
Narayan Desai
Walfredo Cirne (Eds.)

 123

LN
CS

 8
42

9

17th International Workshop, JSSPP 2013
Boston, MA, USA, May 24, 2013
Revised Selected Papers

Job Scheduling Strategies
for Parallel Processing

Lecture Notes in Computer Science 8429

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

For further volumes:
http://www.springer.com/series/7407

http://www.springer.com/series/7407

Narayan Desai • Walfredo Cirne (Eds.)

Job Scheduling Strategies
for Parallel Processing

17th International Workshop, JSSPP 2013
Boston, MA, USA, May 24, 2013
Revised Selected Papers

123

Editors
Narayan Desai
Mathematics and Computer Science

Division
Argonne National Laboratory
Argonne, IL
USA

Walfredo Cirne
Google
Mountain View, CA
USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
ISBN 978-3-662-43778-0 ISBN 978-3-662-43779-7 (eBook)
DOI 10.1007/978-3-662-43779-7
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014941592

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

� Springer-Verlag Berlin Heidelberg 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the papers presented at the 17th workshop on Job Scheduling
Strategies for Parallel Processing that was held in Boston, USA, on May 24, 2013, in
conjunction with the IEEE International Parallel Processing Symposium 2013.

This year 20 papers were submitted to the workshop. All submitted papers went
through a complete review process, with the full version being read and evaluated by
an average of four reviewers. We would like to especially thank the Program Com-
mittee members and additional reviewers for their willingness to participate in this
effort and for their detailed, constructive reviews.

As a prime venue of the parallel scheduling community, the Job Scheduling
Strategies for Parallel Processors workshop offers a vantage point for one to witness
the evolution in the area. When it began in 1995, parallel job scheduling was in its
infancy. The first large-scale parallel machines had emerged over the preceding few
years, demonstrating the practical need for parallel schedulers. Early parallel systems,
and even modern supercomputers, have a very static set of resources and configura-
tion. More recently, cloud systems have emerged in much larger scale configurations.
Such systems differ from traditional supercomputers due to the frequent failure of its
constituent components and a highly dynamic workload. Each kind of system has
unique challenges associated with scheduling, but it seems that the workloads may be
converging somewhat; supercomputers are increasingly running so-called many task
workloads, whereas cloud workloads are including more workloads with task cou-
pling. While the workload targets of these classes of systems will likely remain
distinct, it is quite likely that similar scheduling techniques will be needed in both
cases over the next few years, marrying dynamism with parallelism.

Another change caused by the growing importance of cloud systems is the inte-
gration of scheduling into a larger landscape of business concerns. With the extreme
level of investment in cloud infrastructure, management processes like capacity
planning have become coupled with scheduling into a far richer resource management
landscape than we have previously seen. Open challenges remain in many areas and
are often increased due to the implications of on-demand workloads. There is also an
increased need for richer interactions between workloads and resource management
infrastructure, which could enable dynamically moldable jobs, or other novel models
for variable resource occupancy.

At the same time, large-scale systems have become far more accessible than ever
before, broadening the use of large-scale computational campaigns. As more resource
are used in this way, the incentive to optimize this process has grown substantially.
Complex techniques are now used to optimize for cost and time to solution. This adds
an economic dimension that previously did not exist in large-scale systems.

All of these areas are complex and remain unsolved. JSSPP has evolved with the
area and now fully covers parallel scheduling for commercial environments while still

maintaining strong interest in its traditional areas: scientific computing, supercom-
puting, and cluster platforms.

The workshop began with a keynote talk by Stephen Elliot, from Amazon Web
Services. Stephen gave an overview of the Amazon spot market for computing
resources, and described some of the open issues in scheduling the spot market. The
AWS spot market is particularly interesting in a few regards. It is built on functional
economic principles, using dynamic pricing to minimize resource waste and maximize
utilization. Another interesting characteristic of the spot market is the direct inte-
gration of capacity planning into the resource management process. This model is a
departure from the traditional HPC systems where systems are built and then operated
largely in steady state for several years. By contrast, cloud systems function in a
continuous acquisition model, where hardware resources are added on a regular basis.
This model has very different properties, and enables different strategies for resource
management. We expect research in this area to grow in the coming years.

In addition to this topic, scheduling issues were discussed in a broader context in
more established areas, from hardware scheduling, to scheduling within budget con-
straints, scheduling for performance, and analysis of scheduling tasks within resource
management software. Adopting a broader basis for scheduling discussions was an
explicit goal of the workshop this year, and will be continued in future workshops.

JSSPP has a long-standing tradition of covering workload modeling and metrics
analysis. After all, optimizing for the wrong metric cannot produce the right result.
The work of Emeras et al. examines how to enhance our understanding of the parallel
system by combing the view of the scheduler (on which resources allocated are
considered used) with instrumentation of what effectively happens at the machine
level (on which not all allocated resources are indeed utilized). Krakov et al. explore
heatmaps as an alternative to the long-standing problem that summarizing a parallel
system’s behavior with one-number statistics invariably leads to losing important
information, and sometimes is downright misleading.

Scheduling fairness remains a topic of interest for the community. Klusáček et al.
investigate the very definition of fairness when multiple resources are taken into
account, describe the problems resulting from it, and propose solutions. Rajbhandary
et al. work in the nut-and-blots of the fairness problem, proposing a new scheduling
algorithm that beats the state-of-art one. We expect activity in fairness to be extended
in the next few years to accommodate for the cloud reality, where consumers who pay
more get better quality of service. We are likely to see research on which fairness is
weighted (by price or otherwise).

How to schedule big data jobs was also actively debated during the workshop, a
recognition of how important it has become in recent years. Cao et al. introduce a
handful of scheduling algorithm that simultaneous target throughput and budget
optimization for DAG applications, which are common in big data pipelines. Agosta
et al. explore how to perform task placement of MapReduce applications to improve
data locality and thus performance.

As the scale of parallel systems keep increasing, a centralized scheduler overseeing
the entire system starts to become a bottleneck. Balasubramanian et al. address this
issue introducing decentralized scheduling strategies that backfill jobs locally and
dynamically migrate waiting jobs to leverage residual resources. Likewise, the scale

VI Preface

of today’s systems make energy consumption a major concern, both from an economic
and an environmental viewpoint. Zhou et al. show how power-aware job scheduling
can reduce the energy cost significantly by as much as 25% with minimal impact to
system utilization.

As parallel systems grow in scale, they also grow in complexity. It is interesting to
note that meta-heuristics are emerging as an effective way to deal with such com-
plexity. Shai et al. introduce Max-Jobs, a meta-heuristic that combines simpler
matching heuristics to improve the matching of jobs to machines. Deng et al. go a step
further even and dynamically change the whole scheduling algorithm as to accom-
modate for changes in workload and conditions of the parallel system.

The proceedings of previous workshops are available from Springer as LNCS
volumes 949, 1162, 1291, 1459, 1659, 1911, 2221, 2537, 2862, 3277, 3834, 4376,
4942, 5798, 6253, and 7698. Those volumes are also available online.

January 2014 Narayan Desai
Walfredo Cirne

Preface VII

Organization

Workshop Organizers

Narayan Desai Argonne National Laboratory, USA
Walfredo Cirne Google, USA

Program Committee

Henri Casanova University of Hawaii at Manoa, USA
Julita Corbalan Technical University of Catalunya, Spain
Dick Epema Delft University of Technology, The Netherlands
Dror Feitelson The Hebrew University, Israel
Ian Foster Argonne National Laboratory, USA
Alfredo Goldman University of Sao Paulo, Brazil
Allan Gottlieb New York University, USA
Morris Jette SchedMD, USA
Rajkumar Kettimuthu Argonne National Laboratory, USA
Derrick Kondo Inria, France
Zhiling Lan Illinois Institute of Technology, USA
Virginia Lo University of Oregon, USA
Satoshi Matsuoka Tokyo Institute of Technology, Japan
Jose Moreira IBM T.J. Watson Research Center, USA
Bill Nitzberg Altair Engineering, USA
Mark Squillante IBM T.J. Watson Research Center, USA
Dan Tsafrir Technion, Israel
John Wilkes Google, USA
Ramin Yahyapour The University of Göttingen, Germany

Reviewers

Henri Casanova
Julita Corbalan
Dick Epema
Gilles Fedak
Dror Feitelson
Liana Fong
Eitan Frachtenberg
Alfredo Goldman
Allan Gottlieb
Alexandru Iosup
Morris Jette

Rajkumar Kettimuthu
Dalibor Klusáček
Zhiling Lan
Bill Nitzberg
David Oppenheimer
Uwe Schwiegelshohn
Mark Squillante
Wei Tang
Dan Tsafrir
Ramin Yahyapour

Contents

Analysis of the Jobs Resource Utilization on a Production System 1
Joseph Emeras, Cristian Ruiz, Jean-Marc Vincent, and Olivier Richard

Decentralized Preemptive Scheduling Across Heterogeneous
Multi-core Grid Resources . 22

Arun Balasubramanian, Alan Sussman, and Norman Sadeh

Comparing Performance Heatmaps . 42
David Krakov and Dror G. Feitelson

Distributed Workflow Scheduling Under Throughput and Budget Constraints
in Grid Environments . 62

Fei Cao, Michelle M. Zhu, and Dabin Ding

Multi Resource Fairness: Problems and Challenges. 81
Dalibor Klusáček, Hana Rudová, and Michal Jaroš

Reducing Energy Costs for IBM Blue Gene/P via Power-Aware Job
Scheduling . 96

Zhou Zhou, Zhiling Lan, Wei Tang, and Narayan Desai

Heuristics for Resource Matching in Intel’s Compute Farm 116
Ohad Shai, Edi Shmueli, and Dror G. Feitelson

On Task Assignment in Data Intensive Scalable Computing 136
Giovanni Agosta, Gerardo Pelosi, and Ettore Speziale

A Periodic Portfolio Scheduler for Scientific Computing in the Data Center 156
Kefeng Deng, Ruben Verboon, Kaijun Ren, and Alexandru Iosup

Variations of Conservative Backfilling to Improve Fairness 177
Avinab Rajbhandary, David P. Bunde, and Vitus J. Leung

Author Index . 193

http://dx.doi.org/10.1007/978-3-662-43779-7_1
http://dx.doi.org/10.1007/978-3-662-43779-7_2
http://dx.doi.org/10.1007/978-3-662-43779-7_2
http://dx.doi.org/10.1007/978-3-662-43779-7_3
http://dx.doi.org/10.1007/978-3-662-43779-7_4
http://dx.doi.org/10.1007/978-3-662-43779-7_4
http://dx.doi.org/10.1007/978-3-662-43779-7_5
http://dx.doi.org/10.1007/978-3-662-43779-7_6
http://dx.doi.org/10.1007/978-3-662-43779-7_6
http://dx.doi.org/10.1007/978-3-662-43779-7_7
http://dx.doi.org/10.1007/978-3-662-43779-7_8
http://dx.doi.org/10.1007/978-3-662-43779-7_9
http://dx.doi.org/10.1007/978-3-662-43779-7_10

Analysis of the Jobs Resource Utilization
on a Production System

Joseph Emeras(B), Cristian Ruiz, Jean-Marc Vincent, and Olivier Richard

LIG Laboratory, Grenoble, France
{Joseph.Emeras,Cristian.Ruiz,Jean-Marc.Vincent,Olivier.Richard}@imag.fr

Abstract. In HPC community the System Utilization metric enables
to determine if the resources of the cluster are efficiently used by the
batch scheduler. This metric considers that all the allocated resources
(memory, disk, processors, etc.) are full-time utilized. To optimize the
system performance, we have to consider the effective physical consump-
tion by jobs regarding the resource allocations. This information gives
an insight into whether the cluster resources are efficiently used by the
jobs. In this work we propose an analysis of production clusters based
on the jobs resource utilization. The principle is to collect simultane-
ously traces from the job scheduler (provided by logs) and jobs resource
consumptions. The latter has been realized by developing a job monitor-
ing tool, whose impact on the system has been measured as lightweight
(0.35 % speed-down). The key point is to statistically analyze both traces
to detect and explain underutilization of the resources. This could enable
to detect abnormal behavior, bottlenecks in the cluster leading to a poor
scalability, and justifying optimizations such as gang scheduling or best-
effort scheduling. This method has been applied to two medium sized
production clusters on a period of eight months.

Keywords: Workload traces · Monitoring · Performance evaluation ·
Optimization · High performance computing

1 General Context

High Performance Computing (HPC) platforms have appeared as a solution for
solving advanced computation problems. Nowadays these systems have evolved
passing from the shared memory multiprocessors to clusters which can have
hundreds of thousands of processors. In these kind of systems a central compo-
nent called the Resource and Job Management System (RJMS) is in charge of
managing the users’ tasks (jobs) on the system’s computing resources.

Studying the RJMS workload has become a widely used method for HPC
systems valuation. The workload in the RJMS context can be defined as the set
of all individual jobs that are processed by the system during a specific period of
time. With workload traces, one can reconstruct the scheduling, determine the
system’s computing resources utilization, compare different systems and their

N. Desai and W. Cirne (Eds.): JSSPP 2013, LNCS 8429, pp. 1–21, 2014.
DOI: 10.1007/978-3-662-43779-7 1, c© Springer-Verlag Berlin Heidelberg 2014

2 J. Emeras et al.

workloads according to several metrics like Average Weighted Wait Time and
Average Weighted Response Time as used in [1]. This study can lead to the
construction of models as proposed in [2] and more generally described in [3].
However, looking only at the workload traces may not be sufficient. To get a
better understanding of the use of such systems we need to look at both how the
jobs interact with the RJMS but also how they consume the allocated resources.
In other words, we need to look at both the workload and the jobs activity on
the resources.

The idea of associating RJMS workload traces to the jobs resource consump-
tions has been mentioned in several works. Reference [4] points out the fact that
the System Utilization metric, commonly used in system evaluation misses infor-
mation about the computer sub-systems (network, memory, processor) usage.
According to [5] it is also necessary to take into account other characteristics
such as I/O activity which have a big impact on the global performance of HPC
systems. However, the aforementioned association has never been fully achieved.

The System Utilization metric is the ratio of the computing resources allo-
cated to the jobs over the available resources in the system. In fact, this metric
corresponds more to the System Resource Allocation as it does not give informa-
tion about the physical utilization of the resources. In this paper we will focus
on the Resource Utilization metric which reflects the ratio of the consumption of
a resource by a job over the amount of resource allocated by the system to this
job. For each resource type: core, memory, IO, we will look at their utilization
by the jobs on the clusters.

The following Section presents several works related to Workload and Jobs
tracing. The first part presents briefly D. Feitelson et al. works on workload traces
then several methods for retrieving information about the jobs consumptions are
presented. Then in Sect. 3 we present the solution chosen to collect jobs resource
consumptions data. Section 4 describes the clusters on which data was collected
and the trace characteristics. Section 5 presents the analysis of the results of the
different resources consumption metrics. Finally, Sect. 6 discusses the results and
gives some perspectives.

2 State of the Art

2.1 Workload Traces

Workload traces are provided by the Resource and Job Management System,
they contain information about the jobs arrivals, their resources request and
allocation, their characteristics like runtime, wait time or execution information.
Two workload traces format exist and are commonly used:

(a) Standard Workload Format (SWF)1. It is an initiative to make workloads
data on parallel machines freely available and presented in a standard for-
mat [6]. This work is presented in the Parallel Workload Archive2. It provides

1 SWF: http://www.cs.huji.ac.il/labs/parallel/workload/swf.html
2 PWA: http://www.cs.huji.ac.il/labs/parallel/workload

http://www.cs.huji.ac.il/labs/parallel/workload/swf.html
http://www.cs.huji.ac.il/labs/parallel/workload

Analysis of the Jobs Resource Utilization on a Production System 3

several traces from real production systems and is a big step in the field of
workload characterization. Many other works were based on this format, in
particular for workload models generation. The SWF format gives informa-
tion about the jobs requests, allocations, characteristics and consumptions.
The jobs consumptions values provided by SWF are the average processor
time and the average memory used by processor.

(b) Grid Workload Archive (GWA)3. The Grid Workload Archive constitutes
an effort to build a data repository of grid workload traces for the scientific
community. This format is based on SWF, it adds some grid specific aspects
like sites, virtual organizations, co-allocations, workflows. This information
contributes to the improvement of the middleware in charge of the scheduling
process.

2.2 Jobs Consumption Traces

Two options are possible to produce a trace of the jobs consumptions. First,
giving for each job, for each type of resource (memory, processor, disk, network),
a single representative value of the resource consumption. The question is thus
“How representative of the real consumption this value is?”. Or, for each job,
giving a trace of the resource consumptions over time. This can be viewed as a
monitoring of the jobs consumptions.

In [7], R. Jain proposes one possible classification of the different monitoring
techniques. In this classification, the monitoring process can be event-driven or
by sampling. The event-driven method is very efficient and there is no monitoring
overhead if the event is rare. The sampling method as for it, is well adapted
for frequent events but a loss of data captured is inevitable and a frequency
resolution has to be chosen. This section presents the state of the art of the
existing monitoring systems that can be adapted to our context.

Monitoring Provided by the Existing Batch Schedulers. Several RJMS
provide an embedded system for monitoring the jobs consumptions.

SLURM [8]4: uses different mechanisms to know which processes are mem-
bers of a SLURM job, then monitors their consumptions. The cgroup isolation
mechanism requires a very recent kernel version, the other one is based on the
Linux process table.

OAR [9]5: provides a mechanism that monitors the jobs consumptions in
terms of processor, memory and network. As for SLURM, it uses different mech-
anisms to know which processes are members of an OAR job, these are the
cpuset or cgroup features of the kernel and require a recent kernel version. This
data collection is not automatic and is triggered at user request.
3 GWA: http://gwa.ewi.tudelft.nl/pmwiki/
4 SLURM. https://computing.llnl.gov/linux/slurm/
5 OAR: http://oar.imag.fr

http://gwa.ewi.tudelft.nl/pmwiki/
https://computing.llnl.gov/linux/slurm/
http://oar.imag.fr

4 J. Emeras et al.

LoadLeveler6: allows the user to gather information about resource con-
sumption. It offers different ways to consult this information and create different
class of reports. As for OAR, this mechanism is not automatic.

All these approaches are linked to a particular batch scheduler system. For
all of them, the traces generated give for each job a single value (generally the
mean) for each type of resource consumption. This is problematic for several
reasons. First for the memory consumption, the mean does not give valuable
information. At least the maximum value and how many times this value was
reached must be reported. Then for the IO consumption, the variance of the
reads and writes can vary a lot and the mean is still not representative enough.
We prefer to adopt a monitoring of the resources over time, that will give us
all the details of the evolution of the consumptions and thus enable a deeper
analysis of the cluster’s resources utilization.

Monitoring and Profiling Tools. Many monitoring and profiling/tracing
tools exist in the literature, but our approach needs specific requirements. First,
we need to collect the jobs resource consumptions, this is a completely different
process than machine monitoring. Then, we need to collect these data in a tem-
poral way. This means that data has to be collected over time along with the jobs
executions. Last, we want to collect jobs consumption data on production clus-
ters which implies two constraints: the impact of the monitoring on the compute
nodes has to be negligible; and the setup of the monitoring on the cluster has
to be as simple as possible. On a running production cluster it is not acceptable
to deeply modify the configuration of the nodes, nor install or update too many
softwares; and the update or modification of the nodes’ kernel is not possible.

Means and maximum values are not sufficient for analyzing the behavior of
the applications over time, we need a more fine-grain view of their consump-
tions. Several systems like Ganglia [10] and Nagios [11] have been developed
to monitor a system or a cluster infrastructure but are resource centric, they
perform their monitoring at the machine level. Our approach needs to be job
centric to enable us to extract the resource consumptions per job as proposed
in [12]. Other approaches more application-oriented exist as [13] which gathers
an application consumptions in an online manner taking advantage of two tools,
TAU [14] as the data collector and Supermon [15] as the transport layer. Or
[16] which monitors an application at runtime, with a low overhead, allowing it
to study the overhead penalties incurred by Linux Systems in the execution of
HPC applications. The difference between our approach and the systems men-
tioned above is the fact that we aim to monitor all the jobs executed in the
cluster, generating a trace of the resource consumptions over time. This requires
a very lightweight tool, capable of monitoring all the jobs with a low overhead
and with an amount of data generated that can be easily stored and processed.
These conditions were not respected by these tools.
6 LoadLeveler: http://www-03.ibm.com/systems/software/loadleveler

http://www-03.ibm.com/systems/software/loadleveler

Analysis of the Jobs Resource Utilization on a Production System 5

Linux Kernel tools like Performance Counters7 or CGroups8 are not a possible
option for our systems because they imply the update of the compute nodes
kernel.

We also tested several event based tools like IPM [17], TAU [14], ltrace9,
but either their overhead was too high or the amount of data collected was
too important (hundreds of MB for a single application run) to enable a global
workload analysis. An event-driven approach would thus be too intrusive and
the amount of data produced would have been too big.

The approach chosen was then a sampling monitoring, enabling us to restrict
the amount of data collected and to set the precision required.
Because of the production constraints we chose to collect information about the
consumptions from the /proc subsystem (as in the OpenTSDB10 approach). In
this virtual file system (present on any Linux system), for each process is given
its consumption of resources such as memory, processor, or IO on the Distributed
File System (DFS). With this method, no modification nor software installation
is needed on the compute nodes.

3 Resource Consumption Capture

This section presents the approach used in order to instrument the system, which
allowed us to have more detailed information about jobs resources consumption
during their execution. This monitoring process is divided into two parts:

– The monitoring of the jobs’ processes execution in each compute node of the
cluster. This is performed by a monitor daemon running on each node.

– The collection of all the traces generated by each job.

3.1 Monitor Daemon

It is important to understand that we do not want to depend on the synchro-
nization of measures. A centralized clock that forces measure times would be too
intrusive for the system. Instead, every node is responsible for measuring each
job every minute and the clocks between the nodes are synced (this is a common
requirement in HPC). Every measure is tagged with its timestamp.

The monitor daemon, written in Perl, gathers resource consumption infor-
mation for a job that is running on the machine. This information includes every
process involved in the job and their resource consumption values obtained from
/proc directory. We first validated this method by making several tests with
jobs whose behavior were well-known to ensure that information given by /proc
was consistent with what we expected. Collected values and trace format are
described in Tables 1 and 2. In order to know which processes belong to the job,
7 https://perf.wiki.kernel.org
8 http://www.kernel.org/doc/Documentation/cgroups/cgroups.txt
9 A library call tracer. http://linux.die.net/man/1/ltrace

10 http://opentsdb.net

https://perf.wiki.kernel.org
http://www.kernel.org/doc/Documentation/cgroups/cgroups.txt
http://linux.die.net/man/1/ltrace
http://opentsdb.net

6 J. Emeras et al.

the monitor looks into the cpuset directory, which is the interface to the cpuset11

kernel mechanism to provide job isolation. Therefore with all this information
collected, the monitor generates a trace file per job. The cpuset feature is sup-
ported by most of the RJMS as PBS, Loadleveler, Torque12, Slurm13, OAR14,
it is the most portable method for collecting the jobs processes.

We wanted the finest granularity possible without generating a big pertur-
bation on the nodes and a minute step allowed us to have a perturbation under
1 % in the worst case. It is thus a good compromise information/intrusiveness
as presented in Sect. 3.2.

As these traces will be mixed with RJMS traces, a 60 s granularity seems
reasonable as the scheduling decisions and the resources allocations are in the
order of the minute.

To be as lightweight as possible, the monitoring tool does not reformat or
process data during the capture. Values taken from /proc are written directly to
the log for the overhead to be in the analysis process, not during traces capture.

Table 1. Trace format

Trace fields

Name Description

Time Unix Time Stamp in seconds

JOB ID Job id assigned by the batch
scheduler

PID PID of process that belongs to
the job

Node ID Provenance of the capture

Measure Measure as presented in Table 2

Table 2. Data collected during a
measure

Values captured

Name Description

command Name of the binary executed

vmPeak Peak virtual memory size (KB)

vmSize Total program size (KB)

vmRss Resident Memory (KB)

vmSwap Size of swap usage (KB)

syscr Number of read syscalls

syscw Number of write syscalls

read bytes Bytes read from the DFS

write bytes Bytes written to the DFS

core Core utilization percentage

receive Bytes received from the network

transmit Bytes transmitted to the network

3.2 Intrusiveness and Sampling Evaluation

This section presents the evaluation of our approach in terms of disruption in
the system. The cost of retrieving information from the RJMS and converting
it to SWF format is null as it is done post mortem. We will thus study the cost
11 http://www.kernel.org/doc/man-pages/online/pages/man7/cpuset.7.html
12 http://www.clusterresources.com/torquedocs21/3.5linuxcpusets.shtml
13 https://computing.llnl.gov/linux/slurm/
14 http://oar.imag.fr/sources/2.5/docs/documentation/OAR-DOCUMENTATION

-ADMIN/#cpuset-feature

http://www.kernel.org/doc/man-pages/online/pages/man7/cpuset.7.html
http://www.clusterresources.com/torquedocs21/3.5linuxcpusets.shtml
https://computing.llnl.gov/linux/slurm/
http://oar.imag.fr/sources/2.5/docs/documentation/OAR-DOCUMENTATION-ADMIN/#cpuset-feature
http://oar.imag.fr/sources/2.5/docs/documentation/OAR-DOCUMENTATION-ADMIN/#cpuset-feature

Analysis of the Jobs Resource Utilization on a Production System 7

to monitor the jobs. It is very important for the validity of the data collected
that the monitoring process does not interfere with the jobs themselves. It is
obviously also important for the validity of the jobs results. We chose that the job
overhead should be strictly less than one percent. All the tests were performed
over a machine Intel Xeon E5420, with 8 cores and 24 GB of main memory.
We evaluated the implementation under a 100 % processor load of the machine,
with one process per core and measured the monitor overhead by using the
Sysbench multi-threaded benchmark tool. The evaluation ran 8 processes, each
one checking a prime list up to 18000. Results are presented in Table 3.

Table 3. Overhead (in terms of per-
turbation in the application execution
time) vs. sampling period. All values
are in seconds

Sampling
Freq.

Mean Min Max Overhead
(%)

No 573 573 573 0
60 s 573.6 573 574 0.10
30 s 574.4 574 575 0.24
10 s 577 576 578 0.69

Table 4. Overhead (in terms of per-
turbation in the application execution
time) vs. number of processes moni-
tored per job. All values are in seconds

Type Mean Min Max Overhead
(%)

16 processes
No moni-

toring
513 513 513 0

monitoring 514.1 514 515 0.21

32 processes
No moni-

toring
512 512 512 0

monitoring 513.8 513 516 0.35

We also evaluated the noise for more than 8 processes with a 60 s frequency to
have an idea of the scalability of the solution. The results are shown in Table 4.
The disruption caused by the monitoring was found to be almost linear regarding
the number of processes to monitor in these conditions. Given that there were
four times more processes than cores in the 32 processes benchmark, the result
of a 0.35 % overhead is acceptable.

The memory used by the daemon is very small (few MB) and it doesn’t
use the network during the capture. The reads and writes are a few KB every
minute on the local disk and the Distributed File System is not solicited so the
IO perturbation is negligible.

3.3 Collecting Mechanism

Data is gathered using dedicated jobs that collect the logs when the system is
underloaded. This operation does not need to be frequent; week-ends, holidays,
night-times or maintenance periods can be used for this. We used a special
maintenance period during holidays for this purpose. Each job requests a whole
node and is in charge of gathering and compressing the trace files generated so

8 J. Emeras et al.

far by the jobs executed on that machine. Then it sends them to a dedicated
node in charge of storing the trace data.

3.4 Off-Line Data Processing

Once we have collected data about jobs resources consumption we need to bind
it to the RJMS log to be able to compute the resource utilization ratio. This
ratio is at a given time, for a given job, the amount of resource consumed by the
job over the amount of resource allocated by the system to this job. To make it
simpler to use and redistributable, we first build the SWF file from the RJMS
log. The SWF is an abstract view of the log, this format gives us the amount of
resource allocated by the system for each job.

As measures are not guaranteed to be synchronized between nodes during
the capture, a shift in the measures dates can appear. Thus we first re-sample
the measures then bind them to the RJMS logs with R15. The whole re-sampling
and binding process is available in a R script. See Sect. 5.3 for more information.

4 Experiment Environment

Data was collected from production clusters of the Ciment project16. This project
aims at gathering several computational infrastructures to provide computing
power to users in different disciplines like environment, chemistry, astrophysics,
biology, health, physics. The CiGri project relies upon the OAR RJMS to submit
the jobs on the clusters. All the Ciment clusters are managed by the CiGri17

lightweight grid software that gathers clusters resources to make them available
as a grid for the users.

The monitoring tool was implanted and run on two of the Ciment production
clusters: Foehn and Gofree. As they come from the same grid, their respective
workload should not be too different from each other. Their characteristics are
detailed in Table 5. A short summary of data collected is presented in Table 6.

One particularity of the Ciment platform is that users can submit a particular
type of job: the “besteffort” jobs. These jobs are scheduled in a dedicated queue.
They have a very low priority and can be preempted whenever a “normal” job
arrives and needs the resource. The goal of such jobs is to maximize the cluster
utilization as they are plentiful. Generally, these jobs request one core to the
RJMS. These special jobs are multiparametric sequential jobs. A user using these
kind of jobs has generally several instances of the same application running in
different jobs with different parameters.

15 http://www.r-project.org/
16 CIMENT Project. https://ciment.ujf-grenoble.fr/
17 CiGri Project: http://cigri.imag.fr/

http://www.r-project.org/
https://ciment.ujf-grenoble.fr/
http://cigri.imag.fr/

Analysis of the Jobs Resource Utilization on a Production System 9

Table 5. Clusters characteristics

Foehn Gofree

Brand SGI Dell
CPU model X5550 L5640
Nodes 16 28
CPU/node 2 2
Cores/cpu 4 6
Memory/node 48 GB 72 GB
Total storage 7 TB 30 TB
Network IB DDR IB QDR
Total Gflop/s 1367.04 3177.6
Buy date 2010-03-01 2011-01-01

Table 6. Trace summary for both
clusters.

Foehn Gofree

Capture start 2011-06-01 2011-05-24
Capture

months
8 7

Log size 2.6 GB 3.1 GB
Number of

jobs
53662 20093

Besteffort
jobs

50403 15596

Normal jobs 3259 4497
Active users 54 35

5 Analysis

In this section we analyze the consumption of the jobs from data collected during
the capture regarding their requests. This analysis is done for the following
metrics: core utilization, memory utilization and IO activity on the network file
system. The two clusters although belonging to the same platform are located in
two different laboratories. When submitting a job, the users of the platform can
both choose on which cluster the job will run or don’t specify anything. In this
case it is the local cluster which is selected by default. As we know, most of the
users don’t request specifically a cluster or tend to prefer the local cluster. Thus
we analyze separately the results from the two clusters. Moreover, jobs from
the normal class and besteffort class have very different patterns. Besteffort
jobs are multiparametric jobs that generally request only 1 core (although we
know that some besteffort jobs request several cores). They are supposed to be
processor intensive with few memory usage and few IO activity. Normal jobs
are generally parallel jobs requesting several nodes/cores. Their consumption
patterns are not really known and are probably more varied. Hence, the following
analysis of the jobs consumptions is done on the two classes separately on each
cluster.

To address the analysis of the consumptions in a global way for each class
we look at the resources utilization distribution. This will give us an idea of the
different existing patterns.

Squashed Area Ratio. Along with the distribution of the utilizations
we will also consider the impact of a particular phenomenon into the global
system activity. We present thus the Squashed Area metric (SA) that
represents the jobs execution activity. Reference [18] defines SA as the total

10 J. Emeras et al.

system’s resource consumptions of a set of jobs, computed by:

SA =
∑

j∈jobs

allocated coresj × run timej .

Thus, for a job or a set of jobs, we look at the SA ratio of this set regarding
the workload SA of its class (i.e. the proportion of this set area over the total
class area). This enables us to determine if a particular phenomenon is significant
enough regarding the rest of the workload.

Core. In data collected we have for each job j, for each core c allocated to j,
the proportion of core consumed by the processes running on c and belonging
to j along its execution. We denote this value: core consumptionc

j(ti). With ti
being the date of the measure i. Thus, we can compute for each measure date ti
the total amount of core consumed by a job with:

core consumptionj(ti) =
∑

c∈allocated coresj

core consumptionc
j(ti).

Then, with n being the number of consumption measures taken for j, we can
compute per job its core utilization mean by:

core utilization meanj =

∑

i∈[1,n]

core consumptionj(ti)

allocated coresj × n
.

In the following analysis we consider the distribution of these values to identify
different utilization patterns.

Memory. The OAR version managing Foehn and Gofree clusters doesn’t pro-
vide a memory isolation of the jobs on the nodes. This feature in OAR is only
available with the Cgroup feature of the kernel enabled which is not the case.
Thus it is interesting to look whether jobs use a lot of memory or not. Indeed,
a job which uses intensively the memory could disturb other jobs sharing the
same node.

We introduce the theoretical memory per core value which is equal to a
node memory over the number of cores on the node. As each cluster has an
homogeneous architecture, this value is the same for all the nodes in a cluster.
Foehn and Gofree doesn’t have the same number of cores and memory per node
but their theoretical memory per core is the same and is equal to 6GB. We
consider thus that a job which consumes less than this value per allocated core
is not disturbing for the other jobs.

Then, for a given job we know its theoretical maximum memory. This value
is equal to theoretical memory per core×allocated coresj . Thus we know that
jobs that consume more than 100 % of this value are potentially disturbing other
jobs by using too much memory on at least one node.

Analysis of the Jobs Resource Utilization on a Production System 11

For the analysis of the memory utilization we will look at two sub-metrics:

– The mean memory used by a job (computed by the same method than the
core utilization mean) vs. its theoretical maximum memory. This tells us how
the job behaves on average regarding its theoretical maximum memory.

– The maximum memory used on the cores allocated to this job. This will tell
us if the job used more than the theoretical memory per core on one of its
allocated cores or not.

File System IO. As the Distributed File System (DFS) is a central component
of a cluster we are also interested into its usage patterns. On Gofree no user has
complained about slow IO on the DFS. This is not the case for Foehn where
users have reported several IO problems. Unfortunately we could only monitor
the IO utilization on the Distributed File System on the Gofree cluster and this
for only two months and a half. Gofree DFS consists in an NFS server that
serves the users’ home directories through the GigaBit Ethernet network. We
tested its capabilities in terms of bandwidth with the IOR18 benchmark [19].
We used IOR in a single file/single client mode with file sizes of 64 MB and
blocks of 4 KB. 4 KB is the default block size. 64 MB and 64 KB are the most
frequent write sizes in Gofree (see Fig. 15). We chose 64 MB instead of 64 KB
because this last value is too small (only 16 physical writes) to have a correct
idea of the bandwidth. We repeated the test 10000 times and got a max speed of
103 MB/s for the writes and 4030 MB/s for the reads. The mean write speed was
98 MB/s with a standard deviation of 5. Several other tests with higher values
of file sizes gave us similar results. For concurrent sequential tests IOR showed
that the bandwidth was more or less fairly divided between the different writing
processes. For parallel tests (with MPIIO API, one file per process, up to 48
processes) IOR showed a maximum value close to 96 MB/s which is a little less
than with the single process mode but still in the same bandwidth range than
the mean speed of sequential writes. This gives us an approximative idea of the
global bandwidth of Gofree DFS.

The read bandwidth is quite high (close to a local file system bandwidth)
and generally the type of IO which are problematic are the writes, thus we will
focus on the analysis of the writes patterns.

5.1 Foehn Cluster

Normal Class Jobs. Figure 1 presents the distribution of the core utilization
means for normal class jobs on Foehn cluster. We observe a peak in the dis-
tribution corresponding to a core utilization near 100 %. An other peak, less
important corresponds to a low core utilization (between 0 % and 25 %). How-
ever when looking at the SA ratio of these two peaks the tendency reverts. The
SA ratio of the high utilization peak is only 12.7 % of the total workload SA and
the SA ratio of the low utilization peak is of 53.7 %. For these jobs, very few of
18 http://sourceforge.net/projects/ior-sio/

http://sourceforge.net/projects/ior-sio/

12 J. Emeras et al.

0

250

500

750

1000

0 25 50 75 100

Core Utilization Mean (%)
Foehn − Normal Jobs

N
um

be
r o

f J
ob

s

Fig. 1. Distribution of the jobs’ core
utilization means.

0

500

1000

051001050
Mean Memory Used (%)
Foehn − Normal Jobs

N
um

be
r o

f J
ob

s
Fig. 2. Distribution of the mean mem-
ory used by job.

0

250

500

750

1000

0 25 50 75 100
Maximum Memory Used (%)

Foehn − Normal Jobs

N
um

be
r o

f J
ob

s

Fig. 3. Distribution of the maximum
memory used per job by an allocated
core to this job, values �100 %.

0

5

10

15

100 200 300 400 500
Maximum Memory Used (%)

Foehn − Normal Jobs

N
um

be
r o

f J
ob

s

Fig. 4. Distribution of the maximum
memory used per job by an allocated
core to this job, values >100 %.

them consume a lot of memory (only 22 jobs). Among them only 5 consume more
than their theoretical maximum memory. For these memory intensive jobs, the
maximum memory used per core is 125 % of the theoretical memory per core.
Figure 2 presents the distribution of the mean memory used per job. We can
observe that memory intensive jobs are very rare on Foehn but exist.

Figures 3 and 4 present the maximum memory used on a core per job. We
split the representation of the distribution in two groups for more clarity: up to
100 % and more than 100 %.

Analysis of the Jobs Resource Utilization on a Production System 13

There are 31 jobs whose mean memory usage is over 100 %. Unsurprisingly,
jobs that have a mean memory usage over 100 % are the same than the jobs that
have a peak memory usage on an allocated core over 100 %. These jobs have
a peak value grouped around 140 %. Only 1 job has a very high peak memory
usage of 480 %, it is a job that requested 2 cores and lasted for 18 min then was
canceled by its user.

In Foehn, we observe that many jobs are using the cores computing power
very efficiently and don’t use a lot of memory. These jobs seem to be cpu bound.
However their weight in the workload is counterbalanced by larger and shorter
jobs (larger number of resources but with a runtime being a little shorter on
average). Regarding the memory usage distribution, we can think that these
jobs suffered from something else than memory problems. But when we look at
the number of cores allocated to the jobs of the two groups (jobs with aver-
age core utilization under 25 % and jobs with average core utilization near
100 %) we remark something very particular. The mean number of allocated
cores is 4 times bigger for the jobs that have a core utilization in the lower peak.
This can be an IO scalability issue with jobs waiting on IO, as we know that
Foehn DFS has bandwidth problems, this having been reported several times
by the users. However this can also come from an over-reservation of cores by
the users. Sadly, we currently miss information to explain the reason of this
phenomenon.

Besteffort Class Jobs. Figure 5 presents the distribution of core utilization
for besteffort jobs on Foehn cluster. We observe two peaks, one corresponding
to a core utilization mean around 25 %, the other around 100 %. For the lower
utilization peak (from 0 to 25 %), its SA ratio is 55.5 %. The SA ratio for the
jobs exactly in the 25 % peak is 42.4 %. For the jobs involved in the higher
distribution peak, even though there are fewer, their SA ratio is about the same
(40.8 %). 99.2 % of these jobs reserve only 1 core. These jobs never use more
than the theoretical memory per core. 99.5 % of them actually use less than 1/3
of this theoretical memory per core.

Only 6 users are involved in the low core utilization peak, but 5 of them
are also involved in the high utilization peak. The user only present in the low
utilization peak accounts for 41.9 % of the besteffort SA and has a core utilization
less than 25 % in 99.4 % of the cases. He reserves 4 cores in all his besteffort jobs.
In almost all the cases his processes consume less than 310 MB and never higher
than 620 MB.

After contacting the user, he explained that he noticed that if two of his
jobs were running on the same node, the performances of the two jobs were very
bad. After investigating the cause of this it was found that the application was
memory intensive in terms of bandwidth. The maximum memory used was small
compared to the amount of memory available on the node but when two jobs
were accessing the memory at same time, there was a bottleneck in the access
to the memory. The solution adopted by the user to avoid this performance loss
was to reserve the whole socket (corresponding thus to 4 cores) even though the
application only used 1 core. As Foehn nodes are NUMA, reserving the whole

14 J. Emeras et al.

0

2500

5000

7500

10000

12500

15000

17500

20000

0 25 50 75 100
Core Utilization Mean (%)
Foehn − BestEffort Jobs

N
um

be
r o

f J
ob

s

Fig. 5. Distribution of the jobs’ core
utilization means.

0

10000

20000

30000

40000

0 25 50 75
Mean Memory Used (%)
Foehn − BestEffort Jobs

N
um

be
r o

f J
ob

s
Fig. 6. Distribution of the mean mem-
ory used by job.

0

10000

20000

30000

40000

0 25 50 75
Maximum Memory Used (%)

Foehn − BestEffort Jobs

N
um

be
r o

f J
ob

s

Fig. 7. Distribution of the maximum
memory used per job by an allocated
core to this job, values �100 %.

0

1

115 120 125 130 135
Maximum Memory Used (%)

Foehn − BestEffort Jobs

N
um

be
r o

f J
ob

s

Fig. 8. Distribution of the maximum
memory used per job by an allocated
core to this job, values >100 %.

socket enabled the jobs to have their own memory slot and thereby not being
disturbed. The problem here was not a misconfiguration of the job or a bad
reservation request but a lack in the RJMS constraint description that forced
the user to over-reserve.

Figure 6 shows that besteffort jobs don’t consume a lot of memory on average.
Only 6 jobs (not represented on the figure for clarity) have a mean memory
utilization greater than their theoretical available memory. Their mean memory
use is between 7 and 8 GB.

In Figs. 7 and 8 we observe that besteffort jobs don’t have big memory peaks.
Only 6 jobs have peaks between 115 and 135 %. these jobs are all 1 core jobs
and five of them belong to the same user.

Analysis of the Jobs Resource Utilization on a Production System 15

0

250

500

750

1000

1250

0 25 50 75 100
Core Utilization Mean (%)

GoFree − Normal Jobs

N
um

be
r o

f J
ob

s

Fig. 9. Distribution of the jobs’ core utilization means.

Except the singularity of the user reserving one entire socket and few jobs
with memory usage peaks, besteffort jobs on Foehn tend to be cpu bound.

5.2 Gofree Cluster

Normal Class Jobs. Figure 9 shows the distribution of the core utilization
means for jobs in the normal class in Gofree. We observe a very particular
distribution with four peaks around 0, 1/4, 1/2 and 1 of core utilization mean.
The most surprising is when we look at the number of cores allocated to these
jobs vs their core utilization. The higher peak has a core allocation of 1 node
in 50 % of the cases (with a maximum of 1 node). The peak around 1/2 has a
core allocation of 2 nodes in 85 % of the cases (with a maximum of 2 nodes).
The peak around 1/4 has a core allocation of 3 nodes in 48 % of the cases and 4
nodes in 35 % of the cases (with a maximum of 4 nodes). The jobs below 50 %
of core utilization are not an isolated phenomenon, 2/3 of the users are involved
in these jobs and their presence is distributed all along the trace. These users
are also involved in the high utilization peak. The memory used for these jobs
is low (less than 1/3 of theoretical memory) for 89 % of them. Only 7 jobs use
up to 100 % of their theoretical available memory. Figures 10 and 11 show us a
memory utilization quite low for most of the jobs of this class.

This behavior of core utilization vs core allocation is very noteworthy and
we suspect a scalability problem although we can’t say where is the bottle-
neck (results of IO consumption on data collected during the IO capture period
showed the DFS is usually not very stressed, see 5.2). However, as for Foehn,
this can also come from an over-reservation of cores by the users. These two phe-
nomena of low core utilization on both clusters will need further investigations
and the jobs’ knowledge of the users involved.

16 J. Emeras et al.

0

500

1000

1500

2000

2500

0 25 50 75 100
Mean Memory Used (%)
GoFree − Normal Jobs

N
um

be
r o

f J
ob

s

Fig. 10. Distribution of the mean
memory used by job.

0

500

1000

1500

2000

0 25 50 75 100
Maximum Memory Used (%)

GoFree − Normal Jobs

N
um

be
r o

f J
ob

s
Fig. 11. Distribution of the maximum
memory used per job by an allocated
core to this job.

0

2500

5000

7500

10000

0 25 50 75 100
Core Utilization Mean (%)
GoFree − BestEffort Jobs

N
um

be
r o

f J
ob

s

Fig. 12. Distribution of the jobs’ core utilization means.

Besteffort Class Jobs. Figure 12 shows that besteffort jobs in Gofree have
a high core utilization. Jobs below 75 % of core utilization represent 0.37 % of
the normal jobs SA and jobs below 90 % account for 7 % of the class’ SA. Core
allocation for besteffort jobs in 85 % of the cases is 1 with other values being 4
and 6 (1 cpu socket). Figures 13 and 14 show us a low memory utilization on
average and on maximum. Regarding these results we can say that besteffort
jobs in Gofree are cpu bound.

Global IO Activity. Figure 15 shows the distribution of the size of the files
written by the jobs. We can observe a big peak at 64 KB. This comes from many

Analysis of the Jobs Resource Utilization on a Production System 17

0

2500

5000

520
Mean Memory Used (%)

GoFree − BestEffort Jobs

N
um

be
r o

f J
ob

s

Fig. 13. Distribution of the mean
memory used by job.

0

2500

5000

7500

5705520
Maximum Memory Used (%)

GoFree − BestEffort Jobs

N
um

be
r o

f J
ob

s

Fig. 14. Distribution of the maximum
memory used per job by an allocated
core to this job.

0

250

500

750

1000

1250

4KB 64KB 1MB 16MB 256MB 4GB 64GB
Size of Files Written
GoFree − All Jobs

N
um

be
r o

f F
ile

s

Fig. 15. Size of files writes on the DFS
on Gofree cluster for all jobs.

0

1000

2000

3000

4KB 64KB 1MB 16MB 256MB 4GB
File System Writes per Minute − GoFree

N
um

be
r o

f W
rit

es

Fig. 16. Distribution of the aggregated
file system writes sizes (per Minute) on
Gofree cluster.

besteffort jobs that write small files. Generally, besteffort jobs tend to write either
files of 64 KB or 32 MB. Normal jobs tend to write files of 4 KB and 16 MB.

Figure 16 presents the distribution of the aggregated writes by the jobs on
the File System. We can observe that the most frequent sizes the DFS has to
write in a minute is either small (between 4 KB and 16 KB) or medium (between
8 MB and 64 MB). It seems that the DFS is not really overloaded. Very few
values are high (up to 6 GB in a minute).

In order to see how the load is distributed along the time we plot Figs. 17
and 18. Figure 17 presents the aggregated writes per day on the DFS. We can
observe that the daily IO write activity is very irregular with intense periods

18 J. Emeras et al.

Fig. 17. Daily aggregated writes on
the DFS.

Fig. 18. DFS load (write speed) on
Gofree cluster.

and an empty period. The period with no IO activity occurred during holidays,
there was almost no job submitted during this time.

Figure 18 plots the write load in terms of speed on the Gofree DFS server. In
this figure, we isolate some remarkable values above the vertical line at 93 MB/s.
The value of 93 MB/s has been chosen because it reflects the speed where the
DFS might start to be overloaded. It corresponds to the mean write speed minus
the standard deviation given by our bandwidth tests with IOR. We refer at the
area above this line as the DFS hot zone.

We observe five ranges of dates where the DFS is in the hot zone. These dates
are respectively the June 9, June 22, June 28, July 18 and August 8. The most
remarkable period is July 18 where in a period of two hours the DFS reached
the hot zone 10 times. When looking at the jobs involved in this activity we see
that two jobs (belonging to two different users) where competing for IO on the
DFS. The jobs where using 4 and 12 nodes. They didn’t use much memory and
their mean core utilization was quite low. The job using 4 nodes was canceled by
the user before its end. This particular scenario let’s us think that this job that
was canceled was suffering for slow IO and thus killed by its owner. The scenario
is about the same during June 22 where four jobs where competing on IO. One
ended, canceled by the user and one had an IO write pattern alternating big
writes with periods of inactivity (few memory used, no core activity) probably
being blocked on IO. However this event lasted for only 10 min. The other periods
are less remarkable as the presence of the DFS in the hot zone was brief (only
one peak) with few jobs involved in IO activity.

5.3 Reproducibility

All the tools, traces and R-Sweave documents used to process this analysis are
available on a Git repository19 for the sake of reproducibility and sharing.
19 Git clone https://forge.imag.fr/anonscm/git/evalys-tools/evalys-tools.git

https://forge.imag.fr/anonscm/git/evalys-tools/evalys-tools.git

Analysis of the Jobs Resource Utilization on a Production System 19

6 Discussion and Perspectives

Monitoring the jobs resource consumptions and linking it to their resource allo-
cation enabled us to detect some particular behaviors on the clusters. Moreover,
the monitoring over time allowed us to have a more precise view of the resources
utilization, particularly it enabled us to reconstruct the Distributed File Sys-
tem (DFS) write load along time. The study of the utilization for the different
resource types gave us a better comprehension of our users’ usage of the clus-
ters. We are now able to propose some enhancements in our future scheduling
strategies based on the observed usage of the system.

The problem of memory bandwidth risen in the analysis is very interesting
because we can encounter the same lack of constraint description for memory,
IO or network in most current RJMS. As the Squashed Area ratio of the user
involved in this phenomenon weights a lot regarding the rest of the workload,
the core computing power loss is important. Here it is not a resource quantity
problem, but a problem concerning the bandwidth to access the resource. We
cannot try strategies like scheduling other besteffort jobs on the same socket
since we don’t know their bandwidth usage patterns. A possible solution would
be to define memory, IO and network bandwidths as resources in the RJMS in
the same way cores are defined as resources. Thus we enable the user to reserve
not only a set of cores but an amount of bandwidth on the node depending
his/her need. However, this kind of guarantee is not possible nowadays.

It is also noteworthy that besteffort jobs on both clusters are core efficient
with a low memory usage. This will be used as a scheduling tweak; besteffort
jobs, whenever it is possible, should be scheduled on the same nodes. As we now
are sure that they will not disturb with one another, we will pack these jobs
on the same set of nodes to improve their efficiency. Besteffort jobs are killed
whenever a normal job needs the resource they are running on. By packing them
we reduce the fragmentation and thus the probability for them to be killed.

The problem of the DFS overload is also interesting. We observed that gener-
ally the DFS is not too loaded but when it happens and there are jobs competing
for IO it ends with the cancellation of one of these IO intensive jobs. Giving the
users the possibility to tag their jobs (e.g. as IO intensive) at the submission
to the RJMS might prevent such situations, the RJMS will simply not schedule
two IO intensive jobs at the same time.

Monitoring jobs resource consumptions revealed problems that were not vis-
ible with the sole System Utilization metric. Coupling jobs consumptions and
RJMS logs enabled us to exhibit and quantify significant particular cases. On
mid-sized computing centers, the study of the jobs resource utilization will
become a necessary way to a deeper understanding of the users needs and their
jobs consumption patterns. Particular patterns discovered by the analysis of the
jobs resource utilization will lead to dedicated system setup and optimizations
to improve both users and administrators satisfaction.

20 J. Emeras et al.

References

1. Ernemann, C., Song, B., Yahyapour, R.: Scaling of workload traces. In: Feitel-
son, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2003. LNCS, vol. 2862,
pp. 166–182. Springer, Heidelberg (2003)

2. Lublin, U., Feitelson, D.G.: The workload on parallel supercomputers: modeling
the characteristics of rigid jobs. J. Parallel Distrib. Comput. 63, 2003 (2001)

3. Feitelson, D.G.: Workload modeling for performance evaluation. In: Calzarossa,
M.C., Tucci, S. (eds.) Performance 2002. LNCS, vol. 2459, pp. 114–141. Springer,
Heidelberg (2002)

4. Rudolph, L., Smith, P.H.: Valuation of ultra-scale computing systems. In:
Feitelson, D.G., Rudolph, L. (eds.) JSSPP 2000. LNCS, vol. 1911, pp. 39–55.
Springer, Heidelberg (2000)

5. Zhang, Y., Sivasubramaniam, A., Moreira, J., Franke, H.: Impact of workload and
system parameters on next generation cluster scheduling mechanisms. IEEE Trans.
Parallel Distrib. Syst. 12, 967–985 (2001)

6. Chapin, S.J., Cirne, W., Feitelson, D.G., Jones, J.P., Leutenegger, S.T.,
Schwiegelshohn, U., Smith, W., Talby, D.: Benchmarks and standards for the eval-
uation of parallel job schedulers. In: Feitelson, D.G., Rudolph, L. (eds.) JSSPP
1999. LNCS, vol. 1659, pp. 67–90. Springer, Heidelberg (1999)

7. Jain, R.: The Art of Computer Systems Performance Analysis: Techniques for
Experimental Design, Measurement, Simulation, and Modeling. Wiley, New York
(1991)

8. Yoo, A.B., Jette, M.A., Grondona, M.: SLURM: simple linux utility for resource
management. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP
2003. LNCS, vol. 2862, pp. 44–60. Springer, Heidelberg (2003)

9. Capit, N., Costa, G.D., Georgiou, Y., Huard, G., Martin, C., Mounie, G.,
Neyron, P., Richard, O.: A batch scheduler with high level components. In: Cluster
Computing and the Grid, pp. 776–783 (2005)

10. Massie, M.L., Chun, B.N., Culler, D.E.: The ganglia distributed monitoring system:
design, implementation and experience. Parallel Comput. 30, 817–840 (2004)

11. Imamagic, E., Dobrenic, D.: Grid infrastructure monitoring system based on
nagios. In: Proceedings of the 2007 Workshop on Grid Monitoring. GMW ’07,
pp. 23–28. ACM, New York (2007)

12. Curry, R., Simmonds, R.: Job centric cluster monitoring. In: 12th International
Conference on Parallel and Distributed Systems, ICPADS 2006. vol. 1, 8 p., 25
September 2006

13. Nataraj, A., Sottile, M.J., Morris, A., Malony, A.D., Shende, S.S.: TAUoverSuper-
mon: low-overhead online parallel performance monitoring. In: Kermarrec, A.-M.,
Bougé, L., Priol, T. (eds.) Euro-Par 2007. LNCS, vol. 4641, pp. 85–96. Springer,
Heidelberg (2007)

14. Shende, S.S., Malony, A.D.: The tau parallel performance system. Int. J. High
Perform. Comput. Appl. 20, 287–331 (2006)

15. Sottile, M.J., Minnich, R.G.: Supermon: A high-speed cluster monitoring sys-
tem. In: Proceedings of the IEEE International Conference on Cluster Computing,
CLUSTER ’02. IEEE Computer Society, Washington, DC (2002)

16. Sharma, S., Bridges, P.G., Maccabe, A.B.: A framework for analyzing linux system
overheads on hpc applications. In: Proceedings of the 2005 Los Alamos Computer
Science Institute Symposium, October 2005

Analysis of the Jobs Resource Utilization on a Production System 21

17. Fuerlinger, K., Wright, N.J., Skinner, D.: Effective performance measurement at
petascale using IPM. In: Proceedings of the Sixteenth IEEE International Con-
ference on Parallel and Distributed Systems (ICPADS 2010), Shanghai, China,
December 2010

18. Song, B., Ernemann, C., Yahyapour, R.: Parallel computer workload modeling with
markov chains. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP
2004. LNCS, vol. 3277, pp. 47–62. Springer, Heidelberg (2005)

19. Shan, H., Antypas, K., Shalf, J.: Characterizing and predicting the I/O per-
formance of HPC applications using a parameterized synthetic benchmark. In:
Proceedings of the 2008 ACM/IEEE conference on Supercomputing. SC ’08,
pp. 42:1–42:12. IEEE Press, Piscataway (2008)

Decentralized Preemptive Scheduling Across
Heterogeneous Multi-core Grid Resources

Arun Balasubramanian1(B), Alan Sussman2, and Norman Sadeh1

1 Institute for Software Research, Carnegie Mellon University,
5000 Forbes Avenue, Pittsburgh, PA 15213, USA

arunb.umd@gmail.com, sadeh@cs.cmu.edu
2 Department of Computer Science, University of Maryland,

College Park, MD 20742, USA
als@cs.umd.edu

Abstract. The recent advent of multi-core computing environments
increases the heterogeneity of grid resources and the complexity of man-
aging them, making efficient load balancing challenging. In an environ-
ment where jobs are submitted regularly into a grid which is already
executing several jobs, it becomes important to provide low job turn-
around times and high throughput for the users. Typically, the grids
employ a First Come First Serve (FCFS) method of executing the jobs
in the queue which results in suboptimal turn-around times and wait
times for most jobs. Hence a conventional FCFS scheduling strategy
does not suffice to reduce the average wait times across all jobs. In this
paper, we propose new decentralized preemptive scheduling strategies
that backfill jobs locally and dynamically migrate waiting jobs across
nodes to leverage residual resources, while guaranteeing (on a best effort
basis) bounded turn-around and waiting times for all jobs. The meth-
ods attempt to maximize total throughput and minimize average waiting
time while balancing load across available grid resources. Experimental
results for both intra-node and internode scheduling via simulation show
that our scheduling schemes perform considerably better than the con-
ventional FCFS approach of a distributed or a centralized scheduler.

Keywords: Distributed systems · Scheduling · Preemptive scheduling ·
Performance · Load balancing · Heterogeneous processors · Grid
computing

1 Introduction

Modern machines use multi-core CPUs to enable improved performance. In a
multi-core environment, it has been a challenging problem to schedule multiple
jobs that can run simultaneously without oversubscribing resources (including
cores). Contention or shared resources can make it hard to exploit multiple
computing resources efficiently and so, achieving high performance on multi-core
machines without optimized software support is still difficult [15]. Moreover,

N. Desai and W. Cirne (Eds.): JSSPP 2013, LNCS 8429, pp. 22–41, 2014.
DOI: 10.1007/978-3-662-43779-7 2, c© Springer-Verlag Berlin Heidelberg 2014

Decentralized Preemptive Scheduling 23

grids that contain multi-core machines are becoming increasingly diverse and
heterogeneous [10], so that efficient load balancing and scheduling for the overall
system is becoming a very challenging problem [4,5] even with global status
information and a centralized scheduler [21].

Previous research [9] on decentralized dynamic scheduling improves the per-
formance of distributed scheduling by starting jobs capable of running immedi-
ately (backfilling), through use of residual resources on other nodes (when the
job is moved) or on the same node. However, the scheduling strategy is non-
preemptive and follows a first come first serve approach to schedule the jobs.
This results in suboptimal wait times and turnaround times for most jobs in the
queue. It also results in suboptimal overall job throughput rate in the grid.

The performance of distributed scheduling and overall job throughput in such
multicore environments can be improved by following a preemptive scheduling
strategy where jobs that have lower estimated running times in the queue are
scheduled to run immediately. The techniques of migrating jobs to use residual
resources on neighboring nodes can also be used to increase the overall CPU
utilization. However, because of limited and/or stale global state information,
efficient decentralized job migration can be difficult to achieve. Moreover, a job
profile often has multiple resource requirements; a simple job migration mecha-
nism considering only CPU usage cannot be applied to in such situations. In addi-
tion, guarantee of progress for all jobs is also desired, i.e., no job starvation.

The contribution of this paper is a novel dynamic preemptive scheduling
scheme for multi-core grids. The scheme includes (1) local preemptive scheduling,
with backfilling on a single node and (2) internode scheduling, for backfilling
across multiple nodes. The approach is inspired by ideas from the preemptive
schedulers in the context of operating systems, and schedules jobs at regu-
lar intervals based on its priorities. The priorities of the jobs are determined
according to their remaining time for completion and the amount of time the
job has spent waiting in the queue. It is a completely decentralized scheme
that balances load and improves throughput when scheduling jobs with multi-
ple constraints across a distributed system. We demonstrate the effectiveness of
these algorithms via simulations that show that the decentralized preemptive
scheduling approach outperforms the non-preemptive scheduler that follows a
first-come-first-serve strategy.

The rest of this paper is organized as follows. Section 2 discusses the related
work on various preemptive scheduling strategies in literature. Section 3 discusses
the distributed scheduling strategies and describes the basic architecture of the
peer-to-peer grid systems and the resource management schemes for multi-core
machines. The term definitions related to the scheduling algorithm are presented
in Sect. 4. The preemptive scheduling approach is discussed in Sect. 5. The simu-
lation results are presented in Sect. 6. Conclusions and future work are presented
in Sects. 7 and 8, respectively.

24 A. Balasubramanian et al.

2 Related Work

Various scheduling algorithms (both preemptive and non-preemptive) have been
described in the literature, especially in the contexts of Operating Systems,
Batch Processing and Real time scheduling environments. First-come first serve
(also termed as FCFS), Round-Robin, shortest-remaining time, fixed priority
preemptive scheduling are some of the scheduling algorithms that are widely
in use. In classical UNIX systems [2,20], if a higher priority process became
runnable, the current process was preempted even if the process did not finish
its time quantum. This resulted in higher priority processes starving low-priority
ones. To avoid this, a ‘usage’ factor was introduced to calculate process priority.
This factor allowed the kernel to vary processes priorities dynamically. When a
process was not running, the kernel periodically increased its priority. When a
process received some CPU time, the kernel reduced its priority. This scheme
could potentially prevent the starvation of any process, since eventually the pri-
ority of any waiting process would rise high enough to be scheduled. While oper-
ating system schedulers usually act on the basis of information obtained from
the processes executed so far and the priority of processes, batch processing and
real time schedulers have added information, such as estimated job completion
times and job deadlines, respectively. Our environment closely resembles that of
the Batch Processing scenario since it is reasonable to obtain estimates of the
job completion times.

Previous research [9] on distributed scheduling scheduled jobs in a FCFS fash-
ion. Although this approach had minimal scheduling overhead, the turnaround
times, waiting times and response times were high for many jobs since the long
running jobs hogged the CPU. Also, no prioritization resulted in the system
having trouble meeting the process deadlines. The work done by Snell et al. [16]
on preemption based backfill addresses the problem of inefficient resource utiliza-
tion by backfilling lower priority jobs. The preemptive backfill technique used in
the paper allows the scheduler to schedule lower priority jobs even if they cannot
finish execution before the next higher priority job is scheduled. We use a simi-
lar technique for our strategies. The work on checkpoint based preemption [13]
discusses employing checkpoints for preemption and improves the job schedul-
ing performance in waiting time by addressing the inaccuracies in user-provided
runtime estimates.

Shortest remaining time [6] is a scheduling method that is a preemptive
version of shortest job next [18] scheduling. In this algorithm, the process with
the smallest amount of time remaining until completion is selected to execute.
Since the executing process is the one with the shortest amount of time remaining
(by definition), processes always run until they complete or a new process is
added that requires a smaller amount of time. This leads to higher wait times
for long running jobs. Highest Response Ratio Next (HRRN) [19] scheduling
is a preemptive discipline, in which the priority of each job is dependent on its
estimated run time, and also the amount of time it has spent waiting. Jobs gain
higher priority the longer they wait, which prevents indefinite postponement

Decentralized Preemptive Scheduling 25

(process starvation). i.e. the jobs that have spent a long time waiting compete
against those estimated to have short run times. In this paper, we use the idea of
‘Higher Response Ratio Next’ in a distributed environment to ensure that long
running jobs are not starved of CPU usage while at the same time guaranteeing
that shorter jobs finish early. This contributes to the overall high throughput in
the system.

3 Background

Several scheduling strategies have been studied in the context of distributed
computing ranging from cluster computing to the now-prevalent heterogeneous
computing grids. Most of the distributed scheduling strategies in the hetero-
geneous environments are focused on application level scheduling [3] (i.e. they
focus on how to efficiently break down and schedule the sub-tasks of the appli-
cation) so as to maximize the use of the heterogeneous components like GPUs,
CPUs and memory. Some research has also been done to address the issue of
dynamically scheduling each incoming job by learning through past performance
histories [7] and migrating jobs [9]. However, they all schedule the incoming jobs
in a non-preemptive or FCFS order. Though studies have been carried out on
the pre-emptive strategies (as discussed in related work) for scheduling jobs sub-
mitted onto the grid, a considerable scope still exists for further studies.

Al-Azzoni and Down [1] proposes a scheduling strategy which consists of
policies that utilizes the solution to a linear programming problem which maxi-
mizes system capacity. This however is a centralized approach and hence has the
limitations of a centralized scheduler. The paper on computational models and
heuristic methods on grid scheduling by Xhafa and Abraham [23] exceptionally
summarizes the scheduling problems involved in grid computing. It also gives
good insight on the different scheduling strategies that can be used and presents
heuristic methods for scheduling in grids. However, they fail to discuss in detail
the benefits of the opportunities presented by a preemptive scheduling model.
We then date back as early as Condor [12]; a system that employs a preemptive
strategy. Although Condor does not have a centralized/decentralized preemptive
scheduler, the local scheduler enforces preemption of the job whenever the user
resumes activity. Our scenario can be compared to this in the sense that a higher
priority job (a user process in case of Condor) may be ready to run at any given
instant.

A pivotal aspect to be considered before scheduling is finding the right node
to run the job. Various resource discovery techniques exist in the literature
that assign the incoming jobs to chosen nodes. The Classified Advertisement
(ClassAd) [14] and the CAN [17] approaches are examples of distributed match-
making algorithms that match incoming jobs to lightly loaded nodes. Match-
making is the initial job assignment to a node that satisfies all the resource
requirements of the job, and also does load balancing to find a (relatively) lightly
loaded node. A good matchmaking algorithm has several desirable properties:

26 A. Balasubramanian et al.

expressiveness, load balance, parsimony, completeness, and low overhead. The
matchmaking framework should be expressive enough to specify the essential
resource requirements of the job as well as the capabilities of the nodes. It should
balance load across nodes to maximize total throughput and to obtain the low-
est job turnaround time. However, over-provisioning can decrease total system
throughput, therefore the matchmaking should be parsimonious so as not to
waste resources. Completeness means that as long as the system contains a node
that satisfies a job’s requirements, the matchmaker should find that node to run
the job. Finally, the overall matchmaking process should not incur significant
costs, to minimize overhead.

The ClassAd matchmaking framework is a flexible and general method of
resource management in pools of resources which exhibit physical and owner-
ship distribution. Aspects of the framework include a semi-structured data model
to represent entities, folding the query language into the data model, allow-
ing entities (resource providers and requestors) to publish queries as attributes.
The paradigm also distinguishes between matching and claiming as two distinct
operations in resource management: A match is an introduction between two
compatible entities, whereas a claim is the establishment of a working relation-
ship between the entities. The representation and protocols facilitate both static
and dynamic heterogeneity of resources, which results in a robust and scalable
framework that can evolve with changing resources.

The Content Addressable Network (CAN) is a distributed, decentralized P2P
infrastructure that provides hash table functionality. The architectural design is
a virtual multi-dimensional Cartesian coordinate space, a type of overlay net-
work, on a multi-torus. Points within the space are identified with coordinates.
The entire coordinate space is dynamically partitioned among all the nodes in
the system such that every node possesses at least one distinct zone within the
overall space.

A job in our system is the data and associated profile that describes a com-
putation to be performed. The grid system may contain heterogeneous nodes
with different resource types and capabilities, e.g. CPU speed, memory size,
disk space, number of cores. Jobs submitted to the grid also can have multiple
resource requirements, limiting the set of nodes on which they can be run. We
assume that every job is independent, meaning that there is no communication
between jobs. To build the P2P grid system, a variant of the CAN [17] distributed
hash table (DHT) is employed, which represents a node’s resource capabilities
(and a job’s resource requirements) as coordinates in the d-dimensional space.
Each dimension of the CAN represents the amount of that resource, so that
nodes can be sorted according to the values for each resource. A node occupies
a hyper-rectangular zone that does not overlap with any other nodes zone, and
the zone contains the nodes coordinates within the d-dimensional space. Nodes
exchange load and other information with nodes whose zones abut its own (called
neighbors). The following steps describe how jobs are submitted and executed
in the grid system.

Decentralized Preemptive Scheduling 27

(1) A client (user) inserts a job into the system through an arbitrary node called
the injection node.

(2) The injection node initiates CAN routing of the job to the owner node.
(3) The owner node initiates the process to find a lightly loaded node (runnode)

that meets all of the job’s resource requirements (called matchmaking). (For
more details on the owner node and matchmaking, refer to Kim et al. [8])

(4) The run node inserts the job into an internal FIFO queue for job execu-
tion. Periodic heartbeat messages between the run node and the owner
node ensure that both are still alive. Missing multiple consecutive heart-
beats invokes a (distributed) failure recovery procedure.

(5) After the job completes, the run node delivers the results to the client and
informs the owner node that the job has completed.

The owner node monitors a job’s execution status until the job finishes and the
result is delivered to the client. To enable failure recovery, the owner node and
the run node periodically exchange soft-state heartbeat messages to detect node
failures (or a graceful exit from the system). More details about the basic system
architecture can be found in Kim et al. [8]. The studies conducted in this paper
can be used in any of the contexts discussed above or even any arbitrary network.
Also, the waiting time is calculated as the non-executing time spent by the jobs
after the job has migrated to the node where it would be scheduled for execution
i.e. we do not account for the time spent by the job between the job submission
and job migration in the network. This is in contrast to the waiting times usually
computed in a distributed environment where it is the non-executing time spent
by the job from the time it was submitted in the network until it completes
execution. More on this is discussed in the ‘Experiment and Results’ section.
The neighbors of the node are arbitrarily generated. We produce results for
nodes with neighbors having similar resource constraints and nodes with larger
number of neighbors in order to show the effectiveness of our algorithms in the
CAN-like and other highly interconnected networks.

4 Term Representations

(1) Ja = An arbitrary job in queue (Non executing job)
(2) J ∈

a = Currently Running (or executing) Job
(3) Jh = Job at head of queue
(4) J ∈

Pmin = Minimum Priority Job running currently in a given set
(5) J ∈

Rmin = Minimum Resource consuming Job running currently in a given
set

(6) J ∈
running = A set comprising jobs that are currently running

(7) J ∈
covered = A set comprising jobs covered so far for preemption analysis

(8) J ∈
rem = The remaining jobs (those yet to be examined for preemption)

(9) Pja = Priority of Job Ja waiting in queue
(10) Pj′

a
= Priority of currently running job

28 A. Balasubramanian et al.

(11) Pjh = Priority of Job at head of queue JH

(12) Pmax(J ∈
covered) = Priority of the Highest priority job that is covered so far

(13) Pmin(J ∈
covered) = Priority of the Lowest priority job that is covered so far

(14) Pmax(J ∈
rem) = Priority of the Highest priority job from the remaining jobs

(those yet to be examined for preemption)
(15) Pmin(J ∈

rem) = Priority of the Lowest priority job from the remaining jobs
(those yet to be examined for preemption)

(16) Rja = Resource requirements for Job Ja. The algorithm treats all resource
types (CPU’s, GPU’s, memory and disk space) as a set R.

(17) Rf = Current free residual resources
(18) Rf (temp) = Residual resources that would be available when some current

running jobs are preempted
(19) Rjh = Resource requirements of Job at head of queue
(20) Rj′

i
= Resource requirements of Job currently running

(21) Rj′
Pmin

= Resource requirements of J ∈
Pmin

(22) Rj′
Rmin

= Resource requirements of J ∈
Rmin

(23) Trem(Ja) = Remaining Time for Job Ja

(24) WJa
= Waiting time of Job Ja defined as the non-executing time spent by

the job after it has migrated to the node where it would be scheduled for
execution.

5 Preemptive Scheduling

5.1 Local Scheduling

This section deals with the scheduling criteria for a single node. As mentioned in
Sect. 2, we combine the ideas of ‘shortest remaining time next’ and the ‘higher
response ratio next’ to come up with a preemptive scheduling algorithm for
the grids. The ‘shortest remaining time next’ ensures that jobs that have the
smaller remaining time are run, so they end sooner. However, this could lead to
starvation for long running jobs and hence we increase the priority for jobs that
wait longer in the queue. Thus, the jobs waiting in the node’s queue have their
priorities calculated as

Pja = ((α ∗ WJa
) − (β ∗ Trem(Ja))

i.e. the priority for a job is directly proportional to its wait time WJa
and neg-

atively proportional to its estimated time for completion Trem(Ja). α is the
weight factor associated with the wait time. β is the weight associated with the
remaining time for completion. Typically, the β value is set to 1. The section on
‘Experimental Results’ provides more details on the values of α.

The job queue is sorted according to the order of their priorities calculated as
above. Initially, the jobs in the head of the queue are scheduled until the available
resources are insufficient for the next job to run. Next, those jobs that can

Decentralized Preemptive Scheduling 29

run in the available residual resources are scheduled to run (Backfilling). Since
the backfilled jobs have priorities associated with them, they are also prone to
preemption and therefore do not starve jobs waiting in the queue. The scheduler
is invoked at the following 3 phases in the system:

(1) After every periodic scheduling interval δ.
(2) As a new job enters the queue.
(3) A job completes its execution.

The periodic interval δ is much higher when compared to the scheduling inter-
vals for schedulers in the OS. This is because in a heterogeneous environment
we expect the time taken for context switches to be more expensive. And so, fre-
quent context switches would result in low overall CPU utilization. More details
regarding the values of δ are discussed in the Results section.

The scheduler is invoked when a new job enters the queue because the newly
arrived job could be backfilled. And, when a job completes execution, it frees
up some resources which allows new jobs to run. At every scheduling turn, the
priority of the job in the head of queue is compared with that of the least priority
job that is currently running. This is done because the queued job cannot run
currently if its priority is lower than the lowest priority job that is currently
running. This also addresses the backfilled jobs immediately since backfilled
jobs have the lowest priority among the running jobs. Figure 1 demonstrates
the scenario where the scheduler preempts a lower priority job with a higher
priority job and backfills another job in its residual resources.

If the priority of the job at head of queue (Pjh) is greater, the scheduler
checks if the current running job J ∈

Pmin frees up enough resources for the new
job to run. If yes, the job J ∈

Pmin is preempted and Jh is scheduled. Otherwise,

Fig. 1. Local preemptive scheduling

30 A. Balasubramanian et al.

the scheduler compares the priority of the second lowest priority job (J ∈
a) with

Jh. This is carried out until the scheduler appropriately preempts jobs that free
up just the right amount of resources for the job Jh to run. If the scheduler is
unable to free up sufficient resources for the job to run, the job Jh is not scheduled
in this interval and has to wait until the next scheduling turn. The scheduling
(at every scheduling turn) is carried out for all jobs in the queue that have a
higher priority than the lowest priority job that is currently running. The details
are described in the ‘Preemptive scheduling algorithm’ below.

5.2 Context Switching and Its Impact

The cost of a context switch is well quantified in [11] and in (http://blog.
tsunanet.net/2010/11/how-long-does-it-take-to-make-context.html). Although
the paper talks about context switching time of up to 1.5 ms for large working
sets, the article in the blog gives a good worst case approximation for context
switches (about 40µs) for current Intel processors. Even if we assume a worst
case value of 1 ms for each context switch, that results in less than 0.02 % error
for scheduling interval δ = 5 s in our calculations of wait times. In fact, we
only have context switches when there is preemption and so not every schedul-
ing interval would have a context switch. The time taken for context switches
can be further reduced if jobs are pinned to a particular core since this would
avoid cache pollution (i.e. reduce the effect of thrashing). Due to these rea-
sons, we believe it is safe to ignore the time taken for context switches in our
experiments.

5.3 Internode Scheduling

Internode scheduling is an extended version of local scheduling; the target node
for backfilling can be the neighboring nodes in the network. Local scheduling
deals only with the changes to the job execution order within the queue on a
node. Internode scheduling however, must decide the following:

(1) Which node initiates job migration,
(2) Which node should be the sender of a job,
(3) and which job should be migrated.

Internode scheduling takes place periodically at every scheduling interval after
the local scheduling process to see if the job at the top of the queue in the node
can be run on any of its neighbors and also to see if the node can run the job of
any of its neighbors in its currently free residual resources.

http://blog.tsunanet.net/2010/11/how-long-does-it-take-to-make-context.html
http://blog.tsunanet.net/2010/11/how-long-does-it-take-to-make-context.html

Decentralized Preemptive Scheduling 31

Algorithm 1. Preemptive Scheduling Algorithm
procedure
ScheduleJobs(JobQueue)

1: UpdateWaittimes()
2: CalculatePriorities()
3: while Rf ∈= 0 do
4: Jh = nextHighPriorityJobInQueue()
5: If Rjh < Rf .
6: Rf = Rf − Rja

7: end while
8: Jh = nextHighPriorityJobInQueue()
9: while (Pjh > Pmin(J ′

running)||Pjh ∈= 0) do
10: J ′

covered = 0
11: J ′

rem = 0
12: Rf (temp) = Rf

13: J ′
covered = J ′

Pmin

14: if Rjh <= (Rj′
Pmin

+ Rf (temp)) then

15: Preempt(J ′
Pmin)

16: Run(Jh)
17: else
18: Rf (temp) = Rf (temp) + Rj′

Pmin

19: FindJobstoPreempt()
20: end if
21: Jh = nextJobInQueue()
22: end while

end procedure
procedure
UpdateWaittimes()

1: WJa = CurrentT ime − EntryT ime(Ja) − TotalRuntime(Ja)

end procedure
procedure
CalculatePriorities()

1: Pja = ((α ∗ WJa) − (β ∗ Trem(Ja))

end procedure
procedure
FindJobstoPreempt()

1: while (J ′
rem ∈= 0) do

2: Select J ′
a such that Pj′

a
> Pmax(J ′

covered) and Pj′
a

= Pmin(J ′
rem)

3: J ′
covered+ = J ′

a

4: J ′
rem = J ′

running − J ′
covered

5: if Pj′
a

> Pj′
h

then

6: break {cannot preempt jobs}
7: else
8: if Rjh <= Rj′

a
then

9: Preempt(J ′
a)

10: Run(Jh)
11: break

32 A. Balasubramanian et al.

12: else
13: FindOptimal(J ′

covered, Jh)
14: end if
15: end if
16: end while

end procedure
procedure
FindOptimal(J ′

covered, Jh)

1: if Rjh <= (Rja′ + Rf (temp)) then
2: for each J ′[i] in J ′

covered with Pj′
i

< Pj′
a

and Rj′[i] = RJ′
Rmin

3: if Rj′
a

+ Rj′[i] >= Rjh then
4: Preempt J ′[i], J ′

a

5: Run Jh

6: break
7: else
8: searchCombinationsforOptimalPreemption(J ′[i], J ′

covered)
9: end if

10: end for
11: else
12: Rf (temp) = Rf (temp) + Rj′

a

13: end if

end procedure

In the PUSH scheduling model the job sender initiates the migration process.
First, the sender node tries to match priority of the job at the head of the queue
with the neighboring node’s queue. If the priority of the job at head of the queue
in its neighbor node is less than the job at the sender node, a PUSH message for
the job is sent to its neighbor containing the job’s priority (of sender node)
and the resource requirements. If the job can be backfilled at the neighbor node,
the PUSH message is accepted. Otherwise, a PUSH-reject message is sent back
to the sender node. If a job can be run on multiple neighbors, the sender sends
it to the node that has minimum objective function value as follows. Figure 2
shows the case where a job at the head of queue on one node is pushed to run
on the neighboring node.

fInter−PUSH = BM ∗ FM ∗ (1/CPUspeed)

where BM and FM are defined as follows:

BM =
maxk(Sk + Rk

j)
(
∑K

k=1(S
k+Rk

j))

K

=
MaximumUtilization

AverageUtilization

FM = 1 − (
∑K

k=1(S
k + Rk

j))
K

= 1 − AverageUtilization

where K is the number of resources (or requirements), Sk is normalized uti-
lization for resource k(1 < k < K, 0 < Sk < 1), and Rk

j is job j’s normalized

Decentralized Preemptive Scheduling 33

Fig. 2. Internode scheduling

requirement for resource k(0 < Rk
j < 1). BM measures unevenness across uti-

lization of multiple resources, and FM measures how much resources are under-
utilized on average. Therefore, lower BM and FM imply better balanced resource
utilization and better average utilization, respectively.

To prefer the fastest node among neighbors, the objective function also
includes an inverse term for CPU speed. Before sending a job profile, there is a
simple confirming handshake process between a sender and a potential receiver
to avoid inappropriate job migration because the potential receiver information
may not be up-to-date at the sender.

In the PULL model, a receiver node tries to obtain a job from its CAN
neighbors so as not to waste its available resources. However, the node does not
have all information on the queued jobs resource requirements in its neighbors to
minimize neighbor update message sizes, so the node invokes a PULL-Request
message to the node having the closest priority job at the head of queue that
is higher than the priority of job at the head of the queue in the current node.
If there are multiple such nodes, the request is sent to the node with maximum
queue size among its neighbors. If there are multiple candidate jobs in the waiting
queue, then the job that has minimum objective function value (BM * FM,
as above), is selected. If there is no candidate job, then the requesting node
gets a PULL-Reject message and continues to look for another potential sender
having the appropriate priority along with maximum queue length not contacted
recently.

34 A. Balasubramanian et al.

6 Experiment and Results

6.1 Experimental Setup

A synthetic workload was generated to model the grid resource configuration
containing heterogeneous nodes capable of executing a heterogeneous set of jobs.
The simulation scenario consists of 1000 multi-core nodes (having 1, 2, 4 or 8
cores), and 5000 jobs submitted to run on those nodes. Each node has multiple
resource capabilities such as CPU speed, memory size, disk space and the number
of cores. The jobs are also modeled similarly having the heterogeneous resource
configuration as their requirements. A high percentage of the nodes (and jobs)
have relatively low resource capabilities (requirements), and a low percentage of
nodes (and jobs) have high resource capabilities (requirements).

The interval between job submissions follow a Poisson distribution, with vary-
ing average job inter arrival times in the experiments. Each job has an estimated
running time associated with it. The estimated times are uniformly distributed
between 0.5T and 1.5T, with T = 3600 s, running on a canonical node with a
normalized CPU speed of 1. The simulated job running time is then scaled up
or down by the CPU speed relative to the canonical node.

We compare our schemes to the FCFS scheduler with backfilling which sched-
ules jobs in the order they arrive and also performs backfilling of jobs on residual
resources. To measure the performance of the long running grid system, we run
the simulations in a steady state environment. By steady state, its implied that
the job arrival and departure rates are similar, so that the system achieves a
dynamic equilibrium state during the simulation period, with the system nei-
ther highly overloaded nor underutilized. Hence, the average total system load
is determined by the inter-job arrival rate. However, very lightly loaded systems
were not tested, because they are not very interesting for measuring dynamic
scheduling performance.

The total waiting time for a job is usually calculated as the non-executing
time spent by the job from the time it was submitted in the network till it
completes execution. However, in this paper we do not account for the time
spent by the job between the job submission and job migration process in the
network. Instead we consider the job arrival time as the time at which the job
arrives at the node where it can be executed. Thus, the wait times are redefined
as the non-executing time spent by the jobs after the job has migrated to the
node where it would be scheduled for execution.

The neighbors of the node are arbitrarily generated. We produce results for
nodes with neighbors having similar resource constraints and nodes with vary-
ing neighbors in order to show the effectiveness of our algorithms in the CAN
and other interconnected networks. Specifically, we produce results for a network
where each node is connected to exactly two other nodes (abbreviated as 2-NN)
and a CAN-like network with 3–4 neighbors. We say CAN-like because the net-
work constructed does not strictly adhere to CAN specifications though each
node is connected to 4 other nodes that have similar resource capabilities. For
simplicity we refer to the CAN-like network as CAN’ in the following sections.

Decentralized Preemptive Scheduling 35

6.2 Experimental Results

Figure 3 lists and compares the median wait times across all jobs for each job
inter-arrival time. The median wait times are plotted for the four scenarios FCFS
with Backfilling, Local preemptive scheduling with Backfilling and Internode
scheduling (in both CAN’ and 2-NN). We experimented with different values for
α. However, setting α = 0 yielded the lowest median wait times across all jobs
and so, we use this value to plot our graphs. This is essentially a Shortest Job
First preemptive strategy i.e. at any time, the job with the smallest remaining
executing time is chosen to run irrespective of its waiting time in the queue.

When the jobs have low inter-arrival times, jobs arrive quickly onto the node
and spend more time waiting in the queue. In contrast, when jobs have higher
inter-arrival times, they arrive considerably later than its previous job and end
up with comparatively lower wait times. It is clear from Fig. 3 that local pre-
emptive scheduling algorithm results in significantly lower wait times when com-
pared to the FCFS strategy for all cases of job inter-arrival times. Significant
differences can also be observed between waiting times of local preemptive and
internode scheduling proving the effectiveness of the internode scheduling algo-
rithm. The differences in wait times for CAN’ and 2-NN internode scheduling
algorithms is low for low job inter-arrival times (1.5 and 2.0) and increases with
increase in job inter-arrival times. This shows that the internode scheduling is
more effective for more neighbors especially when the job inter-arrival time is
high. This is because for low job inter-arrival times, job migrations to neighbor-
ing nodes are rare since those nodes are already executing many jobs.

We also conducted experiments for values α = 0.5 and β = 1 so that jobs
that have been waiting in the queue for a while get a chance to run. In this
scenario, the jobs that have waited in the queue for a long time compete against
the shorter running jobs. The intuition behind this experiment was to prevent
the long waiting jobs from being starved of CPU and to reduce their total waiting
time. Figure 4a shows the gain achieved in the wait times for the top 10 % of
long waiting jobs in CAN’. We also observed similar results for the 2-NN and

Fig. 3. Median wait times for different job inter-arrival times

36 A. Balasubramanian et al.

(a) Median waittimes in long waiting jobs (b) Overall median waittimes

Fig. 4. Median wait time comparisons in CAN’

local preemptive scheduling scenarios. Figure 4b shows the median wait time
comparisons of the two approaches. The choice of picking the appropriate value
of alpha depends on what type of service we intend to provide the end-users
(i.e. bounded wait times for all jobs vs. highest throughput for most jobs). We
believe the values of the wait times to be dependent on the type of load (jobs)
being submitted to the nodes and the network environment.

Figure 5a–c illustrates the distribution of the wait times for jobs in all the
environments, i.e. preemptive scheduling (both local and internode scheduling)
and non-preemptive FCFS scheduling. The first 2000 jobs having the lowest wait
times have been omitted in plotting the graphs. We did this because so many
jobs wait for very little time and so cutting off the part where all the lines
completely overlap doesn’t lose any information. The plots show that the wait-
ing times of jobs decreases with increasing job inter-arrival times in the FCFS
environment. The curves in Fig. 5a show improvement in the percentage of jobs
completed with low wait times for local and internode scheduling as compared to
the FCFS scheduling. We can also observe that the curves for local preemptive
scheduling and internode scheduling (for 2-NN) are almost overlapping. How-
ever, the distinction between these curves becomes more apparent with higher
job inter-arrival times. We can see a marked improvement (in Fig. 5c) on the
percentage of jobs completed with low wait times for our preemptive scheduling
strategies over the non-preemptive FCFS approach when the job inter-arrival
rate is 4.0. The internode scheduling in CAN’ performs significantly better than
the non-preemptive FCFS strategy.

We also repeated the same experiment for a smaller scheduling interval of 2.5 s
to observe any significant variances in the wait times. However, the improvements
in the median and average wait times were almost negligible except for Internode-
scheduling for inter-arrival rate of 4 s in CAN’. The CAN’ (for inter arrival
time = 4 s) responded very well (almost 50 % decrease in median wait time) with
the change in the scheduling interval. We think this is because the CAN’ has
more neighboring nodes with similar resource requirements that are capable of
running the job and thus succeeds with a higher probability of scheduling the job
when compared to the 2-NN topology. Also, due to high job inter-arrival time

Decentralized Preemptive Scheduling 37

(a) Inter-arrival rate 1.5 (b) Inter-arrival rate 2.5

(c) Inter-arrival rate 4.0

Fig. 5. Fraction of jobs completed in the four schedulers

the scheduler is able to find more such nodes because the neighboring nodes
have more likelihood of having empty cores. We believe that factors such as the
order in which the jobs are submitted, their execution times and the resource
requirements for these jobs, all play a critical role in determining the optimal
scheduling interval. More on this is discussed in the Future Work section.

Another important scheduling criterion is reducing the maximum wait time,
so that no (or fewer) jobs wait a very long time to run. Figure 6a–c focuses on
the tails of the job distributions of Fig. 5a–c (the last 100–200 jobs having the
highest wait times). Figure 6a shows that the local preemptive scheduler does
better than internode scheduler when the job inter-arrival rate is 1.5. We believe
this is because since a large number of jobs arrive in a short span of time, the jobs
migrated to neighboring nodes would result in longer job queues for some nodes;
thus increasing the wait times for jobs further down the queue. In other words,
there is a load imbalance. We can see a similar trend in Fig. 6b though there
are fewer such jobs. As the job inter-arrival time increases, this effect is reduced.
In Fig. 6c we observe an interesting trend where Internode-2NN does better than
both local preemptive and Internode CAN’ schedulers.

The total number of preemptions for shortest-job first strategy in the Local
preemptive scheduling (for scheduling interval of 5 s) scenario varied from 556
(for Inter-arrival times = 1.5 s) to 471 (for IAT = 4 s) while that for Internode
scheduling varied between 570 to 480. This was approximately equal to 1/8th the

38 A. Balasubramanian et al.

(a) Inter-arrival rate 1.5 (b) Inter-arrival rate 2.5

(c) Inter-arrival rate 4.0

Fig. 6. Fraction of jobs completed in the four schedulers (towards the end)

total number of jobs submitted in the system. As mentioned before, we believe
that factors such as the order in which the jobs are submitted, their execution
times, resource requirements and load balancing of these jobs all play a criti-
cal role in determining these numbers. For scheduling interval (δ) of 2.5 s, we
didn’t notice any significant differences in these values. The number of preemp-
tions started to increase considerably only when the value of alpha was set to
1 or higher. But this resulted in high median and average wait times across the
network.

7 Conclusion

A preemptive scheduling algorithm (with backfilling) for multi-core grid resources
was designed and implemented. As part of local scheduling, jobs that are estimated
to complete sooner were given higher priority compared to long running jobs while
at the same time ensuring that the long running jobs get their fair share of the CPU.
The results show that our algorithm yields lower average and median wait times
when compared to the FCFS approach. In particular, the shortest-job first algo-
rithm yields the lowest median wait-times for the system compared to cases where
long running jobs compete for the CPU. The Internode scheduling ensures that
those jobs that cannot be immediately scheduled are PUSHED to a neighboring
node if it can run in their residual resources. It also allows a node to PULL jobs

Decentralized Preemptive Scheduling 39

from neighboring nodes to utilize its local residual resources. An appropriate value
for α, the weight for the waiting time for a job, ensures to lower the wait times for
long waiting jobs. In addition, the median wait times for CAN-like systems can be
further lowered by choosing the appropriate value for the scheduling interval δ.

8 Future Work

The local scheduling and internode scheduling algorithms find and execute a
job using residual free resources in a node. This means that only jobs that can
start running immediately will be moved. However, if the load across nodes is
skewed, the job queue lengths vary greatly, and hence a more pro-active queue
balancing scheme would improve load distribution and overall throughput across
heterogeneous nodes. To address this, we illustrate the same technique used in
[9] here. Firstly, the maximally loaded resource among the K available resources
is set as the Load of a node, and the algorithm minimizes the total sum of the
Loads among neighbors, and also balances Load across the nodes [22]. The term
W k

i is defined, normalized load for Resource k of Node i by:

W k
i =

∑
Jj∀Queuei

(Rk
j), 1 ≤ k ≤ K

where Jj is Job j, Rk
j is the kth normalized resource requirement for Jj , and

Queuei is the job queue for node i. The normalized load of Node i, Li is given by

Li = Max(W i
k), 1 ≤ k ≤ K

The PUSH and PULL job migration models can be used for queue balancing,
as they were for internode scheduling. For PUSH, a node i computes normalized
load (Li) for itself and for its neighbors. If Li is the locally maximum value
among all its neighbors, then node i checks its queue to find candidate jobs for
migration that reduce Li if the (candidate) job is moved. Among these jobs, those
jobs that satisfy the priority constraints in the neighboring node are considered.
When there are multiple candidate jobs, the algorithm selects the job and the
receiver node that minimize an objective function if the job is moved to the
neighbor.

The PULL model is similar to the PUSH model, except that the node with a
locally non-zero minimum normalized load among equal or less capable neighbors
will initiate the PULL process from the most loaded node among its neighbors.
The Queue Balancing technique may further improve the performance of the
desktop grid system.

Further research can be done by experimenting with different sets of work-
loads for different types of networks. We could then observe what values of δ
and α give optimal values for the median wait times across the nodes.

Acknowledgements. We appreciate the comments received from anonymous review-
ers of the JSSPP 2013 workshop. They pointed out some key issues that has led us to

40 A. Balasubramanian et al.

do further research on this topic. We thank Manjunath Gopinath, Bin Liu, Sarat Babu
Eruvuru, Bhavani Bhaskar and Abhishek Prasad for their participation in discussions
and their feedback on this idea.

References

1. Al-Azzoni, I., Down, D.G.: Dynamic scheduling for heterogeneous desktop grids.
J. Parallel Distrib. Comput. 70(12), 1231–1240 (2010)

2. Bach, M.J.: The Design of the UNIX Operating System, Chapter 8 - Process
Scheduling and Time. Prentice Hall, Upper Saddle River (1986)

3. Berman, F., Wolski, R., Figueira, S., Schopf, J., Shao, G.: Application level schedul-
ing on distributed heterogenous networks. In: Proceedings of the 1996 ACM/IEEE
Conference on Supercomputing. ACM/IEEE (1996)

4. Zhou, D., Lo, V.: Wave scheduler: scheduling for faster turnaround time in peer-
based desktop grid systems. In: Feitelson, D.G., Frachtenberg, E., Rudolph, L.,
Schwiegelshohn, U. (eds.) JSSPP 2005. LNCS, vol. 3834, pp. 194–218. Springer,
Heidelberg (2005)

5. Zhou, D., Lo, V.: Wavegrid: a scalable fast-turnaround heterogeneous peer-based
desktop grid system. In: Proceedings of the 20th International Parallel and Dis-
tributed Processing Symposium (IPDPS2006), April 2006. IEEE Computer Society
Press (2006)

6. Harchol-Balter, M., Schroeder, B., Bansal, N., Agrawal, M.: Size-based scheduling
to improve web performance. ACM Trans. Comput. Syst. 21(2), 207–233 (2003)

7. Jiménez, V.J., Vilanova, L., Gelado, I., Gil, M., Fursin, G.G., Navarro, N.: Predic-
tive runtime code scheduling for heterogeneous architectures. In: Seznec, A., Emer,
J., O’Boyle, M., Martonosi, M., Ungerer, T. (eds.) HiPEAC 2009. LNCS, vol. 5409,
pp. 19–33. Springer, Heidelberg (2009)

8. Kim, J.S., Keleher, P., Marsh, M., Bhattacharjee, B., Sussman, A.: Using content-
addressable networks for load balancing in desktop grids. In: Proceedings of the
16th IEEE International Symposium on High Performance, Distributed Computing
(HPDC-16), June 2007 (2007)

9. Lee, J., Keleher, P., Sussman, A.: Decentralized dynamic scheduling across hetero-
geneous multi-core desktop grids. In: Proceedings of the 19th International Hetero-
geneity in Computing Workshop (HCW2010), April 2010. IEEE Computer Society
Press (2010)

10. Lee, J., Keleher, P., Sussman, A.: Supporting computing element heterogeneity in
p2p grids. In: Proceedings of the IEEE Cluster 2011 Conference, September 2011.
IEEE Computer Society Press (2011)

11. Li, C., Ding, C., Shen, K.: Quantifying the cost of context switch. In: Proceedings
of the 2007 Workshop on Experimental Computer Science ExpCS ’07. ACM, New
York (2007)

12. Litzkow, M., Livny, M., Mutka, M.: Condor-a hunter of idle workstations. In: 8th
International Conference on Distributed, Computing Systems, pp. 104–111 (1988)

13. Niu, S., Zhai, J., Ma, X., Liu, M., Zhai, Y., Chen, W., Zheng, W.: Employing
checkpoint to improve job scheduling in large-scale systems. In: Cirne, W., Desai,
N., Frachtenberg, E., Schwiegelshohn, U. (eds.) JSSPP 2012. LNCS, vol. 7698, pp.
36–55. Springer, Heidelberg (2013)

14. Raman, R., Livny, M., Solomon, M.: Matchmaking: distributed resource manage-
ment for high throughput computing. In: Proceedings of the 7th International
Symposium on High Performance, Distributed Computing, July 1998, pp. 140–146
(1998)

Decentralized Preemptive Scheduling 41

15. Moore, S.: Multicore is bad news for super computers. IEEE Spectrum. 45(11), 15
(2008)

16. Snell, Q.O., Clement, M.J., Jackson, D.B.: Preemption based backfill. In: Feitelson,
D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2002. LNCS, vol. 2537, pp.
24–37. Springer, Heidelberg (2002)

17. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content
addressable network. In: Proceedings of the ACM SIGCOMM Conference, August
2001 (2001)

18. Stallings, W.: Operating Systems: Internals and Design Principles, 4th edn. Pren-
tice Hall, Upper Saddle River (2001). ISBN: 0-13-031999-6

19. Tanenbaum, A.S.: Modern Operating Systems, 3rd edn. Pearson Education, Upper
Saddle River (2008). ISBN: 0-13-600663-9

20. Thompson, K.: UNIX implementation. Bell Syst. Tech. J. 57, 1931–1946 (1978)
21. Leinberger, W., Karypis, G., Kumar, V.: Job scheduling in the presence of mul-

tiple resource requirements. In: Supercomputing ’99: Proceedings of the 1999
ACM/IEEE Conference on Supercomputing (CDROM), p. 47. ACM, NewYork
(1999)

22. Leinberger, W., Karypis, G., Kumar, V., Biswas, R.: Load balancing across near-
homogeneous multi-resource servers. In: Proceedings of the 9th Heterogeneous
Computing Workshop, appears with the Proceedings of IPDPS 2000, pp. 60–71
(2000)

23. Xhafa, F., Abraham, A.: Computational models and heuristic methods for grid
scheduling problems. Future Gener. Comput. Syst. 26(4), 608–621 (2010)

Comparing Performance Heatmaps

David Krakov and Dror G. Feitelson(B)

School of Computer Science and Engineering,
The Hebrew University of Jerusalem,

91904 Jerusalem, Israel
feit@cs.huji.ac.il

Abstract. The performance of parallel job schedulers is often expressed
as an average metric value (e.g. response time) for a given average load.
An alternative is to acknowledge the wide variability that exists in real
systems, and use a heatmap that portrays the distribution of jobs across
the performance× load space. Such heatmaps expose a wealth of details
regarding the conditions that occurred in production use or during a
simulation. However, heatmaps are a visual tool, lending itself to high-
resolution analysis of a single system but not conducive for a direct
comparison between different schedulers or environments. We propose
a number of techniques that allow to compare heatmaps. The first two
treat the heatmaps as images, and focus on the differences between them.
Two other techniques are based on tracking how specific jobs fare under
the compared scenarios, and drawing underlying trends. This enables
a detailed analysis of how different schedulers affect the workload, and
what leads to the observed average results.

1 Introduction

Graphs and visualizations are generally acknowledged to be important tools for
understanding complex systems. But as Anscombe [1] noted, few of us escape
the notion that graphs are rough, and when dealing with large amounts of data
numerical computations are the “real” analysis. Such analysis assumes that we
are able to find a numerical formula that is congenial to the data. However,
numerical recipes typically entail an abstraction and simplification, while in
many real-world examples it is best to first look at the data in all its complexity
and observe its behavior, perhaps forgoing more formal analysis altogether [2].

Parallel job scheduler performance evaluation is no exception to this rule. The
conventional approach for performance evaluation of parallel jobs schedulers tries
to condense the varied information about scheduling behavior into few represen-
tative metrics such as the mean response time (the time between job submittal
and completion) or the mean slowdown (the ratio between the actual runtime
and the response time, which includes the wait time). However, using the mean
fails miserably on asymmetrical distributions [4]. Slowdown is especially prob-
lematic, as short jobs may have disproportionately high slowdowns. Downey [5]
calls the tendency to report summary statistics for non-symmetric distributions

N. Desai and W. Cirne (Eds.): JSSPP 2013, LNCS 8429, pp. 42–61, 2014.
DOI: 10.1007/978-3-662-43779-7 3, c© Springer-Verlag Berlin Heidelberg 2014

Comparing Performance Heatmaps 43

that exist in real workload data a “bad habit”; Frachtenberg [7] mentions using
the mean for asymmetrically distributed (skewed) results as one of the pitfalls
of parallel job scheduling evaluation.

A major reason for using simple condensed metrics is the need to com-
pare different job scheduling strategies applied to the same workload, or to
show how performance depends on some parameter (e.g. how simulation results
change with load conditions). But if our metrics (and specifically, their averages)
mis-represent reality, any comparison based on them becomes questionable. As
research of parallel job scheduling strategies commonly revolves around com-
parison of alternatives, finding a good comparison tool becomes an important
problem.

Heatmaps are a powerful tool to visualize large amounts of data, and are
gaining hold in various areas as an analysis tool for complex information. When
applied to parallel job schedulers performance evaluations they can help to visu-
alize how various job metrics distribute relative to different load conditions [8],
in contrast to the traditional approach of using the average metric as a single
data point for evaluation. Thus heatmaps can help avoid the pitfall of misleading
performance metrics.

However, it is difficult to visually compare different runs. Such comparisons
are important to identify odd patterns and find better behavior. But — as the
examples we explore will show — heatmaps may “look the same” despite having
important but subtle differences. Naturally, since heatmaps visualize a job dis-
tribution over the load× performance space (as recorded from some scheduler
and workload), one can use statistical analysis tools to compare different job
distributions and obtain numerical results. But as we will show, this approach
can be misleading as well.

As an alternative, we suggest to stay in the visual domain. We therefore
need ways to highlight changes in behavior and allow high resolution analysis
of the differences between heatmaps representing different scheduling algorithms
or conditions. We present a number of such techniques in this paper. The first
is simple image subtraction. The second is based on ratios, and is similar in
spirit to the Kullback-Leibler divergence. Two additional schemes are based on
tracking how individual jobs move across the load×performance space.

2 Heatmaps Applied to Evaluation of Parallel Job
Schedulers

The performance of a computer system obviously depends on the workload it
handles. Reliable performance evaluations therefore require the use of represen-
tative workloads. The workload used for the evaluation should represent real job
distributions, including internal correlations and structure emerging from user
feedback and system boundaries. As a result, evaluations of new schedulers often
use workload logs obtained from real production systems to drive a simulation.
Many real world traces are available at the Parallel Workloads Archive [11],
converted into the Standard Workload Format (SWF) [3].

44 D. Krakov and D.G. Feitelson

Heatmaps were recently proposed as a tool that allows high resolution analy-
sis of a job trace or of simulation results [8]. This is based on the observation
that a single trace or simulation contains a wealth of information about behavior
under different load conditions, which can be exploited to zoom in on different
conditions [12].

Specifically, a heatmap is like a scatter-plot showing the distribution of the
jobs in the log. In our heatmaps the X axis is the load experienced by each job,
and the Y axis is the job’s performance, as measured per-job by common metrics
such as slowdown or response time. The heatmap image is based on a fine grid
where each bin shows how many jobs experienced the load and performance
represented by the bin’s coordinates. “Hot” (dark) bins mean lots of jobs and
“cold” (light) bins are few jobs.

We use the same engine for heatmap calculation as was used in our previous
work [8], and have made its code available online [13]. The load experienced by a
job is computed as the weighted average of the utilizations of the system during
the job’s lifetime. During a job’s lifetime the utilization changes at discrete points
when some other job either starts or terminates. Assume this happens n times,
and denote the job’s arrival time by t0, its termination by tn, and the utilization
at interval i by U(ti, ti + 1). The load experienced by the job is then

load =
n∑

i=1

ti − ti−1

tn − t0
U(ti−1, ti)

Since the distribution of most metrics is very skewed (for example for wait
time, there are very few jobs that wait a lot and many jobs that wait a little,
covering times from few seconds to days), the Y axis is plotted in logarithmic
scale. Bin shades are also log scaled — there are many bins with very few jobs
(typically 1–2) and few bins with a lot of jobs (hundreds). The bins are hexagonal
and use a 50 × 50 grid with approximately 2,500 bins.

As an example, consider the behavior of the job scheduler of the CTC-SP2
system based on a year-long trace. Figure 1 shows a heatmap of the wait time
jobs experienced in the original trace as a function of the load. The blue X marks
the spot of the average wait time and load. Few observations are evident:

1. The mean wait time is not very representative of the distribution.
2. There is a distinct blob of jobs at the left side that seems to reflect a set of

jobs that suffered from some congestion condition.
3. Wait times follow a bimodal distribution, with many jobs concentrated around

low wait times and many more around a higher wait time. The short wait
times may reflect some minimal granularity of activating the scheduler, mean-
ing that it only runs say once a minute and therefore does not schedule newly
arrived jobs immediately.

4. There are many jobs in the “background”, showing no distinct relation
between load level and experienced wait time.

Moreover, compare this with an EASY simulation based on same job arrivals
as the original trace, shown in Fig. 2. The simulation is quite different from

Comparing Performance Heatmaps 45

Fig. 1. Heatmap of the original log
from the CTC-SP2 computer, showing
asymmetrical job distribution.

Fig. 2. Heatmap of EASY simulation
based on the CTC-SP2 log.

the original log, notably in the spread of jobs and in the maximal wait times
observed. Generally, looking into heatmaps of many real world systems, it has
been shown that both real world traces and simulation results exhibit distribu-
tions for which the traditional mean-based comparison metrics are ill-suited [8].

For our comparison evaluation we use FCFS, EASY backfilling, and conserv-
ative backfilling (CONS) schedulers. In FCFS (First-Come-First-Serve) jobs are
kept in order of arrival and whenever there are enough resources (free proces-
sors) for the first queued job, it is allocated its required resources and starts to
run. If sufficient resources are not available, jobs are queued waiting for them to
become available. Jobs never jump each other in the queue.

EASY [9] is a popular backfilling algorithm, and the most commonly used
method for batch scheduling [6]. It approaches the problem of idle resources in
the FCFS setting using the following optimization: when a job arrives or termi-
nates the scheduler scans the queue of waiting jobs by order of arrival, running
them as available processors allow. Once it reaches a job it can’t run (requires
more processors than available) the scheduler makes a reservation for the job.
A reservation guarantees enough processors at the earliest time when the job
will be able to run, based on current knowledge of when enough processors will
become available after termination of currently running jobs. The scheduler then
continues to scan the queue for smaller jobs that can be started without inter-
fering with the reservation, and executes them. This action is called backfilling.
Since the scheduler can not know when the jobs will end, it relies on run time
estimates provided by the user. Once a running backfilled jobs exceed its user
estimation it is killed by the scheduler to ensure waiting jobs with reservations
start on time. “EASY P”, a hypothetical EASY with “perfect” exact user esti-
mations, is also used as a reference for comparison.

CONS [10] is the “vanilla” backfilling algorithm, in which no job can delay
any previous job in the queue. All jobs in the queue receive reservations upon

46 D. Krakov and D.G. Feitelson

their arrival (unlike the more aggressive EASY which reserves only the top job
on the queue). Thus, response times and order are guaranteed upon submittal.

3 Heatmap Comparison Techniques

Heatmaps serve as a tool to investigate the whole population of jobs instead
of summary statistics such as the average slowdown. Thus, by comparing the
heatmaps describing the performance of a certain log under two different sched-
ulers, we may hope to achieve a fine-grained comparison of these schedulers.
However, no common practice exists for the comparison of different heatmaps.
We suggest two possible approaches:

– Visual heatmap comparison: Visual (image) comparison can help identify
changed areas between two job distributions. Since it is image based, such
a visual approach can be used to compare vastly different populations. The
input of this approach is a set of two heatmaps (two matrices of same size), and
the output is an image that highlights differences between these heatmaps.
Uses include (1) comparison of different schedulers on the same workload,
especially powerful for comparing similar schedulers to highlight small changes
in the resulting performance distribution; and (2) comparison of scheduling of
different job sets, and observation of the behavior of the same scheduler over
different workloads.

– Job aware comparison: If the compared heatmaps portray performance
distribution of the same workload, that is the same set of jobs but under
different schedulers, it is interesting to compare the performance experienced
by individual jobs. Visual comparisons as described above do not use this
information. The aim of this approach is to identify trends in the behavior of
specific classes of jobs, such as what happens to high slowdown jobs, or how
jobs with low run time are affected. This approach does not directly compare
heatmaps — instead it shows how sets of jobs that created one heatmap moved
in order to create the second heatmap.

The next two sections detail these two approaches.

4 Visual Heatmap Comparison

The visual approach is completely general, and can be applied to any pair of
heatmaps. In its simplicity and applicability lies its greatest advantage.

A naive image comparison is employed. Each heatmap is actually a render-
ing of a 2D histogram, showing the number of jobs in each bin. The bins in the
heatmaps correspond to each other, with a bin for each combination of load and
performance. Denote bin i in the two heatmaps by Ai and Bi. Then, calculate
the difference between the values for each bin, and determine the color based on
whether is it less or greater than zero. We use two different differences:

Comparing Performance Heatmaps 47

Simple difference Di = Bi − Ai

Ratio difference Di =
Bi

Ai
In both cases, we assign colors to differences using a logarithmic scale. Thus

successively darker shades indicate growth in the order of magnitude of the dif-
ference. This approach helps to identify subtle differences between possibly very
similar distributions of results. For example, see Fig. 3, which compares two
very similar runs of the EASY scheduler. The second simulation (with some-
what better backfilling due to using perfect runtime estimates) has less jobs
with high wait times across all utilization levels. The visual produces even more
pronounced results when simulations are different enough — for example, Fig. 4
shows unsurprisingly clear advantage of EASY over FCFS.

In the above examples we use red and blue shading to distinguish whether the
first or second heatmap dominates. This shows up prominently in color displays,
but is not suitable for black and white printing. In a black and white version,
equality can be gray, with advantages for one heatmap shown in darker shades
and advantages for the other shown in lighter shades.

Figure 5 shows side-by-side comparisons between simple and ratio differences.
Ratio differences sometimes create wider boundaries between areas where either
heatmap dominates — as the SDSC-SP2 EASY vs. EASY P comparison. This
happens because in the boundary areas the advantage of one heatmap over the
other is usually small in relative terms, even if it is large in absolute terms.
On the other hand ratios are more susceptible to noise, as the noisy SDSC-SP2
CONS vs EASY ratio comparison shows, while simple difference clearly shows
the advantage of EASY over conservative backfilling for that workload.

Relation to Kullback-Leibler Divergence
A comparison of two heatmaps is essentially just a comparison of two histograms,
or distributions. Thus an alternative to our visual approach is to use statistical
tools that compute the difference between two distributions. Applying this to our
context, we can compute the difference between how two sets of jobs distribute
over the performance × load space.

One commonly used tool to measure difference between distributions is the
Kullback-Leibler divergence DKL. This comes from information theory, and is
typically used to compare a model distribution with the underlying “true” theo-
retical distribution. Specifically, given a base distribution P and an approxima-
tion Q, the divergence is defined as

DKL =
n∑

i=1

P (i)log
P (i)
Q(i)

If we’re just interested in comparing distributions, this expression can be inter-
preted as follows. First, for each possible value i, find the ratio of the probabilities
to observe i under P and Q. Then take the log of this ratio, to find its order
of magnitude. Next, weight these values by P (i), meaning that more weight is
assigned to the more probable values. Finally sum it all up to obtain a measure

48 D. Krakov and D.G. Feitelson

Fig. 3. Ratio comparison of two simulations based on the SDSC SP2 workload: EASY
and “perfect” EASY (EASY P). The original heatmaps are very similar. The darkest
blue indicates that EASY P had 32 times as many jobs in this bin as EASY (Color
figure online).

Fig. 4. Simple difference comparison of two different simulations (FCFS and EASY)
based on the HPC2N workload. The darkest blue indicates that EASY had 3174 more
jobs in this bin than FCFS (Color figure online).

Comparing Performance Heatmaps 49

Fig. 5. Comparison of ratio differences (on the left) and simple differences (on the
right) for the same pairs of heatmaps. Ratios show that some of the large absolute
differences are actually small in relative terms.

of the overall divergence. A small divergence signifies similar distributions, or a
good model. Note that the first steps are the same as in our ratio difference: we
assign colors based on the log of the ratio.

50 D. Krakov and D.G. Feitelson

Fig. 6. Left: ratio comparison of between EASY and conservative backfilling for SDSC-
SP2. Right: weighted version of same results (DKL inspired). Note color levels adjusted
to accommodate asymmetry around zero level. Note that most of the high ratios
apparently have low weights.

To apply this to our performance heatmaps, we can transform each bin into
a probability by dividing by the total number of jobs: P (i) = ji/N , where
ji is the number of jobs in bin i. But due to the ratio, DKL is only defined
if P (i) = 0 whenever Q(i) = 0 (absolute continuity). The simplest practical
approach to ensure this uses a uniform prior, which amounts to adding 1 to each
bin and renormalizing the heatmap. Denoting the number of bins by S we then
get P (i) = (ji + 1)/(N + S), and similarly for Q. These are plugged into the
equation to compute DKL.

When comparing performance heatmaps, DKL has two shortcomings. First,
it quantifies only the magnitude of the difference, with no indication which is
better. Second, due to summing over all possible values, different pairs of distri-
butions may lead to similar results. In particular, things may cancel out, leading
to situations where a meaningful difference receives a very low divergence score.

Consider as an example Fig. 6 comparing EASY scheduling based on SDSC-
SP2 workload with conservative scheduling (CONS). The computed DKL is par-
ticularly low (0.084), indicating no significant difference. But looking at the
weighted ratio heatmap we find that there are in fact two areas with relatively
high probability and different patterns for the two schedulers, that apparently
cancel out:

– With CONS the odds are higher than EASY for jobs experiencing higher
wait time and slightly lower load. This combination results from using more
reservations, more waiting in queue, and thus overall lower utilization.

– With CONS there is considerably less chance of a job to experience no
slowdown with full utilization. One possible explanation is that these bins
may represent small jobs that are executed under EASY due to aggressive
backfilling.

Comparing Performance Heatmaps 51

5 Job-Aware Heatmap Comparison

Job aware comparisons use heatmaps as a tool to map what happened to certain
classes of jobs by creating a heatmap of those jobs only and trying to generate
a “before” and “after” view. It relies on domain specific understanding and
especially the fact that the compared heatmaps show distributions of the same
jobs. Thus this can’t be used to compare arbitrary heatmaps or even the results
of simulations using different logs.

Two approaches are explored: per-area comparison, where we plot heatmaps
of jobs from select areas only in the original heatmap, and quiver plots, where
we plot the trends of all jobs by creating a “stream flow” plot.

5.1 Area Plots

To compare performance results A and B for the same workload, we split the
heatmap of A into a mesh sized N × M , and plot a separate heatmap based on
B for jobs that come from every square of the A mesh.

We use a 3 × 3 mesh in the figures below. Thus we partition the A heatmap
into 9 squares, and partition the jobs in the workload into 9 sets, such that the
jobs in each set contributed to one square of the heatmap. The sets correspond
to all possible combinations of low, medium, and high load with low, medium,
and high performance. In other words, we get 9 sets of jobs based on how they
fared in the A evaluation: those jobs that experienced high load and low wait
times will be in one set, those that experienced high load and medium wait times
in a second set, those that experienced high loads and high wait times in a third
set, and so on. Then we use the second evaluation to draw a separate heatmap
showing the load and performance of the jobs in each of these sets.

Note that the sets need not be of equal size. Usually there are very few jobs
that enjoy a low load but still suffer from high wait time or slowdown values,
and sometimes there may even be no such jobs. On the other hand there are
many jobs that experienced high loads, both with high and low performance.

The advantages of this approach are that it allows to keep the high resolution
analysis (a heatmap) for classes of jobs. It can easily be extended to plotting
any groups of jobs (such as jobs by a specific user) instead of basing classes on
performance areas in A.

Results. When comparing different simulations using the same workload data
set, the area plots allow to see differences in behavior:

– Figure 7 shows EASY vs. EASY P (“perfect EASY”, same as EASY but uses
actual job runtimes instead of user estimates to determine reservations). Per-
fect EASY clearly performs better — all jobs with high wait times experienced
lower wait times and moved “down” on the plot. Surprisingly, the class of few
jobs with low wait times and high utilization (lower right) saw a substantial
increase in wait times. Better packing comes at the expense of the jobs that
did not previously wait in high load conditions.

52 D. Krakov and D.G. Feitelson

Fig. 7. Comparison of SDSC SP2 EASY and EASY P simulations. The heatmaps
derived from the two simulations are shown on top. The array of 9 heatmaps below
show disjoint areas in the EASY heatmap (blue outline), and how the jobs in these
areas were mapped to the EASY P heatmap (Color figure online).

– Figure 8 shows FCFS vs. EASY, based on the HPC2N workload, which pro-
duced rather similar plots. Jobs in upper right were strongly affected, expe-
riencing much lower wait times. Jobs in the center and middle right were
affected as well: many jobs moved to the bottom zero wait-time line, probably
because other jobs were packed better and left more processors free.

Comparing Performance Heatmaps 53

Fig. 8. Comparison of HPC2N FCFS and EASY simulations.

On the other hand, comparison of original schedulers versus simulations
(Fig. 9) shows that there was very little relation between the job distribution
in the original log and what these jobs experienced in the simulation. No matter
where the jobs were originally, the distribution of each subset in the simulation
is essentially the same.

54 D. Krakov and D.G. Feitelson

Fig. 9. Comparison of original KTH workload and FCFS simulation.

5.2 Quiver Plots

In this approach we split the A heatmap into a grid of relatively high resolution
(a 40 × 40 grid with 1,600 cells is used). For each cell we potentially draw a
quiver as follows:

1. Let J be the set of jobs in that cell of A. Look at the subset of jobs Jout ⊂ J
that leave the cell, that is that either the load they experienced (their x
coordinate) or their performance level (their y coordinate) are out of the cell
boundary in the B heatmap.

Comparing Performance Heatmaps 55

2. A quiver (vector) is plotted only for cells with more that a minimal number
of leaving jobs (|Jout| > 25). This is done to reduce the amount of “noise”
from changes in insignificant cells. The minimal number (25) is tuned for the
logs analyzed, but an adaptive approach based on the average cell size can
be employed.

3. Compute the placement of the quiver. The quiver’s tail is placed at the mean
location of the jobs in the A heatmap (by definition this is within the cell).
Its head is placed at the mean location of the Jout jobs in the B heatmap:

tail.d = 1
|Jout|

∑
j∈Jout

jA.d for d ∈ {x, y}
head.d = 1

|Jout|
∑

j∈Jout
jB .d for d ∈ {x, y}

4. The quivers are based on only the leaving jobs to allow for a visually mean-
ingful vector even when only a small percentage of the jobs are leaving, and
so the mean of all the jobs is close to the cell or even within the cell. The
color of the quiver is based on the percentage of the jobs moved, making it
easy to distinguish cases where only a small fraction of the jobs moved from
cases where most of the jobs moved.

Results. We first look at behavior of similar schedulers to check if trends can
be identified, and whether there is symmetry between them. Consider the com-
parison EASY and EASY P based on the SDSC SP2 data trace, Fig. 10.

– Top, EASY → EASY P: jobs move towards a new “center” with higher load
and lower wait time. Some percentage of the jobs with low wait time along
the high load 1.0 axis may experience higher wait times in result. Jobs that
experienced no wait time at all load levels may experience high wait times —
the “picket fence” on the bottom. Zooming in on bottom cells shows a very
uneven distribution: most of the jobs move right or left in terms of experienced
load, but stays at zero wait time, while a small group (up to 40 %) “enters
the game” and experiences higher (103) wait time closer to the average.

– Bottom, reversed plot of the same two simulations. A new center of weight
draws jobs to it, with higher wait time and lower load. Interestingly, two
trends are very similar to the previous plot. First, the “picket fence” at the
bottom is present in both plots, as there are distinct jobs that had to wait
in one scheme but not in the other. Second, Jobs that had an almost perfect
packing (100 % experienced load) and low wait time move to the left, now
experiencing higher delay. It seems that for the EASY scheduler both these
effects are common to any run.

A similar center of weight shift can be seen when comparing EASY vs. Conser-
vative backfilling, based on a number of different workload traces (Fig. 11).

When comparing the non backfilling FCFS to EASY (HPC2N workload based
simulation in Fig. 12), EASY clearly helps lower wait times of jobs in all load
levels and create a denser packing, resulting in higher achieved load. There are

56 D. Krakov and D.G. Feitelson

Fig. 10. Quiver plot comparison of SDSC SP2 EASY and EASY P simulations. On
the top the changes in job performance when moving from EASY to EASY P, and on
the bottom the other way around.

Comparing Performance Heatmaps 57

Fig. 11. Quiver plot comparison of CONS and EASY simulations on three workload
traces.

58 D. Krakov and D.G. Feitelson

Fig. 12. Quiver plot comparison of HPC2N FCFS and EASY simulations.

a couple of cells with a downward arrow not following the general trend, repre-
senting a class of jobs that waited much less while experiencing on average the
same load. Unlike backfilling comparisons, the edges of the plot are almost not
affected: no “picket fence” is observed, even though there is a large number of
jobs at the bottom, and jobs that experience 100 % utilization also do not move.

6 Conclusions

We suggested several different heatmap comparison techniques, some general
image-based that are usable for any heatmaps (and in particular for performance

Comparing Performance Heatmaps 59

heatmaps), and others that use specific domain knowledge on the underlying data
and are only suitable for comparison of simulations based on the same underlying
workload. These techniques visualize how the whole distribution of performance
results changes between the compared systems. Thus they are significantly differ-
ent from the common approach of comparing average performance values.

In some cases, looking at the whole distribution is crucial for reaching the
correct conclusions. When conventional techniques are used, all the details are
ultimately lost in favor of a single summary statistic. Thus a low Kullback-Leibler
divergence (for example) is taken to mean that the compared distributions are
similar. But this is not necessarily the case. It is also possible that some differ-
ences existed, but they canceled out. When looking at the whole distribution,
these differences would be seen.

The image-based (visual) comparisons can be applied to any heatmaps, not
only of parallel job scheduling evaluations. Moreover, they can even compare
different job populations. In the context of job scheduling, such comparisons
retain the ability of heatmaps to overcome the limitation of conventional average
metrics, and provide a tool for comparing skewed distributions where average
metrics are misleading.

Major advantages over the other methods are simplicity to compute and
conciseness — a single heatmap is produced. Ratio difference visual comparison
highlights more clearly acute differences between very similar job distributions,
while simple difference is more representative of the overall changes. One dis-
advantage of using two colors is the inappropriateness for B&W printing or
color-blind researchers. Gray levels may be used as a remedy.

A second group of methods is job aware plots. These can only be applied to
the same job population. They are not applicable when the underlying data is
different — e.g. to compare simulations based on a model that generates new
jobs on each run. Area plots offer a high resolution view into different classes
of jobs and can be used to dive in into edge cases. They do not allow for a single
comparison representation, as each class is visualized separately. Thus area plots
are complicated both to compute and to analyze.

Quiver plots employ averaging to plot trends of change. They create a
single-image concise result, but as with any averaging, can be misleading when
the average is not representative due to the presence of skewed distributions, as
is the case with cells on the zero wait time axis. Quiver plots also suffer from
noise in some of the logs checked. One possible remedy might be employing a
low pass filter as a preliminary step.

For many cases the naive image difference comparison might be good enough,
given its simplicity in computation and in visual understanding. For example, in
the comparison of SDSC-SP2 EASY vs. EASY P the visual comparison (Fig. 3)
plainly shows that EASY P reduces the number of high wait time jobs, which is
exactly the basic result seen in the job-aware area plot and quiver comparisons
(Figs. 7 and 10).

60 D. Krakov and D.G. Feitelson

The job-aware comparisons allow for more advanced observations, at the
possible expense of obscuring the general picture. In particular they can serve
to understand some deeper behaviors:

– Looking into a job-aware comparison of a log’s original scheduler versus a
simulated one shows that the distribution of jobs remains similar in any large
sub class of jobs. This shows that the simulation completely mixes the jobs
and does not retain any relations with how they were treated in reality. This
is a much stronger conclusion than can be derived based on the plainly visible
difference between the heatmaps.

– Quiver plots show a “center of weight” that exists in backfilling based sched-
ulers (both EASY and conservative backfilling). Jobs are drawn to it from
all sides. This is a similar result to the postulation Rudolph and Smith made
that schedulers have a “Desired Operating Range” (DOR) [12].

– Looking in both directions of comparison allows to highlight invariants in
scheduler behavior. For EASY those are jobs with zero wait time or with
100 % experienced load. This might allow to distinguish more “interesting”
jobs in the evaluation.

This paper is only a first try at heatmap comparison, which may serve as
a basis for development of more advanced scheduler evaluation and comparison
tools. Naturally, it would be interesting to apply the same techniques to a wider
class of schedulers and environments. The techniques used can be extended, both
in usability (how good is the visual representation) and applicability for different
scenarios. One possible development of another type of comparison would be to
compare time frames instead of comparing what happens to jobs: the change in a
particular time window between two different scheduling runs. Another would be
to group the jobs by different properties, such as the users who submitted them.
As further research, heatmaps can also be drawn for different axes, for example
wait time vs. job duration or job parallelism, allowing to observe correlations
between performance effects and different job attributes.

Acknowledgements. Many thanks to all those who have made their workload data
available through the Parallel Workloads Archive.

References

1. Anscombe, F.J.: Graphs in Statistical Analysis. Am. Stat. 27(1), 17–21 (1973)
2. Feitelson, D.G.: Looking at data. In: 22nd International Parallel & Distributed

Processing Symposium (IPDPS), April 2008
3. Chapin, S.J., Cirne, W., Feitelson, D.G., Jones, J.P., Leutenegger, S.T.,

Schwiegelshohn, U., Smith, W., Talby, D.: Benchmarks and standards for the eval-
uation of parallel job schedulers. In: Feitelson, D.G., Rudolph, L. (eds.) JSSPP
1999, IPPS-WS 1999, and SPDP-WS 1999. LNCS, vol. 1659, pp. 67–90. Springer,
Heidelberg (1999)

4. Crovella, M.E.: Performance evaluation with heavy tailed distributions. In: Feit-
elson, D.G., Rudolph, L. (eds.) JSSPP 2001. LNCS, vol. 2221, pp. 1–9. Springer,
Heidelberg (2001)

Comparing Performance Heatmaps 61

5. Downey, A.B., Feitelson, D.G.: The elusive goal of workload characterization. Per-
form. Eval. Rev. 26(4), 14–29 (1999)

6. Etsion, Y., Tsafrir, D., Feitelson, D.G.: Process prioritization using output produc-
tion: scheduling for multimedia. ACM Trans. Multimed. Comput. Commun. Appl.
2(4), 318–342 (2006)

7. Frachtenberg, E., Feitelson, D.G., Petrini, F., Fernandez, J.: Adaptive parallel job
scheduling with flexible coscheduling. IEEE Trans. Parallel Distrib. Syst. 16(11),
1066–1077 (2005)

8. Krakov, D., Feitelson, D.G.: High-resolution analysis of parallel job workloads. In:
Cirne, W., Desai, N., Frachtenberg, E., Schwiegelshohn, U. (eds.) JSSPP 2012.
LNCS, vol. 7698, pp. 178–195. Springer, Heidelberg (2013)

9. Lifka, D.: The ANL/IBM SP scheduling system. In: Feitelson, D.G., Rudolph, L.
(eds.) JSSPP 1995. LNCS, vol. 949, pp. 295–303. Springer, Heidelberg (1995)

10. Feitelson, D.G., Rudoplh, L., Schwiegelshohn, U., Sevcik, K.C., Wong, P.: Theory
and practice in parallel job scheduling. JSSPP 1997. LNCS, vol. 1291, pp. 1–34.
Springer, Heidelberg (1997)

11. Parallel Workloads Archive. http://www.cs.huji.ac.il/labs/parallel/workload/
12. Rudolph, L., Smith, P.H.: Valuation of ultra-scale computing systems. In: Feitelson,

D.G., Rudolph, L. (eds.) IPDPS-WS 2000 and JSSPP 2000. LNCS, vol. 1911,
pp. 39–55. Springer, Heidelberg (2000)

13. Performance Heatmap Utilities. https://bitbucket.org/krakov/heatmaps

http://www.cs.huji.ac.il/labs/parallel/workload/
https://bitbucket.org/krakov/heatmaps

Distributed Workflow Scheduling Under
Throughput and Budget Constraints in Grid

Environments

Fei Cao(B), Michelle M. Zhu, and Dabin Ding

Department of Computer Science,
Southern Illinois University Carbondale,

Carbondale, IL 62901, USA
vicky@siu.edu

Abstract. Grids enable sharing, selection and aggregation of geographi-
cally distributed resources among various organizations. They are
emerging as promising computing paradigms for resource and compute-
intensive scientific workflow applications modeled as Directed Acyclic
Graph (DAG) with intricate inter-task dependencies. With the growing
popularity of real-time applications, streamingworkflows continuously pro-
duce large quantity of experimental or simulation datasets, which need
to be processed in a timely manner subject to certain performance and
resource constraints. However, the heterogeneity and dynamics of Grid
resources complicate the scheduling of streaming applications. In addition,
the commercialization of Grids as a future trend is calling for policies to
take resource cost into account while striving to satisfy the users’ Quality
of Service (QoS) requirements. In this paper, streaming workflow applica-
tions are modeled as DAGs. We formulate scheduling problems with two
different objectives in mind, namely either maximize the throughput under
a budget/cost constraint or minimize the execution cost under a minimum
throughput constraint. Two different algorithms named as Budget con-
strained RATE (B-RATE) and Budget constrained SWAP (B-SWAP) are
developed and evaluated under the first objective; Another two algorithms
named as Throughput constrained RATE (TP -RATE) and Throughput
constrained SWAP (TP -SWAP) are evaluated under the second objective.
Experimental results based on GridSim showed that our algorithms either
achieved much lower cost with similar throughput, or higher throughput
with similar cost compared with other comparable existing algorithms.

Keywords: Streaming workflow · Task scheduling · Grid computing ·
Throughput and budget

1 Introduction

Grid computing has emerged as a promising solution for large-scale resource
and compute-intensive applications. A wide range of scientific applications can
be represented as complex workflows comprised of many computing tasks with

N. Desai and W. Cirne (Eds.): JSSPP 2013, LNCS 8429, pp. 62–80, 2014.
DOI: 10.1007/978-3-662-43779-7 4, c© Springer-Verlag Berlin Heidelberg 2014

Distributed Workflow Scheduling Under Throughput and Budget Constraints 63

inter-task dependencies. Many of the scientific jobs can be modeled as Directed
Acyclic Graphs (DAGs) where each vertex represents a computing task and
each directed edge represents the execution dependency between adjacent tasks.
Scheduling tasks onto heterogeneous and dynamically changing Grid resources
needs to respect the precedence constraints and optimize certain criteria based
on various user and system situations. We consider the Grid environment as
an overlay network consisting of a number of heterogeneous computer nodes
interconnected by network links. The network can be modeled as a directed
weighted graph which can be complete or not due to network types.

A number of Grid workflow management systems such as Condor DAG-
Man [1], Pegasus [2], and GridFlow [3], etc. have been developed. These systems
provide middleware tools to control the mapping and execution of workflow
modules by strategically considering the availability and capacities of the under-
ling Grid resources. However, managing Grid environment to run various jobs
is a complex task which requires scheduling policies to reach certain tradeoff
due to different requirements from the perspectives of users and various Grid
providers usually from different organizations. Existing Grid resource manage-
ment systems are mainly driven by system-centric policies which aim to opti-
mize a system-wide standard of performance, whereas future Grid environments
need to guarantee certain level of Quality of Service (QoS) requirements as well
as meet user-centric economic concerns [4]. A number of Grid systems such as
Globus [5] have considered some of these multi-objective issues by using resource
trading and QoS-based scheduling [4].

In recent years, execution costs on the Grid are being considered by more
and more scientists due to the fact that different resources belonging to different
organizations may have different allocation/pricing policies on resource usage
[4]. The user computing cycle quote/allocation policy can be translated into
certain pricing scheme which will be utilized by the scheduler to balance the
workload. Such pricing mechanism is widely used by Cloud computing and could
be converted to virtual dollars and utilized in the future Grid environment.
Therefore, users with budget or quota constraint may not always desire the
highest possible QoS such as throughput, i.e., the data production rate at the last
task, for a smooth flow in streaming applications with multiple instances of input
datasets [6]. Typical examples of these applications include video-based real-
time monitoring systems that perform feature extraction and detection, facial
reconstruction, pattern recognition, and data mining, etc.

In order to build some theoretical foundations for the future generation of
paid Grid, we focus on developing workflow scheduling algorithms considering
both budget and throughput constraints. In particular, we consider two different
objectives of user requirements. One is to maximize throughput under a bud-
get constraint while another one is to minimize the execution cost under the
minimum throughput constraint.

In our approach, we strategically select an appropriate set of heterogeneous
Grid resources in an arbitrarily connected network and map each computing task
from the workflow to the most appropriate Grid nodes for certain performance

64 F. Cao et al.

criteria. If multiple tasks are mapped onto the same node (i.e., node reuse), the
node’s computing resource is shared in a fair manner by concurrent tasks exe-
cuting on that node. Similarly, the bandwidth of a network link is also shared by
concurrent data transfers. For budget constrained objective, the B-RATE algo-
rithm adopts a layer-based mapping scheme and assigns partial cost constraint
for each layer, then chooses the maximum partial throughput from the first layer
to current mapping layer; The B-SWAP algorithm starts with a schedule that is
optimized for throughput, and keeps swapping tasks between nodes by choosing
those tasks whose cost savings result in the smallest loss in throughput under
the budget constraint. To our best knowledge, there is currently no algorithm to
maximize the throughput for streaming applications under budget constraint or
minimize execution cost under throughput constraint in the Grid. The superi-
ority of these two algorithms are demonstrated in comparison with some repre-
sentative workflow scheduling algorithms to maximize the throughput including
Streamline [7] and LDP [6] in a set of different scales of simulation cases. For
throughput constrained objective, the TP -RATE algorithm also follows layer-
based scheduling scheme and chooses the minimum partial cost whose partial
throughput is larger or equal to the throughput constraint for each layer; the
TP -SWAP algorithm starts with the cheapest schedule of tasks onto resources,
and keeps swapping tasks that can lead to higher throughput with low cost
increase.

This paper is organized as follows: Sect. 2 gives an overview of related works.
Section 3 conducts analytical models and formulates the scheduling problem. In
Sect. 4, the algorithms are described in details. Section 5 presents the perfor-
mance evaluations. Conclusion can be found in Sect. 6.

2 Related Works

The optimization problem of scheduling DAG-structured tasks with complex
execution dependencies has been studied for years and is known to be NP-
complete [7]. Over the years, workflow scheduling problems in heterogeneous
environments have attracted many research efforts, among which a significant
amount of efforts have been devoted to workflow scheduling in Grid environ-
ments under different scheduling and resource constraints. For example, a num-
ber of DAG-structured Grid workflow management systems such as Condor
DAGMan [1,8,9], Globus [5,10], Pegasus [2,11] and GridFlow [3] provide tools
and infrastructure to control the execution of various workflow applications on
the Grid. Condor is a specialized workload management system for compute-
intensive jobs [8] and it can be used to serve Grid environment such as Globus
Grid [10]. Directed Acyclic Graph Manager (DAGMan) [9] is a meta-scheduler
for Condor jobs and manages dependencies between jobs at a higher level than
the Condor Scheduler. Pegasus Workflow Management System [11] bridges the
scientific domain with the execution environment (e.g., Clusters, Grids, Clouds,
etc.) by automatically scheduling and monitoring high-level workflow onto under-
lying distributed resources. GridFlow includes a user portal and services of both

Distributed Workflow Scheduling Under Throughput and Budget Constraints 65

global Grid workflow management and local Grid sub-workflow scheduling. Sim-
ulation, execution and monitoring functionalities are provided at the global Grid
level, which work on the top of an existing agent-based Grid resource manage-
ment system [3].

Meanwhile, many performance-driven workflow scheduling algorithms aim
to achieve optimal execution performances [12] including the minimum overall
execution time, the maximum reliability and throughput for streaming applica-
tions. Streamline [7], a workflow scheduler for streaming data, takes dynamic
nature of the Grid into account and takes application requirements, constraints,
and resource availability into consideration for scheduling decisions. To achieve
the reduced overall execution time, Heterogeneous Earliest Finish Time (HEFT)
heuristic algorithm [13] was proposed to initially order all the tasks of a work-
flow in descending order of their upward rank values calculated as the sum of
the execution time and the communication time of the tasks. This algorithm
is a commonly cited list-scheduling heuristic [14]. In [15], Dongarra et al. dis-
cussed the fundamental properties of a good bi-objective scheduling algorithm,
and proposed an approximation algorithm namely RHEFT, which is extended
from HEFT algorithm [13] by considering the reliability and allows the user to
subjectively choose a trade-off between high reliability and low overall execu-
tion time. Recursive Critical Path (RCP) algorithm utilizes the dynamic pro-
gramming strategy and iteratively find critical path to minimize the overall
execution time [16]. This algorithm is used as the mapping scheme for the Scien-
tific Workflow Automation and Management Platform (SWAMP) [17] which is a
Condor/DAGMan-based workflow system that enables scientists to conveniently
assemble, execute, monitor, control, and steer computing workflows in distrib-
uted environments via a unified web-based user interface. Experiments show that
RCP provides a better mapping performance than the mapping scheme currently
employed by the Condor Scheduler [17,18]. In [19], a new non-critical task map-
ping approach using A* and Beam Search (BS) algorithms to improve the RCP
algorithm was proposed. For high workflow throughput, Gu et al. designed a
greedy layer-oriented heuristic workflow mapping scheme (LDP) to identify and
minimize the global bottleneck [6]. In [20], the same authors extended the LDP
algorithm by taking reliability into account, and further developed a decentral-
ized mapping procedure.

However, the commercialization of Grids requires market-driven strategies
while considering users’ QoS constraints like deadline and computation cost
(budget). Such a guarantee of service is hard to provide in a Grid environ-
ment due to its shared, heterogeneous and distributed resources owned by dif-
ferent organizations with their own policies and pricing mechanisms [4]. Many
algorithms for deadline and budget constrained scheduling have been proposed
[21–27]. In [25], Sakellariou et al. proposed two different approaches, namely the
LOSS approach and the GAIN approach to find the schedule for a given DAG-
structured workflow and a given set of resources without exceeding the budget
and is still optimized for overall execution time. The LOSS approach starts with
a schedule that is optimized for overall execution time by using HEFT [14] or

66 F. Cao et al.

HBMCT [28] and keeps re-mapping as long as the budget is not exceeded. The
GAIN approach starts with the cheapest schedule and conducts re-mapping to
minimize the overall execution time as long as the budget is still available. In
[27], Yu et al. proposed a cost-based workflow scheduling algorithm that mini-
mizes the execution cost for time-critical workflow applications by partitioning
workflow tasks and generating schedules based on optimal task partition. It also
allows the scheduler to re-compute some partial workflows during execution when
their initial schedules are violated. A deadline assignment strategy was devel-
oped to distribute the overall deadline over each task partition. Abrishami et al.
proposed a QoS-based workflow scheduling algorithm [23] based on the partial
critical paths which first tries to map the overall critical path of the workflow
such that it completes before the deadline and execution cost can be minimized,
then it finds the partial critical path for each mapped task on the critical path
and executes the same procedure recursively.

Our work differs from the above mentioned works in several aspects: (i) we
consider both throughput and budget requirements; (ii) we consider incomplete
Grid environment due to network connectivity and facility accessibility; (iii) we
consider resource sharing among multiple concurrent computing tasks on com-
puting nodes or concurrent data transfers over network links.

3 Problem Overview

3.1 Analytical Models

The left side of Fig. 1 shows a workflow of a distributed computing application
constructed as directed acyclic graph (DAG) GT = (VT , ET) with |VT | = m.
Vertices are used to represent the set of computing tasks VT = {T1, T2, ...Tm}:
T1 is the starting task and Tm denotes the ending task. The weight wij on edge eij

represents the size of data transferred from task Ti to task Tj . The dependency
between a pair of tasks is shown as a directed edge. Task Tj receives a data input
wij from each of its preceding tasks Ti and performs a predefined computing
routine whose complexity is modeled as a function ζj(·) of the total aggregated
input data size zj . However, in real scenario, the complexity of a task is an
abstract quantity which not only depends on the computational complexity of
its own function but also on the implementation details realized in its algorithm.
Upon completion of execution of task Tj , data output wjk will be sent to each

Fig. 1. Workflow model (left), Grid network model (right).

Distributed Workflow Scheduling Under Throughput and Budget Constraints 67

of its succeeding tasks Tk. A task cannot start its execution until all input data
required by this task arrive. To generalize our model, if an application task has
multiple starting or ending tasks, a virtual starting or ending task of complexity
zero can be created and connected to all starting or ending tasks without any
data transfer along the edges.

The right side of Fig. 1 shows a heterogeneous Grid network environment
and is represented as an arbitrary weighted network graph GR = (VR, ER) with
|VR| = n, consisting of a set of computing nodes VR = {R1, R2, ...Rn}. Depend-
ing on the network infrastructure, the topology of a computer network may be
complete or not due to network connectivity and facility accessibility. Resource
Rj is featured by its computing power pj . The network link lij between resources
Ri and Rj is featured by bandwidth bij , and the minimum link delay dij . Both
nodes and links are considered as Grid resources. The parameters of a workflow
are given in Table 1.

Inspired by previous work [20], executing a workflow will require the following
time and cost:

(1) Execution time of task Ti on node Ri′

texec(Ti, Ri′) =
∑ α(t)·δi(t)

pi′
(1)

where α(t) denotes the number of concurrent tasks executing on node Ri′ during
Δt, δi(t) = pi′

α(t)Δt is the amount of partial task execution completed during time
interval [t, t+Δt] when α(t) remains unchanged, and ζi(zi) =

∑
δi(t) is the total

computational requirement of task Ti.

Table 1. Parameter of workflow and Grid network model

Parameters Definitions

GT = (VT , ET) The computation workflow
m Number of tasks in the workflow
Ti The i-th computing task
eij Dependency edge from task Ti to Tj

wij Data size transferred over dependency edge eij
zi Aggregated input data size of task Ti

ζi(·) Computational complexity of task Ti

GR = (VR, ER) The Grid network environment
n Number of computing nodes in the Grid environment
Rj The j-th node
pj Computing power of node Rj

lij Network link between nodes Ri and Rj

bij Bandwidth of link li,j
dij The minimum link delay of link li,j
ξj Unit executing price of node j (G$/s)
λij Unit executing price of network link lij (G$/s)

68 F. Cao et al.

(2) Data transfer time of dependency edge ejk over network link lj′k′

ttran(ejk, lj′k′) =
∑ β(t)·δjk(t)

bj′k′ + dj′k′ (2)

where β(t) denotes the number of concurrent data transfer over link lj′k′ during
Δt, δjk(t) = bj′k′

β(t) Δt is the amount of partial data transfer execution completed
during time interval [t, t+Δt] when β(t) remains unchanged, and wjk =

∑
δjk(t)

is the total data transfer size of dependency edge ejk.
(3) Bottleneck time

BT = max
Ti∈VT ,ejk∈ET

Ri′ ∈VR,lj′k′ ∈ER

(
texec(Ti,R

′
i),

ttran(ejk,lj′k′)

)
(3)

(4) Throughput
Throughput is the inverse of the global bottleneck of a mapped workflow in

streaming applications where multiple instances of input datasets are continu-
ously generated and fed into the workflow.

TP = 1
BT (4)

(5) Cost of executing task Ti on node Rj

Cj(Ti) = ξj × texec(Ti, Rj) (5)

(6) Cost of transfer data of dependency edge ejk over network link lj′k′

Cj′k′(ejk) = λjk × ttran(ejk, lj′k′) (6)

(7) Total execution cost (i.e. user charge) of scheduling a workflow

Cost =
m∑

i=1

Cj(Ti) +
∑

∀ejk∈ET

Cj′k′(ejk) (7)

3.2 Problem Formulation

The scheduling problem is defined as follows:

Definition 1. Grid users can submit DAG-structured workflow applications
modeled as GT = (VT , ET) that process streaming datasets with both budget
and throughput requirements. The budget constrained user aims to maximize the
application throughput within their specific budgets:

max
all possible schedules

(TP), such that Cost ≤ Budget (8)

The throughput constrained user aims to minimize the execution cost while
the minimum throughput is guaranteed:

min
all possible schedules

(Cost), such that TP ≥ TPConst (9)

where TP is the throughput, Cost is the user charge, Budget is the budget con-
straint, and TPConst is the minimum throughput constraint.

Distributed Workflow Scheduling Under Throughput and Budget Constraints 69

Fig. 2. Layer based sorting of the DAG-structured workflow.

4 Algorithm Design

The following notations are introduced to facilitate the description of our algo-
rithms:

– pre(Ti): the set of preceding tasks of task Ti;
– Vone−schedule(pre(Ti)): the set of nodes for possible mapping of those tasks in

pre(Ti);
– suc(Rj): the set of succeeding nodes of node Rj ;
– ∩

∀R ∈ Vone−schedule(pre(Ti))
(suc(R)): an intersection operation that finds the set

of common succeeding nodes for Vone−schedule(pre(Ti));
– ∩

∀R ∈ Vone−schedule(pre(Ti))
(suc(R)) ∪ R, as the candidate mapping node set for

task Ti, denoted as Vcandidate(Ti);
– VLoss−candidate(Ti): Vpre(Ti) ∩ Vsuc(Ti), an intersection operation that casts on

the set of nodes that task Ti’s predecessor tasks are mapped onto, and the set
of nodes that task Ti’s successor tasks are mapped onto;

– VGain−candidate(Ti): Vpre(Ti) ∩Vsuc(Ti), an intersection operation that casts on
the set of nodes that task Ti’s predecessor tasks are mapped onto, and the set
of nodes that task Ti’s successor tasks are mapped onto;

4.1 Budget Constrained Approaches

We develop two algorithms, namely B-RATE, B-SWAP for budget constrained
users. The purpose of these two algorithms is to find the affordable resources to
map workflow tasks in order to achieve the maximum throughput under certain
budget constraint.

The B-RATE Algorithm. The B-RATE algorithm in Algorithm1 first sep-
arates DAG-structured workflow tasks into ordered layers based on task depen-
dency and node connectivity in the Grid environment as shown in Fig. 2. For
each layer k (k ∈ [1,MaxLayer]), we calculate a cost constraint CostConstk
using Eq. 10 where CR is the total computing requirement (i.e., number of

70 F. Cao et al.

Algorithm 1. B-RATE(Gt,Gn,Budget)
Input: Task graph Gt, Grid Resource graph Gn, Budget
Output: A workflow schedule that maximizes the throughput under budget con-
straint.

1: for all Ti ∈ task graph do
2: Apply layer-based sorting;
3: Calculate computing requirement for each task;
4: end for
5: Calculate total computing requirement CR for the entire workflow;
6: MaxLayer = the number of total layers in Gt;
7: for k = layer 1 to MaxLayer do
8: Calculate computing requirement CRk for current layer;
9: Calculate cost constraint CostConstk for current layer;

10: for all task Ti ∈ current layer do
11: Find pre(Ti) and Vone−schedule(pre(Ti));
12: Find Vcandidate(Ti);
13: end for
14: Find all possible mapping combinations of Vcandidate(Ti) for all tasks Ti in cur-

rent layer;
15: for all possible mapping combinations do
16: Calculate curCost for current layer;
17: if curCost ≤ CostConstk then
18: Calculate partialTP ;
19: else
20: Continue;
21: end if
22: end for
23: Select the schedule(s) with the maximum partialTP , if there’re several schedules

with the same partialTP , choose the one with the minimum curCost;
24: end for
25: Calculate total Cost;
26: return TP , Cost;

instructions) for the entire workflow, and CRk denotes the partial computing
requirement for tasks in layer k:

CostConstk = CRk

CR ∗ Budget (10)

In lines 10–14, for each task Ti in the current layer, we find its preceding
tasks pre(Ti) and possible set of their mapping nodes Vone−schedule(pre(Ti)),
then determine the candidate node set Vcandidate(Ti) for mapping. In lines 15–22,
we consider all possible combinations of Vcandidate(Ti) for all tasks Ti in current
layer and calculate their costs. For those possible mapping combinations whose
costs are within the cost constraint of current layer, the partial throughput
partialTP from the first layer to the current layer is calculated. In line 23, the
schedule with the maximum partialTP is selected. There might exist several
possible schedules with the same throughput, we simply choose the one with the

Distributed Workflow Scheduling Under Throughput and Budget Constraints 71

minimum curCost. Lines 8–23 are repeated until tasks from the last level are
mapped, then we get the throughput and total execution cost. The complexity
of this algorithm is O(mn).

Algorithm 2. B-SWAP(Gt,Gn,Budget)
Input: Task graph Gt, Grid Resource graph Gn, Budget
Output: A workflow schedule that maximizes the throughput under budget con-
straint.

1: for all Ti ∈ task graph do
2: Apply layer-based sorting;
3: Calculate computing requirement for each task;
4: end for
5: MaxLayer = the number of total layers in Gt;
6: for k = layer 1 to MaxLayer do
7: for all task Ti ∈ current layer do
8: Find pre(Ti) and Vone−schedule(pre(Ti));
9: Find Vcandidate(Ti);

10: end for
11: Find all possible mapping combinations of Vcandidate(Ti) for all tasks Ti in cur-

rent layer;
12: for all possible mapping combinations do
13: Calculate partialTP ;
14: Select the schedule(s) with the maximum partialTP , if there’re several sched-

ules with the same partialTP , choose the one with the minimum partialCost;
15: end for
16: end for
17: Calculate total Cost;
18: while Costnew > Budget && Costcur > Costnew do
19: for all Ti ∈ task graph do
20: GenerateLossCandidateSetForEachTask();
21: end for
22: for all Rj ∈ VLoss−candidate(Ti) do
23: Calculate LossWeight(j);
24: end for
25: Select the task with the minimum LossWeight to re-map;
26: end while
27: Calculate total Cost;
28: return TP , Cost;

The B-SWAP Algorithm. The B-SWAP algorithm in Algorithm2 starts
with identifying an initial schedule (in lines 1–16) which produces the maximum
throughput of the entire workflow regardless of the budget (e.g., by using LDP
[6]). In lines 18–26, if the available budget is larger or equal to the cost required
for this schedule, this schedule can be used right away. However, if the budget is
less than the cost of this schedule, swapping operations are invoked. The objec-
tive of this algorithm is to re-map those tasks to achieve the minimum loss in

72 F. Cao et al.

throughput for the largest cost savings. Each iteration ends with a reduced total
cost with similar throughput. To determine the swapping strategy, LossWeight
for task Ti as the iteration loss between the current and new possible mapping
schemes onto its candidate nodes in VLoss−candidate(Ti) are computed in Eq. 11:

LossWeight(j) = TPCur−TPNew

CostCur−CostNew
(11)

where TPCur and CostCur are the throughput and cost of current schedule,
respectively; TPNew and CostNew are the throughput and cost of Ti re-mapped
onto node Rj which is a candidate node from VLoss−candidate(Ti), respectively. If
CostNew is larger than CostCur, we ignore this candidate node. The algorithm
keeps re-mapping by considering the smallest values of LossWeight. Our selec-
tion criteria of having large cost saving and small throughput loss will result in
small value of LossWeight. The complexity of this algorithm is O(mns), where
s is the number of swaps.

4.2 Throughput Constrained Approaches

We develop two algorithms, namely TP -RATE, TP -SWAP for throughput con-
strained users. The purpose of this set of algorithms is to satisfy the minimum
throughput constraint by finding the best resources that minimizes the execution
cost.

The TP-RATE Algorithm. The TP-RATE algorithm (provided in Algo-
rithm 3) applies layer-based sorting to the DAG-structured workflow and then
schedule computing tasks to network nodes layer-by-layer. In line 9–17, for each
layer, we consider all possible combinations of Vcandidate(Ti) for all tasks Ti

in current layer, calculate their partialTP , and calculate partialCost if their
partialTP is larger or equal to the throughput constraint TPConst. In line 18,
the schedule with the minimum partialCost is selected. If there are several pos-
sible schedules with the same partialCost, we simply choose the one with the
minimum partialTP . Line 5–19 is repeated until the last task is reached, then
we compute the total Cost. The complexity of this algorithm is O(mn).

The TP-SWAP Algorithm. The TP-SWAP algorithm (provided in Algo-
rithm 4) first schedules all the tasks to the cheapest node, there might be sev-
eral nodes with the same unit cost, then choose the one with the maximum
computing power. If the throughput is bigger or equal to required throughput
constraint, then this schedule can be used straightaway. In other cases that the
throughput is smaller than the constraint, swap is invoked. The objective of this
algorithm is to achieve the maximum gain in throughput for the least increase in
cost via module re-mapping. It means that for each re-map, the new schedule’s
throughput is close to the current schedule but with less increase in cost. To
determine such re-map, GainWeight values for each task Ti scheduled to each
of its candidate nodes in VGain−candidate(Ti) are computed as Eq. 12:

Distributed Workflow Scheduling Under Throughput and Budget Constraints 73

Algorithm 3. TP-RATE(Gt,Gn,TPConst)
1: for all Ti ∈ task graph do
2: Apply lay-based sorting;
3: MaxLayer = the number of total layers in Gt;
4: for k = layer 1 to MaxLayer do
5: for all task Ti ∈ current layer do
6: Find pre(Ti) and Vone−schedule(pre(Ti));
7: Find Vcandidate(Ti);
8: end for
9: Find all possible schedule combinations of Vcandidate(Ti) for all tasks Ti in

current layer;
10: for all possible schedule combinations do
11: Calculate partialTP ;
12: if partialTP ≥ TPConst then
13: Calculate partialCost;
14: else
15: Continue;
16: end if
17: end for
18: Select the schedule(s) with the minimum partialCost, if there’re several sched-

ules with the same partialCost, choose the one with the maximum partialTP ;
19: end for
20: end for
21: Calculate total Cost;
22: return TP , Cost;

Algorithm 4. TP-SWAP(Gt,Gn,TPConst)
1: for all Ti ∈ task graph do
2: Schedule Ti to the cheapest node, if several nodes have the same unit cost, choose

the one with the maximum computing power;
3: end for
4: Calculate TP , Cost;
5: while curTP < TPConst do
6: for all Ti ∈ task graph do
7: GenerateGainCandidateSetForEachTask();
8: for all Rj ∈ VGain−candidate(Ti) do
9: Calculate GainWeight;

10: end for
11: Select the task with the maximum GainWeight to re-assign;
12: end for
13: end while
14: Calculate total Cost;
15: return TP , Cost;

74 F. Cao et al.

GainWeight(j) = TPNew−TPCur

CostNew−CostCur
(12)

where TPCur and CostCur are the throughput and cost of current schedule,
respectively; TPNew and CostNew are the throughput and cost of Ti re-mapped
to node Rj which is a candidate node in VGain−candidate(Ti) for Ti, respec-
tively. The algorithm keeps re-mapping by considering the greatest values of
GainWeight for all tasks and their candidate nodes. The complexity of this
algorithm is O(mns), where s is the number of swaps.

5 Performance Evaluation

We design and implement our experiments based on the GridSim [29] toolkit.
The four algorithms are implemented as four separate schedulers, which can
generate scheduling results for given workflows and networks. The workflow tasks
are submitted to a Grid resources as advance reservations in GridSim. The cost
and throughput are recorded after simulations are finished in GridSim.

5.1 Experimental Settings

Workflow and Grid Network Configurations. Given that different work-
flow applications and networks may have different impact on the performance of
the scheduling algorithms, we develop a workflow and network generator which
can randomly create varying parameters of the workflows and networks that
follows a similar experimental approaches used by some previous published arti-
cles [6,20], and within a suitably selected range of values: (i) the number of tasks
and the complexity of each task; (ii) the number of inter-task communications
and the data transfer size between two tasks; (iii) the number of nodes and the
processing power of each node; (iv) the unit execution price of each node and
network link; (v) the number of network links as well as the bandwidth and the
minimum link delay of each link.

In our experiments, the cost that a user needs to pay for a workflow execution
(i.e. user charge) comprises of two parts, namely cost of executing tasks on nodes,
and cost of transfer data of dependency edges over network links.

We represent the problem size in Table 2 for workflow scheduling as a four-
tuple (m, |ET |, n, |ER|): m tasks and |ET | dependency edges in the workflow,
and n nodes with |ER| links in the network.

Performance Metrics and Experimental Scenarios. We consider the two
performance metrics of throughput and execution cost, and evaluate our algo-
rithm from the following experimental scenarios:

– Impact of budget constraint
– Impact of throughput constraint
– Impact of workflow size
– Impact of network size

Distributed Workflow Scheduling Under Throughput and Budget Constraints 75

Table 2. Workflow configurations

Problem index Workflow ID Network ID Problem size (m, |ET |, n, |ER|)
1 1 1 10, 20, 5, 19
2 2 2 15, 25, 10, 89
3 3 4 20, 42, 15, 209
4 4 4 25, 52, 20, 379
5 5 5 30, 60, 25, 425
6 6 6 35, 72, 30, 630
7 7 7 40, 79, 35, 855
8 8 8 45, 93, 40, 1250
9 9 9 50, 96, 45, 1600
10 10 10 60, 122, 50, 2200

Incomplete network graphs are simulated due to network connectivity and
facility accessibility. To conduct thorough comparison, we select different budget
constraints and simulate several different sizes of workflows and networks. To
set up baselines for comparison, we also developed some representative workflow
scheduling algorithms for maximizing throughput (due to no existing algorithm
for maximizing throughput under budget constraint) including Streamline [7]
and LDP [6] (which is used to find an initial schedule in B-SWAP).

5.2 Analysis of Results

Budget Constrained Approaches. In order to compare the performance of
the two algorithms for maximizing throughput under budget constraint, namely
B-RATE and B-SWAP, we conduct the above-mentioned 10 sets of workflows
and networks with problem sizes from small to large and give part of the results
in Fig. 3. For each set, various budget constraints are considered. Generally, more
budget is provided when problem size becomes larger due to more computation
and communication efforts. We calculate the throughput and cost for compari-
son. The performance of the two proposed algorithms is further compared with
Streamline [7] and LDP [6].

Figure 3 shows the throughput and cost comparison among the four algo-
rithms, the x axis represents the budget constraints; the y axis on the left and
the various bars denote the throughput value, the y axis on the right and the lines
represent the actual cost of the schedule. The throughput and cost of Stream-
line and LDP remains constant for each budget constraint as a baseline (since
they do not consider budget). We observe that in most cases, B-SWAP results
in higher throughput with larger cost than that of B-RATE. This may be due
to the fact that B-SWAP starts with a schedule optimized for throughput, then
keep re-mapping for the largest savings in cost with the minimum throughput
loss; While the B-RATE algorithm starts with a rough and un-precise distrib-
ution of budget constraint value for each layer. It is noted that under smaller
budget constraints, B-RATE may fail to compute a schedule because the bud-
get constraints for some layers might not be possible under mapping strategy.

76 F. Cao et al.

6000 7000 8000 9000 10000
0

20

40

60

80

100

120

140

160

Budget Constraint (G$)

Th
ro

ug
hp

ut
 (f

ra
m

es
/se

c)

6000 7000 8000 9000 10000
5000

6000

7000

8000

9000

10000

11000

Co
st(

G$
)

Throughput of B−RATE
Throughput of B−SWAP
Throughput of Streamline
Throughput of LDP
Cost of B−RATE
Cost of B−SWAP
Cost of Streamline
Cost of LDP

3 3.5 4 4.5 5

x 104

0

10

20

30

40

50

60

70

80

Budget Constraint (G$)

Th
ro

ug
hp

ut
 (f

ra
m

es
/s

ec
)

3 3.5 4 4.5 5

x 104

2.5

3

3.5

4

4.5

5

5.5
x 104

Co
st

(G
$)

Throughput of B−RATE
Throughput of B−SWAP
Throughput of Streamline
Throughput of LDP
Cost of B−RATE
Cost of B−SWAP
Cost of Streamline
Cost of LDP

Fig. 3. Throughput and cost comparison under different budget constraints (left: prob-
lem index = 2, right: problem index = 6).

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

140

Workflow ID

Th
ro

ug
hp

ut
 (f

ra
m

es
/s

ec
)

 B−RATE
 B−SWAP

(a) Impact of workflow size (budget con-
straint = 80% of LDP’s cost, network ID =
8)

1 2 3 4 5 6 7 8 9 10
10

20

30

40

50

60

70

80

90

Network ID

Th
ro

ug
hp

ut
 (f

ra
m

es
/s

ec
)

 B−RATE
 B−SWAP

(b) Impact of network size (budget constraint
= 80% of LDP’s cost, workflow ID = 5)

Fig. 4. Impact of workflow size and network size

With larger budget constraints, the two algorithms achieve more similar through-
put values due to sufficient budget to play with. In comparison with Streamline
and LDP algorithms, since the two algorithms aim for optimization for through-
put, we observe that LDP produces the highest throughput with the highest
cost though. With the increased budget, B-RATE and B-SWAP are able to
achieve comparable throughputs as those from LDP. When budget constraint is
set high enough, B-SWAP has the same throughput as that of LDP because no
swapping procedure is needed. The costs of B-RATE and B-SWAP are much
lower than that of Streamline and LDP even when their throughput values are
similar. From Fig. 3, it can be seen that B-RATE’s cost decreases by 8 %–40 %
in comparison with Streamline, and decreases by 18 %–45 % in comparison with
LDP; B-SWAP’s cost decreases by 7 %–35 % in comparison with Streamline,
and decreases by 17 %–40 % in comparison with LDP. The variation is due to
different problem sizes and budget constraints.

The throughput measurements in Fig. 4(a) shows that B-SWAP consistently
achieves higher throughput than B-RATE under the scenario of above-mentioned

Distributed Workflow Scheduling Under Throughput and Budget Constraints 77

40 60 80 100 120
6000

7000

8000

9000

10000

Throughput Constraint (frames/sec)

C
os

t(G
$)

40 60 80 100 120
20

30

40

50

60

70

80

90

100

110

120

130

Th
ro

ug
hp

ut
 (f

ra
m

es
/s

ec
)

Cost of TP−RATE
Cost of TP−SWAP
Thoughput of TP−RATE
Thoughput of TP−SWAP

10 20 30 40 50
3.6

3.8

4

4.2

4.4

4.6

4.8
x 104

Throughput Constraint (frames/sec)

C
os

t(G
$)

10 20 30 40 50
0

10

20

30

40

50

60

Th
ro

ug
hp

ut
 (f

ra
m

es
/s

ec
)

Cost of TP−RATE
Cost of TP−SWAP
Thoughput of TP−RATE
Thoughput of TP−SWAP

Fig. 5. Cost and throughput comparison under different throughput constraints (left:
problem index = 1, right: problem index = 7).

10 workflows from small to large executed in the same network with budget con-
straint set to 80 % of LDP’s cost. A larger workflow size obviously results in a
smaller throughput, which explains the decreasing trend in each curve.

In order to evaluate the impact of network size on the performance of B-
RATE and B-SWAP, we compare their throughputs under the scenario of the
same workflow executed in the above-mentioned 10 networks from small to large
with budget constraint set to 80 % of LDP’s cost. Figure 4(b) shows that B-
SWAP consistently achieves higher throughput than B-RATE. A smaller net-
work size results in a smaller throughput due to higher resource sharing, and
the curves increases quickly as network becomes larger, but the increasing trend
will slow down after the network is large enough for the workflow.

Throughput Constrained Approaches. In order to compare the perfor-
mance of the two algorithms for minimizing execution cost under throughput
constraint, namely TP -RATE and TP -SWAP, we conduct the above-mentioned
10 sets of workflows and networks with problem sizes from small to large and
give part of the results in Fig. 5. For each set, various throughput constraints
are considered. We calculate the throughput and cost for comparison. To our
best knowledge, since no other algorithm considers minimizing execution cost
under throughput constraint, we only provide performance comparison between
the two proposed approaches.

Figure 5 shows the cost and throughput comparison, the x axis represents
the throughput constraints, the y axis on the left and the bars represent the
actual cost, the y axis on the right and the lines represent the throughput of
the schedule. We observe straightforwardly that cost gets larger when through-
put constraint becomes higher. In most cases, TP -SWAP produces lower cost
than TP -RATE, but its throughput is relatively smaller. This may be due to
the fact that TP -SWAP starts with a greedy schedule optimized for cost, then
keep re-mapping for the maximum gain in throughput for the least increase
in cost whereas the TP -RATE algorithm has a partial-optimized schedule for
each layer that may not be optimal for cost as an entire schedule. Therefore,

78 F. Cao et al.

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9
x 104

Workflow ID

C
os

t (
G

$)

 TP−RATE
 TP−SWAP

(a) Impact of workflow size (throughput con-
straint = 70% of LDP’s throughput, network
ID = 8)

1 2 3 4 5 6 7 8 9 10
1

1.5

2

2.5

3

3.5

4

4.5

5
x 104

Network ID

C
os

t (
G

$)

 TP−RATE
 TP−SWAP

(b) Impact of network size (throughput con-
straint = 70% of LDP’s throughput, workflow
ID = 5)

Fig. 6. Impact of workflow size and network size

TP -SWAP is more likely to produce throughput closer to the throughput con-
straint than TP -RATE. The throughput of the two algorithms gets similar when
the throughput constraint becomes higher due to less available resources to pro-
duce higher throughput. With larger throughput constraints, the two algorithms
achieve more similar costs because higher throughput requirement limits the
selection of nodes. From Fig. 5, it can be seen that compares with TP -RATE,
TP -SWAP’s cost is about 0 %–3 % lower, and throughput is about 0 %–20 %
smaller. The variation is due to different problem sizes and throughput con-
straints.

The throughput measurements in Fig. 6(a) shows that TP -SWAP consis-
tently achieves lower cost than TP -RATE under the scenario of above-mentioned
10 workflows from small to large executed in the same network with throughput
constraint set to 70 % of LDP’s throughput. A larger workflow size obviously
results in a larger cost, which explains the increasing trend in each curve.

In order to evaluate the impact of network size on the performance of TP -
RATE and TP -SWAP, we compare their costs under the scenario of the same
workflow executed in the above-mentioned 10 networks from small to large with
throughput constraint set to 70 % of LDP’s throughput. Figure 6(b) shows that
TP -SWAP consistently achieves higher throughput than TP -RATE. A smaller
network size results in a relatively smaller cost because higher resource sharing
decreases the data transfer cost (since the data transfer costs of adjacent tasks
scheduled on the same node are negligible).

6 Conclusions

In this paper, we considered a workflow scheduling problem for streaming appli-
cations with budget and throughput requirements for streaming applications in
heterogeneous Grid environment. We proposed two algorithms, namely B-RATE
and B-SWAP for budget constrained objective, and two algorithms, namely

Distributed Workflow Scheduling Under Throughput and Budget Constraints 79

TP -RATE and TP -SWAP for throughput constrained objective. Thorough sim-
ulation experiments under GridSim were conducted with randomly generated
workflow and Grid network cases. From our simulation experiments, it could be
seen that for budget constrained objective, B-SWAP algorithm outperformed
the B-RATE algorithm but with a higher complexity. Compared with through-
put optimized only algorithms such as Streamline and LDP, our two proposed
algorithms achieved much lower execution cost with similar throughput. For
throughput constrained objective, TP -SWAP outperformed TP -RATE in exe-
cution cost, but with disadvantage of a higher complexity and smaller through-
put. In the future, real-life scientific workflows and real Grid networks with more
dynamic scenarios for execution of the workflow will be considered.

References

1. Tannenbaum, T., Wright, D., Miller, K., Livny, M.: Condor - A Distributed Job.
MIT Press, Cambridge (2002)

2. Blythe, J., Jain, S., Deelman, E., Gi, Y., Vahi, K., Mandal, A., Kennedy, K.: Task
scheduling strategies for workflow-based applications in grids. In: IEEE Interna-
tional Symposium on Cluster Computing and the Grid (CCGrid), pp. 759–767
(2005)

3. Cao, J., Jarvis, S., Saini, S., Nudd, G.: Gridflow:workflow management for grid
computing. In: 3rd International Symposium on Cluster Computing and the Grid
(CCGrid), Tokyo, Japan (2003)

4. Abramson, R.B.D., Venugopal, S.: The grid economy. Proc. IEEE 93(3), 698–714
(2005)

5. Foster, I.: Globus toolkit version 4: software for service-oriented systems. J. Com-
put. Sci. Technol. 21, 513–520 (2006)

6. Gu, Y., Wu, Q.: Maximizing workflow throughput for streaming applications in
distributed environments. In: 19th International Conference on Computer Com-
munications and Networks (ICCCN) (2010)

7. Agarwalla, B., Ahmed, N., Hilley, D., Ramachandran, U.: Streamline: a scheduling
heuristic for streaming application on the grid. In: The 13th Multimedia Comput-
ing and Networking Conference, pp. 69–85 (2007)

8. Condor. http://research.cs.wisc.edu/htcondor
9. DAGMan. http://research.cs.wisc.edu/htcondor/dagman/dagman.html

10. Globus. http://www.globus.org
11. Deelman, E., Singh, G., Su, M.H., Blythe, J., Gil, Y., Kesselman, C., Mehta, G.,

Vahi, K., Berriman, G.B., Good, J., Laity, A., Jacob, J.C., Katz, D.S.: Pegasus: a
framework for mapping complex scientific workflows onto distributed systems. Sci.
Program. 13, 219–237 (2005)

12. Yu, J., Buyya, R.: A taxonomy of scientific workflow systems for grid computing.
SIGMOD Rec. 34(3), 44–49 (2005)

13. Topcuoglu, S., Wu, M.: Task scheduling algorithms for heterogeneous processors.
In: 8th IEEE Heterogeneous Computing Workshop (HCW99), pp. 3–14 (1999)

14. Sonmez, O., Yigitbasi, N., Abrishami, S., Iosup, A., Epema, D.: Performance analy-
sis of dynamic workflow scheduling in multicluster grids. In: The 19th ACM Inter-
national Symposium on High Performance Distributed Computing (HPDC ’10)
(2010)

http://research.cs.wisc.edu/htcondor
http://research.cs.wisc.edu/htcondor/dagman/dagman.html
http://www.globus.org

80 F. Cao et al.

15. Dongarra, J., Jeannot, E., Saule, E., Shi, Z.: Bi-objective scheduling algorithms
for optimizing makespan and reliability on heterogeneous systems. In: The 19th
Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA ’07),
pp. 280–288 (2007)

16. Wu, Q., Gu, Y.: Supporting distributed application workflows in heterogeneous
computing environments. In: 14th International Conference on Parallel and Dis-
tributed Systems (ICPADS08), Vol. 47. pp. 8–22 (2008)

17. Wu, Q., Zhu, M., Lu, X., Brown, P., Lin, Y., Gu, Y., Cao, F., Reuter, M.: Automa-
tion and management of scientific workflows in distributed network environments.
In: The 6th International Workshop of IPDPS on System Management Techniques,
Processes, and Services, pp. 1–8 (2010)

18. Wu, Q., Zhu, M., Gu, Y., Brown, P., Lu, X., Lin, W., Liu, Y.: A distributed
workflow management system with case study of real-life scientific applications on
grids. J. Grid Comput. 10(3), 367–393 (2012)

19. Wu, Q., Gu, Y., Lin, Y., Rao, N.: Latency modeling and minimization for large-
scale scientific workflows in distributed network environments. In: The 44th Annual
Simulation Symposium (ANSS 2011), pp. 205–212 (2011)

20. Gu, Y., Wu, Q., Liu, X., Yu, D.: Improving throughput and reliability of dis-
tributed scientific workflows for streaming data processing. In: The 13th IEEE
International Conference on High Performance and Communications (HPCC),
pp. 347–354 (2011)

21. Yu, J., Buyya, R.: A budget constrained scheduling of workflow applications on
utility grids using genetic algorithms. In: Workshop on Workflows in Support of
Large-Scale Science (WORKS), pp. 1–10 (2006)

22. Yuan, Y., Wang, K., Sun, X., Guo, T.: An iterative heuristic for scheduling grid
workflows with budget constraints. In: International Conference on Machine Learn-
ing and Cybernetics, pp. 1700–1705 (2009)

23. Abrishami, S., Naghibzadeh, M., Epema, D.: Cost-driven scheduling of grid
workflows using partial critical paths. IEEE Trans. Parallel Distrib. Sys. 23(8),
1400–1414 (2012)

24. Yao, Y., Liu, J., Ma, L.: Efficient cost optimization for workflow scheduling on
grids. In: International Conference on Management and Service Science (MASS),
pp. 1–4 (2010)

25. Sakellariou, R., Zhao, H., Tsiakkouri, E., Dikaiakos, M.: Scheduling workflows with
budget constraints. In: Gorlatch, S., Danelutto, M. (eds.) Integrated Research in
Grid Computing, pp. 189–202. Springer, Heidelberg (2007)

26. Yu, J., Buyya, R.: Scheduling scientific workflow applications with deadline and
budget constraints using genetic algorithms. Sci. Program. 14(3–4), 217–230 (2006)

27. Yu, J., Buyya, R., Tham, C.: Cost-based scheduling of scientific workflow appli-
cations on utility grids. In: First International Conference one-Science and Grid
Computing, pp. 139–147 (2005)

28. Sakellariou, R., Zhao, H.: A hybrid heuristic for dag scheduling on heterogeneous
systems. In: 13th IEEE Heterogeneous Computing Workshop (HCW’04), Santa Fe,
New Mexico, USA (2004)

29. Buyya, R., Murshed, M.: Gridsim: a toolkit for the modeling and simulation of dis-
tributed resource management and scheduling for grid computing. Concurr. Com-
put. Pract. Exp. 14(13), 1175–1220 (2002)

Multi Resource Fairness: Problems
and Challenges

Dalibor Klusáček1,2(B), Hana Rudová1, and Michal Jaroš3

1 Faculty of Informatics, Masaryk University,
Botanická 68a, Brno, Czech Republic

2 CESNET z.s.p.o., Zikova 4, Prague, Czech Republic
3 Institute of Computer Science, Masaryk University,

Botanická 68a, Brno, Czech Republic
{xklusac,hanka}@fi.muni.cz, mjaros@ics.muni.cz

Abstract. Current production resource management and scheduling
systems often use some mechanism to guarantee fair sharing of com-
putational resources among different users of the system. For example,
the user who so far consumed small amount of CPU time gets higher
priority and vice versa. The problem with such a solution is that it does
not reflect other consumed resources like RAM, HDD storage capacity
or GPU cores. Clearly, different users may have highly heterogeneous
demands concerning aforementioned resources, yet they are all priori-
tized only with respect to consumed CPU time. In this paper we show
that such a single resource-based approach is unfair and is no longer suit-
able for nowadays systems. We provide a survey of existing works that
somehow try to deal with this situation and we closely analyze and evalu-
ate their characteristics. Next, we propose new enhanced approaches that
would allow the development of usable multi resource-aware user priori-
tization mechanisms. We demonstrate that different consumed resources
can be weighted and combined together within a single formula which
can be used to establish users’ priorities. Moreover, we show that when
it comes to multiple resources, it is not always possible to find a suitable
solution that would fulfill all fairness-related requirements.

Keywords: Multi resource fairness · Fairshare · Penalty · Scheduling

1 Introduction

This paper is inspired by the lessons learned over the few past years when analyz-
ing the workload of the Czech National Grid Infrastructure MetaCentrum [16].
MetaCentrum is highly heterogeneous national Grid that provides computa-
tional resources to various users and research groups. As in other systems, one
of the main goal is to guarantee that computational resources are shared in a fair
fashion with respect to different users and research groups [11,14]. These require-
ments are typically solved using the service1 of the applied resource manager, in
1 This service is commonly called a fairshare algorithm [2,10].

N. Desai and W. Cirne (Eds.): JSSPP 2013, LNCS 8429, pp. 81–95, 2014.
DOI: 10.1007/978-3-662-43779-7 5, c© Springer-Verlag Berlin Heidelberg 2014

82 D. Klusáček et al.

Fig. 1. An example of CPU and RAM utilization on one Zewura node.

this case the TORQUE [3]. Current fairshare algorithm measures the amount of
consumed CPU time for each user and then calculates users’ priorities such that
the user with the smallest amount of consumed CPU time gets the highest prior-
ity and vice versa [14]. While jobs typically consume several different resources
(e.g., CPU time, RAM, GPUs and HDD storage) simultaneously, the whole user
prioritization scheme is based only on one parameter — consumed CPU time.
Clearly, it is questionable whether such a solution can guarantee fair sharing of
resources [15]. Therefore, we have performed several analysis of existing work-
load and quickly realized that this single resource-based fairshare algorithm is
(very) unfair.

To demonstrate some of the issues found in the workload we present Fig. 1
that shows the usage of CPUs and RAM on a selected node within the Zewura
cluster in MetaCentrum. This particular node has 80 CPUs and 512 GB of RAM.
The figure shows that for nearly two weeks in July 2012 the jobs used at most
10 % of CPUs while consuming all available RAM memory. Clearly, the remain-
ing 90 % of CPUs are then useless because no new job can be executed there
due to the lack of available RAM. More importantly, using the standard fair-
share algorithm owner(s) of these memory-demanding jobs are only accounted
for using 10 % of available CPU time. However, as intuition suggests they should
be accounted as if using 100 % of machine’s CPU time because they effectively
“disabled” the whole machine by using all of its RAM.

The solution is to extend the current single resource-based fairshare algo-
rithm and incorporate consumption of other important job-related resources,
e.g., RAM, GPUs or HDD storage. For this purpose we have studied existing
works that deal with similar problems and we present their survey here. We also
propose new solutions that can flexibly combine several different resources with
different weights (i.e., costs) as existing works have some limitations when using
several (weighted) resources together. We also define several rules that should

Multi Resource Fairness: Problems and Challenges 83

be satisfied by considered multi resource-based fairshare formulas in order to
generate fair and acceptable solutions. Based on these requirements, we analyze
the suitability of considered techniques. Especially, we demonstrate weighting of
different consumed resources and their combination within a single formula that
is then used in the fairshare algorithm to establish priorities among users of the
system. Surprisingly, we realize that — in general — it is not always possible to
find a suitable solution that would fulfill all fairness-related requirements.

The structure of this paper is following. In Sect. 2 we discuss existing related
works on single and multi resource-based fairness techniques. Especially, we
closely describe current single resource-based fairshare algorithm as applied in
MetaCentrum’s TORQUE. In Sect. 3 we define several rules that should be sat-
isfied by a prospective multi resource-based fairshare formula. Next, we present
and discuss possible extensions of the fairshare algorithm that incorporate mul-
tiple resources. We also discuss whether these extensions are suitable when dif-
ferent resources have different weights, i.e., “cost” and/or importance. Section 4
discusses the findings of our work and suggests suitable solutions that can be
applied within a multi resource-based fairshare algorithm. In Sect. 5 we conclude
the paper and discuss the future work.

2 Related Work

All popular resource management systems and schedulers such as PBS [13],
TORQUE [3], Moab, Maui [1], Quincy [9] or Hadoop’s Fair and Capacity Sched-
ulers [4,5] support some form of fairshare mechanism. Nice explanation of Maui’s
fairshare mechanism can be found in [10].

The solution currently applied in MetaCentrum’s TORQUE is very similar
to Maui and uses the well known max-min approach [8], i.e., it gives the high-
est priority to a user with the smallest amount of consumed CPU time and
vice versa. For the purpose of this paper, we assume that a user’s priority is
established using a function that looks like Formula 1 [10,15].

Fu =
n∑

j=1

(Pj · walltimej) (1)

Here, the Fu is the resulting priority of a given user u that so far computed
n jobs. The final value is computed as a sum of products of job penalty (Pj) and
the job’s walltime (walltimej). Once the priorities are computed for all users, the
user with the smallest value of Fu then gets the highest priority in a job queue.
Such a formula is a general form of a function that can be used to establish
ordering of users. It represents the simplest version, that does not use a so called
decay algorithm [10]. Decay algorithm is typically applied to determine the value
of Fu with respect to aging, i.e., it specifies how the effective fairshare usage
is decreased over the time2. For example, Maui’s fairshare algorithm utilizes
2 In Maui’s terminology, fairshare usage represents the metric of utilization measure-

ment [10]. Typically, fairshare usage expresses the amount of consumed CPU time
of a given user.

84 D. Klusáček et al.

Fig. 2. Effective fairshare usage based on the decay algorithm that reflects aging. This
image is adopted from [10].

the concept of fairshare windows each covering a particular period of time. An
administrator may then specify how long each window should last, how fairshare
usage in each window should be weighted, and how many windows should be
evaluated in obtaining the final effective fairshare usage [10]. For example, an
administrator may wish to make fairshare adjustments based on the usage of
resources during the previous 8 days. To do this, he or she may choose to evaluate
8 fairshare windows each consisting of 24 h periods, with a decay, i.e., aging factor
of 0.75 as seen in Fig. 2. For simplicity, we will not consider the decay algorithm
in the formulas as its inclusion is straightforward.

When computing Fu, a proper computation of the job’s penalty Pj is the key
problem. In the rest of the paper we assume that the value of Pj is a real num-
ber from the interval [0, 1], and we discuss several variants of Pj computation.
Commonly, fairshare algorithms only consider a single resource, typically CPU
time. In such a case, the penalty function Pj for a given job j can be described
by Formula 2, where reqCPU,j is the number of CPUs allocated to a given job j
and availCPU is the total amount of CPUs available in the system.

Pj =
reqCPU,j

availCPU
(2)

Clearly, the penalty of a given user’s job j is proportional to the number of
CPUs it requires as Pj expresses the ratio of consumed to available CPUs, i.e.,
the relative CPU usage3. The resulting distribution of such penalties is linear,
and the highest penalty (1.0) is obtained when a user’s job consumes all available
CPUs in the system.

As we already mentioned in Sect. 1, the analysis of existing MetaCentrum’s
workloads has quickly identified that such an approach is clearly unfair.
3 In MetaCentrum, resources allocated (i.e., reserved) to a given job cannot be used

by other jobs even if those resources are not fully used. Therefore, in the whole paper
we measure CPU, RAM, etc., requirements as the amount of a given resource that
has been allocated for a job, even if actual job’s requirements are smaller.

Multi Resource Fairness: Problems and Challenges 85

There were jobs that required few CPUs and (almost) all RAM memory (see
Fig. 1). Therefore, those remaining CPUs could not be utilized by remaining
users since there was no free RAM left. The classical — single resource-based —
fairshare mechanism computed according to consumed CPU time is then
absolutely unacceptable as the users with high RAM requirements are not ade-
quately penalized in comparison with those users who only need (a lot of) CPUs.
Of course, similar findings can be done concerning other resources such as GPUs
or HDD storage.

Although the single resource-based fairshare algorithm is inadequate, many
systems are still using it today [5,8,9,12]. Surprisingly, the so called multi
resource fairness seems to be a rather new area of researchers’ interest as there are
only few works that address this problem specifically [7,8,12,15]. For example,
the recent Dominant Resource Factor (DRF) [8] suggests to perform max-min
fairshare algorithm over so called dominant user’s share. Dominant share is the
maximum share that a user has been allocated of any resource. Such a resource
is then called a dominant resource. Sadly, some parts of the paper are not very
clear. For example, the pseudo-code of DRF algorithm does not correspond with
the algorithm’s textual description. Moreover, the resulting DRF allocation is
formulated using a linear programming notation. However, the paper does not
explain how non-integer results should be handled. As discussed in [12] which
builds upon the results of [8], if a given user is allowed to execute, e.g., 0.76 jobs
we cannot use such a solution unless user’s jobs are continuously divisible [6]. For
common grid and cluster environment, this is rarely the case. Similar situation
applies for [7], which proposes new definition for the simultaneous fair alloca-
tion of multiple continuously divisible resources called bottleneck-based fairness
(BBF). In BBF, an allocation of resources is considered fair if every user either
gets all the resources she wishes for, or else gets at least her entitlement on some
bottleneck resource, and therefore cannot complain about not receiving more.
Beside that, the tradeoffs of using multi resource-based fairness algorithms like
DRF are discussed in [12]. Especially, the overall efficiency is of interest, e.g.,
the amount of unused resources is studied. Apart from DRF, the paper pro-
poses the use of other approaches such as so called Generalized Fairness on
Jobs (GFJ). Unlike DRF, GJF measures fairness only in terms of the number
of jobs allocated to each user. Users requiring more resources are thus treated
equally [12]. From our point of view, such a notion of fairness is impractical as
it allows to cheat easily by “packing” several small jobs as a one large job. Last
but not least, all approaches proposed in [12] or in [7] make the assumption
that all jobs and resources are continuously divisible which is rather unrealistic
for our purposes. In our previous work [15], we have proposed multi resource-
based penalty function that uses a product of relative resources’ requirements.
In Sect. 3.2 we show that this function is less suitable than other approaches.
Also, Moab or Maui schedulers allow the system administrator to combine CPU
and, e.g., RAM consumptions within the fairshare function [2,10] using so called
processor equivalent (PE) mechanism [10]. It is based on the application of max
function that determines a job’s most constraining resource consumption and
translates it into an equivalent processor count [10]. In fact, this solution uses

86 D. Klusáček et al.

similar idea as the DRF. Although PE mechanism is available in several pro-
duction schedulers, we did not find any work that would specifically discuss its
suitability. Also Moab’s and Maui’s documentation did not bring much insight
into this solution [1,2].

In the following section, we define several major principles that should be
followed by a multi resource-based fairshare algorithm and we closely analyze
selected promising multi resource-based fairshare metrics that are either based
on existing works or are our own contribution.

3 Multi Resource-Based Fairshare Algorithm

As discussed in previous section, the core part of the fairshare algorithm is
the penalty function. Therefore, using the results from the literature, we now
present and analyze several variants of multi resource-based job penalty func-
tions that — beside the common CPU consumption — also consider additional
consumed resources. Before we start, we first formulate several basic rules that
are to be followed by an ideal multi resource-based penalty function. These rules
are a result of several discussions that were held within the MetaCentrum team
and reflect the specific requirements of MetaCentrum. We believe that these
rules are general enough, still we are aware that for different institutions they
may be either too restrictive or incomplete.

(1) Multiple resources: When calculating the value of penalty, the function
should not consider only one type of consumed resource, e.g., CPUs.

(2) Nondominant resources: Penalty function should consider the consump-
tion of nondominant resources as well. In another words, if two different jobs
have the same consumption of a given dominant resource then the one hav-
ing smaller consumption of nondominant resources should receive smaller
penalty.

(3) Max-min penalty: Maximum penalty (i.e., 1) should be applied when-
ever a job completely utilizes at least one resource since the corresponding
machine is then practically unusable for other jobs. Similarly, a job obtains
minimum penalty (i.e., 0) only when it does not consume any resource at
all4.

(4) Linearity: Penalty function should be linear with respect to a given con-
sumed resource. The linearity is important factor that guarantees that a user
cannot cheat by dividing his or her (large) job into several smaller jobs that
would — due to the nonlinear character of the penalty — together receive
smaller penalty than the original (large) job.

(5) Weights: For a given resource, penalty function should allow to use weights
that express the importance or the “cost” of that resource.

4 Max-min penalty rule defines when Pj reaches its minimum and maximum. Appar-
ently, no “real” job should ever receive minimum penalty since it always consumes
some resources.

Multi Resource Fairness: Problems and Challenges 87

Fig. 3. Single resource CPU-based penalty (left) and max -based penalty function
(right).

In the following text, we consider general formulas that allow inclusion of
r different resources. The x-th resource is denoted as x where x ∈ (1, .., r). For
better readability, all figures that illustrate these formulas will however only
contain the two most important resources— CPUs and RAM.

We start with an illustration of the penalties that are obtained when using
classical CPU-based single resource penalty that has been shown in Formula 2.
The resulting distribution of such penalties can be illustrated by the graph shown
in Fig. 3 (left). Clearly, the penalty of a given user’s job j has no relation to
RAM consumption and is only proportional to the number of required CPUs as
Pj expresses the ratio of consumed to available CPUs. This function is therefore
impractical as it breaks all rules except for the “linearity” rule 4.

In order to resolve the unfairness of the single resource-based fairshare metric
we analyze/propose several candidate penalty formulas that somehow incorpo-
rate additional resource requirements.

3.1 Dominant Resource-Based Penalty

Existing works [1,2,8,10] suggest to measure and apply dominant resource-based
penalty. It means that a user is penalized according to the maximum relative
share he or she has been allocated of any resource [8]. In another words, instead of
combining all resource requests together, only the maximum (most restricting)
relative request is considered and penalized accordingly. The penalty is then
computed using Formula 3 and the corresponding distribution of penalties is
depicted in Fig. 3 (right).

Pj = max
(
req1,j
avail1

, ..,
reqr,j
availr

)
(3)

88 D. Klusáček et al.

Compared to the single resource-based penalty, this penalty function repre-
sents several benefits. First of all, it is very simple function so both users and
system administrators will find it easy to understand. Second, it solves the prob-
lem described in Sect. 1, i.e., it adequately penalizes highly asymmetric requests,
following the rule 3. Last but not least, unlike some of the functions that will be
discussed in next section, this penalty is linear, fulfilling the rule 4.

Sadly, this penalty also represents several drawbacks. Although it does follow
the rule 1, it does not fulfill the rule 2, i.e., it does not consider the nondominant
resources at all. Therefore, users are not forced to better estimate their requests
concerning nondominant resources. As a side effect, this penalty is not fair.
Consider two users with equal dominant resource demands but with different
nondominant resource requirements. Clearly, the one having smaller demands
should be less penalized as he or she consumes less resources. However, they will
both receive the same penalty, disregarding their real resource consumptions,
which breaks the rule 2. We believe that this is an unfair behavior. The second
problem is that we cannot apply resource weights in a reasonable manner. In
reality, different resources are rarely considered as equally important. In fact,
some resources are more important than others. For example, in MetaCentrum,
the common sense is that CPUs are more “expensive” than, e.g., RAM. When
necessary, it is often possible to increase the amount of RAM on a given machine
while it is not possible to increase the number of CPUs. Therefore, the require-
ment is to apply resource-specific weights when computing the penalty function.
As we show now, in case of Formula 3 this process is somehow tricky. There
are two basic extensions of Formula 3 that involve weights and we show them
in Formula 4 and 5. Both of them guarantee that the values of Pj will remain
within the interval [0, 1].

Pj = min
(

1,max
(
w1

req1,j
avail1

, .., wr
reqr,j
availr

))
(4)

Pj =
max

(
w1

req1,j
avail1

, .., wr
reqr,j
availr

)

max (w1, .., wr)
(5)

Here, the weight of a given resource x is denoted as wx and we assume
that for every resource x the weight wx > 0. There are two major problems
with the weighted max -based functions. The first problem (A) is that in some
situations we often cannot distinguish between full and partial consumption of
the most “expensive” resource. The second problem (B) is that sometimes we
cannot properly penalize total consumption of “cheap” resources. As stated by
the rule 3, if a job fully consumes some resource on a given machine, we require
full penalty for such a job as it “disabled” the whole machine that cannot be
used to process other jobs. Let us consider Formula 4 first. Problem (A) appears
whenever the most expensive resource has its weight wmost > 1. For example,
let wmost = 2. Then every job requiring at least 1/2 of that resource will always
receive maximum penalty. Clearly, this behavior is not fair. Problem (B) can
appear when wmost ≤ 1. Then it can easily happen, that we cannot properly

Multi Resource Fairness: Problems and Challenges 89

penalize full consumption of some “cheap” resource. For example, let the fully
consumed “cheap” resource has weight wleast = 0.1 while the weight of the
most expensive resource is, e.g., wmost = 1 and its utilization is only 50 %.
Then Formula 4 resolves as Pj = min(1,max(0.5, 0.1)) = 0.5. Clearly, instead of
Pj = 1 we only get 0.5, failing to meet the requirements described by the rule 3.
In case of Formula 5, the problem (A) is eliminated, however the second problem
(B) can still appear. For example, let the fully consumed “cheap” resource has
wleast = 1. Let the “expensive” resource be only occupied by, e.g., 10 % with
wmost = 2.0. Then Formula 5 resolves as Pj = max (0.2, 1.0) /2 = 0.5. Clearly,
instead of Pj = 1 we only get 0.5, failing to meet the requirements described by
the rule 3. Therefore, max -based penalty also breaks the “weights” rule 5. Based
on these findings we have decided to analyze whether there is a chance to find
a new penalty function that would overcome aforementioned problems.

3.2 Penalties Based on Combination of All Resources

Following text summarizes our attempts to develop a new penalty function that
would also reflect nondominant resources as required by the rule 2. Three types
of penalty functions are considered and their strengths and weaknesses are dis-
cussed in the following text.

W =
r∑

x=1

wx (6)

Pj =
r∏

x=1

reqx,j
availx

(7)

Pj =

(
r∏

x=1

(
reqx,j
availx

)wx
) 1

W

(8)

The first candidate depicted by Formula 7 uses a product of each resource’s rel-
ative requirement. Originally, this function has been used only on two resources
[15] where relative CPU and RAM requirements have been multiplied. The idea
behind this approach is that consumed CPUs and RAM can be represented as 2D
objects, where the multiplication represents de facto a “rectangle area” of con-
sumed resources [15], thus reflecting consumption of both CPUs and RAM. The
resulting distribution of penalties is illustrated by Fig. 4 (left).

Sadly, this penalty function is not very suitable. As can be seen in the graph,
the function assigns low penalties for highly asymmetric requests, breaking the
rule 3. For example, if a user consumes all CPUs and little RAM the result-
ing penalty is very low compared to a scenario where “symmetric” user’s job
consumes all available CPUs and RAM. This appears to be unacceptable and
very unfair behavior. Our analysis quickly revealed that this penalty also breaks
the “linearity” rule 4. The problem lies in the adopted idea of “rectangle area”,
i.e., in the multiplication of CPU and RAM requests. Consider following simple
scenario with two users in a system consisting of 10 CPUs and 10 GB of RAM.

90 D. Klusáček et al.

Fig. 4. Product-based penalty (left) and sum-based penalty function (right).

The first user requests 9 CPUs and 9 GB of RAM and thus gets the penalty
Pj = 0.9 · 0.9 = 0.81. The second user wants to run 9 jobs, each requiring
1 CPU and 1 GB of RAM. The total penalty for the second user is therefore
P1 + .. + P9 = 9 · (0.1 · 0.1) = 0.09. However, both users consumed the same
amount of resources. Apparently, the multiplication is a bad idea which leads to
nonlinear behavior that may produce different penalties for the same amount of
consumed resources. Due to the associative property of multiplication, we can-
not apply weights by multiplying each resource’s usage by its weight. Instead, we
have to apply slightly more complicated function as is presented in Formula 85.

In the next attempt we have removed the multiplication and applied a sum-
based function instead, to guarantee linear behavior. The resulting penalty
function is shown in Formula 9 that summarizes all relative resource requests.
Corresponding distribution of penalties is shown in Fig. 4 (right).

Pj =
1
r

r∑

x=1

reqx,j
availx

(9)

Pj =
1
W

r∑

x=1

wx
reqx,j
availx

(10)

This formula is linear (rule 4) and considers all resources (rules 1, 2) and
can be extended to support weights as shows Formula 10. Still, it has one major
drawback since it does not assign maximum penalty when a given resource is
fully consumed, i.e., it breaks the important “max-min penalty” rule 3.

As a result, we propose a root-based penalty function that removes most of
the problems mentioned for Formulas 2–10. This penalty function is shown in
Formula 11 (symmetric version) and Formula 12 (weighted version), respectively.
Corresponding distributions of penalties are depicted in Fig. 5.
5 The W parameter used in Formula 8 and lately in Formula 10 and Formula 12 is

computed using Formula 6.

Multi Resource Fairness: Problems and Challenges 91

Fig. 5. Root-based penalty function (left) and its weighted version (right).

Pj = 1 − r

√√√√
r∏

x=1

(
1 − reqx,j

availx

)
(11)

Pj = 1 −
(

r∏

x=1

(
1 − reqx,j

availx

)wx
) 1

W

(12)

As can be seen in Fig. 5 (left) the function represents good compromise
between the pure dominant resource-based max function and the aforementioned
functions that combine all resources. More precisely, this root-based penalty fol-
lows the rules 1, 2, 3 and 5 as we show in the following discussion. The function
combines all consumed resources, thus it fulfills the rules 1 and 2. Notably, unlike
the max -based function, it also reflects all nondominant resources, i.e., it moti-
vates users to better estimate all resource-related parameters. It also follows the
rule 3 as it assigns reasonably high penalties for jobs with asymmetric requests,
especially total consumption of selected resource results in a full penalty. Last
but not least, it can be easily extended to follow the “weights” rule 5 as depicts
Formula 12. Using weights, the corresponding distribution of penalties is then
adjusted as shown in Fig. 5 (right). In this case we have chosen wCPU = 2.0
and wRAM = 1.0 which results in a steeper shape of CPU-related curve. Also,
RAM-related curve has changed, having lower initial elevation that only increases
when RAM usage approaches its upper limit. Still, one problem remains — the
root-based penalty function breaks the “linearity” rule 4.

4 Summary and Discussion

In this paper we have presented several problems that arise when seeking for truly
fair and flexible multi resource-based penalty function. The overall results are

92 D. Klusáček et al.

Table 1. Suitability of penalty functions with respect to required rules.

rule 1 rule 2 rule 3 rule 4 rule 5

CPU -based penalty (Formula 2) NO NO NO YES NO
Max -based penalty (Formula 3) YES NO YES YES NO
Product-based penalty (Formula 8) YES YES NO NO YES
Sum-based penalty (Formula 10) YES YES NO YES YES
Root-based penalty (Formula 12) YES YES YES NO YES

presented in Table 1 that summarizes capabilities of considered penalty functions
with respect to those five rules that were established in order to represent our
requirements on a proper penalty function.

None of the presented functions fulfills all requirements at once. In fact, it is
impossible to find a function that would fulfill all five rules, especially the rule
2, the rule 3 and the rule 4 cannot be fulfilled at the same time by one function.
For example, as soon as the desired function follows the “max-min penalty”
rule 3 it cannot fulfill the rules 2 and 4 at the same time. For simplicity, let
us assume a scenario with two resources. If the rule 3 is to be followed, then
the desired function must create a surface that comprises the “zero point” (no
resource is consumed at all) and the two “maximum lines” (at least one resource
is consumed completely) which are highlighted in black color in Fig. 6. Since the
“zero point” and the “maximum lines” do not lie in a plane, full linearity of such
a function is unattainable. Only partial linearity (linearity with respect to only
one resource) as prescribed by the rule 4 is attainable by the function depicted
in Fig. 6 (left). However, such a function clearly fails to follow the rule 2. On the
other hand, the rule 2 can be fulfilled if we allow the surface to be curved and
smooth as seen for the function in Fig. 6 (right), but then the linearity is broken
even in terms of the rule 4.

Thus, if we are decided to follow the rules 2 and 3, we therefore must break
the rule 4, i.e., the linearity. Fortunately, it is possible to minimize the adverse
effects of non-linearity by requiring that the desired function will assign linear
penalties at least when the corresponding jobs have symmetric requirements con-
cerning the relative amount of used resources. This requirement means that the
desired function’s surface is to comprise also the line connecting the “zero point”
and the interconnection point of the two “maximum lines” (all resources con-
sumed completely). As can be check-verified, the root-based function, including
its weighted version, fulfills this requirement.

Still, some of the functions mentioned above are more suitable than the
others. The final decision on what penalty function should be applied is however
highly individual as different people and/or organizations may have different
notion of “what is fair” when it comes to multiple resources [8,12]. From our
point of view, CPU -based penalty as well as product and sum-based penalties are
not very good candidates. Clearly, single resource CPU -based penalty function
fails to meet all rules except for the “linearity” rule 4. As we have already shown

Multi Resource Fairness: Problems and Challenges 93

Fig. 6. Non-smooth, max -based penalty function vs. smooth, root-based penalty
function (right).

in Sect. 3.2, product-based penalty is a very bad candidate while sum-based
penalty function breaks the important “max-min penalty” rule 3 very heavily
(see Fig. 4 (right)).

From our perspective, only two suitable candidates remain:max -based penalty
and root-based penalty. Max -based penalty function (Formula 3) fails to fulfill the
rule 2. Moreover, once weights are applied they can cause breaking of the rule 3
(see discussion in Sect. 3.1). Therefore, in Table 1 we claim thatmax -based penalty
function cannot fulfill the “weights” rule 5. Root-based penalty fulfills all rules
except for the “linearity” rule 4, which is not desirable as it allows users to cheat
in some situations. For example, instead of one large job a user can submit two
smaller jobs. As a result, he or she will receive smaller penalty. This particular
problem can be considered as serious. However, in real life users are often moti-
vated to minimize their requirements concerning available resources. For example,
in Ohio Supercomputer Center (OSC) long jobs are only allowed if a user is able to
reasonably explain why he or she needs to run such a long experiment [18]. More-
over, parallel jobs have smaller maximal runtime limit compared to serial jobs in
OSC. The reason is that long and/or massively parallel jobs can cause fragmenta-
tion of system resources [19,20]. On the other hand, short jobs that are either serial
or require only a small amount of CPUs are very suitable for common schedulers
as they can be used for backfilling [17].

5 Conclusion and Future Work

This paper addressed an urgent real life job scheduling problem. The goal was
to maintain the fairness among different users of the system. The novelty of
our work is related to the fact that we consider multiple consumed resources
when establishing users’ priorities. In the area of parallel job scheduling, this
problem is very urgent and seems to be rather unexplored. Therefore, we have

94 D. Klusáček et al.

defined several rules that — according to our knowledge and experience — define
the properties that a suitable multi resource-based fairshare algorithm should
satisfy. Next, we have discussed the suitability of existing approaches, focusing
on the crucial penalty functions. Beside the existing max -based functions we
have also proposed several other variants of penalty functions and show their
strengths and weaknesses. The main result of this paper is the fact that it is
impossible to find a penalty function that would satisfy all five rules that we
have used to express the fairness-related demands.

We plan to further investigate this problem in the future. MetaCentrum
will soon start to use multi resource-based fairshare algorithm. Therefore, we
will further analyze the performance and suitability of the production solution
as well as possible problems that may appear once the solution becomes fully
operational. For example, it is quite obvious that our “max-min penalty” rule
3 is too severe for jobs requiring special resources that are not needed by all
jobs, e.g., GPUs. If a given job consumes all GPUs on a machine, it does not
mean that such a machine cannot execute other jobs. Therefore, in such special
situations this rule is probably too severe and shall be relaxed in the future.

Acknowledgments. We highly appreciate the support of the Grant Agency of the
Czech Republic under the grant No. P202/12/0306. The access to the MetaCentrum
computing facilities provided under the programme LM2010005 funded by the Min-
istry of Education, Youth, and Sports of the Czech Republic is highly appreciated.
The Zewura workload log was kindly provided by the Czech NGI MetaCentrum. The
access to the CERIT-SC computing and storage facilities provided under the pro-
gramme Center CERIT Scientific Cloud, part of the Operational Program Research
and Development for Innovations, reg. no. CZ. 1.05/3.2.00/08.0144 is appreciated.

References

1. Adaptive Computing Enterprises, Inc. Maui Scheduler Administrator’s Guide, ver-
sion 3.2, February 2013. http://docs.adaptivecomputing.com

2. Adaptive Computing Enterprises, Inc. Moab workload manager administrator’s
guide, version 7.2.1, February 2013. http://docs.adaptivecomputing.com

3. Adaptive Computing Enterprises, Inc. TORQUE Admininstrator Guide, version
4.2.0, February 2013. http://docs.adaptivecomputing.com

4. Apache.org. Hadoop Capacity Scheduler, February 2013. http://hadoop.apache.
org/docs/r1.1.1/capacity scheduler.html

5. Apache.org. Hadoop Fair Scheduler, February 2013. http://hadoop.apache.org/
docs/r1.1.1/fair scheduler.html

6. Blazewicz, J., Drozdowski, M., Markiewicz, M.: Divisible task scheduling - concept
and verification. Parallel Comput. 25(1), 87–98 (1999)

7. Dolev, D., Feitelson, D.G., Halpern, J.Y., Kupferman, R., Linial, N.: No justified
complaints: on fair sharing of multiple resources. In: Proceedings of the 3rd Inno-
vations in Theoretical Computer Science Conference, ITCS ’12, pp. 68–75. ACM,
New York (2012)

8. Ghodsi, A., Zaharia, M., Hindman, B., Konwinski, A., Shenker, S., Stoica, I.: Dom-
inant resource fairness: fair allocation of multiple resource types. In: 8th USENIX
Symposium on Networked Systems Design and Implementation (2011)

http://docs.adaptivecomputing.com
http://docs.adaptivecomputing.com
http://docs.adaptivecomputing.com
http://hadoop.apache.org/docs/r1.1.1/capacity_scheduler.html
http://hadoop.apache.org/docs/r1.1.1/capacity_scheduler.html
http://hadoop.apache.org/docs/r1.1.1/fair_scheduler.html
http://hadoop.apache.org/docs/r1.1.1/fair_scheduler.html

Multi Resource Fairness: Problems and Challenges 95

9. Isard, M., Prabhakaran, V., Currey, J., Wieder, U., Talwar, K., Goldberg, A.:
Quincy: fair scheduling for distributed computing clusters. In: SOSP’09 (2009)

10. Jackson, D.B., Snell, Q.O., Clement, M.J.: Core algorithms of the Maui scheduler.
In: Feitelson, D.G., Rudolph, L. (eds.) JSSPP 2001. LNCS, vol. 2221, pp. 87–102.
Springer, Heidelberg (2001)

11. Jain, R., Chiu, D.-M., Hawe, W.: A quantitative measure of fairness and discrimina-
tion for resource allocation in shared computer systems. Technical report TR-301,
Digital Equipment Corporation (1984)

12. Joe-Wong, C., Sen, S., Lan, T., Chiang, M.: Multi-resource allocation: fairness-
efficiency tradeoffs in a unifying framework. In: INFOCOM (2012)

13. Jones, J.P.: PBS Professional 7, administrator guide. Altair, April 2005
14. Kleban, S.D., Clearwater, S.H.: Fair share on high performance computing systems:

what does fair really mean? In: Third IEEE International Symposium on Clus-
ter Computing and the Grid (CCGrid’03), pp. 146–153. IEEE Computer Society
(2003)

15. Klusáček, D., Ruda, M., Rudová, H.: New fairness and performance metrics for
current grids. In: Cracow Grid Workshop, pp. 73–74. ACC Cyfronet AGH (2012)

16. MetaCentrum, February 2013. http://www.metacentrum.cz/
17. Mu’alem, A.W., Feitelson, D.G.: Utilization, predictability, workloads, and user

runtime estimates in scheduling the IBM SP2 with backfilling. IEEE Trans. Parallel
Distrib. Syst. 12(6), 529–543 (2001)

18. Ohio Supercomputer Center. Batch Processing at OSC, February 2013. https://
www.osc.edu/supercomputing/batch-processing-at-osc

19. Shmueli, E., Feitelson, D.G.: Backfilling with lookahead to optimize the perfor-
mance of parallel job scheduling. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn,
U. (eds.) JSSPP 2003. LNCS, vol. 2862, pp. 228–251. Springer, Heidelberg (2003)

20. Tsafrir, D., Etsion, Y., Feitelson, D.G.: Backfilling using system-generated pre-
dictions rather than user runtime estimates. IEEE Trans. Parallel Distrib. Syst.
18(6), 789–803 (2007)

http://www.metacentrum.cz/
https://www.osc.edu/supercomputing/batch-processing-at-osc
https://www.osc.edu/supercomputing/batch-processing-at-osc

Reducing Energy Costs for IBM Blue Gene/P
via Power-Aware Job Scheduling

Zhou Zhou1(B), Zhiling Lan1, Wei Tang2, and Narayan Desai2

1 Department of Computer Science,
Illinois Institute of Technology, Chicago, IL, USA

{zzhou1,lan}@iit.edu
2 Mathematics and Computer Science Division,
Argonne National Laboratory, Argonne, IL, USA

{wtang,desai}@mcs.anl.gov

Abstract. Energy expense is becoming increasingly dominant in the
operating costs of high-performance computing (HPC) systems. At the
same time, electricity prices vary significantly at different times of the day.
Furthermore, job power profiles also differ greatly, especially on HPC
systems. In this paper, we propose a smart, power-aware job scheduling
approach for HPC systems based on variable energy prices and job power
profiles. In particular, we propose a 0-1 knapsack model and demon-
strate its flexibility and effectiveness for scheduling jobs, with the goal
of reducing energy cost and not degrading system utilization. We design
scheduling strategies for Blue Gene/P, a typical partition-based system.
Experiments with both synthetic data and real job traces from produc-
tion systems show that our power-aware job scheduling approach can
reduce the energy cost significantly, up to 25 %, with only slight impact
on system utilization.

Keywords: Energy · Power-aware job scheduling · Resource manage-
ment · Blue Gene · HPC system

1 Introduction

With the vast improvement in technology, we are now moving toward exascale
computing. Many experts predict that exascale computers will have millions of
nodes, billions of threads of execution, hundreds of petabytes of inner memory,
and exabytes of persistent storage [1]. Exascale computers will have unprece-
dented scale and architectural complexity different from the petascale systems
we have now. Hence, many challenges are expected to emerge during the transi-
tion to exascale computing. Four major challenges—power, storage, concurrency,
and reliability—are identified where current trends in technology are insufficient
and disruptive technical breakthroughs will be needed to make exascale com-
puting a reality [2]. In particular, the energy and power challenge is pervasive,
affecting every part of a system. Today’s leading-edge petascale systems consume

N. Desai and W. Cirne (Eds.): JSSPP 2013, LNCS 8429, pp. 96–115, 2014.
DOI: 10.1007/978-3-662-43779-7 6, c© Springer-Verlag Berlin Heidelberg 2014

Reducing Energy Costs for IBM Blue Gene/P 97

between 2 and 3 MW per petaflop [2]. It is generally accepted that an exaflop
system should consume no more than 20 MW; otherwise their operating costs
would be prohibitively expensive.

High-performance computing generally requires a large amount of electric-
ity to operate computer resources and to cool the machine room. For exam-
ple, a high-performance computing (HPC) center with 1,000 racks and about
25,000 square feet requires 10 MW of energy for the computing infrastructure
and an additional 5 MW to remove the dissipated heat [3]. At the Argonne
Leadership Computing Facility (ALCF), our systems consume approximately
$1 million worth of electricity annually. As of 2006, the data centers in the
United States were consuming 61.4 billion kWh per year [4], an amount of energy
equivalent to that consumed by the entire transportation manufacturing indus-
try (the industry that makes airplanes, ships, cars, trucks, and other means of
transportation) [5]. Since the cost of powering HPC systems has been steadily
rising with growing performance, while the cost of hardware has remained rela-
tively stable, it is argued that if these trends were to continue, the energy cost
of a large-scale system during its lifetime could surpass the equipment itself [6].

Several conventional approaches to reducing energy cost have been adopted
by organizations operating HPC systems. For instance, a popular and intuitive
strategy is to manipulate the nodes within an HPC system through techniques
such as dynamic voltage and frequency scaling, power state transitions, and the
use of separation in hot and cold aisles. Meanwhile, new cooling technologies,
load-balancing algorithms, and location-aware computing have been proposed
as new ways to reduce the energy demand of HPC centers [7].

In this paper we develop and analyze a new method to reduce the energy
cost of operating large-scale HPC systems. Our method relies on three key
observations.

1. Electricity prices vary. In many districts in the United States with wholesale
electricity markets, the price varies on an hourly basis. Sometimes the varia-
tion can be significant as much as a factor of 10 from one hour to the next [7].
HPC centers often make a contract with the power companies to pay variable
electricity prices. A common arrangement is that HPC centers pay less for
electricity consumed during an off-peak period (nighttime) than during an
on-peak period (daytime) [4].

2. Job power consumption differs. Studies have shown that most HPC jobs have
distinct power consumption profiles. For example, in [8] the authors analyzed
the energy characteristics of the production workload at the Research Center
Juelich (FZJ) and found that their jobs have a power consumption ranging
from 20 kW to 33 kW per rack on their Blue Gene/P system. Usually, an
application has relatively high power consumption during its computational
phases, and its power consumption drops during the communication or I/O
phase [8]. For example, I/O-intensive jobs and computation-intensive jobs
have totally different energy-consuming behaviors leading to variation in their
power consumption.

98 Z. Zhou et al.

3. System utilization cannot be impacted in HPC. Most conventional power sav-
ing approaches focus on manipulating nodes by turning off some nodes or
putting the system into an idle phase during the peak price time. An imme-
diate consequence of these approaches is that they lower system utilization
[4]. Lowering system utilization for energy saving is not tolerable for HPC
centers, however. HPC systems require a significant capital investment; and
hence making efficient use of expensive resources is of paramount importance
to HPC centers. Unlike Internet data centers that typically run at about 10–
15 % utilization, systems at HPC centers have a typical utilization of 50–80 %
[9], and job queues are rarely empty because of the insatiable demand in sci-
ence and engineering. Therefore, an approach is needed that can save energy
cost while maintaining relatively high system utilization.

We argue that HPC systems can save a considerable amount of electric costs
by adopting an intelligent scheduling policy that utilizes variable electricity
prices and distinct job power profiles—without reducing system utilization. More
specifically, we develop a power-aware scheduling mechanism that smartly selects
and allocates jobs based on their power profiles by preferentially allocating the
jobs with high power consumption demands during the off-peak electricity price
period. Our design is built on three key techniques: a scheduling window, a 0-1
knapsack model, and an on-line scheduling algorithm. The scheduling window
is used to balance different scheduling goals such as performance and fairness;
rather than allocating jobs one by one from the wait queue, our scheduler makes
decisions on a group of jobs selected from the waiting queue. We formalize our
scheduling problem into a standard 0-1 knapsack model, based on which we
apply dynamic programming to efficiently solve the scheduling problem. The
derived 0-1 knapsack model enables us to reduce energy cost during high elec-
tricity pricing period with no or limited impact to system utilization. We use
our on-line scheduling algorithm together with the scheduling window and 0-1
knapsack model to schedule jobs on Blue Gene/P.

By means of trace-based simulations using real job traces of the 40-rack Blue
Gene/P system at Argonne, we target how much cost saving can be achieved
with this smart power-aware scheduling. One major advantage of using real job
traces from production systems of different architectures is to ensure that exper-
imental results can reflect the actual system performance to the greatest extent.
Experimental results show that our scheduling approach can reduce energy bills
by 25 % with no or slight loss of system utilization and scheduling fairness. We
also perform a detailed analysis to provide insight into the correlation between
power and system utilization rate, comparing our power-aware scheduling with
the default no-power-aware scheduling. We also conduct a sensitivity study to
explore how energy cost savings and utilization can be affected by applying dif-
ferent combinations of power ranges and pricing ratio.

The remainder of the paper is organized as follows. Section 2 discusses related
studies on HPC energy issues. Section 3 describes our methodology, including
the scheduling window, 0-1 knapsack model, and on-line scheduling algorithm.
Section 4 describes our experiments and results. Section 5 draws conclusion and
presents future work.

Reducing Energy Costs for IBM Blue Gene/P 99

2 Related Work

Research on power- or energy-aware HPC systems has been active in recent years.
Broadly speaking, existing work has mainly focused on the following topics:
hardware design, processor adjustment, computing nodes controlling and power
capping.

Energy-efficient hardware is being developed so that the components consume
energy more efficiently than do standard components [10]. Several researchers
[11,12] argue that the power consumption of a machine should be proportional
to its workload. According to [12] a machine should consume no power in idle
state, almost no power when the workload is very light, and eventually more
power when the workload is increased. However, power consumption does not
strictly follow this because of the various job behaviors during runtime. In [8], the
authors discuss these phenomena by presenting core power and memory power
for a job on Blue Gene/P.

Dynamic voltage and frequency scaling (DVFS) is another widely used tech-
nique for controlling CPU power since the power consumption of processors occu-
pies a substantial portion of the total system power (roughly 50 % under load)
[10]. DVFS enables a process to run at a lower frequency or voltage, increasing
the job execution time in order to gain energy savings. Some research efforts on
applying DVFS can be found in [13–15]. Nevertheless, DVFS is not appropriate
for some HPC systems. For example, DVFS is both less feasible and less impor-
tant for the Blue Gene series because it does not include comparable infrastruc-
ture and already operates at highly optimized voltage and frequency ranges [8].
Green Destiny [16] are build based on low frequency process to achieve the goal
of energy efficiency which leaves little space for DVFS which performs better on
systems equipped with high frequency processors.

In a typical HPC system, nodes often consume considerable energy in idle
state without any running application. For example, an idle Blue Gene/P rack
still has a DC power consumption of about 13 kW. Some nodes are shut down or
switched to a low-power state during the time of low system utilization [10,17].
In [13] the authors designed an approach that can dynamically turn nodes on
and off during running time. Jobs are concentrated onto fewer nodes, so that
other idle nodes can be shut down to save energy consumption. Experiments on
an 8-node cluster show about 19 % energy savings. In their testbed, the time
used to power on the server is 100 s, while the time to shut down is 45 s, causing
approximately 20 % degradation in performance.

Many large data centers use power capping to reduce the total power con-
sumption. The data center administrator can set a threshold of power consump-
tion to limit the actual power of the data center [6]. The total power consumption
is kept under a predefined power budget so that an unexpected rise in power
can be prevented. The approach also allows administrators to plan data centers
more efficiently to avoid the risk of overloading existing power supplies. The
idea of our scheduling borrows the idea of using power capping as a way to limit
the power consumption of the system. However, our work is different from the
conventional power capping approach in several aspects. First, we do not control

100 Z. Zhou et al.

the total power consumption through adjusting the frequency of CPU or power
consumption of other components. Second, our goal is not to reduce the over-
all power consumption; instead, we aim at reducing energy cost by considering
various job power ranges and dynamic electricity prices.

3 Methodology

In this section, we present the detailed scheduling methodology. As mentioned
earlier, our scheduling design is built on three key techniques: scheduling window,
0-1 knapsack problem formulation, and on-line scheduling.

3.1 Problem Statement

User jobs are submitted to the system through a batch job scheduler. The job
scheduler is responsible for allocating jobs in the wait queue to compute nodes.
Before performing job scheduling, we have made two essential assumptions: (1)
electricity prices keep changing during the day, with significant variation between
low and high prices; (2) HPC jobs have different power profiles caused by differ-
ent characteristics, which are available to the job scheduler at job submission.
Also, our expected scheduling method should be based on the following design
principles: (1) the scheduling method should save considerable energy cost by
taking advantage of variable electricity prices and job power profiling, (2) there
should be no or only minor impact to system utilization, and (3) job fairness
should be preserved as much as possible. When electricity price is high (i.e.,
during the on-peak period), in order to save energy costs, we reduce the total
amount of power consumed by the jobs allocated on the system. To limit the
total power consumption, we set an upper bound denoted as the power budget
that the system cannot exceed. Thus, our scheduling problem is as follows: How
can we schedule jobs with different power profiles, without exceeding a prede-
fined power budget and at the same time not affecting system utilization and
not breaking the fairness of scheduling as much as possible?

Figure 1 illustrates a typical job-scheduling scenario on a 9-node cluster.
Assume we have 5 jobs to be scheduled, which come in the order J1, J2, J3,
J4, and J5. Job 1 stays at the head of the waiting queue and Job 5 at the tail.
A 9-node atom cluster (one core per node) is ready to run these jobs. Each
job is labeled with its requested number of nodes and total power consumption
inside the rectangle. A job scheduler is responsible for dispatching jobs to its
allocated nodes. Other unnecessary components are ignored because we focus
only on the scheduling issue in terms of job size and power. We assume at this
time that the electricity price is staying in the on-peak period and the power
budget is 150 W for the whole system. The two rectangles in the right part of
Fig. 1 represent two potential scheduling solutions. The upper one stands for
the typical behavior of the backfilling scheduler where the jobs’ power is not a
concern. Once the scheduling decision for this time slot is made, there will be
no changes unless some jobs cannot acquire needed resources. As shown in this

Reducing Energy Costs for IBM Blue Gene/P 101

Fig. 1. Scheduling 5 jobs using traditional (top right) and power-aware scheduling
(bottom right) separately.

figure, two jobs (J1 and J5) occupy eight nodes, leaving one node idle because
J3, J4, and J5 all require more than one node. So at this time 8 out of 9 nodes
are running jobs, with a total power of 140 kW. In contrast, the rectangle in
the lower right corner shows another possible combination of jobs. Its aim is
to choose jobs whose aggregated power consumption will not exceed the power
budget and to try to utilize nodes as much possible. Instead of choosing jobs
in a first com, first served (FCFS) manner, it searches the waiting queue for an
optimal combination of jobs that can achieve the maximum system utilization
and do not break the power budget constraint. As a consequence, we can see J3,
J4, and J5 are picked up and put on the cluster. With their total size exactly
equivalent to the cluster size, their total power is 145 W, which does not exceed
the power budget.

3.2 Scheduling Window

Balancing fairness and system performance is a critical concern when developing
schedulers. The simplest way to schedule jobs is to use a strict FCFS policy plus
backfilling [18,19]. It ensures that jobs are started in the order of their arrivals.
FCFS plus EASY backfilling is widely used by many batch schedulers; indeed,
it has been estimated that 90 % to 95 % of batch schedulers use this default
configuration [20,21]. Under FCFS/EASY, jobs are served in FCFS order, and
subsequent jobs continuously jump over the first queued job as long as they do
not violate the reservation of the first queued job.

In our design, we use a window-based scheduling mechanism to avoid break-
ing the fairness of job scheduling as much as possible. Rather than allocating
jobs one by one from the front of the queue as adopted by existing schedulers,
our method allocates a window of jobs at a time. The selection of jobs into the

102 Z. Zhou et al.

window is to guarantee certain fairness, while the allocation of the jobs in the
window onto system resources is to meet our objective of maximizing system
utilization without exceeding the predefined power budget. The job scheduler
makes decisions on a group of jobs selected from the waiting queue. Jobs within
the group are called to be in a scheduling window. To ensure fairness as much
as possible, the job scheduler selects jobs in the scheduling window based the
system’s original scheduling policy. This can be seen as a variant of FCFS in
that this window-based approach treats the group of jobs in the front of the
wait queue with the same priority.

3.3 Job Scheduling

We now describe how to formalize the scheduling problem listed in Sect. 3.1 into
a 0-1 knapsack model. We then present dynamic programming to efficiently solve
the model.

0-1 Knapsack Model. Suppose there are S available nodes in the system,
J jobs as {ji|1 ∗ i ∗ J} to be scheduled, and a power budget denoted as
PB. Hence we can formalize the problem into a classical 0-1 knapsack model as
follows:

Problem 1. To select a subset of {ji|1 ∗ i ∗ J} such that their aggregated power
consumption is no more than the power budget, with the objective of maximizing
the number of nodes allocated to these jobs.

For each job ji, we associate it with a gain value vi and weight wi. Here vi
represents the number of nodes allocated to the job, which will be elaborated
in the next subsection, and wi denotes its power consumption, which is usually
measured in kilowatts per node or kilowatts per rack.

Problem 2. To determine a binary vector X = {xi|1 ∗ i ∗ J} such that

maximize
∑

1∈i∈J

xi · vi, xi = 0 or 1

subject to
∑

1∈i∈j

xi · wi ∗ PB.

(1)

Job Power Profiling. To make an intelligent job allocation, we must precisely
model the job power consumption. The IBM Blue Gene series is representative of
contiguous systems, which means that only logically contiguous subsets of nodes
can be grouped to serve a single job. For instance, in Blue Gene/P systems,
the basic unit of job allocation is called midplane, which includes 512 nodes
connected via a 3D torus network [22]. Two midplanes are grouped together to
form a 1024-node rack. Hence a job can be allocated more nodes than it actually
requests.

Reducing Energy Costs for IBM Blue Gene/P 103

Calculating job power consumption of a job on a contiguous system is a bit
complicated. Because of the existence of the basic allocation unit, some nodes
in the group serving a job may stay idle. Therefore, we derive the job power
consumption as follows.

wi = Pwork nodes + Pidle nodes (2)

As shown in this equation, the total power consumption of job ji is the sum
of two parts: that of the working nodes Pwork nodes and that of the idle nodes
Pidle nodes.

To calculate Pwork nodes and Pidle nodes, we take the Blue Gene/P system as
a simple example. We get the following formulas.

⎧
⎪⎨

⎪⎩

Pwork nodes = Ni

Nalloc
i

· Pi

1024

Pidle nodes = Nalloc
i −Ni

Nalloc
i

· Pidle

1024

(3)

In Eq. 3, Pi is the power consumption of job ji, which is measured in kW
per rack; Ni is the number of nodes ji requests; and Nalloc

i is the number of
nodes ji actually get allocated. Sometimes Ni ≤= Nalloc

i because there exists a
basic allocation unit (512-node midplane). Pi

1024 and Pidle

1024 denote the power con-
sumption in kW/node transformed from kW/rack with a rack consisting of 1,024
computing nodes. Pi and Pidle can be obtained by querying the historical data
of a job recorded by a power monitor. Many HPC systems have been equipped
with particular hardware and software to detect the running information (e.g.,
LLView for Blue Gene/P; see [8]).

Dynamic Programming. After setting up the gain value and weight, the 0-1
knapsack model can be solved in pseudo-polynomial time by using a dynamic
programming method [23]. To avoid redundant computation, when implementing
this algorithm we use the tabular approach by defining a 2D table G, where
G[k,w] denotes the maximum gain value that can be achieved by scheduling
jobs {ji|1 ∗ i ∗ k} with no more than the power budget as w, where 1 ∗ k ∗ J .
G[k,w] has the following recursive feature.

G[k,w] =

⎧
⎨

⎩

0 k = 0 or w = 0
G[k − 1, w] wi → w
max(G[k − 1, w], vi + G[k − 1, w − wi]) wi ∗ w

(4)

The solution G[J, PB] and its corresponding binary vector X determine
the selection of jobs scheduled to run. The computation complexity of Eq. 4 is
O(J · PB).

3.4 On-Line Scheduling on Blue Gene/P

We apply the 0-1 knapsack model after the scheduling decision has been made.
The detailed scheduling steps are as follows.

104 Z. Zhou et al.

Table 1. Experiment configuration

Workload Intrepid (BG/P) at Argonne National Lab.

No. of nodes 40,960 (40 racks)
No. of jobs March, 2009: 9709; April, 2009: 10503

May, 2009: 7925; June, 2009: 8317
July, 2009: 8241; Aug, 2009: 7592

Price period On-peak (9am–11pm)
Off-peak (11pm–9am)

Pricing ratio On-peak:Off-peak = 1:3, 1:4, 1:5
Job power profile 20 to 33 kW per rack

30 to 90 kW per rack
30 to 120 kW per rack

Power budget 50 %, 60 %, 70 %, 80 %, 90 %

Step 1: Use a traditional scheduling method to select a set of jobs denoted as J .
Step 2: Decide whether it is an on-peak period. If so, go to Step 3. If not, set J

as the optimal solution, and go to Step 5.
Step 3: Apply the 0-1 knapsack model to the job set J using weight and value

functions, and get the optimal combination of jobs.
Step 4: Release allocated nodes of jobs that are not in the optimal set.
Step 5: Start jobs in the optimal set.

4 Evaluation

We evaluate our power-aware scheduling algorithm by using trace-based simu-
lations. In particular, we use the event-driven simulator called Qsim [24], which
supports simulation of the BG/P system and its partition-based job scheduling.
We extend Qsim to include our power-aware scheduling method. In this section,
we describe the experiment configuration and our evaluation metrics. We then
present our experimental results by comparing our power-aware scheduling with
the default power-agnostic scheduling. Table 1 shows the overall configuration of
our experiment that will be described in the next subsection.

4.1 Experiment Configuration

Job Trace. Our experimental study is based on real job traces from workloads
collected from two different systems: one workload is from the 40-rack Blue
Gene/P system called Intrepid at Argonne. Intrepid is a partitioned torus sys-
tem, so nodes can be allocated in order to connect them into a job-specific torus
network [25]. One major advantage of using real job traces is that experimental
results from simulation are more convincing and can reflect the system perfor-
mance to the greatest extent. For Intrepid, we use a six-month job trace from
the machine (40,960 computing nodes) collected by Cobalt, a resource manager

Reducing Energy Costs for IBM Blue Gene/P 105

developed at Argonne [26]. It contains 52,287 jobs recorded from March 2009
to August 2009. We apply our power-aware scheduling algorithm on a monthly
base to see the results for months. By doing so, we are able to examine our
algorithm under diverse characteristics of jobs such as different numbers of jobs
and various job arriving rate.

Dynamic Electricity Price. In our experiments, we assume the most common
type of variable electricity price, namely, on-peak/off-peak pricing. Under this
pricing system, electricity costs less during off-peak periods (from 11pm to 9pm)
and more when used during on-peak periods (from 9am until 11pm) [4]. Here we
are not concerned about the absolute value of electricity price. Instead we care
only about the ratio of on-peak pricing to off-peak pricing because one of our
goals is to explore how much energy cost can be saved under our smart power-
aware scheduling as compared with a default job scheduler without considering
power or energy. According to the study listed in [7], the most common ratio of
on-peak and off-peak pricing varies from 2.0 to 5.0. Hence we use three differ-
ent ratios, 1:3, 1:4, and 1:5, in our experiments. In the figures in the following
sections, we use “PR” to denote “pricing ratio” for short.

Job Power Profile. Because we lack the power information directly related
to the testing workloads, we use the field data listed in [8] to estimate the
approximate power consumption of jobs for our workloads. For the Intrepid
workload, job power ranges between 20 and 33 kW per rack. We assign each job
a random power value within this range using normal distribution, which fits the
observation in [8] that most jobs fall into the 22 to 24 kW per rack range. For
definiteness and without loss of generality, we apply another two sets of ranges
as 30 to 90 kW and 30 to 120 kW per rack. These numbers should not be taken
too literally since they are used to represent a higher ratio between high-power
and low-power jobs for the newest supercomputers. In the following sections, we
use “power” to denote the meaning “power per rack” for short.

Power Budget. We evaluate five power budgets in our experiments as follows.
We first run the simulation using the default scheduling policy and monitor the
runtime power of the system; we then calculate the average power and set it as
the baseline value. Respectively, we set the power budget to 50 %, 60 %, 70 %,
80 %, and 90 % of the baseline value.

4.2 Evaluation Metrics

Our power-aware scheduling has three targets: saving energy cost, impacting
system utilization only slightly, and preserving a certain degree of fairness.

Energy Cost Saving. This metric represents the amount of the energy bill
that we can reduce by using our power-aware scheduling, as compared with the
default scheduling approach without considering power or energy. In detail, the
energy cost is calculated by accumulation during runtime. Because the price
changes at different time periods, a monitor is responsible for calculating the
current energy cost as an extension to Qsim.

106 Z. Zhou et al.

System Utilization Rate. This metric represents the ratio of the utilized
node-hour compared with the total available node-hours. Usually it is calculated
as an average value over a specified period of time.

Fairness. Currently, there is no standard way to measure job fairness. Previous
work on fairness of scheduling includes using “fair start time” [27] and measuring
resource quality [28,29]. To study the fairness of our power-aware scheduling, we
propose a new metric by investigating the temporal relationship between the
start times of jobs. Because we adopt a scheduling window when apply the 0-1
knapsack algorithm, Any job within this window can be selected for scheduling.
Such scheduling may disrupt the execution order between jobs included in that
window. Here we introduce a new metric called “inverse pair.” This idea is
borrowed from the concept of permutation inverse in discrete mathematics. In
combinatorial and discrete mathematics, a pair of element of (pi, pj) is called
an inversion in a permutation p if i → j and pi ∗ pj [30]. Similarly, we build a
sequence of jobs, S, based on their start time using a traditional job scheduling
method. Si denotes the start time of job Ji. Also we build another sequence of
jobs, called P, using our power-aware job scheduling method. In the same way Pi

denotes the start time of job Ji. In sequence S and P, for a pair of jobs Ji and Jj ,
if Si ∗ Sj and Pi → Pj , we call jobs Ji and Jj an “inverse pair.” We count the
total number of inverse pairs to assess the overall fairness. This metric reflects
the extent of disruption to job execution caused by using budget controlling.

4.3 Results

Our experimental results are presented in four different groups. First, we evaluate
energy cost saving gained by using our power-aware scheduling policy. Second, we
study the impact to system utilization after using our scheduling policy. Third,
we study the extent to which scheduling fairness is impacted by our power-aware
scheduling policy. We also conduct detailed analysis of how the average power
and system utilization change within a day. In the three groups above, we use
the power range 20 to 33 kW of real systems and a pricing ratio 1:3 to present
detailed analysis. We then conduct a complementary sensitivity study on energy
cost savings and system utilization using different combinations of power ranges
and pricing ratios.

Energy Cost Savings. Figure 2 presents the energy cost saving of six months
on BG/P. In this figure, each group of bars represents one month in our job log.
In each group, one single bar represents a power budget value (i.e., “PB-50 %”
means power budget is set to 50 % of the baseline value). Obviously, our power-
aware scheduling approach can help reduce energy cost significantly for BG/P
systems. We notice that a lower power budget can save more energy cost than
can a higher power budget. Intuitively, a higher power budget limits the power
usage during the on-peak period more than a lower power budget does. The bars
within each group appear to have a decreasing trend with higher power budget,
with only two exceptions: in June a power budget of 90 % can save a little more
than one of 80 %, and similarly in May. The largest energy cost savings happen

Reducing Energy Costs for IBM Blue Gene/P 107

 0%

 5%

10%

15%

20%

25%

30%

March April May June July August

E
ne

rg
y

co
st

 s
av

in
gs

Month

 PB-50%
 PB-60%
 PB-70%
 PB-80%
 PB-90%

Fig. 2. Energy cost savings with power 20 to 33 kW per rack and pricing ratio 1:3.

 0%

20%

40%

60%

80%

100%

March April May June July August

U
til

iz
at

io
n

Month

PB-50%
PB-60%
PB-70%
PB-80%
PB-90%

No Power-Aware

Fig. 3. Utilization with power 20 to 33 kW per rack and pricing ratio 1:3.

in August, as much as 23 % with a power budget of 50 %. For the other five
months, using a power budget of 50 % can achieve more than 15 % cost savings.
Even when using the highest power budget (PB-90 %), most months can achieve
more than 5 % energy cost savings.

Impact on Utilization. Figure 3 shows the system utilization of six months
on BG/P. The bars are similar to those in Fig. 2, and in each group there is an
additional bar for the default scheduling method without power-aware schedul-
ing. The figure shows that the system utilization is roughly 50 % to 70 %, which
is comparable to many real scientific computing data centers and grids [12,31].
Two features are prominent. First we observe that our power-aware scheduling
approach only slightly affects the system utilization rate. Unlike energy cost
savings, the disparity between high and low power budget is not large, com-
pared with the base value. For example, the most utilization drop is in June
when the original utilization rate using default scheduling policy is around 75 %,
while using a power budget of 50 % results in a utilization rate of 62 %. Second,
whereas five power budgets are used in July, the utilization rates are almost the
same, around 55 %. This phenomenon is caused by our power-aware scheduling

108 Z. Zhou et al.

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000

50% 60% 70% 80% 90%

N
um

be
r o

f i
nv

er
se

 p
ai

rs

Power budget (kW)

March, 2009
April, 2009
May, 2009

June, 2009
July, 2009

August, 2009

Fig. 4. Fairness of scheduling under power range 20 to 33 kW per rack and pricing
ratio 1:3.

approach, which shifts some of the workload from the on-peak period to the off-
peak period. We note that using a power budget would affect the utilization rate
only during the on-peak period and would be compensated during the off-peak
period.

Impact on Fairness. We assess the fairness of scheduling using the metric
“inverse pair.” Her we evaluate how the power budget will affect the fairness of
job scheduling. Figure 4 depicts the total number of inverse pairs on BG/P. The
x-axis represents the power budget as introduced in the simulation configuration
section. The y-axis denotes the total number of inverse pairs when we impose
different power budgets. First we found that the number of inverse pairs occupies
only a small portion of the total number of job pairs. For example, when we use
a 50 % power budget job log from March 2009 on BG/P, the number of inverse
pairs is nearly 7,000, and the total number of job pairs in the job sequence is
about 107 (9,709 jobs and C2

9709 ∪ 108). From Fig. 4 we can clearly see that
the number of inverse pairs decreases as the power budget goes up; generally,
the trend shows a linear decline as the power budget grows up. Even under the
lowest power budget (50 %) the total order of job executions is not affected too
much, with the number of inverse pairs up to 8,000. Moreover, for all months,
the number of inverse pairs dropped by nearly 50 % when the power budget rose
from 50 % to 60 %. We found that the number of inverse pairs is also related
to the number of jobs in the job trace. Intuitively, a larger power budget is
beneficial to scheduling more jobs and not disrupting their relatively temporal
relationship.

Correlation Between Power and Utilization. So far, we have studied the
energy cost savings and system utilization rate under our power-aware scheduling
approach. Here we present detailed results of the power and instant utilization
within a day and how power-aware scheduling affects them. Figure 5(a) shows
the average power in a day during March 2009 of a BG/P job trace. The x-axis
represents the time in one day measured in minute. The y-axis represents the
instant system power consumption recorded at each time point. The black line
above minute = 540 splits the time of a day into two periods of which the left
part represents the off-peak period, whereas the right parts represents on-peak

Reducing Energy Costs for IBM Blue Gene/P 109

 0

 200

 400

 600

 800

 1000

 1200

 0 200 400 600 800 1000 1200 1400

P
ow

er
 (k

ilo
w

at
t)

Time of day (minute)

Off-peak period On-peak period PB-50%, Price-1:3
No Power-Aware

(a) Daily power on average during March 2009

 0%

20%

40%

60%

80%

100%

 0 200 400 600 800 1000 1200 1400

U
til

iz
at

io
n

Time of day (minute)

Off-peak period On-peak period PB-50%, Price-1:3
No Power-Aware

(b) Daily utilization on average during March 2009

Fig. 5. Average power and utilization of BG/P using default no power-aware job
scheduling (green line) power 20 to 33 kW per rack and pricing ratio 1:3 (red line).

period. The green line represents a traditional system power pattern using the
default scheduling policy. This reflects a common behavior of system power with
relatively low power consumption early in the morning and higher during the rest
of the day. Remember that in our simulation configuration, we set the on-peak
period to be 9am–11pm. Hence, we find that the system power with power-aware
scheduling (red line) starts to go down around the time where minute = 540.
We can see that the red line is always below around 50 % of the baseline value
as half of the power of the green line. And we can also see that during the off-
peak period where minute goes from 0 to 540, the system is running at a higher
power rate indicated by the red line. The reason is that along with power-aware
scheduling during on-peak period some jobs are delayed and get a chance to be
run after on-peak period. These jobs can be seen as being “pushed” to off-peak
period. This situation leads to more jobs in the waiting queue, causing more
power consumption than the original scheduling method does. This fits what we
expect, namely, that during the on-peak period less energy should be consumed
and during the off-peak period more energy should be consumed.

Figure 5(b) shows the average utilization within a day for job log March
2009. The black dashed line where minute = 540 still acts as the splitting point
between off-peak period and on-peak period. Obviously, we can see the curve of
the utilization line conforms very closely to that in Fig. 5. This fits the conclusion
of multiple studies [6,12] which have indicated that CPU utilization is a good
estimator for power usage. First we examine the left part of the dashed line.

110 Z. Zhou et al.

Beginning from minute = 540, the system utilization under default scheduling
fluctuates around 80 % and has a small drop off to 70 % later on. This is typical in
the real world because systems are always highly utilized in daytime where more
jobs are submitted into the system. Also from minute = 540, system utilization
under power-aware scheduling policy starts to drop off and swiftly reaches a
relatively stable value about 40 % to 50 %. Now we refer to the right part denoting
the off-peak period. As shown in Fig. 5(b), the green line and red line resemble
the tendency in Fig. 3. The utilization use power-aware scheduling is higher than
scheduling without power budget most of the time. Overall, our power-aware
scheduling approach reduces the system utilization during on-peak period and
on the contrary raise it during off-peak period as compensation. Hence, it has
only a slight impact on the whole system utilization, as we presented in the
previous section.

Sensitivity Study. Our initial profiling experiments show that in future sys-
tems the difference of job power consumption is expected to be higher. Today’s
leadership-class supercomputers have wider power ranges, where the ratio
between peak and idle state can be as high as 1:4. Also with the smart grid
project ramp-up and deployment in North America, more flexible electricity
price policy will be provided in the future. So in this section, we conduct a sen-
sitivity study to explore the potentiality of how different combinations of power
and pricing ratio will affect our evaluation metrics. We use three power ranges,
20 to 30 kW, 30 to 90 kW, and 30 to 120 kW, along with three pricing ratios,
1:3, 1:4, and 1:5, in our experiments.

Figure 6 presents the energy cost savings under different combinations of
power ranges and pricing ratios. First we can see that our power-aware scheduling
approach also works under these scenarios. For all months, a power budget of
50 % can lead to more than 10 % energy cost savings. The largest energy cost
savings can achieve more than 25 %, as shown in Fig. 6(e). We interpret these
figures as follows.

First, we compare energy cost savings under variable power ranges and fixed
pricing ratios. We observe that a narrower power range is likely to save more
energy cost savings than is a wider power range. For example, when the pricing
ratio is fixed to 1:4, the effect of a power range of 20 to 33 kW is greater than
that of power range 30 to 90 kW and 30 to 120 kW in all months. Also under the
same pricing ratio 1:4, a power range 30 to 90 kW results in greater energy cost
savings than in almost all the months with a power range of 30 to 120 kW. The
reason is that the majority of jobs in the BG/P log are small and thus require
nodes less than 2 racks, which can have many more idle nodes. With many small
jobs running in the systems, the system power tends to be lower than on systems
where job sizes are more uniformly distributed. As a result, imposing a power
budget cannot constrain the power of the whole system as much as that under
a narrower power range.

Second, we focus on savings under a fixed power range and variable pricing
ratio. Obviously, higher pricing ratios produce more energy cost savings in every
month. Since some portion of the system power usage is shifted from the on-peak

Reducing Energy Costs for IBM Blue Gene/P 111

 0%

 5%

10%

15%

20%

25%

30%

March April May June July August

E
ne

rg
y

co
st

 s
av

in
gs

Month

 PB-50%
 PB-60%
 PB-70%
 PB-80%
 PB-90%

(a) Power 30-90 kW, PR 1:3

 0%

 5%

10%

15%

20%

25%

30%

March April May June July August

E
ne

rg
y

co
st

 s
av

in
gs

Month

 PB-50%
 PB-60%
 PB-70%
 PB-80%
 PB-90%

(b) Power 30-120 kW, PR 1:3

 0%

 5%

10%

15%

20%

25%

30%

March April May June July August

E
ne

rg
y

co
st

 s
av

in
gs

Month

 PB-50%
 PB-60%
 PB-70%
 PB-80%
 PB-90%

(c) Power 30-90 kW, PR 1:4

 0%

 5%

10%

15%

20%

25%

30%

March April May June July August

E
ne

rg
y

co
st

 s
av

in
gs

Month

 PB-50%
 PB-60%
 PB-70%
 PB-80%
 PB-90%

(d) Power 30-120 kW, PR 1:4

 0%

 5%

10%

15%

20%

25%

30%

March April May June July August

E
ne

rg
y

co
st

 s
av

in
gs

Month

 PB-50%
 PB-60%
 PB-70%
 PB-80%
 PB-90%

(e) Power 20-33 kW, PR 1:4

 0%

 5%

10%

15%

20%

25%

30%

March April May June July August

E
ne

rg
y

co
st

 s
av

in
gs

Month

 PB-50%
 PB-60%
 PB-70%
 PB-80%
 PB-90%

(f) Power 30-90 kW, PR 1:5

 0%

 5%

10%

15%

20%

25%

30%

March April May June July August

E
ne

rg
y

co
st

 s
av

in
gs

Month

 PB-50%
 PB-60%
 PB-70%
 PB-80%
 PB-90%

(g) Power 30-120 kW, PR 1:5

 0%

 5%

10%

15%

20%

25%

30%

March April May June July August

E
ne

rg
y

co
st

 s
av

in
gs

Month

 PB-50%
 PB-60%
 PB-70%
 PB-80%
 PB-90%

(h) Power 20-33 kW, PR 1:5

Fig. 6. Energy cost savings under various combinations; “Power” is the power range
per rack, and “PR” is the pricing ratio.

period to the off-peak period, higher pricing ratios lead to more difference in the
cost of the amount of power transferred. Hence we believe one can saving save
energy costs with a personalized electricity pricing policy in the future.

Figure 7 shows the system utilization rates under different combinations of
power ranges and pricing ratios. Since the pricing ratio does not influence the
utilization, we focus only on variable power ranges. First, similar to Fig. 3, our
power-aware job scheduling brings minor impact to system utilization rate. The
largest utilization drop is in June in Fig. 7(e), a drop of about 15 %. Second,
we observe that system utilization rates under wider power ranger are higher in
some months. For example, in Fig. 7(g) when the price is fixed at 1:5, using a
power range of 30 to 120 kW gives rise to higher utilization in June than does
a power range of 20 to 33 kW. This result reflects the role of our 0-1 knapsack
algorithm. Under the same power budget, a wider power range can generate a

112 Z. Zhou et al.

 0%

20%

40%

60%

80%

100%

March April May June July August

U
til

iz
at

io
n

Month

PB-50%
PB-60%
PB-70%
PB-80%
PB-90%

No Power-Aware

(a) Power 30-90 kW, PR 1:3

 0%

20%

40%

60%

80%

100%

March April May June July August

U
til

iz
at

io
n

Month

PB-50%
PB-60%
PB-70%
PB-80%
PB-90%

No Power-Aware

(b) Power 30-120 kW, PR 1:3

 0%

20%

40%

60%

80%

100%

March April May June July August

U
til

iz
at

io
n

Month

PB-50%
PB-60%
PB-70%
PB-80%
PB-90%

No Power-Aware

(c) Power 30-90 kW, PR 1:4

 0%

20%

40%

60%

80%

100%

March April May June July August

U
til

iz
at

io
n

Month

PB-50%
PB-60%
PB-70%
PB-80%
PB-90%

No Power-Aware

(d) Power 30-120 kW, PR 1:4

 0%

20%

40%

60%

80%

100%

March April May June July August

U
til

iz
at

io
n

Month

PB-50%
PB-60%
PB-70%
PB-80%
PB-90%

No Power-Aware

(e) Power 20-33 kW, PR 1:4

 0%

20%

40%

60%

80%

100%

March April May June July August

U
til

iz
at

io
n

Month

PB-50%
PB-60%
PB-70%
PB-80%
PB-90%

No Power-Aware

(f) Power 30-90 kW, PR 1:5

 0%

20%

40%

60%

80%

100%

March April May June July August

U
til

iz
at

io
n

Month

PB-50%
PB-60%
PB-70%
PB-80%
PB-90%

No Power-Aware

(g) Power 30-120 kW, PR 1:5

 0%

20%

40%

60%

80%

100%

March April May June July August

U
til

iz
at

io
n

Month

PB-50%
PB-60%
PB-70%
PB-80%
PB-90%

No Power-Aware

(h) Power 20-33 kW, PR 1:5

Fig. 7. Utilization under various combinations; “Power” is the power range per rack
and “PR” is the pricing ratio.

more optimal solution because of the larger choosing space. But we notice that
the effect is not that obvious because in BG/P the system resources released by
jobs each time are relatively small compared with the whole system size, thus
leaving little space for optimizing the system utilization rate.

4.4 Results Summary

In summary, our trace-based experiments have shown the following.

• Our power-aware scheduling approach can effectively reduce the energy cost
by up to 25 %. For HPC centers such as the ALCF, this energy cost savings
is translated into over $250,000 saving per year.

• This energy cost savings comes at the expense of a slight impact on system
utilization during the on-peak price period. We also observe a modest increase

Reducing Energy Costs for IBM Blue Gene/P 113

in system utilization during the off-peak price period. In other words, the
overall system utilization does not change much on a daily base.

• While our scheduling window preserves some degree of scheduling fairness,
some jobs, especially those having high power consumption, will be delayed;
but the delay is limited to a day.

• Based on our sensitivity study, we find that our power-aware job scheduling
has a high potential to save energy costs and maintain system utilization.

5 Conclusion and Future Work

In this paper, we have presented a smart power-aware scheduling method to
reduce electric bills for HPC systems under the condition of limiting the impact
on system utilization and scheduling fairness. The design explores variable elec-
tricity prices and distinct job power profiles. Our approach contains three key
techniques: a scheduling window, 0-1 knapsack, and on-line scheduling algorithm.
Using real workloads from BG/P, we have demonstrated that our power-aware
scheduling can effectively save energy costs with acceptable loss to system met-
rics such as utilization.

This is our first step in investigating power-aware job scheduling to address
the energy challenge for HPC. We plan to extend our work in several ways.
First, we will explore data analysis technology on historical data in order to
examine power profiles for HPC jobs at various production systems; our aim is
to enable us to predict job power profiles at their submission. Additionally, we
are enhancing our power-aware scheduling with an adaptive self-tuning mecha-
nism; the resulting job scheduler will be able to adjust its decision to external
conditions such as electricity price automatically during operation. We also plan
to integrate this work with our prior studies on fault-aware scheduling [21,24,32].

Government License

The submitted manuscript has been created by UChicago Argonne, LLC, Opera-
tor of Argonne National Laboratory (“Argonne”). Argonne, a U.S. Department
of Energy Office of Science laboratory, is operated under Contract No. DE-
AC02-06CH11357. The U.S. Government retains for itself, and others acting on
its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to
reproduce, prepare derivative works, distribute copies to the public, and perform
publicly and display publicly, by or on behalf of the Government.

Acknowledgment. This work was supported in part by the U.S. National Science
Foundation grants CNS-0834514 and CNS-0720549 and in part by the U.S. Depart-
ment of Energy, Office of Science, Advanced Scientific Computing Research under
contract DE-AC02-06CH1135. We thank Dr. Ioan Raicu for generously providing high-
performance servers for our experiments.

114 Z. Zhou et al.

References

1. Zhou, Z., Tang, W., Zheng, Z., Lan, Z., Desai, N.: Evaluating performance impacts
of delayed failure repairing on large-scale systems. In: 2011 IEEE International
Conference on Cluster Computing (CLUSTER), pp. 532–536 (2011)

2. Bergman, K., Borkar, S., Campbell, D., Carlson, W., Dally, W.,
Denneau, M., Franzon, P., Harrod, W., Hiller, J., Karp, S., Keckler, S.,
Klein, D., Lucas, R., Richards, M., Scarpelli, A., Scott, S., Snavely, A., Sterling,
T., Williams, R.S., Yelick, K., Bergman, K., Borkar, S., Campbell, D., Carlson,
W., Dally, W., Denneau, M., Franzon, P., Harrod, W., Hiller, J., Keckler, S., Klein,
D., Kogge, P., Williams, R.S., Yelick, K.: Exascale computing study: technology
challenges in achieving exascale systems (2008)

3. Patel, C., Sharma, R., Bash, C., Graupner, S.: Energy aware grid: global workload
placement based on energy efficiency. In: Proceedings of IMECE (2003)

4. Goiri, I., Le, K., Haque, M., Beauchea, R., Nguyen, T., Guitart, J., Torres,
J., Bianchini, R.: Greenslot: scheduling energy consumption in green datacenters.
In: 2011 International Conference on High Performance Computing, Networking,
Storage and Analysis (SC), pp. 1–11 (2011)

5. Jossen, A., Garche, J., Sauer, D.U.: Operation conditions of batteries in PV appli-
cations. Sol. Energy 76, 759–769 (2004)

6. Fan, X., Weber, W.-D., Barroso, L.A.: Power provisioning for a warehouse-sized
computer. In: Proceedings of the 34th annual International Symposium on Com-
puter Architecture, ISCA ’07, pp. 13–23. ACM, New York (2007)

7. Qureshi, A., Weber, R., Balakrishnan, H., Guttag, J., Maggs, B.: Cutting the
electric bill for internet-scale systems. In: Proceedings of the ACM SIGCOMM
2009 conference on data communication, SIGCOMM ’09, pp. 123–134. ACM, New
York (2009)

8. Hennecke, M., Frings, W., Homberg, W., Zitz, A., Knobloch, M., Böttiger, H.: Mea-
suring power consumption on IBM Blue Gene/P. Comput. Sci. Res. Dev. 27(4),
329–336 (2012)

9. Parallel workload archive. http://www.cs.huji.ac.il/labs/parallel/workload/
10. Mämmelä, O., Majanen, M., Basmadjian, R., Meer, H., Giesler, A., Homberg, W.:

Energy-aware job scheduler for high-performance computing. Comput. Sci. Res.
Dev. 27(4), 265–275 (2012)

11. Meisner, D., Sadler, C., Barroso, L., Weber, W., Wenisch, T.: Power management
of online data-intensive services. In: 2011 38th Annual International Symposium
on Computer Architecture (ISCA), pp. 319–330 (2011)

12. Barroso, L., Holzle, U.: The case for energy-proportional computing. Computer
40(12), 33–37 (2007)

13. Pinheiro, E., Bianchini, R., Carrera, E.V., Heath, T.: Load balancing and unbal-
ancing for power and performance in cluster-based systems. In: Proceedings of the
Workshop on Compilers and Operating Systems for Low, Power (COLP’01) (2001)

14. Liu, Y., Zhu, H.: A survey of the research on power management techniques for
high-performance systems. Softw. Pract. Exper. 40, 943–964 (2010)

15. Lee, E., Kulkarni, I., Pompili, D., Parashar, M.: Proactive thermal management in
green datacenters. J. Supercomput. 60(2), 165–195 (2012)

16. Feng, W., Warren, M., Weigle, E.: The bladed beowulf: a cost-effective alternative
to traditional beowulfs. In: Proceedings 2002 IEEE International Conference on
Cluster Computing, 2002, pp. 245–254 (2002)

http://www.cs.huji.ac.il/labs/parallel/workload/

Reducing Energy Costs for IBM Blue Gene/P 115

17. Hikita, J., Hirano, A., Nakashima, H.: Saving 200 kw and $200 k/year by power-
aware job/machine scheduling. In: IEEE International Symposium on Parallel and
Distributed Processing, 2008, IPDPS 2008, pp. 1–8 (2008)

18. Etsion, Y., Tsafrir, D.: A short survey of commercial cluster batch schedulers,
Technical report. The Hebrew University of Jerusalem, Jerusalem (2005)

19. Feitelson, D., Weil, A.: Utilization and predictability in scheduling the IBM SP2
with backfilling. In: Parallel Processing Symposium, 1998, IPPS/SPDP 1998. In:
Proceedings of the 1st Merged International Parallel Processing Symposium and
Symposium on Parallel and Distributed Processing 1998, pp. 542–546 (1998)

20. Tsafrir, D., Etsion, Y., Feitelson, D.: Backfilling using system-generated predictions
rather than user runtime estimates. IEEE Trans. Parallel Distrib. Syst. 18(6),
789–803 (2007)

21. Li, Y., Lan, Z., Gujrati, P., Sun, X.-H.: Fault-aware runtime strategies for high-
performance computing. IEEE Trans. Parallel Distrib. Syst. 20(4), 460–473 (2009)

22. IBM Blue Gene team: Overview of the IBM Blue Gene/P project. IBM J. Res.
Dev. 52(1.2), pp. 199–220 (2008)

23. Cormen, T.H., Stein, C., Rivest, R.L., Leiserson, C.E.: Introduction to Algorithms,
2nd edn. McGraw-Hill Higher Education, New York (2001)

24. Tang, W., Lan, Z., Desai, N., Buettner, D.: Fault-aware, utility-based job schedul-
ing on Blue Gene/P systems. In: IEEE International Conference on Cluster Com-
puting and Workshops, 2009, CLUSTER ’09, pp. 1–10 (2009)

25. Tang, W., Lan, Z., Desai, N., Buettner, D., Yu, Y.: Reducing fragmentation on
torus-connected supercomputers. In: 2011 IEEE International Parallel Distributed
Processing Symposium (IPDPS), pp. 828–839 (2011)

26. Cobalt resource manager. http://trac.mcs.anl.gov/projects/cobalt
27. Sabin, G., Kochhar, G., Sadayappan, P.: Job fairness in non-preemptive job

scheduling. In: International Conference on Parallel Processing, 2004, ICPP 2004,
vol. 1, pp. 186–194 (2004)

28. Sabin, G., Sadayappan, P.: Unfairness metrics for space-sharing parallel job sched-
ulers. In: Feitelson, D.G., Frachtenberg, E., Rudolph, L., Schwiegelshohn, U. (eds.)
JSSPP 2005. LNCS, vol. 3834, pp. 238–256. Springer, Heidelberg (2005)

29. Tang, W., Ren, D., Lan, Z., Desai, N.: Adaptive metric-aware job scheduling for
production supercomputers. In: 2012 41st International Conference on Parallel
Processing Workshops (ICPPW), pp. 107–115 (2012)

30. Pemmaraju, S., Skiena, S.: Computational Discrete Mathematics: Combinatorics
and Graph Theory with Mathematica. Cambridge University Press, New York
(2003)

31. Rodero, I., Guim, F., Corbalan, J.: Evaluation of coordinated grid scheduling
strategies. In: 11th IEEE International Conference on High Performance Com-
puting and Communications, 2009, HPCC ’09, pp. 1–10 (2009)

32. Tang, W., Desai, N., Buettner, D., Lan, Z.: Analyzing and adjusting user runtime
estimates to improve job scheduling on the Blue Gene/P. In: IEEE International
Symposium on Parallel Distributed Processing (IPDPS) 2010, pp. 1–11 (2010)

http://trac.mcs.anl.gov/projects/cobalt

Heuristics for Resource Matching in Intel’s
Compute Farm

Ohad Shai1,2, Edi Shmueli1, and Dror G. Feitelson3(B)

1 Intel Corporation, MATAM Industrial Park, Haifa, Israel
{ohad.shai,edi.shmueli}@intel.com

2 Blavatnik School of Computer Science, Tel-Aviv University,
Ramat Aviv, Tel-Aviv, Israel

3 School of Computer Science and Engineering,
The Hebrew University, Jerusalem, Israel

feit@cs.huji.ac.il

Abstract. In this paper we investigate the issue of resource match-
ing between jobs and machines in Intel’s compute farm. We show that
common heuristics such as Best-Fit and Worse-Fit may fail to properly
utilize the available resources when applied to either cores or memory in
isolation. In an attempt to overcome the problem we propose Mix-Fit,
a heuristic which attempts to balance usage between resources. While
this indeed usually improves upon the single-resource heuristics, it too
fails to be optimal in all cases. As a solution we default to Max-Jobs, a
meta-heuristic that employs all the other heuristics as sub-routines, and
selects the one which matches the highest number of jobs. Extensive sim-
ulations that are based on real workload traces from four different Intel
sites demonstrate that Max-Jobs is indeed the most robust heuristic for
diverse workloads and system configurations, and provides up to 22 %
reduction in the average wait time of jobs.

Keywords: NetBatch · Job scheduling · Resource matching · Simula-
tion · Best-Fit · Worse-Fit · First-Fit

1 Introduction

Intel owns an Internet-scale distributed compute farm that is used for running
its massive chip-simulation workloads [3,5, p. 78]. The farm is composed of
tens of thousands of servers that are located in multiple data centers that are
geographically spread around the globe. It is capable of running hundreds of
thousands of simulation jobs and tests simultaneously, and handles a rate of
thousands of newly incoming jobs every second.

This huge compute capacity is managed by an in-house developed highly-
scalable two-tier resource management and scheduling system called NetBatch.
At the lower level NetBatch groups the servers into autonomous clusters that are
referred to in NetBatch terminology as Physical Pools. Each such pool contains

N. Desai and W. Cirne (Eds.): JSSPP 2013, LNCS 8429, pp. 116–135, 2014.
DOI: 10.1007/978-3-662-43779-7 7, c© Springer-Verlag Berlin Heidelberg 2014

Heuristics for Resource Matching in Intel’s Compute Farm 117

up to thousands of servers and is managed by a single NetBatch entity that is
called the Physical Pool Manager or PPM. The role of the PPM is to accept
jobs from the upper level, and to schedule them on underlying servers efficiently
and with minimal waste.

At the upper level NetBatch deploys a second set of pools that are called
Virtual Pools. Just like in the lower level, each virtual pool is managed by a single
NetBatch component that is called the Virtual Pool Manager or VPM. The role
of the VPMs is to cooperatively accept jobs from the users and distribute them
to the different PPMs in order to spread the load across the farm. Together,
these two layers, VPMs at the top and PPMs at the bottom, strive to utilize
every compute resource across the farm. This paper focuses on the work done
at the PPM level.

A basic requirement in NetBatch is the enforcement of fair-share scheduling
among the various projects and business units within Intel that share the farm.
Fair-share begins at the planning phase where different projects purchase dif-
ferent amounts of servers to be used for their jobs. These purchases eventually
reflect their share of the combined resources. Once the shares are calculated, they
are propagated to the PPMs where they are physically enforced. (The calculation
and propagation mechanisms are beyond the scope of this paper.)

To enforce fair-share the PPM constantly monitors which jobs from which
projects are currently running and the amount of resources they use. The PPM
then selects from its wait queue the first job from the most eligible project (the
project whose ratio of currently used resources to its share of the resources is
the smallest) and tries to match a machine to that job. If the matching succeeds,
the job is scheduled for execution on that machine. Otherwise, a reservation is
made for the job, and the process is repeated while making sure not to violate
previously made reservations. Such reservations enable jobs from projects that
are lagging behind to obtain the required resources as soon as possible.

Matching machines to jobs is done using any of a set of heuristics. For exam-
ple, one may sort the list of candidate machines according to some pre-defined
criteria — e.g. increasing number of free cores or decreasing amount of free mem-
ory — and then traverse the sorted list and select the first machine on which
the job fits. This leads to variants of Best-Fit and Worse-Fit schemes. Good
sorting criteria reduce fragmentation thus allowing more jobs to be executed,
and are critical for the overall utilization of the pool. Alternatively one may opt
to reduce overhead and use a First-Fit heuristic.

The sorting criteria are programmable configuration parameters in NetBatch.
This allows one to implement various matching heuristics and apply them on dif-
ferent resources to best suit the workload characteristics and needs. NetBatch
also allows individual jobs to specify different heuristics, while the pool admin-
istrator can set a default policy to be used for all jobs.

In this paper we argue that no heuristic applied to a single resource in isola-
tion can yield optimal performance under all scenarios and cases. To demonstrate
our point we use both simple test cases and workload traces that were collected
at four large Intel sites. Using the traces, we simulate the PPM behavior when

118 O. Shai et al.

applying the different heuristics to schedule the jobs. We show that depending on
the workload different heuristics may be capable of scheduling a higher number
of jobs.

In an attempt to overcome the problem we develop “Mix-Fit” — a combined
heuristic that tries to balance the use of cores and memory. Intuitively this
should reduce fragmentation at the pool. However, while generally better than
the previous heuristics, Mix-Fit too fails to yield optimal assignments in some
cases.

As an alternative, we propose a meta-heuristic we call “Max-Jobs”. Max-
Jobs is not tailored towards specific workloads or configurations. Instead, it uses
the aforementioned heuristics as sub-routines and chooses, in every scheduling
cycle, the one that yields the highest number of matched jobs. This overcomes
corner cases that hinder specific heuristics from being optimal in all cases, and
conforms well to the NetBatch philosophy of maximizing resource utilization
in every step. We demonstrate, through simulation, that Max-Jobs yields lower
wait times by up to 22 % for all jobs in average under high loads.

The rest of this paper is organized as follows. Section 2 provides more details
on the problem of matching machines to jobs, and explores the performance
of commonly used heuristics. Section 3 then describes the Mix-Fit heuristic, fol-
lowed by the Max-Jobs meta-heuristic in Sect. 4, and simulation results in Sect. 5.
Section 6 briefly presents related work, and Sect. 7 concludes the paper.

2 Matching Machines to Jobs

As described above, matching machines to jobs at the PPM is done by choosing
the most eligible job from the wait queue, sorting the list of candidate machines
according to some pre-defined criterion, traversing the sorted list, and selecting
the first machine on which the job fits1. This is repeated again and again until
either the wait queue or the list of machines are exhausted. At this point the
PPM launches the chosen job(s) on the selected machine(s) and waits for the
next scheduling cycle.

A job may be multithreaded, but we assume that each job can fit on a single
(multicore) machine. In principle NetBatch also supports parallel jobs (called
“MPI jobs”) that span multiple machines, but in practice their numbers at the
present time are small. The only added difficulty in supporting such jobs is the
need to allocate multiple machines at once instead of one at a time.

There are many criteria by which the machines can be sorted. In this paper
we focus on the number of free cores and amount of free memory, as this suits
well the workload in Intel which is characterized by compute-intensive memory-
demanding jobs. Though I/O is definitely a factor, and some jobs do perform
large file operations, there are some in-house solutions that are beyond the scope
of this paper that greatly reduce the I/O burden on the machines.

1 This is done for practical reasons since trying all combinations is time consuming.

Heuristics for Resource Matching in Intel’s Compute Farm 119

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6

F
ra

ct
io

n
of

 J
ob

s

Cores

Pool A

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6

F
ra

ct
io

n
of

 J
ob

s

Cores

Pool B

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6

F
ra

ct
io

n
of

 J
ob

s

Cores

Pool C

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6

F
ra

ct
io

n
of

 J
ob

s

Cores

Pool D

Fig. 1. Jobs’ cores requirements: the vast majority of the jobs are serial and require a
single CPU core in order to execute.

Figures 1 and 2 show the distribution of the jobs’ cores and memory require-
ments in four large pools at different locations across the Intel farm2. The data
comes from traces [1] that were collected at the PPM level during a one-month
period, and which contain up to 13 million jobs each. As can be seen in the
figures, the vast majority of the jobs are serial (single-thread jobs, requiring a
single CPU core in order to execute). Memory requirements are mostly 8 GB and
below, but there are jobs that require 16 GB, 32 GB, or even more memory (not
shown) in order to execute. These observations are consistent across the pools.

The two ways to sort the machines by available cores or memory are in
increasing or decreasing order. Sorting them by increasing amount of free cores
or memory and selecting the first machine on which the job fits effectively imple-
ments the Best-Fit heuristic. Best-Fit is known to result in a better packing of
jobs, while maintaining unbalanced cores (or memory) usage across the machines
in anticipation for future jobs with high resource requirements. Sorting the
machines by decreasing amount of free cores or memory implements the Worse-
Fit heuristic. Worse-Fit’s advantage is in keeping resource usage balanced across
machines, which is particularly useful for mostly-homogeneous workloads. For
completeness we also mention First-Fit. First-Fit’s advantage is in its simplicity,
2 The requirements are specified as part of the job profile at submit time.

120 O. Shai et al.

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45

0 4 8 12 16 20 24 28 32

F
ra

ct
io

n
of

 J
ob

s

Memory (GB)

Pool A

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45

0 4 8 12 16 20 24 28 32

F
ra

ct
io

n
of

 J
ob

s

Memory (GB)

Pool B

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

0 4 8 12 16 20 24 28 32

F
ra

ct
io

n
of

 J
ob

s

Memory (GB)

Pool C

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

0 4 8 12 16 20 24 28 32

F
ra

ct
io

n
of

 J
ob

s

Memory (GB)

Pool D

Fig. 2. Jobs’ memory requirements: demands are mostly 8 GB and below, but there
are jobs that require 16 GB, 32 GB or even more memory in order to execute.

as it does not require the sorting of the machines. Our tests, however, revealed
that it performs poorly in our environment, so we do not refer to it further in
this paper.

We argue that no single heuristic, when applied to a single resource in iso-
lation, can yield optimal performance under all workload scenarios. To demon-
strate our point we begin by providing simple synthetic examples showing how
different heuristics match different number of jobs under different workload con-
ditions. We then put theory to the test by running simulations on the aforemen-
tioned traces, demonstrating the effectiveness of the different heuristics under
different workloads.

2.1 Synthetic Examples of Heuristics Failures

In our examples we consider two machines, A and B, each having four cores and
32 GB of memory. Assume that 8 jobs are queued at the PPM in the following
priority order: two jobs of one core and 16 GB of memory, and then 6 jobs of one
core and 4 GB of memory. As can be seen in Fig. 3(a), Best-Fit matches the first
two jobs with machine A, totally exhausting its memory, and the next four jobs
with machine B, thereby exhausting its cores. The end result is two unutilized

Heuristics for Resource Matching in Intel’s Compute Farm 121

Cores

Machine A
M

em
or

y

M
em

or
y

Machine B

Cores

(a) Best-Fit

Cores

Machine A

M
em

or
y

M
em

or
y

Machine B

Cores

(b) Worse-Fit

Fig. 3. Scenario for which Worse-Fit (right) is better than Best-Fit (left). Memory
is depicted in 4 GB blocks. Shading indicates mapping of a job to a certain core and
certain blocks of memory. Note that both cores and memory are mapped exclusively
to distinct jobs.

Cores

Machine A

M
em

or
y

Cores

Machine B

M
em

or
y

(a) Best-Fit

Cores

Machine A
M

em
or

y

Cores

Machine B

M
em

or
y

(b) Worse-Fit

Fig. 4. Scenario for which Best-Fit (left) is better than Worse-Fit (right).

cores on machine A, half the memory unutilized on machine B, and two jobs that
remain pending at the PPM. Worse-Fit on the other hand matches the first two
jobs on different machines, which leaves enough free space (cores and memory)
for all the remaining 6 jobs to be matched. This is illustrated in Fig. 3(b).

Another example is illustrated in Fig. 4. The priority order here is 3 jobs of
one core and 8 GB, followed by one job of one core and 32 GB of memory. As
can be seen, Worse-Fit spreads the first three jobs on different machines, which
doesn’t leaves enough memory for the 32 GB job to be matched. Best-Fit on the
other hand matches the first three jobs on machines A, which allows the 32 GB
to be matched with machine B.

2.2 Observations from the Workloads

Machines currently available on the market typically have multi-core CPUs and
large amounts of memory. Therefore, we may expect to see situations similar
to the ones described above. In addition, jobs comes with core and memory
requirement, and in most cases jobs are allocated one per core. This may waste
cycles due to wait states and I/O, but makes things much more predictable.

122 O. Shai et al.

 1

 1.2

 1.4

 1.6

 1.8

 2

0 2 4 6 8 10 12

A
vg

. J
ob

 C
or

es

Bucket number (K)

Pool A

 1

 1.2

 1.4

 1.6

 1.8

 2

0 2 4 6 8 10 12

A
vg

. J
ob

 C
or

es

Bucket number (K)

Pool B

 1

 1.2

 1.4

 1.6

 1.8

 2

0 2 4 6 8 10 12

A
vg

. J
ob

 C
or

es

Bucket number (K)

Pool C

 1

 1.2

 1.4

 1.6

 1.8

 2

0 2 4 6 8

A
vg

. J
ob

 C
or

es

Bucket number (K)

Pool D

Fig. 5. Bursts in jobs cores requirements: pool A is the burstiest. Pool B’s bursts are
sparse, while pool C’s have only a small amplitude. In pool D there are virtually no
bursts of jobs requiring more than one core.

To characterize the use of cores and memory in each of the pools, we used the
traces mentioned above, and partitioned them into buckets of 1000 jobs each.
This resulted in 13 K buckets for pools A, B, and C, and 10 K buckets for pool
D. Such small buckets allow us to observe bursts of activity that deviate from
the average.

Figures 5 and 6 show the jobs’ average cores and memory requirements in
each of the buckets, for each of the four pools, respectively. As can be seen,
different pools exhibit different magnitudes of bursts of jobs with high core or
memory demands. Pool A is the most bursty in both dimensions; it is the only
pool that had a bucket in which the average job core requirement is higher than
2, and multiple buckets in which the average memory requirement is larger than
20 GB.

Pool B exhibits sparse bursts of jobs with high core demands, but intense
bursts of high memory requirements. Pool C exhibits continuous moderate core
demands, and also relatively steady memory bursts. Finally, pool D has virtually
no bursts of jobs requiring more than one core, but it does exhibit bursts of high
memory demands, along with periods of particularly low memory requirements.

Heuristics for Resource Matching in Intel’s Compute Farm 123

 0

 5

 10

 15

 20

0 2 4 6 8 10 12

A
vg

. J
ob

 M
em

or
y

(G
B

)

Bucket number (K)

Pool A

 0

 5

 10

 15

 20

0 2 4 6 8 10 12

A
vg

. J
ob

 M
em

or
y

(G
B

)

Bucket number (K)

Pool B

 0

 5

 10

 15

 20

0 2 4 6 8 10 12

A
vg

. J
ob

 M
em

or
y

(G
B

)

Bucket number (K)

Pool C

 0

 5

 10

 15

 20

0 2 4 6 8

A
vg

. J
ob

 M
em

or
y

(G
B

)

Bucket number (K)

Pool D

Fig. 6. Bursts in jobs memory requirements: pools A and B are the most bursty; A
in particular has bursts that exceed 20 GB on average. Pool C is somewhat steadier,
while pool D exhibits periods of particularly low memory demands between the bursts.

2.3 Comparing Heuristics

To demonstrate the effectiveness of the different heuristics under different work-
loads we performed the following experiment. We used the buckets described
above, assigned all jobs in each bucket a submit time of 0, and gave each heuris-
tic an opportunity to try and match, in simulation, as many jobs as possible from
each bucket on a small synthetic pool of empty machines (total of 512 cores);
jobs that could not be matched were simply skipped. For each bucket we then
counted the number of jobs matched by each heuristic, and gave the winning
heuristic(s) (the one(s) who matched the highest number of jobs) a point.

The results are shown in Fig. 7. As can be seen, Worse-Fit-Cores significantly
outperforms all other heuristics (collecting the highest percentage of wins) in
pool A. It is also the best heuristic in pools B, C, and D, but the differences
there are smaller. There is little difference among Best-Fit-Memory, Worse-Fit-
Memory, and Best-Fit-Cores, although Worse-Fit-Memory is consistently slightly
better than the other two. Notably, for pool D where there is virtually no core
fragmentation as indicated in Fig. 5 there seems to be little difference between
the performance of the different heuristics.

An important observation is that though Worse-Fit-Cores appears to be the
preferred heuristic, it did not win in all cases. This is shown by the gap between

124 O. Shai et al.

 0

 20

 40

 60

 80

 100

BF-Memory

WF-Memory

BF-Cores

WF-Cores

%
 o

f w
in

s
Pool A

 0

 20

 40

 60

 80

 100

BF-Memory

WF-Memory

BF-Cores

WF-Cores

%
 o

f w
in

s

Pool B

 0

 20

 40

 60

 80

 100

BF-Memory

WF-Memory

BF-Cores

WF-Cores

%
 o

f w
in

s

Pool C

 0

 20

 40

 60

 80

 100

BF-Memory

WF-Memory

BF-Cores

WF-Cores

%
 o

f w
in

s

Pool D

Fig. 7. Percentage of wins by each heuristic: Worse-Fit-Cores significantly outperforms
the other heuristics in pool A. The differences in pools B, C, and D are smaller.

the Worse-Fit-Cores bars and the 100 % mark, indicating that in 6–37 % of the
experiments other heuristics performed better. These gaps are the motivation
for the Mix-Fit heuristic proposed next.

3 Mix-Fit

As demonstrated in the previous section, none of the one-dimensional heuristics
is capable of maximizing the number of matched jobs under all workload scenar-
ios. In this section we propose a new heuristic, Mix-Fit, that takes into account
both cores and memory in an attempt to overcome the problem.

3.1 Balanced Resource Usage

The basic idea behind Mix-Fit is to try and reach balanced resource utilization
across both cores and memory. This is achieved by considering the configured
ratio of cores to memory on each machine, and matching the job with the machine
on which the ratio of used cores to memory, together with this job, is closest to
the configured ratio.

To see how this is done, envision a grid representing possible resource combi-
nations (as was done in Figs. 3 and 4). Each column represents a CPU core, and
each row a block of memory (the sizes of such blocks are not really important as
long as they are used consistently; they should correspond to the smallest unit

Heuristics for Resource Matching in Intel’s Compute Farm 125

being allocated). Assuming that cores and memory blocks are assigned exclu-
sively to jobs, an allocation may be portrayed as a sequence of shaded squares
on this grid, where each job is represented by a sequence of memory-squares in
a specific core-column.

The configured ratio is represented by the diagonal of this grid, and the used
ratio by the line connecting the top-right point of the grid with the top-right
point of the last job. Mix-Fit defines a parameter, α, that denotes the angle
between these two lines. Note that the used ratio is calculated after allocating
the job being considered, so machines on which this job does not fit are excluded
from the discussion. Mix-Fit then matches the job with the machine with the
minimal α value. In case of a tie, the first machine with the minimal value is
used.

Two important notes. First, The grid is drawn such that memory and cores
are normalized to the same scale in each machine separately, thereby creating
a square. This prevents the scale from affecting the angle. Second, the angle is
based on lines emanating from the top right corner. It is also possible to have a
similar definition based on the origin (i.e. the bottom-left corner). Choosing the
top-right corner leads to higher sensitivity when the machine is loaded, which
facilitates better precision in balancing the resources in such cases.

Let’s see an example. Three machines are available, each with 4 cores and 32
GB of memory. Machine A already has one job with 24 GB, Machine B has 2 jobs
with 8 GB each, and Machine C has one job with 2 cores and 4 GB memory and
another job with 1 core and 4 GB memory. The next job that arrives requires one
core and 8 GB of memory. The various α values of all three machines including
the newly arrived job are demonstrated in Fig. 8. The machine selected by Mix-
Fit in this case is B where α = 0.

To demonstrate why this may be expected to improve over the previous
heuristics we will use the same examples we used above. Consider Fig. 3, where
Worse-Fit yielded the best match. After matching the first 16 GB job with
machine A, Mix-Fit will match the second 16 GB job with machine B, as this
will lead to a smaller α value as can be seen in Fig. 9(a). It will then match the
remaining 4 GB jobs with both machines until all cores get utilized. As can be
seen in Fig. 9(b) the end result is identical to Worse-Fit.

Cores

Machine A

M
em

or
y

M
em

or
y

Cores

Machine B Machine C

M
em

or
y

Cores

Fig. 8. Example of various α angles calculated by Mix-Fit. The selected machine in
this case is B where α = 0.

126 O. Shai et al.

Cores

Machine A

M
em

or
y

M
em

or
y

Cores

Machine B

(a) Options for placing the 2’nd job.
The angle on machine B is smaller.

Cores

Machine A

M
em

or
y

M
em

or
y

Machine B

Cores

(b) Final allocation by Mix-Fit.

Fig. 9. Mix-Fit behavior for the example in Fig. 4. The end result is identical to Worse-
Fit.

Cores

Machine A

M
em

or
y

Cores

Machine B
M

em
or

y

Fig. 10. Jobs allocated by Mix-Fit for the example in Fig. 4. The result is identical to
Best-Fit.

Next, lets re-examine Fig. 4 where Best-Fit yielded the best results. In this
scenario Mix-Fit will match the first three 8 GB jobs with machine A, and then
the 32 GB job with machine B, replicating the behavior of Best-Fit. Note that
α would have been the same for the second 8 GB, whether it would have been
matched on machine A or B. But as noted above, in such cases the First-Fit
heuristics is used as a tie breaker and hence the job is matched with machine A.
As can be seen in Fig. 10 the end result is identical to Best-Fit.

3.2 Mix-Fit’s Results

To check the performance of Mix-Fit we repeated the buckets experiment from
Sect. 2.3, but this time including Mix-Fit in the set of competing heuristics. The
results are shown in Fig. 11. As can be seen, Mix-Fit wins by only a small margin
in pool A, performs similarly to Worse-Fit-Cores in pools B and D, and is slightly
outperformed by Worse-Fit-Cores in pool C.

These results are counterintuitive, since in a two-dimensional environment of
cores and memory, where both resources are subject to sudden deflation by bursts
of jobs with high demands, a reasonable strategy would be to try and balance the
usage between the resources, in order to secure a safety margin against bursts of

Heuristics for Resource Matching in Intel’s Compute Farm 127

 0

 20

 40

 60

 80

 100

BF-Memory

WF-Memory

BF-Cores

WF-Cores

Mix-Fit

%
 o

f w
in

s

Pool A

 0

 20

 40

 60

 80

 100

BF-Memory

WF-Memory

BF-Cores

WF-Cores

Mix-Fit

%
 o

f w
in

s

Pool B

 0

 20

 40

 60

 80

 100

BF-Memory

WF-Memory

BF-Cores

WF-Cores

Mix-Fit

%
 o

f w
in

s

Pool C

 0

 20

 40

 60

 80

 100

BF-Memory

WF-Memory

BF-Cores

WF-Cores

Mix-Fit

%
 o

f w
in

s

Pool D

Fig. 11. Percentage of wins by each heuristic: Mix-Fit wins by only a small margin
in pool A, performs similarly to Worse-Fit-Cores in pools B and D, and is slightly
outperformed by Worse-Fit-Cores in pool C.

any kind. This strategy, however, which Mix-Fit employs, seems to yield some
improvement only under the most bursty situations (pool A). This leads us to
default to a meta-heuristic, Max-Jobs, which is described next.

4 The Max-Jobs Meta-heuristic

The experiment described above indicates that counterintuitively, Mix-Fit does
not yield the best performance in all pools. As an alternative, we therefore
suggest the use of the Max-Jobs meta-heuristic.

A meta-heuristic is an algorithm that employs other heuristics as subroutines.
In our case, Max-Jobs uses all of the heuristics described before: Best-Fit-Cores,
Best-Fit-Memory, Worse-Fit-Cores, Worse-Fit-Memory, and Mix-Fit. At each
scheduling cycle, Max-Jobs picks the best schedule produced by any of these
heuristics for this cycle. In other words, the meta-algorithm runs all the available
heuristics as black-boxes and selects the one with the best result for the currently
queued jobs. The target function defining “best” is maximizing the number of
jobs assigned to machines in this cycle. Importantly, additional heuristics can
be added later and the system will take advantage of them in those cases that
they perform the best.

Pseudo-code for the Max-Jobs meta-heuristic is given in Fig. 12.

128 O. Shai et al.

L – list of heuristics
S – list of proposed schedules (mapping jobs to hosts)

foreach heuristic H in L
S[H] = H.Schedule(waitingQueue)

maxJobsSchedule = MaxJobsSchedule(S)
Dispatch(maxJobsSchedule)

Fig. 12. The Max-Jobs meta-heuristic.

5 Simulation Results

To experiment with Max-Jobs, Mix-Fit and the rest of the heuristics, we devel-
oped a Java-based event-driven simulator [10] that mimics the matching behavior
at the PPM. The simulator accepts as input a jobs trace file, a machines config-
uration file, and a parameter defining which matching heuristic to apply. It first
loads the two files into memory, building an event queue of job arrival events
sorted according to the timestamps from the trace (hence preserving the original
arrival order and inter-arrival times of the jobs), and a list of machine objects
according to the configuration.

The scheduling function is invoked by the scheduler at regular intervals, as
is commonly done in many large-scale systems. In our simulations we used an
interval of 30 seconds. This allows the scheduling overhead to be amortized over
multiple jobs that are handled at once, and may also facilitate better assignments
of jobs to machines, because the scheduler can optimize across a large number
of jobs rather than treating them individually.

In each scheduling cycle, the scheduler begins by picking the first arrival
event from the queue and trying to match a machine to the arriving job using
the selected heuristic3. If the matching succeeds the job is marked as “running”
on the selected machine, and a completion event is scheduled in the event queue
at a timestamp corresponding to the current time plus the job’s duration from
the trace. Otherwise a reservation is made for the job. Specifically the machine
with the highest available memory is reserved for the job for its future execution,
thus preventing other jobs from being scheduled to that machine during the rest
of the scheduling cycle.

For the workload we used the traces that were described in Sect. 2, and which
contains 9–13 million jobs each. The parameters we used from the traces are the
jobs’ arrival times, runtime duration, and the number of cores and amount of
memory each job requires in order to execute (see Figs. 1 and 2 for the distri-
butions). For the machines we used a special NetBatch command to query the
present machine configurations from each of the pools on which the traces were
collected.
3 For simplicity we skipped the fair-share calculation.

Heuristics for Resource Matching in Intel’s Compute Farm 129

Our initial simulations revealed that the original load in the traces is too low
for the wait queue in the simulated PPM to accumulate a meaningful number
of jobs. This may stem from fact that the load in the month in which the traces
were collected was particularly low, or that the configuration has changed by the
time we ran the machines query (a few months later). In any case the results
were that all heuristics performed the same.

To overcome this problem we increased the load by multiplying the jobs
arrival time by a factor, β, that is less than or equal to one. The smaller the
value of β, the smaller the inter-arrival times become between the jobs, which
increases the rate of incoming jobs and the load on the simulated pool. We ran
high-load simulations with β values ranging between 0.58–0.95. In the figures
below, we translate the β values into an actual load percentage for each pool.

Metrics that were measured are the average wait time of jobs, the average
slowdown, and the average length of the waiting queue during the simulation.
The results are shown in Figs. 13, 14, 15, for each metric, respectively. Since the
metrics are dependent and the results are similar between the metrics, we will
only discuss the differences between the heuristics and pools.

In correlation with the buckets experiment in Fig. 11, Mix-Fit showed marked
improvement over the other heuristics in pool A, and was able to reduce the
waiting time by 22 %, slowdown by 23 %, and queue length by 22 % under the
highest loads simulated.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 79 80 81 82 83 84 85 86

w
ai

t t
im

e
(m

in
ut

es
)

load

Pool A
BF-Memory
WF-Memory
BF-Cores
WF-Cores
Mix-Fit
Max-Jobs

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 64 66 68 70 72 74 76 78

w
ai

t t
im

e
(m

in
ut

es
)

load

Pool B
BF-Memory
WF-Memory
BF-Cores
WF-Cores
Mix-Fit
Max-Jobs

 0
 10
 20
 30
 40
 50
 60
 70
 80

 76 77 78 79 80 81 82 83 84 85 86

w
ai

t t
im

e
(m

in
ut

es
)

load

Pool C
BF-Memory
WF-Memory
BF-Cores
WF-Cores
Mix-Fit
Max-Jobs

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 85 86 87 88 89 90 91 92 93

w
ai

t t
im

e
(m

in
ut

es
)

load

Pool D
BF-Memory
WF-Memory
BF-Cores
WF-Cores
Mix-Fit
Max-Jobs

Fig. 13. Average wait time of jobs. System load is expressed as percent of capacity.

130 O. Shai et al.

 0

 100

 200

 300

 400

 500

 600

 700

 79 80 81 82 83 84 85 86

sl
ow

do
w

n

load

Pool A
BF-Memory
WF-Memory
BF-Cores
WF-Cores
Mix-Fit
Max-Jobs

 0

 200

 400

 600

 800

 1000

 1200

 1400

 64 66 68 70 72 74 76 78

sl
ow

do
w

n

load

Pool B
BF-Memory
WF-Memory
BF-Cores
WF-Cores
Mix-Fit
Max-Jobs

 0

 50

 100

 150

 200

 250

 300

 76 77 78 79 80 81 82 83 84 85 86

sl
ow

do
w

n

load

Pool C
BF-Memory
WF-Memory
BF-Cores
WF-Cores
Mix-Fit
Max-Jobs

 0

 50

 100

 150

 200

 250

 300

 85 86 87 88 89 90 91 92 93

sl
ow

do
w

n

load

Pool D
BF-Memory
WF-Memory
BF-Cores
WF-Cores
Mix-Fit
Max-Jobs

Fig. 14. Average slowdown of jobs.

The second-best heuristic on pool A, Best-Fit-Memory, appears to slightly
outperform Mix-Fit in pool B, especially in the mid-range load, as opposed to
the buckets experiment. This may be caused by the fact that pool B had the
most intense bursts of high memory demands and the largest fraction of 4 GB
jobs, making the conservation of memory resources of prime importance. At the
same time, Best-Fit-Memory performs relatively poorly on pool D.

Similarly, Worse-Fit-Cores that was the best heuristic in the buckets exper-
iment (except for Mix-Fit) appears to perform poorly in the load simulation in
both pools A and B. This may stem from the fact that the buckets experiments
were conducted in a highly artificial setting where all jobs were presented in
advance, and were matched to empty clusters of machines. In such a scenario
Worse-Fit-Cores — which is similar to round-robin allocation — performed well,
but when confronted with a continuous on-line scenario, where machines typ-
ically already have some of their resources taken, it did not. This is another
indication that challenges faced by on-line schedulers are different from those
faced by batch (or off-line) schedulers, and that it is important to match the
simulation type to the system type. In our case this means that the dynamic
simulations described here are more relevant than the bucket experiments used
above.

In pool C all the heuristics achieved essentially the same performance. This
reflects an unchallenging workload that can be handled by any heuristic.

Heuristics for Resource Matching in Intel’s Compute Farm 131

 0

 5

 10

 15

 20

 25

 30

 35

 79 80 81 82 83 84 85 86

w
ai

tin
g

jo
bs

 (
th

ou
sa

nd
s)

load

Pool A
BF-Memory
WF-Memory
BF-Cores
WF-Cores
Mix-Fit
Max-Jobs

 0

 5

 10

 15

 20

 25

 30

 64 66 68 70 72 74 76 78

w
ai

tin
g

jo
bs

 (
th

ou
sa

nd
s)

load

Pool B
BF-Memory
WF-Memory
BF-Cores
WF-Cores
Mix-Fit
Max-Jobs

 0

 5

 10

 15

 20

 25

 76 77 78 79 80 81 82 83 84 85 86

w
ai

tin
g

jo
bs

 (
th

ou
sa

nd
s)

load

Pool C
BF-Memory
WF-Memory
BF-Cores
WF-Cores
Mix-Fit
Max-Jobs

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 85 86 87 88 89 90 91 92 93

w
ai

tin
g

jo
bs

 (
th

ou
sa

nd
s)

load

Pool D
BF-Memory
WF-Memory
BF-Cores
WF-Cores
Mix-Fit
Max-Jobs

Fig. 15. Average wait-queue length.

Finally, in pool D Mix-Fit had similar results to the second best heuristic,
Worse-Fit-Cores. It looks like the non-bursty nature of that pool gives an advan-
tage to balancing heuristics such as Worse-Fit-Cores.

Figure 16 shows the fraction of times each heuristic was selected by Max-Jobs.
As can be seen, Mix-Fit is dominant, even more than in the above buckets exper-
iment, but still getting as low as 73 % in pool A. Best-Fit-Memory is markedly
better than Worse-Fit-Cores especially in pools A and D.

As expected, the Max-Jobs meta-heuristic is the best scheme all around, and
seems to be largely robust against workload and configuration variations. This is
due to the fact that it uses the best heuristic at each scheduling cycle. However,
its final result (in terms of average performance across all the jobs in the trace)
is not necessarily identical to that of the best heuristic that it employs. On
one hand, Max-Jobs can be better than each individual heuristic, as happens
for example in pool B. This is probably because it can mix them as needed,
and use a different heuristic for different situations as they occur. On the other
hand, Max-Jobs is sometimes slightly inferior to the best individual heuristic,
as seen for example in pool A. This is probably due to situations in which
packing jobs very densely leads to reduced performance in a successive scheduling
round.

132 O. Shai et al.

 0

 20

 40

 60

 80

 100

BF-Memory

WF-Memory

BF-Cores

WF-Cores

Mix-Fit

%
 o

f w
in

s
Pool A

 0

 20

 40

 60

 80

 100

BF-Memory

WF-Memory

BF-Cores

WF-Cores

Mix-Fit

%
 o

f w
in

s

Pool B

 0

 20

 40

 60

 80

 100

BF-Memory

WF-Memory

BF-Cores

WF-Cores

Mix-Fit

%
 o

f w
in

s

Pool C

 0

 20

 40

 60

 80

 100

BF-Memory

WF-Memory

BF-Cores

WF-Cores

Mix-Fit

%
 o

f w
in

s

Pool D

Fig. 16. Selected heuristics by Max-Jobs. Sum is more than 100 % because in many
cases several heuristics produced the same result.

6 Related Work

There are very few externally available publications that relate to NetBatch.
Zhang et al. investigated the use of dynamic rescheduling of NetBatch jobs
between pools which improves utilization at the farm level [17]. Our work in
effect complements theirs by focusing on utilization improvements within the
individual pools.

The question of assigning machines to jobs has received some attention in
the literature. Xiao et al. studied a problem similar to ours and also concluded
that one-dimensional strategies yields sub-optimal performance [16]. In their
work, however, cores are considered shared resources, and thus the investigation
focused on the interference between the jobs. Amir et al. proposed a load bal-
ancing scheme where the targets for process migration are selected so as to avoid
saturation of any single resource [2]. This is similar to avoiding high α values in
our terminology.

The idea of symbiotic scheduling is also related to our work. Symbiotic
scheduling attempts to find sets of jobs that complement each other and together
use the system resources effectively. This was initiated in the context of hyper-
threading (or simultaneous multithreading) processors [6,13], and extended also
to the domain of clusters [15].

Meta-schedulers like the Max-Jobs approach have also been used before. For
example, Talby used such a meta-scheduler to select among different versions
of backfilling in scheduling large-scale parallel machines [14]. However, this was

Heuristics for Resource Matching in Intel’s Compute Farm 133

done by simulating recent work in the background and then switching to the
version that looks best. Such an approach depends on an assumption of locality,
meaning that the future workload will also benefit from this version. In our work
we actually run all the contending variants on the jobs in the queue, and select
the one that indeed achieves more assignments.

Another meta-scheduler example is the portfolio scheduler [4] that was devel-
oped in parallel to our work. The portfolio scheduler is a general-purpose mech-
anism that applies to scientific computing with various target functions for
scheduling. Max-Jobs on the contrary, applies to batch systems and its target
function is specified as maximizing the total number of running jobs.

It should be noted that due to the assumption that cores and memory are
allocated exclusively to jobs, our problem is not directly related to the well-
known 2D bin-packing problem. In particular, it is not allowed to pack multiple
jobs with limited memory requirements onto the same core [8]. It does, however,
correspond the problem of allocating virtual machines to physical servers which
has gained much attention in resent years. This has been called the vector bin-
packing problem, since the allocation can be depicted as the vector-sum of vectors
representing the resource requirements of individual virtual machines [9]. This
directly corresponds to our depiction of rectangles that connect at their corners
in Figs. 3, 4, etc.

The ideas suggested for vector bin-packing are all very similar to our Mix-
Fit algorithm. For example, they are also based on normalizing the resources
and creating a square (or multi-dimensional cube, if there are more resources
than 2). The available resources are then represented by a diagonal vector, the
consumption by other vectors, and the basic idea is to try to make these vectors
close to each other. However, the details may differ.

Mishra and Sahoo [8] describe the SandPiper algorithms used in Xen, and
the VectorDot algorithm [12]. They show that both suffer from failures similar
to the ones we demonstrated in Sect. 2. For example, the VectorDot algorithm
uses the dot product of the consumed resources vector and the request vector
to identify requests that are orthogonal to the current usage, and thus may be
expected to complement it. However, this is subject to artifacts because the
lengths of the vectors also affect the result. They then suggest a rather complex
approach for identifying complementary vectors based on a discretization of the
space called the “planar resource hexagon”. They did not, however, evaluate its
performance compared to existing heuristics.

Panigrahy et al. study a wide range of First-Fit-Decreasing-based algorithms
[9]. The idea is to combine the requirements for different resources in some way
into a single number, and then pack in a decreasing order. However, this approach
loses the important geometrical structure of the problem. They therefore also
consider heuristics based on the dot product or the maximal required resource.
The evaluations are based on presumed synthetic distributions. Compared with
these previous works, our approach of using just the angle between two vectors is
among the simplest. Basing the comparison at the top-right corner for improved
discrimination seems to be novel. It would be interesting to evaluate the effect

134 O. Shai et al.

of these details, but our results so far indicate that they may not have much
impact for real workloads.

Lee et al. investigated the problem of virtual machines allocation taking into
consideration the consolidation of virtual machines onto the same physical plat-
form, and the possible resulting resource contention [7]. In principle such consid-
erations are also applicable to our work. However, we note that the configuration
of NetBatch pools is such that I/O and bandwidth are seldom a bottleneck.

Finally, it is important to remember that since the PPM considers the jobs
one at a time there is a limit on the optimizations that can be applied. Looking
further into the queue and considering more than one job may yield significant
improvements [11].

7 Conclusions

Matching jobs with resources is an NP-hard problem. The common practice is
therefore to rely on heuristics to do the matching. In this paper we investigated
the problem of resource matching in Intel’s compute farm, and showed that
none of the well-known heuristics such as Best-Fit or Worse-Fit yield optimal
performance in all workload scenarios and cases. This stems from two reasons.
First, these heuristics focus on a single resource, either cores or memory, whereas
in reality the contention may apply to the other resource. To address this problem
we implemented a specialized heuristic, Mix-Fit, that takes both resources into
account and tries to create an assignment that leads to a balanced use of the
resources. In principle this can be extended to more than two resources. While
this too failed to be optimal in all cases, it did show some improvement under
certain conditions.

Second, the nature of dynamically changing demands prevent a specific use-
case-tailored algorithm to be optimal for all cases. For that, we proposed a
meta-heuristic called Max-Jobs, that is not tailored to a specific workload or
scenario. Rather, it uses the other heuristics as black-boxes, and chooses, in every
scheduling cycle, the one that yields the maximal number of matched jobs. We
have demonstrated through simulations that max-jobs is highly competitive with
all the individual heuristics, and as such is robust against changes in workload
or configuration.

References

1. The parallel workloads archive (2013). http://www.cs.huji.ac.il/labs/parallel/
workload

2. Amir, Y., Awerbuch, B., Barak, A., Borgstrom, R.S., Keren, A.: An opportunity
cost approach for job assignment in a scalable computing cluster. IEEE Trans.
Parallel Distrib. Syst. 11(7), 760–768 (2000)

3. Bentley, B.: Validating the Intel� Pentium� 4 microprocessor. In: Proceedings of
the 38th Design Automation Conference, pp. 244–248, June 2001

http://www.cs.huji.ac.il/labs/parallel/workload
http://www.cs.huji.ac.il/labs/parallel/workload

Heuristics for Resource Matching in Intel’s Compute Farm 135

4. Deng, K., Verboon, R., Ren, K., Iosup, A.: A periodic portfolio scheduler for scien-
tic computing in the data center. In: 17th Workshop on Job Scheduling Strategies
for Parallel Processing (JSSPP 2013), Boston, USA, May 2013

5. Evans, N.D.: Business Innovation and Disruptive Technology: Harnessing the
Power of Breakthrough Technology for Competitive Advantage. Financial Times
Prentice Hall, Upper Saddle River (2003)

6. Eyerman, S., Eeckhout, L.: Probabilistic job symbiosis modeling for SMT proces-
sor scheduling. In: 15th Intel Conference Architecture Support for Programming
Language & Operating Systems, pp. 91–102, March 2010

7. Lee, S., Panigrahy, R., Prabhakaran, V., Ramasubramanian, V., Talwar, K.,
Uyeda, L., Wieder, U.: Validating heuristics for virtual machines consolidation.
Technical report MSR-TR-2011-9, Microsoft Research, January 2011

8. Mishra, M., Sahoo, A.: On theory of VM placement: anomalies in existing method-
ologies and their mitigation using a novel vector based approach. In: IEEE Intel
Conference Cloud, Computing, pp. 275–282 (2011)

9. Panigrahy, R., Talwar, K., Uyeda, L., Wieder, U.: Heuristics for vector bin packing.
Technical report, Microsoft Research (2011)

10. Shai, O.: Batch simulator (simba). Open source project hosted (2012). http://code.
google.com/p/batch-simulator

11. Shmueli, E., Feitelson, D.G.: Backfilling with lookahead to optimize the packing of
parallel jobs. J. Parallel Distrib. Comput. 65, 1090–1107 (2005)

12. Singh, A., Korupolu, M., Mohapatra, D., Server-storage virtualization: integration
and load balancing in data centers. In: SC 2008: High Performance Computing,
Networking, Storage and Analysis, pp. 1–12 (2008)

13. Snavely, A., Tullsen, D.M.: Symbiotic jobscheduling for a simultaneous multi-
threading processor. In: 9th Intel Conference Architecture Support for Program-
ming Language & Operating Systems, pp. 234–244, November 2000

14. Talby, D., Feitelson, D.G.: Improving and stabilizing parallel computer perfor-
mance using adaptive backfilling. In: 19th Intel Parallel & Distributed Processing
Symposium, April 2005

15. Weinberg, J., Snavely, A.: Symbiotic space-sharing on SDSC’s dataStar system.
In: Frachtenberg, E., Schwiegelshohn, U. (eds.) JSSPP 2006. LNCS, vol. 4376,
pp. 192–209. Springer, Heidelberg (2007)

16. Xiao, L., Chen, S., Zhang, X.: Dynamic cluster resource allocations for jobs with
known and unknown memory demands. IEEE Trans. Parallel Distrib. Syst. 13(3),
223–240 (2002)

17. Zhang, Z., Phan, L.T.X., Tan, G., Jain, S., Duong, H., Loo, B.T., Lee, I.: On the
feasibility of dynamic rescheduling on the intel distributed computing platform. In:
Proceedings 11th Intel Middleware Conference Industrial track, pp. 4–10. ACM,
New York (2010)

http://code.google.com/p/batch-simulator
http://code.google.com/p/batch-simulator

On Task Assignment in Data Intensive
Scalable Computing

Giovanni Agosta, Gerardo Pelosi(B), and Ettore Speziale

Dipartimento di Elettronica, Informazione e Bioingegneria – DEIB,
Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milan, Italy
agosta@acm.org, {gerardo.pelosi,ettore.speziale}@polimi.it

Abstract. MapReduce and other Data-Intensive Scalable Computing
paradigms have emerged as the most popular solution for processing
massive data sets, a crucial task in surviving the “Data Deluge”. Recent
works have shown that maintaining data locality is paramount to achieve
high performance in such paradigms. To this end, suitable task assign-
ment algorithms are needed. Current solutions use round-robin task
assignment policies, which was shown to yield suboptimal results. In
this paper, we propose and evaluate new algorithms for task assignment
on a model of the Hadoop framework, comparing them with state-of-the-
art solutions proposed in theoretical works as well as with the current
Hadoop polices.

1 Introduction

The data-intensive computing paradigm has recently received significant atten-
tion in both research and industrial ICT communities due to the exponential
increase of data available for analytical processing–the so-called “Data Deluge”
[8]. The cloud computing scenario represents the most important arena where
the potential impact and the effectiveness of data-intensive computing are most
visible. The Cloud is an abstraction for the complex infrastructure underlying
the Internet and refers to both the applications delivered as services over the
network and the hardware and software resources that provide those services. As
a key concept, the cloud computing paradigm shifts data storage and computing
power away from the user endpoints, across the network, and into large clus-
ters of machines hosted by cloud providers (e.g., Amazon, Google). The research
challenges aimed at exploiting the full potential of data-intensive computing lie
in designing clusters and software frameworks to improve performance of mas-
sive simultaneous computations, energy efficiency, and reliability of the provided
services. In this regard, MapReduce is the leading software framework, composed
of both a programming model and an associated run-time system, introduced
by Google in 2004 to support distributed computing on large data sets, through
splitting the workload over large clusters of commodity PCs [5,6]. A critical
issue to achieve good performance on large scale MapReduce systems lies in
ensuring that as many data accesses as possible are executed locally. To this

N. Desai and W. Cirne (Eds.): JSSPP 2013, LNCS 8429, pp. 136–155, 2014.
DOI: 10.1007/978-3-662-43779-7 8, c© Springer-Verlag Berlin Heidelberg 2014

On Task Assignment in Data Intensive Scalable Computing 137

end, a data processing job is parallelized in a set of tasks, which are assigned
to servers which will execute them. However, purely locality-based scheduling
may lead to long latencies, since a specific computation may access data stored
on busy servers. Thus, locality-aware, latency minimizing scheduling algorithms
have been designed [7] to reduce latency while still exploiting locality.

We present an algorithm for task assignment on a cluster of servers that
balances latency and resource usage, while also taking into account the work-
load running on the target cluster. The proposed algorithm is able to achieve an
efficient tradeoff between latency and resource usage through employing a novel
heuristic technique. A simulation-based analysis of the performance of the pro-
posed algorithm against the state-of-the-art solutions is presented, showing that
it is able to obtain lower latencies than the standard locality aware round-robin
strategy [1], as well as lower resource consumption than the flow-based algorithm
reported in [7] together with a better computational complexity. Moreover, we
show that our algorithm and the flow-based one are Pareto-optimal with respect
to latency and resource consumption, while the round-robin is not. On the other
hand, the present work does not deal with fault tolerance in MapReduce systems.
While this is also a critical issue in achieving performances, it is a different issue
from load balancing, which is best covered with specialized approaches that act
during the task execution rather than at task assignment. We also do not deal
with job scheduling, and therefore with fair-share scheduling among users, as
this goal is better achieved at the level of job scheduling.

The remainder of the paper is organized as follows. Section 2 reports a brief
summary of MapReduce systems. Section 3 describes the proposed task assign-
ment algorithm and its properties. Section 4 presents the evaluation of the algo-
rithm, in comparison with existing practices and theoretical works. Section 5
provides an overview of closely related works, and Sect. 6 draws some conclu-
sions and highlights future directions.

2 Background

A MapReduce system is a framework for distributed computation over large data
sets that implements both the MapReduce programming model and an associ-
ated run-time system. It mimics the functional programming constructs map
and reduce and enables the programmer to abstract from common distributed
programming issues such as: load balancing, network performances and fault-
tolerance. In spite of its simplicity, the MapReduce programming model turns
out to effectively fit many problems encountered in the practice of processing
large data sets although a preliminary decomposition of the problem into multi-
ple MapReduce jobs is often needed [3,9]. Typical applications are Web indexing,
report generation, click-log file analysis, financial analysis, data mining, machine
learning, bioinformatics and scientific simulations [5,6]. The programming model
is based on the iteration over data-independent inputs where the required oper-
ations are: (i) computation of key/value pairs from each piece of input (map
phase); (ii) grouping of all intermediate values by the key value; (iii) reduction

138 G. Agosta et al.

of each data group to a few computed values (reduce phase). Word counting
is a toy example that considers a set of text documents as input and a list of
the occurrences of each word as output, where the key/value pair is given by
“word”/“counting” instances. Actual implementations of both proprietary [5,6]
and open-source [1] instances of a MapReduce system employ dedicated clusters
of commodity machines. Each cluster is managed by a master server that is in
charge of keeping track of all jobs while they are queued and processed in the
distributed system. A job-tracker running on the master server schedules the
received jobs and assigns their tasks on target slave servers. Each slave server
runs a task-tracker that schedules the corresponding tasks, on a first-come/first-
served strategy, consistently with the local computational resources and operat-
ing system policies. Due to the simplicity of the MapReduce programming model,
a user will seldom submit a single job, since, the composition of more jobs in com-
plex workloads (or applications) allows to take better advantage of the system.
A MapReduce application is, in general, a Directed Acyclic Graph (DAG) where
the nodes represent jobs and the arcs represent data dependences [3]. Therefore
a job can only be executed after all of its predecessors have been completed.

Canonical solutions to the scheduling of a DAG solve a constrained opti-
mization problem where the figure of merit is the expected latency of every job
and the constraints are represented by the available resources. A variant of this
setting is to employ the minimization of resources as a figure of merit, and the
maximum latency allowed for each job as a constraint. However, these strategies
cannot be applied in the job-tracker, because they need a precise knowledge of
the foreseen latency of each job as well as the available resources. The latency of
a MapReduce job is not trivial to predict. This is due to both the heterogeneity
of applications submitted by different users, and to the presence of straggled
tasks and execution failures, which can change unpredictably the actual latency
of the executed job [10]. In addition, the submission rate of the jobs in a Data
Intensive Scalable Computing (DISC) cluster is quite low — on average, one job
per 2–3 min [4,10] — and thus the time to fill a queue of jobs to schedule is high.
Given the aforementioned considerations, the scheduling strategy for the job-
tracker of a MapReduce system should take into account the cluster workload
variation over time. Therefore, online scheduling algorithms represent the prime
choice. Indeed, proprietary and open-source MapReduce systems adopt online
scheduling strategies. Apache Hadoop [2] is an open-source Java implementa-
tion of MapReduce, originally designed to implement parallel processing in local
networks, whose job-tracker employs a round-robin strategy (over the available
resources) to assign the tasks in each job over the slave servers. A more accurate
task assignment algorithm is proposed in [7], where the authors describe a flow-
based algorithm aimed at minimizing the completion time of the considered job
and show how such solution is near-optimal within an additive constant from the
optimum solution obtained through the fully combinatorial exploration of task
assignments. We extend the abstract system model presented in [7], to effectively
obtain a trade-off between job latency and throughput. Moreover, through tak-
ing into account a pre-existing workload, we better represent the challenges of
an on-line task assignment.

On Task Assignment in Data Intensive Scalable Computing 139

3 A Locality Aware and Bounded Latency Approach

In this section, we introduce the main contribution of this work, a Locality Aware
Bounded Latency (LABL) task assignment algorithm. We will now provide some
preliminary concepts and definitions, followed by a description of the algorithm.
We describe the formal properties of the LABL task assignment algorithm, and
show that its running time complexity is linear w.r.t. the size of the input job.

3.1 Preliminaries

Definition 1. A job is a set of tasks, T = {t1, . . . , tm}. The tasks are mutually
independent and do not have any control or data dependencies among them.
Thus, the job can be fully parallelized.

In a MapReduce implementation, the tasks are partitioned between map and
reduce operations. The reduce tasks must be scheduled after the map tasks have
completed [1]. Without loss of generality, it is safe to model jobs as composed
only of reduce tasks or only of map tasks. A job composed of both types of
tasks is split in two homogeneous jobs for the purpose of the model, with the
provision that the reduce job is scheduled only after the corresponding map job
has completed. Note also that, in practice, the distribution of latencies of reduce
tasks is remarkably similar to that of map tasks [10], so it is not necessary to
keep track of map and reduce jobs separately.

Definition 2. A cluster is a set of homogeneous servers, S = {s1, . . . , sn}, each
of which is assumed to be able to execute a given task with the same execution
time, provided that a copy of the corresponding data is locally accessible.

The locality of the data processed as the input of each task is crucial for the
performance of the whole system. Indeed, the overall performance in terms of
both job latency and total system workload largely depends on the initial data
placement on the cluster.

Definition 3. Given a job T and a cluster S, a data placement function ρ
specifies the subset of servers where the execution of a task t can be completed
through accessing a local copy of the necessary data.

ρ : T ∗≤ 2S and → t ∪ T, ρ(t) ⊆ S

The number of data copies available for a given task t ∪ T is denoted as |ρ(t)|.
A task t is denoted as local to a server s if s ∪ ρ(t), and as remote otherwise.

As previously mentioned, the considered abstract model assumes a set of homo-
geneous tasks and a set of homogeneous servers, in such a way that all the tasks
which data is locally available run in the same amount of time (wloc) and all tasks
running on servers where remote data accesses must be employed also exhibit the
same execution time (wrem). The execution time experienced by the latter type
of tasks depends on the total number of remote data accesses observed in the

140 G. Agosta et al.

system. However, the additional overhead (with respect to the execution time
of a task accessing data in place) does not incur in large variations when the
network traffic of the system is in a steady state [7]. Therefore, the usual con-
servative assumption about the execution time experienced by tasks accessing
remote data (fitting most of the practical environments) considers these execu-
tion times constant (over the entire set of tasks). In particular, the execution
times are three times higher than the ones of tasks accessing data in place [7,11].

Definition 4. Given a job T and a cluster S, an assignment corresponds to the
execution of a number of tasks {t1, . . . , } ⊆ T on a single server s ∪ S, and is
denoted as a pair (s, {t1, . . . , }). A Task Assignment, A, is a collection of pairs
(s∈, T ∈) with s∈ ∪ S, T ∈ ⊆ T , such that every task in T and every server in S is
present in one and only one assignment.

A =

{
(s∈, T ∈) : s∈ ∪ S, T ∈ ⊆ T

→s∈∈ ∪ S, T ∈∈ ⊆ T �(s∈∈, T ∈∈) : s∈∈ = s∈ ∨ T ∈∈ = T ∈

The assignment of tasks to servers dynamically influences the subsequent assign-
ment choices, due to the potential change of both network traffic and workload
level of the cluster. The job-tracker, running on the master server, is the system
actor in charge of orchestrating the workload distribution thus, it can dynam-
ically evaluate the load of each server. Assuming wloc and wrem as the unitary
task execution times for processing local and remote data, respectively, the eval-
uation of any server load is abstracted through the definition of the following
function. We call the time wloc a unit of work.

Definition 5. Let T be a job, S be a cluster, and A a given task assignment.
The load of any server s ∪ S is evaluated through a function, φ, which maps
s to the numerical value of its current workload (measured in units of work).
The workload of s in assignment A includes the set of tasks ⎧T ⊆ T , such that
(s, ⎧T) ∪ A. Then,

φ(s) = φs + wloc| ⎧Tloc| + wrem| ⎧Trem|
where ⎧Tloc = {t ∪ ⎧T : s ∪ ρ(t)} and ⎧Trem = {t∪ ⎧T : s�∪ρ(t)} denote the sets of
task that access data to be processed locally or remotely, respectively, while φs

is a constant factor that takes into account the load due to the tasks that are
already running on s before the assignment (s, ⎧T) is put into effect.

Note that, without loss of generality, we consider that at least one server s0 has
an initial workload φs0 = 0, i.e., there is at least one free server. To understand
the rationale of this choice, consider a load φ for a given cluster S, leading to
an assignment A. Now, consider a second load φ∈ such that →s ∪ S, φ∈

s = φs + 1.
The same assignment is generated under this second workload, except that the
starting time of each task is increased by one unit of time. Thus, to provide a
uniform scale for latency measurements, we normalize φ so that the condition
∃s0 ∪ S | φs0 = 0 holds.

On Task Assignment in Data Intensive Scalable Computing 141

3.2 Optimization Goals

Given a job T and a cluster S, the proposed task assignment strategy aims at
achieving a tradeoff between the job latency and the total resource accounting
of the target cluster. The figures of merit used to evaluate the effectiveness of a
task assignment algorithm alg and the resulting Task Assignment A are:

(i) The resource accounting is defined as the total number Calg(T) of units of
work consumed to execute the job:

Calg(T) =
⎪

s∀S

(φ(s) − φs)

(ii) The latency lalg(T) is defined as the maximum completion time for a task
of the job, normalized to the minimum starting time for a task:

lalg(T) = max
s∀S

φ(s)

(iii) The throughput is defined as the ratio Ralg(T) between the number of tasks
in the job and its resource accounting:

Ralg(T) =
|T |

Calg(T)

3.3 Lower Bounds for the Expected Job Latency

We start from the insight that it is possible to drive the online task assignment
procedure taking as a reference a lower bound on the job latency. Such a reference
allows the assignment procedure to start with a predetermined minimum job
latency limit, discarding unfeasible scenarios a-priori and taking into account
remote assignments that would not be considered under lower latency limits.
Given a job T and a idle cluster S (i.e., → s ∪ S, φs = 0), if each task can access
the data to be processed on every server locally (i.e., → t ∪ T, ρ(t) = S), then a
trivial lower bound for the job latency is given by
 wloc|T |/|S| �. Weakening these
assumptions through removing either the hypothesis that each server is initially
idle or the hypothesis of a uniform placement of data for each task, leads to
solve two simpler problems prior to apply any task assignment operation. These
problems are more formally stated as follows.

Problem 1. Let S be a cluster with initial workload defined as φ(s) = φs, → s ∪ S,
and T be a set of tasks that can locally access the data to be processed on any
server S: → t ∪ T ρ(t) = S.

Considering the execution cost of each task as wloc (i.e., ignoring the impact of
the data placement), a lower bound for the job latency is computed a-priori as:

l∗ =

⎨
wloc|T |

|S| +
1

|S|
⎪

s∀S

φ(s)

⎩

The straightforward solution of Problem 1 follows from considering each task as
a local one since the data is assumed to be uniformly replicated on each server.

142 G. Agosta et al.

Problem 2. Let S be a cluster with initial workload defined as φ(s) = φs, → s ∪
S, and T be a set of tasks whose data is replicated on servers according to
a data placement function ρ : T ∗≤ 2S . Assuming a limit l for the expected
job latency, the set S can be partitioned as S = Sinf [l] ∪ Ssup[l] ∪ Sbusy[l],
where Ssup[l] = {s ∪ S|l − φs ≥ wrem} is the set of servers that can only
execute local tasks within the latency limit l, Sbusy[l] = {s ∪ S|l−φs≤0} is
the set of servers that are busy with workload from previous jobs. Finally, the
set of servers that cannot execute remote tasks within the latency limit l is
Sinf [l] = S\(Sinf [l] ∪ Sbusy[l]). The set of tasks T can also be partitioned as
T = Tloc[l] ∪ Trem[l], where Trem[l] = {t ∪ T |ρ(t) ⊆ Sbusy[l]} is the set of tasks
that can only be executed remotely within l and Tloc[l] = T\Trem[l] is the set of
tasks that can be run within l on servers with local access to data.

Considering the execution time of any task in Tloc as wloc and the execution
time of any task in Trem as wrem (> wloc), a lower bound for the expected job
latency is derived as:

l∗∗ = min
l≥0

⎪

s∀Ssup

⌊
l − φs

wrem

⌋
≥ |Trem[l]|

⎪

s∀Ssup∪Sinf

(l − φs) ≥ a[l]

where a[l] is the cost of the execution of the given job following an “ideal”
assignment of both local and remote tasks within the latency limit l (in this
way, the data placement function is employed only for partitioning the job in
the local Tloc[l] and remote Trem[l] task sets but not to solve assignment conflicts,
if any):

a[l] = wrem|Trem[l]| + wloc|Tloc[l]|
The first inequality states that the servers in Ssup can provide, as a whole, enough
units of work to manage the execution of all remote tasks within the latency limit
of l, while the second inequality constraints the available number of units of work
on the entire cluster to be greater than the resource allocation needed to schedule
each local task locally and each remote task remotely assuming no resource
conflict. Therefore, the minimum among the aforementioned latency limits gives
a lower bound l∗∗ which guarantee a more accurate estimate with respect to the
previous bound l∗, thus allowing to initialize our on-line assignment algorithm
with a threshold that guarantee a faster convergence.

3.4 Task Assignment Algorithm

The LABL Task Assignment algorithm, reported in Fig. 1, takes as input a job
T , a cluster S and a lower bound l for the expected job latency that will be
employed to drive the assignments computed as output. The initial value of
the job latency limit l is equal to the lower bound l∗∗, computed as shown in

On Task Assignment in Data Intensive Scalable Computing 143

Fig. 1. Locality Aware and Bounded Latency (LABL) Task Assignment algorithm

144 G. Agosta et al.

the previous section. The main loop of the algorithm iterates until all tasks are
assigned to a server and is structured in three phases each of which acts on a
different partition of the set of slave servers. At the beginning, the following
subsets of servers and tasks are considered. Sinf includes all servers that can
execute at least one local task within the limit l but not a remote one, while
Ssup includes those servers that can execute at least one remote task within the
limit l (lines 3–4). Servers in the complementary set Sbusy = S\(Sinf ∪Ssup) will
not be considered until the limit l for the job latency is increased, thus leading
to consider them in Sinf or Ssup in subsequent iterations of the main loop. The
job T is partitioned in two subsets: Tloc and Trem, where Tloc includes any task
that can be executed on at least one server in Sinf∪Ssup and Trem includes any
task that can only be executed remotely before the limit l (lines 5–6).

The body of the main loop is divided in three phases. In the first phase (lines
7–15), we assign as many tasks as possible from Tloc to servers in Sinf , without
exceeding the limit l. The tasks from Tloc are selected in ascending order of
|ρ(t)| (i.e., ranked by the number of servers where they can access data locally),
so as to assign first those tasks that can only be executed on few servers, and
are therefore more likely to cause violations of the target latency l. This is due
to the fact that the initial value of l is l∗∗, which has been computed without
taking into account the effect of many tasks having data on a small group of
servers. In the second phase (lines 16–30), we assign tasks from Trem to servers
in Ssup, without exceeding the limit l. During the first iteration of the main
loop, all tasks from Trem might be assigned, because the limit l is initially set to
l∗∗, which guarantees that all tasks that need to be executed remotely can be
completed within l∗∗. In the third phase (lines 31–41), we assign as many tasks
as possible from Tloc to servers in Ssup, without exceeding the limit l. Finally, if
some tasks are still unassigned, the algorithm increases the limit l by one unit,
recomputes the four subsets (Tloc, Trem, Sinf , Ssup) and iterates the three phases.
Note that the second phase forces the assignment of as many remote tasks as
possible, employing time that could be usefully exploited by other jobs in return
for a potentially very low latency gain. Thus, the algorithm triggers the execution
of the second phase through a threshold function (ConsiderRemoteAssignments

at line 16) that is true until a given latency limit is reached, and false thereafter.

3.5 Example

To understand the behavior of the LABL algorithm, we compare it to the
locality-aware round-robin [1] and flow-based algorithms [7], using a limited
number of servers, |S| = 10, and tasks, |T | = 20. The task execution times
are set at wloc = 1, wrem = 3. Figure 2 reports the considered data placement,
with a maximum data replication factor of 2. Figure 3 reports assignments gen-
erated by the round-robin algorithm [1] and the flow-based algorithm [7], while
Fig. 4 shows assignments generated by the LABL algorithm, when the execution
of the second phase is stopped after the first iteration. The round-robin algo-
rithm cycles through the list of servers in a pre-determined arbitrary order until
all tasks have been assigned (in the example, starting from s1, then s2, s3, etc.).

On Task Assignment in Data Intensive Scalable Computing 145

Fig. 2. Data placement

Fig. 3. Round-robin (a) and Flow-based (b) Assignments

Fig. 4. Locality Aware and Bounded Latency Task Assignments

At each step, a task is assigned to a server. The algorithm tries to exploit the
data placement by assigning a local task to the current server. If this is not pos-
sible, a remote task is assigned. The greedy choices of the round-robin algorithm
results in a final assignment (see Fig. 3a) with high job latency and high resource
consumption (lrr = 8, Crr(T) = 32). The approach reported in [7] improves
the round- robin strategy and describes an algorithm that allows to choose the

146 G. Agosta et al.

minimum latency assignment among a list of |T | possibilities. Each assignment
is computed through a flow-based approach to maximize the assignment of local
tasks (while limiting the load of the corresponding servers under a temporary
threshold) followed by a greedy strategy necessary to complete the assignment
of remote tasks. Figure 3b shows the assignment resulting from the aforemen-
tioned strategy (lflow = 6). We note that the greedy choice, applied to assign the
remote tasks, can often lead to resource consumption higher than the minimal
one: Cflow(T) = 26 > 20.

Figure 4 depicts the assignments computed by the LABL algorithm when
taking as input an initial job latency limit l = 4. The algorithm exhibits different
behaviors in terms of total job latency and minimization of resource allocation
depending on the configuration of the threshold function (see Fig. 1, line 16:
ConsiderRemoteAssignments) that stops the execution of the second phase of
the algorithm from a specified iteration on. Figure 4a, shows the assignments
obtained when the second phase is executed only at the first iteration.

Note that this has no effect on the final assignment since, at the first iter-
ation, there is no tasks that needs to access data remotely. Indeed, the initial
servers load specified in Fig. 4a suggests that only tasks local to server s2 may be
considered for remote assignment. The data placement function specifies that t15
is the only task that can be assigned on s2, however t15 is also local to server s7.
Thus, t15 has to be assigned on s7. The final assignment in Fig. 4a uses resources
sparingly (CLABL(T) = 20, equal to the minimum), at the cost of an increased
latency (lLABL = 8). To decrease latencies, it is necessary to consider the explicit
handling of remote tasks up to the second iteration (Fig. 4b). This allows to
assign tasks t8 and t13 remotely, contributing to lower the overall latency, at the
cost of an increased resource usage. With respect to the assignment found by the
flow-based algorithm, we achieve the best possible combination of job latency
lLABL = 6 and resource usage CLABL(T) = 24.

3.6 Formal Properties of LABL Task Assignment Algorithm

In this section, we analyze the properties the LABL Task Assignment algorithm.
We first prove that the algorithm can be configured by manipulating the Consid-

erRemoteAssignments threshold function to achieve strong properties on load
balance and resource usage. Subsequently, we analyze the computational com-
plexity of the LABL algorithm.

Theorem 1. Under the condition that ConsiderRemoteAssignments is true
for all iterations of the main loop, the LABL Task Assignment algorithm pro-
duces an assignment ALABL with

max
s∀S

φ(s) ≤ min
s∀S

φ(s) + wrem

Proof. Let smax be one of the servers such that the latency of the computed
assignment is lLALB = φ(smax) and smin be another server such that the execution
of the tasks on it makes its final completion time φ(smin) equal to the minimum

On Task Assignment in Data Intensive Scalable Computing 147

latency among the servers in S. The proof will be developed through a reductio
ad absurdum. Assume that φ(smax) > φ(smin) + wrem holds at the end of the
LABL algorithm execution, and that the latency of the computed assignment is
lLABL = lout. Such an hypothesis implies that in the last-but-one iteration of the
outer loop of the LABL algorithm, there was a number n of tasks that could
not be assigned within the latency limit l = lout − 1. In the case n = 1, this task
would have been assigned to the server smin in the phase II of the algorithm, as
the hypothesis guarantees enough resources for the remote execution of it. This
contradicts the initial assumption as the aforementioned last iteration would not
have occurred, and therefore the latency of the computed assignment would have
been lLABL = lout − 1.

In case n > 1, each task can be sequentially assigned for remote execu-
tion to a server, starting from the one having workload equal to φ(smin), as
long as the number of tasks and the number of servers satisfying the condition
φ(s) + wrem ≤ lout − 1 allows the assignments. If all tasks are assigned, then
the last iteration would not have occurred, thus having the same conditions of
the former case. Otherwise, the remaining tasks must be assigned at the next
iteration when l = lout as the servers in the last-but-one iteration could have
included only tasks requesting an execution time in [wloc, wrem − 1] which is
not obviously the case. In the last iteration there would have been only servers
that could satisfy assignments of tasks with an execution time ranging from
wloc to wrem. Therefore the difference between the maximum and the minimum
workload would be φ(smax) − φ(smin) ≤ wrem, that contradicts the hypothesis.

Corollary 1. If Theorem 1 holds and the server smin ∪ S with minimum work-
load satisfies the condition φ(smin)≤l∗∗, then the optimal latency lopt for the
given assignment problem is bounded as: lLABL − wrem ≤ lopt ≤ lLABL.

Proof. The lower bound given by l∗∗ is lesser than or equal to lopt by definition,
while lopt is, in turn, lesser than or equal to the latency limit computed by the
LABL algorithm: l∗∗ ≤ lopt ≤ lLABL. Now, if Theorem 1 holds, then lLABL =
φ(smax) and φ(smin) ≥ lLABL − wrem. Therefore, noting that l∗∗ must be greater
than or equal to φ(smin), leads to the thesis.

Theorem 2. The LABL Task Assignment algorithm, under the condition that
ConsiderRemoteAssignments is false for all values of l > l∗∗, produces an
assignment ALABL with a total resource usage

CLABL(T) ≤ l∗∗ × |S| −
⎪

s∀S

φs

Proof. If ConsiderRemoteAssignments is false for all l except l∗∗, the second
phase of the LABL algorithm is executed only once, that is the assignment of
remote tasks is performed only in the first iteration (i.e., when l = l∗∗).

If all the tasks are assigned in the first iteration (that is, the algorithm
computes a final latency lout = l∗∗) then the resource allocation in terms of
units of work is due to the servers in Ssup ∪ Sinf = S\Sbusy, as in Sbusy there

148 G. Agosta et al.

are only servers with a workload that doesn’t allow to cope with either local or
remote tasks. Therefore the following relation holds:

⎪

s∀Ssup∪Sinf

(l∗∗ − φs) ≥
⎪

s∀S

(l∗∗ − φs)

The term in the right side of the previous inequality (CLABL ≤ ∑
s∀S (l∗∗ − φs) =

l∗∗×|S|−∑
s∀S φs) is always smaller than the left one, as the workload of servers

in Sbusy is by definition greater than or equal l∗∗.
If the LABL assignment algorithm terminates with lout > l∗∗, then through

remembering that the latency limit given by l∗∗ guarantees (by definition) that
the whole cluster S can allocate all the remote tasks (see the first condition
in the definition of l∗∗ in Sect. 3.3), and following the theorem hypothesis the
assignment of tasks in the first and third phase of the algorithm will proceed
through allocating the tasks locally, it is easy to infer that the whole number of
units of work actually spent by the cluster (CLABL), at the end of the computation,
will not be greater than l∗∗ × |S| − ∑

s∀S φs.

Theorem 3. The LABL Task Assignment algorithm operates in time

O
(

log |T | × |T | × max
t∀T

|ρ(t)|
)

where |T | is the number of tasks and maxt∀T (|ρ(t)|) is the maximum number of
data copies available for a task.

Proof. We represent ρ(t) as adjacency lists sorted by server load and ρ−1(s) as
adjacency lists sorted by |ρ(t)|. The sorting of subsets of T can be performed
employing a counting sort algorithm, and has therefore O (|T | + maxt∀T |ρ(t)|)
complexity, since there are at most maxt∀T (|ρ(t)|) keys. The sorting of subsets
of S can also be performed employing a counting sort algorithm, and has there-
fore O (|S| + maxs∀S φ(s)) complexity, since there are at most maxs∀S φ(s) keys.
Note that the maximum values of |ρ(t)| and φ(s) are two orders of magnitude
smaller than |T | and |S| in real world cases, so using counting sort or other distri-
bution sort algorithms is a reasonable choice. In particular, φ(s) ≤ max{φs, l

∗∗}
initially, and φ(s) ≤ max{φs, l} in successive iterations.

Computing the four sets Sinf , Ssup, Tloc and Trem amounts to a single scan of
S and T . Since in general |S| < |T |, the construction is overall O (|T |). The first
phase scans the entire Sinf . At most wrem tasks are assigned for each s ∪ Sinf ,
since doing otherwise would lead to violating the latency bound. The complexity
of this phase is therefore O (|S|). The second phase scans the entire Trem, and
assigns all tasks to the least loaded servers in a round robin way. The complexity
of this phase is straightforward, as it performs O (|Trem|) operations, which is
also O (|T |). While the complexity of the third phase, as explained in Fig. 1 is
O (|T |), it is possible to implement it by iterating on the servers in Ssup and
assigning as many task to each server as it can handle within the latency bound.
This leads to a complexity of O (|S|).

On Task Assignment in Data Intensive Scalable Computing 149

Overall, we have a complexity that is bounded by O (|T | + maxt∀T |ρ(t)|) +
O (|S| + maxs∀S φ(s)) for each iteration of the main loop. Since we increase l
by one at each iteration, the number of iterations of the main loop is given by
lLABL − l∗∗, where lLABL is the latency of the assignment. Note that, even if we
allocated every task remotely, lLABL would be limited by

lLABL ≤
(
wrem|T | +

⎪

s∀S

φs

)
/|S|

Considering that l∗∗ ≤ (wloc|T | +
∑

s∀S φs)/|S|, it follows that lLABL − l∗∗ ≤
(wrem − wloc)|T |/|S|. In general, it can be assumed that |T | � c|S|, where c is a
small factor typically ranging in {2 . . . 10}, therefore the outer loop is executed
only a fixed number of times [5,10]. However, we ensure this by means of the
threshold limit of l imposed by ConsiderRemoteAssignments. Thereafter, we
perform a reduced loop including only the first and third phases. This reduced
loop, per se, has a complexity O (|T |2), but it can be usefully restructured w.r.t.
the general presentation to reduce the complexity. Specifically, since we are now
only assigning tasks t to servers in ρ(t), we can simply work as follows: for each
s ∪ S, compute a set Rs = {t ∪ ρ−1(s)ift ∪ T}, and sort each set by |ρ(t)|.

We now iterate over the servers s ∪ S in a round-robin way, removing one
element of Rs at each iteration and assigning it to s if it has not been already
assigned. This guarantees completion in:

O
(

log |T | ×
⎪

s∀S

|Rs|
)

= O
(

log |T | × |T | × max
t∀T

|ρ(t)|
)

4 Simulation Results

We conducted an experimental campaign to compare the behavior of the LABL
Task Assignment with the round-robin and flow-based algorithms. We employed
as a starting point a real-world configuration from [5], which provides statistical
data on the execution of MapReduce jobs at Google during an entire month.

The experiments are conducted in a simulation environment, scheduling one
job on a set of servers having an existing workload. This is done to simulate the
online scheduling process: given the mean inter-arrival time of 2–3 min reported
in [4,10], the job tracker will have completed the scheduling process of the job
before a second one arrives. On the other hand, due to the long computation
times, previously scheduled jobs will still be active while the new one is being
scheduled. The simulation assumes tasks to require the same time wloc to be
executed on any server storing the necessary data. Since the time wloc also rep-
resents a unit of work, we will consider wloc = 1 in all experiments. Whenever a
task is assigned to a server that does not have the required data, the data must
be fetched, leading the execution time to increase to wrem. We set wrem = 3 in
all experiments, following the same approach as [7]. We explore a configuration
space considering a number of servers |S| = {1600, . . . , 2000} and a number of
tasks |T | = {3200, . . . , 3500}, though we will only show subsets of the overall

150 G. Agosta et al.

Fig. 5. Performance of analyzed algorithms

configuration space in some experiments for the sake of clarity. The data place-
ment is randomly determined such that |ρ(t)| is in the range [1, ρmax] for all
tasks, where ρmax is a parameter fixed at 4 in all experiments, except when
evaluating the sensitivity of the algorithms to the replication factor. In all the
experiments, the initial load is randomly assigned, within the range [0, 5]. In all
cases, the reported data has been obtained as the average of the results gathered
from 30 runs of the same experiment.

4.1 Performance Overview

The experiment reported in Fig. 5 compares the effectiveness of the LABL Task
Assignment with both the round-robin and flow-based algorithms, in terms of
throughput, resource accounting and latency. We explore a configuration space
with |S| = 2000, |T | = {3200, . . . , 3500}. Data for the LABL algorithm are
reported for configurations with threshold latency l set to l∗∗ and l∗∗ + 1.

Figure 5a shows the throughput achieved by the three algorithms. The LABL
algorithm, in both versions, yields a better throughput, i.e., the task assignment
is able to consistently save resources, leaving more server time for other jobs.

Figure 5b reports in a scatter-plot the latency and resource consumption
obtained by the three algorithms on the 2000 servers cluster, showing increasing
number of tasks in the job by lighter shades. Figure 5b shows that the flow-
based algorithm consistently obtains optimal latencies, while the LABL algo-
rithm reduces resource usage. The LABL algorithm and the flow-based algorithm
produce solutions that are Pareto-optimal, while the round-robin algorithm pro-
duces solutions that are Pareto-dominated by all the others.

On the overall, the flow-based and LABL algorithms produce solutions of
interest respectively to optimize latency and resource usage. However, the flow-
based algorithm has a higher computational complexity, O(|T |2×|S|) [7], making
the LABL solution more attractive.

On Task Assignment in Data Intensive Scalable Computing 151

Fig. 6. Scalability of the analyzed algorithms

4.2 Scalability

The experiment reported in Fig. 6 evaluates the robustness of the four algorithms
to changes in the availability of servers. Given a set of tasks T , |T | = 3450, a
data placement, and an initial workload, we progressively increase the number of
servers that are available for scheduling from a minimum of |S| = 1600 to a max-
imum |S| = 2000. A desirable property for the scheduling algorithm is that the
number of available servers has only limited impact on the latency — assuming
there are enough servers to actually execute the job. Figure 6a shows that only
the round-robin algorithm is significantly impacted by the change in server avail-
ability. This is because the round-robin algorithm makes greedy choices, which
easily prove suboptimal. The other three algorithms behave in a more graceful
way, as their greedy choices are less aggressive — all four algorithms have greedy
components within their heuristics, to limit the complexity, but the greedy com-
ponent is dominant only in the round-robin algorithm. The LABL algorithm
produces Task Assignments with higher latencies than the flow-based algorithm.
This is expected since, as shown in Sect 4.1, the LABL algorithm trades off
latency to save resources. Figure 6b shows the impact of server availability on
the resource usage. The impact is minimal on the round-robin algorithm, while
the other three algorithms all tend to consume more resources when these are
available, by placing remote tasks on free servers in an attempt to reduce latency.
However, the LABL algorithm, in both versions, always outperforms the flow-
based algorithm, thanks to its greater focus on reducing resource usage.

4.3 Sensitivity Analysis

The experiments reported in Figs. 7 and 8 evaluate the sensitivity of resource
usage to, on one hand, the number of tasks to execute and the number of available
servers, and, on the other hand, the replication factor, i.e., the average number
of copies of the data accessed by a task.

152 G. Agosta et al.

Fig. 7. Resource awareness of analyzed algorithms

Fig. 8. Replication factor sensitivity of analyzed algorithms

In the first case, only the resource accounting for the flow-based (Fig. 7a)
and LABL algorithm with l = l∗∗ + 1 (Fig. 7b) are shown, as these algorithms
have proven to be the most effective ones (see Fig. 6). Figure 7 depicts a family
of curves representing resource accounting as a function of the number of servers
(|S| = {1600, . . . , 2000}), considering the number of tasks |T | = {3200, . . . , 3500}
as a parameter. As expected, the LABL algorithm consumes less resources. The
results also show that the behavior of the LABL algorithm is much more stable.
Moreover, the flow-based algorithm is characterized by a higher resource usage
when scheduling more tasks. Focusing on the replication factor, Fig. 8 shows
only the resource accounting employed by the flow-based and LABL algorithm
(with l = l∗∗ + 1), as a function of the cluster size. The round-robin strategy is
not considered since it consistently employs a higher number of resources (see
Fig. 6b). We vary the maximum replication factor ρmax from 2 to 7, so that the
average replication factor ranges in [1.5, 4]. Thus, the generated data placements

On Task Assignment in Data Intensive Scalable Computing 153

have |ρ(t)| uniformly distributed in the range [1, ρmax] for all tasks. The results
show that the LABL algorithm is less sensitive to the replication factor than
the flow-based one. The flow-based algorithm takes greater advantage from the
increased locality given by the presence of more replicas of each data item,
but the LABL algorithm is still able to achieve a lower resource usage. Note
that a higher replication factor does impact on the overall costs — keeping
up to date copies of the data across the network is bound to have a significant
communication cost, so the ability to achieve good resource utilization with a
low replication factor is a strong asset of the LABL algorithm.

4.4 Discussion

We will now discuss the interactions of the LABL algorithm with other schedul-
ing goals such as fairness and adaptivity, as well as potential optimizations.

Scheduling for Fairness. The fairness property is often desirable in large-scale
clusters that are accessed by multiple users. That is, the applications submitted
by any user should not be delayed indefinitely. Online scheduling strategies, such
as the LABL algorithm, can be integrated into higher level policies aimed at
providing such fairness guarantees, that is, at user-application scheduling level
rather than at task-scheduling. Indeed, the LABL algorithm could effectively
replace the round-robin algorithm that is used as the task assignment component
of the Hadoop fair scheduler [1,7].

Scheduling Jobs from Multiple Applications. It is possible that, for a given
job, some servers of the cluster have no copies of the required data for any of its
tasks — or a set of servers S∈ ⊂ S has only copies of data needed for a set of tasks
T ∈ ⊂ T , but |T ∈| < |S∈|, leaving |S∈|−|T ∈| servers idle. In this case, the servers
cannot be used to run a local task, either leading to execution delays, if they
are used to run a remote task, or to an under-utilization of resources. To further
improve resource utilization and throughput, it is possible to schedule jobs from
multiple applications at the same time, as these are likely to use different data
sets. It is worth noting, however, that scheduling multiple jobs increases the
throughput at a cost in latency. The LABL scheduling algorithm, however, can
easily handle the schedule of sets of tasks belonging to different jobs coming
from independent applications, through simply merging the two sets. The key
issue is selecting jobs that map on data held in different servers, so as to allow
servers that cannot run tasks locally for one job to be used for another job.

Adaptive Scheduling. A latency-aware scheduling is more attractive when the
cluster is under-utilized, as it allows to minimize application latency, providing a
better response time to the user. On the other hand, a resource-aware scheduling
becomes increasingly important as the cluster utilization grows. Indeed, in a clus-
ter under a heavy workload, a scheduling policy that favors latency may easily
lead to low availability for other jobs. A common solution is to artificially limit
the amount of resources that a single job can take. The LABL algorithm does

154 G. Agosta et al.

that, by construction, optimizing the resource accounting of the scheduled job,
while still providing a strong latency limit. Thus, it adapts better to workload
variations, as shown in Sect. 4.3.

5 Related Work

The MapReduce programming model has been formalized in a number of ways.
In [9] MapReduce computations have been compared to the PRAM model, focus-
ing on analyzing how PRAM algorithms can be expressed using MapReduce.
Among the studies on task assignment, in [11] the authors focus on allocating
tasks of multiple jobs in both on-line and off-line scenarios, providing a gener-
alization of the Flexible-Flow Shop problem. However, the authors do not take
into account the impact of data placement, which is critical due to the size of the
exchanged data. In [7] the Hadoop round-robin based task allocator is compared
with a flow-based task allocator, showing that careful consideration of data place-
ment allows to limit job latency. An in-depth comparison with both algorithms
is provided in Sect 4. Job latency reduction has been tackled in [16] considering
a production-quality scenario, showing how careful job speculation helps on lim-
iting the latency penalty introduced by straggled tasks (i.e., remotely executed
tasks on the critical path), at the cost of an increased resource consumption.
This technique, while applicable to all tasks, is more effective on reduce tasks,
since map tasks are much less likely to be straggled. In a typical MapReduce
implementation, the set of available resources is equally exposed to all jobs.
In [13], on the other hand, a different processing resources are exposed to each
job depending on its workload profile in terms of CPU, disk and memory usage.
Thus, a task tracker can maximize the use of its resources through executing
tasks from jobs with different profiles. This scheme can be easily combined with
our own, since in our approach the set of resources is an input parameter, whilst
the key aspect of [13] is the definition of the resource set for each job profile.
In [14], flex, a scheduler for MapReduce systems, is proposed as a replacement
for the Hadoop fair scheduling algorithm. With respect to our work, flex does
not take into account data locality, and works on multiple jobs at the same time
in an epoch-based scheme. Similarly, in [15] multiple jobs are managed, aiming
at fairness and data locality, but with no latency guarantees. The task assign-
ment problem is common to all DISC schemes. However, the solutions need to
be tailored to the specific setup: e.g., [12] deal with cloud -based MapReduce
services, which rely on a heavy use of virtualization techniques. Virtualization
is not attractive for every DISC scenario, due to the need to spawn new virtual
machines at high frequency — job completion times follow a long tailed distrib-
ution, with 80 % of the successful jobs completing within 6 min, as shown in [10]
for a 10-month timeframe on a production Yahoo! Hadoop cluster.

6 Concluding Remarks

We presented an algorithm for assigning the tasks of a job to servers in a MapRe-
duce cluster. The proposed algorithm balances the tradeoff between latency and

On Task Assignment in Data Intensive Scalable Computing 155

resource consumption. Simulation results support the insight that a practical
implementation would benefit from the proposed approach. Future works include
integrating the LABL algorithm within a job-scheduling framework (which will
also manage fault tolerance issues) and extending it through taking into account
the cluster interconnect topology to model the remote execution time.

References

1. Apache Foundation: Hadoop. http://hadoop.apache.org/mapreduce
2. Bortnikov, E.: Open-source grid technologies for web-scale computing. SIGACT

News 40(2), 87–93 (2009)
3. Chambers, C., Raniwala, A., Perry, F., Adams, S., Henry, R.R., Bradshaw, R.,

Weizenbaum, N.: FlumeJava: easy, efficient data-parallel pipelines. In: PLDI,
pp. 363–375 (2010)

4. Chen, Y., Ganapathi, A., Griffith, R., Katz, R.H.: Evaluating MapReduce perfor-
mance using workload suites. In: MASCOTS, pp. 390–399 (2011)

5. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
In: OSDI, pp. 137–150 (2004)

6. Dean, J., Ghemawat, S.: MapReduce: a flexible data processing tool. Commun.
ACM 53(1), 72–77 (2010)

7. Fischer, M.J., Su, X., Yin, Y.: Assigning tasks for efficiency in hadoop: extended
abstract. In: SPAA, pp. 30–39 (2010)

8. Hey, A.J.G., Trefethen, A.: The data deluge: an e-Science perspective. In:
Berman, F., Fox, G.C., Hey, A.J.G. (eds.) Grid Computing-Making the Global
Infrastructure a Reality, pp. 809–824. J. Wiley & Sons, New York (2003)

9. Karloff, H.J., Suri, S., Vassilvitskii, S.: A model of computation for MapReduce.
In: SODA, pp. 938–948 (2010)

10. Kavulya, S., Tan, J., Gandhi, R., Narasimhan, P.: An analysis of traces from a
production MapReduce cluster. In: CCGRID, pp. 94–103. IEEE (2010)

11. Moseley, B., Dasgupta, A., Kumar, R., Sarlós, T.: On scheduling in Map-Reduce
and Flow-Shops. In: Rajaraman, R., Meyer auf der Heide, F. (eds.) SPAA,
pp. 289–298. ACM (2011)

12. Park, J., Lee, D., Kim, B., Huh, J., Maeng, S.: Locality-aware dynamic VM recon-
figuration on MapReduce clouds. In: HPDC, pp. 27–36 (2012)

13. Polo, J., Castillo, C., Carrera, D., Becerra, Y., Whalley, I., Steinder, M.,
Torres, J., Ayguadé, E.: Resource-aware adaptive scheduling for MapReduce clus-
ters. In: Kon, F., Kermarrec, A.-M. (eds.) Middleware 2011. LNCS, vol. 7049,
pp. 187–207. Springer, Heidelberg (2011)

14. Wolf, J., Rajan, D., Hildrum, K., Khandekar, R., Kumar, V., Parekh, S., Wu, K.-L.,
Balmin, A.: FLEX: a slot allocation scheduling optimizer for MapReduce work-
loads. In: Gupta, I., Mascolo, C. (eds.) Middleware 2010. LNCS, vol. 6452, pp.
1–20. Springer, Heidelberg (2010)

15. Zaharia, M., Borthakur, D., Sarma, J.S., Elmeleegy, K., Shenker, S., Stoica, I.:
Delay scheduling: a simple technique for achieving locality and fairness in cluster
scheduling. In: EuroSys, pp. 265–278 (2010)

16. Zaharia, M., Konwinski, A., Joseph, A.D., Katz, R.H., Stoica, I.: Improving
MapReduce performance in heterogeneous environments. In: Draves, R.,
van Renesse, R. (eds.) OSDI, pp. 29–42. USENIX Association (2008)

http://hadoop.apache.org/mapreduce

A Periodic Portfolio Scheduler for Scientific
Computing in the Data Center

Kefeng Deng1,2(B), Ruben Verboon2, Kaijun Ren1, and Alexandru Iosup2

1 National University of Defense Technology, Changsha, China
{dengkefeng,renkaijun}@nudt.edu.cn

2 Delft University of Technology, Delft, The Netherlands
R.S.Verboon@student.tudelft.nl, A.Iosup@tudelft.nl

Abstract. The popularity of data centers in scientific computing has led
to new architectures, new workload structures, and growing customer-
bases. As a consequence, the selection of efficient scheduling algorithms
for the data center is an increasingly costlier and more difficult challenge.
To address this challenge, and contrasting previous work on scheduling
for scientific workloads, we focus in this work on portfolio scheduling—
here, the dynamic selection and use of a scheduling policy, depending on
the current system and workload conditions, from a portfolio of multi-
ple policies. We design a periodic portfolio scheduler for the workload
of the entire data center, and equip it with a portfolio of resource pro-
visioning and allocation policies. Through simulation based on real and
synthetic workload traces, we show evidence that portfolio scheduling
can automatically select the scheduling policy to match both user and
data center objectives, and that portfolio scheduling can perform well in
the data center, relative to its constituent policies.

Keywords: Portfolio scheduling · Data center · Provisioning and allo-
cation · Scheduling policies · Scientific workloads

1 Introduction

Cluster-based data centers of all sizes are increasingly popular, a result of both
increasing demand for efficient computational resources, and of several decades
of technological advancement and education of administrators in distributed
systems. Especially when servicing the demanding workloads typical of scien-
tific computing [1,2], these data centers need efficient algorithms for scheduling
their users’ workloads on the data center resources. Many existing scheduling
algorithms have already addressed specific workload properties [3,4] and types
of applications [5–7], but data centers still rely on (expensive) human system
administrators to select a scheduling algorithm and configure it appropriately.
Moreover, the selection process is made significantly more difficult by changing
workloads due to technology transitions (e.g., the use of virtualization and new
networking architectures), and by new customers starting to use data centers as

N. Desai and W. Cirne (Eds.): JSSPP 2013, LNCS 8429, pp. 156–176, 2014.
DOI: 10.1007/978-3-662-43779-7 9, c© Springer-Verlag Berlin Heidelberg 2014

A Periodic Portfolio Scheduler for Scientific Computing in the Data Center 157

Infrastructure-as-a-Service clouds. In contrast to previous approaches, we inves-
tigate in this work portfolio scheduling [8]—in this context, the dynamic selection
and use of a scheduling policy, depending on the current system and workload
conditions, from a portfolio of multiple policies—used to efficiently schedule sci-
entific workloads for the entire data center. Cluster-based data centers have been
much employed for scientific computing workloads. For example, small data cen-
ters are commonly integrated into multi-cluster grids, such as the World Large
Hedron Collider Grid (WLCG), the US Open Science Grid, the French Grid’5000,
and the Dutch DAS. However, human administrators have become increasingly
rare and more overloaded, as modern data centers rely increasingly on automa-
tion and allocate only 5 % of the operational budgets for human administra-
tion [9]; this situation is anecdotally supported by our experience with the DAS
system over the past decade.

A variety of scheduling and administrative techniques have been developed
recently for the data centers, but, simultaneously, data center architectures have
evolved quickly. For the former, research has focused on both sharing of net-
working resources [10] and time-cost-energy optimizations. For the latter, recent
work has focused on new layouts of networks [11,12] and new virtualization
architectures [13,14]. Our previous scheduling studies [7,15,16], which evaluate
a large variety of scheduling policies for various types of scientific computing,
indicate that no single policy can accommodate all workload conditions, and all
user and system objective functions. Thus, a tension arises in trying to select
the appropriate resource scheduling policies for the data center.

Not only the data center architecture, but also the properties of scientific
workloads change over time. Long-term arrival patterns can suddenly be inter-
rupted by bursts of arrivals [2]. As systems mature, their users may transition
from loosely coupled jobs to more integrated workflows [17] and even tightly
coupled parallel jobs. New approaches to computing—MapReduce and its many
flavors, the graph-processing model Pregel, etc.—have appeared in the past few
years. For months after data centers are launched in production and prior to their
decommissioning, reduced yet system-stressful workloads with different opera-
tional patterns may appear [18]. Thus, the problem of selecting an appropriate
scheduling policy remains open and increasingly in need of a solution.

In this work we investigate if a portfolio scheduler can automatically select
the scheduling policy, from the set with which the portfolio is configured, such
that the user and the data center’s objective functions remain within their tar-
get (optimal) range. Among other differences from previous work on portfolio
scheduling [8], our context rarely allows an optimal range to be computed; thus,
the target range is relative to the performance of individual policies used in the
portfolio. A portfolio scheduler should support many types of workload patterns
and application types, yet perform similarly to the scheduling policy that has
been specifically designed to support the workload pattern and application type.
This has an important consequence: portfolio scheduling can then alleviate the
need for human expertise in selecting scheduling policies and even configurations,
and thus become an important component in the administration of modern data
centers.

158 K. Deng et al.

A full exploration of the concept portfolio scheduling would greatly exceed
the scope of this work. Among the challenging questions we do not explore
are: Which policies should be selected in the portfolio? How can a portfolio
support a mix of application types? Should the portfolio also configure policies,
as part of its operational process? Should the portfolio select the scheduling
policy periodically or continuously? In this work, we focus on exploring portfolio
scheduling, with a twofold contribution:

1. We adapt the notion of periodic portfolio scheduling in the context of data
centers (Sect. 3). We propose a periodic portfolio scheduler, and create a com-
prehensive portfolio for provisioning and allocation of resources.

2. We evaluate our portfolio scheduler experimentally, through synthetic and
real trace-based simulation (Sect. 5). We compare the portfolio scheduler
against its constituent policies and show evidence that portfolio scheduling
can be beneficial in the context of data centers.

2 System Model

In this section we present the system model used throughout this work.

2.1 Workload and Resource Model

The workloads we consider in this work match the cluster-based traces of the
Parallel Workloads Archive [19]. We further assume that jobs are CPU-bound
and their runtime depends linearly on the speed of the (virtual) processor where
they are executed. Because it offers a trade-off between accuracy of simulation
and simplicity, this model has been much used by the parallel and grid computing
communities for simulation-based work. For example, we have used it in our
DGSim simulator [20].

In this work, we consider the functioning of a data center comprised of homo-
geneous physical resources. This model is common for the multi-cluster grids of
the late-1990s up to mid-2000s—many of their clusters and even entire data
centers have been initially built with homogeneous resources. This model also
matches today’s virtualized (homogenized) infrastructure.

Similarly to simulation-based studies in parallel and grid computing, we
assume that resources can be benchmarked to quantify their speed for process-
ing typical scientific computing workload, for example with the SPEC CPU2006
benchmark. Although this assumption may fail for other application domains
or for scientific applications with irregular operational patterns [21], this app-
roach to benchmarking has been successfully employed in the operation of several
multi-cluster grids, such as the Worldwide LHC Computing Grid (WLCG), the
French Grid’5000, and the Dutch DAS.

A Periodic Portfolio Scheduler for Scientific Computing in the Data Center 159

4. Provision

Job Queue

6. Allocate

5.

7.

Fig. 1. Operational model of the data-center scheduler.

2.2 Operational Model

In this work, resources are provisioned exclusively from a single data center.
We do not consider hybrid computing environments that span multiple data
centers, because scientific and especially parallel workloads can rarely withstand
co-allocation across geographically-separate data centers without significant loss
of performance [6,22].

In our resource usage model, all resources belong to the data center and are
provisioned on-demand for incoming workload as virtual machines (VMs). Besides
on-demand resource provisioning, we do not consider in this work advance reserva-
tion, consolidation of multiple jobs on the same resources, and other usage mod-
els [23]. The use of virtualization allows the data center to service a diverse set
of scientific computing users on the same set of physical resources; the perfor-
mance impact of virtualization for scientific computing has been well studied in
the past and shown [24–26] to be small, for non-I/O-bound and small-scale scien-
tific applications.

The data-center scheduling model investigated in this work is adapted from
our previous work [15]. As depicted in Fig. 1, users send their workloads to a
system-wide scheduler, which uses an allocation policy to either allocate these
jobs to the VMs already provisioned for the submitting user (the VM pool), or
to enqueue the jobs in the system-wide job queue. VMs are provisioned, that is,
leased and released, on behalf of the user by the system-wide scheduler via a
provisioning policy. To inform proactive provisioning decisions, the provisioning
policy can query the state of the allocation. From the perspective of the data
center operator, the provisioning policy is in general responsible for the efficient
allocation of resources to users.

Inspired by the use of data centers as IaaS cloud infrastructure, we use the
billing model of Amazon EC2: VM use is charged in hourly increments.

3 A Periodic Portfolio Scheduler

In this section we adapt traditional portfolio scheduling [8] for use in the data
center. We describe, in turn, our periodic portfolio scheduler, an overview of
the system including the portfolio scheduler, and the set of policies used by our
portfolio scheduler (later used in experimental work, in Sect. 5).

160 K. Deng et al.

3.1 The Portfolio Scheduler

Portfolio schedulers follow a traditional process with four steps, creation, selec-
tion, application, and reflection. We adapt this process to data centers and design
a periodic portfolio scheduler, as follows.

In the creation step, a set of policies is created for the portfolio scheduler,
prior to the actual use of policies. The main trade-off in the creation of this set is
between capability to schedule different workload patterns and application types,
and time required to explore the set during the selection and application phases.
The selection of policies is usually done by an expert, as we do in Sect. 3.3,
but can also be done automatically, for example as the result of an automated
comparative study of policies specific to one domain [7,15,16].

During selection, the portfolio scheduler has to select one of the scheduling
policies, to be used, in the case of continuous portfolio scheduling, for the next
scheduling decision or, for periodic portfolio scheduling, during the next period
of taking scheduling decisions. As for the creation step, the selection step can be
guided by an expert or be automated, and needs to address a trade-off between
time spent in selection and quality of selection, which is typically a single-user
utility function or a system-wide performance metric. The portfolio scheduler
we propose in this work is periodic and automated; we explore various metrics
for the quality of selection in Sect. 5. We detail in Sect. 3.2 a practical selection
process that can be used in data center scheduling.

In the application step, the policy selected in the previous step takes schedul-
ing decisions. Additionally, the portfolio scheduler collects information about
the application of scheduling decisions, and may use the collected information
to evaluate how the non-selected policies in its portfolio would have performed
if selected. Although this step also appears in non-portfolio scheduling, for port-
folio scheduling this step can be more complex. If the selected policy is complex,
its application may raise non-trivial system stability issues and lead to system
inefficiency. For example, the newly selected policy may be undoing some of
the advanced reservations or other long-term planning decisions of previously
selected policies. We see the exploration of the non-trivial interplay between the
selection and application steps, including stabilization of a multi-policy system,
as fertile ground for future research.

The reflection step analyzes the operation of the last selection and applica-
tion steps, and may take the decision to change the portfolio or tune the other
steps. Changing the portfolio is similar to the creation step. Tuning the other
steps may, for example, lead to switching the selection step from a periodic to a
continuous process, adapting the selection criterion, and setting different thresh-
olds regarding the overturning of previous scheduling decisions when applying
the newly selected policy. We leave the exploration of this step for future work.

Ideally, the portfolio scheduler has the ability to always select, for an arbitrary
workload mode (i.e., workload pattern or application type), the best schedul-
ing policy in the portfolio. Thus, a portfolio scheduler cannot outperform its
constituent policies when confronted with a mono-modal workload. Instead, a
portfolio scheduler should become useful when the workload changes modes in

A Periodic Portfolio Scheduler for Scientific Computing in the Data Center 161

Fig. 2. Selected policy over the lifetime of a system with changing workload modes.

Fig. 3. The policy selection process of our periodic portfolio scheduler.

quick succession. For example, Fig. 2 depicts a synthetic workload that alternates
two arrival patterns, to be scheduled by a portfolio scheduler comprised of two
policies, each adapted to one of the arrival patterns. In this constructed exam-
ple, the policy is changed automatically after each selection step, in response to
changes in the workload. The result in an alternation between policies P1 and
P2. Moreover, when the succession is aperiodic or has a long period, the port-
folio scheduler should become increasingly more difficult to replace with human
decision-making.

3.2 System Using Portfolio Scheduling

We now extend the operational model introduced in Sect. 2.2 to accommodate a
periodic portfolio scheduler. The main elements of this model, the system-wide
scheduler, the order of operations involving the selected policies, etc., remain
unchanged. Because the application of the (selected) scheduling policy remains
unchanged from the initial operational model, we focus in this section on the
portfolio creation and selection steps of the process introduced in Sect. 3.1.

For our portfolio scheduler, the creation step is executed once and the selec-
tion step is executed periodically. The selection automatically evaluates the set

162 K. Deng et al.

of policies in the scheduler’s portfolio, and selects from it the policy to be applied
for the entire next period. The main choices in the design of our periodic portfolio
scheduler are:

(Creation step) Which policies? The data center scheduler includes vari-
ous policies, each of which can be selected through portfolio scheduling.
Moreover, the combination of policies can also be selected through portfolio
scheduling. Assuming that most policies have a similarity in computational
demand, which matches well the simple heuristics commonly employed in
data center scheduling, the time required for single- and multi-policy selec-
tion increases linearly and exponentially, respectively. We design our portfo-
lio scheduler to cover the combination of provisioning and allocation policies,
that is, the portfolio is comprised of pairs of provisioning and allocation poli-
cies. We detail the specific policies used in this work in Sect. 3.3.

(Selection step) How to evaluate? We design the evaluation of policies to
use a simulation-based approach; alternatives include running selected work-
load parts in a reserved system partition and extrapolating results, using
historical performance information and periodically risking on previously
untried policies, etc. In the simulation approach (see Fig. 3), each schedul-
ing policy in the portfolio is evaluated against a simulated environment that
matches the data center, subject to the currently running and queued jobs in
the data center. After all the simulations are complete, a selection criterion
is used to select the next active policy.

The selection step also involves several important configuration parameters:

The simulator The choice of a simulator is non-trivial, with the main trade-
off in the accuracy of results (the ability to match the real environment)
and execution time. Fast and accurate simulators already exist for various
data center architectures [20,27]. We select from these simulators and use in
our portfolio scheduler DGSim [20], which has been used previously for data
center architectures such as independent and multi-cluster system.

The interval between selections (the period of the selection step), τ , is set
by the system administrator (e.g., to τ = 20s). If τ is small, the selection
may overload the system scheduler and may occur too frequently to allow for
meaningful scheduling. It τ is large, delays are unnecessarily incurred on the
execution of the workload. We leave for future work the automatic setting
and tuning of this system parameter.

The maximal simulation time, T , defined as the maximal duration for each
independent simulation. We have selected this single parameter from the
broader trade-off between the number of parameters in the system and the
ability to configure the maximal runtime for several (classes of) policies.

The selection criterion (or the utility function), U , which is used to select
the next active policy after all the simulations are complete. In this work
we use a selection criterion that balances the job slowdown as a proxy for
user experience, and utilization of the provisioned resources as a proxy for
system efficiency and cost; the metric will be detailed in Sect. 4.3.

A Periodic Portfolio Scheduler for Scientific Computing in the Data Center 163

3.3 Portfolio Policies

In this section, we describe the policies that we select for our portfolio sched-
uler. We present, in turn, the selected provisioning and allocation policies. We
use six provisioning policies from our recent study of IaaS clouds [15] and two
allocation policies commonly used in data centers. Our choice of provisioning
policies matches the system model requirement of hourly charging per VM (see
Sect. 2.2). Among the six provisioning policies, we use the last five policies in
our portfolio:

1. (The baseline provisioning policy) StartUp (STU): This policy leases a
new instance whenever there is no idle VM for the current job unless the
number of rented VMs reach its maximum. Moreover, the rented VMs will
not be released until the end of the workload. The advantage of STU is that
it can provide user with good experience by over-provisioning VM instances.
However, it cannot deal well with changing workloads such as bursty work-
load, since it is static and keeps VM instances alive after the flash-crowd even
when there are no jobs.

2. On-Demand Single VM (ODS): This is a simple dynamic provisioning policy.
It leases a new VM instance for each job that is waiting in the queue, whenever
available instances can be provisioned in the data center (whenever there are
free resources). Since instances are charged hourly, they are released when
there is no job for them to run and their run time is reaching integral hours.
This policy is naive: although it may lead to good user experience, it also
incurs unnecessarily high cost—resources charged for an entire hour may be
released after just a few minutes.

3. On-Demand Geometric (ODG): Because scientific workloads may include
many short jobs that finish before the hourly charging of resources, it is not
necessary to rent a new instance for every job. Therefore, The ODG policy is
used to rent VMs gradually. ODG leases and releases VM instances in a sim-
ilar way to TCP’s exponential back-off mechanism [28]. A parameter α ∗ 1
is used to control the growth (shrink) of the number of VMs to be leased
(released) at each provisioning step, i.e., this policy leases α0, α1, α2, . . . , αn

instances, successively. We have shown in our previous work [15] evidence
that this policy is helpful for bursty workloads.

4. On-Demand ExecTime (ODE): Job information may be helpful for taking
better scheduling decisions. The ODE policy takes the execution time of the
jobs into consideration for leasing VM instances. First, it estimates the run
time of the queued jobs as the (historically recorded) average run time of
similar jobs, for example jobs submitted by the same user. Then, it computes
the number of VMs to be rented by rounding up the total execution time to
hours. This policy also uses the VM release strategy of the ODS policy.

5. On-Demand WaitTime (ODW): Similarly to the ODE policy, and taken from
previous work [15], the ODW policy uses the job wait time to decide how many
instances to be rented. First, a threshold is empirically set for the maximal
job wait time, to the next 5 min increment that exceeds by 5 times the latency
to acquire and boot a VM instance; we set it in this work to 20 min. At every

164 K. Deng et al.

provisioning point, ODW checks the wait time of each job, then leases VMs
for each job having waited longer than the threshold. This policy also releases
VMs near integral hours of run time.

6. On-Demand XFactor (ODX): This policy tries to give an upper bound for
job slowdown. To this end, ODX uses both the (observed) wait time and the
(estimated) run time to rent instances. ODX uses the same method as ODE
to estimate the job run time. Idle VM instances are reused or, if none exists,
leased whenever a job has been delayed longer than its run time (a slowdown
of 2). This policy also uses the VM release strategy of the ODS policy.

We also consider two allocation policies for our portfolio, First-Come-First-
Served (FCFS) and the second one is Shortest-Job-First (SJF). FCFS is the
traditional allocation policy used in many data centers; it is fair but may cause
fragmentations in the system. SJF is an aggressive policy: it can reach lower
average job slowdown or wait time, but may also cause starvation for long jobs.

4 Experimental Goals and Setup

We evaluate in this section portfolio scheduling for scientific workload executed in
the data center using an experimental approach. We compare the performance of
the portfolio scheduler and of its constituent policies, when used independently.
We conduct this evaluation using simulation (Sect. 4.1). As input to the simula-
tor, we use synthetic and real-world traces corresponding to scientific workloads
(Sect. 4.2). Last, as user- and data-center-oriented objective functions we use
several metrics (Sect. 4.3).

When presenting results in this section, we use predominantly two-letter
terms to denote the policy combinations in our experiments. For the six provi-
sioning policies described in Sect. 3.3 we use the letters U, S, G, E, W, and X,
respectively. For the FCFS and SJF allocation policies described in Sect. 3.3 we
use the letters F and S, respectively. Thus, the combination between the pro-
visioning policy ODX and the allocation policy FCFS is depicted as XF. Our
portfolio scheduler is indicated through the acronym PO.

4.1 Simulator

In this paper, we use simulation1 to evaluate the effectiveness of our portfo-
lio scheduler, and to compare it with the individual pairs of provisioning and
allocation policies that can be formed with the policies introduced in Sect. 3.3.

To this end, we extend our discrete event simulator DGSim [20] with enti-
ties such as a cloud-like resource manager and VM instances. The cloud-like
resource manager implements Amazon EC2-like APIs for leasing and releasing
VM instances, and implements the cost model of on-demand instances leased
1 The simulator used in this section should not be confused with the simulator running

as part of the portfolio scheduler. Replacing the simulator used in this section, we
have begun experimenting with a real-world prototype of our portfolio scheduler.

A Periodic Portfolio Scheduler for Scientific Computing in the Data Center 165

Fig. 4. The arrival of jobs for the five synthetic workloads.

by Amazon EC2. To simulate a virtualized environment, we set realistically a
delay for instance acquisition and booting, which is 4 min based on our previous
research [15,29]. To enable future comparative experiments between the environ-
ment simulated in this work and our real-world system DAS-4, which provides
OpenNebula-based and Eucalyptus-based cloud interfaces, the maximum num-
ber of VMs that can be rented is set to 64.

Our simulator implements the system model introduced in Sect. 2. We further
assume in our simulation that jobs run exclusively on their VMs and cannot be
preempted or migrated. Although these assumptions are both common and do
not affect the simple allocation policies investigated in this work, we intend to
work on relaxing these assumptions, in future work.

4.2 Workloads

We use both synthetic workloads and real workload traces for evaluation. The
synthetic workloads are short-term but with significantly different job arrival
patterns, allowing us to better characterize the impact of the arrival process
on portfolio scheduling. The real workload is a whole trace from the Parallel
Workloads Archive [19] and allows us to gain valuable insight into the operation
of our portfolio scheduler in realistic conditions.

Synthetic Workloads: In this paper, we generate five types of workloads that
have different user behaviors but the same (real) job run times. We take the jobs
run times from the first 1000 jobs of the ANL Intrepid 2009 workload from the
Parallel Workload Archive [19]. Then, we generate the arrival time of each job
such that each synthetic workload exhibits a different arrival patterns. The five
arrival patterns, for which the generated workloads are compared in Fig. 4, are:

1. Steady: the interval between two consecutive jobs is statically set to 5 min.
2. Increment: The initial interval in this workload is set to 10 min. After every

100 job arrivals, the interval is decreased by 70 s.

166 K. Deng et al.

3. Decline: In contrast to Increment, Decline sets the initial interval to 5 s, then
increased by 70 s for every 100 job arrivals.

4. Periodic: This workload exhibits a periodic pattern from an increasing arrival
rate to an decreasing one. Each increasing and decreasing trend continues for
100 job arrivals. The inter-arrival times range from 10 s to 10 min.

5. Bursty: Real workloads often include short periods of bursty behavior. For
our bursty arrivals, the submit interval during a bursty period is set to 5 s,
and bursts include 100 jobs; there are 10 bursts in the workload.

The Real Workload Trace: To evaluate the performance of portfolio schedul-
ing for scientific computing in realistic conditions, we use the entire ANL Intrepid
2009 workload [19] for our real trace-based experiments. The ANL Intrepid 2009
trace has a makespan of 8 months and contains a total number of 68,936 jobs.

4.3 Performance Metrics

We consider in this work various user and data-center objective functions,
expressed as traditional and compound metrics. Job slowdown (S) and job wait
time (W) are used as common proxies [3] for user objectives. We also measure
the total run time of all the jobs (RJ) and the total run time of all rented
VM instances (RV). Because VMs are charged by the hour, the run times are
rounded up to the next hour if they are not integer hours; thus, RV also denotes
the charged cost. The utilization of the scheduler is defined as the ratio between
RJ and RV , and indicates the efficiency of the policies. Resource utilization is
an important metric for both data center administrators and users. For users,
it means cost efficiency when using the virtual resources; for system operators,
more efficient policies and thus higher market competitiveness.

Although a lower slowdown is to be desired, it may be the result of (much)
higher cost, for example when the provisioning policy is STU (StartUp in Sect. 3.3).
To balance these considerations, we use an extension of an utility function, which
is defined elsewhere [15,16]:

U = κ ·
(

RJ

RV

)α

·
(

1
S

)β

For this metric, κ is a scaling factor for the total score, which we set to 100 in our
experiments. The metric parameters α and β are used to express different utility
functions: α is used to emphasizes the efficiency of resource usage and β is used
to stress the urgency of the jobs. For example, to finish jobs as soon as possible,
the utility function is set such that β ≤ α. In this paper, similarly to previous
work we set α = β = 1 to balance system efficiency and user experience.

5 Experimental Results

In this section, we report our experimental results. First, we show the results of
using portfolio scheduling for synthetic workloads (Sect. 5.1). Then, we show the

A Periodic Portfolio Scheduler for Scientific Computing in the Data Center 167

Fig. 5. Job slowdown for different synthetic workloads.

results for a real workload trace (Sect. 5.2). Finally, we analyze the operation of
our portfolio scheduler during the experiments (Sect. 5.3). Overall, we find that
portfolio scheduling is useful for data centers.

5.1 Results of Synthetic Workloads

We perform this set of experiments to evaluate our portfolio schedule for the five
workload arrival patterns described in Sect. 4.2.

We first find that the combined policy US (STU+SJF) delivers the lowest
average slowdown, but also that PORTFOLIO delivers consistently better results
than the other policies. Supporting this finding, Fig. 5 depicts the average job
slowdown for all the policy combinations, for the five synthetic workloads. In
general, and consistently with previous studies of slowdown and also job wait
time [30], provisioning policies have relatively lower slowdown when combined
with the SJF allocation policy, rather than with FCFS. The performance under
Steady, Increment, and Periodic workloads is consistent for all the policy combi-
nations. More pronounced variation appears for Decline and, especially, Bursty
workloads. Our portfolio scheduler (PO in Fig. 5) performs consistently well in
all the cases—PORTFOLIO is the second-best in the first four workloads and
very close to the second best in the Bursty workload.

We find that the results for job wait time are much more varied than for
job slowdown; as depicted by Fig. 6, PORTFOLIO behaves relatively slightly
worse in the ranking of policies than for the job slowdown. For many combined
policies, the wait time for Decline and Bursty workloads is larger by a factor
of about two than for the other workloads. Bursty workloads introduce very
challenging scheduling conditions, in which too many jobs overload the system
and wait time accumulates. Decline workloads have a quick arrival of jobs in the
beginning, similarly to a Bursty workload. During the rapidly varying conditions
of Bursty and Periodic workloads, PORTFOLIO is relatively weaker than several
other policies, but still delivers relatively good job wait time.

We now investigate the resource utilization, and depict the results in Fig. 7;
we also depict the charged cost in Fig. 8. From these figures, we find that ODW,

168 K. Deng et al.

Fig. 6. Job wait time for different synthetic workloads.

Fig. 7. Utilization for different synthetic workloads.

Fig. 8. Charged cost for different synthetic workloads.

ODX, and our PORTFOLIO achieve the highest utilization and the lowest
charged cost. As observed in various previous studies [15], the StartUp pol-
icy has the lowest utilizations, from 20 % to 30 %–in line to traditional pro-
visioning policies that only look at peak workloads. As in previous studies of

A Periodic Portfolio Scheduler for Scientific Computing in the Data Center 169

Fig. 9. Value of the utility function for different synthetic workloads.

utilization [31], ODS, the commonly used policy in current data centers, achieves
only a moderate utilization of 65 % to 80 %.

Our portfolio scheduler combines consistently low job slowdown and wait
time, with low cost (through high utilization). Thus, our portfolio scheduler
yields a gain in utility, as depicted in Fig. 9. PORTFOLIO is better than its
alternatives for all but the Bursty workload, where the SF (ODS+SJF) policy
performs better. For the Bursty workload, jobs are submitted every 5 s, quickly
saturating the system. Thus, it is better to provision resources as soon as possible
to avoid unnecessary waiting. As our portfolio scheduler does not predict the
future workload, it cannot adapt as quickly to sudden workload changes as the
SF policy. However, our portfolio scheduler indeed selects the SF policy most of
the time during Bursty workloads, as shown in Sect. 5.3.

To conclude the experiments using synthetic workloads, we have
shown in this section evidence that, for a variety of workload pat-
terns, our portfolio scheduler can automatically select the scheduling
policy such that it meets the user and the data center’s objective
functions at least similarly to, but sometimes even better than, the
other scheduling policies investigated here.

5.2 Results of Real Workload Traces

We now turn our attention to the real workload trace collected from ANL Intre-
pid. We first study the job slowdown and wait time for the real workload trace,
and depict the results in Fig. 10. StartUp is the best policy and has a slowdown
nearly 1–the jobs do not have to wait for execution. PORTFOLIO is among a
group of second-best policies, with a slowdown of around 1.5, but has the lowest
standard deviation in the group. This favorable behavior of PORTFOLIO is not
repeated for the job wait time metric. We attribute this to the selection criterion
used in this work, which is based on slowdown.

We further study the charged cost, utilization, and achieved utility for the
various policies, when running the ANL Intrepid trace; the results are depicted in

170 K. Deng et al.

Fig. 10. Job slowdown and wait time for the ANL Intrepid Trace.

Fig. 11. Charged cost, utilization, and utility for the ANL Intrepid Trace.

Fig. 11. The charged cost of StartUp (the earlier best-performer) is about 3 times
higher than the competitive policies such as ODW, ODX, and PORTFOLIO; we
attribute this to the workload bursts that ANL and many other production
systems exhibit [2]. PORTFOLIO achieves a good combination of utilization
and slowdown, leading to overall-best achieved utility.

To conclude the experiments using real workload traces, we have
shown in this section evidence that, for the compound metric that
characterizes both user and data center objectives, our portfolio sched-
uler can automatically select the scheduling policy achieving better
performance than its constituent scheduling policies.

5.3 Analysis of Portfolio Scheduler Operation

To explain the performance obtained in the previous experiments, we analyze
the policy selection behavior of our portfolio scheduler. Figure 12 breaks-down
the presence of selected policies over entire experiments as relative size (left side)
and as absolute counts (right side). Two main conclusions can be made from the

A Periodic Portfolio Scheduler for Scientific Computing in the Data Center 171

Fig. 12. Ratio and number of policy changes made by the portfolio scheduler.

Fig. 13. Cumulative policy changes by the portfolio scheduler, normalized, over time.

figure: (1) although the portfolio scheduler does choose one policy often, several
other policies account for a significant fraction of the selections; (2) no single
policy is dominant for all the workloads.

We also observe the cumulative number of policy changes over time, and
depict this in normalized form in Fig. 13. The policy change patterns match
very well with the job arrival patterns, indicating that our portfolio scheduler is
adaptive and explaining its good performance.

6 Related Work

In this section we survey a large body of related work, related to the concept of
computational portfolio design [8], to the modern portfolio theory in finance [32],
and to general scheduling in data centers and IaaS clouds. In contrast to these
related studies, ours is the first to apply portfolio scheduling to data centers and
scientific workloads. Our adaptations of the seminal idea of Huberman et al. [8]
and Markowitz [32] to data centers are non-trivial: designing a portfolio around
scheduling policies typical to the data center, selecting of utility functions related
to both users and data center operators, and designing an operational process
that includes simulation-based scheduling.

Closest to our work, Huberman et al. [8] designs a portfolio of search instru-
ments for hard computational problems. This seminal work has led to the cre-
ation of a broad field in satisfiability and algorithm portfolio design [33]. Since
then, extensive work has focused on improving the selection by and use of heuris-
tics in the portfolio. Streeter et al. [34] consider the duration of heuristics when

172 K. Deng et al.

selected one of them, in the context of dynamic allocation of CPU time. Bougeret
et al. [35] and Goldman et al. [36] study the concurrent execution of differ-
ent heuristics on parallel resources. Besides scheduling of constituent heuris-
tics, Streeter and Smith [37] simultaneously address predicting the runtime of
heuristics. Gagliolo et al. [38,39] study the allocation of CPU time based on
performance models of constituent algorithms, in the broader context of bandit
problems. Our work differs significantly from this body of previous work: previ-
ous use of portfolio scheduling tries to find the fastest heuristic for a given set of
problem instances, whereas we seek through our scheduler to find the policy that
maximizes the performance objectives given by users and system administrators;
the heuristics in previous portfolios generate the same result, whereas those in
our portfolio have different solution properties; and the aforementioned work
solves a given set of problem instances, whereas our work addresses scheduling
of many kinds of unknown and continuous workload patterns.

The portfolio creation and reflection steps, as defined in our work, are impor-
tant mechanisms in finance. Markowitz [32] introduced a seminal algorithm and
set of assumptions for the creation of a portfolio, later refined by Merton [40]. We
share with financial portfolios the costs for adding new policies, the risk that the
added policy would not perform, the transition costs [41] in changing the portfo-
lio to adapt to expected future conditions in the market or scheduling problem,
and the reflection step which is typical in hedging derivatives [42]. Important
differences between our work and financial portfolios are that the policies can be
infinitely and freely shared among data centers, whereas financial portfolio ele-
ments are owned by a single entity at any given time; and that the return of our
portfolio is the result of a single, selected policy, whereas in financial portfolios
it is the combined return of all the individual assets in the portfolio.

The study of policies for data centers and IaaS clouds has already resulted
in a large body of related work. Closest to our work, our own [7,15,16] and
related [43–45] studies of multiple scheduling policies have emphasized the inabil-
ity of any single policy to perform well under a wide yet realistic variety of
scientific workloads. The concept of portfolio scheduling may also follow from
historical simulation of policies. Historical simulation to adopt the scheduling
policy has been done via genetic algorithms in cloud [46] and grid [47] envi-
ronments. Workloads that have changing properties over time perform better
with an adaptive provisioning policy [48], especially one which predicts well the
future [49].

7 Conclusion and Future Work

Because data centers around face a growing user base, and an increasingly set of
user and data center objectives, the selection of efficient scheduling algorithms
is ever costlier and more difficult. Addressing this challenge, we have focused
in this work on portfolio scheduling, that is, the dynamic selection and use of
a scheduling policy, depending on the current system and workload conditions,
from a portfolio of multiple policies.

A Periodic Portfolio Scheduler for Scientific Computing in the Data Center 173

We have designed in this work a periodic portfolio scheduler for the entire
data center. Our portfolio scheduler combines provisioning and allocation poli-
cies, and periodically selects from them a pair that optimizes a user-defined or
data center-wide utility function. The selection process is simulation-based, that
is, our portfolio scheduler simulates at each decision point each of the policies
included in its portfolio. Our approach contrasts with previous work on schedul-
ing for scientific workloads, where individual scheduling policies are designed for
specific workload patterns and application types but may perform poorly for
the dynamic workloads typical of scientific computing. Intuitively, our portfolio
scheduling approach holds the promise of exploiting the collective strengths of
its constituent policies, and thus alleviate any of their individual weaknesses.

We have evaluated the behavior of our portfolio scheduler through simula-
tions, based on real and synthetic workload traces. By comparing the statisti-
cally meaningful results obtained for our scheduler and for each of its individual
policies, independently, we have shown evidence that our portfolio scheduler
can perform well in the data center, and better than the alternatives we have
considered. We have also shown evidence that our portfolio scheduler can auto-
matically select the scheduling policy to match various user and data center
objectives that are common in scientific computing, such as low job slowdown,
high resource utilization, and a runtime-efficiency-based utility function. Thus,
portfolio scheduling can alleviate the need for human expertise in selecting
scheduling policies, and become an important component in the administration
of modern data centers.

Extending this work, we have explored portfolio scheduling for long-term exe-
cution of scientific workloads, and conducted a comprehensive sensitivity analysis
that covers all the configuration parameters of our portfolio scheduler, such as
the interval between selections and the maximal simulation time [50]. For the
future, we will design algorithms for performance reflection and for triggering
portfolio selection dynamically. Moreover, we plan to adapt portfolio scheduling
for other types of scientific applications such as scientific workflows.

Acknowledgments. Supported by the STW/NWO Veni grant 11881, the Dutch
national research program COMMIT, the Commission of the European Union (Project
No. 320013, FP7 REGIONS Programme, PEDCA), the National Natural Science Foun-
dation of China (Grant No. 60903042 and 61272483), and the R&D Special Fund for
Public Welfare Industry (Meteorology) GYHY201306003.

References

1. Lublin, U., Feitelson, D.G.: The workload on parallel supercomputers: modeling
the characteristics of rigid jobs. J. Parallel Distrib. Comput. 63(11), 1105–1122
(2003)

2. Iosup, A., Dumitrescu, C., Epema, D.H.J., Li, H., Wolters, L.: How are real grids
used? the analysis of four grid traces and its implications. In: GRID (2006)

3. Feitelson, D.G., Rudolph, L., Schwiegelshohn, U.: Parallel job scheduling — a
status report. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP
2004. LNCS, vol. 3277, pp. 1–16. Springer, Heidelberg (2005)

174 K. Deng et al.

4. Klusáček, D., Rudová, H.: Performance and fairness for users in parallel job
scheduling. In: Cirne, W., Desai, N., Frachtenberg, E., Schwiegelshohn, U. (eds.)
JSSPP 2012. LNCS, vol. 7698, pp. 235–252. Springer, Heidelberg (2013)

5. Sabin, G., Lang, M., Sadayappan, P.: Moldable parallel job scheduling using job
efficiency: an iterative approach. In: Frachtenberg, E., Schwiegelshohn, U. (eds.)
JSSPP 2006. LNCS, vol. 4376, pp. 94–114. Springer, Heidelberg (2007)

6. Bucur, A.I.D., Epema, D.H.J.: Scheduling policies for processor coallocation in
multicluster systems. IEEE Trans. Parallel Distrib. Syst. 18(7), 958–972 (2007)

7. Iosup, A., Sonmez, O.O., Anoep, S., Epema, D.H.J.: The performance of bags-of-
tasks in large-scale distributed systems. In: HPDC, pp. 97–108 (2008)

8. Huberman, B.A., Lukose, R.M., Hogg, T.: An economics approach to hard com-
putational problems. Science 27(5296), 51–53 (1997)

9. Greenberg, A.G., Hamilton, J.R., Maltz, D.A., Patel, P.: The cost of a cloud:
research problems in data center networks. Comp. Comm. Rev. 39(1), 68–73 (2009)

10. Popa, L., Kumar, G., Chowdhury, M., Krishnamurthy, A., Ratnasamy, S., Stoica,
I.: Faircloud: sharing the network in cloud computing. In: SIGCOMM (2012)

11. Greenberg, A.G., Hamilton, J.R., Jain, N., Kandula, S., Kim, C., Lahiri, P., Maltz,
D.A., Patel, P., Sengupta, S.: Vl2: a scalable and flexible data center network.
Commun. ACM 54(3), 95–104 (2011)

12. Farrington, N., Porter, G., Sun, P.C., Forencich, A., Ford, J., Fainman, Y., Papen,
G., Vahdat, A.: A demonstration of ultra-low-latency data center optical circuit
switching. In: SIGCOMM, pp. 95–96 (2012)

13. Gordon, A., Amit, N., Har’El, N., Ben-Yehuda, M., Landau, A., Schuster, A.,
Tsafrir, D.: ELI: bare-metal performance for I/O virtualization. In: ASPLOS (2012)

14. Ben-Yehuda, M., Day, M.D., Dubitzky, Z., Factor, M., Har’El, N., Gordon, A.,
Liguori, A., Wasserman, O., Yassour, B.A.: The turtles project: design and imple-
mentation of nested virtualization. In: OSDI, pp. 423–436 (2010)

15. Villegas, D., Antoniou, A., Sadjadi, S.M., Iosup, A.: An analysis of provisioning and
allocation policies for infrastructure-as-a-service clouds. In: CCGRID, pp. 612–619
(2012)

16. Agmon Ben-Yehuda, O., Schuster, A., Sharov, A., Silberstein, M., Iosup, A.:
Expert: pareto-efficient task replication on grids and a cloud. In: IPDPS (2012)

17. Iosup, A., Epema, D.H.J.: Grid computing workloads. IEEE Internet Comput.
15(2), 19–26 (2011)

18. Iosup, A., Li, H., Jan, M., Anoep, S., Dumitrescu, C., Wolters, L., Epema, D.H.J.:
The grid workloads archive. Future Gener. Comp. Syst. 24(7), 672–686 (2008)

19. Feitelson, D.: Parallel workloads archive, http://www.cs.huji.ac.il/labs/parallel/
workload/

20. Iosup, A., Sonmez, O.O., Epema, D.H.J.: DGSim: comparing grid resource man-
agement architectures through trace-based simulation. In: Luque, E., Margalef, T.,
Beńıtez, D. (eds.) Euro-Par 2008. LNCS, vol. 5168, pp. 13–25. Springer, Heidelberg
(2008)

21. Petrini, F., Fossum, G., Fernández, J., Varbanescu, A.L., Kistler, M., Perrone, M.:
Multicore surprises: lessons learned from optimizing sweep3d on the cell broadband
engine. In: IPDPS, pp. 1–10 (2007)

22. Sonmez, O.O., Mohamed, H.H., Epema, D.H.J.: On the benefit of processor coal-
location in multicluster grid systems. IEEE Trans. Parallel Distrib. Syst. 21(6),
778–789 (2010)

23. Shen, S., Deng, K., Iosup, A., Epema, D.: Scheduling jobs in the cloud using on-
demand and reserved instances. In: Wolf, F., Mohr, B., an Mey, D. (eds.) Euro-Par
2013. LNCS, vol. 8097, pp. 242–254. Springer, Heidelberg (2013)

http://www.cs.huji.ac.il/labs/parallel/workload/
http://www.cs.huji.ac.il/labs/parallel/workload/

A Periodic Portfolio Scheduler for Scientific Computing in the Data Center 175

24. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T.L., Ho, A., Neugebauer,
R., Pratt, I., Warfield, A.: Xen and the art of virtualization. In: SOSP (2003)

25. Menon, A., Santos, J.R., Turner, Y., Janakiraman, G.J., Zwaenepoel, W.: Diag-
nosing performance overheads in the Xen virtual machine environment. In: VEE,
pp. 13–23 (2005)

26. Youseff, L., Seymour, K., You, H., Dongarra, J., Wolski, R.: The impact of paravir-
tualized memory hierarchy on linear algebra computational kernels and software.
In: HPDC, pp. 141–152. ACM (2008)

27. Donassolo, B., Casanova, H., Legrand, A., Velho, P.: Fast and scalable simulation
of volunteer computing systems using simgrid. In: HPDC, pp. 605–612 (2010)

28. Jacobson, V.: Congestion avoidance and control. In: SIGCOMM, pp. 314–329
(1988)

29. Iosup, A., Ostermann, S., Yigitbasi, N., Prodan, R., Fahringer, T., Epema, D.H.J.:
Performance analysis of cloud computing services for many-tasks scientific comput-
ing. IEEE Trans. Parallel Distrib. Syst. 22(6), 931–945 (2011)

30. Feitelson, D.G.: Experimental analysis of the root causes of performance evaluation
results: a backfilling case study. IEEE Trans. Parallel Distrib. Syst. 16(2), 175–182
(2005)

31. Jones, J.P., Nitzberg, B.: Scheduling for parallel supercomputing: a historical per-
spective of achievable utilization. In: Feitelson, D.G., Rudolph, L. (eds.) JSSPP
1999. LNCS, vol. 1659, pp. 1–16. Springer, Heidelberg (1999)

32. Markowitz, H.: Portfolio selection. J. Finance 7(1), 77–91 (1952)
33. Gomes, C.P., Selman, B.: Algorithm portfolios. Artif. Intell. 126(1–2), 43–62 (2001)
34. Streeter, M.J., Golovin, D., Smith, S.F.: Combining multiple heuristics online. In:

AAAI, pp. 1197–1203 (2007)
35. Bougeret, M., Dutot, P.F., Goldman, A., Ngoko, Y., Trystram, D.: Combining

multiple heuristics on discrete resources. In: IPDPS, pp. 1–8 (2009)
36. Goldman, A., Ngoko, Y., Trystram, D.: Malleable resource sharing algorithms for

cooperative resolution of problems. In: IEEE Congress on Evolutionary Computa-
tion, pp. 1–8 (2012)

37. Streeter, M.J., Smith, S.F.: New techniques for algorithm portfolio design. CoRR
abs/1206.3286 (2012)

38. Gagliolo, M., Schmidhuber, J.: Learning dynamic algorithm portfolios. Ann. Math.
Artif. Intell. 47(3–4), 295–328 (2006)

39. Gagliolo, M., Schmidhuber, J.: Algorithm portfolio selection as a bandit problem
with unbounded losses. Ann. Math. Artif. Intell. 61(2), 49–86 (2011)

40. Merton, R.C.: Optimum consumption and portfolio rules in a continuous-time
model. MIT, Cambridge (1970)

41. Magill, M.J., Constantinides, G.M.: Portfolio selection with transaction costs. J.
Econ. Theory 13(2), 245–263 (1976)

42. Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Polit.
Econ. 18(3), 637–654 (1973)

43. Marshall, P., Keahey, K., Freeman, T.: Elastic site: using clouds to elastically
extend site resources. In: CCGRID, pp. 43–52 (2010)

44. den Bossche, R.V., Vanmechelen, K., Broeckhove, J.: Cost-optimal scheduling
in hybrid iaas clouds for deadline constrained workloads. In: IEEE CLOUD,
pp. 228–235 (2010)

45. Palankar, M.R., Iamnitchi, A., Ripeanu, M., Garfinkel, S.: Amazon s3 for science
grids: a viable solution? In: Proceedings of the 2008 International Workshop on
Data-Aware Distributed Computing, pp. 55–64. ACM (2008)

176 K. Deng et al.

46. Hu, J., Gu, J., Sun, G., Zhao, T.: A scheduling strategy on load balancing of virtual
machine resources in cloud computing environment. In: PAAP, pp. 89–96 (2010)

47. Gao, Y., Rong, H., Huang, J.Z.: Adaptive grid job scheduling with genetic algo-
rithms. Future Gener. Comp. Syst. 21(1), 151–161 (2005)

48. Calheiros, R.N., Ranjan, R., Buyya, R.: Virtual machine provisioning based on
analytical performance and qos in cloud computing environments. In: ICPP,
pp. 295–304 (2011)

49. Ali-Eldin, A., Kihl, M., Tordsson, J., Elmroth, E.: Efficient provisioning of bursty
scientific workloads on the cloud using adaptive elasticity control. In: ScienceCloud,
pp. 31–40 (2012)

50. Deng, K., Song, J., Ren, K., Iosup, A.: Exploring portfolio scheduling for long-term
execution of scientific workloads in iaas clouds. In: SC (2013)

Variations of Conservative Backfilling
to Improve Fairness

Avinab Rajbhandary1, David P. Bunde1(B), and Vitus J. Leung2

1 Knox College, Galesburg, IL, USA
{arajbhan,dbunde}@knox.edu

2 Sandia National Laboratories, Albuquerque, NM, USA
vjleung@sandia.gov

Abstract. We apply recent variations of Conservative backfilling in an
effort to improve scheduler fairness. These variations modify the com-
pression operation while preserving the key property that jobs never
move later in the profile. We assess the variations using two measures
of job-level fairness. Each of the variations turns out to be better than
Conservative according to one of the metrics.

1 Introduction

This paper looks at scheduling to achieve fairness. From the very beginning of job
scheduling research, some notions of fairness have been sought, such as measures
to prevent job starvation. Many times, however, fairness has been a secondary
consideration behind various performance-oriented metrics such as utilization
or response time. Concern for these metrics has led to a variety of different
backfilling strategies. We turn this around and look at the use of backfilling to
improve measures of fairness.

Our algorithms are variations of the well-known Conservative scheduling
algorithm [10]. The specific variations, PC and DC, were developed to exploit
some apparent flexibility in the compression operations that Conservative per-
forms when a job finishes before its estimated completion time [8]. These vari-
ations perform compression by rescheduling jobs according to a user-specified
priority function. By supplying first-come first-served (FCFS) as the priority
function, we create two scheduling algorithms that attempt to use backfilling to
favor early-arriving jobs, matching an intuitive notion of FCFS as a fair schedul-
ing strategy.

To evaluate these algorithms, we use two previously-formulated notions of
job-level fairness [15]. The first of these is that it is unfair for jobs to run out of
arrival order, directly incorporating the idea of FCFS. The other notion is that
each job deserves an equal share of the system resources. Each of these notions
has been formalized, the first in metrics that compare job starting times with
their “fair starting time” and the second as metrics that compare the resources
jobs receive relative to their “fair share”.

N. Desai and W. Cirne (Eds.): JSSPP 2013, LNCS 8429, pp. 177–191, 2014.
DOI: 10.1007/978-3-662-43779-7 10, c© Springer-Verlag Berlin Heidelberg 2014

178 A. Rajbhandary et al.

We evaluate the algorithms using trace-based simulations run using traces
from the Parallel Workloads Archive [2]. For each job, we take its arrival time,
number of processors used, actual processing time, and estimated processing
time. The simulated runs are evaluated using the fairness metrics. We find that
the two fairness metrics are significantly different and that each of them is favored
by one of the scheduling algorithms.

The rest of this paper is organized as follows. We describe the algorithms
and fairness metrics in Sects. 2 and 3. Then we describe our simulation results
in Sect. 4. We discuss related work in Sect. 5 and conclude in Sect. 6.

2 Algorithms

In this paper, we examine two new scheduling algorithms, both of which are
based on Conservative Backfilling [10]. Conservative maintains a profile giving
a tentative schedule for all queued jobs. Each job’s starting time in this profile
serves as a reservation, a time by which the job is guaranteed to start. Newly
arriving jobs are placed into this profile at the earliest possible time that does
not interfere with any other job. When a job finishes early (i.e. in less than
its estimated processing time), this profile must be adjusted. If the jobs are
simply rescheduled from scratch in the order they arrived, the resulting profile
may cause a job to violate its reservation; the reservation may have required
backfilling which is no longer possible in the new profile. Instead, Conservative
initiates compression, in which each queued job is removed from the profile and
rescheduled to the earliest possible time that does not interfere with any other
job (including those that arrived after it). Since each job can fit back into its
current spot, no job is ever moved to a later time, meaning that Conservative
can always give users an upper bound on the starting time of their job.

The order in which jobs are rescheduled during compression is not entirely
specified. One effective choice is to use the order that jobs appear in the old
profile. This order is attractive because it allows jobs to be rescheduled as they
are encountered in a traversal of the profile. Using the as-currently-scheduled
order also allows the new profile to be built from scratch since later jobs can-
not interfere with a job’s ability to reschedule to an earlier time. We use this
compression order for the implementation of Conservative that we use as a base-
line. The simulator whose results are reported in the original paper to use the
name “Conservative” [10] also used the as-currently-scheduled order for com-
pression [3]. Intuition suggests that this compression order tends to preserve
the order of jobs in the profile. Since the profile is built as jobs arrive, the ini-
tial order has a first-come first-served (FCFS) tendency, making Conservative a
logical baseline schedule with respect to fairness.

The idea of performing compression by rescheduling jobs in the order that
they originally arrived to enhance fairness was actually suggested in the original
paper [10]. Using this order would mean that the rescheduling operations must
place jobs into the full profile rather than building a new one from scratch. It
turns out that rescheduling in this order can also leave unnecessary gaps in the

Variations of Conservative Backfilling to Improve Fairness 179

timetime time
(a) (b)

1

2

4

3

(c)

1 1
4

4
33

Fig. 1. Instance where compressing in order of job arrival leads to a gap in the profile.
Jobs arrive in numerical order. (a) Original profile. (b) Profile after 2 finishes early and
3 is rescheduled. (c) Ending profile after 4 is rescheduled, leaving a gap.

schedule. Figure 1 shows an instance where this occurs. Part (a) shows the profile
of 4 jobs which arrived in ascending numeric order; job 4 backfilled to reach the
position shown. The displayed width of each job is its estimated running time.
When job 2 finishes early, job 3 moves slightly earlier (shown in (b)) and then
job 4 moves earlier (shown in (c)), leaving a large gap. Job 3 could move earlier,
but it has already been rescheduled.

Lindsay et al. [8] addressed the problem of unnecessary gaps based on an
example similar to Fig. 1, but with a different compression order. They proposed
two variations of Conservative that are parameterized by a priority function spec-
ifying in which compression occurs. Prioritized Compression (PC) attempts to
reschedule the jobs in the order specified by this priority function rather than
the order they occur in the profile. To resolve the issue of unnecessary gaps, it
returns to the highest-priority job whenever a job is successfully rescheduled,
potentially rescheduling a job multiple times during a single compression oper-
ation. The second variation, conservative with Delayed prioritized Compression
(DC), further modifies compression by only rescheduling jobs that can start
immediately or if new lower-priority jobs arrive. The goal in delaying reschedul-
ing operations is to allow holes opened by early job completions to grow as much
as possible before backfilling. There are some priority functions that are aided
by this growth. Both PC and DC preserve the property of Conservative that
jobs never start later than the guaranteed start time given when they arrive.

In an effort to improve fairness, we evaluate PC and DC using the FCFS
priority function, which orders jobs based on their arrival time. As noted above,
Conservative already has a FCFS tendency since it prioritizes jobs in the order
of the profile, which is constructed as jobs arrive. Reordering the compression
operations by explicitly using the FCFS priority function potentially allows the
scheduler to move the profile toward FCFS order even when jobs are initially
placed out of this order.

In addition to these algorithms, we also compare our results against EASY [7],
a more aggressive backfilling algorithm which will backfill a job unless doing so
delays the current first job in the queue. This algorithm is used in practice to
promote high system utilization and the restriction that the first job in the queue
cannot be harmed by backfilling is sufficient to guarantee that no job starves

180 A. Rajbhandary et al.

forever [10], but it has been shown to discriminate against jobs requiring many
processors since these jobs have difficulty backfilling (e.g. [18]). Thus, EASY
represents a choice that could be used on systems not overly concerned with
fairness.

3 Definitions of Fairness

To quantify fairness, we look at two types of metrics, following a classification
by Sabin and Sadayappan [15]. The first of these is based on the notion that it
is unfair for jobs to “cut” in line and run ahead of jobs that arrived earlier. The
second is based on the notion that each job in the queue deserves an equal share
of the system resources.

3.1 Fair Start Time

When people are waiting, cutting in line (aka “queue jumping”) is viewed as a
violation of social justice, with the seriousness dependent on how long one has
waited for the resource [9]. If the goal is to avoid cutting, then the gold standard
for fairness would be FCFS without backfilling, since it never starts a job before
all earlier-arriving jobs. There are two issues with this characterization. The
first is performance-related; scheduling without backfilling will reduce system
utilization and make all users unhappy. The second is that it assumes that the
jobs suffer envy rather than just wanting to minimize their own start time; one
job receiving prompt service because it can jump ahead in the queue is not
unfair unless other jobs are disadvantaged. Sabin and Sadayappan [15] use the
analogy of service in a restaurant to explain this: Restaurant customers typically
expect to be served in FCFS order, but do not normally object if someone who
just ordered a drink receives it immediately because such an order is quick and
does not cause a delay in anyone else’s service. In parallel job scheduling, the
analogous phenomenon is benign backfilling, where jobs arriving later can backfill
without delaying the start time of other jobs. Thus, Conservative would be fair
under this definition if job lengths were accurately estimated. (The issue of
accurate estimates is important because an apparently benign backfill can delay
other jobs if their position in the profile is based on an inaccurate estimate.)

Based on the idea that the key to unfairness is delaying a job past its “right-
ful” start time, Sabin and Sadayappan [15] defined a job’s strict Fair Start Time
(strict FST) as the starting time a job would get if no jobs arrived after it.

One issue with strict FST is that inaccurate estimates can create sets of
strict FSTs that are not all together feasible. For example, consider the profile
illustrated in Fig. 2. Figure 2(a) shows the Conservative backfilling schedule with
two jobs. The shaded portion of job J1 shows the actual duration of this job,
whose length is significantly overestimated. Since job J2 can start as soon as
job J1 completes, its fair start time is at the end of the shaded region. Now job
J3 arrives and the profile becomes as shown in Fig. 2(b). Job J3 has backfilled
since the reservation for job J2 is based on the estimated processing time of job

Variations of Conservative Backfilling to Improve Fairness 181

J1

J2

�
1

�
2

(a)

J1

J2

�
1,3

�
2

J3

(b)

Fig. 2. Instance where strict fair start times are infeasible. Anticipated schedule
(a) before and (b) after arrival of job J3. The shaded region and the block of job
J1 shows its actual length and estimated time respectively. Labels below the figures
indicate the strict fair start time of each job.

J1 rather than its actual processing time. Starting each job at the given fair
start times would require running jobs J2 and J3 simultaneously, however, and
is therefore infeasible.

The recognition that backfilling decisions can make the strict FSTs infeasible
justifies a variation. Sabin and Sadayappan [15] define the relaxed Fair Start
Time (relaxed FST) of a job as its starting time if no jobs arrive after it, but
it is not allowed to backfill. In particular, it must start no earlier than the last
of the other jobs in the queue when it arrives. This yields generally larger FST
values and avoids sets of infeasible fair start times.

To calculate the amount by which a specific job was unfairly treated, we
consider the difference between one of the FST values and its actual starting
time. To prevent algorithms from benefiting by preferentially treating jobs, we
take the maximum of this difference and zero. Averaging this over all jobs gives
either the average strict unfairness or the average relaxed unfairness, depending
on which FST value is used. These metrics, proposed by Sabin and Sadayappan
[15], are fairness analogs of average waiting time. Other metrics based on FST
are discussed in Sect. 5.

As an aside, we note that the FST values require considerable effort to com-
pute. To do so, our simulator copies the current state whenever a job arrives and
runs that copy until the job starts, either normally for strict FST or after the
last other queued job starts for relaxed FST. This is inconvenient for our experi-
ments, but we note that the calculation is only required for reporting the fairness
metrics. As none of the algorithms use the metric values in their operation, this
step would not be required for a production scheduler.

We also noted that rarely jobs have higher strict FSTs than relaxed FSTs
despite the general tendency for the relaxed FSTs to be larger. This can occur
when the last job (whose strict FST is being calculated) affects compression
decisions in a way that eventually gives it a later starting time; this last job
can move ahead of other jobs in one compression operation and then change

182 A. Rajbhandary et al.

the outcome of later compression operations. An instance where this occurs is
available in [12].

3.2 Resource Equality

The other measure of fairness that we consider is based on the idea of resource
equality, a notion developed for serial jobs by Raz et al. [13] and extended to
parallel jobs by Sabin and Sadayappan [15]. The basic idea is that each active
job, i.e. one that has arrived but not yet been completed, deserves an equal share
of system resources. A job’s perception of unfairness is then the amount less than
this that it receives.

There are two subtleties in dividing system resources equally. First of all,
no job’s fair share of the processors is allowed to exceed the number that it
wants to use. For example, in a 30 processor system, if a 10-processor job and
a 20-processor job are active, the smaller job is not considered to be unfairly
treated for only getting 10 processors rather than the 30/2 = 15 that would be
an equal share. Secondly, fair shares are based on the number of processors in
use rather than the total system size. For example, if there are 5 active jobs on
a 100-processor system but only 90 processors are being used, each job’s fair
share is 90/5 = 18 rather than 100/5 = 20. This prevents fragmentation from
being the cause of unfairness and helps make the scheduler goals of fairness and
utilization orthogonal.

We use two ways to calculate the fair share of job Ji. Both are defined in
terms of its arrival time ai, completion time ci, and number of processors pi.
The first one is its unweighted fair share:

∫ ci

ai

min
{

util(t)
active(t)

, pi

}
dt (1)

where util(t) and active(t) are the numbers of processors in use at time t and
the number of active jobs at time t respectively. For the weighted fair share, we
replace active(t) by the proportion of all requested processors that are requested
by job Ji:

∫ ci

ai

min

{
pi∑

Jj is active pj
· util(t), pi

}
dt (2)

This modification increases the fair share allocated to larger jobs, with the idea
that they should get a larger portion of the system.

From either of the measures of a job’s fair share given in Eqs. 1 and 2, we
can calculate the corresponding measure of fairness by subtracting the amount of
resources it actually received, which is the product of its processing time and the
number of processors used. For a job’s unweighted unfairness, we subtract the
resources received from Eq. 1. Similarly, for its weighted unfairness, we subtract
from Eq. 2. We report the average of these values over all jobs.

We note that the fairness metrics based on fair share are easier to compute
than those based on FST. We compute them as a post-processing step, though

Variations of Conservative Backfilling to Improve Fairness 183

it would be possible to keep a running total of each job’s fair share as it ran.
The only tricky part is that its rate of increase changes each time the system’s
utilization or set of active jobs changes. Thus, at each job arrival or completion,
we increase the fair share values to reflect the contribution since the last arrival
or completion event.

4 Results

We evaluated the algorithms with these fairness metrics using an event-based
simulator run with traces from the Parallel Workloads Archive [2]. Figure 3 lists
the traces used. We largely follow the lead of [8] in selecting traces except that
we add the ANL-Intrepid trace. We also removed DAS2-fs0 and HPC2N because
the fair start time calculations were taking inordinately long; this deserves closer
examination, but the culprit seems to be the queue length, which causes the
simulations from each job arrival to complete very slowly.

Even with these omissions, our study uses most of the traces with esti-
mated running times. The exceptions other than the above are LLNL-uBGL
(which showed almost no variation between the Conservative, PC, and DC algo-
rithms [8]), Sandia Ross (whose entry in the archive warns about its use because
the machine size was changed during the period recorded in the trace), and
RICC (excluded for time reasons). Jobs in the traces without user estimates are
given accurate estimates. (Simulations by Smith et al. [17] suggest that better
estimates reduce average waiting time for Conservative scheduling. The effect
of inaccurate estimates on EASY is the subject of many papers; Tsafrir and
Feitelson [20] summarize and attempt to settle the issue.)

The trace job counts given in Fig. 3 differ from the values given in the Paral-
lel Workloads Archive [2] because we ignored jobs that were partial executions

Name Full file name # jobs

ANL-Intrepid ANL-Intrepid-2009-1.swf 68,936
CTC-SP2 CTC-SP2-1996-2.1-cln.swf 77,222
DAS2-fs1 DAS2-fs1-2003-1.swf 39,348
DAS2-fs2 DAS2-fs2-2003-1.swf 65,380
DAS2-fs3 DAS2-fs3-2003-1.swf 66,099
DAS2-fs4 DAS2-fs4-2003-1.swf 32,952
KTH-SP2 KTH-SP2-1996-2.swf 28,489
LANL-CM5 LANL-CM5-1994-3.1-cln.swf 122,057
LLNL-Atlas LLNL-Atlas-2006-1.1-cln.swf 38,143
LLNL-Thunder LLNL-Thunder-2007-1.1-cln.swf 118,754
LPC-EGEE LPC-EGEE-2004-1.2-cln.swf 220,679
SDSC-BLUE SDSC-BLUE-2000-3.1-cln.swf 223,669
SDSC-DS SDSC-DS-2004-1.swf 85,006
SDSC-SP2 SDSC-SP2-1998-3.1-cln.swf 54,041

Fig. 3. Traces used in simulations

184 A. Rajbhandary et al.

(they were checkpointed and swapped out; status 2, 3, or 4) and jobs that were
cancelled before starting (status 5 and running time ≤0). We also ignored 8 jobs
in the SDSC-DS trace with running time −1 (unknown).

4.1 Fair Start Time: DC

The first thing that jumped out of our results was that DC does very badly for
FST-based fairness. Figure 4 shows the percent improvement of DC over Conser-
vative for average strict and relaxed unfairness. (Calculating percent improve-
ment as (Conservative - Other)/Conservative.) The values are nearly always
negative, meaning that DC performed substantially worse than Conservative.

The delays before compression operations seem to make DC particularly
prone to assigning jobs very low strict FSTs, as in Fig. 2. When this happens,
the algorithm is made to seem particularly unfair since the jobs cannot meet the
unrealistic fair start times. Consider the following set of jobs:

Job Arrival time # processors Processing time User estimate

J1 0 90 100 200
J2 1 45 100 200
J3 2 40 95 200
J4 3 90 100 200
J5 4 45 100 200

Shortly after all these jobs have arrived, the profile of both Conservative and DC
is as shown in Fig. 5. They also generate identical strict FSTs for the first four
jobs, as shown in the figure. (We use Conservative here for concreteness, but
Conservative, EASY, and PC all generate the same schedule and fair start times

LLNL−Thunder

D
C

’s
 %

 im
pr

ov
em

en
t o

ve
r

C
on

se
rv

at
iv

e
in

 a
ve

ra
ge

 F
ST

−
ba

se
d

un
fa

ir
ne

ss strict
relaxed

SDSC−DS
SDSC−SP2SDSC−BLUEANL−Intrepid DAS2−fs1

CTC−SP2 DAS2−fs2
DAS2−fs3

DAS2−fs4
KTH−SP2

LANL−CM5
LLNL−Atlas

−100

 0

−20

Trace

−40

−60

−80

 20

Fig. 4. Improvement in average strict and relaxed unfairness of DC over Conserva-
tive. Not shown is LPC-EGEE for which all algorithms except DC produce average
unfairness of 0; DC gives unfairness ∼0.102 for both (−∞ improvement).

Variations of Conservative Backfilling to Improve Fairness 185

J1

J2

J3

J4

J5

�
1

�
2,3

�
4

Fig. 5. Profile after all jobs arrive in instance showing DC’s potential for unfairness.
The shaded region and the block of each job show its actual length and estimated time
respectively. Labels below the figures indicate the strict fair start time of each job.

on this instance.) The FST of job J4 comes from starting jobs J2 and J3 imme-
diately after the (early) completion of job J1 and then starting J4 immediately
after J2 completes. With Conservative, the FST for job J5 is then determined
by when it can run after job J4. For DC, however, job J4 doesn’t compress when
job J1 finishes early and jobs J2 and J3 start. (Recall that DC only reschedules
jobs if they can start immediately or to prevent newly-arrived lower-priority jobs
from backfilling.) Thus, job J5 is able to backfill as soon as job J3 finishes; job
J4 cannot start at this time because job J2 is still running. The result is a delay
for J4, making DC significantly unfair.

Note that if job J5’s running time were accurately estimated (and the instance
is otherwise unchanged), both Conservative and DC would backfill it. In this
case, both would assign identical strict FSTs and they would register as equally
unfair. As previously noted, however, job lengths are typically overestimated.
This is where DC’s hesitation to compress comes in; it doesn’t move job J4

earlier when job J1 finishes early, allowing it to backfill job J5 even when its
length is overestimated. This tendency to backfill was a design goal of DC, but
it seems to be a liability according to the FST metrics even when the FCFS
priority function is used.

Note that the example described above only directly explains why DC is so
unfair when using the strict FST measure; the instance shown relies on backfilling
job J5. We have a larger example showing that DC can also assign low values to
relaxed FST.

4.2 Fair Start Time: PC

PC does much better according to the FST-based fairness measures. Figure 6
shows the percent improvement of PC over Conservative for the FST-based
measures. (EASY is also included for comparison.) On the strict measure, PC
does as well as Conservative on the DAS2-fs3 and LPC-EGEE traces, but beats
it on all the others (admittedly by only 0.16 % on LLNL-Atlas). On the relaxed

186 A. Rajbhandary et al.
%

 im
pr

ov
em

en
t o

ve
r

C
on

se
rv

at
iv

e

−342−128

ANL−Intrepid
CTC−SP2

DAS2−fs1 DAS2−fs4 LANL−CM5 LLNL−Thunder SDSC−DS
SDSC−BLUE SDSC−SP2LLNL−AtlasKTH−SP2

0.
2

0.
2

0.
2

Trace
DAS2−fs2

EASY strict
PC strict

EASY relaxed
PC relaxed

in
 a

ve
ra

ge
 F

ST
−

ba
se

d
un

fa
ir

ne
ss

 50

−100

 100

−50

 0

Fig. 6. Improvement in average strict and relaxed unfairness of EASY and PC over
Conservative. Not shown are LPC-EGEE (all algorithms except DC produce unfairness
of 0) and DAS2-fs3 for which PC gives no improvement and EASY produces “improve-
ments” of −3,010 % and −2,784 % for strict and relaxed unfairness respectively.

measure, the performance is mostly the same: matching Conservative on DAS2-
fs3 and LPC-EGEE, beating it by a small amount on LLNL-Atlas, and winning
handily on most of the others. The exception is LLNL-Thunder, where it loses
to Conservative by nearly 39 %. We are not sure of the cause of this poor per-
formance, but note that this trace gave PC and DC difficulty in previous work
[8] as well. LLNL-Thunder is also the trace in which the smallest fraction of
the jobs have user estimates supplied in the trace (32.47 %). Since our simulator
assigns accurate estimates to jobs without them, this means that only about a
third of the jobs in this trace finish early, greatly reducing the opportunities PC
has to use its special backfilling operation.

Although it is not targeted at fairness, Fig. 6 also reveals that EASY improves
upon Conservative for many of the traces. It is less consistent than PC, however,
and performs substantially worse on some of the traces. For strict fairness, PC
does at least as well on all but two of the traces, DAS2-fs1 and LLNL-Thunder,
and its performance on DAS2-fs1 is comparable (a 61.9 % improvement vs 63.2 %
for EASY). For relaxed, PC does at least as well as EASY on all but one of
the traces; the exception this time is LLNL-Atlas, on which it gives a 0.16 %
improvement vs 0.22 % for EASY.

4.3 Fair Share

While PC clearly outperforms the other algorithms for the FST-based fair-
ness metrics, the situation with fair share metrics is much less clear. Figure 7
shows the percent improvement over Conservative for the other algorithms on
the unweighted and weighted measures respectively.

For unweighted fairness, DC seems to be the best algorithm, beating Conser-
vative on all but three of the traces (DAS2-fs1, DAS2-fs3, and LLNL-Thunder)
and outperforming all the other algorithms on 11 of the 14 traces. For the
weighted measure, both PC and DC do fairly well, each defeating the other

Variations of Conservative Backfilling to Improve Fairness 187

DAS2−fs2

%
 im

pr
ov

em
en

t o
ve

r
C

on
se

rv
at

iv
e

in
 u

nw
ei

gh
te

d
fa

ir
 s

ha
re

SDSC−DS
SDSC−SP2SDSC−BLUE

LPC−EGEE
CTC−SP2

PCDCEASY

ANL−Intrepid DAS2−fs1 DAS2−fs3 KTH−SP2 LLNL−Atlas
LLNL−ThunderLANL−CM5DAS2−fs4

 10

 20

 15

 25

 5

 0

−5

LLNL−Atlas

%
 im

pr
ov

em
en

t o
ve

r
C

on
se

rv
at

iv
e

in
 w

ei
gh

te
d

fa
ir

 s
ha

re

EASY DC PC

SDSC−SP2
SDSC−DS

SDSC−BLUE
LPC−EGEE

LLNL−Thunder
ANL−Intrepid

CTC−SP2
DAS2−fs1

DAS2−fs2
DAS2−fs3

DAS2−fs4
KTH−SP2

LANL−CM5

−10

 6

 4

 2

 0

Trace

−2

−4

−6

−8

 8

Fig. 7. Improvement in unweighted (top) and weighted (bottom) unfairness (fair share
approach) over Conservative.

algorithms on 6 of the traces. With both measures, the improvements are gen-
erally by less than 5 %, however. The fairness metrics based on fair share seem
to be much harder to improve.

4.4 Response Time

We conclude our presentation of the results by showing that our algorithms
are not achieving fairness at great cost in terms of traditional performance-
oriented measures. Figure 8 shows percentage improvements over Conservative
on average waiting time. DC beats Conservative on all but one of the traces
(DAS2-fs3), achieving double digit improvements on five of them. PC is worse
than Conservative on 9 of the traces, but always by less than 3.5 % and by less
than 2 % on all but two of them.

5 Related Work

There are several types of previous work related to our study.

PC and DC. Lindsay et al. [8] originally proposed PC and DC to improve either
overall system responsiveness or the treatment of wide jobs (i.e. those using
large numbers of processors). With the shortest job first priority function, PC
and DC reduced average waiting time and average bounded slowdown relative

188 A. Rajbhandary et al.

LANL−CM5

in
 a

ve
ra

ge
 w

ai
tin

g
tim

e
EASY DC PC

SDSC−SP2
SDSC−DS

SDSC−BLUE
LPC−EGEE

LLNL−Thunder
LLNL−AtlasANL−Intrepid

CTC−SP2
DAS2−fs1

DAS2−fs2
DAS2−fs3

DAS2−fs4
KTH−SP2

−10

 70

 60

 50

 40

 30

 20

 10

 0

%
 im

pr
ov

em
en

t o
ve

r
C

on
se

rv
at

iv
e

Trace

Fig. 8. Improvement in average waiting time over Conservative.

to Conservative and EASY on most traces. Notably, this is achieved without
greatly penalizing particular jobs since PC and DC still achieved lower average
waiting time than Conservative and EASY when the average was taken over just
the top 5 % or top 1 % of the waiting times. With the widest job first priority
function, PC and DC reduced the average waiting time of wide jobs by 10–35 %
while still also improving the overall average waiting time.

Prioritized Backfilling. Many other scheduling schemes have been proposed that
use a priority function in connection with backfilling. A typical approach is
to order the jobs by priority and then backfill to improve utilization. Jackson
et al. [4] describe a version of this used in the Maui scheduler that provides
a reservation to the highest-priority queued job (essentially a prioritized ver-
sion of EASY). Perković and Keleher [11] add elements of randomization and
speculation to this approach. These approaches differ from ours because, like
Conservative, PC and DC provide guaranteed starting times to all jobs from the
time they are submitted.

Fair Start Time. Srinivasan et al. [18] give a precursor to FST based specifi-
cally on Conservative. They define FST as the earliest possible start time a job
would have received under FCFS conservative if the scheduling strategy were
suddenly changed to strict FCFS without backfill at the instant the job arrived.
This version of FST has the advantage of being independent of the scheduler
being considered since the FST is always computed using Conservative. The
disadvantage is that it partially combines the effects of scheduler throughput
and fairness; a scheduler that achieves shorter waiting times will tend to appear
more fair since those waiting times also impact where each job finishes relative
to its FST. This phenomenon may conflict with user perceptions since increased
backfilling could result in both more “cutting” and greater fairness. Sabin and
Sadayappan [15] resolved this paradox by generalizing the FST calculation to
the definitions we use.

Leung et al. [6] introduce a “hybrid” FST that considers the allocation of
specific processors. This is calculated using per-node estimated completion times.
Under this scheme, a job’s FST is the earliest time that enough nodes will be

Variations of Conservative Backfilling to Improve Fairness 189

free; the estimated completion time of these nodes is then updated. The implied
schedule is more restrictive than Conservative as holes cannot be used, but it is
less restrictive than strict FCFS.

As mentioned above, our average unfairness metric is an analog of average
waiting time since it is the difference from when the job “should” start when
it does start. Other metrics can be derived from FSTs as well. Sabin et al. [14]
use fair turnaround time, which adds job running times and is thus an analog
to flow time. Sabin and Sadayappan [15] introduce fair slowdown, which is the
ratio of this to job running time, making it an analog of slowdown or stretch.

Fair Share. The idea of the fair share metric comes out of an effort to quantify
fairness in queueing systems; see Avi-Itzhak et al. [1] for a survey. Raz et al. [13]
extended this to multi-server and multi-queue systems (but with serial jobs).
They used the Resource Allocation Queueing Fairness Measure (RAQFM), which
uses the philosophy that all the active users in system deserve an equal share
of system resources. This includes the refinement that only the actively used
resources should be shared, which becomes our use of only the active processors
rather than the total number. Sabin and Sadayappan [15] extended this to the
fair share fairness metrics we use, though they did not actually compute the
unweighted measure.

Other Approaches. A variety of other scheduling mechanisms have been pro-
posed to achieve various measures of fairness. Schwiegelshohn and Yahyapour
[16] introduce a preemptive FCFS (PFCFS) algorithm where a job in the sched-
ule may be preempted by a later arriving job. To prevent starvation, they assign
each job a weight equal to its resource consumption and limit the amount of
time a job can be delayed by later arriving jobs. Fairness is then measured using
a new metric λ fairness; a scheduling strategy is λ-fair if no job can have its flow
time increased more than a factor of λ by later arriving jobs.

Sabin et al. [14] advocate “dynamic reservations”, in which the entire schedule
is recomputed from scratch. This lessens the damage caused when later jobs
backfill ahead of earlier ones (since these decisions can be revisited until the jobs
actually start), but it eliminates the scheduler’s ability to give jobs guaranteed
starting times when they arrive. Srinivasan et al. [18] propose a scheduler that
adds reservations to ameliorate unfairness without rebuilding the schedule. Their
strategy does not give reservations to jobs initially, but does once their estimated
slowdown (waiting time plus estimated running time over estimated running
time) reaches a threshold value. Leung et al. [6] compare the effect of these
strategies with several other measures designed to encourage fairness and/or
prevent starvation: job runtime limits, job priorities based on the submitter’s
recent usage, and differential treatment for jobs of heavy users.

Rather than consider fairness on a per-job basis, Klusáček and Rudová [5]
consider fairness to each user by considering a measure of the average wait-
ing times for each user’s jobs. They combine this with traditional performance-
oriented metrics into a multi-objective optimization problem and apply tabu
search.

190 A. Rajbhandary et al.

Stoica et al. [19] introduced a scheduling algorithm that uses a market para-
digm to achieve user-level fairness and and also provides users with some control
over the relative performance of their jobs. In their system, each user has a sav-
ings account in which they receive virtual money at a constant rate. To run a
job, users create an expense account for it and transfer money to the job. Each
job uses its funds to buy the system resources it requires at market rates. The
allocation of system resources to each user depends upon the rate at which they
receive money and users can control their jobs’ relative performance by adjusting
the rates at which they are funded.

6 Discussion

The original idea behind PC and DC was to exploit flexibility in the compression
operation of Conservative. It was previously shown that this flexibility could be
utilized to improve average system response time or to improve the treatment
of large jobs. In this study, we have examined whether the same ideas could
be used to improve system fairness. We have shown that PC does so for the
fairness metrics based on fair start times while DC seems to be better for those
based on fair share. Although it would be preferable for a single algorithm to
dominate by both metrics, our split result highlights that the different metrics are
really measuring different notions of desired behavior. “Fairness” is a somewhat
slippery concept, but our results do show that the general approach of modifying
Conservative’s compression operation has potential to improve it. Notably, both
of the algorithms also retain the worst-case predictability of Conservative in that
both are able to give arriving jobs a guaranteed start time.

Going forward, we are interested in continuing to explore the fair share met-
rics to understand how they can be optimized. It is also desirable to develop
a modification of DC that avoids its tragic performance on FST-based metrics
since it does so well otherwise (in both this study and previous work [8]).

Acknowledgments. We thank the anonymous referees for their helpful comments.
A. Rajbhandary and D.P. Bunde were partially supported by contract 899808 from
Sandia National Laboratories. Sandia National Laboratories is a multi-program lab-
oratory managed and operated by Sandia Corporation, a wholly owned subsidiary of
Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear
Security Administration under contract DE-AC04-94AL85000. We also thank all those
who contributed traces to the Parallel Workloads Archive.

References

1. Avi-Itzhak, B., Levy, H., Raz, D.: Quantifying fairness in queuing systems: princi-
ples, approaches, and applicability. Probab. Eng. Inf. Sci. 22(4), 495–517 (2008)

2. Feitelson, D.: The parallel workloads archive. http://www.cs.huji.ac.il/labs/
parallel/workload/index.html

3. Feitelson, D.: Personal communication (2013)

http://www.cs.huji.ac.il/labs/parallel/workload/index.html
http://www.cs.huji.ac.il/labs/parallel/workload/index.html

Variations of Conservative Backfilling to Improve Fairness 191

4. Jackson, D.B., Snell, Q.O., Clement, M.J.: Core algorithms of the Maui scheduler.
In: Feitelson, D.G., Rudolph, L. (eds.) JSSPP 2001. LNCS, vol. 2221, pp. 87–102.
Springer, Heidelberg (2001)

5. Klusáček, D., Rudová, H.: Performance and fairness for users in parallel job
scheduling. In: Cirne, W., Desai, N., Frachtenberg, E., Schwiegelshohn, U. (eds.)
JSSPP 2012. LNCS, vol. 7698, pp. 235–252. Springer, Heidelberg (2013)

6. Leung, V.J., Sabin, G., Sadayappan, P.: Parallel job scheduling policies to improve
fairness: a case study. In: Proceedings of the 6th International Workshop on
Scheduling and Resource Management for Parallel and Distributed Systems (2010)

7. Lifka, D.: The ANL/IBM SP scheduling system. In: Feitelson, D.G., Rudolph, L.
(eds.) IPPS-WS 1995 and JSSPP 1995. LNCS, vol. 949, pp. 295–303. Springer,
Heidelberg (1995)

8. Lindsay, A.M., Galloway-Carson, M., Johnson, C.R., Bunde, D.P., Leung, V.J.:
Backfilling with guarantees made as jobs arrive. Concur. Comput. Pract. Exp.
25(4), 513–523 (2013)

9. Mann, L.: Queue culture: the waiting line as a social system. Am. J. Sociol. 75,
340–354 (1969)

10. Mu’alem, A.W., Feitelson, D.G.: Utilization, predictability, workloads, and user
runtime estimates in scheduling the IBM SP2 with backfilling. IEEE Trans. Parallel
Distrib. Syst. 12(6), 529–543 (2001)

11. Perković, D., Keleher, P.J.: Randomization, speculation, and adaptation in batch
schedulers. In: Proceedings of the 2000 ACM/IEEE Conference on Supercomputing
(2000)

12. Rajbhandary, A.: Fairness in scheduling algorithms. Honors thesis, Knox College
(2013)

13. Raz, D., Avi-Itzhak, B., Levy, H.: Fairness considerations in multi-server and multi-
queue systems. In: Proceedings of the 1st International Conference on Performance
Evaluation Methodologies and Tools (2006)

14. Sabin, G., Kochhar, G., Sadayappan, G.: Job fairness in non-preeemptive job
scheduling. In: Proceedings of the International Conference on Parallel Process-
ing (ICPP) (2004)

15. Sabin, G., Sadayappan, P.: Unfairness metrics for space-sharing parallel job sched-
ulers. In: Feitelson, D.G., Frachtenberg, E., Rudolph, L., Schwiegelshohn, U. (eds.)
JSSPP 2005. LNCS, vol. 3834, pp. 238–256. Springer, Heidelberg (2005)

16. Schwiegelshohn, U., Yahyapour, R.: Fairness in parallel job scheduling. J. Sched.
3, 297–320 (2000)

17. Smith, W., Taylor, V., Foster, I.: Using run-time predictions to estimate queue
wait times and improve scheduler performance. In: Feitelson, D.G., Rudolph, L.
(eds.) JSSPP 1999. LNCS, vol. 1659, pp. 202–219. Springer, Heidelberg (1999)

18. Srinivasan, S., Kettimuthu, R., Subramani, V., Sadayappan, P.: Selective reser-
vation strategies for backfill job scheduling. In: Feitelson, D.G., Rudolph, L.,
Schwiegelshohn, U. (eds.) JSSPP 2002. LNCS, vol. 2537, pp. 55–71. Springer,
Heidelberg (2002)

19. Stoica, I., Abdel-Wahab, H., Pothen, A.: A microeconomic scheduler for parallel
computers. In: Feitelson, D.G., Rudolph, L. (eds.) IPPS-WS 1995 and JSSPP 1995.
LNCS, vol. 949, pp. 200–218. Springer, Heidelberg (1995)

20. Tsafrir, D., Feitelson, D.G.: The dynamics of backfilling: solving the mystery of
why increased inaccuracy may help. In: Proceedings of the IEEE International
Symposium on Workload Characterization, pp. 131–141 (2006)

Author Index

Agosta, Giovanni 136

Balasubramanian, Arun 22
Bunde, David P. 177

Cao, Fei 62

Deng, Kefeng 156
Desai, Narayan 96
Ding, Dabin 62

Emeras, Joseph 1

Feitelson, Dror G. 42, 116

Iosup, Alexandru 156

Jaroš, Michal 81

Klusáček, Dalibor 81
Krakov, David 42

Lan, Zhiling 96
Leung, Vitus J. 177

Pelosi, Gerardo 136

Rajbhandary, Avinab 177
Ren, Kaijun 156
Richard, Olivier 1
Rudová, Hana 81
Ruiz, Cristian 1

Sadeh, Norman 22
Shai, Ohad 116
Shmueli, Edi 116
Speziale, Ettore 136
Sussman, Alan 22

Tang, Wei 96

Verboon, Ruben 156
Vincent, Jean-Marc 1

Zhou, Zhou 96
Zhu, Michelle M. 62

	Preface
	Organization
	Contents
	Analysis of the Jobs Resource Utilization on a Production System
	1 General Context
	2 State of the Art
	2.1 Workload Traces
	2.2 Jobs Consumption Traces

	3 Resource Consumption Capture
	3.1 Monitor Daemon
	3.2 Intrusiveness and Sampling Evaluation
	3.3 Collecting Mechanism
	3.4 Off-Line Data Processing

	4 Experiment Environment
	5 Analysis
	5.1 Foehn Cluster
	5.2 Gofree Cluster
	5.3 Reproducibility

	6 Discussion and Perspectives
	References

	Decentralized Preemptive Scheduling Across Heterogeneous Multi-core Grid Resources
	1 Introduction
	2 Related Work
	3 Background
	4 Term Representations
	5 Preemptive Scheduling
	5.1 Local Scheduling
	5.2 Context Switching and Its Impact
	5.3 Internode Scheduling

	6 Experiment and Results
	6.1 Experimental Setup
	6.2 Experimental Results

	7 Conclusion
	8 Future Work
	References

	Comparing Performance Heatmaps
	1 Introduction
	2 Heatmaps Applied to Evaluation of Parallel Job Schedulers
	3 Heatmap Comparison Techniques
	4 Visual Heatmap Comparison
	5 Job-Aware Heatmap Comparison
	5.1 Area Plots
	5.2 Quiver Plots

	6 Conclusions
	References

	Distributed Workflow Scheduling Under Throughput and Budget Constraints in Grid Environments
	1 Introduction
	2 Related Works
	3 Problem Overview
	3.1 Analytical Models
	3.2 Problem Formulation

	4 Algorithm Design
	4.1 Budget Constrained Approaches
	4.2 Throughput Constrained Approaches

	5 Performance Evaluation
	5.1 Experimental Settings
	5.2 Analysis of Results

	6 Conclusions
	References

	Multi Resource Fairness: Problems and Challenges
	1 Introduction
	2 Related Work
	3 Multi Resource-Based Fairshare Algorithm
	3.1 Dominant Resource-Based Penalty
	3.2 Penalties Based on Combination of All Resources

	4 Summary and Discussion
	5 Conclusion and Future Work
	References

	Reducing Energy Costs for IBM Blue Gene/P via Power-Aware Job Scheduling
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Problem Statement
	3.2 Scheduling Window
	3.3 Job Scheduling
	3.4 On-Line Scheduling on Blue Gene/P

	4 Evaluation
	4.1 Experiment Configuration
	4.2 Evaluation Metrics
	4.3 Results
	4.4 Results Summary

	5 Conclusion and Future Work
	References

	Heuristics for Resource Matching in Intel's Compute Farm
	1 Introduction
	2 Matching Machines to Jobs
	2.1 Synthetic Examples of Heuristics Failures
	2.2 Observations from the Workloads
	2.3 Comparing Heuristics

	3 Mix-Fit
	3.1 Balanced Resource Usage
	3.2 Mix-Fit's Results

	4 The Max-Jobs Meta-heuristic
	5 Simulation Results
	6 Related Work
	7 Conclusions
	References

	On Task Assignment in Data Intensive Scalable Computing
	1 Introduction
	2 Background
	3 A Locality Aware and Bounded Latency Approach
	3.1 Preliminaries
	3.2 Optimization Goals
	3.3 Lower Bounds for the Expected Job Latency
	3.4 Task Assignment Algorithm
	3.5 Example
	3.6 Formal Properties of LABL Task Assignment Algorithm

	4 Simulation Results
	4.1 Performance Overview
	4.2 Scalability
	4.3 Sensitivity Analysis
	4.4 Discussion

	5 Related Work
	6 Concluding Remarks
	References

	A Periodic Portfolio Scheduler for Scientific Computing in the Data Center
	1 Introduction
	2 System Model
	2.1 Workload and Resource Model
	2.2 Operational Model

	3 A Periodic Portfolio Scheduler
	3.1 The Portfolio Scheduler
	3.2 System Using Portfolio Scheduling
	3.3 Portfolio Policies

	4 Experimental Goals and Setup
	4.1 Simulator
	4.2 Workloads
	4.3 Performance Metrics

	5 Experimental Results
	5.1 Results of Synthetic Workloads
	5.2 Results of Real Workload Traces
	5.3 Analysis of Portfolio Scheduler Operation

	6 Related Work
	7 Conclusion and Future Work
	References

	Variations of Conservative Backfilling to Improve Fairness
	1 Introduction
	2 Algorithms
	3 Definitions of Fairness
	3.1 Fair Start Time
	3.2 Resource Equality

	4 Results
	4.1 Fair Start Time: DC
	4.2 Fair Start Time: PC
	4.3 Fair Share
	4.4 Response Time

	5 Related Work
	6 Discussion
	References

	Author Index

