
Tuning the Alt-Ergo SMT Solver
for B Proof Obligations

Sylvain Conchon1,2 and Mohamed Iguernelala3,1

1 LRI, Université Paris-Sud, 91405 Orsay, France
2 INRIA Saclay – Ile-de-France, Toccata, 91893 Orsay, France

3 OCamlPro SAS, 91190 Gif-sur-Yvette, France

Abstract. In this paper, we present recent developments in the Alt-
Ergo SMT-solver to efficiently discharge proof obligations (POs) gener-
ated by Atelier B. This includes a new plugin architecture to facilitate
experiments with different SAT engines, new heuristics to handle quanti-
fied formulas, and important modifications in its internal data structures
to boost performances of core decision procedures. Experiments realized
on more than 10,000 POs generated from industrial B projects show
significant improvements.

Keywords: SMT solvers, B Proof Obligations, B Method.

1 The Alt-Ergo SMT Solver

Alt-Ergo is an open-source SMT solver capable of reasoning in a combination of
several built-in theories such as uninterpreted equality, integer and rational arith-
metic, arrays, records, enumerated data types and AC symbols. It is the unique
SMT solver that natively handles polymorphic first-order quantified formulas,
which makes it particularly suitable for program verification. For instance, Alt-
Ergo is used as a back-end of SPARK and Frama-C to discharge proof obligations
generated from Ada and C programs, respectively.

Recently, we started using Alt-Ergo in the context of the ANR project
BWare [8] which aims at integrating SMT solvers as back-ends of Atelier B.
The proof obligations sent to Alt-Ergo are extracted from Atelier B as logical
formulas that are combined with a (polymorphic) model of B’s set theory [7].
This process relies on the Why3 platform [6] which can target a wide range of
SMT solvers. However, we show (Section 2) on a large benchmark of industrial
B projects that it is not immediate to obtain a substantial gain of performances
by using SMT solvers. Without a specific tunning for B, Alt-Ergo together with
other SMT solvers compete just equally with Atelier B’s prover on those indus-
trial benchmarks.

In this paper, we report on recent developments in Alt-Ergo that significantly
improve its capacities to handle POs coming from Atelier B. Our improvements
are: (1) better heuristics for instantiating polymorphic quantified formulas from
B model; (2) new efficient internal data structures; (3) a plugin architecture to
facilitate experiments with different SAT engines; and (4) the implementation
of a new CDCL-based SAT solver.

Y. Ait Ameur and K.-D. Schewe (Eds.): ABZ 2014, LNCS 8477, pp. 294–297, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



Tuning the Alt-Ergo SMT Solver for B Proof Obligations 295

2 Benchmarks

Currently, the test-suite of BWare contains 10572 formulas1 obtained from three
industrial B projects provided by ClearSy. The first one, called DAB, is an
automated teller machine (ATM). The last two, called P4 and P9, are obfuscated
and unsourced programs.

The formulas generated from these projects are composed of two parts. The
first one is the context : a large set of axioms (universally and polymorphic quan-
tified formulas). This part contains the B’s set theory model, as well as huge
(in size) predicates describing the B state machines. The second part of each
PO is the goal : a ground formula involving these predicates (see [7] for detailed
explanations about the structure of these POs).

A quick look to the shape of these formulas shows that they mainly contain
equalities over uninterpreted function symbols and atoms involving enumerated
data types. Only a small portion of atoms contains linear integer arithmetic and
polymorphic records. In comparison with our other benchmarks coming from
deductive program verification platforms, the average number of axioms, as well
as the size of the POs are much larger in this test suite, as shown below:

number of POs avg. number of axioms avg. size (Ko)
VSTTE-Comp 125 32 8
Why3’s gallery 1920 41 9

Hi-Lite 3431 125 23
DAB 860 257 236
P4 9341 259 248
P9 371 284 402

At the beginning of the project and without specific improvements, we ran
some SMT solvers (z3, cvc3, and Alt-Ergo) on this test-suite. All measures were
obtained on a 64-bit machine with a quad-core Intel Xeon processor at 3.2 GHz
and 24 GB of memory. Solvers were given a time limit of 60 seconds and a
memory limit of 2 GB for each PO. The results of our experiments are reported
in the following table.

Provers Alt-Ergo Alt-Ergo z3 cvc3
Versions 0.95.1 0.95.2 4.3.1 2.4.1

DAB 707 822 716 684
82.2 % 95.6 % 83.3% 79.5 %

P4 4709 8402 7974 7981
50.4 % 89.9 % 85.4 % 85.4 %

P9 181 213 162 108
48.8 % 57.4 % 43.7 % 29.1 %

Total 5597 9437 8852 8773
52.9 % 89.3 % 83.7 % 83.0 %

1 These benchmarks will be available for the community at the end of the project.



296 S. Conchon and M. Iguernelala

For every solver, we report the number (and the percentage) of solved POs
for each project. Except for Alt-Ergo 0.95.1, the other versions of SMT solvers
compete equally. From what we know from our BWare partners, these results are
similar to those obtained by the prover of Atelier B 4.0, which proves 84% of this
test-suite. Concerning Alt-Ergo, the low rate obtained with version 0.95.1 is due
to a quantifier instantiation heuristic that disabled the use of large axioms and
predicates during proof search. This was unfortunate for the BWare benchmark
(especially in P4 and P9) since goals mainly involve large predicates, as explained
above. The minor release 0.95.2 mainly relaxes this (misguided) heuristic.

3 Improvements

Profiling Alt-Ergo on this test-suite shows: (1) a large number of axiom instancia-
tions; (2) a high activity of the congruence closure decision procedure; and (3) an
important workload for the SAT engine. A more thorough investigation shows
that (1) is due to some administrative axioms of the B model that represent
properties of basic set theoretic operations (AC properties, transitive closures,
etc). The structure of theses instances mixes Boolean operators and equalities
over uninterpreted terms, which explains the behavior (2) and (3).

One of our main objective was to efficiently handle such axioms by limiting
the number of their instances. For that, we added the possibility of disabling the
generation of new instances modulo known ground equalities. We also modified
the default behavior of the matching algorithm to only consider terms that are
in the active branch of the SAT engine. Finally, we have reimplemented literal
representation and some parts of the Formula module of Alt-Ergo to enable
trivial contextual simplifications, and thus to identify equivalent formulas. In
addition, we have modified the core architecture of Alt-Ergo to facilitate the use
of different SAT-solvers, implemented as plugins.

The results in the following table show the impact of our optimizations. The
master branch version of Alt-Ergo contains all the modifications described above.
As we can see, this version outperforms 0.95.2. The last column contains the
result of a wrapper, called Ctrl-Alt-Ergo, that uses the time given to the solver
to try different strategies and heuristics2.

Alt-Ergo Alt-Ergo Ctrl-Alt-Ergo
Versions 0.95.2 master branch master branch

DAB 822 858 860
95.6 % 99.8 % 100 %

P4 8402 8980 9236
89.9 % 96.1 % 98.9 %

P9 213 234 277
57.4 % 63.1 % 74.7 %

Total 9437 10072 10373
89.3 % 95.3 % 98.1 %

2 All these improvements will be available in future public releases of Alt-Ergo at
http://alt-ergo.ocamlpro.com

http://alt-ergo.ocamlpro.com


Tuning the Alt-Ergo SMT Solver for B Proof Obligations 297

4 Conclusion and Future Works

As demonstrated by our experiments, the results of our first investigations and
optimizations are promising. It turns out that B proof obligations have some
specificities that should be taken into account to obtain a good success rate.

In the near future, we want to study how to extend the core of Alt-Ergo to
handle administrative axioms (definition of union and intersection, AC proper-
ties, etc.) as conditional rewriting rules. For that, we are studying the design
of a new combination algorithm which will extend our parametrized algorithms
AC(X) [2] and CC(X) [3] to handle, in a uniform way, user-defined rewriting
systems. This would allow us to handle a fragment of the set theory of B in a
built-in way.

We also plan to investigate whether deduction modulo techniques, like those in
Zenon Modulo [4,5] and iProver Modulo [1], would be helpful to efficiently handle
quantified formulas in the SMT world. Another line of research would be the
generation of verifiable traces for external proof checkers in order to augment
our confidence in the SMT solver.

References

1. Burel, G.: Experimenting with Deduction Modulo. In: Bjørner, N., Sofronie-
Stokkermans, V. (eds.) CADE 2011. LNCS (LNAI), vol. 6803, pp. 162–176. Springer,
Heidelberg (2011)

2. Conchon, S., Contejean, E., Iguernelala, M.: Canonized Rewriting and Ground AC
Completion Modulo Shostak Theories: Design and Implementation. Logical Methods
in Computer Science 8(3) (2012)

3. Conchon, S., Contejean, E., Kanig, J., Lescuyer, S.: CC(X): Semantic Combina-
tion of Congruence Closure with Solvable Theories. Electronic Notes in Theoretical
Computer Science 198(2), 51–69 (2008)

4. Delahaye, D., Doligez, D., Gilbert, F., Halmagrand, P., Hermant, O.: Proof Cer-
tification in Zenon Modulo: When Achilles Uses Deduction Modulo to Outrun the
Tortoise with Shorter Steps. In: International Workshop on the Implementation of
Logics (IWIL), Stellenbosch (South Africa). EasyChair (December 2013) (to appear)

5. Delahaye, D., Doligez, D., Gilbert, F., Halmagrand, P., Hermant, O.: Zenon Mod-
ulo: When Achilles Outruns the Tortoise Using Deduction Modulo. In: McMillan,
K., Middeldorp, A., Voronkov, A. (eds.) LPAR-19. LNCS, vol. 8312, pp. 274–290.
Springer, Heidelberg (2013)

6. Filliâtre, J.-C., Paskevich, A.: Why3 — Where Programs Meet Provers. In: Felleisen,
M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 125–128. Springer, Heidel-
berg (2013)

7. Mentré, D., Marché, C., Filliâtre, J.-C., Asuka, M.: Discharging Proof Obligations
from Atelier B Using Multiple Automated Provers. In: Derrick, J., Fitzgerald, J.,
Gnesi, S., Khurshid, S., Leuschel, M., Reeves, S., Riccobene, E. (eds.) ABZ 2012.
LNCS, vol. 7316, pp. 238–251. Springer, Heidelberg (2012)

8. The Bware Project (2012), http://bware.lri.fr/

http://bware.lri.fr/

	Tuning the Alt-Ergo SMT Solverfor B Proof Obligations
	1 The Alt-Ergo SMT Solver
	2 Benchmarks
	3 Improvements
	4 Conclusion and Future Works
	References




