
Towards ASM-Based Formal Specification
of Self-Adaptive Systems

Elvinia Riccobene1 and Patrizia Scandurra2

1 Computer Science Department, Università degli Studi di Milano, Italy
2 Engineering Department, Università degli Studi di Bergamo, Italy

Abstract. This paper shows how to use multi-agent Abstract State Ma-
chines to specify self-adaptive behavior in a decentralized adaptation
control system. A traffic monitoring system is taken as case study.

1 Introduction

Modern software systems typically operate in dynamic environments and are
required to deal with changing operational conditions: components can appear
and disappear, may become temporarily or permanently unavailable, may change
their behavior, etc. Self-adaptation (SA) has been widely recognized [4,6] as
an effective approach to deal with the increasing complexity, uncertainty and
dynamics of these advanced systems. A well recognized engineering approach
to realize self-adaptation is by means of a feedback control loop conceived as a
sequence of four computations: Monitor-Analyze-Plan-Execute [6].

One major challenge in self-adaptive systems is to assure the required quality
properties (e.g., flexibility, robustness, etc.). Formal methods are an attractive
option for solving this problem as they provide a means to precisely model and
reason about the behaviors of self-adaptive systems. The survey in [7] shows
that the attention for self-adaptive software systems is gradually increasing, but
the number of studies that employ formal methods remains low, and is mainly
related to runtime verification. However, formally founded design models that
cover structural and behavioral aspects of self-adaptation, and of approaches
to validate behavioral properties are of extreme importance in order to provide
guarantees about qualities at the early stages of the system design.

By exploiting the theoretical framework of the Multi-Agent Abstract State
Machines (ASM) [2], we here show how to model the behavior of self-adaptive
distributed systems with decentralized adaptation control, where the MAPE
control loop is naturally formalized in terms of agents’ actions (transition rules).
A traffic monitoring application, inspired from [5], is taken as case study.

This is a first work of our ongoing research activity on answering the request
of precise models that help reasoning about adaptation at design time. In the
conclusion we report some lessons learned from our experience that reveal the
high potentiality of the ASMs in the context of self-adaptive systems.

Y. Ait Ameur and K.-D. Schewe (Eds.): ABZ 2014, LNCS 8477, pp. 204–209, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Towards ASM-Based Formal Specification of Self-Adaptive Systems 205

Fig. 1. Adaptation scenarios (adapted from [5])

2 The Traffic Monitoring Case Study

We present a traffic monitoring application inspired by the case study in [5].
A number of intelligent cameras are distributed along a road, each with a

limited viewing range (see Fig. 1). Cameras are equipped with a data processing
unit capable of processing the monitored data, and a communication unit to
communicate with other cameras. Traffic jams can span the viewing range of
multiple cameras and can dynamically grow and dissolve. Each camera monitors
the traffic state within its viewing range. Because there is no central point of
control, cameras have to aggregate the monitored data to determine the position
of the traffic jam on the basis of the head and tail of it. Cameras enter or leave
the collaboration whenever the traffic jam enters or leaves their viewing range.

There are two main adaptation concerns. The first is system flexibility for
the dynamic adaptation of an organization. See, e.g., the scenario in Fig. 1 from
configuration T0 to T1, where camera 2 joins the organization of cameras 3
and 4 after it monitors a traffic jam. The second is related to robustness due to
camera failures, i.e., when a failing camera becomes unresponsive. This scenario
is shown in Fig. 1 from T2 to T3, where camera 2 fails.

3 Multi-Agent ASM Specification

Because of the distributed nature of adaptive systems, we use the notion of multi-
agent ASMs where multiple agents interact in parallel in a synchronous/
asynchronous way. Each agent executes its own (possibly the same but differently
instantiated)ASM-based programthat specifies the agent’s behavior. Some agents
form the managing ASM part encapsulating the logic of self-adaptation. Some
other agents form the managed ASM part encapsulating the functional logic.

For the traffic monitoring application, we introduce four ASM agents: the
agents OrganizationController and SelfHealingController representing the man-
aging components, an agent Camera and an agent TrafficMonitor (the sensor
that in case of “congestion” or “no longer congestion” notifies the organization

206 E. Riccobene and P. Scandurra

Listing 1.1. Organization controller’s program
macro rule r_organizationControl =
seq //MAPE control loops

r_selfFailureAdapt[] //Adaptation due to internal failure
r_failureAdapt[] //ROBUSTNESS: Adaptation due to external failure (silent nodes)
r_congestionAdapt[] //FLEXIBILITY: Adaptation due to congestion

endseq

controller) both representing the managed camera subsystem. An ASM module,
called knowledge, is used as knowledge for the MAPE loops to define the ASM
signature (domains and functions symbols) shared among the managing agents.
We specify the self-adaptive behavior of the managing components of a camera
using two main MAPE loops: the first loop deals with flexibility concerns to
restructure organizations in case of congestion, the second loop deals with ro-
bustness concerns to restructure organizations in case of failing cameras. Both
the two loops start with the program associated to the agent OrganizationCon-
troller, however due to the decentralized nature of MAPE computations, part of
the monitoring functionality of the second loop is on the SelfHealingController
behavior. A further MAPE loop to deal with internal failures of the camera is
also executed by the two managing agents.

For the lack of space, we describe only part of the behavior of the Organiza-
tionController. The complete specification is available online1.

Organization middleware for Flexibility. An organization controller runs on
each camera and is responsible for managing organizations depending on the
data it gets from the traffic monitor and from the self-healing controller of the
camera. A master/slave control model is adopted to structure organizations in
case of congestion. Each camera has a unique ID (a static integer-valued function
id). To keep the master election policy simple, we assume the camera ID is
monotonically increasing on the traffic direction and the camera with the lowest
ID becomes master. Traditional election algorithms (like the Bully algorithm
and the Ring algorithm) or new ones are out of the scope of this paper.

Each camera has four basic states (the function state). In normal operation,
the camera can be master with no slaves (i.e., master of a single organization),
master of an organization with slaves, or it can be slave. Additionally, the cam-
era can be in the failed state, representing the status of the camera after a
silent node failure. Initially, all cameras are master. A camera state is changed
by the organization controller as part of the adaptation logic. The organization
controller has the same four basic states of the camera it manages. The orga-
nization controller’s program (see the rule r_organizationControl in Listing
1.1) executes sequentially the three MAPE control loops.

We here focus on the third MAPE loop for adapting organizations in case of
traffic congestion notified by the traffic monitor. Such a behavior is represented
by the rule r_congestionAdapt defined in Listing 1.2.

1 See the examples directory in the ASMETA repository http://asmeta.sf.net/

http://asmeta.sf.net/

Towards ASM-Based Formal Specification of Self-Adaptive Systems 207

Listing 1.2. ASM rule r_congestionAdapt
//@M_c context−aware monitoring

macro rule r_congestionAdapt =
par
if state(self) = MASTER
then

if (cong(camera(self)) and not congested(self))//Congestion detected!
then //@P Planning

par
congested(self) := true
cong(camera(self)) := false
if isDef(next(camera(self))) then s_offer(next(camera(self))) := true endif

endpar
else if congested(self) then r_analyzeCongestion[] endif endif endif

if state(self) = SLAVE
then

if no_cong(camera(self)) //No longer congested!
then //@P Planning

par
no_cong(camera(self)):= false
congested(self) := false
slaveGone(getMaster(camera(self)),camera(self)) := true
r_turnMaster[]

endpar
else

r_receiveOrgSignals[] endif endif
if state(self) = MASTERWITHSLAVES
then if no_cong(camera(self)) //No longer congested!

then //@P Planning
par r_removeSlavesTurningMaster[]
no_cong(camera(self)):= false
congested(self):= false endpar

else r_analyzeOrganization[] endif endif
endpar

In the role of master of a single member organization, when a congestion
is detected (the signal cong) the organization controller sends a request (the
predicate s_offer) to the next alive camera (if any) in the direction of the traffic
flow to join the organization as slave. Depending on the traffic condition of the
next camera and its role, the organizations may be restructured according to
the rule r_analyzeCongestion reported in Listing 1.3. If traffic is not jammed
(the controlled predicate congested is false) for the next camera, organizations
are not changed, otherwise organizations are joined. The next camera becomes
slave of the requester camera by executing the rule r_turnSlave that changes
the camera state, sets the requester camera as new master and informs back it
by setting the shared function newSlave and (indirectly) the derived predicate
m_offer to true. When the m_offer signal is set the requester camera becomes
master of the joined organization executing the rule r_turnMasterWithSlaves
(see Listing 1.3) to concretely add the new slave to its list and change state.

In the role of slave, if the traffic in the viewing range of the camera is no
longer jammed (the signal no_cong), the organization controller leaves the or-
ganization it belongs to (by setting the function slaveGone) and becomes mas-
ter of a single member organization (by executing the rule r_turnMaster in
Listing 1.2). Otherwise (still congested), the organization controller waits (by

208 E. Riccobene and P. Scandurra

Listing 1.3. ASM rules for analysis computations
//@A Analyzing
macro rule r_analyzeCongestion =
if m_offer(camera(self)) then r_turnMasterWithSlaves[]
else if s_offer(camera(self)) then r_turnSlave[prev(camera(self))] endif endif

//@A Analyzing
macro rule r_receiveOrgSignals =

par
if change_master(camera(self)) then //Master changed!

//@P Planning
par
r_setMaster[prev(getMaster(camera(self)))]
newSlave(prev(getMaster(camera(self))),camera(self)) := true
change_master(camera(self)) := false

endpar endif
if masterGone(camera(self)) then r_turnMaster[] endif
if m_offer(camera(self)) then r_notifyPendingSlavesMasterChanged[] endif

endpar
//@A Analyzing
macro rule r_analyzeOrganization =
if m_offer(camera(self)) then r_addNewSlave[]
else if isEmpty(slaves(camera(self))) //Simply turn master

then r_turnMaster[]
else if (s_offer(camera(self)) and congested(self))

then r_turnSlave[prev(camera(self))] endif endif endif
//@P Planning
macro rule r_addNewSlave =

forall $s in Camera with newSlave(camera(self),$s) do
par

r_addSlave[$s]
newSlave(camera(self),$s):= false
s_offer($s):=false

endpar

the rule r_receiveOrgSignals) for a trigger from its master. The rule r_-
receiveOrgSignals is reported in Listing 1.3. If (in the slave role) the controller
receives a signal change_master as effect of a restructuring of the organization,
it is responsible for planning adaptations to change its master to the new mas-
ter. If it receives that the master is gone (by the shared predicate masterGone),
it restarts the camera as master of a single member organization (by invoking
the rule r_turnMaster[] already shown in Listing 1.2). Finally, if it receives an
m_offer signal, it means there are slaves not effectively engaged when in the
role of master it asked them to join the organization as slave. In this last case it
is responsible for notifying them that the master changed by executing the rule
r_notifyPendingSlavesMasterChanged in Listing 1.3.

Finally, in the role of master with slaves, when the traffic is no longer jammed
(the signal no_cong), the organization controller notifies all its depending slaves
that the master is gone (setting the predicate masterGone to true) and leaves
the organization becoming master of a single member organization (see rule r_-
removeSlavesTurningMaster in Listing 1.2). Otherwise (still congested),
the organization controller analyzes the organization by the rule
r_analyzeOrganization (see Listing 1.3) to add and remove slaves dynami-
cally. When no slaves remain, the master with slaves becomes master of a single
member organization again. During analysis of its organization, it has also to

Towards ASM-Based Formal Specification of Self-Adaptive Systems 209

wait for a trigger s_offer, and if notified it has to plan to become slave of the
requester camera by executing r_turnSlave in Listing 1.2.

For the lack of space, macro rules (such as r_turnSlave, r_turnMaster,etc.)
and those annotated with @E for atomic adaptation actions in a master/slave
organization (such as r_clearSlaves, r_addSlave, etc.) are not reported.

4 Conclusion and Future Directions

Besides modeling, we were also able to validate the Traffic Monitoring case study
by exploiting model simulation and scenario construction. We focused on two
qualities: flexibility (i.e., the ability of the system to adapt dynamically with
changing conditions in the environment), and robustness (i.e., the ability of
the system to cope autonomously with errors during execution). By means of
the ASM tools[1,3], we simulated different scenarios with increasing number of
cameras. In particular, we reproduced the adaptations scenarios shown in Fig.
3 from T0 to T2 for flexibility, and from T2 to T3 for robustness.

From modeling and validation, we learned some lessons briefly reported. We
were able to achieve a clear separation of concerns: (i) separation between adap-
tation logic and function logic, (ii) separation between behavior of managing and
managed components, (ii) separation between the specification of the MAPE
functions. This helps the designer to focus on one adaptation concern at a time,
and, for each concern, separate the adapting parts from the adapted ones.

In the future, we plan to define a formal framework providing high level con-
structs for expressing context-awareness, self-awareness, adaptation actions, dis-
tributed communication patterns. We plan to investigate on the verification of
self adaptive systems by using the ASMETA tool set.

References

1. Arcaini, P., Gargantini, A., Riccobene, E., Scandurra, P.: A model-driven process
for engineering a toolset for a formal method. SPE J. 41(2), 155–166 (2011)

2. Börger, E., Stärk, R.: Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer (2003)

3. Carioni, A., Gargantini, A., Riccobene, E., Scandurra, P.: Scenario-Based Validation
Language for ASMs. In: Börger, E., Butler, M., Bowen, J.P., Boca, P. (eds.) ABZ
2008. LNCS, vol. 5238, pp. 71–84. Springer, Heidelberg (2008)

4. de Lemos, R., et al.: Software engineering for self-adaptive systems: A second re-
search roadmap. In: de Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.) Software
Engineering for Self-Adaptive Systems. LNCS, vol. 7475, pp. 1–32. Springer, Hei-
delberg (2013)

5. Iftikhar, M.U., Weyns, D.: A case study on formal verification of self-adaptive be-
haviors in a decentralized system. In: Kokash, N., Ravara, A. (eds.) FOCLASA.
EPTCS, vol. 91, pp. 45–62 (2012)

6. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Com-
puter 36(1), 41–50 (2003)

7. Weyns, D., Iftikhar, M.U., de la Iglesia, D.G., Ahmad, T.: A survey of formal meth-
ods in self-adaptive systems. In: C3S2E, pp. 67–79. ACM (2012)

	Towards ASM-Based Formal Specification of Self-Adaptive Systems
	1 Introduction
	2 The Traffic Monitoring Case Study
	3 Multi-Agent ASM Specification
	4 Conclusion and Future Directions
	References

