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Abstract. Reversible computing is based on logic circuits that can gen-
erate unique output vector from each input vector, and vice versa, that
is, there is a one-to-one mapping between the input and the output vec-
tors. Reversible computing is the only solution for non-dissipative ultra
low power green computing. Conservative reversible circuits are a spe-
cific type of reversible circuits, in which there would be an equal number
of 1s in the outputs as there would be on the inputs, in addition to
one-to-one mapping. This work illustrates the application of reversible
logic towards testing of faults in traditional and reversible field coupled
nanocircuits (Portions of this chapter are based on [2]. The enhancement
is comprehensive treatment of: basics of reversible computing, motiva-
tion for reversible computing, background on conservative logic, basics of
QCA computing, such as QCA logic devices and QCA clocking, related
work etc. Several new reversible testable designs are introduced such
as design of testable reversible T latch, design of testable asynchro-
nous set/reset D latch and master-slave D flip-flop, design of testable
reversible complex sequential circuits. QCA layouts of conservative logic
gates are introduced with internal design details of QCA logic devices.
Complete fault patterns information and analysis are provided for conser-
vative logic gates. The synthesis of non-reversible testable design based
on MX-cqca gate is extended to MX-cqca based implementation of stan-
dard functions. The significance of this work and broader prospective for
future directions is also presented.). We propose the design of two vec-
tors testable sequential circuits based on conservative logic gates. The
proposed sequential circuits based on conservative logic gates outper-
form the sequential circuits implemented in classical gates in terms of
testability. Any sequential circuit based on conservative logic gates can
be tested for classical unidirectional stuck-at faults using only two test
vectors. The two test vectors are all 1s, and all 0s. The designs of two
vector testable latches, master-slave flip-flops, double edge triggered flip-
flops, asynchronous set/reset D latch and D flip-flop are presented. The
importance of the proposed work lies in the fact that it provides the
design of reversible sequential circuits completely testable for any stuck-
at fault by only two test vectors, thereby eliminating the need for any
type of scan-path access to internal memory cells. The reversible designs
of the double edge triggered flip-flop, ring counter and Johnson Counter
are proposed for the first time in literature. We are showing the appli-
cation of the proposed approach towards 100 % fault coverage for single
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missing/additional cell defect in the QCA layout of the Fredkin gate.
We are also presenting a new conservative logic gate called Multiplexer
Conservative QCA gate (MX-cqca) that is not reversible in nature but
has similar properties as the Fredkin gate of working as 2:1 multiplexer.
The proposed MX-cqca gate surpasses the Fredkin gate in terms of com-
plexity (the number of majority voter), speed and area.

Keywords: Conservative logic · Reversible logic · Quantum dot cellular
automata

1 Introduction

Reversible logic has applications in emerging technologies such as quantum com-
puting, quantum dot cellular automata, optical computing, etc [37,38,44,47,63].
Reversible logic based circuits satisfy the property that there is one-to-one map-
ping between the input and the output vectors, that is for each input vector
there is a unique output vector and vice-versa. Conservative logic is a logic fam-
ily which exhibit the property that there are equal number of 1s in the outputs
as in the inputs. Conservative logic may or may not be in reversible in nature.
Conservative logic is called reversible conservative logic when there is a one-to-
one mapping between the input and the output vectors along with the property
that there are equal number of 1s in the outputs as in the inputs. Conservative
logic circuits are not considered reversible, if one-to-one mapping between the
input and the output vectors is not preserved.

Researchers have proved that if the computation is performed in a irreversible
manner each bit of information lost will produce kT ln2 Joules of heat energy [31].
From thermodynamic point of view, in order to avoid this limit, Bennett showed
that kT ln2 energy dissipation would not occur, if a computation is carried out in
a reversible way [5]. Thus, from thermodynamic considerations, a firm lower limit
on dissipation of Ediss = kT ln2 ≈ 18meV (in room-temperature environment)
is a necessity for conventional (irreversible) logic, even if reliability issues could
be ignored. Reversible logic can be useful to design non-dissipative circuits if the
physical implementation of the logic is also physically reversible. CMOS cannot
be considered as a practical implementation platform as CMOS is not physically
reversible. In modern CMOS technology, voltage-coded logic signals have an
energy of Esig = (1/2)CV 2, and whenever the node voltage is changed, it leads
to dissipation of this energy and is order of magnitude higher than the kT ln2
factor. In contrast, there are emerging nanotechnologies such as Quantum Dot
Cellular automata (QCA) computing, Optical Computing, and Superconductor
Flux Logic (SFL) family, etc., where the energy dissipated due to information
destruction will be a significant factor of the overall heat dissipation of the
system [4,13,19,30,55,56,58]. Thus, one of the primary motivations for adopting
reversible logic lies in the fact that it can provide a logic design methodology
for designing ultra-low power circuits beyond kT ln2 limit for those emerging
nanotechnologies in which the energy dissipated due to information destruction
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will be a significant factor of the overall heat dissipation. For example, in new
Superconductor Flux Logic (SFL) family based on nSQUID gates, the energy
dissipation in conventional logically irreversible architectures is close to few kT
ln2 per logic operation. By employing reversible logic, the energy dissipation per
nSQUID gate per bit measured, at 4 K temperature is below the thermodynamic
threshold limit of kT ln2 [55]. Therefore, reversible logic is being investigated for
its promising applications in power-efficient nanocomputing [17,32,35].

Further, quantum dot cellular automata (QCA) is one of the emerging field
coupled nanotechnologies in which it is possible to implement reversible logic
gates [19,37,38]. QCA makes it possible to achieve circuit densities and clock
frequencies beyond the limits of existing CMOS technology [70,71]. The logic
states of 1 and 0 are represented by the position of the electrons inside the QCA
cell as illustrated in Fig. 2(b). Thus, when the bit is flipped from 1 to 0 there is no
actual discharging of the capacitor as in conventional CMOS. Hence, QCA does
not have to dissipate all its signal energy during transition. Further, propagation
of the polarization from one cell to another is because of interaction of electrons
in adjacent QCA cells. As there is no movement of electrons from one QCA
cell to the other, hence there is no current flow. Thus, QCA has no dissipation
in signal propagation. Therefore, QCA has significant advantage compared to
CMOS technology in terms of power dissipation. Further in contrast to CMOS,
the cells in QCA are connected to 4 clocking zones, each lagging behind by 90 ◦

in phase. QCA clocking helps in the successive transfer of information from one
clock zone to the next [25,34]. Therefore, we have information flow from the
input to the output in a pipelined fashion. Thus, QCA cells are inherently suit-
able for pipeline and systolic designs [15]. QCA computing can be implemented
in semiconductor, molecular and magnetic platforms. Researchers are currently
targeting magnetic and molecular QCA, several smaller circuits in magnetic and
molecular QCA have been fabricated and tested [3,7,26,33,52,53]. Theoretical
studies have also shown that molecular QCA can operate at room temperature
at THz of speed [36].

Several works can be found in the literature for QCA design such as adders,
multipliers, shifters, memories, FPGA, synthesis etc. [9,10,24,28,45,64,73,76].
Due to high error rates in nano-scale manufacturing, the major goal in QCA and
other nanotechnologies is to have devices with reduced error rates [37]. In the
manufacturing process for QCA, defects can occur in the synthesis and depo-
sition phases. However, defects are more likely to occur during the deposition
phase [62].

In this work, we propose the design of testable sequential circuits based on
conservative logic gates. It has shown in [61] that the combinational circuits
based on conservative logic gates outperform all the circuits implemented using
classical gates in the area of testing. Further, any combinational circuit based on
conservative logic gates can be tested for classical unidirectional stuck-at faults
using only two test vectors. The two test vectors are all 1s, and all 0s [61]. This is
because whenever there are unidirectional faults in combinational conservative
logic circuits, the number of 1s in the inputs will differ from the number of 1s in
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the outputs. Thus for unidirectional stuck-at faults in conservative logic circuits,
counting the number of 1s in the inputs and the outputs would be the fault
detection scheme. The feedback in sequential circuits makes them untestable by
all 0s and all 1s test vectors. Moreover, in reversible logic fanout is not allowed.
Hence, we propose a technique that will take care of the fanout at the output of
the reversible latches and can also disrupt the feedback to make them suitable
for testing by only two test vectors, all 0s and all 1s. In other words, circuits will
have feedback while executing in the normal mode. However, in order to detect
faults in the test mode, our proposed technique will disrupt feedback to make
conservative reversible latches testable as combinational circuits. The proposed
technique is extended towards the design of two vectors testable master-slave
flip-flops, double edge triggered flip-flops, asynchronous set/reset D latch, D
flip-flop and counters. Thus, our work is significant because we are providing the
design of reversible sequential circuits completely testable for any unidirectional
stuck-at faults by only two test vectors. The reversible design of the double edge
triggered flip-flop, ring counter and Johnson counter are proposed for the first
time in literature.

Field coupled quantum dot cellular automata (QCA) computing is based on
majority voting, hence the designs based on conservative logic will be completely
different from those based on conventional CMOS. Single missing/additional cell
defects are prominent permanent defects in QCA circuits. We implemented the
Fredkin gate in the QCA technology and observed that all 0s and all 1s test
vectors cannot provide 100 % fault coverage for single missing/additional cell
defect in the QCA layout of the Fredkin gate. Thus, to have the 100 % fault
coverage for single missing/additional cell defect by all 0s and all 1s test vectors,
we identified the QCA devices in the QCA layout of the Fredkin gate that can
be replaced with fault tolerant components to provide the 100 % fault coverage.
Further, while designing a QCA sequential circuit, the designer may sometimes
prefer to sacrifice the reversibility to save the number of QCA cells while keeping
the test strategy to be the same, that is the design can still be tested by two
test vectors. Thus, we also propose a new conservative logic gate called Multi-
plexer Conservative QCA gate (MX-cqca) which is not reversible in nature but
has similar properties as the Fredkin gate of working as 2:1 multiplexer. The
proposed MX-cqca gate surpasses the Fredkin gate in terms of complexity(the
number of majority voter), speed and area. MX-cqca can implement the multi-
plexer function with 1 less majority gate than the Fredkin gate; it also requires
a smaller area and fewer QCA cells in QCA layout. The design and verification
of the QCA layouts were performed using the QCADesigner and HDLQ tools.

The chapter is organized as follows: Sect. 2 presents the background on con-
servative logic, the basics of QCA computing, such as QCA logic devices and
QCA clocking, related work etc.; Sect. 3 presents design of testable reversible
latches; Sect. 4 describes design of testable reversible master-slave flip-flops;
Sect. 5 presents design of testable reversible double edge triggered flip-flop; Sect. 6
shows the design of testable reversible complex sequential circuits; Sect. 7 dis-
cusses the application of the proposed two vectors, all 0s and all 1s, testing
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approach to QCA computing; Sect. 8 presents the proposed multiplexer conserv-
ative QCA gate; Sect. 9 discusses design methodology for non-reversible testable
design based on MX-cqca gate; and Sect. 10 provides some discussions and
conclusions.

2 Background

A conservative logic gate is a multiple-output logic element in which the number
of 1s at the inputs is equal to that of the corresponding outputs. According to
[18,61], a conservative logic circuit can be considered as a directed graph whose
nodes are conservative logic gates, and the edges are wires of arbitrary lengths.
The fanout at the output is not allowed in conservative logic circuits. A con-
servative logic network can be reversible in nature if the one-to-one mapping is
maintained between the inputs and the outputs, while it will be irreversible
in nature if one-to-one mapping is not preserved. Researchers in [27,60,61]
have proved that: (i) in the event of unidirectional stuck-at-faults in a conserva-
tive logic network, either the number of 1s in its output set will differ from the
number of 1s in its input set, or the output set is correct; (ii) in a conservative
logic network the two vector test set, all 1s and all 0s, provide 100 % coverage for
unidirectional stuck-at faults. Any stuck-at-1 fault in the conservative logic cir-
cuit can be detected by setting all inputs to 0s followed by subsequent checking
of the outputs for the presence of any 1s. Any stuck-at-0 faults can be detected
by setting all inputs to 1s followed by subsequent checking of outputs for the
presence of any 0s. The comprehensive proofs can be referred in [27,60,61].

2.1 Conservative Reversible Fredkin Gate

The Fredkin gate is a popularly used reversible conservative logic gate, first
proposed by Fredkin and Toffoli in [18]. The Fredkin gate shown in Fig. 1(a) can
be described as a mapping (c, i0, i1) to (o0 = c, o1 = c′i0 + ci1,o2 = ci0 + c′i1),
where c, i0, i1 are the inputs and o0, o1 and o2 are the outputs, respectively.
Table 1 shows the truth table for the Fredkin gate which demonstrates that
Fredkin gate is reversible and conservative in nature, that is, it has unique input
and output mapping and also has the same number of 1s in the outputs as in
the inputs. Fredkin gate is also called as controlled swap gate as it can swap two
input bits i0, i1 when c0 = 1. The controlled swap operation of the Fredkin gate
is illustrated in Fig. 1(b), (c).

2.2 Basics of QCA Computing

In this work, the conservative logic gates are implemented in the QCA nanotech-
nology, thus we are also providing the introductory material on QCA computing.
A QCA cell is a coupled dot system in which four dots are at the vertices of a
square. The cell has two extra electrons that occupy the diagonals within the
cell due to electrostatic repulsion. The cell polarization P measures the charge
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(a) Fredkin gate (b) Fredkin gate when C=0

(c) Fredkin gate when C=1

Fig. 1. Fredkin gate and its working mode

Table 1. Truth table for Fredkin gate

c i0 i1 o0 o1 o2

0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 1 0
1 1 0 1 0 1
1 1 1 1 1 1

distribution along diagonal axes and is given by Eq. 1 (here Pi denotes the elec-
tronic charge at dot i). When electrons are in dots 1 and 3, P = −1 (Logic ‘0’)
and when electrons in dots 2 and 4, P = +1 (Logic ‘1’) [70]. Figure 2(a) and (b)
illustrate the 4 quantum dots in a QCA cell, and the implementation of logic ‘0’
and logic ‘1’ in a QCA cell, respectively.

P =
(P2 + P4) − (P1 + P3)
P1 + P2 + P3 + P4

(1)

The basic QCA device is the majority voter (MV) or majority gate, which
is represented as Y = X1X2 + X2X3 + X1X3, where Y is the majority of the
inputs X1, X2 and X3. Figure 3(a) shows the majority voter. The majority voter
can be made to work as an AND gate or as an OR gate, by setting one of the
inputs as ‘0’ and ‘1’, respectively (For example, if X3 = 0 we will get Y = X1X2.
Similarly if X3 = 1, we will get Y = X1 + X2). Another important gate in
QCA is the inverter, which is formed when a QCA cell, say cell-1 is placed 45 ◦

to another QCA cell, for example cell-0, cell-1 gets the inverse value of cell-0.
There can be many ways of designing the QCA inverter, one of which is shown
in Fig. 3(b). In QCA computing, signal transfer is made through wires that
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(a) QCA 4 Dots (b) QCA cell working as logic ’1’ and logic ’0’

Fig. 2. QCA cell and logic operation

are of two types (i) Binary wire, (ii) Inverter chain. The electrons in adjacent
QCA cells interact with each other resulting in propagation of the polarization
from one cell to another. Thus, a QCA wire can be formed by arranging the
QCA cells in a series in which all the neighboring cells will get the polarization
of the driver cell (input). The binary wire is shown in Fig. 4(a). Two wires in
QCA can cross without interaction. This is because QCA provides an inverter
chain of QCA cells, in which the dots in each cell are rotated by 45 ◦ (This is
not the same as in QCA inverter). Each cell in this arrangement has opposite
polarization of their neighbors as they interact inversely. The inverter chain is
shown in Fig. 4(b). In QCA, when a binary wire crosses the inverter chain, there
is no interaction between the two; hence the signals in the inverter chain and
binary wire can pass over each other. In QCA computing, the clock helps in
the synchronization of circuits and provides the power required for functionality.
QCA clocking consists of four phases: switch, hold, release and relax, as shown
in Fig. 5 [25,34]. During the switch phase, the barriers are raised and the cells
become polarized, depending on the state of its adjacent cell. The states of
the cells are fixed during this stage. During the hold phase, the barriers are
maintained at a high value. This helps the outputs to drive the inputs of the
next stage, which is in the switching phase. In the release phase, the barriers
are lowered and the cells are allowed to relax to an unpolarized state. During
the relaxed phase, the cells remain in an unpolarized neutral state. The cells in
QCA are connected to 4 clocking zones, each lagging behind by 90 ◦ in phase.
QCA clocking helps in the successive transfer of information from one clock zone
to the next. Therefore, we have information flow from the input to the output
in a pipelined fashion [1].

2.3 Related Work

The research on reversible logic is expanding towards both design and synthe-
sis. In the synthesis of reversible logic circuits there has been several inter-
esting attempts in the literature such as in [22,40,51,59,75]. The researchers
have addressed the optimization of reversible logic circuits from the perspec-
tive of quantum cost and the number of garbage outputs. Recently, in [20,21]
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(a) Majority voter (b) Inverter

Fig. 3. QCA majority voter (MV) and inverter devices

(a) Binary wire

(b) Inverter chain

Fig. 4. QCA binary wire and inverter chain

Fig. 5. QCA 4 phase clocking

interesting contributions are made towards deriving exact minimal elementary
quantum gate realization of reversible combinational circuits. Any nanotechnol-
ogy having applications of reversible logic such as nano-CMOS devices, NMR
based quantum computing, or low power molecular QCA computing, all are sus-
ceptible to high device error rates. This attracted the attention of researchers
towards testing of reversible logic circuits. In [48], it has been shown that for
reversible logic circuits, the test set that detects all single stuck-at faults can also
detect multiple stuck-at faults. In [50], four fault models for reversible circuits,
viz., single missing gate fault, the repeated-gate fault, the multiple missing gate
fault and the partial missing-gate fault are proposed based on ion-trap quantum
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Fig. 6. Information flow in a QCA wire

computing at logical level. In [78], a new fault model called crosspoint fault
model is proposed along with the ATPG method. In [54], a universal test set is
proposed for detection of missing-gate faults in reversible circuits. In [8], a DFT
methodology for detecting bridging faults in reversible logic circuits is proposed.
Recently, the design of reversible finite field arithmetic circuits with error detec-
tion is also proposed [41]. An online testing methodology for reversible circuits
using a combination of R1 gate along with R2 gate (a 4*4 Feynman Gate) is pro-
posed in [72] while in [39] an automatic conversion of any given reversible circuit
into an online testable circuit that can detect online the single-bit errors, includ-
ing soft errors in the logic blocks is presented. The online testing methodology of
reversible logic circuits is also addressed in [14]. In our recent work we addressed
the concurrent testing of single missing faults in QCA circuits based on reversible
logic [65,66]. With respect to the work on design of reversible sequential circuits,
various interesting contributions are made in which the designs are optimized
in terms of various parameters such as the number of reversible gates, garbage
outputs, quantum cost, delay etc. [11,18,39,43,57,67,69].

To the best of our knowledge the offline testing of faults in reversible sequen-
tial circuits is not addressed in the literature. In this work, we present the designs
of reversible sequential circuits that can be tested by using only two test vectors,
all 0s and all 1s for any unidirectional stuck-at-faults. Further, the approach
of fault testing based on conservative logic is extended towards the design of
non-reversible sequential circuits based on a new conservative logic gate called
multiplexer conservative QCA gate (Mx-cqca).
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(a) Fredkin gate based
D latch

(b) Fredkin gate based D latch with control signals C1
and C2

(c) Fredkin gate based D Latch in normal mode: C1=0
and C2=1

(d) Fredkin gate based D latch in test mode for stuck-
at-0 fault : C1=1 and C2=1

(e) Fredkin gate based D latch in test mode for stuck-
at-1 fault: C1=0 and C2=0

Fig. 7. Design of testable reversible D latch using conservative Fredkin gate

3 Design of Testable Reversible Latches

The characteristic equation of the D latch can be written as Q+ = D ·E+ Ē ·Q.
In the proposed work, E (Enable) refers to the clock and is used interchangeably
in place of clock. When the enable signal (clock) is 1, the value of the input D is
reflected at the output that is Q+ = D. While, when E= 0 the latch maintains
its previous state, that is Q+ = Q. The reversible Fredkin gate has two of
its outputs working as 2:1 MUxes, thus the characteristic equation of the D
latch can be mapped to the Fredkin gate (F). Figure 7(a) shows the realization
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of the reversible D latch using the Fredkin gate. But fan-out is not allowed
in conservative reversible logic. Moreover, the design cannot be tested by two
input vectors all 0s and all 1s because of feedback, as the output Q would latch
1 when the inputs are toggled from all 1s to all 0s and could be misinterpreted
as stuck-at-1 fault.

In this work, we propose to cascade another Fredkin gate to output Q as
shown in Fig. 7(b). The design has two control signals, C1 and C2. The design
can work in two modes: (a) normal mode; (b) test mode. Normal Mode: The
normal mode is shown in Fig. 7(c) in which we will have C1C2 = 01 and the
design will work as a D latch without any fanout problem. Test Mode (Disrupt
the Feedback): In test mode , when C1C2 = 00 as shown in Fig. 7(d) the design
will be testable with all 0s input vectors, as output T1 will become 0 resulting
in the testable design with all 0s input vectors. Thus any stuck-at-1 fault can
be detected. When C1C2 = 11 as shown in Fig. 7(e) the output T1 will become
1 and the design will become testable with all 1s input vectors for any stuck-
at-0 fault. It can seen from the illustration that C1 and C2 will disrupt the
feedback in test mode, and in normal mode will take care of the fan-out. Thus
our proposed design works as a reversible D latch and can be tested with only
two test vectors, all 0s and all 1s, for any stuck-at fault by utilizing the inherent
property of conservative reversible logic.

(a) Fredkin gate based negative enable D latch with
control signals C1 and C2

(b) Fredkin gate based negative enable D latch in nor-
mal mode

Fig. 8. Design of testable negative enable D latch using conservative Fredkin gate

3.1 Design of Testable Negative Enable Reversible D Latch

A negative enable reversible D latch will pass the input D to the output Q when
E = 0; otherwise maintains the same state. The characteristic equation of the
negative enable D latch is Q+ = D · Ē + E · Q. This characteristic equation of
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the negative enable reversible D latch can be mapped to the 2nd output of the
Fredkin gate as shown in Fig. 8(a). The second Fredkin gate in the design take
cares of the fanout. The second Fredkin gate in the design also makes the design
testable by two test vectors all 0s and all 1s by breaking the feedback based on
control signals C1 and C2, as illustrated above for positive enable reversible D
latch. The working of the testable negative enable reversible D latch in normal
mode is illustrated in Fig. 8(b). The negative enable D latch is helpful in the
design of testable reversible master-slave flip-flops. This is because it can work
as a slave latch in the testable reversible master-slave flip-flops in which no clock
inversion is required. The details of which are discussed in the section describing
reversible master-slave flip-flops.

(a) Fredkin gate based T latch with control signals C1, C2 and C3, where
C3 helps in realizing the AND function while C1 and C2 operates the test
mode as well as the normal mode

(b) Fredkin gate based T latch in normal mode: C1=0 and C2=1

(c) Fredkin gate based T Latch in test mode for detecting any stuck-at-0
fault: C1=1 and C2=1

(d) Fredkin gate based T Latch in test mode for detecting any stuck-at-1
fault: C1=0 and C2=0

Fig. 9. Design of testable reversible T Latch using conservative Fredkin gate
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3.2 Design of Testable Reversible T Latch

The characteristic equation of the T latch can be written as Q+ = (T ·Q) ·E +
Ē · Q. But the same result can also be obtained from Q+ = (T · E) ⊕ Q. The
T(toggle) latch is a complementing latch which complements its value when
T = 1, that is when T = 1 and E = 1 we have Q+ = Q′. When T = 0, the T latch
maintains its state and we have no change in the output. Figure 9(a) shows the
proposed design of reversible testable T latch with C1, C2, and C3 as control
signals. The control signal C3 helps to realize the reversible AND function as
we can generate T · E when C3 = 0, at one of the outputs of the Fredkin gate
as illustrated in Fig. 9(b). C1 and C2 are the main control signals that help
in breaking the feedback to make the design testable as well as in enabling
the normal mode of operation. In normal mode, as illustrated in Fig. 9(b), the
values of the control signals will be C1 = 0 and C2 = 1 thus helping in realizing
the function (T · E) ⊕ Q. In test mode, when C1 = 0 and C2 = 0 as shown in
Fig. 9(d) it will break the feedback and test the design with all 0s test vector
for any stuck-at-1 fault, while when C1 = 1 and C2 = 1 as shown in Fig. 9(c) it
will break the feedback and helps in testing the design with all 1s test vector
for any stuck-at-0 fault. The other types of reversible testable latches based
on conservative reversible logic such as the JK latch and the SR latch can be
designed similarly, thus are not discussed in this work.

3.3 Design of Testable Asynchronous Set/Reset D Latch

The design of the asynchronously set/reset D latch is shown in Fig. 10(a).
The design has 3 Fredkin gates. We can observe that the first Fredkin gate
maps the D latch characteristic equation, while the second and the third Fred-
kin gates take care of the fan-out and also help in asynchronous set/reset of
the output Q. The design has two control inputs C1 and C2. When C1 = 0 and
C2 = 1, the design works in normal mode implementing the D latch characteris-
tic equation. When C1 = 0 and C2 = 0, the second and third Fredkin gates will
reset the output Q to 0. When C1 = 1 and C2 = 1, the design will be set to
Q = 1. Thus, the control inputs help the design to work in various modes. But
the design shown in Fig. 10(a) has fan-out of more than one in C1 and C2 inputs
which is prohibited in reversible logic. Thus, a modified design of the D latch
with asynchronous set/reset capability in which there is no fan-out is shown in
Fig. 10(b). There is a special characteristic of the reversible D latch design shown
in Fig. 10(b). The design shown in Fig. 10(b) has the control signals C1 and C2
which helps in disrupting the feedback. For example, the feedback is disrupted
when C1C2 = 00; the feedback output Q resets to 0 which makes the reversible
D latch testable with all 0s test vector for any stuck-at-1 fault. Similarly, when
C1C2 = 11 the output Q sets to 1 and the design becomes testable with all 1s
test vector for any stuck-at-0 fault. Thus, the proposed reversible D latch design
with asynchronous set/reset significantly reduces the testing cost. Thus if we
design asynchronous set/reset D latch only with Fredkin gates we can have the
significant testing benefits.
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(a) Design of testable Fredkin gate based asynchronous set/reset
D Latch with fanout

(b) Design of testable Fredkin gate based reversible asynchronous
set/reset D latch without fanout. For C1C2=01, the asynchronous
set/reset D latch operates in normal mode. For C1C2=00, the asyn-
chronous set/reset D latch operates in test mode for detecting any
stuck-at-1 faults. For C1C2=11, the asynchronous set/reset D latch
operates in test mode for detecting any stuck-at-0 faults.

Fig. 10. Design of testable reversible asynchronous set/reset D latch

4 Design of Testable Master-Slave Flip-Flops

In the existing literature, the master-slave strategy of using one latch as a master
and the other latch as a slave is used to design the reversible flip-flops [11,57,
68,69]. In this work, we have proposed the design of testable flip-flops using the
master-slave strategy that can be detected for any stuck-at faults using only two
test vectors all 0s and all 1s. Figure 11(a) shows the design of the master-slave
D flip-flop in which we have used positive enable Fredkin gate based testable D
latch shown in Fig. 7(b) as the master latch, while the slave latch is designed
from the negative enable Fredkin gate based testable D latch shown earlier in
Fig. 8(a). The testable reversible D flip-flops has four control signals mC1, mC2,
sC1 and sC2. mC1 and mC2 control the modes for the master latch, while sC1
and sC2 control the modes for the slave latch. In the normal mode, when the
design is working as a master-slave flip-flop the values of the control signals will
be mC1 = 0 and mC2 = 1, sC1 = 0 and sC2 = 1 (similar to values of the control
signals C1 and C2 earlier described for the testable D latches).
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(a) Fredkin gate based testable reversible master-slave D flip-flop

(b) Fredkin gate based testable reversible master-slave T flip-flop

Fig. 11. Fredkin gate based testable reversible master-slave flip-flops

In the test mode:

1. to make the design testable with all 0s input vectors for any stuck-at-1 fault,
the values of the control signals will be mC1 = 0 and mC2 = 0, sC1 = 0 and
sC2 = 0. This will produce the outputs mT1 and sT1 as 0 which results in
disrupting the feedback and the design becomes testable with all 0s input
vectors for any stuck-at-1 fault.

2. to make the design testable with all 1s input vectors for any stuck-at-0 fault,
the values of the control signals will be mC1 = 1 and mC2 = 1, sC1 = 1 and
sC2 = 1. This will result in outputs mT1 and st1 to have the value of 1,
disrupting the feedback, and resulting in the design testable with all 1s input
vectors for any stuck-at-0 fault.

The other type of master-slave flip-flops such as the testable master-slave T
flip-flop, testable master-slave JK flip-flop and testable master-slave SR flip-flop
can be designed similarly in which master is designed using the positive enable
corresponding latch, while the slave is designed using the negative enable Fredkin
gate based D latch. For example, as illustrated in Fig. 11(b), in the design of
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Fig. 12. Fredkin gate based testable reversible asynchronous set/reset master-slave D
flip-flop

master-slave T flip-flop the master is designed using the positive enable T latch,
while the slave is designed with the negative enable D latch.

The reversible design of the master-slave D flip-flop with asynchronous set/
reset is shown in Fig. 12. The design contains positive enable testable D latch
shown in Fig. 7(b) as the master latch and negative enable asynchronous set/reset
D latch shown in Fig. 10(b) as the slave latch.

5 Design of Testable Reversible Double Edge
Triggered(DET) Flip-Flops

The double edge triggered flip-flop is a computing circuit that sample and store
the input data at both the edges, that is at both the rising and the falling edge
of the clock. The master-slave strategy is the most popular way of designing
the flip flop. In the proposed work E (Enable) refers to the clock and is used
interchangeably in place of clock. In the negative edge triggered master-slave
flip-flop when E = 1 (the clock is high), the master latch passes the input data
while the slave latch maintains the previous state. When E = 0 (the clock is low),
the master latch is in the storage state while the slave latch passes the output
of the master latch to its output. Thus, the flip-flop does not sample the data
at both the clock levels and waits for the next rising edge of the clock to latch
the data at the master latch.

In order to overcome the above problem, researchers have introduced the
concept of double edge triggered (DET) flip-flops which sample the data at both
the edges. Thus DET flip-flops can receive and sample two data values in a clock
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period thus frequency of the clock can be reduced to half of the master-slave
flip flop while maintaining the same data rate. The half frequency operations
make the DET flip flops very beneficial for low power computing as frequency
is proportional to power consumption in a circuit. The DET flip-flop is designed
by connecting the two latches, viz., the positive enable and the negative enable
in parallel rather than in series. The conventional design of the DET flip-flop
is illustrated in Fig. 13(a) [49]. The 2:1 MUX at the output transfer the output
from one of these latches which is in the storage state (holding its previous state).
The equivalent testable reversible design of the DET flip flop is proposed in this
work and is shown in Fig. 13(b).

In the proposed design of testable reversible DET flip-flop, the positive enable
testable reversible D latch and the negative enable testable reversible D latch
are arranged in parallel. The Fredkin gates labeled as 1 and 2 form the positive

(a) Conventional DET flip-flop

(b) Fredkin gate based DET flip-flop

Fig. 13. Fredkin gate based double edge triggered (DET) flip-flop
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(a) Normal mode

(b) Test mode for stuck-at-1 fault

(c) Test mode for stuck-at-0 fault

Fig. 14. Working of Fredkin gate based double edge triggered flip-flop
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enable testable D latch while the Fredkin gates labeled as 3 and 4 form the
negative enable testable D latch. In reversible logic fanout is not allowed so the
Fredkin gate labeled as 1 is used to copy the input signal D. The Fredkin gate
labeled as 6 works as the 2:1 MUX and transfer the output from one of these
testable latches (negative enable D latch or the positive enable D latch) that is in
the storage state (is holding its previous state) to the output Q. In the proposed
design of testable reversible DET flip-flop pC1 and pC2 are the control signals of
the testable positive enable D latch, while nC1 and nC2 are the control signals
of the testable negative enable D latch. Depending on the values of the pC1,
pC2, nC1 and nC2 the testable DET flip-flops works either in normal mode or
in the testing mode.

1. Normal Mode: The normal mode of the DET flip-flop is illustrated in Fig.14(a)
in which the pC1 = 0, pC2 = 1, nC1 = 0 and nC2 = 1. The pC1 = 0, pC2 = 1
helps in copying the output of the positive enable D latch thus avoiding the
fanout while the nC1 = 0 and nC2 = 1 helps in copying the output of the
negative enable D latch thus avoiding the fanout.

2. Test Mode: There will be two test modes:
(a) All 1s Test Vector : This mode is illustrated in Fig. 14(c) in which control

signals will have values as pC1 = 1, pC2 = 1, nC1 = 1 and nC2 = 1. The
pC1 = 1 and pC2 = 1 help in breaking the feedback of the positive enable
D latch, while the nC1 = 1 and nC2 = 1 help in breaking the feedback
of the negative enable D latch. This makes the design testable by all 1s
test vector for any stuck-at-0 fault.

(b) All 0s Test Vector : This mode is illustrated in Fig. 14(b) in which the
control signals will have values as pC1 = 0, pC2 = 0, nC1 = 0 and nC2 = 0.
The pC1 = 0 and pC2 = 0 help in breaking the feedback of the positive
enable D latch while the nC1 = 0 and nC2 = 0 help in breaking the feed-
back of the negative enable D latch. This makes the design testable by
all 0s test vector for any stuck-at-1 fault.

6 Design of Testable Reversible Complex Sequential
Circuits

The set of sequential building blocks proposed in this work can be used to build
complex sequential circuits that provide the capability of testing a sequential
circuit using two test vectors. The proposed sequential building blocks can be
used to implement various types of sequential circuits such as shifters, sequence
detectors, counters and systolic circuits etc. We have illustrated the method with
examples of design of reversible ring counter and reversible Johnson counter using
the proposed sequential building blocks.

6.1 Design of Testable Reversible Ring Counter

A testable reversible ring counter can be designed by cascading reversible master
slave D flip-flops with asynchronous set/reset capability in which the output of
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the last flip-flop is connected to the first flip-flop. The design of n bit testable
reversible ring counter is illustrated in Fig. 15. In normal working mode, the ring
counter needs to be initialized by setting the first master-slave flip flop to 1,
while the remaining n-1 flip-flops need to be reset to 0. This will initialize the
counter to a state (10000 . . . 0)n. In Fig. 15, this is performed as follows:

sc1i and sc2i =

{
1 if i = 0
0 if 1 ≤ i ≤ n − 1

The above values of sc1i and sc2i where 0 ≤ i ≤ n − 1 asynchronously sets
the first testable reversible flip-flop to 1, while the n-1 testable reversible D flip-
flops are asynchronously reset to 0. Once the counter is initialized, the values of
sc1i and sc2i where 0 ≤ i ≤ n − 1 are changed:

sc1i and sc2i =
{

0 and 1 if 0 ≤ i ≤ n − 1

Thus, in the proposed reversible n bit ring counter 1 bit is circulated so the
state repeats every n clock cycles. For example, in a four bit testable reversible
counter, the possible states for Q0Q1Q2Q3 will be 1000, 0100, 0010, and 0001.

The test mode of the reversible ring counter can be defined as follows:

(a) All 1s Test Vector : In this mode, all the inputs along with sc1i and sc2i
where 0 ≤ i ≤ n− 1 are set to the value of 1 to detect any stuck-at-0 fault.

(b) All 0s Test Vector : In this mode, all the inputs along with sc1i and sc2i
where 0 ≤ i ≤ n − 1 are reset to the value of 0 to detect any stuck-at-1
fault.

6.2 Design of Testable Reversible Johnson Counter

A testable reversible Johnson counter can be designed by cascading reversible
master slave D flip-flops with asynchronous set/reset capability in which the Q’
output of the last flip-flop instead of Q is connected to the first flip-flop. The
design of n bit testable reversible Fig. 16. In normal working mode, the Johnson
counter needs to be initialized by reseting all n flip-flops. This will initialize the
counter to a state (00000 . . . 0)n. In Fig. 16, this is performed as follows:

sc1i and sc2i =
{

0 and 0 if 0 ≤ i ≤ n − 1

The above values of sc1i and sc2i where 0 ≤ i ≤ n− 1 asynchronously reset the
n testable reversible D flip-flops to 0. Once the counter is initialized, the values
of sc1i and sc2i where 0 ≤ i ≤ n − 1 are changed:

sc1i and sc2i =
{

0 and 1 if 0 ≤ i ≤ n − 1

Thus, the proposed reversible n bit Johnson counter produces a couting sequence
so the state repeats every 2n clock cycles. For example, in a four bit testable
reversible Johnson counter, the possible states for Q0Q1Q2Q3 will be 0000, 1000,
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Fig. 15. Design of testable reversible ring counter
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Fig. 16. Design of testable reversible Johnson counter



Reversible Logic Based Design and Test 155

1100, 1110, 1111, 0111, 0011, 0001. The test mode of the reversible Johnson
counter can be designed similar to the reversible ring counter as explained in the
above section.

Similar design methodologies can be proposed based on the example study
shown for testable reversible latches, flip-flops and counters to design other
complex sequential circuits such as shift registers, memory based on proposed
testable D flip-flop and reversible data path functional units.

7 Application of Two Vectors, All 0s and All 1s, Testing
Approach to QCA Computing

QCA computing provides a promising technology to implement reversible logic
gates. The QCA design of Fredkin gate is shown in Fig. 17 using the four-phase
clocking scheme, in which the clocking zone is shown by the number next to z
(z0 means clock 0 zone, z1 means clock 1 zone and so on). It can be seen that the
Fredkin gate has two level majority voter (MV) implementation, and it requires
6 MVs and 4 clocking zones for implementation. The number of clocking zones in
a QCA circuit represents the delay of the circuit (delay between the inputs and
the outputs). Higher the number of clocking zones, lower the operating speed of
the circuit [37].

Fig. 17. QCA Design of Fredkin Gate using the four-phase clocking scheme, in which
the clocking zone is shown by the number next to z (z0 means clock 0 zone, z1 means
clock 1 zone and so on)



156 H. Thapliyal et al.

Fig. 18. QCA Layout of Fredkin Gate. CW represents cross wire resulted from inter-
section of binary wire and inverter chain, MV represents majority voter

In QCA manufacturing, defects can occur during the synthesis and deposition
phases, although defects are most likely to take place during the deposition phase
[62]. Researchers assume that QCA cells have no manufacturing defect; in metal
QCA, faults occur due to cell misplacement. These defects can be characterized
as cell displacement, cell misalignment and cell omission [23]. Researchers have
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Table 2. Fault patterns in Fredkin gate

Input vector Fault free Fault patterns
1 2 3 4 5 6 7 8 9 10 11 12 13 14

a0 a0 a0 a0 a1 a1 a0 a0 a1 a2 a1 a1 a4 a2 a0 a2
a1 a1 a1 a1 a1 a1 a0 a1 a0 a1 a1 a1 a7 a3 a1 a3
a2 a2 a3 a2 a2 a3 a2 a0 a3 a2 a3 a3 a6 a0 a0 a2
a3 a3 a3 a3 a3 a3 a2 a1 a2 a1 a3 a3 a7 a1 a1 a3
a4 a4 a4 a5 a5 a5 a4 a4 a4 a4 a5 a4 a0 a4 a4 a4
a5 a6 a6 a7 a7 a7 a7 a6 a6 a6 a6 a6 a0 a6 a6 a6
a6 a5 a4 a4 a5 a4 a5 a5 a5 a5 a5 a5 a1 a5 a7 a5
a7 a7 a6 a6 a7 a6 a7 a7 a7 a7 a7 a7 a1 a7 a7 a7

Input vector Fault free Fault patterns
15 16 17 18 19 20 21 22 23 24 25 26 27 28

a0 a0 a0 a0 a1 a0 a2 a4 a4 a0 a0 a0 a0 a0 a0 a2
a1 a1 a1 a3 a0 a3 a3 a5 a1 a1 a1 a1 a0 a1 a1 a3
a2 a2 a2 a2 a3 a2 a0 a6 a6 a2 a2 a2 a2 a2 a2 a2
a3 a3 a3 a3 a2 a3 a1 a7 a3 a3 a1 a2 a2 a3 a3 a3
a4 a4 a5 a4 a6 a4 a6 a0 a4 a6 a4 a4 a4 a4 a6 a4
a5 a6 a7 a4 a4 a6 a6 a2 a0 a4 a6 a7 a6 a6 a6 a6
a6 a5 a5 a5 a7 a5 a7 a1 a5 a7 a7 a5 a5 a7 a7 a5
a7 a7 a7 a5 a5 a7 a7 a3 a1 a5 a7 a7 a7 a7 a7 a7

shown that molecular QCA cells are more susceptible to missing and additional
QCA cell defects [42]. The additional cell defect is because of the deposition of
an additional cell on the substrate. The missing cell defect is due to the missing
of a particular cell. Researchers have been addressing the design and test of
QCA circuits assuming the single missing/additional cell defect model. In [37],
reversible logic was proposed as a means to detect single missing/additional cell
defects. It was shown that reversible 1D array is C-testable. In [6], they address
the robust coplanar crossing in QCA, proving that wires having rotated cells are
thermally more stable.

In this section, we discuss how the QCA implementation of the Fredkin gate
can be tested by only two test vectors, all 0s and all 1s, for the offline testing of
any single missing/additional cell defect. The QCA layouts of the Fredkin gate
is shown in Fig. 18. In the proposed work, the QCA layout of the Fredkin gate is
converted into the corresponding hardware description language notations using
the HDLQ Verilog library [46]. The HDLQ design tool consists of a Verilog
HDL library of QCA devices, i.e., MV, INV, fan-out, Crosswire, L-shape wire
with fault injection capability. The HDLQ model of the QCA layout of the
Fredkin gate is shown in Fig. 19. In the Fig. 19, FO represents the fanout QCA
device, LSW represents the L-shape wire, INV represents the QCA inverter,
CW represents the crosswire, MV represents the majority voter. Thus it can
be seen that modeled QCA layout of the Fredkin gate has 4 FOs, 2 INVs, 5
CWs, 9 LSWs and 6 MVs. The HDLQ modeled design of the Fredkin gate is
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Fig. 19. Modeling of QCA Layout of Fredkin Gate. FO represents the fanout QCA
device, LSW represents the L-shape wire, INV represents the QCA inverter, CW rep-
resents the crosswire and MV represents the majority voter

simulated for the presence of all possible single missing/additional cell defect in
MVs (majority voters), INVs (Inverters), FOs (fanouts), Crosswires (CWs) and
L-shape wires (LSWs). The design is simulated using the Verilog HDL simulator
in the presence of faults to determine the corresponding outputs.

We conducted exhaustive testing of the HDLQ model of the Fredkin gate
with 8 input patterns in the presence of all possible single missing/additional
cell defect. Testing of the Fredkin gate generates 28 unique fault patterns at the
output, as shown in Table 2. In the fault patterns study shown in the Table,
ai is the 3 bit pattern with an equivalent decimal value of i. For example, a0
represents 000 (decimal 0) and a7 represents 111 (decimal 7). From fault tables
we can see that there are 10 fault patterns 5, 6, 13, 15, 18, 23, 24, 25, 26, 27
that will produce the correct outputs for input vectors a0 (all 0s) and a7 (all
1s) even when there is a fault. Thus two test vectors a0 and a7 can only provide
64.28 % fault coverage. Thus in order to give the test vectors a0 and a7 100 %
fault coverage we identified the logic devices in the HDLQ model of the Fredkin
gate which can be replaced by their fault-tolerant counterpart. This will give
the 100 % fault coverage for any single missing/additional cell defect to the two
test vectors all 0s and all 1s. We observed that fanouts (F02 and F03), inverters
(INV1 and INV2), crosswires (CW4 and CW2) and majority voters (MV1, MV3,
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MV4, MV5 and MV6) are devices in the QCA layout of the Fredkin gate that are
making the design untestable by all 0s and all 1s test vectors. This work focuses
on demonstrating the fault tolerant QCA circuits that provide ease of testability
as the proposed sequential building blocks can be tested using only two test
vectors. In the existing literature, several fault tolerant QCA components have
been proposed such as Majority voters (MVs), Inverters (INVs), Fanouts (FOs),
Crosswires (CWs) and L-shape wires (LSWs) [12,15,16,74]. Thus, these devices
can be replaced by their fault tolerant counterparts in the QCA layout of the
Fredkin gate to have the equivalent design that gives 100 % fault coverage to
test vectors all 1s and all 0s. The HDLQ model of the Fredkin gate QCA layout
having 100 % coverage for any single missing/additional cell defect to test vectors
all 0s and all 1s is shown in Fig. 20. In Fig. 20, the shaded devices represent their
fault tolerant counterparts. Thus, conservative logic QCA circuits based on our
proposed QCA layout of the Fredkin gate show in Fig. 20, can be tested by all
0s and all 1s test vectors for presence single missing/additional cell defects.

Fig. 20. QCA layout of the Fredkin gate testable with only all 0s and all 1s test vectors
for any single missing/additional cell defect (the shaded devices represent their fault
tolerant counterpart)
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8 Proposed Multiplexer Conservative QCA
Gate(MX-cqca)

For many of the designs, the designer could potentially be interested in using
the testing advantages of conservative logic but saving the number of QCA cells.
Thus, in this work we propose a new conservative logic gate that is conservative
in nature but is not reversible. The proposed conservative logic gate is called
multiplexer conservative QCA gate(MX-cqca) and has 3 inputs and 3 outputs.
Mx-cqca has one of its outputs working as a multiplexer that will help in mapping
the sequential circuits based on it, while the other two outputs work as AND and
OR gates, respectively. The mapping of the inputs to outputs of the MX-cqca
is: o0 = i0i1; o1 = i0i

′
1 + i1i2; o2 = i2 + i3, where io, i1 and i2 are the inputs and

oo, o1 and o2 are the outputs, respectively. Figure 21 shows the block diagram of
the MX-cqca gate. Table 3 shows the truth table of the MX-cqca gate. The table
verifies the gate’s conservative logic nature, i.e., the numbers of 1s in the inputs
is equal to the number of 1s in the outputs. Figures 22 and 23 show the QCA
design and layout of the proposed MX-cqca gate. From the QCA design, we can
observe that the proposed MX-cqca gate requires 4 clocking zones and 5 majority
gates for its QCA implementation. Table 4 shows the comparison between the
proposed MX-cqca gate and the Fredkin gate in terms of area and number of
QCA cells. The table illustrates that MX-cqca is better than the existing Fredkin
gate for implementing multiplexer-based designs. The MX-cqca gate requires 5
majority voters and 218 QCA cells with an area of 0.71 um2. Thus, it has 1 less
majority gate, 1 less inverter, 11 % less QCA cells and 5.4 % less area compared
to the Fredkin gate.

We also modeled the QCA layout of the MX-cqca gate using the HDLQ
Verilog library for performing the fault testing. The HDLQ model of the QCA
layout of the Fredkin gate is shown in Fig. 24. Thus it can be observe that
modeled QCA layout have 4 FOs, 1 INV, 5 CWs, 8 LSWs and 5 MVs. We
conducted exhaustive testing of the HDLQ model of the Mx-cqca gate with
8 input patterns in the presence of all possible single missing/additional cell
defects. Testing of the Mx-cqca gate generates 24 unique fault patterns at the
output, as shown in Table 5.

From fault tables we can see that there are 9 fault patterns 3, 7, 13, 17, 19,
20, 22, 23, 24 that will produce the correct outputs for test vectors a0 and a7 (all
0s and all 1s) even when there is fault. Thus two test vectors a0 and a7 can only
provide 62.5 % fault coverage. Thus in order to give the test vectors 100 % fault

Fig. 21. Proposed MX-cqca gate
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Table 3. Truth table of MX-cqca gate

i0 i1 i2 o0 o1 o2

0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 0 1
0 1 1 0 1 1
1 0 0 0 1 0
1 0 1 0 1 1
1 1 0 1 0 1
1 1 1 1 1 1

Fig. 22. QCA design of MX-cqca gate

coverage we identified the logic devices in the HDLQ model of the Mx-cqca gate
which can be replaced by their fault-tolerant counterpart to give the 100 % fault
coverage to two test vectors all 0s and all 1s, for any single missing/additional
cell defect. We observed that fanout (F03), inverter (INV1), crosswire (CW4)
and majority voters (MV1, MV2, MV3, MV4 and MV5) are devices in the QCA
layout of the Mx-cqca gate that are making the design untestable by all 0s and all
1s test vectors. In the existing literature, several fault tolerant QCA components
have been proposed such as Majority voters (MVs), Inverters (INVs), Fanouts
(FOs), Crosswires (CWs) and L-shape wires (LSWs) [12,15,16,74]. Thus, these
devices can be replaced by their fault tolerant counterparts to have the equivalent
design that gives 100 % fault coverage to test vectors, all 1s and all 0s, for any
single missing/additional cell defect. The HDLQ model of the QCA layout having
100 % coverage for single missing/additional cell defect by all 0s and all 1s test
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Fig. 23. QCA layout of MX-qca gate. CW represents cross wire resulted from inter-
section of binary wire and inverter chain, MV represents majority voter

vectors is shown in Fig. 25. The shaded devices in the Fig. 25 represent their
fault tolerant counterparts. Thus, conservative logic QCA circuits based on the
QCA layout of the Mx-cqca gate illustrated in Fig. 25, can be tested by all 0s
and all 1s test vectors for presence of single missing/additional cell defect.
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9 Design Methodology for Non-reversible Testable
Design Based on MX-cqca Gate

The proposed conservative logic gate ‘MX-cqca’ is useful in designing any major-
ity logic and multiplexer logic based testable non-reversible circuits. In the
existing literature 13 standard functions are proposed to represent all three-
variable Boolean functions [77]. These thirteen functions are widely used in

Table 4. A comparison of Fredkin and MX-cqca gates

Fredkin MX-cqca Improvement %
Mx-cqca to
Fredkin

Majority
voters

6 5 17

Inverters 2 1 50
Clk zones 4 4 –
Total cells 246 218 11.3
Area (L × W) 0.4812µm × 0.7698µm

= 0.37µm2
0.479µm × 0.721µm
= 0.35µm2

5.4

Fig. 24. Modeling of MX-qca gate QCA layout
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Table 5. Fault patterns in Mx-cqca gate

Input vector Fault free Fault patterns
1 2 3 4 5 6 7 8 9 10 11 12

a0 a0 a0 a1 a0 a0 a0 a2 a0 a4 a1 a0 a0 a1
a1 a1 a1 a1 a1 a3 a1 a3 a1 a5 a0 a1 a1 a0
a2 a1 a1 a0 a1 a1 a5 a1 a5 a5 a3 a1 a3 a1
a3 a3 a3 a3 a3 a1 a7 a3 a7 a7 a1 a1 a1 a3
a4 a2 a6 a3 a0 a3 a2 a2 a2 a2 a3 a2 a2 a3
a5 a3 a7 a3 a1 a5 a3 a3 a3 a3 a2 a3 a3 a2
a6 a5 a1 a4 a7 a5 a1 a5 a5 a5 a7 a5 a7 a5
a7 a7 a3 a7 a7 a6 a3 a7 a7 a7 a3 a5 a5 a7

Input vector Fault free Fault patterns
13 14 15 16 17 18 19 20 21 22 23 24

a0 a0 a0 a2 a1 a2 a0 a0 a0 a0 a2 a0 a0 a0
a1 a1 a1 a3 a1 a1 a0 a0 a1 a1 a3 a3 a1 a1
a2 a1 a1 a1 a1 a1 a1 a1 a1 a3 a3 a1 a1 a1
a3 a3 a3 a3 a3 a3 a3 a2 a3 a3 a3 a3 a3 a3
a4 a2 a2 a0 a2 a2 a2 a2 a2 a2 a0 a2 a0 a0
a5 a3 a1 a1 a3 a1 a2 a2 a3 a3 a1 a3 a1 a1
a6 a5 a7 a5 a4 a5 a5 a5 a7 a7 a7 a5 a5 a5
a7 a7 a7 a7 a7 a7 a7 a6 a7 a7 a7 a7 a7 a7

QCA and majority logic based synthesis [37,38]. The 13 standard functions
and their mapping based on MX-cqca gate is shown in Table 6. Thus based
on Table 6 any three variable Boolean functions can be implemented based on
MX-cqca gate. In Table 6, the complement of a input variable is used which
can be easily generated using the MX-cqca as shown in Fig. 26. In order to
design any complex function based on MX-cqca, the input function can be
decomposed into the Boolean network in which every node has atmost three
variables. Next, each node of three variables can be mapped to Mx-cqca gates
based on Table 6. Finally, as fanout is not allowed in conservative logic, the
nodes having fanout of more than one needs to be identified. At these identified
nodes, MX-cqca gates need to be used to form the copy of the signals which
have fanout of more than one. Figure 26 shows the use of the Mx-cqca gate to
copy a signal (input i1 is copied to outputs o0 and o2 of the MX-cqca gate).
The proposed design methodology can be summarized in the following three
steps:

– Step 1: The input function is decomposed into the Boolean network in which
every node has atmost three variables. This step is similar to the design
methodology proposed in [29].
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Fig. 25. QCA layout of Mx-cqca gate testable with only all 0s and all 1s test vectors
for any single missing/additional cell defect (the shaded devices represent their fault
tolerant counterpart)

Fig. 26. MX-cqca gate for fanout and inversion of input B

– Step 2: The three variable functions generated at every node in Step 1 are
mapped to their MX-cqca based implementation based on the thirteen stan-
dard functions. The MX-cqca based implementation of thirteen standard func-
tions is shown in Table 6.

– Step 3: The nodes which have fanout of more than one are identified, and
MX-cqca gates are used to form the copy of the signals which have fanout of
more than one.
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Table 6. MX-cqca based implementation of standard functions

No. Function Majority expression MX-cqca Implementation

1 F = ABC P = MXcqca(P =
MXcqca(A,B, 0), C, 0)

2 F = AB P = MXcqca(A,B, 0)

3 F = ABC+AB̄C̄ Q = MXcqca(Q =
MXcqca(A,C, 0), B, P =
MXcqca(A,C, 0))

4 F = ABC+ĀB̄C̄ Q = MXcqca(P =
MXcqca(A,C, 0), B̄, P =
MXcqca(Ā, C̄, 0))

5 F = AB + BC P = MXcqca(B,R =
MXcqca(0, A, C), 0)

6 F = AB + ĀB̄C Q = MXcqca(A, B̄, P =
MXcqca(Ā, C, 0))

7 F = ABC +
ĀBC̄ + AB̄C̄

Q = MXcqca(P =
MXcqca(Q =
MXcqca(1, C, 0), A,R =
MXcqca(1, C, 0)), B,Q =
MXcqca(Q =
MXcqca(1, C, 0), A,R =
MXcqca(1, C, 0)))

8 F = A P = MXcqca(A, 1, 0)



Reversible Logic Based Design and Test 167

Table 6. (Continued)

9 F =
AB + BC + AC

R = MXcqca(0, P =
MXcqca(R =
MXcqca(0, A, C), B, 0),
B, 0), Q =
MXcqca(0, A, C))

10 F = AB + B̄C Q = MXcqca(C,B,A)

11 F =
AB +BC + ĀB̄C̄

Q = MXcqca(P =
MXcqca(Ā, C̄, 0), B, P =
MXcqca(0, A, C))

12 F = AB + ĀB̄ Q = MXcqca(Q =
MXcqca(1, B, 0), A,R =
MXcqca(1, B, 0))

13 F =
ABC + ĀB̄C +
AB̄C̄ + ĀBC̄

R = MXcqca(0, Q =
MXcqca(P =
MXcqca(A,C, 0), B̄, Q =
MXcqca(A,C, 0)), Q =
MXcqca(Q =
MXcqca(Ā, C̄, 0), B, P =
MXcqca(Ā, C̄, 0)))
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10 Discussion and Conclusions

This work proposes testable reversible sequential circuits based on conservative
logic. Conservative logic is testable for any unidirectional stuck-at faults using
only two test vectors, all 0s and all 1s. The proposed conservative reversible
sequential circuits have feedback that deters their testing by only two test vec-
tors, thus a technique is demonstrated to disrupt the feedback in test mode.
Experimental simulation on a single missing/additional cell defect has verified
the application of the conservative logic towards fault testing in QCA computing.
A new conservative gate (Mx-cqca gate) that is not reversible is also proposed
especially suiting QCA computing. There are some major challenges associated
with Mx-cqca based designs. Researchers have proposed several implementation
techniques for QCA devices such as semiconductor, molecular QCA and mag-
netic QCA. However QCA devices are difficult to fabricate due to defects such
as cell displacement, cell misalignment and cell omission Thus, all the fabricated
and tested QCA designs are limited to small logic gates such as majority voter,
fanout, and wire design. Thus, until a complex design such as an adder, mul-
tiplier and memory components are fabricated and tested in QCA computing;
research community would have to wait to practically realize the Mx-cqca based
designs. Further, the current literature lacks in the research about synthesis of
QCA circuits. There is no synthesis tool for mapping HDL descriptions to QCA
designs and to their corresponding QCA layouts to enable simulation using the
QCADesigner tool. Thus, in order to implement Mx-CQCA based designs, a
synthesis tool is needed that will be equivalent of an HDL description to layout
generation tool in conventional CMOS computing is needed. There is also a need
of a tool that can approximate the power dissipation in proposed Mx-cqca based
design.

The proposed sequential circuits based on conservative logic gates outper-
form the sequential circuit implemented in classical gates in terms of testability.
As the sequential circuits implemented using conventional classic gates does not
provide inherited support for testability. A conventional sequential circuit needs
modification in the original circuitry to provide the testing capability. Also as the
complexity of a sequential circuit increases the number of test vector required
to test the sequential circuit increases rapidly. For example, to test a general
sequential circuit more than 2000 test vectors are required to test stuck at faults
of the entire circuit, while if the same sequential circuit is build using proposed
reversible sequential building blocks it can be tested using only two test vec-
tors. The main advantage of proposed conservative logic gate based reversible
sequential circuits compared to the conventional sequential circuit is that, the
number of test vectors required to test the reversible sequential circuit is always
two test vectors and the complexity of the circuit does not impact the number
of test vectors. The proposed design of reversible sequential building blocks min-
imizes the overhead of test time for a reversible sequential circuit. A limitation
of the proposed work is that it cannot detect multiple missing/additional cell
defects. In conclusion, this work advances the state of the art of testing reversible



Reversible Logic Based Design and Test 169

sequential circuits based on stuck-at-fault model, as well as, reversible circuits
implemented in QCA circuits having single missing/additional cell defect.
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