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Abstract. Anticipation proof obligations for stated variants need to be
proved in Event-B even if the variant has no variables in common with
anticipated event. This often leads to models that are complicated by
additional auxiliary variables and variants that need to take into account
these variables. Because of such “encodings” of control flow information
in the variants the corresponding proof obligations can usually not be
discharged automatically.

We present a new proof obligation for anticipated events that does
not have this defect and prove it correct. The proof is fairly intricate
due to the nondeterminism of the simulations that link refinements. An
informal soundness argument suggests using a lexicographic product in
the soundness proof. However, it turns out that a weaker order is required
which we call quasi-lexicographic product.

1 Introduction

Event-B provides some flexibility in termination proofs by means of the concept
of anticipated events [3]. Anticipated events make it easier to formulate variants
for complex models. Ample examples of their use can be found in [1].

The motivation for the work presented in this paper is best illustrated by
way of an example. Consider the two fragments of some Event-B machine shown
in Fig. 1. To simplify the presentation we have already included an abstract
program counter P in the model. Assume

P = 3 ⇒ w ∈ 0 .. 4

is an invariant of the machine. Concerning the right-hand side only we can prove
convergence of event three using the variant 4 − w. The Rodin tool [2] will do
this automatically. However, if we also take the left-hand side into account we
have to prove anticipation of event one

(P = 3 ⇒ w ∈ 0 .. 4) ∧ P = 1 ∧ y < 2 ⇒ 4− w ∈ N ∧ 4− w ≤ 4− w . (1)

Now, we would fail to prove the first part 4−w ∈ N of the conclusion. A possible
work-around would be to make the variant “global” using the set

({P} ∩ {3})× (0 .. 4− w) .
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anticipated event one
when

P = 1 ∧ y < 2
then

y := y + 1
end

event two
when

P = 1 ∧ y = 2
then

x := y
end

convergent event three
when

P = 3 ∧ w < 4
then

w := w + 1
end

event four
when

P = 3 ∧ w = 4
then

v := w
end

Fig. 1. Two non-interfering components

This solution is not satisfactory because it complicates the variant and the proof
obligations. The proof involves set theory, finite sets and arithmetic and is not
done automatically by Rodin tool. We consider tweaking the prover to deal with
such instances a bad choice because it would not solve the problem in general and
fail occasionally. As our first contribution we show instead that we can drop proof
obligations such as (1) for anticipated events entirely. The second contribution
concerns the nature of the invariant arising from the use of anticipated events.
The soundness proof for the proof obligations requires a generalised form of
lexicographic order. This is due to the nondeterminism inherent in the gluing
invariant that relates abstract variables to concrete variables. Only special cases
such as functional gluing invariants yield lexicographic products. The general
case, however, does not.

The informal soundness argument in [3] depends on the abstract variables
mentioned in a variant being kept in refinements. Hence, for those variables the
refinements are functional; and the claim that termination can be demonstrated
by means of a lexicographic product is correct under the given constraint. The
only other (semi-) formal soundness proof we are aware of is presented in [8].
However, the proof glosses over a vital fact assuming an equality of abstract sets
when only set inclusion is known (see Rem. 7). This way it also achieves to prove
that anticipation yields a lexicographic variant.

Overview. We remind the reader of the important properties of well-founded
relations in Section 2 and give a short introduction to the used concepts of
Event-B in Section 3. The presentation of Event-B is purely set-theoretical and
does not discuss Event-B syntax that is used in some examples. Syntax and
set-theoretical semantics should be easy to relate though. Details can be found
in [1,7]. Section 4 discusses a generalised form of anticipation and convergence
based on the concept of quasi-stability. The idea behind quasi-stable relations is
to replace the identity relation used in lexicographic products by a more general
relation that must not “increase” the first component of the product. Section 5
presents the concept of quasi-lexicographic product that uses such a relation
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instead of the identity used in the soundness proof of Section 6 In Section 7 we
suggest an improvement for the Rodin tool. Section 8 contains the conclusion.

2 Well-Founded Relations

We repeat the main facts about well-founded relations. Most interesting for us
is their relationship to transitive closures.

Definition 1. A predecessor relation m is called well-founded if all non-empty
subsets z have minima with respect to m,

∀z · z �= ∅⇒∃x · x ∈ z ∧ ∀y · y ∈ z ⇒ x 
→ y �∈ m . (2)

Well-foundedness of m is denoted by wf〈m〉.

This is expressed more succinctly using set-theoretic notation (e.g. [1]),

∀z · z ⊆ m−1[z]⇒ z = ∅ . (3)

Whereas property (2) is easier to understand, the equivalent set-theoretic state-
ment (3) is easier to apply in proofs.

Later we need well-founded relations that are also transitive. The easiest way
to ensure transitivity is to use the transitive closure m+ of a relation m.

Definition 2. The transitive closure m+ of a relation m is the smallest relation
x satisfying the property m ∪ (m ; x) ⊆ x.

Clearly, the transitive closure of a relation is a transitive relation.

Lemma 1. m+ ;m+ ⊆ m+

The proof obligations for anticipation and convergence only require the em-
ployed order m to be well-founded. Fortunately, transitive closures of well-
founded relations are well-founded. This fact is well-known, e.g. [6].

Lemma 2. wf〈m〉 ⇔ wf〈m+〉.
Well-foundedness of relations of the shape c�m only concerns subsets of c. This
property is sometimes useful in proofs.

Lemma 3. wf〈c � m〉 ⇔ ∀z · z ⊆ c ∧ z ⊆ m−1[z]⇒ z = ∅.

Remark 1. Well-foundedness of c�m implies c�m is irreflexive. If c�m is well-
founded and transitive, then c�m is a strict partial order. It is common to require
stronger properties of c�m or m like strict partial orders for the loop proof rule
in [4]. We aim to keep the number of proof obligations for candidates for m low,
hence, we only require well-foundedness of c � m, following the approach of [5].
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3 Models, Consistency and Refinement

Event-B models are composed of machines that are related by refinement. A
machine consists of a collection of events that describe the behaviour of the
machine. An event is a relation of the shape e = g� s where g is a set called the
guard of the event and s a relation called the action of the event. A dedicated
event with the guard g = ∼∅ is used for the initialisation of a machine.1

A machine has an invariant i. The invariant is a set that describes properties of
the machine that are preserved by its events. This property is called consistency
of the event, formally, cns〈i, e〉.
Definition 3. cns〈i, e〉 ⇔ e[i] ⊆ i.

For event e = g � s we usually also require feasibility, that is, i∩ g ⊆ dom(s), or
equivalently, i ∩ g ⊆ dom(e). But we do not make use of it in this article.

A machine N refines another machine M if M can simulate the behaviour
of N . In this relationship we call N the concrete machine and M the abstract
machine. Machine N is related to machine M by means of a gluing invariant. The
gluing invariant is a relation j that describes the simulation. Machine N refines
M if each event e of M is refined by an event f of N , formally, ref〈i, j, e, f〉.
Definition 4. ref〈i, j, e, f〉 ⇔ (i � j) ; f ⊆ e ; j.

The concrete machine N may also introduce new events that are required to
refine skip, the event that describes stuttering of M . The event skip is the
identity relation id. Formally, the introduction of a new event corresponds to
ref〈i, j, id, f〉. Note that the invariant of the concrete machine N is j[i].

Lemma 4. cns〈i, e〉 ∧ ref〈i, j, e, f〉 ⇒ cns〈j[i], f〉.
The relation i � j may also serve as the gluing invariant as implied by the
following lemma.

Lemma 5. cns〈i, e〉 ∧ ref〈i, j, e, f〉 ⇒ (i � j) ; f ⊆ e ; (i � j).

Remark 2. Our presentation of the set-theoretical model of Event-B follows [1]
by and large. In [1, Chapter 14] Abrial uses the relation ρ = (i � j)−1 in place
of i and j as we do in Def. 4. Nonetheless, the formalisations are equivalent as
indicated by Lemma 5 and inverting the relation ρ.

A tuple 〈v, c,m〉 where v is a partial function and c�m is a well-founded rela-
tion is called a variant and v is called the variant function. If we say informally
“the variant has changed” refer to differing values of v in consecutive states. Let
〈v, c,m〉 be a variant. We say that event e is anticipated if ant〈i, e, v, c,m〉.
Definition 5. ant〈i, e, v, c,m〉 ⇔ i � e ⊆ v ; (id ∪ c � m) ; v−1.

We say that e is convergent if cvg〈i, e, v, c,m〉.
Definition 6. cvg〈i, e, v, c,m〉 ⇔ i � e ⊆ v ; c � m ; v−1.

1 The set complement ∼ s is defined by x ∈ ∼ s ⇔ x �∈ s.
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Remark 3. The original Event-B proof obligation for anticipated events is

i � e ⊆ v ; c � (id ∪m) ; v−1 .

The new formulation of the proof obligation does not require the proof of mem-
bership in c if the e leaves the variant unchanged. In principle one could further
generalise the proof obligation to

i � e ⊆ v ; id ∪m ; v−1

but this would be traded against stronger constraints on m. Our intention is to
make finding candidates for m as easy as possible, for instance, allowing a cyclic
graph restricted to an acyclic tree. Constraining m would often necessitate the
introduction of an auxiliary variable (e.g., for recording the acyclic tree directly).
Using the new proof obligation of Def. 5 we have two ways to influence how m is
used in case the anticipated event is interfering with the convergent event. One
is the choice of the set c for determining a subset of m. The other is the function
v. If we map all states that do not need to be considered for the convergence
proof to the same element z outside c, then to prove v(x) 
→ v(y) ∈ id we can
use v(x) = z and v(y) = z in such cases. However, we would still need to verify
v(x) = z and v(y) = z.

The challenge of proving soundness of the anticipation and convergence proof
obligations is clearly related to dealing with the gluing invariant. Fig. 2 shows

invariant v ∈ Z

variant v

anticipated event absa
begin

skip
end
convergent event absc
any x when

v ∈ N1 ∧ x ∈ N1

then
v := v − x

end

invariant w ⊆ {x | x < v} ∧ (v ∈ N1 ⇒ 0 ∈ w)

anticipated event conca
any x when

w �= ∅ ∧ x < max(w)
then

w := w ∪ {x}
end
convergent event concc
when

w ∩ N �= ∅

then
w := w \ {max(w)}

end

Fig. 2. A nondeterministic refinement with a simple variant

an abstract and a concrete machine of a refinement. The variant for proving
convergence of the abstract event absc is v, the only variable of the machine. In
terms of our set-theoretical model the variant function is id. The set-theoretic
gluing invariant is {v 
→ w | w ⊆ {x | x < v} ∧ (v ∈ N1 ⇒ 0 ∈ w)} establishing
a many-to-many relationship between the abstract variable v and the concrete
variable w. How to use variable w to express the variant in the concrete machine
is not at all obvious. But it is necessary, in order to “forget” about the abstract
machine and continue working solely with the concrete machine.
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4 Convergence and Anticipation

The proof obligations ant and cvg stated in Section 3 are not suitable for the
induction-based soundness proof of Section 6. We need a more general formula-
tion based on the concept of quasi-stability.

Definition 7. A relation r is called m-quasi-stable, qs〈r,m〉, if it is reflexive,
transitive and for all predecessors y of x in r, all predecessors of y in m are also
predecessors of x in m, that is, the following three conditions are satisfied

id ⊆ r , (4)
r ; r ⊆ r , (5)
∀x, y · x 
→ y ∈ r ⇒m[{y}] ⊆ m[{x}] . (6)

Property (6) can be expressed more concisely using set-theoretic notation

(6) ⇔ ∀p · (r ;m)[p] ⊆ m[p] .

Whereas the set-theoretic formulation of well-foundedness is favourable for use in
proof, this does not hold for (6). Instantiating x and y is usually straightforward.
Dealing with the set p above easily leads astray when instantiated during a proof.
Set-theoretic formulations are not invariably “better”.

An m-quasi-stable relation r is also c�m-quasi-stable if the set c is invariant
under the inverse of r.

Lemma 6. qs〈r,m〉 ∧ r−1[c] ⊆ c ⇒ qs〈r, c � m〉.
Finally, for an m-quasi-stable relation r where m is a transitive relation, the
transitive closure of r ∪m is also m-quasi-stable.

Lemma 7. qs〈r,m〉 ∧ m ;m ⊆ m ⇒ qs〈(r ∪m)+,m〉.
This is all we need to know about quasi-stable relations for now. We are ready
to introduce quasi-variants.

Definition 8. Let i be a set. A tuple 〈v, r,m〉 is called an i-quasi-variant iff v
is a partial function with i ⊆ dom(v), m well-founded and r is m-quasi-stable.
The i-quasi-variant 〈v, r,m〉 is called transitive if m ;m ⊆ m.

Using Def. 8 we define generalisations ANT and CVG of ant and cvg. Let
V = 〈v, r,m〉 be an i-quasi-variant in the following two definitions.

Definition 9. ANT〈i, e, V 〉 ⇔ i � e ⊆ v ; (r ∪m) ; v−1.

The generalisation only concerns the replacement of id in ant by an m-quasi-
stable relation r in ANT. The corresponding convergence proof obligation CVG
has the same shape like cvg but uses a quasi-variant.

Definition 10. CVG〈i, e, V 〉 ⇔ i � e ⊆ v ;m ; v−1.
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Remark 4. We have the obvious equivalences

ANT〈i, e, 〈v, id, c � m〉〉 ⇔ ant〈i, e, v, c,m〉 and
CVG〈i, e, 〈v, id, c � m〉〉 ⇔ cvg〈i, e, v, c,m〉 .

A consequence of this is that the proof obligations ant and cvg can serve as
base cases in an inductive soundness proof using ANT and CVG.

The transitive closure of a relation preserves quasi-stability. Combined with
Lemma 7 this property permits to turn an m-quasi-stable relation r into an m+-
quasi-stable relation (r ∪m)+ that matches the shape of the relation r ∪m in
Def. 9 and is transitive.

Lemma 8. qs〈r,m〉 ⇒ qs〈r,m+〉.
Remark 5. Any i-quasi-variant V = 〈v, r,m〉 has an associated transitive i-quasi-
variant W = 〈v, r,m+〉 by Lemmas 2 and 8. Furthermore, ANT〈i, e, V 〉 implies
ANT〈i, e,W 〉, and CVG〈i, e, V 〉 implies CVG〈i, e,W 〉. Thus, using the equiv-
alences of Rem. 4 we can use arbitrary quasi-variants on well-founded sets in
specifications but assume that we have transitive quasi-variants available when-
ever needed.

5 Quasi-Lexicographic Products and Power Orders

The combination of refinement and anticipation produces quasi-lexicographic
products on power orders. This complication is caused by the nondeterministic
relationship between abstract and concrete states induced by the gluing invariant.

Definition 11. The r-quasi-lexicographic product of two relations m and n, de-
noted m�r n, is defined as (m � ∼∅) ∪ (r � n).2

The relation m�idn is the lexicographic product of m and n. The identity keeps
the first component “stable” while the second component changes. It breaks the
symmetry of a plain union of m and n and as a result preserves well-foundedness.
If we replace the identity by an m-quasi-stable relation we achieve the same.

If we unfold the set-theoretical definition of the r-quasi-lexicographic product,
we obtain the more familiar formulation

m�r n = {(p 
→ x) 
→ (q 
→ y) | p 
→ q �∈ m⇒ p 
→ q ∈ r ∧ x 
→ y ∈ n} . (7)

The following lemma provides the main insight of this section. The r-quasi-
lexicographic product with an m-quasi-stable relation r of well-founded relations
m and n is well-founded.

2 In the Event-B notation the parallel product r � s of two relations r and s is defined
by (p 
→ x) 
→ (q 
→ y) ∈ r � s ⇔ p 
→ q ∈ r ∧ x 
→ y ∈ s.
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Lemma 9. wf〈m〉 ∧ qs〈r,m〉 ∧ wf〈n〉 ⇒ wf〈m�r n〉.

The power order of a relation m is a relation over the subsets of its domain
and range.

Definition 12. The power order of a relation m, denoted by Om, is defined as
{p 
→ q | p ⊆ m−1[q] ∧ (p = ∅⇒ q = ∅)}.
Using the power order we could state well-foundedness (3) of a relation m in
the form ∀z · z 
→ z ∈ Om⇒ z = ∅. Unfolding the set-theoretical notation the
power order Om of a relation m has the following shape

{p 
→ q | (∀x · x ∈ p⇒∃y · y ∈ q ∧ x 
→ y ∈ m) ∧ (p = ∅⇒ q = ∅)} . (8)

Power orders preserve many important properties of a relation such as transitiv-
ity, quasi-stability and well-foundedness on non-empty sets. This permits us to
lift known well-founded orders to well-founded power orders.

Lemma 10. r ; r ⊆ r ⇒ (O r) ; (O r) ⊆ O r.

If a relation r is m-quasi-stable, then O r is Om-quasi-stable.

Lemma 11. qs〈r,m〉 ⇒ qs〈O r,Om〉.
The empty set occurs in a power order only as the pair ∅ 
→ ∅. Hence,

removing the empty set from the range of a power order also removes it from
its domain. The following lemma is to be used with Lemma 6 and Lemma 13
below. It permits to remove the empty set from a power order while preserving
quasi-stability.

Lemma 12. (Om)−1[∼{∅}] ⊆ ∼{∅}.
Well-foundedness is only preserved when the empty set is excluded from the

power order. In fact, the empty set is introduced for purely technical reasons in
the definition of the power order. Removing it would complicate the definition
of quasi-stability, in particular. In the soundness proof below the empty set is
easily excluded to occur in all cases where well-foundedness of power orders is
required.

Lemma 13. wf〈m〉 ⇒ wf〈{∅} �−Om〉.
The following lemma permits to construct a quasi-stable quasi-lexicographic

product from quasi-stable components. This construction facilitates the intro-
duction of quasi-lexicographic products in refinements where the pair 〈r,m〉 is
part of a quasi-variant of the abstract model and 〈s, n〉 is part of a quasi-variant
of the concrete model.

Lemma 14. qs〈r,m〉 ∧ qs〈s, n〉 ⇒ qs〈r � s,m�r n〉.
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6 Soundness

Theorem 1 states the main condition for the termination proof in Event-B to be
sound. It says that anticipation and convergence are preserved by refinement,
and anticipation may be strengthened to convergence; and the variant function
can be expressed in terms of concrete variables only.

Theorem 1. For sets i, relation j, transitive i-quasi-variant V and j[i]-quasi-
variant W there is a transitive j[i]-quasi-variant U such that
(N) for all relations f : if ref〈i, j, id, f〉, then

(1) ANT〈j[i], f,W 〉 implies ANT〈j[i], f, U〉,
(2) CVG〈j[i], f,W 〉 implies CVG〈j[i], f, U〉,

(R) for all relations e, f : if cns〈i, e〉 and ref〈i, j, e, f〉, then
(1) CVG〈i, e, V 〉 implies CVG〈j[i], f, U〉,
(2) ANT〈i, e, V 〉 and ANT〈j[i], f,W 〉 imply ANT〈j[i], f, U〉,
(3) ANT〈i, e, V 〉 and CVG〈j[i], f,W 〉 imply CVG〈j[i], f, U〉.

Proof. Let V = 〈v, r,m〉 and W = 〈w, s, n〉. In a refinement the abstract quasi-
variant function v is only accessible by means of the gluing invariant i � j; we
define φ = v−1 ; (i � j). Let U = 〈u, t, o〉 be given by

u = (λx · � | φ−1[{x}] 
→ w[{x}])
t = O (r ∪m)+ � O s

o = (({∅} �−Om)�
O (r∪m)+ ({∅} �−On))+ .

It is easy to verify that j[i] ⊆ dom(u). Furthermore, relation o is well-founded
because

�
⇒ 〈 V is an i-quasi-variant 〉

qs〈r,m〉
⇒ 〈 V is transitive and Lemma 7 〉

qs〈(r ∪m)+,m〉
⇒ 〈 Lemma 11 〉

qs〈O (r ∪m)+,Om〉
⇒ 〈 Lemma 12 and Lemma 6 〉

qs〈O (r ∪m)+, {∅} �−Om〉 (9)
⇒ 〈 wf〈m〉 because V is an i-quasi-variant, and Lemma 13 〉

qs〈O (r ∪m)+, {∅} �−Om〉 ∧wf〈{∅} �−Om〉
⇒ 〈 wf〈n〉 because W is a j[i]-quasi-variant, and Lemma 13 〉

qs〈O (r ∪m)+, {∅} �−Om〉 ∧wf〈{∅} �−Om〉 ∧wf〈{∅} �−On〉
⇒ 〈 Lemma 9 〉
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wf〈({∅} �−Om)�
O (r∪m)+ ({∅} �−On)〉

⇒ 〈 Lemma 2 〉
wf〈o〉 . (10)

And, U is a transitive j[i]-quasi-variant because

�
⇒ 〈 qs〈s, n〉 because W is a j[i]-quasi-variant, and Lemma 11 〉

qs〈O s,On〉
⇒ 〈 Lemma 12 and Lemma 6 〉

qs〈O s, {∅} �−On〉
⇒ 〈 (9), Lemma 14, Lemma 8, def. of t and o 〉

qs〈t, o〉
⇒ 〈 (10) and Lemma 1, and j[i] ⊆ dom(u) 〉

U is a transitive j[i]-quasi-variant .

Moreover, the j[i]-quasi-variant U satisfies the two conditions (N) and (R).
Now, claims (N1) and (N2) are consequences of claims (R2) and (R3) with e = id
because cns〈i, id〉 and ANT〈i, id, V 〉, the latter being a consequence of id ⊆ r.
Thus, it only remains to be shown that U satisfies (R).

We begin with the proof of (R1). We have

(i � j) ; f 〈 cns〈i, e〉, ref〈i, j, e, f〉 and Lemma 5 〉
⊆ (i � e) ; (i � j) 〈 CVG〈i, e, V 〉 〉
⊆ v ;m ; v−1 ; (i � j) 〈 def. of φ 〉
⊆ v ;m ; φ ,

hence,

(i � j) ; f ⊆ v ;m ; φ . (11)

Using this,

x 
→ y ∈ j[i] � f

⇒ 〈 Lemma 15 below with “k := m” 〉
φ−1[{x}] 
→ φ−1[{y}] ∈ Om

⇒ 〈 dom((i � j) ; f) ⊆ dom(v) by (11) 〉
φ−1[{x}] 
→ φ−1[{y}] ∈ Om ∧ φ−1[{x}] �= ∅

⇒ 〈 def. of �− 〉
φ−1[{x}] 
→ φ−1[{y}] ∈ {∅} �−Om

⇒ 〈 def. of o 〉



96 S. Hallerstede

(φ−1[{x}] 
→ w[{x}]) 
→ (φ−1[{y}] 
→ w[{y}]) ∈ o

⇔ 〈 def. of u 〉
x 
→ y ∈ u ; o ; u−1 .

Hence, (R1) holds. Claims (R2) and (R3) both assume ANT〈i, e, V 〉. Thus,
similarly to (11) we have

(i � j) ; f ⊆ v ; (r ∪m) ; φ . (12)

Now,

x 
→ y ∈ j[i] � f

⇒ 〈 (12) and Lemma 15 below with “k := r ∪m” 〉
φ−1[{x}] 
→ φ−1[{y}] ∈ O(r ∪m)

⇒ 〈 r ∪m ⊆ (r ∪m)+ by def. of + 〉
φ−1[{x}] 
→ φ−1[{y}] ∈ O (r ∪m)+ . (13)

As specified in (R2) and (R3) two cases can be distinguished according to
ANT〈j[i], f,W 〉 and CVG〈j[i], f,W 〉. The former implies

x 
→ y ∈ j[i] � f ⇒ w(x) 
→ w(y) ∈ s ∨ w(x) 
→ w(y) ∈ n . (14)

and the latter

x 
→ y ∈ j[i] � f ⇒ w(x) 
→ w(y) ∈ n . (15)

Thus, (R3) follows because

(13)
⇒ 〈 x 
→ y ∈ j[i] � f and (15) 〉

φ−1[{x}] 
→ φ−1[{y}] ∈ O (r ∪m)+ ∧ w(x) 
→ w(y) ∈ n

⇒ 〈 x ∈ dom(w), y ∈ dom(w) and w is a function 〉
φ−1[{x}] 
→ φ−1[{y}] ∈ O (r ∪m)+ ∧ w[{x}] 
→ w[{y}] ∈ {∅} �−On

⇒ 〈 def. of o 〉
(φ−1[{x}] 
→ w[{x}]) 
→ (φ−1[{y}] 
→ w[{y}]) ∈ o

⇔ 〈 def. of u 〉
x 
→ y ∈ u ; o ; u−1 .
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Concerning (R2) observe that the case “w(x) 
→ w(y) ∈ n” of (14) is already
covered by the proof of (R3). With respect to the other case we have

(13)
⇒ 〈 x 
→ y ∈ j[i] � f and x 
→ y ∈ j[i] � f ⇒ w(x) 
→ w(y) ∈ s 〉

φ−1[{x}] 
→ φ−1[{y}] ∈ O (r ∪m)+ ∧ w(x) 
→ w(y) ∈ s

⇒ 〈 x ∈ dom(w), y ∈ dom(w) and w is a function 〉
φ−1[{x}] 
→ φ−1[{y}] ∈ O (r ∪m)+ ∧ w[{x}] 
→ w[{y}] ∈ O s

⇒ 〈 def. of t 〉
(φ−1[{x}] 
→ w[{x}]) 
→ (φ−1[{y}] 
→ w[{y}]) ∈ t

⇔ 〈 def. of u 〉
x 
→ y ∈ u ; t ; u−1 .

Finally, (R2) follows because

(13) 〈 see above 〉
⇒ x 
→ y ∈ u ; t ; u−1 ∨ x 
→ y ∈ u ; o ; u−1 〈 distributivity of ∪ and ; 〉
⇔ x 
→ y ∈ u ; (t ∪ o) ; u−1 .

This concludes the proof of Theorem 1. ��
The following lemma shows how a concrete convergence or anticipation con-

dition (i � j) ; f ⊆ v ; k ; φ induces a power ordering of the concrete event f .

Lemma 15. Let φ = v−1 ; (i � j) and i ⊆ dom(v). Then

(i � j) ; f ⊆ v ; k ; φ

⇒ (∀x, y · x 
→ y ∈ j[i] � f ⇒ φ−1[{x}] 
→ φ−1[{y}] ∈ O k) .

Proof. Starting from the premise we have

(i � j) ; f ⊆ v ; k ; φ

⇒ 〈 def. of φ, set theory 〉
φ ; f ⊆ v−1 ; v ; k ; φ

⇒ 〈 v is a partial function 〉
φ ; f ⊆ k ; φ

⇔ 〈 def. of φ 〉
φ ; (j[i] � f) ⊆ k ; φ

⇔ 〈 def. of ∪, def. of ; 〉
(∀p, y · (∃x · p 
→ x ∈ φ ∧ x 
→ y ∈ j[i] � f) ⇒ p 
→ y ∈ k ; φ)

⇔ 〈 predicate logic 〉
(∀x, y · x 
→ y ∈ j[i] � f ⇒ (∀p · p 
→ x ∈ φ ⇒ p 
→ y ∈ k ; φ)) . (16)
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Now,

x 
→ y ∈ j[i] � f

⇒ 〈 (16) 〉
∀p · p 
→ x ∈ φ ⇒ p 
→ y ∈ k ; φ

⇒ 〈 def. of ; , set theory 〉
∀p · p ∈ φ−1[{x}] ⇒ ∃q · q ∈ φ−1[{y}] ∧ p 
→ q ∈ k (17)

⇒ 〈 shape (8) of O, and φ−1[{x}] �= ∅ because i ⊆ dom(v) 〉
φ−1[{x}] 
→ φ−1[{y}] ∈ O k .

Thus, Lemma 15 holds. ��
Remark 6. In a functional refinement (i� j)−1 is a partial function, hence, φ−1

is a function. Now, because φ−1 is a function and x ∈ dom(φ−1) we have

(17)

⇒ φ−1(x) 
→ φ−1(y) ∈ k where k = id or k = m.

For refinements that are not functional we can only assume that φ−1 is a re-
lation. This leads to the use of power sets and power orders and requires the
generalisation to quasi-lexicographical products.

Remark 7. Continuing for relational refinements from (17) with k = id would
yield

(17)
⇒ 〈 k = id 〉

∀p · p ∈ φ−1[{x}] ⇒ ∃q · q ∈ φ−1[{y}] ∧ p 
→ q ∈ id

⇒ 〈 def. of id 〉
∀p · p ∈ φ−1[{x}] ⇒ ∃q · q ∈ φ−1[{y}] ∧ p = q

⇒ 〈 one-point rule 〉
∀p · p ∈ φ−1[{x}] ⇒ p ∈ φ−1[{y}]

⇒ 〈 def. of ⊆ 〉
φ−1[{x}] ⊆ φ−1[{y}]

This gives an increasing sequence of sets, a candidate for a quasi-stable relation.
Repeating the process with k = {p 
→ q | p ⊆ q} and proceeding similarly for
the well-founded relation m indicates the need for the constructions presented
in this article.

7 An Improved Proof Obligation for Anticipated Events

The current proof obligation for anticipated events could be rewritten in the
following shape

x 
→ y ∈ i � e ∧ x 
→ y �∈ v ; c � id ; v−1 ⇒ x 
→ y ∈ v ; c � m ; v−1
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Similarly the new proof obligation could be rewritten to

x 
→ y ∈ i � e ∧ x 
→ y �∈ v ; id ; v−1 ⇒ x 
→ y ∈ v ; c � m ; v−1

and further

x 
→ y ∈ i � e ∧ v(x) �= v(y) ⇒ v(x) ∈ c ∧ v(x) 
→ v(y) ∈ m .

And this proof obligation would only need to be generated when x �= y. Following
this approach no proof obligation would be generated in the situation described
in the introductory example in place of (1).

8 Conclusion

The presented improvement of the anticipation proof obligation should be easy
to incorporate into the Rodin tool. Fewer proof obligations need to be generated.
The new proof obligation helps to keep models simple: by using the fact that
some event is non-interfering on some set of variables we permit variants to be
specified “locally” without referring to abstract program counters or similar con-
structs. This could also be useful for composing models where non-interference
is common. (With the current proof rule we would have to change some variant
expressions in order for termination claims to remain valid.)

We have also developed the concept of quasi-lexicographic product that is
necessary for the soundness proof of anticipation and refinement. All lemmas
mentioned in the paper have been proved with the Rodin tool. We are not sure
whether a formalisation of Theorem 1 would be possible with reasonable effort
in the tool. After all, it was never intended for deeper mathematical work.

Acknowledgement. I am grateful to the anonymous reviewers for their thor-
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