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Abstract Recently, a new lattice basis reduction notion, called diagonal reduction,
was proposed for lattice-reduction-aided detection (LRAD) of multiinput multioutput
(MIMO) systems. In this paper, we improve the efficiency of the diagonal reduction
algorithm by using the fast Givens transformations. The technique of the fast Givens
is applicable to a family of LLL-type lattice reduction methods to improve efficiency.
Also, in this paper, we investigate dual diagonal reduction and derive an upper bound
of the proximity factors for a family of dual reduction aided successive interference
cancelation (SIC) decoding. Our upper bound not only extends an existing bound
for dual LLL reduction to a family of dual reduction methods, but also improves the
existing bound.
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1 Introduction

Lattice basis reduction plays an important role in the detection of wireless multiple-
input multiple-output (MIMO) systems. For detection problems of lattice type, the
optimal maximum-likelihood (ML) decoding can be modeled as the closest vector
problem (CVP) [1, 16], which has been proved to be NP-hard [2]. Although many
algorithms, like the sphere decoding algorithm [5, 14], can solve CVP exactly, the
complexity of these algorithms increases exponentially with the number of transmit
antennas [1, 5, 6]. Thus, such optimal solvers are infeasible for real-time systems,
where timing is critical. To satisfy the time constraint, many suboptimal solvers with
polynomial complexity, like the successive interference cancelation (SIC) decoding,
have been proposed [3, 12]. However, the suboptimal detectors may suffer from
heavy performance loss at a low signal-to-noise ratio (SNR). It has been found
that lattice reduction, used as an efficient preprocessor, has the potential to achieve
high performance for suboptimal decoding algorithms. Recently, many reduction
algorithms, such as the Lenstra-Lenstra-Lovász (LLL) algorithm [7], effective LLL
algorithm [10], partial LLL algorithm [11, 17], and diagonal reduction algorithm
[19], have been proposed for SIC decoding. It is proved in [9, 18] that SIC decoding
aided by the above reduction notions can achieve the same receive diversity order as
the infinite lattice decoding (ILD).

Of all the aforementioned lattice reduction algorithms, the diagonal reduction
algorithm is the most efficient one. From our observation [19], the total computation
of the diagonal reduction is dominated by the computation of the Givens rotations.
Thus, in this paper, we propose to improve the efficiency of the diagonal reduction by
replacing the Givens rotation with the more efficient and mathematically equivalent
fast Givens transformation [4, p. 218]. The improvement is achieved by substantially
reducing the number of multiplication operations required, because two entries of the
2-by-2 fast Givens matrix equal 1. Moreover, the fast Givens technique is general in
that it can be incorporated into all the LLL-type lattice reduction methods to enhance
performance.

Also, we investigate the basis reduction for dual lattices. In [9], the LLL and
effective LLL algorithms for dual lattices are presented. In this paper, we investigate
the diagonal reduction for dual lattices and prove that the dual basis of a diagonal
reduced basis is also diagonal reduced. In addition, we derive an upper bound for the
proximity factors of a family of dual LLL-type reduction aided SIC decoding. Our
upper bound not only extends an existing bound for LLL reduction in [9] to a family
of reduction methods, but also improves the existing one.

The rest of the paper is organized as follows. In Sect. 2, we briefly introduce
the systems model and review the diagonal reduction algorithm. The new algorithm
using the fast Givens is given in Sect. 3. Section 4 presents the diagonal reduction
for dual lattices and our new upper bound for the proximity factors. In Sect. 5, we
demonstrate our simulation results.
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Notations: BT, B†, and det(B) denote the transpose, the Moore-Penrose inverse,
and the determinant of a matrix B respectively,�(z) and �(z) the real and imaginary
parts of a complex number z, �a� the integer nearest to a real number a.

2 Lattice Basis Reduction

2.1 System Model

Consider a MIMO system consisting of nT transmit antennas and mT receive anten-
nas. The relationship between the nT × 1 transmitted signal vector x and the mT × 1
received signal vector y is given by

y = Hx + n, (1)

where H, y, n represent the channel matrix, the received and additive noise signals,
respectively. In general, the entries of both H and n are assumed to be complex-
valued independently and identically distributed (i.i.d.) Gaussian variables. Treating
the real and imaginary parts of (1) separately, an equivalent real-valued system of
doubled size can be obtained:

y = Bx + n, (2)

where

y =
[�(y)

�(y)

]
, n =

[�(n)

�(n)

]
, B =

[�(H) −�(H)

�(H) �(H)

]
.

Given a MIMO system modeled as (2), the optimum ML decoding is equivalent
to the following CVP:

min
x∈A
‖y− Bx‖2. (3)

where the constellation A is of lattice type. Unfortunately, CVP has been proved
to be NP-hard [2], and all existing algorithms for solving (3) have an exponential
complexity with the lattice dimension n [5, 6]. Recently, lattice-reduction-aided
SIC decoding turned out to be extremely promising, since its bit-error-rate (BER)
performance can effectively approximate the ML decoding with a complexity of only
O(n3) operations [9, 15].

2.2 Diagonal Reduction Algorithm

In this section, we first introduce some concepts of lattices and the SIC decoding,
then we describe the diagonal reduction method [19].
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Given a matrix B ∈ R
m× n (n ≤ m) of full column rank, then a lattice generated

by B is defined by L(B) = {Bz : z ∈ Z
n}. The columns of B form a basis for the

lattice L(B). An integer matrix Z ∈ Z
n× n is called unimodular if | det(Z)| = 1.

The columns of a matrix B′ can form a basis for L(B) if and only if there exists
a unimodular matrix Z such that B′ = BZ. The volume of L(B) is defined as
vol(L(B)) = √

det(BTB), which is independent of the choice of basis. Let λ(L)

be the Euclidean length of the shortest nonzero vector in a lattice L , then it is well
known that λ(L)/vol(L)1/n is upper bounded over all n-dimension lattices L , and
the Hermite’s constant γn is defined as the supremum of λ(L)2/vol(L)2/n over all
n-dimension lattices. Finding the exact value of γn is very difficult. The exact value
of γn is only known for 1 ≤ n ≤ 8 and n = 24 [13, p. 33]. For an arbitrary dimension
n, an upper bound of the Hermite’s constant is given in [13, p. 35]:

γn ≤ 1+ n

4
, for all n ≥ 1. (4)

A lattice reduction algorithm finds a unimodular matrix Z for a given B such that the
columns of BZ are reasonably short. Lattice reduction has now become a powerful
tool for enhancing the performance of suboptimal MIMO detectors, since it can
significantly improve the orthogonality of the channel matrix.

Given a lattice generator matrix B ∈ R
m× n and its QR decomposition B = QR,

where Q ∈ R
m× n has orthonormal columns and R ∈ R

n× n is upper triangular.
From [8, 17], the efficiency of sphere decoding and the performance of SIC decod-
ing is determined by the arrangement of the diagonal elements of R. Based on this
fact, various reduction notions, such as the LLL reduction [7], effective LLL reduc-
tion [10], partial LLL reduction [11, 17], and diagonal reduction [19], have been
proposed. Among all the aforementioned reduction notions, the diagonal reduction
is the weakest, consequently, the least computationally demanding.

Definition 1 (Diagonal reduction [19]) A basis matrix B ∈ R
m× n is said to be

diagonal reduced with the parameter ω (1/4 < ω < 1), if the entries ri, j of the upper
triangular factor R in its QR decomposition B = QR satisfy

(rk−1,k − μkrk−1,k−1)
2 + r2

k,k ≥ ωr2
k−1,k−1, (5)

for all 1 < k ≤ n, where μk = �rk−1,k/rk−1,k−1�.
From the above definition, diagonal reduction only imposes one simple constraint

on the diagonal entries of R. However, it is proved in [19] that diagonal-reduction-
aided SIC decoding has identical performance as LLL-reduction-aided SIC decoding.
A generic implementation of diagonal reduction can be found in Fig. 1.
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Fig. 1 Diagonal reduction algorithm (DR) [19]

3 Diagonal Reduction Using Fast Givens

From Fig. 1, the computational cost of the diagonal reduction algorithm includes
two parts: the size-reduction (lines 7–8) and the Givens rotation (lines 11–13). The
simulation results in [19] indicate that the overall complexity of the algorithm is
dominated by the Givens rotations as the lattice dimension n increases. Thus, we
propose the use of the fast Givens transformation in place of the Givens rotations to
speed up the diagonal reduction algorithm.

Like the Givens rotation, the fast Given can be used to introduce zeros into selected
positions. Specifically, given a lattice generator matrix B, the fast Givens transfor-
mation is based on the following decomposition:

B = FD−1R, (6)

where D = diag(di ) is a positive diagonal matrix, FD−1/2 represents the orthogonal
factor in the QR decomposition of B, and D−1/2R represents the upper triangular
factor.

How can the fast Givens introduce zeros? In the 2-by-2 case, given x = [x1, x2]T
and the corresponding diagonal elements d1, d2 > 0, we first compute

α = −x1/x2, β = −αd2/d1, and γ = −αβ.

When γ ≤ 1, we have the type 1 fast Givens:
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F =
[

β 1
1 α

]
(7)

and update d1 and d2:

d̂1 ← (1+ γ )d2 and d̂2 ← (1+ γ )d1. (8)

When γ > 1, setting

α← 1/α, β ← 1/β, and γ ← 1/γ,

we have the type 2 fast Givens:

F =
[

1 β

α 1

]
(9)

and update d1 and d2:

d̂1 ← (1+ γ )d1 and d̂2 ← (1+ γ )d2. (10)

Then it can be verified that

F
[

x1
x2

]
=

[×
0

]

and

[
d̂1 0
0 d̂2

]−1/2

F
[

d1 0
0 d2

]1/2

is orthogonal.
In our fast Givens-based diagonal reduction algorithm, all the transformations are

based on the decomposition (6). In the beginning, we compute the QR decomposition
B = QR and set F = Q and D = In . Thus, in this case, the size-reduction in each
iteration is the same as lines 7–8 of Fig. 1. But the diagonal reduction condition (5)
becomes

d−1
k−1(rk−1,k − μkrk−1,k−1)

2 + d−1
k r2

k,k ≥ ωd−1
k−1r2

k−1,k−1, (11)

for 1 < k ≤ n. The diagonal reduction algorithm using fast Givens (DRFG) is
summarized in Fig. 2.

In comparison with the original diagonal reduction algorithm, DRFG saves a
substantial number of multiplication operations, since two entries of the 2-by-2 fast
Givens matrix are equal to 1. However, DRFG introduces overhead, such as the
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Fig. 2 Diagonal reduction algorithm using fast givens (DRFG)

computations in line 14 and line 20. Our simulation results presented in Sect. 5 show
that overall DRFG is more efficient than DR.

4 Dual Diagonal Reduction

In this section, after a brief introduction to dual basis, we first investigate diagonal
reduction of dual basis and prove that if a primal basis is diagonal reduced, then its
dual basis is also diagonal reduced. Then we derive an upper bound of proximity
factor of SIC decoding, which not only improves an existing bound for the dual LLL
reduction in [9], but also extends it to a family of dual LLL-type reductions.

4.1 Dual Lattice Reduction

Let L be an n-dimensional lattice in R
m , then the dual lattice L∗ of L is defined as

the set

L∗ = {u | 〈u, v〉 ∈ Z, for all v ∈ L}, (12)
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where 〈u, v〉 is the inner product of u and v. Suppose that B is a primal basis matrix
of L , then it is obvious that the columns of B†T form a basis for its dual lattice L∗.
In this paper, we adopt the definition of the dual basis B∗ � B†TJ [9], where

J �

⎡
⎢⎢⎢⎣

0 · · · 0 1
0 · · · 1 0
... · · · ...

...

1 · · · 0 0

⎤
⎥⎥⎥⎦

A dual lattice is closely related to its corresponding primal lattice. For instance, we
have L∗∗ = L and det(L∗) = 1/ det(L).

Given a primal basis matrix B, then the dual basis reduction is to perform a lattice
reduction algorithm on its dual basis B∗. Like the primal basis reduction, dual basis
reduction can also return a well reduced basis of the primal lattice. Suppose that
Z∗ is the unimodular matrix that reduces the dual basis B∗, then the corresponding
reduced primal basis is given by

B′ = (B†TJZ∗)†TJ = BJ(Z∗)†TJ,

where J(Z∗)†TJ is the unimodular matrix associated with the primal lattice.
To study the reduction properties of diagonal reduction on dual lattices, the fol-

lowing result is essential.

Lemma 1 Let B = QR and B∗ = Q∗R∗ be the QR decompositions of the primal
basis B and its dual basis B∗, respectively. Then

Q∗ = QJ, R∗ = JR−TJ. (13)

Proof It is easy to verify that B† = R−1QT. Thus, we have

B∗ = B†TJ = (R−1QT)TJ = QR−TJ

= (QJ) · (JR−TJ). (14)

Obviously, QJ has orthonormal columns and JR−TJ is an upper triangular matrix,
thus the proof is completed.

Based on the above lemma, we can obtain the following result.

Proposition 1 If the lattice basis matrix B is diagonal reduced, then its dual basis
B∗ is also diagonal reduced.

Proof Let R = [ri, j ] and R∗ be the upper triangular factors of B and B∗, respectively.
Then from Lemma 1,
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R∗ = JR−TJ

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
rn,n
− rn−1,n

rn−1,n−1rn,n
× ×

1
rn−1,n−1

− rn−2,n−1
rn−2,n−2rn−1,n−1

×
1

rn−2,n−2

. . .
...

. . . − r1,2
r1,1r2,2

1
r1,1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(15)

Since B is diagonal reduced, we then have

(
rk−1,k −

⌊
rk−1,k

rk−1,k−1

⌉
· rk−1,k−1

)2

+ r2
k,k ≥ ωr2

k−1,k−1, (16)

for all 1 < k ≤ n. Multiplying the both sides of (16) with 1
(rk−1,k−1rk,k )

2 , we obtain

(
rk−1,k

rk−1,k−1rk,k
−

⌊
rk−1,k

rk−1,k−1

⌉
· 1

rk,k

)2

+
(

1

rk−1,k−1

)2

≥ ω

(
1

rk,k

)2

,

which implies that R∗ is also diagonal reduced.

4.2 Proximity Factor

To characterize the performance gap between suboptimal decoding and ILD, a prox-
imity factor was defined in [8] and further discussed in [9, 18]. Given a lattice
generator matrix B = [b1, ..., bn], denote φi the acute angle between bi and the
linear space spanned by the previous i − 1 basis vectors, then the proximity factor
of SIC decoding is defined as:

ρi � sup
B∈BRed

λ2(L(B))

‖bi‖22 sin2 φi
, (17)

where the supremum is taken over the set BRed of bases satisfying a certain reduction
notion for any n-dim lattice L . We further define ρ � maxi {ρi }. From [9], the average
error probability of SIC decoding can be bounded by

Pe,SIC(SNR) ≤
n∑

i=1

Pe,ILD

(
SNR

ρi

)
≤ n Pe,ILD

(
SNR

ρ

)

for arbitrary SNR.
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Denote ρLLL, ρDLLL, ρDR, and ρDDR the proximity factors of SIC decoding aided
by LLL reduction, dual LLL reduction, diagonal reduction, and dual diagonal reduc-
tion, respectively. An upper bound of ρLLL is given in [18]:

ρLLL ≤ γn · β n−1
2 ≤

(
1+ n

4

)
β

n−1
2 , (18)

where β = 1/(ω − 1/4) ≥ 4/3. Following the argument in [19], it is easy to prove
that

ρi,DR = ρi,LLL ≤ γi · β i−1
2 . (19)

Thus,

ρDR = ρn,DR ≤ γn · β n−1
2 . (20)

For dual reduction, an upper bound of ρDLLL is given in [9]:

ρDLLL ≤ βn−1. (21)

In the following, we improve the upper bound (21). From (19) and Proposition 1, we
can obtain that

ρi,DDR = sup
B∗∈BDR

λ2(L(B))

r2
i,i

= sup
B∈BDR

λ2(L(B))

r2
i,i

≤ γi · β i−1
2 . (22)

Thus,

ρDDR = ρn,DDR ≤ γn · β n−1
2 . (23)

Following the above argument, it is easy to prove that the proximity factors of SIC
decoding aided by all dual LLL-type reduction notions, such as dual LLL reduction,
dual effective LLL reduction, and dual partial LLL reduction, can be upper bounded
by the right-hand side of (23). Comparing (23) with (20), SIC decoding aided by
primal and dual diagonal reductions are expected to have the same performance. This
shall be confirmed by the simulation results presented in Sect. 5.

5 Simulation Results

In this section, we present our simulation results on comparing the efficiency of the
proposed algorithm DRFG with the original algorithm DR. All experiments were
performed on matrices with random entries, drawn from an i.i.d. zero-mean, unit
variance Gaussian distribution. Without loss of generality, all testing matrices were
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Fig. 4 Simulated BER of SIC aided by the LLL, DR, dual DR, DRFG, and the dual DRFG for
64-QAM over an 8 × 8 uncoded MIMO fading channel

set to square matrices. For each size, we generated 1,000 random matrices and took
an average. The parameter ω in the reduction algorithms was set to 0.99.

Although the new algorithm DRFG is expected to be faster than the original algo-
rithm DR, the computations in line 14 and line 20 of Fig. 2 introduce overhead.
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To compare the overall complexity of the algorithms, we experimented on the
floating-point operations (flops)1 carried out by the algorithms. Figure 3 depicts our
results on the average numbers of flops performed by the reduction algorithms. The
figure shows that in both cases of primal and dual lattice reduction, DRFG is more
efficient than DR, and the performance gap between them widens quickly as the
dimension increases. This indicates that the overhead introduced by the fast Givens
is insignificant. Also note that the DR (DRFG) algorithm is slightly faster than its
dual counter part dual DR (dual DRFG) algorithm. This is due to the additional
computation, for instance, the calculation of B†, required by the dual reduction.

We also investigated the reduction quality of different reduction algorithms mea-
sured by the BER performance of the SIC decoding. Specifically, using a 64-QAM
constellation, Fig. 4 depicts the simulated BER curves of lattice-reduction-aided SIC
over an 8 × 8 uncoded MIMO fading channel. We have found that the SIC aided by
the four diagonal reduction algorithms have identical BER performance to that aided
by the LLL algorithm. This is consistent with the theoretical analysis presented in
Sect. 4.2.
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