-cofinite). The fusion product for the
lattice vertex algebras is simply

VLC� � VLC� D VLC�C�:

The q-dimensions are also easy to compute and dimq.VLC�/ D 1 for all �.

4 C2-Cofinite Irrational Case: The Triplet VOA

In this section we examine properties of a specific irrational C2-cofinite vertex
algebra.

4.1 The Triplet

Let VL be as in the previous section, where L is of rank one. First we construct a
subalgebra of VL called the triplet algebra. We should point out that lattice vertex
algebra are rarely mentioned in the physics literature, where triplet is usually treated
as an extended conformal algebra with SO.3/ symmetry [41,42,50] , or as a part of
an extended Felder’s complex in which we extract the kernel instead of cohomology.
Our approach here is slightly different and it follows [4, 33, 39], where the triplet
algebra is constructed as kernel of a screening operator acting (as we shall see)
among two VL-modules.
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Let p 2 Z, p � 2, and

L D Z˛; h˛; ˛i D 2p;
or simplyL D p2pZ, with the usual multiplication. We are interested in the central

charge cp;1 D 1 � 6.p�1/2
p

; so we choose

! D 1

4p
˛.�1/21C p � 1

2p
˛.�2/1:

We also define conformal weights

hp;qr;s D
.ps � rq/2 � .p � q/2

4pq
:

With this central charge, the generalized vertex algebra VLı [28] admits two
screenings:

QQ D e�˛=p
0 and Q D e˛0 :

Then we let

W .p/ D KerVLe
�˛=p
0 � VL; (27)

a subalgebra of VL called the triplet algebra.
The above construction can be recast in terms of automorphisms of infinite

order and generalized twisted modules introduced by Huang [46]. Consider � D
exp.e�˛=p

0 /. This operator does not preserve VL but it can be viewed as an
automorphism of VLı of infinite order. Then the triplet is V �

Lı\VL, where V �
L denote

the �-fixed vertex subalgebra. In fact, VLı can be also replaced by VL ˚ VL�˛=p
(see [7]).

As shown in [4], W .p/ is strongly generated by the conformal vector ! and three
primary vectors

F D e�˛; H D QF; E D Q2e�˛:

There is another useful description of W .p/ [32, 39]. As a module for the Virasoro
algebra, VL is not completely reducible but it has a semisimple filtration whose
maximal semisimple part is W .p/. More precisely,

W .p/ D socVir.VL/

D
1M

nD0

2nM

jD0
U.Vir/:Qj e�n˛

Š
1M

nD0
.2nC 1/L.cp;1; hp;11;2nC1/; ; (28)
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where L.c; h/ denote the highest weight Virasoro module of central charge c and
lowest conformal weight h. For other examples of irrational C2-cofinite vertex
(super)algebras see [5, 11, 12, 14–16] .

4.2 Irreducible Modules and Characters

The triplet W .p/ is known to be C2-cofinite but irrational [4] (see also [23]). It also
admits precisely 2p inequivalent irreducible modules [4] which are usually denoted
by:

.1/; : : : ; .p/;˘.1/; : : : ; ˘.p/:

These modules were previously studied in [33, 34, 39] was proposed as a complete
list of irreducibles. Since irreps are admissible, for 1 	 i 	 p, the top component
of .i/ is one-dimensional and has lowest conformal weight hp;1i;1 , and the top

component of ˘.i/ is two-dimensional with conformal weight hp;13p�i;1.
The characters of irreducible W .p/-modules are well-known and computed in

many papers on logarithmic conformal field theories starting with [39]. For 1 	 i 	
p, the formulas are

ch.i/.�/ D i�p;p�i .�/C 2@�p;p�i .�/
p�.�/

;

ch˘.i/.�/ D i�p;i .�/ � 2@�p;i .�/
p�.�/

; (29)

where

�i;p.�/ D
X

n2Z
q.2npCi/2=4p; @�i;p.�/ D

X

n2Z
.nC i

2p
/q.2npCi/2=4p:

From here we infer that the space spanned by characters of irreps is not modular
invariant! To understand this better observe that in addition to �p;i and @�p;i series
we also need �@�p;i series to preserve modularity. This gives indication that one-
point functions on the torus might be bigger than the number of irreps.

The next theorem (essentially taken from [6]) settles the problem of finding the
space of one-point functions on the torus for the triplet algebra.

Theorem 4. The space of one-point functions for the triplet vertex algebra is 3p�1-
dimensional.

The proof breaks down on studying generalized characters. By using general
properties of one-point functions and the triplet vertex algebra we first prove that
every generalized character S.1; �/ satisfies
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D3p�1S.1; �/C
3p�2X

iD0
Hi .q/D

iS.1; �/ D 0; (30)

where

Hi.q/ 2 CŒG4;G6�2h�2i

is a modular form of weight 2h � 2i . and

Dh D .q d
dq
/C hG2.q/

where h 2 Z�0 and

Dn WD D2n�2 � � �D2D0:

This fact immediately implies several things. First, because the space of solutions of
the differential equations is modular invariant, the space of generalized characters is
at most 3p�1-dimensional. But at the same time each ordinary trace associated to an
irrep must be a solution to thus equation. So for modular invariance to be preserved
the space is at least 3p�1-dimensional. Therefore there must be contribution coming
from p�1 generalized characters. Once we observe that dim.C .V // 	 dim.SW .p//,
where the right hand side is known to be 3p � 1-dimensional by [9], we have the
proof and observation that C .V / is as large as it can be. By using a method from
[19] we can construct all the missing one-point functions explicitly.

4.3 Verlinde-Type Formula for W .p/-Mod

As there is no general Verlinde formula for C2-cofinite vertex algebras, in what
follows “Verlinde-type formula” refers to the following concepts extracted from the
(generalized) characters:

1. A way of constructing a genuine finite-dimensional SL.2;Z/ representation on
the space of irreducible and possible larger generalized characters.

2. By using the S -matrix from (1), for a fixed triple i; j; k, the standard Verlinde
sum,that is, the right hand-side of (4), recovers non-negative integers that agree
with the known (or at least conjectural) fusion coefficients Nk

ij . Because the
category of representation is semisimple these fusion coefficients should be
understood as multiplicities in the Grothendieck ring.

We do not claim that there is a unique procedure for extracting the S -matrix here,
so there might be more than one Verlinde-type formula giving the same answer.
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Next, we outline a Verlinde-type formula for the triplet algebra obtained in [39],
with some crucial modifications in [43]. We already listed all irreps earlier with their
explicit characters. Form a 2n � 1 character vector

	p.�/ WD .ch.p/; ch˘.p/; ch.1/; ch˘.p�1/; � � � ; ch.p�1/; ch˘.1//
T ;

where .�/T stands for the transpose. Easy computation—by using modular transfor-
mation formulas for �p;i and @�p;i—shows that

	p.�1
�
/ D Sp.�/ � 	p.�/; 	p.� C 1/ D Tp.�/ � 	p.�/;

where the entries of the matrix are computed by using the formula

ch.s/.�1
�
/ D 1p

2p

�
s

p

�
ch.p/.�/C .�1/p�s	˘.p/.�/

C
p�1X

s0D1
2cos.

2.p � s/s0

p
/.ch.p�s0/.�/C ch˘.s0/.�//

�

�
p�1X

s0D1
.�1/pCsCs02sin.

2ss0

p
/i�.

p � s0

p
ch.s0/.�/ � s

0

p
ch˘.p�s0/.�//

�

and a similar formula for 	˘.s/.� 1� /. The matrix Tp.�/ is clearly independent of
� and diagonal (we omit its explicit form here). This way we do not obtain a
2p-dimensional representation of the modular group due to � -dependence. To fix
this problem it is convenient to introduce a suitable automorphy factor j.�; �/,
� 2 SL.2;Z/, satisfying the cocycle condition

j.�� 0; �/ D j.� 0; �/j.�; � 0�/:

In addition, we can define j.�; �/ such that the modified S ,T -matrices

Sp WD j.S; �/Sp.�/; Tp WD j.T; �/Tp.�/;

do not depend on � , so Sp and Tp define a genuine representation of SL.2;Z/. This
was achieved explicitly in [39, Sect. 3]. Again we omit explicit formulas for Sp for
brevity. Equipped with a right candidate for the S -matrix we are ready to compute
the Verlinde sum

Nk
ij WD

X

r2f0;:::;2p�1g

Sp.ir/Sp.jr/Sp.k�r/
Sp.0r/

:
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These numbers turn out to be non-negative integers, so we can form a free Z-module
generated by the equivalence classes of irreps, and on it we let

XI �XJ WD
X

K

NK
IJXK: (31)

Theorem 5. The previous product defines an associative ring structure. Moreover,

.s/ �.t/ D
min.sCt�1;2p�s�t�1/X

rDjs�t jC1;by 2
.r/˚

p;p�1M

rD2p�s�tC1IstepD2
PC
r

.s/ �˘.t/ D
min.sCt�1;2p�s�t�1/X

rDjs�t jC1;by 2
˘.r/˚

p;p�1M

rD2p�s�tC1IstepD2
P�
r (32)

˘.s/ �˘.t/ D
min.sCt�1;2p�s�t�1/X

rDjs�t jC1;by 2
.r/˚

p;p�1M

rD2p�s�tC1IstepD2
PC
r ;

where Pṙ are given by

PC
r D 2.r/C 2˘.p � r/; P�

r D 2˘.r/C 2.p � r/ (33)

and where the summation is up to p � 1 or p depending on whether r C s C t is
even or odd, respectively.

Tsuchiya and Wood in [60] (see also [58]) proved that the above product recovers
correct multiplication in the Grothendieck ring of the category W .p/ �Mod (this
one exists thanks to [47]). Moreover, the Pṙ summands in the formulas should be
viewed as projective modules. The approach in [60] is based on the notion of fusion
expressed as a certain space of coinvariants. Some special cases of the fusion rules
are computed in [7] by using intertwining operators.

Observe also that for X D ˘ or  and 1 	 s 	 p we have

qdim.X.s// D s;

which can be easily verified by considering asymptotic properties of the given
q-series [22]. It is a priori not clear if this agrees with the categorical q-dimension.

We conclude this section with a comment that we believe this pattern persists for
other C2-cofinite vertex algebras or at least those that are of CFT type and where
the vertex algebra is simple. Moreover, we conjecture that in a favorable situation
when V � Mod is rigid [57] the analytic q-dimension agrees with the categorical
one. Rigidity in general seems to fail for Wp;q triplet vertex algebras studied in
[7, 8, 10, 31, 32].
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5 Beyond C2-Cofinite Vertex Algebras

Very little is known about general categories of representations of irrational non
C2-cofinite vertex algebras (let alone any modularity-type properties!). We only
focus on those vertex algebras with good categorical properties in the sense that
they admit a subcategory where irreducibles and perhaps projective modules can be
classified. An obvious candidate here is the Heisenberg vertex algebraM.1/ already
discussed in the setup of lattice vertex algebras. The category of h-diagonalizable
M.1/-modules is known to be semisimple and the irreps are F�, � 2 h� [37]. In
other words, all irreducible modules are “generic”. In addition, the formal fusion
product is given by F� � F� D F�C� . A better candidate (in terms of richness
of representations) for discuss here is the singlet vertex algebra [2, 3, 50], a proper
subalgebra of the full rank one Fock spaceM.1/, so all Heisenberg algebra modules
are already included. In addition the singlet is included inside the triplet algebra
W .p/. So in addition to Fock space modules, the singlet admits a special infinite
family of representations that do not look like F� and come from decomposition of
irreducible W .p/-modules.

The setup is as in the previous section. We fix the central charge to be cp;1 and
choose the same conformal vector in M.1/. Following the notation from [2] (see
also [3]), we define

W .2; 2p � 1/ D KerM.1/ QQ:

called the singlet vertex algebra of central charge cp;1. Since QQ commutes with the
action of the Virasoro algebra, we have

L.cp;1; 0/ � W .2; 2p � 1/:

The vertex operator algebra W .2; 2p � 1/ is completely reducible as a Virasoro
algebra module and the following decomposition holds:

W .2; 2p � 1/ D
1M

nD0
U.Vir/: u.n/I u.n/ D Qne�˛n Š

1M

nD0
L.cp;1; n

2p C np � n/;

As shown in [2] (see also [3]) all irreducible W .2; 2p� 1/-modules are constructed
as subquotients of the Fock spaces F�. What is peculiar about these irreps is that
they come in two groups with very distinct features:

• (Typical or generic) Those isomorphic to irreducible Virasoro Fock spaces
denoted by F� (it simply means that � does not satisfy a certain integrability
condition).

• (Atypical or generic) A certain family Mr;s of subquotients of Fock spaces
Fr�1

2

p
2pC s�1p

2p
, r 2 Z, and 1 	 s 	 p. Each Mr;s is isomorphic to an infinite

direct sum of Virasoro irreps.
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Each irrep Mr;s decomposes as an infinite direct sum of irreducible Virasoro
algebra (for explicit decomposition formulas see [4,24]). This is then used to show:

chŒMr;s�.�/ D Ppr�s;p.0; �/ � PprCs;p.0; �/
�.�/

;

where

Pa;b.u; �/ D
1X

nD0
znC a

2b qb.nC a
2b /

2

; z D e.u/: (34)

The last expression is what is usually called partial theta function of and its
properties are well-recorded in the literature [17]. In particular, for M1;1D
W .2; 2p � 1/, we get

chŒW .2; 2p � 1/�.�/ D
P

n2Z sgn.n/qp.nC p�1
2p /2

�.�/
;

which is precisely false theta function of Rogers.
If we try to naively compute

Pa;b.
u

�
;�1
�
/

some divergent integrals appear, so instead we introduce a regularization, a method
used in physics to handle divergent quantities.

Now, we define the regularized characters by introducing a parameter � to achieve
better modular properties. We let

chŒF �
� �.�/ D e2��.��˛0=2/ q

.��˛0=2/2=2

�.�/

chŒM �
r;s�.uI �/ D

1

�.�/

1X

nD0
chŒF �

˛r�2n�1;p�s
�.�/ � chŒF �

˛r�2n�2;s
�.�/;

(35)

where ˛0 D ˛C C ˛�, ˛C D p2p and ˛� D �
p
2=p.

Observe that typical �-regularized characters are simply trF�e
2��.

˛.0/
p
2p

�˛0=2/

qL.0/�c=24. But atypical regularization is more subtle and it has no obvious
interpretation as graded trace. Let ˇṙ;s D ..r � 1/˛C ˙ s˛�/=2, then the atypical
characters are

chŒM �
r;s�.�/

D chŒF �
˛0=2�ˇ�

r;s
�.�/P˛C�.�˛Cˇ�

r;s� I˛2C�/
�chŒF �

˛0=2�ˇC
r;s
�.�/P˛C�.�˛CˇC

r;s� I˛2C�/:
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We can easily show that

chŒF �
�C˛0=2�

��1
�

� D
Z

R

S��C˛0=2;�C˛0=2chŒF �
�C˛0=2�.�/d�;

with S��C˛0=2;�C˛0=2 D e2��.���/e�2�i��.
The next result taken from [24] gives S -“matrix” expressed as a kernel.

Theorem 6.

chŒM �
r;s�
�
� 1
�

	
D
Z

R

S�.r;s/;�C˛0=2chŒF �
�C˛0=2�.�/d�CX�

r;s.�/

with

S�.r;s/;�C˛0=2 D �e�2��..r�1/˛C=2C�/e�i.r�1/˛C�
sin
�
�s˛�.�C i�/

�

sin
�
�˛C.�C i�/

�

and

X�
r;s.�/ D

1

4i�.�/
.sgn.Re.�//C1/

X

n2Z
.�1/rne�i sp nq 1

2 .
n2

˛C
��2/�

q�i�n=˛2
C�qi�n=˛2C�:

5.1 Brewing a Verlinde-Type Formula

If we have a continuous type S -matrix as the one above, the right approach for
defining fusion coefficients seems to be [25, 26]

Z

R

S�a�S
�
b�S

�N�
��

S�.1;1/�
d�:

But this integral badly diverges, so we either have to pass to heuristic approach as
in [25] and [26] where the integrals are interpreted as a sum of the Dirac delta
functions, or we can simply change the order of integration so that the fusion
coefficients are genuine distributions. Thus, we redefine the product in the Verlinde
algebra of characters as

chŒXa� � chŒXb� WD
Z

R

 Z

R

S�a�S
�
b�S

�N�
��

S�.1;1/�
chŒF �

��d�

!
d� (36)
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It is worth to point out that the map Xa 7! chŒX�
a � is injective on irreducible

modules, so we don’t loose any information by working with the characters, and
we can even take the approach as in (31) with integrals added.

It can be shown that this product converges for all irreps, and it give rise to a
commutative associative algebra. Finally, we have this remarkable formula [24]

Theorem 7. With Re.�/ < 0, the Verlinde-type algebra of regularized characters
is given by

chŒF �
� � � chŒF �

�� D
p�1X

`D0
chŒF �

�C�C`˛�
�

chŒM �
r;s� � chŒF �

�� D
sX

`D�sC2
`CsD0mod 2

chŒF �
�C˛r;` �

chŒM �
r;s� � chŒM �

r 0;s0 � D
minfsCs0�1;pgX

`Djs�s0jC1
`CsCs0D1mod 2

chŒM �
rCr 0�1;`�

C
sCs0�1X

`DpC1
`CsCs0D1mod 2

�
chŒM �

rCr 0�2;`�p�C chŒM �
rCr 0�1;2p�`�

C chŒM �
rCr 0;`�p�

	
:

Remark 1. The previous result is expected to give relations in the Grothendieck ring
of a suitable (sub)category of W .2; 2p � 1/-modules. It is not clear to us whether
any of the current results in VOA theory (including [47]) gives braided category
structure on this category. Also, we conjecture equivalence of categories W .2; 2p�
1/ � Mod Š Uq.‹/ � Mod where Uq.‹/ is yet-to-be defined quantum group at
2p-th root of unity.

6 “Bare” Virasoro Vertex Algebra

We are finally left with the lonely Virasoro vertex operator algebra L.cp;1; 0/
sitting inside the singlet W .2; 2p � 1/. In this section we also allow p D 1.
Irreducible admissibleL.cp;1; 0/-modules are simple module of the formL.cp;1; h/,
where h 2 C. There is a distinguished family of highest weight modules which
are not Verma modules, that is V.cp;1; 0/ ¤ L.cp;1; 0/. This is if and only if

h D hi;s D .ip�s/2�.p�1/2
4p

, i > 0, 0 < s 	 p. We call them atypical modules.
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6.1 Modular-Like Transformation Properties?

It is a well-known fact (due to Feigin and Fuchs) that

chL.cp;1;hi;s /.�/ D
.1 � qis/q .ip�s/2

4p

�.�/
:

chL.cp;1;h/.�/ D
qhC.p�1/2=4p

�.�/
I h ¤ hi;s

Evaluating � 7! � C 1 transformation on the character is trivial as usual. If
we consider � 7! � 1

�
, as in the singlet case of Fock modules, we obtain one

or two Gauss’ integrals. But this answer will lead to new problems when we
start computing a Verlinde-type formula. It turns out that two irreducible modules
for this vertex algebra can produce infinitely many (more precisely, uncountably
many) irreducible modules after the fusion, so we conclude that there cannot be a
reasonable fusion algebra for L.cp;1; 0/-modules unless of course we allow some
kind of completions that we do not dwell into. Similar problem is already evident at
the level of q-dimensions. Observe that for h ¤ hi;s

qdim.L.cp;1; h// D lim
�!0

qh

1 � q D1:

Yet, in sharp contrast, we have

qdim.L.cp;1; hi;s// D lim
�!0

qhi;s .1 � qis/
1 � q D is;

indicating that these atypical modules ought to behave much better under the fusion.
This is also clear because of the following results (cf. [35, 52–54]):

L.cp;1; hr;s/ � L.cp;1; hr 0;s0/ D
X

r 002A.r;r 0/;s002A.s;s0/
L.cp;1; hr 00;s00/;

where we assume that all indices are positive and Ai;j D fi C j � 1; i C j � 3;
� � � ; ji � j j C 1g. We should say that this formula only indicates triples of atypical
modules whose fusion rules are 1 and not a relation in a hypothetical Grothendieck
ring. We also have

qdim.L.cp;1; hr;s/ � L.cp;1; hr 0;s0// D qdim.L.cp;1; hr;s// � qdimL.cp;1; hr 0;s0//

Because of the infinities involved we do not expect the irreducible modules can be
organized in a way that the Verlinde formula holds. This is why to vertex algebras
with similar properties we refer to as “wild”.
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7 Generalization and Higher Rank False Theta Functions

The story told in the previous sections can be generalized by considering the
sequence of embeddings of vertex algebras:

where Q is a root lattice of ADE type, g is the corresponding simple Lie algebra,
Wp.g/ is the affine W -algebra of central charge cp.g/ associated to g, and where
W 0
Q.p/ and W .p/Q are vertex algebras defined below. In the special case of g D sl2

and p � 2 we recover the embedding of vertex algebras given in the introduction.
The affine W -algebra associated to Og at level k ¤ �h_, denoted by Wk.g/ is

usually defined as the cohomology group obtained via a quantized BRST complex
for the Drinfeld-Sokolov hamiltonian reduction [38]. As shown by Feigin and
Frenkel (cf. [38] and [36] and citations therein) this cohomology is nontrivial only in
the degree zero. Moreover, it is known that Wk.g/ is a quantum W -(vertex) algebra,
in the sense that is freely generated by rank.g/ primary fields, not counting the
conformal vector.

We will be following the notation from Sect. 3. As before denote by Lı the dual
lattice of L. Now, we specialize L D ppQ, where p � 2 and Q is root lattice
of ADE type. We equip VL with a vertex algebra structure as earlier in Sect. 3 (by
choosing an appropriate 2-cocycle). Let ˛i denote the simple roots of Q. For the
conformal vector we conveniently choose

! D !st C p � 1
2
p
p

X

˛2�C

˛.�2/1;

where !st is the standard (quadratic) Virasoro generator [37, 51] . Then VL is a
conformal vertex algebra of central charge1

rank.L/C 12.�; �/.2 � p � 1

p
/;

where � is the half-sum of positive roots. Consider the operators

e
p
p˛i

0 ; e
�˛j =pp

0 ; 1 	 i; j 	 rank.L/ (37)

acting between VL and VL-modules. These are the so-called screening operators.
More precisely [55]

Lemma 1. For every i and j the operators e
p
p˛i

0 and e
�˛j =pp

0 commute with each
other, and they both commute with the Virasoro algebra.

1Without the linear term the central charge is rank.L/.
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We shall refer to e
p
p˛i

0 and e
�˛j =pp

0 , as the long and short screening, respectively.
It is well-known that the intersection of the kernels of residues of vertex operators
is a vertex subalgebra (cf. [36]), so the next construction seems very natural.

An important theorem of Feigin and Frenkel [36] says that for k generic and g
is simply-laced, there is an alternative description of Wk.g/ in terms of free fields.
For this purpose, we let � D k C h_, where k is generic. Then there are (as above)
appropriately defined screenings2

e
�˛i =p�

0 WM.1/ �!M.1;�˛i=
p
�/;

such that

W�.g/ D
l\

iD1
KerM.1/.e

�˛i =p�

0 /;

where l D rank.L/. If we assume in addition that g is simply laced (ADE type) we
also have the following important duality [36]

W�.g/ D
l\

iD1
KerM.1/.e

p
�˛i

0 /:

Generic values of � do not have integrality property so in particular the screening

operators e�˛i =p�

0 cannot be extended to a lattice vertex algebra. Still this idea can
be used to define much larger vertex algebras which we now describe.

Theorem 8. Let g be simply laced. Then p D k C h_ 2 N�2 is non-generic. More
precisely,

W 0.p/Q WD
l\

iD1
KerM.1/e

�˛i =pp

0

is a vertex algebra containing Wp.g/ as a proper subalgebra. In particular, for
Q D A1 this algebra is simply the singlet W .2; 2p � 1/ discussed earlier.

The previous algebra can be maximally extended leading to

W .p/Q WD
l\

iD1
KerVLe

�˛j =pp

0 : (38)

Again, if we let Q D A1 this is just the triplet vertex algebra W .p/.

2These screenings to do not extend to a lattice vertex algebra in general.
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The following conjecture was mentioned in [13].

Conjecture 1. The vertex algebra W .p/Q is C2-cofinite.

Although there are not many rigorous results on the representation theory of
W 0.p/Q and of W .p/Q, we again expect that irreps of W .p/Q can be understood
as subquotients of VL-modules, while all atypical irreps of W 0.p/Q all appear in
the decomposition of irreducible W .p/Q-modules and typical representations. As
the structure of Fock spaces in the higher rank is not well-understood well, one
can take a different geometric approach to guess the characters of relevant modules
(see [30]).

7.1 Characters of W .p/Q-Modules

Let � denote the half-sum of positive roots, by W we denote the Weyl group and by
.�; �/ the usual inner product in L ˝Z Q normalized such that .˛; ˛/ D 2 for each
root ˛. We also let .ˇ; ˇ/ D jjˇjj2. Let

Y

˛2��

.1 � z˛/

denote the Weyl denominator (here �� is the set of negative roots) and

z˛ D z.˛1;˛/ � � � z.˛n;˛/:

There are two expression that we are concerned about here. The first does not give
a proper character but only auxiliary expression to compute the proper (conjectural)
characters. Assume � 2 Lı and let [30]

chW .p;�/Q.�; z/ D
�.�/�rank.Q/

e�
Q
˛2��

.1 � z˛/

X

w2W

X

ˇ2Q
.�1/l.w/q jjpˇC�C.p�1/.�/jj2

2p zw.ˇCO�C�/:

This expression cannot be evaluated at zi D 1, but the limit

chW .p;�/Q.�/ D lim
z!1

chWQ.p;�/.�/

is conjecturally expected to give the character of W .p; �/Q, an irreducible W .p/Q-
module. It is not hard to see by using L’hopital rule that the resulting expression
is a linear combination of quasi-modular forms of different weight generalizing
the formula in (29). A much harder question to ask is to determine its modular
closure [30].
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7.2 Characters of W 0.p/Q-Modules

The previous computation can be motivated to compute (conjectural) expressions
for the characters of atypical irreducible W 0.p/Q-modules. Of course, for typical
modules we have chF�.�/ is just a pure power of q divided with the rank.Q/-th
power of the Dedekind �-function. Characters of atypical W 0.p/Q-modules should
be parameterized by � 2 L0 (cf. with the singlet algebra)

chW 0.p;�/Q.�/

D CTz

8
<

:
�.�/�rank.Q/

e�
Q
˛2��

.1 � z˛/

X

w2W

X

ˇ2Q
.�1/l.w/q jjpˇC�C.p�1/.�/jj2

2p zw.ˇCO�C�/:

9
=

; ;

where CTz denote the constant term w.r.t. z. Observe that this is precisely in
the analogy with the singlet modules. The previous definition motivates our
proposal of higher rank false theta functions, generalizing the sl2 case, of “weight”
j�Cj � rank.L/

2
:

Fp;�.�/ D CTz

8
<̂

:̂

P
w2W

P
ˇ2Q.�1/l.w/q

jjpˇC�C.p�1/.�/jj2

2p zw.ˇCO�C�/:
e�
Q
˛2��

.1 � z˛/

9
>=

>;
;

Remark 2. We expect many properties of generalized false theta functions to follow
the pattern observed in the rank one case, including modularity-like properties of
regularized false thetas, etc. This will be the subject of our forthcoming joint work
with Bringmann [22].
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13. Adamović, D., Milas, A.: Vertex operator (super)algebras and LCFT, special issue on
Logarithmic Conformal Field Theory. J. Phys. A 46(49), 494005, 23 pp. (2013)
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16. Adamović, D., Lin, X., Milas, A.: ADE subalgebras of the triplet vertex algebra W .p/;
D-series. Int. J. Math. 25, 1450001 (34 pp.) (2014)

17. Andrews, G., Berndt, B.: Ramanujan’s Lost Notebook, part. II. Springer (2009)
18. Arakawa, T.: Representation theory of W -algebras. Inventiones Math. 169, 219–320 (2007).

arXiv:math/0506056
19. Arike, Y., Nagatomo, K.: Some remarks on the pseudotrace functions for orbifold models

associated to symplectic fermions. Adv. Math. 262, 520–545 (2014). arXiv:1104.0068
20. Bakalov, B., Kirillov, Jr. A.: Tensor Categories and Modular Functors. American Mathematical

Society, Providence (2001)
21. Borcherds, R.: Monstrous moonshine and monstrous lie superalgebras. Invent. Math. 109, 405–

444 (1992)
22. Bringmann, K., Milas, A. (preprint)
23. Carqueville, N., Flohr, M.: Nonmeromorphic operator product expansion and C2-cofiniteness

for a family of W-algebras. J. Phys. A: Math. Gen. 39, 951 (2006)
24. Creutzig, T., Milas, A.: The false theta functions and the Verlinde formula, arXiv:

1309.6037. Adv. Math. 262, 520–545 (2014)
25. Creutzig, T., Ridout, D.: Modular data and Verlinde formulae for fractional level WZW models

I. Nucl. Phys. B 865, 83 (2012)
26. Creutzig, T., Ridout, D.: Modular data and Verlinde formulae for fractional level WZW models

II. Nucl. Phys. B 875, 423 (2013)
27. Dong, C.: Vertex algebras associated with even lattices. J. Algebra 160, 245–265 (1993)
28. Dong, C., Lepowsky, J.: Generalized Vertex Algebras and Relative Vertex Operators. Progress

in Mathematics. Birkhäuser, Boston (1993)
29. Dong, C., Lin, X., Ng, S.: Congruence Property in Conformal Field Theory. arXiv:

1201.6644
30. Feigin, B., Tipunin, I.: Logarithmic CFTs connected with simple Lie algebras. arXiv:

1002.5047



28 A. Milas

31. Feigin, B.L., Gaı̆nutdinov, A.M., Semikhatov, A.M., Tipunin, I I.Yu.: The Kazhdan-Lusztig
correspondence for the representation category of the triplet W -algebra in logorithmic
conformal field theories. (Russian) Teoret. Mat. Fiz. 148(3), 398–427 (2006)

32. Feigin, B.L., Gaı̆nutdinov, A.M., Semikhatov, A.M., Tipunin, I.Yu.: Logarithmic extensions of
minimal models: characters and modular transformations. Nucl. Phys. B 757, 303–343 (2006)

33. Feigin, B.L., Gaı̆nutdinov, A.M., Semikhatov, A.M., Tipunin, I.Yu.: Modular group represen-
tations and fusion in logarithmic conformal field theories and in the quantum group center.
Commun. Math. Phys. 265, 47–93 (2006)

34. Feigin, B.L., Gaı̆nutdinov, A.M., Semikhatov, A.M., Tipunin, I.Yu.: Kazhdan–Lusztig-dual
quantum group for logarithmic extensions of Virasoro minimal models. J. Math. Phys. 48,
032303 (2007)

35. Flohr, M.: On modular invariant partition functions of conformal field theories with logarithmic
operators. Int. J. Mod. Phys. A 11(22), 4147–4172 (1996)

36. Frenkel, E., Ben-Zvi, D.: Vertex Algebras and Algebraic Curves. Mathematical Surveys and
Monographs, vol. 88. American Mathematical Society, Providence (2001)

37. Frenkel, I.B., Lepowsky, J., Meurman, A.: Vertex Operator Algebras and the Monster. Pure
and Applied Mathematics, vol. 134. Academic, New York (1988)

38. Frenkel, E., Kac, V., Wakimoto, M.: Characters and fusion rules for W-algebras via quantized
Drinfeld-Sokolov reduction. Commun. Math. Phys. 147, 295–328 (1992)

39. Fuchs, J., Hwang, S., Semikhatov, A.M., Tipunin, I.Yu.: Nonsemisimple fusion algebras and
the Verlinde formula. Commun. Math. Phys. 247(3), 713–742 (2004)

40. Gaberdiel, M.: An algebraic approach to logarithmic conformal field theory. In: Proceedings
of the School and Workshop on Logarithmic Conformal Field Theory and its Applications
(Tehran, 2001). Int. J. Mod. Phys. A 18, 4593–4638 (2003)

41. Gaberdiel, M., Kausch, H.G.: A rational logarithmic conformal field theory. Phys. Lett. B 386,
131–137 (1996). hep-th/9606050

42. Gaberdiel, M., Kausch, H.G.: A local logarithmic conformal field theory. Nucl. Phys. B 538,
631–658 (1999). hep-th/9807091

43. Gaberdiel, M., Runkel, I.: From boundary to bulk in logarithmic CFT. J. Phys. A41, 075402
(2008)

44. Gurarie, V.: Logarithmic operators in conformal field theory. Nucl. Phys. B410, 535–549
(1993)

45. Huang, Y.-Z.: Vertex operator algebra and the Verlinde conjecture. Commun. Contemp. Math.
10, 108 (2008)

46. Huang, Y.-Z.: Generalized twisted modules associated to general automorphisms of a vertex
operator algebra. Commun. Math. Phys. 298(1), 265–292 (2010). arXiv:0905.0514

47. Huang, Y.-Z., Lepowsky, J., Zhang, L.: Logarithmic tensor product theory for generalized
modules for a conformal vertex algebra, (2010). arXiv:0710.2687 (also Parts I–VIII:
arXiv:1012.xxxx was posted in November of 2010

48. Kac, V.: Infinite-Dimensional Lie Algebras. Cambridge University Press, Cambridge (1990)
49. Kac, V.: Vertex Algebras for Beginners, 2nd edn. American Mathematical Society, Providence

(1998)
50. Kausch, H.G.: Extended conformal algebras generated by a multiplet of primary fields. Phys.

Lett. B 259, 448 (1991)
51. Lepowsky, J., Li, H.: Introduction to Vertex Operator Algebras and Their Representations.

Birkhäuser, Boston (2003)
52. Lin, X.: Fusion rules of Virasoro vertex operator algebras. arXiv:1204.4855
53. Milas, A.: Weak modules and logarithmic intertwining operators for vertex operator algebras.

In: Recent Developments in Infinite-Dimensional Lie Algebras and Conformal Field Theory
(Charlottesville, VA, 2000). Contemporary Mathematics, vol. 297, pp. 201–225. American
Mathematical Society, Providence (2002)

54. Milas, A.: Fusion rings associated to degenerate minimal models. J. Algebra 254, 300–335
(2002)



Characters of Modules of Irrational Vertex Algebras 29

55. Milas, A., Penn, M.: Lattice vertex algebras and combinatorial bases: general case and
W -algebras. N. Y. J. Math. 18, 621–650 (2012)

56. Miyamoto, M.: Modular invariance of vertex operator algebras satisfying C2-cofiniteness.
Duke Math. J. 122, 51–91 (2004)

57. Miyamoto, M.: Flatness of tensor products and semi-rigidity for C2-cofinite vertex operator
algebras I. arXiv:0906.1407

58. Nagatomo, K., Tsuchiya, A.: The triplet vertex operator algebra W.p/ and the restricted
quantum group at root of unity. In: Exploring New Structures and Natural Constructions in
Mathematical Physics. Advanced Studies in Pure Mathematics, vol. 61. Mathematical Society
of Japan, Tokyo (2011). arXiv:0902.4607

59. Runkel, I.: A braided monoidal category for free super-bosons. arXiv:1209.5554
60. Tsuchiya, A., Wood, S.: The tensor structure on the representation category of the triplet Wp

algebra. arXiv:1210.0419
61. Verlinde, E.: Fusion rules and modular transformations in 2D conformal field theory. Nucl.

Phys. B 300, 360–376 (1988)
62. Zhu, Y.: Modular invariance of characters of vertex operator algebras. J. Am. Math. Soc. 9,

237–302 (1996)



Lattice Subalgebras of Strongly Regular Vertex
Operator Algebras

Geoffrey Mason

Abstract We prove a sharpened version of a conjecture of Dong–Mason about
lattice subalgebras of a strongly regular vertex operator algebra V , and give some
applications. These include the existence of a canonical conformal vertex operator
subalgebraW ˝G˝Z of V , and a generalization of the theory of minimal models.

1 Introduction and Statement of Main Results

This paper concerns the algebraic structure of strongly regular vertex operator
algebras (VOAs). A VOA V D .V; Y; 1; !/ is called regular [14] if it is rational
(admissible V -modules are semisimple) and C2-cofinite (the span of u.n/v .u; v 2
V; n 	 �2/ has finite codimension in V ). It is strongly regular if, in addition, the
L.0/-grading (or conformal grading) given by L.0/-weight has the form

V D C1˚ V1 ˚ : : : (1)

and all states in V1 are quasiprimary (i.e. annihilated by L.1/). Apart from the
still-undecided question of the relationship between rationality and C2-cofiniteness,
changing any of the assumptions in the definition of strong regularity will result in
VOAs with quite different properties (cf. [10]). Such VOAs are of interest in their
own right, but we will not deal with them here.

To describe the main results, we need some basic facts about strongly regular
VOAs V that will be assumed here and reviewed in more detail in later sections. V is
equipped with an essentially unique nonzero, invariant, bilinear form h ; i, and V is
simple if, and only if, h ; i is nondegenerate. We assume this is the case from now on.
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Then V1 carries the structure of a reductive Lie algebra and all Cartan subalgebras of
V1 (maximal (abelian) toral Lie subalgebras) are conjugate in Aut.V /. We also refer
them as Cartan subalgebras of V . We say that a subspace U � V is nondegenerate
if the restriction of h ; i to U � U is nondegenerate. For example, the Cartan
subalgebras of V and the solvable radical of V1 are nondegenerate. We refer to the
dimension of H as the Lie rank of V .

A subVOA of V is a subalgebra W D .W; Y; 1; !0/ with a conformal vector
!0 that may not coincide with the conformal vector ! of V . If ! D !0 we say
that W is a conformal subVOA. V contains a unique minimal conformal subVOA
(with respect to inclusion), namely the Virasoro subalgebra generated by !. A basic
example of a subVOA is the Heisenberg theory .MU ; Y; 1; !U / generated by a
nondegenerate subspace U of a Cartan subalgebra of V . MU has rank (or central
charge) dimU and conformal vector

!U WD 1=2
X

i

hi .�1/hi ; (2)

where fhig is any orthonormal basis of U . A lattice theory is a VOA VL correspond-
ing to a positive-definite, even lattice L.

We can now state the main result.

Theorem 1. Let V be a strongly regular, simple VOA, and suppose that U � H �
V where H is a Cartan subalgebra of V and U is a nondegenerate subspace. Let
!U be as in (2). Then the following hold:

.a/ There is a unique maximal subVOA W � V with

conformal vector !U . (3)

.b/ W Š V is a lattice theory, where  � U is a

positive-definite even lattice with dimU D rk: (4)

Remark 2. 1. Part (a) is relatively elementary, and follows from the theory of
commutants [20] (cf. Sect. 12). The main point of the Theorem is part (b), the
identification of W as a lattice theory.

2. U is a Cartan subalgebra of W . Thus, every nondegenerate subspace of H is a
Cartan subalgebra of a lattice subVOA of V .

Theorem 1 has many consequences. We discuss some of them here, deferring a
fuller discussion until later sections. We can apply Theorem 1 with U D rad.V1/,
and this leads to the next result.

Theorem 3. Suppose that V is a strongly regular, simple VOA. There is a canonical
conformal subVOA

T D W ˝G ˝Z; (5)
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the tensor product of subVOAs W;G;Z of V with the following properties:

(a) W Š V is a lattice theory and  has minimal length at least 4;
(b) G is the tensor product of affine Kac–Moody algebras of positive integral level;
(c) Z has no nonzero states of weight 1: Z D C1˚Z2 : : :
Remark 4. The gradings onW;G and Z are compatible with that on V in the sense
that the nth graded piece of each of them is contained in Vn. T has the tensor product
grading, and in particular T1 D W1˚G1 D V1. Indeed,W1 D rad.V1/ and G1 is the
Levi factor of V1. Thus the weight 1 piece of V is contained in a rational subVOA
of standard type, namely a tensor product of a lattice theory and affine Kac–Moody
algebras.

To a certain extent, Theorem 3 reduces the study of strongly regular VOAs to the
following: (A) proof that Z is strongly regular; (B) study of strongly regular VOAs
with no nonzero weight 1 states; (C) extension problem for strongly regular VOAs,
i.e. characterization of the strongly regular VOAs that contain a given strongly
regular conformal subVOA T . For example, we have the following immediate
consequence of Theorem 3 and Remark 4.

Theorem 5. Suppose that V is a strongly regular, simple VOA such that the
conformal vector ! lies in the subVOA hV1i generated by V1. Then the canonical
conformal subalgebra (5) is a rational subVOA as in the statement of the Theorem 3

T D W ˝G;

where W and G are as in the statement of Theorem 3.

Remark 6. Let C consist of the (isomorphism classes of) VOAs satisfying the
assumptions of the Theorem. C contains all lattice theories, all simple affine
Kac–Moody VOAs of positive integral level (Siegel–Sugawara construction), and
it is closed with respect to tensor products and extensions in the sense of (C) above.
Theorem 5 says that every VOA in C arises this way, i.e. an extension of a tensor
product of a lattice theory and affine Kac–Moody theories.

There are applications of Theorem 1 to inequalities involving the Lie rank l and
the effective central charge Qc of V . These lead to characterizations of some classes
of strongly rational VOAs V according to these invariants. For example, we have

Theorem 7. Let V be a strongly regular, simple VOA of effective central charge Qc
and Lie rank l . The following are equivalent:

.a/ Qc < l C 1;

.b/ V contains a conformal subalgebra isomorphic to a

tensor product V ˝ L.cp;q; 0/ of a lattice theory of rank l

and a simple Virasoro VOA in the discrete series.
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Remark 8. 1. We always have l 	 Qc ([8]).
2. Define a minimal model as a strongly regular simple VOA whose Virasoro

subalgebra lies in the discrete series. The case l D 0 of Theorem 7 characterizes
minimal models as those strongly regular simple VOAs which have Qc < 1. This
is, of course, very similar to the classification of minimal models in physics (cf.
[3], Chaps. 7 and 8), where attention is usually restricted to the unitary case,
where c D Qc, or equivalently q D p C 1, in the notation of Theorem 7. Minimal
models with Qc D c were treated rigorously in [12]; our approach allows us to
remove any assumptions about c and permits l to be nonzero.

Our results are a natural continuation of the lines of thought in [8] and [9], which
have to do with the weight 1 subspace V1 of V and its embedding in V . These
include the invariant bilinear form of V , the nature of the Lie algebra of V1 and
its action on V -modules, automorphisms of V induced by exponentiating weight 1
states, deformations of V -modules using weight 1 states, and (more recently [26])
weak Jacobi form trace functions defined by weight 1 states. These topics constitute
a very satisfying chapter in the theory of rational VOAs. The Heidelberg Conference
presented itself as a wonderful opportunity to review this set of ideas and describe
how the new results that we have been discussing emerge from them. I am grateful
to the organizers, Professors Winfried Kohnen and Rainer Weissauer, for giving me
the chance to do so.

2 Background

We review some basic notation and facts about vertex operator algebras that we will
need. We refer the reader to [27] for further details.

2.1 Vertex Operators

A VOA is a quadruple .V; Y; 1; !/, often denoted simply by V , satisfying the usual
axioms. We write vertex operators as

Y.v; z/ D
X

n2Z
v.n/z�n�1 .v 2 V /;

Y.!; z/ D
X

n2Z
L.n/z�n�2:
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Useful identities that hold for all u; v 2 V; p; q 2 Z include

Œu.p/; v.q/� D
1X

iD0

 
p

i

!
.u.i/v/.p C q � i/; (6)

fu.p/vg.q/ D
1X

iD0
.�1/i

 
p

i

!
.u.p � i/v.q C i/ � .�1/pv.q C p � i/u.i//;

called the commutator formula and associativity formula respectively.
We assume throughout that V is a simple VOA that is strongly regular as defined

in Sect. 1. One of the main consequences of rationality is the fact that, up to
isomorphism, there are only finitely many ordinary irreducible V -modules [15]. We
let M WD f.M1; Y 1/; : : : ; .M r ; Y r/g denote this set, with .M1; Y 1/ D .V; Y /. It is
conventional to use u.n/ to denote the nth mode of u 2 V acting on any V -module,
the meaning usually being clear from the context. However, it will sometimes be
convenient to distinguish these modes from each other. In particular, we often write
Y j .u; z/ WDP

n2Z uj .n/z�n�1 .u 2 V /; Y j .!; z/ WDP
n2Z Lj .n/z�n�1, dropping

the index j from the notation when j D 1.

2.2 Invariant Bilinear Form

An invariant bilinear form on V is a bilinear map h ; i W V � V ! C satisfying

hY.a; z/b; ci D hb; Y.ezL.1/.�z�2/L.0/a; z�1i .a; b; c 2 V /: (7)

Such a form is necessarily symmetric [21, Proposition 5.3.6].
A theorem of Li [28] says that there is a linear isomorphism between V0=L.1/V1

and the space of invariant bilinear forms on V . Because V is strongly regular then
V0=L.1/V1 D C1, so a nonzero invariant bilinear form exists and it is uniquely
determined up to scalars.

If a 2 Vk is quasi-primary then (7) says that

ha.n/b; ci D .�1/khb; a.2k � n � 2/ci .n 2 Z/: (8)

In particular, this applies if a 2 V1 (because V is assumed to be strongly regular, so
that a is primary), or if a D ! is the conformal vector (! is always quasiprimary).
First apply (8) with a D ! and n D 1, noting that !.1/ D L.0/. Then k D 2 and
we obtain

hL.0/b; ci D hb;L.0/ci:
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It follows that eigenvectors of L.0/ with distinct eigenvalues are necessarily
perpendicular with respect to h ; i. Thus (1) is an orthogonal direct sum

V D C1 ? V1 ? : : : (9)

(Here and below, for subsets A;B � V we write A ? B if ha; bi D 0 for all
a 2 A; b 2 B .)

The radical of h ; i is an ideal. Because we are assuming that V is simple then
it must be zero, whence h ; i is nondegenerate. In particular, h1; 1i 6D 0. In what
follows, we fix the form so that

h1; 1i D �1: (10)

Note also that by (9), the restriction of h ; i to each Vn � Vn is also nondegenerate.

2.3 The Lie Algebra on V1

The bilinear product Œuv� WD u.0/v .u; v 2 V1/ equips V1 with the structure of a
Lie algebra. This is well-known, and follows easily from (6). Applying (8) with
u; v 2 V1, we obtain hu; vi D hu.�1/1; vi D �h1; u.1/vi. With the convention (10),
it follows that

u.1/v D hu; vi1 .u; v 2 V1/:

Because V is strongly regular, a theorem of Dong–Mason [8] says that the Lie
algebra on V1 is reductive. (This result is discussed further in Sect. 3.3 below.) So
there is a canonical decomposition

V1 D A ? S

whereA D Rad.V1/ is an abelian ideal and S is the unique (semisimple) Levi factor.
The decomposition of S into a direct sum of simple Lie algebras ˚igi is also an

orthogonal sum with respect to h ; i. There is a refinement of this decomposition,
established in [9], namely

V1 D A ? g1;k1 ? : : : ? gs;ks (11)

where each ki is a positive integer (the level of gi ).
To explain what this means, for U � V let hU i be the subalgebra of V

generated by U . hU i is spanned by states u D u1.n1/ : : : ut .nt /1 with u1; : : : ; ut 2
U; n1; : : : ; nt 2 Z, and equipped with vertex operators defined as the restriction of
Y.u; z/ to hU i.
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It is proved in [9] that there is an isomorphism of VOAs hgi i Š Lgi .ki ; 0/, where
Lgi .ki ; 0/ is the simple VOA (or WZW model) corresponding to the affine Lie
algebra bgi determined by gi , of positive integral level ki . Orthogonal Lie algebras
in (11) determine mutually commuting WZW models. Then the meaning of (11) is
that the canonical subalgebra G of V generated by S satisfies

G Š Lg1 .k1; 0/˝ : : :˝ Lgs .ks; 0/: (12)

In particular, G is a rational VOA equipped with the canonical conformal vector !G
arising from the Sugawara construction associated to each tensor factor [20, 27].

Because V1 is reductive, it has a Cartan subalgebra, that is a maximal (abelian)
toral subalgebra, and all Cartan subalgebras are conjugate in Aut.V1/. (See the
following section for further discussion.) Let H � V1 be a Cartan subalgebra of
V1, say of rank l . By Lie theory, the restriction of h ; i to H �H is nondegenerate.
We also call H a Cartan subalgebra of V .

3 Automorphisms

In this Section we discuss automorphisms of a VOA. We are mainly interested in
the linear automorphisms, which arise from the familiar process of exponentiating
the operators a.0/ for a 2 V1.

3.1 The Group of Linear Automorphisms G

An automorphism of V is an invertible linear map g W V ! V such that g.!/ D !
and ga.n/g�1 D g.a/.n/ for all a 2 V; n 2 Z, i.e.

gY.a; z/g�1 D Y.g.a/; z/: (13)

The set of all automorphisms is a group Aut.V /. Because g!.n/g�1 D g.!/.n/ D
!.n/, it follows in particular that g commutes withL.0/ D !.1/. Therefore, Aut.V /
acts on each Vn. The uniqueness of h ; i implies that

Aut.V / leaves h ; i invariant: (14)

So each Vn affords an orthogonal representation of Aut.V /.
One checks (e.g. using induction and (6)) that for n � 0,

.u.0/nv/.q/ D
nX

iD0
.�1/i

 
n

i

!
u.0/n�iv.q/u.0/i .u; v 2 V; q 2 Z/:
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Therefore,

�
eu.0/v

�
.q/ D

1X

nD0

1

nŠ
.u.0/nv/.q/

D
1X

nD0

nX

iD0

.�1/i
i Š.n � i/Šu.0/

n�iv.q/u.0/i

D eu.0/v.q/e�u.0/;

showing that (13) holds with g D eu.0/. If we further assume that u 2 V1 then we
obtain using (6) that

u.0/! D �Œ!.�1/; u.0/�1 D �
1X

iD0
.�1/i .!.i/u/.�1 � i/1

D �..L.�1/u/.�1/ � .L.0/u/.�2//1 D 0:

It follows that feu.0/ j u 2 V1g is a set of automorphisms of V . Let

G D heu.0/ j u 2 V1i

be the group they generate. It is clear from the classical relation between Lie groups
and Lie algebras that G is the adjoint form of the complex Lie group associated with
V1, and there is a containment

G E Aut.V /:

(Normality holds because if g 2 Aut.V / and u 2 V1 then g.u/ 2 V1 and
geu.0/g�1 D egu.0/g�1 D eg.u/.0/.)

One consequence of this is the following. Because G acts transitively on the set
of Cartan subalgebras of V1, it follows ipso facto that Aut.V / also acts transitively
on the set of Cartan subalgebras of V1 (or of V ). Thus the choice of a Cartan
subalgebra in V is unique up to automorphisms of V , in parallel with the usual
theory of semisimple Lie algebras.

3.2 Projective Action of Aut.V / on V -Modules

There is a natural action of Aut.V / on the set M of (isomorphism classes of)
irreducible V -modules f.Mj ; Y j / j 1 	 j 	 rg [6]. Briefly, the argument is as
follows. For g 2 Aut.V / and an index j , one checks that the pair .Mj ; Y

j
g / defined

by Y jg .v; z/ WD Y j .gv; z/ .v 2 V / is itself an irreducible V -module. The action of
Aut.V / on M is then defined by g W .Mj ; Y j / 7! .Mj ; Y

j
g /.
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Because M is finite and G is connected, the action of G is necessarily trivial.
Hence, if we fix the index j , then for g 2 Aut.V / there is an isomorphism of
V -modules ˛g W .Mj ; Y j / 7! .Mj ; Y

j
g /, i.e.

˛gY
j .u; z/ D Y jg .u; z/˛g D Y j .gu; z/˛g .u 2 V /: (15)

Because Mj is irreducible, ˛g is uniquely determined up to an overall nonzero
scalar (Schur’s Lemma).

When j D 1, so that Mj D V; ˛g coincides with g itself, the scalar being
implicitly determined by the additional condition g.!/ D !. Generally, we find
from (15) that

˛ghY
j .u; z/˛�1

gh D ˛g˛hY j .u; z/˛�1
h ˛

�1
g .g; h 2 Aut.V //;

so that by Schur’s Lemma once more there are scalars cj .g; h/ satisfying

˛gh D cj .g; h/˛g˛h:

The map cj W G � G ! C
�; .g; h/ 7! cj .g; h/; is a 2-cocycle on G. It defines a

projective action g 7! ˛g of G on Mj that satisfies (15).
While the projective action of G on M1 D V reduces to the linear action

previously considered, the 2-cocycles cj are generally nontrivial, i.e. they are not
2-coboundaries. A well-known example is the VOA V WD Lsl2 .1; 0/, i.e. the level
1 WZW model of type sl2, which is isomorphic to the lattice theory VA1 defined
by the A1 root lattice. In this case we have V1 D sl2, and the linear group is the
adjoint form of sl2, i.e., G D SO3.R/. There are just two irreducible V -modules,
corresponding to the two cosets of A1 in its dual lattice A�

1 WD .1=
p
2/A1, and their

direct sum is the Fock space for a generalized VOA VA�
1

. The automorphism group
of this generalized VOA is SU2.C/, and in particular the projective action of G on
M2 lifts to a linear action of its proper twofold (universal) covering group.

3.3 Linear Reducibility of the V1-Action

We discuss the following result.

The Lie algebra V1 is reductive, and its action on each

simple V -module .Mj ; Y j / is completely reducible. (16)

One says in this situation that V1 is linearly reductive in its action on Mj . This
follows from results in [8] and [5]. We will need some of the details later, so we
sketch the proof.
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Each irreducible V -module Mj has a direct sum decomposition into
finite-dimensional Lj .0/-eigenspaces

Mj D
1M

nD0
M

j

nC�j ; (17)

where �j is a constant called the conformal weight ofMj . EachMj

nC�j is a module
for the Lie algebra V1, acting by the zero mode uj .0/ .u 2 V1/, and (16) amounts
to the assertion that each of these actions is completely reducible. The simple
summands gi .1 	 i 	 s/ of V1 act completely reducibly by Weyl’s theorem, so the
main issue is to show that the abelian radical A of V1 [cf. (11)] acts semisimply.

The first step uses a formula of Zhu [33]. The case we need may be stated as
follows (cf. [8]):

Suppose that u; v 2 V1. Then for 1 	 j 	 r; (18)

TrMj uj .0/vj .0/q
L.0/�c=24 D ZMj .uŒ�1�v; �/ � hu; viE2.�/ZMj .�/:

The notation, which is standard, is as follows [16, 33]: for w 2 V ,
ZMj .w; �/ WD TrMj oj .w/qL.0/�c=24 is the graded trace of the zero mode oj .w/ for
the action of w on Mj ; uŒ�1� is the �1st square bracket mode for u, and E2.�/ D
�1=12C 2P1

nD1
P

d jn dqn is the usual weight 2 Eisenstein series.
Next we show that if hu; vi 6D 0 then for some index j we have

ZMj .uŒ�1�v; �/ 6D hu; viE2.�/ZMj .�/:

Indeed, if this does not hold, we can obtain a contradiction using Zhu’s modular-
invariance theorem [33] and the exceptional transformation law for E2.�/ (cf. [8],
Sect. 4 for details). From (18) we can conclude that if hu; vi 6D 0 then there is an
index j such that

TrMj uj .0/vj .0/ 6D 0: (19)

Now suppose that u 2 V1 lies in the nil radical of V1. Then u.0/ annihilates every
simple V1-module, and in particular the lhs of (19) necessarily vanishes for each
j . Therefore hu; vi D 0 .v 2 V1/, whence u D 0. This shows that V1 is indeed
reductive.

It is known that a VOA is finitely generated (f.g.) if it is C2-cofinite [2, 23],
or if it is rational [11]. So certainly a regular VOA is f.g. We need this mainly
because Griess and Dong proved [5] that the automorphism group of a f.g. VOA
is a (complex) algebraic group. It follows that the subgroup A E G generated by
the exponentials eu.0/ .u 2 A D rad(V1/) is an abelian algebraic subgroup, and that
A itself is the direct sum of two Lie subalgebras corresponding to the unipotent
and semisimple parts of A. By the same argument as above, the Lie subalgebra
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corresponding to the unipotent part necessarily vanishes, so that A is a complex
torus and A consists of semisimple operators. In particular, (16) holds.

Equation (16) was first stated in [8], although the proof there is incomplete. It
would be interesting to find a proof that does not depend on the theory of algebraic
groups.

4 The Tower L0 � L � E

In this section we introduce and study the structure of a certain naturally-defined
rational subspace E contained in Cartan subalgebra of V1.

4.1 Definition of E

Fix a Cartan subalgebra H � V1 of rank l , say. We have seen in Sect. 3.3 that all of
the operators uj .0/ .u 2 H; 1 	 j 	 r/ are semisimple. We set

E D fu 2 H j u.0/ has eigenvalues in Qg;
L D fu 2 H j uj .0/ has eigenvalues in Z; 1 	 j 	 rg; (20)

L0 D fu 2 H j u.0/ has eigenvalues in Zg:

(Recall that the operators u.0/ in the definition of E act on the VOA V .) E is a
Q-vector space in H and L � L0 � E are additive subgroups.

Let H � G be the group generated by exponentials e2�iu.0/ .u 2 H/. Thus H is a
complex torus isomorphic to .C�/l . There is a short exact sequence

0! L0=L! H=L
'! H! 1

where ' arises from the morphism u 7! e2�iu.0/ .u 2 H/. H=L is the covering
group of H=L0 that acts linearly on each irreducible module Mj as described in
Sect. 3.2, and H=L0 Š H.

Because V is f.g. there is an integer n0 such that V D h˚n0nD0Vni. Then
e2�iu.0/ .u 2 H/ is the identity if, and only if, its restriction to˚n0nD0Vn is the identity.
It follows that the eigenvalues of u.0/ for u 2 E have bounded denominator,
whence

E=L0 D Torsion.H=L0/ Š .Q=Z/l : (21)

In particular, E contains a C-basis of H .
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4.2 Deformation of V -Modules

We will need to use Li’s theory of deformations of (twisted) V -modules [29]. In
Proposition 5.4 (loc. cit.) Li showed how to deform V -modules using a certain
operator �.z/. We describe the special case that we need here. See [26] for further
details of the calculations below, and [13] for further development of the theory.

Fix u 2 L0 (cf. 20), and set

�u.z/ WD zu.0/ exp

8
<

:�
X

k�1

u.k/

k
.�z/�k

9
=

; :

For an irreducible V -module .Mj 0

; Y j
0

/, set

Y
j 0

�u.z/
.v; z/ WD Y j 0

.�u.z/v; z/ .v 2 V /:

Because u.0/ has eigenvalues in Z then e2�iu.0/ is the identity automorphism of V .
In this case, Li’s result says that there is an isomorphism of V -modules

.Mj 0

; Y
j 0

�u.z/
/ Š .Mj ; Y j / (22)

for some j . (Technically, Li’s results deal with weak V -modules. In the case that
we are dealing with, when V is regular, the results apply to ordinary irreducible V -

modules, as stated.) Thus there is a linear isomorphism  WMj 0 Š!Mj satisfying

 �1Y j .v; z/ D Y j 0

.�u.z/v; z/ .v 2 V /: (23)

In (23) we choose j 0 D 1 (so .Mj 0

; Y j
0

/ D .V; Y /), v D !, and apply both
sides to 1. We obtain after some calculation that

 �1Lj .0/ .1/ D 1=2hu; ui1: (24)

The L.0/-grading on Mj is described in (17). If  .1/ D P
n an with an 2 Mj

nC�j
then 1=2hu; uiPn an D

P
n.nC �j /an. This shows that  .1/ 2 Mj

n0C�j for some
integer n0, and moreover

1=2hu; ui D n0 C �j : (25)

We use (25) in conjunction with another theorem [1,16] that says that (for regular
V ) the conformal weight �j of the irreducible V -module Mj lies in Q. Then it is
immediate from (25) that hu; ui 2 Q: The only condition on u here is that u 2 L0.
Because E=L0 is a torsion group (21) we obtain
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hu; ui 2 Q .u 2 E/: (26)

Arguing along similar lines, we can also prove the following: (i) if u 2 E, all
eigenvalues of the operators uj .0/ lie in Q .1 	 j 	 r/; (ii) if u 2 L0 then the
denominators of the eigenvalues of uj .0/ divide the l.c.m. M of the denominators
of the conformal weights �j . In other words, L0=L is a torsion abelian group of
exponent dividing M . (It is also f.g., as we shall see. So L0=L is actually a finite
abelian group.)

4.3 Weak Jacobi Forms

The paper [26] develops an extension of Zhu’s theory of partition functions [33] to
the context of weak Jacobi forms. It is also closely related to the deformation theory
of V -modules as discussed in the previous subsection. We discuss background
sufficient for our purposes. For the general theory of Jacobi forms, cf. [18].

We continue with a strongly regular VOA V . Let h 2 L [cf. (20)]. For j in the
range 1 	 j 	 r , define

Jj;h.�; z/ WD TrMj qLj .0/�c=24�hj .0/;

where c is the central charge of V . (The definition makes sense because we have
seen that hj .0/ is a semisimple operator.) Notation is as follows: q WD e2�i� ; � WD
e2�iz; � 2 H (complex upper half-plane), z 2 C. The main result [26] is that
Jj;h.�; z/ is holomorphic in H � C and satisfies the following functional equations

for all � D
�
a b

c d

�
2 SL2.Z/; .u; v/ 2 Z

2; 1 	 i 	 r :

.i/ there are scalars aij .�/ depending only on � such that

Ji;h

�
��;

z

c� C d
�
D e�icz2hh;hi=.c�Cd/

rX

jD1
aij .�/Jj;h.�; z/; (27)

.i i/ there is a permutation j 7! j 0 of f1; : : : ; rg such that

Jj;h.�; zC u� C v/ D e��ihh;hi.u2�C2uz/Jj 0;h.�; z/: (28)

This says that the r-tuple .J1;h; : : : ; Jr;h/ is a vector-valued weak Jacobi form of
weight 0 and index 1=2hh; hi. (By (26) we have hh; hi 2 Q.) Part (i), which we do
not need here, is proved by making use of a theorem of Miyamoto [31], which itself
extends some of the ideas in Zhu’s modular-invariance theorem [33]. The proof of
(ii) involves applications of the ideas of Sect. 4.2, and in particular the permutation
in (28) is the same as the one that arises from (22).
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4.4 .E; h ; i/ as a Quadratic Space

We will prove the following result.

.E; h ; i/ is a positive-definite rational quadratic space

of rank l , and L0 � E is an additive subgroup of rank l . (29)

We have seen that both E=L0 and L0=L are torsion groups. Hence E=L is also
a torsion group, so in proving that hh; hi > 0 for 0 6D h 2 E, it suffices to prove
this under the additional assumption that h 2 L. We assume this from now on, and
set m D hh; hi. Note that the results of Sect. 4.3 apply in this situation.

We will show that m 	 0 leads to a contradiction. From (28) we know that
Jj;h.�; z C u� C v/ D Jj 0;h.�; z/ for 1 	 j 	 r: In terms of the Fourier series
Jj;h WDPn;t c.n; t/q

n�t ; Jj 0;h WDPn;t c
0.n; t/qn�t , this reads

q�j�c=24 X

n�0;t
c.n; t/qnCmu2=2Ctu�tCmu D q�j 0 �c=24 X

n�0;t
c0.n; t/qn�t

for all u 2 Z, j 0 depending on u. Suppose first that m D 0. If for some t 6D 0 there
is c.n; t/ 6D 0 we let u ! �1 and obtain a contradiction. Therefore, c.n; t/ D
0 whenever t 6D 0. This says precisely that hj .0/ is the zero operator on Mj .
Furthermore, this argument holds for any index j . But now (19) is contradicted. If
m < 0 the argument is even easier since we just have to let u ! �1 to get a
contradiction.

This proves that h ; i is positive-definite on E, while rationality has already been
established (26). Now we prove that E has rank l , using an argument familiar from
the theory of root systems (cf. [24, Sect. 8.5]). We have already seen [cf. (21] and
the line following) that E contains a basis of H , say f˛1; : : : ; ˛lg. We assert that
f˛1; : : : ; ˛lg is a Q-basis of E.

Let u 2 E. There are scalars c1; : : : ; cl 2 C such that u DPj cj ˛j . We have for
1 	 i 	 l that

hu; ˛i i D
X

j

cj h˛i ; ˛j i: (30)

Each hu; ˛i i and h˛i ; ˛j i are rational, and the nondegeneracy of h ; i implies that
.h˛i ; ˛j i/ is nonsingular. Therefore, cj D hu; ˛j i= det.h˛i ; ˛j i/ 2 Q, as required.

We have proved that E is a Q-form for H , i.e. H D C˝Q E. That L0 � E is a
lattice of the same rank follows from (21). All parts of (29) are now established.

Now observe that the analysis that leads to the proof of (29) carries over verbatim
to any nondegenerate subspace U � H , say of rank l 0. For such a subspace we set
E 0 WD U \ E;L0 WD U \ L;L0

0 WD U \ L0. The result can then be stated as
follows:
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.U; h ; i/ is a positive-definite rational quadratic space

of rank l 0, and L0
0 � E is an additive subgroup of rank l 0. (31)

Another application of weak Jacobi forms allows us to usefully strengthen the
statement (19) in some cases:

if 0 6D h 2 E then hj .0/ 6D 0 for each 1 	 j 	 r: (32)

Suppose false. Because E=L is a torsion group there is 0 6D h 2 L with
hj .0/ D 0 for some index j . Let m D hh; hi, so that m 6D 0. Then Jj;h.�; z/ is
a pure q-expansion, i.e. no nonzero powers of � occur in the Fourier expansion.
Indeed, it is just the partition function for Mj , so it also does not vanish. By (28),
e��ihh;hi.u2�C2uz/Jj 0;h.�; z/ D q�mu2=2��mu

P
n�0;t c0.n; t/qn��j �t is also a pure

q-expansion. (As usual, j 0 depends on u.) But because m > 0 we can let u!1 to
see that in fact this power series is not a pure q-expansion. This contradiction proves
(32).

5 Commutants and Weights

We now turn to the proof of Theorem 1. The main step is to establish (38) below.

5.1 Commutants

We retain previous notation. In particular, from now on we fix a Cartan subalgebra
H � V1 and a nondegenerate subspace U � H of rank l 0. Let MU D
.hU i; Y; 1; !U / be the Heisenberg subVOA of rank l 0 generated by U [cf. (2)]. We
set Y.!U ; z/ WDPn2ZLU .n/z�n�2.

Consider

PU WD f.A; Y; 1; !U / j A � V g: (33)

In words, PU is the set of subVOAs A � V which have conformal vector !U .
PU is partially ordered by inclusion. It is nonempty since it contains MU , for
example.

One easily checks that L.1/!U D 0. Therefore, the theory of commutants
([20, 27], Sect. 3.11) shows that each A 2 PU has a compatible grading with (1).
That is

An WD fv 2 A j LU .0/v D ng D A \ Vn:
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Moreover, PU has a unique maximal element. Indeed, the commutant of A 2
P.U /, defined by

CV .A/ D kerV LU .�1/;

is independent of A, and the maximal element of PU is the double commutant
CV .CV .A//.

5.2 U -Weights

Thanks to (16) we can use the language of weights to describe the action of u.0/ .u 2
U/. For ˇ 2 U set

V.ˇ/ WD fw 2 V j u.0/w D hˇ; uiw .u 2 U/g:

ˇ is a U -weight, or simply weight (of V ) if V.ˇ/ 6D 0, V.ˇ/ is the ˇ-weight space,
and a nonzero w 2 V.ˇ/ is a weight vector of weight ˇ.

Using the action of Y.u; z/ .u 2 U/ on weight spaces, one shows that the set of
U -weights

P WD fˇ 2 U j V.ˇ/ 6D 0g (34)

is a subgroup of U . See [8], Sect. 4 for further details. By the complete reducibility
of u.0/ .u 2 U/ and the Stone von-Neumann theorem [22, Sect. 1.7] applied to the
Heisenberg subVOA MU , there is a weight space decomposition

V D MU ˝˝ D
M

ˇ2P
MU ˝˝.ˇ/ (35)

where ˝ WD fv 2 V j u.n/v D 0 .u 2 U; n � 1/g; ˝.ˇ/ WD ˝ \ V.ˇ/, and
V.ˇ/ DMU ˝˝.ˇ/.
˝.0/ is the commutant CV .MU /, and MU ˝ ˝.0/ the zero weight space. By

arguments in [7] one sees that ˝.0/ is simple VOA (the simplicity of MU is
well-known), moreover each V.ˇ/ is an irreducible MU ˝˝.0/-module. So there
is a tensor decomposition

V.ˇ/ DMU.ˇ/˝˝.ˇ/

where MU.ˇ/;˝.ˇ/ are irreducible modules for MU ;˝.0/ respectively. Further-
more, V.ˇ/ Š V.ˇ0/ if, and only if, ˇ D ˇ0. In particular, there is an identification

MU.ˇ/ DMU ˝ eˇ (36)

where eˇ 2 ˝.ˇ/.
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5.3 Lattice Subalgebras of V

We keep previous notation. In particular, P is the group of U -weights (34) and
E 0 D U \E;L0 D L \ U;L0

0 D L0 \ U are as in Sect. 4.4 [cf. (31)].
Since .E 0; h ; i/ is a rational space (31) and contains a basis of U , it follows that

E 0 D fu 2 U j hu; E 0i � Qg: Because E 0=L0
0 is a torsion group, we then see that

.L0
0/
0 � E 0: (Here, and below, we set F 0 WD fu 2 U j hu; F i � Zg for F � E 0.)

Now u 2 P 0 , hP; ui � Z, all eigenvalues of u.0/ are integral, u 2 L0
0. We

conclude that

P D .L0
0/
0 � E 0 (37)

We will establish

there is a positive-definite even lattice  � P such that jP W j
is finite and the maximal element W of PU satisfies W Š V. (38)

The argument utilizes ideas in [9]. Recall the isomorphism (22), which holds for all
u 2 L0. Set

� WD fu 2 L0
0 j .V; Y�u.z// Š .V; Y /g: (39)

This is a subgroup ofL0
0 of finite index. Although not necessary at this stage, we can

show immediately that � is an even lattice. Indeed, if u 2 � then the proof of (25)
shows that we have �j D 0 in that display, whence hu; ui D n0 is a (nonnegative)
integer. Now the assertion about � follows from (29).

There is another approach that gives more information. The isomorphism of
V -modules defined for u 2 � by (39) implies the following assertion concerning
the weight spaces in (35):

˝.ˇ/ Š ˝.ˇ C u/ .u 2 �; ˇ 2 P /: (40)

In particular, taking ˇ D 0 shows that ˝.u/ 6D 0 .u 2 � /, whence � � P . Using
(37) we deduce

� � P; P 0 � � 0;

so � is necessarily a positive-definite integral lattice of rank l 0, and jP W � j DW d
is finite. Equation (40) leads to a refinement of (35), namely a decomposition of V
into simple MU ˝˝.0/-modules

V D
dM

iD1

M

ˇ2�
MU .ˇ C �i /˝˝.�i /;

where f�i j 1 	 i 	 dg are coset representatives for P=� .
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Let

 WD fˇ 2 P j ˝.ˇ/ D ˝.0/g; (41)

W WD
M

ˇ2
MU .ˇ/: (42)

Then � �  and W D CV .˝.0// D CV .CV .MU //. In particular,  is an additive
subgroup of P of finite index and W is a subVOA of V . Indeed, it is the maximal
element of the poset PU discussed in Sect. 5.1.

The L.0/-weight of eˇ 2 W.ˇ 2 / [cf. (36)] coincides with its LU .0/-weight
(cf. Sect. 5.1). Using the associativity formula, we have

L.0/eˇ D L0.0/:eˇ D 1=2
l 0X

tD1
.ht .�1/ht /.1/eˇ

D 1=2
l 0X

tD1

8
<

:
X

k�0
ht .�1 � k/ht .1C k/C ht .�k/ht .k/

9
=

; e
ˇ

D 1=2
l 0X

tD1
ht .0/ht .0/e

ˇ D 1=2
l 0X

tD1
hˇ; ht i2eˇ D 1=2hˇ; ˇi;

showing that 1=2hˇ; ˇi 2 Z .ˇ 2 /.
This shows that  is an even lattice of rank l 0. The isomorphism W Š V

then follows from the uniqueness of simple current extensions [8, Sect. 5]. This
completes the proof of (38) and Theorem 1 is established.

6 Applications of Theorem 1

We present several applications of Theorem 1 to the structure of strongly regular
VOAs.

6.1 The Tripartite SubVOA of V

The tripartite subVOA arises when U in Theorem 1 is the radical rad.V1/. (38)
is applicable here because A is indeed nondegenerate (cf. Sect. 4). We keep the
notation from previous sections.

Observe that in this case, the lattice  contains no roots, i.e. there is no ˇ 2 
satisfying hˇ; ˇi D 2. For if ˇ 2  is a root then ˇ is contained in an sl2-subalgebra
of V1 and hence cannot lie in A. The commutant ˝.0/ of W contains the Levi
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factor S � V1, hence also the subVOA G that it generates [cf. (12)]. We can then
consider the commutant of G in˝.0/, call itZ. In this way we obtain the canonical
conformal subVOA of V that we call the tripartite subalgebra

T D W ˝G ˝Z:

By construction, T is a conformal subalgebra of V , and the conformal gradings
on W;G;Z are compatible with the L.0/-grading on V . Because .W ˝ G/1 D
W1 ˚G1 D V1 then Z1 D 0. This completes the proof of Theorem 3.

Conjecture. In the notation of (5), Z is a strongly regular VOA.

This is just a special case of a more general conjecture, namely that the
commutant of a rational subVOA (in a strongly regular VOA, say) is itself rational.
If the Conjecture is true then the tripartite subalgebra T is strongly regular, and V
reduces to a finite sum of irreducible T -modules. In this way, the classification of
strongly regular VOAs reduces to the classification of strongly regular VOAsZ with
Z1 D 0 and the extension problem as discussed in the introduction.

6.2 The Invariants Qc and l

We give some further applications of Theorem 1 exemplifying the philosophy of
the previous paragraph. Let V be a strongly regular VOA of central charge c and
H � V a Cartan subalgebra of rank l . Recall [8] that the effective central charge of
V is the quantity

QcV D Qc WD c � 24�min:

Here, �min is the minimum of the conformal weights �j .1 	 j 	 r/ of the
irreducible V -modules. It is known (loc. cit.) that Qc � l and Qc > 0 if dimV > 1.
Because of these facts, Qc is often a more useful invariant than c itself. Note that Qc is
defined for any rational VOA.

We now give the proof of Theorem 7. The basic idea, to combine Zhu’s
modular-invariance [33] together with growth conditions on the Fourier coefficients
of components of vector-valued modular forms [25], was first used in [8]. The
availability of Theorem 1 brings added clarity.

It follows easily from the definitions that if W � V is a conformal subalgebra
then QcV 	 QcW . Moreover Qc is multiplicative over tensor products [21, Sect. 4.6]. So
if (b) of Theorem 7 holds then QcV 	 QcVCQcL.cp;q ;0/. Since rk D l then QcV D c D l
because �min D 0 for lattice theories [4]. Moreover, for the discrete series Virasoro
VOA we have [8, Sect. 4, Example (e)]

Qc D 1 � 6

pq
..p; q/ D 1; 2 	 p < q/; (43)
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in particular we always have QcL.cp;q ;0/ < 1. Therefore QcV < l C 1. This establishes
the implication (b)) (a) in Theorem 7.

Next, taking U D H in Theorem 1, we find that the maximal element of PH

is a lattice subVOA W Š V with rk D dimH D l . Let C D CV .W / be the
commutant of W . Then W ˝ C is a conformal subVOA of V . Now suppose that
part (b) of the Theorem does not hold. Thus the Virasoro subalgebra of C , call it
VirC , has a central charge c0, say, that is not in the discrete series. Then the known
submodule structure of Verma modules over the Virasoro algebra [19] shows that
the partition function ZV irC .�/ of VirC satisfies

ZV irC .�/ WD TrV irC q
L.0/�c0=24 D q�c0=24

1Y

nD2
.1 � qn/�1:

([8], Proposition 6.1 summarizes exactly what we need here.) Therefore,

ZW˝V irC .�/ WD ZW .�/ZV irC .�/

D �.�/

�.�/l
q�c0=24

Q1
nD2.1 � qn/

D �.�/

�.�/lC1
q.1�c0/=24.1 � q/:

(�.�/ and �.�/ are the theta-function of  and the eta-function respectively.)
It follows that for any � > 0, the coefficients of the q-expansion of
�.�/lC1��ZW˝V irC .�/ have exponential growth. Therefore, the same statement
holds true ipso facto if we replace W ˝ V irC with V . We state this as

the coefficients of �.�/lC1��ZV .�/ have exponential growth (� > 0). (44)

On the other hand, consider the column vector

F.�/ WD .ZM1.�/; : : : ; ZMr .�//t

whose components are the partition functions of the irreducible V -modulesMj . By
Zhu’s modular-invariance theorem [33], F.�/ is a vector-valued modular form of
weight 0 on the full modular group SL2.Z/ associated with some representation of
SL2.Z/. (See [30], Sect. 8 for a discussion of vector-valued modular forms in the
context of VOAs.) Moreover, each ZMj .�/ is holomorphic in the complex upper
half-plane, so that their only poles are at the cusps. The very definition of Qc, and the
reason for its importance, is that the maximum order of a pole of any of the partition
functions ZMj .�/ is Qc=24. It follows from this that

�.�/QcF .�/
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is a holomorphic vector-valued modular form on SL2.Z/. As such, the Fourier
coefficients of the component functions have polynomial growth [25]. In particular,
this applies to �.�/QcZV .�/, which is one of the components.

Comparing the last statement with (44), it follows that Qc > l C 1 � � for all
� > 0, i.e. Qc � l C 1. So we have shown that if part (b) of the Theorem does not
hold, neither does part (a). Theorem 7 is thus proved.

The special case l D 0 of the Theorem characterizes minimal models. We state
it as

Theorem 8. Let V be a strongly regular VOA. Then Qc < 1 if, and only if, the
Virasoro subalgebra of V is in the discrete series.

Corollary 9. Let V be a strongly regular VOA with dimV > 1. Then Qc � 2=5,
and equality holds if, and only if, V Š L.c2;5; 0/, the (Yang–Lee) discrete series
Virasoro VOA with c D �22=5.

Because dimV > 1 then Qc > 0, and if Qc < 1 then V is a minimal model
by Theorem 8. Inspection of (43) shows that the least positive value is 2=5,
corresponding to the Yang–Lee model [3]. This theory has only two irreducible
modules, of conformal weight 0 and �1=5. Therefore the second irreducible cannot
be contained in V , so that V Š L.c2;5; 0/, as asserted in Corollary 9. Informally,
the Corollary says that the Yang–Lee theory is the smallest rational CFT.

We give a final numerical example. Suppose that V is a strongly regular simple
VOA such that 1 < Qc < 7=5. Since l 	 c 	 Qc we must have l D 0 or 1. In the latter
case, by Theorem 1 we see that V contains as a conformal subVOA a tensor product
V ˝ Vir where Vir is a Virasoro algebra in the discrete series with 0 < QcVir < 2=5.
This is impossible by Corollary 9. So in fact l D 0, i.e. V has Lie rank 0, meaning
that V1 D 0. The smallest value of Qc in the range .1; 7=5/ that I know of is a
parafermion theory with Qc D 8=7 [17, 32].
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A Characterization of the Vertex Operator
Algebra V

A4

L2

Chongying Dong and Cuipo Jiang

Abstract The rational vertex operator algebra V A4
L2

is characterized in terms of
weights of primary vectors. This reduces the classification of rational vertex operator
algebras with c D 1 to the characterizations of V S4

L2
and V A5

L2
:

2000MSC:17B69

1 Introduction

Characterizations of vertex operator algebras V G
L2

for root lattice L2 of sl.2;C/ and
finite groups G D A4; S4; A5 are the remaining part of classification of rational
vertex operator algebras with c D 1 after the work of [9–11, 13, 27]. Using the
structure and representation theory of V A4

L2
obtained in [12] and [19], we give a

characterization of rational vertex operator algebra V A4
L2

in this paper.
The main assumption for the characterization of vertex operator algebra V C

Z� with
.�; �/ � 6 being a positive even integer in [10,11] is that the dimension of the weight
4 subspace is at least three dimensional. Knowing the explicit structure of V A4

L2
we

have a different assumption in characterizing V A4
L2
: That is, there is a primary vector

of weight 9 and the weight of any primary vector which is not a multiple of 1 is
greater than or equal to 9: Due to a recent result in [21] on the modularity of the
q-characters of the irreducible modules for rational and C2-cofinite vertex operator
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algebras, we can use the classification of q-characters of rational vertex operator
algebras with c D 1 from [25] to conclude that the q-character of such a vertex
operator algebra and that of V A4

L2
are the same.

Two basic facts are used in the characterization. The first one is that both V A4
L2

and an abstract vertex operator algebra V satisfying the required conditions have
the same decomposition as modules for the Virasoro algebra. This allows us to use
the fusion rules for the irreducible modules for the Virasoro vertex operator algebra
L.1; 0/ obtained in [9] and [26] to understand the structure of both vertex operator
algebras in terms of generators. The other one is that V A4

L2
is generated by a weight 9

primary vector x1 and has a spanning set in terms Virasoro algebra, the component
operators of x1 and the component operators of y1 which is a primary vector of
weight 16: From the q-characters we know that V also has primary vectors x2; y2

of weights 9; 16; respectively. The main task is to show how the vertex operator
algebra V has a similar spanning set with x1; y1 being replaced by x2; y2: The
fusion rules for the vertex operator algebra L.1; 0/ play a crucial role here.

We certainly expect that the ideas and methods presented in this paper can also
be used to characterize vertex operator algebras V G

L2
for G D S4; A5 although V G

L2

have not been understood well. It seems that knowing the generators of V G
L2

and
a spanning set is good enough for the purpose of characterization. Of course, the
rationality is also needed.

The paper is organized as follows. We review the modular invariance results
from [28] and [21] in Sect. 2. These results will be used to conclude that V A4

L2
and

an abstract vertex operator algebra V satisfying certain conditions have the same
graded dimensions. We also review the fusion rules for the vertex operator algebra
L.1; 0/ from [26] and [9] in this section. In Sect. 3 we discuss the structure of V A4

L2
including the generators and spanning set following [12]. Section 4 is devoted to
the characterization of V A4

L2
: That is, if a rational, C2-cofinite and self-dual vertex

operator algebra V of central charge 1 satisfies (a) V is a completely reducible
module for the Virasoro algebra, (b) V has a primary vector of weight 9 and the
weight of any primary vector whose weight is greater than 0 is greater than or equal
to 9; then V is isomorphic to V A4

L2
: The main idea is to use generators and relations

to construct a vertex operator algebra isomorphism from V
A4
L2

to V:

2 Preliminaries

Let V D .V; Y; 1; !/ be a vertex operator algebra [5,23]. We review various notions
of V -modules (cf. [17,23,28]) and the definition of rational vertex operator algebras.
We also discuss some consequences following [10, 18, 21, 25].

Definition 2.1. A weak V module is a vector space M equipped with a linear map

YM W V ! End.M/ŒŒz; z�1��
v 7! YM.v; z/ DPn2Z vnz�n�1; vn 2 End.M/
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satisfying the following:

(1) vnw D 0 for n >> 0 where v 2 V and w 2M
(2) YM.1; z/ D IdM
(3) The Jacobi identity holds:

z�1
0 ı

�
z1 � z2

z0

�
YM.u; z1/YM .v; z2/ � z�1

0 ı

�
z2 � z1
�z0

�
YM.v; z2/YM .u; z1/

D z�1
2 ı

�
z1 � z0

z2

�
YM.Y.u; z0/v; z2/: (1)

Definition 2.2. An admissible V module is a weak V -module which carries a
ZC-grading M D L

n2ZC
M.n/, such that if v 2 Vr then vmM.n/ � M.n C

r �m � 1/:
Definition 2.3. An ordinary V module is a weak V -module which carries a
C-grading M DL�2CM�, such that:

(1) dim.M�/ <1;
(2) M�Cn D 0 for fixed � and n << 0;
(3) L.0/w D �w D wt.w/w for w 2 M� where L.0/ is the component operator of

YM.!; z/ DPn2ZL.n/z�n�2:

Remark 2.4. It is easy to see that an ordinary V -module is an admissible one. If W
is an ordinary V -module, we simply call W a V -module.

We call a vertex operator algebra rational if the admissible module category is
semisimple. We have the following result from [18] (also see [28]).

Theorem 2.5. If V is a rational vertex operator algebra, then V has finitely many
irreducible admissible modules up to isomorphism and every irreducible admissible
V -module is ordinary.

Suppose that V is a rational vertex operator algebra and let M1; : : : ;Mk be the
irreducible modules such that

Mi D ˚n�0M i
�iCn

where �i 2 Q [18], Mi
�i
¤ 0 and each Mi

�iCn is finite dimensional. Let �min be the
minimum of �i ’s. The effective central charge Qc is defined as c � 24�min: For each
Mi we define the q-character of Mi by

Zi.q/ D q�c=24X

n�0
.dimMi

�iCn/q
nC�i :

A vertex operator algebra V is called C2-cofinite if dimV=C2.V / is finite
dimensional where C2.V / is a subspace of V spanned by u�2v for u; v 2 V: If
V is C2-cofinite, then Zi.q/ converges to a holomorphic function on 0 < jqj < 1
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[28]. Let q D e2�i� and we sometimes also write Zi.q/ by Zi.�/ to indicate that
Zi.q/ is a holomorphic function on the upper half plane.

For a V -module W , let W 0 denote the graded dual of W . Then W 0 is also a
V -module [24]. A vertex operator algebra V is called self dual if V 0 [24] is
isomorphic to itself. The following result comes from [21]

Theorem 2.6. Let V be a rational, C2-cofinite, self dual simple vertex operator
algebra.

(1) EachZi.�/ is a modular function on a congruence subgroup of SL2.Z/ of level
n which is the smallest positive integer such that n.�i � c=24/ is an integer for
all i:

(2)
P

i jZi.�/j2 is SL2.Z/-invariant.

We now recall the construction of vertex operator algebras M.1/C; V C
L and

related results from [1–4, 14–16, 20, 23].
Let L D Z˛ be a positive definite lattice with .˛; ˛/ D 2k for some positive

integer k: Set h D C˝Z L and extend .� ; �/ to h by C-linearity. Let Oh D CŒt; t�1�˝
h˚ CK be the corresponding affine Lie algebra so that

Œ˛.m/; ˛.n/� D 2kmımCn;0K and ŒK; Oh� D 0

for any m; n 2 Z, where ˛.m/ D ˛ ˝ tm: Note that Oh�0 D CŒt �˝ h˚ CK is an
abelian subalgebra. Let Ce� (for any � 2 h) be one-dimensional Oh�0-module such
that ˛.m/ � e� D .�; ˛/ım;0e

� and K � e� D e� for m � 0. Consider the induced
module

M.1; �/ D U.Oh/˝
U. Oh�0/

Ce� Š S.t�1CŒt�1�/ .linearly/:

Set

M.1/ DM.1; 0/:

Then there exists a linear map Y W M.1/ ! EndM.1/ŒŒz; z�1�� such that
.M.1/; Y; 1; !/ is a simple vertex operator algebra and M.1; �/ is an irreducible
M.1/-module for any � 2 h (see [23]). The vacuum vector and the Virasoro element
are given by 1 D e0 and ! D 1

4k
˛.�1/21; respectively.

We use CŒL� to denote the group algebra of L with a basis eˇ for ˇ 2 L: Then

VL DM.1/˝ CŒL�

is the lattice vertex operator algebra associated toL [5,23]. LetLı be the dual lattice
of L W

Lı D f� 2 h j .˛; �/ 2 Z g D 1

2k
L
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and Lı D [kiD�kC1.LC�i / be the coset decomposition with �i D i
2k
˛: Set CŒLC

�i � DL
ˇ2LCeˇC�i : Then each CŒLC �i � is an L-submodule in an obvious way.

Set VLC�i D M.1/˝ CŒLC �i �. Then VL is a rational vertex operator algebra and
VLC�i for i D �k C 1; � � � ; k are the irreducible modules for VL (see [5, 6, 23]).

Let � W VLC�i ! VL��i be a linear isomorphism for i 2 f�k C 1; � � � ; kg such
that

�.˛.�n1/˛.�n2/ � � �˛.�ns/˝ eˇC�i /D .�1/s˛.�n1/˛.�n2/ � � �˛.�ns/˝ e�ˇ��i

where nj > 0 and ˇ 2 L: In particular, � is an automorphism of VL which induces
an automorphism of M.1/: For any � -stable subspace U of VLı , let U˙ be the
˙1-eigenspace of U for � . Then V C

L is a simple vertex operator algebra.
The � -twisted Heisenberg algebra hŒ�1� and its irreducible module M.1/.�/

from [23] are also needed. Define a character 	s of L=2L such that 	s.˛/ D .�1/s
for s D 0; 1 and let T	s D C be the corresponding irreducible L=2L: Then

V
T	s
L D M.1/.�/ ˝ T	s is an irreducible � -twisted VL-module (see [7, 23]). We

also define actions of � on M.1/.�/ and V
T	s
L by

�.˛.�n1/˛.�n2/ � � �˛.�np// D .�1/p˛.�n1/˛.�n2/ � � �˛.�np/
�.˛.�n1/˛.�n2/ � � �˛.�np/˝ t / D .�1/p˛.�n1/˛.�n2/ � � �˛.�np/˝ t

for nj 2 1
2
CZC and t 2 T	s . We denote the˙1-eigenspaces of M.1/.�/ and V

T	s
L

under � by M.1/.�/˙ and .V
T	s
L /˙ respectively.

The classification of irreducible modules for arbitrary M.1/C and V C
L are

obtained in [14–16] and [3]. The rationality of V C
L is established in [2] for rank

one lattice and [20] in general. One can find the following results from these papers.

Theorem 2.7. (1) Any irreducible module for the vertex operator algebra M.1/C
is isomorphic to one of the following modules:

M.1/C;M.1/�;M.1; �/ ŠM.1;��/ .0 ¤ � 2 h/;M.1/.�/C;M.1/.�/�:

(2) Any irreducible V C
L -module is isomorphic to one of the following modules:

VL̇ ; V�iCL.i 6D k/; V�̇kCL; .V
T	s
L /˙:

(3) V C
L is rational.

The following characterization of V C
L is given in [10] and [11].

Theorem 2.8. Let V be a simple, rational and C2-cofinite self-dual vertex operator
algebra such that V is generated by highest vectors of the Virasoro algebra, Qc D
c D 1 and

dimV2 D 1; dimV4 � 3:
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Then V is isomorphic to V C
Z˛ for some rank one positive definite even lattice L D

Z˛.

We will need the following result from [25].

Theorem 2.9. Let V be a rational CFT type vertex operator algebra with c D
Qc D 1 such that each Zi.�/ is a modular function on a congruence subgroup andP
i jZi.�/j2 is SL2.Z/-invariant, then the q-character of V is equal to the character

of one of the following vertex operator algebras VL; V
C
L and V G

Z˛ , where L is any
positive definite even lattice of rank 1, Z˛ is the root lattice of type A1 and G is a
finite subgroup of SO.3/ isomorphic to A4; S4 or A5.

By Theorems 2.6 we know that the assumptions in Theorem 2.9 hold. So the
q-character of a rational vertex operator algebra with c D 1 is known.

Recall from [24] the fusion rules of vertex operator algebras. Let V be a vertex
operator algebra, and W i .i D 1; 2; 3) be ordinary V -modules. We denote by

IV

�
W 3

W 1 W 2

�
the vector space of all intertwining operators of type

�
W 3

W 1 W 2

�
. It

is well known that fusion rules have the following symmetry [24].

Proposition 2.10. Let W i .i D 1; 2; 3/ be V -modules. Then

dim IV

�
W 3

W 1 W 2

�
D dim IV

�
W 3

W 2 W 1

�
; dim IV

�
W 3

W 1 W 2

�
D dim IV

�
.W 2/0

W 1 .W 3/0
�
:

Here are some results on the fusion rules for the Virasoro vertex operator algebra.
Recall that L.c; h/ is the irreducible highest weight module for the Virasoro algebra
with central charge c and highest weight h for c; h 2 C: It is well known that
L.c; 0/ is a vertex operator algebra [22]. The following two results can be found in
[26] and [9].

Theorem 2.11. (1) We have

dim IL.1;0/

�
L.1; k2/

L.1;m2/L.1; n2/

�
D 1; k 2 ZC; jn �mj 	 k 	 nCm;

dim IL.1;0/

�
L.1; k2/

L.1;m2/L.1; n2/

�
D 0; k 2 ZC; k < jn �mj or k > nCm;

where n;m 2 ZC.
(2) For n 2 ZC such that n ¤ p2, for all p 2 ZC, we have

dim IL.1;0/

�
L.1; n/

L.1;m2/L.1; n/

�
D 1;

dim IL.1;0/

�
L.1; k/

L.1;m2/L.1; n/

�
D 0;

for k 2 ZC such that k ¤ n.
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3 The Vertex Operator Subalgebra V
A4

L2

Let L2 D Z˛ be the rank one positive-definite lattice such that .˛; ˛/ D 2: Then
.VL2/1 is a Lie algebra isomorphic to sl2.C/ and has an orthonormal basis:

x1 D 1p
2
˛.�1/1; x2 D 1p

2
.e˛ C e�˛/; x3 D ip

2
.e˛ � e�˛/:

There are three involutions �i 2 Aut .VL2/, i D 1; 2; 3 be such that

�1.x
1; x2; x3/ D .x1; x2; x3/

2

4
1

�1
�1

3

5 ;

�2.x
1; x2; x3/ D .x1; x2; x3/

2

4
�1

1

�1

3

5 ;

�3.x
1; x2; x3/ D .x1; x2; x3/

2

4
�1
�1

1

3

5 :

There is also an order 3 automorphism � 2 Aut .VL2/ defined by

�.x1; x2; x3/ D .x1; x2; x3/
2

4
0 1 0

0 0 �1
�1 0 0

3

5 :

It is easy to see that � and �i ; i D 1; 2; 3 generate a finite subgroup of Aut .VL2/
isomorphic to the alternating group A4. We simply denote this subgroup by A4. It is
easy to check that the subgroupK generated by �i , i D 1; 2; 3 is a normal subgroup
of A4 of order 4. Let

J D h.�1/41 � 2h.�3/h.�1/1C 3

2
h.�2/21; E D eˇ C e�ˇ

where h D 1p
2
˛, ˇ D 2˛. The following lemma comes from [8] and [12].

Lemma 3.1. (1) The vertex operator algebra V K
L2

and V C
Zˇ are the same and V C

Zˇ

is generated by J and E. Moreover, .V K
L2
/4 is four dimensional with a basis

consisting of L.�2/21; L.�4/1; J; E:
(2) The vertex operator algebra V A4

L2
and .V C

Zˇ/
h�i are the same.

(3) The action of � on J and E are given by

�.J / D �1
2
J C 9

2
E; �.E/ D �1

6
J � 1

2
E:
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Clearly, � preserves the subspace of .V C
Zˇ/4 spanned by J and E: It is easy to

check that

�.X1/ D �1C
p
3i

2
X1; �.X2/ D �1 �

p
3i

2
X2 (2)

where

X1 D J �p27iE; X2 D J Cp27iE: (3)

This implies that .V C
Zˇ/

h�i
4 D L.1; 0/4 where L.1; 0/ is the vertex operator

subalgebra of VZˇ generated by !: It follows from [8] that

.V C
Zˇ/

h�i D L.1; 0/
MX

n�3
anL.1; n

2/

as a module for L.1; 0/, where an is the multiplicity of L.1; n2/ in .V C
Zˇ/

h�i: Using
(2) shows that for any n 2 Z,

X1
nX

2 2 .V C
Zˇ/

h�i D V A4
L2
:

We sometimes also call a highest weight vector for the Virasoro algebra a primary
vector. From [8] we know that V C

Zˇ contains two linearly independent primary
vectors J and E of weight 4 and one linearly independent primary vector of weight
9: Note from [12] that

J3JD�72L.�4/1C336L.�2/21�60J; E3ED� 8
3
L.�4/1C 112

9
L.�2/21C 20

9
J

(cf. [11]). By Theorem 2.11 and Lemma 3.1, we have for n 2 Z

X1
nX

2 2 L.1; 0/˚ L.1; 9/˚ L.1; 16/:

The following lemma comes from [12].

Lemma 3.2. The vector

u.9/ D �
p
2

4
.J�2E �E�2J /

D � 1p
2
.15h.�4/h.�1/C 10h.�3/h.�2/C 10h.�2/h.�1/3/˝ .eˇ C e�ˇ/

C.6h.�5/C 10h.�3/h.�1/2 C 15

2
h.�2/2h.�1/C h.�1/5/˝ .eˇ � e�ˇ/

is a non-zero primary vector of V C
Zˇ of weight 9:
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By Lemma 3.1, we have J�9J C 27E�9E 2 .V C
Zˇ/

h�i: Then

J�9J C 27E�9E D x0 CX.16/ C 27.e2ˇ C e�2ˇ/; (4)

where x0 2 L.1; 0/, and X.16/ is a non-zero primary element of weight 16 in
M.1/C. Denote

u.16/ D X.16/ C 27.e2ˇ C e�2ˇ/: (5)

Then u.16/ 2 .V C
Zˇ/

h�i is a non-zero primary vector of weight 16. The following
results come from [12].

Theorem 3.3. The following hold: (1) V A4
L2

is generated by u.9/.

(2) V A4
L2

is linearly spanned by

L.�ms/ � � �L.�m1/u
.9/
n u.9/; L.�ms/ � � �L.�m1/w

p

�kp � � �w1�k1w;

where w;w1; � � � ;wp 2 fu.9/; u.16/g, kp � � � � � k1 � 2, n 2 Z,ms � � � � � m1 � 1,
s; p � 0.

Theorem 3.4. V A4
L2

is C2-cofinite and rational.

4 Characterization of V
A4

L2

In this section, we will give a characterization of the rational vertex operator algebra
V
A4
L2

. For this purpose we assume the following:

(A) V is a simple, C2-cofinite rational CFT type and self-dual vertex operator
algebra of central charge 1;

(B) V is a sum of irreducible modules for the Virasoro algebra;
(C) There is a primary vector of weight 9 and the weight of any primary vector

whose weight is greater than 0 is greater than or equal to 9.

Obviously, V A4
L2

satisfies (A)–(C). By Theorems 2.6 and 2.9, if a vertex operator

algebra V satisfies (A)–(C), then V and V A4
L2

have the same trace function. So there
is only one linearly independent primary vector of weight 9 in V .

For short, let V 1 D V A4
L2

and V 2 be an arbitrary vertex operator algebra satisfying
(A)–(C). We will prove that V 1 and V 2 are isomorphic vertex operator algebras.
Since V 1 and V 2 have the same q-character, it follows from the assumption that
V 1 and V 2 are isomorphic modules for the Virasoro algebra. Let xi be a non-zero
weight 9 primary vectors in V i , i D 1; 2 such that

.x1; x1/ D .x2; x2/: (6)



64 C. Dong and C. Jiang

By [12], there is only one linearly independent primary elements of weight 16 in V i ,
i D 1; 2. Now let yi 2 V i

16 be linearly independent primary vectors in V i , i D 1; 2
such that

.y1; y1/ D .y2; y2/: i D 1; 2: (7)

The following lemma comes from [12].

Lemma 4.1. There is no non-zero primary vector of weight 25 in both V 1 and V 2.

Let V .i;9/ be theL.1; 0/-submodule of V i generated by xi and V .i;16/ theL.1; 0/-
submodule of V i generated by yi , i D 1; 2. We may identify the Virasoro vertex
operator subalgebra L.1; 0/ both in V 1 and V 2. Let

� W L.1; 0/˚ V .1;9/ ˚ V .1;16/ ! L.1; 0/˚ V .2;9/ ˚ V .2;16/

be an L.1; 0/-module isomorphism such that

�! D !; �x1 D x2; �y1 D y2:

Then

.u; v/ D .�u; �v/;

for u; v 2 L.1; 0/˚ V .1;9/ ˚ V .1;16/.
Let

I0.u; z/v D P0 ı Y.u; z/v

for u; v 2 V .1;9/ be the intertwining operator of type

�
L.1; 0/

V .1;9/ V .1;9/

�
;

and I0.�u; z/�v D Q0 ı Y.�u; z/�v for u; v 2 V 1 be the intertwining operator of
type

�
L.1; 0/

V .2;9/ V .2;9/

�
;

where P0;Q0 are the projections of V 1 and V 2 to L.1; 0/ respectively. By (6), we
have

I0.u; z/v D I0.�u; z/�v; (8)
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for u; v 2 V .1;9/.
Similarly, let

I1.u; z/v D P1 ı Y.u; z/v

for u; v 2 V .1;16/ be the intertwining operator of type

�
L.1; 0/

V .1;16/ V .1;16/

�
;

and I1.�u; z/�v D Q1 ı Y.�u; z/�v for u; v 2 V 1 be the intertwining operator of
type

�
L.1; 0/

V .2;16/ V .2;16/

�
;

where P1;Q1 are the projections of V 1 and V 2 to L.1; 0/ respectively. By (7), we
have

I1.u; z/v D I1.�u; z/�v; (9)

for u; v 2 V .1;16/.
Let

I2.u; z/v D P2 ı Y.u; z/v
for u 2 V .1;16/; v 2 V .1;9/ be the intertwining operator of type

�
V .1;9/

V .1;16/ V .1;9/

�
;

and I2.�u; z/�v D Q2 ı Y.�u; z/�v for u 2 V .1;16/; v 2 V .1;9/ be the intertwining
operator of type

�
V .2;9/

V .2;16/ V .2;9/

�
;

where P2;Q2 are the projections of V 1 and V 2 to V .1;9/ and V .2;9/ respectively.
Then we have the following lemma.

Lemma 4.2. Replacing y2 by �y2 if necessary, we have

�.I2.u; z/v/ D I2.�u; z/�v;

for u 2 V .16/; v 2 V .1;9/.
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Proof. Since V .1;9/ Š V .2;9/ Š L.1; 9/, V .1;16/ Š V .2;16/ Š L.1; 16/, we may
identify V .1;9/ with V .2;9/ and V .1;16/ with V .2;16/ through �. So both I1.u; z/v and
I1.�u; z/�v for u 2 V .1;16/; v 2 V .9/ are intertwining operators of type

�
L.1; 9/

L.1; 16/L.1; 9/

�
:

Therefore

�.I2.u; z/v/ D �I2.�u; z/�v; (10)

for some � 2 C. By Theorem 2.11 and (6), we have

.y131y
1/�1x1 D .y1; y1/x1; .y231y2/�1x2 D .y2; y2/x2:

So

�.y131y
1/�1x1/ D .y231y2/�1x2:

On the other hand, we have

.yi31y
i /�1xi D

1X

kD0

�
31

k

�
.�1/k.yi31�kyi�1Ck C yi30�kyik/xi ; i D 1; 2:

Then by Theorem 2.11, Lemma 4.1 and (10),

.y231y
2/�1x2 D �2..y231y2/�1x2/:

So we have �2 D 1. If � D 1, then the lemma holds. If � D �1, replacing y2 by
�y2, then we get the lemma. ut

Let

I3.u; z/v D P3 ı Y.u; z/v

for u; v 2 V .1;9/ be the intertwining operator of type

�
V .1;16/

V .1;9/ V .1;9/

�
;

and I3.�u; z/�v D Q3 ıY.�u; z/�v for u; v 2 V .1;9/ be the intertwining operator of
type

�
V .2;16/

V .2;9/ V .2;9/

�
;
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where P3;Q3 are the projections of V 1 and V 2 to V .1;16/ and V .2;16/ respectively.
Then we have the following lemma.

Lemma 4.3.

�.I3.u; z/v/ D I3.�u; z/�v;

for u; v 2 V .1;9/.

Proof. Note that both I3.u; z/v and I3.�u; z/�v for u; v 2 V .1;9/ are intertwining
operators of type

�
L.1; 16/

L.1; 9/L.1; 9/

�
:

Therefore

�.I3.u; z/v/ D �I3.�u; z/�v; (11)

for some � 2 C. By Theorem 2.11 and (8), we have

x11x
1 D uC a1y1; x21x2 D uC a2y2 (12)

where u 2 L.1; 0/ and a1; a2 2 C. By (11),

a1 D �a2: (13)

Then by Theorem 2.11, we have

x10x
1 D vC a1L.�1/y1; x20x2 D vC a2L.�1/y2; (14)

for some v 2 L.1; 0/. Notice that

.x11x
1; y1/ D a1.y1; y1/; .x21x2; y2/ D a2.y2; y2/:

By (10)–(14),

.x11x
1; y1/ D �.x21x2; y2/: (15)

On the other hand, we have

.x11x
1; y1/ D �.x1; x115y1/ D �.x1; y115x1/;

.x21x
2; y2/ D �.x2; x215y2/ D �.x2; y215x2/:
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By Lemma 4.3,

�.y115x
1/ D y215x2:

So

.x11x
1; y1/ D .x21x2; y2/:

This together with (15) deduces that � D 1. ut
Let

I4.u; z/v D P4 ı Y.u; z/v

for u; v 2 V .1;16/ be the intertwining operator of type

�
V .1;16/

V .1;16/ V .1;16/

�
;

and I4.�u; z/�v D Q4 ı Y.�u; z/�v for u; v 2 V .1;16/ be the intertwining operator
of type

�
V .2;16/

V .2;16/ V .2;16/

�
;

where P4;Q4 are the projections of V 1 and V 2 to V .1;16/ and V .2;16/ respectively.
Then we have the following lemma.

Lemma 4.4.

�.I4.u; z/v/ D I4.�u; z/�v;

for u; v 2 V .1;16/.

Proof. It suffices to prove that

�.y115y
1/ D y215y2:

By Lemma 4.3 and (12), we have

�.x11x
1/ D �.uC a1y1/ D uC a1y2; (16)

where u and a1 are as in (12). Notice that

.xi1x
i /15y

i D
1X

kD0

�
1

k

�
.�1/k.xi1�kxi15Ck C xi16�kxik/yi ; i D 1; 2:
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Then by Lemma 4.3, Lemma 4.2, and the skew-symmetry property of vertex
operator algebras, we have

�..x11x
1/15y

1/ D .x21x2/15y2:

This together with (16) deduces that �.y115y
1/ D y215y2. The lemma follows. ut

Summarizing Lemmas 4.2–4.4, we have the following proposition:

Proposition 4.5. (1) For any u1; v1 2 L.1; 0/˚ V .1;9/ ˚ V .1;16/, we have

�.u1nv1/ D .�u1/n.�v1/;

for n 2 N.
(2) For any u1; v1 2 L.1; 0/˚ V .1;9/ ˚ V .1;16/, we have

.u1; v1/ D .�.u1/; �.v1//:

Recall from Theorem 3.3 that V 1 is generated by x1 and V 1 is linearly
spanned by

L.�ms/ � � �L.�m1/x
1
nx

1; L.�ms/ � � �L.�m1/u
p

�kp � � � u1�k1v;

where x1; y1 are the same as above and v; u1; � � � ; up 2 fx1; y1g, kp � � � � � k1 � 2,
n 2 Z, ms � � � � � m1 � 1, s; p � 0. Our goal next is to show that V 2 is generated
by �.x1/ D x2 and has a similar spanning set.

Lemma 4.6. For any k; l � 1; si ; ti ; pi � 0, mi1; � � � ; misi ; nj1; � � � ; njtj ; rj1; � � � ;
rjpj 2 ZC, nj 2 Z, uj1; � � � ; ujpj ; uj 2 fx1; y1g, i D 1; 2; � � � ; k; j D 1; 2; � � � ; l , if

u0 D
kP
iD1

aiL.�mi1/ � � �L.�misi /x
2
ni
x2

C
lP

jD1
bjL.�nj1/ � � �L.�njtj /.�uj1/�rj1 � � � .�ujpj /�rjpj .�uj / D 0

for some ai ; bj 2 C then

u D
kP
iD1

aiL.�mi1/ � � �L.�misi /x
1
ni
x1

C
lP

jD1
bjL.�nj1/ � � �L.�njtj /uj1�rj1uj 2�rj2 � � � ujpj�rjpj uj D 0:

Proof. Without loss, we may assume that u is a linear combination of homogeneous
elements with same weight. Suppose that u ¤ 0: Since V 1 is self-dual and generated
by x1; there is x1r1x

1
r2
� � � x1rqx1 2 V 1 such that
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.u; x1r1x
1
r2
� � � x1rqx1/ ¤ 0: (17)

Claim. For any v; u1; � � � ; up 2 fx1; y1g, kp � � � � � k1 � 2, q1; q2; � � � ; qt ; n 2 Z,
ms � � � � � m1 � 1, s; p; t � 0,

.L.�ms/ � � �L.�m1/x
1
nx

1; x1q1x
1
q2
� � � x1qt x1/

D .L.�ms/ � � �L.�m1/x
2
nx

2; x2q1x
2
q2
� � � x2qt x2/; (18)

.L.�ms/ � � �L.�m1/u
p

�kp � � � u1�k1v; x1q1x1q2 � � � x1qt x1/
D .L.�ms/ � � �L.�m1/�.u

p/�kp � � ��.u1/�k1�.v/; x2q1x2q2 � � � x2qt x2/: (19)

We only show (19) as the proof for (18) is similar and simpler. We may assume
that

wt.L.�ms/ � � �L.�m1/u
p

�kp � � � u1�k1v/ D wt.x1q1x
1
q2
� � � x1qt x1/:

We prove (19) by induction on wt.L.�ms/ � � �L.�m1/u
p

�kp � � � u1�k1v/. By Proposi-

tion 4.5, (18) holds if wt.L.�ms/ � � �L.�m1/u
p

�kp � � � u1�k1v/ < 36. If s � 1, then

.L.�ms/ � � �L.�m1/u
p

�kp � � � u1�k1v; x1q1x1q2 � � � x1qt x1/
D .L.�ms�1/ � � �L.�m1/u

p

�kp � � � u1�k1v; L.ms/x
1
q1
x1q2 � � � x1qt x1/;

.L.�ms/ � � �L.�m1/�.u
p/�kp � � ��.u1/�k1�.v/; x2q1x2q2 � � � x2qt x2/

D .L.�ms�1/ � � �L.�m1/�.u
p/�kp � � ��.u1/�k1�.v/; L.ms/x

2
q1
x2q2 � � � x2qt x2/:

So by inductive assumption, (19) holds.
If s D 0, then

.up�kp � � � u1�k1v; x1q1x1q2 � � � x1qt x1/
D .up�1

�kp�1
� � � u1�k1v; up2wt.up/Ckp�2x

1
q1
x1q2 � � � x1qt x1/;

.�.up/�kp � � ��.u1/�k1�.v/; x2q1 � � � x2qt x2/
D .�.up�1/�kp�1 � � ��.u1/�k1�.v/; �.up/2wt.up/Ckp�2x2q1 � � � x2qt x2/:

Since kp � 2, by inductive assumption, (19) holds if up D x1: If up D y1 by (12)
up2wt.up/Ckp�2 is a sum of operators of forms aL.n1/ � � �L.n�/; bx1i x1j of the same
weight where n1 	 � � � 	 n� and all nt are nonzero. By induction assumption we
know that
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.up�1
�kp�1

� � � u1�k1v; x1i x1j x1q1x1q2 � � � x1qt x1/
D .�.up�1/�kp�1 � � ��.u1/�k1�.v/; x2i x2j x2q1 � � � x2qt x2/:

Also by Proposition 4.5, relation (16), the fact that xi are highest weight vectors
for the Virasoro algebra with the same weight, and the invariant properties of the
bilinear forms,

.up�1
�kp�1

� � � u1�k1v; L.n1/ � � �L.n�/x1q1x1q2 � � � x1qt x1/
D .�.up�1/�kp�1 � � ��.u1/�k1�.v/; L.n1/ � � �L.n�/x2q1 � � � x2qt x2/:

So the claim is proved.
By the claim and (17), we have

.u0; x1r1x
2
r2
� � � x2rqx2/ ¤ 0;

which contradicts the assumption that u0 D 0. ut
Let U 2 be the subalgebra of V 2 generated by x2 and y2. By Theorem 3.3 and

Lemma 4.6, for every n � 0, dimV 1
n 	 dimU 2

n . Since V 1 and V 2 have the same
graded dimensions, it follows that dimV 1

n D dimV 2
n for n � 0. So dimV 2

n D
dimU 2

n for n � 0 and V 2 D U 2. So we have the following corollary which is
essentially the V 2 version of Theorem 3.3.

Corollary 4.7. V 2 is linearly spanned by

L.�ms/ � � �L.�m1/x
2
nx

2; L.�ms/ � � �L.�m1/v
p

�kp � � � v1�k1v;

where x2; y2 are the same as above and v; v1; � � � ; vp 2 fx2; y2g, kp � � � � � k1 � 2,
n 2 Z, ms � � � � � m1 � 1, s; p � 0.

Define  .x2/ D x1;  .y2/ D y1, and extend  to  W V 2 ! V 1 by

 .L.�ms/ � � �L.�m1/x
2
nx

2/ D L.�ms/ � � �L.�m1/x
1
nx

1

and

L.�m1/v
p

�kp � � � v1�k1v D L.�m1/ .v
p/�kp � � � .v1/�k1 .v/;

where v; v1; � � � ; vp 2 fx2; y2g, kp � � � � � k1 � 2, n 2 Z, ms � � � � � m1 � 1,
s; p � 0. Then by the discussion above,  is a linear isomorphism from V 2 to V 1.
It follows that � can be extended to a linear isomorphism from V 1 to V 2 such that

�.L.�ms/ � � �L.�m1/x
1
nx

1/ D L.�ms/ � � �L.�m1/x
2
nx

2
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and

L.�m1/u
p

�kp � � � u1�k1u D L.�m1/�.p
p/�kp � � ��.u1/�k1�.u/;

where u; u1; � � � ; up 2 fx1; y1g, kp � � � � � k1 � 2, n 2 Z, ms � � � � � m1 � 1,
s; p � 0.

We are now in a position to state our main result of this paper.

Theorem 4.8. If a vertex operator algebra V satisfies the conditions (A)–(C), then
V is isomorphic to V A4

L2
.

Proof. Recall that V 1 Š V
A4
L2

satisfying (A)–(C). So it suffices to show that � is a
vertex operator algebra automorphism from V 1 to V 2. Let u D x1m1x

1
m2
� � � x1msx1,

v D x1q1x1q2 � � � x1qt x1 2 V 1, wheremi ; qj 2 Z; i D 1; 2; � � � ; ps; j D 1; 2; � � � ; t . We
need to show that for any n 2 Z, �.u1nu2/ D �.u1/n�.u2/. Note from Theorem 2.11
that for m1;m2 2 ZC, x1m1x

1 2 L.1; 0/ ˚ V .1;16/, y1m2x
1 2 V .1;9/. Since for any

p; q 2 Z,

xiqx
i
p D xipxiq C

1X

jD0

�
q

j

�
.xij x

i /p C q � j; i D 1; 2;

yiqx
i
p D yipxiq C

1X

jD0

�
q

j

�
.yij x

i /p C q � j;

Then by Lemma 4.5, it is easy to see that for any fixed n 2 Z,

u1nu2 D
kP
iD1

aiL.�mi1/ � � �L.�misi /x
1
ni
x1

C
lP

iD1
biL.�ni1/ � � �L.�niti /ui1�ri1ui2�ri2 � � � uipi�ripi u

i ;

for some k; l � 1; si ; ti ; pi � 0, mi1; � � � ; misi ; nj1; � � � ; njtj ; rj1; � � � ; rjpj 2 ZC,
ni 2 Z, ui1; � � � ; uipi ; ui 2 fx1; y1g, i D 1; 2; � � � ; k; j D 1; 2; � � � ; l , then

�.u1/n�.u2/ D
kP
iD1

aiL.�mi1/ � � �L.�misi /x
2
ni
x2

C
lP

iD1
biL.�ni1/ � � �L.�niti /.�ui1/�ri1 � � � .�uipi /�ripi .�ui /:

The proof is complete. ut
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Extended Griess Algebras and Matsuo-Norton
Trace Formulae

Hiroshi Yamauchi

Abstract We introduce the Z2-extended Griess algebra of a vertex operator
superalgebra with an involution and derive the Matsuo-Norton trace formulae for
the extended Griess algebra based on conformal design structure. We illustrate
an application of our formulae by reformulating the one-to-one correspondence
between 2A-elements of the Baby-monster simple group and N D 1 c D 7=10

Virasoro subalgebras inside the Baby-monster vertex operator superalgebra.

1 Introduction

A mysterious connection is known to exist between vertex operator algebras (VOAs)
and finite simple groups. One can explain that the j -invariant is made of the
characters of the Monster simple group as a consequence of the modular invariance
of characters of vertex operator algebras [5, 31]. Matsuo [22] introduced the notion
of class S n of a VOA and derived the formulae, which we will call the Matsuo-
Norton trace formulae, describing trace of adjoint actions of the Griess algebra
of a vertex operator algebra. A VOA V is called of class S n if the invariant
subalgebra of its automorphism group coincides with the subalgebra generated by
the conformal vector up to degree n subspace. In the derivation of the formulae
the non-associativity of products of vertex operator algebras are efficiently used,
resulting that the Matsuo-Norton trace formulae strongly encode structures of higher
subspaces of vertex operator algebras. Suitably applying the formula it outputs some
information of structures related to automorphisms. Here we exhibit an application
of the formulae.
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Let V be a VOA of OZ-type with central charge c and e a simple c D 1=2

Virasoro vector of V . Then V is a direct sum of irreducible hei-modules and the
zero-mode o.e/ D e.1/ acts semisimply on V . It is shown in [23] that �e D
exp

�
16�
p�1 o.e/

	
defines an element in Aut.V /. The possible o.e/-eigenvalues

on the Griess algebra are 2, 0, 1/2 and 1/16. (The eigenspace with eigenvalue
2 is one-dimensional spanned by e.) We denote by d� the dimension of o.e/-
eigensubspace of V2 with eigenvalue �. Then

trV2 o.e/i D 2i C 0i d0 C
�
1

2

�i
d1=2 C

�
1

16

�i
d1=16; (1)

where we have set 00 D 1. If V is of class S 4 then Matsuo-Norton trace formulae
give the values trV2 o.e/i for i D 0; 1; 2 and if c.5c C 22/ ¤ 0 we can solve (1) and
obtain

d0 D .5c2 � 100c C 1188/ dimV2 � 545c2 � 2006c
c.5c C 22/ ;

d1=2 D �2..3c � 110/ dimV2 C 50c2 C 192c/
c.5c C 22/ ;

d1=16 D 64..2c � 22/ dimV2 C 10c2 C 37c/
c.5c C 22/ :

(2)

Therefore, we get an explicit form of the trace trV2 �e D 1C d0 C d1=2 � d1=16 as

trV2 �e D
.5c2 � 234c C 2816/ dimV2 � 1280c2 � 4736c

c.5c C 22/ : (3)

If we apply this formula to the moonshine VOA V \ [5] then we obtain tr
V
\
2

o.e/ D
4; 372 and hence �e belongs to the 2A-conjugacy class of the Monster (cf. [1]). This
example seems to suggest an existence of a link between the structure theory of
VOAs and the character theory of finite groups acting on VOAs.

Partially motivated by Matsuo’s work, Höhn introduced the notion of conformal
designs based on vertex operator algebras in [11], which would be a counterpart
of block designs and spherical designs in the theories of codes and lattices,
respectively. The defining condition of conformal designs is already used in [22]
to derive the trace formulae. Höhn reformulated it and obtained results analogous to
known ones in block and spherical designs in [11]. Contrary to the notion of class
S n, the definition of conformal design does not require the action of automorphism
groups of VOAs. Instead, it is formulated by the Virasoro algebra. (The Virasoro
algebra is the key symmetry in the two-dimensional conformal field theory.) The
conformal design is a purely structure theoretical concept in the VOA theory and
seems to measure a structural symmetry of VOAs, as one can deduce the Matsuo-
Norton trace formulae via conformal designs.
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The purpose of this paper is to extend Matsuo’s work on trace formulae to
vertex operator superalgebras (SVOAs) with an involution based on conformal
design structure. If the even part of the invariant subalgebra of an SVOA by an
involution is of OZ-type then one can equip its weight 2 subspace with the structure
of a commutative (but usually non-associative) algebra called the Griess algebra.
We extend this commutative algebra to a larger one by adding the odd part and
call it the Z2-extended Griess algebra. Our Z2-extended Griess algebra is still
commutative but not super-commutative. It is known that Virasoro vectors are
nothing but idempotents in a Griess algebra. In the odd part of the extended Griess
algebra one can consider square roots of idempotents. We will discuss the structure
of the subalgebra generated by a square root of an idempotent in the extended Griess
algebra when the top weight of the odd part is small.

Then we derive trace formulae of adjoint actions on the odd part of the extended
Griess algebra based on conformal design structure. Our formulae are a variation
of Matsuo-Norton trace formulae. As a main result of this paper we apply the
trace formulae to the Baby-monster SVOA VB\ [8] and reformulate the one-to-one
correspondence between the 2A-elements of the Baby-monster simple group and
certain c D 7=10 Virasoro vectors of VB\ obtained in [12] in the supersymmetric
setting by considering square roots of idempotents in the extended Griess algebra
of VB\. This result is in a sense suggestive. It is shown in [22] that if a VOA of
OZ-type is of class S 8 and its Griess algebra has dimension d > 1 then the central
charge is 24 and d D 196; 884, those of the moonshine VOA. For SVOAs it is
shown in [11] that if the odd top level of an SVOA with top weight 3/2 forms a
conformal 6-design then its central charge is either 16 or 47/2. Using our formulae
we will sharpen this result. We will show if the odd top level of an SVOA with top
weight 3/2 forms a conformal 6-design and in addition if it has a proper subalgebra
isomorphic to the N D 1 c D 7=10 Virasoro SVOA then its central charge is 47/2
and the odd top level is of dimension 4,371, those of the Baby-monster SVOA. The
author naively expects that the Baby-monster SVOA is the unique example subject
to this condition.

The organization of this paper is as follows. In Sect. 2 we review the notion
of invariant bilinear forms on SVOAs. Our definition of invariant bilinear forms
on SVOAs is natural in the sense that if M is a module over an SVOA V then its
restricted dualM � is also a V -module. We also consider Z2-conjugation of invariant
bilinear forms on SVOAs. In Sect. 3 we introduce the Z2-extended Griess algebra
for SVOAs with involutions and consider square roots of idempotents. When the odd
top weight is less than 3 we describe possible structures of subalgebra generated by
square roots under mild assumptions. In Sect. 4 we derive trace formulae of adjoint
actions on the odd part of the extended Griess algebra based on conformal design
structure. A relation between conformal design structure and generalized Casimir
vectors is already discussed in [11,22] but we clarify it in our situation to derive the
formulae. In Sect. 5 we apply our formulae to the VOAs with the odd top weight
1 and to the Baby-monster SVOA. In the latter case we reformulate the one-to-one
correspondence in [12] in the supersymmetric setting. Final section is the appendix
and we list data of the trace formulae.
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1.1 Notation and Terminology

In this paper we will work over the complex number field C. We use N to denote
the set of non-negative integers. A VOA V is called of OZ-type if it has the L.0/-
grading V D ˚n�0Vn such that V0 D C and V1 D 0. (“OZ” stands for “Zero-One”,
introduced by Griess.) We denote the Z2-grading of an SVOA V by V D V 0˚ V 1.
We allow the case V 1 D 0. For a 2 V i , we define its parity by jaj WD i 2 Z=2Z.
We assume that every SVOA in this paper has the L.0/-grading V 0 D ˚n�0Vn and
V 1 D ˚n�0VnCk=2 with non-negative k 2 Z. It is always assumed that V0 D C . If
a 2 Vn then we write wt.a/ D n. If V 1 ¤ 0 then the minimum h such that V 1

h ¤ 0
is called the top weight and the homogeneous subspace V 1

h is called the top level
of V 1. A sub VOA W of V is called full if the conformal vector of W is the same
as that of V . We denote the Verma module over the Virasoro algebra with central
charge c and highest weight h byM.c; h/, andL.c; h/ denotes its simple quotient. A
Virasoro vector e of V with central charge ce is called simple if it generates a simple
Virasoro sub VOA isomorphic to L.ce; 0/ in V . Let .M; YM .�; z// be a V -module
and g 2 Aut.V /. The g-conjugate M ı g of M is defined as .M; Y gM .�; z// where
Y
g
M .a; z/ WD YM.ga; z/ for a 2 V .M is called g-stable ifMıg 'M , andG-stable

forG < Aut.V / ifM is g-stable for all g 2 G. We write Y.a; z/ DPn2Z a.n/z�n�1
for a 2 V and define its zero-mode by o.a/ WD a.wt.a/�1/ if a is homogeneous and
extend linearly. The supercommutator is denoted by Œ�; ��C.

2 Invariant Bilinear Form

In this section, we denote the complex number er�
p�1 by �r for a rational number

r . In particular, �n D .�1/n for an integer n. We denote the space of V -intertwining

operators of type M1 �M2 !M3 by
�

M3

M1 M2

�
V

.

2.1 Self-Dual Module

Let V be a simple self-dual VOA and M an irreducible self-dual V -module. We
assume that M has the L.0/-decomposition M D ˚1

nD0MnCh such that each
homogeneous component is finite dimensional and the top weight h of M is either
in Z or in Z C 1=2. Let .� j �/V and .� j �/M be invariant bilinear forms on V and
M , respectively. One can define V -intertwining operators I.�; z/ and J.�; z/ of types
M �V !M andM �M ! V , respectively, as follows (cf. Theorem 5.5.1 of [6]).
For a 2 V and u; v 2M ,

I.u; z/a WD ezL.�1/YM .a;�z/u;
.J.u; z/v j a/V WD .u j I.ezL.1/.�z�2/L.0/u; z�1/a/M :

(4)
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(Note that I.u; z/a 2 M..z// and J.u; z/v 2 V..z//.) Since dim
�
M
M V

�
V
D

dim
�

V
M M

�
V
D 1, it follows from Proposition 2.8 of [18] and Proposition 5.4.7

of [6] that there exist ˛; ˇ 2 f˙1g such that

.u j v/M D ˛.v j u/M ; ezL.�1/J.v;�z/u D ˇJ.u; z/v for u; v 2M: (5)

We can sharpen Proposition 5.6.1 of [6] as follows.

Lemma 1. Let ˛; ˇ 2 f˙1g be defined as above. Then ˛ˇ D .�1/2h.

Proof. Let a 2 V and u; v 2M .

.J.u; z/v j a/V D
�
v j I.ezL.1/.�z�2/L.0/u; z�1/a

�
M

D
�

v
ˇ̌
ˇ ez�1L.�1/YM .a;�z�1/ezL.1/.�z�2/L.0/u

	

M

D
�
ez�1L.1/v

ˇ̌
ˇ YM .a;�z�1/ezL.1/.�z�2/L.0/u

	

M

D
�
YM .e

�z�1L.1/.�z2/L.0/a;�z/ez�1L.1/v
ˇ̌
ˇ ezL.1/.�z�2/L.0/u

	

M

D
�
e�zL.�1/I.ez�1L.1/v; z/e�z�1L.1/.�z2/L.0/a

ˇ̌
ˇ ezL.1/.�z�2/L.0/u

	

M

D
�
I.ez�1L.1/v; z/e�z�1L.1/.�z2/L.0/a

ˇ̌
ˇ .�z�2/L.0/u

	

M

D ˛
�
.�z�2/L.0/u

ˇ̌
ˇ I.ez�1L.1/v; z/e�z�1L.1/.�z2/L.0/a

	

M
:

By the definition of the invariance, one has

.v j I.u; z/a/M D
�
J.ezL.1/.��1z�2/L.0/u; z�1/v j a�

V
:

Then we continue

˛
�
.�z�2/L.0/u

ˇ̌
ˇ I.ez�1L.1/v; z/e�z�1L.1/.�z2/L.0/a

	

M

D ˛
�
J.ezL.1/ .��1z�2/L.0/ez�1L.1/

„ ƒ‚ …
De�zL.1/.��1z�2/L.0/

v; z�1/.�z�2/L.0/u
ˇ̌
ˇ e�z�1L.1/.�z2/L.0/a

	

V

D ˛
�
J..��1z�2/L.0/v; z�1/.�z�2/L.0/u

ˇ̌
ˇ e�z�1L.1/.�z2/L.0/a

	

V

D ˛
�
e�z�1L.�1/J..��1z�2/L.0/v; z�1/.�z�2/L.0/u

ˇ̌
ˇ .�z2/L.0/a

	

V

D ˛ˇ
�
J..�z�2/L.0/u;�z�1/.��1z�2/L.0/v

ˇ̌
ˇ .�z2/L.0/a

	

V

D ˛ˇ �wt.u/�wt.v/

„ ƒ‚ …
D.�1/wt.u/�wt.v/

�
J.z�2L.0/u;�z�1/z�2L.0/v j .�z2/L.0/a

�
V

D ˛ˇ.�1/wt.u/�wt.v/
�
.�z2/L.0/J.z�2L.0/u;�z�1/z�2L.0/v j a�

V
:
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Since .�z2/L.0/J.u;�z�1/v D .�1/wt.u/Cwt.v/J.z2L.0/u; z/z2L.0/v, we further
continue

˛ˇ�wt.u/�wt.v/..�z2/L.0/J.z�2L.0/u;�z�1/z�2L.0/v j a/V
D ˛ˇ.�1/wt.u/�wt.v/ � .�1/wt.u/Cwt.v/.J.u; z/v j a/V
D ˛ˇ.�1/2wt.u/.J.u; z/v j a/V
D ˛ˇ.�1/2h.J.u; z/v j a/V :

Therefore, we obtain the desired equation ˛ˇ D .�1/2h.

2.2 Invariant Bilinear Forms on SVOA

Let V D V 0 ˚ V 1 be an SVOA. Let M be an untwisted V -module, that is, M
has a Z2-grading M D M0 ˚M1 compatible with that of V . We also assume that
Mi (i D 0; 1) has an L.0/-decomposition Mi D ˚n�0M i

hCnCi=2 where h is the
top weight of M and each L.0/-eigensubspace is finite dimensional. Let M � be its
restricted dual. We can define a vertex operator map YM�.�; z/ on M � by means of
the adjoint action hYM�.a; z/� j vi D h� j Y �

M.a; z/vi for a 2 V , � 2 M � and
v 2M , where

Y �
M.a; z/ WD YM.ezL.1/z�2L.0/�L.0/C2L.0/2a; z�1/: (6)

Then one can show the structure .M �; Y �
M.�; z// forms a V -module (cf. [6]).

Lemma 2 (M �; YM�.�; z/). is a V -module.

Remark 1. The correction term �2L.0/
2

in the definition of the adjoint operator
Y �
M.�; z/ is necessary for M � to be a V -module. It follows from our assumption on

the L.0/-grading that �L.0/C2L.0/2a D ˙a if a 2 V is Z2-homogeneous. Therefore,
��L.0/�2L.0/2a D �L.0/C2L.0/2a and we have Y ��

M .a; z/ D YM .a; z/.
If M � is isomorphic to M as a V -module, then M is called self-dual (as a V -

module) and there exists an invariant bilinear form .� j �/M on M satisfying

.Y.a; z/u j v/M D
�

u
ˇ̌
ˇ Y.ezL.1/z�2L.0/�L.0/C2L.0/2a; z�1/v

	

M
(7)

for a 2 V and u; v 2M .
The following is an easy generalization of known results (cf. Lemma 1).

Proposition 1 ([6, 18, 25]). Let V be an SVOA of CFT-type.

(1) Any invariant bilinear form on V is symmetric.
(2) The space of invariant bilinear forms on V is linearly isomorphic to the

dual space of V0=L.1/V1, i.e., HomC.V0=L.1/V1;C/. In particular, if V 1 is
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irreducible over V 0 then V is a self-dual V -module if and only if V 0 is a
self-dual V 0-module.

2.3 Conjugation of Bilinear Forms

Let � D .�1/2L.0/ be the canonical Z2-symmetry of a superalgebra, i.e., � D 1 on
V 0 and � D �1 on V 1, then we have

Y �
M.�a; z/ D .�1/2wt.a/Y �

M.a; z/ D YM .ezL.1/z�2L.0/�L.0/�2L.0/2a; z�1/: (8)

Consider the � -conjugate M ı � D .M; Y �M .�; z// of M . If M D M0 ˚ M1 is
also a superspace then M is always � -stable, for, one can define an isomorphism Q�
between M and M ı � by Q� D 1 on M0 and Q� D �1 on M1. Therefore, if M is
self-dual thenM ,M � and .Mı �/� 'M �ı � are all isomorphic. This means there
is a freedom of choice of the adjoint operator in the case of SVOA. We can choose
the right hand side of (8) as well as (6) for the definition of Y �.�; z/. From now on
we will freely choose one of (6) or (8) for the adjoint operator.

3 Extended Griess Algebras

In this section we introduce a notion of Z2-extended Griess algebras.

3.1 Definition

We will consider SVOAs subject to the following condition.

Condition 1. Let V D V 0 ˚ V 1 be a vertex operator superalgebra of CFT-type
and g an involution of V . Denote V ˙ WD fa 2 V j ga D ˙ag. We assume the
following.

(1) V is self-dual.
(2) V has the L.0/-grading V 0 D ˚n�0Vn and V 1 D ˚n�0VnCk=2 with non-

negative k 2 Z (if V 1 is non-zero).
(3) V ˙ has the L.0/-decomposition such that V C D V0 ˚ V C

2 ˚
�˚n>2V C

n

�
and

V � D Vh ˚
�˚n>hV �

n

�
where V C

2 D V2 \ V C, Vh ¤ 0 is the top level of V �
and h 2 1

2
Z is its top weight.

Note that Vh � V 0 if h 2 Z and Vh � V 1 if h 2 Z C 1=2. We will denote
V 0;C WD V 0\V C. By assumption, V 0;C is of OZ-type and V C

2 is the Griess algebra
of V 0;C.
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If V 1 ¤ 0 and h 2 ZC 1=2 we choose

Y �.a; z/ D
(
Y.ezL.1/z�2L.0/�L.0/�2L.0/2a; z�1/ if h 
 1=2 mod 2;

Y.ezL.1/z�2L.0/�L.0/C2L.0/2a; z�1/ if h 
 3=2 mod 2;
(9)

so that if we write Y �.a; z/ D
X

n2Z
a�
.n/z

�n�1 then

a�
.n/ D �h.�1/wt.a/�h

1X

iD0

1

i Š

�
L.1/ia

�
.2wt.a/�n�2�i/ ; (10)

where the signature �h 2 f˙1g is defined by

�h D
(
.�1/h if h 2 Z;

1 if h 2 ZC 1=2: (11)

In particular, we have .ujv/ D �hu.2h�1/v for u; v 2 Vh.
Consider the subspace V C

2 ˚ Vh of V C ˚ V �.

Proposition 2. For a; b 2 V C
2 and u; v 2 Vh, define

ab WD a.1/b; au WD a.1/u; ua WD u.1/a; uv WD u.2h�3/v;
.ajb/ D a.3/b; .aju/ D 0 D .uja/; .ujv/ D �hu.2h�1/v:

(12)

Then the subspace V C
2 ˚ Vh forms a unital commutative Z2-graded algebra with

invariant bilinear form which extends the Griess algebra structure on V C
2 , where

the invariance of the bilinear form is modified as .xujy/ D �h.xjuy/ for u 2 Vh.

Proof. The proof follows by a direct verification. For example, by the skew-
symmetry one has

uv D u.2h�3/v D
X

j�0

.�1/2h�3C1CjCjuj�jvj

j Š
L.�1/j v.2h�3Cj /u

D .�1/2hCjuj�jvj
„ ƒ‚ …

D 1

0

BB@v.2h�3/uC .�1/ � L.�1/ v.2h�2/u„ ƒ‚ …
2VC

1 D 0

C .�1/
2

2
L.�1/2v.2h�1/u„ ƒ‚ …

2L.�1/2V0D0

1

CCA

D vu:

That au D ua also follows from the skew-symmetry. The bilinear form clearly
satisfies the invariant property.

We call V C
2 ˚ Vh the Z2-extended Griess algebra of V .
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3.2 Square Roots of Idempotents

Recall the following fact (cf. Lemma 5.1 of [23] and Proposition 2.6 of [15]).

Proposition 3. Let V be a VOA of CFT-type. A vector e 2 V2 is a Virasoro vector
with central charge c if and only if it satisfies e.1/e D 2e and 2e.3/e D c .

By this proposition, for a VOA V of OZ-type we see that e 2 V2 is a Virasoro
vector if and only if e=2 is an idempotent in the Griess algebra. So idempotents
are important objects to study in the Griess algebra. If we consider the Z2-extended
Griess algebra, it is possible to consider square roots of idempotents inside the odd
part.

Let V D V 0 ˚ V 1 be an SVOA and � D .�1/2L.0/ 2 Aut.V / the canonical
Z2-symmetry of V . In this subsection we assume V and g D � satisfy Condition 1
and we consider its extended Griess algebra V2 ˚ Vh. Let a be an idempotent of
V2 and suppose x 2 Vh is a square root of a, that is, xx D a hold in the extended
Griess algebra. We shall consider the subalgebra hxi generated by such a root x.
The structure of hxi depends on the top weight h.

Case h D 1=2

In this case x.n/x 2 V�n and x.n/x D 0 if n > 0 as V is of CFT-type. Since
x.0/x D .xjx/ , we have the following commutation relation:

Œx.m/; x.n/�C D
�
x.0/x

�
.mCn/ D .xjx/ .mCn/ D .xjx/ımCn;�1: (13)

Since a D xx D x.�2/x is an idempotent, we have aa D a.1/a D a. Then

.x.�2/x/.1/.x.�2/x/

D
X

i�0
.�1/i

 
�2
i

!�
x.�2�i/x.1Ci/ � .�1/�2Cjxj�jxjx.�1�i/x.i/

	
x.�2/x

D x.�2/x.1/x.�2/x C x.�1/x.0/x.�2/x C 2x.�2/x.1/x.�2/x
D 4.xjx/x.�2/x

and therefore we have 4.xjx/ D 1. The central charge of 2a is given by

8.aja/ D 8.x.�2/xjx.�2/x/ D 8.xjx.1/x.�2/x/ D 8.xj.xjx/ � x/ D 1=2:

Set  nC1=2 WD 2x.n/ and  .z/ WD Y.x; z/. Then (13) is expressed as Œ r ;  s�C D
ırCs;0 for r; s 2 ZC 1=2 and we have a free fermionic field

 .z/ D
X

r2ZC1=2
 rz

�r�1=2;  .z/ .w/ � 1

z � w
:
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Therefore, hxi is isomorphic to a simple c D 1=2 Virasoro SVOA L.1=2; 0/ ˚
L.1=2;1=2/ (cf. [14]).

Case h D 3=2

In this case we have x.0/x D a, x.1/x D 0, x.2/x D .xjx/ and x.n/x D 0 for n � 3.
Here we further assume that the c D 8.aja/ Virasoro vector 2a is the conformal
vector of the subalgebra hxi. This condition is equivalent to x 2 Ker V .! � 2a/.0/
(cf. [4]), where ! is the conformal vector of V . (By Theorem 5.1 of (loc. cit), !�2a
is a Virasoro vector and ! D 2aC.!�2a/ is an orthogonal decomposition.) Then x
is a highest weight vector for Vir.2a/ with highest weight 3=2. Since xx D x.0/x D
a, we have .ajx.0/x/ D .aja/. On the other hand,

.2ajx.0/x/ D 2a.3/x.0/x D Œ2a.3/; x.0/�x D
X

i�0

 
3

i

!
�
2a.i/x

�
.3�i/ x

D �2a.0/x
�
.3/
x C 3 �2a.1/x

�
.2/
D �3x.2/x C 3 � 3

2
x.2/x

D 3

2
.xjx/

and we get 3.xjx/ D 4.aja/. Now we can compute the commutation relations:

Œ2a.m/; x.n/� D
1X

iD0

 
m

i

!
.2a.i/x/.mCn�i/

D .2a.0/x/.mCn/ Cm.2a.1/x/.mCn�1/
D �.mC n/x.mCn�1/ Cm � 3

2
x.mCn�1/

D 1

2
.m � 2n/x.mCn�1/;

Œx.p/; x.q/�C D
1X

iD0

 
p

i

!
.x.i/x/.pCq�i/

D .x.0/x/.pCq/ C
 
p

2

!
.x.2/x/.pCq�2/

D a.pCq/ C p.p � 1/
2

.xjx/ .pCq�2/

D a.pCq/ C 2p.p � 1/
3

.aja/ıpCq;1:
(14)

For simplicity, set La.m/ WD 2a.mC1/, ca WD 8.aja/ and Gx.r/ WD 2x.rC1=2/. Then
(14) looks

ŒLa.m/;Gx.r/� D 1

2
.m � 2r/Gx.mC r/;

ŒGx.r/; Gx.s/�C D 2La.r C s/C ırCs;0 4r
2 � 1
12

ca:

(15)

This is exactly the defining relations of the Neveu–Schwarz algebra, also known
as the N D 1 super Virasoro algebra. Therefore, hxi is isomorphic to the N D 1

c D 8.aja/ Virasoro SVOA.
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Case h D 5=2

Again we assume that xx D a and 2a is the conformal vector of hxi. But this is still
not enough to determine the structure of hxi. In order to describe hxi, we need one
more assumption that x.n/x 2 hai for n � 0. Zamolodchikov [30] has studied such
a subalgebra.

Proposition 4 ([30]). Suppose x.n/x 2 hai for n � 0 and 2a is the conformal
vector of hxi. Then there is a surjection from hxi to L.�13=14; 0/˚ L.�13=14;5=2/. In
particular, the central charge of hxi is uniquely determined.

Remark 2. Recall the central charges and the highest weights of the minimal series
of the Virasoro VOAs (cf. [28]).

cp;q WD 1 � 6.p � q/
2

pq
; h.p;q/r;s D

.rq � sp/2 � .p � q/2
4pq

; 0 < r < p; 0 < s < q:

(16)

Then c7;4 D �13=14 and h.7;4/6;1 D 5=2. Moreover, L.�13=14;5=2/ is the unique
non-trivial simple current module over L.�13=14; 0/ so that the simple quotient in
Proposition 4 forms a Z2-graded simple current extension of L.�13=14; 0/.

Remark 3. The (extended) Griess algebra is a part of the structure of the vertex Lie
algebra [24] (or that equivalently known as the conformal algebra [13]). As seen
in this subsection, for small h one can determine OPE of elements in V2 ˚ Vh by
the extended Griess algebra. However, for higher h, the extended Griess algebra is
insufficient to determine full OPE of Y.x; z/ and the subalgebra hxi for x 2 V2˚Vh.

4 Matsuo-Norton Trace Formulae for Extended Griess
Algebras

In this section we derive trace formulae for the extended Griess algebras, which
is a variation of Matsuo-Norton trace formulae [22]. In this section we assume V
satisfies the following condition.

Condition 2. V is an SVOA satisfying Condition 1 and in addition the following.

(1) The invariant bilinear form is non-degenerate on V .
(2) The restriction of the bilinear form on Vir.!/ is also non-degenerate.
(3) V as a Vir.!/-module is a direct sum of highest weight modules.

Let V Œn� be the sum of highest weight Vir.!/-submodules of V with highest
weight n 2 1

2
Z. Then by (3) of Condition 2 one has

V D ˚n�0V Œn� (17)
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and we can define the projection map

� W V D
M

n�0
V Œn� �! V Œ0� D Vir.!/ D h!i (18)

which is a Vir.!/-homomorphism.

4.1 Conformal Design and Casimir Vector

Let us recall the notion of the conformal design. Suppose U is a VOA satisfying (3)
of Condition 2. Then we can define the projection � W U ! h!i as in (18).

Definition 1 ([11]). Let U be a VOA and M a U -module. An L.0/-homogeneous
subspace X of M is called a conformal t -design based on U if trX o.a/ D
trX o.�.a// holds for any a 2 ˚0�n�tUn.

The defining condition of conformal designs was initiated in Matsuo’s paper [22]
and it is related to the following condition.

Definition 2 ([22]). Let U be a VOA and G a subgroup of Aut.U /. We say U is of
class S n under G if UG

k � h!i for 0 	 k 	 n. (We allow G to be Aut.U / itself.)

The above two conditions are in the following relation.

Lemma 3 ([11, 22]). Let U be a VOA and M a G-stable U -module. Suppose
further that we have a projective representation of G on M . If U is of class S n

underG then everyL.0/-homogeneous subspace ofM forms a conformal n-design.

Let V be an SVOA and g 2 Aut.V / satisfying Condition 2. The following is
clear.

Lemma 4. For m > 0 the components V Œm� and V Œ0� in (17) are orthogonal with
respect to the invariant bilinear form.

Consider the extended Griess algebra V C
2 ˚ Vh of V . We set d WD dimVh. Let

fuig1�i�d be a basis of Vh and fuig1�i�d its dual basis. As in [22], we consider the
Casimir vector of weight m 2 Z:

�m WD �h
dX

iD1
ui.2h�1�m/ui 2 Vm; (19)

where the signature �h is defined as in (11).

Lemma 5. Let a 2 V be homogeneous. Then trVh o.a/ D .�1/wt.a/.a j �wt.a//.

Proof. Without loss we may assume a is even, i.e., a 2 V 0;C. We compute the trace
as follows.
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trVh o.a/ D
dX

iD1
.o.a/ui jui / D

dX

iD1
.a.wt.a/�1/ui j ui /

D
dX

iD1

1X

jD0

.�1/wt.a/Cj
j Š

�
L.�1/j ui.wt.a/�1Cj /a

ˇ̌
ˇ ui

	
(by skew-symmetry)

D
dX

iD1

1X

jD0

.�1/wt.a/Cj
j Š

�h

�
a
ˇ̌
ˇ ui.2h�wt.a/�1Cj /L.1/j ui

	
(by invariance)

D
dX

iD1
.�1/wt.a/�h.ajui.2h�wt.a/�1/ui / (as L.1/Vh D 0/

D .�1/wt.a/.a j �wt.a//:

Therefore, we obtain the desired equality.

Proposition 5. Vh is a conformal t -design based on V 0;C if and only if �m 2 h!i
for 0 	 m 	 t .
Proof. By Lemma 5, trVh o.a/ D trVh o.�.a// for any a 2 V 0;C

m if and only if
.aj�m/ D .�.a/j�m/. Since � is a projection, fa � �.a/ j a 2 V 0;C

m g D V 0;C
m \

Ker� . Then .a � �.a/j�m/ D 0 if and only if �m 2 �.V / D V Œ0� D h!i by
Condition 2 and Lemma 4. Therefore the assertion holds.

4.2 Derivation of Trace Formulae

We use Lemma 5 to derive the trace formulae. Recall the following associativity
formula.

Lemma 6. ([19, Lemma 3.12]) Let a, b 2 V , v 2M and p, q 2 Z. Suppose s 2 Z

and t 2 N satisfy a.sCi/v D b.qCtCiC1/v D 0 for all i � 0. Then for p, q 2 Z,

a.p/b.q/v D
tX

iD0

X

j�0

 
p � s
i

! 
s

j

!
�
a.p�s�iCj /b

�
.qCsCi�j / v: (20)

Let a; b 2 V C
2 and v 2 Vh. Since Vh is the top level of V �, we can apply the

lemma above with p D q D 1, s D 2 and t D 0 and obtain

o.a/o.b/v D a.1/b.1/v D
2X

iD0

 
2

i

!
�
a.i�1/b

�
.3�i/ D o.a � b/; (21)
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where a � b is the product of Zhu algebra [31] defined as

a � b WD Resz
.1C z/wt.a/

z
Y.a; z/b D

X

i�0

 
wt.a/

i

!
a.i�1/b: (22)

Combining this with Lemma 5, we obtain

Lemma 7. For a1; : : : ; ak 2 V C
2 we have

trVh o.a1/ � � � o.ak/
D

X

�1�i1;��� ;ik�1�1
.�1/kC1�.i1C���Cik�1/

�
a1.i1/ � � � ak�1

.ik�1/
ak
ˇ̌
ˇ �kC1�.i1C���Cik�1/

	
:

(23)

Proof. By (21) if a 2 V2 and x 2 Vn then a � x D a.1/x C 2a.0/x C a.�1/x 2
Vn C VnC1 C VnC2. So by Lemma 5

trVh o.a1/ � � � o.ak/ D
2kX

mD2
.�1/m �o.a1�� � ��ak/ j �m

�
: (24)

Expanding this we obtain the lemma.

To describe the Casimir vector we need the following condition.

Condition 3. If Vh forms a conformal 2t -design with t 	 5 then the central charge
of V is not a zero of the polynomial D2t .c/ defined as follows.

D2.c/ D c; D4.c/ D c.5c C 22/; D6.c/ D .2c � 1/.7c C 68/D4.c/;

D8.c/ D .3c C 46/.5c C 3/D6.c/; D10.c/ D .11c C 232/D8.c/:
(25)

The normalized polynomials Dn.c/ comes from the Shapovalov determinant of
the Verma module M.c; 0/. The following is well-known (cf. [14]).

Lemma 8. If the central charge of V is not a zero of Dn.c/ in (25) then the degree
m subspace of h!i with m 	 n is isomorphic to that of M.c; 0/=M.c; 1/.

We write Œn1; : : : ; nk� ˆ m if n1 � � � � � nk � 2 and n1 C � � � C nk D m. If
c is not a zero of Dn.c/ in (25) then the degree m subspace of M.c; 0/=M.c; 1/
with m 	 n has a basis fL.�n1/ � � �L.�nk/ j Œn1; : : : ; nk� ˆ mg. By definition
�0 D �h

Pd
iD1 ui.2h�1/ui D

Pd
iD1.ui jui / D d and �1 D 0, where d D dimVh.

For n > 0 one can show

L.n/�m D .h.n � 1/Cm � n/ �m�n: (26)

Using this we can recursively compute .L.�n1/ � � �L.�nk/ j �m/. As a result, the
Casimir vector can be expressed as follows (cf. Proposition 2.5 of [22]).
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Lemma 9. Suppose the central charge of V is not a zero of Dn.c/ in (25) and the
Casimir vector �m 2 h!i with m 	 n. Then �m is uniquely written as

�m D 1

D2bm=2c.c/
X

Œn1;:::;nk �ˆm

A
.m/

Œn1;:::;nk �
L.�n1/ � � �L.�nk/ ;

where bm=2c stands for the largest integer not exceeding m=2 and A.m/Œn1;:::;nk �
2

QŒc; d; h� are given in section “Coefficients in Generalized Casimir Vectors” in
Appendix.

We present the main result of this paper.

Theorem 1. Suppose V and g 2 Aut.V / satisfy Conditions 2 and 3. Set d D
dimVh.

(1) If Vh forms a conformal 2-design based on V 0;C, then for any a0 2 V C
2 ,

trVh o.a0/ D 2hd

c
.a0j!/:

(2) If Vh forms a conformal 4-design based on V 0;C, then for any a0; a1 2 V C
2 ,

trVh o.a0/o.a1/ D 4hd.5hC 1/
c.5c C 22/ .a

0j!/.a1j!/C 2hd.22h � c/
c.5c C 22/ .a0ja1/:

(3) If Vh forms a conformal 6-design based on V 0;C, then for any a0; a1; a2 2 V C
2 ,

trVh o.a0/o.a1/o.a2/

D 1

D6.c/

�
F
.3/
0 .a0j!/.a1j!/.a2j!/C F .3/1 Sym.a0j!/.a1ja2/C F .3/2 .a0ja1ja2/

	
;

where .a0ja1ja2/ D .a0a1ja2/ D .a0ja1a2/ is a totally symmetric trilinear
form, Sym.a0j!/.a1ja2/ is the sum of all .ai0 j!/.ai1 jai2/ which are mutually
distinct, and F .3/

j 2 QŒc; d; h�, 0 	 j 	 2, are given in section “Coefficients in
the Trace Formulae” in Appendix.

(4) If Vh forms a conformal 8-design based on V 0;C, then for any a0; a1; a2; a3 2
V C
2 ,

trVh o.a0/o.a1/o.a2/o.a3/

D 1

D8.c/

�
F
.4/
0 .a0j!/.a1j!/.a2j!/.a3j!/

C F .4/
1 Sym.a0j!/.a1j!/.a2ja3/C F .4/

2 Sym.a0j!/.a1ja2ja3/
C F .4/

3 Sym.a0ja1/.a2ja3/C F .4/
4 .a0a1ja2a3/

CF .4/
5 .a0a2ja1a3/C F .4/

6 .a0a3ja1a2/
	
;
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where Sym denotes the sum over all possible permutations of .0; 1; 2; 3/ for
which we obtain mutually distinct terms, and F .4/

j 2 QŒc; d; h�, 0 	 j 	 6, are
given in section “Coefficients in the Trace Formulae” in Appendix.

(5) If Vh forms a conformal 10-design based on V 0;C, then for any a0; a1; a2; a3;
a4 2 V C

2 ,

trVh o.a0/o.a1/o.a2/o.a3/o.a4/

D 1

D10.c/

�
F
.5/
0 .a0j!/.a1j!/.a2j!/.a3j!/.a4j!/

C F .5/
1 Sym.a0j!/.a1j!/.a2j!/.a3ja4/CF .5/

2 Sym.a0j!/.a1j!/.a2ja3ja4/
C F .5/

3 Sym.a0j!/.a1ja2/.a3ja4/
C F .5/

4

�
.a0j!/.a1a2ja3a4/C .a1j!/.a0a2ja3a4/C .a2j!/.a0a1ja3a4/
C .a3j!/.a0a1ja2a4/C .a4j!/.a0a1ja2a3/�

C F .5/
5

�
.a0j!/.a1a3ja2a4/C .a1j!/.a0a3ja2a4/C .a2j!/.a0a3ja1a4/
C .a3j!/.a0a2ja1a4/C .a4j!/.a0a2ja1a3/�

C F .5/
6

�
.a0j!/.a1a4ja2a3/C .a1j!/.a0a4ja2a3/C .a2j!/.a0a4ja1a3/
C .a3j!/.a0a4ja1a2/C .a4j!/.a0a3ja1a2/�

C F .5/
7 Sym.a0ja1/.a2ja3ja4/C F .5/

8 .a0a1a2a3a4/

C
X�

F
.5/
i0i1i2i3i4

.ai0ai1 jai2 jai3ai4/
	

where Sym denotes the sum over all possible permutations of .0; 1; 2; 3; 4/ for
which we obtain mutually distinct terms, .a0a1a2a3a4/ D a0.3/a

1
.2/a

2
.1/a

3
.0/a

4

and the last summation
P� is taken over all possible permutations

.i0; i1; i2; i3; i4/ of .0; 1; 2; 3; 4/ such that .ai0ai1 jai2 jai3ai4/ are mutually
distinct. The coefficients F .5/� 2 QŒc; d; h� are given in section “Coefficients in
the Trace Formulae” in Appendix.

Proof. By Lemmas 7 and 9, it suffices to rewrite inner products
�
a0.i0/ � � � ak�1

.ik�1/
ak
ˇ̌
ˇ L.�m1/ � � �L.�ml/

	
;

with �1 	 i0; � � � ; ik�1 	 1, k C 1 � .i0 C � � � ik�1/ D m1 C � � � Cml , in terms of
the Griess algebra. By the invariance, this is equal to

�
L.ml/ � � �L.m1/a

0
.i0/
� � � ak�1

.ik�1/
ak
ˇ̌
ˇ
	
;

and by the commutation formula

ŒL.m/; a.n/� D .m � nC 1/a.mCn/ C ımCn;1
m.m2 � 1/

6
.aj!/;

we obtain a sum of .as0.j0/ � � � asr�1.jr�1/
asr j /with r 	 k and�1 	 j0; � � � ; jr�1 < 2k.

We will use the following relations to rewrite such a term further.
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.a.0/b/.n/ D Œa.1/; b.n�1/� � .a.1/b/.n�1/;

a.m/ ; b.0/

� D 
a.1/ ; b.m�1/
�C .m � 1/.a.1/b/.m�1/;

a.�m�1/ D 1

mŠ
L.�1/ma; a.m/b.�m/ D ma.1/b;

(27)

where a; b 2 V2, m > 0 and n 2 Z. For example, let us rewrite .a0.4/a
1
.1/a

2
.0/a

3 j /.

�
a0.4/a

1
.1/a

2
.0/a

3
ˇ̌
ˇ
	
D
�
a2.0/a

3
ˇ̌
ˇ a1.1/a0.�2/

	
D
�
a2.0/a

3
ˇ̌
ˇ


a1.1/ ; a

0
.�2/

� 	

D
�
a2.0/a

3
ˇ̌
ˇ
�
a1.0/a

0
�
.�1/

	
C
�
a2.0/a

3
ˇ̌
ˇ
�
a1.1/a

0
�
.�2/

	

D
�
a2.0/a

3
ˇ̌
ˇ a1.0/a0

	
C
�
a3
ˇ̌
ˇ a2.2/

�
a1.1/a

0
�
.�2/

	

D
�
a0.3/a

1
.2/a

2
.0/a

3
ˇ̌
ˇ
	
C 2

�
a3
ˇ̌
ˇ a2.1/a1.1/a0

	

D
�
a0.3/a

1
.2/a

2
.0/a

3
ˇ̌
ˇ
	
C 2

�
a2.1/a

3
ˇ̌
ˇ a1.1/a0

	
;

where .a0.3/a
1
.2/a

2
.0/a

3j / can be simplified as

�
a0.3/a

1
.2/a

2
.0/a

3
ˇ̌
ˇ
	
D
�
a1.2/a

2
.0/a

3
ˇ̌
ˇ a0

	
D
�

a1.2/ ; a

2
.0/

�
a3
ˇ̌
ˇ a0

	

D
�

a1.1/ ; a

2
.1/

�
a3
ˇ̌
ˇ a0

	
C
��
a1.1/a

2
�
.1/
a3
ˇ̌
ˇ a0

	

D
�
a2.1/a

3
ˇ̌
ˇ a1.1/a0

	
�
�
a1.1/a

3
ˇ̌
ˇ a2.1/a0

	
C
�
a1.1/a

2
ˇ̌
ˇ a3.1/a0

	
:

Therefore, we get
�
a0.4/a

1
.1/a

2
.0/a

3
ˇ̌
ˇ
	
D 3

�
a0.1/a

1
ˇ̌
ˇ a2.1/a3

	
�
�
a0.1/a

2
ˇ̌
ˇ a1.1/a3

	
C
�
a0.1/a

3
ˇ̌
ˇ a1.1/a2

	
:

In this way, we can rewrite all terms and obtain the formulae of degrees 1 to 4.
However, in the rewriting procedure of the trace of degree 5 we meet the expressions
a
i0
.3/a

i1
.2/a

i2
.1/a

i3
.0/a

i4 D .ai0ai1ai2ai3ai4 / which satisfy the following relations:

.a0a1a2a3a4/C .a1a0a2a3a4/
D 3.a0a1ja2ja3a4/ � .a0a1ja3ja2a4/C .a0a1ja4ja2a3/;
.a0a1a2a3a4/C .a0a2a1a3a4/
D .a0a1ja2ja3a4/ � .a0a1ja3ja2a4/C .a0a1ja4ja2a3/C .a0a2ja1ja3a4/
� .a0a2ja3ja1a4/C .a0a2ja4ja1a3/ � .a0a3ja4ja1a2/C .a0a4ja3ja1a2/
C .a1a2ja0ja3a4/;

.a0a1a2a3a4/C .a0a1a3a2a4/
D .a0a1ja2ja3a4/C .a0a1ja3ja2a4/C .a0a1ja4ja2a3/ � .a0a2ja1ja3a4/
� .a0a3ja1ja2a4/C .a0a4ja1ja2a3/C .a1a2ja0ja3a4/C .a1a3ja0ja2a4/
� .a1a4ja0ja2a3/;

.a0a1a2a3a4/C .a0a1a2a4a3/
D 3.a0a1ja2ja3a4/ � .a0a2ja1ja3a4/C .a1a2ja0ja3a4/:

(28)
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LetR be the space of formal sums of .ai0ai1 jai2 jai3ai4/ over Z. Then it follows from
(28) that

.a�.0/a�.1/a�.2/a�.3/a�.4// 
 sign.�/.a0a1a2a3a4/ mod R

for � 2 S5. This shows the rewriting procedure is not unique, and in our rewriting
procedure we have to include at least one term .a0a1a2a3a4/ in the formula
(cf. [22]).

Remark 4. Our formulae are a variation of Matsuo-Norton trace formulae in [22]
but there are some differences. The trace formula of degree 5 in (loc. cit) contains a
totally anti-symmetric quinary form

X

�2S5

sgn.�/
�
a�.0/a�.1/a�.2/a�.3/a�.4/

�

D
X

�2S5

sgn.�/
�
a
�.0/

.3/ a
�.1/

.2/ a
�.2/

.1/ a
�.3/

.0/ a
�.4/

ˇ̌
ˇ
	
;

which we do not have in ours. This is due to the non-uniqueness of the reduction
procedure as explained in the proof. One can transform the formula to include this
form using (28).

Remark 5. In the trace formula of degree n, if we put ai D !=h for one of 0 	 i <
n then we obtain the trace formula of degree n � 1. Even though we have derived
the formulae for degree 4 and 5, the author does not know non-trivial examples of
SVOAs which satisfy Conditions 2 and 3 and the odd top level forms a conformal 8-
or 10-design. It is shown in [22] (see also [11] for related discussions) that if a VOA
V satisfying Conditions 2 and 3 and is of class S 8 (under Aut.V /) and has a proper
idempotent then dimV2 D 196; 884 and c D 24, those of the moonshine VOA. By
this fact, the author expected the non-existence of proper SVOAs (not VOAs) of
class S 8 and S 10, but the reductions of the trace formula of degree 5 to degree 4
and of degree 4 to degree 3 are consistent and we cannot obtain any contradiction.

We will mainly use the formulae to compute traces of Virasoro vectors.

Corollary 1. Suppose V and g 2 Aut.V / satisfy Conditions 2 and 3. Let e 2 V C
2

be a Virasoro vector with central charge ce D 2.eje/. If Vh forms a conformal
2t -design based on V 0;C, then trV h o.e/t is given as follows.

trV h o.e/ D 2hd

c
.eje/ if t D 1;

trV h o.e/2 D 4hd.5hC 1/
c.5c C 22/ .eje/

2 C 2hd.22h � c/
c.5c C 22/ .eje/ if t D 2;

trV h o.e/t D D2t .c/
�1

tX

jD1
E
.t/
j .eje/j if t D 3; 4; 5;

where d D dimVh and E.t/� 2 QŒc; d; h� are given in section “Coefficients in the
Trace Formulae” in Appendix.
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5 Applications

In this section we show some applications of our formulae.

5.1 VOAs with h D 1

Let V be a VOA and � 2 Aut.V / an involution satisfying Conditions 1 and 2. We
assume the top weight h of V � is 1 and denote d D dimV1. In this case the top level
V1 forms an abelian Lie algebra under 0-th product. For, ŒV1; V1� D .V1/.0/V1 �
V C
1 D 0 as V1 � V � and V C is of OZ-type. We have the following commutation

relation for a and b 2 V1:

Œa.m/; b.n/� D .a.0/b/.mCn/ Cm.a.1/b/.mCn�1/ D �m.ajb/ımCn;0: (29)

Set h WD V1 and equip this with a symmetric bilinear form by hajbi WD �.ajb/
for a; b 2 h. Then this form is non-degenerate by Condition 2. Denote Oh the rank
d D dimV1 Heisenberg algebra associated to h, the affinization of h. By (29) the
sub VOA hV1i generated by V1 is isomorphic to a free bosonic VOA associated to Oh
and the Casimir element �2 is twice the conformal vector of hV1i. Suppose V1 forms
a conformal 2-design based on V C. Then �2 coincides with twice the conformal
vector of V , and hence hV1i is a full sub VOA of V . More precisely, we show the
following.

Proposition 6. Suppose a VOA V and its involution � 2 Aut.V / satisfy Condi-
tions 1and 2. If the top level of V � has the top weight 1 and forms a conformal
2-design based on V C then hV1i is isomorphic to the rank d D dimV1 free bosonic
VOA and the restriction of � on hV1i is conjugate to a lift of the .�1/-map on h
in Aut.hV1i/. Moreover, if hV1i is a proper subalgebra of V then there is an even
positive definite rootless lattice L of h of rank less than or equal to d such that V
is isomorphic to a tensor product of the lattice VOA VL associated to L and a free
bosonic VOA associated to the affinization of the orthogonal complement of CL in
h. In this case the restriction of � on VL is conjugate to a lift of the .�1/-map on L
in Aut.VL/.

Proof. That hV1i is isomorphic to a free bosonic VOA is already shown and � is
clearly a lift of the .�1/-map on it. Suppose hV1i is a proper subalgebra. Then by
[20] there is a even positive definite lattice L such that V is isomorphic to a tensor
product of the lattice VOA VL associated to L and a free bosonic VOA associated to
the affinization of the orthogonal complement of CL in h. Since V1 is abelian, L has
no root. Let � be a lift of the .�1/-map on L to Aut.VL/. Since � and � act by �1
on .VL/1, �� is identity on it. Then �� on VL is a linear automorphism exp.a.0// for
some a 2 .VL/1. Since � exp. 1

2
a.0// D exp. 1

2
.�a/.0//� D exp.� 1

2
a.0//� , we have

the conjugacy exp.� 1
2
a.0//� exp. 1

2
a.0// D � exp. 1

2
a.0// exp. 1

2
a.0// D � exp.a.0// D

�.��/ D �. This completes the proof.
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If V is a free bosonic VOA then it is shown in [2] that V C is not of class S 4. The
case V D hV1i is not interesting and out of our focus. So we are reduced to the case
when V is a lattice VOA VL where L is an even positive definite rootless lattice and
� is a lift of the .�1/-map on L. (Clearly VL and � satisfy Conditions 1 and 2.) For
such a lattice L the complete classification of simple c D 1=2 Virasoro vectors in
V C
L is obtained in [27]. It is shown in [17,27] that VL has a simple c D 1=2Virasoro

vector e 2 V C
L if and only if there is a sublattice K isomorphic to

p
2A1 or

p
2E8

such that e 2 V C
K � V C

L . In particular, one can find a simple c D 1=2 Virasoro
vector in VL if (and only if) L has a norm 4 element.

Suppose we have a simple c D 1=2 Virasoro vector e 2 VL. Actually e is in V C
L

in our case and one can find a sublattice K isomorphic to
p
2A1 or

p
2E8 such that

e 2 V C
K � V C

L . Denote X D .VL/1. The zero-mode o.e/ acts on X semisimply
with possible eigenvalues 0, 1=2 and 1=16. We denote by d� the dimension of o.e/-
eigensubspace of X with eigenvalue �. Then d0 C d1=2 C d1=16 D d . By the trace
formula in (1) of Theorem 1 we get

trX o.e/ D 0 � d0 C 1

2
d1=2 C 1

16
d1=16 D 1

2
: (30)

This has two possible solutions .d0; d1=2; d1=16/ D .d � 1; 1; 0/ and .d � 8; 0; 8/.
Suppose further that X forms a conformal 4-design. Then by the trace formula in
(2) of Theorem 1 we have

trX o.e/2 D 02 � d0 C 1

22
d1=2 C 1

162
d1=16 D 25 � d

2.5d C 22/ : (31)

The possible integer solution of (30) and (31) are .d0; d1=2; d1=16/ D .3; 1; 0/

and .10; 0; 8/. The case .d0; d1=2; d1=16/ D .10; 0; 8/ is impossible. For, if K is
isomorphic to

p
2A1 then o.e/ does not have eigenvalue 1=16 on X , so K must bep

2E8. However, in this case we can also find another simple c D 1=2 Virasoro
vector e0 2 V C

K such that o.e0/ acts on V �
K semisimply with eigenvalues only

0 and 1=2. (Take a norm 4 element ˛ 2 K and consider V C
Z˛ � V C

K ). But
considering trX o.e0/2 we obtain a contradiction. Therefore, the possible solution
is only .d0; d1=2; d1=16/ D .3; 1; 0/. We summarize the discussion here in the next
theorem.

Theorem 2. Let L be an even positive definite lattice without roots. If L contains
a norm 4 vector and the weight 1 subspace of V �

L forms a conformal 4-design then
rankL D dim.VL/1 D 4.

Remark 6. It is shown in [22] that if a c D 4 VOA of OZ-type satisfies: (i) it is
of class S 4, (ii) there is a simple c D 1=2 Virasoro vector such that its possible
eigenvalues of the zero-mode on the Griess algebra are 0, 1=2 and 2, then its Griess
algebra is 22-dimensional. The fixed point sub VOA V Cp

2D4
would be an example

with c D 4 and dimV2 D 22 and so L D p2D4 would be an example of
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a lattice satisfying Theorem 2. (The author expects this is the unique example.)
V Cp

2D4
is isomorphic to the Hamming code VOA and its full automorphism group is

26W.GL3.2/�S3/ (cf. [21,26]). The top level of V �p
2D4

is not stable under this group
[26].

Remark 7. Consider the case L D p2E8. It is expected (cf. [22]) that V Cp
2E8

is of

class S 6. It is shown in [7, 26] that Aut.V Cp
2E8
/ D OC

10.2/. The Griess algebra of

V Cp
2E8

is 156-dimensional which is a direct sum of a one-dimensional module and a

155-dimensional irreducible module over OC
10.2/ (cf. [1]). It is shown in [7, 17] that

V Cp
2E8

has totally 496 simple c D 1=2 Virasoro vectors which form an OC
10.2/-orbit

in the Griess algebra. The 240 vectors of them are of A1-type, and the remaining
256 vectors are of E8-type (cf. [17]). All A1-types and all E8-types form mutually
distinct 28WOC

8 .2/-orbits, where 28WOC
8 .2/ is the centralizer of � in Aut.Vp

2E8
/.

The A1-type vector has no eigenvalue 1/16 on X and corresponds to the solution
.d0; d1=2; d1=16/ D .7; 1; 0/ of (30), whereas the E8-type has only eigenvalue 1/16
onX and corresponds to the solution .d0; d1=2; d1=16/ D .0; 0; 8/ of (30). It is shown
in [26] that under the conjugation of modules by automorphisms, the stabilizer
of V �p

2E8
in Aut.V Cp

2E8
/ D OC

10.2/ is 28WOC
8 .2/. So X is 28WOC

8 .2/-stable but not

OC
10.2/-stable.

5.2 The Baby-Monster SVOA: The Case h D 3=2

Here we consider the Baby-monster SVOA VB\ D VB\;0 ˚ VB\;1 introduced by
Höhn in [8] which affords an action of the Baby-monster sporadic finite simple
group B. Let � D .�1/2L.0/ 2 Aut.VB\/ be the canonical Z2-symmetry. Then VB\

and � satisfy Conditions 1 and 2.

Remark 8. It is shown in [9,29] that Aut.VB\/ D Aut.VB\;0/�h�i, Aut.VB\;0/ ' B

and the even part VB\;0 has three irreducible modules which are all B-stable.

The top level of VB\;1 is of dimension d D 4; 371 and has the top weight
h D 3=2. It is shown in Lemma 2.6 of [3] (see also [10, 11]) that VB\;0 is of class
S 6. Therefore the top level of VB\:1 forms a conformal 6-design based on VB\;0.
(Actually, it is shown in [10] and [11] that VB\;0 is of class S 7 and VB\;1

3=2 is a
conformal 7-design, respectively.)

Let t be a 2A-involution of B. Then CB.t/ ' 2�2E6.2/W2 (cf. [1]). The Griess
algebra of VB\;0 is of dimension 96,256 and we have the following decompositions
as a module over B and CB.t/ (cf. [12]).

VB
\;0
2 D 1˚ 96255 over B;
D 1˚ 1˚ 1938˚ 48620˚ 45696 over CB.t/:

(32)
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The B-invariant subalgebra of the Griess algebra is 1-dimensional spanned by the
conformal vector ! of VB\, but the CB.t/-invariant subalgebra of the Griess algebra
forms a 2-dimensional commutative (and associative) subalgebra spanned by two
mutually orthogonal Virasoro vectors. It is shown in [12] that central charges of
these Virasoro vectors are 7=10 and 114=5. (The sum is the conformal vector of
VB\.) Let e be the shorter one, the simple c D 7=10 Virasoro vector fixed by CB.t/.
For the odd part we have the following decompositions.

VB
\;1

3=2 D 4371 over B;

D 1C 1938C 2432 over CB.t/:
(33)

Since e is fixed by CB.t/, its zero-mode acts as scalars on CB.t/-irreducible
components. As c4;5 D 7=10 belongs to the minimal series (16), L.7=10; 0/ has 6
irreducible modules L.7=10; h/ with h D 0; 7=16; 3=80; 3=2; 3=5; 1=10, and o.e/ acts
on each CB.t/-irreducible component in (33) by one of these values. Denote �1, �2
and �3 the eigenvalues of o.e/ on 1, 1938 and 2432 in (33), respectively. Applying
Theorem 1 we will compute these eigenvalues. Set X D VB

\;1

3=2. Since VB\;0 is of

class S 6 under B and VB\;1 is B-stable, by (1), (2), (3) of Theorem 1 we have

trX o.e/ D 1953

10
; trX o.e/2 D 2163

100
; trX o.e/3 D 5313

1000
: (34)

On the other hand, we have

trX o.e/j D �j1 C 1938�j2 C 2432�j3 (35)

for j D 1; 2; 3. Solving (34) and (35), we obtain a unique rational solution �1 D
3=2, �2 D 1=10 and �3 D 0 which are consistent with the representation theory of
L.7=10; 0/.

VB
\;1

3=2 D 1 C 1938 C 2432

o.e/ W 3
2

1

10
0

(36)

Let x be a non-zero vector in the 1-dimensional CB.t/-invariant subspace of VB\;1

3=2.
Since both o.!/ and o.e/ act on x by 3/2, it follows o.! � e/x D 0 and x 2
Ker .! � e/.0/. This implies x is a square root of e in the extended Griess algebra

VB
\;0
2 ˚VB\;1

3=2 and e is the conformal vector of the subalgebra generated by x. Thus
as we discussed in Sect. 3.2 hxi is isomorphic to the N D 1 c D 7=10 Virasoro
SVOA which is isomorphic to L.7=10; 0/˚ L.7=10;3=2/ as a hei-module.

Proposition 7. Let t be a 2A-element of B. Then .VB\/CB.t/ has a full sub SVOA
isomorphic to L.114=5; 0/˝ .L.7=10; 0/˚ L.7=10;3=2//.
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Let us recall the notion of Miyamoto involutions. A simple c D 7=10 Virasoro
vector u of an SVOA V is called of � -type on V if there is no irreducible hui '
L.7=10; 0/-submodule of V isomorphic to either L.7=10;7=16/ or L.7=10;3=80/. If u is of
� -type on V , then define a linear automorphism �u of V acting on an irreducible
hui-submodule M of V as follows.

�ujM D
(
1 if M ' L.7=10; 0/; L.7=10;3=5/;

�1 if M ' L.7=10;1=10/; L.7=10;3=2/:
(37)

Then �u is well-defined and the fusion rules of L.7=10; 0/-modules guarantees �u 2
Aut.V / (cf. [23]). It is shown in [12] that the map u 7! �u provides a one-to-one
correspondence between the set of simple c D 7=10 Virasoro vectors of VB\;0 of � -
type and the 2A-conjugacy class of B D Aut.VB\;0/. In this correspondence we have
to consider only � -type c D 7=10 Virasoro vectors, since we also have non � -type
ones in VB\;0. We can reformulate this correspondence based on the SVOA VB\. We
say a simple c D 7=10 Virasoro vector u of VB\;0

2 is extendable if it has a square root

v 2 VB\;1

3=2 in the extended Griess algebra such that hvi ' L.7=10; 0/˚ L.7=10;3=2/.

Suppose we have an extendable simple c D 7=10 Virasoro vector u 2 VB\;0
2

and its square root v 2 VB
\;1

3=2. It is shown in [16] that the Z2-graded simple
current extension L.7=10; 0/ ˚ L.7=10;3=2/ has two irreducible untwisted modules
L.7=10; 0/ ˚ L.7=10;3=2/ and L.7=10;1=10/ ˚ L.7=10;3=5/. Therefore, o.u/ acts on X D
VB

\;1

3=2 semisimply with possible eigenvalues 0, 1=10, 3=5 and 3=2. In particular, u

is of � -type. Let d� be the dimension of o.u/-eigensubspace of X D VB
\;1

3=2 with
eigenvalue �. Then

trX o.u/j D 0j � d0 C
�
1

10

�j
� d1=10 C

�
3

5

�j
� d3=5 C

�
3

2

�j
� d3=2 (38)

for 0 	 j 	 3, where we understand 00 D 1. By (34) one can solve this linear
system and obtain d0 D 2; 432, d1=10 D 1; 938, d3=5 D 0 and d3=2 D 1, recovering
(36). (That d3=5 D 0 and d3=2 D 1 can be also shown by the representation theory
of L.7=10; 0/˚ L.7=10;3=2/, see Remark 9 below.) The trace of �u on X is

trX �u D 2; 432 � 1 � 1; 938 D 493: (39)

By [1] we see that ��u belongs to the 2A-conjugacy class of B. Therefore �u� 2
Aut.VB\/ is a 2A-element of B by [9, 29]. Summarizing, we have the following
reformulation of Theorem 5.13 of [12].

Theorem 3. There is a one-to-one correspondence between the subalgebras of VB\

isomorphic to theN D 1 c D 7=10 simple Virasoro SVOAL.7=10; 0/˚L.7=10;3=2/ and
the 2A-elements of the Baby-monster B given by the association u 7! �u� where u
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is the conformal vector of the sub SVOA, �u is defined as in (37) and � D .�1/2L.0/
is the canonical Z2-symmetry of VB\.

Remark 9. Let V D V 0 ˚ V 1 be an SVOA such that V 1 has the top weight 3=2.
Suppose the top level X D V 1

3=2 forms a conformal 6-design based on V 0. It is
shown in [11] that if dimX > 1 then the central charge c of V is either 16 or 47=2.
Suppose further that there is a simple extendable c D 7=10 Virasoro vector e of
V . Then e and its square root generate a sub SVOA W isomorphic to L.7=10; 0/ ˚
L.7=10;3=2/. By the representation theory of L.7=10; 0/ ˚ L.7=10;3=2/ (cf. [16]) V is a
direct sum of irreducible W -submodules isomorphic to L.7=10; 0/ ˚ L.7=10;3=2/ or
L.7=10;1=10/ ˚ L.7=10;3=5/. Set d WD dimX and let d� be the dimension of o.e/-
eigensubspace of X with eigenvalue �. Then d D d0 C d1=10 C d3=5 C d3=2. We
know d3=2 D 1 as L.7=10;3=2/ is a simple current L.7=10; 0/-module, and we also have
d3=5 D 0 since X is the top level. Solving (38) in this case by Theorem 1 we obtain

d3=5 D �7d.2c � 47/.10c � 7/.82c � 37/
80c.2c � 1/.5c C 22/.7c C 68/ ;

d3=2 D d.800c3 � 27588c2 C 238596c � 112133/
80c.2c � 1/.5c C 22/.7c C 68/ :

(40)

Combining (40) with d3=5 D 0 and d3=2 D 1 we get two possible solutions .c; d/ D
.7=10; 1/ and .47=2; 4371/. The case V D W corresponds to the former, and V D VB\

is an example corresponding to the latter case. The author expects that VB\ is the
unique example of class S 6 corresponding to the latter case.
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Mathieu Moonshine and Orbifold K3s

Matthias R. Gaberdiel and Roberto Volpato

Abstract The current status of ‘Mathieu Moonshine’, the idea that the Mathieu
group M24 organises the elliptic genus of K3, is reviewed. While there is a consistent
decomposition of all Fourier coefficients of the elliptic genus in terms of Mathieu
M24 representations, a conceptual understanding of this phenomenon in terms of K3
sigma-models is still missing. In particular, it follows from the recent classification
of the automorphism groups of arbitrary K3 sigma-models that (1) there is no
single K3 sigma-model that has M24 as an automorphism group; and (2) there exist
‘exceptional’ K3 sigma-models whose automorphism group is not even a subgroup
of M24. Here we show that all cyclic torus orbifolds are exceptional in this sense,
and that almost all of the exceptional cases are realised as cyclic torus orbifolds.
We also provide an explicit construction of a Z5 torus orbifold that realises one
exceptional class of K3 sigma-models.

1 Introduction

In 2010, Eguchi et al. observed that the elliptic genus of K3 shows signs of an
underlying Mathieu M24 group action [1]. In particular, they noted (see Sect. 2
below for more details) that the Fourier coefficients of the elliptic genus can be
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written as sums of dimensions of irreducible M24 representations.1 This intriguing
observation is very reminiscent of the famous realisation of McKay and Thompson
who noted that the Fourier expansion coefficients of the J -function can be written
in terms of dimensions of representations of the Monster group [2, 3]. This led to
a development that is now usually referred to as ‘Monstrous Moonshine’, see [4]
for a nice review. One important upshot of that analysis was that the J -function
can be thought of as the partition function of a self-dual conformal field theory, the
‘Monster conformal field theory’ [5,6], whose automorphism group is precisely the
Monster group. The existence of this conformal field theory explains many aspects
of Monstrous Moonshine although not all—in particular, the genus zero property is
rather mysterious from this point of view (see [7] for recent progress on this issue).

In the Mathieu case, the situation is somewhat different compared to the early
days of Monstrous Moonshine. It is by construction clear that the underlying
conformal field theory is a K3 sigma-model (describing string propagation on the
target space K3). However, this does not characterise the corresponding conformal
field theory uniquely as there are many inequivalent such sigma-models—in fact,
there is an 80-dimensional moduli space of such theories, all of which lead to the
same elliptic genus. The natural analogue of the ‘Monster conformal field theory’
would therefore be a special K3 sigma-model whose automorphism group coincides
with M24. Unfortunately, as we shall review here (see Sect. 3), such a sigma-model
does not exist: we have classified the automorphism groups of all K3 sigma-models,
and none of them contains M24 [8]. In fact, not even all automorphism groups are
contained in M24: the exceptional cases are the possibilities (ii), (iii) and (iv) of
the theorem in Sect. 3 (see [8]), as well as case (i) for nontrivial G0. Case (iii) was
already shown in [8] to be realised by a specific Gepner model that is believed to
be equivalent to a torus orbifold by Z3. Here we show that also cases (ii) and (iv)
are realised by actual K3s—the argument in [8] for this relied on some assumption
about the regularity of K3 sigma-models—and in both cases the relevant K3s are
again torus orbifolds. More specifically, case (ii) is realised by an asymmetric Z5

orbifold of T4 (see Sect. 5),2 while for case (iii) the relevant orbifold is by Z3 (see
Sect. 6).

Cyclic torus orbifolds are rather special K3s since they always possess a quantum
symmetry whose orbifold leads back to T

4. Using this property of cyclic torus
orbifolds, we show (see Sect. 4) that the group of automorphisms of K3s that are
cyclic torus orbifolds is always exceptional; in particular, the quantum symmetry
itself is never an element of M24. Although some ‘exceptional’ automorphism
groups (contained in case (i) of the classification theorem) can also arise in K3

1Actually, they did not just look at the Fourier coefficients themselves, but at the decomposition
of the elliptic genus with respect to the elliptic genera of irreducible N D 4 superconformal
representations. They then noted that these expansion coefficients (and hence in particular the
usual Fourier coefficients) are sums of dimensions of irreducible M24 representations.
2Since the orbifold action is asymmetric, this evades various no-go-theorems (see e.g. [9]) that
state that the possible orbifold groups are either Z2, Z3, Z4, or Z6.
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models that are not cyclic torus orbifolds, our observation may go a certain way
towards explaining why only M24 seems to appear in the elliptic genus of K3.

We should mention that Mathieu Moonshine can also be formulated in terms of
a mock modular form that can be naturally associated to the elliptic genus of K3 [1,
10–12]; this point of view has recently led to an interesting class of generalisations
[13]. Remarkably, it turns out that these mock modular forms can be expressed
in terms of Rademacher sums [11]. The analogous property for the McKay-
Thompson series has been shown to be equivalent to the ‘genus zero property’ in [7].
Rademacher sums and their applications to Monstrous and Mathieu Moonshine are
described in detail in the contribution by Cheng and Duncan in this collection. There
are also indications that, just as for Monstrous Moonshine, Mathieu Moonshine can
possibly be understood in terms of an underlying Borcherds-Kac-Moody algebra
[10, 14–17].

2 Mathieu Moonshine

Let us first review the basic idea of ‘Mathieu Moonshine’. We consider a conformal
field theory sigma-model with target space K3. This theory has N D .4; 4/

superconformal symmetry on the world-sheet. As a consequence, the space of states
can be decomposed into representations of the N D 4 superconformal algebra, both
for the left- and the right-movers. (The left- and right-moving actions commute, and
thus we can find a simultaneous decomposition.) The full space of states takes then
the form

H D
M

i;j

Nij Hi ˝ NHj ; (1)

where i and j label the different N D 4 superconformal representations, andNij 2
N0 denote the multiplicities with which these representations appear. The N D 4

algebra contains, apart from the Virasoro algebra Ln at c D 6, four supercharge
generators, as well as an affine Osu.2/1 subalgebra at level one; we denote the Cartan
generator of the zero mode subalgebra su.2/ by J0.

The full partition function of the conformal field theory is quite complicated, and
is only explicitly known at special points in the moduli space. However, there exists
some sort of partial index that is much better behaved. This is the so-called elliptic
genus that is defined by

�K3.�; z/ D TrRR

�
qL0� c

24 yJ0 .�1/F Nq NL0� Nc
24 .�1/ NF 	 
 �0;1.�; z/ : (2)

Here the trace is only taken over the Ramond–Ramond part of the spectrum (1), and
the right-moving N D 4modes are denoted by a bar. Furthermore, q D exp.2�i�/
and y D exp.2�iz/, F and NF are the left- and right-moving fermion number
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operators, and the two central charges equal c D Nc D 6. Note that the elliptic genus
does not actually depend on N� , although Nq D exp.�2�i N�/ does; the reason for this
is that, with respect to the right-moving algebra, the elliptic genus is like a Witten
index, and only the right-moving ground states contribute. To see this one notices
that states that are not annihilated by a supercharge zero mode appear always as a
boson–fermion pair; the contribution of such a pair to the elliptic genus however
vanishes because the two states contribute with the opposite sign (as a consequence
of the .�1/ NF factor). Thus only the right-moving ground states, i.e. the states that
are annihilated by all right-moving supercharge zero modes, contribute to the elliptic
genus, and the commutation relations of the N D 4 algebra then imply that they
satisfy . NL0 � Nc

24
/�ground D 0; thus it follows that the elliptic genus is independent of

N� . Note that this argument does not apply to the left-moving contributions because
of the yJ0 factor. (The supercharges are ‘charged’ with respect to the J0 Cartan
generator, and hence the two terms of a boson–fermion pair come with different
powers of y. However, if we also set y D 1, the elliptic genus does indeed become
a constant, independent of � and N� .)

It follows from general string considerations that the elliptic genus defines a weak
Jacobi form of weight zero and index one [18]. Recall that a weak Jacobi form of
weight w and index m is a function [19]

�w;m W HC � C! C ; .�; z/ 7! �w;m.�; z/ (3)

that satisfies

�w;m

�a� C b
c� C d ;

z

c� C d
	
D .c�Cd/w e2�im cz2

c�Cd �w;m.�; z/

�
a b

c d

�
2 SL.2;Z/ ;

(4)

�.�; zC `� C `0/ D e�2�im.`2�C2`z/�.�; z/ `; `0 2 Z ; (5)

and has a Fourier expansion

�.�; z/ D
X

n�0; `2Z
c.n; `/qny` (6)

with c.n; `/ D .�1/wc.n;�`/. Weak Jacobi forms have been classified, and there
is only one weak Jacobi form with w D 0 and m D 1. Up to normalisation �K3

must therefore agree with this unique weak Jacobi form �0;1, which can explicitly
be written in terms of Jacobi theta functions as

�0;1.�; z/ D 8
X

iD2;3;4

#i .�; z/2

#i .�; 0/2
: (7)

Note that the Fourier coefficients of �K3 are integers; as a consequence they cannot
change continuously as one moves around in the moduli space of K3 sigma-models,
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and thus �K3 must be actually independent of the specific K3 sigma-model that is
being considered, i.e. independent of the point in the moduli space. Here we have
used that the moduli space is connected. More concretely, it can be described as the
double quotient

MK3 D O.� 4;20/ n O.4; 20/ = O.4/ � O.20/ : (8)

We can think of the Grassmannian on the right

O.4; 20/ = O.4/ � O.20/ (9)

as describing the choice of a positive-definite 4-dimensional subspace ˘ � R
4;20,

while the group on the left, O.� 4;20/, leads to discrete identifications among them.
Here O.� 4;20/ is the group of isometries of a given fixed unimodular lattice � 4;20 �
R
4;20. (In physics terms, the lattice � 4;20 can be thought of as the D-brane charge

lattice of string theory on K3.)
Let us denote by H .0/ � HRR the subspace of (1) that consists of those RR

states for which the right-moving states are ground states. (Thus H .0/ consists of
the states that contribute to the elliptic genus.) H .0/ carries an action of the left-
moving N D 4 superconformal algebra, and at any point in moduli space, its
decomposition is of the form

H .0/ D 20 �HhD 1
4 ;jD0 ˚ 2 �HhD 1

4 ;jD 1
2
˚

1M

nD1
Dn HhD 1

4Cn;jD 1
2
; (10)

where Hh;j denotes the irreducible N D 4 representation whose Virasoro primary
states have conformal dimension h and transform in the spin j representation of
su.2/. The multiplicities Dn are not constant over the moduli space, but the above
argument shows that

An D TrDn.�1/ NF (11)

are (where Dn is now understood not just as a multiplicity, but as a representation
of the right-moving .�1/ NF operator that determines the sign with which these states
contribute to the elliptic genus). In this language, the elliptic genus then takes the
form

�K3.�; z/ D 20 � 	hD 1
4 ;jD0.�; z/ � 2 � 	hD 1

4 ;jD 1
2
.�; z/C

1X

nD1
An � 	hD 1

4Cn;jD 1
2
.�; z/ ;

(12)

where 	h;j .�; z/ is the ‘elliptic’ genus of the corresponding N D 4 representation,

	h;j .�; z/ D TrHh;j

�
qL0� c

24 yJ0.�1/F
	
; (13)
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and we have used that .�1/ NF takes the eigenvalues C1 and �1 on the 20- and 2-
dimensional multiplicity spaces of the first two terms in (10), respectively.

The key observation of Eguchi, Ooguri & Tachikawa (EOT) [1] was that the An
are sums of dimensions of M24 representation, in striking analogy to the original
Monstrous Moonshine conjecture of [3]; the first few terms are

A1 D 90 D 45C 45 (14)

A2 D 462 D 231C 231 (15)

A3 D 1540 D 770C 770 ; (16)

where N denotes a representation of M24 of dimension N . Actually, they guessed
correctly the first six coefficients; from A7 onwards the guesses become much more
ambiguous (since the dimensions of the M24 representations are not that large) and
they actually misidentified the seventh coefficient in their original analysis. (We will
come back to the question of why and how one can be certain about the ‘correct’
decomposition shortly, see Sect. 2.2.) The alert reader will also notice that the first
two coefficients in (10), namely 20 and �2, are not directly M24 representations; the
correct prescription is to introduce virtual representations and to write

20 D 23 � 3 � 1 ; �2 D �2 � 1 : (17)

Recall that M24 is a sporadic finite simple group of order

jM24j D 210 � 33 � 5 � 7 � 11 � 23 D 244 823 040 : (18)

It has 26 conjugacy classes (which are denoted by 1A, 2A, 3A, : : :, 23A, 23B, where
the number refers to the order of the corresponding group element)—see Eqs. (19)
and (20) below for the full list—and therefore also 26 irreducible representations
whose dimensions range from N D 1 to N D 10;395. The Mathieu group M24 can
be defined as the subgroup of the permutation group S24 that leaves the extended
Golay code invariant; equivalently, it is the quotient of the automorphism group of
the su.2/24 Niemeier lattice, divided by the Weyl group. Thought of as a subgroup
of M24 � S24, it contains the subgroup M23 that is characterised by the condition
that it leaves a given (fixed) element of f1; : : : ; 24g invariant.

2.1 Classical Symmetries

The appearance of a Mathieu group in the elliptic genus of K3 is not totally
surprising in view of the Mukai theorem [20, 21]. It states that any finite group of
symplectic automorphisms of a K3 surface can be embedded into the Mathieu group
M23. The symplectic automorphisms of a K3 surface define symmetries that act on
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the multiplicity spaces of the N D 4 representations, and therefore explain part of
the above findings. However, it is also clear from Mukai’s argument that they do not
even account for the full M23 group. Indeed, every symplectomorphism of K3 has
at least five orbits on the set f1; : : : ; 24g, and thus not all elements of M23 can be
realised as a symplectomorphism. More specifically, of the 26 conjugacy classes of
M24, 16 have a representative in M23, namely

repr. in M23:
1A, 2A, 3A, 4B, 5A, 6A, 7A, 7B, 8A (geometric)
11A, 14A, 14B, 15A, 15B, 23A, 23B (non-geometric) ,

(19)

where ‘geometric’ means that a representative can be (and in fact is) realised by
a geometric symplectomorphism (i.e. that the representative has at least five orbits
when acting on the set f1; : : : ; 24g), while ‘non-geometric’ means that this is not the
case. The remaining conjugacy classes do not have a representative in M23, and are
therefore not accounted for geometrically via the Mukai theorem

no repr. in M23: 2B, 3B, 4A, 4C, 6B, 10A, 12A, 12B, 21A, 21B : (20)

The classical symmetries can therefore only explain the symmetries in the first line
of (19). Thus an additional argument is needed in order to understand the origin of
the other symmetries; we shall come back to this in Sect. 3.

2.2 Evidence for Moonshine

As was already alluded to above, in order to determine the ‘correct’ decomposition
of the An multiplicity spaces in terms of M24 representations, we need to study
more than just the usual elliptic genus. By analogy with Monstrous Moonshine, the
natural objects to consider are the analogues of the McKay Thompson series [22].
These are obtained from the elliptic genus upon replacing

An D dimRn ! TrRn.g/ ; (21)

where g 2 M24, and Rn is the M24 representation whose dimension equals the
coefficient An; the resulting functions are then [compare (12)]

�g.�; z/ D Tr23�3�1.g/ 	hD 1
4 ;jD0.�; z/ � 2Tr1.g/ 	hD 1

4 ;jD 1
2
.�; z/

C
1X

nD1
TrRn.g/ 	hD 1

4Cn;jD 1
2
.�; z/ : (22)

The motivation for this definition comes from the observation that if the underlying
vector space H .0/, see Eq. (10), of states contributing to the elliptic genus were to
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carry an action of M24, �g.�; z/ would equal the ‘twining elliptic genus’, i.e. the
elliptic genus twined by the action of g

�g.�; z/ D TrH .0/

�
g qL0� c

24 yJ0 .�1/F Nq NL0� Nc
24 .�1/ NF 	 : (23)

Obviously, a priori, it is not clear what the relevant Rn in (21) are. However, we
have some partial information about them:

(i) For any explicit realisation of a symmetry of a K3 sigma-model, we can
calculate (23) directly. (In particular, for some symmetries, the relevant twining
genera had already been calculated in [23].)

(ii) The observation of EOT determines the first six coefficients explicitly.
(iii) The twining genera must have special modular properties.

Let us elaborate on (iii). Assuming that the functions �g.�; z/ have indeed an
interpretation as in (23), they correspond in the usual orbifold notation of string
theory to the contribution

�g.�; z/  ! e

g (24)

where e is the identity element of the group. Under a modular transformation it is
believed that these twining and twisted genera transform (up to a possible phase) as

h

0

@a b

c d

1

A

�����������! hdgc

g gahb

(25)

The twining genera (24) are therefore invariant (possibly up to a phase) under the
modular transformations with

gcd.a; o.g// D 1 and c D 0 mod o.g/, (26)

where o.g/ is the order of the group element g and we used that for gcd.a; o.g// D
1, the group element ga is in the same conjugacy class as g or g�1. (Because of
reality, the twining genus of g and g�1 should be the same.) Since ad �bc D 1, the
second condition implies the first, and we thus conclude that �g.�; z/ should be (up
to a possible multiplier system) a weak Jacobi form of weight zero and index one
under the subgroup of SL.2;Z/

�0.N / D
��

a b

c d

�
2 SL.2;Z/ W c D 0 mod .N /

�
; (27)
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Table 1 Value of h for the conjugacy classes in (28)

Class 2B 3B 4A 4C 6B 10A 12A 12B 21AB

h 2 3 2 4 6 2 2 12 3

where N D o.g/. This is a relatively strong condition, and knowing the first few
terms (for a fixed multiplier system) determines the function uniquely. In order to
use this constraint, however, it is important to know the multiplier system. An ansatz
(that seems to work, see below) was made in [24]

�g

�a� C b
c� C d ;

z

c� C d
	
D e 2�icdNh e

2�i cz2
c�Cd �g.�; z/ ;

�
a b

c d

�
2 �0.N / ; (28)

where N is again the order of g and hj gcd.N; 12/. The multiplier system is trivial
(h D 1) if and only if g contains a representative in M23 � M24. For the other
conjugacy classes, the values are tabulated in Table 1.

It was noted in [11] that h equals the length of the shortest cycle (when
interpreted as a permutation in S24, see Table 1 of [11]).

Using this ansatz, explicit expressions for all twining genera were determined in
[24]; independently, the same twining genera were also found (using guesses based
on the cycle shapes of the corresponding S24 representations) in [25]. (Earlier partial
results had been obtained in [10] and [26].)

These explicit expressions for the twining genera then allow for a very non-trivial
check of the EOT proposal. As is clear from their definition in (22), they determine
the coefficients

TrRn.g/ for all g 2M24 and all n � 1. (29)

This information is therefore sufficient to determine the representations Rn, i.e. to
calculate their decomposition into irreducible M24 representations, for all n. We
have worked out the decompositions explicitly for the first 500 coefficients, and we
have found that each Rn can be written as a direct sum of M24 representations with
non-negative integer multiplicities [24]. (Subsequently [25] tested this property for
the first 600 coefficients, and apparently Tachikawa has also checked it for the first
1;000 coefficients.) Terry Gannon has informed us that this information is sufficient
to prove that the same will then happen for all n [27]. In some sense this then proves
the EOT conjecture.

3 Symmetries of K3 Models

While the above considerations establish in some sense the EOT conjecture, they
do not offer any insight into why the elliptic genus of K3 should exhibit an
M24 symmetry. This is somewhat similar to the original situation in Monstrous
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Moonshine, after Conway and Norton had found the various Hauptmodules by
somewhat similar techniques. Obviously, in the case of Monstrous Moonshine,
many of these observations were subsequently explained by the construction of the
Monster CFT (that possesses the Monster group as its automorphism group) [5, 6].
So we should similarly ask for a microscopic explanation of these findings.

In some sense it is clear what the analogue of the Monster CFT in the current
context should be: we know that the function in question is the elliptic genus of K3.
However, there is one problem with this. As we mentioned before, there is not just
one K3 sigma-model, but rather a whole moduli space (see Eq. (8)) of such CFTs.
So the simplest explanation of the EOT observation would be if there is (at least)
one special K3 sigma-model that has M24 as its automorphism group. Actually,
the relevant symmetry group should commute with the action of the N D .4; 4/

superconformal symmetry (since it should act on the multiplicity spaces in H .0/,
see Eq. (10)). Furthermore, since the two N D 4 representations with h D 1

4
and

j D 1
2

are singlets—recall that the coefficient �2 transforms as �2 D �2 � 1,
see (17)—the automorphism must act trivially on the four RR ground states that
transform in the .2; 2/ representation of the su.2/L � su.2/R subalgebra of N D
.4; 4/. Note that these four states generate the simultaneous half-unit spectral flows
in the left- and the right-moving sector; the requirement that the symmetry leaves
them invariant therefore means that spacetime supersymmetry is preserved.

Recall from (8) that the different K3 sigma-models are parametrised by the
choice of a positive-definite 4-dimensional subspace ˘ � R

4;20, modulo some
discrete identifications. Let us denote by G˘ the group of symmetries of the sigma-
model described by˘ that commute with the action of N D .4; 4/ and preserve the
RR ground states in the .2; 2/ (see above). It was argued in [8] that G˘ is precisely
the subgroup of O.� 4;20/ consisting of those elements that leave˘ pointwise fixed.
The possible symmetry groups G˘ can then be classified following essentially
the paradigm of the Mukai–Kondo argument for the symplectomorphisms of K3
surfaces [20, 21]. The outcome of the analysis can be summarised by the following
theorem [8]:

Theorem. Let G be the group of symmetries of a non-linear sigma-model on K3
preserving the N D .4; 4/ superconformal algebra as well as the spectral flow
operators. One of the following possibilities holds:

(i) G D G0:G00, where G0 is a subgroup of Z112 , and G00 is a subgroup of M24 with
at least four orbits when acting as a permutation on f1; : : : ; 24g

(ii) G D 51C2 W Z4
(iii) G D Z

4
3 W A6

(iv) G D 31C4 W Z2:G00, where G00 is either trivial, Z2 or Z22.

Here G D N:Q means that N is a normal subgroup of G, and G=N Š Q; when G
is the semidirect product of N and Q, we denote it by N W Q. Furthermore, p1C2n
is an extra-special group of order p1C2n, which is an extension of Z2np by a central
element of order p.
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We will give a sketch of the proof below (see Sect. 3.1), but for the moment let us
comment on the implications of this result. First of all, our initial expectation from
above is not realised: none of these groups G 
 G˘ contains M24. In particular, the
twining genera for the conjugacy classes 12B, 21A, 21B, 23A, 23B of M24 cannot
be realised by any symmetry of a K3 sigma-model. Thus we cannot give a direct
explanation of the EOT observation along these lines.

Given that the elliptic genus is constant over the moduli space, one may then hope
that we can explain the origin of M24 by ‘combining’ symmetries from different
points in the moduli space. As we have mentioned before, this is also similar to
what happens for the geometric symplectomorphisms of K3: it follows from the
Mukai theorem that the Mathieu group M23 is the smallest group that contains
all symplectomorphisms, but there is no K3 surface where all of M23 is realised,
and indeed, certain generators of M23 can never be symmetries, see (19). However,
also this explanation of the EOT observation is somewhat problematic: as is clear
from the above theorem, not all symmetry groups of K3 sigma-models are in fact
subgroups of M24. In particular, none of the cases (ii), (iii) and (iv) (as well as case
(i) with G0 non-trivial) have this property, as can be easily seen by comparing the
prime factor decompositions of their orders to (18). The smallest group that contains
all groups of the theorem is the Conway group Co1, but as far as we are aware, there
is no evidence of any ‘Conway Moonshine’ in the elliptic genus of K3.

One might speculate that, generically, the group G must be a subgroup of M24,
and that the models whose symmetry group is not contained in M24 are, in some
sense, special or ‘exceptional’ points in the moduli space. In order to make this
idea precise, it is useful to analyse the exceptional models in detail. In [8], some
examples have been provided of case (i) with non-trivial G0 (a torus orbifold T

4=Z2
or the Gepner model 24, believed to be equivalent to a T

4=Z4 orbifold), and of case
(iii) (the Gepner model 16, which is believed to be equivalent to a T

4=Z3 orbifold,
see also [28]). For the cases (ii) and (iv), only an existence proof was given. In
Sect. 5, we will improve the situation by constructing in detail an example of case
(ii), realised as an asymmetric Z5-orbifold of a torus T

4. Furthermore, in Sect. 6
we will briefly discuss the Z3-orbifold of a torus and the explicit realisation of its
symmetry group, corresponding to cases (ii) and (iv) for any G00.

Notice that all the examples of exceptional models known so far are provided
by torus orbifolds. In fact, we will show below (see Sect. 4) that all cyclic torus
orbifolds have exceptional symmetry groups. Conversely, we will prove that the
cases (ii)–(iv) of the theorem are always realised by (cyclic) torus orbifolds. On the
other hand, as we shall also explain, some of the exceptional models in case (i) are
not cyclic torus orbifolds.

3.1 Sketch of the Proof of the Theorem

In this subsection, we will describe the main steps in the proof of the above theorem;
the details can be found in [8].
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It was argued in [8] that the supersymmetry preserving automorphisms of the
non-linear sigma-model characterised by ˘ generate the group G 
 G˘ that
consists of those elements of O.� 4;20/ that leave ˘ pointwise fixed. Let us denote
by LG the sublattice of G-invariant vectors of L 
 � 4;20, and define LG to be its
orthogonal complement that carries a genuine action of G. Since LG ˝ R contains
the subspace ˘ , it follows that LG has signature .4; d/ for some d � 0; so that LG
is a negative-definite lattice of rank 20�d . In [8], it is proved that, for any consistent
model, LG can be embedded (up to a change of sign in its quadratic form) into the
Leech lattice, the unique 24-dimensional positive-definite even unimodular lattice
containing no vectors of squared norm 2. Furthermore, the action of G on LG can
be extended to an action on the whole of , such that the sublattice G �  of
vectors fixed by G is the orthogonal complement of LG in . This construction
implies that G must be a subgroup of Co0 
 Aut./ that fixes a sublattice G of
rank 4 C d . Conversely, it can be shown that any such subgroup of Aut./ is the
symmetry group of some K3 sigma-model.

This leaves us with characterising the possible subgroups of the finite group
Co0 
 Aut./ that stabilise a suitable sublattice; problems of this kind have
been studied in the mathematical literature before. In particular, the stabilisers of
sublattices of rank at least 4 are, generically, the subgroups of Z112 WM24 described in
case (i) of the theorem above. The three cases (ii), (iii), (iv) arise when the invariant
sublattice G is contained in some S -lattice S � . An S -lattice S is a primitive
sublattice of  such that each vector of S is congruent modulo 2S to a vector of
norm 0, 4 or 6. Up to isomorphisms, there are only three kind of S -lattices of rank
at least four; their properties are summarised in the following table:

Name type rkS Stab.S/ Aut.S/
.A2 ˚ A2/0.3/ 2936 4 Z

4
3 W A6 Z2 � .S3 � S3/:Z2

A�
4 .5/ 25310 4 51C2 W Z4 Z2 � S5

E�
6 .3/ 227336 6 31C4 W Z2 Z2 �W.E6/ :

Here, S is characterised by the type 2p3q , which indicates that S contains p
pairs of opposite vectors of norm 4 (type 2) and q pairs of opposite vectors of
norm 6 (type 3). The group Stab.S/ is the pointwise stabiliser of S in Co0 and
Aut.S/ is the quotient of the setwise stabiliser of S modulo its pointwise stabiliser
Stab.S/. The group Aut.S/ always contains a central Z2 subgroup, generated by
the transformation that inverts the sign of all vectors of the Leech lattice. The lattice
of type 227336 is isomorphic to the weight lattice (the dual of the root lattice) of E6
with quadratic form rescaled by 3 (i.e. the roots in E�

6 .3/ have squared norm 6), and
Aut.S/=Z2 is isomorphic to the Weyl group W.E6/ of E6. Similarly, the lattice of
type 25310 is the weight lattice of A4 rescaled by 5, and Aut.S/=Z2 is isomorphic
to the Weyl group W.A4/ Š S5 of A4. Finally, the type 2936 is the three-rescaling
of a lattice .A2 ˚A2/0 obtained by adjoining to the root lattice A2 ˚A2 an element
.e�
1 ; e

�
2 / 2 A�

2 ˚ A�
2 , with e�

1 and e�
2 of norm 2=3. The latter S -lattice can also

be described as the sublattice of vectors of E�
6 .3/ that are orthogonal to an A2.3/
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sublattice of E�
6 .3/. The group Aut.S/=Z2 is the product .S3 � S3/:Z2 of the Weyl

groups W.A2/ D S3, and the Z2 symmetry that exchanges the two A2 and maps e�
1

to e�
2 .

The cases (ii)–(iv) of the above theorem correspond to G being isomorphic to
A�
4 .5/ (case ii), to .A2˚A2/0.3/ (case iii) or to a sublattice of E�

6 .3/ different from
.A2 ˚ A2/0.3/ (case iv). In the cases (ii) and (iii), G is isomorphic to Stab.S/. In
case (iv), Stab.S/ is, generically, a normal subgroup ofG, andG00 Š G=Stab.S/ is a
subgroup of Aut.S/ Š Z2�W.E6/ that fixes a sublatticeG � E�

6 .3/, withG ¤
.A2 ˚ A2/0.3/, of rank at least 4. The only non-trivial subgroups of Z2 � W.E6/
with these properties are G00 D Z2, which corresponds to G being orthogonal to a
single vector of norm 6 inE�

6 .3/ (a rescaled root), andG00 D Z
2
2, which corresponds

toG being orthogonal to two orthogonal vectors of norm 6.3 IfG is orthogonal to
two vectors v1; v2 2 E�

6 .3/ of norm 6, with v1 � v2 D �3, then G Š .A2˚A2/0.3/
and case (iii) applies.

4 Symmetry Groups of Torus Orbifolds

In this section we will prove that all K3 sigma-models that are realised as (possibly
left-right asymmetric) orbifolds of T4 by a cyclic group have an ‘exceptional’ group
of symmetries, i.e. their symmetries are not a subgroup of M24. Furthermore, these
torus orbifolds account for most of the exceptional models (in particular, for all
models in the cases (ii)–(iv) of the theorem). On the other hand, as we shall also
explain, there are exceptional models in case (i) that are not cyclic torus orbifolds.

Our reasoning is somewhat reminiscent of the construction of [29, 30] in the
context of Monstrous Moonshine. Any Zn-orbifold of a conformal field theory has
an automorphism g of order n, called the quantum symmetry, which acts trivially
on the untwisted sector and by multiplication by the phase exp. 2�ik

n
/ on the k-

th twisted sector. Furthermore, the orbifold of the orbifold theory by the group
generated by the quantum symmetry g, is equivalent to the original conformal field
theory [31]. This observation is the key for characterising K3 models that can be
realised as torus orbifolds:

A K3 model C is a Zn-orbifold of a torus model if and only if it has a symmetry
g of order n such that C =hgi is a consistent orbifold equivalent to a torus model.

In order to see this, suppose that CK3 is a K3 sigma-model that can be realised
as a torus orbifold CK3 D QCT4=h Qgi, where Qg is a symmetry of order n of the torus
model QCT4 . Then CK3 possesses a ‘quantum symmetry’ g of order n, such that the
orbifold of CK3 by g describes again the original torus model, QCT4 D CK3=hgi.

Conversely, suppose CK3 has a symmetry g of order n, such that the orbifold of
CK3 by g is consistent, i.e. satisfies the level matching condition—this is the case

3The possibility G00 D Z4 that has been considered in [8] has to be excluded, since there are no
elements of order 4 in W.E6/ that preserve a four-dimensional sublattice of E�

6 .3/.



122 M.R. Gaberdiel and R. Volpato

if and only if the twining genus �g has a trivial multiplier system—and leads to
a torus model CK3=hgi D QCT4 . Then CK3 itself is a torus orbifold since we can
take the orbifold of QCT4 by the quantum symmetry associated to g, and this will, by
construction, lead back to CK3.

Thus we conclude that C 
 CK3 can be realised as a torus orbifold if and only
if C contains a symmetry g such that (i) �g has a trivial multiplier system; and (ii)
the orbifold of C by g leads to a torus model QCT4 . It is believed that the orbifold
of C by any N D .4; 4/-preserving symmetry group, if consistent, will describe a
sigma-model with target space either a torus T4 or a K3 manifold. The two cases can
be distinguished by calculating the elliptic genus; in particular, if the target space is
a torus, the elliptic genus vanishes. Actually, since the space of weak Jacobi forms
of weight zero and index one is 1-dimensional, this condition is equivalent to the
requirement that the elliptic genus Q�.�; z/ of QC D C =hgi vanishes at z D 0.

Next we recall that the elliptic genus of the orbifold by a group element g of
order n D o.g/ is given by the usual orbifold formula

Q�.�; z/ D 1

n

nX

i;jD1
�gi ;gj .�; z/ ; (30)

where �gi ;gj .�; z/ is the twining genus for gj in the gi -twisted sector; this can be
obtained by a modular transformation from the untwisted twining genus �gd .�; z/
with d D gcd.i; j; n/. As we have explained above, it is enough to evaluate the
elliptic genus for z D 0. Then

�gd .�; z D 0/ D Tr24.g
d / ; (31)

where Tr24.g
d / is the trace of gd over the 24-dimensional space of RR ground

states, and since (31) is constant (and hence modular invariant) we conclude that

Q�.�; 0/ D 1

n

nX

i;jD1
Tr24.g

gcd.i;j;n// : (32)

According to the theorem in Sect. 3, all symmetry groups of K3 sigma-models are
subgroups of Co0 and, in fact, Tr24.g

d / coincides with the trace of gd 2 Co0
in the standard 24-dimensional representation of Co0. Thus, the elliptic genus of
the orbifold model QC D C =hgi only depends on the conjugacy class of g in
Co0. The group Co0 contains 167 conjugacy classes, but only 42 of them contain
symmetries that are realised by some K3 sigma-model, i.e. elements that fix at
least a four-dimensional subspace in the standard 24-dimensional representation of
Co0. If Tr24.g/ ¤ 0 (this happens for 31 of the above 42 conjugacy classes), the
twining genus �g.�; z/ has necessarily a trivial multiplier system, and the orbifold
C =hgi is consistent. These classes are listed in the following table, together with
the dimension of the space that is fixed by g, the trace over the 24-dimensional
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representation, and the elliptic genus Q�.�; z D 0/ of the orbifold model QC (we
underline the classes that restrict to M24 conjugacy classes):

Co0-class 1A 2B 2C 3B 3C 4B 4E 4F 5B 5C 6G 6H 6I 6K 6L 6M 7B
dim fix 24 16 8 12 6 8 10 6 8 4 6 6 6 8 4 4 6

Tr24.g/ 24 8 �8 6 �3 8 4 �4 4 �1 �4 4 5 2 �2 �1 3
Q�.�; 0/ 24 24 0 24 0 24 24 0 24 0 0 24 24 24 0 0 24

Co0-class 8D 8G 8H 9C 10F 10G 10H 11A 12I 12L 12N 12O 14C 15D
dim fix 4 6 4 4 4 4 4 4 4 4 4 4 4 4

Tr24.g/ 4 2 �2 3 �2 2 3 2 2 1 �2 2 1 1
Q�.�; 0/ 24 24 0 24 0 24 24 24 24 24 0 24 24 24

Note that the elliptic genus of the orbifold theory QC is always 0 or 24,
corresponding to a torus or a K3 sigma-model, respectively. Out of curiosity,
we have also computed the putative elliptic genus Q�.�; 0/ for the 11 classes of
symmetries g with Tr24.g/ D 0 for which we do not expect the orbifold to
make sense—the corresponding twining genus �g will typically have a non-trivial
multiplier system, and hence the orbifold will not satisfy level-matching. Indeed, for
almost none of these cases is Q�.�; 0/ equal to 0 or 24, thus signaling an inconsistency
of the orbifold model:

Co0-class 2D 3D 4D 4G 4H 6O 6P 8C 8I 10J 12P
dim fix 12 8 4 8 6 6 4 4 4 4 4

Tr24.g/ 0 0 0 0 0 0 0 0 0 0 0
Q�.�; 0/ 12 8 0 12 6 12 4 12 6 12 12

The only exception is the class 4D, which might define a consistent orbifold (a torus
model). It follows that a K3 model C is the Zn-orbifold of a torus model if and only
if it contains a symmetry g in one of the classes

2C; 3C; 4F; 5C; 6G; 6L; 6M; 8H; 10F; 12N; (33)

4B; 4D; 6H; 6I; 8C; 8D; 9C; 10G; 10H; 12I; 12L; 12O

of Co0.4 Here we have also included (in the second line) those classes of elements
g 2 Co0 for which C =hgi i is a torus model, for some power i > 1. Our main

4We should emphasise that for us the term ‘orbifold’ always refers to a conformal field theory
(rather than a geometrical) construction. Although a non-linear sigma-model on a geometric
orbifoldM=ZN always admits an interpretation as a CFT orbifold, the converse is not always true.
In particular, there exist asymmetric orbifold constructions that do not have a direct geometric
interpretation, see for example Sect. 5.
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observation is now that none of the Co0 classes in (33) restricts to a class in M24,
i.e.

All K3 models that are realised as Zn-orbifolds of torus models are exceptional.
In particular, the quantum symmetry is not an element of M24.

One might ask whether the converse is also true, i.e. whether all exceptional
models are cyclic torus orbifolds. This is not quite the case: for example, the
classification theorem of Sect. 3 predicts the existence of models with a symmetry
group G Š GL2.3/ (the group of 2�2 invertible matrices on the field F3 with three
elements). The group G contains no elements in the classes (33), so the model is
not a cyclic torus orbifold; on the other hand, G contains elements in the class 8I of
Co0, which does not restrict to M24. A second counterexample is a family of models
with a symmetry g in the class 6O of Co0. A generic point of this family is not a
cyclic torus model (although some special points are), since the full symmetry group
is generated by g and contains no elements in (33). Both these counterexamples
belong to case (i) of the general classification theorem. In fact, we can prove that

The symmetry group G of a K3 sigma-model C contains a subgroup 31C4 W Z2
[cases (iii) and (iv) of the theorem] if and only if C is a Z3-orbifold of a torus model.
Furthermore, G D 51C2 W Z4 [case (ii)] if and only if C is a Z5-orbifold of a torus
model.

The proof goes as follows. All subgroups of Co0 of the form 31C4 W Z2

(respectively, 51C2 W Z4) contain an element in the class 3C (resp., 5C), and
therefore the corresponding models are Z3 (resp., Z5) torus orbifolds. Conversely,
consider a Z3-orbifold of a torus model. Its symmetry groupG contains the quantum
symmetry g in class 3C of Co0. (It must contain a symmetry generator of order three
whose orbifold leads to a torus, and 3C is then the only possibility.) The sublattice
hgi �  fixed by g is the S -lattice 227336 [32]. From the classification theorem,
we know that G is the stabiliser of a sublattice G �  of rank at least 4. Since
G � hgi, G contains as a subgroup the stabiliser of hgi, namely 31C4 W Z2.

Analogously, a Z5 torus orbifold always has a symmetry in class 5C, whose fixed
sublattice hgi is the S -lattice 25310 [32]. Since hgi has rank 4 and is primitive,
G D hgi and the symmetry group G must be the stabiliser 51C2 W Z4 of hgi.

It was shown in [8] that the Gepner model .1/6 corresponds to the case (ii) of
the classification theorem. It thus follows from the above reasoning that it must
indeed be equivalent to a Z3-orbifold of T4, see also [28]. (We shall also study these
orbifolds more systematically in Sect. 6.) In the next section, we will provide an
explicit construction of a Z5-orbifold of a torus model and show that its symmetry
group is 51C2 W Z4, as predicted by the above analysis.

5 A K3 Model with Symmetry Group 51C2 W Z4

In this section we will construct a supersymmetric sigma-model on T
4 with a

symmetry g of order 5 commuting with an N D .4; 4/ superconformal algebra
and acting asymmetrically on the left- and on the right-moving sector. The orbifold
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of this model by g will turn out to be a well-defined SCFT with N D .4; 4/

(in particular, the level matching condition is satisfied) that can be interpreted as
a non-linear sigma-model on K3. We will argue that the group of symmetries of
this model is G D 51C2:Z4, one of the exceptional groups considered in the general
classification theorem.

5.1 The Torus Model

Let us consider a supersymmetric sigma-model on the torus T
4. Geometrically,

we can characterise the theory in terms of a metric and a Kalb–Ramond field,
but it is actually more convenient to describe it simply as a conformal field
theory that is generated by the following fields: four left-moving u.1/ currents
@Xa.z/, a D 1; : : : ; 4, four free fermions  a.z/, a D 1; : : : ; 4, their right-moving
analogues N@Xa.Nz/; Q a.Nz/, as well as some winding-momentum fields V�.z; Nz/ that
are associated to vectors � in an even unimodular lattice � 4;4 of signature .4; 4/.
The mode expansions of the left-moving fields are

@Xa.z/ D
X

n2Z
˛nz�n�1 ;  a D

X

n2ZC�
 nz�n� 1

2 ; (34)

where � D 0; 1=2 in the R- and NS-sector, respectively. Furthermore, we have the
usual commutation relations

Œ˛am; ˛
b
n� D mıab ım;�n f a

m; 
b
n g D ıab ım;�n : (35)

Analogous statements also hold for the right-moving modes Q̨n and Q n. The vectors
� 
 .�L; �R/ 2 � 4;4 describe the eigenvalues of the corresponding state with
respect to the left- and right-moving zero modes ˛a0 and Q̨ a0 , respectively. In these
conventions the inner product on � 4;4 is given as

.�; �0/ D �L � �0
L � �R � �0

R : (36)

Continuous and Discrete Symmetries

Any torus model contains an Osu.2/1 ˚ Osu.2/1 ˚ Ou.1/4 current algebra, both on the
left and on the right. Here, the Ou.1/4 currents are the @Xa, a D 1; : : : ; 4, while
Osu.2/1 ˚ Osu.2/1 D Oso.4/1 is generated by the fermionic bilinears

a3 WD N .1/ .1/ C N .2/ .2/ aC WD N .1/ N .2/ a� WD � .1/ .2/ ; (37)

Oa3 WD N .1/ .1/ � N .2/ .2/ OaC WD N .1/ .2/ Oa� WD � .1/ N .2/ ; (38)
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where

 .1/ D 1p
2
. 1 C i 2/  .2/ D 1p

2
. 3 C i 4/ (39)

N .1/ D 1p
2
. 1 � i 2/ N .2/ D 1p

2
. 3 � i 4/ : (40)

At special points in the moduli space, where the � 4;4 lattice contains vectors
of the form .�L; 0/ with �2L D 2, the bosonic u.1/4 algebra is enhanced to
some non-abelian algebra g of rank 4. There are generically 16 (left-moving)
supercharges; they form four .2; 2/ representations of the su.2/˚ su.2/ zero mode
algebra from (37) and (38). Altogether, the chiral algebra at generic points is a large
N D 4 superconformal algebra.

We want to construct a model with a symmetry g of order 5, acting non-trivially
on the fermionic fields, and commuting with the small N D 4 subalgebras both on
the left and on the right. A small N D 4 algebra contains an Osu.2/1 current algebra
and four supercharges in two doublets of su.2/. The symmetry g acts by an O.4;R/
rotation on the left-moving fermions  a, preserving the anti-commutation relations
(35). Without loss of generality, we may assume that  .1/ and N .1/ are eigenvectors
of g with eigenvalues � and ��1, where � is a primitive fifth root of unity

�5 D 1 ; (41)

and that the Osu.2/1 algebra preserved by g is (37). This implies that g acts on all the
fermionic fields by

 .1/ 7! �  .1/ ; N .1/ 7! � � 1 N .1/ ;  .2/ 7! � � 1 .2/ ; N .2/ 7! � N .2/ : (42)

Note that the action of g on the fermionic fields can be described by e
2�ik
5 Oa30 for

some k D 1; : : : ; 4, where Oa3 is the current in the algebra (38). The four g-invariant
supercharges can then be taken to be

p
2

2X

iD1
J .i/ N .i/ ;

p
2

2X

iD1
NJ .i/ .i/ ;

p
2. NJ .1/ N .2/ � NJ .2/ N .1// ;

p
2.J .1/ .2/ � J .2/ .1// ; (43)

where J .1/; NJ .1/; J .2/; NJ .2/ are suitable (complex) linear combinations of the left-
moving currents @Xa, a D 1; : : : ; 4. In order to preserve the four supercharges, g
must act with the same eigenvalues on the bosonic currents

J .1/ 7! � J .1/ ; NJ .1/ 7! ��1 NJ .1/ ; J .2/ 7! ��1J .2/ ; NJ .2/ 7! � NJ .2/ : (44)

A similar reasoning applies to the right-moving algebra with respect to an eigen-
value Q�, with Q�5 D 1. For the symmetries with a geometric interpretation, the
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action on the left- and right-moving bosonic currents is induced by an O.4;R/-
transformation on the scalar fields Xa, a;D 1; : : : ; 4, representing the coordinates
on the torus; then � and Q� are necessarily equal. In our treatment, we want to allow
for the more general case where � ¤ Q�.

The action of g on J a and QJ a induces an O.4; 4;R/-transformation on the lattice
� 4;4. The transformation g is a symmetry of the model if and only if it induces an
automorphism on � 4;4. In particular, it must act by an invertible integral matrix on
any lattice basis. The requirement that the trace of this matrix (and of any power of
it) must be integral, leads to the condition that

2.�i C ��i C Q�i C Q��i / 2 Z ; (45)

for all i 2 Z. For g of order 5, this condition is satisfied by

� D e 2�i5 and Q� D e 4�i5 ; (46)

and this solution is essentially unique (up to taking powers of it or exchanging
the definition of � and ��1). Equation (46) shows that a supersymmetry preserving
symmetry of order 5 is necessarily left-right asymmetric, and hence does not have a
geometric interpretation.

It is now clear how to construct a torus model with the symmetries (42)
and (44). First of all, we need an automorphism g of � 4;4 of order five. Such
an automorphism must have eigenvalues �; �2; �3; �4, each corresponding to two
independent eigenvectors v.1/

�i
; v.2/
�i

, i D 1; : : : ; 4, in � 4;4 ˝ C. Given the discussion
above, see in particular (46), we now require that the vectors

v.1/
�1
; v.2/

�1
; v.1/

�4
; v.2/

�4
(47)

span a positive-definite subspace of � 4;4 ˝ C (i.e. correspond to the left-movers),
while the vectors

v.1/
�2
; v.2/

�2
; v.1/

�3
; v.2/

�3
(48)

span a negative-definite subspace of � 4;4˝C (i.e. correspond to the right-movers).
An automorphism g with the properties above can be explicitly constructed as

follows. Let us consider the real vector space with basis vectors x1; : : : ; x4, and
y1; : : : ; y4, and define a linear map g of order 5 by

g.xi / D xiC1 ; g.yi / D yiC1 ; i D 1; : : : ; 3 ; (49)

and

g.x4/ D �.x1 C x2 C x3 C x4/ ; g.y4/ D �.y1 C y2 C y3 C y4/ : (50)
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A g-invariant bilinear form on the space is uniquely determined by the conditions

.xi ; xi / D 0 D .yi ; yi / ; i D 1; : : : ; 4 (51)

and

.x1; x2/ D 1 ; .x1; x3/ D .x1; x4/ D �1 ;
.y1; y2/ D 1 ; .y1; y3/ D .y1; y4/ D �1 ; (52)

as well as

.x1; y1/ D 1 ; and .xi ; y1/ D 0 ; .i D 2; 3; 4/ : (53)

The lattice spanned by these basis vectors is an indefinite even unimodular lattice
of rank 8 and thus necessarily isomorphic to � 4;4. The g-eigenvectors can be easily
constructed in terms of the basis vectors and one can verify that the eigenspaces
have the correct signature.

This torus model has an additional Z4 symmetry group that preserves the
superconformal algebra and normalises the group generated by g. The generator
h of this group acts by

h.xi / WD g1�i .x1 C x4 C 2y1 C y2 C y3 C y4/ ; (54)

h.yi / WD g1�i .�2x1� x2� x3� x4�y1�y3�y4/ ; i D 1; : : : ; 4 ; (55)

on the lattice vectors. The g-eigenvectors v.a/
�i

, a D 1; 2, i D 1; : : : ; 4 can be defined
as

v.1/
�i
WD

4X

jD0
��ij gj .x1 C h.x1// ; v.2/

�i
WD

4X

jD0
��ij gj .x1 � h.x1// ; (56)

so that

h.v.1/
�i
/ D �v.2/

��i ; h.v.2/
�i
/ D v.1/

��i : (57)

Correspondingly, the action of h on the left-moving fields is

 .1/ 7! � .2/ ;  .2/ 7!  .1/ ; N .1/ 7! � N .2/ ; N .2/ 7! N .1/ ; (58)

J .1/ 7! �J .2/ ; J .2/ 7! J .1/ ; NJ .1/ 7! � NJ .2/ ; NJ .2/ 7! NJ .1/ ; (59)

and the action on the right-moving fields is analogous. It is immediate to verify that
the generators of the superconformal algebra are invariant under this transformation.
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5.2 The Orbifold Theory

Next we want to consider the orbifold of this torus theory by the group Z5 that is
generated by g.

The Elliptic Genus

The elliptic genus of the orbifold theory can be computed by summing over the
SL.2;Z/ images of the untwisted sector contribution, which in turn is given by

�U .�; z/ D 1

5

4X

kD0
�1;gk .�; z/ ; (60)

where

�1;gk .�; z/ D TrRR.g
k qL0� c

24 Nq QL0� Qc
24 y2J0.�1/FC QF / : (61)

The k D 0 contribution, i.e. the elliptic genus of the original torus theory, is zero.
Each gk-contribution, for k D 1; : : : ; 4, is the product of a factor coming from the
ground states, one from the oscillators and one from the momenta

�1;gk .�; z/ D �gd
1;gk
.�; z/ �osc

1;gk
.�; z/ �mom

1;gk
.�; z/ : (62)

These contributions are, respectively,

�
gd
1;gk
.�; z/ D y�1.1 � �ky/.1 � ��ky/.1 � �2k/.1 � ��2k/ D 2y�1 C 2y C 1 ;

(63)

�osc
1;gk
.�; z/ D

1Y

nD1

.1 � �kyqn/.1 � ��kyqn/.1 � �ky�1qn/.1 � ��ky�1qn/
.1 � �kqn/2.1 � ��kqn/2

;

(64)
and

�mom
1;gk

.�; z/ D 1 ; (65)

where the last result follows because the only g-invariant state of the form .kL; kR/

is the vacuum .0; 0/. Thus we have

�1;gk .�; z/ D 5
#1.�; zC k

5
/ #1.�; z � k

5
/

#1.�;
k
5
/ #1.�;� k5 /

; (66)
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where

#1.�; z/ D �iq1=8y� 1
2 .y � 1/

1Y

nD1
.1 � qn/.1 � yqn/.1 � y�1qn/ ; (67)

is the first Jacobi theta function. Modular transformations of �1;gk .�; z/ reproduce
the twining genera in the twisted sector

�gl ;gk .�; z/ D TrH .l/

�
gk qL0� c

24 Nq QL0� Qc
24 y2J0.�1/FC QF � ; (68)

and using the modular properties of the theta function we obtain

�gl ;gk .�; z/ D 5
#1.�; zC k

5
C l�

5
/ #1.�; z � k

5
� l�

5
/

#1.�;
k
5
C l�

5
/ #1.�;� k5 � l�

5
/

; (69)

for k; l 2 Z=5Z, .k; l/ ¤ .0; 0/. The elliptic genus of the full orbifold theory is then

�orb.�; z/ D 1

5

X

k;l2Z=5Z
�gl ;gk .�; z/ D

X

k;l2Z=5Z
.k;l/¤.0;0/

#1.�; zC k
5
C l�

5
/ #1.�; z � k

5
� l�

5
/

#1.�;
k
5
C l�

5
/ #1.�;� k5 � l�

5
/

:

(70)
Since �gk;gl .�; 0/ D 5 for all .k; l/ ¤ .0; 0/, we have

�orb.�; 0/ D 1

5

X

k;l2Z=5Z
.k;l/¤.0;0/

5 D 24 ; (71)

which shows that the orbifold theory is a non-linear sigma-model on K3. In partic-
ular, the untwisted sector has four RR ground states, while each of the four twisted
sectors contains five RR ground states. For the following it will be important to
understand the structure of the various twisted sectors in detail.

The Twisted Sectors

In the gk-twisted sector, let us consider a basis of g-eigenvectors for the currents
and fermionic fields. For a given eigenvalue �i , i 2 Z=5Z, of gk , the corresponding
currents J i;a and fermionic fields  i;b (where a; b labels distinct eigenvectors with
the same eigenvalue) have a mode expansion

J i;a.z/ D
X

n2 i
5CZ

˛i;an z�n�1 ;  i;a.z/ D
X

r2 i
5C�CZ

 i;a
r z�r�1=2 ; (72)
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where � D 1=2 in the NS- and � D 0 in the R-sector. The ground states of the
gk-twisted sector are characterised by the conditions

˛i;an jm; ki D Q̨ i;an jm; ki D 0 ; 8 n > 0; i; a ; (73)

 i;b
r jm; ki D Q i;b

r jm; ki D 0 ; 8 r > 0; i; b ; (74)

where jm; ki denotes the mth ground state in the gk-twisted sector. Note that since
none of the currents are g-invariant, there are no current zero modes in the gk-
twisted sector, and similarly for the fermions. For a given k, the states jm; ki
have then all the same conformal dimension, which can be calculated using the
commutation relation ŒL�1; L1� D 2L0 or read off from the leading term of the
modular transform of the twisted character (68). In the gk-twisted NS-NS-sector
the ground states have conformal dimension

NS-NS gk-twisted: h D k

5
and Qh D 2k

5
; (75)

while in the RR-sector we have instead

R-R gk-twisted: h D Qh D 1

4
: (76)

In particular, level matching is satisfied, and thus the asymmetric orbifold is
consistent [33]. The full gk-twisted sector is then obtained by acting with the
negative modes of the currents and the fermionic fields on the ground states
jm; ki.

Let us have a closer look at the ground states of the gk twisted sector; for
concreteness we shall restrict ourselves to the case k D 1, but the modifications
for general k are minor (see below). The vertex operators V�.z; Nz/ associated to
� 2 � 4;4, act on the ground states jm; 1i by

lim
z!0

V�.z; Nz/jm; 1i D e�jm; 1i ; (77)

where e� are operators commuting with all current and fermionic oscillators and
satisfying

e� e� D �.�; �/ e�C� ; (78)

for some fifth root of unity �.�; �/. The vertex operators V� and V� must be local
relative to one another, and this is the case provided that (see the appendix)

�.�; �/

�.�; �/
D C.�;�/ ; (79)
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where

C.�;�/ D
4Y

iD1
.�i /.g

i .�/;�/ D �.Pg.�/;�/ with Pg.�/ D
4X

iD1
igi .�/ : (80)

The factor C.�;�/ has the properties

C.�;�1 C �2/ D C.�;�1/ C.�; �2/ ; C.�1 C �2; �/ D C.�1; �/C.�2; �/ ;
(81)

C.�;�/ D C.�; �/�1 ; (82)

C.�;�/ D C.g.�/; g.�// : (83)

Because of (81), C.�; 0/ D C.0; �/ D 1 for all � 2 � 4;4, and we can set

e0 D 1 ; (84)

so that �.0; �/ D 1 D �.�; 0/. More generally, for the vectors � in the sublattice

R WD f� 2 � 4;4 j C.�;�/ D 1 ; for all � 2 � 4;4g � � 4;4 ; (85)

we have C.�C �1; �2/ D C.�1; �2/, for all �1; �2 2 � 4;4, so that we can set

e�C� D e� ; 8� 2 R ; � 2 � 4;4 : (86)

Thus, we only need to describe the operators corresponding to representatives of the
group � 4;4=R. The vectors � 2 R are characterised by

.Pg.�/; �/ 
 0 mod 5 ; for all � 2 � 4;4 ; (87)

and since � 4;4 is self-dual this condition is equivalent to

Pg.�/ 2 5� 4;4 : (88)

Since � 4;4 has no g-invariant subspace, we have the identity

1C g C g2 C g3 C g4 D 0 (89)

that implies [see (80)]

Pg ı .1 � g/ D .1 � g/ ı Pg D �5 � 1 : (90)

Thus, � 2 R if and only if

Pg.�/ D Pg ı .1 � g/. Q�/ ; (91)
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for some Q� 2 � 4;4, and since Pg has trivial kernel [see (90)], we finally obtain

R D .1 � g/ � 4;4 : (92)

Since also .1 � g/ has trivial kernel, R has rank 8 and � 4;4=R is a finite group.
Furthermore,

j� 4;4=Rj D det.1 � g/ D 25 ; (93)

and, since 5� 4;4 � R, the group � 4;4=R has exponent 5. The only possibility is

� 4;4=R Š Z5 � Z5 : (94)

Let x; y 2 � 4;4 be representatives for the generators of � 4;4=R. By (82), we know
that C.x; x/ D C.y; y/ D 1, so that C.x; y/ ¤ 1 (otherwise C would be trivial
over the whole � 4;4), and we can choose x; y such that

C.x; y/ D � : (95)

Thus, the ground states form a representation of the algebra of operators generated
by ex , ey , satisfying

e5x D 1 D e5y ; exey D �eyex : (96)

The group generated by ex and ey is the extra-special group 51C2, and all its
non-abelian irreducible representations5 are five dimensional.

In particular, for the representation on the g-twisted ground states, we can choose
a basis of ex-eigenvectors

jmI 1i with ex jmI 1i D �mjmI 1i ; m 2 Z=5Z ; (97)

and define the action of the operators ey by

ey jmI 1i D jmC 1I 1i : (98)

For any vector � 2 � 4;4, there are unique a; b 2 Z=5Z such that � D ax C by C
.1 � g/.�/ for some � 2 � 4;4 and we define6

e� WD eaxeby : (99)

5We call a representation non-abelian if the central element does not act trivially.
6The ordering of ex and ey in this definition is arbitrary; however, any other choice corresponds to
a redefinition Qe� D c.�/e�, for some fifth root of unity c.�/, that does not affect the commutation
relations Qe� Qe� D C.�;�/Qe� Qe�.
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Since g.�/ D ax C by C .1 � g/.g.�/ � ax � by/, by (86) we have

eg.�/ D e� ; (100)

so that, with respect to the natural action g.e�/ WD eg.�/, the algebra is g-invariant.
This is compatible with the fact that all ground states have the same left and right
conformal weights h and Qh, so that the action of g D e2�i.h�Qh/ is proportional to the
identity.

The construction of the gk-twisted sector, for k D 2; 3; 4, is completely
analogous to the g1-twisted case, the only difference being that the root � in the
definition of C.�;�/ should be replaced by �k . Thus, one can define operators
e
.k/
x ; e

.k/
y on the gk-twisted sector, for each k D 1; : : : ; 4, satisfying

.e.k/x /5 D 1 D .e.k/y /5 ; e.k/x e.k/y D �ke.k/y e.k/x : (101)

The action of these operators on the analogous basis jmI ki with m 2 Z=5Z is then

e.k/x jmI ki D �mjmI ki ; e.k/y jmI ki D jmC kI ki : (102)

Spectrum and Symmetries

The spectrum of the actual orbifold theory is finally obtained from the above twisted
sectors by projecting onto the g-invariant states; technically, this is equivalent to
restricting to the states for which the difference of the left- and right- conformal
dimensions is integer, h � Qh 2 Z. In particular, the RR ground states (102) in each
(twisted) sector have h D Qh D 1=4, so that they all survive the projection. Thus, the
orbifold theory has four RR ground states in the untwisted sector (the spectral flow
generators), forming a .2; 2/ representation of su.2/L˚su.2/R, and five RR ground
states in each twisted sector, which are singlets of su.2/L ˚ su.2/R. In total there
are therefore 24 RR ground states, as expected for a non-linear sigma-model on K3.
(Obviously, we are here just reproducing what we already saw in (71).)

Next we want to define symmetry operators acting on the orbifold theory. First we
can construct operators e� associated to � 2 � 4;4, that will form the extra special
group 51C2. They are defined to act by e.k/� on the gk-twisted sector. The action
of the untwisted sector preserves the subspaces H U

m , m 2 Z=5Z, of states with
momentum of the form � D nxCmyC .1� g/.�/, for some n 2 Z and � 2 � 4;4.
Let us denote by TmIk a generic vertex operator associated with a gk-twisted state,
k D 1; : : : ; 4, with ex-eigenvalue �m, m 2 Z=5Z, and by TmI0 a vertex operator
associated with a state in H U

m . Consistency of the OPE implies the fusion rules

TmIk � Tm0Ik0 ! TmCm0IkCk0 : (103)
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These rules are preserved by the maps

TmIk 7! e� TmIk e�1
� ; � 2 � 4;4 ; (104)

which therefore define symmetries of the orbifold theory. As we have explained
above, these symmetries form the extra-special group 51C2.

Finally, the symmetries (54), (55), (58) and (59) of the original torus theory
induce a Z4-group of symmetries of the orbifold. Since h�1gh D g�1, the space of
g-invariant states of the original torus theory is stabilised by h, so that h restricts to
a well-defined transformation on the untwisted sector of the orbifold. Furthermore,
hmaps the gk- to the g5�k-twisted sector. Equations (54) and (55) can be written as

h.x1/ D 2x1 C .1 � g/.�x1 � x2 � x3 C y1 C y2 C y3 C y4/ ; (105)

h.y1/ D 2y1 C .1 � g/.�x1 � x2 � x3 � x4 � 2y1 � y2 � y3 � y4/ : (106)

It follows that the action of h on the operators e.k/� , k D 1; : : : ; 4 must be

he.k/x h�1 D e.5�k/2x ; he.k/y h�1 D e.5�k/2y ; (107)

and it is easy to verify that this transformation is compatible with (101). Corre-
spondingly, the action on the twisted sector ground states is

hjmI ki D j3mI 5 � ki ; (108)

and it is consistent with (103).
Thus the full symmetry group is the semi-direct product

G D 51C2 W Z4 ; (109)

where the generator h 2 Z4 maps the central element � 2 51C2 to ��1.
All of these symmetries act trivially on the superconformal algebra and on the

spectral flow generators, and therefore define symmetries in the sense of the general
classification theorem. Indeed, G agrees precisely with the group in case (ii) of the
theorem. Thus our orbifold theory realises this possibility.

6 Models with Symmetry Group Containing 31C4 W Z2

Most of the torus orbifold construction described in the previous section generalises
to symmetries g of order different than 5. In particular, one can show explicitly that
orbifolds of T4 models by a symmetry g of order 3 contain a group of symmetries
31C4 W Z2, so that they belong to one of the cases (iii) and (iv) of the theorem, as
expected from the discussion in Sect. 4.
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We take the action of the symmetry g on the left-moving currents and fermionic
fields to be of the form (42) and (44), where � is a now a third root of unity;
analogous transformations hold for the right-moving fields with respect to a third
root of unity Q�. In this case, Eq. (45) can be satisfied by

� D Q� D e 2�i3 ; (110)

so that the action is left-right symmetric and g admits an interpretation as a
geometric O.4;R/-rotation of order 3 of the torus T

4. For example, the torus
R
4=.A2 ˚A2/, where A2 is the root lattice of the su.3/ Lie algebra, with vanishing

Kalb–Ramond field, admits such an automorphism.
The orbifold by g contains six RR ground states in the untwisted sector. In the

kth twisted sector, k D 1; 2, the ground states form a representation of an algebra
of operators e.k/� , � 2 � 4;4, satisfying the commutation relations

e
.k/

� e.k/� D C.�;�/ke.k/� e
.k/

� ; (111)

where

C.�;�/ D �.Pg.�/;�/ ; Pg D g C 2g2 : (112)

As discussed in Sect. 5.2, we can set

e
.k/

�C� D e.k/� ; 8� 2 R;� 2 � 4;4 ; (113)

where

R D .1 � g/� 4;4 : (114)

(Note that � 4;4 contains no g-invariant vectors). The main difference with the
analysis of Sect. 5.2 is that, in this case,

� 4;4=R Š Z
4
3 : (115)

In particular, we can find vectors x1; x2; y1; y2 2 � 4;4 such that

C.xi ; yj / D �ıij ; C.xi ; xj / D C.yi ; yj / D 1 : (116)

The corresponding operators obey the relations

e.k/xi e
.k/
yj
D �kıije.k/yj e

.k/
xi
; e.k/xi e

.k/
xj
D e.k/xj e.k/xi ; e.k/yi e

.k/
yj
D e.k/yj e.k/yi ; (117)

as well as

.e.k/xi /
3 D 1 D .e.k/yi /3 : (118)
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These operators generate the extra-special group 31C4 of exponent 3, and the kth-
twisted ground states form a representation of this group. We can choose a basis
jm1;m2I ki, with m1;m2 2 Z=3Z, of simultaneous eigenvectors of e.k/x1 and e.k/x2 , so
that

e.k/xi jm1;m2I kiD �mi jm1;m2I ki ; e.k/yi jm1;m2I kiD jm1 C kı1i ; m2 C kı2i I ki :
(119)

The resulting orbifold model has nine RR ground states in each twisted sector, for
a total of 6 C 9 C 9 D 24 RR ground states, as expected for a K3 model. As in
Sect. 5.2, the group 31C4 generated by e.k/� extends to a group of symmetries of
the whole orbifold model. Furthermore, the Z2-symmetry that flips the signs of the
coordinates in the original torus theory induces a symmetry h of the orbifold theory,
which acts on the twisted sectors by

h jm1;m2I ki D j �m1;�m2I ki : (120)

We conclude that the group G of symmetries of any torus orbifold T
4=Z3 contains

a subgroup 31C4 W Z2, and is therefore included in the cases (iii) or (iv) of the
classification theorem. This obviously ties in nicely with the general discussion of
Sect. 4.

7 Conclusions

In this paper we have reviewed the current status of the EOT conjecture concerning
a possible M24 symmetry appearing in the elliptic genus of K3. We have explained
that, in some sense, the EOT conjecture has already been proven since twining
genera, satisfying the appropriate modular and integrality properties, have been
constructed for all conjugacy classes of M24. However, the analogue of the Monster
conformal field theory that would ‘explain’ the underlying symmetry has not yet
been found. In fact, no single K3 sigma-model will be able to achieve this since
none of them possesses an automorphism group that contains M24.

Actually, the situation is yet further complicated by the fact that there are K3
sigma-models whose automorphism group is not even a subgroup of M24; on
the other hand, the elliptic genus of K3 does not show any signs of exhibiting
‘Moonshine’ with respect to any larger group. As we have explained in this paper,
most of the exceptional automorphism groups (i.e. automorphism groups that are
not subgroups of M24) appear for K3s that are torus orbifolds. In fact, all cyclic
torus orbifolds are necessarily exceptional in this sense, and (cyclic) torus orbifolds
account for all incarnations of the cases (ii)–(iv) of the classification theorem of
[8] (see Sect. 4). We have checked these predictions by explicitly constructing an
asymmetric Z5 orbifold that realises case (ii) of the theorem (see Sect. 5), and a
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family of Z3 orbifolds realising cases (iii) and (iv) of the theorem (see Sect. 6).
Incidentally, these constructions also demonstrate that the exceptional cases (ii)–
(iv) actually appear in the K3 moduli space—in the analysis of [8] this conclusion
relied on some assumption about the regularity of K3 sigma-models.

The main open problem that remains to be understood is why precisely M24 is
‘visible’ in the elliptic genus of K3, rather than any smaller (or indeed bigger) group.
Recently, we have constructed (some of) the twisted twining elliptic genera of K3
[34] (see also [35]), i.e. the analogues of Simon Norton’s generalised Moonshine
functions [36]. We hope that they will help to shed further light on this question.

8 Commutation Relations in the Twisted Sector

The vertex operators V�.z; Nz/ in the g-twisted sector can be defined in terms of
formal exponentials of current oscillators

E�̇ .z; Nz/ WD exp
�X

r2 1
5Z˙r>0

.�L � ˛/.r/r
z�r

r

	
exp

�X

r2 1
5Z˙r>0

.�R � Q̨ /.r/r
Nz�r

r

	
; (121)

where .�L � ˛/.r/r and .�R � Q̨ /.r/r are the r-modes of the currents

.�L � @X/.r/ WD 1

5

4X

iD0
�5ir�L � gi .@X/ D 1

5

4X

iD0
�5irg�i .�L/ � @X ; (122)

.�R � N@X/.r/ WD 1

5

4X

iD0
N�5ir�R � gi .N@X/ D 1

5

4X

iD0
N�5irg�i .�R/ � N@X : (123)

Then we can define

V�.z; Nz/ WD E�
� .z; Nz/EC

� .z; Nz/ e� ; (124)

where the operators e� commute with all current oscillators and satisfy

e� e� D �.�; �/ e�C� ; (125)

for some fifth root of unity �.�; �/. The commutator factor

C.�;�/ WD �.�; �/

�.�; �/
; (126)

can be determined by imposing the locality condition

V�.z1; Nz1/ V�.z2; Nz2/ D V�.z2; Nz2/ V�.z1; Nz1/ : (127)
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To do so, we note that the commutation relations between the operators E�̇ can be
computed, as in [37], using the Campbell–Baker–Hausdorff formula

EC
� .z1; Nz1/E�

� .z2; Nz2/ D E�
� .z2; Nz2/EC

� .z1; Nz1/
4Y

iD0
Œ.1 � ��i . z1

z2
/
1
5 /g

i .�/L��L.1 � N��i . Nz1Nz2 /
1
5 /g

i .�/R ��R � : (128)

Using (128) and e�e� D C.�;�/e�e�, the locality condition is then equivalent to

C.�;�/

4Y

iD0

.1 � ��i . z1
z2
/
1
5 /g

i .�/L��L.1 � N��i Nz1=51
Nz1=52
/g

i .�/R ��R

.1 � �i . z2
z1
/
1
5 /g

i .�/L��L.1 � N�i . Nz2Nz1 /
1
5 /g

i .�/R ��R
D 1 ; (129)

that is

C.�;�/
�
� z1=51

z1=52

	P
i g

i .�/L��L
�
�Nz

1=5
1

Nz1=52

	P
i g

i .�/R ��R
4Y

iD0

Œ.��i /g
i .�/L��L. N��i /g

i .�/R ��R � D 1 :

(130)

Since � 4;4 has no g-invariant vector, we have the identities

4X

iD0
gi .�/L D 0 D

4X

iD0
gi .�/R ; (131)

and hence finally obtain

C.�;�/ D
4Y

iD0
.�i /g

i .�L/��L�gi .�R/��R : (132)
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Rademacher Sums and Rademacher Series

Miranda C.N. Cheng and John F.R. Duncan

Abstract We exposit the construction of Rademacher sums in arbitrary weights
and describe their relationship to mock modular forms. We introduce the notion of
Rademacher series and describe several applications, including the determination of
coefficients of Rademacher sums and a very general form of Zagier duality. We then
review the application of Rademacher sums and series to moonshine both monstrous
and umbral and highlight several open problems. We conclude with a discussion of
the interpretation of Rademacher sums in physics.

1 Introduction

Modular forms are fundamental objects in number theory which have many applica-
tions in geometry, combinatorics, string theory, and other branches of mathematics
and physics. One may wonder “what are the natural ways are to obtain a modular
form?” In general we can construct a symmetric function from a non-symmetric
one by summing its images under the desired group of symmetries, although if
infinite symmetry is required convergence may be a problem. A refinement of this
idea, pioneered by Poincaré (cf. Sect. 2.1), is to build in the required symmetry
by summing over the images of a function f that is already invariant under a
(large enough) subgroup of the full group of symmetries. Then we may restrict the
summation to representatives of cosets of the subgroup fixing f and still expect to
obtain a fully symmetric function.
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For instance, to obtain a modular form of even integral weight w D 2k we may,
following Poincaré (cf. (14)), take f .�/ D e.m�/ where m is an integer, � is a
parameter on the upper-half plane H, and here and everywhere else in the article we
employ the notation

e.x/ D e2� ix: (1)

Then the subgroup of � D SL2.Z/ leaving f invariant is just the subgroup of
upper-triangular matrices, which we denote �1 since its elements are precisely
those that fix the infinite cusp of � (cf. Sect. 2.1). Thus we are led to consider the
sum

X
�
a b
c d

	
2�1n�

e

�
m
a� C b
c� C d

�
1

.c� C d/w ; (2)

for w D 2k, taken over a set of representatives for the right cosets of �1 in � .
When k > 1 this sum is absolutely convergent, locally uniformly for � 2 H, and
thus defines a holomorphic function on H which is invariant for the weight w D 2k
action of � by construction. If m � 0 then it remains bounded as =.�/ ! 1 and
is thus a modular form of weight 2k for � D SL2.Z/. This result was obtained by
Poincaré in [58]. (See [45] for a historical discussion.)

For many choices of w and m, however (e.g. for w 	 2), the infinite sum in (2)
is not absolutely convergent (and not even conditionally convergent if w < 1).
Nontheless, we may ask if there is some way to regularise (2) in the case that
w 	 2. One solution to this problem, for the case that w D 0, was established
by Rademacher in [61]. Let J.�/ denote the elliptic modular invariant normalised
to have vanishing constant term, so that J.�/ is the unique holomorphic function
on H satisfying J

�
a�Cb
c�Cd

� D J.�/ whenever
�
a b
c d

� 2 SL2.Z/ and also J.�/ D
q�1 CO.q/ as =.�/!1 for q D e.�/.

J.�/ D q�1 C 196884q C 21493760q2 C 864299970q3 C � � � (3)

In [61] Rademacher established the validity of the expression

J.�/C 12 D e.��/C lim
K!1

X
�
a b
c d

	
2�1n�

0<c<K
�K2<d<K2

e

�
�a� C b
c� C d

�
� e

�
�a
c

	
(4)

for J.�/ as a conditionally convergent sum, where � D SL2.Z/, and one can
recognise the right hand side of (4) as a modification of the w D 0 case of (2)
with m D �1. This result has been generalised to other groups � , and ultimately to
negative (and some positive) weights, in various works, including [11,25,37–40,54].
(We refer to Sect. 2 for more details.)
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These regularised Poincaré series, which we refer to as Rademacher sums, have
several important applications. Perhaps the most obvious of these is the construction
of modular forms. We will see in Sect. 2 that modular invariance sometimes but not
always survives the regularisation procedure (to be described in general in Sect. 2.2).
More generally, a convergent Rademacher sum (cf. (32)) defines a mock modular
form (cf. Sect. 2.3); a generalisation of the notion of modular form in which the
usual weight w action of a discrete group � is twisted by a modular form of weight
2 � w (cf. (39)).

Another application is to the computation of coefficients of modular forms. We
will see in Sect. 2—by way of an example, cf. (25)—that the Rademacher sum
construction leads quite naturally to series expressions for its Fourier coefficients.
This in turn leads to the notion of Rademacher series; a construction which we
introduce in Sect. 3. To a given discrete group, multiplier system and weight, the
Rademacher series construction attaches, in the convergent cases, a two-dimensional
grid of values. Some of these values appear as coefficients of Rademacher sums,
but this typically accounts for just half of the values in the grid; the remaining
values admit other interesting interpretations. For example, certain Rademacher
series encode the Fourier coefficients of Eichler integrals of modular (and mock
modular) forms, as we will show in Sect. 3.2. The Rademacher series construction
also serves to highlight a very general version of Zagier duality for Rademacher
sums, whereby the set of coefficients of two families of mock modular forms in
dual weights are shown to coincide, up to sign (cf. Sect. 3.2).

Moreover, as we will discuss in great length in Sect. 4, Rademacher sums play
a crucial role in the study of moonshine. We treat the monstrous case in Sect. 4.1,
the case of Mathieu moonshine in Sect. 4.2, and the recently discovered umbral
moonshine in Sect. 4.3. We will also highlight some important open problems in
this section.

Finally, an important application to physics was first pointed out in [24]. It was
argued there that some Rademacher sums admit a natural physical interpretation
in terms of quantum gravity via the so-called AdS/CFT correspondence. This
interpretation has led to various work relating Rademacher sums to physical
theories, and in particular to the article [25] which applied the Rademacher sum
construction to monstrous moonshine. One of the main results of [25] is the
reformulation of the genus zero property of monstrous moonshine in terms of
Rademacher sums. The importance of this development has been reinforced recently
by further applications [11–13]. The applications of Rademacher sums in physics
will be discussed in Sect. 5.

2 Rademacher Sums

2.1 Preliminaries

The group SL2.R/ acts naturally on the upper-half plane H by orientation preserving
isometries according to the rule
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�
a b

c d

�
� D a� C b

c� C d : (5)

For � 2 SL2.R/ define j.�; �/ to be the derivative (with respect to � ) of this action,
so that

j.�; �/ D .c� C d/�2 (6)

when .c; d/ is the lower row of � . Let � be a subgroup of SL2.R/ that contains
˙I and is commensurable with the modular group SL2.Z/ and write �1 for the
subgroup of � consisting of upper-triangular matrices. Then �1 is a subgroup of
� isomorphic to Z�Z=2 and is precisely the set of � 2 � for which the limit of ��
as =.�/!1 fails to be finite. (We write =.�/ for the imaginary part of � .) We set

T D
�
1 1

0 1

�
(7)

so that T � D � C 1 for � 2 H, and we write T h for
�
1 h
0 1

�
. Then there is a unique

h > 0 such that �1 D hT h;�I i and we call this h the width of � at infinity.
Evidently j.�; �/ D 1 for � 2 �1.

The groups we encounter in applications typically contain and normalise the
Hecke congruence group �0.n/ for some n.

�0.n/ D
��
a b

c d

�
2 SL2.Z/ j c 
 0 .mod n/

�
(8)

Observe that �0.n/ has width 1 at infinity. A description of the normaliserN.�0.n//
of �0.n/ is given in [14, Sect. 3], and from this one can see that the width of
N.�0.n// at infinity is 1=h where h is the largest divisor of 24 for which h2

divides n.
For w 2 R say that a function  W � ! C is a multiplier system for � with

weight w if

 .�1/ .�2/ j.�1; �2�/
w=2 j.�2; �/

w=2 D  .�1�2/ j.�1�2; �/
w=2 (9)

for all �1; �2 2 � where here and everywhere else in this paper we choose the
principal branch of the logarithm (cf. (100)) in order to define the exponential x 7!
xs in case s is not an integer.

Note that a multiplier system of weight w is also a multiplier system of weight
w C 2k for any integer k since j.�1; �2�/ j.�2; �/ D j.�1�2; �/ for any �1; �2 2
SL2.R/. Given a multiplier system for � with weight w we may define the . ;w/-
action of � on the space O.H/ of holomorphic functions on the upper-half plane by
setting

.f j ;w�/.�/ D f .��/ .�/ j.�; �/w=2 (10)
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for f 2 O.H/ and � 2 � . We then say that f 2 O.H/ is an unrestricted modular
form with multiplier  and weight w for � in the case that f is invariant for this
action; i.e. f j ;w� D f for all � 2 � . Since .��/� D �� and j.�I; �/w=2 D
e.�w=2/ the multiplier  must satisfy the consistency condition

 .�I / D e
�w

2

	
(11)

in order that the corresponding space(s) of unrestricted modular forms be non-
vanishing. (Recall that e.x/ is used as a shorthand for e2� ix throughout the article.)

Since � is assumed to be commensurable with SL2.Z/ its natural action on the
boundary OR D R[ fi1g of H restricts to OQ D Q[ fi1g. The orbits of � on OQ are
called the cusps of � . The quotient space

X� D � nH [ OQ (12)

is naturally a compact Riemann surface (cf. e.g. [66, Sect. 1.5]). We adopt the
common practice of saying that � has genus zero in caseX� is a genus zero surface.

We assume throughout that if � does not act transitively on OQ—i.e. if � has more
than one cusp—then it is contained in a group Q� < SL2.R/ that is commensurable
with SL2.Z/ and does act transitively on OQ, and we assume that the multiplier  
for � is of the form  D � Q where � W � ! C

� is a morphism of groups and Q 
is a multiplier for Q� . With this understanding we say that an unrestricted modular
form f for � with multiplier  and weight w is a weak modular form in case f has
at most exponential growth at the cusps of � ; i.e. in case there exists C > 0 such
that .f j Q ;w�/.�/ D O.eC=.�// as =.�/ ! 1 for any � 2 Q� . We say that f is a

modular form if .f j Q ;w�/.�/ remains bounded as =.�/ ! 1 for any � 2 Q� , and

we say f is a cusp form if .f j Q ;w�/.�/! 0 as =.�/!1 for any � 2 Q� .
If � has width h at infinity then any multiplier  for � restricts to a character

on hT hi < �1 and so we have

 .T h/ D e.˛/ (13)

for some ˛ 2 R, uniquely determined subject to 0 	 ˛ < 1. Then q� D e.��/ is
a �1-invariant function for the . ;w/-action so long as h�C ˛ 2 Z, and we may
attempt to construct a � -invariant function—a modular form with multiplier  and
weight w for �—by summing the images of q� over a set of coset representatives
for �1 in � .

P
Œ��
�; ;w.�/ D

X

�2�1n�
q�j ;w�

D
X

�2�1n�
e.���/ .�/ j.�; �/w=2

(14)
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This is the method that was pioneered by Poincaré in [58]. If w > 2 then this
sum (14) converges absolutely, locally uniformly in � , so that P Œ��

�; ;w is a well-
defined holomorphic function on H, invariant under the . ;w/-action of � by
construction. Although it is not immediately obvious,P Œ��

�; ;w is a weak modular form
in general, a modular form in case � � 0 and a cusp form when � > 0. Poincaré
considered the special case of this construction where � D SL2.Z/, the multiplier
 is trivial and the weight w is an even integer not less than 4 in [58]. The more
general expression (14) was introduced by Petersson in [55], and following him—
Petersson called P Œ��

�; ;w a “kind of Poincaré series”—we call P Œ��
�; ;w the Poincaré

series of weight w and index � attached to the group � and the multiplier  .
For example, in the case that � is the modular group SL2.Z/ the constant

multiplier  
 1 is a multiplier of weight w D 2k on � for any integer k. Taking
� D 0 and k > 1 we obtain the function

P
Œ0�

�;1;2k.�/ D
X

�2�1n�
j.�; �/k

D 1C
X

c;d2Z
c>0

.c;d/D1

.c� C d/�2k (15)

which is the Eisenstein series of weight 2k, often denoted E2k , with Fourier
expansion

P
Œ0�

�;1;2k.�/ D 1 �
4k

B2k

X

n>0

�2k�1.n/qn (16)

where �p.n/ denotes the sum of the p-th powers of the divisors of n and Bm
denotes the m-th Bernoulli number (cf. (95)). One of the main results of [55]—and
a principal application of the Poincaré series construction—is that, when w > 2, the
P
Œ��
�; ;w for varying � > 0 linearly span the space of cusp forms with multiplier  

and weight w for � .

2.2 Regularisation

We may ask if there is a natural way to regularise the simple summation of (14) in
the generally divergent case when w 	 2; the following method, inspired by work
of Rademacher, is just such a procedure.

First consider the case that w D 2. Then the sum in (14) is generally
not absolutely convergent, but can be ordered in such a way that the result is
conditionally convergent and locally uniformly so in � , thus yielding a holomorphic
function on H. The ordering is obtained as follows. Observe that left multiplication
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of a matrix � 2 � by˙T h has no effect on the lower row of � other than to change
its sign in the case of �T h. So the non-trivial right-cosets of �1 D hT h;�I i in
� are indexed by pairs .c; d/ such that c > 0 and .c; d/ is the lower row of some
element of � . For K > 0 we define �K;K2 to be the set of elements of � having
lower rows .c; d/ satisfying jcj < K and jd j < K2.

�K;K2 D
��
a b

c d

�
2 � j jcj < K; jd j < K2

�
(17)

Observe that �K;K2 is a union of cosets of �1 for any K. Now for  a multiplier of

weight 2 we define the index � Rademacher sum R
Œ��
�; ;2 formally by setting

R
Œ��
�; ;2.�/ D lim

K!1
X

�2�1n�K;K2
q�j ;2�

D lim
K!1

X

�2�1n�K;K2
e.���/ .�/ j.�; �/;

(18)

and we may regardRŒ���; ;2.�/ as a holomorphic function on H in case the limit in (18)
converges locally uniformly in � .

As an example we take � D SL2.Z/ and  
 1 and � D 0 in analogy with (16).
Then we obtain the expression

R
Œ0�
�;1;2.�/ D lim

K!1
X

�2�1n�K;K2
j.�; �/

D 1C lim
K!1

X

0<c<K
�K2<d<K2

.c;d/D1

.c� C d/�2: (19)

We will show now that this expression converges. For fixed K > 0 let R.K/ denote
the sum in (19) so that RŒ0��;1;0 D 1C limK!1R.K/. Then we have

R.K/ D
X

0<c<K

c�2 X

jd j<K2

.c;d/D1

.� C d=c/�2

D
X

0<c<K

c�2 X

0�d<c
.c;d/D1

0

@
X

jnj<K2=c

.� C d=c C n/�2 CO.c=K2/

1

A
(20)

where the termO.c=K2/ accounts for the difference between summing over n such
that jd C ncj < K2 and summing over n such that jnj < K2=c, and the implied
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constant holds locally uniformly in � . The difference between the sum over n in the
second line of (20) and its limit

P
n2Z.�Cd=cCn/�2 asK !1 is alsoO.c=K2/,

locally uniformly for � 2 H, so we obtain

R.K/ D
X

0<c<K

.�4�2/c�2 X

0�d<c
.c;d/D1

 
X

n>0

n e.nd=c/ e.n�/CO.c=K2/

!
(21)

after an application of the Lipschitz summation formula (108) with s D 2,
˛ D 0. We may now estimate

P
0�d<c O.c=K2/ D O.c2=K2/ and

P
0<c<K c

�2
O.c2=K2/ D O.1=K/ and so obtain

lim
K!1R.K/ D lim

K!1
X

0<c<K

.�4�2/c�2 X

0�d<c
.c;d/D1

X

n>0

n e.nd=c/ e.n�/: (22)

Now let R0.K/ denote the summation over c in (22). Then R0.K/ is an absolutely
convergent sum for fixed K > 0 (locally uniformly so for � 2 H) and so we may
reorder the terms and write

R0.K/ D .�4�2/
X

n>0

n e.n�/
X

0<c<K

c�2 X

0�d<c
.c;d/D1

e

�
n
d

c

�
: (23)

The summation over d in (23) is the sum of the n-th powers of the primitive c-th
roots of unity, which is to say, it is a Ramanujan sum. The associated Dirichlet series
(for fixed n and varying c) converges absolutely for<.s/ > 1 and admits the explicit
formula

X

c>0

X

0�d<c
.c;d/D1

e

�
n
d

c

�
c�s D n1�s �s�1.n/

�.s/
(24)

in this region (cf. [67, Sect. IX.1]), where �.s/ is the Riemann zeta function. Taking
s D 2 in (24) we conclude that limK!1R0.K/ D P

n>0.�4�2/�.2/�1�1.n/qn,
and in particular, (19) converges, locally uniformly for � 2 H. Applying the identity
�.2/ D �2=6 we obtain the Fourier expansion

R
Œ0�
�;1;2.�/ D 1 � 24

X

n>0

�1.n/q
n (25)

and recognise RŒ0��;1;2 as the quasi-modular Eisenstein series, often denoted E2.
(Another common normalisation is G2 D 2�.2/E2, cf. [2, Sect. 3.10].)

The argument just given may be readily generalised. For example, let � be
an arbitrary group commensurable with SL2.Z/ that contains �I and suppose for
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simplicity that � has width one at infinity. Applying a method directly similar to
the above we obtain the identity RŒ0��;1;2 D 1C limK!1R0.K/ where now

R0.K/ D
X

n>0

.�4�2/n e.n�/
X

�2�1n� �
K =�1

e

�
n
d

c

�
c�2: (26)

In (26) we write � �
K for the set of elements � D � a bc d

� 2 � satisfying 0 < jcj < K

� �
K D

��
a b

c d

�
2 � j 0 < jcj < K

�
; (27)

the summation is over a (complete and irredundant) set of representatives for the
double cosets of �1 in � �

K , and in each summand in the right most summation
of (26) the values c and d are chosen so that .c; d/ is the lower row of the
representative � . Then the convergence ofRŒ0��;1;2, locally uniform for � 2 H, follows
in case the Dirichlet series

Z0;n.s/ D lim
K!1

X

�2�1n� �
K =�1

e

�
n
d

c

�
c�2s (28)

converges at s D 1. This series Z0;n.s/ is a special case of a more general
construction—the Kloosterman zeta function—due to Selberg [65] that we will
discuss further in Sect. 3 (cf. (52)). It is argued in [65] that (28) converges absolutely
for <.s/ > 1; we refer to [25] for a verification of the convergence of (28) at s D 1
in the case that � is commensurable with SL2.Z/ and contains �I . Applying this
result we obtain the convergence of RŒ0��;1;2 for such groups � .

Specifying the order of summation as in (18) we may, for suitable choices of �
and  , obtain conditionally convergent sums

R
Œ��
�; ;w.�/ D lim

K!1
X

�2�1n�K;K2
e.���/ .�/ j.�; �/w=2; (29)

converging locally uniformly for � 2 H, with weights in the range w � 1. However,
the technical difficulties can be expected to increase as w tends to 1 for generally the
convergence of (29) requires the convergence of a Kloosterman zeta function similar
to (28) at s D w=2, which is close to the critical line<.s/ D 1=2 in case w is close to
1. The convergence of some Rademacher sums with w D 3=2 is established in [11].

Theorem 2.1 ([11]). Let � D �0.n/ for n a positive integer, let h be a divisor of n
that also divides 24 and set  D �njh��3 where � and �njh are defined by (104)

and (87). Then the Rademacher sum R
Œ1=8�

�; N ;3=2 converges, locally uniformly for

� 2 H.
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In order to regularise the Poincaré series (14) for weights strictly less than 1 we
require to modify the terms in the sum as well as the order in which they are taken.
In general, and supposing for now that ˛ ¤ 0 (cf. (13)), we define the Rademacher
sum R

Œ��
�; ;w, for � such that h�C ˛ 2 Z, by setting

R
Œ��
�; ;w.�/ D lim

K!1
X

�2�1n�K;K2
e.���/ rŒ��w .�; �/ .�/ j.�; �/w=2 (30)

where rŒ��w .�; �/ is defined to be 1 in case w � 1 or � is upper-triangular, and is
given otherwise, in terms of the complete and lower incomplete Gamma functions
(cf. (96)–(99)), by setting

rŒ��w .�; �/ D 1

� .1 � w/
�.1 � w; 2� i�.�� � �1//: (31)

In (31) we write �1 for the limit of �� as � ! i1, so �1 is none other than a=c in
case � D �

a b
c d

�
for c ¤ 0 and is undefined when � 2 �1. We trust the reader will

not be confused by the two different uses of the symbol � in (31). Note that since we
employ the principal branch of the logarithm (100) everywhere in this article, and,
in particular, in the definition (99) of the lower incomplete Gamma function, we
should restrict � to be a non-positive real number when constructing Rademacher
sums RŒ���; ;w with w < 1, for if � is positive then � 7! 2� i�.�� � �1/ covers the

left-half plane and rŒ��w .�; �/ can fail to be continuous with respect to � .
In the case that w < 1 and ˛ D 0 we need a constant term correction to the

specification (30) so that the a complete definition is given by

R
Œ��
�; ;w.�/ D ı˛;0

1

2
c�; ;w.�; 0/C lim

K!1
X

�2�1n�K;K2
e.���/ rŒ��w .�; �/ .�/ j.�; �/w=2

(32)

where c�; ;w.�; 0/ is zero in case w � 1 and is given otherwise by

c�; ;w.�; 0/ D 1

h
e
�
�w

4

	 .2�/2�w.��/1�w

� .2 � w/
lim
K!1

X

�2�1n� �
K =�1

e.��1/
c.�/2�w

 .�/

(33)

where h is again the width of � , the lower-left-hand entry of a matrix � 2 SL2.R/
is denoted c.�/, and � �

K is as in (27). As in (26) the summation in (33) is to be
taken over a (complete and irredundant) set of representatives for the double cosets
of �1 in � �

K , chosen so that c.�/ > 0. The condition ˛ D 0 is necessary in order
that the sum in (33) not depend on the choice of representatives. As we will see
in due course, the constant term correction in (32) is included so as to improve the
modularity of the resulting function RŒ���; ;w.
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As a concrete example of a Rademacher sum with weight less than 1 we may
consider the case that � D SL2.Z/ is again the modular group,  
 1 and w D 0.
Then �.1; x/ D 1� e�x according to (99) so that when � D �1 the general term in
the Rademacher sum (32) becomes, for � non-upper-triangular,

e.���/ rŒ��w .�; �/ .�/ j.�; �/w=2 D e.���/ � e.��1/; (34)

and we obtain

R
Œ�1�
�;1;0.�/ D e.��/C 1

2
c�;1;0.�1; 0/C lim

K!1
X

�2�1n� �

K;K2

e.���/ � e.��1/ (35)

where the superscript � in the summation indicates a restriction to non-trivial cosets
of �1. The right-hand side of (35) is in fact (but for the constant correction term) the
original Rademacher sum, introduced by Rademacher in [61]. Rademacher’s main
result in [61] is that the sum

e.��/C lim
K!1

X

�2�1n� �

K;K2

e.���/ � e.��1/ (36)

converges to a holomorphic function on H that is invariant for the ( 
 1, w D 0)
action of the modular group and has constant term 12 in its Fourier expansion.
To calculate c�;1;0.�1; 0/ we observe that the non-trivial double cosets of �1 in
� D SL2.Z/ are represented irredundantly by the matrices

�
a b
c d

�
with c > 0 and d

(necessarily coprime to c) satisfying 0 	 d < c. So we have

c�;1;0.�1; 0/ D 4�2
X

c>0

X

0�d<c
.c;d/D1

e
�
�a
c

	 1
c2

(37)

where in each term in the summation a is chosen so that ad is congruent to 1modulo
c. Now each summation over d is the sum of the primitive c-th roots of unity for
some c, and so the summation over c in (37) coincides with the special case of (24)
in which n D 1 and s D 2. So we have c�;1;0.�1; 0/ D 4�2�.2/�1 D 24 and thus
we conclude that

R
Œ�1�
�;1;0.�/ D J.�/C 24 (38)

where J denotes the elliptic modular invariant (cf. (3)). We refer to [43] for a nice
review of Rademacher’s treatment of (35).

Generalisations of Rademacher’s construction (35) have been developed by
various authors, including Knopp, who attached weight 0 Rademacher sums to
various groups � < SL2.R/ in [37, 38, 40], and Niebur, who established a very
general convergence result for Rademacher sums of arbitrary negative weight
in [54].
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Theorem 2.2 ([54]). Let � be a discrete subgroup of SL2.R/ having exactly one
cusp. Let  be a multiplier for � and let w be a compatible weight. If w < 0 then
the Rademacher sum R

Œ��
�; ;w converges for any � < 0 such that h�C ˛ 2 Z.

We remark that the method of [54] used to demonstrate convergence certainly
applies to groups having more than one cusp.

It will develop in Sect. 3 that the convergence of Rademacher sums is generally
more delicate for weights in the range 0 	 w 	 2 than for jw � 1j > 1. In [25] it is
shown that the weight 0 Rademacher sum R

Œ��
�;1;0 converges for any negative integer

�, for any group � < SL2.R/ that is commensurable with SL2.Z/ and contains �I ,
and certain Rademacher sums of weight 1=2 (of relevance to Mathieu moonshine,
cf. Sect. 4.2) are shown to converge in [11].

Theorem 2.3 ([25]). Let � be a subgroup of SL2.R/ that is commensurable with
SL2.Z/ and contains �I . Then the Rademacher sum R

Œ��
�;1;0 converges, locally

uniformly for � 2 H, for any negative integer �.

Theorem 2.4 ([11]). Let � D �0.n/ for n a positive integer, let h be a divisor of
n that also divides 24 and set  D �njh��3 where �njh is defined by (87). Then the

Rademacher sum R
Œ�1=8�
�; ;1=2 converges, locally uniformly for � 2 H.

2.3 Mock Modularity

The reader will have noticed from the examples presented so far that � -invariance
sometimes, but not always, survives the Rademacher regularisation procedure; the
Rademacher sum R

Œ0�
�;1;2 D E2 is not invariant when � D SL2.Z/—the Eisenstein

series E2 is only quasi-modular (cf. (41))—whilst the original Rademacher sum
R
Œ�1�
�;1;0 D J C 24 is invariant. In a word, the � -invariance (with respect to the

. ;w/-action) of a (convergent) sumR
Œ��
�; ;w depends upon the geometry of the group

� . For example, supposing that � is a subgroup of SL2.R/ containing �I and
commensurable with SL2.Z/, the Rademacher sum R

Œ�1�
�;1;0 fails to be � -invariant

exactly when � does not define a genus zero quotient of H (i.e. when the genus
of X� is not zero, cf. (12)) and in this case there is a function ! W � ! C such
that RŒ�1��;1;0.��/ C !.�/ D R

Œ�1�
�;1;0.�/ for each � 2 � (cf. [25, Thm. 3.4.4]). The

sensitivity to the genus of � in this example is a consequence of the choices  
 1
and w D 0, as we shall see presently. For other choices of  and w the modularity
or otherwise of RŒ���; ;w will be determined by some other geometric feature of � .

In general the Rademacher regularisation defines a weak mock modular form
which is a function on H that is invariant for a certain twist of the usual � -action,
where the twisting is determined by a(n honest) modular form with the dual weight
and inverse multiplier. More precisely, suppose that  is a multiplier system for �
with weight w and g is a modular form for � with the inverse multiplier system
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N W � 7!  .�/ and dual weight 2�w. Then we can use g to twist the . ;w/-action
of � on O.H/ by setting

�
f j ;w;g�

�
.�/ D f .��/ .�/ j.�; �/w=2 C .2� i/1�w

Z i1

���11
.zC �/�wg.�Nz/dz:

(39)

A weak mock modular form for � with multiplier  , weight w, and shadow g is a
holomorphic function f on H that is invariant for the . ;w; g/-action of � defined
in (39) and which has at most exponential growth at the cusps of � (i.e. there exists
C > 0 such that .f j Q ;w�/ D O.eC=.�// for all � 2 Q� as =.�/!1 where Q� and
Q are as in Sect. 2.1). A weak mock modular form is called a mock modular form in

case it is bounded at every cusp. From this point of view a (weak) modular form is
a (weak) mock modular form with vanishing shadow. The notion of mock modular
form developed from Zwegers’ ground breaking work [72] on Ramanujan’s mock
theta functions. It is very closely related to the notion of automorphic integral which
was introduced by Niebur to describe the Rademacher sums of negative weight he
constructed in [54]: an automorphic integral of weight w in the sense of Niebur is a
weak mock modular form whose shadow is a cusp form.

Given that convergent Rademacher sums are (weak) mock modular forms we
may ask for an explicit description of the corresponding shadow functions. In fact,
the Rademacher machinery itself provides such a description (cf. e.g. [25, Sect. 3.4],
[11, Sect. 7]). Indeed, we can expect that the Rademacher sum R

Œ��
�; ;w, supposing

it converges, is a mock modular form whose shadow S
Œ��
�; ;w is also given by a

Rademacher sum; namely,

S
Œ��
�; ;w D

.��/1�w

� .1 � w/
R
Œ���
�; N ;2�w

: (40)

Niebur established the identity (40) for arbitrary negative weights and a large class
of groups.

Theorem 2.5 ([54]). Let � be a discrete subgroup of SL2.R/ having exactly one
cusp. Let  be a multiplier for � and let w be a compatible weight. If w < 0 and
� < 0 is such that h� C ˛ 2 Z then the Rademacher sum R

Œ��
�; ;w is a weak mock

modular form for � with shadow given by (40).

Again, we remark that the method of [54] used to demonstrate mock modularity
certainly applies to groups having more than one cusp. The case that  
 1 and
w D 0 in (40) was considered in [25] and results for w D 1=2 were established
in [11].

Theorem 2.6 ([25]). Let � be a subgroup of SL2.R/ that is commensurable with
SL2.Z/ and contains �I . Then for � a negative integer the Rademacher sum R

Œ��
�;1;0

is a weak mock modular form with shadow SŒ���;1;0 given by (40).
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Theorem 2.7 ([11]). Let � D �0.n/ for n a positive integer, let h be a divisor of
n that also divides 24 and set  D �njh��3 where �njh is defined by (87). Then the

Rademacher sum R
Œ�1=8�
�; ;1=2 is a weak mock modular form with shadow SŒ�1=8��; ;1=2 given

by (40).

We can see using Theorem 2.6 why RŒ�1��;1;0 has to be � -invariant in case � has

genus zero, for the shadow S
Œ�1�
�;1;0 D R

Œ1�
�;1;2 is a modular form of weight 2 with

trivial multiplier, and in fact a cusp form since it is obtained by summing images
of q D e.�/ under the weight 2 action of � . (We refer the reader to [25] and [11]
for more on the behavior of Rademacher sums at arbitrary cusps.) The cusp forms
of weight 2 with trivial multiplier for � are in correspondence with holomorphic
1-forms on the Riemann surface X� (cf. (12)) and the dimension of the space of
holomorphic 1-forms on a Riemann surface is equal to its genus. So if � has genus
zero then X� has no non-zero 1-forms and we must have g D SŒ�1�� 1;0 D 0 in (39).

As a second example consider the sum R
Œ0�
�;1;2 which we found in Sect. 2.2 to be

the Eisenstein series E2 when � D SL2.Z/. To compute the right-hand side of (40)
when � D 0 and w D 2 we consider a one-parameter family of multipliers  ı D �ı ,
with corresponding weights wı D 2 C ı=2, where � W � ! C is the multiplier
system of the Dedekind eta function (cf. (102)–(103)). Substituting ı=24 for � and
wı D 2 C ı=2 for w in (40) we obtain �12RŒ0��;1;0 in the limit as ı ! 0. Recalling

the definition of rŒ��w .�; �/ and using (31) and (97) we see that rŒ0�0 .�; �/ D 0 unless

� belongs to �1 in which case rŒ0�0 .�; �/ D 1, so we arrive at the suggestion that

the shadow of RŒ0��;1;2 should be given by SŒ0��;1;2 D �12RŒ0��;1;0 
 �12; that is, RŒ0��;1;2
is a mock modular form with constant shadow �12. Taking g 
 �12 in (39), and
writing R.�/ for RŒ0��;1;2.�/ to ease notation, we find that

R.�/ D .Rj1;2;1�/.�/ D R.��/ j.�; �/C 6i
�

Z i1

���11
.zC �/�2dz

D R.��/ j.�; �/C 6i
�

1

.� � ��11/

(41)

for � 2 � , which is in agreement with the known quasi-modularity of E2
(cf. [2, p. 69]).

Before concluding this section we remark on an alternative approach to studying
the mock modular forms we have obtained above using Rademacher sums. An
equivalent and more common definition of the notion of mock modular form, more
closely related to Zwegers’ original treatment in [72], is to say that a holomorphic
function f W H! C is a weak mock modular form for the group � with multiplier
 , weight w, and shadow g if the completion of f , denoted Of and defined as

Of .�/ D f .�/ � .2� i/1�w
Z i1

�N�
.zC �/�wg.�Nz/dz; (42)
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is invariant for the usual (untwisted) . ;w/-action of � (cf. (10)) on real-analytic
functions on H. From (42) one can check that Of is annihilated by the differential
operator

@

@�
.Im�/w

@

@ N� (43)

and hence is a harmonic weak Maaß form of weight w, which is to say, Of is a (non-
holomorphic) modular form for � with at most exponential growth at the cusps
which is also an eigenfunction for the weight w Laplace operator with eigenvalue
w
2
.1� w

2
/. (We refer to [71, Sect. 5] for an exposition of this.) For a suitably defined

Poincaré series (adapted to the construction of Maaß forms) the function RŒ���; ;w
may then be recovered as its holomorphic part. We refer to [4] for the pioneering
example of this approach; further examples appear in [5–7]. The harmonic weak
Maaß form whose holomorphic part is RŒ�1=8�

�;��3;1=2
was investigated in [26] in the

cases that � D SL2.Z/ and � D �0.2/.

3 Rademacher Series

The Rademacher sums of the previous section are indexed by cosets of �1 in � .
In this section we consider a construction—also inspired by work of Rademacher,
among others, and hinted at in the definition of the constant correction term
in (32)—of series indexed by double coset spaces �1n� �=�1. It will develop that
these series—we call them Rademacher series— recover the Fourier coefficients of
the Rademacher sums of the previous section, but also admit other applications, such
as recovering Fourier coefficients of false theta series (cf. (67)), and Eichler integrals
of (mock) modular forms more generally (cf. (63)). In addition, the Rademacher
series construction serves to illuminate a form of Zagier duality for Rademacher
sums: the coincidence (up to a root of unity depending only on w) of the Fourier
coefficients attached to the dual families

n
R
Œ��
�; ;w j h�C ˛ 2 Z; � < 0

o
;

n
R
Œ��

�; N ;2�w
j h� � ˛ 2 Z; � < 0

o
; (44)

(cf. (13)) of Rademacher sums.
We now detail the Rademacher series construction. Suppose as before that

� < SL2.R/ contains �I and is commensurable with SL2.Z/. Recall that h > 0 is
chosen so that �1 D hT h;�I i (cf. (7)). Given a multiplier system  of weight w
for such a group � , and given also �; � 2 1

h
.Z�˛/ where  .T h/ D e.˛/ (cf. (13)),

we define the Rademacher series c�; ;w.�; �/ by setting

c�; ;w.�; �/ D 1

h
lim
K!1

X

�2�1n� �
K =�1

K�; .�; �/B�;w.�; �/ (45)
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where � �
K is defined as in (27) and K�; and B�;w are given by

K�; .�; �/ D e
�
�
a

c

	
e

�
�
d

c

�
 .�/; (46)

B�;w.�; �/ D

8
<̂

:̂

e
��w

4

�P
k�0

�
2�
c

�2kCw .��/k
kŠ

�kCw�1

� .kCw/ ; w � 1;

e
��w

4

�P
k�0

�
2�
c

�2kC2�w .��/kC1�w

� .kC2�w/
�k

kŠ
; w 	 1;

(47)

in case � D �
a b
c d

�
and c > 0. Observe that the restriction �; � 2 1

h
.Z � ˛/ is

necessary in order that the map � 7! K�; .�; �/B�; .�; �/ descend to the double
coset space �1n� �

K =�1; assuming convergence we may regard c�; ;w as a function
on the grid

1

h
Z � 1

h
Z �

�˛
h
;
˛

h

	
� R

2: (48)

Note that the convergence of the expression (45) defining c�; ;w.�; �/ is not
obvious when w lies in the range 0 	 w 	 2 but is relatively easy to show for
w < 0 and 2 < w. For example, if � D SL2.Z/ and w � 1 then we have the simple
estimate

jc�; ;w.�; �/j 	
X

�2�1n� �=�1

jK�; .�; �/jjB�;w.�; �/j

	
X

c>0

c
X

k�0

�
2�

c

�2kCw j�jkj�jkCw�1

kŠ� .k C w/

(49)

where both c and k are restricted to be integers and the factor c appearing between
the two summations serves as a crude upper bound for the number of double cosets
in �1n�=�1 with representatives having lower-left entry equal to c. Consider the
result of interchanging the two summations in the right-hand side of (49). If w > 2

then we obtain

X

k�0
.2�/2kCw j�jkj�jkCw�1

kŠ� .k C w/

X

c>0

c1�2k�w

	
X

k�0
.2�/2kCw j�jkj�jkCw�1

kŠ� .k C w/

1

w � 2

D 2�

w � 2 j�j
.1�w/=2j�j.w�1/=2Iw�1.4�j��j1=2/ (50)

where I˛.z/ denotes the modified Bessel function of the first kind and we have used
its series expression (101) in the second line of (50). In particular, the left-hand side
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of (50) is absolutely convergent for w > 2. This verifies the coincidence of the left-
hand side of (50) with the right-hand side of (49) and thus we obtain the absolute
convergence of the Rademacher series c�; ;w.�; �/ for w > 2. The case that w < 0

is similar, and for a more general group � , being a union of finitely many cosets of
a finite-index subgroup of SL2.Z/, the necessary adjustments to the above argument
are not unduly complicated. We refer to [25] for the case that  is trivial and w is
an even integer. (See also Theorem 3.1 below.) We refer to [54] for a treatment of
the case that w < 0.

The question of convergence is more subtle in the cases that 0 	 w 	 2.
To establish convergence for weights in this region one has to replace the c

appearing between the two summations in (49) with a more careful estimate for
the Kloosterman sum

S�; .�; �; c/ D
X

�2�1n�=�1

c.�/Dc

K�; .�; �/: (51)

In (51) we again write c.�/ for the lower-left entry of � . A beautiful approach to
analysing Kloosterman sums was pioneered by Selberg in [65]. Selberg introduced
the Kloosterman zeta function

Z�;�.s/ D
X

�2�1n� �=�1

K�; .�; �/c.�/
�2s D

X

c>0

S�; .�; �; c/c
�2s (52)

and demonstrated that it admits an analytic continuation that is holomorphic in
the half-plane <.s/ > 1=2 but for finitely many poles on the real line segment
1=2 < s < 1. Further, these poles are determined by the vanishing or otherwise of
particular Fourier coefficients of particular cusp forms for � . Using this together
with the growth estimates for Z�;�.s/ due to Goldfeld–Sarnak [35] (see also [21])
one may, for suitable choices of � and �, obtain the convergence of the series
defining c�; ;w.�; �/. Such an approach was first implemented by Knopp in [41,42].
It was applied in [25] so as to establish the convergence of c�;1;w.�; �/ in weights
w D 0 and w D 2 for arbitrary � commensurable with SL2.Z/ and arbitrary
�; � 2 Z, and it was applied in [11] to demonstrate the convergence of c�; ;1=2.�; �/
for � D �1=8 and � > 0 when � D �0.n/ for some n, and  is one of the
multipliers relevant for Mathieu moonshine (cf. Sect. 4.2).

Theorem 3.1 ([25]). Let � be a subgroup of SL2.R/ that is commensurable with
SL2.Z/ and contains �I . Then the Rademacher series c�;1;0.�; �/ and c�;1;2.�; �/
converge for all �; � 2 Z.

Theorem 3.2 ([11]). Let � D �0.n/ for n a positive integer, let h be a divisor of
n that also divides 24 and set  D �njh��3 where �njh is defined by (87). Then the
Rademacher series c�; ;1=2.�1=8; �/ converges for all � 2 Z�1=8 such that � > 0,
and the Rademacher series c�; N ;3=2.1=8; �0/ converges for all �0 2 Z C 1=8 such
that �0 > 0.
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At this point we may recognise the expression (33), defining the constant term
correction to Rademacher sums with w D 0, as a specialisation of the Rademacher
series construction (45). In particular, we can confirm that c�; ;w.�; 0/ D 0 when
w � 1 and c�; ;w.�; 0/ should not be defined unless ˛ D 0. Note also that B�;w can
be expressed conveniently in terms of Bessel functions (cf. Sect. 6) in case xy ¤ 0.
For example, if x < 0 or y > 0 then we have

B�;w.�; �/ D e
�
�w

4

	
.��/.1�w/=2�.w�1/=2 2�

c
Ijw�1j

�
4�

c
.���/1=2

�
(53)

for any weight w 2 R. (In the case that y < 0 < x the right-hand side of (53) should
be multiplied by e� ijw�1j.)

In the remainder of this section we consider some applications of the Rademacher
series.

3.1 Coefficients of Rademacher Sums

Expressions like that defined by (45)–(47) first appeared in the aforementioned work
[58] of Poincaré where he considered the case that � D SL2.Z/, the multiplier
 is trivial, w is an even integer greater than 2, and � is a non-negative integer.
Poincaré obtained an expression equivalent to c�; ;w.m; n/ C ım;n for the Fourier

coefficient of qn in P Œm�
�; ;w.�/, for m and n non-negative integers. The series of [58]

were generalised by Petersson in [55], where he obtained the analogous expression

P
Œ��
�; ;w D q� C

X

h�C˛2Z
��0

c�; ;w.�; �/q
� (54)

when � is the principal congruence group � .N/ (the kernel of the map SL2.Z/!
SL2.Z=NZ/) for some N . Thus we see many instances in which the Rademacher
series recover the Fourier coefficients of a Poincaré series.

The formula (54) was established for more general subgroups � < SL2.Z/ and
for weights w � 2 in [56,57], and on the strength of this, together with his result that
an arbitrary modular form may be written as a linear combination of Poincaré series,
Petersson essentially solved the problem of finding convergent series expressions
for the Fourier coefficients of modular forms with weight w � 2. Using the fact
that the derivative of the elliptic modular invariant J.�/ is a weak modular form
of weight 2, and thus a function whose coefficients can be written in terms of the
c�; ;w according to his results, Petersson was able to derive series expressions for
the coefficients of the function J.�/ itself, by integration. To see such expressions
consider the values c�; ;w.�; �/ for � D SL2.Z/,  
 1 and w D 0. Then h D 1,
˛ D 0 and .�; �/ 2 Z � Z (cf. (48)). Observing that the non-trivial double cosets
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of �1 in � D SL2.Z/ are represented, irredundantly, by the matrices
�
a b
c d

�
with

c > 0 and d coprime to c satisfying 0 	 d < c we find that

c�;1;0 .�1; n/ D
X

c>0
0�d<c
.c;d/D1

e

�
aC nd

c

�
n�1=2 2�

c
I1

�
4�

c
n1=2

�
(55)

in agreement with Petersson’s formula [56, p. 202] for the n-th coefficient of J.�/,
so that, according to Rademacher’s identity RŒ�1��;1;0 D J C 24 (cf. (38)), we have

R
Œ�1�
�;1;0.�/ D q�1 C

X

n�0
c�;1;0.�1; n/qn: (56)

In particular, the Rademacher series c�;1;0 recover the Fourier coefficients of the
Rademacher sum R

Œ�1�
�;1;0.

In independent work Rademacher solved the problem of providing an exact
formula for the partition function [59] and this furnishes another instructive
example, for if p.n/ denotes the number of partitions of the positive integer n then
we have

1

�.�/
D q�1=24 C

X

n>0

p.n/qn�1=24 (57)

where � denotes the Dedekind eta function (cf. (102)). So it suffices to compute
expressions for the Fourier coefficients of the (weak) modular form 1=� of weight
�1=2. Let � D SL2.Z/ and let � W � ! C denote the multiplier system of �
(cf. (103)). Then N� D ��1 is a multiplier system in weight w D �1=2 for � with
h D 1 and ˛ D 1=24 and so we may consider the values c�;N�;�1=2.�1=24; n�1=24/
for n a positive integer. Comparing with the explicit formula (104) for � we find that

c�;N�;�1=2
�
� 1
24
; n � 1

24

�

D
X

c>0
0�d<c
.c;d/D1

e

�
n
d

c
� s.d; c/

4

�
.24n � 1/�3=4 2�

c
I3=2

� �
6c
.24n � 1/1=2

	
(58)

which is in agreement with the formula for p.n/ derived in [59]. (The right-hand
side of (58) is more immediately recognised in the subsequent work [62] which
gives a general description of coefficients of modular forms of negative weight
for the modular group in terms of the c�; ;w defined above and revisits the case
of 1=�.�/ as a specific example on p. 455.)

Rademacher went on to determine an analogue of (58) for the coefficients of
J in [60]. Using a completely different method to that of [56] he independently
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rediscovered the formula (55). Rademacher’s motivation for the subsequent work
[61], and the introduction of the original Rademacher sum R

Œ�1�
�;1;0 (cf. (35)), was

to derive the modular invariance of the function q�1 CPn>0 c�;1;0.�1; n/qn, and
thereby establish its coincidence with J directly, using just the expression (55) for
c�;1;0.�1; n/.

We have seen now several examples in which the series c�; ;w serve to recover
coefficients of a modular form, and a Rademacher sum in particular. In general we
can expect the direct relationship

R
Œ��
�; ;w.�/ D q� C

X

h�C˛2Z
��0

c�; ;w.�; �/q
� (59)

between Rademacher sums and Rademacher series, assuming that RŒ���; ;w and all
the c�; ;w.�; �/ with � � 0 are convergent. To see how this relationship can be
derived we may begin by replacing e.���/ with e.��1/ e.�.�� � �1// in (32)
and rewriting �� � �1 as �c�1.c� C d/�1 in case .c; d/ is the lower row of � .
Then we may proceed in a way similar to that employed in the discussion leading
to (25), applying the Lipschitz summation formula (108) (and typically also its non-
absolutely convergent version, Lemma 6.1) together with the fact that

 .�T h/e.��T h1/ j.�T h; �/w=2 D  .�/e.��1/ j.�; � C h/w=2 (60)

for h� C ˛ 2 Z, and this brings us quickly to the required expression for RŒ���; ;w
as a sum of sums over the double coset space �1n� �=�1. We refer to [25] and
[11] for detailed implementations of this approach, including careful consideration
of convergence.

Since the Rademacher sum R
Œ��
�; ;w is precisely the Poincaré series P Œ��

�; ;w when
w > 2 we have (59) for w > 2 according to the aforementioned work of Petersson.
Niebur established (59) for arbitrary weights w < 0 in [54] (and thus we have
that 1=� is also a Rademacher sum—namely, 1=� D R

Œ�1=24�
�;N�;�1=2—according to the

Rademacher’s formula for p.n/ and the identity (58)). We have illustrated above
that the convergence of the Rademacher series c�; ;w is more subtle in case 0 	
w 	 2. As we have mentioned, Petersson and Rademacher independently gave the
first instance of (59) for w D 0; other examples were established by Knopp in
[37, 38, 40]. The general case that � is commensurable with SL2.Z/ and contains
�I , the multiplier  is trivial and w D 0 was proven in [25], and examples with
w D 1=2 and w D 3=2 were established in [11].

Theorem 3.3 ([25]). Let � be a subgroup of SL2.R/ that is commensurable with
SL2.Z/ and contains �I . Then the Fourier expansion of the Rademacher sumRŒ���;1;0
is given by (59).

Theorem 3.4 ([11]). Let � D �0.n/ for n a positive integer, let h be a divisor of
n that also divides 24 and set  D �njh��3 where �njh is defined by (87). Then the

Fourier expansions of the Rademacher sumsRŒ�1=8��; ;1=2 andRŒ1=8�
�; N ;3=2 are given by (59).
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Results closely related to (59) for weights in the range 0 < w < 2 have been estab-
lished by Knopp [41, 42], Pribitkin [19, 20], and Bringmann–Ono [4, 7].

3.2 Dualities

The Bessel function expression (53) emphasises a symmetry in B�;w under
the exchange of a weight w with it’s dual weight 2 � w; namely, � e.�w=2/
B�;2�w.��;��/ D B�;w.�; �/. Replacing � with ���1 in (46)–(47) we observe
that e.w=2/K���1; N .��;��/ D K�;w.�; �/ and B���1;w D B�;w, and thus we
obtain the Zagier duality identity

c�; N ;2�w.��;��/ D c�; ;w.�; �/ (61)

in case �; � 2 1
h
.Z � ˛/ (cf. (48)). This may be regarded as a generalisation of

the coincidence, up to a minus sign, of coefficients in certain families of modular
forms in dual weights that was observed by Zagier in [70]. Much of the interest in
Zagier duality derives from its power to give novel interpretations to coefficients of
modular forms, such as in terms of traces of singular moduli in the original example
[70]; for other generalisations and applications we refer to [5, 9, 29, 36, 64].

The duality (61) demonstrates that dual Rademacher series—attached to mutu-
ally inverse multiplier systems in dual weights—coincide up to transposition and
negation of their arguments. In other words, the vertical lines in the grid of values
.�; �/ 7! c�; ;w.�; �/ are, up to sign, the horizontal lines in the corresponding
grid .�0; �0/ 7! c�; N ;2�w.�

0; �0/ for the dual Rademacher series. Consequently,
when considering Fourier coefficients of Rademacher sums with a given weight
and multiplier system one is simultaneously considering the Fourier coefficients
of Rademacher sums in the dual weight. As an application of this we see that the
Rademacher series c�; ;w encode not only the Fourier expansions of the RŒ���; ;w but

also the Fourier expansions of their shadows SŒ���; ;w. For by applying (59) to the

formula (40), which relates the shadow S
Œ��
�; ;w of RŒ���; ;w to the dual Rademacher

sum R
Œ���
�; N ;2�w

, we obtain

S
Œ��
�; ;w.�/ D

.��/1�w

� .1 � w/

0

B@q�� X

h��˛2Z
��0

c�; ;w.��; �/q�
1

CA : (62)

The Eichler integral of a cusp form f .�/ D P
�>0 c.�/q

� with weight w for
some group � is the function Qf .�/ defined by the q-series

Qf .�/ D
X

�>0

�1�wc.�/q�: (63)
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Let us consider the effect of transposing � with � and replacing � with ���1
in (46)–(47). We obtain e.w=2/K���1; .�; �/ D K�; .�; �/ and e.�w=2/

B���1;w.�; �/�
1�w D B�;w.�; �/�

1�w for w � 1, and this, together with an
application of (61), leads us to the Eichler duality identity

�c�; N ;2�w.��;��/�1�w D c�; ;w.�; �/�1�w; (64)

valid for w � 1. (A similar but slightly different expression obtains when w < 1.)
The relation (64) demonstrates another application of the Rademacher series
construction: the Eichler integral of the Rademcher sum R

Œ��
�; ;w, assuming ˛ ¤ 0

or c�; ;w.�; 0/ D 0, is computed, up to conjugation and a scalar factor, by the
Rademacher series attached to the inverse multiplier system in the dual weight.

QRŒ���; ;w.�/ D ��1�w
X

�>0

c�; N ;2�w.��;��/q� (65)

As an example consider the case that � D SL2.Z/ is the modular group,  D �3
and w D 3=2. Then RŒ1=8�

�;�3;3=2
is, up to a scalar factor, the shadow of the weak mock

modular form R
Œ�1=8�
�;��3;1=2

. It is shown in [11] that RŒ1=8�
�;�3;3=2

D �12�3 and we have

�.�/3 DPn�0.�1/n.2nC 1/q.2nC1/2=8 according to an identity due to Euler. Thus
we find that

QRŒ1=8�
�;�3;3=2

.�/ D �24p2
X

n�0
.�1/nq.2nC1/2=8; (66)

and applying (65) to this we obtain the beautiful formula

c�;��3;1=2.�1=8;�n � 1=8/ D
(
12.�1/m if n D �m

2

�
for some m > 0,

0 else,
(67)

when n � 0. Compare this to the fact that the values c�;��3;1=2.�1=8;�n� 1=8/ for

n < 0 are the coefficients of the weak mock modular form R
Œ�1=8�
�;��3;1=2

according to
Theorem 3.4. (This weak mock modular form will play a special rôle in Sect. 4.2.)
The function

P
n�0.�1/nq.2nC1/2=8, appearing here as (a rescaling of) the Eichler

integral of �3, is one of the false theta series studied by Rogers in [63] (cf. [1]).

4 Moonshine

Some of the most fascinating and powerful applications of Rademacher sums have
appeared in moonshine. To describe them we shall start with a short discussion of the
relevant modular objects. The study of monstrous moonshine was initiated with the
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realisation (cf. [68,69]) that the Fourier coefficients of the elliptic modular invariant
J (cf. (4)) encode positive integer combinations of dimensions of irreducible
representations of the monster group M. More generally, monstrous moonshine
attaches a holomorphic function Tg D q�1CPn>0 cg.n/q

n on the upper-half plane
to each element g in the Monster group M. This association is such that the Fourier
coefficients of the McKay–Thompson series Tg furnish characters g 7! cg.n/ of
non-trivial representations of M (thus the function Tg depends only on the conjugacy
class of g), and such that the Tg all have the following genus zero property:

If �g is the invariance group of Tg then the natural map Tg W �gnH ! C extends to an

isomorphism of Riemann surfaces X�g ! OC.

Here OC denotes the Riemann sphere and X� is the Riemann surface � nH [ OQ
(cf. (12)). We are using the weight 0 action of SL2.R/ with trivial multiplier,
.f j1;0�/.�/ D f .��/ (cf. (10)), to define the invariance.

Conway–Norton introduced the term moonshine in [14] and detailed many
interesting features and properties of the—at that time conjectural—correspondence
g 7! Tg. An explicit monster module conjecturally realizing the Tg of [14] as
graded-traces was constructed by Frenkel–Lepowsky–Meurman in [30–32], and a
proof of the Conway–Norton moonshine conjectures—that these graded traces do
determine functions Tg with the genus zero property formulated above—was given
by Borcherds in [3]. All that notwithstanding, a clear conceptual explanation for
the genus zero property of monstrous moonshine is yet to be established. A step
towards this goal was made in [25] by employing the Rademacher sum machinery,
as we shall see presently in Sect. 4.1. In particular, we will show that the genus zero
property is actually equivalent to fact that Tg coincides (up to a constant) with the
relevant Rademacher sum (cf. (79)).

In [28] a remarkable observation was made relating the elliptic genus of a K3
surface to the largest Mathieu group M24 via a decomposition of the former into a
linear combination of characters of irreducible representations of the small N D 4

superconformal algebra. The elliptic genus is a topological invariant and for anyK3
surface it is given by the weak Jacobi form

ZK3.�; z/ D 8
 �

�2.�; z/

�2.�; 0/

�2
C
�
�3.�; z/

�3.�; 0/

�2
C
�
�4.�; z/

�4.�; 0/

�2!
(68)

of weight 0 and index 1. The �i are Jacobi theta functions (cf. (106)). When
decomposed into N D 4 characters we obtain

ZK3.�; z/ D 20 ch.2/1
4 ;0
� 2 ch.2/1

4 ;
1
2

C
X

n�0
tn ch.2/1

4Cn; 12

D �1.�; z/2

�.�/3

 
24�.�; z/C q�1=8� � 2C

1X

nD1
tnq

n
�
!

(69)
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for some tn 2 Z where �1.�; z/ and �.�; z/ are defined in (106)–(107). In the above
equation we write

ch.`/h;j .�; z/ D tr
V
.`/

h;j

�
.�1/J 30 yJ 30 qL0�c=24

	
(70)

for the Ramond sector character of the unitary highest weight representation V .`/

h;j

of the small N D 4 superconformal algebra with central charge c D 6.` � 1/.
By inspection, the first five tn are given by t1 D 90, t2 D 462, t3 D 1;540,
t4 D 4;554, and t5 D 11;592. The surprising observation of [28] is that each of
these tn is twice the dimension of an irreducible representation of M24. See the
contribution by Gaberdiel and Volpato in this proceeding for a discussion of this
Mathieu observation from the viewpoint of conformal field theories.

One is thus compelled to conjecture that every tn may be interpreted as the
dimension of an M24-module Kn�1=8. If we define H.�/ by requiring

ZK3.�; z/�.�/
3 D �1.�; z/2.a�.�; z/CH.�// (71)

then a D 24 and

H.�/ D q� 1
8

 
�2C

1X

nD1
tnq

n

!
(72)

is a slight modification of the generating function of the tn. The inclusion of the term
�2 and the factor q�1=8 has the effect of improving the modularity: H.�/ is a weak
mock modular form (cf. Sect. 2.3) for SL2.Z/with multiplier ��3 (cf. (104)), weight
1=2, and shadow � 12p

2�
�3 (cf. (102)). If the tn really do encode the dimensions of

M24-modules Kn�1=8 then we can expect to obtain interesting functions Hg.�/—
McKay–Thompson series forM24—by replacing tn with trKn�1=8

.g/ in (72). In other
words, we should also consider

Hg.�/ D �2q�1=8 C
1X

nD1
trKn�1=8

.g/qn�1=8: (73)

Strictly speaking, to determine Hg requires knowledge of the M24-module
K D L1

nD1 Kn�1=8 whose existence remains conjectural, but one can attempt to
formulate conjectural expressions for Hg by identifying a suitably distinguishing
modular property that they should satisfy. If the property is well-chosen then it
will be strong enough for us to determine concrete expressions for the Hg, and
compatibility between the low order terms amongst the Fourier coefficients of Hg

with the character table of M24 will serve as evidence for both the validity of Hg

and the existence of the module K. Exactly this was done in a series of papers,
starting with [10], and the independent work [34], and concluding with [33] and
[27]. Despite this progress no construction of the conjectured M24-module K is yet
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known. To find such a construction is probably the most important open problem
in Mathieu moonshine at the present time. Similar remarks also apply to the more
general umbral moonshine that we will describe shortly.

The strong evidence for the conjecture that H.�/ encodes the graded dimension
of an M24-module invites us to consider the M24 analogue of the Conway–Norton
moonshine conjectures—this will justify the use of the term moonshine in the M24

setting—except that it is not immediately obvious what the analogue should be.
Whilst the McKay–Thompson series Hg is a mock modular form of weight 1=2 on
some �g < SL2.Z/ for every g inM24 [27], it is not the case that �g is a genus zero
group for every g, and even if it were, there is no obvious sense in which a weak
mock modular form of weight 1=2 can induce an isomorphism X� ! OC, and thus
no obvious analogue of the genus zero property formulated above. A solution to
this problem—the formulation of the moonshine conjecture for M24—was recently
found in [11]. As we shall explain in Sect. 4.2, the correct analogue of the genus
zero property is that the McKay–Thompson seriesHg should coincide with a certain
Rademacher sum attached to its invariance group �g.

It is striking that, despite the very different modular properties the two sets of
McKay–Thompson series Hg and Tg display they can be constructed in completely
analogous ways in terms of Rademacher sums. We are hence led to believe that
Rademacher sums are an integral element of the moonshine phenomenon. And such
a belief has in fact been instrumental in the discovery of umbral moonshine [13],
whereby a finite group G.`/ and a family of vector-valued mock modular forms
H
.`/
g for g 2 G.`/ is specified for each ` in  D f2; 3; 4; 5; 7; 13g—the set of

positive integers ` such that ` � 1 divides 12—and these groups G.`/ and vector-
valued mock modular forms H.`/

g are conjectured to be related in a way that we
shall describe presently.

Following [13] we say that a weak Jacobi form �.�; z/ of weight 0 and index
` � 1 is extremal if it admits a decomposition

� D a `�1
4 ;0ch.`/`�1

4 ;0
C a `�1

4 ; 12
ch.`/`�1

4 ; 12
C

X

0<r<`

X

n2Z
r2�4`n<0

a `�1
4 Cn; r2 ch.`/`�1

4 Cn; r2
(74)

for some ah;j 2 C where the ch.`/h;j are as in (70). In [13] it was shown that an
extremal Jacobi form is unique (up to scalar multiplication) if it exists. Moreover, it
was speculated that there are no extremal Jacobi forms of index ` � 1 unless ` � 1
divides 12, and this was shown to be true for indexes in the range 1 	 ` � 1 	 24.
As was discussed in detail in [13], the above decomposition of an extremal Jacobi
form �.`/ of index `� 1 leads naturally to a vector-valued mock modular formH.`/

with ` � 1 components H.`/
r , r 2 f1; : : : ; ` � 1g. Equivalently, the components of

the vector-valued mock modular form H.`/ D .H
.`/
r / are the coefficients of the

theta-decomposition of the pole-free part (cf. [18]) of a meromorphic Jacobi form
of weight 1 and index ` with a simple pole at z D 0 that is closely related to �.`/.
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Table 1 The groups of umbral moonshine

` 2 3 4 5 7 13

G.`/ M24 2:M12 2:AGL3.2/ GL2.5/=2 SL2.3/ Z=4Z

In [13] it was observed that the mock modular form H.`/ obtained in this way
has a close relation to a certain finite group G.`/ (specified in Table 1) and it was
conjectured that for ` such that ` � 1 divides 12 there exists a naturally defined
Z �Q-graded G.`/-module

K.`/ D
M

r2Z
0<r<`

K.`/
r D

M

r;k2Z
0<r<`

K
.`/

r;k�r2=4` (75)

such that the graded dimension ofK.`/ is related to the vector-valued mock modular
form H.`/ via

H.`/
r .�/ D �2ır;1q�1=4` C

X

k2Z
r2�4k`<0

dimK
.`/

r;k�r2=4`q
k�r2=4`: (76)

Moreover, as in monstrous and Mathieu moonshine we expect to encounter interest-
ing functions if we replace dimK

.`/

r;k�r2=4` with tr
K
.`/

r;k�r2=4`

.g/ in (76) for g 2 G.`/.

Consider the umbral McKay–Thompson series H.`/
g D .H

.`/
g;r / for g 2 G.`/ and

` 2 f2; 3; 4; 5; 7; 13g defined, modulo a definition of K.`/, by setting

H.`/
g;r .�/ D �2ır;1q�1=4` C

X

k2Z
r2�4k`<0

tr
K
.`/

r;k�r2=4`

.g/qk�r2=4`: (77)

It was conjectured in [13] that the G.`/ module K.`/ has the property that all the
H
.`/
g defined above transform as vector-valued mock modular forms with specified

(vector-valued) shadows. We refer to [13] for various explicit expressions for H.`/
g .

The fact that all the McKay–Thompson series are mock modular forms and thus
come attached with shadows is the origin of the term umbral moonshine. Notice that
G.2/ D M24. When ` D 2 the umbral moonshine conjecture stated above recovers
the Mathieu moonshine conjecture relating H.�/ and M24. The Rademacher sums
of relevance for umbral moonshine will be discussed in Sect. 4.3.

This series of examples clearly demonstrates the importance of Rademacher
sums in understanding connections between finite groups and (mock) modular
forms, and yet it seems likely that the examples presented here are not exhaustive.
A complete understanding of the relationships between finite groups and mock
modular forms arising from Rademacher sums would be highly desirable.
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4.1 Monstrous Moonshine

Consider the Rademacher sums RŒ���;1;0 attached to groups � < SL2.R/ equipped
with the trivial multiplier  
 1 in weight 0, and let us specialise momentarily to
the index � D �1. As was shown in Sect. 2, the formula (32) for RŒ�1��;1;0 reduces in
this case to

R
Œ�1�
�;1;0.�/ D e.��/C 1

2
c�g;1;0.�1; 0/C lim

K!1
X

�1n� �
<K

e.���/ � e.��1/; (78)

As was also discussed in Sect. 2, it was shown in [25] that the expression (78)
defining RŒ�1��;1;0.�/ converges locally uniformly in � for � commensurable with
SL2.Z/ and containing �I , thus yielding a holomorphic function on H. Moreover,
there is a function ! W � ! C such that RŒ�1��;1;0.��/C !.�/ D RŒ�1��;1;0.�/ for all � 2
H, and the function ! is identically zero whenever � defines a genus zero quotient
of the upper-half plane. This last fact suggests a connection between Rademacher
sums and the genus zero property of monstrous moonshine: the groups �g are all
of this specific type (commensurable with the modular group, containing �I and
having genus zero) so that RŒ�1��g;1;0

converges and is �g-invariant for every g 2 M.

Furthermore, for � D �g the Rademacher sum R
Œ�1�
�;1;0 induces an isomorphism

X� ! OC (cf. (12), [25]).
In fact, the connection between Rademacher sums and monstrous moonshine is

even stronger. Given any group element g of the monster, the function Tg may be
characterised as the unique �g-invariant holomorphic function on H with Fourier
expansion of the form Tg.�/ D q�1 C O.q/ and no poles at any non-infinite
cusps of �g. In particular, the Fourier expansion (at the infinite cusp) has vanishing
constant term. It follows then that the Rademacher construction with � D �1
recovers the Tg exactly, up to their constant terms, so that we have

Tg.�/ D RŒ�1��g;1;0
.�/ � c�g;1;0.�1; 0/ (79)

for each g 2M according to (59). Hence we see that the Rademacher sum furnishes
a uniform group-theoretic construction of the monstrous McKay–Thompson series,
a fact that is equivalent to the genus zero property of monstrous moonshine which
is yet to be fully explained. This leads to the expectation that a suitable physical
interpretation of the Rademacher sum construction should be an integral part of a
conceptual understanding of the genus zero property, and perhaps moonshine itself.
We refer to Sect. 5 for more on the rôle of Rademacher sums in physics, and to [25,
Sect. 7] for a speculative discussion of the rôle that physics may play in explicating
monstrous moonshine.

Given the power of Rademacher sums, one might wonder if it is possible to
use them to characterise the groups �g relevant for monstrous moonshine. At first
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glance this seems to be unlikely for there are many more genus zero groups1

commensurable with SL2.Z/ than there are functions Tg. Nevertheless, a natural
answer to the characterisation question is found in [25, Sect. 6], following earlier
work [15] by Conway–McKay–Sebbar. Following [15] we employ the natural
notion of groups of njh-type, whose definition is carefully discussed in [25, Sect. 6]
and will be suppressed here. Assuming the notion of njh-type, the characterisation
of [25] reads as follows. A group � < SL2.R/ that is of njh-type and is such that
�=�0.nh/ has exponent 2 coincides with �g for some g 2M if and only if

• the Rademacher sum R
Œ�1�
�;1;0 is � -invariant, and

• the expansion of RŒ�1��;1;0 at any cusp of � is �0.nh/-invariant.

We regard the simplicity of this formulation as further evidence that Rademacher
sums have an important rôle to play in elucidating the nature of moonshine. (The
condition that �=�0.N / be a group of exponent 2 can also be formulated in terms
of Rademacher sums. We refer the reader to [25, Sect. 6] for more details.)

Finally we discuss Zagier duality for the monstrous Rademacher sums. So far we
have only considered the Rademacher sums RŒ���;1;0 for � D �1 but the families

n
R
Œ��
�;1;0 j � 2 Z; � < 0

o
(80)

for � a monstrous group are also relevant for moonshine. Set T Œ��� D R
Œ��
�;1;0 �

c�;1;0.�; 0/ so that T Œ�1�� D Tg when � D �g. In [25, Sects. 5, 7] it is argued
(with detail in the case of � D SL2.Z/) that the exponential of the generating
function

P
m>0 T

Œ�m�
� .�/pm furnishes the graded dimension of a certain generalised

Kac–Moody algebra attached to g by Carnahan in [8] when � D �g for g 2 M.
According to the Zagier duality (61) specialised to w D 0 the Fourier coefficients
of the family fT Œ�m�� j m 2 Z; m > 0g coincide, up to a minus sign, with those of
the dual family

n
R
Œ��
�;1;2 j � 2 Z; � < 0

o
: (81)

It is interesting to observe that the subtraction of the constant terms from the RŒ���;1;0,

which is necessary in order to obtain the functions T Œ��� that are of direct relevance

1Norton, in unpublished work (cf. [16]), has found 616 groups � such that �1 D hT;�I i, the
congruence group �0.N / is contained in � for some N , and the coefficients of the corresponding
Rademacher sum R

Œ�1�
�;1;0 are rational, and Cummins has shown [16] that 6,486 genus zero groups

are obtained by dropping the condition of rationality. On the other hand, there are 194 conjugacy
classes in the monster, but the two classes of order 27 are related by inversion and thus determine
the same McKay–Thompson series. There are no other coincidences amongst the Tg but there are
some linear relations, and curiously, the space of functions spanned linearly by the Tg for g 2 M

is 163 dimensional.
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to moonshine, has a natural reinterpretation under Zagier duality: it corresponds to
the omission of the Rademacher sum R

Œ0�
�;1;2—an Eisenstein series that fails to be

modular, as was observed in Sect. 2—from the family (81).
As a final remark, we observe that the coefficients c�;1;0 and c�;1;2 are related

in another way as one can see by inspecting (45)–(47); namely, �mc�;1;2.�m; n/ D
nc�;1;0.�m; n/ form and n positive integers, so the Rademacher sumsRŒ�m��;1;2 dual to

the functions T Œ�m�� D RŒ�m��;1;0 � c�;1;0.�m; 0/ of relevance to monstrous moonshine
are just their normalised derivatives,

R
Œ�m�
�;1;2 D �

1

m
q

d

dq
T
Œ�m�
� : (82)

4.2 Mathieu Moonshine

Consider the Rademacher sums RŒ���; ;w with � D SL2.Z/,  D ��3 and w D 1=2.
We have ˛ D 1=8 when  D ��3 so the smallest non-positive possibility for the
index is � D �1=8. Substituting into (30) we find that RŒ�1=8�

�;��3;1=2
.�/ is given by

lim
K!1

X

0<c<K
�K2<d<K2

.c;d/D1

e

�
1

8c.c� C d/ C
d

8c
� 3s.d; c/

2

�

� �pip
�.c� C d/w �

�
1

2
;

�� i
4c.c� C d/

�
(83)

where s.d; c/ is as in (104). In deriving (83) we have used the identities � .1=2/ Dp
� and ����1D c�1.c�Cd/�1, the latter being valid in case .c; d/ is the lower

row of � 2 SL2.R/. For the Rademacher series c�;��3;1=2 we have

c�;��3; 12

�
�1
8
; n � 1

8

�

D �2�
X

c>0
0�d<c
.c;d/D1

e

�
n
d

c
� 3s.d; c/

2

�
1

c.8n � 1/ 14
I 1
2

� �
2c
.8n � 1/ 12

	
(84)

according to (45)–(53) when n is a positive integer. As discussed in Sects. 2 and 3,
If the expressions (83) and (84) are convergent then the latter furnishes the Fourier
expansion of the former,

R
Œ�1=8�
�;��3;1=2

.�/ D q�1=8 C
X

n>0

c�;��3;1=2 .�1=8; n � 1=8/ qn�1=8: (85)
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On the other hand, the right-hand side of (84) appeared (up to a scalar factor)
earlier in [26] as a proposal for an explicit formula for tn. This suggests that the
function H.�/ may be a scalar multiple of the Rademacher sum R

Œ�1=8�
�;��3;1=2

.�/. In
fact, more is true, for in [11] it is shown that for each g 2 M24 there is a character
�g on �0.ng/, for ng the order of g, such that the Rademacher sum R

Œ�1=8�
�0.ng/;�g��3;1=2

converges, locally uniformly for � 2 H, and is related to the McKay–Thompson
series Hg.�/ by

Hg.�/ D �2RŒ�1=8��0.ng/;�g��3;1=2
.�/: (86)

The Rademacher series c�0.ng/;�g��3;1=2 are also shown to converge in [11], and we
recover (85) upon taking g to be the identity. In a word then, Rademacher sums
furnish a uniform construction of the (candidate) Hg determined earlier in [10, 27,
33,34], which constitutes further evidence in support of their validity. The character
�g may be specified easily: if n D ng is the order of g and h D hg is the minimal
length among cycles in the cycle shape of g (regarded as a permutation in the unique
non-trivial permutation action on 24 points) then �g D �njh where

�njh.�/ D e

�
� cd

nh

�
(87)

when .c; d/ is the lower row of � 2 �0.n/. The fact that (87) defines a morphism
of groups �0.ng/ ! C

� relies upon the result that if h is a divisor of 24 then
x2 
 1 .mod h/ whenever x is coprime to h together with the fact that all the hg
for g 2M24 are divisors of 24. We refer to [11,12] for more detailed discussions on
the multiplier �njh, as well as all the other material in this section.

As briefly mentioned before, beyond furnishing a uniform construction of theHg

the result (86) demonstrates the correct analogue of the genus zero property that is
relevant to this Mathieu moonshine relating representations of M24 to K3 surfaces.
The rest of this subsection will be devoted to the explanation of this fact. Recall that
there is in this case no obvious analogue of the genus zero property which holds
for the monstrous McKay–Thompson series Tg since some of the groups �0.ng/
arising in Mathieu moonshine do not define genus zero quotients of H (viz., ng 2
f11; 14; 15; 23g). On the other hand, from the discussion of Sect. 4.1 we see that
the genus zero property of the Tg is equivalent to the fact that they are modular
functions recovered from Rademacher sums as in (79). Therefore, the identity (86)
proven in [11]—the property of Hg to be uniformly expressible as a Rademacher
sum—serves as the natural analogue of the genus zero property that is relevant for
Mathieu moonshine (modulo a proof that the Hg really are the McKay–Thompson
series attached to a suitably defined M24-module K DLn>0 Kn�1=8).

In more detail, we note that the identity (86) implies that the Rademacher sums
R
Œ�1=8�
�; ;1=2 with � D �0.ng/ and D �ng jhg ��3 have the special property that they are

mock modular forms whose shadows lie in the one-dimensional space spanned by
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the cusp form �3. This must be the case because every proposed McKay–Thompson
series in Mathieu moonshine has shadow proportional to �3, a fact that is equivalent
to their relation to weak Jacobi forms generalising (71). Indeed, from (40) we see
that the shadow of the mock modular form Hg.�/ is a weight 3=2 modular form
given by

�2SŒ�1=8�
�0.ng/;�g��3;1=2

D � 1p
2�
R
Œ1=8�

�0.ng/;��1
g �3;3=2

: (88)

Moreover, it is proven in [11] that

�2SŒ�1=8�
�0.ng/;�g��3;1=2

D �	g
2

1p
2�
�3 (89)

where 	g denotes the number of fixed points of g (in the unique non-trivial
permutation representation of M24 on 24 points).

As is observed in [11], it is not typical behavior of the Rademacher sum R
Œ�1=8�
�; ;1=2

to have shadow lying in this particular one-dimensional space. For n D 9, for
example—note that 9 is not the order of an element in M24—the shadow of
the Rademacher sum R

Œ�1=8�
�0.n/;��3;1=2

is not proportional to �3, at least according to
experimental evidence. It is natural then to ask if there is a characterisation of the
modular groups and the multipliers of the McKay–Thompson seriesHg expressible
in terms of Rademacher sums, in analogy with that of [25] (derived following [15])
for the monstrous case as discussed in Sect. 4.1. In such a characterisation the pairs
.�0.n/; �njh/ for h a divisor of n dividing 24 would replace the groups of njh-type,
and the condition

• the Rademacher sum �2RŒ�1=8�
�0.n/;�njh�

�3;1=2
has shadow proportional to �3

would replace the � -invariance condition in Sect. 4.1. So far we do not know of any
examples that do not arise as Hg for some g 2 M24. It would be very interesting
to determine whether or not the above conditions are sufficient to characterise the
McKay–Thompson series of Mathieu moonshine.

4.3 Umbral Moonshine

In Sect. 2,3 we have described a regularisation procedure attaching Rademacher
sums RŒ���; ;w to a group � < SL2.R/, a multiplier  for � , a compatible weight
w and a compatible index �. This procedure can be generalised to the vector-valued
case with a higher-dimensional  and �. To be precise, we suppose that  D . ij/

is a matrix-valued multiplier system, satisfying (9) as before, for some weight w, and
we suppose also that  ij.T

h/ D ıij e.˛i / for some 0 < ˛i < 1 where h is such that
�1 D hT h;�I i. Then to a vector-valued index � D Œ�i � such that h�i C ˛i 2 Z
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for all i (and �i < 0 in case w < 1) we attach the (row) vector-valued Rademacher
sum

R
Œ��
�; ;w.�/ D lim

K!1
X

�1n�K;K2
e.���/ rŒ��w .�; �/ .�/ j.�; �/w=2 (90)

where e.���/ now denotes the (row) vector-valued function whose i -th component
is e.�i��/ and rŒ��w .�; �/ denotes the diagonal matrix-valued function whose .i; i/-th
entry is rŒ�i �w .�; �/ (cf. (31)). For the sake of simplicity we exclude the case that some
˛i D 0 in (90). In such a case one can expect constant term corrections analogous
to (32).

In order to apply the above construction to the vector-valued mock modular forms
relevant for umbral moonshine we have to specify the appropriate (matrix-valued)
multiplier. Recall that the vector-valued mock modular forms H.`/ are obtained
from the decomposition of extremal Jacobi forms into N D 4 characters. As is
explained in detail in [13], the relation to the weak Jacobi form immediately implies
that the mock modular formH.`/ has shadow (proportional to) S.`/ D .S.`/r /, whose
components are the unary theta series

S.`/r .�/ D
X

k2Z
.2`k C r/q .2`kCr/2

4` ; (91)

while the extremality condition implies that H.`/ has a single polar (non-vanishing
as � ! i1) term �2q� 1

4` in its first component H.`/
1 (cf. (76)). Notice that in the

case that ` D 2 we have S.2/ D .S
.2/
1 / D .�3/ by an identity due to Euler, and this

is in part a reflection of the fact that S.`/ is a (vector-valued) cusp form of weight
3=2 for SL2.Z/ for all ` � 2.

Let �.`/ D .�
.`/
ij / be the multiplier system for S.`/. Then from the above

discussion, we would like to consider the .` � 1/-vector-valued Rademacher sum
R
Œ��

�; .`/;1=2
where � D SL2.Z/, we take  .`/ to be the inverse of �.`/, and where we

set � D �.`/ D .� 1
4`
; 0; : : : ; 0/. As was uncovered in [13], the Rademacher sum

R
Œ��

�; .`/;1=2
(denoted R.`/ in [13]) has special properties when `�1 is a divisor of 12.

First, in these cases RŒ��
�; .`/;1=2

turns out to be a vector-valued mock modular form

with shadow proportional to the vector-valued cusp form S.`/ defined in (91). This
means that, for a suitably chosen constantC .`/, the vector-valued functionRŒ��

�; .`/;1=2

is invariant for the . ;w; G/-action of � D SL2.Z/ on .` � 1/-vector-valued
holomorphic functions F.�/ D .F1.�/; : : : ; F`�1.�// defined, in direct analogy
with (39), by setting

�
F j ;w;G�

�
.�/ D F.��/ .�/ j.�; �/w=2 C .2� i/1�w

Z i1

���11
.zC �/�wG.�Nz/dz;

(92)
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when  D  .`/, w D 1=2, and G.�/ D C .`/S.`/.�/ D C .`/.S
.`/
1 .�/; : : : ; S

.`/

`�1.�//.
Second, it appears to have a close relation to the group G.`/ as described in (77).

As the reader might have noticed, in case ` D 2 the function RŒ��
�; .`/;1=2

has a

single component which by definition coincides with RŒ�1=8�
�;��3;1=2

. Thus �2RŒ��
�; .`/;1=2

recovers the mock modular form H.�/ of importance in Mathieu moonshine (and
discussed in Sect. 4.2) in case ` D 2.

Recall that in the case of monstrous moonshine the genus zero property—that
each Tg should induce an isomorphism X� ! OC (cf. (12)) for some group � <

SL2.R/—was the primary tool for predicting the McKay–Thompson series, and
we have seen in Sect. 4.1 that this is equivalent to the property that Tg coincide

(up to an additive constant, cf. (79)) with the Rademacher sum R
Œ�1�
�;1;0 for some � .

In the case of Mathieu moonshine we have seen that each Hg may recovered as

�2RŒ�1=8�
�;�g��3;1=2

for a suitable character �g, and this is evidently a powerful analogue
of the genus zero property of monstrous moonshine. Analogously, in the case of
umbral moonshine it is conjectured [13] that each umbral McKay–Thompson series
H
.`/
g is recovered from a vector-valued Rademacher sum according to

H.`/
g D �2RŒ��

�0.ng/; .`/�
.`/
g ;1=2

(93)

where � D �.`/ and  .`/ are as before, �.`/g is a suitably defined (matrix-valued)
function on �0.ng/ and ng is a suitably chosen integer. (We refer to [13, Sect. 4.8] for

more details on �.`/g and ng.) The conjectural identity (93) was the primary tool used

in determining the concrete expressions for the H.`/
g that were furnished in [13].

5 Physical Applications

In the previous sections we have described the Rademacher summing procedure that
produces a (mock) modular form by computing a certain regularised sum over the
representatives of the cosets �1n� , where � < SL2.R/ is the modular group and
�1 is its subgroup fixing the infinite cusp. These (mock) modular forms are often
closely related to the partition function or the twisted partition function of certain
two-dimensional conformal field theories in physics. Hence, one might wonder if
the associated Rademacher sum also has a physical meaning. The answer to this
question is positive and in fact constituted an important part of the motivation to
explore the relation between moonshine and Rademacher sums [11, 12, 25].

A compelling physical interpretation of the Rademacher sum is provided by
the so-called AdS/CFT correspondence [47] (also referred to as the gauge/gravity
duality or the holographic duality in more general contexts), which asserts, among
many other things, that the partition function of a given two dimensional CFT
“with an AdS dual” equals the partition function of another physical theory in three
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Euclidean dimensions with gravitational interaction and with asymptotically anti de
Sitter (AdS) boundary condition. The correspondence, when applicable, provides
both deep intuitive insights and powerful computational tools for the study of the
theory. From the fact that the only smooth three-manifold with asymptotically AdS
torus boundary condition is a solid torus, it follows that the saddle points of such
a partition function are labeled by the different possible ways to “fill in the torus;”
that is, the different choices of primitive cycle on the boundary torus which may
become contractible in a solid torus that fills it [48]. These different saddle points
are therefore labeled by the coset space �1n� , where � D SL2.Z/ [24]. From
a bulk, gravitational point of view, the group SL2.Z/ has an interpretation as the
group of large diffeomorphisms, and �1 is the subgroup that leaves the contractible
cycle invariant and therefore can be described by a mere change of coordinates.
Such considerations underlie the previous use of Rademacher sums in the physics
literature [22–24, 46, 50, 51, 53]. See also [52] for a refinement of this interpretation
using localisation techniques.

In the presence of a discrete symmetry of the conformal field theory, apart from
the partition function one can also compute the twisted (or equivariant) partition
function. In more details, recall that the partition function computes the dimension
of the Hilbert space graded by the basic charges (the energy, for instance) of the
theory. In the presence of a discrete symmetry whose action on the Hilbert space
commutes with the operators associated with the basic conserved charges, more
refined information can be gained by studying the twisted partition function (a
trace over the Hilbert space with a group element inserted) which computes the
graded group characters of the Hilbert space. In the Lagrangian formulation of
quantum field theories this twisting corresponds to a modification of the boundary
condition. For a two dimensional CFT with an AdS gravity dual, this translates into
a corresponding modification of the boundary condition in the gravitational path
integral by an insertion of a group element g, which changes the set of allowed
saddle points. as a result, the allowed large diffeomorphisms is now given by a
discrete group �g � SL2.R/, generally different from SL2.Z/.

Note that when � 6� SL2.Z/, in particular when � D �0.njh/ C S where S
in a non-trivial subgroup of the group of exact divisors of n=h (see [25] for
details), the above interpretation suggests that certain orbifold geometries should be
included in the path integral as well as smooth geometries. We do not have a precise
understanding from the gravity viewpoint as for when these extra contributions
should be included. Some interpretation in terms of a Z=nZ-generalisation of the
spin structure (n D 2) have been put forward in [25]. See also [49] for a related
discussion. We hope further developments will shed light on this question in the
future.

We have explained above how the sum over �1n� for � D SL2.Z/ can be
thought of as a sum over the smooth, asymptotically AdS3 geometries. Moreover,
recent progress in the exact computation of path integrals in quantum gravity in AdS
backgrounds suggests that the precise form of the regulator itself is also natural from
the gravitational viewpoint. Recall the use of the Lipschitz summation formula (108)
in reducing the Rademacher sum (19) to a sum (26) of sums over (representatives
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of the non-trivial) double cosets of �1 in � . This procedure can be applied
quite generally and verifies the relationship (59) between Fourier coefficients of
Rademacher sums and the Rademacher series. In practice then, instead of a sum over
a pair of co-prime integers .c; d/ we can write a Rademacher sum as a generating
function of sums over a single integer c. This readily renders the following form
for the Fourier coefficient c� .�/ of the term q� in the Rademacher sum. It is the
infinite sum

c� .�/ D
1X

cD1
c� .�I c/; (94)

where c� .�I c/ takes the form of a product of a modified Bessel function with
argument �

p
�=c and a Kloosterman sum (cf. (45)).

In [17] an example has been provided where the gravity path integral is argued to
localise on configurations giving precisely the contribution of the above form to the
gravity partition function. First, the sum over c has the interpretation as a sum over
gravitational instantons obtained from orbifolding the configuration corresponding
to c D 1 by a symmetry group G Š Z=cZ. Second, the Bessel function arises
naturally as the result of the finite-dimensional integral obtained from localising the
infinite-dimensional path integral on the given instanton configuration. This result is
argued to be independent of the details of the orbifold and depends only on the order
c of the symmetry. Finally, the Kloosterman sum and the extra numerical factor is
speculated to arise from summing over different possibilities of order c orbifold
group G Š Z=cZ. It would be very interesting to see if further developments in
localising the gravity path integral will lead to a more complete understanding of
quantum gravity utilising Rademacher sums.

6 Appendix: Special Functions

The Bernoulli numbers Bm may be defined by the following Taylor expansion.

t

et � 1 D
X

m�0
Bm

tm

mŠ
(95)

The Gamma function � .s/ and lower incomplete Gamma function �.s; x/ are
defined by the integrals

� .s/ D
Z 1

0

t s�1e�tdt (96)

�.s; x/ D
Z x

0

t s�1e�tdt (97)
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for s real and positive. The expression (97) is well defined for positive real x but
this situation can be improved, for integration by parts yields the recurrence relation

�.s; x/ D .s � 1/�.s � 1; x/ � xs�1e�x; (98)

and this in turn leads to a power series expansion

�.s; x/ D � .s/

ex

X

n�0

xnCs

� .nC s C 1/ (99)

which converges absolutely and locally uniformly for x in C.
For the exponential xs we employ the principal branch of the logarithm, so that

xs D jxjsei�s whenever x D jxjei� ; �� < � 	 �: (100)

The modified Bessel function of the first kind is denoted I˛.x/ and may be defined
by the power series expression

I˛.z/ D
X

n�0

1

� .mC ˛ C 1/mŠ
� z

2

	2mC˛
(101)

which converges absolutely and locally uniformly in z so long as z avoids the
negative reals (cf. (100)). We consider only non-negative real values of ˛ in this
article.

The Dedekind eta function, denoted �.�/, is a holomorphic function on the upper
half-plane defined by the infinite product

�.�/ D q1=24
Y

n>0

.1 � qn/ (102)

where q D e.�/ D e2� i� . It is a modular form of weight 1=2 for the modular group
SL2.Z/ with multiplier � W SL2.Z/! C so that

�.��/�.�/ j.�; �/1=4 D �.�/ (103)

for all � D �
a b
c d

� 2 SL2.Z/, where j.�; �/ D .c� C d/�2. The multiplier system �

may be described explicitly as

�

�
a b

c d

�
D
(

e.�b=24/; c D 0; d D 1
e.�.aC d/=24c C s.d; c/=2C 1=8/; c > 0

(104)

where s.d; c/ D Pc�1
mD1.d=c/..md=c// and ..x// is 0 for x 2 Z and x � bxc �

1=2 otherwise. We can deduce the values �.a; b; c; d/ for c < 0, or for c D 0
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and d D �1, by observing that �.��/ D �.�/ e.1=4/ for � 2 SL2.Z/. Observe
that

�.T m�/ D �.�T m/ D e.�m=24/�.�/ (105)

for m 2 Z.
Setting q D e.�/ and y D e.z/ we use the following conventions for the four

standard Jacobi theta functions.

�1.�; z/ D �iq1=8y1=2
1Y

nD1
.1 � qn/.1 � yqn/.1 � y�1qn�1/

�2.�; z/ D q1=8y1=2
1Y

nD1
.1 � qn/.1C yqn/.1C y�1qn�1/

�3.�; z/ D
1Y

nD1
.1 � qn/.1C y qn�1=2/.1C y�1qn�1=2/

�4.�; z/ D
1Y

nD1
.1 � qn/.1 � y qn�1=2/.1 � y�1qn�1=2/

(106)

We write �.�; z/ for the Appell-Lerch sum defined by setting

�.�; z/ D �iy
1=2

�1.�; z/

1X

`D�1

.�1/`ynq`.`C1/=2
1 � yq` : (107)

The Lipschitz summation formula is the identity

.�2�i/s
� .s/

1X

kD1
.k � ˛/s�1 e..k � ˛/�/ D

X

`2Z
e.˛`/.� C `/�s; (108)

valid for <.s/ > 1 and 0 	 ˛ < 1, where e.x/ D e2� ix . A nice proof of
this using Poisson summation appears in [44]. Observe that both sides of (108)
converge absolutely and uniformly in � on compact subsets of H. For applications to
Rademacher sums of weight less than 1 one requires an extension of (108) to s D 1.
Absolute convergence on the right hand side breaks down at this point but we may
consider the following useful analogue. The reader may consult [11, Sect. C], for
example, for a proof of (109), and may see [25, Sect. 3.3] for a proof of (110).

Lemma 6.1. For 0 < ˛ < 1 we have

1X

kD1
e..k � ˛/�/ D

X

�K<`<K
e.˛`/.�2�i/�1.� C `/�1 CEK.�/ (109)
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where EK.�/ D O.1=K2/, locally uniformly for � 2 H. For ˛ D 0 we have

1

2
C
X

k>0

e.k�/ D lim
K!1

X

�K<`<K
.�2� i/�1.� C `/�1: (110)
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Free Bosonic Vertex Operator Algebras
on Genus Two Riemann Surfaces II

Geoffrey Mason and Michael P. Tuite

Abstract We study n-point correlation functions for a vertex operator algebra V
on a Riemann surface of genus 2 obtained by attaching a handle to a torus. We
obtain closed formulas for the genus two partition function for free bosonic theories
and lattice vertex operator algebras VL and describe their holomorphic and modular
properties. We also compute the genus two Heisenberg vector n-point function
and the Virasoro vector one point function. Comparing with the companion paper,
when a pair of tori are sewn together, we show that the partition functions are not
compatible in the neighborhood of a two-tori degeneration point. The normalized
partition functions of a lattice theory VL are compatible, each being identified with
the genus two Siegel theta function of L.

1 Introduction

In previous work [17–20, 34] we developed the general theory of n-point functions
for a Vertex Operator Algebra (VOA) on a compact Riemann surface S obtained
by sewing together two surfaces of lower genus, and applied this theory to obtain
detailed results in the case that S is obtained by sewing a pair of complex
tori—the so-called �-formalism discussed in the companion paper1 [20]. In the

1Reference [20] together with the present paper constitute a much expanded version of [21].
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present paper we consider in detail the situation when S results from self-sewing
a complex torus, i.e., attaching a handle, which we refer to as the �-formalism. We
describe the nature of the resulting n-point functions, paying particular attention to
the 0-point function, i.e., the genus 2 partition function, in the �-formalism. We find
the explicit form of the partition function for the Heisenberg free bosonic string and
for lattice vertex operator algebras, and show that these functions are holomorphic
on the parameter domain defined by the sewing. We study the generating function
for genus two Heisenberg n-point functions and show that the Virasoro vector
1-point function satisfies a genus two Ward identity. Many of these results are
analogous to those found in the �-formalism discussed in [20] but with significant
technical differences. Finally, we compare the results in the two formalisms, and
show that the partition functions (and hence all n-point functions) are incompatible.
We introduce normalized partition functions, and in the case of VL show that they
are compatible; in both formalisms the normalized partition function is the genus
two Siegel theta function �.2/L .

We now discuss the contents of the paper in more detail. Our approach to genus
two correlation functions in both formalisms is to define them in terms of genus one
data coming from a VOA V . In Sect. 2 we review the �-formalism introduced in
[18]. There, we constructed a genus two surface by self-sewing a torus, and obtained
explicit expressions for the genus two normalized 2-form of the second kind !.2/, a
basis of normalized holomorphic 1-forms �1; �2, and the period matrix ˝, in terms
of genus one data. In particular, we constructed a holomorphic map

F � W D� �! H2

.�;w; �/ 7�! ˝.�;w; �/ (1)

Here, and below, Hg .g � 1/ is the genus g Siegel upper half-space, and D� �
H1 � C

2 is the domain defined in terms of data .�;w; �/ needed to self-sew a torus
of modulus � . Sewing produces a surface S D S.�;w; �/ of genus 2, and the map
F � assigns to S its period matrix. We also introduce some diagrammatic techniques
which provide a convenient way of describing !.2/; �1; �2 and˝ in the �-formalism.

Section 3 consists of a brief review of relevant background material on VOA
theory, with particular attention paid to the Li-Zamolodchikov or LiZ metric. In
Sect. 4, motivated by ideas in conformal field theory [6, 29, 31, 32], we introduce
n-point functions (at genus one and two) in the �-formalism for a general VOA with
nondegenerate LiZ metric. In particular, the genus two partition function Z.2/

V W
D� ! C is formally defined as

Z
.2/
V .�;w; �/ D

X

n�0
�n

X

u2VŒn�
Z
.1/
V .u; u;w; �/; (2)

where the inner sum is taken over any basis for a homogeneous space VŒn� of weight

wt Œn�,Z.1/
V .u; u;w; �/ is a genus one 2-point function and u is the LiZ metric dual of

u. In Sect. 4.1 we consider an example of self-sewing a sphere (Theorem 6), while in
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Sect. 4.2 we show (Theorem 7) that a particular degeneration of the genus 2 partition
function of a VOA V can be described in terms of genus 1 data. Of particular interest
here is the interesting relationship between the quasiprimary decomposition of V
and the Catalan series.

In Sects. 5 and 6 we consider in detail the case of the Heisenberg free bosonic
theory Ml corresponding to l free bosons, and lattice VOAs VL associated with a
positive-definite even lattice L. Although (2) is a priori a formal power series in
�;w and q D e2� i� , we will see that for these two theories it is a holomorphic
function on D�. We expect that this result holds in much wider generality. Although
our calculations in these two sections generally parallel those for the �-formalism
[20], the �-formalism is far from being a simple translation. Several issues require
additional attention, so that the �-formalism is rather more complicated than its
�-counterpart. This arises in part from the fact that F � involves a logarithmic term
that is absent in the �-formalism. The moment matrices employed are also more
unwieldy.

We establish (Theorem 8) a fundamental formula describing Z.2/
M .�;w; �/ as a

quotient of the genus one partition function for M by a certain infinite determinant.
This determinant was already introduced in [18], and its holomorphy and nonvan-
ishing in D� (loc. cit.) implies the holomorphy of Z.2/

M . We also obtain a product
formula for the infinite determinant (Theorem 9), and establish the automorphic
properties ofZ.2/

M2 with respect to the action of a group �1 Š SL.2;Z/ (Theorem 11)

that naturally acts on D�. In particular, we find that Z.2/

M24 is a form of weight
�12 with respect to the action of �1. These are the analogs in the �-formalism
of results obtained in Sect. 6 of [20] for the genus two partition function ofM in the
�-formalism.

We also calculate some genus two n-point functions for the rank one Heisenberg
VOA M , specifically the n-point function for the weight 1 Heisenberg vector and
the 1-point function for the Virasoro vector Q!. We show that, up to an overall factor
of the genus two partition function, the formal differential forms associated with
these n-point functions are described in terms of the global symmetric 2-form !.2/

[33] and the genus two projective connection [11] respectively. Once again, these
results are analogous to results obtained in [20] in the �-formalism.

In Sect. 6.1 we establish (Theorem 14) a basic formula for the genus two partition
function for lattice theories in the �-formalism. The result is

Z
.2/
VL
.�;w; �/ D Z.2/

Ml .�;w; �/�
.2/
L .˝/; (3)

where �.2/L .˝/ is the genus two Siegel theta function attached to L [7] and ˝ D
F �.�;w; �/; indeed, (3) is an identity of formal power series. The holomorphy
and automorphic properties of Z.2/

VL;�
follow from (3) and those of Z.2/

Ml and �.2/
L .

Heisenberg n-point functions and a genus two Ward identity involving the Virasoro
1-point function are also discussed.



186 G. Mason and M.P. Tuite

Section 7 is devoted to a comparison of genus two n-point functions, and
especially partition functions, in the �- and �-formalisms. There are strong formal
similarities between Z.2/

Ml ;�
.�1; �2; �/ and Z.2/

Ml ;�
.�;w; �/ so it is natural to ask if they

are equal in some sense.2 In the very special case that V is holomorphic (i.e., it has a
unique irreducible module), one knows (e.g., [33]) that the genus 2 conformal block
is one-dimensional, in which case an identification of the two partition functions
might seem inevitable. On the other hand, the partition functions are defined on quite
different domains, so there is no question of them being literally equal. Indeed, we
argue in Sect. 7 that Z.2/

Ml ;�
.�1; �2; �/ and Z.2/

Ml ;�
.�;w; �/ are incompatible, i.e., there

is no sensible way in which they can be identified.
We therefore introduce normalized partition functions, defined as

OZ.2/
V;�.�;w; �/ WD

Z
.2/
V;�.�;w; �/

Z
.2/

Ml ;�
.�;w; �/

; OZ.2/
V;�.�1; �2; �/ WD

Z
.2/
V;�.�1; �2; �/

Z
.2/

Ml ;�
.�1; �2; �/

;

associated to a VOA V of central charge l . For Ml , the normalized partition
functions are equal to 1. The relation between the normalized partition functions
for lattice theories VL .rkL D l/ in the two formalisms can be displayed in the
diagram

D� F ��! H2

F � � D�

OZ.2/V;�
& # �.2/L

OZ.2/V;�
.

C

(4)

That this is a commuting diagram combines formula (3) in the �-formalism,
and Theorem 14 of [20] for the analogous result in the �-formalism. Thus, the
normalized partition functions for VL are independent of the sewing scheme. They
can be identified, via the sewing maps F �, with a genus two Siegel modular form
of weight l=2, the Siegel theta function. It is therefore the normalized partition
function(s) which can be identified with an element of the conformal block, and
with each other. It would obviously be useful to have available a result that provides
an a priori guarantee of this fact. A partial confirmation of this fact is described in
[12] where it is shown that the normalized partition functions for any VOA V agree
in the degeneration limit where one torus is pinched down to a Riemann sphere.
Section 8 contains a brief further discussion of these issues in the light of related
ideas in string theory and algebraic geometry.

2Here we include an additional subscript of either � or � to distinguish between the two formalisms.
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2 Genus Two Riemann Surface from Self-sewing a Torus

In this section we review some relevant results of [18] based on a general sewing
formalism due to Yamada [36]. In particular, we review the construction of a
genus two Riemann surface formed by self-sewing a twice-punctured torus. We
refer to this sewing scheme as the �-formalism. We discuss the explicit form of
various genus two structures such as the period matrix ˝. We also review the
convergence and holomorphy of an infinite determinant that naturally arises later
on. An alternative genus two surface formed by sewing together two tori, which we
refer to as the �-formalism, is utilised in the companion paper [20].

2.1 Some Elliptic Function Theory

We begin with the definition of various modular and elliptic functions [17, 18]. We
define

P2.�; z/ D }.�; z/CE2.�/

D 1

z2
C

1X

kD2
.k � 1/Ek.�/zk�2; (5)

where � 2 H1, the complex upper half-plane and where }.�; z/ is the Weierstrass
function (with periods 2� i and 2� i� ) and Ek.�/ D 0 for k odd, and for k even is
the Eisenstein series. Here and below, we take q D exp.2� i�/. We define P0.�; z/,
up to a choice of the logarithmic branch, and P1.�; z/ by

P0.�; z/ D � log.z/C
X

k�2

1

k
Ek.�/z

k; (6)

P1.�; z/ D 1

z
�
X

k�2
Ek.�/z

k�1: (7)

P0 is related to the elliptic prime form K.�; z/, by [27]

K.�; z/ D exp .�P0.�; z// : (8)

Define elliptic functions Pk.�; z/ for k � 3

Pk.�; z/ D .�1/k�1

.k � 1/Š
dk�1

d zk�1 P1.�; z/: (9)
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Define for k; l � 1

C.k; l/ D C.k; l; �/ D .�1/kC1 .k C l � 1/Š
.k � 1/Š.l � 1/ŠEkCl .�/; (10)

D.k; l; z/ D D.k; l; �; z/ D .�1/kC1 .k C l � 1/Š
.k � 1/Š.l � 1/ŠPkCl .�; z/: (11)

2.2 The �-Formalism for Self-sewing a Torus

Consider a compact Riemann surface S of genus 2 with standard homology basis
a1; a2; b1; b2. Let

!.x; y/ D
�

1

.x � y/2 C regular terms

�
dxdy (12)

be the normalized differential of the second kind [4, 36] for local coordinates x; y
with normalization

H
ai
!.x; �/ D 0 for i D 1; 2. Then

�i .x/ D
I

bi

!.x; �/; (13)

for i D 1; 2 is a basis of holomorphic 1-forms with normalization
H
ai
�j D 2� iıij .

The genus 2 period matrix ˝ 2 H2 is defined by

˝ij D 1

2� i

I

bi

�j : (14)

We now review a general method due to Yamada [36], and discussed at length
in [18], for calculating !.x; y/, �i .x/ and ˝ij on the Riemann surface formed by
sewing a handle to an oriented torus S D C= with lattice  D 2� i.Z� ˚ Z/ and
� 2 H1. Consider discs centered at z D 0 and z D w with local coordinates z1 D z
and z2 D z � w, and positive radius ra < 1

2
D.q/ with 1 	 a 	 2. Here, we have

introduced the minimal lattice distance

D.q/ D min
.m;n/¤.0;0/

2�jmC n� j > 0: (15)

Note that r1; r2 must be sufficiently small to ensure that the discs do not intersect on
S. Introduce a complex parameter � where j�j 	 r1r2 and excise the discs fza; jzaj 	
j�j=rag to obtain a twice-punctured torus (illustrated in Fig. 1)

OS D Snfza; jzaj 	 j�j=rag .1 	 a 	 2/:
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Fig. 1 Self-sewing a torus

Here, and below, we use the convention

1 D 2; 2 D 1: (16)

Define annular regions Aa D fza; j�jr�1
a 	 jzaj 	 rag 2 OS .1 	 a 	 2/, and

identify A1 with A2 as a single region via the sewing relation

z1z2 D �: (17)

The resulting genus two Riemann surface (excluding the degeneration point � D 0)
is parameterized by the domain

D� D ˚.�;w; �/ 2 H1 � C � C W jw � �j > 2j�j1=2 > 0 for all � 2 � ; (18)

where the first inequality follows from the requirement that the annuli do not
intersect. The Riemann surface inherits the genus one homology basis a1; b1. The
cycle a2 is defined to be the anti-clockwise contour surrounding the puncture at w,
and b2 is a path between identified points z1 D z0 to z2 D �=z0 for some z0 2 A1.
!; �i and ˝ are expressed as a functions of .�;w; �/ 2 D� in terms of an infinite

matrix of 2 � 2 blocks R.�;w; �/ D .R.k; l; �;w; �// .k; l � 1/ where [18]

R.k; l; �;w; �/ D ��
.kCl/=2
p
kl

�
D.k; l; �;w/ C.k; l; �/

C.k; l; �/ D.l; k; �;w/

�
; (19)

for C;D of (10) and (11). I �R and det.I �R/ play a central rôle in our discussion,
where I denotes the doubly-indexed identity matrix and det.I �R/ is defined by

log det.I �R/ D Tr log.I �R/ D �
X

n�1

1

n
TrRn: (20)

In particular (op. cit., Proposition 6 and Theorem 7)
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Theorem 1. We have

(a)

.I �R/�1 D
X

n�0
Rn (21)

is convergent in D�.
(b) det.I �R/ is nonvanishing and holomorphic in D�. ut

We define a set of 1-forms on OS given by

a1.k; x/ D a1.k; x; �; �/ D
p
k�k=2PkC1.�; x/dx;

a2.k; x/ D a2.k; x; �; �/ D a1.k; x � w/; (22)

indexed by integers k � 1. We also define the infinite row vector a.x/ D .aa.k; x//
and infinite column vector a.x/T D .aa.k; x//

T for k � 1 and block index 1 	
a 	 2. We find (op. cit., Lemma 11, Proposition 6 and Theorem 9):

Theorem 2.

!.x; y/ D P2.�; x � y/dxdy � a.x/.I �R/�1a.y/T : ut (23)

Applying (13) results in (op. cit., Lemma 12 and Theorem 9)

Theorem 3.

�1.x/ D dx � �1=2� �.a.x/.I �R/�1/.1/�

�2.x/ D .P1.�; x � w/ � P1.�; x// dx � a.x/.I �R/�1dT : (24)

d D .da.k// is a doubly-indexed infinite row vector3

d1.k/ D ��
k=2

p
k
.Pk.�;w/ �Ek.�// ;

d2.k/ D .�1/k �
k=2

p
k
.Pk.�;w/ �Ek.�// ; (25)

with da D da. .1/ refers to the .k/ D .1/ entry of a row vector and �.M/ denotes
the sum over the finite block indices for a given 1 � 2 block matrix M . ut
˝ is determined (op. cit., Proposition 11) by (14) as follows:

3Note that d is denoted by ˇ in [18].
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Theorem 4. There is a holomorphic map

F � W D� ! H2;

.�;w; �/ 7! ˝.�;w; �/; (26)

where ˝ D ˝.�;w; �/ is given by

2� i˝11 D 2� i� � �� �.I �R/�1.1; 1/� ; (27)

2� i˝12 D w � �1=2� �d.I �R/�1.1/� ; (28)

2� i˝22 D log

�
� �

K.�;w/2

�
� d.I �R/�1dT : (29)

K is the elliptic prime form (8), .1; 1/ and .1/ refer to the .k; l/ D .1; 1/,
respectively, .k/ D .1/ entries of an infinite matrix and row vector respectively.
�.M/ denotes the sum over the finite block indices for a given 2 � 2 or 1 � 2 block
matrix M . ut

D� admits an action of the Jacobi group J D SL.2;Z/ Ë Z
2 as follows:

.a; b/:.�;w; �/ D .�;wC 2� ia� C 2� ib; �/ ..a; b/ 2 Z
2/; (30)

�1:.�;w; �/ D .a1� C b1
c1� C d1 ;

w

c1� C d1 ;
�

.c1� C d1/2 / .�1 2 �1/; (31)

with �1 D
��

a1 b1
c1 d1

��
D SL.2;Z/. Due to the branch structure of the logarithmic

term in (29), F � is not equivariant with respect to J . (See Sect. 6.3 of [18] for
details.)

There is a natural injection �1 ! Sp.4;Z/ defined by

�
a1 b1
c1 d1

�
7!

0

BB@

a1 0 b1 0

0 1 0 0

c1 0 d1 0

0 0 0 1

1

CCA ; (32)

through which �1 acts on H2 by the standard action

�:˝D .A˝ C B/.C˝ CD/�1;
�
� D

�
A B

C D

�
2 Sp.4;Z/

�
: (33)

We then have (op. cit., Theorem 11, Corollary 2)

Theorem 5. F � is equivariant with respect to the action of �1, i.e. there is a
commutative diagram for �1 2 �1,
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Fig. 2 Doubly-indexed cycle

D� F �! H2

�1 # # �1
D� F �! H2

ut

2.3 Graphical Expansions

We present a graphical approach to describing the expressions for !; �i ;˝ij

reviewed above. These also play an important rôle in the analysis of genus two
partition functions for the Heisenberg vertex operator algebra. A similar approach
is described in [20] suitable for the �-sewing scheme. Here we introduce doubly-
indexed cycles construed as (clockwise) oriented, labelled polygons L with n nodes
for some integer n � 1, nodes being labelled by a pair of integers k; a where k � 1
and a 2 f1; 2g. Thus, a typical doubly-indexed cycle looks as in Fig. 2.

We define a weight function4 � with values in the ring of elliptic functions and
quasi-modular forms CŒP2.�;w/; P3.�;w/; E2.�/; E4.�/; E6.�/� as follows: if L is

a doubly-indexed cycle then L has edges E labelled as
k;a� ! l;b� , and we set

�.E/ D Rab.k; l; �;w; �/; (34)

with Rab.k; l/ as in (19) and

�.L/ D
Y

�.E/;

where the product is taken over all edges of L.
We also introduce doubly-indexed necklaces N D fN g. These are connected

graphs with n � 2 nodes, .n � 2/ of which have valency 2 and two of which have
valency 1 together with an orientation, say from left to right, on the edges. In this
case, each vertex carries two integer labels k; a with k � 1 and a 2 f1; 2g. We define
the degenerate necklace N0 to be a single node with no edges, and set �.N0/ D 1.

4Denoted by ! in Sect. 6.2 of [18].
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We define necklaces with distinguished end nodes labelled k; aI l; b as follows:

�
k;a
�! �

k1;a1
: : : �

k2;a2
�! �

l;b
(type k; aI l; b)

and set5

N .k; aI l; b/ D fisomorphism classes of necklaces of type k; aI l; bg: (35)

We define

�.1I 1/ D
X

a1;a2D1;2

X

N2N .1;a1I1;a2/
�.N /;

�.d I 1/ D
X

a1;a2D1;2

X

k�1
da1.k/

X

N2N .k;a1I1;a2/
�.N /;

�.d I d/ D
X

a1;a2D1;2

X

k;l�1
da1.k/da2.l/

X

N2N .k;a1Il;a2/
�.N /: (36)

Then we find

Proposition 1 ([18], Proposition 12). The period matrix is given by

2� i˝11 D 2� i� � ��.1I 1/;
2� i˝12 D w � �1=2�.d I 1/;

2� i˝22 D log

�
� �

K.�;w/2

�
� �.d I d/: ut

We can similarly obtain necklace graphical expansions for the bilinear form
!.x; y/ and the holomorphic one forms �i .x/. We introduce further distinguished
valence one nodes labelled by x 2 OS, the punctured torus. The set of edges fEg is
augmented by edges with weights defined by:

�.
x� �! y�/ D P2.�; x � y/dxdy;

�.
x� �! k;a� / D aa.k; x/;

�.
k;a� �! y�/ D �aa.k; y/; (37)

for 1-forms (22).
We also consider doubly-indexed necklaces where one or both end points are

x; y-labeled nodes. We thus define for x; y 2 OS two isomorphism classes of oriented

5Two graphs are isomorphic if they have the same labelled vertices and directed edges.
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doubly-indexed necklaces denoted by N .xIy/, and N .xI k; a/ with the following
respective typical configurations

fx� �! k1;a1� : : :
k2;a2� �! y�g; (38)

fx� �! k1;a1� : : :
k2;a2� �! k;a� g: (39)

Furthermore, we define the weights

�.xIy/ D
X

N2N .xIy/
�.N /;

�.xI 1/ D
X

aD1;2

X

N2N .xI1;a/
�.N /;

�.xI d/ D
X

aD1;2

X

k�1

X

N2N .xIk;a/
�.N /da.k/: (40)

Comparing to (23) and (24) we find the following graphical expansions for the
bilinear form !.x; y/ and the holomorphic one forms �i .x/

Proposition 2. For x; y 2 OS

!.x; y/ D �.xIy/; (41)

�1.x/ D dx � �1=2�.xI 1/; (42)

�2.x/ D .P1.�; x � w/ � P1.�; x//dx � �.xI d/: (43)

3 Vertex Operator Algebras and the Li-Zamolodchikov
Metric

3.1 Vertex Operator Algebras

We review some relevant aspects of vertex operator algebras [8, 9, 13, 15, 22, 23]. A
vertex operator algebra (VOA) is a quadruple .V; Y; 1; !/ consisting of a Z-graded
complex vector space V DL

n2Z Vn, a linear map Y W V ! .EndV /ŒŒz; z�1��, for
formal parameter z, and a pair of distinguished vectors (states), the vacuum 1 2 V0 ,
and the conformal vector ! 2 V2. For each state v 2 V the image under the Y map
is the vertex operator

Y.v; z/ D
X

n2Z
v.n/z�n�1; (44)
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with modes v.n/ 2 EndV where ReszD0z�1Y.v; z/1 D v.�1/1 D v. Vertex
operators satisfy the Jacobi identity or equivalently, operator locality or Borcherds’s
identity for the modes (loc. cit.).

The vertex operator for the conformal vector ! is defined as

Y.!; z/ D
X

n2Z
L.n/z�n�2:

The modes L.n/ satisfy the Virasoro algebra of central charge c:

ŒL.m/;L.n/� D .m � n/L.mC n/C .m3 �m/ c
12
ım;�n:

We define the homogeneous space of weight k to be Vk D fv 2 V jL.0/v D kvg
where we write wt.v/ D k for v in Vk . Then as an operator on V we have

v.n/ W Vm ! VmCk�n�1:

In particular, the zero mode o.v/ D v.wt .v/ � 1/ is a linear operator on Vm.
A non-zero vector v is said to be quasi-primary if L.1/v D 0 and primary if
additionally L.2/v D 0.

The subalgebra fL.�1/; L.0/; L.1/g generates a natural action on vertex opera-
tors associated with SL.2;C/ Möbius transformations [2, 3, 9, 13]. In particular, we
note the inversion z 7! 1=z, for which

Y.v; z/ 7! Y �.v; z/ D Y
 

ezL.1/

�
� 1

z2

�L.0/
v;
1

z

!
: (45)

Y �.v; z/ is the adjoint vertex operator [9].
We consider in particular the Heisenberg free boson VOA and lattice VOAs.

Consider an l-dimensional complex vector space (i.e., abelian Lie algebra) H
equipped with a non-degenerate, symmetric, bilinear form . ; / and a distin-
guished orthonormal basis a1; a2; : : : al . The corresponding affine Lie algebra is the
Heisenberg Lie algebra OH D H˝ CŒt; t�1�˚ Ck with brackets Œk; OH� D 0 and

Œai ˝ tm; aj ˝ tn� D mıi;j ım;�nk: (46)

Corresponding to an element � in the dual space H� we consider the Fock space
defined by the induced (Verma) module

M.�/ D U. OH/˝U.H˝CŒt �˚Ck/ C;

where C is the one-dimensional space annihilated by H˝ tCŒt � and on which k acts
as the identity and H ˝ t 0 via the character �; U denotes the universal enveloping
algebra. There is a canonical identification of linear spaces
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M.�/ D S.H˝ t�1CŒt�1�/;

where S denotes the (graded) symmetric algebra. The Heisenberg free boson VOA
Ml corresponds to the case � D 0. The Fock states

v D a1.�1/e1 :a1.�2/e2 : : : :a1.�n/en : : : :al .�1/f1 :al .�2/f2 : : : al .�p/fp :1; (47)

for non-negative integers ei ; : : : ; fj form a basis of Ml . The vacuum 1 is canoni-
cally identified with the identity of Ml

0 D C, while the weight 1 subspace Ml
1 may

be naturally identified with H. Ml is a simple VOA of central charge l .
Next we consider the case of a lattice vertex operator algebra VL associated to a

positive-definite even lattice L (cf. [2, 8]). Thus L is a free abelian group of rank l
equipped with a positive definite, integral bilinear form . ; / W L˝L! Z such that
.˛; ˛/ is even for ˛ 2 L. Let H be the space C ˝Z L equipped with the C-linear
extension of . ; / to H˝ H and let Ml be the corresponding Heisenberg VOA. The
Fock space of the lattice theory may be described by the linear space

VL DMl ˝ CŒL� D
X

˛2L
Ml ˝ e˛; (48)

where CŒL� denotes the group algebra ofLwith canonical basis e˛ , ˛ 2 L.Ml may
be identified with the subspace Ml ˝ e0 of VL, in which case Ml is a subVOA of
VL and the rightmost equation of (48) then displays the decomposition of VL into
irreducibleMl -modules. VL is a simple VOA of central charge l . Each 1˝ e˛ 2 VL
is a primary state of weight 1

2
.˛; ˛/ with vertex operator (loc. cit.)

Y.1˝ e˛; z/ D Y�.˛; z/YC.˛; z/e˛z˛;

Y˙.˛; z/ D exp

 

X

n>0

˛.˙n/
n

z	n
!
: (49)

The operators e˛ 2 CŒL� obey

e˛eˇ D �.˛; ˇ/e˛Cˇ (50)

for a bilinear 2-cocycle �.˛; ˇ/ satisfying �.˛; ˇ/�.ˇ; ˛/ D .�1/.˛;ˇ/.

3.2 The Li-Zamolodchikov Metric

A bilinear form h ; i W V � V�!C is called invariant in case the following identity
holds for all a; b; c 2 V [9]:

hY.a; z/b; ci D ˝b; Y �.a; z/c˛ ; (51)
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with Y �.a; z/ the adjoint operator (45). If V0 D C1 and V is self-dual (i.e. V is
isomorphic to the contragradient module V 0 as a V -module) then V has a unique
non-zero invariant bilinear form up to scalar [16]. Note that h ; i is necessarily
symmetric by a theorem of [9]. Furthermore, if V is simple then such a form is
necessarily non-degenerate. All of the VOAs that occur in this paper satisfy these
conditions, so that normalizing h1; 1i D 1 implies that h ; i is unique. We refer
to such a bilinear form as the Li-Zamolodchikov metric on V , or LiZ-metric for
short [20]. We also note that the LiZ-metric is multiplicative over tensor products
in the sense that LiZ metric of the tensor product V1 ˝ V2 of a pair of simple
VOAs satisfying the above conditions is by uniqueness, the tensor product of the
LiZ metrics on V1 and V2.

For a quasi-primary vector a of weight wt.a/, the component form of (51)
becomes

ha.n/b; ci D .�1/wt.a/ hb; a.2wt.a/ � n � 2/ci : (52)

In particular, for the conformal vector ! we obtain

hL.n/b; ci D hb;L.�n/ci: (53)

Taking n D 0, it follows that the homogeneous spaces Vn and Vm are orthogonal if
n 6D m.

Consider the rank one Heisenberg VOA M D M1 generated by a weight one
state a with .a; a/ D 1. Then ha; ai D �h1; a.1/a.�1/1i D �1. Using (46), it is
straightforward to verify that the Fock basis (47) is orthogonal with respect to the
LiZ-metric and

hv; vi D
Y

1�i�n
.�i/ei ei Š: (54)

This result generalizes in an obvious way to the rank l free boson VOAMl because
the LiZ metric is multiplicative over tensor products.

We consider next the lattice vertex operator algebra VL for a positive-definite
even lattice L. We take as our Fock basis the states fv ˝ e˛g where v is as in (47)
and ˛ ranges over the elements of L.

Lemma 1. If u; v 2Ml and ˛; ˇ 2 L, then

˝
u˝ e˛; v˝ eˇ

˛ D ˝
u; vih1˝ e˛; 1˝ eˇ

˛

D .�1/ 12 .˛;˛/�.˛;�˛/hu; viı˛;�ˇ:

Proof. It follows by successive applications of (52) that the first equality in the
lemma is true, and that it is therefore enough to prove it in the case that u D v D 1.
We identify the primary vector 1 ˝ e˛ with e˛ in the following. Then

˝
e˛; eˇ

˛ D˝
e˛.�1/1; eˇ˛ is given by
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.�1/ 12 .˛;˛/ ˝1; e˛..˛; ˛/ � 1/eˇ˛

D .�1/ 12 .˛;˛/ ReszD0z.˛;˛/�1
˝
1; Y.e˛; z/eˇ

˛

D .�1/ 12 .˛;˛/�.˛; ˇ/ReszD0z.˛;ˇ/C.˛;˛/�1
˝
1; Y�.˛; z/:e˛Cˇ˛ :

Unless ˛ C ˇ D 0, all states to the left inside the bracket h ; i on the previous line
have positive weight, hence are orthogonal to 1. So he˛; eˇi D 0 if ˛Cˇ 6D 0. In the
contrary case, the exponential operator acting on the vacuum yields just the vacuum
itself among weight zero states, and we get he˛; e�˛i D .�1/ 12 .˛;˛/�.˛;�˛/ in this
case. ut
Corollary 1. We may choose the cocycle so that �.˛;�˛/ D .�1/ 12 .˛;˛/ (cf. (132)
in Appendix). In this case, we have

˝
u˝ e˛; v˝ eˇ

˛ D hu; viı˛;�ˇ: (55)

4 Partition and n-Point Functions for Vertex Operator
Algebras on a Genus Two Riemann Surface

In this section we consider the partition and n-point functions for a VOA on
Riemann surface of genus one or two, formed by attaching a handle to a surface
of lower genus. We assume that V has a non-degenerate LiZ metric h ; i. Then for
any V basis fu.a/g, we may define the dual basis fu.a/gwith respect to the LiZ metric
where

˝
u.a/; u.b/

˛ D ıab: (56)

4.1 Genus One

It is instructive to first consider an alternative approach to defining the genus one
partition function. In order to define n-point correlation functions on a torus, Zhu
introduced [37] a second VOA .V; Y Œ ; �; 1; Q!/ isomorphic to .V; Y. ; /; 1; !/ with
vertex operators

Y Œv; z� D
X

n2Z
vŒn�z�n�1 D Y �qL.0/z v; qz � 1

�
; (57)

and conformal vector Q! D ! � c
24

1. Let

Y Œ Q!; z� D
X

n2Z
LŒn�z�n�2; (58)
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and write wtŒv� D k if LŒ0�v D kv, VŒk� D fv 2 V jwtŒv� D kg. Similarly, we define
the square bracket LiZ metric h ; isq which is invariant with respect to the square
bracket adjoint.

The (genus one) 1-point function is now defined as

Z
.1/
V .v; �/ D TrV

�
o.v/qL.0/�c=24

�
: (59)

An n-point function can be expressed in terms of 1-point functions [17, Lemma 3.1]
as follows:

Z
.1/
V .v1; z1I : : : vn; znI �/

D Z.1/
V .Y Œv1; z1� : : : Y Œvn�1; zn�1�Y Œvn; zn�1; �/ (60)

D Z.1/
V .Y Œv1; z1n� : : : Y Œvn�1; zn�1n�vn; �/ ; (61)

where zin D zi � zn .1 	 i 	 n � 1/. In particular, Z.1/
V .v1; z1I v2; z2I �/ depends

only one z12, and we denote this 2-point function by

Z
.1/
V .v1; v2; z12; �/ D Z.1/

V .v1; z1I v2; z2I �/
D TrV

�
o.Y Œv1; z12�v2/q

L.0/
�
: (62)

Now consider a torus obtained by self-sewing a Riemann sphere with punctures
located at the origin and an arbitrary point w on the complex plane (cf. [18,
Sect. 5.2.2]). Choose local coordinates z1 in the neighborhood of the origin and
z2 D z � w for z in the neighborhood of w. For a complex sewing parameter �,
identify the annuli j�jr�1

a 	 jzaj 	 ra for 1 	 a 	 2 and j�j 	 r1r2 via the sewing
relation

z1z2 D �: (63)

Define

	 D � �
w2
: (64)

Then the annuli do not intersect provided j	j < 1
4
, and the torus modular

parameter is

q D f .	/; (65)

where f .	/ is the Catalan series

f .	/ D 1 �p1 � 4	
2	

� 1 D
X

n�1

1

n

 
2n

nC 1

!
	n: (66)
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f D f .	/ satisfies f D 	.1Cf /2 and the following identity, which can be proved
by induction on m:

Lemma 2. f .	/ satisfies

f .	/m D
X

n�m

m

n

 
2n

nCm

!
	n .m � 1/: ut

We now define the genus one partition function in the �-sewing scheme (63) by

Z
.1/
V;�.�;w/ D

X

n�0
�n
X

u2Vn
Resz2D0z�1

2 Resz1D0z�1
1 h1; Y.u;wC z2/Y.u; z1/1i ;

(67)

where the inner sum is taken over any basis for Vn. This partition function is directly
related to the standard one Z.1/

V .q/ D TrV
�
qL.0/�c=24

�
as follows:

Theorem 6. In the sewing scheme (63), we have

Z
.1/
V;�.�;w/ D qc=24Z.1/

V .q/; (68)

where q D f .	/ is given by (65).

Proof. The summand in (67) for u 2 Vn is

h1;Y.u;w/ui D ˝
Y �.u;w/1; u

˛

D .�w�2/n
˝
Y.ewL.1/u;w�1/1; u

˛

D .�w�2/n
D
ew�1L.�1/ewL.1/u; u

E
;

where we have used (45) and Y.v; z/1 D exp.zL.�1//v (e.g [13,22,23]). Hence we
find that

Z
.1/
V;�.�;w/ D

X

n�0

�
� �

w2

	n X

u2Vn

D
ew�1L.�1/ewL.1/u; u

E

D
X

n�0
	n TrVn

�
ew�1L.�1/ewL.1/

	
:

Expanding the exponentials yields

Z
.1/
V;�.�;w/ D TrV

0

@
X

r�0

L.�1/rL.1/r
.rŠ/2

	L.0/

1

A ; (69)

an expression which depends only on 	.
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In order to compute (69) we consider the quasi-primary decomposition of V .
Let Qm D fv 2 VmjL.1/v D 0g denote the space of quasiprimary states of weight
m � 1. Then dimQm D pm�pm�1 with pm D dimVm. Consider the decomposition
of V into L.�1/-descendents of quasi-primaries

Vn D
nM

mD1
L.�1/n�mQm: (70)

Lemma 3. Let v 2 Qm for m � 1. For an integer n � m;

X

r�0

L.�1/rL.1/r
.rŠ/2

L.�1/n�mv D
 
2n � 1
n �m

!
L.�1/n�mv:

Proof. First use induction on t � 0 to show that

L.1/L.�1/tv D t .2mC t � 1/L.�1/t�1v:

Then by induction in r it follows that

L.�1/rL.1/r
.rŠ/2

L.�1/n�mv D
 
n �m
r

! 
nCm � 1

r

!
L.�1/n�mv:

Hence

X

r�0

L.�1/rL.1/r
.rŠ/2

L.�1/n�mv D
n�mX

r�0

 
n �m
r

! 
nCm � 1

r

!
L.�1/n�mv;

D
 
2n � 1
n �m

!
L.�1/n�mv;

where the last equality follows from a comparison of the coefficient of xn�m in the
identity .1C x/n�m.1C x/nCm�1 D .1C x/2n�1. ut

Lemma 3 and (70) imply that for n � 1;

TrVn

0

@
X

r�0

L.�1/rL.1/r
.rŠ/2

1

A D
nX

mD1
TrQm

0

@
X

r�0

L.�1/rL.1/r
.rŠ/2

L.�1/n�m
1

A

D
nX

mD1
.pm � pm�1/

 
2n � 1
n �m

!
:
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The coefficient of pm is

 
2n � 1
n �m

!
�
 
2n � 1

n �m � 1

!
D m

n

 
2n

mC n

!
;

and hence

TrVn

0

@
X

r�0

L.�1/rL.1/r
.rŠ/2

1

A D
nX

mD1

m

n

 
2n

mC n

!
pm:

Using Lemma 2, we find that

Z
.1/
V;�.�;w/ D 1C

X

n�1
	n

nX

mD1

m

n

 
2n

mC n

!
pm;

D 1C
X

m�1
pm

X

n�m

m

n

 
2n

mC n

!
	n

D 1C
X

m�1
pm.f .	//

m

D TrV
�
f .	/L.0/

�
;

and Theorem 6 follows. ut

4.2 Genus Two

We now turn to the case of genus two. Following Sect. 2.2, we employ the �-sewing
scheme to self-sew a torus S with modular parameter � via the sewing relation (17).
For x1; : : : ; xn 2 S with jxi j � j�j=r2 and jxi � wj � j�j=r1, we define the genus
two n-point function in the �-formalism by

Z
.2/
V .v1; x1I : : : vn; xnI �;w; �/ D

X

r�0
�r
X

u2VŒr�
Resz1D0z�1

1 Resz2D0z�1
2 Z

.1/
V .u;wC z2I v1; x1I : : : vn; xnI u; z1I �/ ; (71)

where the inner sum is taken over any basis for VŒr�. In particular, with the notation
(62), the genus two partition function is
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Z
.2/
V .�;w; �/ D

X

n�0
�n

X

u2VŒn�
Z
.1/
V .u; u;w; �/ : (72)

Next we consider Z.2/
V .�;w; �/ in the two-tori degeneration limit. Define, much

as in (64),

	 D � �
w2
; (73)

where w denotes a point on the torus and � is the genus two sewing parameter. Then
one finds that the two-tori degeneration limit is given by �;w! 0 for fixed 	, where

˝ !
�
� 0

0 1
2� i log.f .	//

�
(74)

and f .	/ is the Catalan series (66) (cf. [18, Sect. 6.4]).

Theorem 7. For fixed j	j < 1
4
, we have

lim
w;�!0

Z
.2/
V .�;w; �/ D f .	/c=24Z.1/

V .q/Z
.1/
V .f .	//:

Proof. By (62) we have

Z
.1/
V .u; u;w; �/ D TrV

�
o.Y Œu;w�u/qL.0/

�
;

where u 2 VŒn�. Using the non-degeneracy of the LiZ metric h ; isq in the square
bracket formalism we obtain

Y Œu;w�u D
X

m�0

X

v2VŒm�
hv; Y Œu;w�uisq v;

summing over any basis for VŒm�. Arguing much as in the first part of the proof of
Theorem 6, we also find

hv; Y Œu;w�uisq D .�w�2/n
˝
Y ŒewLŒ1�u;w�1�v; u

˛
sq

D .�w�2/n
D
ew�1LŒ�1�Y Œv;�w�1�ewLŒ1�u; u

E

sq

D .�w�2/n hEŒv;w�u; uisq ;

where

EŒv;w� D exp
�
w�1LŒ�1��Y Œv;�w�1� exp.wLŒ1�/:
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Hence

Z
.2/
V .�;w; �/ D

X

m�0

X

v2VŒm�

X

n�0
	n

X

u2V Œn�
hEŒv;w�u; uiZ.1/

V .v; q/

D
X

m�0

X

v2VŒm�
TrV

�
EŒv;w�	LŒ0�

�
Z
.1/
V .v; q/:

Now consider

TrV
�
EŒv;w�	LŒ0�

� D

wm
X

r;s�0
.�1/rCm 1

rŠsŠ
TrV

�
LŒ�1�rvŒr � s �m � 1�LŒ1�s	LŒ0�� :

The leading term in w is w0 (arising from v D 1) and is given by

TrV
�
EŒ1;w�	LŒ0�

� D f .	/c=24Z.1/
V .f .	//:

This follows from (69) and the isomorphism between the original and square bracket
formalisms. Taking w! 0 for fixed 	 the result follows. ut

5 The Heisenberg VOA

In this section we compute the genus two partition function in the �-formalism
for the rank l D 1 Heisenberg VOA M . We also compute the genus two n-point
function for n copies of the Heisenberg vector a and the genus two one-point
function for the Virasoro vector !. The main results mirror those obtained in the
�-formalism in Sect. 6 of [20].

5.1 The Genus Two Partition Function Z
.2/

M
.�; w; �/

We begin by establishing a formula for Z.2/
M .�;w; �/ in terms of the infinite matrix

R (19). Recalling that the genus zero partition function is Z.1/
M .�/ D 1=�.�/ where

�.�/ D q1=24Qn�1.1 � qn/ is the Dedekind �-function, we find

Theorem 8. We have

Z
.2/
M .�;w; �/ D

Z
.1/
M .�/

det.1 �R/1=2 : (75)
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Remark 1. From Remark 2 of [20] it follows that the genus two partition function
for l free bosons Ml is just the l th power of (75).

Proof. The proof is similar in structure to that of Theorem 5 of [20]. From (72) we
have

Z
.2/
M .�;w; �/ D

X

n�0

X

u2MŒn�

Z
.1/
M .u; u;w; �/ �n; (76)

where u ranges over any basis of MŒn� and u is the dual state with respect to

the square-bracket LiZ metric. Z.1/
M .u; v;w; �/ is a genus one Heisenberg 2-point

function (62). We choose the square bracket Fock basis:

v D aŒ�1�e1 : : : aŒ�p�ep1: (77)

The Fock state v naturally corresponds to an unrestricted partition � D f1e1 : : : pep g
of n D P

1�i�p iei . We write v D v.�/ to indicate this correspondence. The Fock
vectors form an orthogonal set from (54) with

v.�/ D 1Q
1�i�p.�i/ei ei Š

v.�/:

The 2-point function Z.1/
M .v.�/; v.�/;w; �/ is given in Corollary 1 of [17] where

it is denoted by FM.v;w1; v;w2I �/. In order to describe this explicitly we introduce
the set ˚�;2 which is the disjoint union of two isomorphic label sets ˚.1/

� , ˚.2/

�

each with ei elements labelled i determined by �. Let 
 W ˚.1/

� $ ˚
.2/

� denote the
canonical label identification. Then we have (loc. cit.)

Z
.1/
M .v.�/; v.�/;w; �/ D Z.1/

M .�/
X

�2F.˚�;2/
� .�/; (78)

where

� .�;w; �/ D � .�/ D
Y

fr;sg
�.r; s;w; �/; (79)

and � ranges over the elements of F.˚�;2/, the fixed-point-free involutions in
˙.˚�;2/ and where fr; sg ranges over the orbits of � on ˚�;2. Finally

�.r; s/ D �.r; s;w; �/ D
(
C.r; s; �/; if fr; sg � ˚.a/

� ; a D 1 or 2;
D.r; s;wab; �/ if r 2 ˚.a/

� ; s 2 ˚.b/

� ; a ¤ b: ;

where w12 D w1 � w2 D w and w21 D w2 � w1 D �w.

Remark 2. Note that � is well-defined since D.r; s;wab; �/ D D.s; r;wba; �/.
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Fig. 3 A doubly-indexed edge

Using the expression (78), it follows that the genus two partition function (76)
can be expressed as

Z
.2/
M .�;w; �/ D Z.1/

M .�/
X

�Dfi ei g

E.�/Q
i .�i/ei ei Š

�
P
iei ; (80)

where � runs over all unrestricted partitions and

E.�/ D
X

�2F.˚�;2/
� .�/: (81)

We employ the doubly-indexed diagrams of Sect. 2.3. Consider the ‘canonical’
matching defined by 
 as a fixed-point-free involution. We may then compose 
 with
each fixed-point-free involution � 2 F.˚�;2/ to define a 1-1 mapping 
� on the
underlying labelled set ˚�;2. For each � we define a doubly-indexed diagram D

whose nodes are labelled by k; a for an element k 2 ˚.a/

� for a D 1; 2 and with
cycles corresponding to the orbits of the cyclic group h
�i. Thus, if l D �.k/ for

k 2 ˚.a/

� and l 2 ˚.b/

� and 
 W b 7! b with convention (16) then the corresponding
doubly-indexed diagram contains the edge (Fig. 3).
Consider the permutations of ˚�;2 that commute with 
 and preserve both ˚.1/

� and

˚
.2/

� . We denote this group, which is plainly isomorphic to ˙.˚�/, by ��. By
definition, an automorphism of a doubly-indexed diagram D in the above sense
is an element of �� which preserves edges and node labels.

For a doubly-indexed diagramD corresponding to the partition � D f1e1 : : : pep g
we set

�.D/ D
Q

fk;lg �.k; l;w; �/Q
.�i/ei �

P
iei (82)

where fk; lg ranges over the edges of D. We now have all the pieces assembled to
copy the arguments used to prove Theorem 5 of [20]. First we find

X

�Dfi ei g

E.�/Q
i .�i/ei ei Š

�
P
iei D

X

D

�.D/

jAut.D/j ; (83)

the sum ranging over all doubly-indexed diagrams.
We next introduce a weight function � as follows: for a doubly-indexed diagram

D we set �.D/ D Q
�.E/, the product running over all edges. Moreover for an

edge E with nodes labelled .k; a/ and .l; b/ as in Fig. 3, we set
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�.E/ D Rab.k; l/;

for R of (19). We then find

Lemma 4. �.D/ D �.D/.
Proof. From (82) it follows that for a doubly-indexed diagram D we have

�.D/ D
Y

fk;lg
��.k; l;w; �/�

.kCl/=2
p

kl
; (84)

the product ranging over the edges fk; lg of D. So to prove the lemma it suffices

to show that if k; l lie in ˚.a/

� ; ˚
.b/

� respectively then the .a; b/-entry of R.k; l/
coincides with the corresponding factor of (84). This follows from our previous
discussion together with Remark 2. ut

From Lemma 4 and following similar arguments to the proof of Theorem 5 of
[20] we find

X

D

�.D/

jAut.D/j D
X

D

�.D/

jAut.D/j

D exp

 
X

L

�.L/

jAut.L/j

!
;

where L denotes the set of non-isomorphic unoriented doubly indexed cycles.
Orient these cycles, say in a clockwise direction. Let fM g denote the set of
non-isomorphic oriented doubly indexed cycles and fMng the oriented cycles with
n nodes. Then we find (cf. [20, Lemma 2]) that

1

n
TrRn D

X

Mn

�.Mn/

jAut.Mn/j :

It follows that

X

L

�.L/

jAut.L/j D
1

2

X

M

�.M/

jAut.M/j

D 1

2
Tr

0

@
X

n�1

1

n
Rn

1

A

D �1
2

Tr log.I �R/

D �1
2

log det.I �R/:

This completes the proof of Theorem 8. ut
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We may also find a product formula analogous to Theorem 6 of [20]. Let
R denote the rotationless doubly-indexed oriented cycles i.e. cycles with trivial
automorphism group. Then we find

Theorem 9.

Z
.2/
M .�;w; �/ D

Z
.1/
M .�/Q

R.1 � �.N //1=2
: ut (85)

5.2 Holomorphic and Modular-Invariance Properties

In Sect. 2.2 we reviewed the genus two �-sewing formalism and introduced the
domain D� which parametrizes the genus two surface. An immediate consequence
of Theorem 1 is the following.

Theorem 10. Z.2/
M .�;w; �/ is holomorphic in D�. ut

We next consider the invariance properties of the genus two partition function
with respect to the action of the D�-preserving group �1 reviewed in Sect. 2.2. Let
	 be the character of SL.2;Z/ defined by its action on �.�/�2, i.e.

�.��/�2 D 	.�/�.�/�2.c� C d/�1; (86)

where � D
�
a b

c d

�
2 SL.2;Z/. Recall (e.g. [30]) that 	.�/ is a twelfth root of

unity. For a function f .�/ on H1; k 2 Z and � 2 SL.2;Z/, we define

f .�/jk� D f .��/ .c� C d/�k; (87)

so that

Z
.1/

M2.�/j�1� D 	.�/Z.1/

M2.�/: (88)

At genus two, analogously to (87), we define

f .�;w; �/jk� D f .�.�;w; �// det.C˝ CD/�k: (89)

Here, the action of � on the right-hand-side is as in (18). We have abused notation
by adopting the following conventions in (89), which we continue to use below:

˝ D F �.�;w; �/; � D
�
A B

C D

�
2 Sp.4;Z/ (90)
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where F � is as in Theorem 4, and � is identified with an element of Sp.4;Z/ via
(32) and (33). Note that (89) defines a right action of G on functions f .�;w; �/. We
then have a natural analog of Theorem 8 of [20]

Theorem 11. If � 2 �1 then

Z
.2/

M2.�;w; �/j�1� D 	.�/Z.2/

M2.�;w; �/:

Corollary 2. If � 2 �1 with Z.2/

M24 D .Z.2/

M2/
12 then

Z
.2/

M24.�;w; �/j�12� D Z.2/

M24.�;w; �/:

Proof. The proof is similar to that of Theorem 8 of [20]. We have to show that

Z
.2/

M2.�:.�;w; �// det.C˝ CD/ D 	.�/Z.2/

M2.�;w; �/ (91)

for � 2 �1 where det.C˝11CD/ D c1˝11Cd1. Consider the determinant formula
(75). For � 2 �1 define

R 0
ab.k; l; �;w; �/ D Rab

�
k; l;

a1� C b1
c1� C d1 ;

w

c1� C d1 ;
�

.c1� C d1/2
�

following (31). We find from Sect. 6.3 of [18] that

1 �R 0 D 1 �R � ��
D .1 � �S/:.1 �R/;

where

�ab.k; l/ D ık1ıl1;
� D �

2� i

c1

c1� C d1 ;

Sab.k; l/ D ık1
X

c2f1;2g

�
.1 �R/�1�cb .1; l/:

Since det.1 �R/ and det.1 �R 0/ are convergent on D� we find

det.1 �R 0/ D det.1 � �S/: det.1 �R/:

Indexing the columns and rows by .a; k/ D .1; 1/; .2; 1/; : : : .1; k/; .2; k/ : : : and
noting that S1b.k; l/ D S2b.k; l/ we find that
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det.1 � �S/ D

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

1 � �S11.1; 1/ ��S12.1; 1/ ��S11.1; 2/ � � �
��S11.1; 1/ 1 � �S12.1; 1/ ��S11.1; 2/ � � �

0 0 1 � � �
:::

:::
:::

: : :

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

D 1 � �S11.1; 1/ � �S12.1; 1/;
D 1 � �� �.1 �R/�1� .1; 1//;

where �.M/ denotes the finite sum over the block labels for a 2 � 2 block matrix
M . Applying (27), it is clear that

det.1 � �S/ D c1˝11 C d1
c1� C d1 :

The theorem follows from (88). ut
Remark 3. Z.2/

M2.�;w; �/ can be trivially considered as function on the covering

space OD� discussed in [18, Sect. 6.3]. Then Z.2/

M2.�;w; �/ is modular with respect

to L D OH�1 with trivial invariance under the action of the Heisenberg group OH
(loc. cit.).

5.3 Some Genus Two n-Point Functions

In this section we calculate some examples of genus two n-point functions for
the rank one Heisenberg VOA M . We consider here the examples of the n-point
function for the Heisenberg vector a and the 1-point function for the Virasoro
vector Q!. We find that, up to an overall factor of the partition function, the formal
differential form associated with the Heisenberg n-point function is described in
terms of the global symmetric two form ! [33] whereas the Virasoro 1-point
function is described by the genus two projective connection [11]. These results
agree with those found in [20] in the �-formalism up to an overall �-formalism
partition function factor.

The genus two Heisenberg vector 1-point function with the Heisenberg vector
a inserted at x is Z.2/

M .a; xI �;w; �/ D 0 since Z.1/
M .Y Œa; x�Y Œv;w�v; �/ D 0 from

[17]. The 2-point function for two Heisenberg vectors inserted at x1; x2 is

Z
.2/
M .a; x1I a; x2I �;w; �/ D

X

r�0
�r

X

v2MŒr�

Z
.1/
M .a; x1I a; x2I v;w1; v;w2I �/ : (92)

We consider the associated formal differential form

F .2/
M .a; aI �;w; �/ D Z.2/

M .a; x1I a; x2I �;w; �/ dx1dx2; (93)

and find that it is determined by the bilinear form ! (12):
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Theorem 12. The genus two Heisenberg vector 2-point function is given by

F .2/
M .a; aI �;w; �/ D !.x1; x2/Z.2/

M .�;w; �/: (94)

Proof. The proof proceeds along the same lines as Theorem 8. As before, we let
v.�/ denote a Heisenberg Fock vector (77) determined by an unrestricted partition
� D f1e1 : : : pep g with label set ˚�. Define a label set for the four vectors
a; a; v.�/; v.�/ given by ˚ D ˚1[˚2[˚.1/

� [˚.2/

� for ˚1;˚2 D f1g and let F.˚/
denote the set of fixed point free involutions on ˚ . For � D : : : .rs/ : : : 2 F.˚/ let
� .x1; x2; �/ DQ.r;s/ �.r; s/ as defined in (80) for r; s 2 ˚.2/

� D ˚.1/

� [ ˚.2/

� and

�.r; s/ D
(
D.1; 1; xi � xj ; �/ D P2.�; xi � xj /; r; s 2 ˚i ; i ¤ j;
D.1; s; xi � wa; �/ D sPsC1.�; xi � wa/; r 2 ˚i ; s 2 ˚.a/

� ;
(95)

for i; j; a 2 f1; 2g with D of (11). Then following Corollary 1 of [17] we have

Z
.1/
M .a; x1I a; x2I v.�/;w1I v.�/;w2I �/ D Z.1/

M .�/
X

�2F.˚/
� .x1; x2; �/:

We then obtain the following analog of (80)

F .2/.a; aI �;w; �/ D Z.1/
M .�/

X

�Dfi ei g

E.x1; x2; �/Q
i .�i/ei ei Š

�
P
iei dx1dx2; (96)

where

E.x1; x2; �/ D
X

�2F.˚/
� .x1; x2; �/:

The sum in (96) can be re-expressed as the sum of weights �.D/ for isomorphism
classes of doubly-indexed configurations D where here D includes two distin-
guished valency one nodes labelled xi (see Sect. 2.3) corresponding to the label sets
˚1;˚2 D f1g. As before, �.D/ D Q

E �.E/ for standard doubly-indexed edges E
augmented by the contributions from edges connected to the two valency one nodes
with weights as in (37). Thus we find

F .2/.a; aI �;w; �/ D Z.1/
M .�/

X

D

�.D/Q
i ei Š

dx1dx2;

Each D can be decomposed into exactly one necklace configuration N of type
N .xIy/ of (38) connecting the two distinguished nodes and a standard configu-
ration OD of the type appearing in the proof of Theorem 8 with �.D/ D �.N /�. OD/.
Since jAut.N /j D 1 we obtain
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F .2/.a; aI �;w; �/ D Z.1/
M .�/

X

OD

�. OD/
jAut. OD/j

X

N2N .xIy/
�.N /

D Z.2/
M .�;w; �/�.x1I x2/

D Z.2/
M .�;w; �/!.x1; x2/;

using (41) of Proposition 2. ut
Theorem 12 can be generalized to compute the n-point function corresponding

to the insertion of n Heisenberg vectors. We find that it vanishes for n odd, and for
n even is determined by the symmetric tensor

Symn ! D
X

 

Y

.r;s/

!.xr ; xs/; (97)

where the sum is taken over the set of fixed point free involutions  D : : : .rs/ : : :
of the labels f1; : : : ; ng. We then have

Theorem 13. The genus two Heisenberg vector n-point function vanishes for odd
n even; for even n it is given by the global symmetric meromorphic n-form:

F .2/
M .a; : : : ; aI �;w; �/
Z
.2/
M .�;w; �/

D Symn !: (98)

�

This agrees with the corresponding ratio in Theorem 10 of [20] in the �-formalism,
and also with earlier results in [33] which assume an analytic structure for the n-
point function.

Using this result and the associativity of vertex operators, we can compute all
n-point functions. In particular, the 1-point function for the Virasoro vector Q! D
1
2
aŒ�1�a is as follows (cf. [20], Proposition 8):

Proposition 3. The genus two 1-point function for the Virasoro vector Q! inserted
at x is given by

F .2/
M . Q!I �;w; �/
Z
.2/
M .�;w; �/

D 1

12
s.2/.x/; (99)

where s.2/.x/ D 6 limx!y

�
!.x; y/ � dxdy

.x�y/2
	

is the genus two projective connec-

tion [11]. ut
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6 Lattice VOAs

6.1 The Genus Two Partition Function Z
.2/

VL
.�; w; �/

Let L be an even lattice with VL the corresponding lattice theory vertex operator
algebra. The underlying Fock space is

VL DMl ˝ C ŒL� D ˚ˇ2LMl ˝ eˇ; (100)

where Ml is the corresponding Heisenberg free boson theory of rank l D dim L

based on H D C ˝Z L. We follow Sect. 3.1 and [17] concerning further notation
for lattice theories. We utilize the Fock basis fu˝ eˇg where ˇ ranges over L and u
ranges over the usual orthogonal basis for Ml . From Lemma 1 and Corollary 1 we
see that

Z
.2/
VL
.�;w; �/ D

X

˛;ˇ2L
Z
.2/

˛;ˇ .�;w; �/ ; (101)

Z
.2/

˛;ˇ .�;w; �/ D
X

n�0

X

u2Ml
Œn�

Z
.1/

Ml˝e˛

�
u˝ eˇ; u˝ e�ˇ;w; �

�
�nC.ˇ;ˇ/=2:

(102)

The general shape of the 2-point function occurring in (102) is discussed extensively
in [17]. By Proposition 1 (op. cit.) it splits as a product

Z
.1/

Ml˝e˛

�
u˝ eˇ; u˝ e�ˇ;w; �

� D
Q
ˇ

Ml˝e˛
.u; u;w; �/Z.1/

Ml˝e˛

�
eˇ; e�ˇ;w; �

�
; (103)

where we have identified eˇ with 1˝ eˇ , and where Qˇ

Ml˝e˛
is a function6 that we

will shortly discuss in greater detail. In [17, Corollary 5] (cf. the Appendix to the
present paper) we established also that

Z
.1/

Ml˝e˛

�
eˇ; e�ˇ;w; �

� D �.ˇ;�ˇ/q.˛;˛/=2 exp..˛; ˇ/w/

K.w; �/.ˇ;ˇ/
Z
.1/

Ml .�/; (104)

where, as usual, we are taking w in place of z12 D z1 � z2. With cocycle choice
�.ˇ;�ˇ/ D .�1/.ˇ;ˇ/=2 (cf. Appendix) we may then rewrite (102) as

6Note: in [17] the functional dependence on ˇ, here denoted by a superscript, was omitted.
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Z
.2/

˛;ˇ.�;w; �/ D Z
.1/

Ml .�/ exp

�
� i
�
.˛; ˛/� C 2.˛; ˇ/ w

2� i
C .ˇ; ˇ/

2� i
log

� ��
K.w; �/2

�	�

�
X

n�0

X

u2Ml
Œn�

Q
ˇ

Ml˝e˛
.u; u;w; �/�n: (105)

We note that this expression is, as it should be, independent of the choice of
branch for the logarithm function. We are going to establish the precise analog of
Theorem 14 of [20] as follows:

Theorem 14. We have

Z
.2/
VL
.�;w; �/ D Z.2/

Ml .�;w; �/�
.2/
L .˝/; (106)

where �.2/L .˝/ is the genus two theta function of L [7].

Proof. We note that

�
.2/
L .˝/ D

X

˛;ˇ2L
exp .� i..˛; ˛/˝11 C 2.˛; ˇ/˝12 C .ˇ; ˇ/˝22//: (107)

We first handle the case of rank 1 lattices and then consider the general case. The
inner double sum in (105) is the object which requires attention, and we can begin
to deal with it along the lines of previous sections. Namely, arguments that we have
already used several times show that the double sum may be written in the form

X

D

�.D/

jAut.D/j D exp

 
1

2

X

N2N
�.N /

!
:

Here, D ranges over the oriented doubly indexed cycles of Sect. 5, while N ranges
over oriented doubly-indexed necklaces N D fN .k; aI l; b/g of (35). Leaving aside
the definition of �.N / for now, we recognize as before that the piece involving
only connected diagrams with no end nodes splits off as a factor. Apart from a
Z
.1/
M .�/ term this factor is, of course, precisely the expression (83) for M . With

these observations, we see from (105) that the following holds:

Z
.2/

˛;ˇ.�;w; �/

Z
.2/
M .�;w; �/

D exp

�
i�

�
.˛; ˛/� C 2.˛; ˇ/ w

2� i
C .ˇ; ˇ/

2� i
log

� ��
K.w; �/2

�

C 1

2� i

X

N2N
�.N /

!)
: (108)

To prove Theorem 14, we see from (107) and (108) that it is sufficient to establish
that for each pair of lattice elements ˛; ˇ 2 L, we have
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Z
.2/

˛;ˇ.�;w; �/

Z
.2/
M .�;w; �/

D exp .� i ..˛; ˛/˝11 C 2.˛; ˇ/˝12 C .ˇ; ˇ/˝22// : (109)

Recall the formula for ˝ in Proposition 1. In order to reconcile (109) with
the formula for ˝, we must carefully consider the expression

P
N2N �.N /. The

function � is essentially (82), except that we also get contributions from the end
nodes which are now present. Suppose that an end node has label k 2 ˚.a/; a 2
f1; 2g. Then according to Proposition 1 and display (45) of [17] (cf. (133) of the
Appendix to the present paper), the contribution of the end node is equal to

�˛;ˇ.k; a/ D �˛;ˇ.k; a; �;w; �/ D
8
<

:

�k=2p
k
.a; ık1˛ C C.k; 0; �/ˇ CD.k; 0;w; �/.�ˇ// ; a D 1

�k=2p
k
.a; ık1˛ C C.k; 0; �/.�ˇ/CD.k; 0;�w; �/ˇ/ ; a D 2 (110)

together with a contribution arising from the �1 in the denominator of (82) (we will
come back to this point later). Using (cf. [17], displays (6), (11) and (12))

D.k; 0;�w; �/ D .�1/kC1Pk.�w; �/ D �Pk.w; �/;
C.k; 0; �/ D .�1/kC1Ek.�/;

we can combine the two possibilities in (110) as follows (recalling that Ek D 0 for
odd k):

�˛;ˇ.k; a/ D .a; ˛/�1=2ık1 C .a; ˇ/da.k/; (111)

where da.k/ is given by (25). We may then compute the weight for an oriented
doubly-indexed necklace N 2 N .k; aI l; b/ (35). Let N 0 denote the oriented
necklace from which the two end nodes and edges have been removed (we refer
to these as shortened necklaces). From (111) we see that the total contribution to
�.N / is

� �˛;ˇ.k; a/�˛;ˇ.l; b/�.N 0/ D � 
.˛; ˛/�ık1ıl1 C .ˇ; ˇ/da.k/db.l/
C.˛; ˇ/�1=2 �da.k/ıl;1 C db.l/ık;1

��
�.N 0/;

(112)

where we note that a sign �1 arises from each pair of nodes, as follows from (82).
We next consider the terms in (112) corresponding to .˛; ˛/; .˛; ˇ/ and .ˇ; ˇ/

separately, and show that they are precisely the corresponding terms on each side
of (109). This will complete the proof of Theorem 14 in the case of rank 1

lattices. From (112), an .˛; ˛/ term arises only if the end node weights k; l are
both equal to 1. Hence

P
�.N 0/ D �.1I 1/ (cf. (36)), where the sum ranges over
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shortened necklaces with end nodes of weight 1 2 ˚.a/ and 1 2 ˚.b/. Thus using
Proposition 1, the total contribution to the right-hand-side of (109) is equal to

2� i� � ��.1I 1/ D 2� i˝11: (113)

Next, from (112) we see that an .˛; ˇ/-contribution arises whenever at least one
of the end nodes has label 1. If the labels of the end nodes are unequal then the
shortened necklace with the opposite orientation makes an equal contribution. The
upshot is that we may assume that the end node to the right of the shortened necklace
has label l D 1 2 ˚.b/, as long as we count accordingly. We thus find

P
�.N 0/ D

�.d I 1/ (cf. (36)), where the sum ranges over shortened necklaces with end nodes of
weight k 2 ˚.a/ and 1 2 ˚.b/. Then Proposition 1 implies that the total contribution
to the .˛; ˇ/ term on the right-hand-side of (109) is

2w � 2�1=2�.d I 1/ D 2˝12;

as required.
It remains to deal with the .ˇ; ˇ/ term, the details of which are very much

along the lines as the case .˛; ˇ/ just handled. A similar argument shows that
the contribution to the .ˇ; ˇ/-term from (112) is equal to the expression ��.d I d/
of (36). Thus the total contribution to the .ˇ; ˇ/ term on the right-hand-side of
(109) is

log

� ��
K.w; �/2

�
� �.d I d/ D ˝22;

as in (29). This completes the proof of Theorem 14 in the rank 1 case.
As for the general case—we adopt the mercy rule and omit details! The reader

who has progressed this far will have no difficulty in dealing with the general case,
which follows by generalizing the calculations in the rank 1 case just considered.

ut
The analytic and automorphic properties of Z.2/

VL
.�;w; �/ can be deduced from

Theorem 14 using the known behaviour of �.2/L .˝/ and the analogous results for

Z
.2/

Ml .�;w; �/ established in Sect. 5. We simply record

Theorem 15. Z.2/
VL
.�;w; �/ is holomorphic on the domain D�. ut

6.2 Some Genus Two n-Point Functions

In this section we consider the genus two n-point functions for nHeisenberg vectors
and the 1-point function for the Virasoro vector Q! for a rank l lattice VOA. The
results are similar to those of Sect. 5.3 so that detailed proofs will not be given.
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Consider the 1-point function for a Heisenberg vector ai inserted at x. We define
the differential 1-form

F .2/

˛;ˇ.ai I �;w; �/ D
X

n�0

X

u2Ml
Œn�

Z
.1/

Ml˝e˛

�
ai ; xI u˝ eˇ;wI u˝ e�ˇ; 0; �

�
�nC.ˇ;ˇ/=2dx:

(114)

This can be expressed in terms of the genus two holomorphic 1-forms �1; �2 of (24)
in a similar way to Theorem 12 of [20]. Defining

�i;˛;ˇ.x/ D .ai ; ˛/�1.x/C .ai ; ˇ/�2.x/;
we find

Theorem 16.

F .2/

˛;ˇ.ai I �;w; �/ D �i;˛;ˇ.x/Z.2/

˛;ˇ.�;w; �/: (115)

Proof. The proof proceeds along the same lines as Theorems 12 and 14 and
Theorem 12 of (op. cit.). We find that

F .2/

˛;ˇ.ai I �;w; �/ D Z.1/
M .�/

X

D

�.D/

jAut.D/jdx;

where the sum is taken over isomorphism classes of doubly-indexed configurations
D where, in this case, each configuration includes one distinguished valence one
node labelled by x as in (37). Each D can be decomposed into exactly one
necklace configuration of type N .xI k; a/ of (39), standard configurations of the
type appearing in Theorem 12 and necklace contributions as in Theorem 106. The
result then follows on applying (111) and the graphical expansion for �1.x/; �2.x/
of (42) and (43). ut

Summing over all lattice vectors, we find that the Heisenberg 1-point function
vanishes for VL. Similarly, one can generalize Theorem 13 concerning the n-point
function for n Heisenberg vectors ai1 ; : : : ; ain . Defining

F .2/

˛;ˇ.ai1 ; : : : ; ain I �;w; �/ D
nY

tD1
dxt

X

n�0

X

u2Ml
Œn�

�nC.ˇ;ˇ/=2 �

Z
.1/

Ml˝e˛

�
ai1 ; x1I : : : I ain ; xnI u˝ eˇ;wI u˝ e�ˇ; 0; �

�
;

we obtain the analogue of Theorem 13 of (op. cit.):

Theorem 17.

F .2/

˛;ˇ.ai1 ; : : : ; ain I �;w; �/ D Symn

�
!; �it ;˛;ˇ

�
Z
.2/

˛;ˇ.�;w; �/; (116)
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the symmetric product of !.xr ; xs/ and �it ;˛;ˇ.xt / defined by

Symn

�
!; �it ;˛;ˇ

� D
X

 

Y

.r;s/

!.xs; xs/
Y

.t/

�it ;˛;ˇ.xt /; (117)

where the sum is taken over the set of involutions  D : : : .ij / : : : .k/ : : : of the
labels f1; : : : ; ng. �

We may also compute the genus two 1-point function for the Virasoro vector
Q! D 1

2

Pl
iD1 ai Œ�1�ai using associativity of vertex operators as in Proposition 3.

We find that for a rank l lattice,

F .2/

˛;ˇ. Q!I �;w; �/ 

X

n�0

X

u2Ml
Œn�

Z
.1/

Ml˝e˛

� Q!; xI u˝ eˇ;wI u˝ e�ˇ; 0; �
�
�nC.ˇ;ˇ/=2dx2

D
 
1

2

X

i

�i;˛;ˇ.x/
2 C l

2
s.2/.x/

!
Z
.2/

˛;ˇ.�;w; �/

D Z.2/

Ml .�;w; �/

�
DC l

12
s.2/
�

ei�..˛;˛/˝11C2.˛;ˇ/˝12C.ˇ;ˇ/˝22/:

Here, we used (109) and the differential operator [5, 20, 35]

D D 1

2� i

X

1�a�b�2
�a�b

@

@˝ab
: (118)

Defining the normalized Virasoro 1-point form

OF .2/
VL
. Q!I �;w; �/ D F .2/

VL
. Q!I �;w; �/

Z
.2/

Ml .�;w; �/
; (119)

we obtain

Proposition 4. The normalized Virasoro 1-point function for the lattice theory VL
satisfies

OF .2/
VL
. Q!I �;w; �/ D

�
DC l

12
s.2/
�
�
.2/
L .˝/: (120)

�

(The Ward identity (120) is similar to Proposition 11 in [20] in the �-sewing
formalism.)

Finally, we can obtain the analogue of Proposition 12 (op. cit.), where we find
that OF .2/

VL
enjoys the same modular properties as OZ.2/

VL
D �.2/L .˝.�;w; �//. That is,



Free Bosonic Vertex Operator Algebras on Genus Two Riemann Surfaces II 219

Proposition 5. The normalized Virasoro 1-point function for a lattice VOA obeys

OF .2/
VL
. Q!I �;w; �/jl=2� D

�
DC l

12
s.2/
�� OZ.2/

VL
.�;w; �/jl=2�

	
; (121)

for � 2 �1. �

7 Comparison Between the � and �-Formalisms

In this section we consider the relationship between the genus two boson and
lattice partition functions computed in the �-formalism of [20] (based on a sewing
construction with two separate tori with modular parameters �1; �2 and a sewing
parameter �) and the �-formalism developed in this paper. We write

Z
.2/
V;� D Z.2/

V;� .�1; �2; �/ D
X

n�0
�n
X

u2VŒn�
Z
.1/
V .u; �1/Z

.1/
V .u; �2/;

Z
.2/
V;� D Z.2/

V;�.�;w; �/ D
X

n�0
�n

X

u2VŒn�
Z
.1/
V .u; u;w; �/ :

Although, for a given VOA V , the partition functions enjoy many similar properties,
we show below that the partition functions are not equal in the two formalisms. This
result follows from an explicit computation of the partition functions for two free
bosons in the neighborhood of a two-tori degeneration points where ˝12 D 0. It
then follows that there is likewise no equality between the partition functions in the
�- and �-formalisms for a lattice VOA.

As shown in Theorem 12 of [18], we may relate the �- and �-formalisms in
certain open neighborhoods of the two-tori degeneration point, where ˝12 D 0. In
the �-formalism, the genus two Riemann surface is parameterized by the domain

D� D
�
.�1; �2; �/ 2 H1�H1�C j j�j < 1

4
D.q1/D.q2/

�
; (122)

with qa D exp.2� i�a/ and D.q/ as in (15). In this case the two-tori degeneration
is, by definition, given by � ! 0. In the �-formalism, the two torus degeneration is
described by the limit (74). In order to understand this more precisely we introduce
the domain [18]

D	 D
�
.�;w; 	/ 2 H1 � C � C j .�;w;�w2	/ 2 D�; 0 < j	j < 1

4

�
; (123)

for D� of (18) and 	 D � �

w2
of (73). The period matrix is determined by a �1-

equivariant holomorphic map



220 G. Mason and M.P. Tuite

F 	 W D	 ! H2;

.�;w; 	/ 7! ˝.2/.�;w;�w2	/: (124)

Then

D	
0 D

�
.�; 0; 	/ 2 H1 � C � C j 0 < j	j < 1

4

�
; (125)

is the space of two-tori degeneration limit points of the domain D	. We may
compare the two parameterizations on certain �1-invariant neighborhoods of a two-
tori degeneration point in both parameterizations to obtain:

Theorem 18 (op. cit., Theorem 12). There exists a 1-1 holomorphic mapping
between �1-invariant open domains I	 � .D	 [ D	

0 / and I� � D� where I	
and I� are open neighborhoods of a two-tori degeneration point. ut

We next describe the explicit relationship between .�1; �2; �/ and .�;w; 	/ in
more detail. Firstly, from Theorem 4 of [18] we obtain

2� i˝11 D 2� i�1 CE2 .�2/ �2 CE2 .�1/E2 .�2/2 �4 CO.�6/;
2� i˝12 D �� �E2 .�1/E2 .�2/ �3 CO.�5/;
2� i˝22 D 2� i�2 CE2 .�1/ �2 CE2 .�1/2 E2 .�2/ �4 CO.�6/:

Making use of the identity

1

2� i

d

d�
E2.�/ D 5E4.�/ �E2.�/2; (126)

it is straightforward to invert ˝ij .�1; �2; �/ to find

Lemma 5. In the neighborhood of the two-tori degeneration point r D 2� i˝12 D
0 of ˝ 2 H2 we have

2� i�1 D 2� i˝11 �E2.˝22/r
2 C 5E2.˝11/E4.˝22/r

4 CO.r6/;
� D �r CE2.˝11/E2.˝22/r

3 CO.r5/;
2� i�2 D 2� i˝22 �E2.˝11/r

2 C 5E2.˝22/E4.˝11/r
4 CO.r6/:

�

From Theorem 4 we may also determine ˝ij .�;w; 	/ to O.w4/ in a neighbor-
hood of a two-tori degeneration point to find

Proposition 6. For .�;w; 	/ 2 D	 [D	
0 we have
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2� i˝11 D 2� i� CG.	/�2 CG.	/2E2.�/�4 CO.w6/;

2� i˝22 D logf .	/CE2.�/�2 C
�
G.	/E2.�/

2 C 1

2
E4.�/

�
�4 CO.w6/

2� i˝12 D � CG.	/E2.�/�3 CO.w5/;

where � D w
p
1 � 4	, G.	/ D 1

12
C E2.q D f .	// D O.	/ and f .	/ is the

Catalan series (66).

This result is an extension of [18, Proposition 13] and the general proof proceeds
along the same lines. For our purposes, it is sufficient to expand the non-logarithmic
terms to O.w4; 	0/. Since R.k; l/ D O.	/ and da.k/ D O.	1=2/ then Theorem 4
implies

2� i˝11 D 2� i� CO.	/; (127)

2� i˝22 D log	C 2
X

k�2

1

k
Ek.�/w

k CO.	/; (128)

2� i˝12 D wCO.	/; (129)

to all orders in w. In particular, we can readily confirm Proposition 6 to O.w4; 	0/.
Substituting (127)–(129) into Lemma 5 and using (126) and (136) we obtain

Proposition 7. For .�;w; 	/ 2 D	 [D	
0 we have

2� i�1 D 2� i� C 1

12
w2 C 1

144
E2.�/w

4 CO.w6; 	/;

2� i�2 D log.	/C 1

12
E4.�/w

4 CO.w6; 	/;

� D �w � 1

12
E2.�/w

3 CO.w5; 	/:

�

Define the ratio

T�;�.�;w; 	/ D
Z
.2/

M2;�
.�1; �2; �/

Z
.2/

M2;�
.�;w;�w2	/

; (130)

for �1; �2; � as given in Proposition 7. From Theorems 8 of [20] and Theorems 11
and 18 above we see that T�;� is �1-invariant. From Theorem 7 for V D M2, we
find in the two tori degeneration limit that

lim
w!0

T�;�.�;w; 	/ D f .	/�1=12;
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i.e., the two partition functions do not even agree in this limit! The origin of this
discrepancy may be thought to arise from the central charge dependent factors of
q�c=24 and q�c=24

1 q
�c=24
2 present in the definitions of Z.2/

V;� and Z.2/
V;� respectively

(which, of course, are necessary for any modular invariance). One modification
of the definition of the genus two partition functions compatible with the two tori
degeneration limit might be:

Z
new.2/
V;� .�1; �2; �/ D ��c=12Z.2/

V;�.�1; �2; �/; Z
new.2/
V;� .�;w; �/ D ��c=24Z.2/

V;�.�;w; �/:

However, for V D M2, we immediately observe that the ratio cannot be unity due
to the incompatible �1 actions arising from

� ! �

c1�1 C d1 ; �! �

.c1� C d1/2 ;

as given in Lemmas 8 and 15 of [18] (cf. (31)).
Consider instead a further �1-invariant factor of f .	/�c=24 in the definition of

the genus two partition function in the �-formalism. Once again, we find that the
partition functions do not agree in the neighborhood of a two-tori degeneration
point:

Proposition 8.

f .	/1=12T�;�.�;w; 	/ D 1 � 1

288
E4.�/w

4 CO.w6; 	/:

Proof. As noted earlier, R.k; l/ D O.	/ so that we immediately obtain

f .	/�1=12Z.2/

M2;�
.�;w;�w2	/ D 1

�.�/2�.f .	//2
CO.	/;

to all orders in w. On the other hand, Z.2/

M2;�
.�1; �2; �/ of Theorem 5 of [20] toO.�4/

is given by

1

�.�1/2�.�2/2



1CE2.�1/E2.�2/�2C

�
E2.�1/

2E2.�2/
2C 15E4.�1/E4.�2/

�
�4
� CO.�6/:

(131)

We expand this to O.w4; 	/ using Proposition 7, (126) and

1

2� i

d

d�
�.�/ D �1

2
E2.�/�.�/;

to eventually find that
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Z
.2/

M2;�
.�1; �2; �/ D 1

�.q/2�.f .	//2

�
1 � 1

288
E4.�/w

4

�
CO.w6; 	/: ut

8 Final Remarks

Let us briefly and heuristically sketch how our results compare to some related ideas
in the physics and mathematics literature. There is a wealth of literature concerning
the bosonic string e.g. [10, 29]. In particular, the conformal anomaly implies that
the physically defined path integral partition function Zstring cannot be reduced to
an integral over the moduli space Mg of a Riemann surface of genus g except for
the 26 dimensional critical string where the anomaly vanishes. Furthermore, for the
critical string, Belavin and Knizhnik argue that

Zstring D
Z

Mg

jF j2 d�;

where d� denotes a natural volume form on Mg and F is holomorphic and
non-vanishing on Mg [1, 14]. They also claim that for g � 2, F is a global section
for the line bundle K ˝ ��13 (where K is the canonical bundle and � the Hodge
bundle) on Mg which is trivial by Mumford’s theorem [26]. In this identification,
the ��13 section is associated with 26 bosons, the K section with a c D �26 ghost
system and the vanishing conformal anomaly to the vanishing first Chern class for
K˝��13 [28]. More recently, some of these ideas have also been rigorously proved
for a zeta function regularized determinant of an appropriate Laplacian operator
�n [24]. The genus two partition functions Z.2/

M2;�
.�1; �2; �/ and Z

.2/

M2;�
.�;w; �/

constructed in [20] and the present paper for a rank 2 Heisenberg VOA should
correspond in these approaches to a local description of the holomorphic part of�

det0 �1
detN1

	�1
of [14, 24], giving a local section of the line bundle ��1. Given these

assumptions, it follows that T�;� D Z.2/

M2;�
=Z

.2/

M2;�
¤ 1 in the neighborhood of a two-

tori degeneration point where the ratio of the two sections is a non-trivial transition
function T�;�.

In the case of a general rational conformal field theory, the conformal anomaly
continues to obstruct the existence of a global partition function on moduli space
for g � 2. However, all CFTs of a given central charge c are believed to share the
same conformal anomaly e.g. [6]. Thus, the identification of the normalized lattice
partition and n-point functions of Sect. 6 reflect the equality of the first Chern class
of some bundle associated to a rank c lattice VOA to that for ��c with transition
function T c=2�;� . It is interesting to note that even in the case of a unimodular lattice
VOA with a unique conformal block [25, 33] the genus two partition function can
therefore only be described locally. It would obviously be extremely valuable to find
a rigorous description of the relationship between the VOA approach described here
and these related ideas in conformal field theory and algebraic geometry.
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Appendix

We list here some corrections to [17] and [18] that we needed above.

(a) Display (27) of [17] should read

�.˛;�˛/ D �.˛; ˛/ D .�1/.˛;˛/=2: (132)

(b) Display (45) of [17] should read

�.�/ D .a; ır;1ˇ C C.r; 0; �/˛k C
X

l¤k
D.r; 0; zkl ; �/˛l /: (133)

(c) As a result of (a), displays (79) and (80) of [17] are modified and now read

FN .e
˛; z1I e�˛; z2I q/ D �.˛;�˛/q

.ˇ;ˇ/=2

�l .�/

exp..ˇ; ˛/z12/

K.z12; �/.˛;˛/
; (134)

FVL.e
˛; z1I e�˛; z2I q/ D �.˛;�˛/ 1

�l .�/

�˛;L.�; z12=2� i/

K.z12; �/.˛;˛/
: (135)

(d) The expression for �.�;w; 	/ of display (172) of [18] should read

�.�;w; 	/ D �w
p
1 � 4	

�
1C 1

24
w2E2.�/.1 � 4	/CO.w4/

�
(136)
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Twisted Correlation Functions on Self-sewn
Riemann Surfaces via Generalized Vertex
Algebra of Intertwiners

Alexander Zuevsky

Abstract We review our recent results on computation of the partition and n-
point “intertwined” functions for modules of vertex operator superalgebras with
formal parameter associated to local parameters on Riemann surfaces obtained by
self-sewing of a lower genus Riemann surface. We introduce the torus intertwined
n-point functions containing two intertwining operators in the supertrace. Then we
define the partition and n-point correlation functions for a vertex operator superalge-
bra on a genus two Riemann surface formed by self-sewing of the torus. For the free
fermion vertex operator superalgebra we present a closed formula for the genus two
continuous orbifold partition function in terms of an infinite dimensional determi-
nant with entries arising from the original torus Szegő kernel. This partition function
is holomorphic in the sewing parameters on a given suitable domain and possess
natural modular properties. We describe modularity of the generating function for
all n-point correlation functions in terms of a genus two Szegő kernel determinant.

1 Introduction

In this paper (based on the talk at the Conference “Conformal Field Theory,
Automorphic Forms and Related Topics”, Heidelberg Universität, Heidelberg,
Germany, 2011) we review our recent result on construction and computation of
correlation functions of vertex operator superalgebras with a formal parameter
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associated to local coordinates on a self-sewn Riemann surface of genus g which
forms a genus g C 1 surface. In particular, we review result presented in the papers
[33–37] accomplished in collaboration with M. P. Tuite (National University of
Ireland, Galway).

1.1 Vertex Operator Super Algebras

A Vertex Operator Superalgebra (VOSA) [1,3,12,13,18] is a quadruple .V; Y; 1; !/ W
V D VN0 ˚ VN1 D

L
r2 1

2Z
Vr , dimVr < 1, is a superspace, Y is a linear map Y W

V ! .EndV /ŒŒz; z�1��: so that for any vector (state) u 2 V we have u.k/1 D ık;�1u,
k � �1,

Y.u; z/ D
X

n2Z
u.n/z�n�1;

u.n/V˛ � V˛Cp.u/, p.u/- parity. The linear operators (modes) u.n/ W V ! V satisfy
creativity

Y.u; z/1 D uCO.z/;
and lower truncation

u.n/v D 0;
conditions for u, v 2 V and n� 0.

These axioms identity imply locality, associativity, commutation and skew-
symmetry:

.z1 � z2/
mY.u; z1/Y.v; z2/ D .�1/p.u;v/.z1 � z2/

mY.v; z2/Y.u; z1/;

.z0 C z2/
nY.u; z0 C z2/Y.v; z2/w D .z0 C z2/

nY.Y.u; z0/v; z2/w;

u.k/Y.v; z/ � .�1/p.u;v/Y.v; z/u.k/ D
X

j�0

 
k

j

!
Y.u.j /v; z/zk�j ;

Y.u; z/v D .�1/p.u;v/ezL.�1/Y.v;�z/u;

for u, v, w 2 V and integers m, n� 0, p.u; v/ D p.u/p.v/.
The vacuum vector 1 2 VN0;0 is such that, Y.1; z/ D IdV , and ! 2 VN0;2 the

conformal vector satisfies

Y.!; z/ D
X

n2Z
L.n/z�n�2;

where L.n/ form a Virasoro algebra for a central charge C
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ŒL.m/;L.n/� D .m � n/L.mC n/C C

12
.m3 �m/ım;�n:

L.�1/ satisfies the translation property

Y.L.�1/u; z/ D @zY.u; z/:

L.0/ describes a grading with L.0/u D wt.u/u, and Vr D fu 2 V jwt.u/ D rg:

1.2 VOSA Modules

Definition 1.1. A V -module for a VOSA V is a pair .W; YW /, W is a C-graded
vector space W D L

r2C
Wr , dimWr < 1, WrCn D 0 for all r and n � 0. YW W

V ! End.W /ŒŒz; z�1��

YW .u; z/ D
X

n2Z
uW .n/z

�n�1;

for each u 2 V uW W W ! W . YW .1; z/ D IdW , and for the conformal vector

YW .!; z/ D
X

n2Z
LW .n/z

�n�2;

where LW .0/w D rw, w 2 Wr . The module vertex operators satisfy the Jacobi
identity:

z�1
0 ı

�
z1 � z2

z0

�
YW .u; z1/YW .v; z2/

�.�1/p.u;v/ı
�

z2 � z1
�z0

�
YW .v; z2/YW .u; z1/

D z�1
2 ı

�
z1 � z0

z2

�
YW .Y.u; z0/v; z2/ :

Recall that

ı.z/ D
X

n2Z
zn:

The above axioms imply that LW .n/ satisfies the Virasoro algebra for the same
central charge C and that the translation property

YW .L.�1/u; z/ D @zYW .u; z/:



230 A. Zuevsky

1.3 Twisted Modules

We next define the notion of a twisted V -module [5,13]. Let g be a V -automorphism
g, i.e., a linear map preserving 1 and ! such that

gY.v; z/g�1 D Y.gv; z/;

for all v 2 V . We assume that V can be decomposed into g-eigenspaces

V D ˚�2CV �;

where V � denotes the eigenspace of g with eigenvalue e2�i�.

Definition 1.2. A g-twisted V -module for a VOSA V is a pair .W g; Yg/ W
g DL

r2C
W

g
r , dimW

g
r < 1, W g

rCn D 0 for all r and n� 0. Yg W V ! End W gfzg, the

vector space of End W g-valued formal series in z with arbitrary complex powers of
z. For v 2 V �

Yg.v; z/ D
X

n2�CZ

vg.n/z
�n�1;

with vg.�C l/w D 0, w 2 W g , l 2 Z sufficiently large. Yg.1; z/ D IdW g ,

Yg.!; z/ D
X

n2Z
Lg.n/z

�n�2;

where Lg.0/w D rw, w 2 W g
r . The g-twisted vertex operators satisfy the twisted

Jacobi identity:

z�1
0 ı

�
z1 � z2

z0

�
Yg.u; z1/Yg.v; z2/

�.�1/p.u;v/z�1
0 ı

�
z2 � z1
�z0

�
Yg.v; z2/Yg.u; z1/

D z�1
2

�
z1 � z0
�z2

���
ı

�
z1 � z0
�z2

�
Yg.Y.u; z0/v; z2/;

for u 2 V �.

1.4 Creative Intertwining Operators

We define the notion of creative intertwining operators in [36]. Suppose we have a
VOA V with a V -module .W; YW /.
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Definition 1.3. A Creative Intertwining Vertex Operator Y for a VOA V -module
.W; YW / is defined by a linear map

Y.w; z/ D
X

n2Z
w.n/z�n�1;

for w 2 W with modes w.n/ W V ! W ; satisfies creativity

Y.w; z/1 D wCO.z/;

for w 2 W and lower truncation

w.n/v D 0;

for v 2 V , w 2 W and n � 0. The intertwining vertex operators satisfy the Jacobi
identity:

z�1
0 ı

�
z1 � z2

z0

�
YW .u; z1/Y.w; z2/

�z�1
0 ı

�
z2 � z1
�z0

�
Y.w; z2/Y.u; z1/

D z�1
2 ı

�
z1 � z0

z2

�
Y .YW .u; z0/w; z2/ ;

for all u 2 V and w 2 W .

These axioms imply that the intertwining vertex operators satisfy translation,
locality, associativity, commutativity and skew-symmetry:

Y.LW .�1/w; z/ D @zY.w; z/;

.z1 � z2/
mYW .u; z1/Y.w; z2/ D .z1 � z2/

mY.w; z2/Y.u; z1/;

.z0 C z2/
nYW .u; z0 C z2/Y.w; z2/v D .z0 C z2/

nY.YW .u; z0/w; z2/v;

uW .k/Y.w; z/ � Y.w; z/u.k/ D
X

j�0

 
k

j

!
Y.uW .j /w; z/zk�j ;

Y.w; z/v D ezLW .�1/YW .v;�z/w;

for u, v 2 V , w 2 W and integers m, n� 0.
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1.5 Example: Heisenberg Intertwiners

Consider the Heisenberg vertex operator algebra M , [18] generated by weight one
normalized Heisenberg vector a with modes obeying

Œa.n/; a.m/� D nın;�m;

n, m 2 Z. In [36] we consider an extension M D [˛2CM˛ of M by its irreducible
modules M˛ generated by a C-valued continuous parameter ˛ automorphism
g D e2�i˛a.0/.

We introduce an extra operator q which is canonically conjugate to the zero mode
a.0/, i.e.,

Œa.n/; q� D ın;0:

The state 1˝ e˛ 2M is created by the action of e˛q on the state 1˝ e0. Using q-
conjugation and associativity properties, we explicitly construct in [36] the creative
intertwining operators Y.u; z/ WM !M˛ . We then prove

Theorem 1.4 (Tuite-Z). The creative intertwining operators Y for M are gener-
ated by q-conjugation of vertex operators of M . For a Heisenberg state u,

Y.u˝ e˛; z/ D e˛q Y�.e˛; z/ Y.u˝ e0/ YC.e˛; z/ z˛ a.0/;

Y˙.e˛; z/ 
 exp

 
˛

X

n>0

a.˙n/ z	n

n

!
:

The operators Y with some extra cocycle structure satisfy a natural extension
from rational to complex parameters of the notion of a Generalized VOA as
described by Dong and Lepowsky [3, 4]. We then prove in [36]:

Theorem 1.5 (Tuite-Z). Y.u˝ e˛; z/ satisfy the generalized Jacobi identity

z�1
0

�
z1 � z2

z0

��˛ˇ
ı

�
z1 � z2

z0

�
Y.u˝ e˛; z1/ Y.v˝ eˇ; z2/

�C.˛; ˇ/z�1
0

�
z2 � z1

z0

��˛ˇ
ı

�
z2 � z1
�z0

�

Y.v˝ eˇ; z2/ Y.u˝ e˛; z1/

D z�1
2 ı

�
z1 � z0

z2

�
Y.Y.u˝ e˛; z0/.v˝ eˇ/; z2/

�
z1 � z0

z2

�˛a.0/
;

for all u˝ e˛; v˝ eˇ 2M.



Twisted Correlation Functions on Self-sewn Riemann Surfaces via Generalized. . . 233

1.6 Invariant Form for Extended Heisenberg Algebra

The definitions of invariant forms [13, 20] for a VOSA and its g-twisted modules
were given by Scheithauer [31] and in [34] correspondingly. A bilinear form h�; �i
on M is said to be invariant if for all u˝ e˛ , v˝ eˇ , w˝ e� 2M we have

hY.u˝ e˛; z/v˝ eˇ;w˝ e� i D ei�˛ˇhv˝ eˇ;Y�.u˝ e˛; z/w˝ e� i;

Y� .u˝ e˛; z/ D Y
 
e�z��2L.1/

�
��

z

�2L.0/
.u˝ e˛/;��

2

z

!
:

We are interested in the Möbius map z 7! w D �

z associated with the sewing

condition so that � D �� � 1
2 , with � 2 f˙p�1g. We prove in [36]

Theorem 1.6 (Tuite-Z). The invariant form h:; :i on M is symmetric, unique and
invertible with

hv˝ e˛;w˝ eˇi D ��˛2ı˛;�ˇhv˝ e0;w˝ e0i:

2 The Szegő Kernel

2.1 Torus Self-Sewing to Form a Genus Two Riemann Surface

In [22, 33] we describe procedures of sewing Riemann surfaces [8, 16]. Consider a
self-sewing of the oriented torus †.1/ D C=ƒ, ƒ D 2�i.Z� ˚ Z/, � 2 H1.

Define annuli Aa, a D 1, 2 centered at z D 0 and z D w of †.1/ with local
coordinates z1 D z and z2 D z � w respectively. We use the convention 1 D 2,
2 D 1. Take the outer radius of Aa to be ra < 1

2
D.q/ D min�2ƒ;�¤0 j�j. Introduce

a complex parameter �, j�j 	 r1r2. Take inner radius to be j�j=ra, with j�j 	 r1r2.
r1, r2 must be sufficiently small to ensure that the disks do not intersect. Excise the
disks

fza; jzaj < j�jr�1
a g � †.1/;
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to form a twice-punctured surface

O†.1/ D †.1/n
[

aD1;2
fza; jzaj < j�jr�1

a g:

Identify annular regions Aa � O†.1/, Aa D fza; j�jr�1
a 	 jzaj 	 rag as a single

region A D A1 ' A2 via the sewing relation

z1z2 D �;
to form a compact genus two Riemann surface †.2/ D O†.1/nfA1 [ A2g [ A,
parameterized by

D� D f.�;w; �/ 2 H1 � C � C ; jw � �j > 2j�j 12 > 0; � 2 ƒg:

2.2 The Prime Form

Recall the prime form E.g/.z; z0/ [9, 10, 28]

E.g/.z; z0/ D #


�
ı

� �R z
z0 �j".g/

�

�.z/
1
2 �.z0/ 12

� .z � z0/ dz� 1
2 d z0� 1

2 for z � z0;

is a holomorphic differential form of weight .� 1
2
;� 1

2
/ on Q†.g/ � Q†.g/,

E.g/.z; z0/ D �E.g/.z0; z/;

and has multipliers 1 and e�i�".g/jj �R z
z0 �j along the ai and bj cycles in z. Here

�.z/ D
gX

iD1
@zi #

h�
ı

i
.0j".g//�i .z/;

(a holomorphic one-form, and let �.z/
1
2 denote the form of weight 1

2
on the double

cover Q†.g/ of †.g/).
In particular, the prime form on the torus is [28]

E.1/.z; z0/ D K.1/.z � z0; �/ dz� 1
2 d z0� 1

2 ;

K.1/.z; �/ D #1.z; �/

@z#1.0; �/
;

for z 2 C and � 2 H1 and where #1.z; �/ D #
h
1=2
1=2

i
.z; �/.



Twisted Correlation Functions on Self-sewn Riemann Surfaces via Generalized. . . 235

2.3 The Szegő Kernel

The Szegő Kernel [9, 10, 28] is defined by

S.g/

�

�

�
.z; z0j"/ D

#
h
˛
ˇ

i �R z
z0 �
�

#
h
˛
ˇ

i
.0/E.g/.z; z0/

� dz
1
2 d z0 12

z � z0 for z � z0;

with #
h
˛
ˇ

i
.0/ ¤ 0,

�j D �e�2�iˇj ; �j D �e2�i˛j ; j D 1; : : : ; g;

whereE.g/.z1; z2/ is the genus g prime form. The Szegő kernel has multipliers along
the ai and bj cycles in z given by ��i and ��j respectively and is a meromorphic
. 1
2
; 1
2
/-form on Q†.g/ � Q†.g/.

S.g/

�

�

�
.z; z0/ D �S.g/


��1

��1

�
.z0; z/;

where ��1 D .��1
i / and ��1 D .��1

i /.
Finally, we describe the modular invariance of the Szegő kernel under the

symplectic group Sp.2g;Z/ where we find [Fay]

S.g/

" Q�
Q�

#
.z; z0j Q".g// D S.g/


�

�

�
.z; z0j".g//;

with Q�j D �e�2�i Q̌
j , Q�j D �e2�i Q̨j ,

 
� Q̌
Q̨

!
D
�
A B

C D

���ˇ
˛

�
C 1

2

��diag.ABT /
diag.CDT /

�
;

Q" D .A"C B/ .C"CD/�1 ;

where diag.M/ denotes the diagonal elements of a matrix M .
On the torus †.1/ the Szegő kernel for .�; �/ ¤ .1; 1/ is

S.1/

�

�

�
.z; z0j�/ D P1


�

�

�
.z � z0; �/ dz

1
2 d z0 12 ;

where
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P1


�

�

�
.z; �/ D

#


˛

ˇ

�
.z; �/

#


˛

ˇ

�
.0; �/

@z#1.0; �/

#1.z; �/

D �
X

k2Z

qkC�
z

1 � ��1qkC� ;

for #1.z; �/ D #
h 1
2
1
2

i
.z; �/, qz D ez, and � D exp.2�i�/ for 0 	 � < 1.

2.4 Genus Two Szegő Kernel in the �-Formalism

It is convenient to define � 2 
� 1
2
; 1
2

�
by �2 D �e2�i� . Then we prove [33] the

following

Theorem 2.1 (Tuite-Z). S.2/ is holomorphic in � for j�j < r1r2 with

S.2/.x; y/ D S.1/� .x; y/CO.�/;

for x, y 2 O†.1/ where S.1/� .x; y/ is defined for � ¤ � 1
2
, by

S.1/�


�1

�1

�
.x; yj�;w/ D

�
#1.x � w; �/#1.y; �/

#1.x; �/#1.y � w; �/

��

�
#.1/

h
˛1
ˇ1

i
.x � y C �w; �/

#.1/
h
˛1
ˇ1

i
.�w; �/K.1/.x � y; �/

dx
1
2 dy

1
2 ;

with similar expression for S.1/� 1
2

.x; y/ for � D � 1
2
.

Let ka D kC.�1/a�, for a D 1, 2 and integer k � 1. We introduce the moments
for S.1/� .x; y/ :

Gab.k; l/ D Gab


�.1/

�.1/

�
.�I k; l/

D �
1
2 .kaClb�1/

.2�i/2

I

Ca.xa/

I

Cb.yb/
.xa/

�ka .yb/�lbS.1/� .xa; yb/ dx
1
2

a dy
1
2

b ;

with associated infinite matrix G D .Gab.k; l//. We define also half-order
differentials



Twisted Correlation Functions on Self-sewn Riemann Surfaces via Generalized. . . 237

ha.k; x/ D ha

�.1/

�.1/

�
.�I k; x/ D �

1
2 .ka� 1

2 /

2�i

I

Ca.ya/
y�ka
a S.1/� .x; ya/ dy

1
2
a ;

ha.k; y/ D ha

�.1/

�.1/

�
.�I k; y/ D �

1
2 .ka� 1

2 /

2�i

I

Ca.xa/
x

�ka
a S.1/� .xa; y/ dx

1
2

a ;

and let h.x/ D .ha.k; x// and h.y/ D .ha.k; y// denote the infinite row vectors
indexed by a, k. From the sewing relation z1z2 D � we have

dz
1
2
a D .�1/a � � 1

2
dz

1
2

a

za
;

for � 2 f˙p�1g, depending on the branch of the double cover of †.1/ chosen. It is
convenient to define

T D �GD� ;

with an infinite diagonal matrix

D�.k; l/ D

��1 0

0 ��
�
ı.k; l/:

Defining det .I � T / by the formal power series in �

log det .I � T / D Tr log .I � T / D �
X

n�1

1

n
Tr.T n/;

we prove in [33]

Theorem 2.2 (Tuite-Z).

a.) .I � T /�1 DPn�0 T n is convergent for j�j < r1r2,
b.) det .I � T / is non-vanishing and holomorphic in � on D�.

Theorem 2.3 (Tuite-Z). S.2/.x; y/ is given by

S.2/.x; y/ D S.1/� .x; y/C �h.x/D�.I � T /�1hT .y/:

3 Intertwined n-Point Functions

As in ordinary (non-intertwined) case [6, 17, 21, 23, 25–27, 34, 39] we construct in
[37] the partition and n-point functions [2, 7, 11, 14, 15, 19, 29, 30, 32, 38] for vertex
operator algebra modules.
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3.1 Torus Intertwined n-Point Functions

Let gi , fi , i D 1, 2 be VOSA V automorphisms commuting with �v D .�1/p.v/v.
For u 2 V�g2 and the states v1; : : : ; vn 2 V we define the intertwined n-point
function [37] on the torus by

Z.1/


f1

g1

�
.u; z2I v1; x1I : : : I vn; xnI u; z1I �/


 STrV�g1

�
f1 Y

�
q
L�g2 .0/
z2 u; qz2

	
Y.q

L.0/
1 v1; q1/

: : : Y.qL.0/n vn; qn/ Y
�
q
L
�g�1
2
.0/

z1 u; qz1

�
qL�g1 .0/�c=24

�
;

where q D exp.2�i�/, qk D exp.xk/, qzj D exp.zj /, j D 1, 2; 1 	 k 	 n, for
variables x1; : : : ; xn associated to the local coordinates on the torus, and u is dual
for u with respect to the invariant form on V�g2 . The supertrace over a V -module N
is defined by

STrN .X/ D TrN .�X/:

For an element u 2 V�g2 of a VOSA g-twisted V -module we introduce also the
differential form

F .1/


f1

g1

�
.u; z2I v1; x1I : : : I vn; xnI u; z1I �/


 Z.1/


f1

g1

�
.u; z2I v1; x1I : : : I vn; xnI u; z1I �/

�dzwt Œu�
2 dzwt ŒNu�

1

nY

iD1
dxwt Œvi �
i ;

associated to the torus intertwined n-point function.

3.2 Genus Two Partition and n-Point Functions
in �-Formalism

Let fi , i D 1, 2 be automorphisms, and V�gj be twisted V -modules of a vertex
operator superalgebra V . For x1; : : : ; xn 2 †.1/ with jxkj � j�j=r2 and jxk � wj �
j�j=r1, k D 1; : : : ; n, we define the genus two n-point function [37] in the �-
formalism by
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Z.2/


f

g

�
.v1; x1I : : : I vn; xnI �;w; �/

D
X

k�0

X

u2V�g2 Œk�
�kZ.1/


f1

g1

�
.u;wC z2I v1; x1I : : : I vn; xnIf2u; z1I �/;

where .f; g/ D ..fi /; .gi //, where f (respectively g) denotes the pair f1, f2
(respectively g1, g2). The sum is taken over any V�g2-basis.

In particular, introduce the genus two partition function

Z.2/


f

g

�
.�;w; �/ D

X

u2V�g2
Z.1/


f1

g1

�
.u;wIf2 u; 0I �/ ;

where Z.1/
h
f1
g1

i
.u;wIf2 u; 0I �/ is the genus one intertwined two point function.

Remark 3.1. We can generalize the genus two n-point function by introducing and
computing the differential form associated to the torus n-point function containing
several intertwining operators in the supertrace as well as corresponding genus two
n-point functions.

Similar to the ordinary genus two case [34], we define the differential form [37]
associated to the n-point function on a sewn genus two Riemann surface for vi 2 V
and xi 2 †.2/, i D 1; : : : ; n with jxi j � j�j=r2, jxi � wj � j�j=r1,

F .2/


f

g

�
.v1; : : : ; vnI �;w; �/


 Z.2/


f

g

�
.v1; x1I : : : I vn; xnI �;w; �/

nY

iD1
dxwt Œvi �
i :

4 Free Fermion VOSA

4.1 Torus Intertwined Two-Point Function

The rank two free fermionic VOSA V.H;ZC 1
2
/˝2, [18] is generated by  ˙ with

Œ C.m/;  �.n/� D ım;�n�1; Œ C.m/;  C.n/� D 0; Œ �.m/;  �.n/� D 0;

The rank two free fermion VOSA intertwined torus n-point function is parame-
terized by �1 D �e�2�iˇ1 , �1 D �e2�i˛1 , and �2 D �e�2�i� , [34, 37] where
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�f1 D e2�iˇ1a.0/; �g1 D e�2�i˛1a.0/; �g2 D e2�i�a.0/;

for real valued ˛1, ˇ1, �, .�1; �1/ ¤ .1; 1/.
For u D 1˝ e� 
 e� 2 V�g2 and vi D 1, i D 1; : : : ; n we obtain [37] the basic

intertwined two-point function on the torus

Z.1/


f1

g1

�
.e�; z2I e��; z1I �/


 STrV�g1
�
f1Y

�
qL.0/z2 e�; qz2

�Y �qL.0/z1 e��; qz1

�
qL�g1 .0/�c=24

�
:

We then consider the differential form

G.1/n

f1

g1

�
.x1; y1; : : : ; xn; yn/


 F .1/


f1

g1

�
.e�;wI C; x1I �; y1I : : : I C; xnI �; ynI e��; 0I �/;

associated to the torus intertwined 2n-point function

Z.1/


f1

g1

�
. e�;wI  C; x1I �; y1I : : : I C; xn I �; ynI e��; 0I �/;

with alternatively inserted n states  C and n states  � distributed on the resulting
genus two Riemann surface †.2/ at points xi , yi 2 †.2/, i D 1; : : : ; n.

We then prove in [37]

Theorem 4.1 (Tuite-Z). For the rank two free fermion vertex operator superalge-
bra V and for .�; �/ ¤ .1; 1/ the generating form is given by

G.1/n

f1

g1

�
.x1; y1; : : : ; xn; yn/

D Z.1/


f1

g1

�
.e�;wI e��; 0I �/ detS.1/� ;

Z.1/


f1

g1

�
.e�;wI e��; 0I �/ D 1

�.�/

#.1/
h
˛1
ˇ1

i
.�w; �/

K.1/.w; �/�2
;

is the basic intertwined two-point function on the torus, and n � n-matrix S.1/� Dh
S
.1/
�

h
�1
�1

i �
xi ; yj j �;w

�i
, i , j D 1 : : : ; n, with elements given by parts of the Szegő

kernel.
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4.2 Genus Two Partition Function

In [37] we then prove:

Theorem 4.2 (Tuite-Z). Let V�gi , i D 1, 2 be �gi -twisted V -modules for the rank
two free fermion vertex operator superalgebra V . Let .�; �/ ¤ .1; 1/. Then the
partition function on a genus two Riemann surface obtained in the �-self-sewing
formalism of the torus is a non-vanishing holomorphic function on D� given by

Z.2/


f

g

�
.�;w; �/ D Z.1/


f1

g1

�
.e�;wI e��; 0I �/ det .1 � T / ;

whereZ.1/
h
f1
g1

i
.e�;wI e�� ; 0I �/ is the intertwined V -module V�g1 torus basic two-

point function.

We may similarly compute the genus two partition function in the �-formalism
for the original rank one fermion VOSA V

�
H;ZC 1

2

�
in which case we can only

construct a � -twisted module. Then we have [37] the following

Corollary 4.3 (Tuite-Z). Let V be the rank one free fermion vertex operator
superalgebra and f1, g1 2 f�; 1g, a D 1, 2 be automorphisms. Then the partition
function for V -module V�g1 on a genus two Riemann surface obtained from �

formalism of a self-sewn torus †.1/ is given by

Z
.2/
rank1


f

g

�
.�;w; �/ D Z.1/

rank1


f1

g1

�
.e�;wI e�� ; 0I �/ det .I � T /1=2 ;

where Z.1/
rank 1

h
f1
g1

i
.e�;wI e��; 0I �/ is the rank one fermion intertwined partition

function on the original torus.

4.3 Genus Two Generating Form

In [37] we define matrices

S.2/ D �S.2/.xi ; yj /
�
; S

.1/
� D

�
S
.1/
� .xi ; yj /

	
;

HC D ..h.xi // .k; a// ; H� D
��
h.yi /

	
.l; b/

	T
:

S.2/ and S.1/� are finite matrices indexed by xi , yj for i , j D 1; : : : ; n; HC is semi-
infinite with n rows indexed by xi and columns indexed by k � 1 and a D 1, 2 and
H� is semi-infinite with rows indexed by l � 1 and b D 1; 2 and with n columns
indexed by yj . We then prove
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Lemma 4.1 (Tuite-Z).

det

"
S
.1/
� � HC D�2

H� I � T

#
D detS.2/ det.I � T /;

with T , D�2 .

Introduce the differential form

G.2/n

f

g

�
.x1; y1; : : : ; xn; yn/

D F .2/


f

g

�
. C;  �; : : : ;  C;  �I �;w; �/;

associated to the rank two free fermion VOSA genus two 2n-point function

Z.2/


f

g

�
. C; x1I �; y1I : : : I C; xn I �; ynI �;w; �/;

with alternatively inserted n states  C and n states  �. The states are distributed
on the genus two Riemann surface †.2/ at points xi , yi 2 †.2/, i D 1; : : : ; n. Then
we have

Theorem 4.5 (Tuite-Z). All n-point functions for rank two free fermion VOSA
twisted modules V�g on self-sewn torus are generated by the differential form

G.2/n

f

g

�
.x1; y1; : : : ; xn; yn/ D Z.2/


f

g

�
.�;w; �/ detS.2/;

where the elements of the matrix S.2/ D
h
S.2/

h
�
�

i
.xi ; yj j �;w/

i
, i , j D 1; : : : ; n

and Z.2/
h
f
g

i
.�;w; �/ is the genus two partition function.

5 Modular Invariance Properties

Following the ordinary case [6,24,25] we would like to describe modular properties
of genus two “intertwined” partition and n-point generating functions. As in [25],
consider OH � Sp.4;Z/ with elements

�.a; b; c/ D

0

BB@

1 0 0 b

a 1 b c

0 0 1 �a
0 0 0 1

1

CCA :
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OH is generated byA D �.1; 0; 0/,B D �.0; 1; 0/ andC D �.0; 0; 1/with relations
ŒA; B�C�2 D ŒA; C � D ŒB; C � D 1. We also define $1 � Sp.4;Z/ where $1 Š
SL.2;Z/ with elements

�1 D

0

BB@

a1 0 b1 0

0 1 0 0

c1 0 d1 0

0 0 0 1

1

CCA ; a1d1 � b1c1 D 1:

Together these groups generate L D OH Ì $1 � Sp.4;Z/. From [25] we find that L
acts on the domain D� of as follows:

�.a; b; c/:.�;w; �/ D .�;wC 2� ia� C 2� ib; �/;

�1:.�;w; �/ D
�
a1� C b1
c1� C d1 ;

w

c1� C d1 ;
�

.c1� C d1/2
�
:

We then define [37] a group action of �1 2 SL.2;Z/ on the torus intertwined two-

point function Z.1/
h
f1
g1

i
.u;wI v; 0I �/ for u, v 2 V�g:

Z.1/


f1

g1

�ˇ̌
ˇ̌ �1 .u;wI v; 0I �/ D Z.1/

�
�1:


f1

g1

��
.u; �1:wI v; 0I �1:�/;

with the standard action �1:� and �1:w, and �1:
h
f1
g1

i
D

f
a1
1 g

b1
1

f
c1
1 g

d1
1

�
, and the torus

multiplier e.1/�1
h
f1
g1

i
2 U.1/, [26, 33]. Then we have [37]

Theorem 5.1 (Tuite-Z). The torus intertwined two-point function for the rank two
free fermion VOSA is a modular form (up to multiplier) with respect to L

Z.1/


f1

g1

�ˇ̌
ˇ̌ �1 .u;wI v; 0I �/

D e.1/�1

f1

g1

�
.c1� C d1/wtuCwtvC�2Z.1/


f1

g1

�
.u;wI v; 0I �/;

where u, v 2 V�g .

The action of the generators A, B and C is given by [33]

A

"
f1
f2
g1
g2

#
D
2

4
f1

f1 f2 �

g1 g
�1
2 �
g2

3

5 ; B

"
f1
f2
g1
g2

#
D
"
f1 g2 �
f2 g1 �
g1
g2

#
; C

"
f1
f2
g1
g2

#
D
"

f1
f2 g2 �
g1
g2

#
:
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In a similar way we may introduce the action of � 2 L on the genus two partition
function [37]

Z.2/


f

g

�ˇ̌
ˇ̌ � .�;w; �/ D Z.2/

�
�:


f

g

��
�: .�;w; �/ ;

�1:

2

664

f1
f2
g1
g2

3

775 D

2

664

f
a1
1 g

b1
1

f2

f
c1
1 g

d1
1

g2

3

775 :

We may now describe the modular invariance of the genus two partition function
for the rank two free fermion VOSA under the action of L. Define a genus two

multiplier e.2/�
h
f
g

i
2 U.1/ for � 2 L in terms of the genus one multiplier as follows

e.2/�


f

g

�
D e.1/�1


f1

g1

�
;

for the generator �1 2 $1. We then find [37]

Theorem 5.2 (Tuite-Z). The genus two partition function for the rank two VOSA
is modular invariant with respect to L with the multiplier system, i.e.,

Z.2/


f

g

�ˇ̌
ˇ̌ � .�;w; �/ D e.2/�


f

g

�
Z.2/


f

g

�
.�;w; �/ :

Finally, we can also obtain modular invariance for the generating form

G.2/n

f

g

�
.x1; y1; : : : ; xn; yn/;

for all genus two n-point functions [37].

Theorem 5.3. G.2/n
h
f
g

i
.x1; y1; : : : ; xn; yn/ is modular invariant with respect to L

with a multiplier.

Acknowledgements The author would like to express his deep gratitude to the organizers of
the Conference “Conformal Field Theory, Automorphic Forms and Related Topics”, Heidelberg
Universität, Heidelberg, Germany, 2011.



Twisted Correlation Functions on Self-sewn Riemann Surfaces via Generalized. . . 245

References

1. Borcherds, R.E.: Vertex algebras, Kac-Moody algebras and the Monster. Proc. Natl. Acad. Sci.
83, 3068–3071 (1986)

2. di Vecchia, P., Hornfeck, K., Frau, M., Lerda, A., Sciuto, S.: N-string, g-loop vertex for the
fermionic string. Phys. Lett. B211, 301–307 (1988)

3. Dong, C., Lepowsky, J.: Generalized Vertex Algebras and Relative Vertex Operators. Progress
in Mathematics, vol. 112. Birkhäuser, Boston (1993)

4. Dong, C., Li, H., Mason, G.: Simple currents and extensions of vertex operator algebras.
Commun. Math. Phys. 180, 671–707 (1996)

5. Dong, C., Li, H., Mason, G.: Twisted representation of vertex operator algebras. Math. Ann.
310, 571–600 (1998)

6. Dong, C., Li, H., Mason, G.: Modular-invariance of trace functions in orbifold theory and
generalized moonshine. Commun. Math. Phys. 214, 1–56 (2000)

7. Eguchi, T., Ooguri, H.: Chiral bosonization on a Riemann surface. Phys. Lett. B187, 127–134
(1987)

8. Farkas H.M., Kra, I: Theta Constants, Riemann Surfaces and the Modular Group. Graduate
Studies in Mathematics, vol. 37, American Mathematical Society, Providence (2001)

9. Fay, J.D.: Theta functions on Riemann Surfaces. Lecture Notes in Mathematics. Springer,
Berlin/New York (1973)

10. Fay, J.D.: Kernel functions, analytic torsion and moduli spaces. Mem. Am. Math. Soc. 96, 123
(1992)

11. Freidan, D., Shenker, S.: The analytic geometry of two dimensional conformal field theory.
Nucl. Phys. B281, 509–545 (1987)

12. Frenkel, I., Lepowsky J., Meurman A.: Vertex Operator Algebras and the Monster. Academic,
New York (1988)

13. Frenkel, I., Huang, Y., Lepowsky, J.: On axiomatic approaches to vertex operator algebras and
modules. Mem. Am. Math. Soc. 104, 64 (1993)

14. Gaberdiel, M.R., Volpato, R.: Higher genus partition functions of meromorphic conformal field
theories. J. High Energy Phys. 6, 048 (2009)

15. Gaberdiel, M.R., Keller, Ch.A., Volpato, R.: Genus two partition functions of chiral conformal
field theories. Commun. Number Theory Phys. 4, 295–363 (2010)

16. Gunning, R.C.: Lectures on Riemann Surfaces. Princeton University Press, Princeton (1966)
17. Huang, Y.: Two-Dimensional Conformal Geometry and Vertex Operator Algebras. Progress in

Mathematics, vol. 148. Birkhäuser, Boston (1997)
18. Kac, V.: Vertex Operator Algebras for Beginners. University Lecture Series, vol. 10. American

Mathematical Society, Providence (1998)
19. Kawamoto, N., Namikawa, Y., Tsuchiya, A., Yamada, Y.: Geometric realization of conformal

field theory on Riemann surfaces. Commun. Math. Phys. 116, 247–308 (1988)
20. Li, H.: Symmetric invariant bilinear forms on vertex operator algebras. J. Pure. Appl. Alg. 96,

279–297 (1994)
21. Mason, G., Tuite, M.P.: Chiral n-point functions for free boson and lattice vertex operator

algebras. Commun. Math. Phys. 235, 47–68 (2003)
22. Mason, G., Tuite, M.P.: On genus two Riemann surfaces formed from sewn tori. Com-

mun. Math. Phys. 270, 587–634 (2007)
23. Mason, G., Tuite, M.P.: Free bosonic vertex operator algebras on genus two Riemann surfaces I.

Commun. Math. Phys. 300, 673–713 (2010)
24. Mason, G., Tuite, M.P.: Vertex operators and modular forms. In: Kirsten, K., Williams, F.

(eds.) A Window into Zeta and Modular Physics. MSRI Publications, vol. 57, pp. 183–278.
Cambridge University Press, Cambridge (2010)

25. Mason, G., Tuite, M.P.: Free bosonic vertex operator algebras on genus two Riemann surfaces
II. Comm. Math. Phys. 300, 673–713 (2010)



246 A. Zuevsky

26. Mason, G., Tuite, M.P., Zuevsky, A.: Torus n-point functions for R-graded vertex operator
superalgebras and continuous fermion orbifolds. Commun. Math. Phys. 283, 305–342 (2008)

27. Matsuo, A., Nagatomo, K.: Axioms for a Vertex Algebra and the Locality of Quantum Fields.
Math. Soc. Jpn. Mem. 4 (1999) 1–110

28. Mumford, D.: Tata Lectures on Theta I and II. Birkhäuser, Boston (1983)
29. Pezzella, F.: g-loop vertices for free fermions and bosons. Phys. Lett. B220, 544–550 (1989)
30. Raina, A.K.: Fay’s trisecant identity and conformal field theory. Commun. Math. Phys. 122,

625–641 (1989)
31. Scheithauer, N.: Vertex algebras, Lie algebras and superstrings. J. Alg. 200, 363–403 (1998)
32. Tsuchiya, A, Ueno, K., Yamada, Y.: Conformal field theory on universal family of stable curves

with gauge symmetries. Adv. Stud. Pure Math. 19, 459–566 (1989)
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The Theory of Vector-Valued Modular Forms
for the Modular Group

Terry Gannon

Abstract We explain the basic ideas, describe with proofs the main results, and
demonstrate the effectiveness, of an evolving theory of vector-valued modular forms
(vvmf). To keep the exposition concrete, we restrict here to the special case of the
modular group. Among other things, we construct vvmf for arbitrary multipliers,
solve the Mittag-Leffler problem here, establish Serre duality and find a dimension
formula for holomorphic vvmf, all in far greater generality than has been done
elsewhere. More important, the new ideas involved are sufficiently simple and robust
that this entire theory extends directly to any genus-0 Fuchsian group.

1 Introduction

Even the most classical modular forms (e.g. the Dedekind eta �.�/) need a
multiplier, but this multiplier is typically a number (i.e. a 1-dimensional projective
representation of some discrete group like � D SL2.Z/). Simple examples of
vector-valued modular forms (vvmf) for SL2.Z/ are the weight- 1

2
Jacobi theta

functions �.�/ D .�2.�/; �3.�/; �4.�//t , which obey for instance

�.�1=�/ D
r
�

i

0

@
0 0 1

0 1 0

1 0 0

1

A�.�/ ; (1)
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and P.�/ D .�; 1/t , which has weight �1 and obeys for instance

P.�1=�/ D ��1
�
0 �1
1 0

�
P.�/ : (2)

Back in the 1960s Selberg [31] called for the development of the theory of
vvmf, as a way to study growth of coefficients of (scalar) modular forms for
noncongruence groups. Since then, the relevance of vvmf has grown significantly,
thanks largely to the work of Borcherds (see e.g. [9] and, in physics, the rise of
rational conformal field theory (RCFT).

In particular, the characters of rational and logarithmic conformal field theories,
or C2-cofinite vertex operator algebras, form a weight-0 vvmf for � [29, 36]. Less
appreciated is that the 4-point functions (conformal blocks) on the sphere in RCFT
can naturally be interpreted as vvmf for � .2/, through the identification of the
moduli space of 4-punctured spheres with � .2/nH. Moreover, the 1- and 2-point
functions on a torus are naturally identified with vector-valued modular resp. Jacobi
forms for � . Also, if the RCFT has additional structure, e.g. N D 2 supersymmetry
or a Lie algebra symmetry, then the 1-point functions on the torus can be augmented,
becoming vector-valued Jacobi (hence matrix-valued modular) forms for �0.2/ or
� [19, 28].

The impact of RCFT on mathematics makes it difficult to dismiss these as
esoteric exotica. For example, 1-point torus functions for the orbifold of the
Moonshine module V \ by subgroups of the Monster contain as very special cases the
Norton series of generalized Moonshine, so a study of them could lead to extensions
of the Monstrous Moonshine conjectures. For all these less well-known applications
to RCFT, the multiplier � will typically have infinite image, and the weights can be
arbitrary rational numbers. Thus the typical classical assumptions that the weight
be half-integral, and the modular form be fixed by some finite-index subgroup of
� , will be violated by a plethora of potentially interesting examples. Hence in the
following we do not make those classical assumptions (nor are they needed). In
fact, there should be similar applications to sufficiently nice non-rational CFT, such
as Liouville theory, where the weights w can be irrational.

In spite of its relevance, the general theory of vvmf has been slow in coming.
Some effort has been made (c.f. [17, 33]) to lift to vvmf, classical results like
dimension formulas and the ‘elementary’ growth estimates of Fourier coefficients.
Moreover, differential equations have been recognised as valuable tools for studying
vvmf, for many years (c.f. [1, 23, 25, 26] to name a few).

Now, an elementary observation is that a vvmf X.�/ for a finite-index subgroup
G of � can be lifted to one of � , by inducing the multiplier. This increases the rank
of the vvmf by a factor equal to the index. This isomorphism tells us that developing
a theory of vvmf for � gives for free that of any finite-index subgroup. But more
important perhaps, it also shows that the theory of vvmf for � contains as a small
subclass the scalar modular forms for noncongruence subgroups. This means that
one can only be so successful in lifting results from the classical (Dscalar) theory to
vvmf. We should be looking for new ideas!
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Our approach is somewhat different, and starts from the heuristic that a vvmf for
a Fuchsian group � is a lift to H of a meromorphic section of a flat holomorphic
vector bundle over the (singular) curve � nH compactified if necessary by adjoining
the cusps. The cusps mean we are not in the world of algebraic stacks. In place of
the order-d ODE on H studied by other authors, we consider a first order Fuchsian
DE on the sphere. Fuchsian differential equations on compact curves, and vvmf for
Fuchsian groups, are two sides of the same coin. Another crucial ingredient of our
theory is the behaviour at the elliptic fixed-points. This has been largely ignored in
the literature. For simplicity, this paper restricts to the most familiar (and important)
case: � D SL2.Z/, where � nH� is a sphere with three conical singularities (two
at elliptic points and one at the cusp). The theory for other Fuchsian groups is
developed elsewhere [6, 14].

There are two aspects to the theory: holomorphic (no poles anywhere) and weakly
holomorphic (poles are allowed at the cusps, but only there). We address both.
We start with weakly holomorphic not because it is more interesting, but because it
is easier, and this makes it more fundamental. There is nothing particularly special
about the cusps from this perspective—the poles could be allowed at any finitely
many � -orbits, and the theory would be the same.

Section 3 is the heart of this paper. There we establish existence, using
Röhrl’s solution to the Riemann–Hilbert problem. We obtain analogues of the
Birkhoff–Grothendieck and Riemann–Roch Theorems. We find a dimension
formula for holomorphic vvmf, and are able to quantify the failure of exactness of
the functor assigning to multipliers �, spaces of holomorphic vvmf. Our arguments
are simpler and much more general than others in the literature. In Sect. 4 we give
several illustrations of the effectiveness of the theory.

2 Elementary Remarks

2.1 The Geometry of the Modular Group

Fix �n D exp.2� i=n/. Complex powers zw throughout the paper are defined
by zw D jzjwewiArg.z/ for �� 	 Arg.z/ < � . We write CŒx� for the space
of polynomials, CŒŒx�� for power series

P1
nD0 anxn, and CŒx�1; x�� for Laurent

expansions
P1

nD�N anxn for any N .
This paper restricts to the modular group � WD SL2.Z/. Write � D PSL2.Z/.

Throughout this paper we use

S D �
�
0 �1
1 0

�
; T D �

�
1 1

0 1

�
; U D �

�
0 �1
1 �1

�
D ST�1 : (3)

Write H
� for the extended half-plane H [ Q [ f1g. Then � nH� is topologically

a sphere. As it is genus 0, it is uniformised by a Hauptmodul, which can be chosen
to be
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J.�/ D q�1 C 744C 196884 q C 21493760 q2 C 864299970 q3 C � � � ; (4)

where as always q D e2� i� . For k � 2 write Ek.�/ for the Eisenstein series,
normalised so that Ek.�/ D 1 C : : :. For � , the ring of weakly holomorphic
(i.e. poles allowed only at the cusp) modular functions is CŒJ � and the ring of
holomorphic (i.e. holomorphic everywhere including the cusp) modular forms is
m D CŒE4; E6�.

In the differential structure induced by that of H, � nH� will have a singularity
for every orbit of � -fixed-points. J.�/ smooths out these three singularities. The
important q-expansion is the local expansion at one of those special points, but it is a
mistake to completely ignore the other two, at � D i and � D �6. These elliptic point
expansions have been used for at least a century, even if they are largely ignored
today. They play a crucial role in our analysis.

In particular, define �2 D �2 .��i/=.�Ci/ and j2.wI �/ D E4.i/�w=4.1��2=�2/�w,
where �2 D �

p
E4.i/ and E4.i/ D 3� .1=4/8=.2�/6, and define �3 D �3 .� �

�6/=.� � �56 / and j3.wI �/ D E6.�6/
�w=6.1 � �3=�3/�w, where �3 D �

p
3E6.�6/

1=3

and E6.�6/ D 27� .1=3/18=.29�12/. The transformations � 7! �i for i D 2; 3

map H onto the discs j�i j < �i , and send i and �6 respectively to 0; j2 and j3
are proportional to the corresponding multipliers for a weight-w modular form.

The elliptic fixed-point � D i is fixed by
�
0
1

�1
0

	
, which sends �2 7! ��2. The

elliptic fixed-point � D �6 is fixed by
�
0
1

�1
�1
	

; it sends �3 7! �3�3. If f is a scalar

modular form of weight k, and we write Qfi .�/ D ji .kI �/f .�i / for i D 2; 3, we get
Qf2.��2/ D ik Qf .�2/ and Qf3.�3�3/ D �k6 Qf3.�3/.

We have rescaled �2; �3 by �2; �3 to clean up the expansions, but this isn’t used in
the following. For instance, we have the rational expansions

j2.4I �/E4.�/ D 1C 10�22 =9C 5�42 =27C 4�62 =81C 19�82 =5103 � � � (5)

j2.6I �/E6.�/ D 2�2 C 28�32 =27C 56�52 =135C 28�72 =405C � � � (6)

J.�/ D 1728C 6912�22 C 11776�42 C 1594112�62 =135C � � � (7)

Curiously, the expansion coefficients for J.�/ at i are all positive rationals, but
infinitely many distinct primes divide the denominators. However, these denom-
inators arise because of an nŠ that appears implicitly in these coefficients (see
Proposition 17 in [11]). Factoring that off, the sequence becomes:

1728; 10368;158976; 3586752; 107057664; 4097780928;

193171879296; 10987178906592; 737967598470144;

57713234231210688; 5184724381875974016; : : :

Is there a Moonshine connecting these numbers with representation theory?
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The multiplier systems (see Definition 2.1 next subsection) of � at weight w are
parametrised by the representations of � . In dimension d , the � -representations
�—more precisely, the algebraic quotient of all group homomorphisms � !
GLd.C/ by the conjugate action of GLd.C/—form a variety, and the completely
reducible representations form an open subvariety. The connected components of
this open subvariety correspond to ordered 5-tuples .˛i Iˇj / [35], where ˛i is the
eigenvalue multiplicity of .�1/i for S , and ˇj is that of �j3 for U . Of course
˛0 C ˛1 D ˇ0 C ˇ1 C ˇ2 D d . When d > 1, the .˛i Iˇj / component is nonempty
iff

maxfˇj g 	 minf˛ig ; (8)

in which case its dimension is d2 C 1 � Pi ˛
2
i �

P
j ˇ

2
j [35]. The irreducible

� -representations of dimension d < 6 are explicitly described in [34]. For irre-
ducible �, (8) is obtained using quiver-theoretic means in [35]; later we recover (8)
within our theory.

2.2 Definitions

Write 1d for the d � d identity matrix, and ej D .0; : : : ; 1; : : : ; 0/t its j th column.
See e.g. [27, 32] for the basics on scalar modular forms.

Definition 2.1. (a) An admissible multiplier system .�;w/ consists of some w 2 C

called the weight and a map � W � ! GLd .C/ called the multiplier, for some
positive integer d called the rank, such that:

(i) the associated automorphy factor

Q�w.�; �/ D �.�/ .c� C d/w

satisfies, for all �1; �2 2 � ,

Q�w.�1�2; �/ D Q�w.�1; �2�/ Q�w.�2; �/ I (9)

(ii) �.12/ and e�� iw�.�12/ both equal the identity matrix.

The conditions on �.˙12/ in (ii) are necessary (and sufficient, as we’ll see) for
the existence of nontrivial vvmf at weight w. In practise modular forms are most
important for their Fourier expansions. This is often true for vvmf, and this is why
we take � to be matrix-valued in Definition 2.1. Note that the multiplier �.�/ need
not be unitary, and the weight w need not be real.

When w 2 Z, .�;w/ is admissible iff � is a representation of � satisfying
�.�12/ D e� iw. When w 62 Z, � is only a projective representation of � , and is
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most elegantly described in terms of the braid group B3. More precisely, B3 D
h�1; �2 j �1�2�1 D �2�1�2i is a central extension by Z of � , where the surjection

B3 ! � sends �1 7!
�
1
0
1
1

	
and �2 7!

�
1

�1
0
1

	
. The kernel is h.�1�2�1/4i, half

of the centre of B3. Then .�;w/ is admissible iff there is a representation O� of B3
(necessarily unique) satisfying

O�.�1/ D T ; O�..�1�2�1/�1/ D S ; O�..�1�2/�2/ D U (10)

and also O�..�1�2�1/2/ D e� iw. Alternatively, we will see in Lemma 3.1 below that
for any w 2 C, there is an admissible system .%w;w/ of rank 1; then .�;w/ is
admissible iff %w ˝ � is a � -representation. From any of these descriptions, we see
that a multiplier � determines the corresponding weight w modulo 2.

Definition 2.2. Let .�;w/ be an admissible multiplier system of rank d . A map
XW H!C

d is called a vector-valued modular form (vvmf) provided

X.��/ D Q�w.�; �/X.�/ (11)

for all � 2 � and � 2 H, and each component Xi .�/ is meromorphic throughout
H

�. We write M Š
w.�/ for the space of all weakly holomorphic vvmf, i.e. those

holomorphic throughout H.

Meromorphicity at the cusps is defined as usual, e.g. by a growth condition or
through the q-expansion given below.

Generic � will have T diagonalisable, which we can then insist is diagonal
without loss of generality. For simplicity, we will assume throughout this paper
that T is diagonal. The following theory generalises to T a direct sum of Jordan
blocks (the so-called ‘logarithmic’ case) without difficulty, other than notational
awkwardness [6, 14].

Assume then that T is diagonal. By an exponent � for �, we mean any diagonal
matrix such that e2� i� D T , i.e. Tjj D e2� i�jj . An exponent is uniquely defined
modulo 1. It is typical in the literature to fix the real part of � to be between 0 and
1. But we learn in Theorem 3.2 below that often there will be better exponents to
choose.

For any vvmf X and any exponent �, q��
X.�/will be invariant under � 7! �C1,

where we write q� D diag.e2� i��11 ; : : : ; e2� i��dd /. This gives us a Fourier expansion

X.�/ D q�
1X

nD�1
X.n/ q

n ; (12)

where the coefficients X.n/ lie in C
d . X.�/ is meromorphic at the cusp i1 iff only

finitely many coefficients X.n/, for n < 0, can be nonzero.
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2.3 Local Expansions

We are now ready to describe the local expansions about any of the three special
points i1; i; �6 (indeed, the same method works for any point in H

�).

Lemma 2.1. Let .�;w/ be admissible and T diagonal. Then any X 2M Š
w.�/ obeys

X.�/ D q�
1X

nD0
X.n/ q

n D j2.wI �/�1
1X

nD0
XŒn� �

n
2 D j3.wI �/�1

1X

nD0
Xhni �n3 ; (13)

for some exponent �. These converge for 0 < jqj < 1 and j�i j < �i . Also,

e� iw=2SXŒn� D .�1/nXŒn� and e2� iw=3UXhni D �n3Xhni : (14)

The existence of the q-series follows from the explanation at the end of last
subsection. For � D i (� D �6 is identical), j2.wI �/X.�/ is holomorphic in the
disc j�2j < �2 and so has a Taylor expansion. The transformation (14) can be seen
by direct calculation, but will be trivial once we know Lemma 3.1 below.

We label components by X.n/ i etc. A more uniform notation would have
been to define e.g. q2 D �22 , find a matrix P2 and an ‘exponent matrix’ �2
whose diagonal entries lie in 1

2
Z, such that P2SP�1

2 D e2� i�2 and X D
j2.wI �/�1P�1

2 q
�2
2

P1
nD0 QXŒn�qn2 . For most purposes the simpler (13) is adequate,

but see (35) below.

2.4 Differential Operators

Differential equations have played a large role in the theory of vvmf. The starting
point is the modular derivative

Dwf D 1

2� i

d

d�
� w

12
E2 D q d

dq
� w

12
E2 ; (15)

where E2.�/ D 1 � 24q � 72q2 � � � � is the quasi-modular Eisenstein function.
Note that D12 kills the discriminant form �.�/ D �.�/24. This Dw maps M Š

w.�/

to M Š
wC2.�/. It is a derivation in the sense that if f 2 m is weight k and X 2

M Š
w.�/, then DkCw.f X/ D Dk.f /XC f Dw.X/. We write Dj

w D DwC2j�2 ı � � � ı
DwC2 ı Dw.

There are several different applications of differential equations to modular
forms—some are reviewed in [11]. But outside of our work, the most influential
for the theory of vvmf (see e.g. [1, 21, 23, 26]) has been the differential equation
coming from the Wronskian (see e.g. [23] for the straightforward proof):
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Lemma 2.2. (a) Let .�;w/ be admissible. For X 2M Š
w.�/, define

Wr.X/ WD det

0

BB@

X1
d

2� id�X1 � � � . d
2� id� /

d�1
X1

:::
:::

:::

Xd
d

2� id�Xd � � � . d
2� id� /

d�1
Xd

1

CCA D det

0

BB@

X1 DwX1 � � � Dd�1
w X1

:::
:::

:::

Xd DwXd � � � Dd�1
w Xd

1

CCA :

Then Wr.X/.�/ 2 M Š
.dCw�1/d .det �/. If the coefficients of X are linearly

independent over C, then the function Wr.X/.�/ is nonzero.
(b) Given admissible .�;w/ and X 2 M Š

w.�/, define an operator LX on the space
of all functions y meromorphic on H

�, by

LX D det

0

BBB@

y Dwy � � � Dd
wy

X1 DwX1 � � � Dd
wX1

:::
:::

:::

Xd DwXd � � � Dd
wXd

1

CCCA D
dX

lD0
hl .�/Dl

wy ; (16)

where hd D Wr.X/ and each hl is a (meromorphic scalar) modular form
of weight .d C w C 1/d � 2l with multiplier det �. Then LX Xi D 0 for
all components Xi of X. Conversely, when the components of X are linearly
independent, the solution space to LXy D 0 is C�SpanfXi g.

In our theory, the differential equation (16) plays a minor role. More important
are the differential operators which don’t change the weight:

r1;w D E4E6

�
Dw ; r2;w D E2

4

�
D2

w ; r3;w D
E6

�
D3

w : (17)

Each ri;w operates on M Š
w.�/, and an easy calculation shows that any f Dj

w for f 2
M Š�2j .1/ is a polynomial in these three ri;w with coefficients in CŒJ �. Conversely,
r3;w is not in CŒJ;r1;w;r2;w� and r2;w is not in CŒJ;r1;w�. The reason r2;w and
r3;w are needed is because � has elliptic points of order 2 and 3—this is made
explicit in the proof of Proposition 3.2. It is crucial to our theory that M Š

w.�/ is a
module over CŒJ;r1;w;r2;w;r3;w�. Background on Fuchsian differential equations
is provided in e.g. [15].

We sometimes drop the subscript w on Dw and ri;w for readability.

3 Our Main Results

3.1 Existence of vvmf

The main result (Theorem 3.1) of this subsection is the existence proof of vvmf for
any .�;w/. As a warm-up, let us show there is a (scalar) modular form of every
complex weight, and compute its multiplier.
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Lemma 3.1. For any w 2 C, there is a weakly holomorphic modular form�w.�/ D
qw.1 � 24wq C � � � / of weight 12w, nonvanishing everywhere except at the cusps.
The multiplier %12w, in terms of the braid group B3 (recall (10)), is

O%12w.�1/ D O%12w.�2/ D exp.2� iw/ : (18)

Proof. First note that the discriminant form�.�/ is holomorphic and nonzero in the
simply-connected domain H, and so has a logarithmic derivative Log�.�/ there.
Hence �w.�/ WD exp.wLog�.�// is well-defined and holomorphic throughout H.
It is easy to verify that �w satisfies the differential equation

1

2� i

df

d�
D wE2 f (19)

—indeed, this simply reduces to the statement that E2 is the logarithmic derivative
of �. Therefore any other solution to (19) will be a scalar multiple of �w.

Now, fix � 2 � . Then f .�/ D .c� C d/�12w�w.��/ exists and is holomorphic
throughout H for the same reason. Note that f .�/ also satisfies the differential
equation (19):

1

2� i

d

d�
f .�/ D�6cw

� i
.c� C d/�12w.c� C d/�1�w.��/

C .c� C d/�12w.c� C d/�2wE2.��/�w.��/ D wE2.�/ f .�/ ;

using quasi-modularity of E2, and thus f .�/ D %�w.�/ throughout H, for some
constant % D %.�/ 2 C.

The final step needed to verify that �w is a modular form of weight 12w is that
it behaves well at the cusps. By the previous paragraph it suffices to consider i1.
But there �w has the expansion �w D qw.1 � 24wq C � � � /, up to a constant factor
which we can take to be 1. As all cusps lie in the � -orbit of i1, we see that �w.�/

is indeed holomorphic at all cusps.
Because the weight is nonintegral in general, �12w will be a representation of

B3. This expansion tells us that �w.� C 1/ D exp.2� iw/�w.�/, so we have
O%12w.�1/ D exp.2� iw/. From the familiar B3 presentation we see that any one-
dimensional representation of B3 takes the same value on both generators �i , so
O%12w is determined. ut

For admissible .�;w/, Lemma 3.1 says the matrices e� iw=2S and e2� iw=3U

have order 2 and 3 respectively. Write ˛j .�;w/ for the multiplicity of .�1/j as
an eigenvalue of e� iw=2S , and ˇj .�;w/ for the eigenvalue multiplicity of �j3 for
e2� iw=3U .

Theorem 3.1. Let .�;w/ be admissible and T diagonal. Then there is a d � d
matrix ˚.�/ and exponent � such that the columns of ˚ lie in M Š

w.�/, and
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˚.�/ D q� F.q/ D q�
1X

nD0
F.n/q

n ; (20)

where the matrix F.q/ is holomorphic and invertible in a neighbourhood of q D 0.

Proof. Consider any representation �0 of �1.P1 n f0; 1;1g/ Š F2, the free group
with 2 generators. Rörhl’s solution [30] to the Riemann–Hilbert problem [7, 8] (see
also [16]) says that there exists a Fuchsian differential equation

d

dz
&.z/ D &

�
A1

z
C A2

z � 1 C
B

z � b
�

(21)

on the Riemann sphere P
1 whose monodromy is given by �0—i.e. the monodromy

corresponding to a small circle about 0 and 1, respectively, equals the value of �0 at
the corresponding loops in the fundamental group. There will also be a simple pole
at1, with residue A1 WD �A0 � A1 � B . The B term in (21) corresponds to an
apparent singularity; it can be dropped if the monodromies about 0 or 1 or1 have
finite order [7,8] (which will happen for the �0 of interest to us). About any of these
3 or 4 singular points c 2 f0; 1;1; bg, Levelt [20] proved that a solution &.z/ to
such a differential equation has the form

&.z/ D P�1
c QzNc Qz�cFc.z/ (22)

where Nc is nilpotent, �c is diagonal, Fc is holomorphic and holomorphically
invertible about z D c, and Qz is a coordinate on the universal cover of a small disc
punctured at c. By [16], we may take Nc C �c to be conjugate to Ac .

Now suppose we are given a representation of the free product � Š Z2�Z3. This
is a homomorphic image of the free group F2, so we can lift �0 to �1.P1nf0; 1;1g/.
For us, P1 is � nH�, with (smooth) global coordinate z D J=1728. The monodromy
at z D 0 and z D 1 has finite order 2 and 3 respectively, so we won’t need the
apparent singularity b. The point1 corresponds to i1 (or rather its � -orbit), where
q1 D q, and we have N1 D 0 and P1 D 1d since T is diagonal; in this case
Levelt’s equation (22) reduces to (20). The singularities 0 and 1 correspond to the
order 2 and 3 elliptic points i and �6; for them, N D 0, z locally looks like .� � i/2

and .� � �6/3, and the diagonal elements of � lie in 1
2
Z and 1

3
Z. Then Levelt’s

equation (22) says &.J.�// is meromorphic at i and �6 (hence their � -orbits). It
will be automatically holomorphic at all other points.

The desired matrix is ˚.�/ D &.J.�/=1728/�w=12.�/J.�/m.J.�/=1728 � 1/n,
wherem; n 2 Z�0 are taken large enough to kill any poles at z D 0 and 1 (i.e. at the
elliptic points), and & corresponds to the � -representation �0 D %�w;˝�. ut

The proof generalises without change to nondiagonalisable T , and to any other
genus-0 Fuchsian group of the first kind [14]. Theorem 3.1 is vastly more general
than previous vvmf existence proofs. Previously (see [17, 18]), existence of vvmf
was only established for � with real weight w, and requiring in addition that the
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eigenvalues of T all have modulus 1. Their proof used Poincaré series; the difficult
step there is to establish convergence, and that is what has prevented their methods
to be generalised. That analytic complexity was handled here by Röhrl’s argument.

3.2 Mittag-Leffler

Let .�;w/ be admissible and T diagonal. In this subsection we study the principal
part map and calculate its index. This is fundamental to our theory. As always in
this paper, the generalisation to nondiagonalisable T and to other genus-0 Fuchsian
groups is straightforward [6].

Given any exponent � and any X.�/ 2 M Š
w.�/, we have the q-expansion (12).

Define the principal part map P� WM Š
w.�/! C

d Œq�1� by

P�.X/ D
X

n�0
X.n/ q

n : (23)

When we want to emphasise the domain, we’ll write this P�I.�;w/.

Theorem 3.2 ([6]). Assume .�;w/ is admissible, and T is diagonal. Recall the
eigenvalue multiplicities ˛j D ˛j .�;w/ and ˇj D ˇj .�;w/ from Sect. 3.1.

(a) For any exponent �, P� W M Š
w.�/ ! C

d Œq�1� has finite-dimensional kernel
and cokernel, and the index is

dim ker P� � dim coker P� D �Tr�C c.�;w/ ; (24)

for

c.�;w/ D .w � 7/d
12

C e� iw=2

4
TrS C 2

3
p
3

Re
�
e

�� i
6 � 2� iw

3 TrU
	

D wd

12
� ˛1
2
� ˇ1 C 2ˇ2

3
: (25)

(b) There exist exponents � for which P� W M Š
w.�/ ! C

d Œq�1� is a vector space
isomorphism.

By a bijective exponent we mean any exponent � for which P� W M Š
w.�/ !

C
d Œq�1� is an isomorphism. Of course by (24) their trace

P
j �jj must equal c.�;w/,

but the converse is not true as we will see.
For example, for the trivial 1-dimensional representation, T D 1 so an exponent

is just an integer. Here, M Š
0.1/ D CŒJ � and c.1;0/ D 0. The map P1 is injective

but not surjective (nothing has principal part 1). On the other hand, the map P�1
is surjective but not injective (it kills all constants). For another example, taking
� D %�2 (the multiplier of ��4), we have c.%�2;0/ D �7=6.
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It is standard in the literature to restrict from the start to exponents satisfying
0 	 �jj < 1. However, such � are seldom bijective. It is rarely wise to casually
throw away a freedom.

Theorem 3.2(b) first appeared in [5], though for restricted .�;w/, and with the
erroneous claim that � is bijective iff Tr� D c.�;w/. The deeper part of Theorem 3.2
is the index formula, which is new. We interpret it later as Riemann–Roch, and
obtain from it dimensions of spaces of holomorphic vvmf.

The right-side of (25) is always integral. To see that, take w D 0 and note

exp.2� i Tr�/ D detT D detS detU�1 D .�1/˛1��ˇ1Cˇ2
3 : (26)

Fix an admissible .�;w/with diagonal T , and a bijective exponent. As a vector
space over C, M Š

w.�/ has a basis

X
.j In/.�/ DP�1

 .q�nej / D q
 
q�nej C

1X

mD1
X
.j In/
.m/ q

m

!
; (27)

where ej D .0; : : : ; 1; : : : ; 0/t and n 2 Z�0. We’ll describe next subsection an
effective way to find all these X

.j In/.�/, given the d2 coefficients

	ij WD X
.j I0/
.1/ i 2 C : (28)

We learn there that M Š
w.�/ is under total control once a bijective exponent and its

corresponding matrix 	 D 	./ are found.
Recall that for fixed �, the weight w is only determined mod 2, i.e. .�;w/ is

admissible iff .�;w C 2k/ is, for any k 2 Z. We find from the definition of the ˛i
and ˇj that

˛j .�;wC 2k/ D ˛jCk.�;w/ ; ˇj .�;wC 2k/ D ˇjCk.�;w/ : (29)

Plugging this into (25), we obtain the trace of a bijective exponent for .�;wC 2k/:

c.�;wC2kC12l/ D c.�;w/ C ld C

8
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
:̂

0 if k D 0
˛1 � ˇ0 if k D 1
ˇ2 if k D 2
˛1 if k D 3

ˇ1 C ˇ2 if k D 4
˛1 C ˇ2 if k D 5

: (30)

Sketch of proof of Theorem 3.2. (See [6] for the complete proof and its generalisa-
tion) First of all, it is easy to show that if the real part of an exponent � is sufficiently
large, then P� is necessarily injective. This implies that the kernel of any P�0 will
be finite-dimensional, in fact dim ker P�0 	 P

j maxf�jj � �0
jj; 0g for any � with

P� injective.
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LetM be the CŒJ �-span of the columns of the matrix ˚ of Theorem 3.1. Let �M
be the corresponding exponent appearing in (20). Then invertibility of F.q/ implies
invertibility of F.0/, which in turn implies P�M W M ! C

d Œq�1� is surjective, and
hence so is P�M W M Š

w.�/ ! C
d Œq�1�. This implies any cokernel is also finite-

dimensional.
A bijective exponent can be obtained by starting from �M , and recursively

increasing one of its entries byC1 to kill something in the kernel, which also means
nothing gets lost from the range. This process must terminate, by finiteness of the
kernel.

The index formula (24), for some value of c.�;w/, is now computed by showing
that, whenever �0 � �, the index of P� minus that of P�0 equals Tr .�0 � �/. The
constant c.�;w/ is computed next subsection. ut
Corollary 3.1. Suppose .�;w/ is admissible, T is diagonal, and � has no
1-dimensional direct summand. Then setting � D 0; 1 for d even, odd respectively,
we obtain the bounds

wd

12
� d C �

4
	 c.�;w/ 	 wd

12
� 5d
12
� �
4
: (31)

Proof. Assume without loss of generality that weight w D 0. Then (25) tells us that
c.�;w/ D �˛1=2 � .ˇ1 C 2ˇ2/=3, where ˛i D ˛i .�;w/; ˇj D ˇj .�;w/.

First, let’s try to maximise c.�;w/, subject to the inequalities (8). Clearly, c.�;w/ is
largest when ˛0 � ˛1 � ˇ0 � ˇ1 � ˇ2. In fact, we should take ˇ0 as large as
possible, i.e. ˛1 D ˇ0. Then our formula for c.�;w/ simplifies to � d

2
C ˇ1�ˇ2

6
. It is

now clear this is maximised by ˇ2 D � and ˇ0 D ˇ1 D d��
2

, which recovers the
upper bound in (31). Similarly, the lower bound in (31) is realised by ˛0 D ˇ2 D
ˇ1 D .d � �/=2. ut

The question of which exponents � with the correct trace are bijective, can be
subtle, though we see next that for generic � the trace condition Tr� D c.�;w/ is also

sufficient. With this in mind, define the 1 � 1 complex matrix X D .X
.j In/
.m/ i /

built from themth coefficient of the i th component of the basis (27). For any ` 2 Z
d

define a
�P

i maxf`i ; 0g
��
�P

j maxf�`j ; 0g
	

submatrix X .`/ of X by restricting

to the rows .i Im/ with 0 	 m < `i and columns .j In/ with 1 	 n 	 �`j .

Proposition 3.1. Let .�;w/ be admissible, T diagonal, and  bijective. Then an
exponent � is also bijective iff the matrix X .� �/ is invertible.

The effectiveness of this test will be clear next subsection, where we explain
how to compute the X.j In/ and hence the submatrices X .`/. Of course, invertibility
forces X .� �/ to be square, i.e.

P
i `i D 0, i.e. that Tr� D Tr.

To prove Proposition 3.1, observe that the spaces ker P� and null X .`/ are

isomorphic, with v 2 null X .`/ identified with
P

j

P�`j�1
nD0 v.j In/X.j In/ (the

nullspace nullM of a m � n matrix M is all v 2 C
n such that M v D 0). Similarly,

the spaces coker P� and null X .`/t are isomorphic.
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For example, given a bijective exponent , Proposition 3.1 says that 	ij ¤ 0 iff
C ei � ej is bijective, where 	 is defined in (28).

3.3 Birkhoff–Grothendieck and Fuchsian Differential
Equations

As mentioned in the introduction, one of our (vague) heuristics is to think of
vvmf as meromorphic sections of holomorphic bundles over P1. But the Birkhoff–
Grothendieck Theorem says that such a bundle is a direct sum of line bundles. If
taken literally, it would say that, up to a change P of basis, each component Xi .�/ of
any X 2M Š

w.�/ would be a scalar modular form of weight w (and some multiplier)
for � . This is absurd, as it only happens when � is equivalent to a sum of 1-
dimensional projective representations. The reason Birkhoff–Grothendieck cannot
be applied here is that we do not have a bundle (in the usual sense) over P1—indeed,
our space H

�=� has three singularities.
Nevertheless, Theorem 3.3(a) below says Birkhoff–Grothendieck still holds in

spirit.

Theorem 3.3. Let .�;w/ be admissible, T diagonal, and  bijective.

(a) M Š
w.�/ is a free CŒJ �-module of rank d D rank.�/. Free generators are X

.j I0/
(see (27)).

(b) Let �.�/ D q.1d C 	qCP1
nD2 �.n/ qn/ be the d � d matrix whose columns

are the X
.j I0/. Then

E4.�/E6.�/

�.�/
Dw�.�/ D �.�/ f.J.�/ � 984/w C 	w C Œw; 	w�g ; (32)

where w WD  � w
12
1d , 	w WD 	C 2w1d , and Œ�; �� denotes the usual bracket.

(c) Assume weight w D 0. The multi-valued function Q�.z/ WD �.�.z//, where
z.�/ D J.�/=1728, obeys the Fuchsian differential equation

d
dz
Q�.z/ D Q�.z/

�
A2

z�1 C A3

z

	
; (33)

A2 D �31
72

 � 1
1728

.	C Œ; 	�/ ; A3 D � 4172C 1
1728

.	C Œ; 	�/ (34)

(recall (21)). Moreover, A2;A3 are diagonalisable, with eigenvalues in f0; 1
2
g

and f0; 1
3
; 2
3
g, respectively.

Sketch of proof (see [6] for the complete proof and generalisation). The basis
vvmf X.j In/ exist by surjectivity of P. To show M Š

w.�/ is generated over CŒJ �
by the X

.i I0/, follows from an elementary induction on n: if the X
.i Im/ all lie in

˚lCŒJ �X.lI0/ for all i and all m < n, then X
.j In/ 2 JX.j In�1/ C ˚lCŒJ �X.lI0/ �

˚lCŒJ �X.lI0/, using the fact that P is injective. That these generators are free,
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follows by noting the determinant of � has a nontrivial leading term (namely q�)
and so is nonzero.

The columns of r1;w� also lie in M Š
w.�/, and so r1;w� D � D.J / for

some d � d matrix-valued polynomial D. That polynomial D.J / is determined
by Theorem 3.2 by comparing principal parts. (33) follows directly from (32),
by changing variables. Because e2� iA2 and e2� iA3 must be conjugate to S and
U , respectively, then A2 and A3 are diagonalisable with eigenvalues in 1

2
Z and

1
3
Z. But (22) implies that none of these eigenvalues can be negative (otherwise

holomorphicity at � D i or � D �6 would be lost). And none of these eigenvalues
can be� 1, as otherwise the corresponding column of� can be divided by J �1728
or J , retaining holomorphicity in H but spanning over CŒJ � a strictly larger space
of weakly holomorphic vvmf. Since by (34) A2CA3 D , we can obtain the trace
of  by summing the eigenvalues of A2 and A3, and thus finally obtain (25). ut

Theorem 3.3 first appeared in [5], though for restricted .�;w/. It is generalised to
arbitrary T and arbitrary genus-0 groups in [6].

Theorem 3.3(c) and (22) say that

�.�/ D j2.wI �/�1P�1
2 q

�2
2

1X

nD0
�Œn�q

n
2 D j3.wI �/�1P�1

3 q
�3
3

1X

nD0
�hniqn3 (35)

where �Œ0� and �h0i are invertible, �2; �3 are diagonal, �2 has ˛i diagonal values
equal to i=2 for i D 0; 1, �3 has ˇj diagonal entries equal to j=3 for j D 0; 1; 2,
P2SP

�1
2 D e2� i�2 , and P3UP�1

3 D e2� i�3 . The key properties here are the bounds
0 	 .�2/ii < 1 and 0 	 .�3/jj < 1, and the invertibility of �Œ0� and �h0i.

Given  and 	, it is easy to solve (32) recursively:

Œw; �.n/�Cn�.n/D
n� 1X

l D 0

�.l/

�
fn�lwC w

12
tn�l C gn�l .	wC Œw; 	w�/

	

(36)

for n � 2, where we write E2.�/ D P1
nD0 tnqn D 1 � 24q � � � � ,

.J.�/ � 984/�.�/=E10.�/ D P1
nD0 fnqn D 1 C 0q C � � � and �.�/=E10.�/ DP1

nD0 gnqn D qC� � � . We require�.0/ D 1d . Note that the ij -entry on the left-side
of (36) is

�
ii �jj C n

�
�.n/ ij, so (36) allows us to recursively identify all entries

of �.n/, at least when all jjj � iij ¤ n. Indeed, jj � ii can never lie in Z�2,
thanks to this recursion, since then the value of �.n/ ij would be unconstrained,
contradicting uniqueness of the solution to (32) with �.0/ D 1d .

Theorem 3.3 tells us that X 2M Š
w.�/ iff X D �P.J /, where P.J / 2 C

d Œq�1�.
The basis vvmf X.j In/ of (27) can be easily found recursively from this [5]. They
can also be found as follows. Define the generating function

Xij.�; �/ WD q�ii�1
1X

nD0



X
.j In/ .�/

�
i

zn D ıij

q � z
C

1X

mD1

1X

nD0
X

.j In/
.m/ i q

m�1zn ;

(37)
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where we write z D e2� i� . Then, writing J 0 D D0J D �E2
4E6=�, we have [5]

X .�; �/ D J 0 .�/ q��1d
J .�/ � J .�/ �.�/�.�/

�1z : (38)

We call �.�/ in Theorem 3.3(b) the fundamental matrix associated to . A
d � d matrix �.�/ is a fundamental matrix for .�;w/ iff all columns lie in M Š

w.�/,
and �.�/ D q.1d C P1

nD1 �.n/qn/ where Tr D c.�;w/. The reason is that
P WM Š

w.�/! C
d Œq�1� is then surjective, so by the index formula it must also be

injective.
The determinant of any fundamental matrix is now easy to compute [5]:

det�.�/ D E4.�/ˇ1C2ˇ2E6.�/˛1�.�/.dw�4ˇ1�8ˇ2�6˛1/=12 ; (39)

where ˛i D ˛i .�;w/; ˇj D ˇj .�;w/ are the eigenvalue multiplicities of Sect. 3.1.
Indeed, the determinant is a scalar modular form (with multiplier); use E4 and E6
to factor off the zeros at the elliptic points (which we can read off from (35)), and
note that the resulting modular form will have no zeros in H and hence must be a
power of �, where the power is determined by the weight.

A very practical way to obtain bijective and 	, and hence a fundamental matrix
�.�/, is through cyclicity:

Proposition 3.2. Suppose .�;w/ is admissible, and T is diagonal. Suppose X 2
M Š

w.�/, and the components of X are linearly independent over C. Then M Š
w.�/ D

CŒJ;r1;w;r2;w;r3;w�X.

Proof. Let MX WD CŒJ;r1;w�X. Since MX is a module of a PID CŒJ �, it is a sum
of cyclic submodules CŒJ �Y.i/. Each CŒJ �Y.i/ is torsion-free (by looking at leading
powers of q). So MX must be free of some rank d 0. Because it is a submodule of the
rank d module M Š

w.�/ (and again using the fact that CŒJ � is a PID), d 0 	 d . That
d 0 D d follows by computing the determinant of the d � d matrix with columns
r i�11;w X: that determinant equals .2� i/1�d .E4E6=�/.d�1/d=2 times the Wronskian of
X, which is nonzero by Lemma 2.2(a).

Let �X be the matrix formed by those d generators of MX. Because r1;wMX �
MX, the argument of Theorem 3.3 applies and �X satisfies analogues of (32) and
hence (33). This means MX will have its own analogues X;AX 2;AX 3 (their
exponentials e2� iX etc will be conjugate to e2� i etc). The trace of X will equal
the trace of AX 2 C AX 3, for the same reason it did in Theorem 3.3. Now, PX

is an isomorphism when restricted to MX, so when extended to M Š
w.�/ will also

have trivial cokernel. Thus the dimension of M Š
w.�/=MX will equal the dimension

of ker PX
which, by the index formula (24), equals

TrX � Tr D .Tr AX 2 � Tr A2/C .Tr AX 3 �A3/ :

This means that if MX ¤ M Š
w.�/, then at least one eigenvalue of AX 2 or AX 3

is � 1. Suppose one of AX 2 is. Then by (35) some row of �X will have order � 2 at
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� D i. This means every vvmf in MX has some component with a zero at � D i of
order � 2. Hit each column of �X with r2;w D ��1E2

4D2
w: it will reduce the order

of that zero everywhere by 2 (because at � D i r2;w looks like a d2

d�22
C b d

d�2
C c

for a ¤ 0). This means the module generated over CŒJ;r1;w� by the columns of
�X and r2;w�X will be strictly greater than MX, as some vvmf in it will have a
smaller order at that component than all vvmf in MX. So repeat this argument with
MX replaced with this extension. If instead AX 3 has an eigenvalue � 1, then some
component of every vvmf in MX will have a zero at � D �6 of order � 3, so use
r3;w, which will reduce the order of that zero by 3. Eventually all eigenvalues will
be < 1, in which case the dimension of M Š

w.�/=M will be 0. ut
To indicate the nontriviality of our theory, we get a 1-line proof of the solution (8)

to the Deligne–Simpson problem for � , at least for most � (the general case requires
slightly more work). Let � be any � -representation with T diagonal, and let  be
bijective for .�; 0/ and � a corresponding fundamental matrix. Then as long as all
ii ¤ 0, the columns of the derivative D0� will span a free rank-d submodule of
M Š

2.�/ over CŒJ �, on which P is surjective. Thus c.�;0/ 	 c.�;2/ and so by (30)
we obtain ˛1 � ˇ0. (It is clear that things are more subtle when some ii D 0, as
this inequality fails for � D 1!) The other inequalities ˛i � ˇj follow by comparing
c.�;2k/ and c.�;2kC2/ in the identical way.

As mentioned earlier, S and U are conjugate to e2� iA2 and e2� iA3 , respectively,
but identifying precisely which conjugate is a transcendental and subtle question.
For example, we see in Sect. 4.2 below that when d D 2, they are related by Gamma
function values.

3.4 Holomorphic vvmf

Until this point in the paper, our focus has been on weakly holomorphic vvmf of
fixed weight, i.e. vvmf holomorphic everywhere except at the � -orbit of i1. The
reason is that structurally it is the simplest and most fundamental. For example, it
is acted on by the ring of (scalar) modular functions holomorphic away from � i1,
which for any genus-0 Fuchsian group is a PID. By contrast, the holomorphic vvmf
(say of arbitrary even integral weight) is a module over the ring of holomorphic
modular forms, which in genus-0 is usually not even polynomial. However, there is
probably more interest in holomorphic vvmf, so it is to these we now turn. The two
main questions we address are the algebraic structure (see Theorem 3.4 below), and
dimensions (see Theorem 3.5 next subsection).

Definition 3.1. Let .�;w/ be admissible, T diagonal, and � any exponent. Define

M �
w .�/ WD ker P��1d D

(
X 2M Š

w.�/ j X.�/ D q�
1X

nD0
X.n/q

n

)
(40)

and M �.�/ D`k2Z M �
wC2k.�/. We call any X 2M �.�/, �-holomorphic.
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For example, for the trivial representation, M 0.1/ are the modular forms m D
CŒE4; E6�, while M 1.1/ are the cusp forms m�. More generally, define �hol to be
the unique exponent with 0 	 Re�ii < 1 for all i . Then M �hol

.�/ coincides with
the usual definition of holomorphic vvmf. Choosing 0 < Re�ii 	 1 would give the
vector-valued cusp forms.

Theorem 3.2 computes dim M �
wC2k.�/ for all sufficiently large jkj:

Lemma 3.2. Let .�;w/ be admissible and T diagonal. Let � be any exponent, and
 any bijective exponent.

(a) For any k 2 Z, M �
wC2k.�/ is finite-dimensional, and obeys the bound

dim M �
wC2k.�/ � max

�
0;

wC 2k C 2
12

d C ˛k

2
C ˇk � ˇkC2

3
� Tr�

�
: (41)

(b) Choose any m; n 2 Z satisfying Re . C m1d / � Re� � Re . � n1d /
entrywise. Then M �

w�2k.�/ D 0 when k D 6nC 6 or k � 6nC 8, and equality
holds in (41) whenever k D 6m � 6 or k � 6m � 4.

(c) Let w0 be the weight with smallest real part for which M �
w0 .�/ ¤ 0 and

write � D 0; 1 for d even, odd respectively. Suppose � is irreducible and not
1-dimensional. Then w0 satisfies the bounds

12

d
Tr�C 1 � d 	 w0 	 12

d
Tr� � 3�

d
: (42)

Proof. Theorem 3.2(a) gives finite-dimensionality. The bound (41) follows from
dim ker P��1d � index P��1d , the index formula in Theorem 3.2(a), and (29).
Note that�kM Š

w.�/ DM Š
wC2k.�/ for any k 2 Z soCk1d is bijective for .�;wC

12k/. Hence P��1d is injective on M Š
w�12.nC1/.�/ because P�.nC1/1d is, while

P��1d is surjective on M Š
wC12.m�1/.�/ because PC.m�1/1d is. This proves (b) for

those weights. Now, for any k � 2 there is a scalar modular form f 2 m of weight
2k with nonzero constant term, so f .�/�1 2 CŒŒq�� and the surjectivity of P��1d
on M Š

wC12.m�1/.�/ implies that on M Š
wC12.m�1/C2k.�/. More directly, injectivity of

P��1d on M Š
w�12.nC1/.�/ implies that on M Š

w�12.nC1/C2k.�/.
Now turn to (c). We know that dim M �

w .�/ > 0 for any w for which Tr >

Tr� � d , since dim ker P��1d � Index P��1d > 0. Using (31), we obtain the
upper bound of (42).

Choose any nonzero X2M �
w .�/. Then its components must be linearly indepen-

dent over C, because they span a subrepresentation of the irreducible �. Therefore,
Lemma 2.2(a) says Wr.X/.�/ 2 M Š

d.wCd�1/.det �/ is nonzero, with leading power

of q in Tr� C Z�0. This implies Wr.X/�/=�Tr�.�/ lies in M 0
dwCd.d�1/�12Tr�.%u/

for some u 2 2Z, from which follows the lower bound of (42). ut
The lower bound in (42) is due to Mason [23] (he proved it for � D �hol but the

generalisation given here is trivial). The d ¤ 1 assumption in (c) is only needed for
the lower bound.
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Theorem 3.3(a) tells us the space M Š
w.�/ of weakly holomorphic vvmf is a

free module of rank d over CŒJ �. The analogous statement for holomorphic vvmf,
namely that M �hol

.�/ is free of rank d over m, is implicit in [13] (see the Remark
there on page 98). It was also proved independently in [22], and independently
but simultaneously we obtained the following generalisation. The proof of freeness
given here is far simpler than in [22], is more general (as it applies to arbitrary �),
gives more information (see (b) below), and generalises directly to arbitrary T and
arbitrary genus-0 groups [14].

Theorem 3.4. Let .�;w/ be admissible and T diagonal. Choose any exponent �.
Let ˛j D ˛j .�;w/ and ˇj D ˇj .�;w/.
(a) M �.�/ is a free module over m D CŒE4; E6�, of rank d .
(b) Let w0 D w.1/ 	 w.2/ 	 � � � 	 w.d/ be the weights of the free generators. Then

precisely ˛i of the w.j / will be congruent mod 4 to wC 2i , and precisely ˇi of
them will be congruent mod 6 to w� 2i . Moreover,

P
j w.j / D 12Tr�. Let ��

be the matrix obtained by putting these d generators into d columns. Then (up
to an irrelevant nonzero constant)

det�� D �Tr� :

Proof. Let w0 2 w C 2Z be the weight of minimal real part with M �
w0 .�/ ¤ 0—

this exists by Lemma 3.2(b). Write M D M �.�/, wk D w0 C 2k and Ml D
M �

wl
.�/. For X.�/ 2 Mw.�/, recall from (13) that the constant term XŒ0� at � D i

is X.i/=E4.i/w=4. Fix S0 D e� iw0=2S ; then e� iwk=2S D .�1/kS0 and so for any
X 2Mk , its constant term satisfies S0XŒ0� D .�1/kXŒ0� thanks to (14).

Find X
.i/.�/ 2 Mli with the property that, for any k � 0, the space of constant

terms XŒ0�, as X.�/ runs over all [klD0Ml , has a basis given by the constant terms

X
.i/

Œ0� for those X
.i/.�/ in [klD0Ml (i.e. for those i with li 	 k). This is done

recursively with k. We will show that these X
.i/.�/ are the desired free generators

for M .
The key observation is the following. Consider any X.�/ 2 Mk . Then by

definition of the X
.i/.�/, XŒ0� D P

i ciX
.i/

Œ0� where ci D 0 unless li 	 k and
li 
 k (mod 2). The key observation is that the constant term X

0
Œ0� of X

0.�/ D
X.�/ �Pi ci E4.�/

.k�li /=2X.i/.�/ is 0, so X
0.�/=E6.�/ 2Mk�3.

One consequence of this observation is that, by an easy induction on k, any
X.�/ 2 M must lie in ˚imX

.i/.�/. Another consequence is that there are exactly
d of these X

.i/.�/, in particular their constant terms form a basis for Cd . To see
this, take any fundamental matrix �.�/ at weight w0. Then for sufficiently large l ,
each column of �.�/l�.�/ is in M12l . The constant terms of �.�/l�.�/ (which
have S0-eigenvalues +1) and of �.�/lDw0�.�/ (which have S0-eigenvalues �1)
must have rank ˛0.�;w0/ and ˛1.�;w0/, respectively, as otherwise the columns
of �.�/l�.�/ would be linearly dependent over m, contradicting their linear
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independence over CŒJ �. This means of course that exactly ˛0.�;w0/ of these
X
.i/.�/ have li even, and exactly ˛1.�;w0/ have li odd.
Thus these d X

.i/.�/ generate over m all of M . To see they are linearly
independent over m, suppose we have a relation

P
i pi .�/X

.i/.�/ D 0, for modular
forms pi .�/ 2 m which do not share a (nontrivial) common divisor. The constant
term at i of that relation reads

P
i pi .i/X

.i/

Œ0� D 0 and hence each pi .i/ D 0, since

the X.i/Œ0� are linearly independent by construction. This forces all pi .�/ to be 0, since
otherwise we could divide them all by E6, which would contradict the hypothesis
that they share no common divisor.

The identical argument applies to the constant terms Xh0i D X.�6/=E6.�6/
w=6 at

� D �6; this implies that exactly ˇi .�;w0/ generators X.j /.�/ have lj 
 i (mod 3).
Form the d � d matrix ��.�/ from these d generators X

.i/.�/ and call the
determinant ı.�/. The linear independence of the constant terms of the generators
at the elliptic fixed points, says that ı cannot vanish at any elliptic fixed point. ı
also can’t have a zero anywhere else in H. To see this, first note that a zero at
�� 2 H implies there is nonzero row vector v 2 C

d such that v��.�/ D 0 and
hence vX.��/ D 0 for any X.�/ 2 M �.�/. But (39) says the determinant of any
fundamental matrix �.�/ for .�;w0/ can only vanish at elliptic fixed points and
cusps, and so v�.��/ ¤ 0 for any fundamental matrix, and hence vY.��/ ¤ 0

for some Y.�/ 2 M Š
w0 .�/. To get a contradiction, choose N big enough so that

�.�/NY.�/ 2 M . This means ı.�/ is a scalar modular form (with multiplier)
which doesn’t vanish anywhere in H. Hence ı.�/ must be a power of �.�/, and
considering weights we see this must be ı.�/ D �

P
i wli =12.�/. We compute that

sum over i , shortly.
Find the smallest ` such that dCc.�;w0C2`/ > Tr� (recall (30)) and put w0

0 WD w`.
Define n0

k D 0 for k < 0, and

n0
k D

w0
0 C 2k C 2

12
d C ˛k

2
C ˇk � ˇ2Ck

3
� Tr� (43)

for k � 0. Using (29), the numbers n0
k are the values maxfc.�;w0

0C2k/; 0g. From
Lemma 3.2 we obtain the equality nk D n0

k�` for jkj sufficiently large. The ‘tight’
Hilbert–Poincaré series H�

tt .M I x/ WD
P

k n
0
kx

wkC` equals

H�
tt .M I x/

D xw0
0
n0
0 C n0

1x
2 C .n0

2 � n0
0/x

4 C .n0
3 � n0

1 � n0
0/x

6 C .n0
4 � n0

2 � n0
1/x

8

.1 � x4/.1 � x6/ ;

(44)

by a simple calculation (the significance of H�
tt .x/ is explained in Proposition 3.3

below). From the numerator we read off the weights of the ‘tight’ generators: write
w0.i/ D w0

0 for 1 	 i 	 n0
0, : : :, w0.i/ D w0

0 C 8 for d � n0
4 C n0

2 C n0
1 < i 	 d .

We know that the actual Hilbert–Poincaré series, H�.M I x/ D P
k nkx

wk , minus
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the tight one, equals a finite sum of terms, since nk D n0
k�` for jkj large. Therefore

.1 � x4/.1 � x6/.H�.x/ � H�
tt .x// D

P
xw.i/ �P xw0.i/

is simply a polynomial
identity. Differentiating with respect to x and setting x D 1 gives

P
w.i/ DPw0.i/,

and the latter is readily computed to be 12Tr�. ut
This freeness doesn’t seem directly related to that of Theorem 3.3(a). The reason

it is natural to look at local expansions about � D i and � D �6 in the proof of (a) is
because if X.�/ is holomorphic and X.i/ D 0, then X.�/=E6.�/ is also holomorphic
(similarly for X.�6/ D 0 and X.�/=E4.�/).

Call an admissible .�;w/ tight if it has the property that for all k 2 Z, an exponent
� is bijective for w C 2k iff Tr� D c.�;wC2k/. In this case we also say � is tight.
Generic � are tight. We learn in Theorem 4.1 that all irreducible � in dimension
d < 6 are tight. For tight �, most quantities can be easily determined:

Proposition 3.3. Suppose .�;w/ is admissible and tight, and T is diagonal.

(a) Then %u ˝ � is also tight for any u 2 C, as is the contragredient �� D .�t /�1.
(b) For any exponent � (not necessarily bijective), either ker P� D 0 (if Tr� �

c.�;w/) or coker P� D 0 (if Tr� 	 c.�;w/). Moreover,

dim M �
w .�/ D maxf0; c.�;w/ C d � Tr�g ; (45)

and the Hilbert–Poincaré series H�.x/ of M �.�/ equals the tight Hilbert–
Poincaré series H�

tt .x/ of (44).

The proof of (a) uses the equality M Š
wCu.%u ˝ �/ D �u=12.�/M Š

w.�/, as well
as the duality in Proposition 3.4 below. To prove (b), let  be the unique bijective
exponent matrix for .�;w/ satisfying ii D �ii � 1 for all i ¤ 1. Write n D
11C1��11 D c.�;w/Cd �Tr� 2 Z. If n � 0P� inherits the surjectivity of P,
while if n 	 0 it inherits the injectivity. The index formula (24) gives the dimension,
which by (29) equals n0

k�`. This is why H�
tt arises.

As long as .�;w/ is tight, this argument tells us how to find a basis for M �
w .�/.

Let  and n be as above. For n > 0 a basis for M �
w .�/ consists of the basis vectors

X
.1Ii/ (see Sect. 3.2) for 0 	 i < n. Incidentally, the name ‘tight’ refers to the fact

that the numerator of H�
tt is maximally bundled together.

There are other constraints on the possible weights w.i/ of Theorem 3.4(b). A use-
ful observation in practice is that if � is irreducible, then the set fw.1/; : : : ;w.d/g can’t
have gaps, i.e. for n D .w.d/ � w.1//=2,

fw.1/; : : : ;w.d/g D fw.1/;w.1/ C 2;w.1/ C 4; : : : ;w.1/ C 2ng : (46)

The reason is that when w.1/C2k doesn’t equal any w.i/, then when w.j / < w.1/C2k,
Dk�.w.j /�w.1//=2

X
.j / D P

w.l/<w.1/C2k fjlX.l/ for fjl 2 m, where the sum is over all
l with w.l/ < w.1/ C 2k. If in addition w.1/ C 2k < w.d/ (i.e. w.1/ C 2k is a gap),
then the Wronskian Wr.X.1// would have to vanish, contradicting irreducibility.
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Several papers (e.g. [21, 23]) consider a ‘cyclic’ class of vvmf where the
components of X span the solution space to a monic modular differential equation
Dd
k C

Pd�1
lD0 flDl

k D 0, where each fl 2 m is of weight 2d � 2l . In this accessible
case the free generators X.i/ can be taken to be X;DkX; : : : ;Dd�1

k X, i.e. the weights
are ˛.i/ D ˛.1/ C .i � 1/2. This means the corresponding � cannot be tight,
when d � 6. Indeed, the multipliers of such vvmf are exceptional, requiring the
multiplicities of � to satisfy j˛i � ˛j j 	 1 and jˇi � ˇj j 	 1. Recall that the
connected components of the moduli space of � -representations are parametrised
by these multiplicities; these particular components are of maximal dimension. For
example, when d D 6, such a representation � can lie in only 1 of the 12 possible
connected components, and these � define a 6-dimensional subspace inside that 7-
dimensional component.

3.5 Serre Duality and the Dimension Formula

A crucial symmetry of the theory is called the adjoint in the language of Fuchsian
equations, and shortly we reinterpret this as Serre duality.

Proposition 3.4. Let .�;w/ be admissible, T diagonal, and  bijective, and let
�.�/ be the associated fundamental matrix of M D M Š

w.�/. Let �� denote the
contragredient .��1/t of �. Then M Š

w.�/ and M Š
2�w.�

�/ are naturally isomorphic
as CŒJ;r1;r2;r3�-modules. Moreover,

��.�/ D E4.�/2E6.�/�.�/�1
�
�.�/t

��1
; (47)

X �.z; q/ D �X .q; z/t ; (48)

where �� is the fundamental matrix of M Š
2�w.�

�/ corresponding to the bijective
exponent � D �1d �, and X ;X � are the generating functions (37) for .�;w/
and .��; 2 � w/ respectively. In other words the qmCii coefficient X

.j In�1/
.m/ i of the

basis vector X
.j In�1/
i .�/ is the negative of the qnC�

jj coefficient X
� .i Im�1/
.n/ j of the

basis vector X�.i Im�1/
j .�/, for all m; n � 1.

Proof. Define ��.�/ by (47); to show it is the fundamental matrix associated to the
bijective exponent � D �1d � , we need to show that ��.�/ D q�1d�.1d CP1

nD1 ��
.n/q

n/ (this is clear), that �1d �  has trace c.��;2�w/ (we’ll do this next),

and that the columns of ��.�/ are in M Š
2�w.�

�/. Using (29), we find ˛i .��; 2 �
w/ D ˛iC1.�;w/, and ˇj .��; 2 � w/ D ˇ2�j .�;w/, so we compute from (25) that
c.��;2�w/ D Tr .�1d �/.

From �.��/ D Q�w.�; �/�.�/, we get .�.��/t /�1 D Q���w.�; �/.�.�/
t /�1. It

thus suffices to show ��.�/ is holomorphic in H. We see from (39) that �.�/�1 is
meromorphic everywhere in H

�, with poles possible only at the elliptic points and
the cusp. Locally about � D i, (35) tells us
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.�.�/t /�1 D j.�wI �/ P t
2 q

��2
2

 
1d C

1X

nD1
.�t

Œ0�/
�1�t

Œn�q
n

!�1
.�t

Œ0�/
�1 : (49)

The series in the middle bracketed factor is invertible at � D i, because its
determinant equals 1 there. So every entry of .�.�/t /�1 at � D i has at worst a
simple pole (coming from q

��2
2 D �

�2�2
2 ). But J 0 D �E2

4E6=� has a simple pole
at � D i. Therefore ��.�/ is holomorphic at � D i. Likewise, at � D �6, the entries
of .�.�/t /�1 have at worse an order 2 pole (coming from q

��3
3 D �

�3�3
3 ), but J 0

has an order 2 zero at � D �6, so ��.�/ is also holomorphic at � D �6. Thus the
columns of ��.�/ lie in M Š

2�w.�
�/ (the 2 comes from J 0).

This concludes the proof that �� is a fundamental matrix for .��; 2 � w/.
Equation (48) now follows directly from (38). ut

A special case of Eq. (47) was found in [5]. An interesting special case of (48)
is that the constant term of any weakly holomorphic modular form f 2 M Š

2.1/ is
0. To see this, recall first that .�;w/ D .1; 0/ has  D 0 and �.�/ D X

.1I0/.�/ D
1, i.e. the qmC0-coefficient of X

.1I0/
1 vanishes for all m � 1. Then (48) says the

q1�1-coefficient of all X.1Im�1/
1 must also vanish. Since the X

.1Ik/ span (over C) all
of M Š

2.1/, the constant term of any f 2M Š
2.1/ must vanish. The same result holds

for any genus-0 group.
The final fundamental ingredient of our theory connects the index formula (24)

to this duality:

Theorem 3.5. Let .�;w/ be admissible and T diagonal, and recall the quantity
c.�;w/ computed in (25). Then for any exponent �,

coker P�I.�;w/ Š
�
M ��

2�w.�
�/
��
; (50)

dim M �
w .�/ � dim M 1d��

2�w .��/ D c.�;w/ C d � Tr� : (51)

Proof. Let X.�/ 2 q�Cd Œq�1; q��, i.e. X.�/ D q�
P1

nD�N X.n/q
n for some N D

N.X/, and let Y.�/ 2 M ��
2�w.�

�/, and define a pairing hX;Yi to be the q0-
coefficient f0 of X.�/tY.�/ D Pd

iD1Xi .�/Yi .�/ D
P1

nD�N fnqn. Note that
hX;Yi D P

�N�n�0X.n/Y.�n/ depends only on the coefficients X.n/ for n 	 0,
since by hypothesis Y.k/ D 0 for k < 0. In other words, the pairing hX;Yi depends
only on Y.�/ and the principal part P�X.q/ of X.�/.

If X.�/ 2M Š
w.�/, then X.�/tY.�/will lie in M Š

2.1/. Hence from the observation
after Proposition 3.4, in that case hX;Yi will vanish. This means the pairing hX;Yi
is a well-defined pairing between the cokernel of P�I.�;w/, and M ��

2�w.�
�/.

Let Y1.�/; : : : ;Ym.�/ be a basis of M ��
2�w.�

�/. We can require that this basis
be triangular in the sense that for each 1 	 i 	 m there is an ni ; ki so that the
coefficient Yj.ni / ki D ıj i for all i; j . Indeed, choose any n1; k1 such that Y1.n1/ k1 ¤ 0,

and rescale Y
1.�/ so that coefficient equals 1. Subtract if necessary a multiple of

Y
1.�/ from the other Yi .�/ so that Yi.n1/ k1 D 0. Now, repeat: choose any n2; k2
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such that Y
2
.n2/ k2

¤ 0, etc. If we take X
i .�/ to be q�ni eki (i.e. all coefficients

vanish except one coefficient in one component), then hXi ;Yj i D ıij. This form
of nondegeneracy means that dim M ��

2�w.�
�/ 	 dim coker P�I.�;w/.

Repeating this argument in the dual direction, more precisely replacing
�;w; � with ��; 2 � w;�1d � � respectively, gives us the dual inequality
dim M �C1d

w .�/ 	 dim coker P�1d��I.��;2�w/. However, from Proposition 3.4 we
know that c.��;2�w/ D Tr .�1d �/ D �d � c.�;w/, so the index formula (24) gives
us both

dim M �C1d
w .�/ � dim coker P�I.�;w/ Dc.�;w/ � Tr� ; (52)

dim M ��
2�w.�

�/ � dim coker P�1d��I.��;2�w/ D� d � c.�;w/ C d C Tr� : (53)

Adding these gives

dim M �C1d
w .�/Cdim M ��

2�w.�
�/ D dim coker P�I.�;w/Cdim coker P�1d��I.��;2�w/ :

Together with the two inequalities, this shows that the dimensions of M ��
2�w.�

�/ and
coker P�I.�;w/ match. Hence the pairing hX;Yi is nondegenerate and establishes
the isomorphism (50). Equation (51) now follows immediately from the index
formula (24). ut

We suggest calling part (a) Serre duality because ker P� has an interpretation
as H0.B� IA / for some space A D A�I.�;w/ of meromorphic functions on which
� acts by .�;w/, while coker P�, being the obstruction to finding meromorphic
sections of our .�;w/-vector bundle, should have an interpretation as some H1.
The shifts by 1d and 2 would be associated to the canonical line bundle. This
interpretation is at this point merely a heuristic, however.

Compare (50) to Theorem 3.1 in [10]. There, Borcherds restricts attention to
weight w D k a half-integer, groups commensurable to SL2.Z/, representations �
with finite image, and � D �hol. The assumption of finite image was essential to
his proof. Our proof extends to arbitrary T and arbitrary genus-0 groups [14] (so by
inducing the representation, it also applies to any finite-index subgroup of a genus-0
group).

The most important special case of the dimension formula (51) is � D �hol,
which relates the dimensions of holomorphic vvmf with those of vector-valued cusp
forms. Compare (51) to [33], where Skoruppa obtained the formula assuming 2w 2
Z, and that � has finite image. His proof used the Eichler-Selberg trace formula.
Once again we see that these results hold in much greater generality. Of course
thanks to the induction trick, (51) also gives the dimension formulas for spaces of
e.g. holomorphic and cusp forms, for any finite index subgroup of � .

Incidentally, it is possible to have nonconstant modular functions, holomorphic
everywhere in H

�, for some multipliers with infinite image (see e.g. Remark 2
in Sect. 3 of [17]). On the other hand, Lemma 2.4 of [17] prove that for unitary
multipliers �, there are no nonzero holomorphic vvmf X 2 M �hol

w .�/ of weight
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w < 0. This implies there are no vector-valued cusp forms of weight w 	 0, for
unitary �.

3.6 The q-Expansion Coefficients

Modular forms—vector-valued or otherwise—are most important for their
q-expansion coefficients. In this subsection we study these. A special case of
Proposition 3.5(b) (namely, w D 0 and QX D Q) is given in [1], but our proof
generalises without change to T nondiagonalisable and to any genus-0 group [14].

As a quick remark, note from Theorem 3.3(b) that the coefficients X.n/ i of a
vvmf X 2 M Š

w.�/ will all lie in the field generated over Q by the entries of w

and 	w, as well as the coefficients X.n/ i of the principal part P.X/, where  is
bijective and 	 D �.1/.

Let F denote the span of all p.�/ quh.q/, where p.�/ 2 CŒ� �, u 2 C, and
h 2 CŒŒq�� is holomorphic at q D 0. The components of any vvmf (including
‘logarithmic’, where T is nondiagonalisable) must lie in F . F is a ring, where
terms simplify in the obvious way (thanks to the series f s converging absolutely).
F is closed under differentiation and � 7! � C 1. The key to analysing functions in
F is the fact that they are equal only when it is obvious that they are equal:

Lemma 3.2. Suppose
Pn

iD1 pi .�/ qui hi .q/ D 0 for all q in some sufficiently small
disc about q D 0, where each pi .�/ 2 CŒ� �, ui 2 C, 0 	 Re ui < 1, and hi 2 CŒŒq��

is holomorphic at q D 0, and all ui are pairwise distinct. Then for each i , either
pi .�/ is identically 0 or hi .q/ is identically 0 (i.e. all coefficients of hi .q/ vanish).

Proof. For each v 2 C, define an operator Tv on F by .Tvg/.�/ D g.� C 1/ �
e2� ivg.�/. Note that p.�/quh.q/ lies in the kernel of T k

u if (and we will see only if)
the degree of the polynomial p.�/ is < k.

Assume for contradiction that no pi .�/ nor hi .q/ are identically 0. Let ki be the
degree of pi .�/. Apply T kdC1

ud
ı � � � ıT k2C1

u2 ıT k1
u1 to

Pn
iD1 pi .�/ qui hi .q/ D 0 to

obtain aqu1h1.q/ D 0 for some nonzero a 2 C and all q in that disc. This forces
h1.q/ 
 0, a contradiction. ut
Proposition 3.5. Let .�;w/ be admissible and T diagonal, and choose any vvmf
X 2M Š

w.�/. Write X.�/ D q�P1
nD0X.n/qn.

(a) Let � be any field automorphism of C, and for each 1 	 i 	 d define
X
�
i .�/ D q�.�ii/

P1
nD0 �.X.n/ i /qn. Then X

� .�/ 2M Š
�w.�

� /, where .�� ; �w/ is
admissible, T � D e2� i ��, e� i�w=2S� is conjugate to e� iw=2S and e2� i�w=3U �

is conjugate to e2� iw=3U . X
� .�/ will be ��-holomorphic iff X.�/ is �-

holomorphic. Choose any bijective exponent  and fundamental matrix �.�/
for .�;w/; then .�� ; �w/ will have bijective exponent � and fundamental
matrix ��.�/, where � acts on �.�/ column-wise.
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(b) Let QX be the field generated over Q by all Fourier coefficients X.n/ of X.�/.
Assume the components Xi .�/ of X.�/ are linearly independent over C. Then
both the weight w and all exponents �i lie in QX.

Proof. Start with (a), and consider first w D 0. Write 	 D �.1/. Then �.�/ obeys
the differential equation (32). Recall that J;E2;E4;E6;� all have coefficients
in Z and hence are fixed by � . Then ��.�/ formally satisfies (32) with 0; 	0
replaced with �.0/; �.	0/ (recall that (32) is equivalent to the recursions (36)).
Therefore��.�/ is a fundamental solution of that differential equation, with entries
meromorphic in H

�.
In fact, thanks to the Fuchsian equation (32), the only possible poles of��.�/ are

at the cusps or elliptic fixed points. The behaviour at the elliptic points is easiest to
see from (33); in particular, S� and U� will be conjugate to e2� iA �

2 and e2� iA �
3

respectively. But A �
j D �Aj entry-wise and both Aj are diagonalisable with

rational eigenvalues, so A �
j is conjugate to Aj (as it has the identical eigenvalue

multiplicities).
To generalise to arbitrary weight w, it is clear from Lemma 3.1 that

.�w=12/� .�/ D ��w=12.�/. Any fundamental matrix in weight w is �w=12.�/ times
one in weight 0.

Finally, if X.�/ 2M Š
w.�/, then there exists a polynomial p.J / 2 C

d ŒJ � such that
X.�/ D �.�/p.J.�//, so X

� .�/ D ��.�/p.J.�//� . Since � fixes the coefficients
of J.�/, X� .�/ manifestly lies in M Š

�w.�
� /.

Now turn to (b). Suppose first that there is some entry ii 62 QX. Then there
exists some field automorphism � of C fixing QX but with ı WD �ii �ii nonzero
(see e.g. [1] for a proof of why such a � exists).

From part (a), X� .�/ 2 M Š
�w.�

� /. Then X
� .�/ D q��

X.�/. Choose any

� D
�
a
c
b
d 0

	
2 � with c ¤ 0 (because � is Fuchsian of the first kind it will have

many such � ). Then � 7! �1=� gives

S�X� .�/ D �w��w exp.�2� i.� �/=�/ S X.�/ : (54)

Write f .�/; g.�/ 2 F for the i th entry of SX and of S�X� .�/, respectively.
Because the entries of X are linearly independent, f (and also g) must be nonzero.
Write w0 D w � �w. By (54), g.�/ D �w0

exp.�2� iı=�/ g.�/. Then like all
entries of S�X� .�/, g.�/ is killed by the order-d differential operator LS�X� DP Qhl.�/

�
d

2� id�

�l
obtained from Lemma 2.2(b) by expanding out each Dl

�w; note

that each Qhl.�/ 2 qv
CŒŒq�� for some v 2 C, being a combination of the modular

forms hl.�/ of Lemma 2.2(b) and various derivatives of E2.�/. The product rule
and induction on l gives

�
d

2� id�

�l
g.�/ D �w0

exp.�2� i ı=�/
lX

kD0

pl;k.�/

�2l�2k

�
d

2� id�

�k
f .�/ ; (55)
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where pl;k.�/ is a polynomial in � of degree	 l�k and pl;0.�/ has nonzero constant
term .2� iı/l�k . Multiplying LS�X� g D 0 by �2d ��w0

exp.2� iı=�/, we obtain

dX

lD0
Qhl.�/

lX

kD0
�2kpl;k.�/

�
d

2� id�

�k
f .�/ D 0 : (56)

Now, the derivatives
�

d
2� id�

�k
f .�/ are manifestly q-series (i.e. functions in F

where the polynomial parts pi .�/ are all constant), so we see from Lemma 3.2 that
(regarding (56) as a polynomial in � with q-series coefficients) the �0 coefficient
of (56) must itself vanish. This is simply Qhd .�/ .2� iı/df .�/ D 0, where Qhd .�/ D
Wr.X� /.�/ ¤ 0 by Lemma 2.2(a). This forces ı D 0, i.e. �ii D ii.

Therefore all entries ii must lie in QX. Suppose now that the weight w doesn’t
lie in QX, and as above choose a field automorphism � of C fixing QX but with
�w � w 62 Z (if w lies in an algebraic extension of QX then this is automatic, while
if w lies in a transcendental extension we can select �w to likewise be an arbitrary
transcendental). The remainder of the argument is as above: pl;k.�/

�2l�2k
in (55) is now

replaced with cl;k
� l�k

for some cl;k 2 C, and cl;0 D w0.w0 � 1/ � � � .w0 � l C 1// ¤ 0.

Multiplying LS�X� g D 0 by �d ��w0

, we see that Qhd .�/cd;0f .�/ D 0, likewise
impossible unless w 2 QX. ut

The obvious Galois action on representations, namely .��/.�/ij D �.�.�/ij/,
is unrelated to this �� . It would be interesting though to understand the relation
between the vvmf of �� and those of �.

For vvmf with rank-1 multipliers, we have T � D e2� i��, e� i�w=2S� D e� iw=3S ,
and e2� i�w=3U � D e2� iw=3U . When the rank d is greater than 1, however, the precise
formula for S� and U� is delicate. For example, we learn in Sect. 4.2 that when
d D 2, the explicit relation between S� and S involves the relation between the
Gamma function values � .�11/ and � .11/.

The next result is formulated in terms of certain modules K . One important
example is K D KŒq�1; q�� for any subfield K of C. Another example is the subset
K of f 2 QŒŒq�� with bounded denominator, i.e. for which there is an N 2 Z>0

such that Nf 2 ZŒŒq��. Both examples satisfy all conditions of Proposition 3.6.
This latter example can be refined in several ways, e.g. by fixing from the start a
set P of primes and requiring that the powers of the primes in P appearing in the
denominators be bounded, but primes p 62 P be unconstrained.

Proposition 3.6. Suppose .�;w/ is admissible, � is irreducible and T is diagonal,
and choose any exponent �. Let K be any subfield of C and let K � KŒq�1; q�� be
any module over both K and ZŒq�1; q�� (where both of these act by multiplication),
such that d

dqK � K . Let M Š K
w .�/ denote the intersection M Š

w.�/ \ q�K . Then
the following are equivalent:

(i) M Š K
w .�/ ¤ 0;

(ii) M Š K
wC2k.�/ ¤ 0 for all k 2 Z;
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(iii) span
C

M Š K
w .�/ DM Š

w.�/;
(iv) for any bijective exponent , all entries �ij.�/ of the corresponding funda-

mental matrix �.�/ lie in qiiK ;
(v) for any exponent �, the space span

C

�
M �.�/ \ q�K � DM �.�/.

Proof. Assume (i) holds, and choose any nonzero X.�/ 2 M Š K
w .�/. Then

�hEi
4E

j
6X 2 q�K for any h 2 Z and i; j 2 Z�0, which gives us (ii). That �

is irreducible forces the components of X.�/ to be linearly independent over C.
Then Proposition 3.5 would require all w; �ii 2 K, and hence q�K d is mapped
into itself by rw0;i for any w0 2 w C 2Z. Moreover, Proposition 3.2 applies
and M Š

w.�/ D CŒJ;r1;r2;r3�X, which gives us (iii). Let  be any bijective
exponent. Then each column of�.�/ will be a linear combination over C of finitely
many vvmf in M Š K

w .�/; but all of these vectors are uniquely determined by their
principal parts P, which are all in K

d Œq�1�, so that linear combination must have
a solution over the field K. This gives us (iv). To get (v), note that in the proof of
Theorem 3.4(a) we may choose our X.i/.�/ to lie in q�K , since all we require of
them is a linear independence condition. ut

This proposition is relevant to the study of modular forms for noncongruence
subgroups of � . A conjecture attributed to Atkin–Swinnerton-Dyer [2] states that
a (scalar) modular form for some subgroup of � will have bounded denominator
only if it is a modular form for some congruence subgroup. More generally, it is
expected that a vvmf X.�/ for � , with entries Xi .�/ linearly independent over C
and with coefficients X.n/ i all in Q, will have bounded denominators only if its
weight w lies in 1

2
Z and the kernel of %�w ˝ � is a congruence subgroup. If the

kernel is of infinite index, then it is expected that infinitely many distinct primes
will appear in denominators of coefficients.

3.7 Extensions of Modules and Exactness

If � is a direct sum �0 ˚ �00, then trivially its vvmf are comprised of those of �0 and
�00. But what if � is a semi-direct sum or a more general extension?

Consider a short exact sequence

0! U

! V

�! W ! 0 (57)

of finite-dimensional � -modules. We can consider an action at arbitrary weight by

tensoring with %w. Choose a basis for V in which �V D
�
�U
0

�
�W

	
. In terms of this

basis, XV 2 M Š
w.�V / implies XV D

�
XU

XW

	
where XW 2 M Š

w.�W /, and
�
XU

0

	
2

M Š
w.�V / iff XU 2 M Š

w.�U /. In terms of this basis we have the natural embedding


0.XU / D
�
XU

0

	
and projection � 0

�
XU

XW

	
D XW . We write (57) as �V D �U 3 �W

even when it’s not semi-direct.
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The fundamental objects in the theory of vvmf are the functors .�;w/ 7!M Š
w.�/,

.�;wI�/ 7!M �
w .�/ and .�; �/ 7!M �.�/, attaching spaces of vvmf to multipliers,

weights and exponents. Marks–Mason [22] suggest considering the effects of these
functors on (57). It is elementary that they are left-exact, i.e. that �V D �U 3 �W
trivially implies

0!M �U
w .�U /


0!M �V
w .�V /

� 0

!M �W
w .�W / (58)

and similarly for M Š
w etc. However [22] found 1-dimensional U and W such that

the functor � 7!M �hol
.�/ is not right-exact.

Thanks to Theorem 3.5, we can generalise and quantify this discrepancy. We
thank Geoff Mason for suggesting the naturalness of explaining the failure of right-
exactness with a long exact sequence.

Theorem 3.6. Write �V D �U 3 �W as in (57), and suppose .�V ;w/ is admissible
and TV diagonal. Choose any exponent �V D diag.�U ; �W /. Then we obtain the
exact sequences of C-spaces

0!M Š
w.�U /


0!M Š
w.�V /

� 0

!M Š
w.�W /! 0 ; (59)

0!MU


0!MV

� 0

!MW

ı! coker PU Š .MU�/�
� 00�! .MV ?/

� 
00�! .MW �/� ! 0

(60)

where we write PU DP�U�1dU I.�U ;w/, MU DM �U
w .�U /, MU� DM

1dU ��U
2�w .��

U /

etc. 
00� and � 00� are restrictions of the dual (transpose) maps. The isomorphism
in (60) is (50), and the connecting map ı is defined in the proof. Moreover, for any
bijective exponents U of .�U ;w/ and W of .�W ;w/, diag.U ;W / is bijective
for .�V ;w/.

Proof. First let’s prove (59). Let M Š
V ;M

Š
U ;M

Š
W denote M Š

w.�V /;M
Š
w.�U /;M

Š
w.�W /

respectively. Choose any bijective exponents U ;W and define V D
diag.U ;W /, P 0

V ;P
0
U ;P

0
W for PV etc. If

�
XU

XW

	
2 ker P 0

V , then XW .�/ 2
ker P 0

W and hence XW .�/ D 0 because W is bijective. This means XU .�/ 2M Š
U ,

so also XU .�/ 2 ker P 0
U and XU .�/ D 0 because U is bijective. Therefore P 0

V

is injective. From the first line of (25) we know c.�V ;w/ D c.�U ;w/ C c.�W ;w/ (since
TrSV D TrSU C TrSW etc); the index formula (24) then implies coker P 0

V D 0

and hence V is bijective. In order to establish (59), only the surjectivity of � 0
needs to be shown, but this follows from the surjectivity of P 0

V together with the
injectivity of P 0

W .
Now let’s turn to (60). Most of this exactness again comes from (58): the dual

of 0 ! MW � ! MV � ! MU� gives the second half of (60). The connecting
map ı is defined as follows. Given any XW 2 MW , exactness of (59) says that
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there is an XU , unique mod M Š
U , such that

�
XU

XW

	
2 M Š

V . The connecting map

ı W MW ! coker PU sends XW to PU .XU /C Im PU . Exactness at MW is now

clear: if XW 2 ker ı then PU .XU / DPU .X
0
U / for some X

0
U 2MU , so

�
X

0
U
0

	
and

hence
�
XU�X

0
U

XW

	
both lie in M Š

V . However the latter manifestly lies in the kernel

of PV , so XW D � 0
�
XU�X

0
U

XW

	
as desired. To see exactness at � 00�, suppose fU 2

ker� 00�. Then fU is a functional on MU� and the associated functional
�

YU

YW

	
7!

fU .YU / on MV � is 0. Thanks to (50), these functionals can be expressed as YU 7!
hP0

U ;YU i and
�

YU

YW

	
7! h

�
PU

PW

	
;
�

YU

YW

	
i for some P

0
U .�/ 2 C

dU Œq�1� and
�

PU

PW

	
2

C
dUCdW Œq�1�. The independence of the functional on YW means PW .�/ D 0, so we

can take PU .�/ D P
0
U .�/. That the functional on MV � is 0 means (again from (50))

that
�
PU

0

	
D PV

�
XU

XW

	
for some

�
XU

XW

	
2 M Š

V . Moreover, XW .�/ 2 MW , so

PU D ı.XW /, as desired. ut
Theorem 3.6 allows us to classify all bijective V . These are given by all

exponents diag .�U ; �W / such that P�U is injective, P�W is surjective, and the
connecting map ı W ker P�W ! coker P�U is an isomorphism.

We can now quantify the failure of M �.�/ to be exact. For each fixed w, the
discrepancy is

dim MU C dim MW � dim MV D dim Im ı : (61)

For w � 0, M �
w .�W / D 0 so ı D 0 and the discrepancy is 0, while for w � 2,

then M
1dU ��hol

2�w .��
U / D 0 so again ı D 0 and the discrepancy is 0. Thus the total

discrepancy, summed over all w, is finite.
Let us recover in our picture the calculation in Theorem 4 of [22]. Take � D �hol.

Consider �V of the form %2a 3 %2b , where as always %j has T D e2� ij=12. Then
Theorem 4 of [22] says �V can be indecomposable iff ja � bj D 1. As above, if
w < 0 then MW D 0 while if w � 2 then MU� D 0, so only at w D 0 can
ı ¤ 0. We find that w D 0 and MW ;MU� ¤ 0 forces b D 0 and a D 5, in
which case ı W C ! C. Now, a bijective exponent for .�V ; 0/ is diag .� 7

6
; 0/ by

Theorem 3.6 (and Sect. 4.1 below), so there must be a XU .�/ 2 q�1=6P1
nD0 cnqn

such that
�
XU

1

	
2 M Š

V , by surjectivity. Indeed, ı.1/ D PU .XU / D c0. If c0 D 0

then the Wronskian of
�
c1q

5=6C���
1

	
will be a nonzero holomorphic modular form

cq5=6 C � � � of weight 2 (the Wronskian is nonzero because �V is indecomposable).
This is impossible (e.g. ��20 times it would also be holomorphic but with trivial
multiplier and weight �8). Therefore c0 ¤ 0, so ı ¤ 0 and the total discrepancy is
1-dimensional.
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4 Effectiveness of the Theory

Explicit computations within our theory are completely feasible. Recall from
Theorem 3.3 that we have complete and explicit knowledge of the space M Š

w.�/

of weakly holomorphic vvmf, if we know the diagonal matrix  and the complex
matrix X . We know Tr, and generically any matrix with the right trace and with
e2� i D T is a bijective exponent. This X can be obtained in principle from � and
 using the Rademacher expansion (see e.g. [12]). However this series expansion
for X converges notoriously slowly, and obscures any properties of X that may
be present (e.g. integrality). Hence other methods are needed for identifying X .
In this section we provide several examples, illustrating some of the ideas available.
See [4, 5] for further techniques and examples.

4.1 One Dimension

It is trivial to solve the d D 1 case [5]. Here, � D %u, and u 2 C, 0 	 Re u < 1, and
the weight w is required to be w 2 12u C 2Z. Write w D 12u C 2j C 12n where
0 	 j 	 5 and n 2 Z; then for j D 0; 1; 2; 3; 4; 5 resp., the fundamental matrix
�.�/ for M Š

12uC2jC12n.%u/ is (recall Lemma 3.1):

�uCn.�/ ; �uCn�1.�/E14.�/ ; �uCn.�/E4.�/ ;

�uCn.�/E6.�/ ; �uCn.�/E8.�/ ; �uCn.�/E10.�/ ;

respectively, where E8 D E2
4 , E10 D E4E6 and E14 D E2

4E6. The unique
free generator of M �hol

.%u/ is �u.�/. This means that dim M �hol

w .%u/ equals
the dimension of the weight w � 12u subspace of m, assuming as above that
0 	 Re u < 1.

4.2 Two Dimensions

Much more interesting is d D 2 (see e.g. [24, 34]). Let’s start with weakly
holomorphic. As usual, it suffices to consider weight w D 0. We continue to require
that T be diagonal, although we give a ‘logarithmic’ example shortly.

The moduli space of equivalence classes of 2-dimensional representations of �
consists of 15 isolated points, together with 3 half-planes. Each half-plane has four
singularities: two conical singularities and two triple points. The equivalence classes
of irreducible representations with T diagonalisable correspond bijectively with the
regular points on the three half-planes. The 15 isolated points are all direct sums
�1˚ �2 of 1-dimensional representations which violate the inequalities (8), and can
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be recovered from the 1-dimensional solution. Each conical singularity corresponds
to an irreducible ‘logarithmic’ representation with T nondiagonalisable. Each triple
point consists of a direct sum � ˚ �0 as well as the semi-direct sums �3 �0 and
�0 3 �. In all cases except the six triple points, the set of eigenvalues of T uniquely
determine the representation. The three half-planes correspond to the three different
choices of .˛i ; ˇj / possible at d D 2.

More explicitly, one half-plane has detT D �6 DW �:

T D
�

z 0

0 �z�1
�
; S D

0

@
N�z

z2�� y

.z2�1/.z2��2/
y.z2��/2 � N�z

z2��

1

A ; (62)

for arbitrary y; z 2 C provided y ¤ 0 and z 62 f0;˙�12g. This will be irreducible
iff z 62 f˙1;˙�g. The redundant parameter y is introduced for later convenience.
Irreducible �; �0 with z; z0 related by .zz0/2 D � are naturally isomorphic. Here,
˛1 D ˇ0 D ˇ1 D 1, so Tr D � 5

6
and  D diag.t;� 5

6
� t / where z D e2� it for

some t 6
 1
12
; 7
12

(mod 1). Then Theorem 3.3(c) tells us

X D
 
24

t.60t�11/
12tC5 10368x

t.2tC1/.3tC1/.6tC5/
.12tC11/.12tC5/2

10368
x.12t�1/ �4 .6tC5/.60tC61/

12tC5

!
; (63)

for some x ¤ 0 to be determined shortly. Equation (33) is ideally suited to relate x
and y, since at d D 2 it reduces to the classical hypergeometric equation. We read
off from it the fundamental matrix

�.z.�// D
�

f .t I 5
6
I z.�// X12f .t C 1I 56 I z.�//

X21f .
1
6
� t I 5

6
I z.�// f .� 5

6
� t I 5

6
I z/

�
(64)

for z.�/ D J.�/=1728, where we write

f .aI cI z/ D .�1728z/�aF.a; aC 1

2
I 2aC cI z�1/ (65)

for F.a; bI cI z/ D 1 C ab
c

z C � � � the hypergeometric series. Substituting z.�/ D
J.�/=1;728 directly into (65) and (64) gives the q-expansion of � . The parameters
x; y appearing in S and X can be related by the standard analytic continuation of
F.a; bI cI z/ from z � 0 to z �1, which implies

f .aI cI z/ D .1728/�a
( p

�� .2aC c/
� .aC 1

2
/ � .aC c/ �

2
p
�� .2aC c/

� .a/ � .aC c � 1
2
/
z1=2 C � � �

)

(66)
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for small jzj. Hence

y D
p
3x

1728

22=3

4322t

� .2t C 5
6
/2

� .2t/ � .2t C 2
3
/
: (67)

In particular, we see that when � is irreducible,  is bijective for a Z worth of t ’s
(i.e. the necessary conditions e2� i D T and Tr D � 5

6
are also sufficient)—at

the end of Sect. 3.4 we called such � tight. This fact is generalised in Theorem 4.1
below. There are four indecomposable but reducible � here:

z D 1: this � is the extension 13 %2 of 1 (the subrepresentation) with %2 (the
quotient); in this case  D diag.t;� 5

6
� t / is bijective iff t 2 Z�0;

z D �1: here, � D %6 3 %8; its  is bijective iff t 2 � 1
2
C Z�0;

z D �: here, � D %2 3 1; its  is bijective iff t 2 � 5
6
C Z�0;

z D ��: here, � D %8 3 %6; its  is bijective iff t 2 � 1
3
C Z�0.

These restrictions on t are needed to avoid the Gamma function poles in (67).
Nevertheless, the ‘missing’ values of t (apart from the forbidden t 
 1

12
(mod 1

2
))

are all accounted for: For example, the limit t ! 0 with x D t�1=2; 1; t�1 recovers
S;X etc for 1˚ %2, 1 3 %2, 1 3 %2, respectively.

The free generators over m of M �hol
.�/ for these � are now easy to find. Fix

0 	 Re t < 1, and note that �hol D diag.t; 1
6
� t / when Re t 	 1

6
, and otherwise

�hol D diag.t; 7
6
� t / .Consider first the case where � is irreducible; then � is tight

and Proposition 3.3(b) tells us dim M �hol

w .�/ for all w < 0. In particular, if Re t 	 1
6

then w.1/ D 0 and w.2/ D 2, and X
.1/.�/ is the first column of �.�/ given above; if

instead Re t > 1
6

then w.i/ D 6; 8, X.1/.�/ is the first column of �.�/ at w D 6 for
 D diag.t; 1

6
� t /. In both cases, X.2/.�/ D DX

.1/.�/.
The holomorphic vvmf for the 2-dimensional indecomposable representations

was discussed at the end of Sect. 3.7, and we find that for our four such �,
dim M �hol

w .%2a 3 %2b/ D dim M �hol

w .%2a/ C dim M �hol

w .%2b/. The 1-dimensional
case was worked out in Sect. 4.1, and we find that in all cases fw.1/;w.2/g D f2a; 2bg
with X

.i/.�/ given by the appropriate column of the fundamental matrix at w D 2a
and 2b respectively.

The choice z D ˙�, i.e. t 
 1
12

(mod 1
2
), corresponds here to two logarithmic

representations. Consider for concreteness z D �12. A weakly holomorphic vvmf for
it is �.�/2

�
�
1

�
. This generates all of M Š

0, using CŒJ � and the differential operators
ri ; together with

q1=12
�
� iq�1 � 242� iC .�140965� i � 55440�/q C � � �

�55440q C � � �
�

it freely generates M Š
0 over CŒJ �. The five other 2-dimensional logarithmic repre-

sentations correspond to this one tensored with a � character. The free basis for
holomorphic vvmf is �.�/2

�
�
1

�
and its derivative.
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We can see the Galois action of Sect. 3.6 explicitly here: � takes t 7! �t and
x 7! �x, and it keeps one inside this connected component.

Another class of two-dimensional representations has detT D �1:

T D
�

z 0

0 �z�1
�
; S D

 �z
z2C1 y

z4Cz2C1
y.z2C1/2

z
z2C1

!
; (68)

for arbitrary y; z 2 C provided y ¤ 0, z 62 f0;˙ig. Irreducibility requires z 62
f˙�;˙�g. Irreducible � with zz0 D �1 are isomorphic. Here, ˛1 D ˇ1 D ˇ2 D 1,
so Tr D � 3

2
and  D diag.t;� 3

2
� t / for z D e2� it and some t 6
 ˙ 1

4
(mod 1).

Then as before

X D
 
2420t

2C51tC32
4tC3

384x.3tC2/.3tC1/.6tC5/.6tC7/
.4tC5/.4tC3/2

384
x.4tC1/ �1240t2C18tC1

4tC3

!
; (69)

�.z/ D z1=3
�

f .t C 1
3
I 5
6
I z/ X12f .t C 4

3
I 5
6
I z/

X21f .� 16 � t I 56 I z/ f .�t � 7
6
I 5
6
I z/

�
; (70)

y D x
p
3

6912 4322t

� .2t C 3
2
/2

� .2t C 4
3
/ � .2t C 2

3
/
: (71)

Again, for irreducible �, any possible t yields bijective. The four indecomposable
but reducible � are:

z D �: here, � D %2 3 %4 and  is bijective iff t 2 � 5
6
C Z�0;

z D ��: here � D %8 3 %10 and  is bijective iff t 2 � 1
3
C Z�0;

z D �: here, � D %10 3 %8 and  is bijective iff t 2 5
6
C Z�0;

z D ��: here � D %4 3 %2 and  is bijective iff t 2 4
3
C Z�0.

Again the ‘missing’ t correspond to other reducible �.
The holomorphic analysis is identical to before. Here Tr�hol D 1

2
or 3

2
, depending

on whether or not Re t 	 1
2
. In the former case w.i/ D .2; 4/, and in the latter it

equals (8,10). X.i/.�/ is as before. The indecomposable � behave exactly as before.
The final class of two-dimensional representations has detT D �:

T D
�

z 0

0 �z�1
�
; S D

0

@
�z

z2�� y

.z2�1/.zC�/.z��/
y.z2��/2

��z
z2��

1

A ; (72)

for arbitrary y; z 2 C provided y ¤ 0, z 62 f0;˙e�� i=6g. Irreducibility requires z 62
f˙1;˙�g; irreducible � related by zz0 D � are equivalent. Here, ˛1 D ˇ0 D ˇ2 D 1,
so Tr D � 7

6
and  D diag.t;� 7

6
� t / for some t satisfying z D e2� it . Then
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X D
 
24

t.60tC71/
12tC7

10368xt.2tC1/.3tC2/.6tC7/
.12tC13/.12tC7/2

10368
x.12tC1/ �4 .6tC7/.60t�1/

12tC7

!
; (73)

�.z/ D
�

f .t I 7
6
I z/ X12f .t C 1I 76 I z/ ;

X21f .� 16 � t I 76 I z/ f .�t � 7
6
I 7
6
I z/

�
(74)

y D x
p
3 21=3

10368 4322t

� .2t C 7
6
/2

� .2t/ � .2t C 4
3
/
: (75)

Again, for irreducible �, any possible t yields bijective. The four indecomposable
but reducible � are:

z D 1: then � D 13 %10 and  is bijective iff t 2 Z�0;
z D �1: then � D %6 3 %4 and  is bijective iff t 2 � 1

2
C Z�0;

z D �: then � D %10 3 1 and  is bijective iff t 2 5
6
C Z�0;

z D ��: then � D %4 3 %6 and  is bijective iff t 2 4
3
C Z�0.

Again the ‘missing’ t correspond to the other reducible �.
The holomorphic story for irreducible � is as before. Here Tr�hol D 5

6
or 11

6

depending on whether or not Re t 	 5
6
. This means w.i/ will equal (4,6) or (10,12),

respectively. The only new phenomenon here is the indecomposable at z D �:
at the end of Sect. 3.7 we learned that dim M �hol

0 .%10 3 1/ is 0, not 1. We find
w.i/ D .4; 6/.

The �hol-holomorphic two-dimensional theory is also studied in [24], though
without quantifying the relation between Fourier coefficients and the matrix S (i.e.
his statements are only basis-independent), which as we see involves the Gamma
function. Our two-dimensional story can be extended to any triangle group [3].

4.3 vvmf in Dimensions < 6

Trivially, the spaces of vvmf for an arbitrary � are direct sums of those for its
indecomposable summands. Theorem 3.6 reduces understanding the vvmf for an
indecomposable �, to those of its irreducible constituents. In this section we prove
any admissible .�;w/ is tight, provided � is irreducible and of dimension < 6

(recall the definition of tight at the end of Sect. 3.4). This means in dimension < 6

we get all kinds of things for free (see Proposition 3.3), including identifying the
Hilbert–Poincaré series H�.xI �/. These series were first computed in [21], for the
special case of exponent � D �hol, when T is unitary, and the representation � is
what Marks calls T-determined, which means that any indecomposable �0 with the
same T -matrix is isomorphic to �. It turns out that most � are T -determined. We will
see this hypothesis is unnecessary, and we can recover and generalise his results
with much less effort. The key observation is the following, which is of independent
interest:
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Theorem 4.1. Let .�;w/ be admissible and T diagonal. Assume � is irreducible
and the dimension d < 6. Then � is tight: an exponent � is bijective for .�;wC 2k/
iff Tr� D c.�;wC2k/.

Proof. The case d D 1 is trivial, and d D 2 is explicit in Sect. 4.2, so it suffices
to consider d D 3; 4; 5. Without loss of generality (by tensoring with %�w) we
may assume � is a true representation of � , i.e. that .�; 0/ is admissible. Let
˛i D ˛i .�; 0/, ˇj D ˇj .�; 0/. Let X

.i/.�/ be the free generators which exist
by Theorem 3.4(a), and let w.1/ 	 � � � 	 w.d/ be their weights. We will have
shown that � is tight, if we can show that these w.i/ agree with those in the tight
Hilbert–Poincaré series (44). This is because this would require all dim M �

wC2k.�/
to equal that predicted by Htt.x/, as given in Proposition 3.3, and that says � will
be bijective iff � has the correct trace. In fact it suffices to verify that the values of
w.i/ � w.1/ match the numerator of (44), as the value of

P
i w.i/ would then also fix

w.1/.
Let ni be the total number of generators X.i/.�/ with weight w.i/ 
 2i (mod 12).

By Theorem 3.4(b) we know
P

i ni D d , ni C n2Ci C n4Ci D ˛i , nj C n3Cj D ˇj
for all i; j . These have solutions

.n0; n1; n2; n3; n4; n5/ D .˛0 � ˇ2 C t � s; ˇ1 � s; ˇ2 � t; s � t C ˛1 � ˇ1; s; t/
(76)

for parameters s; t .
Consider first d D 3. The inequalities (8) force ˇi D 1 and f˛0; ˛1g D f1; 2g.

By Proposition 3.3(a), we can assume without loss of generality (hitting with %6
if necessary) that ˛1 D 2. Then the only nonnegative solutions to (76) are .ni / D
.0; 1; 1; 1; 0; 0/; .1; 1; 0; 0; 0; 1/; .0; 0; 0; 1; 1; 1/. From (26) we see L WD Tr� 2 Z.
Theorem 3.4(b) says

P
i w.i/ D 12L. The inequality (42) requires w.1/ D 4L�2, so

the only possibility consistent with the given values of ni together with
P

i w.i/ D
12L is .w.i// D .4L � 2; 4L; 4LC 2/, which is the prediction of (44).

Consider next d D 4. As before we may assume .ˇi / D .2; 1; 1/ and .˛i / D
.2; 2/. Then (76) forces .ni / D .1; 1; 1; 1; 0; 0/; .1; 0; 0; 1; 1; 1; 1/; .2; 1; 0; 0; 0; 1/;

.0; 0; 1; 2; 1; 0/. Again L WD Tr� 2 Z and
P

i w.i/ D 12L, and (42) forces w.1/ 2
f3L � 3; 3L � 1g (if L is odd) or w.1/ 2 f3L � 2; 3Lg (if L is even).

We claim for each L there is a unique possibility for the w.i/ which is compatible
with

P
i w.i/ D 12L, the listed possibilities for .ni /, the two possible values for w.1/

given above, and the absence of a ‘gap’ in the sense of (46). When L is even this is
.w.i// D .3L � 2; 3L; 3L; 3LC 2/; when L is odd this is .w.i// D .3L � 3; 3L �
1; 3LC 1; 3LC 3/. These match (44).

Finally, consider d D 5. We may take .ˇi / D .1; 2; 2/ and .˛i / D .3; 2/, so

.ni / 2 f.1; 2; 2; 0; 0; 0/; .1; 1; 1; 0; 1; 1/;
.1; 0; 0; 0; 2; 2/; .0; 1; 2; 1; 1; 0/; .0; 0; 1; 1; 2; 1/g ; (77)

L WD Tr� 2 Z and
P

i w.i/ D 12L.
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If L D 5L0, then (42) forces w.1/ D 12L0 � 4 or 12L0 � 2. We find the only
possible value of w.i/ is .12L0 � 4; 12L0 � 2; 12L0; 12L0 C 2; 12L0 C 4/.

If L D 5L0 C 1, then (42) forces w.1/ D 12L0. We find the only possible value
of w.i/ is .12L0; 12L0 C 2; 12L0 C 2; 12L0 C 4; 12L0 C 4/.

If L D 5L0C 2, then (42) forces w.1/ D 12L0C 2 or 12L0C 4. We find the only
possible value of w.i/ is .12L0 C 2; 12L0 C 4; 12L0 C 4; 12L0 C 6; 12L0 C 8/.

If L D 5L0C 3, then (42) forces w.1/ D 12L0C 4 or 12L0C 6. We find the only
possible value of w.i/ is .12L0 C 4; 12L0 C 6; 12L0 C 8; 12L0 C 8; 12L0 C 10/.

If L D 5L0C 4, then (42) forces w.1/ D 12L0C 6 or 12L0C 8. We find the only
possible value of w.i/ is .12L0 C 8; 12L0 C 8; 12L0 C 10; 12L0 C 10; 12L0 C 12/.

All of these agree with (44). ut
Proposition 3.3 gives some consequences of tightness.

4.4 Further Remarks

Now let’s turn to more general statements. The simplest way to change the weight
w has already been alluded to in several places. Namely, suppose we are given any
admissible multiplier system .�;w/ with bijective  and fundamental matrix �.�/.
Recall the multiplier %w of �w.�/. Then for any w0 2 C, .%w0 ˝ �;w C 12w0/ is
admissible, with bijective and fundamental matrices C w01d , and �w0

� .
Suppose bijective ;0 with corresponding fundamental matrices �.�/;� 0.�/

are known for admissible .�;w/ and .�0;w0/. Then the dd 0 columns of the
Kronecker matrix product �.�/ ˝ � 0.�/ will manifestly lie in M Š

wCw0.� ˝ �0/,
and will generate over CŒJ � a full rank submodule of it. By Proposition 3.2 the
differential operators ri then generate from that submodule all of M Š

wCw0.� ˝ �0/.
In that way, bijective exponents and fundamental matrices for tensor products (and
their submodules) can be obtained.

The easiest and most important products involve the six one-dimensional
� -representations %2i . Here we can be much more explicit. Equivalently, we can
describe the effect of changing the weights by even integers but keeping the same
representation. For simplicity we restrict to even integer weights.

Proposition 4.1. Let .�; 0/ be admissible and T diagonal. Fix a bijective ,
with corresponding �.�/. Then for i D 2; 3; 4; 5 respectively, the columns for a
fundamental matrix for .�; 2i/ can be obtained as a linear combination over C of
the columns of, respectively,:

(2) E4� D q.1d C� � � /, D2� �E4�.� 1
6
/ D q.1728A3.A3� 1

3
/qC� � � / ;

(3) E6� D q.1d C � � � /, E4D� �E6� D q.1728A2q C � � � / ;
(4) E2

4� D q.1d C � � � /, E6D� �E2
4� D q.1728A3q C � � � / ;

(5) E4E6� D q.1d C � � � /, E4 .E4D� �E6�/ D q.1728A2q C � � � /,
E6
�
D2� �E4�. � 1

6
/
� D q.1728A3.A3 � 1

3
/q C � � � / .
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Proof. Let ˛i D ˛i .�;w/ and ˇj D ˇj .�;w/, and write .i/ for some to-be-
determined bijective exponent at weight wC 2i . Then Tr..i//�Tr./ can be read
off from (30). Consider first the case i D 5. Theorem 3.3(c) says A3.A3 � 1

3
/ has

rank ˇ2, while A2 has rank ˛1. The column spaces of the second and third matrices
given above for i D 5 have trivial intersection, since any X.�/ in their intersection
will be a vvmf for .�;wC2/ which would be divisible by E4.�/2E6.�/. This would
mean E14.�/�1�.�/X.�/ 2M Š

w.�/ would lie in the kernel of P, so by bijectivity
X.�/ must be 0. The desired generators will be linear combinations of ˛1 columns
of the second matrix with ˇ1 of the third and d � ˇ1 � ˛1 of the first. These would
define a matrix �.5/.�/ whose .5/ has the correct trace, and therefore it must be a
fundamental matrix (since its principal part map P.5/ is manifestly surjective).

The other cases listed are easier. ut
In all these cases 2 	 i 	 6, Proposition 4.1 finds a bijective exponent .i/ such

that .i/ � consists of 0’s and 1’s (for i D 6, .6/ D C 1d always works).
The case i D 1 is slightly more subtle. Note that a fundamental matrix for

w C 2i C 12j is �.�/j times that for w C 2i . So one way to do i D 1 is
to first find i D 4, then find the i D 3 from w C 8, then divide by �.�/.
Here is a more direct approach: almost always, the columns of the fundamental
matrix for i D 1 is a linear combination over C of the columns of M1.�/ WD
D� , M2.�/ WD E2

4 .E4D� �E6�/ =� D q.1728A2 C � � � /, and M3.�/ WD
.E2

6D� � E2
4E6�/=� D q.�1728A3 C � � � /. Indeed, take any v 2 Null.A2 �

1
2
/ \ Null.A3 � 1

3
/.A3 � 2

3
/. That intersection has dimension at least ˛1 � ˇ0,

because Null.A2 � 1
2
/ has dimension ˛1 and Null.A3 � i

3
/ has dimension ˇi .

Then M2v D q.v=2 C � � � / and M3v D q.j v=3 C � � � / where j D 1 or 2, so
2jM2.�/v � 3M3.�/v 2 q.C 1d /Cd ŒŒq��. Generically, this gives ˛1 � ˇ0 linearly
independent vvmf, which together with d �˛1Cˇ0 columns ofM1.�/ will give the
columns of the i D 1 fundamental matrix. This method doesn’t work for all �, e.g.
it fails for � D 1.
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Yangian Characters and Classical W -Algebras

A.I. Molev and E.E. Mukhin

Abstract The Yangian characters (or q-characters) are known to be closely related
to the classical W -algebras and to the centers of the affine vertex algebras at
the critical level. We make this relationship more explicit by producing families
of generators of the W -algebras from the characters of the Kirillov–Reshetikhin
modules associated with multiples of the first fundamental weight in types B
and D and of the fundamental modules in type C . We also give an independent
derivation of the character formulas for these representations in the context of the
RT T presentation of the Yangians. In all cases the generators of the W -algebras
correspond to the recently constructed elements of the Feigin–Frenkel centers via
an affine version of the Harish-Chandra isomorphism.

1 Introduction

1.1 Affine Harish-Chandra Isomorphism

Let g be a simple Lie algebra over C . Choose a Cartan subalgebra h of g and
a triangular decomposition g D n� ˚ h ˚ nC. Recall that the Harish-Chandra
homomorphism

U.g/h ! U.h/ (1)
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is the projection of the h-centralizer U.g/h in the universal enveloping algebra to
U.h/ whose kernel is the two-sided ideal U.g/h \ U.g/nC. The restriction of the
homomorphism (1) to the center Z.g/ of U.g/ yields an isomorphism

Z.g/! U.h/W (2)

called the Harish-Chandra isomorphism, where U.h/W denotes the subalgebra of
invariants in U.h/ with respect to an action of the Weyl group W of g; see e.g. [7,
Sect. 7.4].

In this paper we will be concerned with an affine version of the isomorphism (2).
Consider the affine Kac–Moody algebra Og which is the central extension

Og D g Œt; t�1�˚ CK;

where gŒt; t�1� is the Lie algebra of Laurent polynomials in t with coefficients in g.
We have a natural analogue of the homomorphism (1),

U
�
t�1gŒt�1�

�h ! U
�
t�1hŒt�1�

�
: (3)

The vacuum module V�h_.g/ at the critical level over Og is defined as the quotient
of the universal enveloping algebra U.Og/ by the left ideal generated by gŒt � and
K C h_, where h_ denotes the dual Coxeter number for g. The vacuum module
V�h_.g/ possesses a vertex algebra structure; see e.g. [11, Chap. 2]. The center of
this vertex algebra is defined by

z.Og/ D fS 2 V�h_.g/ j gŒt � S D 0g;

its elements are called Segal–Sugawara vectors. The center is a commutative
associative algebra which can be regarded as a subalgebra of U

�
t�1gŒt�1�

�h
. By

the results of Feigin and Frenkel [10], z.Og/ is an algebra of polynomials in infinitely
many variables, and the restriction of the homomorphism (3) to the subalgebra z.Og/
yields an isomorphism

z.Og/! W .Lg/; (4)

where W .Lg/ is the classical W -algebra associated with the Langlands dual Lie
algebra Lg; see [11] for a detailed exposition of these results. The W -algebra W .Lg/
can be defined as a subalgebra of U

�
t�1hŒt�1�

�
which consists of the elements

annihilated by the screening operators; see Sect. 4 below.
Recently, explicit generators of the Feigin–Frenkel center z.Og/ were constructed

for the Lie algebras g of all classical types A, B , C andD; see [4,5,24]. Our aim in
this paper is to describe the Harish-Chandra images of these generators in types B ,
C and D. The corresponding results in type A are given in [4]; we also reproduce
them below in a slightly different form (as in [4], we work with the reductive
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Lie algebra glN rather than the simple Lie algebra slN of type A). The images of
the generators of z.Og/ under the isomorphism (4) turn out to be elements of the
W -algebra W .Lg/ written in terms of noncommutative analogues of the complete
and elementary symmetric functions.

In more detail, for any X 2 g and r 2 Z introduce the corresponding elements
of the loop algebra gŒt; t�1� by XŒr� D X tr . The extended Lie algebra Og˚C� with
� D �d=dt is defined by the commutation relations



�;XŒr�

� D �r XŒr � 1�; 

�;K

� D 0: (5)

Consider the natural extension of (4) to the isomorphism

	 W z.Og/˝ C Œ� �! W .Lg/˝ C Œ� �; (6)

which is identical on C Œ� �; see Sect. 5 for the definition of 	.

1.2 Segal–Sugawara Vectors in Type A

First let g D glN be the general linear Lie algebra with the standard basis elements
Eij, 1 6 i; j 6 N . For each a 2 f1; : : : ; mg introduce the element EŒr�a of the
algebra

EndCN ˝ � � � ˝ EndCN

„ ƒ‚ …
m

˝ U (7)

by

EŒr�a D
NX

i;jD1
1˝.a�1/ ˝ eij ˝ 1˝.m�a/ ˝EijŒr�; (8)

where the eij are the standard matrix units and U stands for the universal enveloping
algebra of bglN ˚ C� . Let H.m/ and A.m/ denote the respective images of the
symmetrizer and anti-symmetrizer in the group algebra for the symmetric group
Sm under its natural action on .CN /˝m; see (26). We will identify H.m/ and A.m/

with the elements H.m/ ˝ 1 and A.m/ ˝ 1 of the algebra (7). Define the elements
�ma;  ma 2 U

�
t�1glN Œt�1�

�
by the expansions

trA.m/
�
� CEŒ�1�1

�
: : :
�
� CEŒ�1�m

�D�m0 �m C �m1 �m�1 C � � � C �mm; (9)

trH.m/
�
� CEŒ�1�1

�
: : :
�
� CEŒ�1�m

�D m0 �m C  m1 �m�1 C � � � C  mm;
(10)
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where the traces are taken over all m copies of EndCN . The results of [4, 5] imply
that all elements �ma and  ma, as well as the coefficients of the polynomials tr .�C
EŒ�1�/m belong to the Feigin–Frenkel center z.bglN /; see also [25] for a simpler
proof. Moreover, each of the families

�11; : : : ; �NN and  11; : : : ;  NN

is a complete set of Segal–Sugawara vectors in the sense that the elements of
each family together with their images under all positive powers of the translation
operator T D ad � are algebraically independent and generate z.bglN /.

The elements �i D Eii with i D 1; : : : ; N span a Cartan subalgebra of glN .
Elements of the classical W -algebra W .glN / are regarded as polynomials in the
variables �i Œr� with r < 0. A calculation of the images of the polynomials (9) with
m D N and tr .� CEŒ�1�/m under the isomorphism (6) was given in [4]. The same
method applies to all polynomials (9) and (10) to yield the formulas

	 W trA.m/�� CEŒ�1�1
�
: : :
�
� CEŒ�1�m

�

7! em
�
� C �1Œ�1�; : : : ; � C �N Œ�1�

�
; (11)

	 W trH.m/
�
� CEŒ�1�1

�
: : :
�
� CEŒ�1�m

�

7! hm
�
� C �1Œ�1�; : : : ; � C �N Œ�1�

�
; (12)

where we use standard noncommutative versions of the complete and elementary
symmetric functions in the ordered variables x1; : : : ; xp defined by the respective
formulas

hm.x1; : : : ; xp/ D
X

i16���6im
xi1 : : : xim ; (13)

em.x1; : : : ; xp/ D
X

i1>���>im
xi1 : : : xim : (14)

Relations (11) and (12) can also be derived from the Yangian character formulas as
we indicate below; see Sects. 3.1 and 5.

1.3 Main Results

Now turn to the Lie algebras of types B , C andD and let g D gN be the orthogonal
Lie algebra oN (with N D 2n or N D 2n C 1) or the symplectic Lie algebra
spN (with N D 2n). We will use the elements FijŒr� of the loop algebra gN Œt; t

�1�,
where the Fij are standard generators of gN ; see Sect. 2.2 for the definitions. For
each a 2 f1; : : : ; mg introduce the element F Œr�a of the algebra (7) by
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F Œr�a D
NX

i;jD1
1˝.a�1/ ˝ eij ˝ 1˝.m�a/ ˝ FijŒr�; (15)

where U in (7) now stands for the universal enveloping algebra of OgN ˚C� . We let
S.m/ denote the element of the algebra (7) which is the image of the symmetrizer
of the Brauer algebra Bm.!/ under its natural action on .CN /˝m, where the
parameter ! should be specialized to N or �N in the orthogonal and symplectic
case, respectively. The component of S.m/ in U is the identity; see (37) and (38)
below for explicit formulas. We will use the notation

�m.!/ D ! Cm � 2
! C 2m � 2 (16)

and define the elements �ma 2 U
�
t�1gN Œt�1�

�
by the expansion

�m.!/ trS.m/
�
� C F Œ�1�1

�
: : :
�
� C F Œ�1�m

�

D �m0 �m C �m1 �m�1 C � � � C �mm; (17)

where the trace is taken over all m copies of EndCN [we included the constant
factor (16) to get a uniform expression in all cases]. By the main result of [24],
all coefficients �ma belong to the Feigin–Frenkel center z.OgN /. Note that in the
symplectic case gN D sp2n the values of m were restricted to 1 6 m 6 2n, but
the result and arguments also extend to m D 2n C 1; see [24, Sect. 3.3]. In the
even orthogonal case gN D o2n there is an additional element � 0

n D Pf QF Œ�1� of
the center defined as the (noncommutative) Pfaffian of the skew-symmetric matrix
QF Œ�1� D Œ QFijŒ�1��,

Pf QF Œ�1� D 1

2nnŠ

X

�2S2n

sgn � � QF�.1/ �.2/Œ�1� : : : QF�.2n�1/ �.2n/Œ�1�; (18)

where QFijŒ�1� D Fij 0 Œ�1� with i 0 D 2n� i C 1. The family �22; �44; : : : ; �2n 2n is a
complete set of Segal–Sugawara vectors for the cases gN D o2nC1 and gN D sp2n,
while �22; �44; : : : ; �2n�2 2n�2; � 0

n is a complete set of Segal–Sugawara vectors for
gN D o2n.

The Lie algebras o2nC1 and sp2n are Langlands dual to each other, while o2n is
self-dual. In all the cases we denote by h the Cartan subalgebra of gN spanned by
the elements �i D Fii with i D 1; : : : ; n and identify it with the Cartan subalgebra
of LgN spanned by the elements with the same names. We let �i Œr� D �i t

r with
r < 0 and i D 1; : : : ; n denote the basis elements of the vector space t�1hŒt�1� so
that the elements of the classical W -algebra W .LgN / are regarded as polynomials
in the variables �i Œr�.
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Main Theorem. The image of the polynomial (17) under the isomorphism (6) is
given by the formula :

type Bn: hm
�
� C �1Œ�1�; : : : ; � C �nŒ�1�; � � �nŒ�1�; : : : � � �1Œ�1�

�
;

type Dn: 1
2
hm
�
� C �1Œ�1�; : : : ; � C �n�1Œ�1�; � � �nŒ�1�; : : : � � �1Œ�1�

�

C 1
2
hm
�
� C �1Œ�1�; : : : ; � C�nŒ�1�; � ��n�1Œ�1�; : : : � ��1Œ�1�

�
;

type Cn: em
�
� C �1Œ�1�; : : : ; � C �nŒ�1�; �; � � �nŒ�1�; : : : � � �1Œ�1�

�
:

Moreover, the image of the element � 0
n in type Dn is given by

�
�1Œ�1� � �

�
: : :
�
�nŒ�1� � �

�
1: (19)

In the last relation � is understood as the differentiation operator so that
� 1 D 0.

1.4 Approach and Exposition

The Fourier coefficients of the image of any element of the Feigin–Frenkel center
z.Og/ under the state-field correspondence map are well-defined operators (called
the Sugawara operators) on the Wakimoto modules over Og. These operators act by
multiplication by scalars which are determined by the Harish-Chandra image under
the isomorphism (4); see [11, Chap. 8]. Therefore, the Main Theorem yields explicit
formulas for the eigenvalues of a family of the (higher) Sugawara operators in the
Wakimoto modules.

Our approach is based on the theory of characters originated in [18] in the
Yangian context and in [14] in the context of quantum affine algebras (the latter
are commonly known as the q-characters). The theory was further developed in
[12] where an algorithm for the calculation of the q-characters was proposed, while
conjectures for functional relations satisfied by the q-characters were proved in
[15,32]. An extensive review of the role of the q-characters in classical and quantum
integrable systems is given in [22]; see also earlier papers [19, 20, 30, 31] where
some formulas concerning the representations we dealing with in this paper had
been conjectured and studied. In recent work [26, 27] the q-characters have been
calculated for a wide class of representations in type B , and associated extended
T -systems have been introduced.

Due to the general results on the connection of the q-characters with the Feigin–
Frenkel center and the classical W -algebras described in [14, Sect. 8.5], one could
expect that the character formulas would be useful for the calculation of the
Harish-Chandra images of the coefficients of the polynomial (17). Indeed, as we
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demonstrate below, the images in the classical W -algebra are closely related with
the top degree components of some linear combinations of the q-characters.

We now briefly describe the contents of the paper. We start by proving the
character formulas for some classes of representations of the Yangian Y.gN /
associated with the Lie algebra gN (Sect. 2). To this end we employ realizations
of the representations in harmonic tensors and construct special bases of the
representation spaces. The main calculation is given in Sect. 3, where we consider
particular linear combinations of the Yangian characters and calculate their top
degree terms as elements of the associated graded algebra gr Y.gN / Š U.gN Œt �/.
In Sect. 4 we recall the definition of the classical W -algebras and write explicit
screening operators in all classical types. By translating the results of Sect. 3 to the
universal enveloping algebra U.t�1gN Œt�1�/ we will be able to get them in the form
provided by the Main Theorem (Sect. 5). Finally, in Sect. 6 we apply our results
to get the Harish-Chandra images of the Casimir elements for the Lie algebras
gN arising from the Brauer–Schur–Weyl duality. We show that our formulas are
equivalent to those previously found in [16].

2 Characters of Yangian Representations

We will use the RT T -presentation of the Yangians associated with the classical Lie
algebras to calculate the characters of certain classes of their representations.

2.1 Yangian for glN

We will let h denote the Cartan subalgebra of glN spanned by the basis elements
E11; : : : ; ENN . The highest weights of representations of glN will be considered
with respect to this basis, and the highest vectors will be assumed to be annihilated
by the action of the elements Eij with 1 6 i < j 6 N , unless stated otherwise.

Recall theRT T -presentation of the Yangian associated with the Lie algebra glN ;
see e.g. [23, Chap. 1]. For 1 6 a < b 6 m introduce the elements Pab of the tensor
product algebra

EndCN ˝ � � � ˝ EndCN

„ ƒ‚ …
m

(20)

by

Pab D
NX

i;jD1
1˝.a�1/ ˝ eij ˝ 1˝.b�a�1/ ˝ eji ˝ 1˝.m�b/: (21)
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The Yang R-matrix R12.u/ is a rational function in a complex parameter u with
values in the tensor product algebra EndCN ˝ EndCN defined by

R12.u/ D 1 � P12
u
:

This function satisfies the Yang–Baxter equation

R12.u/R13.uC v/R23.v/ D R23.v/R13.uC v/R12.u/; (22)

where the subscripts indicate the copies of the endomorphism algebra EndCN in
(20) withm D 3. The Yangian Y.glN / is an associative algebra with generators t .r/ij ,
where 1 6 i; j 6 N and r D 1; 2; : : : , satisfying certain quadratic relations. To
write them down, introduce the formal series

tij.u/ D ıij C
1X

rD1
t
.r/
ij u�r 2 Y.glN /ŒŒu

�1��

and set

T .u/ D
NX

i;jD1
eij ˝ tij.u/ 2 EndCN ˝ Y.glN /ŒŒu

�1��:

Consider the algebra EndCN ˝EndCN ˝Y.glN /ŒŒu
�1�� and introduce its elements

T1.u/ and T2.u/ by

T1.u/ D
NX

i;jD1
eij ˝ 1˝ tij.u/; T2.u/ D

NX

i;jD1
1˝ eij ˝ tij.u/: (23)

The defining relations for the algebra Y.glN / can then be written in the form

R12.u � v/ T1.u/ T2.v/ D T2.v/ T1.u/R12.u � v/: (24)

We identify the universal enveloping algebra U.glN / with a subalgebra of the
Yangian Y.glN / via the embedding Eij 7! t

.1/
ij . Then Y.glN / can be regarded as

a glN -module with the adjoint action. We will denote by Y.glN /
h the subalgebra

of h-invariants under this action. Consider the left ideal I of the algebra Y.glN /
generated by all elements t .r/ij with the conditions 1 6 i < j 6 N and r > 1. By
the Poincaré–Birkhoff–Witt theorem for the Yangian [23, Sect. 1.4], the intersection
Y.glN /

h\ I is a two-sided ideal of Y.glN /
h. Moreover, the quotient of Y.glN /

h by
this ideal is isomorphic to the commutative algebra freely generated by the images
of the elements t .r/ii with i D 1; : : : ; N and r > 1 in the quotient. We will use the
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notation �.r/i for this image of t .r/ii . Thus, we get an analogue of the Harish-Chandra
homomorphism (1),

Y.glN /
h ! C Œ�

.r/
i j i D 1; : : : ; N; r > 1�: (25)

We combine the elements �.r/i into the formal series

�i .u/ D 1C
1X

rD1
�
.r/
i u�r ; i D 1; : : : ; N;

which can be viewed as the respective images of the series tii.u/ under the
homomorphism (25).

The symmetrizer H.m/ and anti-symmetrizer A.m/ in the algebra (20) are the
operators in the tensor product space .CN /˝m associated with the corresponding
idempotents in the group algebra of the symmetric group Sm via its natural action
on the tensor product space .CN /˝m. That is,

H.m/ D 1

mŠ

X

s2Sm

Ps and A.m/ D 1

mŠ

X

s2Sm

sgn s � Ps; (26)

where Ps is the element of the algebra (20) corresponding to s 2 Sm. Both the
symmetrizer and anti-symmetrizer admit multiplicative expressions in terms of the
values of the Yang R-matrix,

H.m/ D 1

mŠ

Y

16a<b6m

�
1C Pab

b � a
	

(27)

and

A.m/ D 1

mŠ

Y

16a<b6m

�
1 � Pab

b � a
	
;

where the products are taken in the lexicographic order on the pairs .a; b/; see
e.g. [23, Sect. 6.4]. The operators H.m/ and A.m/ project .CN /˝m to the subspaces
of symmetric and skew-symmetric tensors, respectively. Both subspaces carry
irreducible representations of the Yangian Y.glN /. Consider the tensor product
algebra

EndCN ˝ � � � ˝ EndCN

„ ƒ‚ …
m

˝ Y.glN /ŒŒu
�1�� (28)
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and extend the notation (23) to elements of (28). All coefficients of the formal series

trH.m/T1.u/ T2.uC 1/ : : : Tm.uCm � 1/ (29)

and

trA.m/T1.u/ T2.u � 1/ : : : Tm.u �mC 1/ (30)

belong to a commutative subalgebra of the Yangian. This subalgebra is contained in
Y.glN /

h. The next proposition is well-known and not difficult to prove; see also [3,
Sect. 7.4], [13, Sect. 4.5] and [23, Sect. 8.5] for derivations of more general formulas
for the characters of the evaluation modules over Y.glN /. We give a proof of the
proposition to stress the similarity of the approaches for all classical types.

Proposition 2.1. The images of the series (29) and (30) under the homomor-
phism (25) are given by

X

16i16���6im6N
�i1.u/ �i2.uC 1/ : : : �im.uCm � 1/ (31)

and

X

16i1<���<im6N
�i1.u/ �i2.u � 1/ : : : �im.u �mC 1/; (32)

respectively.

Proof. By relations (24) and (27) we can write the product occurring in (29) as

H.m/T1.u/ : : : Tm.uCm � 1/ D Tm.uCm � 1/ : : : T1.u/H.m/: (33)

This relation shows that the product on each side can be regarded as an operator
on .CN /˝m with coefficients in the algebra Y.glN /ŒŒu

�1�� such that the subspace
H.m/ .CN /˝m is invariant under this operator. A basis of this subspace is comprised
by vectors of the form v i1;:::;im D H.m/ .ei1 ˝ � � � ˝ eim/, where i1 6 � � � 6 im
and e1; : : : ; eN denote the canonical basis vectors of CN . To calculate the trace of
the operator, we will find the diagonal matrix elements corresponding to the basis
vectors. Applying the operator which occurs on the right hand side of (33) to a basis
vector v i1;:::;im we get

Tm.uCm � 1/ : : : T1.u/H.m/ v i1;:::;im D Tm.uCm � 1/ : : : T1.u/v i1;:::;im :

The coefficient of v i1;:::;im in the expansion of this expression as a linear combination
of the basis vectors is determined by the coefficient of the tensor ei1 ˝ � � � ˝
eim . Hence, a nonzero contribution to the image of the diagonal matrix element
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corresponding to v i1;:::;im under the homomorphism (25) only comes from the term
timim.uCm�1/ : : : ti1i1 .u/. The sum over all basis vectors yields the resulting formula
for the image of the element (29).

The calculation of the image of the series (30) is quite similar. It relies on the
identity

A.m/T1.u/ : : : Tm.u �mC 1/ D Tm.u �mC 1/ : : : T1.u/ A.m/

and a calculation of the diagonal matrix elements of the operator which occurs on
the right hand side on the basis vectors A.m/ .ei1 ˝ � � � ˝ eim/, where i1 < � � � < im.

ut

2.2 Yangians for oN and spN

Throughout the paper we use the involution on the set f1; : : : ; N g defined by i 0 D
N � i C 1. The Lie subalgebra of glN spanned by the elements Fij D Eij � Ej 0i 0

with i; j 2 f1; : : : ; N g is isomorphic to the orthogonal Lie algebra oN . Similarly,
the Lie subalgebra of gl2n spanned by the elements Fij D Eij � "i "j Ej 0i 0 with
i; j 2 f1; : : : ; 2ng is isomorphic to the symplectic Lie algebra sp2n, where "i D 1

for i D 1; : : : ; n and "i D �1 for i D nC 1; : : : ; 2n. We will keep the notation gN
for the Lie algebra oN (withN D 2n orN D 2nC1) or spN (withN D 2n). Denote
by h the Cartan subalgebra of gN spanned by the basis elements F11; : : : ; Fnn. The
highest weights of representations of gN will be considered with respect to this
basis, and the highest vectors will be assumed to be annihilated by the action of the
elements Fij with 1 6 i < j 6 N , unless stated otherwise.

Recall the RT T -presentation of the Yangian associated with the Lie algebra gN
following the general approach of [8, 35]; see also [1] and [2].

For 1 6 a < b 6 m consider the elements Pab of the tensor product algebra
(20) defined by (21). Introduce also the elements Qab of (20) which are defined by
different formulas in the orthogonal and symplectic cases. In the orthogonal case we
set

Qab D
NX

i;jD1
1˝.a�1/ ˝ eij ˝ 1˝.b�a�1/ ˝ ei 0j 0 ˝ 1˝.m�b/;

and in the symplectic case

Qab D
NX

i;jD1
"i "j 1

˝.a�1/ ˝ eij ˝ 1˝.b�a�1/ ˝ ei 0j 0 ˝ 1˝.m�b/:
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Set � D N=2�1 in the orthogonal case and � D N=2C1 in the symplectic case.
The R-matrix R12.u/ is a rational function in a complex parameter u with values in
the tensor product algebra EndCN ˝ EndCN defined by

R12.u/ D 1 � P12
u
C Q12

u � � :

It is well known by [37] that this function satisfies the Yang–Baxter equation (22).
The Yangian Y.gN / is defined as an associative algebra with generators t .r/ij ,

where 1 6 i; j 6 N and r D 1; 2; : : : , satisfying certain quadratic relations.
Introduce the formal series

tij.u/ D ıij C
1X

rD1
t
.r/
ij u�r 2 Y.gN /ŒŒu

�1��

and set

T .u/ D
NX

i;jD1
eij ˝ tij.u/ 2 EndCN ˝ Y.gN /ŒŒu

�1��:

Consider the algebra EndCN ˝EndCN ˝Y.gN /ŒŒu�1�� and introduce its elements
T1.u/ and T2.u/ by the same formulas (23) as in the case of glN . The defining
relations for the algebra Y.gN / can then be written in the form

R12.u � v/ T1.u/ T2.v/ D T2.v/ T1.u/R12.u � v/ (34)

together with the relation

T 0.uC �/ T .u/ D 1;

where the prime denotes the matrix transposition which is defined for an N � N
matrix A D ŒAij� by

.A0/ij D Aj 0i 0 and .A0/ij D "i "j Aj 0i 0

in the orthogonal and symplectic case, respectively.
We identify the universal enveloping algebra U.gN / with a subalgebra of the

Yangian Y.gN / via the embedding

Fij 7! t
.1/
ij ; i; j D 1; : : : ; N:

Then Y.gN / can be regarded as a gN -module with the adjoint action. Denote by
Y.gN /h the subalgebra of h-invariants under this action.
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Consider the left ideal I of the algebra Y.gN / generated by all elements t .r/ij
with the conditions 1 6 i < j 6 N and r > 1. It follows from the Poincaré–
Birkhoff–Witt theorem for the Yangian [2, Sect. 3] that the intersection Y.gN /h \ I
is a two-sided ideal of Y.gN /h. Moreover, the quotient of Y.gN /h by this ideal
is isomorphic to the commutative algebra freely generated by the images of the
elements t .r/ii with i D 1; : : : ; n and r > 1 in the quotient. We will use the notation

�
.r/
i for this image of t .r/ii and extend this notation to all values i D 1; : : : ; N . Thus,

we get an analogue of the Harish-Chandra homomorphism (1),

Y.gN /
h ! C Œ�

.r/
i j i D 1; : : : ; n; r > 1�: (35)

We combine the elements �.r/i into the formal series

�i .u/ D 1C
1X

rD1
�
.r/
i u�r ; i D 1; : : : ; N

which we will regard as the respective images of the series tii.u/ under the
homomorphism (35).

It follows from [2, Prop. 5.2 and 5.14], that the series �i .u/ satisfy the relations

�i .uC � � i/ �i 0.u/ D �iC1.uC � � i/ �.iC1/0.u/; (36)

for i D 0; 1; : : : ; n � 1 if gN D o2n or sp2n, and for i D 0; 1; : : : ; n if gN D o2nC1,
where �0.u/ D �0 0.u/ WD 1. Under an appropriate identification, the relations (36)
coincide with those for the q-characters, as the �i .u/ correspond to the “single
box variables”; see for instance [22, Sect. 7] and [30, Sect. 2]. This coincidence is
consistent with the general result which establishes the equivalence of the definitions
of q-characters in [14, 18]; see [12, Prop. 2.4] for a proof. The q-characters have
been extensively studied; see [13, 14] and [18]. In particular, formulas for the q-
characters of some classes of modules were conjectured in [20, 30] and [31] and
later proved in [15] and [32]. However, this was done in the context of the new
realization of the quantum affine algebras. In what follows we compute some q-
characters independently in our setting of the RT T realization of the Yangians.

Introduce the element S.m/ of the algebra (20) by setting S.1/ D 1 and form > 2

define it by the respective formulas in the orthogonal and symplectic cases:

S.m/ D 1

mŠ

Y

16a<b6m

�
1C Pab

b � a �
Qab

N=2C b � a � 1
	

(37)

and

S.m/ D 1

mŠ

Y

16a<b6m

�
1 � Pab

b � a �
Qab

n � b C aC 1
	
; (38)
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where the products are taken in the lexicographic order on the pairs .a; b/ and the
conditionm 6 nC1 is assumed in (38). The elements (37) and (38) are the images of
the symmetrizers in the corresponding Brauer algebras Bm.N / and Bm.�N/ under
their actions on the vector space .CN /˝m. In particular, for any 1 6 a < b 6 m for
the operator S.m/ we have

S.m/ Qab D Qab S
.m/ D 0 and S.m/ Pab D Pab S.m/ D ˙S.m/ (39)

with the plus and minus signs taken in the orthogonal and symplectic case,
respectively. The symmetrizer admits a few other equivalent expressions which are
reproduced in [24].

In the orthogonal case the operator S.m/ projects .CN /˝m to the irreducible
representation of the Lie algebra oN with the highest weight .m; 0; : : : ; 0/. The
dimension of this representation equals

N C 2m � 2
N Cm � 2

 
N Cm � 2

m

!
:

This representation is extended to the Yangian Y.oN / and it is one of the Kirillov–
Reshetikhin modules. In the symplectic case with m 6 n the operator S.m/ projects
.C2n/˝m to the subspace of skew-symmetric harmonic tensors which carries an
irreducible representation of sp2n with the highest weight .1; : : : ; 1; 0; : : : ; 0/ (with
m copies of 1). Its dimension equals

2n � 2mC 2
2n �mC 2

 
2nC 1
m

!
D
 
2n

m

!
�
 
2n

m � 2

!
: (40)

This representation is extended to the m-th fundamental representation of the
Yangian Y.sp2n/ which is also a Kirillov–Reshetikhin module. It is well-known
that if m D nC 1 then the subspace of tensors is zero so that S.nC1/ D 0.

The existence of the Yangian action on the Lie algebra modules here can be
explained by the fact that the projections (37) and (38) are the products of the
evaluated R-matrices

S.m/ D 1

mŠ

Y

16a<b6m
Rab.ua � ub/; (41)

where ua D u C a � 1 and ua D u � a C 1 for a D 1; : : : ; m in the
orthogonal and symplectic case, respectively; see [17] for a proof in the context
of a fusion procedure for the Brauer algebra. The same fact leads to a construction
of a commutative subalgebra of the Yangian Y.gN /; see [24]. We will calculate
the images of the elements of this subalgebra under the homomorphism (35)
and thus reproduce the character formulas for the respective classes of Yangian
representations; cf. [22, Sect. 7]. Consider the tensor product algebra
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EndCN ˝ � � � ˝ EndCN

„ ƒ‚ …
m

˝ Y.gN /ŒŒu
�1�� (42)

and extend the notation (23) to elements of (42).

Series Bn

The commutative subalgebra of the Yangian Y.oN / with N D 2nC 1 is generated
by the coefficients of the formal series

trS.m/T1.u/ T2.uC 1/ : : : Tm.uCm � 1/ (43)

with the trace taken over all m copies of EndCN in (42), where gN D oN and S.m/

is defined in (37). It follows easily from the defining relations (34) that all elements
of this subalgebra belong to Y.oN /h.

Proposition 2.2. The image of the series (43) under the homomorphism (35) is
given by

X

16i16���6im6N
�i1.u/ �i2.uC 1/ : : : �im.uCm � 1/

with the condition that nC1 occurs among the summation indices i1; : : : ; im at most
once.

Proof. By [24, Prop. 3.1] the operator S.m/ can be given by the formula

S.m/ D H.m/

bm=2cX

rD0

.�1/r
2r rŠ

 
N=2Cm � 2

r

!�1 X

ai<bi

Qa1b1Qa2b2 : : :Qarbr (44)

with the second sum taken over the (unordered) sets of disjoint pairs of indices
f.a1; b1/; : : : ; .ar ; br /g from f1; : : : ; mg. Here H.m/ is the symmetrization operator
defined in (26). Note that for each r the second sum in (44) commutes with any
element Ps and hence commutes with H.m/.

Recall that the subspace of harmonic tensors in .CN /˝m is spanned by the tensors
v with the property Qab v D 0 for all 1 6 a < b 6 m. By (39) the operator S.m/

projects .CN /˝m to a subspace of symmetric harmonic tensors which we denote
by Hm. This subspace carries an irreducible representation of oN with the highest
weight .m; 0; : : : ; 0/. Therefore, the trace in (43) can be calculated over the subspace
Hm. We will introduce a special basis of this subspace. We identify the image of
the symmetrizer H.m/ with the space of homogeneous polynomials of degree m in
variables z1; : : : ; zN via the isomorphism

H.m/.ei1 ˝ � � � ˝ eim/ 7! zi1 : : : zim : (45)
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The subspace Hm is then identified with the subspace of harmonic homogeneous
polynomials of degree m; they belong to the kernel of the Laplace operator

� D
nX

iD1
@zi @zi 0 C 1

2
@2znC1

:

The basis vectors of Hm will be labeled by the N -tuples .k1; : : : ; kn; ı; ln; : : : ; l1/,
where the ki and li are arbitrary nonnegative integers, ı 2 f0; 1g and the sum of all
entries is m. Given such a tuple, the corresponding harmonic polynomial is defined
by

X

a1;:::;an

.�2/a1C���Can.a1 C � � � C an/Š z2a1C���C2anCı
nC1

a1Š : : : anŠ .2a1 C � � � C 2an C ı/Š
nY

iD1

zki�aii zli�ai
i 0

.ki � ai /Š .li � ai /Š ;
(46)

summed over nonnegative integers ai satisfying ai 6 minfki ; lig. Each polynomial
contains a unique monomial (which we call the leading monomial) where the
variable znC1 occurs with the power not exceeding 1. It is straightforward to see that
these polynomials are all harmonic and linearly independent. Furthermore, a simple
calculation shows that the number of the polynomials coincides with the dimension
of the irreducible representation of oN with the highest weight .m; 0; : : : ; 0/ and so
they form a basis of the subspace Hm.

By relations (34) and (41) we can write the product occurring in (43) as

S.m/T1.u/ : : : Tm.uCm � 1/ D Tm.uCm � 1/ : : : T1.u/ S.m/: (47)

This relation together with (39) shows that the product on each side can be regarded
as an operator on .CN /˝m with coefficients in the algebra Y.oN /ŒŒu�1�� such that the
subspace Hm is invariant under this operator. Now fix a basis vector v 2Hm of the
form (46). Denote the operator on the right hand side of (47) by A and consider the
coefficient of v in the expansion of Av as a linear combination of the basis vectors.
Use the isomorphism (45) to write the vector v as a linear combination of the tensors
ej1 ˝ � � � ˝ ejm . We have S.m/v D v, while the matrix elements of the remaining
product are found from the expansion

Tm.uCm � 1/ : : : T1.u/.ej1 ˝ � � � ˝ ejm/
D

X

i1;:::;im

timjm.uCm � 1/ : : : ti1j1 .u/.ei1 ˝ � � � ˝ eim/:

The coefficient of v in the expansion of Av is uniquely determined by the coefficient
of the tensor ei1 ˝ � � � ˝ eim with i1 6 � � � 6 im which corresponds to the leading
monomial of v under the isomorphism (45). It is clear from formula (46) that if a
tensor of the form ej1 ˝ � � � ˝ ejm corresponds to a non-leading monomial, then the
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matrix element timjm.uCm�1/ : : : ti1j1 .u/ vanishes under the homomorphism (35).
Therefore, a nonzero contribution to the image of the diagonal matrix element of the
operator A corresponding to v under the homomorphism (35) only comes from the
term timim.uC m � 1/ : : : ti1i1 .u/. Taking the sum over all basis vectors (46) yields
the resulting formula for the image of the element (43). ut

Series Dn

The commutative subalgebra of the Yangian Y.oN / with N D 2n is generated by
the coefficients of the formal series defined by the same formula (43), where the
parameter N now takes an even value 2n.

Proposition 2.3. The image of the series (43) under the homomorphism (35) is
given by

X

16i16���6im6N
�i1.u/ �i2.uC 1/ : : : �im.uCm � 1/

with the condition that n and n 0 do not occur simultaneously among the summation
indices i1; : : : ; im.

Proof. As in the proof of Proposition 2.2, we use the formula (44) for the
symmetrizer S.m/ and its properties (39). Following the argument of that proof
we identify the image S.m/.CN /˝m with the space Hm of homogeneous harmonic
polynomials of degreem in variables z1; : : : ; zN via the isomorphism (45). This time
the harmonic polynomials are annihilated by the Laplace operator of the form

� D
nX

iD1
@zi @zi 0 :

The basis vectors of Hm will be parameterized by the N -tuples .k1; : : : ; kn;
ln; : : : ; l1/, where the ki and li are arbitrary nonnegative integers, the sum of
all entries is m and at least one of kn and ln is zero. Given such a tuple, the
corresponding harmonic polynomial is now defined by

X

a1;:::;an�1

.�1/a1C���Can�1 .a1 C � � � C an�1/Š za1C���Can�1Ckn
n za1C���Can�1Cln

n 0

a1Š : : : an�1Š .a1 C � � � C an�1 C kn/Š .a1 C � � � C an�1 C ln/Š

�
n�1Y

iD1

zki�aii zli�ai
i 0

.ki � ai /Š .li � ai /Š ; (48)

summed over nonnegative integers a1; : : : ; an�1 satisfying ai 6 minfki ; lig. A
unique leading monomial corresponds to the values a1 D � � � D an�1 D 0.
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The argument is now completed in the same way as for Proposition 2.2 by
considering the diagonal matrix elements of the operator on right hand side of (47)
corresponding to the basis vectors (48). These coefficients are determined by those
of the leading monomials and their images under the homomorphism (35) are
straightforward to calculate. ut

Series Cn

The commutative subalgebra of the Yangian Y.spN / with N D 2n is generated by
the coefficients of the formal series

trS.m/T1.u/ T2.u � 1/ : : : Tm.u �mC 1/; (49)

with the trace taken over all m copies of EndCN in (42) with gN D spN and S.m/

defined in (38) with m 6 n.

Proposition 2.4. The image of the series (49) with m 6 n under the homomor-
phism (35) is given by

X

16i1<���<im62n
�i1.u/ �i2.u � 1/ : : : �im.u �mC 1/ (50)

with the condition that if for any i both i and i 0 occur among the summation indices
as i D ir and i 0 D is for some 1 6 r < s 6 m, then s � r 6 n � i .
Proof. Using again [24, Prop. 3.1] we find that the operator S.m/ can be given by
the formula

S.m/ D A.m/
bm=2cX

rD0

1

2r rŠ

 
�nCm � 2

r

!�1 X

ai<bi

Qa1b1Qa2b2 : : :Qarbr (51)

with the second sum taken over the (unordered) sets of disjoint pairs of indices
f.a1; b1/; : : : ; .ar ; br /g from f1; : : : ; mg. Here A.m/ is the anti-symmetrization
operator defined in (26). For each r the second sum in (51) commutes with any
element Ps and hence commutes with A.m/.

As with the orthogonal case, the subspace of harmonic tensors in .CN /˝m is
spanned by the tensors v with the property Qab v D 0 for all 1 6 a < b 6 m.
The operator S.m/ projects .CN /˝m to a subspace of skew-symmetric harmonic
tensors which we denote by Hm. Hence, the trace in (49) can be calculated over
the subspace Hm. We introduce a special basis of this subspace by identifying the
image of the anti-symmetrizer A.m/ with the space of homogeneous polynomials of
degree m in the anti-commuting variables �1; : : : ; � 2n via the isomorphism

A.m/.ei1 ˝ � � � ˝ eim/ 7! � i1 ^ � � � ^ � im : (52)
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The subspace Hm is then identified with the subspace of harmonic homogeneous
polynomials of degree m; they belong to the kernel of the Laplace operator

� D
nX

iD1
@i ^ @i 0 ;

where @i denotes the (left) partial derivative over � i .
The basis vectors of Hm will be parameterized by the subsets fi1; : : : ; img of

the set f1; : : : ; 2ng satisfying the condition as stated in the proposition, when the
elements i1; : : : ; im are written in the increasing order. We will call such subsets
admissible. The number of admissible subsets can be shown to be given by the
formula (40), which coincides with the dimension of Hm. Consider monomials of
the form

�a1 ^ �a0
1
^ � � � ^ �ak ^ �a0

k
^ �b1 ^ � � � ^ �bl (53)

with 1 6 a1 < � � � < ak 6 n and 1 6 b1 < � � � < bl 6 2n, associated with subsets
fa1; a 0

1; : : : ; ak; a
0
k; b1; : : : ; blg of cardinality m D 2k C l of the set f1; : : : ; 2ng

such that bi ¤ b 0
j for all i and j . We will suppose that the parameters bi are fixed

and label the monomial (53) by the k-tuple .a1; : : : ; ak/. Furthermore, we order the
k-tuples and the corresponding monomials lexicographically.

Now let the subset fa1; a 0
1; : : : ; ak; a

0
k; b1; : : : ; blg be admissible and suppose

that the parameters a1; : : : ; ak are fixed too. We will call the corresponding
monomial (53) admissible. Fix i 2 f1; : : : ; kg. Let s be the number of the elements
bj of the subset satisfying ai < bj < a 0

i . By the admissibility condition applied
to ai and a 0

i , we have the inequality 2.k � i/C s < n � ai . Therefore, there exist
elements ci ; : : : ; ck satisfying ai < ci < � � � < ck 6 n so that none of cj or c 0

j

with j D i; : : : ; k belongs to the subset fa1; a 0
1; : : : ; ak; a

0
k; b1; : : : ; blg. Taking the

consecutive values i D k; k � 1; : : : ; 1 choose the maximum possible element ci at
each step. Thus, we get a family of elements c1 < � � � < ck uniquely determined by
the admissible subset. In particular, ci > ai for all i .

Note that our condition on the parameters bi implies that the corresponding
monomial �b1 ^ � � �^ �bl is annihilated by the operator�. We denote this monomial
by y and set xa D �a ^ �a 0 for a D 1; : : : ; n. The vector

kX

pD0
.�1/p

X

16d1<���<dp6k
xa1 ^� � �^ Oxad1 ^� � �^ Oxadp ^� � �^xak ^xcd1 ^� � �^xcdp ^y;

where the hats indicate the factors to be skipped, is easily seen to belong to the
kernel of the operator � so it is an element of the subspace Hm. Furthermore,
these vectors parameterized by all admissible subsets form a basis of Hm. Indeed,
the vectors are linearly independent because the linear combination defining each
vector is uniquely determined by the admissible monomial xa1 ^� � �^xak ^y which
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precedes all the other monomials occurring in the linear combination with respect
to the lexicographic order.

Note that apart from the minimal admissible monomial xa1 ^ � � � ^ xak ^ y,
the linear combination defining a basis vector may contain some other admissible
monomials. By eliminating such additional admissible monomials with the use of
an obvious induction on the lexicographic order, we can produce another basis of
the space Hm parameterized by all admissible subsets with the property that each
basis vector is given by a linear combination of monomials of the same form as
above, containing a unique admissible monomial.

By relations (34) and (41) we can write the product occurring in (49) as

S.m/T1.u/ : : : Tm.u �mC 1/ D Tm.u �mC 1/ : : : T1.u/ S.m/ (54)

and complete the argument exactly as in the proof of Proposition 2.2. Indeed,
relations (39) and (54) show that the product on each side can be regarded as an
operator on .CN /˝m with coefficients in the algebra Y.spN /ŒŒu

�1�� such that the
subspace Hm is invariant under this operator. Denote the operator on the right hand
side of (54) by A and let v denote the basis vector of Hm corresponding to an
admissible subset fi1; : : : ; imgwith i1 < � � � < im. The properties of the basis vectors
imply that a nonzero contribution to the image of the diagonal matrix element of the
operator A corresponding to v under the homomorphism (35) only comes from the
term timim.u �mC 1/ : : : ti1i1 .u/. ut

We will need an equivalent formula for the expression (50) from [21, Prop. 2.4].
The argument there is combinatorial and relies only on the identities (36). To state
the formula from [21] introduce new parameters ~i .u/ for i D 1; : : : ; 2nC 2 by

~i .u/ D �i .u/; ~2n�iC3.u/ D �2n�iC1.u/ for i D 1; : : : ; n;

and ~nC2.u/ D �~nC1.u/, where ~nC1.u/ is the formal series in u�1 with constant
term 1 uniquely determined by

~nC1.u/~nC1.u � 1/ D �n.u/�n 0.u � 1/:

Corollary 2.5. The image of the series (49) with m 6 n under the homomor-
phism (35) can be written as

X

16i1<���<im62nC2
~i1.u/ ~i2.u � 1/ : : : ~im.u �mC 1/: (55)

Moreover, the expression (55) is zero for m D nC 1. ut
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3 Harish-Chandra Images for the Current Algebras

We will use the character formulas obtained in Sect. 2 to calculate the Harish-
Chandra images of elements of certain commutative subalgebras of U

�
gŒt �

�
for the

simple Lie algebras g of all classical types. The results in the case of glN are well-
known, the commutative subalgebras were constructed explicitly in [36]; see also
[4, 5, 25, 28] and [29].

3.1 Case of glN

Identify the universal enveloping algebra U.glN / with a subalgebra of U
�
glN Œt �

�
via

the embedding Eij 7! EijŒ0�. Then U
�
glN Œt �

�
can be regarded as a glN -module with

the adjoint action. Denote by U
�
glN Œt �

�h
the subalgebra of h-invariants under this

action. Consider the left ideal I of the algebra U
�
glN Œt �

�
generated by all elements

EijŒr� with the conditions 1 6 i < j 6 N and r > 0. By the Poincaré–Birkhoff–

Witt theorem, the intersection U
�
glN Œt �

�h \ I is a two-sided ideal of U
�
glN Œt �

�h
.

Moreover, the quotient of U
�
glN Œt �

�h
by this ideal is isomorphic to the commutative

algebra freely generated by the images of the elements EiiŒr� with i D 1; : : : ; N

and r > 0 in the quotient. We will denote by �i Œr� this image of EiiŒr�. We get an
analogue of the Harish-Chandra homomorphism (1),

U
�
glN Œt �

�h ! C Œ�i Œr� j i D 1; : : : ; N; r > 0�: (56)

Combine the elements EijŒr� and �i Œr� into the formal series

Eij.u/ D
1X

rD0
EijŒr� u

�r�1 and �i.u/ D
1X

rD0
�i Œr� u

�r�1:

Then �i.u/ is understood as the image of the series Eii.u/ under the homomor-
phism (56). Consider tensor product algebras

EndCN ˝ � � � ˝ EndCN

„ ƒ‚ …
m

˝ U
�
glN Œt �

�
ŒŒu�1; @u��

and use matrix notation as in (8).

Proposition 3.1. For the images under the Harish-Chandra homomorphism (56)
we have
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trA.m/
�
@uCE1.u/

�
: : :
�
@uCEm.u/

� 7! em
�
@uC�1.u/; : : : ; @uC�N .u/

�
;

(57)

trH.m/
�
@uCE1.u/

�
: : :
�
@uCEm.u/

� 7! hm
�
@uC�1.u/; : : : ; @uC�N .u/

�
:

(58)

Proof. The argument is essentially the same as in the proof of Proposition 2.1. Both
relations are immediate from the cyclic property of trace and the identities

�
@u CE1.u/

�
: : :
�
@u CEm.u/

�
A.m/ D A.m/�@u CE1.u/

�
: : :
�
@u CEm.u/

�
A.m/;

H .m/
�
@u CE1.u/

�
: : :
�
@u CEm.u/

� D H.m/
�
@u CE1.u/

�
: : :
�
@u CEm.u/

�
H.m/;

implied by the fact that @u CE.u/ is a left Manin matrix; see [6, Prop. 18]. ut
An alternative (longer) way to proof Proposition 3.1 is to derive it from the

character formulas of Proposition 2.1. Indeed, @u C E.u/ coincides with the image
of the matrix T .u/e@u � 1 in the component of degree �1 of the graded algebra
associated with the Yangian. Here we extend the filtration on the Yangian to the
algebra of formal series Y.glN /ŒŒu

�1; @u�� by setting deg u�1 D deg @u D �1 so
that the associated graded algebra is isomorphic to U

�
glN Œt �

�
ŒŒu�1; @u��. Hence, for

instance, the element on the left hand side of (57) can be found as the image of the
component of degree �m of the expression

trA.m/
�
T1.u/e

@u � 1� : : : �Tm.u/e@u � 1�:
The image of this expression under the homomorphism (25) can be found from (32).

There is no known analogue of the argument which we used in the proof of
Proposition 3.1 for the B , C and D types. Therefore to prove its counterparts for
these types we have to resort to the argument making use of the character formulas
of Sect. 2.2.

3.2 Types B, C and D

Recall that FijŒr� D Fij t
r with r 2 Z denote elements of the loop algebra gN Œt; t�1�,

where the Fij are standard generators of gN ; see Sect. 2.
Consider the ascending filtration on the Yangian Y.gN / defined by

deg t .r/ij D r � 1:

Denote by Nt .r/ij the image of the generator t .r/ij in the .r � 1/-th component of the
associated graded algebra gr Y.gN /. By [2, Theorem 3.6] the mapping

FijŒr� 7! Nt .rC1/ij ; r > 0;
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defines an algebra isomorphism U
�
gN Œt �

� ! gr Y.gN /. Our goal here is to use
this isomorphism and Propositions 2.2, 2.3 and 2.4 to calculate the Harish-Chandra
images of certain elements of U

�
gN Œt �

�
defined with the use of the corresponding

operators (37) and (38). These elements generate a commutative subalgebra of
U
�
gN Œt �

�
and they can be obtained from the generators (17) of the Feigin–Frenkel

center by an application of the vertex algebra structure on the vacuum module
V�h_.gN /; see [24, Sect. 5].

We identify the universal enveloping algebra U.gN / with a subalgebra of
U
�
gN Œt �

�
via the embedding Fij 7! FijŒ0�. Then U

�
gN Œt �

�
can be regarded as a gN -

module with the adjoint action. Denote by U
�
gN Œt �

�h
the subalgebra of h-invariants

under this action. Consider the left ideal I of the algebra U
�
gN Œt �

�
generated by

all elements FijŒr� with the conditions 1 6 i < j 6 N and r > 0. By the

Poincaré–Birkhoff–Witt theorem, the intersection U
�
gN Œt �

�h\I is a two-sided ideal

of U
�
gN Œt �

�h
. Moreover, the quotient of U

�
gN Œt �

�h
by this ideal is isomorphic to the

commutative algebra freely generated by the images of the elements FiiŒr� with
i D 1; : : : ; n and r > 0 in the quotient. We will write �i Œr� for this image of FiiŒr�

and extend this notation to all values i D 1; : : : ; N so that �i 0 Œr� D ��i Œr� for all
i . We get an analogue of the Harish-Chandra homomorphism (1),

U
�
gN Œt �

�h ! C Œ�i Œr� j i D 1; : : : ; n; r > 0�: (59)

We will combine the elements FijŒr� into the formal series

Fij.u/ D
1X

rD0
FijŒr� u

�r�1

and write

�i.u/ D
1X

rD0
�i Œr� u

�r�1; i D 1; : : : ; N:

Then the series �i.u/ will be viewed as the image of the formal series Fii.u/ under
the homomorphism (59).

It is clear from the definitions of the homomorphisms (35) and (59), that the
graded version of (35) coincides with (59) in the sense that the following diagram
commutes

(60)
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where i ranges over the set f1; : : : ; ng while r > 0 and the second vertical arrow
indicates the isomorphism which takes �i Œr� to the image of �.rC1/i in the graded

polynomial algebra with the grading defined by the assignment deg�.rC1/i D r .
In what follows we extend the filtration on the Yangian to the algebra of formal

series Y.gN /ŒŒu�1; @u�� by setting deg u�1 D deg @u D �1. The associated graded
algebra will then be isomorphic to U

�
gN Œt �

�
ŒŒu�1; @u��. We consider tensor product

algebras

EndCN ˝ � � � ˝ EndCN

„ ƒ‚ …
m

˝ U
�
gN Œt �

�
ŒŒu�1; @u�� (61)

and use matrix notation as in (15).

Series Bn

Take gN D oN with N D 2n C 1 and consider the operator S.m/ defined in (37).
We also use notation (16) with ! D N and (13). The trace is understood to be taken
over all copies of the endomorphism algebra EndCN in (61).

Theorem 3.2. For the image under the Harish-Chandra homomorphism (59) we
have

�m.N / trS.m/
�
@u C F1.u/

�
: : :
�
@u C Fm.u/

�

7! hm
�
@u C �1.u/; : : : ; @u C �n.u/; @u C �n0.u/; : : : ; @u C �10.u/

�
: (62)

Proof. The element @u C F.u/ coincides with the image of the matrix T .u/e@u � 1
in the component of degree �1 of the graded algebra associated with the Yangian.
Therefore the element on the left hand side of (62) can be found as the image of the
component of degree �m of the expression

�m.N / trS.m/
�
T1.u/e

@u � 1� : : : �Tm.u/e@u � 1�: (63)

Hence, the theorem can be proved by making use of the commutative diagram (60)
and the Harish-Chandra image of (63) implied by Proposition 2.2. We have

trS.m/
�
T1.u/e

@u � 1� : : : �Tm.u/e@u � 1�

D
mX

kD0
.�1/m�k X

16a1<���<ak6m
trS.m/ Ta1.u/e

@u : : : Tak .u/e
@u :

Each product Ta1.u/e
@u : : : Tak .u/e

@u can be written asP T1.u/e@u : : : Tk.u/e@u P�1,
where P is the image in (61) (with the identity component in the last tensor factor)
of a permutation p 2 Sm such that p.r/ D ar for r D 1; : : : ; k. By the second
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property in (39) and the cyclic property of trace, we can bring the above expression
to the form

mX

kD0
.�1/m�k

 
m

k

!
trS.m/ T1.u/e

@u : : : Tk.u/e
@u :

Now apply [24, Lemma 4.1] to calculate the partial traces of the symmetrizer S.m/

over the copies k C 1; : : : ; m of the algebra EndCN in (20) to get

trkC1;:::;m S.m/ D
�k.N /

�m.N /

 
N Cm � 2
m � k

! 
m

k

!�1
S.k/:

Thus, by Proposition 2.2, the Harish-Chandra image of the expression (63) is found
by

mX

kD0
.�1/m�k �k.N /

 
N Cm � 2
m � k

!
X

16i16���6ik6N
�i1.u/e

@u : : : �ik .u/e
@u (64)

with the condition that nC1 occurs among the summation indices i1; : : : ; ik at most
once. The next step is to express (64) in terms of the new variables

�i .u/ D �i .u/e@u � 1; i D 1; : : : ; N: (65)

This is done by a combinatorial argument as shown in the following lemma.

Lemma 3.3. The expression (64) multiplied by �2 � N=2�2
NCm�2

�
equals

mX

rD0

 
N=2 � 2
N C r � 3

!
X

a1C���Ca10 Dr
�1.u/

a1 : : : �n.u/
an�n0.u/an0 : : : �10.u/a10

C
mX

rD1

 
N=2 � 2
N C r � 3

!
X

a1C���Ca10 Dr�1
�1.u/

a1 : : : �n.u/
an

� ��nC1.u/C 2
�
�n0.u/an0 : : : �10.u/a10 ;

where a1; : : : ; a10 run over nonnegative integers.

Proof. The statement is verified by substituting (65) into both terms and calculating
the coefficients of the sum

X

16i16���6ik6N
�i1.u/e

@u : : : �ik .u/e
@u (66)



312 A.I. Molev and E.E. Mukhin

for all 0 6 k 6 m, where nC 1 occurs among the summation indices i1; : : : ; ik at
most once. Note the following expansion formula for the noncommutative complete
symmetric functions (13),

hr.x1 � 1; : : : ; xp � 1/ D
rX

kD0
.�1/r�k

 
p C r � 1
r � k

!
hk.x1; : : : ; xp/: (67)

Take xi D �i .u/e@u with i D 1; : : : ; n; n0 : : : ; 10 and apply (67) with p D 2n to the
first term in the expression of the lemma. Using a similar expansion for the second
term we find that the coefficient of the sum (66) in the entire expression will be
found as

mX

rDk

 
N=2 � 2
N C r � 3

! 
N C r � 3
r � k

!
D
 
N=2 � 2
N C k � 3

! 
N=2Cm � 1

m � k

!
;

which coincides with

�2 .�1/m�k �k.N /
 
N=2 � 2
N Cm � 2

! 
N Cm � 2
m � k

!
;

as claimed. ut
Denote the expression in Lemma 3.3 by Am. Since the degree of the element (63)

is �m, its Harish-Chandra image (64) and the expression Am also have degree �m.
Observe that the terms in the both sums ofAm are independent ofm so thatAmC1 D
Am C BmC1, where

BmC1 D
 
N=2 � 2
N Cm � 2

!
X

a1C���Ca10 DmC1
�1.u/

a1 : : : �n.u/
an�n0.u/an0 : : : �10.u/a10C

 
N=2 � 2
N Cm � 2

!
X

a1C���Ca10 Dm
�1.u/

a1 : : : �n.u/
an
�
�nC1.u/C2

�
�n0.u/an0 : : : �10.u/a10 :

Since AmC1 has degree �m�1, its component of degree �m is zero, and so the sum
of the homogeneous components of degree �m of Am and BmC1 is zero. However,
each element �i .u/ has degree �1 and its top degree component equals @u C �i.u/.
This implies that the component of Am of degree �m equals the component of
degree �m of the term

�2
 
N=2 � 2
N Cm � 2

!
X

a1C���Ca10 Dm
�1.u/

a1 : : : �n.u/
an�n0.u/an0 : : : �10.u/a10 :
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Taking into account the constant factor used in Lemma 3.3, we can conclude that
the component in question coincides with the noncommutative complete symmetric
function as given in (62). ut

As we have seen in the proof of the theorem, all components of the expression in
Lemma 3.3 of degrees exceeding �m are equal to zero. Since the summands do not
depend on m, we derive the following corollary.

Corollary 3.4. The series

1X

rD0

 
N=2 � 2
N C r � 3

!
X

a1C���Ca10 Dr
�1.u/

a1 : : : �n.u/
an�n0.u/an0 : : : �10.u/a10

C
1X

rD1

 
N=2 � 2
N C r � 3

!
X

a1C���Ca10 Dr�1
�1.u/

a1 : : : �n.u/
an

� ��nC1.u/C 2
�
�n0.u/an0 : : : �10.u/a10

is equal to zero. ut

Series Dn

Now take gN D oN with N D 2n and consider the operator S.m/ defined in (37).
We keep using notation (16) with ! D N and (13).

Theorem 3.5. For the image under the Harish-Chandra homomorphism (59) we
have

�m.N / trS.m/
�
@u C F1.u/

�
: : :
�
@u C Fm.u/

�

7! 1
2
hm
�
@u C �1.u/; : : : ; @u C �n�1.u/; @u C �n0.u/; : : : ; @u C �10.u/

�

C 1
2
hm
�
@u C �1.u/; : : : ; @u C �n.u/; @u C �.n�1/0.u/; : : : ; @u C �10.u/

�
:

Proof. We repeat the beginning of the proof of Theorem 3.2 with N now taking
the even value 2n, up to the application of the formula for Yangian characters. This
time we apply Proposition 2.3 to conclude that the Harish-Chandra image of the
expression (63) is found by

mX

kD0
.�1/m�k �k.2n/

 
2nCm � 2
m � k

!
X

16i16���6ik62n
�i1.u/e

@u : : : �ik .u/e
@u (68)
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with the condition that n and n0 do not occur simultaneously among the summation
indices i1; : : : ; ik . Introducing new variables by the same formulas (65) we come to
the Dn series counterpart of Lemma 3.3, where we use the notation

cr D .�1/r�1
 
2nC r � 2
n � 1

!�1
:

Lemma 3.6. The expression (68) multiplied by 2cm equals

2cm
X

a1C���Ca10 Dm
anDan0 D0

�1.u/
a1 : : : �10.u/a10

C cm
X

a1C���Ca10 Dm
only one of an and an0 is zero

�1.u/
a1 : : : �10.u/a10

�
mX

rD1

r cr

nC r � 1
X

a1C���Ca10 Dr
anDan0 D0

�1.u/
a1 : : : �10.u/a10

C
mX

rD1

.n � 1/ cr
nC r � 1

X

a1C���Ca10 Dr
only one of an and an0 is zero

�1.u/
a1 : : : �10.u/a10 ;

where a1; : : : ; a10 run over nonnegative integers.

Proof. Substitute (65) into the expression and calculate the coefficients of the sum

X

16i16���6ik62n
�i1.u/e

@u : : : �ik .u/e
@u : (69)

The argument splits into two cases, depending on whether neither of n and n0 occurs
among the summation indices i1; : : : ; ik in (69) or only one of them occurs. The
application of the expansion formula (67) brings this to a straightforward calculation
with binomial coefficients in both cases. ut

Let Am denote the four-term expression in Lemma 3.6. This expression equals
2cm times the Harish-Chandra image of (63) and so Am has degree �m. Hence, the
component of degree �m of the expression AmC1 is zero. On the other hand, each
element �i .u/ has degree �1 and its top degree component equals @u C �i.u/. This
implies that the component of degree �m in the sum of the third and fourth terms
in Am is zero. Therefore, the component of Am of degree �m equals the component
of degree �m in the sum of the first and the second terms. Taking into account the
constant factor 2cm, we conclude that the component takes the desired form. ut

The following corollary is implied by the proof of the theorem.
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Corollary 3.7. The series

�
1X

rD1

r cr

nC r � 1
X

a1C���Ca10 Dr
anDan0 D0

�1.u/
a1 : : : �10.u/a10

C
1X

rD1

.n � 1/ cr
nC r � 1

X

a1C���Ca10 Dr
only one of an and an0 is zero

�1.u/
a1 : : : �10.u/a10

is equal to zero. ut

Series Cn

Now we let gN D spN withN D 2n and consider the operator S.m/ defined in (38).
We also use notation (16) with ! D �2n and (14). Although the operator S.m/ is
defined only for m 6 nC 1, it is possible to extend the values of expressions of the
form (17) and those which are used in the next theorem to all m with m 6 2nC 1;
see [24, Sect. 3.3]. The Harish-Chandra images turn out to be given by the same
expression for all these values of m. We postpone the proof to Corollary 5.2 below,
and assume first that m 6 n.

Theorem 3.8. For all 1 6 m 6 n for the image under the Harish-Chandra
homomorphism (59) we have

�m.�2n/ trS.m/
�
@u � F1.u/

�
: : :
�
@u � Fm.u/

�

7! em
�
@u C �1.u/; : : : ; @u C �n.u/; @u; @u C �n0.u/; : : : ; @u C �10.u/

�
: (70)

Proof. The element @u�F.u/ coincides with the image of the matrix 1�T .u/e�@u

in the component of degree �1 of the graded algebra associated with the Yangian.
Hence the left hand side of (70) can be found as the image of the component of
degree �m of the expression

.�1/m �m.�2n/ trS.m/
�
T1.u/e

�@u � 1� : : : �Tm.u/e�@u � 1�: (71)

Now we use the commutative diagram (60) and the Harish-Chandra image of (71)
implied by Proposition 2.4. We have

trS.m/
�
T1.u/e

�@u � 1� : : : �Tm.u/e�@u � 1�

D
mX

kD0
.�1/m�k X

16a1<���<ak6m
trS.m/ Ta1.u/e

�@u : : : Tak .u/e
�@u : (72)
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As in the proof of Theorem 3.2, we use the second property in (39) and the cyclic
property of trace to bring the expression to the form

mX

kD0
.�1/m�k

 
m

k

!
trS.m/ T1.u/e

�@u : : : Tk.u/e
�@u :

Further, the partial traces of the symmetrizer S.m/ over the copies k C 1; : : : ; m of
the algebra EndCN in (20) are found by applying [24, Lemma 4.1] to get

trkC1;:::;m S.m/ D
�k.�2n/
�m.�2n/

 
2n � k C 1
m � k

! 
m

k

!�1
S.k/:

By Proposition 2.4 and Corollary 2.5, the Harish-Chandra image of the expres-
sion (71) is found by

mX

kD0
.�1/k �k.�2n/

 
2n � k C 1
m � k

!
X

16i1<���<ik62nC2
~i1.u/e

�@u : : : ~ik .u/e
�@u :

(73)

Introduce new variables by

�i .u/ D ~i .u/e�@u � 1; i D 1; : : : ; 2nC 2; i ¤ nC 2; (74)

and �nC2.u/ D ~nC2.u/e�@u C 1.

Lemma 3.9. Form 6 n the expression (73) multiplied by 2.�1/m �2n�mC1
nC1

�
equals

mX

rD0

 
2n � r C 2
nC 1

!
X

16i1<���<ir62nC2
�i1.u/ : : : �ir .u/

� 2
m�1X

rD0

 
2n � r C 1
nC 1

!
X

16i1<���<ir62nC2
is¤nC2

�i1.u/ : : : �ir .u/;

where nC 2 does not occur among the summation indices in the last sum.

Proof. Substituting (74) into the expression and simplifying gives

mX

rD0

 
2n � r C 2
nC 1

!
X

16i1<���<ir62nC2

�
~i1.u/e

�@u � 1� : : : �~ir .u/e�@u � 1�: (75)
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Now use the expansion formula for the noncommutative elementary symmetric
functions (14),

er .x1 � 1; : : : ; xp � 1/ D
rX

kD0
.�1/r�k

 
p � k
r � k

!
ek.x1; : : : ; xp/:

Taking xi D ~i .u/e�@u with i D 1; : : : ; 2nC 2, it is straightforward to verify that
the coefficient of the sum

X

16i1<���<ik6N
~i1.u/e

�@u : : : ~ik .u/e
�@u

in (75) equals

.�1/m�k
 
n � k
m � k

! 
2n � k C 2
nC 1

!

which coincides with

2.�1/m�k �k.�2n/
 
2n �mC 1
nC 1

! 
2n � k C 1
m � k

!

as claimed. ut
For m 6 n let Am denote the expression in Lemma 3.9. Note that Am coincides

with the Harish-Chandra image of (72) multiplied by
�
2n�mC2
nC1

�
. The proof of

Lemma 3.9 and the second part of Corollary 2.5 show that Am is also well-defined
for the value m D nC 1 and AnC1 D 0.

Since the degree of the element (71) is �m, for m 6 n the expression Am also
has degree �m. Hence, the component of degree �m of the expression AmC1 is
zero; this holds for m D n as well, because AnC1 D 0. Furthermore, each element
�i .u/ has degree �1 and so the component of Am of degree �m must be equal to
the component of degree �m of the expression

2

 
2n �mC 1
nC 1

!
X

16i1<���<im62nC2
is¤nC2

�i1.u/ : : : �im.u/:

The component of �i .u/ of degree �1 equals

8
ˆ̂<

ˆ̂:

�@u C �i.u/ for i D 1; : : : ; n;
�@u for i D nC 1;
�@u C �i�2.u/ for i D nC 3; : : : ; 2nC 2:
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The proof is completed by taking the signs and the constant factor used in
Lemma 3.9 into account. ut

4 Classical W -Algebras

We define the classical W -algebra W .g/ associated with a simple Lie algebra g
following [11, Sect. 8.1], where more details and proofs can be found. We let h
denote a Cartan subalgebra of g and let �1; : : : ; �n be a basis of h. The universal
enveloping algebra U.t�1hŒt�1�/ will be identified with the algebra of polynomials
in the infinitely many variables �i Œr� with i D 1; : : : ; n and r < 0 and will be
denoted by �0. We will also use the extended algebra with the additional generator
� subject to the relations



�; �i Œr�

� D �r �i Œr � 1�;

implied by (5). The extended algebra is isomorphic to �0 ˝ C Œ� � as a vector space.
Furthermore, we will need the operator T D ad � which is the derivation T W �0 !
�0 defined on the generators by the relations

T �i Œr� D �r �i Œr � 1�:

In particular, T 1 D 0. The classical W -algebra is defined as the vector subspace
W .g/ � �0 spanned by the elements which are annihilated by the screening
operators

Vi W �0 ! �0; i D 1; : : : ; n;

which we will write down explicitly for each classical type below,1

W .g/ D fP 2 �0 j Vi P D 0; i D 1; : : : ; ng:

The operators Vi are derivations of �0 so that W .g/ is a subalgebra of �0. The
subalgebra W .g/ is T -invariant. Moreover, there exist elementsB1; : : : ; Bn 2 W .g/
such that the family of elements T rBi with i D 1; : : : ; n and r > 0 is algebraically
independent and generates the algebra W .g/. We will call B1; : : : ; Bn a complete
set of generators of W .g/. Examples of such sets in the classical types will be given
below. We extend the screening operators to the algebra �0 ˝ C Œ� � by

Vi
�
P ˝Q.�/� D Vi .P /˝Q.�/; P 2 �0; Q.�/ 2 C Œ� �:

1Our Vi essentially coincides with the operator V i Œ1� in the notation of [11, Sect. 7.3.4], which is
associated with the Langlands dual Lie algebra Lg.
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4.1 Screening Operators and Generators for W .glN /

Here �0 is the algebra of polynomials in the variables �i Œr� with i D 1; : : : ; N and
r < 0. The screening operators V1; : : : ; VN�1 are defined by

Vi D
1X

rD0
Vi Œr�

� @

@�i Œ�r � 1� �
@

@�iC1Œ�r � 1�
	
;

where the coefficients Vi Œr� are found from the expansion of a formal generating
function in a variable z,

1X

rD0
Vi Œr� z

r D exp
1X

mD1

�i Œ�m� � �iC1Œ�m�
m

zm:

Define elements E1; : : : ;EN of �0 by the expansion in �0 ˝ C Œ� �,

�
� C �N Œ�1�

�
: : :
�
� C �1Œ�1�

� D �N C E1 �
N�1 C � � � C EN ; (76)

known as the Miura transformation. Explicitly, using the notation (14) we can write
the coefficients as

Em D em
�
T C �1Œ�1�; : : : ; T C �N Œ�1�

�
; (77)

which follows easily from (76) by induction. The family E1; : : : ;EN is a complete
set of generators of W .glN /. Verifying that all elements Ei are annihilated by
the screening operators is straightforward. This is implied by the relations for the
operators on �0,

Vi T D
�
T C �i Œ�1� � �iC1Œ�1�

�
Vi ; i D 1; : : : ; N � 1: (78)

They imply the corresponding relations for the operators on �0 ˝ C Œ� �,

Vi � D
�
� C �i Œ�1� � �iC1Œ�1�

�
Vi ; i D 1; : : : ; N � 1; (79)

where � is regarded as the operator of left multiplication by � . For each i the relation

Vi
�
� C �N Œ�1�

�
: : :
�
� C �1Œ�1�

� D 0

then follows easily. Indeed, it reduces to the particular case N D 2 where we have
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V1
�
� C �2Œ�1�

��
� C �1Œ�1�

�

D
��
� C �1Œ�1� � �2Œ�1�

�
V1 C �2Œ�1� V1 � 1

	�
� C �1Œ�1�

�

D �� C �1Œ�1�
�
V1
�
� C �1Œ�1�

� � �� C �1Œ�1�
� D 0:

Showing that the elements T rEi are algebraically independent generators requires
a comparison of the sizes of graded components of �0 and W .glN /.

By the definitions (13) and (14), we have the relations

mX

kD0
.�1/k Ek hm�k

�
T C �1Œ�1�; : : : ; T C �N Œ�1�

� D 0 (80)

for m > 1, where E0 D 1 and Ek D 0 for k > N . They imply that all elements

hm
�
T C �1Œ�1�; : : : ; T C �N Œ�1�

�
; m > 1; (81)

belong to W .glN /. Moreover, the family (81) with m D 1; : : : ; N is a complete set
of generators of W .glN /.

Note that the classical W -algebra W .slN / associated with the special linear Lie
algebra slN can be obtained as the quotient of W .glN / by the relation E1 D 0.

4.2 Screening Operators and Generators for W .oN /

and W .spN /

Now �0 is the algebra of polynomials in the variables �i Œr� with i D 1; : : : ; n and
r < 0. The families of generators of the algebras W .oN / and W .spN / reproduced
below were constructed in [9, Sect. 8], where equations of the KdV type were
introduced for arbitrary simple Lie algebras. The generators are associated with the
Miura transformations of the corresponding equations.

Series Bn

The screening operators V1; : : : ; Vn are defined by

Vi D
1X

rD0
Vi Œr�

� @

@�i Œ�r � 1� �
@

@�iC1Œ�r � 1�
	
; (82)

for i D 1; : : : ; n � 1, and
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Vn D
1X

rD0
Vn Œr�

@

@�nŒ�r � 1� ;

where the coefficients Vi Œr� are found from the expansions

1X

rD0
Vi Œr� z

r D exp
1X

mD1

�i Œ�m� � �iC1Œ�m�
m

zm; i D 1; : : : ; n � 1

and

1X

rD0
Vn Œr� z

r D exp
1X

mD1

�nŒ�m�
m

zm:

Define elements E2; : : : ;E2nC1 of �0 by the expansion

�
� � �1Œ�1�

�
: : :
�
� � �nŒ�1�

�
�
�
� C �nŒ�1�

�
: : :
�
� C �1Œ�1�

�

D �2nC1 C E2 �
2n�1 C E3 �

2n�2 C � � � C E2nC1: (83)

All of them belong to W .o2nC1/. By (77) we have

Em D em
�
T C�1Œ�1�; : : : ; T C�nŒ�1�; T; T ��nŒ�1�; : : : ; T ��1Œ�1�

�
: (84)

The family E2;E4; : : : ;E2n is a complete set of generators of W .o2nC1/. The relation

Vi
�
� � �1Œ�1�

�
: : :
�
� � �nŒ�1�

�
�
�
� C �nŒ�1�

�
: : :
�
� C �1Œ�1�

� D 0 (85)

is verified for i D 1; : : : ; n � 1 in the same way as for glN with the use of (79).
Furthermore,

Vn � D
�
� C �nŒ�1�

�
Vn;

so that

Vn
�
� � �nŒ�1�

�
�
�
� C �nŒ�1�

� D �� Vn � 1
�
�
�
� C �nŒ�1�

�

D � �� C �nŒ�1�
� �
� C 2�nŒ�1�

�
Vn;

which implies that (85) holds for i D n as well.
By (80) all elements

hm
�
T C �1Œ�1�; : : : ; T C �nŒ�1�; T; T � �nŒ�1�; : : : ; T � �1Œ�1�

�
(86)

belong to W .o2nC1/. The family of elements (86) with m D 2; 4; : : : ; 2n forms
another complete set of generators of W .o2nC1/.
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Series Cn

The screening operators V1; : : : ; Vn are defined by (82) for i D 1; : : : ; n � 1, and

Vn D
1X

rD0
Vn Œr�

@

@�nŒ�r � 1� ;

where

1X

rD0
Vn Œr� z

r D exp
1X

mD1

2�nŒ�m�
m

zm:

Define elements E2; : : : ;E2n of �0 by the expansion

�
� � �1Œ�1�

�
: : :
�
� � �nŒ�1�

��
� C �nŒ�1�

�
: : :
�
� C �1Œ�1�

�

D �2n C E2 �
2n�2 C E3 �

2n�3 C � � � C E2n:

All of them belong to W .sp2n/. By (77) we have

Em D em
�
T C �1Œ�1�; : : : ; T C �nŒ�1�; T � �nŒ�1�; : : : ; T � �1Œ�1�

�
:

The family E2;E4; : : : ;E2n is a complete set of generators of W .sp2n/. The relation

Vi
�
� � �1Œ�1�

�
: : :
�
� � �nŒ�1�

��
� C �nŒ�1�

�
: : :
�
� C �1Œ�1�

� D 0 (87)

is verified for i D 1; : : : ; n � 1 in the same way as for glN with the use of (79). In
the case i D n we have

Vn � D
�
� C 2�nŒ�1�

�
Vn;

so that

Vn
�
� � �nŒ�1�

��
� C �nŒ�1�

� D
��
� C �nŒ�1�

�
Vn � 1

	�
� C �nŒ�1�

�

D �� C �nŒ�1�
��
� C 3�nŒ�1�

�
Vn;

and (87) with i D n also follows.
It follows from (80) that the elements

hm
�
T C �1Œ�1�; : : : ; T C �nŒ�1�; T � �nŒ�1�; : : : ; T � �1Œ�1�

�

with m D 2; 4; : : : ; 2n form another complete set of generators of W .sp2n/.
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Series Dn

The screening operators V1; : : : ; Vn are defined by (82) for i D 1; : : : ; n � 1, and

Vn D
1X

rD0
Vn Œr�

� @

@�n�1Œ�r � 1� C
@

@�nŒ�r � 1�
	

where

1X

rD0
Vn Œr� z

r D exp
1X

mD1

�n�1Œ�m�C �nŒ�m�
m

zm:

Define elements E2;E3; : : : of �0 by the expansion of the pseudo-differential
operator

�
� � �1Œ�1�

�
: : :
�
� � �nŒ�1�

�
��1 �� C �nŒ�1�

�
: : :
�
� C �1Œ�1�

�

D �2n�1 C
1X

kD2
Ek �

2n�k�1:

The coefficients Ek are calculated with the use of the relations

��1�i Œ�r � 1� D
1X

kD0

.�1/k .r C k/Š
rŠ

�i Œ�r � k � 1���k�1:

All the elements Ek belong to W .o2n/. Moreover, define E 0
n 2 �0 by

E 0
n D

�
�1Œ�1� � T

�
: : :
�
�nŒ�1� � T

�
; (88)

so that this element coincides with (19). The family E2;E4; : : : ;E2n�2;E 0
n is a

complete set of generators of W .o2n/. The identity

Vi
�
� � �1Œ�1�

�
: : :
�
� � �nŒ�1�

�
��1 �� C �nŒ�1�

�
: : :
�
� C �1Œ�1�

� D 0 (89)

is verified with the use of (79) and the additional relations

Vi �
�1 D �� C �i Œ�1� � �iC1Œ�1�

��1
Vi ; i D 1; : : : ; n � 1;

and

Vn �
�1 D �� C �n�1Œ�1�C �nŒ�1�

��1
Vn: (90)
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In comparison with the types Bn and Cn, an additional calculation is needed for the
case i D n in (89). It suffices to take n D 2. We have

V2
�
� � �1Œ�1�

��
� � �2Œ�1�

�
��1 �� C �2Œ�1�

��
� C �1Œ�1�

�

D
��
� C �2Œ�1�

�
V2 � 1

	�
� � �2Œ�1�

�
��1 �� C �2Œ�1�

��
� C �1Œ�1�

�

D
��
� C �2Œ�1�

��
� C �1Œ�1�

�
V2 � 2�

	
��1 �� C �2Œ�1�

��
� C �1Œ�1�

�
:

Furthermore, applying the operator V2 we find

V2
�
� C �2Œ�1�

��
� C �1Œ�1�

� D
��
� C �1Œ�1�C 2�2Œ�1�

�
V2 C 1

	�
� C �1Œ�1�

�

D 2�� C �1Œ�1�C �2Œ�1�
�

and so by (90),

V2 �
�1 �� C �2Œ�1�

��
� C �1Œ�1�

� D 2

thus completing the calculation.
The relations

Vi
�
�1Œ�1� � T

�
: : :
�
�nŒ�1� � T

� D 0; i D 1; : : : ; n;

are verified with the use of (78).

5 Generators of the W -Algebras

Here we prove the Main Theorem stated in the Introduction by deriving it from
Theorems 3.2, 3.5 and 3.8.

Choose a basisX1; : : : ; Xd of the simple Lie algebra g and write the commutation
relations

ŒXi ; Xj � D
dX

kD1
c kij Xk

with structure constants c kij . Consider the Lie algebras gŒt � and t�1gŒt�1� and
combine their generators into formal series in u�1 and u,

Xi.u/ D
1X

rD0
Xi Œr� u

�r�1 and Xi.u/C D
1X

rD0
Xi Œ�r � 1� ur :
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The commutation relations of these Lie algebras written in terms of the formal series
take the form

.u � v/ ŒXi .u/; Xj .v/� D �
dX

kD1
c kij
�
Xk.u/ �Xk.v/

�
;

.u � v/ ŒXi .u/C; Xj .v/C� D
dX

kD1
c kij
�
Xk.u/C �Xk.v/C

�
:

Observe that the second family of commutation relations is obtained from the first
by replacing Xi.u/ with the respective series �Xi.u/C.

On the other hand, in the classical types, the elements of the universal enveloping
algebra U.gŒt �/ and their Harish-Chandra images calculated in Proposition 3.1 and
Theorems 3.2, 3.5 and 3.8 are all expressed in terms of the series of the form
Xi.u/. Therefore, the corresponding Harish-Chandra images of the elements of the
universal enveloping algebra U.t�1gŒt�1�/ are readily found from those theorems
by replacing Xi.u/ with the respective series �Xi.u/C.

To be consistent with the definition for the Wakimoto modules in [11], we will
write the resulting formulas for the opposite choice of the Borel subalgebra, as
compared to the homomorphism (59). To this end, in types B , C andD we consider
the automorphism � of the Lie algebra t�1gN Œt�1� defined on the generators by

� W FijŒr� 7! �FjiŒr�: (91)

We get the commutative diagram

(92)
where i ranges over the set f1; : : : ; ng while r < 0. The top and bottom horizontal
arrows indicate the versions of the Harish-Chandra homomorphism defined as
in (59), where the left ideal I is now generated by all elements FijŒr� with the
conditions 1 6 i < j 6 N and r < 0 for the top arrow, and by all elements
FijŒr� with the conditions N > i > j > 1 and r < 0 for the bottom arrow (which
we denote by 	). The second vertical arrow indicates the isomorphism which takes
�i Œr� to ��i Œr�.

Note that an automorphism analogous to (91) can be used in the case of the Lie
algebra glN to get the corresponding description of the homomorphism 	 and to
derive the formulas (11) and (12). However, these formulas follow easily from the
observation that � CEŒ�1� is a Manin matrix by the same argument as in the proof
of Proposition 3.1.
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To state the result in types B , C and D, introduce the formal series

�m.!/ trS.m/
�
@u C F1.u/C

�
: : :
�
@u C Fm.u/C

�
; (93)

where we use notation (16) with ! D N and ! D �N in the orthogonal and
symplectic case, respectively, and

F.u/C D
NX

i;jD1
eij ˝ Fij.u/C 2 EndCN ˝ U

�
t�1gN Œt�1�

�
ŒŒu��:

We will assume that in the symplectic case the values of m in (93) are restricted to
1 6 m 6 2nC 1; see [24, Sects. 3.3 and 4.1]. The trace is taken over all m copies
EndCN in the algebra

EndCN ˝ � � � ˝ EndCN

„ ƒ‚ …
m

˝ U
�
t�1gN Œt�1�

�
ŒŒu; @u�� (94)

and we use matrix notation as in (15). We set

�i.u/C D
1X

rD0
�i Œ�r � 1� ur ; i D 1; : : : ; n:

Proposition 5.1. The image of the series (93) under the homomorphism 	 is given
by the formula :

type Bn: hm
�
@u C �1.u/C; : : : ; @u C �n.u/C; @u � �n.u/C; : : : @u � �1.u/C

�
;

type Dn: 1
2
hm
�
@u C �1.u/C; : : : ; @u C �n�1.u/C; @u � �n.u/C; : : : @u � �1.u/C

�

C 1
2
hm
�
@u C �1.u/C; : : : ; @u C �n.u/C; @u � �n�1.u/C; : : : @u � �1.u/C

�
;

type Cn: em
�
@u C �1.u/C; : : : ; @u C �n.u/C; @u; @u � �n.u/C; : : : @u � �1.u/C

�
:

Proof. We start with the orthogonal case gN D oN . The argument in the beginning
of this section shows that the image of the series

�m.N / trS.m/
�
@u � F1.u/C

�
: : :
�
@u � Fm.u/C

�

under the homomorphism given by the top horizontal arrow in (92) is found by
Theorems 3.2 and 3.5, where �i.u/ should be respectively replaced by ��i.u/C for
i D 1; : : : ; n. Therefore, using the diagram (92) we find that the image of the series

�m.N / trS.m/
�
@u C F t

1 .u/C
�
: : :
�
@u C F t

m.u/C
�

(95)
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under the homomorphism 	 is given by the respective Bn and Dn type formulas in
the proposition, where we set F t.u/C D P

i;j eij ˝ Fji.u/C. It remains to observe
that the series (95) coincides with (93). This follows by applying the simultaneous
transpositions eij 7! eji to all m copies of EndCN and taking into account the fact
that S.m/ stays invariant.

In the symplectic case, we suppose first that m 6 n. Starting with the Harish-
Chandra image provided by Theorem 3.8 and applying the same argument as in the
orthogonal case, we conclude that the image of the series

�m.�2n/ trS.m/
�
@u � F1.u/C

�
: : :
�
@u � Fm.u/C

�
(96)

under the homomorphism 	 agrees with the Cn type formula given by the statement
of the proposition. One more step here is to observe that this series coincides
with (93). Indeed, this follows by applying the simultaneous transpositions eij 7!
"i "j ej 0i 0 to all m copies of EndCN . On the one hand, this transformation does
not affect the trace of any element of (94), while on the other hand, each factor
@u � Fi.u/C is taken to @u C Fi.u/C and the operator S.m/ stays invariant.

Finally, extending the argument of [24, Sect. 3.3] to the case m D 2n C 1 and
using the results of [24, Sect. 5], we find that for all values 1 6 m 6 2n C 1 the
coefficients ˚.s/

ma in the expansion

�m.�2n/ trS.m/
�
@u C F1.u/C

�
: : :
�
@u C Fm.u/C

� D
mX

aD0

1X

sD0
˚.s/
ma us @ au

belong to the Feigin–Frenkel center z.bsp2n/. The image of the element ˚.s/
ma with

respect to the isomorphism (4) is a polynomial in the generators T rE2k of the
classical W -algebra W .o2nC1/, where k D 1; : : : ; n and r > 0; see (84). For a fixed
value of m and varying values of n the coefficients of the polynomial are rational
functions in n. Therefore, they are uniquely determined by infinitely many values
of n > m. This allows us to extend the range of n to all values n > .m � 1/=2 for
which the expression (93) is defined. ut
Corollary 5.2. Theorem 3.8 holds for all values 1 6 m 6 2nC 1.

Proof. This follows by reversing the argument of the proof of Proposition 5.1. ut
With the exception of the formula (19) for the image of the element �0

n in type
Dn, all statements of the Main Theorem now follow from Proposition 5.1. It suffices
to note that the coefficients of the polynomial (17) and the differential operator (93)
are related via the vertex algebra structure on the vacuum module V�h_.gN /. In
particular, the evaluation of the coefficients of the differential operator (93) at u D 0
reproduces the corresponding coefficients of the polynomial (17). This implies the
desired formulas for the Harish-Chandra images in the Main Theorem; see e.g. [11,
Chap. 2] for the relevant properties of vertex algebras.

Now consider the element E 0
n of the algebra W .o2n/ defined in (88) and which

coincides with the element (19). To prove that the Harish-Chandra image of the
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element �0
n introduced by (18) equals E 0

n , use the automorphism of the Lie algebra
t�1o2nŒt�1� defined on the generators by

Fk l Œr� 7! F Qk Ql Œr�; (97)

where k 7! Qk is the involution on the set f1; : : : ; 2ng such that n 7! n0, n0 7! n

and k 7! k for all k ¤ n; n0. Note that �0
n 7! ��0

n under the automorphism (97).
Similarly, E 0

n 7! �E 0
n with respect to the automorphism of t�1h2nŒt�1� induced

by (97).
As a corollary of the Main Theorem and the results of [24] we obtain from the

isomorphism (4) that the elements

Fm D 1
2
hm
�
T C �1Œ�1�; : : : ; T C �n�1Œ�1�; T � �nŒ�1�; : : : T � �1Œ�1�

�

C 1
2
hm
�
T C �1Œ�1�; : : : ; T C �nŒ�1�; T � �n�1Œ�1�; : : : T � �1Œ�1�

�
;

with m D 2; 4; : : : ; 2n � 2 together with E 0
n form a complete set of generators

of W .o2n/ (this fact does not rely on the calculation of the image of the Pfaffian).
Observe that all elements T rF2k with k D 1; : : : ; n � 1 and r > 0 are stable
under the automorphism (97). Since the Harish-Chandra image 	.�0

n/ is a unique
polynomial in the generators of W .o2n/ and its degree with respect to the variables
�1Œ�1�; : : : ; �nŒ�1� does not exceed n, we can conclude that 	.�0

n/ must be
proportional to E 0

n . The coefficient of the product �1Œ�1� : : : �nŒ�1� in each of these
two polynomials is equal to 1 thus proving that 	.�0

n/ D E 0
n . This completes the

proof of the Main Theorem.
The properties of vertex algebras mentioned above and the relation 	.�0

n/ D
E 0
n imply the respective formulas for the Harish-Chandra images of the Pfaffians

Pf QF .u/C and Pf QF .u/ defined by (18) with the matrix QF Œ�1� replaced by the skew-
symmetric matrices QF .u/C D ŒFij 0.u/C� and QF .u/ D ŒFij 0.u/�, respectively.

Corollary 5.3. The Harish-Chandra images of the Pfaffians are found by

	 W Pf QF .u/C 7!
�
�1.u/C � @u

�
: : :
�
�n.u/C � @u

�
1;

Pf QF .u/ 7! �
�1.u/ � @u

�
: : :
�
�n.u/ � @u

�
1;

where the second map is defined in (59).

Proof. The first relation follows by the application of the state-field correspondence
map to the Segal–Sugawara vector (18) and using its Harish-Chandra image (19). To
get the second relation, apply the automorphism (91) to the first relation to calculate
the image of Pf QF .u/C with respect to the homomorphism defined by the top arrow
in (92),

Pf QF .u/C 7!
�
�1.u/C C @u

�
: : :
�
�n.u/C C @u

�
1:
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Now replace QF .u/C with � QF .u/ and replace �i.u/C with the respective series
��i.u/ for i D 1; : : : ; n. ut

The isomorphism (4) and the Main Theorem provide complete sets of generators
of the classical W -algebras. In types B and C they coincide with those introduced
in Sect. 4.2, but different in type D, as pointed out in the above argument.

Corollary 5.4. The elements F2;F4; : : : ;F2n�2;E 0
n form a complete set of gener-

ators of W .o2n/. ut
To complete this section, we point out that the application of the state-field

correspondence map to the coefficients of the polynomial (17) and to the additional
element (18) in type Dn yields Sugawara operators associated with OgN . They act
as scalars in the Wakimoto modules at the critical level. The eigenvalues are found
from the respective formulas of Proposition 5.1 and Corollary 5.3 as follows from
the general theory of Wakimoto modules and their connection with the classical
W -algebras; see [11, Chap. 8].

6 Casimir Elements for gN

We apply the theorems of Sect. 3 to calculate the Harish-Chandra images of
certain Casimir elements for the orthogonal and symplectic Lie algebras previously
considered in [16]. Our formulas for the Harish-Chandra images are equivalent to
those in [16], but take a different form. We will work with the isomorphism (2),
where the Cartan subalgebra h of the Lie algebra g D gN is defined in the
beginning of Sect. 2 and the subalgebra nC is spanned by the elements Fij with
1 6 i < j 6 N . We will use the notation �i D Fii for i D 1; : : : ; N so that
�i C �i 0 D 0 for all i .

Consider the evaluation homomorphism

ev W U.gN Œt �/! U.gN /; Fij.u/ 7! Fij u
�1;

so that FijŒ0� 7! Fij and FijŒr� 7! 0 for r > 1. The image of the series �i.u/
then coincides with �i u�1. Applying the evaluation homomorphism to the series
involved in Theorems 3.2, 3.5 and 3.8 we get the corresponding Harish-Chandra
images of the elements of the center of the universal enveloping algebra U.gN /.
The formulas are obtained by replacing Fij.u/ with Fij u�1 and �i.u/ with �i u�1.
Multiply the resulting formulas by um from the left. In the case gN D o2nC1 use the
relation

um .@uCF1 u�1/ : : : .@uCFm u�1/ D .u@uCF1 �mC 1/ : : : .u@uCFm/ (98)
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to conclude that the Harish-Chandra image of the polynomial

�m.N / trS.m/.F1 C v �mC 1/ : : : .Fm C v/ (99)

with v D u@u is found by

X

16i16���6im610

.�i1 C v �mC 1/ : : : .�im C v/;

summed over the multisets fi1; : : : ; img with entries from f1; : : : ; n; n0; : : : ; 10g.
By the arguments of [16], the Harish-Chandra image of the polynomial (99) is
essentially determined by those for the even values m D 2k and a particular value
of v.

Corollary 6.1. For gN D o2nC1 the image of the Casimir element

�2k.N / trS.2k/ .F1 � k/ : : : .F2k C k � 1/

under the Harish-Chandra isomorphism is given by

X

16i16���6i2k610

.�i1 � k/ : : : .�i2k C k � 1/; (100)

summed over the multisets fi1; : : : ; i2kg with entries from f1; : : : ; n; n0; : : : ; 10g.
Moreover, the element (100) coincides with the factorial complete symmetric
function

X

16j16���6jk6n

�
l2j1 � .j1 � 1=2/2

�
: : :
�
l2jk � .jk C k � 3=2/2

�
; (101)

where li D �i C n � i C 1=2 for i D 1; : : : ; n.

Proof. The coincidence of the elements (100) and (101) is verified by using the
characterization theorem for the factorial symmetric functions [34]; see also [16].
Namely, both elements are symmetric polynomials in l21 ; : : : ; l

2
n of degree k, and

their top degree components are both equal to the complete symmetric polynomial
hk.l

2
1 ; : : : ; l

2
n/. It remains to verify that each of the elements (100) and (101)

vanishes when .�1; : : : ; �n/ is specialized to a partition with �1 C � � � C �n < k

which is straightforward. ut
Similarly, if gN D o2n use the same relation (98) to conclude from Theorem 3.5

that the Harish-Chandra image of the polynomial

2 �m.N / trS.m/.F1 C v �mC 1/ : : : .Fm C v/
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is found by

X

16i16���6im62n
is¤n

.�i1 C v �mC 1/ : : : .�im C v/

C
X

16i16���6im62n
is¤n0

.�i1 C v �mC 1/ : : : .�im C v/;

where the summation indices in the first sum do not include n and the summation
indices in the second sum do not include n0.

Corollary 6.2. For gN D o2n the image of the Casimir element

�2k.N / trS.2k/ .F1 � k/ : : : .F2k C k � 1/

under the Harish-Chandra isomorphism is given by

1
2

X

16i16���6i2k62n
is¤n

.�i1�k/ : : : .�i2kCk�1/C 1
2

X

16i16���6i2k62n
is¤n0

.�i1�k/ : : : .�i2kCk�1/:

Moreover, this element coincides with the factorial complete symmetric function

X

16j16���6jk6n

�
l2j1 � .j1 � 1/2

�
: : :
�
l2jk � .jk C k � 2/2

�
;

where li D �i C n � i for i D 1; : : : ; n.

Proof. The coincidence of the two expressions for the Harish-Chandra image is
verified in the same way as for the case of o2nC1 outlined above. ut

Now suppose that gN D sp2n and use the relation

um .�@u C F1u�1/ : : : .�@u C Fmu�1/ D .�u@u C F1 Cm � 1/ : : : .�u@u C Fm/

to conclude from Theorem 3.8 and Corollary 5.2 that the Harish-Chandra image of
the polynomial

�m.�2n/ trS.m/.F1 C vCm � 1/ : : : .Fm C v/

with v D �u@u is found by

X

16i1<���<im610

.�i1 C vCm � 1/ : : : .�im C v/;
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summed over the subsets fi1; : : : ; img of the set f1; : : : ; n; 0; n0; : : : ; 10g with the
ordering 1 < � � � < n < 0 < n0 < � � � < 10, where �0 WD 0. Taking m D 2k and
v D �k C 1 we get the following.

Corollary 6.3. For gN D sp2n the image of the Casimir element

�2k.�2n/ trS.2k/ .F1 C k/ : : : .F2k � k C 1/

under the Harish-Chandra isomorphism is given by

X

16i1<���<i2k610

.�i1 C k/ : : : .�i2k � k C 1/; (102)

summed over the subsets fi1; : : : ; i2kg � f1; : : : ; n; 0; n0; : : : ; 10g. Moreover, the
element (102) coincides with the factorial elementary symmetric function

.�1/k
X

16j1<���<jk6n

�
l2j1 � j 21

�
: : :
�
l2jk � .jk � k C 1/2

�
; (103)

where li D �i C n � i C 1 for i D 1; : : : ; n.

Proof. To verify that the elements (102) and (103) coincide, use again the char-
acterization theorem for the factorial symmetric functions [34]; see also [16].
Both elements are symmetric polynomials in l21 ; : : : ; l

2
n of degree k, and their

top degree components are both equal to the elementary symmetric polynomial
.�1/k ek.l21 ; : : : ; l2n/. Furthermore, it is easily seen that each of the elements (102)
and (103) vanishes when .�1; : : : ; �n/ is specialized to a partition with �1 C � � � C
�n < k. ut

By using Proposition 3.1 and applying the above arguments, we get explicit
formulas for Casimir elements for glN and their Harish-Chandra images. They
essentially coincide with the Capelli-type elements produced by Nazarov [33].
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Vertex Operator Algebras, Modular Forms
and Moonshine

Geoffrey Mason

Abstract This paper comprises a more-or-less verbatim account of four lectures
on monstrous moonshine that I gave in a mini course prior to the main Heidelberg
conference.

1 Lecture 1

1.1 The Monster Simple Group

Group theorists conceived the Monster sporadic simple groupM in the early 1970s,
although it was not officially born until 1982. Many features of M were understood
well before that time, however. In particular the complete character table was
already known. Here is a small part of it.

1 2A 2B

	1 1 1 1

	2 196883 4371 275

	3 21296876 91884 �2324

Let Vi be the M -module that affords the character 	i . From the character table
one can compute branching rules Vi ˝ Vj D ˚kcijkVk . In particular, the tensor
square V ˝2

2 decomposes into the sum of symmetric and exterior squares S2.V2/˚
ƒ2.V2/, and the branching rules show that c222 D 1 with V2 � S2.V2/. So there is a
canonical M -invariant surjection V2 ˝ V2 ! V2, and it gives rise to a commutative,
nonassociative algebra structure on V1 whose automorphism group contains M .
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We can formally add an identity element 1 to obtain a unital, commutative algebra

B D V1 ˚ V2 (1)

(V1 D C1) with M � Aut.B/.

1.2 J and V \

Up to an undetermined constant, there is a unique modular function of weight 0 on
the full modular group $ WD SL2.Z/ with a simple pole of residue 1 at 1. Such
functions can be represented as quotients of holomorphic modular forms of equal
weight. For example we have

J C 744 D �E8.�/
3

).�/
D q�1 C 744C 196884q C 21493760q2 C : : : (2)

J C 24 D �ƒ.�/

).�/
D q�1 C 24C 196884q C 21493760q2 C : : : : (3)

Here,

J D q�1 C 196884q C 21493760q2 C : : : (4)

is the modular function with constant 0, ).�/ is the discriminant

).�/ D q
1Y

nD1
.1 � qn/24; (5)

and

�L.�/ D
X

˛2L
q.˛;˛/=2 (6)

is the theta function of an even lattice L; E8 and ƒ denote the E8-root lattice and
Leech lattice respectively.

John McKay noticed that the first few Fourier coefficients in (4) are simple linear
combinations of dimensions of the irreducible M -modules Vi with nonnegative
coefficients. This suggests that we replace the Fourier coefficients by the putative
M -modules that correspond to them—a sort of ‘categorification’. From (3)–(6), the
coefficients of J are all nonnegative, so at least they correspond to linear spaces.
Shifting the grading by 1 for later convenience, we obtain a Z-graded linear space

V \ WD V \
0 ˚ V \

2 ˚ V \
3 ˚ : : : (7)
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with

V
\
0 D V1

V
\
2 D V1 ˚ V2 (8)

V
\
3 D V1 ˚ V2 ˚ V3
: : :

and with dimV
\
n D coefficient of qn�1 in (4). McKay’s observation was promoted to

the conjecture that each V \
n carries a ‘natural’ action ofM . Note that V \

2 is identified
with the algebra B .

1.3 Monstrous Moonshine

With the conjectured Z-graded M -module V \ in hand, for each g 2M we can take
the graded trace of g and obtain another q-series

Zg D Zg.q/ WD q�1
1X

nD0
Tr
V
\
n
.g/qn: (9)

It was John Thompson who first asked what one can say about these additional
q-expansions. (There are 174 of them, one for each conjugacy class ofM ). We have
Z1A.1; q/ D J by construction, and from the character table and (8) we see that

Z2A.q/ D q�1 C 4372q C 96256q2 C : : :
Z2B.q/ D q�1 C 276q � 2048q2 C : : : :

In a celebrated paper, John Conway and Simon Norton resoundingly answered
Thompson’s question. They gave overwhelming evidence for the conjecture that
each of the trace functions (9) was a hauptmodul for a subgroup of SL2.Q/
commensurable with SL2.Z/. This means that for each g we have a subgroup
$g � SL2.Q/ with j$g W $g \ $j; j$ W $g \ $j <1 such that the following hold:

.i/ Each Zg is the q-expansion of a modular function of weight zero

on $g. (10)

.i i/ If H is the complex upper half-plane, the compact Riemann surface

$g nH� is a Riemann sphere whose function field is C.Zg/.

If g D 1A then of courseZ1 D J and $1 D $ . Conway–Norton proposed formulae
for each Zg . For example,
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Z2B.q/ D �.�/24

�.2�/24
C 24; (11)

where �.�/ is the Dedekind eta-function (a 24th root of the discriminant (5))

�.�/ D q1=24
1Y

nD1
.1 � qn/: (12)

Z2B.q/ is a hauptmodul for the index 3 subgroup $0.2/ � $ .

1.4 Vertex Algebras

The problem is now to define a natural action of the Monster M on V \ so that
the graded traces Zg satisfy the Conway–Norton moonshine conjectures (10).
Borcherds’ radical proposed solution involved the idea of a vertex algebra, which
may be defined as follows. It is a pair .V; 1/ consisting of a nonzero C-linear space
V and a distinguished vector 1 6D 0. Moreover, V is equipped with bilinear products

�n W V ˝ V ! V .n 2 Z/;

u˝ v 7! u.n/v .u; v 2 V /;

satisfying the following axioms for all u; v;w 2 V :

There is n0 D n0.u; v/ 2 Z such that u.n/v D 0 for n � n0, (13)

v.n/1 D 0 .n � 0/ and v.�1/1 D v, (14)

For all p; q; r 2 Z we have

1X

iD0

 
p

i

!
fu.r C i/vg.p C q � i/w D (15)

1X

iD0
.�1/i

 
r

i

!
fu.p C r � i/v.q C i/w � .�1/rv.q C r � i/u.p C i/wg:

Thanks to (13), both sums in (15) are finite, so that (15) is sensible.
At this point the reader may well be asking, where did these identities come from,

what are they good for, and what do they have to do with Monstrous Moonshine?
The point of these lectures is to address these questions.

We begin by specializing (15) in various ways. It is convenient to consider u.n/ 2
End.V / to be the linear operator v 7! u.n/v .v 2 V /. Taking r D 0, the binomial�
r
i

�
vanishes unless i D 0 and (15) reduces to the operator identity

Œu.p/; v.q/� D
1X

iD0

 
p

i

!
fu.i/vg.p C q � i/; (16)
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called the commutator formula. Similarly, taking p D 0 yields the associativity
formula

fu.r/vg.q/ D
1X

iD0
.�1/i

 
r

i

!
fu.r � i/v.q C i/ � .�1/rv.q C r � i/u.i/g: (17)

With n0.u; v/ as in (13), we obtain

1X

iD0
.�1/i

 
r

i

!
fu.p C r � i/v.q C i/ � .�1/rv.q C r � i/u.p C i/g D 0 (18)

whenever r � n0, which is sometimes referred to as commutativity.
Assuming (13), it is not too hard to show that (15) is a consequence of the

commutator and associativity formulas, and thus is equivalent to them. There are
other equivalent ways to reformulate (15) that are useful. We explain one of them
(cf. (24)) in the next section.

1.5 Locality and Quantum Fields

In the succeeding two sections we will explain how the idea of a vertex algebra
corresponds to the physicist’s 2-dimensional conformal field theory.

The important idea of a vertex operator, or quantum field, or simply field, defined
on an arbitrary linear space V is as follows. It is a formal series

a.z/ WD
X

n2Z
anz�n�1 2 End.V /ŒŒz; z�1��

of operators an on V such that if v 2 V then anv D 0 for all large enough n. Set

F.V / D fa.z/ 2 End.V /ŒŒz; z�1�� j a.z/ is a fieldg:

F.V / is a linear subspace of End.V /ŒŒz; z�1��.
If .V; 1/ is a vertex algebra, we set

Y.u; z/ WD
X

n2Z
u.n/z�n�1 .u 2 V /;

where we are using notation introduced in the previous section. By construction,

fY.u; z/ j u 2 V g � F.V /; (19)
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and we can think of Y as a linear map

Y W V ! F.V /; u 7! Y.u; z/: (20)

We use obvious notation when manipulating fields, e.g.,

Y.u; z/v WD
X

n

fu.n/vgz�n�1 2 V ŒŒz��Œz; z�1�:

In this language, (14) reads

Y.u; z/1 D uC
X

n��2
fu.n/1gz�n�1:

In particular, it follows that the Y map (20) is injective.
A pair of fields a.z/; b.z/ 2 F.V / are called mutually local if

.z1 � z2/
kŒa.z1/; b.z2/� D 0 .some integer k � 0/: (21)

This means that the (operator) coefficients of each monomial zp1 zq2 in the following
identity coincide:

.z1 � z2/
ka.z1/b.z2/ � .z1 � z2/

kb.z2/a.z1/ D 0: (22)

Indeed,

.z1 � z2/
ka.z1/b.z2/

D
kX

iD0
.�1/i

 
k

i

!
zk�i
1 zi2

X

m

amz�m�1
1

X

n

bnz�n�1
2

D
X

p

X

q

8
<

:
X

k�i�mD�p

X

i�nD�q
.�1/i

 
k

i

!
ambn

9
=

; z�p�1
1 z�q�1

2

D
X

p

X

q

(
kX

iD0
.�1/i

 
k

i

!
apCk�i bqCi

)
z�p�1
1 z�q�1

2 :

Therefore also

.z1 � z2/
kb.z2/a.z1/ D .�1/k.z2 � z1/

kb.z2/a.z1/

D .�1/k
X

p

X

q

(
kX

iD0
.�1/i

 
k

i

!
bqCk�i apCi

)
z�p�1
1 z�q�1

2 ;
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whence locality (21), (22) holds if, and only if, for all integers p; q, and some
nonnegative integer k we have

kX

iD0
.�1/i

 
k

i

!
˚
apCk�i bqCi � .�1/kbqCk�i apCi

� D 0:

The last display is identical with the commutativity formula (18) if we take r D
k. Because (18) holds for all r � n0, it certainly holds for some positive integer k
in place of r . Combining this with (19), we have established

If .V; 1/ is a vertex algebra then any two vertex operators

Y.u; z1/; Y.v; z2/ .u; v 2 V / are mutually local fields: (23)

In a similar vein, let ı.z/ WDP
n2Z zn be the formal delta-function, and consider

the identity

z�1
0 ı

�
z1 � z2

z0

�
Y.u; z1/Y.v; z2/ � z�1

0 ı

�
z2 � z1
�z0

�
Y.v; z2/Y.u; z1/

D z�1
2 ı

�
z1 � z0

z2

�
Y.Y.u; z0/v; z2/: (24)

Here, the delta-functions are expanded as power series in the second variable in the
numerator, e.g.,

ı

�
z1 � z2

z0

�
D
X

n2Z
z�n
0 .z1 � z2/

n

D
1X

nD0
.z1=z0/

n.1 � z2=z1/
n C

X

n>0

.z0=z1/
n

0

@
X

i�0
.z2=z1/

i

1

A
n

:

With this convention, identifying the operator coefficients for each monomial zp0 zq1zr2
on the lhs and rhs of (24) yields exactly the identity (15).

1.6 CFT Axioms

Equation (23) is the ‘main’ axiom for (2-dimensional) conformal field theory (CFT).
We now discuss the other axioms. Let .V; 1/ be a vertex algebra, and introduce the
endomorphism

D W V ! V; u 7! u.�2/1: (25)
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Using (14) and associativity (17) with q D 2, we have

fu.n/vg.�2/1 D
1X

iD0
.�1/i

 
n

i

!
fu.n � i/v.�2C i/1g

D u.n/v.�2/1 � nu.n � 1/v.�1/1
D u.n/v.�2/1 � nu.n � 1/v: (26)

Therefore,

ŒD; Y.u; z/�v D
X

n

fDu.n/v � u.n/Dvgz�n�1

D
X

n

f.u.n/v/.�2/1 � u.n/v.�2/1gz�n�1

D
X

n

f�nu.n � 1/vgz�n�1

D
X

n

f.�n � 1/u.n/vgz�n�2

D d

dz
Y.u; z/v;

where d=d z is the formal derivative. Hence, we obtain

ŒD; Y.u; z/� D d

dz
Y.u; z/:

If we take u D v D w D 1 and p D q D r D �1 in (15) we find that 1.�2/1 D
1.�2/1C 1.�2/1. Thus 1.�2/1 D 0, that is D1 D 0.

We have arrived at the following set-up: a quadruple .V; Y; 1;D/ consisting of a
linear space V , a distinguished nonzero vector 1 2 V , an endomorphism D W V !
V with D1 D 0, and a linear injection Y W V 7! F.V /, satisfying the following for
all u; v 2 V :

Locality: Y.u; z1/; Y.v; z2/ are mutually local fields;

Creativity: Y.u; z/1 D uCO.z/, (27)

Translation covariance: ŒD; Y.u; z/� D d=d zY.u; z/.

The axioms (27) amount to a mathematical formulation of 2-dimensional CFT, and
we have shown that a vertex algebra .V; 1/ naturally defines a CFT. Conversely if
.V; Y; 1;D/ is a CFT then it can be shown that .V; 1/ is a vertex algebra. Basically,
this means that the full strength of (15) can be recovered (27).
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The nomenclature in (27) is fairly standard in the physical literature, and we use
it in what follows. In addition, 1 is the vacuum vector, V is a Fock space, elements
in V are states, Y is the state-field correspondence, u.n/ is the nth mode of Y.u; z/.
Creativity is interpreted to mean that the state u is created from the vacuum by the
field Y.u; z/ corresponding to u.

There are several other useful identities that follow without difficulty from our
axiomatic set-up. Among them we mention the following.

Y.1; z/ D IdV ; (28)

Y.u; z/1 D ezDu D
1X

nD0

Dnu

nŠ
zn;

u.n/v D .�1/nC1
1X

iD0

.�D/i
i Š

v.nC i/u: (29)

(29) is called skew-symmetry.

2 Lecture 2

2.1 Lie Algebras and Local Fields

Certain infinite-dimensional Lie algebras naturally give rise to mutually local fields.
In this section we discuss some important examples that illustrate some of the ideas
developed so far.

1. Affine algebras.

Let L be a (complex) Lie algebra with bracket Œa; b� .a; b 2 L), equipped with
a symmetric, invariant, bilinear form h ; i W L ˝ L ! C. (Invariant means that
hŒa; b�; ci D ha; Œb; c�i for a; b; c 2 L). The associated affine Lie algebra is OL WD
L˝ CŒt; t�1�˚ CK with central element K and bracket

Œa˝ tm; b ˝ tn� D Œa; b�˝ tmCn CmımCn;0ha; biK:

There is a triangular decomposition

OL D OL� ˚ OL0 ˚ OLC

with

OL� WD fa˝ tm j m < 0g; OLC WD fa˝ tm j m > 0g; OL0 WD fa˝ t 0g ˚ CK:
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Let W be a (left) L-module. Extend W to a OLC ˚ OL0-module by letting OLC
annihilate W ; K act as a scalar l called the level. The induced module

V D V.l;W / WD Ind OL
OLC˚ OL0.W / Š S. OL�/˝W (30)

is a left OL-module affording the representation � , say. (The linear isomorphism in
(30) comes from the Poincaré–Birkhoff–Witt theorem). A typical vector in V is a
sum of vectors that look like

.b1 ˝ tn1/ : : : .bk ˝ tnk /˝ w .bi 2 L;w 2 W;n1 	 : : : 	 nk 	 �1/;

and

�.a˝ tn/f.b1 ˝ tn1/ : : : .bk ˝ tnk /˝ wg D
.a˝ tn/.b1 ˝ tn1/ : : : .bk ˝ tnk /˝ w (31)

where the product on the left is in the universal enveloping algebra of OL.
Set

Y.a; z/ WD
X

n2Z
�.a˝ tn/z�n�1 .a 2 L/: (32)

It is easy to see that if n C P
i ni > 0 then (31) reduces to 0. In particular,

Y.a; z/ 2 F.V /. The following calculation, showing that the fields Y.a; z/ .a 2 L/
are mutually local of order 2 (i.e. we may take k D 2 in (21)), gives a first insight
into how locality comes into play. Thus

.z1 � z2/
2ŒY.a; z1/; Y.b; z2/�

D .z1 � z2/
2
X

m;n2Z
Œ�.a˝ tm/; �.b ˝ tn/�z�m�1

1 z�n�1
2

D .z1 � z2/
2
X

m;n2Z
�.Œ.a˝ tm/; .b ˝ tn/�/z�m�1

1 z�n�1
2

D .z1 � z2/
2
X

m;n2Z
f�.Œa; b�˝ tmCn/CmımCn;0ha; bi�.K/gz�m�1

1 z�n�1
2

D .z1 � z2/
2

8
<

:
X

p2Z
�.Œa; b�˝ tp/

X

m2Z
z�m�1
1 zm�p�1

2

Cha; bi�.K/
X

m2Z
mz�m�1

1 zm�1
2

)
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D z�p�2
2 .z1 � z2/

2
X

p2Z
�.Œa; b�˝ tp/

X

m2Z
z�m�1
1 zmC1

2 C

z�2
2 .z1 � z2/

2ha; bi�.K/
X

m2Z
mz�m�1

1 zmC1
2

D z�p
2

�
z1
z2
� 1

�2X

p2Z
�.Œa; b�˝ tp/ı

�
z1
z2

�
�
�

z1
z2
� 1

�2
ha; bi�.K/ı0

�
z1
z2

�
:

(33)

Here ı.z/ is as in Sect. 1.4 (cf. comments preceding (24)), and ı0.z/ WDPn2Z nzn�1.
Now check that .z � 1/kı.z/ D 0 for k � 1; .z � 1/kı0.z/ D 0 for k � 2.
In particular, (33) vanishes and .z1 � z2/2ŒY.a; z1/; Y.b; z2/� D 0, as asserted.

When W D Cv0 is the trivial 1-dimensional L-module we can go further, and
see the beginnings of a CFT. Here,

V D V.l;Cv0/ Š S. OL�1/˝ Cv0

D S.˚1
mD1L˝ t�m/˝ Cv0 (34)

D C.1˝ v0/˚ .L˝ t�1/˝ Cv0

˚ �L˝ t�2 ˚ S2.L˝ t�1/�˝ Cv0 ˚ : : :
Š C1˚ L˚ .L˚ S2.L//˚ : : :

where we have used the natural identification L
Š! L ˝ t�1; a 7! a ˝ t�1, set

1˝ v0 D 1, and dropped v0 from the notation for convenience.
In this way, the field Y.a; z/ (32) is associated with the state a 2 V . Y.a; z/ is

creative (cf. (27)) because

Y.a; z/1 D
X

n2Z
f�.a˝ tn/.1˝ v0/gz�n�1

D
1X

nD0
f1˝ .a˝ tn/v0gz�n�1 C

�1X

nD�1
f.a˝ tn/˝ v0gz�n�1

D a˝ t�1 ˝ v0 C
�1X

nD�2
f.a˝ tn/˝ v0gz�n�1

D aCO.z/:

(Because Cv0 is the trivial L-module then .a˝ tn/v0 D 0 for n � 0). Y.a; z/ is also
translation covariant (loc. cit.): if m � 1 then
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Œd=dt; Y.a; z/�.b ˝ t�m/

D d

dt

X

n2Z
fa˝ tn:b ˝ t�m ˝ v0gz�n�1 Cm

X

n2Z
fa˝ tn:b ˝ t�m�1 ˝ v0gz�n�1

D d

dt

X

n<0

fa˝ tn:b ˝ t�m ˝ v0gz�n�1 C

d

dt

X

n�0
fŒa; b�˝ tn�m ˝ v0 C nın;mha; biK ˝ v0gz�n�1 C

m
X

n2Z
fa˝ tn:b ˝ t�m�1 ˝ v0gz�n�1

D
X

n<0

fna˝ tn�1:b ˝ t�m ˝ v0 �ma˝ tn:b ˝ t�m�1 ˝ v0gz�n�1 C
X

n�0
f.n �m/Œa; b�˝ tn�m�1 ˝ v0gz�n�1Cm

X

n2Z
fa˝ tn:b ˝ t�m�1 ˝ v0gz�n�1

D
X

n<0

fna˝ tn�1:b ˝ t�m ˝ v0gz�n�1 Cm
X

n�0
fa˝ tn:b ˝ t�m�1 ˝ v0gz�n�1 C

X

n�0
f.n �m/Œa; b�˝ tn�m�1 ˝ v0gz�n�1

D
X

n<0

fna˝ tn�1:b ˝ t�m ˝ v0gz�n�1 Cm
X

n�0
fŒa; b�˝ tn�m�1 ˝ v0gz�n�1 C

m.mC 1/ha; bifK ˝ v0gz�m�2 C
X

n�0
f.n �m/Œa; b�˝ tn�m�1 ˝ v0gz�n�1

D
X

n<0

fna˝ tn�1:b ˝ t�m ˝ v0gz�n�1 C
X

n�0
nfŒa; b�˝ tn�m�1 ˝ v0gz�n�1 C

m.mC 1/ha; bifK ˝ v0gz�m�2

D � d
dz

8
<

:
X

n<0

fa˝ tn�1:b ˝ t�m ˝ v0gz�n C
X

n�0
fŒa; b�˝ tn�m�1 ˝ v0gz�n C

mha; bifK ˝ v0gz�m�1�

D � d
dz

(
X

n2Z
fa˝ tn�1:b ˝ t�m ˝ v0gz�n

)

D � d
dz
Y.a; z/b ˝ t�m:
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This shows that ŒD; Y.a; z/� D d=d zY.a; z/ where D D �d=dt, and because
1 is independent of t then D1 D 0. It should come as no surprise that in fact
.V .l;Cv0/; Y; 1 ˝ v0;�d=dt/ is a vertex algebra/CFT. Indeed, based on what we
already know, the result follows from the following general result.

V is a linear space with 0 6D 1 2 V; D 2 End.V /; and mutually local,

translation covariant, creative fields y.u; z/ 2 F.V / .u 2 S � V /:
If V is spanned by states u1.n1/ : : : uk.nk/1 .ui 2 S; ni 2 Z/ then (35)

there is a vertex algebra .V; Y; 1;D/ with Y.u; z/ WD y.u; z/ .u 2 S/.

In this situation, we say that S generates V . Thus .V .l;Cv0/; Y; 1˝ v0;�d=dt/ is
a vertex algebra generated by L D L˝ t�1: We will denote this vertex algebra by
V.L; l/.

2. Virasoro algebra. (Several aspects of this case are similar to the previous one, so
we give less detail).

The Virasoro algebra is the Lie algebra with underlying linear space Vir WD
˚n2ZCLn ˚ CK with central element K and bracket

ŒLm;Ln� D .m � n/LmCn C m3 �m
12

ımCn;0K: (36)

(The denominator 12 is conventional here; it can be removed by rescaling). There is
a triangular decomposition

Vir D VirC ˚ Vir0 ˚ Vir�

with

VirC WD ˚n>0CLn; Vir0 WD CL0 ˚ CK; Vir� D ˚n<0CLn:

LetW D Cv0 be the 1-dimensional Vir0-module such that L0v0 D hv0;Kv0 D cv0,
extend to a VirC˚ Vir0-module by letting VirC annihilate v0, and form the induced
module

V D V.c; h/ D IndV ir
VirC˚Vir0

W

Š S.Vir�/˝ Cv0

D S.˚n<0CLn/˝ Cv0

Š C1˚ CL�1 ˚ : : :

where 1 WD 1 ˝ v0. h and c are called the conformal weight and central charge
respectively. Introduce
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Y.!; z/ WD
X

n2Z
Lnz�n�2: (37)

One sees easily that Y.!; z/ 2 F.V /. Note the slight change in convention regarding
powers of z in (37), which is standard. The reader may enjoy proving that Y.!; z/ is
a (self-) local field. Indeed, we have

.z1 � z2/
4ŒY.!; z1/; Y.!; z2/� D 0: (38)

Note that

Y.!; z/1 D
X

n2Z
fLn1gz�n�2 D h1z�2 C L�11z�1 C L�21C : : : : (39)

So there is no chance that Y.!; z/ is creative, because L�11 is nonzero by
construction. Furthermore, as it stands ! is just an abstract symbol, not a state in V .
We do not deal systematically with these issues here, but move on to the definition
of vertex operator algebra, where in some sense they get resolved.

2.2 Vertex Operator Algebras

A vertex operator algebra (VOA) is a vertex algebra with additional structure that
arises from a special Virasoro field of the type discussed in Sect. 2.1. Specifically, a
VOA is a vertex algebra/CFT .V; Y; 1;D/ together with a distinguished state ! 2 V
(called the conformal or Virasoro vector) such that the following hold:

.1/ Y.!; z/ D
X

n2Z
L.n/z�n�2 and the modes L.n/ generate an action of

the Virasoro algebra Vir (36) in which K acts on V as a scalar c,

called the central charge of V :

.2/ L.0/ is a semisimple operator on V . Its eigenvalues lie in Z, are

bounded below, and have finite-dimensional eigenspaces.

.3/ D D L.�1/:

This definition requires some discussion. Because .V; Y; 1;D/ is a vertex
algebra, the fields Y.u; z/ .u 2 V / are required to be mutually local and
creative. In particular, Y.!; z/ is necessarily self-local—a condition that can be
independently verified (38). Furthermore, comparison with (39) shows that in the
present situation we must have L.0/1 D L.�1/1 D 0 (otherwise Y.!; z/ is not



Vertex Operator Algebras, Modular Forms and Moonshine 349

creative) and ! D L.�2/1 (because ! is created from the vacuum by the field
which corresponds to it). Note that L.n/ D !.nC 1/.

The associativity formula (17) yields

.L.�1/u/.n/ D .!.0/u/.n/ D !.0/u.n/ � u.n/!.0/ D ŒL.�1/; u.n/�:

Thanks to (3) and the last display, translation covariance may then be written

d=dzY.u; z/ D ŒL.�1/; Y.u; z/� D Y.L.�1/u; z/:

In particular, Du D L.�1/u D u.�2/1, and (3) is consistent with (25).
For n 2 Z we let Vn be the L.0/-eigenspace with eigenvalue n. According to (2),

we have the fundamental spectral decomposition (into finite-dimensional graded
pieces)

V D
1M

nDn0
Vn (40)

where n0 is the smallest eigenvalue of L.0/. Because L.0/1 D 0 then 1 2 V0.
We usually denote a VOA by the quadruple .V; Y; 1; !/. It is a model for the

creation and annihilation of bosons (particles of integer spin).
The vertex algebra V.L; l/ can sometimes be given the structure of a VOA—we

just have to find the right conformal vector. We describe two important cases where
this can be achieved.

1. Heisenberg algebra, or free bosonic theories.

Here, the Lie algebra L is abelian (i.e. Œa; b� D 0 .a; b 2 L)) of dimension l ,
equipped with the (unique) nondegenerate symmetric bilinear form h ; i (which
is automatically invariant). K acts as the identity. The conformal vector is ! WD
1=2

Pl
iD1 vi .�1/vi where fvig is an orthonormal basis of L, and it transpires that

the central charge is c D l . The grading by L.0/-eigenvalues (40) coincides with
the natural tensor product grading in which L˝ t�m has degree m (cf. (34)). This
is the rank l Heisenberg VOA. It models l free (noninteracting) bosons. The special
case when l D 24 underlies the bosonic string.

2. Kac–Moody theories, or WZW models.

In this case, L is a finite-dimensional simple Lie algebra, and h ; i is the Killing
form (which is unique up to an overall scalar). The conformal vector is similar to
the last case, namely ! D 1=2

PdimL
iD1 vi .�1/vi for an orthonormal basis fvig of

L. The central charge is c D l dimL=.l C h_/, and we obtain a VOA as long as
l C h_ 6D 0 (h_ is the dual Coxeter number of the root system associated to L).
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2.3 Super Vertex Algebras

Physically realistic theories incorporate both bosons and fermions. Axiomatically,
this corresponds to super vertex (operator) algebras (SV(O)A). We limit ourselves
here to the basic definitions.

The Fock space for a SVA is a linear superspace, i.e. a linear space V equipped
with a Z2-grading V D V 0 ˚ V 1, and a nonzero vacuum vector 1 2 V 0. Here and
below, superscripts will always lie in f0; 1g regarded as the two elements of Z=2Z.
We write juj D p if u 2 V p . V 0 and V 1 are called the even and odd parts of V
respectively.

There is a correspondence u 7! Y.u; z/ between states u 2 V and mutually local,
creative fields Y.u; z/ WDPn2Z u.n/z�n�1, and we have

u.n/ W V p ! V pCjuj:

Finally, we require the super version of the basic identity (15), namely

1X

iD0

 
p

i

!
fu.r C i/vg.p C q � i/w D

1X

iD0
.�1/i

 
r

i

!
fu.p C r � i/v.q C i/w � .�1/rCjujjvjv.q C r � i/u.p C i/wg:

The delta-function version of this (cf. (24)) reads

z�1
0 ı

�
z1 � z2

z0

�
Y.u; z1/Y.v; z2/ � .�1/jujjvjz�1

0 ı

�
z2 � z1
�z0

�
Y.v; z2/Y.u; z1/

D z�1
2 ı

�
z1 � z0

z2

�
Y.Y.u; z0/v; z2/: (41)

Note that the substructure .V 0; Y; 1/ is a vertex algebra. As in the case of vertex
algebras, these axioms are equivalent to a SCFT for which super locality, the super
analog of (22), is as follows:

.z1 � z2/
kŒY.u; z1/; Y.v; z2/� D .�1/jujjvj.z1 � z2/

kŒY.v; z2/; Y.u; z1/�

A SVOA is a quadruple .V; Y; 1; !/ such that analogs of (1)–(3) of Sect. 2.2 hold.
The only change is that eigenvalues of L.0/ are allowed to lie in 1=2Z. L.0/ leaves
V 0 invariant, and on this subspace the eigenvalues lie in Z. Thus .V 0; Y; 1; !/ is a
VOA.

There are further variations on this theme, where it is assumed that additional
special states and fields exist. These lead to so-called N D 1 SCFT, N D 2 SCFT,
etc. They play a rôle in certain geometric and physical applications, although we
will not discuss them here.
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3 Lecture 3

3.1 Modules Over a VOA

Suppose that .V; Y; 1/ is a VA. A module over this structure, i.e. a V -module,
is a linear space W and a linear map YW W V ! F.W /; v 7! YW .v; z/ DP

n2Z vW .n/z�n�1 such that YW .1; z/ D IdW and the analog of (15) holds, i.e.
for all u; v 2 V;w 2 W we have

1X

iD0

 
p

i

!
fu.r C i/vgW .p C q � i/w D (42)

1X

iD0
.�1/i

 
r

i

!
fu.p C r � i/W v.q C i/W w � .�1/rv.q C r � i/W u.p C i/W wg:

As before, there are a number of auxiliary consequences of this identity. We
mention only that the fields YW .u; z/ .u 2 V / are mutually local. Generally W has
no analog of the vacuum vector, so creativity has no meaning for the fields YW .u; z/.

Suppose that .V; Y; 1; !/ is a VOA. A module over this structure is a V -module
(in the previous sense) such that LW .0/ is a semisimple operator (on W ) with
finite-dimensional eigenspaces. The eigenvalues of LW .0/ are truncated below in
the following sense: given an eigenvalue �, there are only finitely many eigenvalues
of the form � � n (n 2 N). In particular, we have a spectral decomposition of W
analogous to (40).
W is called irreducible, or simple, if the only subspaces invariant under all

modes uW .q/ .u 2 V; q 2 Z/ are 0 and W . It is easy to see that
P

n2ZW�Cn is
always an invariant subspace. Hence, if W is a simple V -module then the spectral
decomposition takes the form

W D
1M

nD0
WhCn (43)

for some uniquely determined h D hW 2 C called the conformal weight of W .
We give a few examples of V -modules.

1. If .V; Y; 1; !/ is a VOA then V is itself a V -module, called the adjoint module.
2. Suppose that V is a VOA and W � V satisfies u.n/w 2 W .u 2 V;w 2 W /.

ThenW is a V -module.W is called an ideal of V , because we also have w.n/u 2
W (use skew-symmetry (29)). It follows that V=W is the Fock space of a VOA
(the quotient VOA of V ) in which the mode .u C W /.q/ of Y.u C W; z/ is the
operator induced on V=W by u.q/. We call V simple if the only ideals are the
trivial ones V and 0. For example, any Heisenberg VOA V.l;Cv0/ is simple.



352 G. Mason

3. If .V; Y; 1; !/ is a SVOA (cf. Sect. 2.3) the odd part V 1 is a module over the even
part V 0. In this case the conformal weight of V 1 lies in 1=2Z.

4. Recall the rank l Heisenberg VOA V.l;Cv0/ (cf. Sect. 2.2) generated by a rank
l abelian Lie algebra L. For an L-module W we constructed (Sect. 2.1) a space
V.l;W / and mutually local fields Y.a; z/ 2 F.V .l;W // .a 2 L/. It is not hard to
see that V.l;W / is a V.l;Cv0/-module, and it is simple whenever dimW D 1.

3.2 Lattice Theories

For our purposes, an integral lattice L is a finitely generated free abelian group
equipped with a positive-definite, symmetric, Z-valued bilinear form h ; i W L�L!
Z. Let l WD rkL. SetH WD C˝ZL and let h ; i also denote the linear extension toH .
We regardH as an abelian Lie algebra equipped with a symmetric invariant bilinear
form. As such, there is the associated Heisenberg VOA V.l;Cv0/ (cf. Sects. 2.1
and 2.2).

Fix ˇ 2 L. Let Ceˇ be the 1-dimensional linear space spanned by eˇ , regarded
as an H -module through the action

˛:eˇ WD h˛; ˇieˇ .˛ 2 H/: (44)

Associated to this L-module is the simple V.l;Cv0/-module V.l;Ceˇ/. Note that
Ce0 is the trivial L-module, so that it can be identified with Cv0. Also, we have a
linear isomorphism V.l;Ceˇ/ Š S. OH�/˝ Ceˇ (cf. (30)). Form the Fock space

VL WD
M

ˇ2L
V.l;Ceˇ/

Š S. OH�/˝
M

ˇ2L
Ceˇ (45)

D S. OH�/˝ CŒL�:

(It is convenient to identify the group algebra CŒL� of L with ˚ˇCeˇ). We discuss
the following result:

VL carries the structure of a SVOA; if L is an even

lattice (i.e. hˇ; ˇi 2 2Z for ˇ 2 L), then VL is a VOA.

S. OH�/ is naturally identified with the Heisenberg VOA itself, and in particular
it is generated (cf. (35)) by the fields Y.˛; z/ .˛ 2 H/. Because each V.l;Ceˇ/ is a
Heisenberg module, the Y.˛; z/ naturally extend to (mutually local) fields on VL.
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To get a generating set of fields for VL we would need to extend the set of Y.˛; z/
to a larger set of mutually (super) local fields by defining fields Y.1˝eˇ; z/ .ˇ 2 L/
directly. We will skip the details here. Recall (cf. Sect. 2.2) that the conformal vector
for the Heisenberg VOA is ! WD 1=2

Pl
iD1 vi .�1/vi for an orthonormal basis fvig

ofH . This state is also taken as the conformal vector of VL. In particular, the central
charge of VL is the rank l of L. The field Y.!; z/ D P

n L.n/z
�n�2 determined by

! is defined in the natural way, i.e. on V.l;Ceˇ/ it acts as YV.l;Ceˇ/.!; z/. Since each
summand in (45) is a Heisenberg module, L.0/ acts semisimply on each of them,
and therefore on VL. We consider the eigenvalues and eigenspaces of L.0/ in the
next section. Finally, we note that VL is a simple VOA if L is even.

3.3 Partition Functions

Suppose that .V; Y; 1; !/ is a VOA of central charge c (cf. Sect. 2.2, axiom 1)), and
spectral decomposition (40) into L.0/-eigenspaces. The partition function of V is
the formal q-series

Z.q/ D ZV .q/ WD q�c=24
1X

nDn0
dimVnq

n: (46)

(This is the first place that c has played a rôle in the proceedings). Generally, for a
simple V -module W with spectral decomposition (43), the corresponding partition
function is

Z.q/ D ZW .q/ WD qh�c=24
1X

nD0
dimVnq

n: (47)

These expressions make sense because L.0/-eigenspaces in both cases are finite-
dimensional. Indeed, it will be convenient to define the partition function for any
graded space in the same way, as long as it too makes sense. One can often check
the VOA axioms regarding the conformal vector (Sect. 2.2, axiom 2)) by directly
computing the corresponding partition function. We will carry this out in the case
of the Fock spaces for the Heisenberg VOA and the lattice theory VL.

For the rank l Heisenberg theory V D V.l;Cv0/ we saw (34) that V has a tensor
decomposition S.˚1

mD1L˝ t�m/˝Cv0 (L is the abelian Lie algebra of rank l). It is
not hard to see that the L.0/-grading respects this decomposition, and that L˝ t�m
is an eigenspace with eigenvaluem. Since symmetric powers are multiplicative over
direct sums, we obtain

ZV.l;Cv0/.q/ D q�l=24
1Y

mD1
.partition function of S.L˝ t�m//
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D q�l=24
1Y

mD1
.1C qm C q2m C : : :/l

D q�l=24
1Y

mD1
.1 � qm/�l D �.q/�l ;

�.q/ being the eta function (12).
We turn to the lattice theory VL. The partition function for VL is the product of

those for the two factors S. OH�/ and CŒL� in (45). Moreover, the first of these is just
the partition function for the Heisenberg theory that we just computed. As for the
second factor, using the module version of associativity (17) we have

L.0/:1˝ eˇ D 1=2
lX

iD1
.vi .�1/vi /.1/:1˝ eˇ

D 1=2
lX

iD1

1X

jD0
f.vi .�1 � j /vi /.1C j /C vi .�j /vi .j /g1˝ eˇ

D 1=2
lX

iD1
fvi .0/vi .0/g1˝ eˇ

D 1=2
lX

iD1
hvi ; ˇi21˝ eˇ D 1=2hˇ; ˇi1˝ eˇ:

(Here, we used that vi .j / moves across the tensor sign if j � 0 and annihilates eˇ

if j � 1, as well as (44). The last equality holds because fvig is an orthonormal
basis of H ). The upshot is that 1 ˝ eˇ is an eigenvector for L.0/ with eigenvalue
1=2hˇ; ˇi. We therefore see that

partition function of CŒL� D
X

ˇ2L
q1=2hˇ;ˇi D �L.q/

is the theta function of L (6). Altogether then, we obtain

ZVL.q/ D
�L.q/

�.q/l
; (48)

and in particular the L.0/-eigenspaces are indeed finite-dimensional.
Let L0 � L consist of those ˇ 2 L such that hˇ; ˇi 2 2Z. Because L is an

integral lattice, L0 is a sublattice of L with jL W L0j 	 2. If L D L0 then L0 is an
even lattice and VL is a VOA. If jL W L0j D 2, choose � 2 L n L0. Then, with an
obvious notation, there is a decomposition
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VL D S. OH�/˝ CŒL0�˚ S. OH�/˝ CŒL0 C ��;

where S. OH�/˝ CŒL0�; S. OH�/˝ CŒL0 C �� are the parts of VL graded by Z and
1=2CZ respectively. In this case, VL is a SVOA and S. OH�/˝CŒL0� and S. OH�/˝
CŒL0 C �� are the even and odd parts.

With this discussion, we have at last made contact with the ideas of Sect. 1.2. For
if we take L to be the Leech lattice ƒ (a self-dual, even lattice of rank 24), then
according to (48) we have

ZVƒ.q/ D
�ƒ.q/

).q/
; (49)

and (using (5)) this is the partition function (3). Similar comments apply to (2),
which is now seen to be the partition function for V3E8 .

Thanks to (48) and known transformation properties of � - and �-functions, it
follows that the partition functionZVL.q/ of a lattice theory is a modular function of
weight zero on a congruence subgroup of the modular group. We derived this result
only after explicitly computing the partition function, but in fact there is a large class
of VOAs for which a priori results about the partition function and its transformation
properties can be proved without explicitly knowing what the partition function is.
This is the class of regular VOAs.

One point that we will not pursue but that deserves mention is this: the partition
function of a VOA is a formal q-expansion, with no a priori convergence properties.
On the other hand, at least for a regular VOA, the partition function turns out to be
holomorphic in the complex upper half-plane H when we think of it as a function
ZV .�/ with q D e2�i� ; � 2 H. For this reason, we now write partition functions as
functions of � rather than q.

Although there will be no time to develop the general theory of regular VOAs in
these lectures, we can illustrate some of the ideas using the lattice theory VL. If V is
an arbitrary VOA, the set of modules over V are the objects of a category V -Mod.
A morphism f W W1 ! W2 between two V -modules W1;W2 is a linear map such
that

f .u.n/w/ D u.n/.f .w// .u 2 V; n 2 Z;w 2 W1/:

In terms of fields, this reads f YW1.u; z/ D YW2.u; z/f . Roughly speaking, V is
called rational if V -Mod is semisimple, i.e. every V -module is a direct sum of
simple V -modules. (In fact, one has to include additional types of modules that we
did not discuss in Sect. 3.1). It can be shown that a rational VOA has only finitely
many (isomorphism classes of) simple V -modules. A VOA is regular if it is both
rational in the above sense and satisfies an additional condition that we will not
discuss here.

If L is an even lattice as before then VL is indeed a regular VOA. It therefore has
only finitely many inequivalent simple modules, and in fact they are enumerated by
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the quotient group L0=L where L0 is the dual lattice of L. If we set E WD R˝Z L

then the dual lattice is

L0 WD f˛ 2 E j h˛; ˇi 2 Z .ˇ 2 L/g:

BecauseL is integral and positive-definite thenL � L0 is a subgroup of finite index.
The simple VL-modules have a structure that is parallel to VL itself. The Fock spaces
are

VLC� WD
M

ˇ2LC�
V .l;Ceˇ/

Š S. OH�/˝
M

ˇ2LC�
Ceˇ (50)

D S. OH�/˝ CŒLC ��;
(compare with (45)), where LC � 2 L0=L. The partition function is

ZVLC�
.�/ D �LC� .�/

�.�/l
;

which is once again a modular function of weight zero on a congruence subgroup
of the modular group. Indeed, one knows that the linear space

P WD h�LC� .�/=�.�/l j LC � 2 L0=Li

spanned by these partition functions furnishes a representation of the modular group
(through the usual action � 7! a�Cb

c�Cd ). This set-up is conjectured to hold for all
rational VOAs V ; that is, if P is the span of the partition functions of the (finitely
many) simple V -modules then P affords a representation of the modular group that
factors through a principal congruence subgroup. This phenomenon is often called
modular-invariance of rational VOAs.

An important special case of these ideas arises when the VOA V is not only
rational, but has (up to isomorphism) a unique simple module, namely the adjoint
module V . We call such a V holomorphic. Then our discussion of modular-
invariance shows that the partition function ZV .�/ of a holomorphic VOA is a
modular function on the full modular group (perhaps with a character). For example,
since the simple VL-modules are indexed by the cosets of L in L0, it follows that
VL is holomorphic if, and only if, L D L0 is self-dual. The Leech lattice ƒ and
orthogonal sums of the E8 root lattice are examples of self-dual lattices, and indeed
their partition functions (2), (3) are modular functions on the full modular group.
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4 Lecture 4

4.1 The Lie Algebra on V1

We have seen that a regular VOA that is holomorphic (i.e. has a unique simple
module) has a partition function that is a modular function of weight 0 on the full
modular group. A case in point is the Leech lattice theory Vƒ, which has central
charge 24 (D rkƒ) and partition function ZVƒ.�/ D J C 24 D q�1 C 24 C
196; 884q C : : :. Our goal now is to construct a holomorphic VOA V \, also of
central charge 24, whose partition function is J (4), which has constant term 0. This
is the1 Moonshine module.

Although the VOAs Vƒ and V \ have partition functions differing only in their
constant term, many of their algebraic properties are quite different. Indeed, these
properties are to a large extent governed by the constant term. For this reason,
we begin with a general discussion of this point. We restrict attention to VOAs
of CFT-type, which means that in the spectral decomposition (40) the pieces Vn
vanish for n < 0 and V0 D C1. (Recall that we always have 1 2 V0). There are
many interesting VOAs that are not of CFT-type, nevertheless CFT-type theories are
natural from a physical standpoint because they arise from ‘unitarity’ assumptions.
Be that as it may, our basic assumption here is that the spectral decomposition of V
has the shape

V D C1˚ V1 ˚ V2 ˚ : : : :

For states u; v 2 V1 we define a bracket Œ � by setting Œuv� WD u.0/v. Now

L.0/u.0/v D ŒL.0/; u.0/�vC u.0/L.0/v D u.0/v:

(ŒL.0/; u.0/� D 0 by translation covariance and L.0/v D v because v 2 V1). This
shows that u.0/v 2 V1, so that we have a bilinear product Œ � W V1 � V1 ! V1.
One can check that this makes V1 into a Lie algebra. (Use (29) for skew-symmetry
Œuv� D �Œvu� and the associativity formula (17) for the Jacobi identity ŒŒuv�w� C
ŒŒwu�v�C ŒŒvw�u� D 0).

For a VOA V of CFT-type and central charge c D 24, the partition function has
the general shape ZV .�/ D q�1 C dimV1 C : : :. So for such theories, the constant
term is the dimension of the Lie algebra on V1.

If L is an even lattice of rank l , the nature of the partition function (48) of the
lattice theory shows that

ZVL.�/ D q�l=24.1C .l C jL2j/q C : : :/; (51)

1It is expected that there is a unique VOA with partition function J , but this remains open.
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where L2 D f˛ 2 L j h˛; ˛i D 2g are the roots of L. In particular, VL is of CFT-
type. The Lie algebra on .VL/1 is reductive, being a direct sum a ˚ g where a is
abelian and g is semisimple with root system L2. (The set of roots in an even lattice
always carries the structure of a semisimple root system embedded in the ambient
Euclidean space E D R ˝ L). For example, if L D 3E8 then the Lie algebra on
.VL/1 is semisimple, being the sum of three copies of the E8 Lie algebra. (Note
that dimE8 D 248, so that dim.VL/1 D 744, in agreement with (2)). Similarly, the
Leech lattice ƒ has no roots, whence .Vƒ/1 is abelian of rank l D 24.

Because J has no constant term, a VOA V \ with partition function J and central
charge c D 24 necessarily has no corresponding Lie algebra. In particular, V \

cannot be a lattice theory, because the weight one piece never vanishes for a lattice
theory (cf. (51)).

4.2 Automorphisms

Let V be a (S)VOA. An automorphism of V is an invertible linear map g W V ! V

such that g.!/ D ! and gv.q/g�1 D g.v/.q/ for all v; q, i.e.

gY.v; z/g�1 D Y.g.v/; z/ .v 2 V /: (52)

We give some basic examples of automorphisms.

1. One checks (use induction and (16) or (17)) that for n � 0,

.u.0/nv/.q/ D
nX

iD0
.�1/i

 
n

i

!
u.0/n�iv.q/u.0/i .u; v 2 V; q 2 Z/:

Therefore,

�
eu.0/:v

�
.q/ D

1X

nD0

1

nŠ
.u.0/nv/.q/

D
1X

nD0

nX

iD0

.�1/i
i Š.n � i/Šu.0/

n�iv.q/u.0/i

D eu.0/v.q/e�u.0/;

showing that (52) holds with g D eu.0/. Furthermore, if V is of CFT-type (cf.
Sect. 3.3) and u 2 V1 then

u.0/! D u.0/L.�2/1
D Œu.0/; L.�2/�1C L.�2/u.0/1
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D Œu.0/; !.�1/�1
D �Œ!.�1/; u.0/�1

D �
1X

iD0
.�1/i .!.i/u/.�1 � i/1

D �f.L.�1/u/.�1/ � .L.0/u/.�2/C .L.1/u/.�3/g 1 D 0:

(For the last two equalities use translation covariance, L.0/u D u (because u 2
V1), L.1/u 2 V0 D C1, L.n/u 2 V1�n D 0 for n � 2, and 1.q/ D ıqC1;0IdV
(cf. (28)).

It follows from this calculation that if V is a VOA of CFT-type then feu.0/ j u 2
V1g is a set of automorphisms of V . In the previous section we learned that V1 carries
the structure of a Lie algebra with bracket Œuv� D u.0/v. Now we see that the usual
action of the associated Lie group G generated by exponentials eadu extends to an
action of G as automorphisms of V .

2. Suppose that V is a SVOA. Then there is a canonical involutorial automorphism
which acts asC1 on the even part of V and �1 on the odd part.

3. A related example (and the one we will need later) is an involutorial automor-
phism t of a lattice VOA VL, defined to be a lifting of the �1 automorphism of
the lattice L. t also acts as �1 on the abelian Lie algebra C ˝ L and then acts
as naturally on the associated Heisenberg VOA (cf. (34)—where L is the Lie
algebra, not the lattice!) and on VL, where

t .u˝ eˇ/ D t .u/˝ e�ˇ .u 2 S. OH�/ (53)

(cf. (45)).

If g is an automorphism of V then gY.!; z/g�1 D Y.g.!/; z/ D Y.!; z/,
in particular gL.0/g�1 D L.0/. Thus g acts on the eigenspaces of V , i.e. the
homogeneous pieces Vn. We may therefore define additional partition functions

ZV .g; �/ WD q�c=24
1X

nDn0
.TrVng/q

n:

Let’s compute this trace function for the automorphism t of VL. It is clear
from (53) that the only contributions to the trace arise from states u˝ e0, i.e. from
states in the Heisenberg VOA Fock space S. OH�/. Therefore by (34),

ZVL.t; �/ D Trace t on q�l=24S.˚m>0H ˝ t�m/
D Trace t on q�l=24O

m>0

S.Cu˝ t�m/l
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D q�l=24 Y

m>0

.1 � qm C q2m � : : :/l

D q�l=24 Y

m>0

.1C qm/�l

D
�
�.�/

�.2�/

�l
: (54)

This is a modular function of weight 0. If l D 24 it is almost equal to (11)!

4.3 Twisted Sectors

Let .V; Y / be a VOA and g an automorphism of V of finite order R. A g-twisted
V -module, or g-twisted sector, is a generalization of V -module (to which it reduces
if g D 1). Precisely, it is a pair .Wg; Yg/ consisting of a Fock spaceWg and a Y -map
Yg W V ! F.Wg/; u 7! Yg.u; z/ where

Yg.u; z/ WD
X

n2r=RCZ

u.n/z�n�1 2 End.W /ŒŒz1=R; z�1=R��

whenever g.u/ D e�2�ir=R .r 2 Z), and Yg.1; z/ D IdWg . The twisted vertex
operators Yg.u; z/ are required to satisfy twisted analogs of the basic identity (15).
In the delta-function formulation (cf. (24)) this reads

z�1
0 ı

�
z1 � z2

z0

�
Yg.u; z1/Yg.v; z2/ � z�1

0 ı

�
z2 � z1
�z0

�
Yg.v; z2/Yg.u; z1/

D z�1
2

�
z1 � z0

z2

��r=R
ı

�
z1 � z2

z0

�
Yg.Y.u; z0/v; z2/: (55)

Finally, the operator Lg.0/ (the zero mode of Yg.!; z/) is required to be semisimple
with finite-dimensional eigenspaces. The eigenvalues satisfy a truncation condition
analogous to that for V -modules (cf. the discussion in Sect. 3.1 preceding dis-
play (43)). There is an obvious notion of irreducible (or simple) g-twisted module,
and as in the untwisted case (cf. (43)) the spectral decomposition of a simple g-
twisted module takes the form

Wg D
1M

nD0
.Wg/hgCn=R (56)

for a scalar hg (the conformal weight). Needless to say, the twisted sector has an
associated partition function
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ZWg.�/ WD q�c=24Chg
1X

nD0
dim.Wg/nq

n=R:

Let us specialize to the case of the (even, self-dual) Leech lattice ƒ with its
associated VOA Vƒ and canonical involution t (cf. Sect. 4.2). In this case there is
(up to isomorphism) a unique simple t -twisted module, denoted by Vƒ.t; �/. The
following transformation law can be proved:

ZVƒ.t;�1=�/ D ZVƒ.t/.�/:

Using (54), the partition function of the t -twisted sector must be

ZVƒ.t/.�/ D
�
�.�1=�/
�.�2=�/

�24

D 212
�
�.�/

�.�=2/

�24

D 212q1=2
1Y

nD1
.1C qn=2/24; (57)

(using the transformation law �.�1=�/ D .p�=i/�.�/). Because the central charge
is c D 24, it follows that the conformal weight of Vƒ.t; �/ is 3=2.

Similarly to the rank 24Heisenberg VOA, the product term in (57) is the partition
function of a symmetric algebra S.˚n>0H ˝ t�n=2/ (cf. (34)). This suggests how
one might try to construct the twisted sector, though we must skip the details here.
(The curious factor 212 turns out to correspond to a Clifford algebra. Cf. Sect. 4.5
for further comment).

4.4 The Moonshine Module

Retaining the notation of the previous section, consider

Vƒ ˚ Vƒ.t/: (58)

The involution t acts naturally on the twisted sector: in the ‘usual way’ on
S.˚n>0H ˝ t�n=2/ and as �1 on the 212 constant part. The Moonshine Module
is then defined to be the space of t -invariants

V \ WD V C
ƒ ˚ Vƒ.t/C: (59)
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Now every state u˝eˇ 2 Vƒ .ˇ 6D 0/ produces a t -invariant u˝eˇC t .u/˝e�ˇ .
On the other hand, the partition function of the Heisenberg VOA (consisting of states
u˝e0) is 1=).�/ and the graded trace of t is).�/=).2�/ (the case l D 24 of (54)).
It follows that

Z
V

C

ƒ
.�/

D .ZVƒ.�/ � 1=).�//=2C .1=).�/C).�/=).2�//=2
D .ZVƒ.�/C).�/=).2�//=2
D ..q�1 C 24C 196884q C : : :/C q�1.1 � 24q C 276q2 C : : ://=2
D q�1 C 98580q C : : : :

On the other hand, a similar calculation using (54) and the nature of the twisted
sector as a symmetric algebra shows that

ZVƒ.t/C.�/ D 212.).�/=).�=2/ � q).�=2/=).�//=2

D 211q1=2
 1Y

nD1
.1C qn=2/24 �

1Y

nD1
.1 � qn�1=2/24

!

D 98304q C : : : :

Altogether, we have

ZV \.�/ D ZVC

ƒ
.�/CZVƒ.t/C.�/

D .q�1 C 98580q C : : :/C .98304q C : : :/
D q�1 C 196884q C : : : : (60)

It is clear from the above that ZV \.�/ is a modular function of weight 0 and level
at most 2, and it is easy to check that in fact it is invariant under the full modular
group. Thus from the q-expansion we arrive at the identity

ZV \.�/ D J:
The space (58) has the structure of an abelian intertwining algebra, a generaliza-

tion of VOA and SVOA. The main missing ingredient, which we cannot go into here,
is the definition of fields YVƒ˚Vƒ.t/.u; z/ for states u in the twisted sector satisfying
an appropriate variation of the basic identity (15), (24). Once this is done, t is seen to
be an automorphism of this larger structure. Then it is easy to see that the t -invariant
subspace V \, together with the restriction of the fields to this subspace, defines the
structure of a VOA on V \ with central charge 24. Furthermore, V C

ƒ ˚ Vƒ.t/� is a
SVOA with even part V C

ƒ . (Indeed, it is an N D 1 superconformal field theory, a
term we alluded to but did not define in Sect. 2.3).
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Consider a VOA V of CFT-type (cf. Sect. 4.1) with trivial Lie algebra V1:

V D V0 ˚ V2 ˚ : : :

(V \ satisfies these conditions, as follows from (60)). If u; v 2 V2, define u:v WD
u.1/v. It is easy to check that u.1/v 2 V2, so that we have a (nonassociative)
bilinear product on V2. By skew-symmetry (29), v.1/u D u.1/v � L.�1/u.2/v C
L.�1/2u.3/v=2 � : : :. But u.2/v 2 V1 D 0; u.3/v 2 C1 and L.�1/1 D 0, and
all other u.q/v .q � 4/ lie in Vn with n < 0 and hence also vanish. The upshot is
that u.1/v D v.1/u, so that V2 has the structure of a commutative, nonassociative
algebra. In the case of V \, this is precisely the algebra B that we discussed in
Sect. 1.1.

4.5 AutV \

Consider the CFT

Vƒ D C1˚ .Vƒ/1 ˚ : : :

where ƒ is, as before, the Leech lattice. Because ƒ has no roots, it follows
from (51) that dim.Vƒ/1 D 24, and the Lie algebra on .Vƒ/1 is abelian. So
the automorphisms eu.0/ .u 2 .Vƒ/1/ generate a 24-dimensional complex torus
T . Additional automorphisms of Vƒ arise from the automorphism group Co0 WD
Aut.ƒ/ of the Leech lattice, and there is a (nonsplit) short exact sequence

1! T ! AutVƒ ! Co0 ! 1:

The automorphism t ofƒ (or of Vƒ) is a central involution of Co0, and the quotient
Co1 WD Co0=hti is the largest sporadic (simple) Conway group of order 221 : : :.

Because t acts as�1 on T , its only fixed elements are those of order at most 2. So
the centralizer C.t/ of t in AutVƒ (the elements that commute with t ) is described
by another short exact sequence (also nonsplit)

1! 224 ! C.t/! Co0 ! 1:

(224 D Z
24
2 consists of the elements in T of order at most 2). Note that jC.t/j D

246 : : :.
As regards the Monster, the relevance of C.t/ is that it preserves the decomposi-

tion (59). This is a bit subtle: t acts trivially by definition, but the action of C.t/=hti
is projective on Vƒ.t/C. When it is linearized, we obtain a third group OC occurring
as the middle term of a short exact sequence

1! 21C24 ! OC ! Co1 ! 1;
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where now 21C24 is the (nonabelian) linearization of the projective action of the
224-group. 21C24 is a so-called extra-special group. It is familiar in physics (24� 24
Pauli matrices) and the theory of theta-functions. It has a unique faithful irreducible
representation, realizable on the 212-dimensional Clifford algebra that we identified
at the end of Sect. 4.3. We have j OC j D 246 : : : and

OC � AutV \

It turns out that the decomposition (59) breaks the symmetry of V \ in the sense
that there are further automorphisms that do not preserve (59) and hence do not lie
in OC . The Monster M is the full automorphism group of V \ and also of the algebra
B , and

jM j D 246320597611213317:19:23:31:41:47:59:71

These results are not easily obtained, and we say no more about them here.
The graded traces ZV \.g; �/ for g 2M turn out to be hauptmoduln as described

in Sect. 1.1. This result is also difficult. We end these Notes with the computation for
a single automorphism g of order 2 that acts trivially on V C

ƒ and as �1 on Vƒ.t/C.
A previous calculation shows that its graded trace is a modular function of weight 0
and level 2. Specifically,

ZV \.g; �/ D ZVC

ƒ
.�/ �ZVƒ.t/C.�/

D .q�1 C 98556q C : : :/ � .98304q C : : :/
D q�1 C 276q C : : :

is the hauptmodul for the Monster element 2B (11).
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