
Sealed Containers in Z

Eerke Boiten1 and Jeremy Jacob2

1 School of Computing, University of Kent, UK
2 Department of Computer Science, University of York, UK

Abstract. Physical means of securing information, such as sealed envelopes and
scratch cards, can be used to achieve cryptographic objectives. Reasoning about
this has so far been informal.

We give a model of distinguishable sealed envelopes in Z, exploring design
decisions and further analysis and development of such models.

1 Introduction

Physical mechanisms for securing information such as sealed envelopes and scratch
cards have powerful properties. They contain information, which remains hidden un-
til an explicitly decided moment. Up to then, anyone who has not constructed the item
can plausibly argue ignorance. Reasoning about such mechanisms so far has been done
informally, which is insufficient for complex applications like voting and polling proto-
cols [9], and most fundamentally: general cryptographic schemes [8]. In such schemes,
scratch cards and sealed envelopes play an intricate role, and the notions of security are
sophisticated, starting from possibilistic and extending to probabilistic and complexity
aspects.

This paper explores the formal modelling and analysis of sealed distinguishable
envelopes containing a single bit, applied in protocols for bit commitment[8]. Our em-
phasis will be on constructing the model and protocols, looking ahead to semantic re-
quirements for systematic analysis and formal development.

2 Modelling Sealed Envelopes in Z

This is a story about Agents who pass Envelopes about:

[Agent, Envelope]

Envelopes contain bits, and may be uncreated, closed or open. The value in a closed
envelope may only be known by its creator; the value in an open envelope is known by
anyone who possesses it. A created envelope is in the possession of exactly one agent in
any state. We model an agent knowing the content of an envelope by relations zero and
one. The predicate a �→ e ∈ zero encodes that agent a has direct evidence (it created the
envelope, or has seen it when open) that e contains a 0-bit; and similarly for one. The
predicates below state that all open envelopes are held by some agent, the content of
every created envelope is known by some agent, and all agents who know the content

Y. Ait Ameur and K.-D. Schewe (Eds.): ABZ 2014, LNCS 8477, pp. 136–141, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Sealed Containers in Z 137

of an envelope agree on it. Operations on this state need to satisfy the criteria that open
envelopes cannot be closed, and agents’ knowledge never decreases.

S
holder : Envelope � �→ Agent
open : FEnvelope
zero, one : Agent ↔ Envelope

open ⊆ dom holder
ran(zero ∪ one) = dom holder
ran zero ∩ ran one = ∅

OpS
ΔS

open ⊆ open′

zero ⊆ zero′

one ⊆ one′

There are three operations, to create, move and open sets of envelopes. When an
agent a? creates envelopes it does so for a set of envelopes to store 0-bits, zs?, and for
a set of 1-bits, os? – either may be singleton or empty. New envelopes are held by their
creator, are closed, and their values are known to their creator only.

Create
OpS; a? : Agent; zs?, os? : FEnvelope

(zs? ∪ os?) ∩ dom holder = ∅ ∧ zs? ∩ os? = ∅
holder′ = holder ∪ ((zs? ∪ os?)× {a?}) ∧ open′ = open
zero′ = zero ∪ ({a?} × zs?) ∧ one′ = one ∪ ({a?} × os?)

A set of envelopes may be moved to a named agent as long as they have all been created,
and are held by one agent. The receiving agent learns the values of any open envelopes.
No envelope is opened by this operation.

Move
OpS; b? : Agent; es? : FEnvelope

es? ⊆ dom holder ∧ ∃ a : Agent • holder(| es? |) = {a}
holder′ = holder ⊕ (es? × {b?}) ∧ open′ = open
zero′ = zero ∪ ({b?} × (es? ∩ open ∩ ran zero))
one′ = one ∪ ({b?} × (es? ∩ open ∩ ran one))

The holder of a set of envelopes can open them. The holder learns their values, they do
not change hands.

Open
OpS; es? : FEnvelope

es? ⊆ dom holder ∧ es? ∩ open = ∅
holder′ = holder ∧ open′ = open ∪ es?
∃ a : Agent • holder(| es? |) = {a} ∧

zero′ = zero ∪ ({a} × (es? ∩ ran zero)) ∧
one′ = one ∪ ({a} × (es? ∩ ran one))

We define a schema that reports an agent’s view of a state. This is a finalisation opera-
tion, not commonly used in Z states-and-operations models, but a good way of encod-
ing non-standard observations of abstract data types. The variables with 0-subscripts

138 E. Boiten and J. Jacob

are those which represent b?’s view of (an instance of) state S.

View
S; S0; b? : Agent

holder0 = holder� {b?} ∧ open0 = open ∩ dom holder0
zero0 = {b?}� zero ∧ one0 = {b?}� one

3 Bit Commitment: A Challenge

Commitment is an essential cryptographic primitive between two parties. In the simplest
case, where the value committed to is a single bit, it works as follows.

One party, the sender, executes an action Commit(b) for given value b. From then,
the receiver knows the sender has committed to a bit, but not which. This is the hid-
ing property, which a cheating receiver may try to break. The situation now set up is
typically exploited in other protocols, e.g. authentication, for further actions. After that,
the sender can execute an Open action, upon which the receiver finds out b. The value
learned should be the same value committed to – this is called the binding property,
which a cheating sender may try to break. A surrounding protocol would typically be
aborted on discovery of foul play.

The obvious but flawed implementation attempt using envelopes just has the sender
(here a?) passing an envelope with the bit in to the receiver (here b?):

Commit =̂ [Create; es? : FEnvelope | es? = zs? ∪ os? ∧ #es? = 1] o
9 Move

Now we can specialise to the case of committing to a zero-bit, and the recipient’s view
afterwards (for one-bit it’s the analogous CommitOneView), and state and prove that
the two cases are indistinguishable (“hiding”).

CommitZero =̂ [Commit | os? = ∅]
CommitZeroView =̂ ∃ es?, zs?, os? : FEnvelope • CommitZero o

9 View

∀ a?, b? : Agent | a? �= b? • θCommitZeroView = θCommitOneView

The recipient, b?, can open the envelope to discover the value of the bit in it. We in-
troduce a view for the receiver once that has happened, and a correctness statement for
“binding” at this stage:

CommitOpenView =̂ Commit o
9 Open o

9 View
CommitZeroOpenView =̂ CommitZero o

9 Open o
9 View

∀CommitOpenView • (es? ⊆ ran zero0 \ ran one0 ⇒ CommitZeroOpenView)
∧ (es? ⊆ ran one0 \ ran zero0 ⇒ CommitOneOpenView)

However, this is not yet a correct implementation of commitment: Open is enabled as
soon as the commitment has been made. Thus, it does not allow the sender to control
when the receiver may learn the bit value. Removing the Move action from the commit-
ment step also would not solve it, as this would break the binding property: the sender

Sealed Containers in Z 139

could then postpone the choice of bit. In the physical world, as in the cryptographic
one, a sledgehammer solution to this is to assume a trusted third party, to which we can
hand the envelope (or the bit) for safekeeping between committing and opening.

The exploration of bit commitment as a two party protocol, with the normal assump-
tions of a fixed number of messages of bounded size, has led to multiple negative results.
First, it is impossible to achieve both perfect hiding and perfect binding. Approximate,
computational, notions of security have been achieved with practical schemes, but the
desirable compositionality property of “Universal Composability” is provably unattain-
able without further assumptions [5]. All this makes commitment a challenge for formal
methods, requiring approximate notions of correctness and having an unsatisfiable “ob-
vious ideal” specification.

4 Envelope Based Commitment Protocols

An envelope-based protocol that is more resistant against cheating needs three addi-
tional enhancements. First, the bit in the envelope needs to be masked with a “ran-
dom” bit r. (In this paper, uniform probabilistic choice is abstracted to non-deterministic
choice.) If the sender puts r xor v? in the envelope, opening the envelope will not reveal
v?. The sender will transmit r to open the commitment, which will allow the receiver
to learn v? by cancellation of xor. However, this allows the sender to cheat against
binding, by transmitting ¬r on opening.

The way out of this is for the receiver to prepare envelopes with random bits for
the sender. With just two of these, cheating attempts always succeed, but with four it
can be detected often enough. The receiver creates these, two with each bit value, and
sends them to the sender. He opens three, and expects to find two zeros and a one, or
vice versa – if not, the receiver’s cheating has been detected. If the receiver biases the
choice by sending (say) three zeroes plus a one, this is detected with a chance of one in
four which seems small, but can be amplified by repeating the scheme to achieve any
required level of security.

Thus, the protocol consists of three communications of envelopes between the par-
ties, with typically a time gap between the second and the third in which the overarching
protocol does its job. In traditional protocol notation it is given below, using two bits of
extra notation:

– values listed between [[]] brackets are received in a non-deterministic order;
– [x] denotes a newly created closed envelope containing the bit x, a new open enve-

lope with x is represented by 〈x〉.

Preparation: B → A : [[[1], [1], [0], [0]]]
A receives these as E1 . . . E4, opens E1 . . . E3 and takes the exclusive-or
of their values returning b.
If E1 . . . E3 all had the same value, A finds B has cheated and aborts.

Commitment: A → B : 〈vv〉
The value vv is computed as the exclusive-or of b and the value v? that A
wants to commit to. It is sent in an open envelope called e? below.

140 E. Boiten and J. Jacob

Opening: A → B : E4
B receives and opens this last closed envelope, the value found should be b,
and computes the exclusive-or of b and vv which should be v?.
If the envelope received isn’t one of the original four created by B, A has
cheated and B aborts the protocol (and any surrounding ones).

The Preparation Phase The receiver creates four envelopes and sends them to the
sender. An honest receiver balances the bits to be sent: two of each. A smart dishonest
receiver sends three plus one (four the same would always be found out). The sender
will detect this case with probability 1

4 . With a? as the sender, and b? as the receiver, we
need shorthands for envelopes being created and moving in opposite directions from
before:

CreateB =̂ Create[b?/a?] MoveBA =̂ Move[a?/b?]
SendFour =̂ [CreateB; es? : FEnvelope | es? = zs? ∪ os? ∧ #es? = 4] o

9 MoveBA
Honest =̂ [SendFour | #zs? = 2]
Dishonest =̂ [SendFour | #zs? = 1 ∨ #os? = 1]

We introduce fs? for the set of envelopes to be opened, through renaming. With an
honest receiver the sender knows the value in the unopened envelope:

OpenThree =̂ [Open[fs?/es?]; es? : FEnvelope | #fs? = 3 ∧ fs? ⊆ es?]
HonestOpenThree =̂ Honest o

9 OpenThree
∀HonestOpenThree • (#(ran zero ∩ fs?) = 1 ⇒ es? \ fs? ⊆ ran zero)

∧ (#(ran one ∩ fs?) = 1 ⇒ es? \ fs? ⊆ ran one)

The Commitment Step. The relevant definitions (for a zero bit) for this phase are as
follows.Details are in the full paper [4].

CreateOne =̂ ∃ zs? : FEnvelope • [Create[e?/os?] | #e? = 1 ∧ #zs? = 0]
SendOne =̂ CreateOne o

9 Open[e?/es?] o
9 Move[e?/es?]

CommitToOne =̂ OpenThree o
9 ([SendOne | #(ran zero ∩ fs?) = 1]
∨[SendZero | #(ran zero ∩ fs?) = 2])

CommitOView =̂ ∃ e?, es?, fs?, zs?, os? • Honest o
9 CommitToOne o

9 View

Opening the Commitment. The relevant definitions for this phase are as below, with
analogues for the one-bit:

MoveLast =̂ [es?, fs?, ef ? : FEnvelope | Move[ef ?/es?] ∧ ef ? = es?/fs?]
Same =̂ [S′; e?, ef ? : FEnvelope | e? ∪ ef ? ⊆ ran zero′ ∨ e? ∪ ef ? ⊆ ran one′]
OpenZero =̂ MoveLast o

9 ([Open[ef ?/es?] ∧ Same)

5 Discussion and Further Work

We have not considered refinement for these specifications. Rather, we took an approach
that is more common in security: using security properties over an abstract implementa-
tion. Better would be to state the security properties abstractly, and produce the imple-
mentation as a (gradual, stepwise) refinement of them, for a suitable refinement notion.

Sealed Containers in Z 141

Some of our properties even refer directly to the specification internals, which is less
abstract. The standard Z style is a natural choice for this work, as it considers state hid-
den, and these sealed containers are all about subtle information hiding varying over
time. The use of finalisations (“views”) is a first step towards providing a more abstract
observational semantics, in line with previous work by both authors [3,1].

A number of additional aspects need to be considered in the refinement relation.
Information flow from hidden to visible variables also needs to be incorporated, for
example based on Morgan’s shadow semantics [10] or the fog semantics [2] by Banks
and Jacob. A promising theoretical framework for integrating the missing probabilistic
aspect is the theory by McIver, Morgan and others [7,6]. Integrating also the com-
putational complexity aspects inherent from modern cryptography remains an open
problem.

Acknowledgement. This work is supported by the EPSRC CryptoForma Network, on
formal methods and cryptography (www.cryptoforma.org.uk). The specification
was developed with support from the Z-Eves proof tool [11].

References

1. Banks, M.J., Jacob, J.L.: On modelling user observations in the UTP. In: Qin, S. (ed.) UTP
2010. LNCS, vol. 6445, pp. 101–119. Springer, Heidelberg (2010)

2. Banks, M.J., Jacob, J.L.: On integrating confidentiality and functionality in a formal method.
Formal Asp. Comput. (2013), http://link.springer.com/article/
10.1007%2Fs00165-013-0285-4

3. Boiten, E., Derrick, J., Schellhorn, G.: Relational concurrent refinement part II: Internal op-
erations and outputs. Formal Asp. Comput. 21(1-2), 65–102 (2009)

4. Boiten, E., Jacob, J.: Modelling sealed envelopes in Z (2014), http://www.cs.kent.
ac.uk/people/staff/eab2/papers/envlop.pdf

5. Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.) CRYPTO
2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001)

6. Hoang, T.S., McIver, A.K., Meinicke, L., Morgan, C.C., Sloane, A., Susatyo, E.: Abstractions
of non-interference security: probabilistic versus possibilistic. Formal Asp. Comput. 26(1),
169–194 (2014)

7. McIver, A., Morgan, C.: Abstraction, Refinement and Proof for Probabilistic Systems.
Springer (2004)

8. Moran, T., Naor, M.: Basing cryptographic protocols on tamper-evident seals. In: Caires, L.,
Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580,
pp. 285–297. Springer, Heidelberg (2005)

9. Moran, T., Naor, M.: Polling with physical envelopes: A rigorous analysis of a human-centric
protocol. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 88–108. Springer,
Heidelberg (2006)

10. Morgan, C.: The shadow knows: Refinement of ignorance in sequential programs. Sci. Com-
put. Program. 74(8), 629–653 (2009)

11. Saaltink, M.: The Z/EVES system. In: Bowen, J.P., Hinchey, M.G., Till, D. (eds.) ZUM 1997.
LNCS, vol. 1212, pp. 72–85. Springer, Heidelberg (1997)

http://springerlink.bibliotecabuap.elogim.com/article/10.1007%2Fs00165-013-0285-4
http://springerlink.bibliotecabuap.elogim.com/article/10.1007%2Fs00165-013-0285-4
http://www.cs.kent.ac.uk/people/staff/eab2/papers/envlop.pdf
http://www.cs.kent.ac.uk/people/staff/eab2/papers/envlop.pdf

	Sealed Containers in Z
	1 Introduction
	2 Modelling Sealed Envelopes in Z
	3 Bit Commitment: A Challenge
	4 Envelope Based Commitment Protocols
	5 Discussion and Further Work
	References

