
A Symbolic Approach to Compute a Null-Space
Basis in the Projection Method

Mark Giesbrecht and Nam Pham

Abstract We present a hybrid symbolic-numeric approach for the so-called projec-
tion method for solving the parameterized differential-algebraic constraint equations
associated with multibody mechanical systems. A primary problem in this approach
is computing a null-space basis of a matrix of multivariate rational functions, the
Jacobian of the symbolic constraint matrix. A purely symbolic approach is unten-
able in terms of the sheer size of the output, whereas a purely numerical approach
does not offer the flexibility of leaving some or all parameters unspecified. Instead
we propose a hybrid approach, which does a symbolic preconditioning, followed by
representing the null-space basis by straight-line C code, i.e., a black-box null-space
basis. We do this in a numerically sensitive way, and show that our black box is
numerically robust at almost all parameter settings. This is verified by experimental
results on inputs from typical multibody models.

1 Introduction

In recent years, a large amount of work has been devoted to developing symbolic-
computation software for modelling and simulating physical systems; for example,
MapleSim [15]. The primary motivation has been potential gains over a purely numer-
ical approach that such software could provide engineers in the model-based devel-
opment process. In this paper, we aim to use and optimize a symbolic approach in
solving a constrained mechanical system using the so-called projection method [3].

M. Giesbrecht (B) · N. Pham (B)

Cheriton School of Computer Science,
University of Waterloo, N2L 3G1, Waterloo, ON, Canada
e-mail: mwg@uwaterloo.ca

N. Pham
e-mail: npham@uwaterloo.ca

© Springer-Verlag Berlin Heidelberg 2014
R. Feng et al. (eds.), Computer Mathematics, DOI 10.1007/978-3-662-43799-5_19

243

244 M. Giesbrecht and N. Pham

Consider a constrained mechanical system represented by a set of m nonlinear
algebraic equations:

Φ(q, t) = 0, (1)

where q is a set of n generalized coordinates, q = (x1, . . . , xn), and each constraint
equation is a function of the coordinates q and the time t . The Jacobian is the m × n
matrix of first partial derivatives of the constraint equations (1):

Φq =
[
∂(Φ1, Φ2, · · · , Φm)

∂(x1, x2, · · · , xn)

]
=

⎡
⎢⎢⎢⎢⎣

∂Φ1
∂x1

∂Φ1
∂x2
· · · ∂Φ1

∂xn
∂Φ2
∂x1

∂Φ2
∂x2
· · · ∂Φ2

∂xn

· · · · · · . . . · · ·
∂Φm
∂x1

∂Φm
∂x2
· · · ∂Φm

∂xn

⎤
⎥⎥⎥⎥⎦ . (2)

The equations describing the system dynamics in augmented form can then be
obtained as

Mẍ +ΦT
q λ = F, (3)

where M is an n × n symmetric generalized mass matrix, Φq is the m × n Jacobian
of the constraint matrix Φ with respect to the generalized coordinates, and λ is the
(m × 1) Lagrange multiplier. We will assume that the Jacobian matrix Φq above
has rank r , which may not be full. This in itself is atypical—full rank is assumed in
the standard situation [8]—but is important in the case of automatically generated
equations where redundancies may lead to rank deficiencies.

We could solve the n+m differential and algebraic equations formed by (1) and (3)
for the coordinate q and the Lagrange multiplier λ by using the appropriate numerical
methods. However, solving those nonlinear DAEs is computationally expensive,
making it unsuitable for real-time simulation. Hence, it is desirable to express the
system equations in a set of purely ordinary differential equations (ODEs).

Reference [2] proposed a new method, called the projection method, to eliminate
algebraic equations from (3). Specifically, in this method, we find a null-space basis
D for Φq , an n × r matrix such that

Φq D = 0 or DTΦT
q = 0. (4)

By multiplying both sides of (3) by DT , the resulting equation can be written in an
embedded form:

DT Mẍ = DT F. (5)

The tangent velocity u in D is defined as

ẋ = Du. (6)

A Symbolic Approach to Compute a Null-Space Basis in the Projection Method 245

The determination of the null-space D and its tangent velocity u allows us to analyze
the constrained system as two separate problems. First, by substituting (6) into (5), we
can derive the dynamic equations of the constrained system in the subspace defined
by D:

DT M Du̇ = DT(F − M Ḋu). (7)

Equations (1) and (7) form a system of n+r purely differential equations in x and u,
which can be easily solved using a standard differential equation solver. Given x0 and
v0, we can compute the required initial tangent speeds for simulation. Secondly, the
constraint reactions can be determined at any instant of the simulation by substituting
(6) into (3):

λ = (Φq M−1ΦT
q)−1Φq(M−1 F − Ḋu). (8)

Thus, the projection method requires an effective algorithm capable of finding a
null-space basis D of a large and complicated matrix Φq . In the traditional setting,
the matrices M and Φq are purely numerical, real valued matrices. However, in many
applications, these equations depend upon unknown parameters, which would have
to be instantiated before the projection method could be applied. A more interest-
ing symbolic approach has been pursued by MapleSim [11, 15], where unknown
parameters are simply left as parameters and the equations are handled symbolically,
i.e., over the function field defined by the parameters. This has the advantage of
completely reflecting knowledge (or lack thereof) of the underlying system, but of
course can lead to massive expression swell. The approach we will take here is a
hybrid one: from the symbolic system we will generate straight-line code to evaluate
solutions to the symbolic system at any specific settings of the parameters. This can
potentially be used in further manipulations, to reconstruct a symbolic solution (say
via sparse interpolation), or as a plugin to a numerical solver. The code produced will
(heuristically) be numerically robust in that, assuming reasonable properties of the
symbolic system, the straight-line code will have good relative error at most specific
parameters.

Numerically, the matrix D is often calculated via the Singular Value Decom-
position (SVD) of the Jacobian matrix Φq [1]. However, from the symbolic mod-
elling point of view, any numeric processes should be avoided since they require a
repeated evaluation of the model. Moreover, a symbolic computation of the SVD (as
a symbolic eigenvalue computation) will be both very large, and, when it is used for
numerical evaluation, will not necessarily lead to a numerically robust algorithm.

On the other hand, classical symbolic methods (such as fraction-free Gaussian
elimination; see, e.g., [4]) to compute the null-space basis will generally work only
for small problem instances, or when the number of parameters is very small. The
constraint matrix Φq in a multi-body system is often condensed with many multivari-
ate functions. For any medium-sized model, symbolic manipulation easily leads to
intermediate swell problems that exceed the capabilities of general purpose symbolic
software like Maple and Mathematica [13]. To handle the intermediate swell prob-
lems, [16] proposed to use fraction-free factoring and implicit reduced involutive
form to control the generation of large expression during computation [16, 17].

246 M. Giesbrecht and N. Pham

Fig. 1 Slider crank mechanism [7]

In this paper, we make preliminary steps towards a different approach. We aim to
develop a hybrid symbolic-numeric computation technique to derive the orthogonal
complement matrix D directly. First, we replace the SVD computation by Gaussian
elimination with complete row and column pivoting. We then show how to efficiently
find row and column permutations of Φq such that an LU decomposition of Φq pro-
ceeds without further pivoting (equivalently, we are determining an a priori pivoting
strategy we hope is effective almost everywhere). From the permuted matrix, we
can then generate straight-line C code to evaluate a clearly defined null-space basis
at any settings of the parameters. The method has similarity to the so-called static
pivoting approach of [10], where a good pivoting strategy is established in advance
for the purposes of parallelization.

While we could, at this point, reconstruct a symbolic representation of the null-
space (say with sparse interpolation—[5]), it is more likely that the black box is used
directly in later numerical solvers. Our method has an important advantage that once
the symbolic preconditioning is done, the generated code evaluates a single, unique
basis for the null-space.

1.1 Example: Slider Crank Mechanism

In this section, we will introduce the simple slider crank mechanism, which will be
used in the following sections to demonstrate the basic ideas of our approach.

As illustrated in Fig. 1 above, a slider-crank consists of three bodies: a crank-
shaft rotating around the fixed axis, a slider and a connecting rod. The system
has one degree of freedom. It is modelled using four generalized coordinates
q = [α, β, θ, s]T , which are coupled by three algebraic constraints. Numerical values
for system parameters are borrowed from [7].

A Symbolic Approach to Compute a Null-Space Basis in the Projection Method 247

The Jacobian of the constraint matrix is a 3× 4 matrix. Each entry is a function
of the coordinates. For example, Φq has second column

Φq [∗, 2] =
⎡
⎣ −3/10 cos (β)

−3/10 sin (β) cos (α) cos (θ)− 3/10 sin (β) sin (α) sin (θ)

3/10 sin (β) cos (α) sin (θ)− 3/10 sin (β) sin (α) cos (θ)

⎤
⎦ .

It is convenient to convert all trigonometric functions (such as sine and cosine)
into rational functions by using the tangent half-angle formula sin(α) = 2z

1+z2 and

cos(α) = 1−z2

1+z2 where z = tan(α
2), whence

Φq [∗; 2] =

⎡
⎢⎢⎢⎢⎣

−3
10 ·

1−z2
3

1+z2
3

−3
5 ·

(
1−z2

2

)
z3

(
1−z2

1

)
(
1+z2

2

)(
1+z2

3

)(
1+z2

1

) − 12
5 · z2z1z3(

1+z2
2

)(
1+z2

3

)(
1+z2

1

)
6
5 ·

z2z3
(
1−z2

1

)
(
1+z2

2

)(
1+z2

3

)(
1+z2

1

) − 6
5 ·

(
1−z2

2

)
z3z1(

1+z2
2

)(
1+z2

3

)(
1+z2

1

)

⎤
⎥⎥⎥⎥⎦ .

2 Generating a Straight-Line Program to Compute
a Null-Space Basis

Throughout the rest of this paper we will assume that we are working with a matrix
A whose entries are rational functions with real (floating point) coefficients. That is,
trigonometric and other functions have been replaced by independent indeterminates.
This will be represented algebraically by the function field F = R(z1, z2, · · · , z�).

Our goal in this section is to demonstrate how to take a matrix A ∈ Fm×n and
generate efficient code which, at “almost all” settings of the parameters z1, . . . , z�

from R, produces an evaluation of a specific basis of the null-space of A at those
values. The two primary difficulties are that (i) there is no unique null-space basis
for A, and (ii) we need to ensure that the output is numerically “good” for any setting
of the parameters. A typical symbolic computation of the null-space will require
us to make arbitrary decisions on pivots. Under any specialization of the values of
z1, . . . , z� we must be sure to make the same choices, and hence evaluate the same
null-space. We will assume for the remainder of this paper that A has rank r and that
entries in A are rational functions whose numerators and denominators have degree
less than d.

Our approach is to do a randomized symbolic preconditioning, after which a
canonical basis of the null-space is completely determined, even under “almost all”
specializations. The idea is similar to the static pivoting strategy of [10], though for
entirely different purposes. Moreover, we heuristically proceed in a manner that our
choice of pivots is numerically good at “most” numerical specializations.

248 M. Giesbrecht and N. Pham

2.1 Algebraically Effective Static Pivoting

We start by building a preconditioner for A so that all leading k × k minors are non-
singular, for 1 ≤ k ≤ r . Such a matrix will have a unique, strict LU-decomposition,
with no need for pivoting choices (i.e., always use the diagonal element as a pivot). An
efficient algorithm is provided to do the preconditioning, which involves no expres-
sion swell. This is equivalent to recording the pivots in a Gaussian elimination with
complete pivoting and applying them every time (but for the efficiency of the gener-
ated code we will actually reorder the input matrix). Note that if we only computed
the null-space after specializing the variables (z1, . . . , z�) ← (α1, . . . , α�) ∈ R

�,
it would be difficult to determine which basis to choose. In particular, it is impor-
tant that we are evaluating a specific (symbolic) null-space basis at different points
(α1, . . . , α�), and not simply evaluating a different null-space basis depending upon
the parameters (for example, we could not interpolate a symbolic representation from
the latter approach).

We start by observing some standard properties of the symbolic matrix A over
the function field F = R(z1, . . . , z�).

Theorem 1 Let A ∈ Fm×n have m ≤ n and rank r, and be such that all the
leading k × k minors of A are nonzero, for 1 ≤ k ≤ r . Then there exists a
unique lower triangular matrix L ∈ Fm×m, a unique upper triangular matrix
U ∈ Fn×n, each with only ones on the diagonal, such that L AU = D, where
D = diag(d1, . . . , dr , 0, . . . , 0) ∈ Fm×n is a (truncated) diagonal matrix. A basis
for the null-space of A is formed by the last n − r columns of U.

Proof This follows from standard Gaussian elimination with complete (row and
column) pivoting. See, for example [12], Sect. 3.10. �

The null-space basis given by the last n − r columns of U in the above theorem
is uniquely defined, even up to order; we will refer to it as the canonical null-space
of A: w1, . . . , wn−r ∈ Fn×1.

Our first goal then is to find and fix permutation matrices P and Q such that
the conditions of the theorem are met by P AQ. Our approach is a very simple
randomization technique.

2.1.1 Algebraic Static Pivot Selection

(1) Choose “random” values α1, . . . , α� of parameters z1, . . . , z� from a finite subset
S ⊆ C;

(2) Return P, Q such that P · A(α1, . . . , α�) ·Q has an LU-decomposition (without
pivoting), using Gaussian elimination with complete pivoting. This is equiva-
lent to recording the choice of pivots used to do the Gaussian elimination with
complete pivoting.

A Symbolic Approach to Compute a Null-Space Basis in the Projection Method 249

Since P · A(α1, . . . , α�) · Q has an LU-decomposition, all its leading minors are
nonsingular, and hence this must be the case that P AQ is as well. The only thing
that could go wrong is that the rank of A(α1, . . . , α�) drops below rank A at this
evaluation point. The next theorem shows this happens rarely.

Theorem 2 Suppose A ∈ R(z1, . . . , z�)
m×n, with m ≤ n, has rank r and the degrees

of all numerators and denominators of entries are less than d. Let δ = nm2d · ξ ,
for some user-chosen parameter ξ , and S a subset of R with at least δ numbers. If
α1, . . . , α� are chosen uniformly and randomly from S , then rank A(α1, . . . , α�) =
rank A with probability at least 1− 1/ξ .

Proof The product of all denominators in A has degree at most nmd, so we may
assume that A · h ∈ R[z1, . . . , z�]m×n for some polynomial h of degree at most
nmd, and A · h has total degree at most nm(d + 1). There exists a nonsingular
r × r minor Δ ∈ R[z1, . . . , z�] of A · h which has degree at most rnm(d + 1).
Thus, if we choose α1, . . . , α� such that h(α1, . . . , α�) �= 0 and Δ(α1, . . . , α�) �= 0,
rank A(α1, . . . , α�) = rank A. It is easy to see that deg h+deg Δ ≤ 3nm2d, so by the
Schwarz–Zippel Lemma [14, 18], the probability that both (h ·Δ)(α1, . . . , α�) �= 0
is at least 1− (nmd + rnm(d + 1))/#S ≥ 1− 1/ξ . �

A better probability estimate might be obtained by looking more carefully at the
degrees of the entries of A and of the common denominator of its entries.

2.2 Numerically Effective Static Pivoting

Since we are concerned also about the numerical properties of our algorithm, it is
not reasonable to assume that the choice of points will be effective at all settings of
the parameters. To remedy this, we will be more numerically judicious in our choice
of static pivots.

First, we recall the following easy theorem about the pivots, assuming that they
are all on the diagonal.

Fact 3 Let A ∈ R(z1, . . . , z�)
m×n be such that all leading i × i minors are

nonsingular, for 1 ≤ i ≤ m. Suppose A = LU , where L ∈ R(z1, . . . , z�)
m×m

is lower triangular with ones on the diagonal, and U ∈ R(z1, . . . , z�)
m×n is upper

triangular. Then

Uii = det A

[
1 . . . i
1 . . . i

] /
det A

[
1 . . . i − 1
1 . . . i − 1

]
.

In other words the pivots are quotients of minors of A. Whereas from a symbolic
point of view, any nonzero pivot is sufficient for effective Gaussian elimination,
numerically we want to choose the largest pivot (see [6], Sect. 3.4.8). Our challenge
is to estimate the size of the minors/pivots a priori. Thus, we will attempt to estimate
the “size” of the symbolic pivots via random evaluations. For this, we offer two

250 M. Giesbrecht and N. Pham

heuristics: evaluating at all but one variable for each variable in turn (to get an idea
of the degree of the pivot), and evaluating at all variables to get an idea of coefficient
size. All evaluations are on the unit circle which both supports our analysis and
heuristically at least provides some numerical robustness.

2.2.1 Estimating the Degrees of the Chosen Pivots

We first show how to estimate the degree of an unknown, but evaluable, rational
function through partial evaluation. This will applied to the pivots in our application.
First, the degree of a univariate rational function is defined as the degree of the
numerator minus the degree of the denominator. Next, the maximum degree and
maximum specialized degree of a multivariate rational function at an evaluation
point, respectively, are as defined as follows.

maxdeg f (z1, . . . , z�) = max
i

degzi
f,

maxdegα1,...,α�
f (z1, . . . , z�) = max

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

degz1
f (z1, α2, . . . , α�),

degz2
f (α1, z2, . . . , α�),

...

degz�
f (α1, α2, . . . , z�).

We will regard the maximum degree as a good estimate of the overall size of f , and
estimate it by showing that the maximum degree is equal to the maximum specialized
degree at most specializations.

Theorem 3 Let f ∈ R(z1, . . . , z�) with total (of numerator or denominator) degree
at most d. Choose a prime p > 2μd�, where μ > 1 is a “confidence” parameter.
Let ω ∈ C be a primitive pth root of unity. Then, for uniformly and randomly chosen
e j ∈ {0, . . . , p − 1} we have

degzi
f = degzi

f (ωe1, . . . , ωei−1 , zi , ω
ei+1 , . . . , ωe�),

for all 1 ≤ i ≤ �, with probability at least 1− 1/μ.

Proof For each i , let gi (z1, . . . , zi−1, zi+1, . . . , z�) and hi (z1, . . . , zi−1, zi+1, . . . , z�)

be the leading terms of the numerator and denominator f , respectively, as a polynomi-
als in zi . Then the Schwartz–Zippel Lemma [14, 18] implies that the probability that
gi (ω

e1 , . . . , ωei−1 , ωe1 , . . . , ωei−1) �= 0 and hi (ω
e1 , . . . , ωei−1 , ωe1 , . . . , ωei−1) �= 0

is at least 1− d/(μd�). The probability that this is true for at each variable simulta-
neously is then at least (1− 1/(μ�))� > 1− 1/μ. �

A Symbolic Approach to Compute a Null-Space Basis in the Projection Method 251

2.2.2 Estimating Coefficient Size

For an estimate of the coefficient size of an unknown (but evaluable) multivariate
polynomial, the following is useful. First, for

f (z1, . . . , z�) =
∑

i

fi z
ei1
1 zei2

2 · · · zei�
� ,

let ‖ f ‖2 =
√∑

i | fi |2, the coefficient 2-norm. The next theorem says the expected
value of f at an appropriately random point on the unit circle closely approximates
‖ f ‖2 (see also Lemma 3.1 of [9]).

Theorem 4 Let f ∈ R[z1, . . . , z�] with degzi
f = di for 1 ≤ i ≤ �. For each i fix

a prime pi > di , with pi �= p j for i �= j , and let ωi ∈ C be a primitive pi th root of
unity. Then

‖ f ‖22 = E
[
| f (ω

e1
1 , ω

e2
2 , . . . , ω

e�

�)|2 : for randomly chosen 0 ≤ ei < pi

]
.

Proof We start by doing a Kronecker-like substitution to convert this to a univariate
problem. Let Q1, . . . , Q� be the multipliers from the Chinese remainder theorem
for p1, . . . , p�, i.e., Qi ≡ 1 mod pi and Qi ≡ 0 mod p j for j �= i . Let P =
p1 p2 · · · p�; clearly Qi < P for 1 ≤ i ≤ �. Now let F(y) = f (yQ1 , yQ2 , . . . , yQ�).
It is easy to see that there is a 1–1 mapping between nonzero terms in f to nonzero
terms in F . Now let ζ be a Pth root of unity, so ζ P/pi is a pi th primitive root of
unity. Then

‖ f ‖22 = ‖F‖22 =
1

P

∑
0≤i<P

|F(ζ i)|2 = 1

P

∑
0≤i1<p1

· · ·
∑

0≤i�<p�

| f (ω
i1
1 , · · ·ωi�

�)|2,

where the univariate equality follows from the fact that the Fourier matrix on powers
of ζ is orthogonal. �

This theorem is somewhat weaker than we would like: the expected value being
indicative of the size does not prove that a random value is indicative. But nonetheless,
heuristically we can take this as a good estimate, especially if we make more than
one random choice.

2.2.3 Numerical Static Pivot Selection

Suppose A ∈ R(z1, . . . , z�)
m×n , where numerators and denominators have degree

at most di in variable zi , and total degree at most d. As above we may assume that we
can clear denominators through a common denominator h ∈ R[z1, . . . , z�] of degree
at most nmdi in each variable zi , or nmd in total degree, though we will certainly

252 M. Giesbrecht and N. Pham

not compute this. Thus, a crude bound on the degree of all pivots is nm2(di + 1) in
each variable, or nm2(d + 1) in total. Choose a prime p0 > 200 nm2(d + 1) and
ω0 ∈ C a p0th root of unity. Similarly, choose distinct primes pi > 2 nm2(di + 1),
and let ωi ∈ C be an pi th root of unity, for 1 ≤ i ≤ �.

(1) Choose random evaluation points:

(1.1) For 1 ≤ j ≤ � choose a random c j ∈ {0, . . . , p0−1}, and let α(0)
j = ω

c j
0 ;

(1.2) For 1 ≤ i ≤ 4 and 1 ≤ j ≤ � choose a random e(i)
j ∈ {0, . . . , p j − 1},

and let α
(i)
j = ω

e(i)
j

j .

(2) Perform Gaussian elimination “simultaneously” with full pivoting on each of
the following (�+ 4) matrices:

(2.1) A(z1, α
(0)
2 , . . . , α

(0)
�), A(α

(0)
1 , z2, . . . , α

(0)
�), …, A(α

(0)
1 , α

(0)
2 , . . . , z�);

(2.2) A(α
(i)
1 , α

(i)
2 , . . . , α

(i)
�), for i ∈ {1, . . . , 4}.

(3) At each stage choose the same pivot for all the eliminations, using a pivot that has
the highest maxdeg. In case of tie, we choose the one with the largest average
evaluation in (2.2). If any choices are zero, or “too small”, restart the entire
process with different random choices.

(4) Record all the pivot choices and construct permutation matrices P ∈ Z
m×m ,

Q ∈ Z
n×n such that P AQ has the same elimination with no pivoting.

The idea behind this heuristic strategy is that in each case we estimate the largest
pivot as a rational function, first by its degree on each variable, then by its evaluation
random points. In particular, by Theorem 3 we expect to get the degree correct with
probability at least 99/100. In a tie for highest degree, we expect to find the “largest”
pivot by Theorem 4.

In practice we might consider many practical refinements to this approach, espe-
cially taking into account the source of the parameters and their meaning in the prob-
lem space. For example, some parameters may be known to be large, or near zero.
Some parameters may be more important or more numerically sensitive, and hence
crucial to get correct. We can also increase the probability of success by considering
more choices of random evaluations for our simultaneous Gaussian elimination. We
hope to explore these further with application-driven examples, better probabilistic
analyses, and better heuristics.

2.3 Example with Numerical Static Pivoting

Continuing the slider crank example from the previous section, we note that the
maximum degree in many variable is 2, so we should use 3 distinct primes greater
than 216 and proceed to evaluate at random roots of unity of those orders to get
evaluations in (1.1) and (1.2).

A Symbolic Approach to Compute a Null-Space Basis in the Projection Method 253

For the sake of a simple example, we will instead choose p0 = 3, p1 = 3, p2 = 5,
and p3 = 7, so ω0 = exp(2π i/3), ω1 = exp(2π i/3), ω2 = exp(2π i/5), and ω3 =
exp(2π i/7). We then choose c1 = 2, c2 = 1, and c3 = 3 to create three univariate
matrices Φq(z1, ω

1
2, ω

3
3), Φq(ω2

1, z2, ω
3
3)), and Φq(ω2

1, ω
1
2, z3). These matrices are

messy to write down, but we note their “degree matrices” as follows:

⎡
⎣ 0 2 0 2

2 2 2 0
2 2 2 0

⎤
⎦ ,

⎡
⎣ 0 2 0 2

2 2 2 0
2 2 2 0

⎤
⎦ ,

⎡
⎣ 0 2 0 2

2 1 2 0
2 1 2 0

⎤
⎦ .

We then perform Gaussian elimination with complete row-column pivoting
simultaneously on the three univariate matrices and four random evaluations of
Φq (z1, z2, z3):

Φq (ω2
1, ω2

2, ω2
3) =

⎡
⎣ 0.0 7.7405e-12− 1.4447e-1i 0.0 1.0
−5.1923e-1+ 3.7140e-10i 1.2421−8.6191e-10i 3.9562e-1− 8.7185e-2 0.0
3.5456e-10+ 5.3896e-1i −8.5540e-10− 1.19671i −1.4832e-1− 4.6630e-1i 0.0

⎤
⎦ ,

Φq (ω1
1, ω3

2, ω6
3) =

⎡
⎣ 0.0 4.8246e-11− 1.3143i 0.0 1.0

4.7239+ 1.7945e-9i 5.0294+ 2.4527e-9i −4.8475+ 8.7185e-2i 0.0
−1.7148e-9+ 4.9033i −2.9437+ 4.8454i −1.4832e-1− 4.9760i 0.0

⎤
⎦ ,

Φq (ω2
1, ω1

2, ω4
3) =

⎡
⎣ 0.0 5.2880e-10− 0.3761i 0.0 1.0

4.4241− 3.2567e-9i 5.6790− 4.7758e-9i −4.1005+ 0.3693i 0.0
−3.3540e-9+ 4.4400i −4.8105e-9− 5.6586i 0.3883− 4.1323i 0.0

⎤
⎦ ,

Φq (ω1
1, ω3

2, ω2
3) =

⎡
⎣ 0.0 7.7405e-12− 0.1444i 0.0 1.0

0.5192+ 2.6403e-10i 1.2421+ 4.1261e-10i −0.6428+ 0.0871i 0.0
−1.9690e-10+ 0.5389i −3.8619e-10+ 1.1967i −0.1483− 0.6116i 0.0

⎤
⎦ .

From this, we ultimately choose permutation matrices P , Q to maximize overall
pivot size, in term of their maxdeg and then their coefficient sizes, as follows:

P =
⎡
⎣ 0 1 0

0 0 1
1 0 0

⎤
⎦ , Q =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎥⎦ .

2.4 Generating Straight-Line Code

Once we have identified permutation matrices P and Q such that P AQ has all
leading minors nonsingular, and hence has a unique LU-decomposition as above,
the computation of the canonical null-space w1, . . . , wn−r ∈ Fn×1 is completely
determined. In particular, we can then generate straight-line code (i.e., without any
conditional statements) which take parameters α1, . . . , α� ∈ R, and will produce
wi (α1, . . . , α�) ∈ R

n for 1 ≤ i ≤ n − r .

254 M. Giesbrecht and N. Pham

Theorem 5 Let A ∈ m × n, with m ≤ n and rank r. Suppose that we have deter-
mined permutation matrices P ∈ Z

m×m and Q ∈ Z
n×n such that all leading k × k

leading minors of P AQ are nonsingular, so that the canonical null-space of P AQ
is w1, . . . , wn−r ∈ Fn Then we can generate straight-line (C) code which, given
α1, . . . , α� ∈ R, produces

w1(α1, . . . , α�) ∈ R
n, . . . , wn−r (α1, . . . , α�) ∈ R

n .

Proof Assume the input in α1, . . . , α� ∈ R. The code to be generated is simply the
code for LU-decomposition without pivoting on the matrix (P AQ)(α1, . . . , α�). The
null-space basis is precisely the last n − r columns of the computed U , evaluated at
α1, . . . , α�. �

Of course, the generated code is not foolproof. Aside from the (controllably small)
probability that the rank of A is incorrectly computed through our randomized spe-
cialization (as in Theorem 2), there is also a probability that the instantiation of the
parameters lies on a zero or pole of one of the pivots. This will be exceedingly rare,
and will immediately cause a floating point exception, which is easy to catch. As in
the proof of Theorem 2, any such point must be the root of a specific polynomial
(defined by the input system) of degree O(r2nmd). Hence, the straight-line program
will be defined almost everywhere.

Of perhaps greater concern is the numerical robustness of the evaluations pro-
vided by the straight-line program. For this our static pivot selection attempted to
find pivots which were largest “most” of the time, by estimating the “size” of the
pivot functions. Our method is only an effective heuristic, though we are working on
stronger probabilistic guarantees and heuristic, as well as numerically robust “fall-
back” procedures (i.e., provide black boxes for two distinct bases, one of which is
guaranteed to be valid and numerically robust everywhere the input is). Another
possibility, explored by [10] is to do some number of steps of iterative refinement on
the solution.

3 Implementation and Experimental Results

In this section, we will present some experiment results to illustrate the efficiency
of our approach in terms of time and memory management, and to compare its
performance with the purely symbolic null-space solver provided by Maple. Note that
this comparison is, in some sense, quite unfair: the symbolic solution is a complete
solution over the function field, whereas we produce a black box which can evaluate
that solution. Nonetheless, since the ultimate application is usually to evaluate the
solution, we believe this is useful. Moreover, as we will see below, the complete
symbolic solution is unattainable for even moderately sized problems.

All experiments are run on Intel Xeon E7330 4 Quad Core CPUS (16 CPUs
in total) with 128 GB of RAM. Since the goal of our experiment is to evaluate the
usefulness of our technique in real applications, we choose a test set of 4 typical

A Symbolic Approach to Compute a Null-Space Basis in the Projection Method 255

Table 1 Multibody models from MapleSim

Models Number of coordinates Number of constraints Number of parameters

3D Rigid Slider
Crank

4 3 3

Planar Seven Body
Mechanism

7 6 7

Quadski Turning 19 11 16

Hydraulic Stewart
Platform

24 18 41

Table 2 Running time (in seconds)

Models Maple’s nullspace Our nullspace

3D Rigid Slider
Crank

0.046 0.016

Planar Seven Body
Mechanism

0.078 0.031

Quadski Turning Timeout (>200 s) 0.56

Hydraulic Stewart
Platform

Timeout (>200 s) 1.64

multibody models obtained from MapleSim. Refer to Table 1 for the description of
each model.

3.1 Time Efficiency

We measured the running time of our algorithm and Maple’s NullSpace function to
give an idea of the overall performance. Since our algorithm is heuristic in choosing
the pivots, its execution time was measured to the average of 5 rounds for each of the
models. We also set a time limit of 200 seconds on every call. Table 2 presents the
comparison of running time between our algorithm and Maple’s NullSpace solver.

We also compare the running time of our algorithm with different numbers of
parameters on a same model. Figure 2 shows its performance on the Hydraulic Stewart
Platform model. Starting with 41 parameters from the original model, we reduce the
number of parameters by substituting numerical values into each of them. When the
number of symbolic parameters is reduced to zero, our algorithm is basically run on
a purely numerical matrix. It’s also worth noting that when the same experiment is
performed using Maple’s NullSpace, it fails to return an answer in a reasonable time
for more than 3 parameters.

Of course, we are not really comparing similar quantities; on one hand Maple
is generating a complete solution, whereas we are simply generating C code which

256 M. Giesbrecht and N. Pham

Fig. 2 Running time on hydraulic stewart platformwith different numbers of parameters

can evaluate one specialized solution (in fact the Maple code is remarkably fast in
small instances). Nonetheless, the results clearly show that our generated C code
is substantially faster than the NullSpace solver in Maple. Much more importantly,
we are able to find a null-space basis far beyond when the computing the symbolic
solution fails.

3.2 Memory Use

A primary difficulty with the symbolic computation is the need to produce a complete
(and very large) presentation of the null-space, and also the need to work with these
large entities during the Gaussian elimination. As the size of the intermediate result
and the output can grow exponentially, it may well exhaust memory even with a
relatively small input, and in particular one which would be quickly evaluable at
any specialization of the parameters. We now examine the expected size of the null-
space basis that our algorithm generates in term of the length of directed acyclic
graph (DAG), which is Maple’s internal representation for straight-line code:

Table 3 shows a weakness of our algorithm. Without doing any simplification, the
size of the expression in our null-space basis will expand dramatically. However,
there is at least some potential for identifying common subexpressions, computing
them once, and then re-using these evaluations. While opportunities may be few in
a truly generic matrix, in the potentially structured (or at least someone redundant)

A Symbolic Approach to Compute a Null-Space Basis in the Projection Method 257

Table 3 DAG size of the null-space of Φq

Models Φq dimensions DAG size of D

Planar Slider Crank 3× 4 5671

Planar Seven Body
Mechanism

6× 7 75045

Quadski Turning 11× 19 41706824

Hydraulic Stewart Platform 18× 24 11849101

matrices from kinematic equations, there may well be many opportunities for such
simplifications. Such simplification is, unfortunately, quite nontrivial in general, and
a topic of current research.

3.3 Code Generation

A strength of our approach is that the null-space is ultimately computed by straight-
line C code. This lends itself to highly optimized compilation. As the null-space is
used to computed to the mass matrix M̃ and the force D̃ during simulation and control,
it is desirable to port its evaluation to C for numerical computation. The intermediate
“symbolic” representation of the straight-line code also has the potential for some
optimization. The Maple CodeGeneration package with the “optimize” option in
Maple can identify at least some common subexpressions while generating the code
[13]. For example, in the case of the slider crank mechanism, the null-space basis of
Φq could be simplified and converted to the following C code for further computation:

CodeGeneration[C](NullSpaceD) = t1 = pow(x[2], 0.2e1);
t2 = 0.1e1 + t1; t3 = pow(x[0], 0.2e1); t4 = x[0] * t2;
t5 = 0.5e1 * t4 + 0.3e1 * (-0.1e1 + t3) * t1 + 0.3e1 * t3 - 0.3e1;
t6 = -0.1e1 + t1; t5 = 0.1e1 / t5; t7 = 0.1e1 / t6;
t8 = -0.3e1 + (0.5e1 + 0.3e1 * x[0]) * x[0]; t2 = 0.1e1 / t2;
t8 = 0.1e1 / t8;
cg17[0][0] = (-0.20e2 * t3 + 0.20e2 * t1 + 0.12e2 * t4

+ 0.10e2 * t1 * t3-0.10e2) * x[2] * t5* t7;
cg17[1][0] = 1; cg17[2][0] = (0.15e2 + 0.15e2 * t3) * x[2] * t8 * t2;
cg17[3][0] = -0.3e1 / 0.10e2 * t6 * t2;

A more thorough examination of the preconditioned LU-decomposition we
employ, or use of some other equivalent method, will hopefully expose more opti-
mization opportunities.

258 M. Giesbrecht and N. Pham

4 Conclusions and Future Work

In this paper, a new hybrid algorithm to compute the null-space basis of a multivariate
matrix has been presented, and employed in the symbolic version of the projec-
tion method for solving a constrained mechanical system. The novelty of this algo-
rithm lies in the combination of numeric and symbolic computation to generate fast
“black box” code, which can be employed later for numerical or symbolic evaluation.
Specifically, instead of computing the null-space directly using LU-decomposition,
it is shown that by choosing the ordering of row and column interchanges “ran-
domly”, using numerical values from a constrained set, we can emit code to evaluate
a symbolic null-space quickly. This is similar to so-called static pivoting schemes.
This avoids many of the problems of intermediate expression swell encountered in
purely symbolic approaches. Preliminary experiments have been presented to show
that this approach is significantly faster than computing null-space symbolically,
supporting the use of symbolic computation in engineering problems such as the
projection method for multibody systems.

So far we have only done a pilot experiment with small to medium-sized multi-
body models. It is necessary to test our algorithm with larger models with tens or
hundreds of parameters and constraints. There are also several avenues of algorithmic
development. First, in the current implementation, we rely on Maple’s CodeGener-
ation package to simplify the straight-line code at the the final step. A more careful
analysis of the actual LU-decomposition or equivalent method should lead to identi-
fication of common subexpressions. Also, the ultimate “output” of our techniques is
C code for a numerical evaluator at specialized values of the parameters. Currently,
the numerical robustness of this code is relatively heuristic, estimating the static
pivots through randomized evaluation. While we believe this is a good approach, a
more rigorous treatment is warranted. Following [10], we will also investigate post
hoc iterative refinement in cases when numerical stability is questionable.

Acknowledgments The authors thank Dr. Jürgen Gerhard, Maplesoft Inc., for the motivating
problem and his many helpful remarks. This work was supported in part by the Natural Sciences
and Engineering Research Council of Canada (NSERC) and MITACS Canada.

References

1. Aghili, F., Piedbœuf, J.-C.: Simulation of motion of constrained multibody systems based on
projection operator. Multibody Sys. Dyn. 9(3), 283–309 (2003)

2. Arczewskia, K., Blajer, W.: A unified approach to the modelling of holonomic and nonholo-
nomic mechanical systems. Math. Model. Syst. 2(3), 157–174 (1996)

3. Blajer, W.: A projection method approach to constrained dynamic analysis. J. Appl. Mech.
59(3), 643 (1992)

4. Geddes, K.O., Czapor, S.R., Labahn, G.: Algorithms For Computer Algebra. Kluwer Academic
Publishers, Alphen aan den Rijn (1992)

5. Giesbrecht, M., Labahn, G., Lee, W-s: Symbolic-numeric sparse interpolation of multivariate
polynomials. J. Symbolic Comput. 44, 943–959 (2009). doi:10.1016/j.jsc.2008.11.003

http://dx.doi.org/10.1016/j.jsc.2008.11.003

A Symbolic Approach to Compute a Null-Space Basis in the Projection Method 259

6. Golub, G., Van Loan, C.: Matrix Computations. Johns Hopkins University Press, Baltimore
(1996)

7. Haug, E.J.: Computer Aided Kinematics and Dynamics of Mechanical Systems. volume 1 of
Allyn and Bacon series in engineering. Prentice Hall College Div, Upper Saddle River (1989)

8. Jalón, J.G., Bayo, E.: Kinematic and Dynamic Simulation of Multibody Systems: The Real-
Time challenge. Springer, New York (1994)

9. Kaltofen, E., Yang, Z., Zhi, L.: On probabilistic analysis of randomization in hybrid symbolic-
numeric algorithms. In: Proceedings of SNC’07, pp. 11–17 (2007)

10. Li, X.S., Demmel, J.W.: Making sparse gaussian elimination scalable by static pivoting. In:
Proceedings of Supercomputing ’98, pp. 1–17 (1998)

11. McPhee, J., Schmitke, C., Redmond, S.: Dynamic modelling of mechatronic multibody systems
with symbolic computing and linear graph theory. Math. Comput. Model. Dyn. Syst. 101(1),
1–23 (2004)

12. Meyer, C.D.: Matrix Analysis and Applied Linear Algebra. SIAM (2000)
13. Moore, B., Piedbœuf, J.-C., Bernardin, L.: Maple as an automatic code generator? Maple

Summer Workshop, (2002)
14. Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identities. J. Assoc.

Comput. Mach. 27, 701–717 (1980)
15. Waterloo Maple Inc., MapleSim User’s Guide. (2011). http://www.maplesoft.com/view.aspx?

SF=122742/387839/MapleSimUserGuid.pdf
16. Zhou, W., Jeffrey, D.J., Reid, G.J., Schmitke, C., McPhee, J.: Implicit reduced involutive forms

and their application to engineering multibody systems. In IWMM/GIAE, pp. 31–43 (2004)
17. Zhou, W., Carette, J., Jeffrey, D.J., Monagan, M.B.: Hierarchical representations with signa-

tures for large expression management. Proceedings of Artificial Intelligence and Symbolic
Computation, Lecture Notes in Computer Science 4120, (2006)

18. Zippel, R.: Probabilistic algorithms for sparse polynomials. In: Proceedings of EUROSAM 79,
pp. 216–226, Marseille (1979)

http://www.maplesoft.com/view.aspx?SF=122742/387839/MapleSimUserGuid.pdf
http://www.maplesoft.com/view.aspx?SF=122742/387839/MapleSimUserGuid.pdf

	19 A Symbolic Approach to Compute a Null-Space Basis in the Projection Method
	1 Introduction
	1.1 Example: Slider Crank Mechanism

	2 Generating a Straight-Line Program to Compute a Null-Space Basis
	2.1 Algebraically Effective Static Pivoting
	2.2 Numerically Effective Static Pivoting
	2.3 Example with Numerical Static Pivoting
	2.4 Generating Straight-Line Code

	3 Implementation and Experimental Results
	3.1 Time Efficiency
	3.2 Memory Use
	3.3 Code Generation

	4 Conclusions and Future Work
	References

