
Sparse Polynomial Interpolation by Variable
Shift in the Presence of Noise and Outliers
in the Evaluations

Brice Boyer, Matthew T. Comer and Erich L. Kaltofen

Abstract We compute approximate sparse polynomial models of the form ˜f (x) =
∑t

j=1 c̃ j (x − s̃)e j to a function f (x), of which an approximation of the evaluation
f (ζ) at any complex argument value ζ can be obtained. We assume that several of
the returned function evaluations f (ζ) are perturbed not just by approximation/noise
errors but also by highly perturbed outliers. None of the c̃ j , s̃, e j and the location of
the outliers are known beforehand. We use a numerical version of an exact algorithm
by [4] together with a numerical version of the Reed–Solomon error correcting
coding algorithm. We also compare with a simpler approach based on root finding of
derivatives, while restricted to characteristic 0. In this preliminary report, we discuss
how some of the problems of numerical instability and ill-conditioning in the arising
optimization problems can be overcome. By way of experiments, we show that our
techniques can recover approximate sparse shifted polynomial models, provided that
there are few terms t , few outliers and that the sparse shift is relatively small.

Keywords Approximate function recovery · Numeric and exact polynomial inter-
polation · Outlier detection · Sparse representations

1 Introduction

Sparse polynomial interpolation algorithms, where the number of values required
depends on the number of nonzero terms in a chosen representation base rather than

This material is based on work supported in part by the National Science Foundation under
Grants CCF-0830347 and CCF-1115772.

B. Boyer · M.T. Comer (B) · E.L. Kaltofen (B)

Department of Mathematics, North Carolina State University, Raleigh, NC 27695-8205, USA
e-mail: mcomer@math.ncsu.edu

B. Boyer
e-mail: bboyer@math.ncsu.edu

E.L. Kaltofen
e-mail: kaltofen@math.ncsu.edu

© Springer-Verlag Berlin Heidelberg 2014
R. Feng et al. (eds.), Computer Mathematics, DOI 10.1007/978-3-662-43799-5_16

183

184 B. Boyer et al.

on the degree of the polynomial, originate from two sources. One is Prony’s 1795
algorithm for reconstructing an exponential sum [18] (see also [2]) and another is
Blahut’s exact sparse polynomial interpolation algorithm in the decoding phase of the
Reed–Solomon error correcting code. Both algorithms first determine the term struc-
ture via the generator (“error locator polynomial”) of the linear recurrent sequence of
the values f (ωi), i = 0, 1, 2, . . ., of the sparse function f . Blahut’s algorithm has led
to a rich collection of exact sparse multivariate polynomial interpolation algorithms,
among them [1, 12, 13, 16, 20]. Prony’s algorithm suffers from numerical instability
unless randomization controls, with high probability and for functions of significant
sparsity, the conditioning of intermediate Hankel matrices. The probabilistic spectral
analysis in the GLL algorithm [5, 7] adapts the analysis of the exact early termina-
tion algorithm of [13]. The resulting numerical sparse interpolation algorithms have
recently had a high impact on medical signal processing; see the web site http://
smartcare.be of Wen-shin Lee and her collaborators. The GLL algorithm can be
generalized to multivariate polynomial and rational function recovery via Zippel’s
variable-by-variable sparse interpolation [14].

Already in the beginning days of symbolic computation, the choice of polynomial
basis was recognized: (x − 2)100 + 1 is a concise representation of a polynomial
with 101 terms in power basis representation. The discrete-continuous optimiza-
tion problem of computing the sparsest shift of an exact univariate polynomial
surprisingly has a polynomial-time solution [4, 9, 10]. Our subject is the com-
putation of an approximate interpolant that is sparsified through a shift. One can
interpret our algorithm as a numerical version of the exact sparsest shift algo-
rithms. As in least squares fitting, noise can be controlled by oversampling (cf. [8]).
The main difficulty is that the shift is unknown. Our numerical algorithm adapts
Algorithm UniSparsestShifts 〈one proj, two seq 〉 in [4] to compute
the shift: UniSparsestShifts 〈one proj, two seq 〉 carries the shift as a
symbolic variable z throughout the sparse interpolation algorithm. Since the coef-
ficients of the polynomials in the shift variable z are spoiled by noise, the GCD
step becomes an approximate polynomial GCD. A main question answered here is
whether the arising nonlinear optimization problems remain well-conditioned. Our
answer is a conditional yes: an optimal approximate shift is found among the argu-
ments of all local minima, but the number of local minima is high, preventing the
application of standard approximate GCD algorithms. Instead, we perform global
optimization, as a fallback, by computing all zeros of the gradient ideal. In addition,
our algorithm requires high precision floating point arithmetic.

In [3], we have introduced outlier values to the sparse interpolation problem.
There, outlier removal requires high oversampling, as the worst case of k-error
linear complexity is 2t (2k + 1), where t is the generator degree. However, ours
is only an upper bound for sparse interpolation. The situation is different for
Algorithm UniSparsestShifts 〈one proj, two seq 〉. Outliers can be
removed at the construction stage of the values containing the shift variable z, by a
numeric version of Blahut’s decoding algorithm for interpolation with errors. The
algorithm, numerical interpolation with outliers, is interesting in its own right. As we
will show in Sect. 3, the analysis in [3, 7] does not directly apply, as randomization

http://smartcare.be
http://smartcare.be

Sparse Polynomial Interpolation by Variable Shift in the Presence of Noise … 185

can only be applied with a limited choice of random evaluation points. We have
successfully tested it as a subroutine of our numerical sparsest shift algorithm. Note
that a few outliers per interpolation lead to a very small sparse interpolation problem
for error location, which can be handled successfully by sparse interpolation with
noisy values.

For the sake of comparison with this algorithm, we restrict to characteristic 0 and
compare a sparse shift representation to a Taylor expansion expressed at a point that
will make the representation sparse. This leads to finding a root common to many
derivatives. Combined with a weighted least squares fit for removing outliers and
tolerating noise, we manage to compare favorably to the main algorithm.

In Sect. 4, we present the preliminary experimental results that our algorithms
can recover sparse models even in the presence of substantial noise and outliers. See
Sect. 4.3 for our conclusions.

2 Computing Sparse Shifts

We introduce in this subsection an algorithm to compute a shifted sparse interpolant in
a numerical setting. The exact algorithm accepts outliers and uses early termination;
we adapt it to a numerical setting, considering noisy and erroneous data. It is based
on a numerical version of Blahut’s decoding algorithm.

2.1 Main Algorithm with Early Termination

The Early Termination Theorem in [13] is at the heart of computing a sparsest shift.
Let

g(x) =
t

∑

j=1

c j xe j , c j �= 0 for all 1 ≤ j ≤ t,

be a t-sparse polynomial with coefficients in an integral domain D. Furthermore, let

αi (y) = g(yi) ∈ D[y], for i = 1, 2, . . .

be evaluations of g at powers of an indeterminate y. Prony’s/Blahut’s theorem states
that the sequence of the αi is linearly generated by

∏t
j=1(λ− ye j). Therefore, if one

considers the Hankel matrices

Hi (y) =

⎡

⎢

⎢

⎢

⎣

α1 α2 . . . αi

α2 α3 . . . αi+1
...

...
. . .

...

αi αi+1 . . . α2i−1

⎤

⎥

⎥

⎥

⎦

∈ D[y]i×i , for i = 1, 2, . . .

186 B. Boyer et al.

one must have det(Ht+1) = 0. Theorem 4 in [13] simply states that det(Hi) �= 0 for
all 1 ≤ i ≤ t . One can replace the indeterminate y by a randomly sampled coefficient
domain element to have det(Hi) �= 0 for all 1 ≤ i ≤ t with high probability (w.h.p.).

We seek an s in any extension of the field of K such that for a given f (x) ∈ K[x]
the polynomial f (x + s) = h(x) is t-sparse for a minimal t . Now consider g(x) =
f (x + z) ∈ D[x] with D = K[z]. We have Δi (y, z) = det(Hi) ∈ (K[z])[y]; note
that αi (y, z) = g(yi) = f (yi + z). By the above Theorem 4, the sparsest shift is an
s with Δt+1(y, s) = 0 for the smallest t . Algorithm UniSparsestShifts 〈one
proj, two seq 〉 computes s as

z + s divides (w.h.p.) GCD(Δt+1(y1, z),Δt+1(y2, z)),

where y1, y2 are random in K;

note that the first t with a nontrivial GCD is possibly smaller for the projection by
y = y1 and y = y2, but with low probability.

For numeric sparse interpolation with a shift, we assume that for f (x) ∈ C[x] we
can obtain

f (ζ) + noise + outlier error, for any ζ ∈ C.

Here only a fraction of the values contain an outlier error, and noise is a random
perturbation of f (ζ) by a relative error of 10−10, say. Our algorithm returns a sparse
interpolant g(x) that at all probed values ζ , save for a fraction that are removed as
outliers, approximates the returned f (ζ)+noise. Note that probing f at ζ twice may
produce a different noise and possibly an outlier.

We now give the outline of our Algorithm ApproxUniSparseShift 〈one
proj, sev seq 〉. Note that because of the approximate nature of the shifted
sparse interpolant, there is a trade-off between backward error and sparsity. Hence
we call our algorithm a “sparse shift” algorithm. As in Algorithm UniSparsest
Shifts 〈one proj, two seq 〉, for L complex values y = ω[1], ω[2], . . ., ω[L]
we compute ˜δi

[�]
(z) = ˜Δi (ω

[�], z) from α̃i (ω
[�], z), � = 1, 2, . . . , L . Here the tilde

accent mark ˜ indicates that the values have noise in their scalars. As in [7], we
choose the ω[�] to be different random roots of unity of prime order. Our algorithm
consists of the four following tasks:

Step 1: For � = 1, 2, . . . , L , compute the numeric complex polynomials α̃i (ω
[�], z)

via a numeric version of the Blahut decoding algorithm; see Sect. 3. Step 1
is assumed to have removed all outliers.

Step 2: Compute the determinants ˜δi
[�]

(z) of numeric polynomial Hankel matrices
˜Hi

[�]
(z) for all �, iterating Steps 3 and 4 on i . We perform the determinant

computations with twice the floating point precision as we use for Steps 1,
3 and 4.

Step 3: Determine the sparsity and an approximate shift. Note that the approxi-
mate shift s̃ is an approximate root of the polynomials ˜δi

[1]
(z), ˜δi

[2]
(z),

. . ., ˜δi
[L]

(z). Our method finds the smallest perturbation of the ˜δ
[�]
i (z) that

Sparse Polynomial Interpolation by Variable Shift in the Presence of Noise … 187

produces a common root, simultaneously for all �. If that distance is large,
we assume that there is no common root and the dimension of the Hankel
matrix was too small. It might happen that an accurate shift is diagnosed too
early, but then the constructed model produces a worse backward error.
The 2-norm distance to the nearest polynomial system with a common root
s̃ is given by formula (see [11] and the literature cited there):

s̃ = arginf
ζ∈C

L
∑

�=1

|˜δ[�]
i (ζ)|2

/(

d
∑

m=0

|ζm |2
)

,

where d = max�{deg(˜δ
[�]
i (z))} and in all polynomials, any term coefficients

of zm , where m ∈ {0, 1, . . . , d}, can be deformed.
In our experiments in Sect. 4, we have only considered real shifts s̃ ∈ R. The
optimization problem is then

s̃real = arginf
ξ∈R

L
∑

�=1

(

(�˜δ
[�]
i)(ξ)2 + (�˜δ

[�]
i)(ξ)2

)/(

d
∑

m=0

ξ2m
)

, (1)

where �˜δ
[�]
i and �˜δ

[�]
i are the real and imaginary parts of the polynomials

δ
[�]
i , respectively. We find s̃real among the real roots of the numerator of the

derivative of the objective function in (1),

∂
∑

l((�˜δ
[�]
i)(z)2 + (�˜δ

[�]
i)(z)2)

∂z
×

(

d
∑

m=0

z2m
)

−
L

∑

�=1

((�˜δ
[�]
i)(z)2 + (�˜δ

[�]
i)(z)2) ×

(

d
∑

m=0

(2m)z2m−1
)

, (2)

and choose the root that minimizes the objective function in (1).
We have observed that a larger number L of separate ω[�] can improve
the accuracy of the optimal shift, at a cost of oversampling. We have also
observed that the optimization problem (1) and (2) has numerous local
optima, some near the optimal approximate shift, which prevents the use
of any local approximate GCD algorithm.

Step 4: With the approximate sparsest shift s̃, complete the sparse polynomial recon-
struction, as in [6] and [3, Sect. 6].
One reuses the evaluations from previous steps, having removed those that
were declared outliers in Step 1.

In the remainder of this section, we restrict ourselves to characteristic 0. We now
describe a more naïve approach for the same problem. Some early termination can
also be achieved here. Unlike the main algorithm, this one cannot recover errors in
the exact setting.

188 B. Boyer et al.

2.2 Using Taylor Expansions

Let f (x) = ∑t
i=1 ci (x − s)ei be a t-sparse shifted polynomial of degree d. We can

see this expression as a Taylor expansion of f at x = s:

f (x) =
∞
∑

i=0

(

∂ i f/∂xi
)

(s)

i ! (x − s)i .

A sparsest shift is then an s that is a root of the maximum number of polynomials in
the list S = {(

∂ i f/∂xi
)

(x) | i ∈ {0, . . . , d − 1}}.

Remark 1 It is stated in Theorem 1 in [17] that if t ≤ (d + 1)/2 then the shift s is
unique and rational. Moreover, the proof gives the stronger statement: for any other
shift ŝ, with a sparsity t̂ , one has t̂ > d + 1 − t .

This statement is not true in characteristic p �= 0: for instance, consider the two
shifts −1 and 0 in the polynomial (x + 1)p = x p + 1 mod p.

Lemma 1 Let S2t be the list of the last 2t elements in S. The root that zeros the
maximum number of polynomials in S2t is the sparsest shift.

Proof We prove this by contradiction. Assume a shift s appears r times in S2t and
another shift ŝ appears r̂ times. We first notice that the number of elements in S for
which ŝ is a root, and the number of elements for which it is not a root, sum to d + 1.
So we have the inequality r̂ + t̂ ≤ d + 1.

Suppose now that r̂ ≥ r . The sparsity of f in the s-shifted basis being t , the
number of elements in S2t that do not have ŝ as a root is 2t − r̂ ≤ t , thus r̂ ≥ t . On
the other hand, t̂ > d+1−t . Summing these last two inequalities yields r̂ + t̂ > d+1,
which is impossible. �

Early termination can be achieved; indeed, under certain circumstances, one need
not compute all 2t derivatives. For example, suppose that the degree (d − 1) term of
f in the sparsest shifted basis is missing and try s̄, the root of

(

∂d−1 f/∂xd−1
)

(x),
as a shift; this is the Tschirnhaus transformation (originally introduced for solving
cubic equations). If the “back-shifted” polynomial f (x + s̄) has fewer than (d +1)/2
terms, then by Remark 1, s̄ is the unique sparsest shift. We can extend this technique
by trying all rational roots in the list Sτ for a small τ .

Now we state the naïve algorithm based on the above, then we modify it for a
numeric setting. Consider first the following exact algorithm:

Step 1: Compute the exact interpolant using D + 1 calls to the black box, where
D ≥ d.

Step 2: Try early termination on Sτ , for a small τ , and return if successful.
Step 3: Compute all remaining derivatives in Sθ , for θ = min(2T, D).
Step 4: The sparsest shift is the rational root s that zeros the most derivatives in Sθ .

Sparse Polynomial Interpolation by Variable Shift in the Presence of Noise … 189

Step 5: The “back-shifted” polynomial f (x + s) gives the support for the sparse
polynomial.

This algorithm can be easily translated to a numerical one, based on least squares
fitting:

Step 1: Compute a degree-D weighted least squares fit with O(D+E) calls to the
black box.

Step 2: Remove outliers by comparing relative errors, then update the fit.
Step 3: Compute the θ derivatives in Sθ (possibly terminate early and proceed to

Step 6).
Step 4: The approximate root s that zeros most derivatives is the sparsest shift.
Step 5: The polynomial f (x + s) gives the support for the sparse polynomial.
Step 6: A Newton iteration can be conducted on the result of Step 5 to increase

accuracy.

2.3 Discussion on the Numeric Algorithm

Step 4 is sensitive to noise and requires more sampling from Step 1. The approximate
roots are determined to be equal up to a certain tolerance (for instance 10−2). In
Steps 5 and 6, the coefficients near 0 may be forced to 0 (which would accelerate
convergence in Step 6). Step 6 is conducted on the function f (m′

1, . . . , m′
k, s′) =

∑k
i=1 m′

i (x − s′)hi , with initial condition from Step 5, random samples x j and noisy
evaluations f (x j); the outliers are removed by checking relative errors. If the random
samples x j are not only taken from data in Step 1, then oversampling will help “de-
noising” the outputs.

Remark 2 It is unknown to us, in the exact algorithm, how to use a number of calls
to the black box in Step 1 depending only on T , in order to compute the derivatives.
However, it is reasonable to expose the following: we are only interested in the higher-
degree terms of f . Consider the Euclidean division f (x) = Q(x)xq + R(x); then,
with high numeric precision and big random xi , we can recover an approximation of
Q by a least squares fit on samples f (xi)/xq

i ≈ Q(xi).

3 Numeric Interpolation with Outliers

Blahut’s decoding algorithm for Reed/Solomon codes is based on sparse interpola-
tion. Suppose one has values of

f (x) = cd−1xd−1 + · · · + c0 ∈ K[x], deg(f) ≤ d − 1

at powers ωi : ai = f (ωi), i = 0, 1, 2, . . . , n − 1, where n = d + 2E . Furthermore
suppose for k ≤ E , where the upper bound E is known, those values are spoiled by

190 B. Boyer et al.

k outlier errors: bi = ai + a′
i , with a′

e j
�= 0 exactly at the indices 0 ≤ e1 < e2 <

· · · < ek ≤ d + 2E − 1. If ω is an nth = (d + 2E)th primitive root of unity, then the
n × n Fourier (Vandermonde) matrix V (ω) = [ωi ·m]0≤i,m≤n−1 satisfies

W = V (ω)−1 = 1

n
V (ω−1) where ω−1 = ωn−1, (3)

hence

W b = W a + W a′ =
[

c
0

]

+ 1

n
V (ω−1)a′. (4)

The last 2E entries in W b allow sparse interpolation of g(x) = ∑k
j=1 a′

e j
xe j :

c′
l = (V (ω−1)b)l = g(ω−l) for d ≤ l ≤ d + 2E − 1.

Note that all vectors are indexed 0, 1, . . . , n − 1, e.g.,

a =
⎡

⎢

⎣

a0
...

an−1

⎤

⎥

⎦
and b =

⎡

⎢

⎣

b0
...

bn−1

⎤

⎥

⎦
.

By our convention, primed ′ quantities contain outlier information. Thus, as in
Sect. 2, the sequence c′

d , c′
d+1, . . . is linearly generated by (λ) = ∏k

j=1(λ−ω−e j)

(called the “error locator polynomial”), which is a squarefree polynomial by virtue
of the primitivity of ω. One may also compute from the reverse sequence
c′

d+2E−1, c′
d+2E−2, . . ., which is linearly generated by the reciprocal polynomial

∏k
j=1(λ − ωe j).
Not knowing k, the probabilistic analysis of early termination as in [13] and Sect. 2

does not directly apply, as the choice of ω is restricted to a primitive n’th root of unity.
Furthermore, the locations e j of the outlier errors a′

e j
may depend on the evaluation

points ωi . Blahut’s decoding algorithm processes all 2E values c′
l .

If one has εi in each evaluation, namely ˜bi = ai + a′
i + εi , where |ae j −

a′
e j

|/|ae j | 0 (one may assume that εe j = 0), then

W b̃ =
[

c
0

]

+ 1

n
V (ω−1)a′ + 1

n
V (ω−1)ε,

so

c̃′
l = (V (ω−1)b̃)l = g(ω−l)+(V (ω−1)ε)l = g(ω−l)+ε̄l for d ≤ l ≤ d+2E−1,

where |ε̄l | ≤ |ε1| + · · · + |εn|. Again, there is an immediate trade-off between
noise and outliers: at what magnitude does noise εi become an outlier a′

i ? For now
we assume that the relative error in noise is small, say 10−10, while the relative

Sparse Polynomial Interpolation by Variable Shift in the Presence of Noise … 191

error in outliers is big, say 105. The recovery of an approximate interpolant g̃(x) =
∑k

j=1 ã′
e j

xe j for the evaluations c̃′
l hinges on the condition number of the k × k

Hankel matrix:

˜H ′
k =

⎡

⎢

⎢

⎢

⎣

c̃′
d c̃′

d+1 . . . c̃′
d+k−1

c̃′
d+1 c̃′

d+2 . . . c̃′
d+k

...
...

. . .
...

c̃′
d+k−1 c̃′

d+k . . . c̃′
d+2k−2

⎤

⎥

⎥

⎥

⎦

.

If the matrix is well-conditioned, the error locations e j can be determined from
the approximate linear generator ˜Λ as in the GLL algorithm [3, 7]. As is shown there,
the conditioning is bounded by 1/|ωeu − ωev |. Large values there are prevented by
randomizing ω, as the term exponents e j are fixed for any evaluation. Using an ωr

instead of ω here, where GCD(r, n) = 1, allows redistributing of the ωe j , but the e j

may then become different.
A special case is k = 1: In that case

˜H1
′ = [̃c′

d] = [g(ω−d) + ε̄d] = [a′
e1

ω−de1 + ε̄d],

which, by our assumption on a large outlier a′
e1

and small noise, is a well-conditioned
matrix. This is the case we tested in Sect. 4.

Remark 3 When the relative difference between the magnitudes of the outlier a′
e1

and
noise ε0, ε1, . . . , εd+2E−1 is not so pronounced, erroneous recovery of the exponent
e1 can occur: we have (̃c′

d , c̃′
d+1, . . . , c̃′

d+2E−1) = (̃c′
d , c̃′

d+1), so the linear generator
˜Λ(λ) = λ − ω−e1 can be approximated by computing

c̃′
d+1

c̃′
d

= a′
e1

ω−(d+1)e1 + ε̄d+1

a′
e1

ω−de1 + ε̄d
= ω−e1 + ε̄d+1 − ω−e1 ε̄d

a′
e1

ω−de1 + ε̄d
= ω̃. (5)

For this reason, we define a bound εnoise ≥ maxi |εi | and assume nεnoise < |a′
e1

| so
that

|ω̃ − ω−e1 | =
∣

∣

∣

∣

∣

ε̄d+1 − ω−e1 ε̄d

a′
e1

ω−de1 + ε̄d

∣

∣

∣

∣

∣

≤ |ε̄d+1| + |ε̄d |
|a′

e1
| − |ε̄d | ≤ 2nεnoise

|a′
e1

| − nεnoise
. (6)

By the distribution of complex roots of unity (of order n) on the unit circle, we
have that |ωs+1 −ωs | = |ω−1| = 2 sin(π /n) for any integer s. Thus, |ω̃−ω−e1 | <

sin(π /n) will guarantee |ω̃ − ω−e1 | < |ω̃ − ωs | for any s �≡ −e1 (mod n).
Combining this fact with (6) above, we arrive at the sufficient condition

|ω̃ − ω−e1 | ≤ 2nεnoise

|a′
e1

| − nεnoise
< sin(π /n) ⇔ nεnoise < |a′

e1
| · sin(π /n)

2 + sin(π /n)
.

(7)
Table 1 shows some experiments of decreasing Θ

[abs]
outlier for a fixed ε

[abs]
noise. Throughout

the experiment, we have f (x) = 87 x11 − 56 x10 − 62 x8 + 97 x7 − 73 x4 − 4 x3 −

192 B. Boyer et al.

83 x − 10 and d − 1 = 11, evaluating at powers of the order n = d + 2E = 14
complex root of unity ω = exp(2 π i /14). We add to each evaluation noise, which is
implemented as a complex number with polar modulus uniformly chosen at random
in the range [0, ε

[abs]
noise] and polar argument uniformly chosen at random in the range

[0, 2 π]. An absolute outlier value is chosen the same way, but the modulus is in
the range [Θ [abs]

outlier, 2Θ
[abs]
outlier]; the exponent e1 is also chosen uniformly at random

from {0, 1, . . . , d + 2E − 1 = 13}. Each row of the table corresponds to 1,000
realizations of the random variable that generates noise and outliers, re-seeding the
random number generator with each run. All computations were performed with 15
floating point digits of precision. In the table, Cn = sin(π /n)/

(

2 + sin(π /n)
)

.
The column “% Circle” shows the percentage of runs where |ω̃ − ω−e1 | <

sin(π /n); “% Sector” shows the percentage of runs where |ω̃ − ω−e1 | ≥ sin(π /n),
but |ω̃−ω−e1 | < |ω̃−ωs | for any s �≡ −e1 (mod n); “% Wrong” shows the percent-
age of the remainder of the runs. When the ratio ε

[abs]
noise/Θ [abs]

outlier is either sufficiently
large or small, one can see from (5) that the value of ω̃ is determined mainly by the
value of either a′

e1
or ε̄d+1/ε̄d , respectively; this corresponds with the first and last

rows of each section of Table 1, where ε̄d+1/ε̄d is far from ω−e1 in general.
However, between the extreme values of ω̃, more interesting behavior can occur.

Figure 1 shows two individual algorithm runs of the table rows for ε
[abs]
noise = 1. Each

Table 1 Experiments of varying outlier error in the presence of noise

ε
[abs]
noise Θ

[abs]
outlier

nε
[abs]
noise

CnΘ
[abs]
outlier

nε
[abs]
noise

Θ
[abs]
outlier

% Circle % Sector % Wrong

2.5e−01 8.0e+00 4.4e+00 4.4e−01 99.7 0.3 0.0

2.5e−01 4.0e+00 8.7e+00 8.8e−01 92.4 5.0 2.6

2.5e−01 2.0e+00 1.7e+01 1.8e+00 47.5 27.0 25.5

2.5e−01 1.0e+00 3.5e+01 3.5e+00 17.0 26.1 56.9

2.5e−01 5.0e−01 7.0e+01 7.0e+00 4.2 15.0 80.8

2.5e−01 2.5e−01 1.4e+02 1.4e+01 1.8 9.2 89.0

5.0e−01 1.6e+01 4.4e+00 4.4e−01 99.7 0.3 0.0

5.0e−01 8.0e+00 8.7e+00 8.8e−01 92.4 5.0 2.6

5.0e−01 4.0e+00 1.7e+01 1.8e+00 47.5 27.0 25.5

5.0e−01 2.0e+00 3.5e+01 3.5e+00 17.0 26.1 56.9

5.0e−01 1.0e+00 7.0e+01 7.0e+00 4.2 15.0 80.8

5.0e−01 5.0e−01 1.4e+02 1.4e+01 1.8 9.2 89.0

1.0e+00 3.2e+01 4.4e+00 4.4e−01 99.7 0.3 0.0

1.0e+00 1.6e+01 8.7e+00 8.8e−01 92.4 5.0 2.6

1.0e+00 8.0e+00 1.7e+01 1.8e+00 47.5 27.0 25.5

1.0e+00 4.0e+00 3.5e+01 3.5e+00 17.0 26.1 56.9

1.0e+00 2.0e+00 7.0e+01 7.0e+00 4.2 15.0 80.8

1.0e+00 1.0e+00 1.4e+02 1.4e+01 1.8 9.2 89.0

Sparse Polynomial Interpolation by Variable Shift in the Presence of Noise … 193

(a) (b)

Fig. 1 Examples of varying outlier relative error (labeled as percentages). Noise relative error is
approximately 0.40 %

power of ω is represented by a “×”; the sphere of radius sin(π /n) is drawn around
each power of ω, as well as the corresponding (interior) sector; the solid square
denotes ω−e1 , while the solid circle denotes ε̄d+1/ε̄d ; a complex outlier a′

e1
= ξ is

fixed, then the function ω̃(tξ) (for t ∈ [2−7, 27]) is plotted as a curve, with several
points whose label is the relative error of tξ compared to ω−e1 . In Fig. 1a, outliers
of relative error less than 6 % cause ω̃ to approach 0, so that it becomes infeasible
to compute a reliable guess for e1; here, noise constitutes approximately a 0.38 %
relative error. By contrast, Fig. 1b shows an example where nearly any outlier relative
error greater than 0.375 % would result in |ω̃ − ωs | < sin(π /n) for one of three
values of s (mod n), so that the “nearest ωs neighbor” criterion is no longer reliable;
here, noise constitutes approximately a 0.40 % relative error.

Decoding the interpolant W b can also be done via the extended Euclidean algo-
rithm for any ω with ωeu �= ωev : the Berlekamp–Welch algorithm; see [15]. We will
study the numerical properties of variants based on approximate GCD techniques in
follow-up work.

4 Implementation and Experiments of NumericSparsest
Shift

4.1 Illustrative Examples for the Main Algorithm

We reversely engineer a noisy black box for

f1(x) = 2 (x − 7)3 + 3 (x − 7)6 − 7 (x − 7)10

= −7x10 + 490x9 − 15435x8 + 288120x7 − 3529467x6

194 B. Boyer et al.

+ 29647422x5 − 172941825x4 + 691755542x3 − 1815804312x2

+ 2824450258x − 1976974482. (8)

Our algorithm computes with a precision of 100 floating-point digits (except in
Step 2, where the precision is doubled). To each evaluation, we add random noise
causing a relative error of 1×10−28. For each interpolation problem of a given degree
i in Step 1, we add one outlier error of relative error 5. We use L = 3 different 17th
roots of unity ω[�].

Step 1 correctly locates each of the outliers in its 21 = 3 × 7 interpolation calls.
The relative 2-norm differences

‖δ[�]
4 (z) −˜δ

[�]
4 (z)‖2/‖δ[�]

4 (z)‖2

of the coefficient vectors of the 4 × 4 matrix determinants after Step 2 are 2.126 ×
10−27, 2.681×10−27, 6.596×10−27 for � = 1, 2, 3 all within the added noise (after
outlier removal).

The polynomial (2) in Step 3 has 4 real roots, and its minimum objective function
value (1) is at s̃ = 6.9989162726 with an objective function value of 2.028 × 10−57,
as opposed to the exact case (without noise) of 2.280 × 10−71 at s = 7 (there is one
more root with much larger objective value).

The sparse model recovered from s̃ produces the correct term exponents e1 = 3,
e2 = 6, and e3 = 10, and the least squares fit at the non-erroneous 252 = 273 − 21
prior black box evaluations produces the approximate model for (8),

2.009369(x − s̃)3 + 2.998102(x − s̃)6 − 6.997705(x − s̃)10, s̃ = 6.9989162726.

The relative 2-norm backward error of the model (with respect to the noisy black
box evaluations) is 1.596557 × 10−3, while that of f1 itself is 5.774667 × 10−28. A
similar model can be produced with 90 floating-point digits, but not with 80.

When doubling the noise to relative error 2×10−28 with 100 floating-point digits,
the computed model is

2.036489(x − s̃)3 + 2.992182(x − s̃)6 − 6.991277(x − s̃)10, s̃ = 6.9957389337,

with relative 2-norm backward error 6.222096×10−3, compared to 1.154933×10−27

for f1. Even with relative noise of 4 × 10−28, the computed model is

2.125876(x − s̃)3 + 2.967832(x − s̃)6 − 6.972579(x − s̃)10, s̃ = 6.9848087178,

with relative 2-norm backward error 2.151040×10−2, compared to 2.309866×10−27

for f1. At relative noise of 8 × 10−28, the algorithm fails to determine a sparse
approximant, even when increasing the number of sequences to L = 10.

Sparse Polynomial Interpolation by Variable Shift in the Presence of Noise … 195

Such failure is deceptive. The lack of sparsity, namely 3 of a maximum of 11 terms,
allows for denser models that provide fits. In addition, a shift of 7 produces large
evaluations at roots of unity, as indicated in the power basis representation of (8).
Making the shift smaller and the degree larger, and considering the polynomial

f2(x) = 2 (x − 1.55371)3 + 3 (x − 1.55371)6 − 7 (x − 1.55371)15,

we can recover from L = 3 sequences, with a relative noise in the evaluations of
1 × 10−14, and again 1 outlier per interpolation, the approximate model

1.999718(x − s̃)3 + 2.998609(x − s̃)6 − 7.000117(x − s̃)15, s̃ = 1.5537114392,

with relative 2-norm backward error 8.000329 × 10−1, compared to 8 × 10−1 (to 7
digits) for f1 itself.

For this particular example, we see a case of the effect mentioned in [3], where
the sparse model can fit the noisy evaluations nearly as well (and sometimes better)
than the exact black box.

Increasing the noise still, another model with s̃ = 1.5537013193 can be recovered
with relative noise of 2 × 10−13, where now the model and f1 relative 2-norm
backward errors are 5.180450 × 10−2 and 1.108027 × 10−11, respectively. In this
case, a different choice of L = 3 different 17th roots of unity was needed in order to
compute a sparse model. Both computations used 357 black box evaluations.

4.2 Comparison with the Naïve Algorithm

For the examples given above, the naïve algorithm recovers the sparsest representa-
tion with noise such as 1×10−10 and precision 20 floating point digits. The precision
obtained is close to the level of noise (1×10−8 relative error for the shift and 2×10−10

maximum relative error on the coefficients in the shifted basis). The number of calls
to the black box is below 170.

For a more demanding example such as a degree 55 polynomial with sparsity 8
and a shift between 1 and 2, a level of relative noise 1 × 10−28 is tolerable with
precision 200 digits (as in an example above). However, the number of calls was
above 600 to get a relative error less than 1 × 10−20 on shift and coefficients. Due
to the numerical optimization in Step 3, this is unattainable with the main algorithm,
for the moment. The Tschirnhaus early termination was not used yet.

Besides, with more calls to the black box during the Newton iterations, we can
further increase the precision on the shift and coefficients, this may however be
considered as de-noising.

We can also run experiments on a black box of the type P + Qε where P is a
polynomial with a sparse shift representation and Qε is a dense polynomial of same

196 B. Boyer et al.

degree with coefficients bounded by ε—this may be viewed as perturbation on the
coefficients. The algorithms described perform well, however they do not remove
outliers if they are introduced as an erroneous term.

4.3 Discussion

Our preliminary experiments lead to the following conclusions: Our correction of
1 outlier per interpolation with Blahut’s numerical decoding is highly numerically
reliable. The optimization problem in Step 3 requires substantial precision for its
real root finding, and is numerically sensitive when the shift is large and there is
noise in the evaluations. Our main algorithm works well without noise and outliers,
or in high precision with noise when the shift is small and the sparsity is high. We
plan to work on a more thorough experimental analysis, including the case of two or
more outliers per interpolation. The naïve algorithm gives motivation and potential
for improvements to the main one. On the other hand, the number of calls to the
black box in the former could be reduced.

References

1. Ben-Or, M., Tiwari, P.: A deterministic algorithm for sparse multivariate polynomial interpo-
lation. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing,
pp. 301–309. ACM Press, New York (1988)

2. Brezinski, C.: Computational Aspects of Linear Control. Springer, Heidelberg (2002)
3. Comer, M.T., Kaltofen, E.L., Pernet, C.: Sparse polynomial interpolation and

Berlekamp/Massey algorithms that correct outlier errors in input values. In: van der Hoeven,
J., van Hoeij, M. (eds.) ISSAC 2012 Proceedings of the 37th International Symposium on
Symbolic and Algebraic Computation, pp. 138–145. Association for Computing Machinery,
New York (2012). http://www.math.ncsu.edu/~kaltofen/

4. Giesbrecht, M., Kaltofen, E., Lee, W.: Algorithms for computing sparsest shifts of polynomials
in power, Chebychev, and Pochhammer bases. J. Symb. Comput. 36(3–4), 401–424 (2003).
(Special issue International Symposium on Symbolic and Algebraic Computation (ISSAC
2002). Guest editors: Giusti, M., Pardo, L.M. http://www.math.ncsu.edu/~kaltofen/

5. Giesbrecht, M., Labahn, G., Lee, W.: Symbolic-numeric sparse interpolation of multivariate
polynomials (extended abstract). In: Proceedings of the Ninth Rhine Workshop on Computer
Algebra (RWCA’04), pp. 127–139. University of Nijmegen, The Netherlands (2004)

6. Giesbrecht, M., Labahn, G., Lee, W.: Symbolic-numeric sparse interpolation of multivariate
polynomials. In: Dumas, J.G. (ed.) ISSAC MMVI Proceedings of the 2006 International Sym-
posium on Symbolic and Algebraic Computation, pp. 116–123. ACM Press, New York (2006).
doi: http://doi.acm.org/10.1145/1145768.1145792

7. Giesbrecht, M., Labahn, G., Lee, W.: Symbolic-numeric sparse interpolation of multivariate
polynomials. J. Symb. Comput. 44, 943–959 (2009)

8. Giesbrecht, M., Roche, D.S.: Diversification improves interpolation. In: A. Leykin (ed.) Pro-
ceedings of the 2011 International Symposium on Symbolic and Algebraic Computation ISSAC
2011, pp. 123–130. Association for Computing Machinery, New York (2011)

http://www.math.ncsu.edu/~kaltofen/
http://www.math.ncsu.edu/~kaltofen/
http://doi.acm.org/10.1145/1145768.1145792

Sparse Polynomial Interpolation by Variable Shift in the Presence of Noise … 197

9. Grigoriev, D.Y., Karpinski, M.: A zero-test and an interpolation algorithm for the shifted sparse
polynomials. In: Proceedings of the AAECC-10, Lecture Notes in Computer Science, vol. 673,
pp. 162–169. Springer, Heidelberg, Germany (1993)

10. Grigoriev, D.Y., Lakshman, Y.N.: Algorithms for computing sparse shifts for multivariate
polynomials. Applic. Algebra Engin. Commun. Comput. 11(1), 43–67 (2000)

11. Hutton, S.E., Kaltofen, E.L., Zhi, L.: Computing the radius of positive semidefiniteness of a
multivariate real polynomial via a dual of Seidenberg’s method. In: Watt [19], pp. 227–234.
http://www.math.ncsu.edu/~kaltofen/

12. Kaltofen, E., Lakshman Y. N., Wiley, J.M.: Modular rational sparse multivariate polynomial
interpolation. In: Watanabe, S., Nagata, M. (eds.) Proceedings of the 1990 International Sympo-
sium on Symbolic and Algebraic Computation (ISSAC’90), pp. 135–139. ACM Press (1990).
http://www.math.ncsu.edu/~kaltofen/

13. Kaltofen, E., Lee, W.: Early termination in sparse interpolation algorithms. J. Symb. Comput.
36(3–4), 365–400 (2003). (Special issue International Symposium on Symbolic and Algebraic
Computation (ISSAC 2002). Guest editors: Giusti, M., Pardo, L.M. http://www.math.ncsu.edu/
~kaltofen/

14. Kaltofen, E., Yang, Z., Zhi, L.: On probabilistic analysis of randomization in hybrid symbolic-
numeric algorithms. In: Verschelde, J., Watt, S.M. (eds.) SNC’07 Proceedings of the 2007
International Workshop on Symbolic-Numeric Computation, pp. 11–17. ACM Press, New
York, (2007). http://www.math.ncsu.edu/~kaltofen/

15. Khonji, M., Pernet, C., Roch, J.L., Roche, T., Stalinsky, T.: Output-sensitive decoding for
redundant residue systems. In: Watt [19], pp. 265–272

16. Lakshman, Y.N., Saunders, B.D.: Sparse polynomial interpolation in non-standard bases. SIAM
J. Comput. 24(2), 387–397 (1995)

17. Lakshman, Y.N., Saunders, B.D.: Sparse shifts for univariate polynomials. Applic. Algebra
Engin. Commun. Comput. 7(5), 351–364 (1996)

18. Prony, R.: Essai expérimental et analytique sur les lois de la Dilatabilité de fluides élastiques
et sur celles de la Force expansive de la vapeur de l’eau et de la vapeur de l’alcool, à dif-
férentes températures. J. de l’École Polytechnique 1, 24–76 (1795). R. Prony is Gaspard(-
Clair-François-Marie) Riche, baron de Prony

19. Watt, S.M. (ed.): Proceedings of the 2010 International Symposium on Symbolic and Algebraic
Computation ISSAC 2010. Association for Computing Machinery, New York (2010)

20. Zippel, R.: Interpolating polynomials from their values. J. Symb. Comput. 9(3), 375–403 (1990)

http://www.math.ncsu.edu/~kaltofen/
http://www.math.ncsu.edu/~kaltofen/
http://www.math.ncsu.edu/~kaltofen/
http://www.math.ncsu.edu/~kaltofen/
http://www.math.ncsu.edu/~kaltofen/

	16 Sparse Polynomial Interpolation by Variable Shift in the Presence of Noise and Outliers in the Evaluations
	1 Introduction
	2 Computing Sparse Shifts
	2.1 Main Algorithm with Early Termination
	2.2 Using Taylor Expansions
	2.3 Discussion on the Numeric Algorithm

	3 Numeric Interpolation with Outliers
	4 Implementation and Experiments of NumericSparsest Shift
	4.1 Illustrative Examples for the Main Algorithm
	4.2 Comparison with the Naïve Algorithm
	4.3 Discussion

	References

