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Abstract Given a finite set of arbitrarily distributed points in affine space with
multiplicity structures, we present an algorithm to compute the reduced Gröbner basis
of the vanishing ideal under the lexicographic order. We split the problem into several
smaller ones which can be solved by induction over variables and then use our new
algorithm for intersection of ideals to compute the result of the original problem. The
new algorithm for intersection of ideals is mainly based on the Extended Euclidean
Algorithm. Our method discloses the essential geometric connection between the
relative position of the points with multiplicity structures and the leading monomials
of the reduced Gröbner basis of the vanishing ideal.

Keywords Vanishing ideal · Points with multiplicity structures · Reduced Gröbner
basis · Intersection of ideals

1 Introduction

To describe the problem, first we give the definitions below.

Definition 1 D ⊆ N
n
0 is called a lower set in n dimensional affine space as long as

∀d ∈ D if di �= 0, d − ei lies in D where ei = (0, . . . , 0, 1, 0, . . . , 0) with the 1
situated at the i th position (1 ≤ i ≤ n). For a lower set D, we define its limiting set
E(D) to be the set of all β ∈ N

n
0 − D such that whenever βi �= 0, then β − ei ∈ D.
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Fig. 1 Illustration of three lower sets and their limiting sets

As showed in Fig. 1, there are three lower sets and their limiting sets. The elements
of the lower sets are marked by solid circles and the elements of the limiting sets are
marked by blank circles.

Let k be a field and p be a point in the affine space kn , i.e. p = (p1, . . . , pn) ∈ kn .
Let k[X ] be the polynomial ring over k, where we write X = (X1, X2, . . . , Xn) for
brevity’s sake.

Definition 2 〈p, D〉 represents a point p with multiplicity structure D, where p is
a point in affine space kn and D ⊆ N

n
0 is a lower set. �D is called the multiplicity

of point p (here we use the definition in [1]). For each d = (d1, . . . , dn) ∈ D, we
define a corresponding functional

L( f ) = ∂d1+···+dn

∂xd1
1 , . . . , ∂xdn

n

f (p).

Hence for any given finite set of points with multiplicity structures H =
{〈p1, D1〉, . . . , 〈pt , Dt 〉}, m functionals {Li ; i = 1, . . . , m} can be defined where
m � �D1 + · · · + �Dt . We call

I (H) = { f ∈ k[X ]; Li ( f ) = 0, i = 1, . . . , m}

the vanishing ideal of the set of the points H . The vanishing ideal problem we are
focusing on is to compute the reduced Gröbner basis of the vanishing ideal for any
given finite set of points H , which arises in several applications, for example, see [2]
for statistics, [3] for biology, and [4–6] for coding theory.

A polynomial time algorithm for this problem was first given by Buchberger and
Möller [7], then significantly improved by Marinari et al. [8], and Abbott et al. [9].
These algorithms perform Gauss elimination on a generalized Vandermonde matrix
and have a polynomial time complexity in the number of points and in the number
of variables. Jeffrey and Gao [10] presented a new algorithm that is essentially a
generalization of Newton interpolation for univariate polynomial and has a good
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computational performance when the number of variables is small relative to the
number of points.

In this paper the problem we consider is under the Lexicographical order with
X1 	 X2 	 · · · Xn and a more transparent algorithm will be given. The ideas are
summed-up as follows:

• Construct the reduced Gröbner basis of I (H) and get the quotient basis by induc-
tion over variables (define {M; M is a monomial and it is not divisible by the
leading monomial for any polynomial in I (H)} as the quotient basis for the
vanishing ideal I (H)).

• Get the quotient basis of the vanishing ideal purely according to the geometric
distribution of the points with multiplicity structures.

• Split the original n-variable problem into smaller ones which can be solved by
converting them into (n − 1)-variable problems.

• Compute the intersection of the ideals of the smaller problems by using Extended
Euclidean Algorithm.

Our algorithm can get a lower set by induction over variables for any given set
of points with multiplicity structures, and by constructing the reduced Gröbner basis
at the same time we can prove that the lower set is the quotient basis. There are
several publications which have a strong connection to the our work although they
are all only focusing on the quotient basis, ignoring the reduced Gröbner basis of
the vanishing ideal. Paper [11] gives a computationally efficient algorithm to get the
quotient basis of the vanishing ideal over a set of points with no multiplicity structures
and the authors introduce the interesting lex game to describe the problem and the
algorithm. Paper [12] offers a purely combinatorial algorithm to obtain the quotient
basis and the algorithm can handle the set of points with multiplicity structures as
well.

The advantage of our method is insight rather than efficient computation. The
computation cost depends closely on the structure of the given set of points and a
full complexity analysis would be infeasible. Our method may not be particularly
efficient, but is geometrically intuitive and appealing. The clear geometric meaning
of our method reveals the essential connection between the relative position of the
points with multiplicity structures and the quotient basis of the vanishing ideal,
providing us a new perspective of view to look into the vanishing ideal problem and
helping study the structure of the reduced Gröbner basis of zero dimensional ideal
under lexicographic order. What’s more, our method leads to the discovery of a new
algorithm to compute the intersection of two zero dimensional ideals.

Since one important feature of our method is the clear geometric meaning, to
demonstrate it we present an example in Sect. 2 together with some auxiliary pictures
which can make the algorithms and conclusions in this paper easier to understand. In
Sects. 3 and 4 some definitions and notions are given. Sections 5 and 6 are devoted
to our main algorithms of computing the reduced Gröbner basis and the quotient
basis together with the proofs. In Sect. 7 we demonstrate the algorithm to compute
the intersection of two ideals and some applications.
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2 Example

We will use two different forms to represent the set of points with multiplicity struc-
tures H in this paper.

For easier description, we introduce the matrix form which consists of two matri-
ces 〈P = (pi, j )m×n,D = (di, j )m×n〉 with Pi ,Di denoting the i th row vectors of
P and D respectively. Each pair {Pi ,Di } (1 ≤ i ≤ m) defines a functional in the
following way.

Li ( f ) = ∂di,1+···+di,n

∂x
di,1
1 . . . ∂x

di,n
n

f |x1=pi,1,...,xn=pi,n .

And the functional set defined here is the same with that defined by the way in
Sect. 1 with respect to H .

For example, given a set of three points with their multiplicity structures {〈p1,

D1〉, 〈p2, D2〉, 〈p3, D3〉}, where p1 = (1, 1), p2 = (2, 1), p3 = (0, 2), D1 =
{(0, 0), (0, 1), (1, 0)}, D2 = {(0, 0), (0, 1), (1, 0), (1, 1)}, D3 = {(0, 0), (1, 0)}, the
matrix form is like the follows.

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1
1 1
1 1
2 1
2 1
2 1
2 1
0 2
0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0
1 0
0 1
0 0
1 0
0 1
1 1
0 0
1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

For intuition’s sake, we also represent the points with multiplicity structures in
a more intuitive way as showed in the left picture of Fig. 2 where each lower set
that represents the multiplicity structure of the corresponding point p is also put in

Fig. 2 The left picture represents H , the middle one is for H1 and the right one for H2
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the affine space with the zero element (0,0) situated at p. This intuitive representing
form is the basis of the geometric interpretation of our algorithm.

We take the example above to show how our method works and what the geometric
interpretation of our algorithm is like:

Step 1: Define mapping π : H 
→ k such that 〈p = (p1, . . . , pn), D〉 ∈ H is
mapped to pn ∈ k. So H = {〈p1, D1〉, 〈p2, D2〉, 〈p3, D3〉} consists of two π -fibres:
H1 = {〈p1, D1〉, 〈p2, D2〉} and H2 = {〈p3, D3〉} as showed in the middle and the
right pictures in Fig. 2. Each fibre defines a new problem, so we split the original
problem defined by H into two small ones defined by H1 and H2 respectively.

Step 2: Solve the small problems. Take the problem defined by H1 for example.
First, it’s easy to write down one element of I (H1):

f1 = (X2 − 1)(X2 − 1) = (X2 − 1)2 ∈ I (H1).

The geometry interpretation is: we draw two lines sharing the same equation of
X2 − 1 = 0 to cover all the points as illustrated in the left picture in Fig. 3 and the
corresponding polynomial is f1.

According to the middle and the right pictures in Fig. 3, we can write down another
two polynomials in I (H1):

f2 = (X2 − 1)(X1 − 1)(X1 − 2)2 and f3 = (X1 − 1)2(X1 − 2)2.

It can be checked that G1 = { f1, f2, f3} is the reduced Gröbner basis of I (H1),
and the quotient basis is {1, X1, X2, X1 X2, X2

1, X2 X2
1, X3

1}. In the following, we

don’t distinguish explicitly an n-variable monomial Xd1
1 Xd2

2 . . . Xdn
n with the element

(d1, d2, . . . , dn) in N
n
0. Hence this quotient basis can be written as a subset of N

n
0:

{(0, 0), (1, 0), (0, 1), (1, 1), (2, 0), (2, 1), (3, 0)}, i.e. a lower set, denoted by D′.
In fact we can get the lower set in a more direct way by pushing the points with

multiplicity structures leftward which is illustrated in the picture below (lower set
D′ is positioned in the right part of the picture with the (0,0) element situated at
point (0,1)). The elements of the lower set D′ in the right picture in Fig. 4 are marked
by solid circles. The blank circles constitute the limiting set E(D′) and they are the
leading terms of the reduced Gröbner basis { f1, f2, f3}.

Fig. 3 Three ways to draw lines to cover the points
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Fig. 4 Push the points leftward to get a lower set

Fig. 5 Get the lower set D based on D′ and D′′

In the same way, we can get the Gröbner basis G2 = {h1, h2} and a lower set D′′ for
the problem defined by H2, where h1 = (X2 − 2), h2 = X2

1, D′′ = {(0, 0), (1, 0)}.
Step 3: Compute the intersection of the ideals I (H1) and I (H2) to get the result

for the problem defined by H .
First, we construct a new lower set D based on D′, D′′ in an intuitive way: let the

solid circles fall down and the elements of D′′ rest on the elements of D′ to form
a new lower set D which is showed in the right part of Fig. 5 and the blank circles
represent the elements of the limiting set E(D).

Then we need to find �E(D) polynomials vanishing on H with leading terms
being the elements of E(D). Take X3

1 X2 ∈ E(D) for example to show the general
way we do it.
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We need two polynomials which vanish on H1 and H2 respectively, and their
leading terms both have the same degrees of X1 with that of the desired monomial
X3

1 X2 and both have the minimal degrees of X2. Notice that f2 and X1 · h2 satisfy
the requirement. And then we multiply f2 and X1 ·h2 with h1, f1 respectively which
are all univariate polynomials in X2 to get two polynomials q1, q2 such that q1 and
q2 both vanish on H . Obviously q1 and q2 still have the same degrees of X1 with
that of the desired monomial X3

1 X2.

q1 = f2 · h1 = (X2 − 1)(X1 − 1)(X1 − 2)2(X2 − 2),

q2 = X1 · h2 · f1 = X3
1(X2 − 1)2.

Next try to find two univariate polynomials in X2: r1, r2 such that q1 · r1 + q2 ·
r2 vanishes on H (which is obviously true already) and has the desired leading
term X3

1 X2.

q1 = (X2 − 2)(X2 − 1)X3
1 − (5X2

2 − 15X2 + 10)X2
1

+ (8X2
2 − 24X2 + 16)X1 − 4X2

2 + 12X2 − 8,

q2 = (X2 − 1)2 X3
1.

To settle the leading term issue, write q1, q2 as univariate polynomials in X1 as
above. Because X2 ≺ X1 and the highest degrees of X1 of the leading terms of q1, q2
are both 3, we know that as long as the leading term of (X2 − 2)(X2 − 1)X3

1 · r1 +
(X2 − 1)2 X3

1 · r2 is X3
1 X2, the leading term of q1 · r1 + q2 · r2 is also X3

1 X2.

(X2 − 2)(X2 − 1)X3
1 · r1 + (X2 − 1)2 X3

1 · r2

= X3
1(X2 − 1) ((X2 − 2) · r1 + (X2 − 1) · r2)

Obviously if and only if (X2 − 2) · r1 + (X2 − 1) · r2 = 1 we can keep the leading
term of q1 · r1 + q2 · r2 to be X3

1 X2. In this case r1 = −1 and r2 = 1 will be just
perfect. In our algorithm we use Extended Euclidean Algorithm to compute r1, r2.

Finally, we obtain
g3 = q1 · r1 + q2 · r2

= (X2 −1)X3
1 + (5X2

2 −15X2 +10)X2
1 − (8X2

2 −24X2 +16)X1 +4X2
2 −12X2 +8

which vanishes on H and has X3
1 X2 as its leading term.

In the same way, we can get g1 = (X2 − 1)2(X2 − 2) for X3
2, g2 = (X2 − 1)2 X2

1
for X2

1 X2
2 and g4 = X4

1 +6(X2
2 −2X2)X3

1 −13(X2
2 −2X2)X2

1 +12(X2
2 −2X2)X1 −

4(X2
2 −2X2) for X4

1. In fact we need to compute g1, g2, g3 and g4 in turn according
to the lexicographic order because we need reduce g2 by g1, reduce g3 by g2 and g1,
and reduce g4 by g1, g2 and g3.
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The reduced polynomial set can be proved in Sect. 6 to be the reduced Gröbner
basis of the intersection of two ideals which is exactly the vanishing ideal over H ,
and D is the quotient basis.

This example shows what the geometric interpretation of our method is like: for
any given point with multiplicity structure 〈pi , Di 〉, we put the lower set Di into
the affine space with the (0,0) element situated at pi to intuitively represent it, and
it can be imagined as �Di small balls in the affine space; for bivariate problem, we
first push the balls along the X1-axis, then along the X2-axis to get a lower set as we
did in the example above; the lower set is exactly the quotient basis and the limiting
set of the lower set is the set of the leading monomials of the reduced Göbner basis.
This intuitive understanding can be applied to the n-variable problem and can help
us understand the algorithm better in the following.

3 Notions

First, we define the following mappings:
proj : N

n
0 −→ N0

(d1, . . . , dn) −→ dn .
p̂roj : N

n
0 −→ N

n−1
0

(d1, . . . , dn) −→ (d1, . . . , dn−1).
embedc : N

n−1
0 −→ N

n
0

(d1, . . . , dn−1) −→ (d1, . . . , dn−1, c).
Let D ⊂ N

n
0, and naturally we define p̂roj(D) = {̂proj(d)|d ∈ D}, and

embedc(D′) = {embedc(d)|d ∈ D′} where D′ ⊂ N
n−1
0 . In fact we can apply

these mappings to any set O ⊂ kn or any matrix of n columns, because there is no
danger of confusion. For example, let M be a matrix of n columns, and p̂roj(M) is
a matrix of n − 1 columns with the first n − 1 columns of M reserved and the last
one eliminated.

The embedc mapping embeds a lower set of the n − 1 dimensional space
into the n dimensional space. When the embedc operation parameter c is zero,
we can get a lower set of N

n
0 by mapping each element d = (d1, . . . , dn−1) to

d = (d1, . . . , dn−1, 0) as showed below.
Blank circles represent the elements of the limiting sets. Note that after the embedc

mapping, there is one more blank circle. In this case, the limiting set is always
increased by one element (0, . . . , 0, 1).

In the case the embedc operation parameter c is not zero, it is obvious that what
we got is not a lower set any more. But there is another intuitive fact we should
realize (Fig. 6).

Theorem 1 Assume D0, D1, . . . , D� are lower sets in n − 1 dimensional space,
and D0 ⊇ D1 ⊇ · · · ⊇ D�. Let D̂i = embedi (Di ), i = 0, . . . , �. Then
D = ⋃�

i=0 D̂i is a lower set in n dimensional space, and E(D) ⊆ C where
C = ⋃�

i=0 embedi (E(Di ))
⋃{(0, . . . , 0, � + 1)}.
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Fig. 6 Embed the lower set in 2-D space into 3-D space with parameter c = 0

Proof First to prove D is a lower set. ∀d ∈ D, let i = proj(d), then d ∈ D̂i i.e.
p̂roj(d) ∈ p̂roj(D̂i ) = Di . Because Di is a lower set, hence for j = 1, . . . , n − 1, if
d j �= 0, then p̂roj(d) − p̂roj(e j ) ∈ Di where e j = (0, . . . , 0, 1, 0, . . . , 0) with the
1 situated at the j th position. So d − e j ∈ D̂i ⊆ D. For j = n, if i = 0, we are
finished. If i �= 0, there must be d − en ∈ D̂i−1 ⊆ D. Because if d − en /∈ D̂i−1,
we have p̂roj(d) /∈ Di−1. Since we already have p̂roj(d) ∈ Di , this is contradictory
to Di ⊆ Di−1.

Second, assume ∀d ∈ E(D), p̂roj(d) /∈ Di , i = 0, . . . , �. If p̂roj(d) is a zero
tuple, then dn must be � + 1, that is d ∈ C. If p̂roj(d) is not a zero tuple, then we
know dn < � + 1. If d j �= 0, j = 1, . . . , n − 1 , then d − e j ∈ embeddn (Ddn ).

Then p̂roj(d) − p̂roj(e j ) ∈ Ddn , that is p̂roj(d) ∈ E(Ddn ). Finally with the embeddn

operation we have d ∈ embeddn (E(Ddn )) where dn < � + 1. So d ∈ C . ��

4 Addition of Lower Sets

In this section, we define the addition of lower sets which is the same with that in
[13], the following paragraph and Fig. 7 are basically excerpted from that paper with
a little modification of expression.

To get a visual impression of what the addition of lower sets are, look at the
example in Fig. 7. What is depicted there can be generalized to arbitrary lower sets
D1, D2 and arbitrary dimension n. The process can be described as follows. Draw
a coordinate system of N

n
0 and insert D1. Place a translate of D2 somewhere on the

X2-axis. The translate has to be sufficiently far out, so that D1 and the translate D2 do
not intersect. Then push the elements of the translate of D2 down along the X2-axis
until on room remains between them and the elements of D1. The resulting lower
set is denoted by D1 + D2.
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Fig. 7 Addition of D1 and D2

Intuitively, we define algorithm ALS (short for Addition of Lower Sets) to realize
the addition of lower sets.

Algorithm ALS: Given two lower sets in n dimensional space D1, D2, determine
another lower set as the addition of D1, D2, denoted by D := D1 + D2.

Step 1 D := D1;
Step 2 If �D2 = 0 return D. Else pick a ∈ D2, D2 := D2 \ {a}.

Step 2.1 If a ∈ D, add the last coordinate of a with 1. Go to Step 2.1.
Else
D := D

⋃{a}, go to Step 2.

Given three lower sets D1, D2, D3, the addition we defined satisfies:

1. D1 + D2 = D2 + D1,

2. (D1 + D2) + D3 = D1 + (D2 + D3),

3. D1 + D2 is a lower set,
4. �(D1 + D2) = �D1 + �D2.

These are all the same with that in [13]. And the proof can be referred to it.
As implied in the example of Sect. 2, when we want to get a polynomial with

leading term d3 showed in the right part of Fig. 8, we need two polynomials with
the leading terms d1, d2 which are not the elements of the lower sets and have the
same degrees of X1 as d3 and the minimal degrees of X2 as showed in the left part
of Fig. 8. In other words, d1 /∈ D1, d2 /∈ D2, p̂roj(d1) = p̂roj(d2) = p̂roj(d3),
proj(d1) + proj(d2) = proj(d3). It’s easy to understand that these equations hold for
the addition of three or even more lower sets.

We use algorithm CLT (short of Computing the Leading Term) to get the leading
terms d1 and d2 from d3 respectively.
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Fig. 8 ̂proj(d1) =̂proj(d2) =̂proj(d3), proj(d1) + proj(d2) = proj(d3)

Algorithm CLT: Given a ∈ N
n
0, and a lower set D in n dimensional space

satisfying a /∈ D. Determine another r = (r1, . . . , rn) ∈ N
n
0 which satisfies

that r /∈ D, p̂roj(r) = p̂roj(a) and (r1, . . . , rn−1, rn − 1) ∈ D, denoted by
r := CLT(a, D).

Step 1 Initialize r such as p̂roj(r) = p̂roj(a) and proj(r) = 0.
Step 2 if r /∈ D, return r, else rn := rn + 1, go to Step 2.

Then d1 = CLT(d3, D1), d2 = CLT(d3, D2).

Definition 3 For any f ∈ k[X ], view it as an element in k(Xn)[X1, . . . , Xn−1] and
define LCn( f ) to be the leading coefficient of f which is a univariate polynomial
in Xn .

Here is the algorithm CP (short for Computing the Polynomial) which can com-
pute the polynomial with the leading term returned by algorithm CLT.

Algorithm CP: D is a lower set in n dimensional space, a ∈ N
n
0 and a /∈ D,

G := { fed ∈ k[X ];the leading term of fed is ed, ed ∈ E(D)}, algorithm CP returns
a polynomial p whose leading term is CLT(a, D). Denoted by p := CP(a, D, G).

Step 1 c := CLT(a, D).
Step 2 Select c′ ∈ E(D), s.t. c′ is a factor of c. d := c

c′ .
(d is well defined because c /∈ D).

Step 3 p := fc′ · d where fc′ is an element of G whose leading term is c′ ∈ E(D).
(p is well defined because d is well defined).
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Remark 1 LCn( fc′) = LCn(p) in Step 3. Since c has the minimal degree of Xn

according to algorithm CLT, there exists no element c′′ ∈ E(D) which is a factor of
c satisfying proj(c′′) < proj(c). Hence monomial d in the algorithm does not involve
the variable Xn .

5 Associate a Lower set D(H) to a set of Points H with
Multiplicity Structures

For any given set of points H with multiplicity structures in n dimensional space,
we can construct a lower set D(H) in n dimensional space by induction.

Univariate case: Assume H = {〈p1, D1〉, . . . , 〈pt , Dt 〉} is a set of points with
multiplicity structures in one dimensional space, then the lower set is D(H) =
{0, 1, . . . ,

∑t
i=1 �Di }.

Assume the n − 1 (n > 1) dimensional problem has been solved, now for the n
dimensional situation, we first focus on the Special case.

Special case: Assume H = {〈p1, D1〉, . . . , 〈pt , Dt 〉} is a set of points with mul-
tiplicity structures in the n (n > 1) dimensional space where all the points share the
same Xn coordinate. Write H in matrix form as 〈P,D〉 and all the entries in the last
column of matrix P have the same value. Classify the row vectors of 〈P,D〉 to get
{〈P0,D0〉, . . . , 〈Pw,Dw〉} according to the values of the entries in the last column
of matrix D and we guarantee the corresponding relationship between the row vec-
tors of matrix P and matrix D holds in 〈Pi ,Di 〉 (0 ≤ i ≤ w). All the entries in the
last column of Di are the same i and the entries of the last column of Pi stay the
same too. Then eliminate the last columns of Pi and Di to get 〈̂proj(Pi ), p̂roj(Di )〉
which represents a set of points with multiplicity structures in n − 1 dimensional
space, by induction we get a lower set D̂i in n − 1 dimensional space. Then we set

D(H) =
w⋃

i=0

embedi (D̂i ).

Next we deal with the General case.
General case: Assume H = {〈p1, D1〉, . . . , 〈pt , Dt 〉} is a set of points with

multiplicity structures in the n (n > 1) dimensional space. Split the set of points:
H = H1

⋃
H2

⋃ · · ·⋃ Hs such that the points of each Hi are in the same π -fibre, i.e.
they have the same Xn coordinate ci , i = 1, . . . , s,and ci �= c j ,∀i, j = 1, . . . , s, i �=
j. According to the Special case, for each i = 1, . . . , s, we can get a lower set D(Hi ),
then we set

D(H) =
s∑

i=1

D(Hi ).

We now prove D(H) is a lower set although it is easy to understand as long as
the geometric interpretation involves. Since it is obviously true for Univariate case,
induction over dimension would be helpful for the proof.
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Proof Assume D(H) is a lower set for the n − 1 dimensional situation and now we
prove the conclusion for n dimensional situation (n > 1).

First to prove D(H) of the Special case is a lower set.
We claim that 〈̂proj(Pi ), p̂roj(Di )〉 represents a set of points with multiplicity

structures in n − 1 dimensional space (i = 0, . . . , w). For any D ⊂ N
n
0, define

Fa(D) = {d ∈ D| proj(d) = a}. Let U = {u|u ∈ {1, . . . , t}, Fi (Du) �= ∅}.
So 〈̂proj(Pi ), p̂roj(Di )〉 can be written in the form of {〈̂proj(pu), p̂roj(Fi (Du))〉|u ∈
U }. It is apparent that p̂roj(Fi (Du)) is a lower set in n−1 dimensional space and can be
viewed as the multiplicity structure of the point p̂roj(pu). Hence 〈̂proj(Pi ), p̂roj(Di )〉
is a set of points with multiplicity structures in n − 1 dimensional space.

What’s more, we assert p̂roj(P j ) is a sub-matrix of p̂roj(Pi ), and p̂roj(D j ) is a

sub-matrix of p̂roj(Di ), 0 ≤ i < j ≤ w. Because of the corresponding relationship
between the row vectors in P and D , we need only to prove p̂roj(D j ) is a sub-matrix

of p̂roj(Di ). If it is not true, there exists a row vector g of p̂roj(D j ) which is not a

row vector of p̂roj(Di ). That is, there exists b (1 ≤ b ≤ t) such that embed j (g)

is an element of the lower set Db, and embedi (g) is not included in any lower set
Da (1 ≤ a ≤ t). However since i < j and embed j (g) ∈ Db, embedi (g) must be
included in Db. Hence our assertion is true.

Since p̂roj(P j ) is a sub-matrix of p̂roj(Pi ), and p̂roj(D j ) is a sub-matrix of

p̂roj(Di ), 0 ≤ i < j ≤ w. According to the assumption of induction and the way we
construct D(H), we have D̂i ⊇ D̂ j , 0 ≤ i < j ≤ w, where D̂i , D̂ j are both lower
sets. Based on the Theorem 1 in Sect. 3, D(H) = ⋃w

i=0 embedi (D̂i ) is a lower set,
and E(D(H)) ⊆ ⋃w

i=0 embedi (E(D̂i ))
⋃{(0, . . . , 0, w + 1)}.

Then to prove D(H) of General case is a lower set. Since D(Hi ), i = 1, . . . , s
are lower sets, and the addition of lower sets is also a lower set according to Sect. 4,
D(H) is obviously a lower set. ��

6 Associate a set of Polynomials poly(H) to D(H)

For every lower set constructed during the induction procedure showed in the last
section, we associate a set of polynomials to it.

We begin with the univariate problem as we did in the last section.

6.1 Univariate Problem

P-Univariate case:
Assume H = {〈p1, D1〉, . . . , 〈pt , Dt 〉} is a set of points with multiplicity struc-
tures in one dimensional space, and D(H) = {0, 1, . . . ,

∑t
i=1 �Di }. Then the set of

univariate polynomials associated to D(H) is poly(H) = {∏t
i=1(X1 − pi )

�Di }.
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Obviously poly(H) of P-Univariate case satisfies the following Assumption.

Assumption For any given set of points with multiplicity structures H in the n − 1
(n > 1)dimensional space, there are the following properties. For anyλ ∈ E(D(H)),
there exists a polynomial fλ ∈ k[X ] where X = (X1, . . . , Xn−1) such that

• The leading term of fλ under lexicographic order is Xλ.
• The exponents of all lower terms of fλ lies in D(H).
• fλ vanishes on H .
• poly(H) = { fλ|λ ∈ E(D(H))}.

Now assume the (n − 1)-variable (n > 1) problem has been solved i.e. for any
given set of points with multiplicity structures H in n −1 dimensional space, we can
construct a set of polynomial poly(H) which satisfies the Assumption. And then to
tackle the n-variable problem, we still begin with the special case.

6.2 Special Case of the n-variable (n > 1) Problem

P-Special case:
Given a set of points with multiplicity structures in n (n > 1) dimensional space
H = {〈p1, D1〉, . . . , 〈pt , Dt 〉} or in matrix form 〈P = (pi j )m×n,D = (di j )m×n〉.
All the given points have the same Xn coordinate, i.e. the entries in the last column
of P are the same. We compute poly(H) with the following steps.

Step 1 c := p1n; w = max{din; i = 1, . . . , m}.
Step 2 ∀i = 0, . . . , w, define S D i as a sub-matrix of D containing all the row

vectors whose last coordinates equal i . Extract the corresponding row vectors
of P to form matrix S P i , and the corresponding relationship between the
row vectors in P and D holds for S P i and S D i .

Step 3 ∀i = 0, . . . , w, eliminate the last columns of S P i and S D i to get
〈 ˜S P i , ˜S D i 〉 which represents a set of points in n − 1 dimensional space
with multiplicity structures.According to the induction assumption, we have
the polynomial set G̃i = poly(〈 ˜S P i , ˜S D i 〉) associated to the lower set
D̃i = D(〈 ˜S P i , ˜S D i 〉).

Step 4 D := ⋃w
i=0 embedi (D̃i ). Multiply every element of G̃i with (Xn −c)i to get

Gi . G̃ := ⋃w
i=0 Gi

⋃{(Xn − c)w+1}.
Step 5 Eliminate the polynomials in G̃ whose leading term is not included in E(D)

to get poly(H).

Theorem 2 The poly(H) obtained in P-Special case satisfies the Assumption.

Proof According to the Sect. 5, 〈 ˜S P i , ˜S D i 〉 represents a set of points with mul-
tiplicity structures in n − 1 dimensional space for i = 0, . . . , w. And D̃ j ⊇ D̃i ,

0 ≤ j ≤ i ≤ w. D is a lower set and E(D) ⊆ ⋃w
i=0 embedi (E(D̃i ))

⋃
{(0, . . . , 0, w + 1)}.



The Vanishing Ideal of a Finite Set of Points with Multiplicity Structures 289

For λ = (0, . . . , 0, w + 1) ∈ E(D), we have fλ = (Xn − c)w+1. It is easy to
check that it satisfies the first three terms of the Assumption.

For any other element ed of E(D), ∃� s.t. ed ∈ embed�E(D̃�). So let ẽd be the ele-
ment in E(D̃�) such that ed = embed�(ẽd). We have fẽd vanishes on 〈 ˜S P�, ˜S D�〉
whose leading term is ẽd ∈ E(D̃�) and the lower terms belong to D̃�. According to
the algorithm fed = (Xn − c)� · fẽd ∈ poly(H) .

First it is easy to check that the leading term of fed is ed since ed = embed�(ẽd).
Second, the lower terms of fed are all in the set S = ⋃�

j=0 embed j (D̃�) because

all the lower terms of fẽd are in the set D̃�. D̃0 ⊇ D̃1 ⊇ . . . D̃�, so embed j (D̃�) ⊂
embed j (D̃ j ) (0 ≤ j ≤ �), hence S ⊆ D = ⋃w

j=0 embed j (D̃ j ) and the second term
of the Assumption is satisfied.

Third, we are going to prove that fed vanishes on all the functionals defined by
〈P,D〉, i.e. all the functionals defined by 〈S P i ,S D i 〉 (i = 0, . . . , w). Write all

the functionals defined by 〈S P i ,S D i 〉 in this form: L ′ · ∂ i

∂ Xi
n
|Xn=c where L ′ is an

n − 1 variable functional. Substitute the zeroes and use the fact that fẽd vanishes on

〈 ˜S P�, ˜S D�〉, it’s apparent that fed = (Xn −c)� · fẽd vanishes on these functionals.
So fed vanishes on H , and satisfies the first three terms of the Assumption.
In summary poly(H) satisfies the Assumption. ��

Remark 2 For fλ ∈ poly(H), λ ∈ E(D) where poly(H) is the result gotten in the
algorithm above, we have the conclusion that LCn( fλ) = (Xn − c)proj(λ).

6.3 General Case of the n-variable (n > 1) Problem

P-General case:
Given a set of points with multiplicity structures in n (n > 1) dimensional space
H = {〈p1, D1〉, . . . , 〈pt , Dt 〉} or in matrix form 〈P = (pi j )m×n,D =(di j )m×n〉,
we are going to get poly(H).

Step 1 Write H as H = H1
⋃

H2
⋃ · · ·⋃ Hs where Hi (1 ≤ i ≤ s) is a π -fibre

(π : H 
→ k such that 〈p = (p1, . . . , pn), D〉 ∈ H is mapped to pn ∈ k)
i.e. the points of Hi have the same Xn coordinate ci , i = 1, . . . , s, and
ci �= c j ,∀i, j = 1, . . . , s, i �= j.

Step 2 According to the P-Special case, we have D′
i = D(Hi ), Gi = poly(Hi ).

Write Hi as 〈Pi ,Di 〉, and define wi as the maximum value of the elements
in the last column of Di .

Step 3 D := D′
1, G := G1, i := 2.

Step 4 If i > s, go to Step 5. Else

Step 4.1 D := D + D′
i ; Ĝ := ∅. View E(D) as a monomial set M S := E(D).

Step 4.2 If �M S = 0, go to Step 4.7, else select the minimal element of M S
under lexicographic order, denoted by LT . M S := M S \ {LT }.
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Step 4.3
f1 := CP(LT, D, G), f2 := CP(LT, D′

i , Gi ).

v℘ := proj(g℘), where g℘ := CLT(LT, D′
℘), ℘ = 1, . . . , i .

Step 4.4

q1 := f1 · (Xn − ci )
wi +1; q2 := f2 ·

i−1∏
℘=1

(Xn − c℘)w℘+1.

pp1 := (Xn − ci )
wi +1−vi ; pp2 :=

i−1∏
℘=1

(Xn − c℘)w℘+1−v℘ .

Step 4.5 Use Extended Euclidean Algorithm to compute r1 and r2 s.t. r1 · pp1 +
r2 · pp2 = 1.

Step 4.6 f := r1 · q1 + r2 · q2. Reduce f with the elements in Ĝ to get f ′;
Ĝ := Ĝ

⋃{ f ′}. Go to Step 4.2.
Step 4.7 G := Ĝ. i := i + 1. Go to Step 4.

Step 5 poly(H) := G.

Theorem 3 The poly(H) obtained in P-General case satisfies the Assumption.

Proof It is easy to know v℘ ≤ w℘ + 1 according to their definitions, so the polyno-
mials pp1 and pp2 in Step 4.4 do make sense. And to prove Theorem 3, we need
only to prove the situation that s ≥ 2 in Step 1.

For i = 2, D = D′
1+D′

2, ∀ed ∈ E(D), v := proj(ed) and X0 := Xed

Xv
n

. According
to Sect. 4, we have v = v1 + v2. Based on the Remarks 1 and 2, f1 and f2 can be
written as polynomials of k(Xn)[X1, . . . , Xn−1] : f1 = X0 ·(Xn−c1)

v1 +the rest and
f2 = X0 · (Xn −c2)

v2 + the rest and none of the monomials in the rest is greater than
or equal to X0. Because f1 and (Xn − c1)

w1+1 vanish on H1, f2 and (Xn − c2)
w2+1

vanish on H2, we know that q1 = f1 · (Xn − c2)
w2+1 and q2 = f2 · (Xn − c1)

w1+1

both vanish on H1
⋃

H2. Then f vanishes on H1
⋃

H2 where

f = r1 · q1 + r2 · q2

= X0 · (Xn −c1)
v1 · (Xn −c2)

v2(r1 · (Xn − c2)
w2+1−v2 + r2 · (Xn − c1)

w1+1−v1)

+ the rest

= X0 · (Xn − c1)
v1 · (Xn − c2)

v2(r1 · pp1 + r2 · pp2) + the rest

= X0 · (Xn − c1)
v1 · (Xn − c2)

v2 + the rest.

None monomial in the rest is greater than or equal to X0 , so the leading term of
f is obviously X0 · Xv

n which is equal to ed. Naturally LCn( f ) = ∏i
j=1(Xn − c j )

v j

for i = 2.
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We assert that for any i , the polynomial f in [step 4.6] satisfies that LCn( f ) =∏i
j=1(Xn − c j )

v j .
When i > 2, assume the assertion above holds for i − 1. ∀ ed ∈ E(D), v :=

proj(ed) and X0 := Xed

Xv
n

. According to Sect. 4, we have v = v1 + · · · + vi . Based on
the assertion for i − 1, Remarks 1 and 2, f1 and f2 can be written as polynomials
of k(Xn)[X1, . . . , Xn−1] :

f1 = X0 ·
i−1∏
j=1

(Xn − c j )
v j + the rest

f2 = X0 · (Xn − ci )
vi + the rest

and none of the monomials in the rest is greater than or equal to X0. Because f1 and∏i−1
j=1(Xn − c j )

w j +1 vanish on
⋃i−1

j=1 Hj , f2 and (Xn − ci )
wi +1 vanish on Hi , we

know that q1 = f1 · (Xn − ci )
wi +1 and q2 = f2 · ∏i−1

j=1(Xn − c j )
w j +1 both vanish

on
⋃i

j=1 Hj . Then f vanishes on
⋃i

j=1 Hj where

f = r1 · q1 + r2 · q2

= X0 ·
i∏

j=1

(Xn − c j )
v j (r1 · (Xn − ci )

wi +1−vi + r2 ·
i−1∏
j=1

(Xn − c j )
w j +1−v j )

+ the rest

= X0 ·
i∏

j=1

(Xn − c j )
v j (r1 · pp1 + r2 · pp2) + the rest

= X0 ·
i∏

j=1

(Xn − c j )
v j + the rest.

None monomial in the rest is greater than or equal to X0 and the leading term of f
is obviously X0 · Xv

n which is equal to ed. Hence the assertion holds for arbitrary i .
Therefore we have proved that for any element ed ∈ E(D), fed := f vanishes on

H and the leading term is ed. In the algorithm, we compute fed in turn according to
the lexicographic order of the elements of E(D). Once we get a polynomial, we use
the polynomials obtained previously to reduce it (refer to Step 4.6). Now to prove
the lower terms of the polynomial are all in D after such a reduction operation.

Let D be a lower set, a be a monomial, define L(a, D) = {b ∈ N
n
0; b ≺ a, b ∈ D}.

Given any d /∈ D, there exist only two situations: d ∈ E(D) or d /∈ E(D) but
∃d ′ ∈ E(D), s.t. d ′ is a factor of d. Of course d ′ ≺ d.

Consider the sequence � = {T1, T2, T3, . . .} of all the monomials with the ele-
ments of D discarded and all the elements are arranged according to the lexicographic
order, use induction on it to prove that for every element Tt (t > 0) we can construct
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a vanishing polynomial with the leading term Tt and all the lower terms are in D,
i.e. Tt can be represented as the linear combination of the elements of L(Tt , D).

The very first vanishing polynomial we got in the algorithm is a univariate poly-
nomial in Xn whose leading term is exactly T1. It is obvious that the lower terms are
in D, i.e. T1 can be represented as the combination of the elements of L(T1, D).

Assume that Tm−1 (m ≥ 2) can be written as the combination of the elements of
L(Tm−1, D), now to prove it is true for Tm .

If Tm ∈ E(D), the algorithm provides us a vanishing polynomial whose leading
term is Tm , i.e. Tm can be represented as the combination of the terms which are all
smaller than Tm . According to the induction assumption, for any lower term T /∈ D
of the polynomial, T can be represented as the linear combination of the elements
of L(T, D), then Tm can be represented as the linear combination of the elements of
L(Tm, D).

If Tm /∈ E(D), there exists d ′ ∈ E(D) s.t. Tm = T ′
m ·d ′. Since d ′ ≺ Tm , according

to the assumption, we can substitute d ′ with the linear combination of the elements
of L(d ′, D). Since all the elements in L(d ′, D) are smaller than d ′, then Tm can be
represented as the combination of elements which are all smaller than Tm . Then for
the same reason described in the last paragraph, Tm can be represented as the linear
combination of the elements of L(Tm, D).

Therefore for every element Tt (t > 0) we can construct a vanishing polynomial
with the leading term Tt and all the lower terms are in D. Particularly for any ed ∈
E(D), all the lower terms of the polynomial fed we got in the algorithm after the
reduction operation are in D. ��
Remark 3 According to the proof of Theorem 3, f and f ′ in Step 4.6 for arbitrary
i satisfy that LCn( f ) = LCn( f ′) = ∏i

j=1(Xn − c j )
v j .

Theorem 4 Given a set of points H with multiplicity structures, poly(H) is the
reduced Gröbner basis of the vanishing ideal I (H) and D(H) is the quotient basis
under lexicographic order.

Proof Let m be the number of functionals defined by H and then m = dim(k[X ]/
I (H)). Denote by J the ideal generated by poly(H). According to the Assump-
tion, poly(H) ⊆ I (H). So dim(k[X ]/I (H)) ≤ dim(k[X ]/J ). Let C be the
set of the leading terms of polynomials in J under lexicographic order, then
C ⊇ ⋃

β∈E(D(H))(β+N
n
0) where the latter union is equal to N

n
0\D(H). Then we can

get C ′ = N
n
0\C ⊆ D(H). Because k[X ]/J is isomorphic as a k-vector space to the

k-span of C ′, here C ′ is viewed as a monomial set. So dim(k[X ]/J ) ≤ �D(H) = m.
Hence we have

m = dim(k[X ]/I (H)) ≤ dim(k[X ]/J ) ≤ m.

Therefore J = I (H), where J = 〈poly(H)〉. Hence it is easy to know that
poly(H) is exactly the reduced Gröbner basis of the vanishing ideal under lexico-
graphic order, and D(H) is the quotient basis. ��
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Based on Remark 3 and Theorem 4, we can naturally get the following lemma.

Lemma 1 Assume G is the reduced Gröbner basis of some zero dimensional
n-variable polynomial ideal under lexicographic order with X1 	 X2 	 · · · 	 Xn.
Define p0(G) as the univariate polynomial in Xn of G. View g ∈ G as polynomial
of k(Xn)[X1, . . . , Xn−1] and define LCn(g) to be the leading coefficient of g which
is a univariate polynomial in Xn and we have the conclusion that LCn(g) is always
a factor of p0(G).

Proof In fact for any given zero dimensional n-variable polynomial ideal, its reduced
Gröbner basis G can be constructed from its zeros in the way our algorithm pro-
vides. Because the reduced Gröbner basis under lexicographic order is unique,
Remark 3 holds for all the elements of G i.e. ∀g ∈ G, LCn(g) = ∏s

j=1(Xn − c j )
v j

and particularly p0(G) = ∏s
j=1(Xn − c j )

w j +1 (refer the algorithm of P-General
case for the symbols c j , v j , w j ). Because v j ≤ w j + 1, LCn(g) is a factor
of p0(G). ��

7 Intersection of Ideals

Based on Lemma 1 and the algorithm of P-General case in Sect. 6, we present
a new algorithm named Intersection to compute the intersection of two ideals I1
and I2 satisfying that the greatest common divisor of p0(G1) and p0(G2) equals 1
where G1 and G2 are respectively the reduced Gröbner bases of I1 and I2 under the
lexicographic order i.e. satisfying that the zeros of I1 and that of I2 does not share
even one same Xn coordinate.

Denote by Q(G) the quotient basis where G is the reduced Gröbner basis. The
following algorithm CPI (short for Computing the Polynomial for Intersection) is a
sub-algorithm called in algorithm Intersection.

Algorithm CPI: G is a reduced Gröbner basis, for any given monomial LT which
is not in Q(G), we get a polynomial p in 〈G〉 whose leading term is a factor of LT :
the X1, . . . , Xn−1 components of the leading term are the same with that of LT and
the Xn component has the lowest degree. Denoted by p := CPI(LT, G).

Step 1 G ′ := {g ∈ G| the leading monomial of g is a factor of LT }.
Step 2 G ′′ := {g ∈ G ′| the leading monomial of g has the smallest degree of Xn for

that of all the elements in G ′}.
Step 3 Select one element of G ′′ and multiply it by a monomial of X1, . . . , Xn−1 to

get p whose leading monomial is LT .

Algorithm Intersection: G1 and G2 are the reduced Gröbner bases of two different
ideals satisfying that GCD(p0(G1), p0(G2)) = 1. Return the reduced Gröbner basis
of the intersection of these two ideals, denoted by G := Intersection(G1, G2).

Step 1 D := Q(G1) + Q(G2). View E(D) as a monomial set. G := ∅.
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Step 2 If E(D) = ∅, the algorithm is done. Else select the minimal element of
E(D), denoted by T . E(D) := E(D)\{T }.

Step 3
f1 := CPI(T, G1), f2 := CPI(T, G2).

q1 := f1 · p2, q2 := f2 · p1.

Step 4

t1 := p0(G2)

LCn( f2)
, t2 := p0(G1)

LCn( f1)
.

Step 5 Use Extended Euclidean Algorithm to find r1, r2 s.t.

r1 · t1 + r2 · t2 = 1.

Step 6 f := q1 · r1 + q2 · r2. Reduce f with G to get f ′, and G := G
⋃{ f ′}. Go to

Step 2.

Remark 4 This algorithm is essentially the same with Step 4.1–Step 4.7 of
P-General case in Sect. 6, so it is obvious that r1, r2 in Step 5 do exist and the
polynomials in the algorithm are all well defined. Besides, D in Step 1 is not empty,
so it is easy to know the result of this algorithm can never be empty.

Because this algorithm is essentially the same with Step 4.1–Step 4.7 of
P-General case in Sect. 6, here we omit the proof. And in return, the algorithm
of P-General case in Sect. 6 can be simplified according to this Intersection algo-
rithm: we can delete the last sentence in Step 2 and replace Step 4.3 and Step 4.4
respectively by:

Step 4.3′
f1 := CP(LT, D, G), f2 := CP(LT, D′

i , Gi ).

Step 4.4′
q1 := f1 · p0(Gi ); q2 := f2 · p0(G).

pp1 := p0(Gi )

LCn( f2)
; pp2 := p0(G)

LCn( f1)
.

8 Conclusion

During the induction of the algorithm in Sect. 6, we can record the leading coefficients
for later use to save the computation cost and the computation cost is mainly on the
Extended Euclidean Algorithm. But it’s hard to compute how many times we need
to use the Extended Euclidean Algorithm for a given problem, and the computation
cost depends closely on the structures of the given set of points.
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The benefit is the explicit geometric interpretation. For any given point with
multiplicity structure 〈p, D〉, we put the lower set D into the affine space with the
(0, 0) element situated at p to intuitively represent it, and it can be imagined as �Di

small balls in the affine space. Given a set of points with multiplicity structures in
n dimensional space, in the way showed in Sect. 2, we push the balls first along
X1-axis, then along X2-axis, and so on, at last along Xn-axis to finally get a lower set
which turns out to be exactly the quotient basis under the lexicographic order with
X1 	 X2 	 · · · 	 Xn . In the future, we will try to apply this geometric interpretation
to our previous work on Birkhoff problem [14].

The geometric interpretation in this paper reveals the essential connection between
the relative position of the points with multiplicity structures and the quotient basis
of the vanishing ideal. It provides us a new perspective of view to look into the van-
ishing ideal problem and helps study the structure of the reduced Gröbner basis of
zero dimensional ideal under lexicographic order. The new algorithm Intersection
which computes the intersection of two ideals and Lemma 1 are the direct byprod-
ucts of our algorithm. Lemma 1 reveals important property of the reduced Gröbner
basis under lexicographic order, which is necessary for a set of polynomials to be
a reduced Gröbner basis. Lemma 1 can also help us to solve the polynomial sys-
tem. It is well-known that the Gröbner basis of an ideal under lexicographic order
holds good algebraic structures and hence is convenient to use for polynomial system
solving [15]. Once we get the reduced Gröbner basis G of a zero dimensional ideal,
to solve the polynomial system, we need first compute the roots of p0(G). Since
LCn(g) (g �= p0(G), g ∈ G) is a factor of p0(G), computing the roots of LCn(g)

which has a smaller degree would be helpful for saving the computation cost.
Lederer [13] presented an algorithm to compute the reduced Gröbner basis of the

vanishing ideal over a set of points with no multiplicity structures. The author splits
the problem into several small ones and combines the results of the small problems
by using Lagrange interpolation method to get the final result and the idea really
inspired us a lot. Because the problem considered here concerning the points with
multiplicity structures, we have to consider P-Special case and P-General case, and
the Lagrange interpolation method is not available any more, we use the Extended
Euclidean Algorithm instead.
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