WebASM: An Abstract State Machine
Execution Environment for the Web

Simone Zenzaro, Vincenzo Gervasi, and Jacopo Soldani

Dipartimento di Informatica, University of Pisa, Italy

Abstract. We describe WebASM, a web-based environment that em-
beds the CoreASM execution engine in a web page. WebASM provides
several advantages to specification writers: (1) complex behaviour ex-
pressed via ASM can be made visible by using the full power of the
web-based presentation layer; (2) ASM specifications can be edited and
run interactively via any web browser; (3) the full CoreASM environment
is made available via zero-install deployment, thus eliminating a major
barrier to the adoption of the language.

In this paper, we briefly outline the technicalities of the approach,
present an example, and survey possible applications of WebASM.

1 Introduction

Abstract State Machines (ASM) [2] have been demonstrated to be a powerful
yet intuitive formalism for describing specifications. A vast number of case stud-
ies, including language specifications, microprocessor design, sequential and dis-
tributed algorithms, and industrial plant control machines (see [1] for a full sur-
vey) have established the practical applicability of ASMs to real-world
systems.

In the 30 years history of the ASM method, a number of execution envi-
ronments have been developed; among the major efforts, we cite [9,8,4,6]. In
varying degrees, all these approaches required setting up a moderately com-
plicated programming environment (e.g., using a Gofer interpreter in [9], or a
.NET development environment for [8], or using the Eclipse IDE for [4]). More-
over, none of the existing environments are endowed with convenient graphics
facilities (although some of them, e.g. AsmL and CoreASM, can make recourse
to native calls to platform-specific graphic APIs).

With WebASM, we set to improve on those two aspects by providing a
web-based, fully self-contained embodiment of the CoreASM execution environ-
ment [4] which can be run in any modern web browser, and that can be controlled
via JavaScript so that arbitrarily complex user interfaces and graphical displays
can be rendered as a (dynamic) HTML page.

In the following, we first describe the technical approach taken by WebASM;
we then present an example, describing the graphical animation of a distributed
leader election protocol specified in ASM. A discussion about possible applica-
tions of WebASM and some reflections on future work conclude the paper.

Y. Ait Ameur and K.-D. Schewe (Eds.): ABZ 2014, LNCS 8477, pp. 216-221, 2014.
(© Springer-Verlag Berlin Heidelberg 2014



WebASM: An Abstract State Machine Execution Environment for the Web 217

2 Technical Outline

One of the premises of the CoreASM project was that the resulting execution
engine should be easy to embed in other applications. In WebASM, we made
good on that promise by embedding the whole CoreASM engine (including all
the plugins packaged in the official distribution) in a Java applet, which is then
connected to the hosting web page through JavaScript bindings.

Security policies restrict what applets can do: in particular, by default no
access to the local filesystem is possible (and special configurations are unde-
sirable in a zero-install perspective). As a consequence, dynamic addition of
user-developed plugins is not allowed in WebASM. Saving and loading specifica-
tions, instead, is managed on the JavaScript side by treating the specification as
a string and passing it to the engine for interpretation. In a typical application,
the specification text could be obtained from a text editor hosted on the same
page, thus allowing the user to write and run ASM specifications in the same
environment.

The JavaScript bindings exposed by WebASM include methods to create and
initialise ASM machines, to load specifications, to perform an ASM step, and to
access the whole abstract state of the machine or a single location.

In particular, access to the abstract state is limited by the concrete represen-
tation of values. Indeed, in its full generality the ASM model allows for arbitrary
sorts, including those whose values do not have a literal notation. The JavaScript
bindings for WebASM allow reading any value in the ASM state (technically,
any CoreASM Element instance) as a string; the converse is not always possible
(e.g., an element of Agent can be printed as a name, but not re-created from
its name alone). However, all basic types which are commonly used (e.g., strings
and numbers) are fully mapped between ASM and JavaScript.

The final element in our implementation is a map between locations of the
ASM state and attributes of DOM elements in the page, optionally transformed
by a custom JavaScript function (to account for syntactic differences between
ASM and HTML/CSS notations).

What is left to the user is to design an HTML page with suitable graphics to
visualise the salient elements of the ASM state, and define a map, as described
above, in order to visualise state evolution during the ASM computation. Af-
ter each ASM step, locations of the ASM state mentioned in the map are read
(through the JavaScript bindings), their values are mapped or transformed, and
finally applied to attributes of the various corresponding DOM elements, thus
updating the DOM state. After each update cycle, the browser re-renders the
modified portions of the web page (namely: the part hosting the graphical de-
piction of the ASM state), and the engine is then ready to execute the next
step.

Designing suitable HTML graphics for the desired representation of the ASM
state can be a tricky at times, depending on how sophisticated the depiction
is. However, HTML design and JavaScript programming skills are much more
readily available than what would be required to produce a custom, full-blown
application to the same end. Moreover, it is reasonable to assume that in a



218 S. Zenzaro, V. Gervasi, and J. Soldani

context where the goal is to teach formal modeling skills, programming skills
are already available, so we do not expect this part of the approach to be a
significant burden.

In extreme cases, our technique can be extended to manipulate elements of
arbitrary SVG vector graphics embedded in a web page, instead of DOM ele-
ments, again by using simple JavaScript mappings. We had no need of such an
extension in our experiences with the tool.

3 Examples

To exemplify the WebASM approach, we use a specification for a classical dis-
tributed algorithm, namely the Extrema Finding by Franklin [5]. In this problem,
a number of processes (modelled in ASM as separate agents) are arranged in a
ring topology with bidirectional communications, with each process holding a
value; their task is to identify the process holding the maximal value.

The corresponding ASM specification, which is a straightforward translation
of the algorithm provided in [5], is shown in Figure 1.

EXTREMAFINDING =
if mode(self) = ACTIVE then if mode(self) = INACTIVE then

if not isLargest(self) then if notified(self) then
rightMsg(l(self)) := id(self) notified(r(self)) := true
leftMsg(r(self)) := id(self) else

if largerMsgReceived then rightMsg(l(self)) := rightMsg(self)
mode(self) := INACTIVE leftMsg(r(self)) := leftMsg(self)

if myMsgReceived then if isLargest(self)
isLargest(self) := true and notified(self) then
notified(r(self)) := true EXTREMAFOUND

Fig. 1. The main rule in ExtremaFinding (signature can be seen in Figure 2)

As for the visualisation, we have chosen to show each process (hence, each
ASM agent) as a box displaying three figures: at the top, the process’ value
(id(self)); on the bottom left and the right the values received from its left and
right neighbour according to the ring topology (leftMsg(self ) and rightMsg(self)).
Moreover, a box’s border colour indicates the process state (mode(self), with
ACTIVE — green and INACTIVE — red), and a box’s background colour
indicates whether the process has been notified (notified(self), false — white
and true — grey). Finally, the border style indicates the value of isLargest(self)
(true — dashed, false — solid).

The user can then experiment running (and modifying) the specification, in
a continuous way or step-by-step, while observing its progress through the an-
imation happening on the page. Figure 2 shows the browser-hosted animation
environment.



WebASM: An Abstract State Machine Execution Environment for the Web 219

806 — ~ 7 WebASM- ExtremaFinding e
| WebASM - ExtremaFinding +
1 @B (%) (@) @ ginger.di.unipl.t/asmweb/ ¢ | () (B- coogle Q) () (B3~

WebASM - ExtremaFinding Specification

CoreASM ExtremaFinding

use Standard
use TabBlocks
use SchedulingPolicies

JIAIl processes are synchronized
option SchedulingPolicies.policy allfirst

enum STATES = {ACTIVE, INACTIVE}

function mode : Agents -> STATES
function rightMsg : Agents -> NUMBER
function leftMsg : Agents -> NUMBER
function id : Agents -> NUMBI

function isLargest: Agents -> BOOLEAN
function notified : Agents -> BOOLEAN

function pos : Agents -> NUMBER

derived N = 4

derived processes = {a | a in Agents with pos(a) != undef}

derived I(p) = pick proc in processes with pos(proc) = (pos(p)-1+N) % N
derived r(p) = pick proc in processes with pos(proc) = (pos(p)+1) % N

derived = i > id(self) or > id(self)
derived myMsgReceived = ri = id(self) or = id(self)

init InitiateState

N

Fig. 2. A screenshot of WebASM animating the Extrema Finding specification

As an additional example, Figure 3 shows three subsequent stages of ani-
mation for another classical specification, based on the Distributed Termina-
tion Protocol from [3] (the corresponding ASM specification has been published
in [7]). Here, each box represents an agent (simulating a different machine), with
each machine spontaneously exchanging messages with others. At each step, ex-
actly one machine holds a coloured token (which can be black or white), that is
passed around as the protocol progresses. The goal is to determine whether the
entire distributed computation has finished, which is detected when a “white”
token is returned to the master machine (depicted with a grey background).

Fig. 3. Three steps of the Distributed Termination Protocol specification



220 S. Zenzaro, V. Gervasi, and J. Soldani
4 Applications

WebASM offers a fully self-contained, zero-install environment for executing and
animating CoreASM specifications. By self-contained we mean that the whole
environment is contained in a single web page — there is no need of a web server,
although if so desired one can be used to serve the page remotely. By zero-install
we mean that there is no need of any special software on the client computer: a
standard web browser (capable of executing Java applets) suffices.

Both these features, united to the convenience of HTML/CSS rendering capa-
bilities, make WebASM ideally suited to occasional users and ASM newcomers,
as they greatly reduce technical barriers to entry.

WebASM is in particular suited for teaching. In teaching algorithms, it pro-
vides a double advantage due to the pseudocode-over-abstract data syntax of
ASM, and to the positive reinforcement obtained by showing the algorithm’s
progress via graphical means. In teaching formal modelling, WebASM allows for
experimenting with specifications, which can be modified and animated (and
thus, tested) interactively.

Also in a teaching context, WebASM can be used to prepare exercises, where
the signature and graphic visualisation for a certain problem are given by the
instructor, and the task set on students is to write ASM rules to accomplish the
desired behaviour. One could envision an entire course based on a number of
web pages, each allowing students to experiment with different specifications.

Finally, WebASM provides an alternative to traditional scripting languages
for the web. Instead of programming some desired behaviour in languages such as
JavaScript or VBScript, a developer could provide a ground model as a CoreASM
specification, and have it executed behind the scenes by WebASM. In such a
setup, conformance of the implementation to its ASM specification would be
guaranteed by construction.

5 Conclusions and Future Work

We have presented WebASM, a self-contained, zero-install, interactive, graphical
execution engine for CoreASM specifications which can be run entirely in any
standard web browser.

A set of APIs allow accessing the ASM state and controlling the ASM com-
putation from JavaScript code, thus enabling interactive, graphical visualisation
of the progress of the computation. The resulting environment is well suited to
quick experimentation with specifications and algorithms.

As a work in progress, WebASM can be extended in several directions; the
most promising of which are (1) providing a graphical highlight of the rules
being executed at each step, in addition to visualising the state resulting from
their execution, (2) providing a better editor, with support for syntax highlight-
ing and code completion, and (3) empowering users to visually build graphical
representations of the state, by providing a palette of tools to draw graphical
elements and link their appearance to elements of the ASM state.



WebASM: An Abstract State Machine Execution Environment for the Web 221

Some of these improvements, and especially (3), we consider as crucial to the
full realization of the promises of WebASM. Currently, a modicum of web pro-
gramming prowess is required to define the graphical representation of the state
and the mapping between locations of the ASM state and the DOM elements
depicting them. Ideally, the mapping could be defined — at least in most standard
cases — by a simple “property sheet”-style editing interface.

In a teaching setting, (3) is geared towards the instructor preparing exercises
(on a given problem) for students. In contrast, (1) and (2) are geared towards
the students, in that improvements in these areas would directly lead to more
effective feedback and ease of experimentation with changing the ASM specifi-
cation for the given problem. We are currently in the process of implementing
(1) and (2) for the first public release of the tool.

References

1. Borger, E.: The origins and the development of the ASM method for high level
system design and analysis. Journal of Universal Computer Science 8(1), 274 (2002)

2. Borger, E., Stark, R.: Abstract State Machines — A Method for High-Level System
Design and Analysis. Springer (2003)

3. Dijkstra, E., Feijen, W., van Gasteren, A.: Derivation of a termination detection
algorithm for distributed computations. Information Processing Letters 16, 217-219
(1983)

4. Farahbod, R., Gervasi, V., Glasser, U.: CoreASM: An extensible ASM execution
engine. Fundamenta Informaticae 77, 71-103 (2007)

5. Franklin, R.: On an improved algorithm for decentralized extrema finding in circular
configurations of processors. Commun. ACM 25(5), 336-337 (1982)

6. Gargantini, A., Riccobene, E., Scandurra, P.: A metamodel-based language and
a simulation engine for abstract state machines. Journal of Universal Computer
Science 14(12), 1949-1983 (2008)

7. Gervasi, V., Riccobene, E.: From English to ASM: On the process of deriving a
formal specification from a natural language one. Dagstuhl Reports 3(9), 85-90
(2014)

8. Gurevich, Y., Rossman, B., Schulte, W.: Semantic essence of AsmL. Theor. Comput.
Sci. 343(3), 370-412 (2005)

9. Schmid, J.: Refinement and Implementation Techniques for Abstract State Ma-
chines. PhD thesis, University of Ulm, Germany (2002)



	WebASM: An Abstract State Machine
Execution Environment for the Web

	1 Introduction
	2 Technical Outline
	3 Examples
	4 Applications
	5 Conclusions and Future Work
	References




