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Abstract. Among the emerging technologies Field-Coupled devices like
Quantum dot Cellular Automata are one of the most interesting. Of all
the practical implementations of this principle NanoMagnet Logic shows
many important features, such like a very low power consumption and
the feasibility with up-to-date technology. However its working principle,
based on the interaction among neighbor cells, is quite different from
CMOS circuits. Dedicated design and simulation tools for this technol-
ogy are necessary to further study this technology, but at the moment
there are no such tools available in the scientific scenario.

In this chapter we present ToPoliNano, a software developed as a
design and simulation tool for NanoMagnet Logic, that can be easily
adapted to many other emerging technologies, particularly to any kind
of Field-Coupled devices. ToPoliNano allows to design circuits following
a top-down approach similar to the ones used in CMOS and to simulate
them using a switch model specifically targeted for high complexity cir-
cuits. This tool greatly enhances the ability to analyze and optimize the
design of Field-Coupled circuits.

1 Introduction on Simulation of Complex NML Circuits

Among the emerging technologies NanoMagnet Logic (NML) is one of the most
intriguing. In this technology single domain nanomagnets with only two stable
states are used to represent the logic values ‘0’ and ‘1’ [1,2], as shown in Fig. 1.
They represent a particular application of the Quantum dot Cellular Automata
[3] idea, and more generally of the Field-Coupled principle, where the compu-
tation is performed by the interaction of neighbor cells [4–7]. Molecular QCA is
the other main implementation of the Quantum dot Cellular Automata principle
[8,9], which relies on complex molecules to represent the digital values [10]. The
specific advantages of NanoMagnet Logic are represented by low power consump-
tion [11], the possibility of combining memory and logic in the same devices, high
radiation resistance and, not less important, the possibility to fabricate circuits
with up-to-date technology [12,13].

In this technology logic circuits can be fabricated placing cells on a plane
[14]. Signal propagation and logic computation are obtained through magnetic
coupling among neighbor cells [15,16], because magnets align themselves in order
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Fig. 1. Single domain nanomagnets are used as basic cells. At the equilibrium only two
stable states are possible.

to reach the minimum energy state. The alignment is antiferromagnetic (every
element is in the opposite state of its neighbors) if magnets are aligned horizon-
tally, while the alignment is ferromagnetic (every element is in the same state
of its neighbors) if magnets are aligned vertically [17]. However, the magnetic
field generated by a magnet is not sufficient to cause a state alteration in its
neighbors. To switch magnets from one state to the other it is necessary to use
a mechanism called clock [18]. The behavior is depicted in Fig. 2. Magnets are
forced in an unstable (RESET) state through an external mean, like a magnetic
field [19,20]. When the magnetic field is removed magnets realign with a domino-
like effect following the input element. With this mechanism signals propagate
correctly through the circuit. As well as a magnetic field, other systems can be
used to clock circuits, like STT-current coupling [21] or an electric field [22].

Fig. 2. Clocking mechanism for NML logic. Magnets are forced in an intermediate
unstable state through an external mean, like a magnetic field that in a particular
portion of time reaches a maximum appropriate value.

The RESET state is unstable. If too many magnets are cascaded some of
them along the chain will switch in the wrong state due to external influences,
like thermal noise [23,24]. To have a safe signal propagation no more than 5
magnets should be cascaded [23]. As a consequence a multiphase clock system
is required. Circuits are divided in small areas, called clock zones. Each zone is
made by a limited number of magnets. Every clock zone requires the application
of a different clock signal, like shown in Fig. 3(A) where three clock signals with
a phase difference of 120◦ are used. As depicted in Fig. 3(B), when magnets of
a clock zone are in the SWITCH state (the magnetic field is slowly removed)



276 M. Vacca et al.

they see from one side magnets that are in the HOLD state (no magnetic field
applied). Magnets in the HOLD state can assume a value of logic ‘0’ and ‘1’ so
they are seen as an input by magnets that are switching. At the same magnets
near the other side of the switching zone are in the RESET state (magnetic
field is applied) and therefore they have no influence on the switching ones.
Figure 3(B) shows the circuit time evolution when a multiphase clock system is
used.
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Fig. 3. 3-phase clock. Circuits are divided in areas, called clock zones, made by a
limited number of magnets. (A) Three clock signals with a phase difference of 120◦

are selectively applied to clock zones. (B) When magnets of a clock zone are in the
SWITCH state, magnets on the left are in the HOLD state and act like an input, while
magnets on the right are in the RESET state and have no influence on the switching
magnets.

To design circuits, clock zones must be arranged following a proper layout.
Moreover the layout must take into account the constraints related to the tech-
nological fabrication of the clock generation network. For example the magnetic
field is normally generated by a current flowing through a wire placed under the
magnets plane [25] (Fig. 4(A)). With this clock mechanism the clock zones lay-
out is made by parallel stripes (Fig. 4(B)). Each stripe corresponds to one of the
clock wires used to generate the various clock signals [13]. While this layout was
developed for the magnetic field clock, and other clock systems can have different
layouts, it has the advantage to synchronize signals propagation. Thanks to the
multiphase clock the circuit is intrinsically pipelined, that means every group of
3 consecutive clock zones has a delay of 1 clock cycle. As a consequence, if the
length of input wires of a logic gate is not the same, signals will have different
propagation delay and propagation errors will occur. This problem is called “lay-
out=timing” [26,27]. With the clock zones layout shown in Fig. 4(B) the length
of every input wire of any gate inside the circuit is always equalized, solving
therefore the “layout=timing” problem. For this reason this clock zones layout
is chosen as a reference regardless to the clock mechanism used.
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Fig. 4. (A) A magnetic field can be generated by a current flowing through a wire
placed under the magnets plane. (B) Clock zones layout is made by parallel strips that
follows the wires used to generate the magnetic fields.

To simulate QCA circuits a dedicated simulator, called QCADesigner, was
developed [28]. Unfortunately QCADesigner does not support magnetic circuits.
To simulate NML circuits two paths can be followed. First of all low level mag-
netic simulators, like OOMMF [29], NMAG [30] or [31], can be used. Low level
simulators allow to obtain the most accurate simulation, but they are very slow
and only small circuits can be simulated due to the high memory usage.

As a second option circuits can be studied using a RTL model [32]. The idea
is to describe using the VHDL language a CMOS circuit that behaves exactly like
its NML counterpart. For example, starting from the NML circuit of Fig. 5(A),
its RTL model can be built as shown in Fig. 5(B) and then described with VHDL
language. Registers are used to model the propagation delay. This is possible due
to the intrinsic pipelined behavior of the technology. Ideal logic gates without
delay are used to model the logic function. The logic gate set available in this
technology is based on majority voters [16], AND/OR gates [33] and crosswires
[13], that are particular blocks that allows to cross two wires on the same plane.
At every register one of the three clock signals shown in Fig. 5(C) is then applied.
In this way complex circuits can be easily described using VHDL and simulated
using the powerful CAD tools available in CMOS technology, like Modelsim [34].
We applied this model successfully designing complex NML circuits in [26,27,35].

2 ToPoliNano

Both simulation mechanisms available have their flaws. The situation is summa-
rized in Fig. 6.

To have the most accurate results physical simulators are required, but they
can be used only on very small circuits due to their computational require-
ments. At the same time, while the RTL model is a powerful tool that allows
fast description and simulation of complex circuits, it gives only estimations of
real circuits performance, because a lot of informations on the circuit layout are
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Fig. 5. VHDL model for NML circuits. (A) Example of NML circuit. (B) RTL model
described with VHDL. Registers are used to simulate the propagation delay while
ideal logic gates are used to model the logic function. (C) Clock signals applied to each
register.

missed. We have therefore created our own tool, ToPoliNano, Torino Politecnico
Nanotechnology tool [36], a tool targeted to design and simulation of Nano-
Magnet Logic circuits. ToPoliNano emulates the top-down approach used in
CMOS design, where circuits are described using the VHDL language and the
layout is automatically generated. Circuits can be simulated and important infor-
mation on the circuit behavior and the power consumption can be extracted,
knowing exactly the circuit area and the precise placement of every element
[37]. Mostly important the open and modular structure of the software allows
to easily integrated others emerging technologies, like we have done with Sili-
con Nanowires NanoPLA [38,39], making it the ideal platform for the study of
emerging technologies.

2.1 Tool Overview

ToPoliNano has been developed in C++ and is built around the idea to give to
researcher the possibility to design NML circuits following the same top-down
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Fig. 6. Simulation of NML circuits. While physical simulators provide the most accu-
rate simulation they can be used only on small circuits. At the same time, VHDL model
gives inaccurate results for the loss of information regarding circuits layout. ToPoli-
Nano was created to overcome these problems and to provide a tool that allows to have
both accurate results and fast simulation of complex circuits.

methodology used in CMOS circuits. This means to describe circuits of any kind
of complexity using VHDL language, to automatically generate the layout and
to fast simulate the obtained circuit. For this emerging technology there are
no tools available to perform these analysis, therefore it has been necessary to
design a completely new system. The structure of Topolinano is shown in Fig. 7.

– The Logic Synthesizer is the first block encountered in the traditional
CMOS design flow. Starting from a generic VHDL description it translates
it on a specific logic gates set. In this case it takes an entry VHDL file and
it generates another VHDL file with a structural description, that means the
circuit is described only using the set of gates available in this technology
(majority voter, and, or, inverter). The logic synthesizer is still partially in
development.

– The Parser takes the structural VHDL file generated by the logic synthesizer
and creates an in-memory representation of the circuit itself. The internal
description is based on a hierarchical graph to efficiently handle the circuits in
terms of both time and memory occupation on the host computation machine.
The parser is complete and it is throughly described in Sect. 3.

– The Place & Route takes the graph generated by the parser and automat-
ically creates the circuit layout. This block is still in development, as up to
now it can handle only combinational circuits of any complexity but not
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Fig. 7. ToPoliNano structure. Circuits are described through VHDL, a logic synthesizer
maps the circuit on the technology library available and a parser generates the in-
memory description. The layout can be generated automatically or manually, circuits
are then simulated obtaining data on the circuit behavior, the area occupied and the
power consumption estimation.

sequential. The circuit layout is based on the clock zones layout described in
Sect. 1 and shown in Fig. 4(B). Section 4 provides more details on the Place &
route in its current state.

– It is also possible to Manually Describe circuits with a full custom approach.
This possibility is granted for two important reasons, because the Place &
Route block is still in development and because, no matter what level of
development the Place & Route block will reach, in certain cases the hand
of a designer is requested to reach the maximum level of optimization. Up to
now circuits can be described either directly writing the code that describes
the circuit or using external vectorial graphic editors and then importing the
circuit in ToPoliNano. Further details are given in Sect. 6.

– Once the circuit layout is generated, a Simulator is used to verify the correct
behavior of the circuit. The algorithm used is based on a behavioral model
extracted from low level simulations. This tool is designed for high complexity
circuits (million of magnets), so only a behavioral algorithm allows a fast
enough simulation. However, since the model is based on physical simulations
it still gives accurate results. More details on the simulation algorithm are
provided in Sect. 5.
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– After the simulation the Output Generator allows to calculate the circuit
area and to estimate the power consumption considering a magnetic field
clock. More details can be found in Sect. 7.

3 Parser

One of the most common uses of a parser in computing is as a component of
a compiler or an interpreter. This component usually parses the source code
of a programming language in order to create an internal representation. The
parsing process (i.e. syntax analysis) consists in the analysis of an input sequence
to determine its grammatical structure with respect to a given formal grammar.
The parsing process operates a transformation of the input text into a data
structure (a tree in the present context), suitable for later processing. The data
structure must be such to capture the implied hierarchy of the input, and a tree
certainly is suitable for this purpose. The typical operation of parsers is in two
stages: first, it identifies the meaningful tokens in the input. Then, it builds a
data structure out of the tokens (Fig. 8).

SOURCE STREAM

LEXICAL ANALYSIS 
(token creation)

TOKENS

SYNTACTIC ANALYSIS 
(Create Tree)

PARSE TREE

ToPoliNano GRAPH 
BUILDER

OUTPUT

PARSER

Fig. 8. Overview of the parsing process.

In ToPoliNano the use of the parser is related to the need to input circuit
descriptions by means of a Hardware Description Language (HDL). In particular,
the VHDL language is currently supported.

3.1 Lexical Analysis

Lexical analysis is the process of converting a sequence of characters into a
sequence of tokens. A program which performs the lexical analysis is called lexer
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or scanner. The input characters stream is split into meaningful symbols defined
by a grammar. They define the set of possible character sequences used to form
individual tokens. The term token, in the present context, refers to an abstraction
for the smallest unit of VHDL code that is convenient when describing the syntax
of the VHDL language. A token is a string of characters, categorized according
to the rules as a symbol (e.g. identifier, number, comma, etc.). Starting from
this time on, the interpreted data may be loaded into data structures for general
use: in ToPoliNano data is used to build an internal representation of the circuit
by means of a graph.

3.2 Syntactic Analysis

Syntactic analysis has the objective to determine the structure of the input
stream and to build the data structure. Token are fed to the syntactic analyzer
and, as output, in case of a tree-based data structure, one would get a node for
each element. Basic elements are represented by leaf nodes, and other elements
by composite nodes. This stage basically checks that the tokens form an allowed
expression.

3.3 The Parse Tree

According to [40], a parse tree is an ordered and rooted tree that represents the
syntactic structure of a string, text file, source code written in a given program-
ming language according to some formal grammar. A parse tree for a source
code is called Abstract Syntax Tree (AST). The syntax is ‘abstract’ in the sense
that it does not represent every detail that appears in the real syntax.

3.4 Parsing Expression Grammar Definition

Parsing Expression Grammars (PEGs) are formal grammars that allow to
describe a formal language in terms of a set of rules for recognizing tokens.
The grammar encapsulates a set of rules, primitive parsers and sub-grammars.
After being defined, rules can be used as parser components in more complex
expressions in order to form a grammar. Grammar is basically a container for
one or more rules allowing to encapsulate more complex parsers. A grammar has
the same template arguments as a rule.

When the Parsing Expression Grammar to be defined is complex and nested,
as in ToPoliNano, where we must define a PEG for VHDL93 language specifica-
tions, it may be useful to build user-defined parser components. The grammar for
VHDL structural descriptions can be built starting from the grammar definition
of the unique constructs, i.e. constructs that do not include any other.

3.5 VHDL Grammar

A VHDL file for structural description includes an Entity Declaration and an
Architecture Body (in what follows, the libraries included at the begin of every
VHDL file are not considered):
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VHDL = EntityDeclaration
> ArchitectureBody;

The Entity Declaration grammar could be written as:

EntityDeclaration = EntityKeyword > Identifier > IsKeyword
> ( GenericClause | *ascii::space )
> PortClause
> EndKeyword > Identifier > lit(’;’);

Such a grammar may match a Generic Clause, if it is defined in the VHDL
source file, otherwise zero or more white spaces, and a Port Clause every time
an Entity Declaration is found.

The grammar for an Architecture Body is divided into two blocks:

– Architecture Declarative Part Grammar
– Architecture Statement Part Grammar

The custom grammar for the Architecture body could be written as:

ArchitectureBody = ArchitectureKeyword > ArchitectureIdentifier > OfKeyword

> EntityIdentifier > IsKeyword

> ArchitectureDeclarativePart

> BeginKeyword

> ArchitectureStatementPart

> EndKeyword > ArchitectureIdentifier > lit(";");

In an Architecture Declarative Part there are one or more Component inter-
faces and zero or more Signal Declarations:

ArchitectureDeclarativePart = (+ ComponentDeclaration)
> (* SignalDeclaration);

The Component Declaration Grammar is very similar to the Entity Decla-
ration, since the Component interface is the copy of the Entity interface. In an
Architecture Statement there may be instantiated components with Generic Map
and Port Map, assigned values to signals and generate well-patterned structures.
These three statements can be found in any order and in any number within the
Architecture Statement Part (here Generic Map and Port Map are joined for
the sake of simplicity):

ArchitectureStatementPart = + ( GenericMapPortMap
| SignalAssignment
| GenerateStatement

);

In Fig. 9 the parser components have been defined, the grammars and the
other parser components used are summarized.

Once the VHDL grammar has been defined, the need to store the information
parsed from the VHDL projects arises. This information must be stored at parse
time, and elaborated at a later time, possibly by other modules of the ToPoliNano
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Fig. 9. Hierarchy of VHDL Grammar.
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Fig. 10. VHDL Design Entity Data structure.

tool. Up to now, the Parser just recognizes data, but does nothing with it. A
dynamic data structure is built and instantiate at runtime dynamic objects of
certain classes just when they are needed, and populate them at parse time. The
data structure used to store the parsed information from a VHDL design unit is
a dynamic object of a main class called VhdlClass, which comprises pointers to
an Entity object and to an Architecture object. It is shown in Fig. 10.

3.6 Intermediate Form Representation

Once all the VHDL design units have been parsed, a data structure that repre-
sents the digital circuit, component by component, has to be implemented. The
idea is to create a hierarchical graph of nodes that represents the circuit and all
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Fig. 11. Composite component.

its components; moreover, it has to capture how they are connected together.
This graph is generated starting from the temporary data structure created dur-
ing the VHDL code parsing. The graph must have as many nodes as the number
of basic blocks plus the number of composite components in the circuit. All the
nodes of the same grade represent the whole circuit seen at a certain level of
abstraction. The lower the level, the higher the abstraction. The root has the
maximum level of abstraction, because it depicts the circuit in just one block;
all the graph leaves represent the basic blocks out of which the circuit is built.
Every node contains all the information regarding a component (Input, Output,
Bidirectional ports, internal Signals, Interconnections), and all of its children (if
any) represent the components it is made of.

The basic element of the graph is an object of the abstract class Node. Two
concrete classes are derived from the Node class: CompositeNode and LeafNode.
Every node contains a set of Input, a set of Output, a potential set of Bidirec-
tional I/O, a potential set of internal Signals, a potential set of child Nodes and
the Interconnections. A Composite Node is a node that has at least one child.
Composite nodes are used to represent the top level and all the intermediate level
components. Composite nodes represent components like that shown in Fig. 11.

A Leaf Node is a node that does not have children. They are used to represent
all the basic blocks in the circuit. All Inputs, Outputs, Bidirectional I/O and
internal Signals can be represented by objects of the same class, i.e. the Wire
class, because all of them are merely wires that carry the same kind of logic data.
The class members are capable to differentiate from other Wires by means of a
name within a design Entity and by means of a serial number within a set. The
data structure built during the parsing phase is the starting point of the graph
creation. It contains one object for each VHDL design unity. Starting from the
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output of the Parser, one has to calculate the hierarchy among the components
in the circuit, then, for each component, to instantiate a Node and populate it.

The first step is to detect every instance of a component. For each VHDL
design unity, we have to create as many objects as the number of components
instantiated in the Port Map clauses. The objects in the VHDL design unities
vector are copied and in case modified (if the component is instantiated with a
generic interface different from its declaration) every time they are instantiated
in a Port Map aspect. For this purpose a new object type is created in order to
facilitate the work of the stage that instantiates the graph, that is an object of
class Hierarchy. A vector containing all the composite and all the basic design
unities is temporarily built.

Each object of class Hierarchy contains the following information:

– A pointer to the VHDL design unity object.
– The name of the Design Entity Declaration.
– The instantiation name, which is unambiguous among nodes with the same

parent.
– A flag indicating if it is a basic block (Leaf Node).
– The index of the parent object in the vector.

The first item of the Hierarchy vector (position 0) contains the information
about the top level (the root); it is the first item to be pushed into the vector.
Then the population cycle starts (with only the top level in the vector). All
the other items are pushed back in the vector during the cycle. For every design
unity composed of some other components (i.e. for every composite), it takes the
Port Map aspects, and, for each component instantiated, a new Hierarchy item is
created, in which the VHDL design unity object with the correspondent Entity
identifier, taken from the VHDL design unities vector, is copied and possibly
modified, depending if it has a generic interface that differs from its declaration.
Then, also the information about the name of the Entity, the instantiation name,
the index of the parent object (which is merely the index of the FOR cycle) and
the flag indicating if it is a basic block are inserted. After its population, the
object is pushed back in the Hierarchy vector. The cycle ends when all the
components in all the composite design unities are instantiated, i.e. when all
the components instantiated in all the composite entities Port Map aspects are
created. The graph is then instantiated and populated through an object of a
concrete class, following the Visitor Pattern.

4 Place and Route

In recent years the rapid advances in fabrication technology have dramatically
increased the complexity in VLSI circuits. Indeed, major focus is on development
of tools for the design and analysis of heuristic algorithms for partitioning, place-
ment, routing and layout compaction. The developed place and route engine [41]
uses different algorithms from traditional technology, adapted in order to solve
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NML technology issues. What is new is how these algorithms are used together
in order to obtain a final layout compliant with the technology constrains and
limitations. The proposed NML design flow can be divided in two main parts:
graph elaboration and physical mapping, which will be discussed in the follow-
ing sections. The algorithm is divided in two parts, Graph Elaboration where the
graph generated by the parser is optimized (see Sect. 4.1) and Physical Mapping
where the circuit layout is generated (described in Sect. 4.2).

4.1 Graph Elaboration

The flow diagram of the graph elaboration phase is shown in Fig. 12. Starting
from a structural description of the circuit, mapped on a set of cells available
(majority voter, and, or, inverter), the HDL parser generates a graph which is
the primary input of the place and route engine.

Fig. 12. Graph Elaboration flow diagram. The entry point is the graph generated by
the parser while the output is an optimized graph used to create the circuit layout.
Several optimizations are performed on the input graph, each part of the algorithm
can be customized using appropriate parameters.

This data structure is then handled according to NML characteristics and
the clock zones layout. The operations performed by these algorithms can be
summarized as:

– Fan-out management, the graph is modified to take into account a limited
fan-out, given as a parameter, for each graph node.

– Reconvergent paths balance, paths inside the graph are balanced to avoid “lay-
out=timing” problems.

– Wire crossing minimization, the graph is elaborated using various algorithms
(customizable with several input parameters) to reduce the number of wires-
crossing.

At the end of this process the output graph is used as input for the physi-
cal mapping phase. In the following a detailed description of each algorithm is
reported.
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Fan-Out Management. As in the case of CMOS technology, also NML has a
limitation on the fan-out that each cell can support. The main reasons are related
to NML clock zones dimensions, to the physical space occupied by the wires
and to the number of magnets that can be cascaded inside a clock zone. With
a parallel clock zones layout organization, the vertical magnetic wires length
should be limited in order to avoid propagation errors. Besides, considering that
each wire is made by magnets there must be enough space to allow their physical
placement. Therefore, the input graph is iteratively analyzed and mapped into
a new one where the fan-out limit is satisfied.

Reconvergent Paths Balance. The graph generated starting from a circuit
netlist can present many reconvergent paths. Two paths, in a direct acyclic graph
(DAG), are called reconvergent if they diverge from and reconverge to the same
blocks. This situation is common with traditional technology, but with NML it
can generate some problems due to its intrinsic pipelined behavior that origi-
nates the so called “layout = timing” problem. In order to guarantee signals
synchronization at the input of each logic gate, additional intermediate nodes
must be added, so that all the reconvergent paths are composed by the same
number of nodes.

Cross-Wires Minimization. Since NML is a planar technology, up to now just
one layer can be used to build a circuit. A particular component, called cross-
wire, is available to cross two wires on the same plane without interferences. Even
if this block allows physical wires intersection a specific optimization is needed to
reduce the number of cross-wire, therefore the wasted area. Different techniques
are here implemented, such as Barycenter, Fan-out Tolerance Duplication, Sim-
ulated Annealing and Kernighan-Lin. They can be used alone or combining one
or more of them together.

Barycenter. The basic idea behind this method is to rearrange nodes in order to
place them directly above the nodes to which they are connected. The algorithm
explores each rows of the graph two by two from inputs to outputs. For each
couple of rows analyzed one is kept frozen while nodes in the other row are
changed in position to reduce the number of cross-wires. This algorithm is quite
simple and fast but leads to an unoptimized result. This is due because there can
be situation in which multiple solutions satisfy the requisites of the algorithm.
This solutions have however a different number of cross-wires, so the efficiency
of the algorithm heavily depends on the policy chosen to solve this conflicting
situations.

Fan-out Duplication. The job of the fan-out duplication algorithm is to integrate
the Barycenter method in order to reduce wire crosses. As can be gathered from
the name of this technique, graph nodes are duplicated trying to reduce the
cross-wires number. The number of cross-wires can be theoretically reduced to
0, however the circuit area grows exponentially.
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Kernighan-Lin. This algorithm is one of the most commonly used in the class
of partition based methods. It heuristically divides the graph into sub-regions,
trying to minimize the cut, i.e. the number of edges that connect one sub-region
from the others.

Simulated Annealing. It is a stochastic algorithm that iteratively swap the posi-
tion of nodes inside the graph trying to find the global minimum through con-
secutive solutions. The purpose of this technique is to minimize the number
of cross-wires during the global placement. The algorithm needs three data as
input:

– The graph nodes V .
– The minimum temperature that must be reached.
– The number of iteration that are necessary to obtain the final state.

The parameters used determine the efficiency of the simulated annealing
algorithm, and these parameters must be chosen according to experience. While
simulated annealing can lead to very good results, its a stochastic method that
heavily relies on the parameters used, on the function used to generate random
numbers and generally requires a huge time to converge.

References. Since the cross-wires minimization techniques here proposed are
based on algorithm taken from the literature, here some references are included
for interested readers. For the barycenter technique users can refer to [42,43]
where these algorithms were already applied to QCA technology. For Kernighan-
Lin technique the readers may refer to [44,45] while for simulated annealing
readers may refer to [46–48]. These were the starting point, the algorithms have
been reworked and adapted in order to be used on nanomagnet logic circuits.

4.2 Physical Mapping

During the physical mapping phase, the previous elaborated graph is trans-
formed into the final circuit layout. Due to the high complexity of today ICs,
the physical placement cannot be obtained in a single routing phase. For this
reason, a three steps approach is followed:

– Placement, where graph nodes are mapped to their correspondent logic gate
and they are initially placed on the layout.

– Global routing, where an iterative approach is used to find the optimum posi-
tion for logic gates.

– Detailed routing, where interconnection wires among gates are routed.

In Fig. 13 a general flow diagram is shown.
Every node of the graph is mapped into its corresponding logic gate and it

is placed into the circuit. Then, a global routing is performed. This process try
to place each logic gate in order to minimize the occupied area. After the blocks
positioning phase a detailed routing is performed among gates.
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Fig. 13. Physical Mapping flow diagram. The circuit layout is generated starting from
its graph following several optimization steps.

Placement. During the placement stage each node of the graph is mapped into
its logic gate. As shown in Fig. 14, nodes are placed row by row starting from
the top of the graph without any optimization. Thus, blocks are aligned with a
minimum spacing equal to one equivalent magnet height.

Fig. 14. Center : seed row placement for maximum with evaluation; Right : barycentered
placement

This technique is used to evaluate the maximum width of the circuit, i.e the
width of the largest row. At this point, a barycenter alignment is performed to
shift placed blocks in order to reduce the overall wire length.

Global Routing. The final position of each gate is obtained with a fine shift
performed during the global routing phase. The idea is to maximize the circuit
compaction, therefore reducing the length of interconnection wires. Figure 15
shows the flow diagram of the global routing phase.

The implemented procedure is composed by the following main steps itera-
tively applied to each couple of rows:

– Logic gates of row i are shifted.
– Wires among row i and row i+1 are routed.
– Interconnection area is evaluated.
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Fig. 15. Global routing flow diagram. It is an iterative process where the position of
each block for every row is shifted with the aim of minimizing the interconnections
length.

The goal is to find the global minimum area of the circuit, so an iterative app-
roach is needed.

Channel Routing. When the final position of logic gates and pins is defined,
the channel routing routine can start in order to obtain the final layout. In NML
there is a limit to the maximum number of element that can be cascaded inside
a clock zone. This feature coupled with the clock zones layout makes the signals
propagation follow a “stair-like” path, as shown in Fig. 4(B). To model this
behavior the channel routing algorithm is based on the mini-swap [49] method,
which uses diagonal interconnections. Again though based on these algorithm,
the method is a mix and largely adapted to the NML case.

Circuit Example. Figure 16 shows an example of circuit obtained after the
whole process. It is a 6 bits ripple carry adder where the zoomed element repre-
sents a cross wire block.

References. The literature about placement and routing of VLSI circuits is
quite wide. For interested readers an overview of the automatic placement and
routing of CMOS VLSI circuits can be found in [50,51]. More detail on the wire
and channel routing can instead be found in [49,52–54].
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Fig. 16. Layout of a 6 bit Ripple Carry Adder.

5 Simulation Engine

After obtaining the detailed circuit layout it is important to simulate it to ver-
ify its behavior and to evaluate its performance. For this purpose a behavioral
simulation engine was developed to be used in ToPoliNano. In order to simu-
late the circuit the graph used to represent the circuit must be modified. The
hierarchical graph structure, which describes the circuit, is flattened by the sim-
ulation engine. A completely new data structure based on a dynamical matrix
is created, in this way all physical information are kept (magnets positions) and
the structural ones are discarded.

An example of simulation matrix is shown in Fig. 17. It represents a majority
voter but the structural information are lost so it is seen simply as a matrix
containing or not containing magnets in each cell. Three different type of magnets
can be identified: input, output and normal. Every magnet is seen as a tristate
device, because it can assume only three values, ‘0’, ‘1’ and RESET.

5.1 Simulation Algorithm

The behavior of the simulation algorithm has been captured and encapsulated
in a finite-state machine (FSM). The clock waveforms Fig. 18(A) can be divided
in 6 defined states and are therefore mapped to the FSM shown in Fig. 18(B).

The initial state is represented by the 0, while the first transition depends
on the clock signals behavior. For example, the transition to the state 1 takes
place when the first clock signal is equal to one and the second and the third are
equal to 0. The FSM cycles through the states because of the periodic behavior
of the clock waveforms. In order to manage transitions, the future step Sf can
be calculated starting from the present state Sp (Eq. 1):

Sf = (Sp + 1)mod6 (1)

The general simulation algorithm follows the FSM switching periodically through
its states. In each state, the value of each magnet must be calculated depending
on the clock zone in which it is located. In particular, all magnets belonging to
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Magnet

Output pin

Input pin

Fig. 17. Simulation matrix. Three categories of magnets can be identified: normal,
input and output magnets. Every magnets is represented with a tristate approximation.

Fig. 18. (A) Clock signals. (B) Behavioral simulation finite state machine.
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HOLD state are left untouched, while all magnets in RESET state are reset.
In case of magnets belonging to a clock zone that is in the SWITCH state, the
situation is more complex because the calculation of the state of each magnet
requires a specific algorithm.

5.2 Matrix Exploration

For each clock zone where the SWITCH state is active, the simulation matrix
must be scanned and the new value of magnetization of each magnet must be
calculated. The matrix exploration algorithm is based on two nested loops which
scan every column of a zone and for each of them scan every row.

X
Y 0 1 2 3 4

0

1

2

3

4

Fig. 19. Exploration matrix algorithm. Matrix columns are scanned one by one from
left to right, each row of the column is scanned from up to down and then from down
to up.

The behavior of the matrix exploration algorithm is depicted in Fig. 19. Each
column of the matrix is scanned starting from the left border going toward the
right border. For each column rows are scanned one by one from up to down
and then from down to up. During the matrix visit for the new magnet state is
evaluated following the magnetization algorithm (Sect. 5.3). This matrix explo-
ration algorithm is chosen to reduce the usage of if..then...else constructs inside
the programming code of ToPoliNano, to reduce their huge negative impact on
performance when the code is executed in modern superscalar machines.
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5.3 Magnetization Evaluation

During the matrix exploration the magnetization of every magnet is calculated
according to the value of its neighbors, as shown in Fig. 20. The state of every
magnets is calculated by the weighted sum of its neighbors.
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Fig. 20. Magnetization evaluation. The state of a magnet is calculated as a weighted
sum of its neighbor elements.

6 Library Generator

The library generator is a tool that, together with the main application of ToPoli-
Nano, allows the designer to describe new elementary components in order to
be used within the internal library of the simulator. Its structure is shown in
Fig. 21.

The library generator creates new components that can be used in ToPoli-
Nano. However to create a component it needs three kind of information:

– Ports which contains information on the input/output pins. Every pin is iden-
tified by three parameters:
• Direction: Input or Output.
• Type: Standard Logic, Standard Logic Vector. This is required for compat-

ibility with VHDL code, so that the created component can be identified
by the parser.

• Position within the circuit.
– Layout which contains information on the space occupied by the circuit.
– Element Description which contains the circuit layout, the gates which com-

pose it and their position on the plane.
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Fig. 21. Library Generation principle. To create a particular component the library
generator requires three types of information. The component generated by the library
generator can be used inside ToPoliNano.

The Element Description description of every component represents the cir-
cuit layout. It can be generated automatically by the Place & Route block or
it can be created manually. There are two possibilities to manually describe a
component. With the first possibility the user can draw circuit blocks using a
vector graphic program called Xfig. The circuit drawn with Xfig is exported to
an .svg file and loaded inside ToPoliNano. As a second option the circuit layout
can be described manually writing the code which describes it. As a future work
we should create an in-program editor of circuits. The layout is based on dif-
ferent logic gates defined as library components (e.g. majority voter, cross wire,
wire, and, or).

7 Output Generation

At the end of the simulation, ToPoliNano offers two main ways to represent
results.

– On the main program window displaying the output signal waveforms that
can be saved on an Encapsulated PostScript file (EPS).

– A text file containing the timing samples that the depict the circuit behavior.

An example of output waveforms obtained after the simulation is reported
in Fig. 22.
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Fig. 22. Output waveforms example.

As well as the circuit timing behavior, additional information can be obtained,
like circuit area, number of magnets, wasted area. Moreover a power estimation
is also possible, up to now only considering the magnetic field clock.

8 Performance

One of our main targets during the development of ToPoliNano was to design a
tool capable to handle high complexity circuits with reasonable execution times.
While the software is still in development we were able to make some preliminary
evaluations on performance. The tests are based on currently available machines,
with I-3, I-5 and I-7 Intel processors, running both Linux and Mac-OS operat-
ing systems. As a benchmark we have used a simple Ripple Carry Adder, made
by N full adders. Just for test purpose we have instantiated up to 10000 full
adders. The placement of all magnets (around 2000000) took only 30 s. The in-
memory occupation of such a circuit was just about 1.5 Gb. The simulation of
one full adder for a time period of 80µs with a simulation step of 1 ps, required
just 0.3 s. To compare the performance of ToPoliNano with existing tools we
have performed some simulations with two widely used micromagnetic simula-
tors, NMAG [30] and OOMMF [29] on the same machine used for the testing
of ToPoliNano. The simulated structure was a simple NML wire in three differ-
ent cases, changing the length from 4 magnets, to 8 magnets and finally to 12
magnets. Results in terms of simulation time and memory usage are reported in
Table 1. The time indicated is the machine time required to advance the state of
the circuit of 1 ns. For example, in case of the 4 magnets wire simulated through
NMAG, 43 s of machine-time are required to advance the state of the circuit
of 1 ns. The memory usage and the simulation time increases with the circuit
complexity. Starting from these values it is possible to get a rough estimation
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Table 1. Simulation performance of two of the most widely used free micromagnetic
tools, NMAG and OOMMF.

Simulator Memory [Mb] Time [s/ns]

4 magnets wire NMAG 49 43
OOMMF 24 89

8 magnets wire NMAG 79 75
OOMMF 32 173

12 magnets wire NMAG 104 127
OOMMF 36 200

of the memory and the simulation time required to simulate a circuit made by
around 2 milions of magnets. For NMAG a total of 12 TB of RAM memory
and 70000 years of simulation time will be required. OOMMF instead requires
only 4 TB of memory and just 35000 years of simulation times. These are just
rough estimations but they clearly show the necessity of using a simulator like
ToPoliNano to handle complex NML circuits. Comparing the performance of
ToPoliNano with Modelsim [34], one of the most used VHDL simulators is more
complex. However a simple comparison can be obtained looking at the micro-
processor described in [26] and [27], or at the systolic array for biosequences
analysis described in [55–57], which are also made by millions of magnets. In that
case the simulation for a time of 100µs required near 1–2 h of machine-time.
Clearly ToPoliNano shows an advantage also over classical VHDL simulators.

Finally the Ripple Carry Adder was used also to test the performance of the
Place & Route block, but only up to 32 bits. Using the most simple cross-wires
minimization techniques, the Barycenter, the creation of the layout required
only 20 ms. Optimizing the layout with the best technique available, the Simu-
lated Annealing, the time required to synthesize a 32 bit adder was equal to few
minutes.

9 General Code Structure

ToPoliNano has been developed in C++ language to be highly efficient in compu-
tation, thus providing ground to study multiple emerging technologies, demand-
ing in terms of computational resources. With regard to the implementation, the
C++ language was selected as programming language mainly for performance
reasons, and the whole structure of the simulation is based on the use of classes
grouped into macro-blocks:

– Controllers, which contains all the high-level logic of the application.
– GUI, which contains all the classes related to the management of graphical

interface (configuration wizard, main window).
– HDL Graph Controller, about the logic of HDL parsing.
– Inputs And Clocks, for the generation of input and clock signals.
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– NML, which contains all the classes for the implementation of the simulation
algorithms and data structures of NML technology.

– NanoArray: which contains all the classes for the implementation of the sim-
ulation algorithms and data structures of NanoArray technology.

ToPoliNano has been designed as a single-source, cross-platform application.
Currently, these are the supported platforms:

– Windows.
– Linux/X11.
– Mac OS X.

ToPoliNano is supported on a variety of 32-bit and 64-bit platforms.

– Ubuntu Linux 10.04 (32-bit).
– Ubuntu Linux 11.10 (64-bit).
– Microsoft Windows XP SP3 (32-bit).
– Microsoft Windows 7 (32-bit).
– Apple Mac OS X 10.6 “Snow Leopard” (64-bit).
– Apple Mac OS X 10.7 “Lion” (64-bit).
– Apple Mac OS X 10.8 “Mountain Lion” (64-bit).

ToPoliNano has been built on top of existing cross-platform frameworks. This
enabled a development focused on core functionalities, rather then spending time
re-creating commodity software. The framework used are well respected among
developer communities. In particular, two are the cornerstones of ToPoliNano:
the Qt framework and the Boost Library. Lots of resources are available on the
web for both of them.

The Boost C++ Library is a collection of free libraries that extend the basic
C++ functionality. It provides a wide range of platform agnostic functionality
that the Standard Template Library (STL) missed. It can be regarded as a
complement to STL rather than a replacement, according to its developers [58].
At the time of this writing, the current Boost release (1.54.0) contains over 80
individual libraries. The Boost C++ libraries are open-source and peer-reviewed.

The choice of the Boost library is due to the very high quality of the code and
to its optimal performances. The use of such a library can speed-up the initial
development: bugs are minimal, there is no need to “reinvent-the-wheel” and the
maintenance cost is reduced to a bare minimum. The Boost libraries are mostly
header-only, making them trivial to install, upgrade and configure. In most cases,
installation and upgrading only requires the addition or the modification of the
include path. Only few of them requires a full compilation. Moreover, Boost
sub-libraries can be used independently of each other.

Nowadays computer architectures feature multicore designs, thus giving a
calculator the opportunity to perform multiple tasks simultaneously. Not only
operating systems can take advantage of the multiple cores in computers, but also
applications. This is know as multithreaded programming. ToPoliNano supports
multithreading to exploit the potential of modern microprocessor and to speed-
up circuits simulation.
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10 Other Supported Technologies

ToPoliNano was developed to support different technologies in one tool. Up to
now it enables the study of NanoMagnet Logic and NanoArray, a promising tech-
nology that is briefly outlined in what follows. The NanoArray architecture is
based on an intense research activity aimed at understanding the emerging nan-
otechnological devices and their constraints of realization. A NanoArray project
is hierarchical, consisting of interconnected tiles that determine the architecture
(Fig. 23) and it is optimized to meet the various constraints that come from the
construction process, from materials and devices.

Fig. 23. Example of NanoArray made by Silicon Nanowires (SiNW) and SiNW FETs.

Among the devices that NanoArray architecture can use, there are FETs
or diodes in 2-D structures based on crossed SiNWs to realize logical functions
(Fig. 23); the various types of optimizations to overcome the limitations imposed
by the layout, by the constructive process and by defects adopted in this app-
roach differ from those enforced by other architectures.

The logic AND-OR (or equivalent according to DeMorgan) is carried out
either statically, or dynamically. In a dynamic circuit style pipelining of circuits
becomes possible. Signals like GND, Vdd, Vss and dynamic control signals neces-
sary for operation are transported at micrometric scale by so-called microwires.
The defects are masked directly into the circuit or architecture, without recur-
ring to reconfigurability. The peculiarities of this approach can be summarized
in four points:

– redundancy is added in each stage of AND-OR logic and outputs, in addition
to the dual-rail redundancy; signals are intercalated and then combined as
part of the AND & OR logic planes;
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– modification of the logic of one stage to allow the masking of the defects in
the current stage or, alternatively, in the following AND-OR stage;

– addition of wires with function of weak pull-up or pull-down in the device to
maintain at a low logic level inputs potentially faulty (prior to an OR plane),
or at a high logic level (prior to an AND plane);

– joint operation with majority voting circuits based on CMOS at key points of
the architecture.

Nanotiles. The nanotiles represent the building blocks of NanoArray archi-
tecture. The crossing nanowires form a nanoarray, whose junctions (points of
intersection) can be FETs or not connected. The nanoarrays are surrounded by
microwires, that carry electrical power and, in this particular implementation,
also signals for programming the interconnections. Each signal is present both
in its original form and in complemented form.

Dynamic Pipelining. Due to design constraints (e.g. doping of the nanowire)
and to topological constraints too, the latches are very difficult to implement
within the nanoarray. Typically, latches or registers are used to obtain the func-
tionalities of pipelining of data streams, for example in a datapath. This com-
ponent is one of the most common within the microprocessor, so it is important
to have an efficient way of pipelining. In NanoArray, when using circuits of the
dynamic type, it is possible to obtain a temporary storage of information, with-
out resorting to the explicit use of a latch. A pipelined NanoArray circuit can be
realized by cascading dynamic nanoTiles, without requiring an explicit latching
of the signals, which would entail a considerable reduction of density. A processor
made in nanotechnology could have thousands of nanoTiles, so it is fundamental
to have an efficient communication system, and this is one of the critical points
in nanoarchitectures. In the NanoArray approach local communication occurs
between nanowires, to maintain an optimum use of the area, while for the global
communications microwires are used.

NanoArray Simulation. The NanoArray simulation engine belongs to the
class of the event-driven simulators. It follows the information flow inside the
structure under simulation and generates specific events, when necessary, to cor-
rectly handle the propagation of information. To better understand this process,
we can imagine each sub-tile as a four-port device, with each port identified by
a cardinal point.

A change in the information at a given port may need to be propagated inside
the sub-tile, if there is an appropriate component to support propagation (e.g. a
nanowire). We do not need to know anything about the electrical properties of
the component to perform a logical analysis. As a function of the port at which
the change in information happens, and the original direction of propagation
of this piece of information, we can check whether there is support for further
propagation and, if this is the case, to change the information on another port
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of the sub-tile by means of the supporting element. This, in turn, will trigger an
update event over the sub-tile, if any, connected to the first one by means of the
output port. By following the very same process, the information is propagated
inside the structure, only where it is needed.

There could be an active device inside the sub-tile, and the propagation of
information could lead to a change in its status. Should this happen, another kind
of event would be enqueued in the event queue, waiting to be processed to take
into account a possible change of information in a direction of propagation that
is orthogonal with respect to the one that originated the event. This approach
is very flexible, indeed, because it allows for different kind of control of dynamic
circuits (number of phases) since the phase sequence is not embedded into the
simulator but is coded in the input control sequence and the same approach can
thereby be used in many different scenarios.

References. The literature about NanoArray is quite wide, here some references
are reported for interested readers. In [59,60] some of the work of University of
Massachusetts Amherst is reported. Other solutions were proposed by Likharev
[61], Dehon [62], a group of HP [63] and the Carniege Melon University [64].

11 Conclusions

In this chapter we have described ToPoliNano, a tool which aim is to design and
simulate NML circuits and other emerging technologies following the same top-
down methodology used in the CMOS case. This tool allows to easily describe
and simulate complex NML circuits without loosing important details like the
placement of each magnets, as it happens in case of VHDL modeling, and without
the limitations in terms of speed and circuit sizes of low level simulators.

The tool is still in development so it does not have all the planned functional-
ities but we are still working hard on completing and improving it. Particularly
our efforts are oriented in three directions: Custom circuits description, Place &
Route algorithm and simulation engine.

While the automatic layout generation is a very important feature, we
acknowledge that also the manual custom circuit description plays an impor-
tant role. We are therefore trying to improve the means available to describe
circuits manually, for example providing an interface that allows to import
circuits designed with QCADesigner, opportunely converted substituting
magnets to the QCA cells used by QCADesigner. This can represent an impor-
tant step in the tool development, since many researchers in the QCA com-
munity use QCADesigner. We are also working to modify the program to be
released to other people that work in this field, so that they can fully exploit the
advantages given by ToPoliNano.

The Place & Route algorithm is the program core and also the most complex
part. We are working in two directions, to improve the algorithm allowing it
to handle also sequential circuits and implementing a floorplanning algorithm
to create the layout of complex circuits with a hierarchical structure. Sequential
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circuits require careful handling, because signals must be carefully synchronized.
We would like to support in the future, multiple clock zones layout types and
more NML types. Finally we are working with the aim of improving the simula-
tion engine supporting other types of NML.

Overall it is possible to conclude that ToPoliNano has a great potential that
must be still exploited, and we are doing our best toward this direction.
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