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Abstract. This paper gives an overview over the development of a for-
mally verified file system for flash memory. We describe our approach
that is based on Abstract State Machines and incremental modular re-
finement. Some of the important intermediate levels and the features they
introduce are given. We report on the verification challenges addressed
so far, and point to open problems and future work. We furthermore
draw preliminary conclusions on the methodology and the required tool
support.

1 Introduction

Flaws in the design and implementation of file systems already lead to serious
problems in mission-critical systems. A prominent example is the Mars Explo-
ration Rover Spirit [34] that got stuck in a reset cycle. In 2013, the Mars Rover
Curiosity also had a bug in its file system implementation, that triggered an au-
tomatic switch to safe mode. The first incident prompted a proposal to formally
verify a file system for flash memory [24,18] as a pilot project for Hoare’s Grand
Challenge [22].

We are developing a verified flash file system (FFS). This paper reports on our
progress and discusses some of the aspects of the project. We describe parts of
the design, the formal models, and proofs, pointing out challenges and solutions.

The main characteristic of flash memory that guides the design is that data
cannot be overwritten in place, instead space can only be reused by erasing
whole blocks. Therefore, data is always written to new locations, and sophisti-
cated strategies are employed in order to make the file system efficient, including
indexing and garbage collection. For the algorithmic problems, we base our de-
sign on UBIFS [23,20], which is a state-of-the-art FFS in the Linux kernel.

In order to tackle the complexity of the verification of an entire FFS, we
refine an abstract specification of the POSIX file system interface [41] in several
steps down to an implementation. Since our goal is an implementation that runs
on actual hardware, besides functional correctness additional, nontrivial issues
must be addressed, such as power cuts and errors of the hardware. A further
requirement is that the models must admit generation of executable code. The
derived code should correspond very closely to the models, thus simplifying an
automated last refinement proof between the models and the actual code.
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The paper is structured as follows: Section 2 gives an overview over our ap-
proach and models. Section 3 provides more detail on the design of each of the
models and their concepts. The section also highlights some of the problems
that need to be tackled and describes our solutions. The formal models are also
available at our web-presentation [11]. Section 4 explains how we generate Scala
and C code from our model hierarchy and integrate it into Linux. In Sec. 5 we
report on some of the lessons learned during the project. Section 6 concludes
and points out some of the open challenges.

2 Overview

Filesystem Implementation 

Eraseblock Management 

Flash Hardware (Driver) 

System Interface (POSIX) 

Fig. 1. High-level structure

Figure 1 shows the high-level structure of the
project. There are four primary conceptual layers.
A top-level specification of the POSIX file system
interface [41] defines functional correctness require-
ments. At the bottom is a driver interface model
that encodes our assumptions about the hardware.
Two layers in between constitute the main func-
tional parts of the system: The file system (FS)
implementation is responsible for mapping the high-
level concepts found in POSIX (e.g., directories, files
and paths) down to an on-disk representation. A separate layer, the erase block
management (EBM), provides advanced features on top of the hardware inter-
face (e.g., logical blocks and wear-leveling).

Figures 2 and 3 show how the file system implementation is broken down to
a refinement hierarchy. Boxes represent formal models. Refinements—denoted
by dashed lines—ensure functional correctness of the final model that is the
result of combining all models shaded in grey. From this combined model we
generate executable Scala and C code.

The POSIXmodel for example is refined by a combination of a Virtual Filesys-
tem Switch (VFS) and an abstract file system specification (AFS). The former
realizes concepts common to all FS implementations such as path traversal. Such
a VFS exists in Linux and other operating systems (“Installable File System”
in Windows). The benefit of this approach is that concrete file systems such as
UBIFS, Ext or FAT do not have to reimplement the generic functionality. In-
stead they satisfy a well-defined internal interface, denoted by the symbol in
Fig. 2. We capture the expected functional behaviour of a concrete FS by the
AFS model. The modularization into VFS and AFS significantly reduces the
complexity of the verification, since the refinement proof of POSIX to VFS is
independent of the actual implementation, whereas the implementation needs to
be verified against AFS only. The top-level layers are described in more detail in
Sections 3.1 and 3.2.Although we provide our own verified VFS implementation,
it will be possible to use the file system core with the Linux VFS instead.

Flash memory is not entirely reliable, for example, read operations may fail
nondeterministically. Hence, error handling is taken into account from the
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Fig. 3. Lower Layers of the File System

beginning. Concretely, the formal POSIX specification admits such errors as long
as an unsuccessful operation has no observable effect. However, on intermediate
layers failures may be visible.

A major concern that is orthogonal to functional correctness is reset safety:
the file system guarantees recovery to a well-defined state after an unexpected
power-cut. Reset-safety must be considered at different levels of abstraction. It
is also critical that power-cuts are considered during an operation.

For example, the LogFS model introduces a distinction between persistent
data stored on flash and volatile data in RAM. Only the latter is lost during
power-cuts. New entries are first stored in a log and only later committed to
flash. We prove abstractly that after a crash the previous RAM state can be
reconstructed from the entries in the log and the flash state, as described in
detail in Sec. 3.3. Atomicity of writes of several nodes is provided by another
layer (transactional journal).

The core of the flash file system (represented by the correspondingly named
box) implements strategies similar to UBIFS. This layer was also the first we
have looked at [39]. The idea of UBIFS is to store a collection of data items,
called “nodes”, that represent files, directories, directory entries, and pages that
store the content of files. This collection is unstructured and new data items
are always written to a fresh location on flash, since overwriting in-place is
not possible. Current versions of a node are referenced by an efficient index,
implemented as a B+ tree. The index exists both on flash and in memory. The
purpose of the flash index is to speed up initialization of the file system, i.e., it is
loaded on-demand. It is not necessary to scan the whole device during boot-up.
Over time unreferenced nodes accrue and garbage collection is performed in
the background to free up space by erasing the corresponding blocks.

Updates to the flash index are expensive due to the limitations of the hard-
ware. Hence, these are collected up to a certain threshold and flushed periodi-
cally by a commit operation; one accepts that the flash index is usually outdated.
Therefore, it is of great importance, that all information kept in RAM is actually
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redundant and can be recovered from flash. For this purpose, new data is kept
in a special area, the log. The recovery process after a crash then reads the log
to restore the previous state. In Sec. 3.3 we show an abstract version of this
property. The log is part of the journal module in Fig. 2.

The nodes of the FFS have to be stored on the flash device. This is accom-
plished by the persistence layer. For space and time efficiency, the writes are
buffered until an entire flash page can be written. Sec. 3.4 describes the prob-
lems that arise when writes are cached.

Besides correctness and reset safety, it is important that the physical medium
is used evenly, i.e., erase cycles are distributed approximately equally between
the blocks of the flash device, because erasing physically degrades the mem-
ory. To prolong the lifetime of the device, a technique called wear-leveling is
implemented by the erase block management. Section 3.5 describes this layer.

3 Models

In this section we outline several formal models. There is a general schema.
Abstract models, such as POSIX and AFS are as simple as possible. Concrete
models, namely all grey components, are rather complex, in contrast.

Our tool is the interactive theorem prover KIV [35,12]. For a detailed descrip-
tion of the specification language see for example [13] (this volume) and [38]. It
is based on Abstract State Machines [5] (ASMs) and ASM refinement [4]. We
use algebraic specifications to axiomatize data types, and a weakest-precondition
calculus to verify properties. This permits us to use a variety of data types, de-
pending on the requirements. In the case study, lists, sets, multisets and maps
(partial functions τ �→ σ, application uses square brackets f [a]) are typically
used in more abstract layers, whereas arrays are prevalent in the lower layers.

3.1 POSIX Specification and Model

Our formal POSIX model [15] defines the overall requirements of the system.
It has been derived from the official specification [41] and is furthermore an
evolution of a lot of existing related work to which we compare at the end of
this section. Our model has been developed with two goals in mind:

1. It should be as abstract as possible, in particular, we chose an algebraic tree
data structure to represent the directory hierarchy of the file system. The
contents of files are stored as sequences of bytes.

2. It should be reasonably complete and avoid conceptual simplifications in
the interface. Specifically, we support hard-links to files, handles to open
files, and orphaned files (which are a consequence of open file handles as
explained below); and the model admits nondeterministic failures in a well-
specified way. These concepts are hard (or even impossible) to integrate in
retrospect.
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Fig. 4. FS as a tree

posix create(path ,md ; err)
choose err ′

with pre-create(path ,md , t, fs, err ′)
in err � err ′

if err = ESUCCESS then

choose fid with fid �∈ fs
in t[path ] � fnode(fid)

fs[fid ] � fdata(md , 〈 〉)

Fig. 5. POSIX create operation

The model is easy to understand but also ensures that we will end up with a
realistic and usable file system. Formally, the state of the POSIX model is given
by the directory tree t : Tree and a file store fs : Fid �→ FData mapping file
identifiers to the content.

We consider the following structural POSIX system-level operations: create,
mkdir, rmdir, link, unlink, and rename. File content can be accessed by the
operations open, close, read, write, and truncate. Finally, directory listings
and (abstract) metadata can be accessed by readdir, readmeta (= stat), and
writemeta (subsuming chmod/chown etc).

Structural system-level operations are defined at the level of paths. As an
example, Fig. 4 shows the effect of create, where the grey part denotes the
parent directory, and the parts with a dotted outline are newly created. The
corresponding ASM rule is listed in Fig. 5.

The operation takes an absolute path path and some metadata md as input.
After some error handling (which we explain below), a fresh file identifier fid is
selected and stored in a file node (fnode) at path path in the tree. The file store fs
is extended by a mapping from fid to the metadata and an empty content, where
〈 〉 denotes an empty sequence of bytes. File identifiers serve as an indirection to
enable hard-links, i.e., multiple references to the same file from different parent
directories under possibly different names. An error code err is returned.

The converse operation is unlink(path ; err), which removes the entry specified
by path from the parent directory. In principle, it also deletes the file’s content
as soon as the last link is gone. File content can be read and written sequentially
through file handles fh, which are obtained by open(path; fh, err) and released by
close(fh; err). As a consequence, files are not only referenced from the tree, but
also from open file handles, which store the identifier of the respective file. The
POSIX standard permits to unlink files even if there is still an open file handle
pointing to that file. The file’s content is kept around until the last reference,
either from the directory tree or a handle, is dropped.

Files that are no longer accessible from the tree are called orphans. The pos-
sibility to have orphans complicates the model and the implementation (see
Sec. 3.3 on recovery after power-failure). However, virtually all Linux file sys-
tems provide this feature, since it is used by the operating system during package
updates (application binaries are overwritten in place, while running applications
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still reference the previous binary image through a file handle) and by applica-
tions (e.g., Apache lock-files, MySQL temporary files).

Each POSIX operation returns an error code that indicates whether the op-
eration was successful or not. Error codes fall into two categories. Preconditions
are rigidly checked by the POSIX model in order to protect against unintended
or malicious calls. For each possible violation it is specified which error codes
may be indicated, but the order in which such checks occur is not predetermined.
The other type of errors may occur anytime and corresponds to out-of-memory
conditions or hardware failures. The model exhibits such errors nondetermin-
istically, since on the given level of abstraction it is not possible to express a
definite cause for such errors. The ASM rule in Fig. 5 simply chooses an error
code err ′ that complies with the predicate create-pre and only continues in
case of success, i.e., the precondition is satisfied and no hardware failure occurs.

We enforce the strong guarantee that an unsuccessful operation must not
modify the state in any observable manner. It takes quite some effort to ensure
this behavior in the implementation.

Our POSIX model takes a lot of inspiration from previous efforts to formal-
ize file systems. An initial pen-and-paper specification that is quite complete is
[28]. Mechanized models include [1,17,25,19,9,21]. These have varying degrees of
abstraction and typically focus on specific aspects. Both [17] and [21] are path-
based. The latter proves a refinement to a pointer representation, file content is
treated as atomic data. Model [9] is based on a representation with parent point-
ers (compare Sec. 3.2). They prove multiple refinements and consider power-loss
events abstractly. The efforts [1] and [25] focus on an analysis of reads and writes
with pages, in the first, data is accessed a byte at a time, whereas [25] provides a
POSIX-style interface for read/write while integrating some effect of power-loss.
An in-depth technical comparison to our model can be found in [15].

3.2 VFS + AFS as a Refinement of POSIX

We have already motivated the purpose of the VFS and briefly described the
integration with the AFS specification in Sec. 2 and [14]. We have proven our
VFS correct wrt. the POSIX model relative to AFS [15]. As a consequence, any
AFS-compliant file system can be plugged in to yield a correct system.

Conceptually, the VFS breaks down high-level operations to calls of operations
of AFS. There are two major conceptual differences to the POSIX model:

1. The file system is represented as a pointer structure in AFS (as shown in
Fig. 6) instead of an algebraic tree (compare Fig. 4), and

2. the content of files is represented as a sparse array of pages instead of a linear
sequence of bytes.

These two aspects make the refinement proof challenging.
In VFS, directories and files are identified by “inode numbers” ino : Ino. The

state of the AFS model is given by two (partial) functions dirs : Ino �→ Dir and
files : Ino �→ File . Directories Dir store a mapping from names of entries to inode
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Fig. 6. FS as pointer structure
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Fig. 7. Unfolding the tree abstraction, formally
tree(t, ino) = tree|p(t, ino, ino′) ∗ tree(t[p], ino′)

numbers. Files File store a partial mapping from page numbers to pages, which
are byte-arrays. The refinement proof establishes a correspondence between the
tree t and dirs and between fs and files and maintains it across operations.

The first issue can be solved elegantly using Separation Logic [36]. The main
idea of Separation Logic is that disjointness of several parts of a pointer structure
is captured in the syntax of formulas. The main connective is the separating
conjunction (ϕ ∗ ψ)(h), which asserts that the two assertions ϕ and ψ on the
structure of the heap h are satisfied in disjoint parts of h.

In our case, the heap is given by the directories of the file system dirs , and
the abstraction to the algebraic tree is an assertion tree(t, ino). It specifies
that ino is the root of the pointer structure represented by t. The abstraction
directly excludes cycles and sharing (“aliasing”) in dirs , and establishes that a
modification at path p is local : directories located at other paths q are unaffected.

To perform an operation at path p the abstraction tree is unfolded as shown
in Fig. 7. The directory tree dirs is split into two disjoint parts, the subtree
tree(t[p], ino′) located at path p and the remainder tree|p(t, ino, ino′), which
results from cutting out the subtree at path p, with root ino′. A modification in
the grey subtree is then guaranteed to leave the white subtree unaffected.

The second issue manifests itself in the implementation of the POSIX opera-
tions read and write, which access multiple pages sequentially. There are several
issues that complicate the proofs but need to be considered: There may be gaps
in the file, which implicitly represent zero-bytes, and the last page may exceed
the file size. The first and the last page affected by a write are modified only
partially, hence they have to be loaded first. Furthermore, writes may extend
the file size or may even start beyond the end of a file.

Since reading and writing is done in a loop, the main challenge for the re-
finement proof is to come up with a good loop invariant. The trouble is that
the high number of cases we have just outlined tends to square in the proof, if
one considers the intermediate hypothetical size of the file. We have solved this
problem by an abstraction that neglects the size of the file, namely, the content
is mapped to an infinite stream of bytes by extension with zeroes at the end.
The loop invariant for writing states that this stream can be decomposed into
parts of the initial file at the beginning and at the end, with data from the input
buffer in between.
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3.3 From AFS to LogFS to Study Power Cuts

The UBIFS file system is log-structured, which means that there is an area on
flash—the log—where all file system updates are written to in sequential order.
Data in the log has not been integrated into the index that is stored on flash.

In the AFS model, there is no distinction between volatile state stored in
RAM and persistent state stored on flash. Purpose of the LogFS model is to
introduce this distinction on a very abstract level in order to study the effects
of unexpected power cuts without getting lost in technical detail. The LogFS
model thus bridges the gap between AFS and our FFS implementation.

The model simply assumes that there are two copies of the state, a current
in-memory version ramstate and a possibly outdated flash version flashstate.
The log captures the difference between the two states as a list of log entries.

Operations update the state in RAM and append entries to the log e.g.,
“delete file referenced by ino” or “write a page of data”. The flashstate is not
changed by operations. Instead, from time to time (when the log is big enough)
an internal commit operation is executed by the file system, which overwrites
the flashstate with ramstate, and resets the log to empty.

The effect of a power failure and subsequent recovery can now be studied: the
crash resets the ramstate, recovery has to rebuild it starting from flashstate by
recovering the entries of log . For crash safety we therefore have to preserve the
recovery invariant

ramstate = recover(flashstate, log) (1)

Note that although recover is shown here as a function, it is really a (rather
complex) ASM rule in the model, implying that the invariant is not a predicate
logic formula (but one of wp-calculus).

To propagate the invariant through operations it is necessary to prove that
running the recovery algorithm on entries produced by one operation has the
same effect on ramstate than the operation itself. This is non-trivial, since typical
operations produce several entries and the intermediate ramstate after recovering
a single entry is typically not a consistent state.

The possibility of orphans (Sec. 3.1) complicates recovery. Assume 1) a file is
opened and 2) subsequently unlinked becoming an orphan, i.e., it is not accessible
from the directory tree any more. The content of the file then can still be read
and written through the file handle. Therefore, the file contents may only be
erased from flash memory after the file is closed. However, if a crash occurs
the process accessing the file is terminated and the file handle disappears. The
file system should consequently ensure that the file content is actually deleted
during recovery. There are two possibilities: the corresponding “delete file” is in
the log before the crash, then no special means have to be taken. However, if a
commit operation has happened before the crash but after 2), then the log has
been cleared and consequently this entry will not be found.

To prevent that such a file occupies space forever, our file system records
such files in an explicit set of flash-orphans forphans stored on the flash medium
during commit.
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Recovery thus starts with a modified flash state, namely flashstate \ forphans ,
and produces a state that contains no orphans wrt. the previous RAM state
(denoted by rorphans). Invariant (1) becomes

ramstate \ rorphans = recover(flashstate \ forphans , log) (2)

It is not correct to require that only the recorded orphans forphans have been
deleted as a result of recover. Again referring to the example above, in the
case that no commit has occurred since event 2), we have ino ∈ rorphans but
ino �∈ forphans , but the file ino will be removed anyway, since the deletion entry
is still in the log.

Technically, in order to prove (2), additional commutativity properties be-
tween deleting orphans and applying log entries must be shown. This is non-
trivial, since several additional invariants are necessary: for example, that inode
numbers ino ∈ forphans are not referenced from the directory tree of the RAM
state, and that there is no “create” entry for ino in the log. Furthermore, since
removal of directories and files is handled in a uniform way, directories can ac-
tually be orphans, too.

In our initial work [39] we have proved the recovery invariant on a lower level
of abstraction, namely the file system core, but without orphans. Adding them to
the model has lead to a huge increase in complexity, hence we switched to a more
abstract analysis of the problem. It is then possible (although there are some
technical difficulties) to prove that the recovery invariant of LogFS propagates
to the concrete implementation by matching individual recovery steps.

The verification of recovery of a log in the given sense has been addressed in
related work only by [31], which is in fact based on our model [39]. Their goal is
to explore points-free relational modeling and proofs. They consider a simplified
version of recovery that does not consider orphans, and restricts the log to the
deletion of files only (but not creation).

Finally, we like to point out that the recovery invariant (2) needs to hold in
every intermediate step of an operation—a power cut could happen anytime, not
just in between operations. A fine-grained analysis is therefore necessary, e.g.,
based on a small-step semantics of ASMs, which we define in [33].

3.4 Node Persistence and Write Buffering

The persistence layer provides access to (abstract) erase blocks containing a list
of nodes for the FFS core and its subcomponents. Clients can append nodes to
a block and allocate or deallocate a block. This already maps well to the flash
specific operations, i.e., appending is implemented by writing sequentially and
deallocation leads to a deferred erase.

The node encoding layer stores these nodes as byte arrays on the flash device
with the help of a write buffer. The implementation also ensures that nodes
either appear to be written entirely or not at all. The write buffer provides a
page-sized buffer in RAM that caches writes to flash until an entire page can
be written. This improves the space-efficiency of the file system, since multiple
nodes can potentially fit in one page. However, as a consequence of the caching
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of writes, it is possible that some nodes disappear during a crash. The challenge
is to find a suitable refinement theory that includes crashes and provides strong
guarantees in their presence. Clients should also be able to enforce that the write
buffer is written. This is accomplished by adding padding nodes, i.e., nodes that
span the remainder of the page. These nodes are invisible to a client of the per-
sistence layer. The refinement between the persistence and the node encoding
layer switches from indices in a list to offsets in a byte array as their respec-
tive input and output. The padding nodes complicate this refinement, since the
abstraction relation from a list of nodes to the byte array is no longer functional.

For the sequential writes it is necessary that the layer stores how far an erase
block is already written. However, it is difficult to update such a data structure
efficiently, since only out-of-place updates are possible. Therefore, updates are
performed in RAM and written to flash only during a commit operation similarly
to the index. The recovery after a power failure has to reconstruct a consistent
data structure and consider that some updates were not written to flash.

We formalize the byte encoding very abstractly, i.e., by just stating that de-
coding after encoded yields the original data. In future work we will consider
whether we can use specificiation languages such as [2,27] to concretize the flash
layout. Other models [25,9] neither consider the encoding nor buffer writes.

3.5 Erase Block Management

A raw flash device supports reading, sequential writing [10,16] and erasure of a
block. Only after erasure it is possible to reuse a block. However, blocks degrade
physically with each erase, i.e., typically after 104-106 erases a block becomes
unreliable. There are two complementary techniques that deal with this problem
and thereby increase the reliability of the device: wear-leveling and bad block
management. The former means that necessary erasures are spread among the
entire device evenly by moving stale data. Thus, bad blocks occur later in the
lifetime of a device. Bad block management tries to detect which blocks are
unusable and excludes them from future operations.

Both techniques are implemented transparently in the erase block manage-
ment (EBM) by a mapping from logical to physical blocks. Fig. 8 shows this
in-RAM mapping as arrows from logical to physical blocks. The client can only
access logical blocks and the EBM keeps the mapping and allocates, accesses
or deallocates physical blocks as needed. Wear-leveling copies the contents of a
physical block to a new block and updates the mapping. Bad blocks are simply
excluded from future allocations.

Another feature facilitated by the mapping is that clients may request an asyn-
chronous erasure of a block. This increases the performance of the file system,
because erasing a physical block is a slow operation. If the erasure is deferred,
the client can already reuse the logical block. The EBM just allocates a different
physical block.

The difficulty for the implementation and verification stems from interactions
of the following factors (explained in more detail in [32]):
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1. The mapping is stored inversely within each physical block (shown as the
backwards arrows in Fig. 8) and must be written before the actual contents.1

2. The flash device may exhibit nondeterministic errors. Only writing of a single
page is assumed to be atomic.

3. Asynchronous erasure defers an update of the on-disk mapping.
4. Wear-leveling must appear to be atomic, otherwise a power-cut in between

would lead to a state, where half-copied data is visible to the client.

Due to 1) and 3), the recovery from a power-cut will restore some older version
of the mapping. This is visible to the client and has to be handled by the client.
This necessitates a refinement theory that allows us to specify the behavior that
a model exhibits in response to a power-cut and shows that an implementation
meets this specified reset behavior, i.e., is reset-safe.

Items 1) and 2) complicate 4), because they lead to an updated on-disk map-
ping referring to half-copied data. Additional measures (such as checksums) are
necessary to ensure that a mapping produced during wear-leveling becomes only
valid once the entire contents are written.

Other formal models of EBM [25,26,9] usually do not take the limitation to
sequential writes within a block into account, do not store the mapping on disk,
assume additional reliable bits per block to validate the mapping only after
the pages have been programmed or store an inefficient page-based mapping
(assumed to be updatable atomically). Our model of the flash hardware is ONFI-
compliant [16] and based on the Linux flash driver interface MTD [29]. The flash
hardware model [6] is below our model of a flash driver.

4 Code Generation

We currently generate Scala [30] code, which runs on the Java virtual machine.
We chose Scala, because it is object-oriented, supports immutable data types
and pattern matching and features a comprehensive library. As explained below,
we can generate code that is very similar to the KIV models. Therefore, Scala
is well-suited for early debugging and testing of the models. Furthermore, it is

1 The reasons for this are rather technical, but follow from the limitations of the flash
hardware to sequential writes within a block and performance considerations.
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easier to integrate a visualization for the data structures and operations. The
final code is derived from the models shaded in gray in Fig. 2 and 3, but Scala
code generation is also supported for the other models.

The code generation for Scala currently supports free and non-free data types
(potentially mutually recursive). Most of the KIV library data types (natural
numbers, strings, arrays, lists, stores and sets) and algebraic operations on them
are translated to corresponding classes and functions of the Scala library. Fur-
thermore, an algebraic operation with a non-recursive or structurally-recursive
definition is transformed into a function that uses pattern matching to discern
the cases of a data type.

We mimic the refinement hierarchy shown in Fig. 2 and 3 by inheritance,
i.e., for each of the abstract (white) layers an interface is generated with one
method for each of the ASM rules. For the concrete (gray) layers we generate
an implementing class that has the ASM state as a member. The usage of an
interface ( in the figure) is implemented by aggregation. Thus, the VFS
layer for example has an additional reference to an AFS interface. In the final
file system this reference points to an instance of the FFS.

This setup also allows us to test the VFS model based on a different imple-
mentation of the AFS interface. We optionally also generate an implementation
of the AFS interface based on the AFS ASM. This allows us to test a layer early
on without having a refined model of all the used layers yet. These abstract lay-
ers however are rather nondeterministic, e.g., they heavily employ the following
construct to choose an error code that may either indicate success or a low-level
error (such as an I/O error).

choose err with err ∈ {ESUCCESS, EIO, . . .} in { . . . }
We currently simulate this by randomly choosing an element of the type and
checking whether the element satisfies the given property.2 This is sufficient
when testing whether, e.g., VFS can handle the full range of behavior admitted
by AFS.

However, in order to test whether a concrete model exhibits only behavior
permitted by the abstract model this is insufficient. In that case it is necessary
that the abstract model simulates the choices made by the concrete model. In
future work, we will attempt to automatically derive an abstract model which
is suitable for such tests. Each of the operations of this model may also take as
input the output of the concrete layer and their goal is to construct a matching
abstract execution. For the above example of error codes it is sufficient to just
rewrite the abstract program by reusing the error code returned by the concrete
model and checking that it satisfies the condition err ∈{ESUCCESS, EIO, . . .}. For
more elaborate nondeterminism an SMT solver could be employed to make the
proper choice.

We are currently also working on the generation of C code and expect ap-
proximately 10.000 lines of code. The C code generation will be limited to the
models shaded in gray. In future work, we will investigate whether tools for the

2 Note that for some forms of nondeterminism we can and do provide a better, deter-
ministic implementation.
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automated verification of C, such as VCC [7], could be employed to show the
refinement between our last models and the generated C code automatically.

We are unaware of other file systems where code was generated automati-
cally or the final code was verified against the models. [9] provides systematic
translation rules that need to be applied manually to derive Java code.

The code generated from the models can be plugged into Linux via the Filesys-
tem in Userspace (= FUSE) library [40], which allows mounting of a file system
implemented in an application in user space. All calls to the mountpoint are
then routed to the application by FUSE. This allows us to test and debug the
file system more easily. The access to either a real flash device (we currently use
a Cupid-Core Single-Board Computer with 256 MB Flash [8]) or to the simulator
(NandSim) is realized via the Linux device /dev/mtd. Fig. 9 shows the entire
setup.

5 Lessons Learned

In this section we report on the lessons we learned during the design and verifi-
cation of the flash file system.

In our opinion, the file system challenge is interesting for the reason that a
wide conceptual gap must be bridged. Abstractly, the file system is described as
a tree indexed by paths, whereas the hardware interface is based on erase blocks
and bytes. The strategies we have taken from the Linux VFS and UBIFS to map
between these interfaces deal with many different concepts.

Capturing these concepts at the right degree of abstraction proved to be a
major design challenge. Not all concepts that we have encountered have direct
counterparts in the implementation. Here, we benefit from the refinement-based
approach that supports well isolating difficult aspects of the verification in ded-
icated models. For example, the abstract log as specified in LogFS is actually
encoded in the headers of nodes in UBIFS.

It proved beneficial that we have initially started with the core concepts of the
UBIFS file system and derived an abstract model [39]. This model has served as
an anchor-point to incrementally develop the rest of the model hierarchy.

Our experience is that models tend to change frequently. One reason for that
is that requirements are clarified or assumptions are rectified. It also happens
that some model is refactored, in order to e.g. maintain a new invariant. Such
changes are typically non-local and propagate through the refinement hierarchy.

The prime reason for changes stems from the fact that there is a fragile bal-
ance between simple abstract specifications and the question which functional
guarantees can be provided by the implementation. The technical cause lies
in power cuts and hardware failures, which affect almost all layers and can leak
through abstractions (nondeterministic errors in POSIX are one example). More
specifically, one needs to determine to which extent failures can be hidden by
the implementation, how this can be achieved, and which layer incorporates the
concepts necessary to address a particular effect of a failure. For example, the
flash file system core can not express partially written nodes, so a lower layer
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(namely, node encoding in Fig. 3) must be able to recognize and hide such partial
nodes (e.g., by checksums). In general, dealing with power cuts and hardware
failures has increased the complexity of the models and their verification by a
signification amount.

In order to reduce the effort inherent in frequent changes, KIV provides an
elaborate correctness management for proofs. The system tracks the dependen-
cies of every proof, i.e., the axioms and theorems used in the proof. A proof
becomes invalid only if a dependency has changed. Furthermore, KIV supports
replaying of an old, invalid proof. User interactions are therefore mostly limited
to parts of a proof affected by a change.

Similar to [3], we observed that strong abstraction capabilities of the used
tools are essential. KIV supports arbitrary user-defined data types (given suitable
axioms), which was for example exploited to abstract the pointer structure to an
algebraic tree and to abstract the sparse pages of files to streams (see Sec. 3.2).

We found that for smaller invariants it would be useful to have stronger typing
support in our tool, such as for example predicative subtypes [37]. This could be
used for example to express the invariant that every erase block has a certain
size in the type. Making such invariants implicit reduces the number of trivial
preconditions for lemmas.

6 Conclusion and Open Challenges

We have given an overview over our approach to the development of a formally
verified flash file system. We outlined our decomposition into a hierarchy of
models, described some of the challenges posed in each of them and sketched the
solutions we developed. We are currently finalizing the models and their correct-
ness proofs for the various refinements, one rather challenging remains: verifying
the implementation of indices by “wandering” B+-trees, that are maintained in
RAM, and are incrementally stored on flash.

Two major aspects remain future work:
We have not yet addressed concurrency. A realistic and efficient implementa-

tion, however, should perform garbage collection (in the flash file system model),
erasure of physical blocks and wear-leveling (in the EBM model) concurrently
in the background. In those instances, where the action is invisible to the client
of the respective layer, the abstract behavior is trivial to specify. However, on
top-level it is not clear which outcomes of two concurrent writes to overlapping
regions are acceptable, and how to specify them (the POSIX standard does not
give any constraint).

Another feature that is non-trivial to specify is the effect of caching when
using the real VFS implementation. The difference between our non-caching
VFS implementation and the one in Linux would be visible to the user if a
power-cut occurs, as not all previous writes would have been persisted on flash.
For two simpler caching related problems (the write buffer of Sec. 3.4 and the
mapping of Sec. 3.5) we already successfully applied a refinement theory that
incorporates power-cuts [33].
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