
Enhancing Feasibility of Human-Driven

Processes by Transforming Process Models
to Process Checklists

Michaela Baumann, Michael Heinrich Baumann,
Stefan Schönig, and Stefan Jablonski

University of Bayreuth, Germany
{michaela.baumann,michael.baumann,

stefan.schoenig,stefan.jablonski}@uni-bayreuth.de

Abstract. In traditional approaches business processes are executed on
top of IT-based Workflow-Management Systems (WfMS). The key ben-
efits of the application of a WfMS are task coordination, step-by-step
guidance through process execution and traceability supporting compli-
ance issues. However, when dealing with human-driven workflows, con-
ventional WfMS turn out to be too restrictive. Especially, the only way
to handle exceptions is to bypass the system. If users are forced to bypass
WfMS frequently, the system is more a liability than an asset. In order to
diminish the dependency from IT-based process management systems,
we propose an alternative way of supporting workflow execution that
is especially suitable for human-driven processes. We introduce the so-
called process checklist representation of process models where processes
are described as a paper-based step-by-step instruction handbook.

Keywords: process modelling, process checklists, paper-based process
execution.

1 Introduction

Since approximately 20 years process management is regarded as an innovative
technology both for the description of complex applications and for supporting
their execution [1]. In traditional approaches business processes are executed on
top of IT-based Workflow-Management Systems (WfMS) [2]. The key benefits of
the application of a WfMS are task coordination, step-by-step guidance through
process execution and traceability supporting compliance issues [3]. However,
when dealing with human-driven workflows that heavily depend on dynamic hu-
man decisions, conventional WfMS turn out to be too restrictive [4]. Especially,
the only way to handle exceptions – which regularly occur in human-driven work-
flows – is to bypass the system. If users are forced to bypass WfMS frequently,
the system is more a liability than an asset [4]. In total, users start to complain
that “the computer won’t let them” to do the things they like to accomplish
[5]. So users like to get more independent from “electronic systems” in order to

I. Bider et al. (Eds.): BPMDS 2014 and EMMSAD 2014, LNBIP 175, pp. 124–138, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Transforming Process Models to Process Checklists 125

become more flexible. If original documents are needed for executing a process,
in many cases a paper-based execution model is preferred [6].

Furthermore, the introduction of a WfMS is regarded as a huge, cost-intensive
project [7]. Many organizations cannot afford to introduce such a system there-
fore. However, they desire to manage their processes since they regard them as
valuable and effective. In order to diminish the dependency from IT-based pro-
cess management systems, we propose an alternative way of supporting workflow
execution that is especially suitable for human-driven processes, like it is the case
for example in public administration and authorities. We introduce the so-called
process checklist representation of process models. Here, processes are described
as a paper-based step-by-step instruction handbook. The process checklist is
handed over during process execution from process participant to process par-
ticipant.

Successful task accomplishments are recorded through signatures of corre-
sponding agents. In principle the most important statement is that at the end
of the process all signatures are on the checklist. So it is completely output
oriented. Nevertheless, the checklist method describes a valuable form of pro-
cess usage and widens its spectrum towards non-computer based and extremely
flexible process execution. Besides, the process checklist also supports the key
benefits of traditional WfMS. The checklist is handed over to responsible agents
(task coordination), process tasks are serialized and marked by a unique identi-
fier (step-by-step guidance) and the checklist itself as well as the corresponding
signatures ensure traceable process execution. The work at hand provides the
general structure of process checklists as well as an elaborate transformation al-
gorithm of basic BPMN process model elements [8] to process checklists. Fig. 1
shows a comparison of traditional IT-based process execution and the paper-
based approach provided by the work at hand.

IT-based

paper-based

model

BPMN

checklist vector

execution

WfMS

graphical checklist

trans-
formation

Fig. 1. Schematic approach of distancing from IT-based process management systems

2 Background and Related Work

A checklist is a list of items required, things to be done, or points to be consid-
ered, used as a reminder [9]. Checklists are generally seen as a suitable means
for error management and performance improvement in highly complex scenarios
like clinical workflows [10]. Therefore, we propose to define a generic method for

126 M. Baumann et al.

transforming general process models to the checklist representation. The prob-
lem of transforming a model drawn in one business process modeling notation
into another notation has been examined in different papers, e.g., [11], [12]. How-
ever, to the best of the authors’ knowledge, the transformation of process models
to a checklist representation has not been discussed so far.
Before specifying the transformation of process models into checklists, we have
to determine how suitable process models should look like and what elements a
checklist consists of. These specifications are necessary to give concrete mapping
rules. For process models, only basic elements of the Business Process Modeling
Notation are allowed, as [13] shows this is enough in most cases and as the paper
at hand has to be seen as a first approach to this topic.

Definition 1 (Process model). A process model is defined according to BPMN
2.0 (see e.g. in [8]) allowing for the following basic elements:

– flow objects: activities, events (start, end), gateways (AND, XOR, OR)
– sequence flows
– data (input/output) objects
– participants: one pool, possibly separated into different lanes

As we consider the application of checklists appropriate only within one com-
pany, there should not occur processes with more than one pool. Therefore, we
do not have to take message flows into account. Which forms of activities, events
and gateways can be covered with our transformation rules will become apparent
when it comes to the concrete transformation of process models into checklists.
We specify a checklist as follows.

Definition 2 (Checklist vector). A checklist is a vector C = (pt1, p
t
2, . . . , p

t
n),

n ∈ N, t ∈ {o, c} with two different kinds of components:

poi = (IDi, ACi, ODi, AGi)

with IDi, ACi, ODi, AGi being strings and

pcj = (ANj , COj , GTj , AGj)

with ANj , COj , AGj being strings and GTj being a vector of the form

GTj = (sj , aj,1, gj,1, aj,2, gj,2, . . . , aj,k, gj,k)

with k ∈ N, strings aj,l, integers (or NULL) gj,l ∈ {1, . . . , n} ∪ {NULL}, l =
1, . . . , k, and sj ∈ {0, 1}.

This definition uses a lot of different variables that need some explanation:
The first component of a checklist vector, po, is called operating point. It con-
tains information about incoming data objects (ID), the activity (AC) which
may be an activity in the literal sense of BPMN or an event, outgoing data
objects (OD), and the performing agent (AG). An operating point gives more

Transforming Process Models to Process Checklists 127

or less conrete instructions to the respective agent about what he has to do. The
other component of a checklist vector, pc, is called control point. In general, a
control point is a transformed gateway, therefore it contains information about
the condition (CO) which may also be empty if it corresponds to a parallel gate-
way, and the responsible agent (AG as in po). AN is a component kept free for
special annotations (we will see examples later) and GT is a vector with one
boolean component s and k pairs of string (a) and integer (g) components. g
refers to other components of C and is therefore element of {1, . . . , n} or NULL.
With this formal definition of a checklist, the checklist vector, it is already pos-
sible to give concrete mapping instructions as listed in the next section. Before
we turn towards this subject, we want to give the reader a visual impression of
how the two components po and pc may be illustrated on a graphical checklist
in Fig. 2 and Fig. 3. The components of vector GTj are shown in Fig. 4.

i IDi ACi ODi
AGi

date, signature

Fig. 2. Visualization of poi which means the i-th component of C is an operating point

j ANj COj GTj
AGj

date, signature

Fig. 3. Visualization of pcj which means the j-th component of C is a control point

GTj

� aj,1 gj,1 date, sign.

� aj,2 gj,2 date, sign.

: : :

� aj,k−1 gj,k−1 date, sign.

aj,k gj,k

Fig. 4. Visualization of GTj . Entries date and signature in the third column only
appear, if sj = 1. The k-th row never has a square in the first column nor a date and
signature. In fact, the k-th row may be empty, i.e., aj,k = “” and gj,k = NULL.

In which way these checklist components are filled with information given
by the process model and how the resulting operating and control points are
represented in the graphical checklist is explained in the next two sections.

128 M. Baumann et al.

3 Transformation of Process Model Elements

This section focuses on generating a checklist, that means it is explained, in
which way the single elements of the (BPMN) process model are transferred into
either operating points or control points. These steps are basically performed in
a simply algorithmic way, except for parallel gateways.

3.1 Transformation of Activities

Activities are transformed straight into operating points po. Their description is
mapped on the field AC whereas all directly incoming data and directly outgoing
data is mapped on the field ID and OD respectively. The participant of the
corresponding lane or hierarchy of lanes, that may, e.g., be a single person is
mapped onto the field AG. An example of an activity with documents and
participant is given in Fig. 5.

IDO1
IDO2

IDO3

ACi

i

ODO1
ODO2

A
G

i

Fig. 5. Exemplary excerpt from a process model with labels according to an operating
point poi . IDi = IDO1. IDO2. IDO3 and ODi = ODO1. ODO2.

3.2 Transformation of Subprocesses

Occurring subprocesses, marked with a symbol as seen in Fig. 6, may be taken
into a checklist in different ways:

1. Include the complete subprocess (comparatively long, but correct checklist)

2. Generate a new checklist for each subprocess (insertion of two operating
points into the original checklist ist necessary: one with work instructions
for printing/passing on the new checklist, one with work instructions for
waiting for the finished subprocess, subprocess checklist as incoming data)

Transforming Process Models to Process Checklists 129

subprocess
�

i

Fig. 6. Symbol for a subprocess in BPMN 2.0

3.3 Transformation of Gateways

Transformation of Exclusive Gateways. An exclusive split gateway (Fig.
7) has to be transformed into a control point in which the decision question and
the possible answers with the respective “go to”-numbers (gj,1, gj,2 and gj,3 in
Fig. 7) are mentioned. If there is a exclusive join gateway (Fig. 8) too, at the end
of each branch of the respective splitting gateway a jump instruction to the next
point in the checklist after the join gateway (gj,4 in Fig. 8) must be inserted,
except the next point following a branch is the point following the join gateway.
The execution of an exclusive gateway may cause problems if at least one “go
to”-number is in the past, but this problem will be solved in the next section.

j COj

aj,1
j1

aj,2
j2

aj,3
j3

A
G

j

Fig. 7. Exclusive split gateway with question COj and possible answers aj,1, aj,2, aj,3.
pcj : ANj may be used for data. gj,k = jk, k = 1, 2, 3, aj,4 = “” and gj,4 = NULL.

j4

A
G

j
k
−
1

Fig. 8. Exclusive join gateway that does not have to exist if the outgoing branches of
the exclusive split gateway end with terminal events. pcjk−1: ANjk−1 =“”, COjk−1 =
“XOR end”, sjk−1 = 0, ajk−1 = “goto :”, gjk−1 = j4, k = 2, 3.

Transformation of Parallel Gateways. There are several ways of trans-
forming parallel gateways into a checklist whereby all of them have different
advantages and disadvantages. Some of these possibilities are listed below. Note,
that a mixture of these transformation possibilities is also conceivable.

130 M. Baumann et al.

Static Sequential Transformation This type of transforming a parallel gateway
takes the several branches of the process model, that are between the split and
join gateway (Fig. 9), and brings them into an arbitrary order. The gateway
itself is not mapped to the checklist.

Dynamic Sequential or Postbox Transformation A parallel split will be trans-
formed to a control point pcj . The parallel branches in the process model have to
be written down in a sequential way in the checklist. At the end of each branch
a jump to pcj , realized with a simple control point, is necessary and in pcj the
number of the point following the respective parallel join has to be noted. There
are different ways of executing this parallel split, and some of them correspond
to another transformation, but this will be dealt with in the next section.

j

j1

j2

j3

A
G

j

j4

A
G

j
k
−
1

Fig. 9. Parallel split gateway pcj : ANj for annotation, e.g. DOs, COj = “AND”,
sj = 1, aj,1, . . . , aj,3 =“”, gj,1 = j1, gj,2 = j2, gj,3 = j3, aj,4 =“Finally go to”,
gj,4 = j4, k = 2, 3, 4. Parallel join gateway pcjk−1: ANjk−1 =“”, COjk−1 =“AND end”,
sjk−1 = 0, ajk−1 =“go to”, gjk−1 = j, k = 2, 3, 4.

Parallel Transformation For each parallel branch a checklist is generated and
distributed by the agent of the split gateway (see Fig. 9) to the agents of the
first process element of the branches. It is modelled as one control node pcj . If the
gateway splits into k branches, then aj,k+1 =“Finally go to” and gj,k+1 = j+1. If
the name of the current checklist is “Checklist”, then COj =“AND – print check-
lists “Checklist sub1”,. . . ,“Checklist subk”, if the names of the sub-checklists are
“Checklist sub1”,. . . ,“Checklist subk”. Of course aj,1, . . . , aj,k have to reference
these sub-checklists, gj,1, . . . , gj,k = NULL and sj = 1.

Transformation of Inclusive Gateways. The transformation of inclusive
gateways can be done similar to the transformation of parallel gateways. More
precisely, there are the possibilities to use the dynamic sequential or postbox
transformation or the parallel transformation. The only difference is, that in pcj
we have COj and aj,1, . . . , aj,k like in the exclusive gateway transformation, i.e.,
the condition/question and the answers have to be taken over from the process
model.

Transforming Process Models to Process Checklists 131

3.4 Transformation of Events

Direct Transformation of Events. Some events, like signal events, can be
transformed like activities, that means to poi , with ACi = “” or ACi is used for
transmitting some message.

Indirect Transformation of Events. Most events, like time, condition and
message events, are requirements for the next point in the checklist and can
be modelled this way. This requirement is written down in AC or AN of the
following operating or control point.

Ignored Events. Other events, like the start event, can be ignored, that means
they have no respresentation in the checklist, because they won’t influence the
execution.

4 Enactment of the Graphical Checklist

A graphical checklist contains a cover sheet with name of the checklist (name of
the process), timestamp, and a list for writing down the current checklist and
the current point, i.e., the next point to be worked on. Furthermore, a graphical
checklist consists of at least one checklist as described above (resulting from
a checklist vector) with a consecutive number, starting with 1, a receipt book
and a list for data objects and maybe data objects (documents). An illustrating
example for these components is given in Fig. 10.

name of checklist
name of
process owner

1-1

1-2

1-3

1-6

1-7

2-2

2-3

2-6

2-7

2-10

2

Fig. 10. Cover sheet (left-hand side) with name of the checklist/process, name of process
owner and list of the next points to be executed; checklist (right-hand side) with current
number in the upper right corner and operating/control points. Obviously, in checklist
no. 1 a gateway caused a jump into the past (from point no. 7 to point no. 2)

When starting a process with checklists, the “process owner”, i.e., that per-
son starting the execution of the process, has to print the checklist with cover
sheet and data object list. Then he assigns the checklist its current number 1.

132 M. Baumann et al.

Input data, that means input documents, have to be added and scheduled in
the respective list. On the cover sheet “1–1” is noted, that means, the current
status of execution is “checklist 1” and “point 1”. In addition, he has to write
his name on the cover sheet so that the checklist can be handed over to him
after finishing the process. This graphical checklist has to be passed to the agent
named in point 1, who has to check for completeness, that means especially if
all listet documents are handed over, and quit the delivery. The process owner
has to archive the signed receipt for later reconstruction if necessary.

Every time an agent gets the graphical checklist he has to run through this
acknowledgement process (checking the documents for completeness, sign a re-
ceipt) and then check for the current point of the checklist on the cover sheet.
When the last entry is 1–23 he has to look at point 23 of the current check-
list, that has number 1, and execute this point, if all necessary documents are
available and possible conditions are fulfilled. Of course, the agent named in this
point should be correct (otherwise the checklist has not been handed over prop-
erly). After execution of the current point he has look which agent is next. If it is
himself he executes the next point and writes it down on the cover sheet, else he
updates the document list, writes the next point on the cover sheet, hands the
checklist over and archives the received receipt. If one agent sends a document
directly to another, this document has to be deleted from the data object list
and maybe listed again later on by the other agent.

4.1 Execution of Operating Points

Operating points are executed straightaway as described above, performing the
task (with possible constraint resulting from a transformed event) as given in
AC. If documents are produced, they should correspond to that ones listed in
the outgoing documents OD. After performing the task, he signs the operating
point for making clear, he has finished this point.

4.2 Execution of Control Points

Execution of Exclusive Gateways. If a control point resulting from an ex-
clusive gateway has to be processed, the agent has to check for the condition
or question in field CO. He marks his answer in GT in the box � in front of
the corresponding answer a·,l. If there are any documents helping him to decide,
they are listed in AN . After marking he gets the number of the next point, g·,l.
Two possible sceneries may occur: g·,l is greater than the current point number,
then everything can go on as before. If g·,l is smaller than the current point
number, then there is a problem, as that point with number g·,l may have been
processed already in the past and therefore is signed already. If such a return
occurs, than the agent of the control point has to print a new checklist (just
the checklist itself) and assign it the number i+ 1 if the number of the current
checklist was i. On the cover sheet, he writes for the next point to be executed
(i+1)–(g·,l). After doing this, he signs in field AG and passes the new checklist
(together with the old one for reconstruction opportunity) to the agent of point

Transforming Process Models to Process Checklists 133

g·,l. This agent has to recognize that the consecutive number of the checklist has
changed which is obvious on the cover sheet.

Execution of Parallel Gateways.

Static Sequential Transformation If a parallel gateway was transformed in the
static sequential way, then it does not appear in the checklist, that means the
performing agents do not know, that there has been a gateway in the BPMN
process model. All branches are executed in the specific order as chosen by the
person who transformed the process model.

Dynamic Sequential Transformation When coming to a control point being the
transformation of a parallel gateway with the dynamic sequential method the
agent of that point can decide about the execution order of the different branches
during the processing of the checklist. He can take into account the current
circumstances like availability of the agents in the different branches, or anything
else. When he chooses one branch, he marks his decision in the corresponding
box �, notes it on the cover sheet and passes the graphical checklist over to
the agent of the respective point, on the right-hand side of the marked box. The
branch is processed and at the end there is a control point that refers back to the
control point where the decision of the branch was made. So, the agent gets the
checklist back (with checking for all documents and quitting again) and signs the
chosen branch in GT (that one with the marked box, that has not been signed
yet). Then he chooses the next branch to be processed the same way as before.
If all branches have been marked and signed, then he signs the whole control
point in field AG and passes the checklist over to the agent of that point listed
after “finally go to” in GT . The whole procedure can be reconstructed with the
notes on the cover sheet.

Postbox Method If parallel gateways are performed with the postbox method, the
checklist itself looks the same as transformed according to the dynamic sequential
way. The difference is in the execution, as the postbox method allows for parallel
processing of the different branches. When the performance of a checklist reaches
an AND control node the checklist is posted like an announcement in one place
together with all documents (that can be stored in postbox) and all agents can
look for the next points that have to be executed on the cover sheet, where all
first points of the different branches have to be noted in a parallel way. With
this method, the documents do not have to be handed over from one point to
another. After finishing all branches, the agent of the control node that started
the postbox method collects the checklist and all documents now being in the
postbox, checks for completeness, signs in AG if everything is okay and goes on
as before. This method may become confusing and needs initiative of all agents.
But it considers the parallel aspect of parallel gateways.

Parallel Transformation With this method it is also possible to consider simul-
taneity of the different branches. The agent of the control node prints all required

134 M. Baumann et al.

sub-checklists, marks the boxes � in GT if handed over together with needed
documents to the respective agents of the first points in the branches, as listed
in GT , and signs every returning sub-checklist in GT . If all sub-checklists have
returned, he signs in AG and the execution of the control node is finished. As
one can imagine, this method is more elaborate, as multiple checklists have to
be generated, but it provides a good overview over the process in contrast to
the postbox method. We recommend this method if the branches are relatively
long, so that the effort of generating more than one checklist is somehow justified.

The mentioned transformation and execution versions are somehow sugges-
tions, clearly many other versions are imaginable and of course different versions
can be mixed.

Execution of Inclusive Gateways. Like the transformation of inclusive gate-
ways, the execution of inclusive gateways can again be seen as a mixture of
exclusive and parallel gateways. The agent of the corresponding control point
has to choose his anwers (mark the boxes �), in contrast to exclusive gateways
possibly more than one, and then for the chosen ones he can proceed like with
parallel gateways (except for the static sequential method, as this was no possi-
ble transformation for inclusive gateways).

All methods mentioned so far require a well-modelled process model, that
means for example, that there are no returns out of AND branches, no doc-
ument is needed in parallel branches without having a copy of it, or that no
document is archived if there is the possibility of a return into the past where
this document will be needed again. Changes of the underlying process model
involve modifications of the checklist for all future process instances. If problems
or questions during the execution of one checklist occur, one should confer with
the corresponding process owner.

5 Transformation Example

As an illustrating example the process model given in Fig. 11 is transformed into
a checklist vector as seen in Table 12.

For transformation of parallel and inclusive gateways the dynamic sequential
method was chosen. That is why the documents “exposé” and “course materials”
do not have to be copied for the different branches of the corresponding gateway,
as they are performed in a sequential order and the document is handed over
together with the checklist. For a graphical checklist, one has to put the table
view of the checklist into the visually more appealing form as given in Figures
2, 3 and 4, as it is easier to read. Furthermore, the cover sheet has to be added
as well as the receipt book and the document list.

Transforming Process Models to Process Checklists 135

n
e
e
d

o
f

n
e
w

c
o
u
rs
e

is
n
o
ti
c
e
d

F
in
d

to
p
ic
;

se
t
n
e
e
d

o
f

le
c
tu

re
r
a
n
d

a
ss
is
ta

n
t

S
h
o
u
ld

P
ro

f.
re
a
d

h
im

se
lf
?

w
ri
te

sc
ri
p
t

w
ri
te

sc
ri
p
t

w
ri
te

e
x
e
rc
is
e

c
re
a
te

c
o
u
rs
e

m
a
te
ri
a
ls

m
a
k
e
a
n
n
o
u
n
c
e
m
e
n
t

fo
r
st
u
d
e
n
ts

e
a
rl
ie
st

6
w
e
e
k
s

b
e
fo
re

se
m
e
st
e
r

b
e
g
in
n
in
g

b
o
o
k
ro

o
m
s

p
re
p
a
re

fo
r

c
o
u
rs
e

c
o
u
rs
e
c
a
n

b
e
o
ff
e
re
d

le
c
tu

re
r

n
e
e
d
e
d

a
ss
is
ta

n
t
n
e
e
d
e
dy
e
s

n
o

Prof. PD assistant

e
x
p
o
s
é

(c
o
p
y
)]

e
x
p
o
s
é

&
s
c
r
ip

t

[p
o
ss
ib
ly

e
x
p
o
s
é

&
e
x
e
r
c
is
e

[p
o
ss
ib
ly

c
o
u
r
s
e

m
a
t
e
-

r
ia

ls

[c
o
p
y

c
o
u
r
s
e

m
a
t
e
-

r
ia

ls

F
ig
.
1
1
.
E
x
em

p
la
ry

p
ro
ce
ss

m
o
d
el
:
co
n
ce
p
ti
o
n
o
f
a
n
ew

co
u
rs
e

136 M. Baumann et al.

Table 12. Table view of a checklist vector representating the process model of Fig. 11

No. type ID/AN AC/CO OD/GT AG

1 o Find topic; set need
of lecturer and assis-
tant

exposé Prof.

2 c OR s2 = 1
a2,1 =lecturer needed g2,1 = 3
a2,2 =assistant needed g2,2 = 8
a2,3 =finally go to g2,3 = 10

Prof.

3 c XOR Should Prof.
read himself?

s3 = 0
a3,1 =yes g3,1 = 4
a3,2 =no g3,2 = 6
a3,3 =“” g3,3 = NULL

Prof.

4 o exposé write script exposé, script Prof.

5 c XOR end s5 = 0
a5,1 =go to g5,1 = 7

Prof.

6 o exposé write script exposé, script PD

7 c OR end s7 = 0
a7,1 =go to g7,1 = 2

Prof.

8 o exposé write exercise exposé, exercise assistant

9 c OR end s9 = 0
a9,1 =go to g9,1 = 2

Prof.

10 o exposé,
script
OR
exercise

create course materi-
als

course materials assistant

11 c AND s11 = 1
a11,1 =go to g11,1 = 12
a11,2 =go to g11,2 = 14
a11,3 =go to g11,3 = 16
a11,4 =finally go to g11,4 = 18

assistant

12 o make announcement
for students

Prof.

13 c AND end s13 = 0
a13,1 =go to g13,1 = 11

Prof.

14 o course
materi-
als

earliest 6 weeks be-
fore semester begin-
ning: book rooms

PD

15 c AND end s15 = 0
a15,1 =go to g15,1 = 11

PD

16 o course
materi-
als

prepare for course course materials assistant

17 c AND end s17 = 0
a17,1 =go to g17,1 = 11

assistant

18 o course can be offered Prof.

Transforming Process Models to Process Checklists 137

6 Conclusion, Limitations and Future Work

In order to diminish the dependency from IT-based process management sys-
tems, the work at hand proposed an alternative way of supporting workflow
execution that is suitable for human-driven processes. We introduced the pro-
cess checklist representation of process models where processes are described as a
paper-based step-by-step instruction handbook. The process checklist is handed
over during process execution from process participant to process participant.
Successful task accomplishments are recorded through signatures of correspond-
ing process participants.
This way, the process checklist also supports the key benefits of traditional
WfMS. The checklist is handed over to responsible agents (task coordination),
process tasks are serialized and marked by a unique identifier (step-by-step guid-
ance) and the checklist itself as well as the corresponding signatures ensure
traceable process execution. The work at hand provides the general structure of
process checklists as well as a transformation algorithm of basic BPMN process
model elements to process checklists.
In contrast to the advantages over IT-based process management systems as
mentioned before, paper-based checklists can also have disadvantages compared
to traditional systems. Checklists represent a single point of access, so support
for distributed agents may be difficult. If this is the case, one has to ask if using
a paper-based checklist is the right thing for this specific application, as we rec-
ommend using checklists for example in administrational environments.
In general, it is possible to transform a procedural process model to a process
checklist based on the proposed algorithm. However, due to the serialization
of the process, the checklist representation has of course problems when dealing
with flexibility and parallelism. Here, process modellers have to choose a suitable
transformation method as described in section 4. For future work we will evaluate
the proposed approach within a real life business case. Here, we expect useful
experiences regarding the acceptance and cooperation of participating agents.
Based on these results we will improve methodology, design and representation.
Furthermore, we will focus the transformation of loosely-specified processes like
declarative process models, e.g., Declare [14].

Acknowledgement. The presented work is developed and used in the project
“Kompetenzzentrum für praktisches Prozess- und Qualitätsmanagement”, which
is funded by “Europäischer Fonds für regionale Entwicklung (EFRE)”.

The work of Michael Heinrich Baumann is supported by Hanns-Seidel-
Stiftung e.V.

References

1. Jablonski, S.: Do We Really Know How to Support Processes? Considerations and
Reconstruction. In: Engels, G., Lewerentz, C., Schäfer, W., Schürr, A., Westfechtel,
B. (eds.) Nagl Festschrift. LNCS, vol. 5765, pp. 393–410. Springer, Heidelberg (2010)

138 M. Baumann et al.

2. Zairi, M.: Business Process Management: a Boundaryless Approach to Modern
Competitiveness. Business Process Management Journal 3, 64–80 (1997)

3. Reichert, M., Weber, B.: Enabling Flexibility in Process-aware Information Sys-
tems. Springer, Heidelberg (2012)

4. Van der Aalst, W., Weske, M., Grünbauer, D.: Case handling: A new paradigm for
business process support. Data & Knowledge Engineering 53(2), 129–162 (2005)

5. Condon, C.: The Computer Won’t Let Me: Cooperation, Conflict and the Owner-
ship of Information. In: CSCW, pp. 171-185 (1993)

6. Luff, P., Heath, C., Greatbatch, D.: Tasks-in-interaction: paper and screen based
documentation in collaborative activity. In: CSCW (1992)

7. Melenovsky, M.: Business process managements success hinges on business-led ini-
tiatives, Gartner Research, Stamford, CT, pp. 1-6 (July 2005)

8. Object Management Group Inc.: Business Process Model and Notation (BPMN)
Version 2.0 (2011), http://www.omg.org/spec/BPMN/2.0

9. Wolff, A., Taylor, S., McCabe, J.: Using checklists and reminders in clinical path-
ways to improve hospital inpatient care. MJA 2004 181, 428–431 (2004)

10. Hales, B.M., Pronovost, P.J.: The checklist – A tool for error management and
performance improvement. Journal of Critical Care 21(3), 213–235 (2006)

11. Hauser, R., Friess, M., Küster, J.M., Vanhatalo, J.: Combining Analysis of Un-
structured Workflows with Transformation of Structured Workflows. In: Proc. 10th
IEEE International Enterprise Distributed Object Computing Conference, EDOC
(2006)

12. Koehler, J., Hauser, R., Küster, J., Ryndina, K., Vanhatalo, J., Wahler, M.: The
Role of Visual Modeling and Model Transformation in Business-driven Develop-
ment. In: Proc. 5th International Workshop on Graph Transformation and Visual
Modeling Techniques (GT-VMT 2006), Vienna, Austria (2006)

13. zur Muehlen, M., Recker, J.: HowMuch Language Is Enough? Theoretical and Prac-
tical Use of the Business Process Modeling Notation. In: Bellahsène, Z., Léonard, M.
(eds.) CAiSE 2008. LNCS, vol. 5074, pp. 465–479. Springer, Heidelberg (2008)

14. Pešić, M.: Constraint-Based Workflow Management Systems, Shifting Control to
Users (2006)

http://www.omg.org/spec/BPMN/2.0

	Enhancing Feasibility of Human-DrivenProcesses by Transforming Process Modelsto Process Checklists
	1 Introduction
	2 Background and Related Work
	3 Transformation of Process Model Elements
	3.1 Transformation of Activities
	3.2 Transformation of Subprocesses
	3.3 Transformation of Gateways
	3.4 Transformation of Events

	4 Enactment of the Graphical Checklist
	4.1 Execution of Operating Points
	4.2 Execution of Control Points

	5 Transformation Example
	6 Conclusion, Limitations and Future Work
	References

