
Analysis of Self-� and P2P Systems Using Refinement

Manamiary Bruno Andriamiarina1, Dominique Méry1,�, and Neeraj Kumar Singh2

1 Université de Lorraine, LORIA, BP 239, 54506 Vandœuvre-lès-Nancy, France
{Manamiary.Andriamiarina,Dominique.Mery}@loria.fr

2 McMaster Centre for Software Certification,
McMaster University, Hamilton, Ontario, Canada

singhn10@mcmaster.ca, Neerajkumar.Singh@loria.fr

Abstract. Distributed systems and applications are becoming increasingly com-
plex, due to factors such as dynamic topology, heterogeneity of components, fail-
ure detection. Therefore, they require effective techniques for guaranteeing safety,
security and convergence. The self-� systems are based on the idea of managing
efficiently complex systems and architectures without user interaction. This pa-
per presents a methodology for verifying distributed systems and ensuring safety
and convergence requirements: Correct-by-construction and service-as-event
paradigms are used for formalizing the system requirements using incremental
refinement in EVENT B. Moreover, this paper describes a mechanized proof of
correctness of the self-� systems along with a case study related to the P2P-based
self-healing protocol.

Keywords: Distributed systems, self-�, self-healing, self-stabilization, P2P,
EVENT B, liveness, service-as-event.

1 Introduction

Nowadays, our daily lives are affected by technologies such as computers, chips, smart-
phones. These technologies are integrated into large distributed systems that are widely
used, which provide required functionalities, (emergent [11]) behaviors and

Legal
States

e∈C L

��
f∈F

��
Illegal
States

r∈ST

��
Recovery

States

f∈F
��

r∈C V

��

r∈ST

��

Fig. 1. Diagram for a Self-
Stabilizing System S

properties from interactions between components. Self-
� systems and their autonomous properties (e.g, self-
stabilizing systems autonomically recovering from
faults [5]) tend to take a growing importance in the de-
velopment of distributed systems. In this study, we use
the correct by construction approach [7] for modelling
the distributed self-� systems. Moreover, we emphasize
on the service-as-event [2] paradigm, that identifies the
phases of self-stabilization mechanism.

We consider that a system is characterized by events
modifying the states of a system, and modelling abstract
phases/procedures or basic actions according to the ab-
straction level. We define a self-stabilizing system S

� This work was supported by grant ANR-13-INSE-0001 (The IMPEX Project
http://impex.loria.fr) from the Agence Nationale de la Recherche (ANR).

Y. Ait Ameur and K.-D. Schewe (Eds.): ABZ 2014, LNCS 8477, pp. 117–123, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

118 M.B. Andriamiarina, D. Méry, and N.K. Singh

with three states (see in Fig.1): legal states (correct states satisfying a safety property
P), illegal states (violating the property P) and recovery states (states leading from ille-
gal to legal states). The system S is represented by a set of events M = C L ∪ ST ∪ F .
The subset C L models the computation steps of the system and introduces the notion
of closure [4] : any computation starting from a legal state leads to another legal state.
The occurence of a fault, modelled by an event f ∈ F (dotted transition in Fig.1), leads
the system S into an illegal state. When a fault occurs, we assume that some procedures
identify the current illegal states and simulate the stabilization (recovery (r ∈ ST) and
convergence (r ∈ C V , with C V ⊆ ST)) procedure to legal states.

This paper is organised as follows. Section 2 introduces the formal verification ap-
proach including service-as-event paradigm and illustrates the proposed methodology
with the study of the self-healing P2P-based protocol [8]. Section 3 finally concludes
the paper along with future work.

2 Stepwise Design of the Self-healing Approach

In this section, we propose a formal methodology for self-� systems that integrates the
EVENT B method, the related toolbox RODIN platform and elements of temporal logics,
such as traces properties (liveness). Using refinement, we gradually build models of
self-� systems in the EVENT B framework [1]. Moreover, we use the service-as-event
paradigm to describe the stabilization and convergence from illegal states to legal ones.
The concept of refinement diagrams [2,9] intends to capture the intuition of the designer
for deriving progressively the target self-� system.

2.1 Introduction to the Self-healing P2P-Based Approach

The development of self-healing P2P-based approach is proposed by Marquezan et

Fig. 2. Architecture

al. [8], where the reliability of a P2P-system is the main concern.
The self-healing process ensures that if a management service (a
task executed by peers) of the system enters a faulty/failed state,
then a self-healing/recovery procedure guarantees that the service
switches back to a legal state. The self-healing is as follows: (1)
Self-detection identifies failed instances (peers) of a management
service. (2) Self-activation is started, whenever a management
service is detected as failed. A failed service does not trigger
recovery if there are still enough instances for running the ser-
vice; otherwise, (3) Self-configuration repairs the service: new
peers running the service are instantiated, and the service is re-
turned into a legal state. We illustrate the use of service-as-event
paradigm and refinement diagrams with the formal design of self-
healing approach.

2.2 The Formal Design

Figure 2 depicts the formal design of self-healing P2P-based approach. The model
M0 abstracts the approach. The refinements M1, M2, M3 introduce the self-detection,

Analysis of Self-� and P2P Systems Using Refinement 119

self-activation and self-configuration. Models from M4 to M20 are used for localis-
ing the self-healing algorithm. The last refinement M21 presents a local model that
describes procedures for recovering process of P2P system.

Abstracting the Self-healing Approach (M0). We use the service-as-event paradigm
to describe the main functionality (i.e. recovery) offered by the self-healing protocol.
Each service (s) is described by two states: RUN (legal/running state) and FAIL (il-
legal/faulty state). A property P =̂ (s �→ RUN ∈ serviceState) expresses that a ser-
vice (s) is in a legal running (RUN) state. An event FAILURE leads service (s) into
a faulty state (FAIL), satisfying ¬P. The self-healing of service (s) is expressed by a
liveness (leads to) property as follows : (¬P) � P, meaning that each faulty state will
eventually be followed by a legal one. The procedure is stated by an abstract event
HEAL, where service (s) recovers from a faulty state to a legal running one. The refine-
ment diagram1 (see Fig.3) and events sum up the abstraction of a recovery procedure.

RUN

FAILURE��
FAIL

HEAL

		

Fig. 3. Abstraction

EVENT FAILURE
ANY

s
WHERE

grd1 : s ∈ SERVICES
THEN

act1 : serviceState :=
({s}�− serviceState)∪ {s �→ FAIL}

EVENT HEAL
ANY

s
WHERE

grd1 : s ∈ SERVICES
grd2 : s �→ FAIL ∈ serviceState

THEN
act1 : serviceState :=
(serviceState\{s �→ FAIL})

∪{s �→ RUN}

This macro/abstract view of the self-healing is detailed by refinement2, using interme-
diate steps guided by the three phases : Self-detection, Self-activation and Self-
configuration. New variables denoted by NAME_{Re f inement Level} are introduced.

Introducing the Self-detection (M1). A new state (FL_DT _1) defines the detection of
failures : a service (s) can suspect and identify a failure (FAIL_1) before triggering re-
covery (HEAL). We introduce a new property R0 =̂ (s �→ FL_DT_1 ∈ serviceState_1)
and a new event FAIL_DETECT. The steps of self-detection are introduced, using the
inference rules [6] related to the operator leads to (�), as illustrated by refinement dia-
gram 4 and proof tree. The event FAIL_DETECT expresses the self-detection: the failed
state (FAIL_1) of a service (s) is detected (state FL_DT _1). The property (¬P)�R0 is
expressed by the event FAIL_DETECT.R0 � P is defined by the event HEAL, where the
service (s) is restored to a legal running state after failure detection. The same method
is applied to identify all the phases of self-healing algorithm. Due to limited space,

Fig. 4. Self-Detection

(¬P)� R0 R0 � P
trans

(¬P)� P

we focus on the interesting parts of models and live-
ness properties. The complete development can be
downloaded from web3 and details can be found in
the companion paper [3].

1 The assertions (s �→ st ∈ serviceState), describing the state (st) of a service (s), are shorten into
(st), in the nodes of the refinement diagrams, for practical purposes.

2 ⊕: to add elements to a model, 	: to remove elements from a model.
3 http://eb2all.loria.fr/html_files/files/selfhealing/self-healing.zip

http://eb2all.loria.fr/html_files/files/selfhealing/self-healing.zip

120 M.B. Andriamiarina, D. Méry, and N.K. Singh

Introducing the Self-activation (M2) and Self-configuration (M3). The self-activation
is introduced in M2 (see Fig. 5), where a failure of a service (s) is evaluated as criti-
cal or non-critical using a new state FL_ACT_2 and an event FAIL_ACTIV. The self-
configuration step is introduced in M3 (see Fig.6): if the failure of service (s) is critical,
then self-configuration for a service (s) is triggered (state FL_CONF_3), otherwise, the
failure is ignored (state FL_IGN_3).

Fig. 5. Self-Activation Fig. 6. Self-Configuration

Fig. 7. Self-Healing steps

The Global Behaviour (M4). The mod-
els are refined and decomposed into
several steps (see Fig.7) [8]. (1) Self-
Detection phase is used to detect any
failure in the autonomous system. The
event FAIL_DETECT models the failure
detection; and the event IS_OK states
that if a detected failure of a service
(s) is a false alarm, then the service (s)
returns to a legal state (RUN_4). (2) Self-

Activation evaluates detected failures which are actual. The events FAIL_IGN and IG-
NORE are used to ignore the failure of service (s) when it is not critical (FL_IGN_4).
The event FAIL_CONF triggers the reconfiguration of service (s) when failure is criti-
cal (FL_CONF_4). (3) Self-Configuration presents the healing procedure of a failed
service using an event REDEPLOY.

The refinements M5, M6, M7 introduce gradually the running (run_peers(s)), faulty
(f ail_peers[{s}]), suspicious (susp_peers(s)) and deployed instances (dep_inst[{s}])
for a service (s). Each service (s) is associated with the minimal number of instances re-
quired for running service (s): during the self-activation phase, if the number of running
instances of service (s) is below than minimum, failure is critical. Models from M8 to
M10 detail the self-detection and self-configuration phases to introduce the token own-
ers for the services. Models from M11 to M20 localise gradually the events (we switch

Analysis of Self-� and P2P Systems Using Refinement 121

from a service point of view to the point of view of peers). Due to limited space3, in the
next section, we present only M21.

The Local Model (M21). This model details
locally the self-healing procedure of a service
(s). The notion of token owner is more detailed:
the token owner is a peer instance of service (s)
that is marked as a token owner for the Manage-
ment Peer Group (MPG), i.e. the set of peers
instantiating service (s). It controls self-healing
by applying self-detection, self-activation, and
self-configuration steps. (1) Self-Detection in-
troduces an event SUSPECT_INST that states
that the token owner is able to suspect a set
(susp) of unavailable instances of service (s).
Events RECONTACT_INST_OK and RECON-
TACT_INST_KO are used to specify the suc-

cessful and failed recontact, respectively, of the unavailable instances for ensuring
failures. Moreover, the token owner is able to monitor the status of service (s) us-
ing two events FAIL_DETECT, and IS_OK. If instances remain unavailable after the
recontacting procedure, the token owner informs the safe members of MPG of failed in-
stances (FAIL_DETECT); otherwise, the token owner indicates that service (s) is running
properly (IS_OK). (2) Self-Activation introduces an event FAIL_ACTIV where the token
owner evaluates if a failure is critical. Event FAIL_IGNORE specifies that the failure is
not critical. It is ignored (event IGNORE), if several instances (more than minimum) are
running correctly. Otherwise, the failure will be declared critical, and self-configuration
will be triggered using an event FAIL_CONFIGURE. (3) Self-Configuration introduces
three events REDEPLOY_INSTC, REDEPLOY_INSTS and REDEPLOY that specify that
new instances of running service (s) are deployed until the minimal number of instances
is reached. And after, the event HEAL can be triggered, corresponding to the conver-
gence of the self-healing process.

Moreover, in this model, we have formulated hypotheses for ensuring the correct
functioning of the self-healing process: (1) If the token owner of a service (s) becomes
unavailable, at least one peer, with the same characteristics as the disabled token owner
(state, local informations about running, failed peers, etc.) can become the new token
owner; (2) There is always a sufficient number of available peers that can be deployed
to reach the legal running state of a service (s). In a nutshell, we say that our methodol-
ogy allows users to understand the self-� mechanisms, to gain insight into their architec-
tures (components, coordination, etc.); and gives evidences of their correctness under
some assumptions/hypotheses.

3 Discussion, Conclusion and Future Work

We present a methodology based on liveness properties and refinement diagrams for
modelling the self-� systems using EVENT B. The key ideas are to characterize the

122 M.B. Andriamiarina, D. Méry, and N.K. Singh

self-stabilizing systems by modes : 1) legal (correct) state, 2) illegal (faulty) state, and
3) recovery state (see Fig.1); then identify the required abstract steps between modes,
for ensuring convergence; and enrich abstract models using refinement. We have il-
lustrated our methodology with the self-healing approach [8]. The complexity of the
development is measured by the number of proof obligations (POs) which are automati-
cally/manually discharged (see Table 1). A large majority (∼ 70%) of the 1177 manual
proofs is solved by simply running the provers from the Atelier B. The actual sum-
mary of POs is given by Table 2. Manually discharged POs require analysis and skills,
whereas quasi-automatically discharged POs would only need a tuning of RODIN (e.g.
provers run automatically).

Table 1. Summary of Proof Obligations

Model Total Auto Interactive
CONTEXTS 30 26 86.67% 4 13.33%

M0 3 3 100% 0 0%
M1 21 15 71.4% 6 28.6%
M2 46 39 84.8% 7 15.2%
M3 68 0 0% 68 100%
M4 142 16 11.27% 126 88.75%

OTHER MACHINES 1111 158 14.22% 953 85.78%
M21 13 0 0% 13 100%

TOTAL 1434 257 17.9% 1177 82.1%

Table 2. Synthesis of POs

Total Auto Quasi-Auto Manual
1434 257 17.9% 850 59.3% 327 22.8%

Furthermore, our refinement-based formal-
ization produces local models close to the
source code. Our future works include the
generation of applications from the resulting
model extending tools like EB2ALL [10].
Moreover, further case studies will help us
to discover new patterns that could be im-
plemented in the RODIN platform. Finally,
another point would be to take into account
dependability properties and concurrency.

References

1. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge Univer-
sity Press (2010)

2. Andriamiarina, M.B., Méry, D., Singh, N.K.: Integrating Proved State-Based Models for
Constructing Correct Distributed Algorithms. In: Johnsen, E.B., Petre, L. (eds.) IFM 2013.
LNCS, vol. 7940, pp. 268–284. Springer, Heidelberg (2013)

3. Andriamiarina, M.B., Méry, D., Singh, N.K.: Analysis of Self-� and P2P Systems using
Refinement (Full Report). Technical Report, LORIA, Nancy, France (2014)

4. Berns, A., Ghosh, S.: Dissecting self-* properties. In: Proceedings of the 2009 Third IEEE
International Conference on Self-Adaptive and Self-Organizing Systems, SASO 2009, pp.
10–19. EEE Computer Society, Washington, DC (2009)

5. Dolev, S.: Self-Stabilization. MIT Press (2000)
6. Lamport, L.: A temporal logic of actions. ACM Trans. Prog. Lang. Syst. 16(3), 872–923

(1994)
7. Leavens, G.T., Abrial, J.-R., Batory, D.S., Butler, M.J., Coglio, A., Fisler, K., Hehner, E.C.R.,

Jones, C.B., Miller, D., Jones, S.L.P., Sitaraman, M., Smith, D.R., Stump, A.: Roadmap for
enhanced languages and methods to aid verification. In: Jarzabek, S., Schmidt, D.C., Veld-
huizen, T.L. (eds.) GPCE, pp. 221–236. ACM (2006)

Analysis of Self-� and P2P Systems Using Refinement 123

8. Marquezan, C.C., Granville, L.Z.: Self-* and P2P for Network Management - Design Princi-
ples and Case Studies. Springer Briefs in Computer Science. Springer (2012)

9. Méry, D.: Refinement-based guidelines for algorithmic systems. International Journal of Soft-
ware and Informatics 3(2-3), 197–239 (2009)

10. Méry, D., Singh, N.K.: Automatic code generation from event-b models. In: Proceedings of
the Second Symposium on Information and Communication Technology, SoICT 2011, pp.
179–188. ACM, New York (2011)

11. Smith, G., Sanders, J.W.: Formal development of self-organising systems. In: González Ni-
eto, J., Reif, W., Wang, G., Indulska, J. (eds.) ATC 2009. LNCS, vol. 5586, pp. 90–104.
Springer, Heidelberg (2009)

	Analysis of Self-� and P2P Systems Using Refinement

	1 Introduction
	2 Stepwise Design of the Self-healing Approach
	2.1 Introduction to the Self-healing P2P-Based Approach
	2.2 The Formal Design

	3 Discussion, Conclusion and Future Work
	References

